
From Probabilistic Counterexamples via

Causality to Fault Trees

Matthias Kuntz1, Florian Leitner-Fischer2, and Stefan Leue2

1 TRW Automotive GmbH, Germany
2 University of Konstanz, Germany

Abstract. In recent years, several approaches to generate probabilistic
counterexamples have been proposed. The interpretation of stochastic
counterexamples, however, continues to be problematic since they have
to be represented as sets of paths, and the number of paths in this set
may be very large. Fault trees (FTs) are a well-established industrial
technique to represent causalities for possible system hazards resulting
from system or system component failures. In this paper we suggest a
method to automatically derive FTs from counterexamples, including
a mapping of the probability information onto the FT. We extend the
structural equation approach by Pearl and Halpern, which is based on
Lewis counterfactuals, so that it serves as a justification for the causal-
ity that our proposed FT derivation rules imply. We demonstrate the
usefulness of our approach by applying it to an industrial case study.

1 Introduction

In recent joint work [1] with our industrial partner TRW Automotive GmbH we
have proven the applicability of stochastic formal analysis techniques to safety
analysis in an industrial setting. In [1] we showed that counterexamples are a very
helpful means to understand how certain error states representing hazards can be
reached by the system. While the visualization of the graph structure of a stochas-
tic counterexample [2] helps to analyze the counterexamples, it is still difficult to
compare the thousands of paths in the counterexample with each other, and to
discern causal factors during fault analysis. In safety analysis, fault tree analy-
sis (FTA) [21] is a well-established industrial method and graphical notation to
break down the hazards occurring in complex, technical systems into a combi-
nation of what is referred to as basic events, which represent system component
failures. The main drawback of fault tree analysis is that it relies on the ability of
the engineer to manually identify all possible component failures that might cause
a certain hazard. In this paper we present a method that automatically generates
a fault tree from a probabilistic counterexample. Our method provides a compact
and concise representation of the system failures using a graphical notation that
is well known to safety engineers. At the same time the derived fault tree consti-
tutes an abstraction of the probabilistic counterexample since it focuses on rep-
resenting the implied causalities rather than enumerating all possible execution
sequences leading to a hazard. The causality expressed by the fault tree is rooted

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 71–84, 2011.
© Springer-Verlag Berlin Heidelberg 2011



72 M. Kuntz, F. Leitner-Fischer, and S. Leue

in the counterfactual notion of causality that is widely accepted in the literature.
Our approach can be described by identifying the following steps:

– Our fault tree computation method uses a system model given in the input
language of the PRISM probabilistic model checker [14].

– For this model we compute counterexamples for stochastic properties of in-
terest, representing system hazards, using our counterexample computation
extension of PRISM called DiPro [2]. The counterexamples consist of poten-
tially large numbers of system execution paths and their related probability
mass information.

– In order to compute fault trees from these counterexamples we compute
what is commonly referred to as basic events. Those are events that cause
a certain hazard. The fault tree derivation is implemented in a tool called
CX2FT.

– The justification for the fault tree computation is derived from a model of
causality due to Halpern and Pearl [12] that we modify and extend to be
applicable to our setting.

– The path probabilities computed by the stochastic model checker are then
mapped on the computed fault tree.

– Finally, the obtained fault tree is represented graphically by an adapted
version of the FaultCAT tool1.

All analysis steps are fully automated and do not require user intervention. We
demonstrate the usefulness of our approach by applying it to a selection of case
studies known from the literature on stochastic model checking.

This paper is organized as follows: In Section 2 we briefly introduce the con-
cepts of counterexamples in stochastic model checking and fault trees. In Sec-
tion 3 we describe the model of causality that we use, and how probabilistic
counterexamples can be mapped to fault trees. In Section 4 we demonstrate our
approach on a case study known from the literature. A discussion of related work
follows in Section 5. Finally, Section 6 concludes the paper.

2 Counterexamples and Fault Trees

In stochastic model checking, the property that is to be verified is specified using
a variant of temporal logic. The temporal logic used in this paper is Continu-
ous Stochastic Logic (CSL) [4]. Given an appropriate system model and a CSL
property, stochastic model checking tools such as PRISM [14] can verify auto-
matically whether the model satisfies the property. Stochastic model checkers do
not automatically provide counterexamples, but the computation of counterex-
amples has recently been addressed in, amongst others, [3,13]. For the purpose of
this paper it suffices to consider only upper bounded probabilistic timed reach-
ability properties. They require that the probability of reaching a certain state,
often corresponding to an undesired system state, does not exceed a certain up-
per probability bound p. In CSL such properties can be expressed by formulae
1 http://www.iu.hio.no/FaultCat/



