

Lecture Notes in Computer Science 6894
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Francesco Flammini Sandro Bologna
Valeria Vittorini (Eds.)

Computer Safety,
Reliability,
and Security
30th International Conference, SAFECOMP 2011
Naples, Italy, September 19-22, 2011
Proceedings

13

Volume Editors

Francesco Flammini
Ansaldo STS
Via Argine, 425, 80147 Napoli, Italy
E-mail: francesco.flammini@ansaldo-sts.com

Sandro Bologna
Italian Association Critical Infrastructure (AIIC)
Rome, Italy
E-mail: s.bologna@infrastrutturecritiche.it

Valeria Vittorini
Università di Napoli Federico II
Dipartimento di Informatica e Sistemistica
Via Claudio, 21, 80125 Napoli, Italy
E-mail: valeria.vittorini@unina.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24269-4 e-ISBN 978-3-642-24270-0
DOI 10.1007/978-3-642-24270-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936469

CR Subject Classification (1998): K.6.5, C.2, D.2, H.3, D.4.6, E.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Some outstanding writers of the last century have depicted an imaginary future
in which intelligent machines ruled upon human beings. While most of the ma-
chines surrounding us can not be considered “intelligent” in the common sense
(though they probably would to the eyes of people of some decades ago), a sim-
ilar scenario can be considered nowadays as real: we do realize or not, nearly
every activity we perform during our everyday life relies upon the dependability
of computer-controlled devices, ranging from automatic transaction modules to
brake-by-wire systems.

Furthermore, it is a matter of fact that the complexity and criticality of com-
puter systems have grown substantially in the last years, and they are continu-
ously increasing. Complexity is a result of three main factors: size, distribution
and heterogeneity. Size refers to the number of functionalities requested to mod-
ern computers, which imply larger programs. Distribution is an effect of the need
for networked devices, almost always required by the specific applications. Het-
erogeneity is given by the different hardware and software architectures involved
in the design. The criticality attribute is related to the domains in which com-
puter systems operate, whereas a failure can cause a significant loss of money,
injuries, kills or even natural disasters. Please note that “critical” does not al-
ways imply “hard real-time”.

Such a scenario requires the adoption of novel techniques and tools in order
to assure the dependability of computer systems, taking into account their in-
teraction with other entities in terms both of the negative effects of the system
upon the external environment (safety) and of the external environment upon
the system (security).

The idea behind the choice of the main theme of the 30th edition of the
International Conference on Computer Safety, Reliability and Security (SAFE-
COMP 2011) has been the need for mastering complexity and criticality of mod-
ern computer-based systems. One of the best way to address that issue is the
adoption of rigorous model-based engineering techniques, together with a holis-
tic system-centric view, including all the components, abstraction layers and
life-cycle phases.

As a result of this choice, the program of the conference reflects the con-
tributor expertise in the following specialties, which are strictly related to the
development of high-assurance systems:

– Computer dependability, studying the dynamics of propagation of random
and systematic faults and the related protection mechanisms (fault-tolerance,
error management, etc.).

– Software engineering, with special focus on simulative and analytical ap-
proaches of verification and validation (including software testing and formal
methods).

VI Preface

– Risk analysis, addressing multi-disciplinary aspects of man-machine interac-
tion and safety assessment procedures, using both qualitative and quantita-
tive means.

– Multi-paradigm modeling, needed to master the increasing complexity of
critical systems by integrating and evaluating heterogeneous models in co-
hesive system-level views.

– Information security, which plays an important role in high-integrity and
business critical systems, needing robust authentication and communication
protocols to protect against natural as well as malicious threats.

Such a mixture of topics has also helped to fill the “gap” existing between
the research areas of computer dependability and critical infrastructure security.

All the aforementioned issues are addressed in this book, which represents
the proceedings of the 30th edition of the International Conference on Computer
Safety, Reliability and Security (SAFECOMP 2011), held in Naples, Italy, 19-21
September 2011. The proceedings includes 34 papers, but the response to the call
for Papers was so high, that make all papers could be included in the volume.

As Chairpersons of the International Program Committee (IPC) and the Na-
tional Organizing Committee, we would like to thank all authors who submitted
their work, the presenters of the papers, the members of the IPC, the reviewers,
the members of the National Organizing Committee, the session chairmen, and
the sponsors for their efforts and support. Without their strong motivation and
hard work we could not develop a succesfull and valuable conference as well as
this book of proceedings.

September 2011 Francesco Flammini
Sandro Bologna
Roberto Setola

Valeria Vittorini

Organization

SAFECOMP 2001 has been organized by Dipartimento di Informatica e Sis-
temistica - University of Naples Federico II, Centro Regionale ICT (CeRICT),
Ansaldo STS and European Workshop on Industrial Computer Systems Relia-
bility, Safety and Security (EWICS).

EWICS Chair

Francesca Saglietti (University of Erlangen-Nüemberg, Germany)

Honorary Chairs

Giovanni Bocchetti (Ansaldo STS, Italy)
Giorgio Franceschetti (University of Naples Federico II, Italy)
Antonino Mazzeo (University of Naples Federico II, Italy)

Program Chairs

Francesco Flammini (Ansaldo STS, Italy)
Sandro Bologna (ENEA, Italy)

Local Chairs

Nicola Mazzocca (University of Naples Federico II, Italy)
Concetta Pragliola (Ansaldo STS, Italy)
Roberto Setola (University Campus Biomedico of Rome, Italy)
Valeria Vittorini (University of Naples Federico II, Italy)

Program Committee

J.P. Blanquart (FR)
A. Bondavalli (IT)
R. Bloomfield (UK)
B. Buth (DE)
A. Coronato (IT)
D. Cotroneo (IT)
G. D’Agostino (IT)
P. Daniel (UK)
S. DAntonio (IT)

G. De Pietro (IT)
F. Di Giandomenico (IT)
W. Ehrenberger (DE)
M. Felici (UK)
N. Ferreia Neves (PT)
G. Franceschinis (IT)
G. Gigante (IT)
L. Glielmo (IT)
J. Gorski (PL)

VIII Organization

W. Halang (DE)
R.E. Harper (USA)
M. Heisel (DE)
J. Jurjens (DE)
R. Jimenez (ES)
K. Kanoun (FR)
J. Karlsson (SE)
T. Kelly (UK)
F. Koornneef (NL)
P. Ladkin (DE)
S. Lindskov Hansen (DK)
B. Littlewood (UK)
G. Manco (IT)
T. Margaria (DE)
E. Meda (IT)
P.J. Mosterman (USA)
T. Nanya (Japan)
O. Nordland (NO)
F. Ortmeier (DE)

A. Pataricza (HU)
D. Powell (FR)
P. Prinetto (IT)
L. Romano (IT)
A. Romanovsky (UK)
S. Russo (IT)
F. Saglietti (DE)
E. Schoitsch (AT)
T. Seyfarth (DE)
B. Siciliano (IT)
L. Strigini (UK)
M. Sujan (UK)
N. Suri (DE)
K. Trivedi (USA)
M. van der Meulen (NL)
V. Vittorini (IT)
A. Vozella (IT)
S. Zanero (IT)
Z. Zurakowski (PL)

Additional Reviewers

Flora Amato (IT)
Fabrizio Baiardi (IT)
Gianmarco Baldini (IT)
Claudio Bareato (CH)
Angelo Berghella (IT)
Simona Bernardi (E)
Andrea Bobbio (IT)
Claudio Luigi Brasca (IT)
Luigi Buonanno (IT)
Audrey Canning (UK)
Emiliano Casalicchio (IT)
Valentina Casola (IT)
Mario Ciampi (IT)
Emanuele Ciapessoni (IT)
Tadeusz Cichocki (PL)
Alessandro Cilardo (IT)
Carlo Alberto Clarotti (IT)
Andrea Colini (IT)
Antonio Di Pietro (IT)
Stelios Dritsas (GR)
Massimo Esposito (IT)
Anna Rita Fasolino (IT)
Andrea Fiaschetti (IT)

Roberto Filippini (IT)
Vincenzo Fioriti (IT)
Chiara Foglietta (IT)
Luisa Franchina (IT)
Giustino Fumagalli (IT)
Andrea Gaglione (IT)
Ilir Gashi (UK)
Gokce Gorbil (UK)
Dimitris Gritzalis (GR)
Vincenzo Gulisano (E)
Mauro Iacono (IT)
Federico Maggi (IT)
Loredana Mancini (IT)
Stefano Marrone (IT)
Fiammetta Marulli (IT)
Francesca Matarese (IT)
Oliver Meyer (DE)
Paolo Nocito (IT)
Gabriele Oliva (IT)
Antonio Orazzo (IT)
Stefano Panzieri (IT)
Alfio Pappalardo (IT)
Peter Popov (UK)

Organization IX

Andrey Povyakalo (UK)
Erich Rome (DE)
Guido Salvaneschi (IT)
Damian Serrano (FR)
Claudio Soriente (E)
Federica Sorrentino (IT)
Luigi Sportiello (IT)
Marianthi Theoharidou (GR)

Alberto Tofani (IT)
Bill Tolone (USA)
Enrico Tronci (IT)
Salvatore Venticinque (IT)
Min Wu (USA)
Christos Xenakis (GR)
Loredana Zollo (IT)

Organizing Committee

Flora Amato University of Naples Federico II
Carmen C. Baruffini University of Naples Federico II
Valentina Casola University of Naples Federico II
Alessandra De Benedictis University of Naples Federico II
Domenico Di Leo University of Naples Federico II
Stefano Marrone Second University of Naples
Roberto Nardone University of Naples Federico II
Alfio Pappalardo University of Naples Federico II
Antonio Pecchia University of Naples Federico II
Sara Romano University of Naples Federico II

Table of Contents

Session 1: Ram Evaluation 1

The Effect of Correlated Failure Rates on Reliability of Continuous
Time 1-Out-of-2 Software . 1

Peter Popov and Gabriele Manno

Model-Driven Availability Evaluation of Railway Control Systems 15
Simona Bernardi, Francesco Flammini, Stefano Marrone,
José Merseguer, Camilla Papa, and Valeria Vittorini

Session 2: Complex Systems Dependability 1

Vertical Safety Interfaces – Improving the Efficiency of Modular
Certification . 29

Bastian Zimmer, Susanne Bürklen, Michael Knoop,
Jens Höfflinger, and Mario Trapp

DALculus – Theory and Tool for Development Assurance Level
Allocation . 43

Pierre Bieber, Rémi Delmas, and Christel Seguin

Towards Cross-Domains Model-Based Safety Process, Methods and
Tools for Critical Embedded Systems: The CESAR Approach 57

Jean-Paul Blanquart, Eric Armengaud, Philippe Baufreton,
Quentin Bourrouilh, Gerhard Griessnig, Martin Krammer,
Odile Laurent, Joseph Machrouh, Thomas Peikenkamp,
Cecile Schindler, and Tormod Wien

Session 3: Formal Verification 1

From Probabilistic Counterexamples via Causality to Fault Trees 71
Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue

Rigorous Evidence of Freedom from Concurrency Faults in Industrial
Control Software . 85

Richard Bonichon, Géraud Canet, Löıc Correnson, Eric Goubault,
Emmanuel Haucourt, Michel Hirschowitz, Sébastien Labbé, and
Samuel Mimram

XII Table of Contents

Session 4: Risk and Hazard Analysis

Evolutionary Risk Analysis: Expert Judgement . 99
Massimo Felici, Valentino Meduri, Bjørnar Solhaug, and
Alessandra Tedeschi

Computer-Aided PHA, FTA and FMEA for Automotive Embedded
Systems . 113

Roland Mader, Eric Armengaud, Andrea Leitner, Christian Kreiner,
Quentin Bourrouilh, Gerhard Grießnig, Christian Steger, and
Reinhold Weiß

Session 5: Cybersecurity

A Statistical Anomaly-Based Algorithm for On-line Fault Detection in
Complex Software Critical Systems . 128

Antonio Bovenzi, Francesco Brancati, Stefano Russo, and
Andrea Bondavalli

Security Analysis of Smart Grid Data Collection Technologies 143
Luigi Coppolino, Salvatore D’Antonio, Ivano Alessandro Elia, and
Luigi Romano

Session 6: RAM Evaluation 2

Modeling Aircraft Operational Reliability . 157
Kossi Tiassou, Karama Kanoun, Mohamed Kaâniche,
Christel Seguin, and Chris Papadopoulos

An Integrated Approach for Availability and QoS Evaluation in
Railway Systems . 171

Antonino Mazzeo, Nicola Mazzocca, Roberto Nardone,
Luca D’Acierno, Bruno Montella, Vincenzo Punzo,
Egidio Quaglietta, Immacolata Lamberti, and Pietro Marmo

Session 7: Case Studies

Using a Software Safety Argument Pattern Catalogue: Two Case
Studies . 185

Richard Hawkins, Kester Clegg, Rob Alexander, and Tim Kelly

Integration of a System for Critical Infrastructure Protection with the
OSSIM SIEM Platform: A Dam Case Study . 199

Luigi Coppolino, Salvatore D’Antonio, Valerio Formicola, and
Luigi Romano

Table of Contents XIII

A Case Study on State-Based Robustness Testing of an Operating
System for the Avionic Domain . 213

Domenico Cotroneo, Domenico Di Leo, Roberto Natella, and
Roberto Pietrantuono

Session 8: Formal Verification 2

Formal Methods for the Certification of Autonomous Unmanned
Aircraft Systems . 228

Matt Webster, Michael Fisher, Neil Cameron, and Mike Jump

Verifying Functional Behaviors of Automotive Products in EAST-ADL2
Using UPPAAL-PORT . 243

Eun-Young Kang, Pierre-Yves Schobbens, and Paul Pettersson

Poster Session

Establishing Confidence in the Usage of Software Tools in Context of
ISO 26262 . 257

Joachim Hillebrand, Peter Reichenpfader, Irenka Mandic,
Hannes Siegl, and Christian Peer

Fault-Based Generation of Test Cases from UML-Models – Approach
and Some Experiences . 270

Rupert Schlick, Wolfgang Herzner, and Elisabeth Jöbstl

ISO/IEC 15504-10: Motivations for Another Safety Standard 284
Giuseppe Lami, Fabrizio Fabbrini, and Mario Fusani

Automatic Synthesis of SRN Models from System Operation Templates
for Availability Analysis . 296

Kumiko Tadano, Jiangwen Xiang, Masahiro Kawato, and
Yoshiharu Maeno

A Collaborative Event Processing System for Protection of Critical
Infrastructures from Cyber Attacks . 310

Leonardo Aniello, Giuseppe A. Di Luna, Giorgia Lodi, and
Roberto Baldoni

A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip
Multiprocessors . 324

Hananeh Aliee and Hamid Reza Zarandi

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online
Forensics and On-Demand IDS Deployment . 338

Saman Aliari Zonouz, Kaustubh R. Joshi, and William H. Sanders

XIV Table of Contents

Reducing Complexity of Data Flow Testing in the Verification of a
IEC-62304 Flexible Workflow System . 355

Federico Cruciani and Enrico Vicario

Improvement of Processes and Methods in Testing Activities for
Safety-Critical Embedded Systems . 369

Giuseppe Bonifacio, Pietro Marmo, Antonio Orazzo, Ida Petrone,
Luigi Velardi, and Alessio Venticinque

Session 9: Formal Verification 3

On the Adoption of Model Checking in Safety-Related Software
Industry . 383

Alessandro Fantechi and Stefania Gnesi

Equivalence Checking between Function Block Diagrams and
C Programs Using HW-CBMC . 397

Dong-Ah Lee, Junbeom Yoo, and Jang-Soo Lee

A Framework for Simulation and Symbolic State Space Analysis of
Non-Markovian Models . 409

Laura Carnevali, Lorenzo Ridi, and Enrico Vicario

Session 10: Optimization Methods

Model-Based Multi-objective Safety Optimization . 423
Matthias Güdemann and Frank Ortmeier

Tradeoff Exploration between Reliability, Power Consumption, and
Execution Time . 437

Ismail Assayad, Alain Girault, and Hamoudi Kalla

Session 11: Complex Systems Dependability 2

Criticality-Driven Component Integration in Complex Software
Systems . 452

Antonio Pecchia, Roberto Pietrantuono, and Stefano Russo

On the Use of Semantic Technologies to Model and Control Security,
Privacy and Dependability in Complex Systems . 467

Andrea Fiaschetti, Francesco Lavorato, Vincenzo Suraci,
Andi Palo, Andrea Taglialatela, Andrea Morgagni,
Renato Baldelli, and Francesco Flammini

Author Index . 481

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 1–14, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Effect of Correlated Failure Rates on Reliability of
Continuous Time 1-Out-of-2 Software

Peter Popov1 and Gabriele Manno2

1 Centre for Software Reliability, City University,
Northampton Square, London, UK

ptp@csr.city.ac.uk
2 Department of Mathematics and Informatics, University of Catania

Viale Andrea Doria 6, Catania, Italy
gmanno@dmi.unict.it

Abstract. In this paper we study the effects on system reliability of the
correlation over input space partitions between the rates of failure of two-channel
fault-tolerant control software. We use a continuous-time semi-Markov model to
describe the behavior of the system. We demonstrate via simulation that the
variation of the failure rates of the channels over the partitions of the input space
can affect system reliability very significantly. With a plausible range of model
parameters we observed that the mean time to system failure may vary by more
than an order of magnitude: positive correlation between the channel rates
makes the system less reliable while negative correlation between the channel
rates implies that the system is more reliable than assuming constant failure rates
for the channels. Our observations seem to make a case for more detailed
reliability measurements than is typically undertaken in practice.

1 Motivation

All systems need to be sufficiently reliable. There are two related issues here. In the
first place there is the issue of achieving the necessary reliability. Secondly, there is
the issue of assessing reliability that has actually been achieved, to convince oneself
that it is 'good enough'.

In the light of the rather strict limitations to the levels of software reliability that
can typically be achieved or claimed from observation of operational behavior of a
single version program [1], fault tolerance via design diversity has been suggested as
a way forward both for achieving higher levels of reliability, and for assisting in its
assessment.

Design diversity has been studied thoroughly in the past 30+ years. For a relatively
recent study the reader is referred to [2]. The focus, however, has been primarily on
‘on demand’ systems, e.g. a protection system called upon when a failure is detected
in the operation of the system controlling a plant.

The focus of this paper is control software, i.e. which exercises control of an object
of control and in the process executes a series of inputs (trajectories) coming directly
from the controlled object, its environment and also the internal state of the software

2 P. Popov and G. Manno

itself. Assessing accurately reliability of control software is important not only for
minimizing the losses due to downtime. In some cases, e.g. of critical applications,
the control software reliability defines reliability requirements for the protection
system designed and deployed to deal with situations of inadequate control. A
protection system of given reliability may be adequate in some cases – e.g. when the
control system is very reliable – or may be inadequate – e.g. if the control system is of
modest reliability. Reliability of the total system (control and protection) depends on
both reliability of the control and of the protection and therefore accurately assessing
reliability of both systems is important.

Our focus in this paper is a 2-channel control software for which the input space is
divided in partitions, which represent different modes of operation. Examples of
modes of operation might be an initialization, a normal control loop and terminating
the control, e.g. to allow for maintenance. More refined scenario, e.g. as in robotics,
might include a robot having to deal with different obstacles, which may require
applying different algorithms of adaptive behavior to the current environment, etc.
We address on purpose the problem at a sufficiently high level of abstraction – using
a continuous time semi-Markov model – which will allow us to state the main result
in a concise way.

Continuous-time semi-Markov models are typically used to model the behavior of
control software: the modeling assumptions and the model details depend on the
specific aspects of interest. For instance, failure clustering is typical for control
software [3]. Modeling such behavior is impossible with models assuming that
successive inputs are drawn independently from the input space. Instead, models, in
which the failure rate changes significantly after the occurrence of the first failure
proved to be useful [4].

The paper is organized as follows. Section 2 states the problem. Section 3 presents
the model and the main result. In section 4 we compare our model with a model
developed in the past by Littlewood for a single channel software with modular
structure. In section 5 we discuss our findings and some parameter estimation
techniques. Section 6 offers a survey of the relevant literature. The conclusions and
directions for future research are presented in section 7.

2 The Problem

Consider a 2-channel control system as shown in Figure 1. During the operation of the
system each of the channels can fail and so can the adjudicator. In this paper we
concentrate on the case of an absolutely reliable adjudicator and study reliability of
the control system only. Once a channel failure is detected by the adjudicator an
attempt is undertaken to ‘repair’ the failed channel, which eventually succeeds after
time τ, during which time the other channel will either work correctly or will also fail.
Examples of repair envisaged here are the typical backward/forward recovery
mechanisms used in practice such as retrying the execution with a slightly perturbed
data [3] or merely restarting the failed channel.

 The Effect of Correlated Failure Rates on Reliability of Continuous Time 3

State signals Control signals

Output A

Output BHot/Cold standby
(Channel B)

Controlled object

Adjudicator

Fault-tolerant control system

Active channel
(Channel A)

Fig. 1. A typical architecture of a 2-channel control system. At any time the outputs to the
controlled object (e.g. a nuclear plant) are generated by one of the channels, while the second
channel is available as a hot/cold standby. An adjudicator is responsible to detect anomalies of
the active channel and switch to the standby channel, if such is available. The failed channel is
‘repaired’ which takes finite time and becomes available to take over control again. The
channels are diverse – if design faults are considered – or merely redundant if only hardware
related faults are considered.

The channels are assumed to fail independently of each other: the chances of both
channels failing simultaneously are, therefore, vanishingly small. The only source of
coincident failure is the finite repair time τ of the failed channel during which the
second channel may also fail. We later will discuss relaxing the assumption of
independent failure and discuss the model of a “common stress” that might cause
simultaneous failure of both channels.

Repair
time, 2

Repair
time, 1 Channel A

failure

Channel B
failure

Coincident
failures

time
TA1 TA2

TB1 TB2 TB3

TAB1

time

time

Fig. 2. The timing diagram illustrates the events of interest and the times associated with them.
The times, TAx, TBx and TABx, respectively, characterize the up times in the stochastic processes
associated with the behavior of the individual channels and the control system.

4 P. Popov and G. Manno

We assume, further that the system’s input space is divided into partitions,
identical for both channels. Each of these partitions is associated with rates of failure
of the channels, respectively. These rates may vary across partitions and it is the
nature of this variation – whether the rates of channel failure are positively or
negatively correlated or not correlated (e.g. the rate of one of the channels does not
vary over the partitions at all) – that the study is focused on.

Figure 2 shows a typical timing diagram which illustrates the failure processes of
interest.

In this study we concentrate on the time to system failure (i.e. the times until both
channels fail) starting from a state when both channels are operational. Clearly, the
time to failure may include multiple cases of a single channel failure and successful
repairs of the failed channel.

3 Model of the System

We studied the problem using the formalism of stochastic activity networks (SAN)
and the tool support offered by the Möbius tool [5]. The results – the distribution of
the time to system failure – are obtained via simulation.

3.1 Diagrammatic Representation of the Model

Now we defined the system model. Consider that the system can be represented as a
stochastic activity network, in which there are several partitions as shown in Figure 3.

