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Abstract. Premature convergence and low converging speed are the distinct 
weaknesses of the genetic algorithms. a new algorithm called ECCA (ecological 
competition coevolutionary algorithm) is proposed for multiobjective 
optimization problems, in which the competition is considered to be in 
important position. In the algorithms, each objective corresponds to a 
population. At each generation, these populations compete among themselves. 
An ecological population density competition equation is used for reference to 
describe the relation between multiple objectives and to direct the adjustment 
over the relation at individual and population levels. The proposed approach 
store the Pareto optimal point obtained along the evolutionary process into 
external set, enforcing a more uniform distribution of such vectors along the 
Pareto front. The experiment results show the high efficiency of the improved 
Genetic Algorithms based on this model in solving premature convergence and 
accelerating the convergence.  
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1  Introduction 

This solution of a real problem involved in multiobjective optimization (MO) must 
satisfy all optimization objectives simultaneously, and in general the solution is a set of 
indeterminacy points. The task of MO is to estimate the distribution of this solution set, 
then to find the satisfying solutions in it. General MO contain a set of n decision 
variables, a set of k objective functions, and a set of m constraints. In this case, 
objective functions and constraints respectively become functions of the decision 
variables. If the goal of multiobjective optimization problems is to maximize the 
objective functions of the y vector, then (1): 

             

(1) 
 

Where x=(x1, x2,…,xn)∈X, y= (y1, y2,…,yk)∈Y. 
In (1), x is called a decision variable vector and y is called an objective function 

vector. The decision variable space is denoted by X and the objective function space is 
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denoted by Y. The constraint condition e(x)≤0 determines the set of feasible solutions. 
The set of solutions of multiobjective optimization problems consist of all decision 
vectors for which the corresponding objective vectors cannot be improved in any 
dimension without degradation in another [1]. Differently from Single-objective 
Optimization Problems (SOPs), multiobjective optimization problems have a set of 
solutions known as the Pareto optimal set. This solution set is generally called non-
dominated solutions and is optimal in the sense that no other solutions are superior to 
them in the search space when all objectives are considered. 

The set of objectives forms a space where points in the space represent individual 
solutions. The goal of course is to find the best or optimal solutions to the optimization 
problem at hand. Pareto optimality defines how to determine the set of optimal 
solutions. A solution is Pareto-optimal if no other solution can improve one objective 
function without a simultaneous deterioration of at least one of the other objectives. A 
set of such solutions is called the Pareto-optimal front. 

Evolutionary algorithms (EA’s) seem to be particularly suited for this task because 
they process a set of solutions in parallel, possibly exploiting similarities of solutions 
by recombination. Some researchers suggest that multiobjective search and 
optimization might be a problem area where EA’s do better than other blind search 
strategies [2].  

First, they can be applied when one has only limited knowledge about the problem 
being solved. Second, evolutionary computation is less susceptible to becoming 
trapped by local optima. This is because evolutionary algorithms maintain a population 
of alternative solutions and strike a balance between exploiting regions of the search 
space that have previously produced fit individuals and continuing to explore 
uncharted territory. Third, evolutionary computation can be applied in the context of 
noisy or non-stationary objective functions. 

At the same time, difficulties can and do arise in applying the traditional 
computational models of evolution to multiobjective optimization problem. There are 
two primary reasons traditional evolutionary algorithms have difficulties with these 
types of problems. First, the population of individuals evolved by these algorithms 
has a strong tendency to converge because an increasing number of trials are allocated 
to observed regions of the solution space with above average fitness. This is a major 
disadvantage when solving multimodal function optimization problems where the 
solution needs to provide more information than the location of a single peak or 
valley [3]. This strong convergence property also precludes the long-term 
preservation of coadapted subcomponents required for solving covering problems or 
utilizing the divide-and-conquer strategy, because any but the strongest individual 
will ultimately be eliminated. Second, individuals evolved by traditional evolutionary 
algorithms typically represent complete solutions and are evaluated in isolation. Since 
interactions between population members are not modeled, even if population 
diversity were somehow preserved, the evolutionary model would have to be 
extended to enable coadaptive behavior to emerge [4]. 

To avoid this phenomenon, we proposed a multiobjective coevolutionary genetic 
algorithm (ECCA) for multiobjective optimization. Individual evolution is based on 
its fitness in genetic algorithm, but its living environment and relationship with other 
part aren't envolved. Coevolution is the process of mutual adaptation of two or more 
populations. The computational study of coevolution initiated by Hillis gave birth to 
competitive coevolutionary algorithms. His main motivation of the work reported 
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here was precisely to take advantage of some coevolutionary concept [5]. In 1994, 
Paredis introduced Coevolutionary Genetic Algorithms (CGAs) [6]. In contrast with 
the typical all-at-once fitness evaluation of Genetic Algorithms (GAs), CGAs employ 
a partial but continuous fitness evaluation. Furthermore, the power of CGAs was 
demonstrated on various applications such as classification, process control, and 
constraint satisfaction. In addition to this, a number of symbiotic applications have 
been developed.  