From Probabilistic Counterexamples via Causality to Fault Trees 73

of the form P≤p(ϕ), where ϕ is path formula specifying undesired behavior of
the the system. A counterexample for an upper bounded property is a set ΣC

of paths leading from the initial state to a state satisfying ϕ such that the ac-
cumulated probability of ΣC violates the probability constraint ≤ p. If the CSL
formula P=? (ϕ) is used, the probability of the path formula ϕ to hold is com-
puted and the counterexample contains all paths fulfilling ϕ. The probability of
the counterexample is computed using a stochastic model checker, in our case
PRISM. Notice that in the setting of this paper the counterexample is com-
puted completely, i.e., all simple paths leading into the undesired system state
are enumerated in the counterexample. Fault trees (FTs) [21] are being used
extensively in industrial practice, in particular in fault prediction and analysis,
to illustrate graphically under which conditions systems can fail, or have failed.
In our context, we need the following elements of FTs, for an in-depth discussion
of FTs we refer the reader to [21].

1. Basic event: represents an atomic event.
2. AND -gate: represents a failure, if all of its input elements fail.
3. OR-gate: represents a failure, if at least one of its input elements fails.
4. Priority-AND (PAND): represents a failure, if all of its input elements fail

in the specified order. The required input failure order is usually read from
left to right.

5. Intermediate Event: failure events that are caused by their child nodes. The
probability of the intermediate event to occur is denoted by the number
in the lower right corner. A top level event (TLE) is a special case of an
intermediate event, representing the system hazard.

3 Computing Fault Trees from Counterexamples

Inferring Causality. Fault Trees express causality, in particular they char-
acterize basic events as being causal factors in the occurrence of the top-level
event in some Fault Tree. The counterexamples that we use to synthesize these
causal relationships, however, merely represent possible executions of the system
model, and not explicitly causality amongst event occurrences. Each path in the
counterexample is a linearly ordered, interleaved sequence of concurrent events.
The question is hence how, and with which justification, we can infer causality
from the sets of linearly ordered event sequences that we obtain in the course of
the counterexample computation. We use the concept of structural equations as
proposed by Halpern and Pearl [12] as a model of causality. It is based on coun-
terfactual reasoning and the related alternative world semantics of Lewis [17,9].
The counterfactual argument is widely used as the foundation for identifying
faults in program debugging [22] and also underlies the formal fault tree seman-
tics proposed in [20]. The ”naive” counterfactual causality criterion according to
Lewis is as follows: event A is causal for the occurrence of event B if and only if,
were A not to happen, B would not occur. The testing of this condition hinges
upon the availability of alternative worlds. A causality can be inferred if there is
a world in which A and B occur, whereas in an alternative world neither A nor B



74 M. Kuntz, F. Leitner-Fischer, and S. Leue

occurs. The naive interpretation of the Lewis counterfactual test, however, leads
to a number of inadequate or even fallacious inferences of causes, in particular
if causes are given by combinations of multiple events. The problematic issues
include common or hidden causes, the disjunction and conjunction of causal
events, the non-occurrence of events, and the preemption of failure causes due
to, e.g., repair mechanisms. A detailed discussion of these issues is beyond the
scope of this paper, and we refer to the critical literature on counterfactual rea-
soning, e.g., [9]. Since we are considering concurrent systems in which particular
event interleavings may be the cause of errors, e.g., race conditions, the order
of occurrence of events is an potential causal factor that cannot be disregarded.
Consider a railroad crossing model in which G denotes the gate closing, O the
gate opening, T the train crossing the road, and C the car crossing the tracks. A
naive counterfactual test will fail to show that the event sequence < G,O,T,C >
is a potential cause of a hazard, whereas < G,T,O,C > is not. In addition, the
naive counterfactual test may determine irrelevant causal events. For instance,
the fact that the train engineer union has decided not to call for a strike is not
to be considered a cause for the occurrence of an accident at the railroad cross-
ing. Halpern and Pearl extend the Lewis counterfactual model in [12] to what
they refer to as structural equation model (SEM). It encompasses the notion of
causes being logical combinations of events as well as a distinction of relevant
and irrelevant causes. However, the structural equation model does not account
for event orderings, which is a major concern of this paper. We now sketch an
actual cause definition adopted from [12]. An actual cause is a cause in which
irrelevant events are factored out. A causal formula in the SEM is a boolean
conjunction ψ of variables representing the occurrence of events. We only con-
sider boolean variables, and the variable associated with an event is true in case
that event has occurred. The set of all variables is partitioned into the set U of
exogenous variables and the set V of endogenous variables. Exogenous variables
represent facts that we do not consider to be causal factors for the effect that we
analyze, even though we need to have a formal representation for them so as to
encode the ”context” ([12]) in which we perform causal analysis. An example for
an exogenous variable is the train engineer union’s decision in the above railroad
crossing example. Endogenous variables represent all events that we consider to
have a meaningful, potentially causal effect. The set X ⊆ V contains all events
that we expect jointly to be a candidate cause, and the boolean conjunction of
these variables forms a causal formula ψ. The causal process comprises all vari-
ables that mediate between X and the effect that ψ is causing. Those variables
are not root causes, but they contribute to rippling the causal effect through
the system until reaching the final effect. Omitting a complete formalization, we
assume that there is an actual world and an alternate world. In the actual world,
there is a function val1 that assigns values to variables. In the alternate world,
there is a function val2 assigning potentially different values to the variables. In
the SEM, a formula ψ is an actual cause for an event represented by the formula
ϕ, if the following conditions are met:



From Probabilistic Counterexamples via Causality to Fault Trees 75

AC1: Both ψ and ϕ are true in the actual world, assuming the context defined
by the variables in U , and given a valuation val1(V ).
AC2: The set of endogenous events V is partitioned into sets Z and W , where
the events in Z are involved in the causal process and the events in W are not
involved in the causal process. It is assumed that X ⊆ Z and that there are
valuations val2(X) and val2(W ) assigning values to the variables in X and W ,
respectively, such that:

1. Changing the values of the variables in X and W from val1 to val2 changes
ϕ from true to false.

2. Setting the values of the variables in W from val1 to val2 should have no
effect on ϕ as long as the values of the variables in X are kept at the values
defined by val1, even if all the variables in an arbitrary subset of Z ∖X are
set to their value according to val1.

AC3: The set of variables X is minimal: no subset of X satisfies conditions AC1
and AC2.

AC2(1) corresponds to the Lewis counterfactual test. However, as [12] argue,
AC2(1) is too permissive, and AC2(2) constrains what is admitted as cause by
AC2(1). Minimality in AC3 ensures that only those elements of the conjunction
that are essential for changing ϕ in AC2(1) are considered part of the cause;
inessential elements are pruned.

FormalRepresentation ofEvents and theirOrder. To logically reason about
the causality of events in our setting we need to allow for the description of con-
junctive and disjunctive occurrence of events and represent, at the same time, the
order in which the events occur. In the common description of the structural equa-
tion model the occurrence of events is encoded as boolean formulae. In these for-
mulae, boolean variables represent the occurrence of an event (true = event oc-
curred, false = event did not occur). These variables are connected via the boolean
and- or or-operators to express conjunctive or disjunctive constraints on their oc-
currence. Note that this representation does not yet allow for expressing logical
constraints on the order in which events need to occur. We first define a mathe-
matical model that allows us to logically reason about the occurrence of events in
sets of execution sequences forming counterexamples in stochastic model check-
ing. Technical Systems evolve in discrete computation steps. A system state s is
defining a valuation of the system state variables. In our setting, we limit ourselves
to considering systems that only contain Boolean state variables representing the
occurrence of events, as described above. We use a set of atomic propositions that
represent the Boolean state variables we consider. A computation step is charac-
terized by an instantaneous transition which takes the system from some state s
to a successor state s′. The transition from s to s′ will be triggered by an action
a, corresponding to the occurrence of an event. Since we wish to derive causality
information from sets of finite computations, which we obtain by observing a fi-
nite number of computation steps, our main interest will be in sets of state-action
sequences. We define the following model as a basis for our later formalization of
the logical connection between events.



76 M. Kuntz, F. Leitner-Fischer, and S. Leue

Definition 1. State-Action Trace Model. Let S denote a set of states, AP a
finite set of atomic state propositions, and Act a finite set of action names.

– A finite sequence s0, a0, s1, a1, . . . an−1, sn with, for all i, si ∈ S and ai ∈ Act,
is called a state-action trace over (S,Act).

– A State-Action Trace Model (SATM) is a tuple M = (S,Act,AP,L,Σ) where
Σ = {σ1, . . . σk} such that each σi is a state-action trace over (S,Act), and
L ∶ S → 2AP is a function assigning each state the set of atomic propositions
that are true in that state.

We assume that for a given SATM M , AP contains the variables representing
the events that we wish to reason about. We also assume that for a given state-
action trace σ, L(si) contains the event variable corresponding to the action
ai−1. Notice that we consider event instances, not types. In other words, the
n− th occurrence of some event of type E will be distinct in AP from the n+1st
occurrence of this event type. We next define an event order logic allowing us to
reason about boolean conditions on the occurrence of events. The logic is using
a set A of event variables as well as the boolean connectives ∧, ∨ and ¬. To
express the ordering of events we introduce the ordered conjuction operator 
.
The formula A 
 B is satisfied if and only if events A and B occur in a trace
and A occurs before B. The formal semantics of this logic is defined on SATMs.
Notice that the 
 operator is a temporal logic operator and that the SATM
model is akin to a linearly ordered Kripke structure.