Fig. 3. Model of a system operating on 4 partitions of the input space, subdomain1 –
subdomain4. The syntax of the graphical representation is Möbius specific. Each of the
partitions is a detailed representation of the states that the system (the two channels) might be in
while in the respective partition.

Figure 4 shows in detail the system behavior of the system in one of the partitions.
The models of the other partitions are identical, but the parameters may differ. The
system changes its state from both channels working correctly (OO) to states in which
one of the channels has faied (OF or FO), from which it may either recover (i.e. return
to OO) or instead the second channel may also fail (i.e. reach the state FF). While in
OO state, the system may switch to a different partition: the other partitions are
labeled S2, S3 S4, which are really labels for the OO states in the respective partitions
(subdomain2, subdomain3 and subdomain4). One notices that in our model the
system cannot switch to a different partition unless both channels work correctly. This
simplifying assumption seems plausible. In a typical scenario of a fast repair (e.g. a
restart) and a relatively infrequent change of modes of operation (modeled by the

 The Effect of Correlated Failure Rates on Reliability of Continuous Time 5

partitions of the input space), the chances that the system will have moved to a
different partition with one of the channels not working correctly are negligible. In
some other cases, however, the transitions between the partitions may be fast and the
simplification introduced in the model may be problematic. Relaxing this assumption,
although possible, is beyond the scope of the paper.

Fig. 4. Detailed behavior of the 1-out-of-2 software in partition subdomain1. The model states
are shown as places (nodes) OO, OF, FO and FF suitably named to indicate the state of the
channels: both channels working correctly is represented by the place OO, …, both states
having failed is represented by the place FF, respectively. The transitions between the places
are characterized by a set of ‘stochastic activities’, e.g. a change of the system state from OO to
FO is represented by the stochastic activity OOtoFO. A transition in the opposite direction (FO
→ OO) is represented by the stochastic activity FOtoOO. The place FF is absorbing, i.e. there
are no outgoing transitions (activities) from it to some other places.

3.2 Möbius Model Parameters

The model is parameterized under a set of assumptions:

- Failures of the channels are driven by independent Poisson processes, which
are homogeneous conditional on sub-domains, but may be non-homogeneous
across partitions.

- Repairs of the channels are perfect, but not instantaneous. Repairs are only
undertaken if there is a channel working correctly.

Given these assumptions the model was parameterized as follows.

- The transitions between the partitions (between the respective OO states, that
is) are all assumed exponentially distributed with a rate of 0.3. The
uniformity of the rates here was chosen for convenience: we wanted to keep
the channels equally reliable and be able to vary easily their rates of failure
in partitions. Any difference, thus, in the system behavior observed between

6 P. Popov and G. Manno

the studied cases could be attributed solely to the correlation between the
failure rates in the partitions. This objective is easily achieved if the domains
are equally likely, which in turn is achieved by setting the same transition
rates between the OO states of the partitions.

- The repair times were assumed of fixed duration, 0.01 units.
- The failure rates in the partitions are chosen from the set {0.01, 0.02, 0.03}

in such a way that the marginal rates of failure of the channels remain
unchanged (0.02 given the partitions are equally likely, ≈ 0.25).

The following cases (see Table 1) were studied, which represent different types of
correlation between the failure rates of the channels over the partitions.

Table 1. Failure rates of the channels conditional on partitions (S1-S4)
1

 S1 S2 S3 S4
Experiment 1: ‘High’ Positive correlation
between the rates.

Channel 1 0.03 0.01 0.03 0.01
Channel 2 0.03 0.01 0.03 0.01

Experiment 2: ‘High’ Negative correlation
between the rates.

Channel 1 0.03 0.01 0.03 0.01
Channel 2 0.01 0.03 0.01 0.03

Experiment 3: Constant rates of both
channels.

Channel 1 0.02 0.02 0.02 0.02
Channel 2 0.02 0.02 0.02 0.02

Experiment 4: Constant rate of channel 1. Channel 1 0.02 0.02 0.02 0.02
Channel 2 0.01 0.03 0.01 0.03

Experiment 5: ‘Low’ positive correlation
between the rates.

Channel 1 0.01 0.02 0.03 0.02
Channel 2 0.01 0.02 0.03 0.02

Experiment 6: ‘Low’ Negative correlation
between the rates.

Channel 1 0.03 0.02 0.01 0.02
Channel 2 0.01 0.02 0.03 0.02

As one can see, a uniform profile on the set of partitions (P(S1) = P(S2) = P(S3) =

P(S4) = 0.25) guarantees that the marginal rates of failure of the channels indeed
remains the same – 0.02.

3.3 Measure of Interest

The time to system failure was measured via simulation and the results are
summarized in Table 2.

Clearly, the mean time to system failure is significantly affected by the covariance
between the failure rates2.The greatest MTTF corresponds to Experiment 2 with high
negative correlation between the rates of failure of the channels. The other extreme –
the shortest MTTF – corresponds to the case with high positive correlation between
the conditional rates of failure of the channels. A constant rate of failure of at least
one of the channels (Experiment 3 and Experiment 4) forms the ‘case in the middle’,
while more modest correlations – either positive or negative – place the respective
cases between the ‘case in the middle’ and the respective cases with high correlation
of the same sign.

1 S1 – S4 are shortcuts for subdomain1 – subdomain4, respectively.
2 The MTTF of Experiment 3 and 4 are very close, but for these the covariance of the failure

rates is 0, as for at least one of the channels the failure rates are constant over partitions.

 The Effect of Correlated Failure Rates on Reliability of Continuous Time 7

Table 2. Mean time to system failure

 Mean
 Value 95% Confidence interval Runs
‘High’ Positive correlation
between rates (Experiment 1)

97,569.53

+/- 2,000.9

12,000

‘High’ Negative correlation
between rates (Experiment 2)

157,353.8

+/- 4,563.3

5,000

Constant rates of both channels
(Experiment 3)

122,060.4

+/- 2,972.8

8,000

Constant rate of channel 1
(Experiment 4)

122,498.6

+/- 2,996.9

8,000

‘Low’ positive correlation
between rates (Experiment 5)

107,831.7

+/- 2,426.1

10,000

‘Low’ Negative correlation
between rates (Experiment 6)

137,377.9

+/- 3,504.0

7,000

We looked at the distributions associated with the experiments, which are

presented in Figure 5. It turned out that the times to system failures are stochastically
ordered: the ordering being the same as the ordering between the respective MTTFs
(Table 2). Analyzing these distributions we established that in all 6 experiments they
can be approximated very well using an exponential distribution with parameters
equal to the reciprocal of the means defined in Table 2.

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

0

25
,0

0
0

50
,0

0
0

75
,0

0
0

1
00

,0
0

0

1
25

,0
0

0

1
50

,0
0

0

1
75

,0
0

0

2
00

,0
0

0

2
25

,0
0

0

2
50

,0
0

0

2
75

,0
0

0

3
00

,0
0

0

3
25

,0
0

0

3
50

,0
0

0

3
75

,0
0

0

4
00

,0
0

0

4
25

,0
0

0

4
50

,0
0

0

4
75

,0
0

0

‘High’ Positive correlation between rates (Experiment 1)

‘High’ Negative correlation between rates (Experiment 2)

Constant rates of both channels (Experiment 3)

Constant rate of channel 1 (Experiment 4)

‘Low’ positive correlation between rates (Experiment 5)

‘Low’ Negative correlation between rates (Experiment 6)

Fig. 5. Distribution of the time to system failure, truncated after 500,000 time units of simulation

We scrutinized further, via simulation, how the distribution of the activities
associated with failures of the channels will affect the distribution of the time to

8 P. Popov and G. Manno

system failure. While the activities modeling the transitions between sub-domains
were left exponentially distributed with a rate of 0.3 and fixed repair times of 0.01
were used, as before, we set the activities modeling the time to a channel failure to
have Weibull and Gamma distributions with parameters which lead to non-constant
hazard rate. The parameters were chosen in such a way that the transitions between
the partitions remained significantly more frequent than the channel failures. The
distributions of the activities did affect the time to system failure very significantly.
The effect that we highlighted above, however, remained in place: negatively
correlated rates would lead to longer times to system failure than constant rates,
which in turn were longer than if the rates of failure of the channels were positively
correlated. We observed that MTTF may differ up to an order of magnitude between
positively and negatively correlated rates. The time to system failure in all simulated
cases remained exponentially distributed despite the significant differences in the
rates.

4 Littlewood’s Semi-markov Model of Software Reliability

Littlewood studied [6] systems with modular structure. The structures he considered
were defined by the software modules (functions, procedures, etc.) of which the
software consists. He assumed that the failures of the software can happen within a
module or during the invocation of a module by another module.

Littlewood’s reasoning is based on three essential assumptions:

- the underlying stochastic process describing the software behavior is semi-
Markov. The time that software spends in a module (the sojourn time) can
have an arbitrary distribution, but the transition probabilities between the
modules are constant.

- while occupying a module the program may fail randomly with a constant
failure rate.

- the transition probabilities between the modules are significantly greater
than the rates of failure (either within the module or during the module
invocation). Otherwise the software would have been, Littlewood argues,
very unreliable.

Under these assumptions Littlewood proved analytically that the failure process will
be a Poisson process. Its parameter can be computed from the steady-state
probabilities of the embedded Markov chain (after eliminating the failure state, which
in his description was absorbing), the mean times the program spends in a module and
the small failure rates.

How does the model described by Littlewood differ from the one used by us to
model the behaviour of a 2-channel control system?

The first assumption by Littlewood is clearly sufficiently general to apply to our
model too. Our model is a model of a semi-Markov process, too. Although we
describe the model in terms of transitions between the partitions and ignore the
internal structure of software (functions, procedures, etc.) the model is conceptually
very similar: there are states represented by the partitions and transitions between
these states. In each state our model is strictly a model of competing risks – the

 The Effect of Correlated Failure Rates on Reliability of Continuous Time 9

shortest activity defines the next system state. However, one can easily transform the
competing risk model with states to a semi-Markov process. Indeed, one can directly
express the sojourn time as a function of the distributions chosen for the activities [7].
The marginal probabilities that the random variable representing a particular
competing risk will be the shortest one can easily be derived, too (see the Appendix
for details). These probabilities will form the transition probabilities for the embedded
Markov chain associated with the semi-Markov model. In summary, the first
assumption of the Littlewood theorem is satisfied.

The second assumption, however, is not always satisfied. For exponentially
distributed activities representing the channel failure, the assumption is satisfied, but
for Weibull and Gamma distributed activities – it is not. Thus, our model formally
violates the second assumption made by Littlewood, that failures occur randomly.

The third assumption made by Littlewood is also plausible in our case: as evident
from the used parameterization, the transitions to all non-absorbing states are
significantly more frequent (including the repair) than the transition to the absorbing
state of failure of both channels3.

Despite the violation of the second assumption made by Littlewood, his asymptotic
result seems to apply: asymptotically the time to system failure is exponentially
distributed. It is outside the scope of this paper to offer an analytic explanation why
this is the case, a problem worth addressing in the future.

5 Discussion

The effect reported in this paper, that the correlation of failure rates over partitions of
the input space matters, is not surprising. Similar effects, that variation of the
probability of failure, conditional on partitions, have been studied extensively in the
past for on-demand systems [8].

The practical implications of the work presented here seem significant. If one is to
measure the marginal rates of failure of the channels and then use these to estimate,
e.g. by simulation, how the speed of recovery will impact reliability of the system one
will be implicitly assuming the situation described by our example 3 – no variation of
failure rates of both channels. But such an evaluation may be incorrect – it may be

3 There is a subtle difference between a semi-Markov process and the model of competing risks

which is rarely discussed in the literature. For the competing risks model the transition
probabilities are proportional to the respective hazard rates (of the random variables
representing the competing risks), while in the semi-Markov process it is typically assumed
that an embedded Markov chain exists with fixed transition probabilities. If all competing
risks are exponentially distributed, then the hazard rates are constant and so are the transition
probabilities – they remain the same irrespective of the length of the sojourn time. However,
if at least some of the competing risks are not exponentially distributed then the hazard rate
may vary over time (e.g. with Weibull distribution it may increase or decrease) and thus it
becomes dependent on the duration of the sojourn time (see the Appendix for further details).
This subtle difference, however, does not seem to matter, at least not for our studies. Despite
exploring a wide range of scenarios (with activities assumed to have Gamma and Weibull
distributions) the distributions of the times to system failure remained exponentially
distributed.

10 P. Popov and G. Manno

optimistic or pessimistic depending on the variation of rates of failure in partitions.
Results based on ignoring the variation of the failure rates will only be useful if one
can demonstrate that at least one of the channels fails with the same failure rate in all
partitions (as in experiment 4 in Table 2). Constant failure rate over the partitions,
however, does not seem realistic. For various reasons the partitions are likely to be
subjected to different scrutiny – some are less critical than others, or are less used by
the users and hence problems are less likely to be reported, etc. The point in the end is
that, ignoring the effect we report here may lead to overestimation or underestimation
of system reliability and it is impossible to know in advance even the sign of the
estimation error one will make by ignoring the correlation between the rates over the
partitions. Overestimating system reliability may be dangerous, while underestimating
may lead to waste of resources – e.g. unnecessarily insisting on further V&V to
improve system reliability even if the system may already be ‘good enough’ (e.g. in
the case the channel rates of failure are negatively correlated).

The model presented above assumes that the channel failure processes are
independent processes. This assumption can be relaxed. An example is the model of
‘common stress’, which causes both channels to fail simultaneously, e g. due to a
specification fault. A useful and widely used example is the Marshall and Olkin
model [9]. The joint pdf of the channels’ time to failure is defines as follows:

()
() ()

() ()

()
⎪
⎪
⎩

⎪⎪
⎨

⎧

=

<+

<+

=
++−

+−−

+−−

,,

,,

,,

,

321

312

321

3

312

321

yxife

xyife

yxife

yxf
y

xy

yx

θθθ

θθθ

θθθ

θ

θθθ

θθθ

where x > 0, y > 0, θ1 > 0, θ2 > 0, and θ3 > 0. X and Y are the lifetimes of the two
channels subjected to three kinds of shocks, assumed to be governed by three
independent Poisson processes with parameters θ1, θ2, and θ3, respectively. Shock 1
applies to channel 1 only, shock 2 applies to channel 2 only, while shock 3 applies to
both channels (hence ‘common stress’). The model has been used widely in nuclear
reactor safety, competing risks reliability, etc [10]. The marginal distributions of X
and Y are exponential distributions with parameters 31 θθ + and 32 θθ + , respectively.

Clearly we could easily integrate the Marshall and Olkin model in the model
presented in section 3 by adding a third activity, from place OO (Figure 4) to the
absorbing place FF, to model the common stress, i.e. shock 3.

Accurately measuring system reliability will require more detailed measurement,
which includes the following steps:

- estimating the probabilities of the partitions (the partition profile). Provided
sufficient statistical testing is undertaken, one could easily arrive at a very
accurate estimate of the probabilities of partitions. With more care one can
even measure directly the transition rates between the partitions, which will
be used directly in the model;

- estimating the rates of channel failure in partitions. This may require more
effort, than measuring the partition profile, especially in case of very reliable
channels. Failure rates can be estimated from the log of observed channel
failures.

 The Effect of Correlated Failure Rates on Reliability of Continuous Time 11

- relaxing the assumption that the channels fail conditionally independently
will further complicate the measurements. Now one will need to quantify the
strength of dependence between the channel failure processes.

Developing in details techniques for parameters estimation is beyond the scope of this
paper. We notice in passing that the theory of competing risks is well developed and
has been applied successfully in a wide range of applications. In our model every
place (or state of the system) is associated with a set of competing risks – several
activities compete to move the system to one of the states reachable by a single
activity. For instance, in an OO place (Figure 4) several risks (represented by their
respective activities) compete – to move the system to a new partition or to a state in
which one of the channels has failed (or both in case the model is extended to include
a common stress). The parameters associated with the risks may be unknown with
certainty and need to be estimated from the available observations. The Appendix
provides details, including the likelihood of any possible observation, sufficient for
parameter estimation – either by maximizing the likelihood of the observations or by
applying Bayesian inference. The point here is that every time a transition from a state
takes place, we collect an observation associated with the realization of the competing
risks defined for this place. Given the assumed Markov structure of the model,
estimating the model parameters will consist of independent data collection and
estimation of the model parameters associated with the individual states.

We note that estimating the parameters of different parts of the model can be done
using different techniques. For instance, we can obtain the parameters of the
transitions (activities) between the OO states of the partitions directly from the
observations (as these will be likely to be frequent and many realizations can be
observed in a short period of observation). The parameters (i.e. distributions) of the
activities OOtoFO of OOtoOF in turn can be assessed using Bayesian inference
(given the typically small number of observations one can collect within a limited
statistical testing or operational exposure). Once the estimation of the parameters of
OOtoFO and OOtoOF activities is done, one can use these to parameterize the
activities FOtoFF and OFtoFF, as in the model we assume them to have the same
parameters as OOtoOF and OOtoFO, respectively.

Once the parameters of the model activities are estimated, one could run a
simulation experiment to measure directly the time to system failure. Further, as new
operational data becomes available, one could revise the model (by re-assessing
periodically the model parameters) and then re-run a new simulation to estimate the
time to system failure.

6 Relevant Literature

Probabilistic models of on-demand fault-tolerant software have attracted significant
attention. The original work by Ekhardt and Lee [11] demonstrated that failure
independence is unlikely for even independently developed software versions
(channels of a fault-tolerant system). The reason for this is that the individual
demands processed by software may differ in their “difficulty”, i.e. they will be
problematic to independent developers and the chances of simultaneous failures on

12 P. Popov and G. Manno

these demands of independently developed channels are greater than what would be
expected assuming independent failures. This was a very important insight, which
affected the research and practical adoption of software fault-tolerance. The model by
Ekhardt and Lee was extended by Littlewood and Miller [12], to the case of forced
design diversity (e.g. different teams are forced to use different development
methodologies which may lead to different difficulties of the demands). This work
demonstrated the possibility for achieving system reliability better than assuming
failure independence between the channels. Popov and Littlewood [13] extended the
earlier models by allowing the channels reliability to grow, e.g. as a result of testing
and compared the effect on system reliability of different testing regimes – testing the
channels in isolation, testing them together on the same testing suite and back-to-back
and ranked these testing regimes according to their impact on system reliability.

These models were models “on average” – they modeled the process of software
development of fault-tolerant software as a random selection from populations of
versions, which hypothetically can be developed to a given specification. The models,
however, do not address the issue of assessing reliability of a particular fault-tolerant
system. This problem was addressed in [8]: the authors developed a model of a fault-
tolerant software operating on demand space with partitions and demonstrated that it
can be used for practical assessment by establishing bounds on the probability of
system failure based on estimates of the probabilities of failure of the channels in the
partitions only, which are typically estimable.

The models summarized above are applicable to on-demand software only, i.e. in
which the individual demands are drawn independently from the demand space.
Another line of research addressed the characteristics specific for control software,
e.g. the fact that control software is typically executed on trajectories of inputs, which
are not independently drawn from the input space. An important implication of
trajectory based execution is failure clustering due to the fact that failure regions
usually occupy ‘blobs’ of individual inputs, [14] , [3]. Modeling explicitly failure
clustering was done in a number of studies, e.g. [15].

7 Conclusion and Future Work

We presented a model of system reliability of a 2-channel control software operating
over partitions of the input space. The failure rates of the channels may vary over the
partitions. The model reveals a useful insight – the probability of system failure may
be significantly affected by the correlation of failure rates of the channels over the
partitions – we recorded up to an order of magnitude difference in the mean time to
systems failure between assessment ignoring the effect of failure rate variation and
taking it into account. The result seems important because it suggest the need for
more accurate reliability measurement than is usually undertaken.

We further considered a model of reliability for software with modular semi-
Markov structure developed by Littlewood in the past and established that our model,
although generally very similar, deviates from the mathematical description provided
by Littlewood. Despite the deviations, however, similarly to Littlewood, we observed

 The Effect of Correlated Failure Rates on Reliability of Continuous Time 13

that the time to system failure is exponentially distributed. Providing an analytical
proof for the cases when the failures in partitions are not random (i.e. do not occur as
Poisson processes) or identifying the cases when the system failure process ceases to
be a Poisson process itself, is an open research problem.

We also discuss the issue of model parameter estimation. The theory of competing
risks offers a suitable framework for parameter estimation using either maximum
likelihood or Bayesian inference. Developing detailed assessment techniques with
illustrative examples to help practitioners will be addressed in the future.

References

1. Littlewood, B., Strigini, L.: Validation of Ultra-High Dependability for Software-based
Systems. Communications of the ACM 36(11), 69–80 (1993)

2. Littlewood, B., Popov, P., et al.: Design Diversity: an Update from Research on Reliability
Modelling. In: Safety-Critical Systems Symposium 2001. Springer, Bristol (2001)

3. Ammann, P.E., Knight, J.C.: Data Diversity: An Approach to Software Fault Tolerance.
IEEE Transactions on Computers C-37(4), 418–425 (1988)

4. Bondavalli, A., Chiaradonna, S., et al.: Dependability Models for Iterative Software
Considering Correlation among Successive Inputs. In: IEEE International Symposium on
Computer Performance and Dependability (IPDS 1995), Erlangen, Germany (1995)

5. PERFORM, Möbius: Model Based Environment for Validation of System Reliability,
Availability, SEcurity and Performance. User’s Manual, v. 2.0 Draft (2006)

6. Littlewood, B.: A Semi-Markov Model for Software Reliability with Failure Costs. In:
MRI Symposium on Computer Software Engineering, pp. 281–300. Polytechnic Press
(Available from Wiley, London), Polytechnic of New York, New York (1976)

7. David, H.A., Moeschberger, M.L.: The theory of competing risks. Griffin’s Statistical
Monographs & Courses, ed. D.S.E. Prof. Alan Stuart, vol. 39, p. 103 (1978)

8. Popov, P., Strigini, L., et al.: Estimating Bounds on the Reliability of Diverse Systems.
IEEE Transactions on Software Engineering 29(4), 345–359 (2003)

9. Marshall, A.W., Olkin, I.: A generalised bivariate exponential distribution. Journal of
Applied Probability 4, 291–302 (1967)

10. Nadarajah, S., Kotz, S.: Reliability for Some Bivariate Exponential Distributions.
Mathematical Problems in Engineering, 2006, 1–14 (2006)

11. Eckhardt, D.E., Lee, L.D.: A theoretical basis for the analysis of multiversion software
subject to coincident errors. IEEE Transactions on Software Engineering SE-11(12),
1511–1517 (1985)

12. Littlewood, B., Miller, D.R.: Conceptual Modelling of Coincident Failures in Multi-
Version Software. IEEE Transactions on Software Engineering SE-15(12), 1596–1614
(1989)

13. Popov, P., Littlewood, B.: The Effect of Testing on Reliability of Fault-Tolerant Software.
In: Dependable Systems and Networks (DSN 2004). IEEE Computer Society Press,
Florence (2004)

14. Bishop, P.G., Pullen, F.D.: PODS Revisited - A Study of Software Failure Behaviour. In:
18th International Symposium on Fault-Tolerant Computing. IEEE Computer Society
Press, Tokyo (1988)

15. Bondavalli, A., Chiaradonna, S., et al.: Modelling the effects of input correlation in
iterative software. Reliability Engineering and System Safety 57(3), 189–202 (1997)

14 P. Popov and G. Manno

Appendix

The material and the notation used here are based on [7].
Let Cl (l = 1, …, k) denote the k competing risks or causes of failure. Let the

random variable Yi denote the individual length of life if Yi were the only risk present
with cdf Pi(x) = Pr{Yi ≤ x} and pdf pi(x). When all risks are present, we can only
observe the random variable, Z, defined as follows: Z = min(Y1, …, , Yk).