The major concern of this paper is to introduce the idea of competitive coevolution 
into multiobjective optimization. A multiobjective competitive coevolutionary genetic 
algorithm is proposed and implemented based on this idea to search the Pareto front 
effectively and reduce the runtime. At each generation, the proposed approach store 
the Pareto optimal point obtained along the evolutionary process into external set, 
enforcing a more uniform distribution of such vectors along the Pareto front. We then 
describe multiobjective optimization problems and a typical test functions that we use 
to judge the performance of the ECCA. Empirical results from the ECCA runs are 
presented and compared to previously published results. 

The paper is organized as follows. Section 2 gives the ecological population 
competition mode and the proposed algorithm. In Section 3, he results of simulation 
are presented. The conclusions are given in Section 4. 

2  The Proposed Algorithm 

In collaborative evolution individual's self-status, living environment and competition 
with other individuals affect individual's self-evolution [7]. Lotka-Volterra 
competition equation as the theoretical model of population competition is introduced 
to describe populations' cooperation. Given two populations N1, N2, the cooperation 
between them can be formulated as follows (2) and (3): 
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Where K1, K2 are the living environment loads of population N1, N2 without 
competition to each other, and r1, r2 are individual's maximum increasing rates. a12, a21 
are competition coefficients, aij represents the suppression effect of individuals of 
population Ni from individuals of population Nj. In community comprising n different 
populations, competition equation can be formulated as follows (4): 
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It’s the cooperation model based on ecological population density. W e could exploit 
this model to describe the relation of multiple objectives. Because the relation of 
multiple objectives is just collaborative coexistence, and it finally is stable. 

Exploiting (4), we proposed a ECCA algorithm based on ecological cooperation. 
The primary design goal of the proposed approach is to produce a reasonably good 
approximation of the true Pareto front of a problem. The proposed algorithm using 
dynamical equation of population competition at ecology to describe the complex, 
nonlinear relations of multiple objectives and to adjust the relation on individual and 
population levels simultaneously.  

In our algorithms, each objective corresponds to a population. At each generation, 
these populations compete among themselves. An ecological population density 
competition equation is used for reference to describe the relation between multiple 
objectives and to direct the adjustment over the relation at individual and population 
levels. Moreover, t he proposed approach store the Pareto optimal point obtained 
along the evolutionary process into external set, enforcing a more uniform distribution 
of such vectors along the Pareto front.  

The basic idea of algorithm is as follows: 
 

1. Each objective corresponds to a population; 
2. In one iterative step, evolution process and cooperation process must be 

executed; the evolutionary process adopts GA's genetic operations, while the 
cooperation process adopts (4) to compute population density and to adjust the scales 
of populations. The scale of population is formulated as (5): 

Ni(t+1)=Ni(t)+dNi/dt  (5)

If the increasing of population Ni is positive, randomly generated dNi/dt 
individuals join population Ni for enlarging the scale of Ni. 

If the increasing of population Ni is negative, according to the fitness of population 
Ni, dNi/dt individuals with minimal fitness are deleted. The scale of population is 
reduced. 

As a complete unit, ECCA pseudo code description is given here: 
 

Step1: Initialize a null set as external set  
Step2: for all objective functions fi(x) 

Initialize a random population Ni corresponding to fi(x) 
endfor  

Step3: while (terminative condition is NOT satisfied) 
for all populations Ni 

(A) Compute all of the Pareto optimal points Pi in population Ni 

(B) Store Pi into external set 
(C) General genetic operations are performed 
(D) Computing dN/dt using (4) 
(E) Determine next generation's scale of population Ni using (5)  

endfor 
  endwhile. 
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3  Results of Simulation 

To validate our approach, we used the methodology normally adopted in the 
evolutionary multiobjective optimization literature [8]. We performed quantitative 
comparisons (adopting three metrics) with respect to three MOEAs that are 
representative of the state-of-the-art in the are: the microGA for multiobjective 
optimization [9], the Pareto Archived Evolution Strategy (PAES) [10] and the 
Nondominated Sorting Genetic Algorithm II (NSGA-II) [11]. For our comparative 
study, we implemented for three following metrics:  

1. Spacing (SP): This metric was proposed by Schott [12] as a way of measuring 
the range (distance) variance of neighboring vectors in the Pareto front known. This 
metric is defined as (6): 
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is the mean of all di, and n is the number of vectors in the Pareto front found by the 
algorithm being evaluated. A value of zero for this metric indicates all the 
nondominated solutions found are equidistantly spaced. 