Definition 2. Semantics of event order logic. Let M = (S,Act,AP,L,Σ) a
SATM, φ and ψ formulae of the event order logic, and let A a set of event vari-
ables, with A ∈ A, over which φ and ψ are built. Let σ = s0, a0, s1, a1, . . . an−1, sn

a state-action trace over (S,Act). We define that a formula is satisfied in state
si of σ as follows:

– si ⊧ A iff A ∈ L(si).
– si ⊧ ¬φ iff not si ⊧ φ.
– si ⊧ φ ∧ψ iff ∃j, k ∶ i ≤ j, k ≤ n . sj ⊧ φ and sk ⊧ ψ.
– si ⊧ φ ∨ψ iff ∃j, k ∶ i ≤ j, k ≤ n . sj ⊧ φ or sk ⊧ ψ.
– si ⊧ φ 
ψ iff ∃j, k ∶ i ≤ j ≤ k ≤ n . sj ⊧ φ and sk ⊧ ψ.

We define that a sequence σ satisfies a formula φ, written as σ ⊧ φ iff ∃i . si ⊧ φ.
We define that the SATM M satisfies the formula φ, written as M ⊧ φ, iff
∃σ ∈ Σ . σ ⊧ φ.

In order to perform comparison operations between paths we define a number
of path comparison operators.

Definition 3. Path Comparison Operators. Let M = (S,Act,AP,L,Σ) a SATM,
and σ1 and σ2 state-action traces in M.

– =: σ1 = σ2 iff ∀e ∈ Act . σ1 ⊧ e ≡ σ2 ⊧ e.
– ≐: σ1 ≐ σ2 iff ∀e1, e2 ∈ Act . σ1 ⊧ e1 
 e2 ≡ σ2 ⊧ e1 
 e2.



From Probabilistic Counterexamples via Causality to Fault Trees 77

– ⊆: σ1 ⊆ σ2 iff ∀e ∈ Act . σ1 ⊧ e ⇒ σ2 ⊧ e. Furthermore, σ1 ⊂ σ2 iff σ1 ⊆ σ2

and not σ1 = σ2.
– ⊆̇: σ1⊆̇σ2 iff ∀e1, e2 ∈ Act . σ1 ⊧ e1 
 e2 ⇒ σ2 ⊧ e1 
 e2. Furthermore, σ1⊂̇σ2

iff σ1⊆̇σ2 and not σ1 ≐ σ2.

We are now ready to adopt the SEM to event orders. We interpret the SEM
equations over a given SATM M . Again, without providing a detailed formal-
ization, we assume the existence of a function order1 assigning an order to the
occurrence of the events M in the actual world, as well as a function order2
which assigns a potentially different order in the alternate world. An event order
logic formula ψ is considered a cause for an event represented by the event order
logic formula ϕ, if the following conditions are satisfied:

AC1: Both ψ and ϕ are true in the actual world, assuming the context defined
by the variables in U , given a valuation val1(V ) and an order order1(V ).
AC2: The set of endogenous events V is partitioned into sets Z and W , where the
events in Z are involved in the causal process and the events inW are not involved
in the causal process. It is assumed that X ⊆ Z and that there exist valuations
val2(X) and val2(W ) and orders order2(X) and order2(W ) such that:

1. Changing the values of the variables in X and W from val1 to val2 and the
order of the variables in X and W from order1 to order2 changes ϕ from
true to false.

2. Setting the values of the variables in W from val1 to val2 and the order of
the variables in W from order1 to order2 should have no effect on ϕ as long
as the values of the variables in X are kept at the values defined by val1,
and the order as defined by order1, even if all the variables in an arbitrary
subset of Z ∖X are set to their value according to val1 and order1.

AC3: The set of variables X is minimal: no subset of X satisfies conditions AC1
and AC2.

If a formula ψ meets the above described conditions, the occurrence of the
events included in ψ is causal for ϕ. However, condition AC2 does not imply that
the order of the occurring events is causal. We introduce the following condition
to express that the order of the variables occurring in ψ, or an arbitrary subset
of these variables, has an influence on the causality of ϕ:

OC1: Let Y ⊆X . Changing the order order1(Y ) of the variables in Y to an arbi-
trary order order2(Y ), while keeping the variables in X ∖ Y at order1, changes
ϕ from true to false.

If for a subset of X OC1 is not satisfied, the order of the events in this subset
has no influence on the causality of ϕ.