Clearly, if Z exceeds x, then every Yi exceeds x, too, i.e.:
Pr{Z > x} = Pr{Y1 > x, … , Yk > x}, which we denote as () ()xFxF ZZ −=1 .

An important characteristic is the hazard rate defined as: () ()
()xF

xf
xr

Z

Z
Z = . The hazard

rates of the individual competing risks are defined similarly: () ()
()xP

xp
xr

i

i
i =

For the case of independent risks, the total hazard rate is equal to the sum of the

hazard rates of the competing risks: () ()∑
=

=
k

i

iZ xrxr
1

.

Let πi be the probability that a failure is caused by risk Ci.
A related measure is the conditional probability Pr{Y1 = min(Y1, …, , Yk) | Z = x},

which is defined by the ratio
()
()xr

xr

Z

i . If this ratio is a constant (so called proportional

hazard rates) the probability does not depend on the value of x and is equal to πi. But

this is not always the case and in the general case
()
() i

Z

i

xr

xr π≠ .

If Ni individuals fail from cause Ci, and Xij denotes the lifetime of the j-th
individual failing from clause Ci (j=1,…,ni; i = 1, …, k), then the joint pfd of the Xij is:

() () ()∏ ∏∏
=

≠
==

=
i

ik

n

j
il

l

ijliji

k

i
n
i

knkn xPxpxxxxf
1 11

1111
1

,...,,...,,...,
1 π

.

This is conditional on the random variables, Ni = ni (i = 1, …, k), which have

multinomial distribution: () ∏
∏ =

=

=
k

i

n
ik

i

i

k
i

n

n
nnf

1

1

1

!

!
,..., π , where ∑

=

=
k

i

inn
1

. Hence, the

likelihood function of interest is: () ()∏∏ ∏
∏ = =

≠
=

=

=
k

i

n

j

k

il
l

ijlijik

i

i

i

xPxp

n

n
L

1 1 1

1

!
.

This expression is sufficient for one to apply either maximum likelihood for
parameter estimation associated with the individual risks, Yi, or Bayesian inference
directly to the distributions of Yi.

Model-Driven Availability Evaluation of Railway

Control Systems

Simona Bernardi1, Francesco Flammini2, Stefano Marrone3, José Merseguer4,
Camilla Papa5, and Valeria Vittorini5

1 Centro Universitario de la Defensa, Academia General Militar (Spain)
simonab@unizar.es

2 AnsaldoSTS, Innovation and Competitiveness Unit (Italy)
francesco.flammini@ansaldo-sts.com

3 Seconda Università di Napoli, Dip. di Matematica (Italy)
stefano.marrone@unina2.it

4 Dep.to de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza (Spain)
jmerse@unizar.es

5 Università di Napoli “Federico II”, Dip. di Informatica e Sistemistica (Italy)
{camilla.papa,valeria.vittorini}@unina.it

Abstract. Maintenance of real-world systems is a complex task involv-
ing several actors, procedures and technologies. Proper approaches are
needed in order to evaluate the impact of different maintenance policies
considering cost/benefit factors. To that aim, maintenance models may
be used within availability, performability or safety models, the latter
developed using formal languages according to the requirements of inter-
national standards. In this paper, a model-driven approach is described
for the development of formal maintenance and reliability models for the
availability evaluation of repairable systems. The approach facilitates
the use of formal models which would be otherwise difficult to manage,
and provides the basis for automated models construction. Starting from
an extension to maintenance aspects of the MARTE-DAM profile for
dependability analysis, an automated process based on model-to-model
transformations is described. The process is applied to generate a Re-
pairable Fault Trees model from the MARTE-DAM specification of the
Radio Block Centre - a modern railway controller.

Keywords: Automated Model Generation, ERTMS/ETCS system, Model
Transformation, Repairable Fault Trees, UML profiles.

1 Introduction

The development of mission-critical systems has to tackle several challenges, in-
cluding the evaluation of RAMS (Reliability, Availability, Maintainability, Safety)
attributes since early stages of system life-cycle till the possible final certifica-
tion phase. Evaluation approaches by means of formal models have proven to be
effective in assessing RAMS attributes. However, many formalisms (e.g., Fault
Trees) suffer from limited expressive power when dealing with complex repairable

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 15–28, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

16 S. Bernardi et al.

systems, or they are limited in usability and solving efficiency (e.g., Stochastic
Petri Nets). To solve those issues, recently some “hybrid” approaches have been
proposed, trying to combine the advantages of different formalisms [10].

One further step toward the simplification of the model-based RAMS eval-
uation is the use of high-level modeling languages, derived from the Unified
Modeling Language (UML), and model transformation, which is the basis of
the Model Driven Engineering (MDE) methodology. Model transformations pro-
cesses transform a source model into a target model based on transformation
rules [18]. A first attempt of defining such a process, in the dependability con-
text, has been performed within the HIDE project [3]. More recently, specific
profiles have been developed to specify non-functional properties (NFP) on UML
diagrams, such as the OMG standard MARTE (Modeling and Analysis of Real-
Time and Embedded Systems) UML profile [20].

An important aspect of the MDE related work is the availability of open
source case tools and workbenches. These MDE platforms integrate tools which
support the main technologies to implement Model-to-Model (M2M) transfor-
mations, such as ATL [11] or QVT [14]. The integration of formal methods and
techniques into MDE based development process is still an open issue. MARTE
introduces the possibility of annotating models in order to cope with NFPs but
it does not provide support to dependability analysis. A recent work [2] proposes
an extension of MARTE for dependability and modeling (MARTE-DAM). Nev-
ertheless MARTE-DAM does not define M2M transformations for the automated
generation of formal analysis models from MARTE artifacts.

In the past, several research efforts have focused on the derivation of formal
models from UML diagrams, as surveyed in [2]. As specifically regards fault
trees (FT) and their extensions, Pai and Dugan developed a method to derive
Dynamic Fault Trees from UML system models [15] and D’Ambrogio et al.
defined a method to generate FT models from a set of sequence diagrams in
order to predict software reliability [5]. All these works are partial solutions to
the problem and their systematic application appears to have been absent in the
subsequent evolution of UML.

In this paper, we integrate the above mentioned approaches: we apply model-
driven techniques to generate formal models of critical systems. Starting from
a high level specification of the system expressed by an extended UML profile,
we define and implement proper M2M transformations in order to automate the
generation of availability models of a modern railway controller. The contribution
of the paper is twofold: on the one hand, it shows how a model-driven approach
may also promote the applicability of formal modeling in industrial settings; on
the other hand, we extend the MARTE-DAM profile for dependability model-
ing and define the M2M transformations to generate Repairable Fault Tree [4]
models from the extended profile. In particular, considering MARTE-DAM, we
enrich the fault tolerance and maintenance aspects of the profile [2] to enable
the specification of complex repairable systems.

It is worth to mention that, beside UML, SysML [19] and AADL [1] have
been also considered as source specification languages in M2M transformations.

Model-Driven Availability Evaluation of Railway Control Systems 17

The work [8] proposes a joint use of UML-MARTE and SysML for the auto-
matic generation of certification-related information in safety domain. Indeed,
although SysML provides support to manage requirements and system design
together, it lacks of standard concepts for dealing with specific dependability
concerns. On the other hand, AADL enables the specification of dependability
requirements and properties of software systems. The works [17] and [9] both pro-
pose transformation techniques to get formal dependability models from AADL
specifications (respectively, Generalized Stochastic Petri Nets and probabilistic
finite state-machines).

2 The MARTE-DAM Profile

The MARTE [20] profile provides a lightweight extension of UML (i.e., through
the use of stereotypes, tagged-values and constraints) to specify system non-
functional properties (NFPs), according to a well-defined Value Specification
Language (VSL) syntax. Stereotypes extend the semantics of UML meta-classes
with concepts from the target domain. They are made of tags whose types can
be basic UML types (e.g., integer) or MARTE NFP types (e.g., NFP Integer in
Tab.1). The latter are of special importance since they enable the description
of relevant aspects of a NFP using several properties, such as value, a value or
parameter name (prefixed by the dollar symbol); source, the origin of the NFP
(e.g., a requirement - req) statQ, the type of statistical measure (e.g., mean).

The “Dependability Analysis and Modeling” (DAM) [2] profile is a MARTE
specialization. A MARTE-DAM annotation stereotypes a UML design model ele-
ment, then extending its semantics with dependability concepts (e.g., annotating
a UML State Machine transition as a failure step). Moreover, DAM enriches the
MARTE types with basic and complex dependability types. The latter (e.g.,
DaRepair) are composed of attributes (e.g., MTTR) that can be MARTE NFP
types (e.g., NFP Duration) or simple types.

The DAM profile relies on the definition of the DAM domain model which
represents the main dependability concepts from the literature according to a
component-based view of the system to be analyzed [7]. In the domain model,
the system is defined by a set of components bounded together through connec-
tors, in order to interact. The system delivers a set of high-level services, that
can be detailed - at finer grained level - by a sequence of steps, representing
states of components, events or actions. The system can be affected by threats,
i.e., faults, errors, failures. A fault is the original cause of errors and it affects
system components. Errors are related to steps and they can be propagated from
the faulty component to other components it interacts with. Errors may cause
failures at different levels: at step level, when the service provided by the com-
ponent becomes incorrect; at component level, when the component is unable to
provide service; at service level, when the failure is perceived by external users.

The domain model includes also redundancy and maintenance concepts. The
Redundancy model (Figure 1) represents UML hw/sw redundant structures to

18 S. Bernardi et al.

increase system fault tolerance (FT). These structures are made of components,
among them FT components [12], which can play different roles.

The Maintenance model (Figure 2) concerns repairable systems and includes
concepts that are necessary to support the evaluation of system availability,
that is the maintenance actions undertaken to restore the system affected by
threats. According to [7], we distinguish repairs of system components, that
involve the participation of external agents (e.g., repairman, test equipment,
etc) and recovery of services, which do not require the intervention of the latter.

In this paper, we aim at increasing modeling and analysis capabilities of DAM
regarding redundancy and maintenance, as explained in the next Section.

3 A DAM Extension for Maintenance and Fault
Tolerance

The DAM domain models of redundancy and maintenance provide the basis
for the definition of proper extensions, i.e., stereotypes, tagged-values and OCL
constraints. In particular, the stereotypes and tagged values will be used to anno-
tate UML designs with fault tolerance and maintenance requirements/properties,
while OCL constraints are assigned to UML extensions to guarantee UML an-
notations compliant to the DAM domain concepts.

The extension of DAM domain model consists in: 1) augmenting the mainte-
nance model w.r.t. the one presented in [2] (grey classes in Figure 2 account for
the extension). Activation steps initiate maintenance actions as consequence of
component failures. An activation step defines its priority as well as a preemp-
tion policy, moreover it relates to a group of agents with the required skills to
perform the step. The activation step also relates to the failures that caused it;
2) improving the redundancy model (Figure 1), keeping its original shape and
only adding the FTlevel attribute in the redundant structure stereotype.

The stereotypes associated to the redundancy and maintenance domain mod-
els are shown in Table 1 (first column) and they corresponds to concrete classes
in Figs. 1 and 2. For reason of space, we omit stereotypes that come from classes
defined in the core domain model (e.g., component, service and step). A tag of
a stereotype (Table 1, third column) can be derived, together with its multi-
plicity, from one of the following sources in the domain model: 1) an attribute
of the corresponding class, i.e., the attribute errorDetCoverage in Adjudicator
class (Fig.1) has been mapped onto the tag DaAdjudicator::errorDetCoverage;
2) an association-end role, i.e., the substituteFor role in the association be-
tween Spare and Component classes (Fig.1) has been mapped onto the tag
DaSpare::substitutesFor. The types of the tags can be either simple types (e.g.,
the enumeration skillType assigned to the skill tag of the AgentGroup stereo-
type), MARTE-NFP types (e.g., NFP Integer), or complex dependability types.
The latter are data types derived from classes in the domain models, they are
characterized by a set of attributes corresponding to the ones of the mapped
classes. Basically, they may represent either threat characterization (e.g., the

Model-Driven Availability Evaluation of Railway Control Systems 19

Table 1. Stereotypes and tags

Stereotype Inherits / Extends Tags: type

Redundancy
DaAdjudicator DAM::DaComponent errDetCoverage: NFP Percentage[*]
DaController DAM::DaComponent none
DaRedundantStructure / UML::Package commonModeF: DaFailure[*]

commonModeH: DaHazard[*]
FTlevel: NFP Integer[*]

DaSpare DAM::DaComponent dormancyFactor: NFP Real[*]
substitutesFor: DaComponent[1..*]

DaVariant DAM::DaComponent multiplicity: NFP Integer[*]

Maintenance
DaAgentGroup / UML::Classifier skill: skillType

(e.g., Actor, Class) correctness: NFP Real[*]
agentNumber: NFP Integer[*]

DaActivationStep DAM::DaStep kind:{activation}
preemption:NFP Boolean[0..1]
cause: DaStep[1..*] = (kind=failure)
agents: DaAgentGroup[1..*]

DaReallocationStep DAM::DaStep kind: {reallocation}
map: DaComponent[1..*]
onto: DaSpare[1..*]

DaReplacementStep DAM::DaStep kind: {replacement}
replace: DaComponent[1..*]
with: DaSpare[1..*]

class Failure has been mapped onto the DaFailure complex type) or concrete
maintenance actions (e.g. the DaRepair complex type corresponds to the class
Repair).

Given a UML model of the system under analysis, the main issue - from the
software engineer point of view - is which model elements in a UML diagram
(e.g., a state in a state-machine diagram or a component in a component dia-
gram) can be stereotyped in order to specify NFPs through tagged-values. As
shown in Table 1 (second column), each stereotype may either specialize a pre-
viously defined MARTE-DAM stereotype or directly extend a UML meta-class.
Then, a given model element can be stereotyped as X if the stereotype X even-
tually extends the meta-class the former belongs to (either directly or indirectly,
through stereotype generalization). For example, all the sub-stereotypes of Da-
Component can be applied to UML elements representing system software and
hardware resources (e.g., classes, instances, components, nodes), since DaCom-
ponent specializes the MARTE Resource stereotype and the latter extends the
corresponding UML meta-classes. On the other hand, the different step stereo-
types (e.g., DaReallocation, DaReplacement, DaActivation) inherit from DaStep,
which can be applied to a wide set of behavior-related elements, such as mes-
sages in sequence diagrams, and transitions, state, trigger events, effect actions
in state-machine diagrams. Finally, the stereotypes DaRedundantStructure and
DaAgentGroup directly extend the Package and Classifier UML meta-classes,
respectively. While former can be applied to package elements, the latter can be
applied to different kind of structure-related elements, such as actors in use case
diagrams and classes in class diagrams.

20 S. Bernardi et al.

RedundantStructure

(DAM domain model::SystemCore::Core)

FTcomponent

2..*

Controller Variant AdjudicatorSpare
-dormancyFactor[*] -errorDetCoverage[*]

*

substitutesFor

-multiplicity [*]

1..*

-FTlevel[*]

comp

Component
(DAM domain model::Threats)

Impairments

(DAM domain model::Threats)
Failure

(DAM domain model::Threats)
Hazard

substitutedBy

-MTTF

*

**

commonMode

impairment

(DAM domain model::Threats)
Fault

-occurrenceRate

fault*

1..*

cause

effect

1..*

*
-resMult

Fig. 1. Redundancy domain model

Service Component

Step

 Repair Recovery

*

1..*

*

 -MTTR[*] -duration[*]
-coverageFactor[*]

maintenance

*

ReconfigurationStep

ReplacementStep

ReallocationStep
Spare

replace{ordered}

with{ordered}

map{origin=sw,ordered}

onto{origin=hw,sequence}

*

repair

agents

recovery

1..*

1..*

1..*

1..*

1..*

1..*
MaintenanceAction

-rate[*]
-distribution[*]

*

*

1..*

*

*

{(ReallocationStep.map->size()=
 ReallocationStep.onto->size()}

-ssAvail[*]

(DAM domain
model::System

Core::Core)

(DAM domain
model::System

Core::Core)

(DAM domain model::System
Core::System Redundancy)

(DAM domain model::System
Core::Core)

MaintenanceStep

ActivationStep

-priority[*]
-preemtion [0..1]

AgentGroup

-skill: SkillType
-correctness [*]
-agentsNumber

0..*

agents 1..*

1..*

ExternalAgent

FailureStep
(DAM domain

model::Threats)

cause

effect

1..*

SkillType

<<Constant>> -hw technician
<<Constant>> -sw technician

<<enumeration>>

context AgentGroup::agentsNumber
derive: AgentGroup.agents->size()

self.with->forall(s:Spare |
s.substitutesFor->includes(
self.replace->at(self.with->indexOf(s))))

Fig. 2. Maintenance domain model

4 Automated Generation of RFT Models

Automated generation of formal models from UML models has already been
studied and such technique can be considered part of the process schema de-
picted in Fig. 3. The first step is the definition of a design UML model by
system designer. At this level dependability aspects have been not considered

Model-Driven Availability Evaluation of Railway Control Systems 21

yet. The next step is constituted by the application of MARTE-DAM profile to
the UML model and the definition of dependability parameters that characterize
the system. Then a MARTE-DAM model can be automatically translated into a
formal model: this translation is conducted by means of model-to-model trans-
formations that are defined on the base of a source and a destination metamodels
(i.e. the formalizations of the languages in which source and destination models
are expressed). Generated formal models can be finally analyzed, allowing the
validation of the model or its eventual refining by parameters tuning and/or
redefinition of the architecture. The formal language should be properly chosen
according to the specific dependability aspect to be analyzed.

Since we are focusing on maintenance, source formalism is constituted by
MARTE-DAM (containing the extension introduced in the previous Section)
and destination formalism is the Repairable Fault Tree (RFT) that was intro-
duced to ease the modeler’s approach to complex repair policy modeling and
evaluation [4]. The RFT formalism [4] integrates GSPNs and Fault Trees: re-
pair policies are represented by nodes - called Repair Boxes - which encapsulate
GSPN nets, and a Fault Tree describes the faults that may happen and their
contribution to the occurrence of a failure. The Repair Box connected to a Fault
Tree event models a repair action that can be performed on the related system
sub-component. RFT metamodel is given in Figure 4 while the DAM meta-model
has been described in Section 2 and Section 3.

Analysis

Designer

profile
applicationUML

model

Formal
model

MARTE-DAM
model

modeling

model
transformation

re-design &
tuning

Fig. 3. A reference model-driven process

Event

Gate

Basic Event

Middle Event

OR

KooN

Top Event

AND

Repair Box

arc

arc

arc

Fig. 4. RFT meta-model

Defining complex model transformations from scratch can be a hard task,
so transformations composition and reuse are being widely investigated. In this
paper we apply module superimposition, a widespread mechanism for coarse-
grain composition of transformations which shifts the focus of reuse from rule
to set of rules (transformation modules). In practice, superimposition allows for
defining a new transformation by the union of the rules set of existing ones.
Superimposition is well supported by the most important transformation lan-
guages (including ATL). Compositional approaches are enhanced by inheritance
relationships between languages. In particular, the RFT language is an extension

22 S. Bernardi et al.

of FTs obtained by adding the Repair Box element: the hierarchical nature of
this formalism and its implications on building model transformations by com-
position has been already studied in [13]. On the other hand, MARTE-DAM
has a decoupled structure due to the dependency relations among packages, as
depicted in Figure 5. Hence, M2M transformations from MARTE-DAM to RFT
may benefit from a divide-et-impera approach. According to the above consid-
erations, the two transformations described in Figure 5 have been defined and
implemented in ATL.

F T

R F T

M A R T E - D A M F T & R F T

d a m 2 f t

d a m 2 r f t
T h r e a t s

M a i n t e n a n c e

C o r e

S y s t e m

R e d u n d a n c y

Fig. 5. DAM-to-RFT transformation schema

Starting from a DAM specification, dam2ft generates the Fault Tree from the
System and Threats domain sub-models, and dam2rft adds the RBs and related
arcs from the Maintenance domain sub-model.

The transformation implemented by dam2ft works as follows: the Top Event
is associated to the failure of the system which provides the service (specified
by the use case diagram). From the component diagram, events and gates are
created by recursively applying the following rules:

1. DaComponent is translated into: a) one Middle Event or b) one Middle Event
and as many Basic Events as specified by the resMult value (i.e., resource
multiplicity) if the fault tagged value is not null;

2. DaSpare is translated into as many Basic Events as specified by resMult
value if the fault tagged value is not null;

3. An input gate is generated for each Middle Event: an OR gate if DaCompo-
nent does not belong to a DaRedundantStructure, an AND gate if DaCom-
ponent belongs to a DaRedundantStructure with FTlevel=1, while a KooN
gate is generated if FTlevel> 1;

4. An input arc is generated to specify an input Middle Event of gate if a
sub-component relationship exists between DaComponent associated to the
Middle Event and the one associated to the output Middle Event of the gate;

5. An arc is always generated from a Basic Event to a gate whose output
Middle Event comes from DaComponent (point 1.b)) or from DaComponent
substituted by DaSpare (point 2).

Model-Driven Availability Evaluation of Railway Control Systems 23

The transformation implemented by dam2rft works under the hypothesis
that the DAM specification includes a model of the repairing process of a sub-
component and information about its steps (this can be expressed by means
of a state chart diagram, an activity diagram, or a sequence diagram). The
existence of a repair model associated to a DaComponent is annotated by a
DaActivationStep stereotyped element. First a RB is generated for each replica
of DaComponent and of its DaSpare, if any. The RB is filled with information
about the MTTR and the resources (the repairmen) needed to accomplish the
activity. These information are retrieved by the diagram used to describe the
repair dynamics and by navigating the component diagram.

Finally, each RB is connected to the Fault Tree generated by dam2ft through
repair arcs: 1) between RB and its triggering event, i.e. the Middle Event or Basic
Event from which the RB has been generated (the sub-system to be repaired); 2)
between RB and all the Basic Events that are present in the sub-tree whose root
is the RB triggering event. Once RFT model has been generated, a Generalized
Stochastic Petri Nets model is derived by applying another M2M transformation
in order to allow easy analysis of this formal model. The description of this last
transformation is reported in [13].