2. Generational Distance (GD): The concept of generational distance was 
introduced by Van Veldhuizen & Lamont [13] as a way of estimating how far are the 
elements in the Pareto front produced by our algorithm from those in the true Pareto 
front of the problem. This metric is defined as (7):  
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where n is the number of nondominated vectors found by the algorithm being 
analyzed and di is the Euclidean distance (measured in objective space) between each 
of these and the nearest member of the true Pareto front. It should be clear that a value 
of GD=0 indicates that all the elements generated are in the true Pareto front of the 
problem. Therefore, any other value will indicate how “far” we are from the global 
Pareto front of our problem.. 

3. Error Ratio (ER): This metric was proposed by Van Veldhuizen [14] to indicate 
the percentage of solutions (from the nondominated vectors found so far) that are not 
members of the true Pareto optimal set as (8): 
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where n is the number of vectors in the current set of nondominated vectors available; 
ei= 0 if vector i is a member of the Pareto optimal set, and ei=1 otherwise. It should 
then be clear that ER=0 indicates an ideal behavior, since it would mean that all the 
vectors generated by our MEA belong to the Pareto optimal set of the problem. This 
metric addresses the third issue from the list previously provided. 
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We test the performance of ECCA on test function defined as follows (9): 
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To compute the nondominated front for the ECCA, we did the following. For each 
ECCA run, we collected all the Pareto optimal point into external nondominated set 
corresponding to the individuals evaluated during the run. 

In this example, our approach used: popsizeinit= 100, popsizeexternal =30. Table 1 
shows the values of the metrics for each of the MOEAs compared. 

As noted in the literature [15], comparing multiobjective optimization algorithms 
against each other can be difficult. One would like an algorithm to minimize the 
distance to the Pareto optimal front and provide uniform coverage of the Pareto 
optimal front for a wide range of values. Thus, comparisons become multiobjective 
optimization problems themselves: is an algorithm that finds a handful of Pareto 
optimal solutions better than an algorithm that finds a wide, uniform distribution of 
near Pareto optimal solutions? With this in mind we present the experimental results 
according to different algorithms shown in Table 1. 

Table 1. Results of Simulation 

  
CO-

MOEA 
MicroGA PAES NSGAII 

ER 

best 0.46 0.42 0.02 0.00 

median 0.61 0.77 0.07 0.02 

worst 0.68 0.98 0.15 0.08 

average 0.60 0.75 0.07 0.03 

std. dev. 0.061 0.145 0.030 0.021 

GD 

best 0.0003 0.0008 0.0001 0.0007 

median 0.001 0.0089 0.0006 0.0008 

worst 0.042 0.238 0.0659 0.0009 

average 0.0049 0.0681 0.0066 0.0008 

std.dev. 0.009 0.086 0.016 0.000 

SP 

best 0.006 0.017 0.007 0.006 

median 0.012 0.042 0.014 0.008 

worst 0.379 1.539 0.624 0.086 

average 0.039 0.356 0.054 0.01 

std.dev. 0.073 0.507 0.141 0.014 
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From Table 1, we can see that the NSGA-II had the best overall performance. It is 
also clear that the microGA presented the worst performance for this test function. 
Based on the values of the ER and SC metrics, we can conclude that our approach had 
problems to reach the true Pareto front of this problem. Note however, that the values 
of GD and SP indicate that our approach converged very closely to the true Pareto 
front and that it achieved a good distribution of solutions. PAES had a good 
performance regarding closeness to the true Pareto front, but its performance was not 
so good regarding uniform distribution of solutions. 

4  Conclusion 

The solution of multiobjective optimization problem is a set of indeterminacy points, 
and the task of multiobjective optimization is to estimate the distribution of this 
solution set, then to find the satisfying solution in it [16]. Many methods solving 
multiobjective optimization using genetic algorithm have been proposed in recent 
twenty years. But these approaches tend to work negatively, causing that the 
population converges to small number of solutions due to the random genetic drift 
[17]. To avoid this phenomenon, a competitive coevolutionary genetic algorithm 
(ECCA) for multiobjective optimization is proposed. The primary design goal of the 
proposed approach is to produce a reasonably good approximation of the true Pareto 
front of a problem. In the algorithms, each objective corresponds to a population. At 
each generation, these populations compete among themselves. An ecological 
population density competition equation is used for reference to describe the relation 
between multiple objectives and to direct the adjustment over the relation at 
individual and population levels. 

The proposed approach was validated using typical test function taken from the 
specialized literature. Our comparative study showed that the proposed approach is 
competitive with respect three other algorithms that are representative of the state-of-
the-art in evolutionary multiobjective optimization. More work, and more 
comparisons is need to determine the general properties of ECCA, and how they can 
be adapted or improved. 
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