Fault Tree Generation. In order to automatically synthesize a fault tree from
a stochastic counterexample, the combinations of basic events causing the top
level event in the fault tree have to be identified. Using a stochastic model checker
we compute a counterexample which contains all paths leading to a state corre-
sponding to the occurrence of some top level event T . This is achieved by com-
puting the counterexample for the CSL formula P =?(true U t), where t is a



78 M. Kuntz, F. Leitner-Fischer, and S. Leue

state formula representing the top level event T . We interpret counterexamples
in the context of an SATM M = (S,Act,AP,L,Σ). We assume that Σ is par-
titioned in disjoint sets ΣG and ΣC , where ΣC contains all traces belonging to
the counterexample, whereas ΣG contains all maximal simple system traces that
do not belong to the counterexample. The disjointness of ΣC and ΣG implies
that M is deterministic with respect to the causality of T . Furthermore, we de-
fine MC = (S,Act,AP,L,ΣC) as the restriction of M to only the counterexample
traces, and refer to it as a counterexample model. W.l.o.g. we assume that every
trace σ ∈MC contains a last transition executing the top level event T , so that its
last state sn ⊧ T , which implies that Mc ⊧ T . In our interpretation of the SEM,
actual world models will be derived from ΣC , whereas alternate world models are
part ofΣG. Notice that in order to compute the full model probability of reaching
T it is necessary to perfom a a complete state space exploration of the model that
we analyze. We hence obtain MG at no additional cost. We next define the candi-
date set of paths that we consider to be causal for T . We define this set in such a
way that it includes all minimal paths. Paths are minimal if they do not contain
a subpath according to the ⊆ operator that is also a member of the candidate set.

Definition 4 (Candidate Set). Let MC = (S,Act,AP,L,ΣC) a counterexam-
ple model, and T a top level event in MC . We define the candidate set of paths
belonging to the fault tree of T as CFT(T):

CFT (T ) = {σ ∈ ΣC ∣∀σ
′
∈ ΣC . σ′ ⊆ σ⇒ σ′ = σ}. (1)

Notice that the candidate set is minimal in the sense that removing an event
from some path in the candidate set means that the resulting path is no longer
in the counterexample ΣC . Given a counterexample model MC , we state the
following observations regarding the paths included in ΣC :

– Each σ ∈ ΣC can be viewed as an ordered conjunction A1 
 . . . 
An−1 
T of
events, where T is the top level event that we consider.

– On each path in the counterexample, there has to be at least one event
causing the top level event. If that was not the case, the top level event
would not have occurred on that path and as a result the path would not be
in the counterexample.

The algorithm that we propose to compute fault trees is an over-approximation
of the computation of the causal events X since computing the set X precisely
is not efficiently possible [11]. Instead of computing the set X of events that are
causal for some ϕ, we compute the set Z of events, which consists of all events
that are part of the causal process of ϕ. Z will then be represented by ψ. Since
X is a subset of Z we can assure that no event that is causal is omitted from
the fault tree. It is, however, possible that due to our overapproximation events
that are not in X are added to the fault tree. This applies in particular to those
events that are part of the causal process, and hence mediate between X and ϕ.
However, as we show in Section 4, adding such events can be helpful to illustrate



From Probabilistic Counterexamples via Causality to Fault Trees 79

how the root cause is indirectly propagating by non-causal events to finally cause
the top level event. We do not account for exogenous variables, since we believe
them to be less relevant in the analysis of models of computational systems
since the facts represented in those models all seem to be endogenous facts of
the system. However, should one wish to consider exogenous variables, those can
easily be retrofitted. We now define tests that will identify the set Z of ordered
conjunctions of events that satisfy the conditions AC1 to AC3 and OC1, and
which hence can be viewed as part of the causal process of the top level event.
The starting point for this computation is the candidate set of Definition 4.

Test for AC1: The actual causal set Z that our algorithm computes is a subset
of the events included in the candidate set CFT (T ) for some given top level
event T . Since we assume that every path includes at least one causal event, Z
is not empty. We may hence conclude that CFT (T ) ⊧ ψ and CFT (T ) ⊧ ϕ.

Test for AC2(1): We check for each path σ ∈ CFT(T) whether the ordered
conjunctions of events that it is representing fulfills the condition AC2(1). We
assume that the set of events Z is equal to the events occurring on the path
σ. We further assume that W = V ∖ Z and that V = Act. W hence contains all
events that are possible, minus the ones that occur on path σ. More formally,
for a given σ, Z = {e ∈ V ∣σ ⊧ e}. This corresponds to using the valuation val1 to
assign true to all variables in Z and false to all variables in W in the formulation
of AC2(1). Changing the valuation of the variables in Z to move from val1 to
some val2 can imply removing variables from Z. Due to the minimality of σ this
implies that the resulting trace σ′ is no longer in ΣC . Testing of this condition
is hence implicit and implied by the minimality of the candidate set.