5 The Radio Block Centre

The Radio Block Centre (RBC) is the vital core of the European Railway Traffic
Management System / European Train Control System (ERTMS/ETCS) which
is the reference standard of the new European railway signalling and control
systems [6] ensuring the safe running of trains on different European railway
networks. RBC is a computing system which controls the movements of the set
of trains traveling across the track area under its supervision. At this aim, RBC
elaborates messages to be sent to the trains on basis of information received
from external trackside systems and on basis of information exchanged with on-
board sub-systems. The unavailability of a RBC is critical, as there is no way
for the signalling system to work without its contribution. In case of a RBC
failure, all the trains under its supervision are compelled to brake and proceed
in a staff responsible mode. This would lead to the most critical among the
ERTMS/ETCS safe failures, that is the so called Immobilising Failure1. The
ERMTS/ETCS standard requires compliance with the RAM requirements [16]
whose fulfillment has to be properly demonstrated. Specifically, the quantifiable
contribution of RBC system to operational unavailability must be not more
than 10−6 (see [16], §2.3.3). The standards do not impose constraints on the
system architecture. Hence, different implementations are possible. A reference
architecture of RBC must exhibit a high level of redundancy to improve the fault
tolerance of the system. In this paper the system consists of three commercial
CPU-RAM cards and a redundant FPGA based voter in a TMR (Triple Modular
Redundancy) configuration. The GSM-R and WAN communication sub-systems
1 An Immobilising Failure occurs when at least two trains are no more under

ERTMS/ETCS supervision [16].

24 S. Bernardi et al.

are also chosen as COTS (Commercial Off The Shelf). The RBC configuration
in figure is completed by three commercial power supplies and a redundant
standard backbone (used as system BUS).

Maintenance policies are a fundamental aspect of RBC life-cycle for their
impact on system availability. ERTMS/ETCS gives no restrictive requirements
for the maintainability parameters and this leaves much freedom in designing
repair policies. Of course, it must be proved that the system still meet the
availability requirement. The rest of this Section applies introduced modeling
and transformational approach to the RBC case study. We limit our study to
the hardware contribution to availability: as MARTE-DAM can be applied on
both hw and sw UML models, we could apply this process on software systems.

5.1 DAM Model

The DAM specification of RBC used to generate the RFT consists of an use case
diagram, a component diagram and a set of state chart diagrams. The diagrams
are annotated with the DAM extensions introduced in Section 3.

The use case diagram in Figure 6 represents the main functionality of the
RBC: the train outdistancing. The use case is stereotyped DaService to explicitly
indicate (by the usedResources tagged value) which is the component in charge of
providing the service, hence identifying the source of the failures that may cause
a service interruption. The availability requirement is captured by the ssAvail
tagged-value.

The actor stereotyped DaAgentGroup represents the set of hardware tech-
nicians (skillType tagged-value) who participate in the repair process; here two
technicians (agentsNumber) are assumed to accomplish repair activities correctly
(correctness).

Technician Train

Train Outdistancing

<<DaService>>

ssAvail = (value=99.9999, statQ= min,

source=req);

usedResources = (RBC);

<<DaAgentGroup>>

skillType = hwTechnician;

correctness = (value = 1.0);

agentsNumber = (value = 2);

restoreService

Fig. 6. Train Outdistancing Use Case

The component diagram in Figure 7 provides a high level description of the
RBC components whose failures affect the system dependability. The main
hardware components of the RBC system are stereotyped DaComponent : they
can be either simple components (e.g., MainBus) or components with an internal
structure (e.g., TMR). Each redundant sub-system is represented by a package
stereotyped DaRedundantStructure (e.g., SystemBus) which includes several in-
stances of the same hardware component: the DaComponents are the active

Model-Driven Availability Evaluation of Railway Control Systems 25

<<DaRedundantStructure>>
CPU

<<DaRedundantStructure>>
Voter

<<DaRedundantStructure>>
Network

<<DaRedundantStructure>>
Radio

<<DaRedundantStructure>>
SystemBus

<<DaSpare>>
spareBus

<<DaComponent>>
mainBus

<<DaComponent>>
RBC

<<DaComponent>>
mainPS

<<DaSpare>>
sparePS

<<DaComponent>>
mainRadio

<<DaSpare>>
spareRadio

<<DaComponent>>
mainNetwork

<<DaSpare>>
spareNetwork

<<DaComponent>>
TMR

<<DaSpare>>
spareFPGA

<<DaComponent>>
mainFPGA

<<DaComponent>>
CpuCard

<<DaRedundantStructure>>
PowerSupply

Fig. 7. RBC Component Diagram

replicas (e.g., mainBus), whereas the other components are stereotyped DaSpare
(e.g., spareBus).

A detailed view of the SystemBus redundant sub-system is shown in Figure 8,
where several tagged-values associated to the stereotyped elements have been
specified:

– The DaRedundantStructure requires at least one operative component, ei-
ther main or spare one, to guarantee the SystemBus functionality (FTlevel
tagged-value);

– The SystemBus includes one main DaComponent bus instance and one DaS-
pare bus instance (resMult tagged-values);

– The DaSpare bus substitutes for the main bus, in case of failure of the latter
(substituteFor tagged-value);

– Both the main and the spare buses are characterized by fault occurrence
rate (fault.occurrenceRate) and Mean Time To Repair (MTTR) values;

Finally, the RBC specification includes several State Chart diagrams (SC), one
for each repairable component. The SC models the dynamics of the repair process
of a specific component. In the RBC system, a diagnostic mechanism is present
for three components (specifically, RBC, mainPS and CpuCard); when one of the
latter fails, a repair process may start. The three SCs have a common structure,
Figure 9 shows the SC of the CpuCard. In particular, the transitions are stereo-
typed as DAM steps. The DaStep transition, triggered by the CPU fail event,
models the failure occurrence step (kind tagged-value), and leads the component
from the running to the failed state. The DaActivationStep transition occurs
when the activation of a repair action becomes enabled; it specifies the number
of agents needed to perform the repair (agentsNumber tagged-value) as well as
the required repair skills (agentSkill). The DaReplacementStep transition models
the step of replacing the failed component, then restoring the service.

26 S. Bernardi et al.

spareBusmainBus

<<DaSpare>>

substitutesFor=(mainBus);

resMult=(value=1);

fault=(occurrenceRate=(value=(0.000004444,ft_hr)));

repair=(MTTR= (value= (0.5,repair_hr)));<<DaRedundantStructure>>

FTlevel=(value =1);

<<DaComponent>>

resMult=(value=1);

repair=(MTTR=(value=(0.5,repair_hr)));

fault=(occurrenceRate=(value=(0.000004444,ft_hr)));

SystemBus

Fig. 8. System Bus

running

failed

repairing

<<DaActivationStep>>

cause=(mainCPU);

agentsNumber=(value=2);

agentsSkill=hwTech;

<<DaReplacementStep>>

replace=(mainCPU)

start

repair activity
ends

component fails

repair resources
are available

<<DaStep>>

kind=failure

Fig. 9. State Chart Diagram

5.2 Generation of the RFT Model

The process by which transformations generate the RFT model is depicted in
Figure 10 where only a part of the resulting RFT is shown, specifically the
sub-tree obtained by translating the PowerSupply package.

First dam2ft rules are applied to the source model: they are represented by
the dotted lines labeled from 1 to 4. Then the dam2rft transformation is applied
(rules labeled 5 and 6). Rule 1 is applied to the DaComponent stereotyped ele-
ments of PowerSupply in the RBC component diagram and generates a Middle
Event for each of them, hence in this case Rule 1 generates the PowerSupply FT
event. Rule 2 generates the AND input gate because FTlevel=1, as described
in Section 4. Rules 3 generates three Basic Events, where three is the number
of replicas of SparePS (2) plus the number of mainPS (1). From the use case
diagram, Rules 4 identifies the DaComponent representing the system to an-
alyze (DaService) and generates gate-to-event arcs by recursively looking for
sub-components relations.

Rules 5 is triggered by the DaActivationStep transitions present in the state
charts, it generates one RB for the RBC component and three RBs from the
PowerSupply package. These RBs are filled with relevant data (MTTR, necessary
resources) by extracting maintenance related information from the state chart
diagram and the component diagram. Rule 6 links RBs and events by recursive
exploration of the sub-tree.

Model-Driven Availability Evaluation of Railway Control Systems 27

PowerSupply

mainPS
sparePS1

RBC

RBCrepair

sparePS1
repair

mainPS
repair

1

4

5
sparePS2

sparePS2
repair

2

3

5

6

Fig. 10. The RBC Repairable Fault Tree generation

Once the RFT model has been generated it can be solved to perform the
availability analysis and efficiently evaluate the probability of an immobilizing
failure in presence of different repair policies. The solution process of RFT models
is described in [4], the results of the availability analysis of RBC are reported in
in [10], where an hand-made RFT is proposed.

6 Conclusions and Future Work

In this paper, we have presented an enhancement of the MARTE-DAM profile
in order to improve the capability of this profile to model complex repairable
systems. We have also proposed an approach integrating DAM models and Re-
pairable Fault Trees by means of M2M transformations. The suitability of the
profile extension and the proposed transformations has been proved on the real
case study of the Radio Block Centre. Next steps in this activity will include the
development of meta-modeling, modeling and transformational techniques able
to fully generate complex repair policies.

References

1. SAE-AS5506/1 Architecture Analysis and Design Language Annex (AADL): Vol.1,
annex E:Error Model, International Society of Automotive Engineers (2006)

2. Bernardi, S., Merseguer, J., Petriu, D.C.: A Dependability Profile within MARTE.
Journal of Software and Systems Modeling (2009)

3. Bondavalli, A., Latella, D., Dal Cin, M., Pataricza, A.: High-Level Integrated De-
sign Environment for Dependability (HIDE). In: Proceedings of the Fifth Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems, WORDS
1999, pp. 87–92. IEEE Computer Society, Washington, DC, USA (1999)

28 S. Bernardi et al.

4. Codetta Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.: Repairable fault
tree for the automatic evaluation of repair policies. In: Proceedings of the 2004
International Conference on Dependable Systems and Networks, pp. 659–668. IEEE
Computer Society, Washington, DC, USA (2004)

5. D’Ambrogio, A., Iazeolla, G., Mirandola, R.: A method for the prediction of soft-
ware reliability. In: Proc. of the 6-th IASTED Software Engineering and Applica-
tions Conference, SEA 2002 (2002)

6. ERTMS/ETCS System Requirements Specification (SRS), SUBSET-026, Issue
3.0.0 (2008)

7. Avizienis, A., et al.: Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. on Dependable and Secure Computing 1(1), 11–33 (2004)

8. Cancila, D., et al.: SOPHIA: a modeling language for model-based safety engineer-
ing. In: 2nd International Workshop on Model Based Architecting and Construc-
tion of Embedded Systems, Denver, Colorado, USA, October 6, pp. 11–26. CEUR
(2009)

9. Bozzano, M., et al.: Safety, dependability and performance analysis of extended
AADL models. The Computer Journal 54(5), 754–775 (2011)

10. Flammini, F., Mazzocca, N., Iacono, M., Marrone, S.: Using repairable fault trees
for the evaluation of design choices for critical repairable systems. In: IEEE Inter-
national Symposium on High-Assurance Systems Engineering, pp. 163–172 (2005)

11. Jouault, F., Kurtev, I.: On the architectural alignment of ATL and QVT. In:
Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006,
pp. 1188–1195. ACM, New York (2006)

12. Lyu, M.R.: Software Fault Tolerance. John Wiley & Sons, Ltd., Chichester (1995)
13. Marrone, S., Papa, C., Vittorini, V.: Multiformalism and transformation inheri-

tance for dependability analysis of critical systems. In: Méry, D., Merz, S. (eds.)
IFM 2010. LNCS, vol. 6396, pp. 215–228. Springer, Heidelberg (2010)

14. MOF Query/Views/Transformations. Final Adopted Spec., ptc/05-11-01 (2005)
15. Pai, G.J., Dugan, J.B.: Automatic Synthesis of Dynamic Fault Trees from UML

System Models. In: Proceedings of the 13th International Symposium on Software
Reliability Engineering, pp. 243–254. IEEE CS, Washington, DC, USA (2002)

16. ERTMS/ETCS RAMS Requirements Specification. Ref. 96s1266 (1998)
17. Rugina, A.-E., Kanoun, K., Kaaniche, M.: A system dependability modeling frame-

work using AADL and GSPNs. In: de Lemos, R., Gacek, C., Romanovsky, A.
(eds.) Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 14–38. Springer,
Heidelberg (2007)

18. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Softw. 20, 42–45 (2003)

19. Systems Modeling Language. SySML, http://www.sysml.org
20. UML profile for Modeling and Analysis of Real-Time and Embedded Systems

(MARTE), Version 1.0, OMG document formal/2009-11-02 (November 2009)

http://www.sysml.org

Vertical Safety Interfaces – Improving the

Efficiency of Modular Certification�

Bastian Zimmer1, Susanne Bürklen2, Michael Knoop2,
Jens Höfflinger2, and Mario Trapp1

1 Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

2 Robert Bosch GmbH, Postfach 30 02 40, 70442 Stuttgart, Germany

Abstract. Modular certification is a technique for transferring the mod-
ularity of an embedded system’s architecture to the traditionally mono-
lithic craft of safety engineering. Particularly when applying integrated
architectures like AUTOSAR or IMA, modular certification allows the
construction of modular safety cases, which ensures the flexible han-
dling of platforms and applications. However, the task of integrating
these safety cases is still a manual and expensive endeavor, lowering
the intended flexibility of an integrated architecture. We propose a tool-
supported semi-automatic integration method that preserves the archi-
tecture’s flexibility and helps to lower the integration costs. Our method
is based on a language capable of specifying the conditions for a valid
integration of a platform and of an application using a contract-based ap-
proach to model safety case interfaces. This paper presents the language
in detail.

1 Introduction

Over the course of the last ten years integrated architectures like IMA and AU-
TOSAR have been gaining ground. An integrated architecture considers gen-
eral purpose execution platforms and function specific applications as modular
pieces of an embedded system. This facilitates extending and changing the sys-
tem and consequently increases the system’s flexibility. However, when develop-
ing safety-critical systems, the monolithic certification approach of most safety
standards counteracts this flexibility, because changes usually lead to expensive
re-certifications.

Modular certification enables pre-certifying components independently of their
later usage scenario[19]. This allows the system integrator to exchange com-
ponents along with their modular certificates, reducing the certification costs
through reuse. In order to modularly reason about the safety of his product, the
developer of a component typically has to specify demands on the behaviour
of other components. As a result, the system integrator has to check if these

� This work was funded by the German Federal Ministry of Education and Research
(BMBF), grant SPES2020, O1IS08045I.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 29–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

30 B. Zimmer et al.

demands are met before he is able to use the certificates. This certificate com-
position can become a costly job, especially if the components are developed
by different organizations, using diverse methods and vocabulary to define the
certificate dependencies. Since integration costs are incurred at every change of
the system, they pose a threat to flexibility. To lower these costs, we propose a
semi-automated integration method.

As the objective of the integration is to check whether all demands are ful-
filled, any kind of automation requires a formalized description of the depen-
dencies specified at the certificate interface. A formal description covering all
possible interfaces would have to be very expressive, since a large variety of
safety-related dependencies can exist among the modules of a system. Still, fea-
sibility seems to be much better by narrowing the objectives and seeking to cover
only the interface between an application and its platform, from now on referred
to as the vertical interface. Compared to the horizontal interface, covering the
dependencies between applications, a vertical interface is much more regular.
In case of AUTOSAR[2] and the ARINC 653[3] Integrated Modular Avionics
(IMA) standard, the services of a platform are even standardized. This provides
reason to believe that the dependencies at the interface of the certificates can
be standardized to a large extent as well.

This paper presents the Vertical Safety Interface (VerSaI) language. The Ver-
SaI language is a meta-model based formalization of the typical dependencies
between the certificates of an application and a platform. The language uses the
notion of contracts, comprised of demands and guarantees.

This paper is structured as follows. In the second chapter we give an overview
of the related work. The third chapter is dedicated to the introduction of our
running example. The example is used to illustrate our approach described in
chapter four. Chapter five contains an evaluation of the applicability of the ap-
proach from an industrial viewpoint. We summarize the paper with a conclusion
and a description of possible future work.

2 Related Work

The notion of contracts is widely used in computer science, to model the depen-
dencies between interacting elements of a system. It is, for example, used in for-
mal verification by Jones[13], and in the area of Object Oriented Programming by
Meyer[16]. Comparable contract-based approaches have also been used in modu-
lar certification, to capture the dependencies between the certificates of system
components, for example by Rushby[19]. His approach extends assume-guarantee
reasoning known from verification so it can capture failure behavior and operates
on the horizontal level, describing dependencies between applications.

Motivated by preserving the flexibility of IMA systems, Bate and Kelly[5]
propose the use of modular safety cases for the certification of modular systems.
The approach introduces a safety case structure that aligns with the architec-
ture of the system, in order to reduce rework in case of change. The safety case

Vertical Safety Interfaces – Improving the Efficiency of Modular Certification 31

architecture contains cases for platforms and application and describes vertical as
well as horizontal dependencies. The dependencies between modular safety cases
are expressed by a contract-based method[11] using relies and guarantees and
is based on the Goal Structuring Notation (GSN)[14]. A method for analysing
an IMA system in order to establish suitable contracts is provided by Conmy
et. al.[7].

Our work is based on the afore-mentioned approaches and pursues the idea
of reducing re-certification costs further, by providing a formalized language
to specify contracts between an application and a platform and therewith, lay
the ground for a future automation. One cornerstone of our approach is the
integration of the language into the design models of the system. This follows an
apparent trend in the are of modular safety analyses, regarding approaches like
CFTs[10], Hip-HOPS[17], ConSerts[20] or SaveCCM[12]. But also in the area
of modular certification there have been examinations regarding the utilization
of model-driven techniques. Conmy and Paige[8] concluded, for example, that
the use of the Model Driven Architecture (MDA) has the potential to facilitate
modular certification.

There has also been research about the tightly coupled use of contracts and
design models, like the development of the HRC framework[9] or the work done
in [4]. These approaches have a focus on supporting the design and development
of safety-critical systems, but do not directly touch the subject of certification.

3 Running Example

The example under consideration is an excerpt of an automotive integrated sys-
tem, comprising one application and one platform. The application provides the
simplified functionality of a fictive cruise control (CrCtl). The task of a cruise
control is to control the car’s velocity to match it to a desired velocity, pre-
viously set by the driver. The notation used to illustrate the application is a
slightly adapted version of the notation used in AUTOSAR as shown in fig-
ure 1. The application consists of four software-components called ui sensor,
brakePedal sensor, crctl main and crctl monitor.

The job of ui sensor and brakePedal sensor is to read and process raw sen-
sor data, and to provide the inputs as utilizable communication signals. The
component crctl main uses these signals together with signals provided by other
applications (like the car’s current velocity (vCur)) to calculate the desired ac-
celeration (aSet).

As a starting point to reason about the safety of the system we considered
two typical safety goals:

Safety Goal 1. After an operation of the brakes, the CrCtl must deactivate
within 300ms (ASIL x)

Safety Goal 2. The demanded acceleration of the CrCtl must never lead to a
destabilization of the vehicle (ASIL y)

32 B. Zimmer et al.

To achieve these safety goals, we specified the following exemplary safety concept:
For the fulfillment of the second goal, the CrCtl needs the aid of the car’s elec-
tronic stability control (ESC). Under the assumption that the ESC is preventing
the destabilization of the car, both safety goals can be achieved by transition-
ing into the application’s safe state, the inactive state. This safety strategy is
jointly implemented by the software components crctl main and crctl monitor.
If the former notices the activation (escActive), or the unavailability (escAvail-
able) of the ESC, or an operation of the brakes (braPedStatus) it will deactivate
the CrCtl (crctlActive). The same functionality is redundantly performed by the
crctl monitor, using the signal crctlValid to indicate the status of the CrCtl. Any
following application is only allowed to use the demanded acceleration (aSet) if
crctlActive and crctlValid indicate that the CrCtl is active.

resume

set

off

ui_sensor

IO
_r

es
um

e

IO
_s

et

IO
_o

ff

main_cycle

brakePedal
_sensor

main_cycle

braPed
Status

IO
_b

ra
P

ed

crctl_main
resume

set

off

braPed
Status

crctl_monitor
braPedStatus

escAvailable
crctlValid

5ms_control_cycle

escAvailable

escActive

vCur
N

V
_c

ha
r

aSet

crctlActive

escActive

main_cycle

Fig. 1. A model of the application under consideration

Platforms, as they are referred to in this paper, consist of software and hard-
ware, providing general purpose services that enable the execution of an applica-
tion. I/O-wise, the exemplary platform has three channels to read digital signals
(DI Channel x), two channels to do analog digital conversion (ADC Channel x)
and two digital output channels. The platform can be attached to a CAN bus
(CAN ComChannel) and also supports communication between application soft-
ware components on the ECU (IntraECU ComChannel). Furthermore, the plat-
form has the capabilities to guarantee a memory partitioning and offers three
partitions, one CPU and non-volatile memory.

4 The Interface Language

Regarding the example introduced in section 3, the reader may observe that an
application often cannot implement its safety concept without the aid of other

Vertical Safety Interfaces – Improving the Efficiency of Modular Certification 33

parts of the system. Therefore, the application developer needs to specify the de-
pendencies on these parts, before being able to modularly certify the application.
As shown in section 2, it is a common approach to capture these dependencies
in contracts. These contracts again can have a horizontal/functional orientation,
like the demand to inform the CrCtl about the availability of the ESC. Never-
theless, the focus of the VerSaI language lies on the vertical/technical interface.

When the safety concept of the application becomes more detailed, and thus
more technical, certain measures can be implemented more efficiently or per-
haps exclusively by the platform. To capture these vertical dependencies in the
certificate, the application developer must specify demands on the platform. In
the context of an integrated architecture, however, the application is developed
without knowing the platform. Therefore, the demands must be specified refer-
ring only to elements of an application, for example, referencing to a signal or
an application software component. Regarding our example, a typical require-
ment could demand the detection of corruptions of the communication signal
escAvailable.

The VerSaI language allows the application developer to specify these de-
mands by offering a fixed set of demand classes that are typically required by
an application. These demand classes are contained in the application language
package shown in figure 2. As also indicated in the figure, the model of the appli-
cation language references to the model of the application’s design specification.
This allows the application developer to attach the specified demands formally
to the model elements they refer to. This integration on model-level enables
certain consistency checks and the evaluation of completeness indicators, like,
for example, to check the existence of the usual demands for all signals of a
safety-critical application component.

Design Model

VerSaI language Application certificate

Platform certificate

All 3-bit failures of
messages received via

CAN_ComChannel will be
detected by the platformA

S
IL

 x

A corruption of the signal
escAvailable shall be

detected by the platformA
S

IL
 x

Platform
Language

Common
Language

Application
Language

Application
Model

Allocation
Model

Platform
Model

referenceTo

referenceTo

matches?

Fig. 2. An overview of the VerSaI language

34 B. Zimmer et al.

The platform developer, on the other hand, needs to specify the platform’s
guarantees without knowing the application. Consequently, the respective guar-
antees have to be more technical than the application demands and must refer
only to elements of the platform. Again making reference to our example, the
platform might give the guarantee to detect all 3-bit failures of messages received
via the CAN ComChannel. Analogously to the content and the structure of the
application language, the platform language package contains a set of guaran-
tee classes which are typically provided by a platform, and is integrated into
the design model of the platform. This allows to attach platform guarantees to
the model elements of a platform in the same way the application demands are
attached to the model elements of an application.