Test for AC2(2): We need to check that moving W from val1 to val2 and from
order1 to order2 has no effect on the outcome of ϕ as long as the values of X are
kept at the values defined by val1 and the order defined by order1. Recall that
W denotes all events that are not currently considered to be causal, and that we
compute Z as an overapproximation of X . For a path σ ∈ CFT(T) changing W
from val1 to val2 and from order1 to order2 implies that events are added to σ.
Thus, we check for each path σ ∈ CFT(T) whether there exists some path σ′ ∈ ΣG

for which σ⊂̇σ′ holds. If there is no such path, there are no val2 and order2 of
W that change the outcome of ϕ, and as a consequence AC2(2) is fulfilled by σ.
If we do find such a path σ′, it contains all variables in Z with val1 and order1
and some events W with val2 and order2 that change the outcome of ϕ. In other
words, the non-occurrence of the events in W on σ was causal for ϕ. In order to
identify those events, we search for the minimal paths R = {σ′ ∈ ΣG∣σ⊂̇σ

′
}. For

each path in R we negate the events that are in σ but not in σ′ and add them to
the candidate set. Subsequently, we remove σ from the candidate set. Consider
the case Z = G
O
T 
C in our rail road crossing model. It is necessary that no
event G occurs between O and T for this ordered conjunction of events to lead
to a hazard. If the system execution G
O 
G
 T 
C is possible, which means
that there is a path representing this execution in the set NCX(A) for top level
event A, we hence have to replace Z by Z ′ = G 
O 
 ¬G 
 T 
C.



80 M. Kuntz, F. Leitner-Fischer, and S. Leue

Test for AC3: Due to the minimality property of the candidate set, no test for
AC3 is necessary.

Test for OC1: We need to decide whether for all ordered conjunctions in CFT(T)
the order of the events is relevant to cause T . For each path σ ∈ CFT(T), we
check whether the order of the events to occur is important or not. If the order of
events in σ is not important, then there has to be at least one path σ′ ∈ CFT(T)
for which σ = σ′ and not σ =̇ σ′. For each event ei in σ we check for all other
events ej with i < j whether σ′ ⊧ ei 
 ej for all σ′ ∈ CFT(T). If σ′ ⊧ ei 
 ej for all
σ′ ∈ CFT(T), we mark this pair of events as having an order which is important
for causality. If we can not find such a σ′, we mark the whole path σ as having
an order which is important for causality.

Adding Probabilities. In order to properly compute the probability mass that
is to be attributed to the TLE T in the fault tree it is necessary to account for all
paths that can cause T . If there are two paths σ1, σ2 ∈ ΣC which, when combined,
deliver a path σ12 ∈ ΣC , then the probability mass of all three paths needs to be
taken into account when calculating the probability for reaching T . To illustrate
this point, consider an extension of the railroad example introduced above. We
add a traffic light indicating to the car driver that a train is approaching. EventR
indicates that the traffic light on the crossing is red, while the red light being off
is denoted by event L. The top level event A denoting the hazard is expressed as
a state proposition applicable to the underlying stochastic model that states that
neither the red light is on not the gate is closed, and that the train approaches and
the car is in the crossing. Assume that the above described test would identify the
following ordered conjunctions of events to be causal: ¬G
T 
C and ¬L
T 
C.
Due to the minimality property of CFT(A) the ordered conjunction ¬G 
 ¬L 

T 
 C would be missing. We would hence lose the probability mass associated
with the corresponding trace in the counterexample, as well as the qualitative
information that the simultaneous failure of the red light and the gate also leads
to a hazardous state. To account for this situation we introduce the combination
condition CC1. CC1: Let σ1, σ2, ...σk ∈ CFT(L) paths and ψ1, ψ2, ..., ψk the event
conjunctions representing them. A path σ is added to CFT(L) if for k ≥ 2 paths
in CFT(L) it holds that σ ⊧ ψ1 ∧ σ ⊧ ψ2 ∧ ... ∧ σ ⊧ ψk. We can now assign each
path in the candidate set the sum of the probability masses of the paths that it
represents. This is done as follows: The probability of a path σ1 in CFT(L) is
the probability sum of all paths σ′ for which σ1 is the only subset in in CFT(L).
The last condition is necessary in order to correctly assign the probabilities to
paths which where added to the fault tree by test CC1. All paths still in the
candidate set are part of the fault tree and have now to be included in the
fault tree representation. The fault trees generated by our approach all have a
normal form, that is they start with an intermediate-gate representing the top
level event, that is connected to an OR-gate. The paths in the candidate set
CFT(L) will then be added as child nodes to the OR-gate as follows: Paths with
a length of one and hence consisting of only one basic event are represented
by the respective basic event. A path with length greater than one that has



From Probabilistic Counterexamples via Causality to Fault Trees 81

no subset of labels marked as ordered is represented by an AND -gate. This
AND -gate connects the basic events belonging to that path. If a (subset of a)
path is marked as ordered it is represented by a PAND -gate that connects the
basic events in addition with an Order Condition connected to the PAND -gate
constraining the order of the elements. The probability values of the AND -gates
are the corresponding probabilities of the paths that they represent. In order
to display the probabilities in the graphical representation of the fault tree, we
add an intermediate event as parent node for each AND -gate. The resulting
intermediate events are then connected by an OR-gate that leads to the top
event, representing the hazard. Since the path probabilities are calculated for
a path starting from an initial state to the hazard state, the probability of the
OR-gate is the sum of the probability of all child elements.

Scalability and Complexity. As we show in detail in [15], the complexity
of our algorithm is cubic in the size of the counterexample. The case studies
presented in Section 4 show that the fault tree computation finishes in several
seconds, while the computation of the counterexample took several minutes.
Hence, the limiting factor of our approach is the time needed for the computation
of the counterexample.

4 Case Study

We now briefly discuss a case study illustrating the applicability of our approach.
Notice that for reasons of limited space we have to refer the reader to [15] for
more detail, and also for more case studies. This case study is taken from [1]
and models an industrial size airbag system. The airbag system architecture
that we consider consists of two acceleration sensors whose task it is to detect
front or rear crashes, one microcontroller to perform the crash evaluation, and
an actuator that controls the deployment of the airbag. Although airbags save
lives in crash situations, they may cause fatal behavior if they are inadvertently
deployed. This is because the driver may loose control of the car when this de-
ployment occurs. It is therefore a pivotal safety requirement that an airbag is
never deployed if there is no crash situation. We are interested in generating
the fault tree for an inadvertent ignition of the airbag. In CSL, this property
can be expressed using the formula P=?(noCrash U≤T AirbagIgnited). Notice
that we assume the PRISM models in practical usage scenarios to be auto-
matically synthesized from higher-level design models, such as for instance by
our QuantUM tool [16]. However, the case study presented in this paper was di-
rectly modeled in the PRISM language. We computed the counterexamples using
our counterexample generation tool DiPro [2], which in turn uses the PRISM
model checker. Figure 1 shows the fault tree generated by CX2FTA. For better
readability we have omitted the order constraints of the PAND -gates. While the
counterexample consists of 738 paths, the fault tree comprises only 5 paths. It is
easy to see by which basic events, and with which probabilities, an inadvertent de-
ployment of the airbag is caused. For instance, there is only one single fault that
can lead to an inadvertent deployment, namely FASICShortage. It is also easy to



82 M. Kuntz, F. Leitner-Fischer, and S. Leue

Fig. 1. Fault Tree of the Airbag System

t Runtime CX (sec.) Paths in CX Mem. CX Runtime FT Paths in FT Mem. FT

10 1 147 (≈ 19.12 min.) 738 29.17 MB 1.3 (sec.) 5 27 MB

100 1 148 (≈ 19.13 min.) 738 29.20 MB 1.3 (sec.) 5 27 MB

1000 1 263 (≈ 21.05 min.) 738 29.49 MB 1.8 (sec.) 5 27 MB

Fig. 2. Experiment results for T=10, T=100 and T=1000

see that the combination of the basic events FETStuckHigh and FASICStuckHigh
only lead to an inadvertent deployment of the airbag if the basic event FETStuck-
High occurs prior to the basic event FASICStuckHigh. The case study shows that
the fault tree is a compact and concise visualization of the counterexample which
allows for an easy identification of the basic events that cause the inadvertent de-
ployment of the airbag, along with the corresponding probabilities. If the order of
the events is important, this can be seen in the fault tree by the PAND -gate. In
the counterexample computed by DiPro one would have to manually compare the
order of the events in all 738 paths, which is a tedious and time consuming task.
Figure 2 shows the memory and run time consumption of the fault counterexam-
ple and fault tree computation2. The computational effort is dominated by the
counterexample computation. Increasing the parameter t (mission time) in the
process model has only a marginal influence on the computational effort needed.

5 Related Work

Work described in [7,20] interprets fault trees in terms of temporal logic. This is
the opposite direction of what we aim to accomplish, namely to derive fault trees

2 Experiments where performed on a PC with an Intel Core2Duo CPU (3.06 Ghz) and
8 GBs RAM.



From Probabilistic Counterexamples via Causality to Fault Trees 83

from system execution models. Various approaches to derive fault trees semi-
automatically or automatically from various semi-formal or formal models have
been proposed, e.g. [19,8,18]. Contrary to our method, none of these methods
uses sets of system execution sequences as the basis of the fault tree derivation,
or provides an automatic probabilistic assessment of the synthesized fault tree
nodes. These approaches also lack a justification of the causality model used.
Our work extends and improves on the approach of [6] in the following ways: We
use a single set of system modeling and specification languages, namely PRISM
and CSL. Whereas in the approach of [6] only minimal cut sets are generated,
we generate complete fault trees. Contrary to [6], we support PAND-gates and
provide a justification for the causality model used. Work documented in [5] uses
the Halpern and Pearl approach to determine causality for counterexamples in
functional CTL model checking. However, this approach considers only func-
tional counterexamples that consist of single execution sequences. [11] contains
a careful analysis of the complexity of computing causality in the SEM. Most
notable is the result that even for an SEM with only binary variables computing
causal relationships between variables is NP-complete.