After the developers of applications and platforms deliver their products, each
bundled with a modular certificate, the integrator of the system uses the allo-
cation model to specify the deployment of the application elements to the de-
vices and services of the platforms. As the interface requirements are attached
to the design elements, the allocation implicitly associates the application de-
mands with the relevant platform guarantees as well. If, for instance, the signal
escAvailable is allocated to the channel CAN ComChannel it is clear that the
demands of this specific signal have to be fulfilled by the guarantees provided
for this specific communication channel.

In order to help answering the question whether the identified guarantees
suffice to implement a specific demand, the VerSaI approach utilizes a strategy
repository. The strategies in the repository describe established approaches on
how to fulfill a certain type of demand and how to close the gap between the
application level demand and the available, more technical platform guarantees.
A strategy is always linked with the demand type it addresses, which allows the
VerSaI language to present the strategy to the integrator when it is potentially
applicable.

The following subsections contain a more detailed description of the language
we developed. The structure of the VerSaI language reflects the different classes
of dependencies identified from analysis of common safety standards and plat-
form specifications like AUTOSAR[2], ARINC 653[3], and non standardized gen-
eral purpose platforms like the IFM CR7201[1]. Subsection 4.2 describes the
identified application-specific demands, whereas the platform-specific language
elements are specified in 4.3. The common language package contains language
aspects used in both module-specific language packages and is described in 4.1.

Please remark that although we utilize design models, they are not considered
to be part of the VerSaI language. We intend to use existing notations, like we
used the AUTOSAR meta-model to conduct the example in this paper.

4.1 Common Language

This subsection describes the language elements used in both, the application-
and the platform-specific part of the language. These elements are contained in
the common language package. Furthermore, this subsection illustrates the basic
structure of the language.

Vertical Safety Interfaces – Improving the Efficiency of Modular Certification 35

Besides the dissection of the language in the different packages, the structure
of the language can be described as a hierarchical classification of interface re-
quirements, with a limited number of instantiable elements in the leaves of the
hierarchy. The top-level classification, which differentiates guarantees and de-
mands, has already been introduced. The next level of the classification contains
several application and platform-specific demand and guarantee classes and are
described in subsection 4.2 and 4.3.

To tailor a requirement class during instantiation, each class has certain quan-
titative and qualitative parameters. One mandatory qualitative parameter is the
criticality level1 of a requirement, classifying the risks caused by not meeting the
requirement. Certain requirements also need quantification. If, for example, the
CrCtl demands the detection of a delay of the signal escAvailable, it needs to
specify the tolerable delay in ms.

Exemplary applications show that the available requirement classes, together
with the notion of parameters, are able to cover a high percentage of the nec-
essary vertical dependencies. We are yet aware that specific domains or specific
applications may require special interface requirements that are currently not
covered by the language. For that reason, the VerSaI language contains the no-
tion of custom requirements. A custom requirement basically allows the developer
to insert a requirement into the interface using natural language. Of course, those
requirements do not have the benefits of the formalized requirements and can, for
example, not be linked with strategies in the strategy repository. If the developer
of an application or platform realizes that there are recurring custom demands,
there is the possibility to extend the language. When inserting a new require-
ment into the classification, the requirement inherits all the characteristics of its
super-classes, reducing the required modeling effort.

Up to this point, we have been regarding interface requirements as individ-
ual and isolated language elements. To increase the expressiveness, the Ver-
SaI language allows aggregating multiple requirements to requirement groups.
This language aspect is used for two reasons. First, it allows the flexible com-
bination of single demands or guarantees to form complex language elements.
The demand to detect a certain failure can, for example, be combined with ei-
ther the demand to indicate the failure or to react to the failure. Furthermore,
requirement groups allow the combination of demands and guarantees, to ex-
press that certain guarantees can only be provided after the demand has been
fulfilled.

Finally, every interface requirement class in the meta-model has a representa-
tion in natural language. This allows the user to transform an interface specifi-
cation into a human readable documentation, which is, for instance, needed for
a final safety assessment. Such a representation is a concatenation of static and
variable strings, where the variable parts enable capturing the variation points
of a requirement class, like parameters or references to design model elements.
Natural language representations are modeled using the Extended BackusNaur

1 Specifying criticality levels is a concept used by several standards like DAL in DO-
178B, SIL in IEC 61508 or ASIL in ISO 26262.

36 B. Zimmer et al.

Form (EBNF). Terminal symbols are denoted with quotation marks. The fol-
lowing shows an example before and after the final production:

Abstract natural representation = "If a delay of the signal",
signal, "longer than", delay, "has been detected, the platform
shall indicate the failure within", reaction_time, "(",
criticality_level, ")"

Instantiated natural representation = "If a delay of the signal
escAvailable longer than 50ms has been detected, the platform
shall indicate the failure within 300ms (ASIL x)"

4.2 Application Language

This subsection presents the different demand classes the application language
comprises. To identify the classes needed, we classified the different roles a plat-
form can play in the safety concept of an application, and derived demand classes
for each of these roles. From the viewpoint of an application, the platform can
act as a provider of high integrity platform services(demand no.1), a monitor
of the application’s behaviour(no. 2), a failure handler(no.3 and 4), a provider
of resource protection(no. 5) and an ensurer of independence concepts(no. 6).
These roles result in the following demand classes which are successively de-
scribed hereafter.

1. Platform service demands
2. Application monitor demands
3. Simple reaction demands
4. Complex reaction demands
5. Resource protection demands
6. Independence demands

The platform needs to provide services to the application with a high integrity.
Because of this, platform service demands allow specifying requirements to detect
or avoid certain failure modes of platform services that could have safety-critical
effects on the application. The approach taken to identify all relevant failure
modes is comparable to the work done by Conmy[6]. First, we identified the
core platform services needed by the applications, and then we used the guide
words described in [15] to derive the relevant failure modes. Figure 3 shows the
representation of platform service demands in the meta-model.

You can see that the model allows choosing the demand type (detection or
avoidance) and the adressed failure mode, when instantiating a platform service
demand. The meta-model contains a hierarchical representation of the identified
failure modes on application level. The first level of the hirarchy differentiates
between the failure-modes of the different platform services. Each failure mode of
the service classes can be related to an element of the application design model,
as exemplarily shown for the ComFailure class (relatedSignal). The next level

Vertical Safety Interfaces – Improving the Efficiency of Modular Certification 37

SequenceFailureSignalCorruption

MemFailureIOFailureCOMFailure

FailureMode

FailureAvoidanceFailureDetection

DemandType

PlatformServiceDemand

1
related
Signal

maxDelay

SignalLoss DelayFailure

COMSignal
Package: ApplicationModel

Time
Package: CommonLanguage
+ value : int

Fig. 3. Meta-Model Extract Showing Platform Service Demands

of the hierarchy shows the instantiable communication failure-modes and the
concept of parameters (maxDelay) on the example of the DelayFailure.

Due to space restrictions, the following language elements will be described
using the more concise EBNF production rules of the respective natural language
representation. The top-level production rule for a platform service demands is
described as follows:

platform service demand = failure_mode, "shall be", "detected" |
"avoided", "by the platform"

It is a common strategy to use the platform as a monitor of the application, be-
cause the platform provides a certain degree of independence. Those monitoring
mechanisms can be implemented in software or hardware, and allow observing
the applications temporal behaviour (e.g. watchdogs) and, to a lesser extend,
its functional behaviour (e.g. sequence monitor). To capure this aspect, the Ver-
SaI language contains application monitor demands. Since the general purpose
platform does not have the knowledge to differentiate between correct and incor-
rect application behavior, the application typically has to parameterize standard
mechanisms provided by the platform. The description of an application monitor
demand is shown below:

application monitor demand = deviation, "shall be detected by the
platform"

To handle failures, the platform can execute several reactions that an appli-
cation cannot perform. If, for example, an application component detects that
another component is behaving erroneously, the application that is aware of the
failure can ask the platform to shut it down. These requests are covered using
reaction demands. Furthermore, some platforms can be configured to react on
failures ”automatically”. It especially makes sense not to leave failure handling

38 B. Zimmer et al.

to the application if the detected failure poses the risk that the application is
not working properly anymore. Complex reaction demands basically allow the
application to demand a specific reaction, subsequent to a detection of a failure
or a deviation in application behavior. Because it is usually critical to indicate
or react to a failure within a given time interval, the demands described allow
specifying a failure-reaction-time.

simple reaction demand = "If demanded, the platform shall",
reaction, "within", reaction_time

complex reaction demand = "If", failure_mode | reaction, "has been
detected, the platform shall", reaction, "within", reaction_time

A specific thread of integrated architectures stem from shared resources. Even
applications that have no functional relationship can interfere with each other
via resources used by both parties. Typical interferences are excessive use of
computational resources or the corruption of another application’s memory. Be-
cause of this risk, most safety standards demand either that applications with
different criticality are not allowed to execute on the same platform or that
they must be protected from each other. Resource protection demands enable
the application developer to demand freedom from interference between any of
the application’s software components and all other software components on the
same platform that have a lower criticality. These demands are defined using the
following language pattern:

resource protection demand = application_sw_component, "must be
protected from interference from other application software
components with lower criticality"

Finally, we have to consider demands to enforce an application’s independence
concept. An application may contain functions which are redundantly developed
to mitigate the effect of failures in single components. This strategy is only ef-
fective if the redundant functions fail independently, which means they have
neither random nor systematic common-cause failures. As a shared resource is
an obvious threat to this independence, an application developer can use inde-
pendence demands to demand the platform to enforce the application’s safety
concept. We differentiate between demands for the independent execution of two
application software components, typically fulfilled by deploying them to differ-
ent controllers, and the demand of independence between incoming or outgoing
signals.

independence demand = "Independence between",
(application_sw_component, "and", application_sw_component)
| (IO_signal, "and", IO_signal) | (COM_signal, "and",
COM_signal), "must be preserved by the platform"

Vertical Safety Interfaces – Improving the Efficiency of Modular Certification 39

4.3 Platform Language

In order to complement the application language, the platform language needs
to cover as many guarantees as possible, which a platform can give to support
an application’s safety concept. Since we regard general purpose platforms, no
platform can make application specific guarantees. This means that platform
guarantees cannot ensure that specific signals are not corrupted or that a specific
runnable is scheduled in time.

However, general purpose platforms typically implement services that are con-
figurable. A configurable service can be adapted by the integrator in order to
fit it to the specific demands of the actual application. Take, for instance, a
watchdog service that has been configured to raise an alarm if a specific appli-
cation has not shown its activity within a specific time window. The presence of
configurable services has two consequences for our language. First, a platform
guarantee can make references to classes of application elements, like application
software components, but not to specific application elements, like crtcl monitor.
Second, before such a guarantee can be assumed to hold, a correct configura-
tion of the service must be provided. Therefore, the platform language provides
the configuration demand class, which can be used together with the notion of
requirement groups to express this correlation.

Besides the afore-mentioned demand classes, we tried to keep the platform
language structurally compatible with the application language and therefore,
developed six guarantee classes to match the introduced application demand
classes.

Platform service guarantees follow the same principle as platform service de-
mands. The platform developer can specify guarantees to assure either the avoid-
ance or the detection of certain failure modes of the platform services. Looking
at specifications of available platforms, platform providers tend to specify the
technical safety measures their platform implements, rather than to provide ab-
stract guarantees. The failure modes detected by these measures are, therefore,
more technical in nature than the failure-modes identified in the application lan-
guage. Platform service guarantees are represented in natural language using the
following pattern:

platform service guarantees = technical_failure_mode, "will be",
"detected" | "avoided", "by the platform"

The term health monitor is taken from ARINC 653[3], where the health monitor
service is responsible for detecting platform or application failures and subse-
quently, depending on the type of failure, takes action to handle or to indicate the
failure. The health monitor specified in ARINC 653, as well as the AUTOSAR
services that are comparable in functionality (FIM and DEM), are highly config-
urable. In contrast to that, the IFM CR7201 provides a limited range of failure
reactions and almost no configurability. Based on this observation, the platform
language needs to allow for a specification of fixed as well as variable health
monitor capabilities. Application monitor guarantees specify the behavior devi-
ations that can be detected by the platform, whereas simple reaction guarantees

40 B. Zimmer et al.

specify the reactions that can be directly demanded by the application. Com-
plex reaction guarantees specify a list of possible configurable reactions for each
detectable failure or deviation. The illustrated platform guarantees contain the
following natural language representations:

application monitor guarantee = deviation, "will be detected by
the platform"

simple reaction guarantee = "If demanded, the platform will
perform", reaction, "within". reaction_time

complex reaction guarantee = "If", technical_failure_mode |
deviation, "is detected, the platform can perform the
following reactions:", {reaction, "within", reaction_time}

Rushby[18] presents different threats that have to be taken care of before a
safe partitioning can be assumed. Among those threats are the previously men-
tioned memory corruptions, monopolizations of computational resources or other
threats like interference via devices (e.g. IO peripherals or communication chan-
nels). Resource protection guarantees allow the platform developer to separately
guarantee the absence of these threats.

resource protection guarantee = "The platform guarantees
freedom from intereference considering", interference_class

A platform can provide independent services that might be needed in order to
support an application’s safety concept. A platform can, for example, have het-
erogeneously developed input peripherals (maybe one current the other voltage-
based) and independently developed software stacks to process the inputs to
provide independent input services. Therefore, the platform language contains
independence guarantee to specify independent communication and IO services
provided by the platform.

independence guarantee = "The platform provides independence
between", (IO_peripheral, "and", IO_peripheral) | (COM_channel,
"and", COM_channel)

5 Industrial Evaluation

Based on the running example of the fictive cruise control illustrated in chapter
3, the feasibility of the VerSaI method was to be analysed from an industrial
point-of-view. Our goal was to ascertain whether or not the proposed method
can be employed with manageable effort using readily-available information and
producing meaningful results. While manual safety certification is, of course,
well-known and utilized in current practice, we did not aim to quantify possible
improvements or reach a comparison between the two approaches.

Vertical Safety Interfaces – Improving the Efficiency of Modular Certification 41

The method’s focus on the vertical interface restricts the domain of address-
able safety aspects. However, it does cover a majority of aspects that are well-
defined and can be handled in a formalized and thus potentially automatable
manner. Horizontal dependencies between applications are more complex and
mostly characterize ”custom requirements” resulting in the necessity of manual
safety evaluations.

By systematically specifying safety dependencies on the vertical interface be-
tween applications and platforms, the method especially supports the consci-
entious verification of those dependencies that would generally be regarded as
tedious (simple, but formalizable). Using the language in conjunction with the
strategy repository, the knowledge of system experts can be documented and
ultimately reused for subsequent evaluations, thus possibly reducing necessary
effort and avoiding planning conflicts resulting from the restricted availability of
such resources.

Upon integration of modular certificates between applications and platforms,
the VerSaI method performs a certain matching of demands and guarantees and
presents strategies containing arguments explaining the fulfilment of the interface
requirements. Due to the fact that not all feasible safety interface requirements
at the vertical interface are easily projected into an interface language, a certain
share of these requirements will remain custom requirements and thus will require
manual evaluation by engineers. Therefore, a fully automatable solution cannot
be achieved, but this does not lessen the viability of the method as it does ensure
the systematic documentation of these requirements and provides a useful share
of automatable aspects.

We expect a more reproducible and reliable evaluation of safety interface
requirements while potentially reducing effort through reuse and automation.
Continuing evaluation of the methodology will show how it can be employed on
a wider scale and identify possible benefits in comparison with current practice.

6 Conclusion and Future Work

This paper has described the VerSaI language, a model-based language to specify
the demanded and guaranteed requirements between applications and general
purpose platforms. The language was introduced gradually, by illustrating the
different language elements and how they are related to each other. Finally we
presented an evaluation of the feasibility and the benefits of the language from
an industrial perspective.

Future work includes the development of a semi-automatic mediation algo-
rithm. The mediation algorithm is based upon a formalization of strategies,
which contain the information on how to fulfill a certain class of demands using
guarantees provided by a platform. The algorithm will check the applicability of
the strategy under the given deployment and, in the case of success, constructs
a human readable argument explaining how the demands have been met.

42 B. Zimmer et al.

References

1. Website of ifm electronics, http://www.ifm.com/
2. Website of the autosar standard, http://www.autosar.org/
3. ARINC: Arinc 653, avionic application software standard interface, part 1 (2005)
4. Bate, I., Hawkins, R., McDermid, J.: A contract-based approach to designing safe

systems. In: Proceedings of the 8th Australian Workshop on Safety-Critical Sys-
tems and Software (SCS 2003), pp. 25–36 (2003)

5. Bate, I., Kelly, T.: Architectural considerations in the certification of modular
systems. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS,
vol. 2434, pp. 321–324. Springer, Heidelberg (2002)

6. Conmy, P., McDermid, J.: High level failure analysis for integrated modular avion-
ics. In: Proceedings of the 6th Australian Workshop on Safety Critical Systems
and Software (SCS 2001), pp. 13–22. ACM, New York (2001)

7. Conmy, P., Nicholson, M., McDermid, J.: Safety assurance contracts for integrated
modular avionics. In: Proceedings of the 8th Australian Workshop on Safety-
Critical Systems and Software (SCS 2003), pp. 69–78 (2003)

8. Conmy, P., Paige, R.: Challenges when using model driven architecture in the
development of safety critical software. In: Proceedings of the Fourth International
Workshop on Model-Based Methodologies for Pervasive and Embedded Software
(MOMPES 2007), pp. 127–136. IEEE, Los Alamitos (2007)

9. Damm, W., Metzner, A., Peikenkamp, T., Votintseva, A.: Boosting re-use of em-
bedded automative applications through rich components. In: Proceedings of the
Workshop on Foundations of Interface Technologies 2005, FIT 2005 (2005)

10. Domis, D., Trapp, M.: Integrating safety analyses and component-based design.
In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219,
pp. 58–71. Springer, Heidelberg (2008)

11. Fenn, J.,Hawkins,R.,Williams,P.,Kelly,T.: Safety case composition using contracts
- refinements based on feedback from an industrial case study. In: Proceedings of the
15th Safety Critical Systems Symposium (SSS 2007). Springer, Heidelberg (2007)

12. Grunske, L.: Towards an integration of standard component-based safety evalua-
tion techniques with saveccm. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.)
QoSA 2006. LNCS, vol. 4214, pp. 199–213. Springer, Heidelberg (2006)

13. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans on Programming Languages and Systems 5(4), 596–619 (1983)

14. Kelly, T., Weaver, R.: The goal structuring notation – a safety argument nota-
tion. In: Proceedings of the Dependable Systems and Networks Conference 2004
(DSN 2004). IEEE, Los Alamitos (2004)

15. McDermid, J., Pumfrey, D.: A development of hazard analysis to aid software
design. In: Proceedings of the 9th Annual Conference on Computer Assurance
(COMPASS 1994), pp. 17–25. IEEE, Los Alamitos (1994)

16. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)
17. Papadopoulos, Y., McDermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of

the behaviour of complex programmable electronic systems in conditions of failure.
Elsevier - Reliability Engineering & System Safety 3(71), 229–247 (2001)

18. Rushby, J.: Partitioning in avionics architectures: Requirements, mechanisms and
assurance (1999)

19. Rushby, J.: Modular certification (2001)
20. Schneider, D., Trapp, M.: Conditional safety certificates in open systems. In: Pro-

ceedings of the 1st Workshop on Critical Automotive Applications: Robustness &
Safety, CARS 2010, pp. 57–60. ACM, New York (2010)

http://www.ifm.com/
http://www.autosar.org/

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 43–56, 2011.
© Springer-Verlag Berlin Heidelberg 2011

DALculus – Theory and Tool for Development Assurance
Level Allocation

Pierre Bieber, Rémi Delmas, and Christel Seguin

ONERA, 2 avenue Edouard Belin,
31055 Toulouse, France

{Pierre.Bieber,Remi.Delmas,Christel.Seguin}@onera.fr

Abstract. The Development Assurance Level (DAL) indicates the level of rigor
of the development of a software or hardware function of an aircraft. We
propose a theory formalizing the DAL allocation rules found in the ARP4754a
recommended practices. A tool implementing this theory was developed in
order to assist the safety specialists when checking or optimizing a DAL
allocation.

Keywords: Dependability Assessment, Aerospace Systems, Avionics.

1 Introduction

The Development Assurance Level (DAL) indicates the level of rigor of the
development of a software or hardware function of an aircraft. The DAL guides the
assurance activities that should be applied at each stage of development. These
activities aim at eliminating design and coding errors that would have a safety effect
on the aircraft.

The revised version of Aeronautical Recommended Practices ARP4754a [1]
establishes rules to allocate the DAL to functions. The allocation is primarily based
on the severity of the effects of a function implementation error. But new rules
introduce the possibility to downgrade the DAL levels based on the independence at
requirement, implementation or hardware deployment level.

It can be tedious to check that downgrading rules were applied correctly.
Furthermore, designers are trying to allocate the smallest DAL possible to functions
in order to decrease development costs. Consequently, we have investigated means to
assist the safety specialists when checking or optimizing a DAL allocation.

We undertook the formalization of DAL allocation rules as constraints, that link
the maximal allowed reduction of DAL and the independence of functions appearing
in the minimal combination of function errors leading to an aircraft function loss.
Optimization criteria are also defined to help minimizing the allocated DAL and the
number of functions required to be independent.

This problem is solved using very efficient constraint solvers. A valid DAL
allocation and a set of function independence requirements are extracted from the
solution found by the solver and are proposed to the designers. The approach also
takes into account user provided constraints that help the tool to focus on more
interesting allocations.

44 P. Bieber, R. Delmas, and C. Seguin

The following chapter describes the Development Assurance Level Allocation
Process according to ARP4754a. Then, in chapter 3, we detail the proposed theory of
DAL allocation. Finally, we explain how the approach is implemented and the tool
was applied on various critical aircraft systems including the Electrical Generation
and Distribution System. The paper concludes with the first lessons learnt from these
experimentations.

2 Development Assurance Level Allocation Process

2.1 Aims of the DAL

The design of aeronautics safety critical systems deals with two families of faults:

• random faults of equipments, such as an electrical wire rupture that would
cause the loss of power supply for a computer cabinet,

• systematic faults in the development of the equipment, which include errors
in the specification, design and coding of hardware and software. An
instance of a development fault could be a specification of the “wheel on
ground” function that would not make a difference between the landing gear
being compressed or decompressed resulting in a incorrect indication of
whether the aircraft is on ground or flying.

Two very different approaches are used when assessing whether the risk associated
with these two types of faults is acceptable. Quantitative requirements (thresholds of
fault occurrence probabilities) are associated with random equipment faults whereas
non-quantitative design assurance requirements (Development Assurance Level) are
associated with development faults. This approach is not unique to the aeronautics
industry, it also applied in other safety-critical domains such as space, nuclear,
railway or automotive industries [2].

In the aeronautics industry, a DAL ranging from E to A (where A is the higher
level) is allocated to functions, software and hardware items. According to the
ARP4754, “The Development Assurance Level is the measure of rigor applied to the
development process to limit, to a level acceptable for safety, the likelihood of Errors
occurring during the development process of Functions (at aircraft level or system
level) and Items that have an adverse safety effect if they are exposed in service.”