6 Conclusion

We presented a method and tool that automatically generates a fault tree from
a probabilistic counterexample. We demonstrated that our approach improves
and facilitates the analysis of safety critical systems. The resulting fault trees
were significantly smaller and hence easier to understand than the corresponding
stochastic counterexample, but still contain all information to discern the causes
for the occurrence of a hazard. The justification for the causalities determined by
our method are based on an adoption of the Strucural Equation Model of Halpern
and Pearl. We illustrated how to use this model in the analysis of computing
systems and extended it to account for event orderings as causal factors. We
presented an over-approximating implementation of the causality tests derived
from this model. To the best of our knowledge this is the first attempt at using
the structural equation model in this fashion. In future work, we plan to further
extend our approach, in particular to support the generation of dynamic fault-
trees [10]. We are also interested in incorporating causality analysis directly into
model checking algorithms.

Acknowledgments. The authors thank Mark Burgess for giving them access
to the FaultCAT source code.

References

1. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety Analysis of an Airbag System Using Probabilistic FMEA and Probabilistic
Counterexamples. In: Proc. of QEST 2009. IEEE Computer Society, Los Alamitos
(2009)



84 M. Kuntz, F. Leitner-Fischer, and S. Leue

2. Aljazzar, H., Leue, S.: Debugging of Dependability Models Using Interactive Vi-
sualization of Counterexamples. In: Proc. of QEST 2008. IEEE Computer Society,
Los Alamitos (2008)

3. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. Soft. Eng. (2009)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Soft. Eng. (2003)

5. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterexam-
ples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 94–108. Springer, Heidelberg (2009)

6. Böde, E., Peikenkamp, T., Rakow, J., Wischmeyer, S.: Model Based Importance
Analysis for Minimal Cut Sets. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 303–317. Springer, Hei-
delberg (2008)

7. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic Fault Tree Analysis for Reactive
Systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

8. Chen, B., Avrunin, G., Clarke, L., Osterweil, L.: Automatic Fault Tree Derivation
From Little-Jil Process Definitions. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick,
P. (eds.) SPW 2006 and ProSim 2006. LNCS, vol. 3966, pp. 150–158. Springer,
Heidelberg (2006)

9. Collins, J. (ed.): Causation and Counterfactuals. MIT Press, Cambridge (2004)
10. Dugan, J., Bavuso, S., Boyd, M.: Dynamic Fault Tree Models for Fault Tolerant

Computer Systems. IEEE Trans. Reliability (1992)
11. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artifi-

cial Intelligence (2002)
12. Halpern, J., Pearl, J.: Causes and explanations: A structural-model approach. Part

I: Causes. The British Journal for the Philosophy of Science (2005)
13. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic

model checking. IEEE Trans. Softw. Eng. (2009)
14. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-

matic Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

15. Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples
via causality to fault trees. Technical Report soft-11-02, Chair for Software
Engineering, University of Konstanz (2011),
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/

soft-11-02.pdf
16. Leitner-Fischer, F., Leue, S.: QuantUM: Quantitative safety analysis of UML mod-

els. In: Proc. of QAPL 2011 (2011)
17. Lewis, D.: Counterfactuals. Wiley-Blackwell, Chichester (2001)
18. McKelvin Jr, M., Eirea, G., Pinello, C., Kanajan, S., Sangiovanni-Vincentelli, A.:

A Formal Approach to Fault Tree Synthesis for the Analysis of Distributed Fault
Tolerant Systems. In: Proc. of EMSOFT 2005. ACM, New York (2005)

19. Pai, G., Dugan, J.: Automatic synthesis of dynamic fault trees from UML system
models. In: Proc. of ISSRE 2002. IEEE Computer Society, Los Alamitos (2002)

20. Schellhorn, G., Thums, A., Reif, W.: Formal fault tree semantics. In: Proc. IDPT
2002. Society for Design and Process Science (2002)

21. U.S. Nuclear Regulatory Commission. Fault Tree Handbook, NUREG-0492 (1981)
22. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier, Ams-

terdam (2009)

http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-11-02.pdf
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-11-02.pdf

	From Probabilistic Counterexamples via Causality to Fault Trees
	Introduction
	Counterexamples and Fault Trees
	Computing Fault Trees from Counterexamples
	Case Study
	Related Work
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