The DAL associated with a software item guides the assurance activities that have
to be performed during its development following DO178B [3]. The higher the DAL,
the more detailed and rigorous are the assurance activities to be performed. For
instance, the following table describes three objectives of the Software Coding and
Integration Process. It indicates which objectives are applicable at a given DAL level.
A cell containing R means that this is a Required objective at this level, a blank cell
means the objective is not required and a cell containing I means that the objective
should be achieved with independence. Independence is achieved when the activity is
performed by a team different from the software development team.

 DALculus – Theory and Tool for Development Assurance Level Allocation 45

Table 1. DO178B Software Coding Objectives (extract)

Id Objective DAL
Applicability
A B C D

1 Source Code complies with
low-level requirements

I I R

2 Source Code complies with
software architectures

I R R

3 Source code is verifiable R R

At level E nothing is required. At level D none of these three objectives has to be
achieved. Traceability at this level of detail (between source code and requirements)
is not needed, but other traceability (between high-level and system requirements) is
required. At level C, objectives 1 and 2 are required without independence.
Independence is almost never required at level C. At levels A and B, the three
objectives have to be fulfilled. The difference between these two levels is that more
objectives shall be achieved with independence at level A than at level B.

High DALs require a great number of assurance activities. The increase in the
level of rigor, level of detail and the need to involve independent teams increase the
development cost of software and hardware items. Consequently, designers aim at
allocating a DAL to software and hardware as low as possible, within the bounds
imposed by safety regulation, in order to reduce the development cost of their
systems.

2.2 DAL Allocation Rules According to ARP4754a

DAL allocation is a part of the System Safety Assessment Process which comprises
several steps. First, the Functional Hazard Analysis identifies the Failure Conditions
(e.g. safety critical situations of the system) and assesses their severity on a scale
going from No Safety Effect (NSE) to Catastrophic (CAT). Then, during the
Preliminary System Safety Assessment, fault-trees (or alternatively fault propagation
models [4]) are built and analyzed. A fault-tree describes the way that item faults
propagate inside the system architecture in order to cause a Failure Condition.
Minimal combinations of item faults leading to the Failure Conditions are extracted
from the fault-tree, theses combinations are called Minimal Cut Sets (MCS). These
combinations are used to compute the mean probability of the Failure Condition in
order to assess whether the designed architecture is safe enough. Usually the mean
probability of a Failure Condition whose severity is Catastrophic shall be smaller than
10-9 per flight-hour.

DAL allocation is based on a qualitative assessment of the minimal cut sets
computed for the Failure Conditions of the system. We consider that an item fault
contributes to a Failure Condition if it appears (through its failure modes) in one of
the MCS of the failure condition. A DAL is associated with an item according to the
classification of the most severe Failure Condition that this item fault contributes to.
Actually, due to DAL downgrading rules, it is not necessarily the most severe FC that
constrains the DAL allocation the most.

46 P. Bieber, R. Delmas, and C. Seguin

Table 2 gives the basic DAL assignment rules. Sev is the severity of the most
critical Failure Condition an item fault is involved into. According to this table, an
item is assigned DAL B if the most severe consequence of this item fault is classified
as Hazardous (HAZ).

Table 2. Basic DAL Allocation

Sev NSE MIN MAJ HAZ CAT
DAL E D C B A

New DAL allocation rules introduced in the revised ARP4754a allow to
downgrade the original DAL allocated using the basic allocation rule, in cases when
items involved in the minimal cut sets are known to be pair-wise independent (we will
discuss in detail the notion of independence in section 2.3). Each minimal cut set is
analyzed using one of the 2 following downgrading options:

• Option 1: The original DAL of one item in the minimal cut set is preserved
and the DAL of remaining items may be downgraded of at most two levels.

• Option 2: The original DAL of one pair of items in the minimal cut set may
be downgraded of at most one level and the DAL of remaining items may be
downgraded of at most two levels.

Once all minimal cut sets are analyzed the lowest DAL consistent with the authorized
downgrading by the selected option may be allocated to the items.

1. DL, DR
2. SL, SR
3. DF_SL_to_DL, DF_SL_to_DR, SR
4. DF_SL_to_DL, DF_SR_to_DL, DR
5. DF_SL_to_DL, DR, SR
6. DF_SL_to_DR, DF_SR_to_DR, DL
7. DF_SL_to_DR, DL, SR
8. DF_SR_to_DL, DF_SR_to_DR, SL
9. DF_SR_to_DL, DR, SL
10. DF_SR_to_DR, DL, SL
11. DF_SL_to_DL, DF_SL_to_DR,
DF_SR_to_DL, DF_SR_to_DR

Fig. 1. Data Display (Graphical view and Minimal Cut Sets)

Example: To illustrate the various DAL allocation rules, we introduce a very basic
Data Measurement and Display example that is graphically described in figure 1. Data
is measured by two sensors SL (Left sensor) and SR (Right Sensor) anddisplayed on
two Display units DL and DR , measured data is sent by the sensors to both displays
(via data flows named DF_SL_to_DL, DF_SL_to_DR, DF_SR_to_DL and
DF_SR_to_DR). Each of these items may be lost. Measured data can be displayed
on one display unit as long as the display unit is working and data measured by at

 DALculus – Theory and Tool for Development Assurance Level Allocation 47

least one sensor is transmitted to the display. The Failure Condition of interest is the
loss of data on both displays, and it is classified Hazardous.

Figure 1 also provides the list of the 11 Minimal Cut Sets leading to the loss of
data on both displays. MCS 1 states that the loss of both displays leads to the failure
condition, and MCS 11 states that the loss of 4 data flows leads also to the failure
condition.

As the Failure Condition is classified Hazardous, the original DAL allocated to
each of the items of the Data Measurement and Display system is equal to B.

Downgrading rules can be applied if we suppose that the groups of Left items (SL,
DL, DF_SL_to_DL, DF_SL_to_DR) and Right items (SR, DR, DF_SR_to_DL
and DF_SR_to_DR) are mutually independent. We can check that each minimal cut
set of each FC contains at least a pair of faults from items that are mutually
independent. For instance MCS 1 contains the faults of items DL and DR that are
mutually independent. Hence, if we apply option 1 then we may allocate DAL B to
DL and downgrade the DAL of DR to D or, conversely, downgrade the DAL of DL
and allocate DAL B to DR. After analyzing all the minimal cut sets, allocating DAL B
to all Left items and DAL D to all Right items would be allowed by option1.

If we now apply option 2 and we analyze MCS 1 then the DAL of both DL and DR
may be downgraded to C. When MCS 11 is analyzed, as DF_SL_to_DR and
DF_SR_to_DL are independent their DAL may be downgraded to C and the DAL of
remaining items DF_SL_to_DL and DF_SR_to_DR may be downgraded to D.
When MCS 10 is analyzed, as DL and SL are not independent but DL and
DF_SL_to_DR are independent, the DAL of DL and DF_SL_to_DR may only be
downgraded to C. Consequently, there is a conflict between the analysis of MCS 11
and MCS 10 with respect to the downgrading of the DAL of DF_SL_to_DR. To
solve this conflict, the higher DAL allocation has to be used. Here, DAL C should be
allocated to DF_SL_to_DR .

But, if we go back to the analysis of MCS 11, it was also possible to downgrade
the level of DF_SL_to_DR and DF_SR_to_DL to D and the level of
DF_SL_to_DL and DF_SR_to_DR to C. In that case the analysis of MCS 10 and
11 would not be conflicting.

As it was shown by this simple example, verifying that a DAL allocation is correct is
not an easy task, and generating a correct DAL allocation is even more difficult when
systems become large. For each minimal cut set there are several downgrading
possibilities depending on the selected option. Furthermore, the downgrading
possibilities have to be consistent for all minimal cut sets. We think that a DAL
allocation and verification tool would be very helpful for the safety analyst. The first
step in developing such a tool is to formalize the principles of DAL allocation.

2.3 Item Independence According to ARP4754A

Independence plays a crucial role in the DAL allocation process as it is required in
order to apply DAL downgrading. According to the ARP4754a “item Development
Independence ensures that the development of items on which the Function(s) is(are)
implemented, should not suffer from a common mode Error.”

48 P. Bieber, R. Delmas, and C. Seguin

Item Development Independence is achieved by relying on items that use different
types of software and hardware technologies to implement a Function. For instance, a
general-purpose computer-based LCD screen and an ad-hoc electro-mechanical
display could be used to display the fuel quantity on-board. These two set of items
would be considered as independent as they do not depend on similar technologies.
On the contrary, several occurrences of a screen with the same technology (LCD
screen for instance) could be considered as non-independent.

From a system development perspective, the use of independent items increases the
development costs. In some cases, it might just be impossible to achieve item
independence as only one technology is available to implement the items. So system
designers will be interested by architectures with a limited use of independent items.

Example: Let us consider again the Data Measurement and Display system studied in
the previous section. We now suppose that the four data flows of the Data
Measurement and Display System are no longer mutually independent because the
same communication protocol is used to transmit them. In that case, when MCS 11 is
analyzed, we cannot downgrade the DAL level of the data flows as they are not
independent. Consequently DAL B would be allocated to data flows
(DF_SL_to_DL, DF_SL_to_DR, DF_SR_to_DL and DF_SR_to_DR).

As it was shown by the previous example, various assumptions on item independence
lead to very different DAL allocation. This makes the DAL allocation even more
complex. So in order to assist the DAL allocation process we should also help the
safety analyst to find which items have to be independent.

3 DAL Allocation as a Constraint Satisfaction Problem

We formalize DAL allocation as a sequence of two constraint satisfaction problems.
The first problem consists in identifying a minimal set of necessary independence
relations between items. The second problem allocates the DAL to items taking into
account the various downgrading options enabled by the item independence relations
identified by solving the first problem.

3.1 Independence Identification

Besides the classical quantitative safety requirement, a qualitative safety requirement
is also usually associated with a failure condition. This qualitative requirement could
be of the form “no combination of item faults of size strictly less than NSev leads to
the failure condition”, where the relation between NSev and the severity of the failure
condition is given by Table 2.

To check the qualitative safety requirements associated with a failure condition, we
want to establish that the size of each minimal cut set is greater than or equal to NSev.
The size of an MCS including N item faults is not necessarily equal to N because
these item faults could be non-independent. If none of the items appearing in the MCS
are independent, a single common cause fault could lead to the failure condition.
According to Table 2, this would not be acceptable for failure conditions whose
severity ranges from MAJ to CAT. We consider that the size of a minimal cut set is

 DALculus – Theory and Tool for Development Assurance Level Allocation 49

equal to the cardinal of the maximal subset of mutually independent items contained
in the minimal cut set. So for a MAJ or HAZ failure condition, each minimal cut set
should contain at least a pair of independent items. For a CAT failure condition each
minimal cut set should contain at least three items that are mutually independent. We
name this maximal subset the core of the MCS from now on.

Table 2. Qualitative Safety Requirements

 Sev MIN MAJ HAZ CAT

NSev 1 2 2 3

Example: According to the definition of the size of a minimal cut set, MCS 1 of the
Data Measurement and Display system is of size 2 if DF and DL are independent.
MCS 11 is of size 4 if the four data-flows are mutually independent but it is of size 2
if only DF_SL_to_DL and DF_SR_to_DR are independent. Both independence
relations would be acceptable as the failure condition if HAZ.

In the following we describe the Constraint Satisfaction Problem (CSP) that has to
be solved in order to identify independence relations between items so that qualitative
requirements are enforced. The CSP is defined by a set of constants that are inputs of
the problem such as the set of minimal cut sets, a set of variables whose values are
searched by the solver, and by the constraints that should be satisfied on these
variables. We also use abbreviations to make the constraints more readable. Finally
we propose a quantitative criterion that is optimized by the solver during its search.

• Constants

– I: set of items,
– MCS: set of minimal cut sets for the failure condition,
– Nsev: minimal size required for minimal cut sets to satisfy the qualitative

requirement.

•Variables

–indep(p,p’) is true if items p and p’ are independent,

• Abbreviations

• The size of a minimal cut set mc is greater than or equal to n iff there exists a
set of n items in mc that are mutually independent:

 size(mc)≥ n) == (∃m ⊆ mc, card(m)=n & indepm(m)))
• Items in the set m are mutually independent iff all pairs of distinct items (p,q)

in m are independent.

 indepm(m) == ∀(p,q):m*m, p≠q ⇒ indep(p,q)

• Constraint

• The size of each minimal cut set shall be greater or equal to Nsev:

∀mc:MCS, size(mc) ≥ Nsev

50 P. Bieber, R. Delmas, and C. Seguin

• Optimization Criterion

Minimize the number of pairs of independent items:

Σ(p,q):I*I indep(p,q)

Example: Let us consider again the Data Measurement and Display system. A
minimal and valid independence relation found by the solver has cardinal 7 :

indep(DR, DL),indep(SL, SR)
indep(SR, DF_SL_to_DR)
indep(SL, DF_SR_to_DL)
indep(SL, DF_SR_to_DR)
indep(DR, DF_SL_to_DL)

indep(DF_SL_to_DR, DF_SR_to_DR).

3.2 DAL Allocation

This section describes the CSP that formalizes the DAL allocation problem. Table 3
shows the correspondence between DALs and numerical values used to encode the
order relation between DALs and simplify the expression of constraints.

Table 3. Numerical values for the DAL

NDAL 0 1 2 3

DAL D C B A

• Constants

– I: set of items,
– MCS: set of minimal cut sets,
– indep: independence relation,
– NDAL: numerical value of the DAL of FC

• Variables

– ndal(f): numerical value of the possibly downgraded DAL of item f

• Constraints

• The DAL level of an item cannot be downgraded by more than two levels:

 ∀mc:MCS, ∀p:mc, ndal(p) ≥ NDAL - 2
• option 1. For each MCS and each of its items, either the DAL is not

downgraded, or the DAL is downgraded. In this case a core of mutually
independent items of size NSev must exist in the considered MCS such that one
of its elements has at least the DAL NDAL, and the downgraded item must be
part of this core:

 DALculus – Theory and Tool for Development Assurance Level Allocation 51

 ∀mc:MCS, ∀p:mc,
ndal(p)≥ NDAL or
(ndal(p)< NDAL ⇒

(∃m⊆mc, indepm(m) & card(m)= NSev & p:m &
(∃q:m, ndal(q)≥ NDAL))

• option 2. For each MCS and each of its items, either the DAL is not
downgraded, or the DAL is downgraded. In this case a core of mutually
independent items of size NSev must exist in the considered MCS such that two
of its elements have at least the DAL NDAL-1, and the downgraded item must
be part of this core.

∀mc:MCS, ∀p:mc,
ndal(p)≥ NDAL or
(ndal(p)< NDAL ⇒
(∃m⊆mc, indepm(m) & card(m)= NSev & p:m &
(∃(q,r):m*m,q≠r & ndal(q)≥NDAL-1 & ndal(r)≥NDAL-1))

• Criterion: Minimize the sum of numerical values of allocated DALs:

Σf : I ndal(f)

Example: We consider the minimal cut sets of the Data Measurement and Display
system and the indep relation presented in the previous section. If we apply option
1, an optimal DAL allocation is:

dal(SR)= dal(DL)= D
dal(SL)= dal(DR)= dal(DF_SL_to_DR)= B
dal(DF_SR_to_DL)= dal(DF_SL_to_DL)= dal(DF_SR_to_DR)= D

If we apply option 2, an optimal DAL allocation is:

dal(SR)= dal(DL)= dal(SL)= dal(DR)= dal(DF_SL_to_DR)= C
dal(DF_SR_to_DL)= dal(DF_SL_to_DL)= dal(DF_SR_to_DR)= C

4 Tool Support and Experimentations

4.1 Pseudo-Boolean Constraint Solving

The two constraint satisfaction problems presented in the previous section can be
solved very efficiently by solvers such as Sat4J [6] or WBO [7] that deal with pseudo-
Boolean logic (also known as {0,1} linear integer constraints). In this section we
explain how the DAL allocation problem is modeled using pseudo-Boolean logic.

In pseudo-boolean logic, the DAL level allocation is encoded by a predicate
hasDal(p, i) which is true if and only if ndal(p)>=i. Let Subsets(mc, Nsev) denote the
collection of all possible subsets of size Nsev of the minimal cut set mc, called the
Nsev-subsets of mc. We introduce the predicate dalOk(mc, s) to represent that the
subset s of mc satisfies the chosen DAL allocation constraints.

52 P. Bieber, R. Delmas, and C. Seguin

For each MCS mc, there must be at least one of its Nsev-subsets such that the
dalOk predicate holds. This is modeled in pseudo-boolean logic by instantiating the
following constraint for each MCS, where {s1, ..., sn} = Subsets(mc, Nsev):

dalOk(mc, s1) + ... + dalOk(mc, sn) ≥ 1;
For each item, the DAL is downgraded by at most two levels with respect to the
default case :

hasDal(f, NDAL-2) ≥ 1;
Listed below are the constraints instantiated for each Nsev-subset to encode its dalOk
semantics when Nsev=2, for each possible DAL allocation options.

DAL option1 is satisfied for subset s = {p1, p2} in MCS mc if and only if:

• Items of the subset are mutually independent:

-1*dalOk(mc, {p1, p2}) +1*indep(p1, p2) ≥ 0;
• One item in the subset has the Default DAL:

-2*dalOk(mc, {p1, p2}) +2*hasDal(p1, NDAL) +2*hasDal(p2, NDAL) ≥ 0;
• Each item p3 in mc - {p1, p2} has the default DAL:

-1*dalOk(mc, {p1, p2}) +1*hasDal(p3, NDAL) ≥ 0;
DAL option2 is satisfied by subset s = {p1, p2} in MCS mc if and only if:

• Items of the subset are mutually independent:

-1*dalOk(mc, {p1, p2}) +1*indep(p1, p2) ≥ 0;
• A pair of items in the subset has at least the default DAL minus 1:

-2*dal_ok(p1, p2) +1*hasDal(p1, NDAL-1) +1*hasDal(p2, NDAL-1) ≥ 0;
• Each item p3 in c\{p1, p2} has the default DAL:

-1*dalOk(mc, {p1, p2}) +1*hasDal(p3, NDAL) ≥ 0;

4.2 The DALculator

A tool called the DALculator supporting independence identification and DAL
allocation was developed. Figure 2 shows its graphical user interface. The user first
selects one or several files containing the minimal cut sets of failure conditions then
and indicates the failure condition severity. The user also selects the DAL
downgrading option and the solver to be used. The tool parses the minimal cut sets
and first generates a pseudo-Boolean instance encoding the independence
identification problem and solves it. If a solution is found, the tool extracts the list of
all mutually independent cores from it and generates a pseudo boolean instance
encoding the the DAL allocation problem, and solves it using the chosen solver. If a
solution is found, the DALculator proposes a DAL allocation to the user in a text file.

 DALculus – Theory and Tool for Development Assurance Level Allocation 53

Fig. 2. Screen Capture of the DALculator GUI

4.3 Lessons Learnt from the First Experimentations

We tested the DALculator on two classes of examples. The first class contains simple
examples in the style of the Data Measurement and Display system. They were used
in order to validate the results of the DALculator. The size of the minimal cut sets in
this class ranges from 11 to 51, making it possible to check by hand that the results
are correct. The second class contains more complex systems extracted from
industrial models. This includes minimal cut sets computed for an Electrical
Distribution and Generation system as well as a Flight Control system. These models
were used in order to test the performance of the tool.

The first experiments showed that DAL allocation and independence proposed by
the DALculator can be optimal but not very intuitive. For instance, in the Data
Measurement and Display system we first hand-built a solution with 16 independent
pairs, considering that all Left items are independent from the Right items. This is far
from the optimal solution with only 7 independent pairs found by the tool and
presented in section 3.1.

To help the user explore various independence relations and DAL allocations, the
tool can load directives that will be taken into account in the constraint problem. So

54 P. Bieber, R. Delmas, and C. Seguin

far, the user can specify that two items have to be independent, or that they shall not
be independent. Similarly, the user can specify that the DAL of an item shall be upper
bounded to a given level.

Thanks to these user directives it is also possible to use the DALculator to check
that an existing allocation is correct. The user enters a complete independence relation
or a complete DAL allocation and if the resulting constraints are consistent it means
that the proposed allocation is consistent with the DAL allocation rules.

Table 4. Performances of DALculator

Name MCS size Sev Perfs Idp DAL
 Idp DAL max R1 R2
DataDisplay0 11 4 HAZ 0.004 0.004 7 12 12 8
DataDisplay1 39 6 HAZ 0.011 0.005 7 9 9 9
DataDisplay2 51 9 HAZ 0.039 0.007 7 12 12 8
Elec 165 3 HAZ 0.007 0.006 16 18 15 11
Elec 447 4 CAT 0.060 0.066 102 70 60 56
FlightControl 3746 3 CAT 0.093 0.445 903 183 168 155

Table 4 gives performance figures on representative examples. The MCS column
gives the number of cut sets of the considered failure condition. The order column
gives the maximal cut order. The Sev column gives the classification of the failure
condition. The Perf column gives the solving time in seconds for the independence
constraint problem (idp column) and the DAL allocation problem (DAL column).
Despite the combinatorial nature of the problem, the run times are relatively low, even
on real world examples. This validates our choice of constraint formalism and solving
technology, and indicates a good scalability potential to real world problems. The Idp
column gives the optimal number of independence requirements generated by the
independence analysis. This number can be surprisingly lower than in trivial hand
made solutions, which demonstrates the added value of optimization. Last, the DAL
column lists the values of the criterion that is optimized on the DAL allocation
analysis: the max column gives the worst value for a valid allocation encountered by
the solver during optimization. O1 and O2 columns give the optimal solution
computed by the solver for option1 and option2 respectively. Again, the quantitative
distance between valid allocations, from the worst encountered to optimal, can be
quite important, demonstrating the added value of automatic and formal analysis over
hand built solutions.

As often in standards, there is room for interpretation of the rules. In the case of
ARP4754A downgrading rules, we estimated that two notions were subject to
interpretation:

• How many items in the minimal cut set have to be independent in order to
apply the downgrading rules?

• What does the “remaining items” cover in the rules that state that “all
remaining items may be downgraded”?

 DALculus – Theory and Tool for Development Assurance Level Allocation 55

Our formalization proposes an interpretation of these two notions. We considered that
the number of items that needs to be independent is defined by Table 2. And we
considered that “remaining items” that can be downgraded are items that are
independent from the non-downgraded item, other items shall not be downgraded. We
plan to discuss with people in the aeronautics industry and in the certification
authorities in order to check that our interpretation is valid.

5 Conclusion and Perspectives

5.1 Related Work

In [8] several authors including Y. Papadopoulos have proposed an approach for the
automated allocation of Automotive Safety Integrity Level (ASIL). The ASIL has a
role similar to DAL. Their approach is quite different from ours as it computes the
ASIL directly on the basis of the fault-tree structure. We have not considered this
approach because we wanted to support safety assessment that use safety propagation
models instead of fault-trees. Nevertheless this approach seems interesting to
overcome one of the drawback of the approach based on minimal cut sets analysis.
The number of MCS can become huge for complex systems and could cause
problems for the constraint solvers that we use.

Another interesting feature of this work is that ASIL is allocated to an item fault
and not to a function as for the DAL. Consequently different ASIL could be allocated
to the loss of an item and to its undetected erroneous behavior. This fine grained
allocation could help to select the level of rigor of development techniques; For
instance, it could be interesting to use formal techniques to check the absence of
errors leading to a fault with a high SIL and use more conventional techniques when
considering other faults of the item that were allocated a smaller SIL.

The paper does not describe whether the independence between items is taken into
account in the allocation process. In the aeronautics safety process the identification
of item independence is very important and cannot be neglected.

In [9] the author describes an approach to allocate the SoftWare Assurance Level
SWAL. Again the SWAL plays in Air-Traffic Management a role similar to DAL.
The approach analyzes the dependencies among the entities and resources of a
distributed system related with their interactions. Then inequalities between the
SWAL of these entities are defined. The resolution of these inequalities leads to the
allocation of SWAL levels for the components of the distributed system. This
approach needs a more detailed description of the system design than what is used in
our approach (e.g. minimal cut sets). It could be used at a later stage of the design of
the systems, when the software design and implementation is established, in order to
check that dependencies are consistent with the DAL that were allocated at the
preliminary design stages.

5.2 Perspectives

We are currently working on a similar approach for the allocation of Quantitative
budgets to function and item faults (see [5]). The tool analyzes minimal cut sets and
proposes a mean probability of occurrence for each item fault such that the probability

56 P. Bieber, R. Delmas, and C. Seguin

of the failure condition is acceptable according to its severity. The approach also
formalizes the allocation as a Constraint Satisfaction Problem but we use Mixed
Integer Linear Programming tools instead of pseudo-Boolean tools to solve the CSP.

More generally one of our research objectives would consist in investigating the
integration of models and tools based on constraint satisfaction problems for avionics
design assistance. This could contain tools for independence and DAL allocation,
allocation of Modular avionics modules and communication path [11], real-time
scheduling of tasks [12].

Acknowledgements. The research described by this paper was partially supported by
the European Union FP7 project MISSA. The authors would like to thank Jean-Pierre
Heckmann and Alessandro Landi for their explanations about DAL allocation rules.

References

1. SAE S-18 and EUROCAE WG-63 committees: ARP4754a - Guidelines for Development
of Civil Aircraft and Systems, SAE aerospace (2010)

2. Baufreton, P., Blanquart, J.-P., Boulanger, J.-L., Delseny, H., Derrien, J.-C., Gassino, J.,
Ladier, G., Ledinot, E., Leeman, M., Quéré, P., Ricque, B.: Multi-Domain Comparison of
Dependability and Safety Standards. In: Proceedings of ERTS (2010),
http://www.erts2010.org

3. RTCA SC167 and EUROCAE WG-12 committees: RTCA/DO-178B - Software
Considerations in Airborne Systems and Equipment Certification, RTCA Inc. (1992)

4. Bozzano, M., Villafiorita, A., Åkerlund, O., Bieber, P., Bougnol, C., Böde, E.,
Bretschneider, M., Cavallo, A., Castel, C., Cifaldi, M., Cimatti, A., Griffault, A., Kehren,
C., Lawrence, B., Luedtke, A., Metge, S., Papadopoulos, C., Passarello, R., Peikenkamp,
T., Persson, P., Seguin, C., Trotta, L., Valacca, L., Zacco, G.: ESACS: an integrated
methodology for design and safety analysis of complex systems. In: Proceedings of
ESREL 2003. Balkema publisher, Rotterdam (2003)

5. Bieber, P., Delmas, R., Seguin, C.: Derivation of Qualitative and Quantitative Safety
Requirements. To appear in: ESREL 2011. Balkema, Rotterdam (2011)

6. Manquinho, V., Martins, R., Lynce, I.: Improving Unsatisfiability-based Algorithms for
Boolean Optimization. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 181–193. Springer, Heidelberg (2010)

7. SAT4J, http://www.sat4j.org
8. Papadopoulos, Y., Walker, M., Reiser, M.-O., Weber, M., Chen, D.-J., Törngren, M.,

Servat, D., Abele, A., Stappert, F., Lönn, H., Berntsson, L., Johansson, R., Tagliabo, F.,
Torchiaro, S., Sandberg, A.: Automatic allocation of safety integrity level. In: Workshop
on Critical Automotive Applications: Robustness & Safety, CARS 2010 (EDCC
Workshop), Valencia, Spain (April 27, 2010)

9. Pecchia, A.: Una metodologia per la definizione dei livelli di critcità dei componenti di un
sistema software complesso, Master Thesis, Università degli Studi di Napoli Federico II,
Italy (2008)

10. Sagaspe, L., Bieber, P.: Constraint-Based Design and Allocation of Shared Avionics
Resources. In: 26th AIAA-IEEE Digital Avionics Systems Conference, Dallas (2007)

11. Aleti, A., Bjoernander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extendable tool
for architecture optimization of AADL models, in Model-based Methodologies for
Pervasive and Embedded Software (MOMPES), Workshop at ICSE 2009 ACM and IEEE
Digital Libraries (2009)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 57–70, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards Cross-Domains Model-Based Safety Process,
Methods and Tools for Critical Embedded Systems:

The CESAR Approach

Jean-Paul Blanquart1,*, Eric Armengaud2,3, Philippe Baufreton4,
Quentin Bourrouilh3, Gerhard Griessnig3, Martin Krammer2, Odile Laurent5,

Joseph Machrouh6, Thomas Peikenkamp7, Cecile Schindler5, and Tormod Wien8

1 Astrium Satellites, 31 rue des cosmonautes, 31402 Toulouse Cedex 4, France
jean-paul.blanquart@astrium.eads.net

Tel.: +33 5 62 19 69 56, Fax: …71 58
2 Virtual Vehicle Research and Test Center, Graz, Austria

martin.krammer@v2c2.at
3 AVL, Graz, Austria

{eric.armengaud,quentin.bourrouilh,gerhard.griessnig}@avl.com
4 Sagem Défense Sécurité, Massy, France
philippe.baufreton@sagem.com

5 Airbus Operations, Toulouse, France
odile.laurent@airbus.com, cecile.schindler@apsys.eads.net

6 Thales, Palaiseau, France
joseph.machrouh@thalesgroup.com

7 OFFIS, Oldenburg, Germany
peikenkamp@offis.de
8 ABB, Billingstad, Norway

tormod.wien@no.abb.com

Abstract. The CESAR project1 aims at elaborating a Reference Technology
Platform usable across several application domains (Aeronautics, Automotive,
Industrial Automation, Railway and Space) for the cost effective development
and validation of safety related embedded systems. Safety and, more generally,
dependability are therefore major topics addressed by the project. This paper
focuses on the work performed on safety requirements and approaches to be
supported by a common Reference Technology Platform. We analyse and
compare the industrial practice, applicable standards and state of the art so as to
identify which and how safety views should be supported. We focus in
particular on the major axes investigated by the project, formal model-based
techniques for requirements engineering and component-based engineering.
Preliminary realisations and case studies confirm the interest and provide
refined requirements for the final version of the platform.

Keywords: Safety, dependability, embedded systems, standards, multi-
domains, development and validation platform.

* Corresponding author.
1 The CESAR project (“Cost efficient methods and processes for safety relevant embedded

systems”) has received funding from the ARTEMIS Joint Undertaking under grant agreement
n° 100016 and from specific national programs and/or funding authorities.

58 J.-P. Blanquart et al.

1 Introduction

The industry of safety critical embedded systems faces difficult challenges with more
and more complex systems with more and more functions and interacting functions,
very strong requirements on safety and safety justification, and very strong constraints
on cost and time-to-market.

In this context, advanced engineering methods appear as very promising, and in
particular formal model-based methods addressing requirements engineering and
component-based engineering. Building on these approaches, the CESAR European
project (Joint Undertaking ARTEMIS) gathers more than 50 partners from academia,
technology providers and industrial end-users from five application domains
(Aeronautics, Automotive, Industrial Automation, Railway and Space). They aim at
elaborating a Reference Technology Platform (RTP) usable across several application
domains for the cost effective development and validation of safety related embedded
systems. Safety and, more generally, dependability are therefore major topics
addressed by the project.

This paper reports on the objectives, work and current achievements of the project
from the safety point of view. This encompasses a survey of standards, state of the
practice and of the art, the elicitation of requirements for the RTP, and the elaboration
and implementation of solutions in requirements engineering and component-based
engineering. Preliminary assessments on industrial use cases provide refined
requirements for the final version of the RTP.

2 State of the Art and of the Practice

Altogether the academic, technology and industrial partners of the CESAR project
elaborated a collection and synthesis of the state of the practice and state of the art in
safety related embedded systems in all five application domains covered by the
project: aeronautics, automotive, industrial automation, railway and space, addressing
the applicable standards, the industrial practice, state of the art, and identifying the
support expected from the CESAR Reference Technology Platform, in particular
under the form of “safety views”.

2.1 Safety Standards

In terms of safety, the concern of this paper, we especially focused on the safety
standards applicable to the target application domains and to their analysis and
comparison:

• Aeronautics: Eurocae/SAE documents ED-79A/ARP-4754A “Guidelines
for Development of Civil Aircraft and Systems” [1] with the complements
on methods and techniques ED-135/ARP-4761 “Guidelines and methods
for conducting the safety assessment process on civil airborne systems
and equipment” [2], completed by the Eurocae/RTCA documents on
software (ED-12B/DO-178B “Software considerations in airborne
systems and equipment certification” [3] and ED-80/DO-254 “Design
Assurance Guidance for Airborne Electronic Hardware” [4]);

 Towards Cross-Domains Model-Based Safety Process, Methods and Tools 59

• Automotive: the new standard, in Final Draft International Standard
(FDIS) status expected to be published in 2011, ISO/FDIS 26262 “Road
vehicles – Functional safety” [5];

• Industrial automation: the generic standard IEC 61508 “Functional safety
of electrical/electronic/ programmable electronic safety-related systems”
[6] and its derived standards such as IEC 61511 “Functional safety –
Safety instrumented systems for the process industry sector” [7];

• Railway: the EN CENELEC standards 50126 (“Railway applications –
The specification and demonstration of reliability, availability,
maintainability and safety (RAMS)”) [8], 50128 (“Railway applications –
Communications, signalling and processing systems – Software for
railway control and protection systems”) [9] and 50129 (“Railway
applications – Communications, signalling and processing systems –
Safety related electronic systems for signalling”) [10];

• Space the ECSS standards Q30 (“Space product assurance –
dependability”) [11], Q40 (“Space product assurance – safety”) [12] and
Q80 (“Space product assurance – software”) [13].

Even though there are differences in the standards applicable to the various domains,
there are also many strong common principles and approaches [14], confirming the
interest of a common platform to support the development and validation of safety-
critical or safety-related embedded systems in various domains. In particular all
analyzed standards propose a top-down risk-based approach and the consideration of
several levels or categories for the consequences of failures and therefore categories
for the systems and elements. This leads in particular to categories of requirements
applicable to the development and assurance in consideration of the severity of failure
consequences and associated overall occurrence probability of a system failure.

There are however also many differences, for instance in the details of the rules to
allocate categories along the design, as well as on the architecture principles (e.g.,
with focus on “integrated safety” in aeronautics and automotive versus “external
safety monitoring” in automation, rail and space), on the nature of the standards (e.g.,
prescriptive in terms of objectives versus means, or promoting explicitly or not the
safety demonstration under the form of a “safety case”). Consequently the CESAR
Reference Technology Platform cannot be a single common platform shared “as is”
by all users, but rather a generic platform with all necessary facilities to be
instantiated in each domain taking in consideration also the various industrial
practices as well as the most promising methods and tools to support the development
of safety critical embedded systems and in particular formal model-based and
component-based approaches for requirements engineering and development.

2.2 Safety Process and Methods: The Safety Views

Industrial practice, following applicable standards, has developed and implemented a
safety approach based on a strong process combining a global top-down safety
construction and assurance process, supported by several methods and techniques
aiming at supporting the elaboration and evaluation of architecture solutions and their
implementation. The support that the CESAR Reference Technology Platform is

60 J.-P. Blanquart et al.

expected to provide to these safety process, methods and techniques can be described
through the notion of safety views and viewpoints.

Following IEEE 1471 [15] we define a view as “a representation of a whole system
from the perspective of a related set of concerns”, and a viewpoint as “a specification
of the conventions for constructing and using a view; a pattern or template from
which to develop individual views by establishing the purposes and audience for a
view and the techniques for its creation and analysis”. Therefore a view conforms to a
viewpoint that establishes the conventions by which this view is depicted, created and
analyzed. The viewpoint determines the languages to be used to describe the view,
and any associated modelling method or analysis technique to be applied to the view.
So, a viewpoint is described by: objectives, a set of concerns, modelling and language
features and analytic methods. So, a view may consist of several models. And a model
may participate in several views.

In the context of this work we propose the relevant safety and dependability views
and viewpoints based on the identification of the relevant safety and dependability
analysis techniques, and on which models these analyses could be performed.
Therefore a safety and dependability viewpoint is defined as:

• A model i.e., a set of information and their inter-relationships, with formal
semantics of information and relations (the modelling and language
features that allow performing the analyses of concern),

• A set of analytic methods that can be applied to the model so as to analyse
and assess some predefined safety and dependability properties.

Various categories of safety and dependability analysis techniques can be identified,
corresponding to various categories of objectives, depending on the different
stakeholders concerned with the safety of the system to be developed. Depending on
the domain the stakeholders may be represented by different roles in the development
process: e.g. a dedicated quality or safety manager is compliant with the standards
applicable for the domain. Within the development process they also represent
certification authorities, as well as customers concern with respect to safety.

Additionally, safety is a concern across the different engineering phases, implying
various approaches depending on the development phase addressed. Early stages of
the safety lifecycle aim at the identification of requirements and exploration of the
implications of design whereas later lifecycle stages focus on the successful
implementation of the requirements. Typical safety analysis techniques as in
particular required by safety standards include:

• Hazard analysis and risk assessment,
• System Safety Assessment, generally supported by Fault Tree Analysis,

Failure Modes, Effects (and Criticality) Analysis, Common Cause
Analysis, etc.,

• Verification and validation, in particular of the implementation of safety
and functional safety requirements.

These various safety analysis techniques can be classified, taking into consideration
different categories of their objectives:

 Towards Cross-Domains Model-Based Safety Process, Methods and Tools 61

Quantitative (Probabilistic) Assessment of Safety and Dependability Properties
The purpose is to evaluate global probabilistic properties of a system (or of a part of
it) based on its architecture (especially in terms of redundancies) and a set of
assumptions on the stochastic distribution of failures that can affect the system and its
elements. There are numerous modelling approaches and associated tools such as
Markov Chains, Reliability Block Diagrams, Fault Trees etc., and component failure
rate data bases. Even though some difficulties and limitations may exist, they are
mainly related to the relevance of the component failure rates (for which model-based
approaches in the sense of the study are of little support if any) rather than on the
capability to combine them and evaluate safety and dependability probabilistic
properties at a higher level. Nevertheless in case of complex system architecture and
reconfiguration mechanisms, elaborating a model to conduct these evaluations remain
tedious and error prone. It is therefore expected that the CESAR RTP will provide
facilities to support the elaboration of such models.

Qualitative (Descriptive and/or Deterministic) Assessment of Propagation of
Faults and Failures and of the Effects of this Propagation
This corresponds to a very important and large set of analyses of the effectiveness of
detection and protection mechanisms against faults and their combinations, analyses
of common mode failures or common cause faults and their effects, etc. This must be
a major target for CESAR considering the importance of the associated objectives and
the limitations of the currently used techniques (e.g., Failure Modes, Effects and
Criticality Analysis, Fault Tree Analysis and various check-lists). An assisted, if not
automated, generation of the analysis reports from an engineering model annotated
with the relevant information about fault occurrence and propagation is expected to be
particularly useful.

Assessment (Correctness, Performance) of Fault Tolerance Mechanisms
Similarly to the correctness or performance assessment of any function, model-based
approaches can be used provided they represent the behaviour of the function as well
as, for performance evaluation, its utilisation of the relevant resources with respect to
the target evaluation (time, memory, etc.). This can also be identified as an important
target for CESAR because of the current difficulties and limitations of the definition
and validation techniques applicable to fault tolerance mechanisms. Precisely these
difficulties come from the increasing complexity of the fault tolerance mechanisms
and their detailed behaviour, taking into account multiple interactions between a large
number of elements (and moreover in nominal and degraded conditions).

Soundness, Completeness of the Safety and Dependability Arguments
Formal models could be used to represent and check the safety and dependability
logical argumentation (how the various pieces of evidence are logically combined to
support a high level safety or dependability claim). This is mentioned here mainly for
completeness because despite its interest in general and its possible inclusion among
the topics addressed by the CESAR project, it is very different in nature from the
techniques addressed by the study in the sense that the concerned models are specific

62 J.-P. Blanquart et al.

to the considered safety and dependability analysis, rather than engineering models
(even augmented and annotated with safety and dependability specific information).

Finally we can identify three main categories of objectives of safety analyses,
corresponding to a priori three categories of safety models, structural safety models,
behavioural safety models and logical safety models.

Structural Safety Models
Structural models are often used as a support to the engineering activities, to represent
the organisation of the various elements composing a system (at various abstract
levels: functions, sub-systems, equipment, software, etc. and from the early definition
and design phases to the implementation, verification and validation). Structural
models can be extended to represent how the faults and failures affect the various
elements of the structure, and how these faults and failures propagate along the
structure. Such augmented models are good candidates to support, possibly through
coupling with classical existing safety and dependability analysis tools, the analysis of
fault propagation and demonstration of the related requirements (e.g., all single faults
can be handled through automatic reconfiguration, or switch to survival mode, no
combination of two independent faults can have catastrophic consequences, etc.). Of
course not all the characteristics of fault propagation can be easily represented on
structural engineering models (e.g., thermal, electromagnetic compatibility, etc.). The
methods and support, object of the project, are not expected to solve all the
difficulties but at least a significant part.

At minimum it is expected that the CESAR RTP provides support to the classical
analysis techniques as requested by the various safety standards and in particular
Hazard Analysis, Fault Tree Analysis, FMECA (Failure Modes, Effects and
Criticality Analysis). It is worth noting that according to the definition we proposed,
the above mentioned analysis techniques or more precisely there underlying
formalism (fault trees, FMECA sheets) could be considered as “safety viewpoints” in
the sense that they describe information and their relation, with a (more or less)
rigorous semantics, and support analysis in the sense of the assessment of properties
such as for instance the minimum number of faults leading to some feared event.
However, all these techniques (and some other such as Event Trees, HAZOP (Hazard
and Operability studies), etc.) are based on the same fundamental principle (the
expression and processing of the propagation of faults). Previous work has confirmed
that fault propagation can be appropriately described on structural models, very close
to the models of the system architecture as used in system engineering with some
additional properties associated to the system elements (how they fail, how they react
to faults) and links. In particular it is possible to extract automatically from such
enriched structural models the more specialised models for safety analysis such as
fault trees or FMECA sheets.

We therefore propose to not focus on these specialised models and consider
principally this more general structural model as a safety viewpoint. It is expected
from the CESAR RTP to support the elaboration of this viewpoint, in full consistence
with the engineering models, and support the extraction from it of specialised models
such as FMECA and fault trees, and the assessment of safety properties as needed by
end-users.

 Towards Cross-Domains Model-Based Safety Process, Methods and Tools 63

Behavioural Safety Models
Behavioural models are often used as a support to the engineering activities and they
are in particular more and more used thanks to the improvements of the associated
tools allowing formal verification of behavioural properties i.e., the correctness of the
behaviour even in case of complex behaviour with many interactions between a large
number of elements and a large number of possible combinations of events and states.
Fault tolerance is generally a particularly difficult case in this respect, and moreover
the severity of consequences of potential failures of the fault tolerance mechanisms
may be very high.

Logical Safety Models
Though not required explicitly by all safety standards (but notable exceptions are in
railway and automotive domains), the notion of safety case is very useful to organise
and check the safety arguments and claims. Be it called or not a “safety case”, the
formal expression of the logical structure of the arguments (safety objectives, claims,
assumptions etc.) corresponds clearly to a “safety viewpoint” and is of practical
interest for end-users. Moreover experience, formalisms and tools (such as around the
Goal Structured Notation) are available in this area.

Coupling Safety Models
A complete safety view encompasses structural, behavioural and logical models and
also, in terms of behaviour, the complete detailed model of the behaviour of the
system and of its fault tolerance mechanisms, in presence and in absence of faults.
However modelling has something to do with the notion of abstraction and the aim
should not be to model everything, but what is necessary as regards the modelling
objectives. Here we are mainly concerned with safety analysis techniques and the
safety views identified and proposed above correspond to the needs related to safety
analysis practice and standards in CESAR application domains.

Therefore, due to the particular nature of fault tolerance behaviour (with inputs and
outputs directly from and to the system structure and fault propagation), it is of major
interest that the CESAR RTP supports the expression and processing of fault
tolerance behaviour directly and formally coupled to the structural safety model, itself
directly and formally coupled to the (engineering) architectural model(s) of the
system, properly enriched with the necessary information on fault propagation.

3 Safety Requirements for the Reference Technology Platform

The goal of this process is to collect the safety requirements that will be taken into
account within the CESAR RTP. These requirements were collected from different
sources and especially the safety experts in each application domain (Aeronautics,
Automotive, Industrial Automation, Railway, and Space) involved in the project.
During this phase, all requirements were reviewed one by one, analysed and classified
(figure 1). Each requirement was given the status: accepted, pending or rejected.
Requirements needing clarification or rewording, were assigned to one or more
partners.

64 J.-P. Blanquart et al.

Fig. 1. Safety requirements refinement process

In order to have common cross-domains requirements, we first analyzed all
previously collected requirements. This analysis consisted in eliminating the
requirements already taken into account. After this step, only 95 requirements have
been selected. These requirements were then classified according to their priority,
understood here as a combination of priority in terms of time (referring to the CESAR
project timescale and development plan) and of priority in terms of importance
(referring to the expected business impact for CESAR end-users).

The last step consisted in classifying the resulting requirements within 5
categories:

• Management
• Process
• Modelling
• Safety Analysis
• Diagnosability

4 Safety Process

One of the safety activities within the CESAR project is the modelling of a safety
process, as enforced by applicable standards and implemented in industrial practice.
Processes are usually arranged orthogonal to organizational structures, thus spreading
across several organizational units of different domains. In terms of embedded
systems, the development of hardware and software usually follows well-proven
development processes, often based on several years of experience. Therefore

 Towards Cross-Domains Model-Based Safety Process, Methods and Tools 65

changes are to be made carefully. The assurance of functional safety features is
achieved by embedding related activities to the currently running development
processes. To achieve this, several steps need to be carried out.

4.1 Challenges of Process Modelling

First, a detailed analysis of the safety process is performed. The first part of this
analysis, for automotive, is based on the upcoming ISO 26262: Road vehicles –
Functional Safety [5]. This new standard covers all activities during the life cycle of
safety related electrical/electronic systems in passenger cars, and will be released in
2011. While IEC 61508 [6] was considered for a wide range of electrical/electronic
systems, ISO 26262 clearly aims at the automotive industry and affects original
equipment manufacturers (OEMs) and suppliers. The core parts of ISO 26262 are
covering main areas of product development, starting with a concept phase and the
product development at the system level, including system specification, integration
and validation activities. Furthermore, product development at the hardware level and
product development at the software level are covered. Additional parts are describing
requirements and recommendations for production and operation, supporting
processes and ASIL oriented safety analyses. The concept of ASILs (automotive
safety integrity level) is derived from the idea of SILs (safety integrity levels, IEC
61508), and is used to classify hazards, based on their severity (S), controllability (C)
and exposure (E) for a number of relevant situations. Depending on the necessary
level of confidence, the methods applied during the item development may vary. This
fact introduces great variability to development processes. ISO 26262 defines work
products as results of single tasks, which may be input to other tasks. Therefore, work
products create strong dependencies between all parts and domains of the standard. A
work product can be a new separate document or just a reference to an existing
document. For the latter case, an appropriate mapping is required.

For the analysis of ISO 26262, all clauses and requirements of the standard were
translated to applicable practices and concrete activities to be performed by the
industrial organizations. This means that the requirements of the standard were
regrouped to activities that are described, assigned to different roles, and associated
with their corresponding inputs, outputs and potential necessary tools. To perform this
step, a spreadsheet, so-called “safety framework” was developed, based on the
previously outlined core parts of ISO 26262.

Figure 2 shows an excerpt of the safety framework. Note that the information
contained in the spreadsheet is split into two different font types: The bold
information evolves directly from standard (e.g. columns “Phase”, “Sub-phase”,
“Objectives”, “Work products”, “Activities”), whereas normal font is the
interpretation and explanation that is developed in CESAR (e.g. columns “Related
project input / documentation”, “What Method / Action brief description”, “Tools”).
For legibility reasons only an excerpt of the framework is presented here: For
example, only the column “Inputs” is included. However, the same kind of
information is provided in the complete safety framework for the outputs as well.
Other information not visible in figure 2 is the assignment of roles. ISO 26262 makes
no assumptions on roles within the safety life cycle. Therefore we introduce a role
model, featuring all necessary roles from different technical domains, categorizing
them to responsible and supporting roles, reducing the imminent risk of ambiguities.

66 J.-P. Blanquart et al.

Fig. 2. Excerpt of Safety Framework

After this first analysis focused on the automotive domain, the resulting safety
framework is now being extended to other domains with the analysis of their
applicable standards [1-4], [6-13]. After that, common properties and methods will be
identified, in order to broaden the framework’s spectrum.

Spreadsheets provide a great overview and carry valuable information, however it
is difficult for engineers to derive further information from them: Relationships
between activities, roles, and other process artefacts are hard to track. Moreover, the
representation of workflows is hardly possible and element instances may not be
created. Process modelling languages do provide these features, bringing the safety
framework closer to its application.

4.2 The CESAR Approach to Process Modelling

The CESAR Practice Framework aims at finding new ways for the description and
modelling of development processes and practices. The Software and Systems Process
Engineering Metamodel (SPEM) [16] is used to define all necessary entities. Based
on SPEM, the Eclipse Process Framework (EPF) Composer [17] is used to realize the
vision of a versatile process framework, assisting process engineers and developers
from the early beginning of safety related projects. The Automotive Safety Framework
is targeted at the needs of the automotive domain and will integrate seamlessly to the
practice framework, thanks to agreed modelling standards and concepts [18]. Starting
with the previously described safety framework table, a mapping between the
contained descriptions and the elements provided by the practice framework/EPF was
established.

 Towards Cross-Domains Model-Based Safety Process, Methods and Tools 67

Fig. 3. Process elements implementing the safety process in EPF

EPF supports various modelling concepts, allowing storing elements in packages
and method plugins. Most important concepts are affecting reusability and
extensibility. These properties are preserved by creating base plugins, which hold
generic definitions. These are extended later on by the creation of assign plugins.
EPF’s variability feature was used to create relations between the elements of these
two plugins. This modelling strategy was used to achieve a complete library of tasks,
roles and work products, separated into different packages according to the core parts
of ISO 26262. Furthermore, EPF has proven to be usable for the representation of
quality related attributes [19], thus all ASIL related methods of ISO 26262 are
represented as guidelines, organized in a hierarchy of packages. An overview of the
resulting framework structure is shown in figure 3.

Another contribution to the safety process is the addition of work flows. The
resulting library was used to arrange generic work flows, introducing sequences of
tasks and activities.

Finally, the resulting safety process library, the work flows and an appropriate
process configuration are used to publish processes. In EPF, a publication typically
consists of HTML (Hyper Text Markup Language) output files, including full
graphics showing all dependencies between tasks, roles, work products and other
artefacts. All information is available in XML (Extensible Markup Language) format
as well, in order to support other means of automated process enactment. The RTP

68 J.-P. Blanquart et al.

Desktop for example could use this type of process description for automated
orchestration and enactment.

5 Requirements Engineering

Safety is, besides of the functional aspect, one of the major areas in the field of
requirements engineering of the CESAR Project. It has been approached from
different perspectives like ontology based support, formalization support and different
analyzes ranging from virtual safety integration tests to fault tree generation.
Furthermore special requirements from safety standards like ISO 26262 have been
considered and the developed methods adapted to suit the needs.

Main principle is always the early detection of safety relevant requirements and
early analysability even without having an architecture available.

The supported process of requirement formalization allows to transform
requirements from natural language text to semi formal boilerplates (BP) and finally
to strictly formal patterns. At each degree of formalization a different set of safety
analyses can be applied.

Ontology Based Analysis

- How to get from NLR to BPs
- TODO HazOP

Formalizing Safety Requirements

- how to get from BPs to Patterns

o Usage of formalization ontology (planned work)
o special focus on safety elements in this ontology

- importance of contracts for safety design, always assumptions on
surrounding environment

- Safety Patterns, semantic etc…

A : {CMD AS1 fail, CMD AS2 fail} does not occur
{CMD AS1 fail, VALID1 fail} does not occur

G : {perm(CMD AS fail)} does not occur

This contract expressing the expectation that a permanent failure on the CMD output
(of a braking system controller) does not occur provided none of the two double
failures in the assumption occur. The benefit of the patterns is that – although they
have a lot of natural language elements – they come equipped with a formal
semantics. For instance, the above assumption is equivalent to the following LTL
formula:

¬(F (CMD AS1 fail) ∧ F (CMD AS2 fail)) ∧ ¬(F (CMD AS1 fail) ∧ F (VALID1 fail))

Thanks to these features it is possible to perform analyses on these patterns such as
completeness and consistency, or analyses of fault propagation and impact on safety
such as fault Tree Analysis.

 Towards Cross-Domains Model-Based Safety Process, Methods and Tools 69

6 Preliminary Assessment and Way Forward

In addition to the process modelling activities described in section 4 and to the
elaboration of safety oriented requirement engineering support as described in section
5, both being incorporated in the Reference Technology Platform, several use cases
and scenarios have been defined by the industrial end-users so as to perform an
assessment of the proposed technologies and tools.

At this stage only preliminary assessment has been performed, on a first version of
the RTP, mainly to support the refinement of the requirements towards the final
version. These experiments include pilot applications from all covered domains e.g.,
door management system or flight warning system (aeronautics), on recuperation and
on power train control unit for hybrid vehicles, airbag control unit, brake by wire
(automotive), safe controllers in industrial automation, on-board traffic management
unit in railway, or FDIR (Failure Detection, Isolation and Reconfiguration) definition
and validation and incremental safety assessment (space).

Though this preliminary assessment was performed in parallel to the actual
incorporation of the innovations and their integration in the platform, and therefore
mainly focussed on the assessment of basic techniques, methods and tools, it already
provided important insights and better understanding of user expectations and
remaining work.

It appears in particular that some model-based safety languages and tools such as
AltaRica are very powerful and well suited to the addressed problems [20]. However
their specialisation may be a drawback and other modelling approaches and languages
more widely used for system and software engineering such as AADL (Architecture
Analysis and Design Language), UML (Unified Modelling Language) or SysML
(Systems Modelling language) could also be used, possibly with some adaptations
and extensions [21]. We could for instance elaborate a prototype of an automatic
transformation from space systems and FDIR AADL-based models (with specific
adaptations and extensions for the purpose of the experiment) to timed automata so as
to perform behavioural analysis and demonstration of properties on the temporal
behaviour of the FDIR mechanisms [22]. These experiments and case studies confirm
the validity and feasibility of the approaches investigated in the CESAR project,
towards their integration in the final version of the Reference Technology Platform to
be released early 2012 for final assessment by the partners.

References

1. Guidelines for Development of Civil Aircraft and Systems, EUROCAE ED-79A and SAE
Aerospace Recommended Practice ARP 4754A (December 21, 2010)

2. Guidelines and methods for conducting the safety assessment process on civil airborne
systems and equipment, EUROCAE ED-135 and SAE Aerospace Recommended Practice
ARP 4761 (December 1996)

3. Software considerations in airborne systems and equipment certification, EUROCAE ED-12
and RTCA DO-178, issue B (December 1, 1992)

4. Design Assurance Guidance for Airborne Electronic Hardware, EUROCAE ED-80 and
RTCA DO-254 (April 2000)

70 J.-P. Blanquart et al.

5. Road vehicles – Functional safety, Final Draft International Standard ISO/FDIS 26262:
(Parts 1-10) (2010)

6. Functional safety of electrical/electronic/ programmable electronic safety-related systems,
IEC 61508 Parts 1-7, Edition 2.0, (April 2010)

7. Functional safety – Safety instrumented systems for the process industry sector, IEC 61511
Parts 1-3, Edition 1.0 (March 2003)

8. Railway applications – The specification and demonstration of reliability, availability,
maintainability and safety (RAMS), CENELEC, EN 50126 (February 28, 2007)

9. Railway applications – Communications, signalling and processing systems – Software for
railway control and protection systems, CENELEC, EN 50128 (May 15, 2001)

10. Railway applications – Communications, signalling and processing systems – Safety
related electronic systems for signalling, CENELEC, EN 50129 (May 7, 2003)

11. Space product assurance – Dependability, European Cooperation for Space
Standardisation, ECSS-Q-ST-30C (March 6, 2009)

12. Space product assurance – Safety, European Cooperation for Space Standardisation,
ECSS-Q-ST-40C (March 6, 2009)

13. Space product assurance – Software product assurance, European Cooperation for Space
Standardisation, ECSS-Q-ST-80C (March 6, 2009)

14. Baufreton, P., Blanquart, J.P., Boulanger, J.L., Delseny, H., Derrien, J.C, Gassino, J.,
Ladier, G., Ledinot, E., Leeman, M., Quéré, P., Ricque, B.: Multi-domain comparison of
safety standards. In: Proceedings of the 5th International Conference on Embedded Real
Time Software and Systems (ERTS2 2010), Toulouse, France (May 19-21, 2010)

15. Recommended Practice for Architectural Description of Software-Intensive Systems,
ANSI/IEEE Std 1471, ISO/IEC 42010:2007 (2007)

16. Object Management Group, Software and Systems Process Engineering Meta-Model, v2.0
(2008)

17. Haumer, P.: Increasing Development Knowledge with EPFC. Eclipse Review (Spring
2006)

18. Cifaldi, M., Lanteri, F.: CESAR Practices Framework – SPEM Mapping Guidelines, Draft
1, CESAR internal document (2010)

19. Chiam, Y.K., Staples, M., Zhu, L.: Representing Quality Attribute Techniques Using
SPEM and EPF Composer. In: EuroSPI 2009 (2009)

20. Bieber, P., Blanquart, J.P., Durrieu, G., Lesens, D., Lucotte, J., Tardy, F., Turin, M.,
Seguin, C., Conquet, E.: Integration of formal fault analysis in ASSERT: Case studies and
lessons learnt. In: Proceedings of the 4th International Conference on Embedded Real
Time Software (ERTS 2008), Toulouse, France (January 29-February 1, 2008)

21. Rugina, A.E., Blanquart, J.P.: Formal Methods in Space Systems: Lessons Learnt. In: Data
Systems in Aerospace, DASIA Conference, Budapest, Hungary (June 1-4, 2010)

22. Blanquart, J.P., Valadeau, P.: Model-based approaches for an improved FDIR
development and validation process. In: Data Systems in Aerospace, DASIA Conference,
Malta (May 17-20, 2011)

From Probabilistic Counterexamples via

Causality to Fault Trees

Matthias Kuntz1, Florian Leitner-Fischer2, and Stefan Leue2

1 TRW Automotive GmbH, Germany
2 University of Konstanz, Germany

Abstract. In recent years, several approaches to generate probabilistic
counterexamples have been proposed. The interpretation of stochastic
counterexamples, however, continues to be problematic since they have
to be represented as sets of paths, and the number of paths in this set
may be very large. Fault trees (FTs) are a well-established industrial
technique to represent causalities for possible system hazards resulting
from system or system component failures. In this paper we suggest a
method to automatically derive FTs from counterexamples, including
a mapping of the probability information onto the FT. We extend the
structural equation approach by Pearl and Halpern, which is based on
Lewis counterfactuals, so that it serves as a justification for the causal-
ity that our proposed FT derivation rules imply. We demonstrate the
usefulness of our approach by applying it to an industrial case study.

1 Introduction

In recent joint work [1] with our industrial partner TRW Automotive GmbH we
have proven the applicability of stochastic formal analysis techniques to safety
analysis in an industrial setting. In [1] we showed that counterexamples are a very
helpful means to understand how certain error states representing hazards can be
reached by the system. While the visualization of the graph structure of a stochas-
tic counterexample [2] helps to analyze the counterexamples, it is still difficult to
compare the thousands of paths in the counterexample with each other, and to
discern causal factors during fault analysis. In safety analysis, fault tree analy-
sis (FTA) [21] is a well-established industrial method and graphical notation to
break down the hazards occurring in complex, technical systems into a combi-
nation of what is referred to as basic events, which represent system component
failures. The main drawback of fault tree analysis is that it relies on the ability of
the engineer to manually identify all possible component failures that might cause
a certain hazard. In this paper we present a method that automatically generates
a fault tree from a probabilistic counterexample. Our method provides a compact
and concise representation of the system failures using a graphical notation that
is well known to safety engineers. At the same time the derived fault tree consti-
tutes an abstraction of the probabilistic counterexample since it focuses on rep-
resenting the implied causalities rather than enumerating all possible execution
sequences leading to a hazard. The causality expressed by the fault tree is rooted

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 71–84, 2011.
© Springer-Verlag Berlin Heidelberg 2011

72 M. Kuntz, F. Leitner-Fischer, and S. Leue

in the counterfactual notion of causality that is widely accepted in the literature.
Our approach can be described by identifying the following steps:

– Our fault tree computation method uses a system model given in the input
language of the PRISM probabilistic model checker [14].

– For this model we compute counterexamples for stochastic properties of in-
terest, representing system hazards, using our counterexample computation
extension of PRISM called DiPro [2]. The counterexamples consist of poten-
tially large numbers of system execution paths and their related probability
mass information.

– In order to compute fault trees from these counterexamples we compute
what is commonly referred to as basic events. Those are events that cause
a certain hazard. The fault tree derivation is implemented in a tool called
CX2FT.

– The justification for the fault tree computation is derived from a model of
causality due to Halpern and Pearl [12] that we modify and extend to be
applicable to our setting.

– The path probabilities computed by the stochastic model checker are then
mapped on the computed fault tree.

– Finally, the obtained fault tree is represented graphically by an adapted
version of the FaultCAT tool1.

All analysis steps are fully automated and do not require user intervention. We
demonstrate the usefulness of our approach by applying it to a selection of case
studies known from the literature on stochastic model checking.

This paper is organized as follows: In Section 2 we briefly introduce the con-
cepts of counterexamples in stochastic model checking and fault trees. In Sec-
tion 3 we describe the model of causality that we use, and how probabilistic
counterexamples can be mapped to fault trees. In Section 4 we demonstrate our
approach on a case study known from the literature. A discussion of related work
follows in Section 5. Finally, Section 6 concludes the paper.

2 Counterexamples and Fault Trees

In stochastic model checking, the property that is to be verified is specified using
a variant of temporal logic. The temporal logic used in this paper is Continu-
ous Stochastic Logic (CSL) [4]. Given an appropriate system model and a CSL
property, stochastic model checking tools such as PRISM [14] can verify auto-
matically whether the model satisfies the property. Stochastic model checkers do
not automatically provide counterexamples, but the computation of counterex-
amples has recently been addressed in, amongst others, [3,13]. For the purpose of
this paper it suffices to consider only upper bounded probabilistic timed reach-
ability properties. They require that the probability of reaching a certain state,
often corresponding to an undesired system state, does not exceed a certain up-
per probability bound p. In CSL such properties can be expressed by formulae
1 http://www.iu.hio.no/FaultCat/

From Probabilistic Counterexamples via Causality to Fault Trees 73

of the form P≤p(ϕ), where ϕ is path formula specifying undesired behavior of
the the system. A counterexample for an upper bounded property is a set ΣC

of paths leading from the initial state to a state satisfying ϕ such that the ac-
cumulated probability of ΣC violates the probability constraint ≤ p. If the CSL
formula P=? (ϕ) is used, the probability of the path formula ϕ to hold is com-
puted and the counterexample contains all paths fulfilling ϕ. The probability of
the counterexample is computed using a stochastic model checker, in our case
PRISM. Notice that in the setting of this paper the counterexample is com-
puted completely, i.e., all simple paths leading into the undesired system state
are enumerated in the counterexample. Fault trees (FTs) [21] are being used
extensively in industrial practice, in particular in fault prediction and analysis,
to illustrate graphically under which conditions systems can fail, or have failed.
In our context, we need the following elements of FTs, for an in-depth discussion
of FTs we refer the reader to [21].

1. Basic event: represents an atomic event.
2. AND -gate: represents a failure, if all of its input elements fail.
3. OR-gate: represents a failure, if at least one of its input elements fails.
4. Priority-AND (PAND): represents a failure, if all of its input elements fail

in the specified order. The required input failure order is usually read from
left to right.

5. Intermediate Event: failure events that are caused by their child nodes. The
probability of the intermediate event to occur is denoted by the number
in the lower right corner. A top level event (TLE) is a special case of an
intermediate event, representing the system hazard.

3 Computing Fault Trees from Counterexamples

Inferring Causality. Fault Trees express causality, in particular they char-
acterize basic events as being causal factors in the occurrence of the top-level
event in some Fault Tree. The counterexamples that we use to synthesize these
causal relationships, however, merely represent possible executions of the system
model, and not explicitly causality amongst event occurrences. Each path in the
counterexample is a linearly ordered, interleaved sequence of concurrent events.
The question is hence how, and with which justification, we can infer causality
from the sets of linearly ordered event sequences that we obtain in the course of
the counterexample computation. We use the concept of structural equations as
proposed by Halpern and Pearl [12] as a model of causality. It is based on coun-
terfactual reasoning and the related alternative world semantics of Lewis [17,9].
The counterfactual argument is widely used as the foundation for identifying
faults in program debugging [22] and also underlies the formal fault tree seman-
tics proposed in [20]. The ”naive” counterfactual causality criterion according to
Lewis is as follows: event A is causal for the occurrence of event B if and only if,
were A not to happen, B would not occur. The testing of this condition hinges
upon the availability of alternative worlds. A causality can be inferred if there is
a world in which A and B occur, whereas in an alternative world neither A nor B

74 M. Kuntz, F. Leitner-Fischer, and S. Leue

occurs. The naive interpretation of the Lewis counterfactual test, however, leads
to a number of inadequate or even fallacious inferences of causes, in particular
if causes are given by combinations of multiple events. The problematic issues
include common or hidden causes, the disjunction and conjunction of causal
events, the non-occurrence of events, and the preemption of failure causes due
to, e.g., repair mechanisms. A detailed discussion of these issues is beyond the
scope of this paper, and we refer to the critical literature on counterfactual rea-
soning, e.g., [9]. Since we are considering concurrent systems in which particular
event interleavings may be the cause of errors, e.g., race conditions, the order
of occurrence of events is an potential causal factor that cannot be disregarded.
Consider a railroad crossing model in which G denotes the gate closing, O the
gate opening, T the train crossing the road, and C the car crossing the tracks. A
naive counterfactual test will fail to show that the event sequence < G,O,T,C >
is a potential cause of a hazard, whereas < G,T,O,C > is not. In addition, the
naive counterfactual test may determine irrelevant causal events. For instance,
the fact that the train engineer union has decided not to call for a strike is not
to be considered a cause for the occurrence of an accident at the railroad cross-
ing. Halpern and Pearl extend the Lewis counterfactual model in [12] to what
they refer to as structural equation model (SEM). It encompasses the notion of
causes being logical combinations of events as well as a distinction of relevant
and irrelevant causes. However, the structural equation model does not account
for event orderings, which is a major concern of this paper. We now sketch an
actual cause definition adopted from [12]. An actual cause is a cause in which
irrelevant events are factored out. A causal formula in the SEM is a boolean
conjunction ψ of variables representing the occurrence of events. We only con-
sider boolean variables, and the variable associated with an event is true in case
that event has occurred. The set of all variables is partitioned into the set U of
exogenous variables and the set V of endogenous variables. Exogenous variables
represent facts that we do not consider to be causal factors for the effect that we
analyze, even though we need to have a formal representation for them so as to
encode the ”context” ([12]) in which we perform causal analysis. An example for
an exogenous variable is the train engineer union’s decision in the above railroad
crossing example. Endogenous variables represent all events that we consider to
have a meaningful, potentially causal effect. The set X ⊆ V contains all events
that we expect jointly to be a candidate cause, and the boolean conjunction of
these variables forms a causal formula ψ. The causal process comprises all vari-
ables that mediate between X and the effect that ψ is causing. Those variables
are not root causes, but they contribute to rippling the causal effect through
the system until reaching the final effect. Omitting a complete formalization, we
assume that there is an actual world and an alternate world. In the actual world,
there is a function val1 that assigns values to variables. In the alternate world,
there is a function val2 assigning potentially different values to the variables. In
the SEM, a formula ψ is an actual cause for an event represented by the formula
ϕ, if the following conditions are met:

From Probabilistic Counterexamples via Causality to Fault Trees 75

AC1: Both ψ and ϕ are true in the actual world, assuming the context defined
by the variables in U , and given a valuation val1(V).
AC2: The set of endogenous events V is partitioned into sets Z and W , where
the events in Z are involved in the causal process and the events in W are not
involved in the causal process. It is assumed that X ⊆ Z and that there are
valuations val2(X) and val2(W) assigning values to the variables in X and W ,
respectively, such that:

1. Changing the values of the variables in X and W from val1 to val2 changes
ϕ from true to false.

2. Setting the values of the variables in W from val1 to val2 should have no
effect on ϕ as long as the values of the variables in X are kept at the values
defined by val1, even if all the variables in an arbitrary subset of Z ∖X are
set to their value according to val1.

AC3: The set of variables X is minimal: no subset of X satisfies conditions AC1
and AC2.

AC2(1) corresponds to the Lewis counterfactual test. However, as [12] argue,
AC2(1) is too permissive, and AC2(2) constrains what is admitted as cause by
AC2(1). Minimality in AC3 ensures that only those elements of the conjunction
that are essential for changing ϕ in AC2(1) are considered part of the cause;
inessential elements are pruned.

FormalRepresentation ofEvents and theirOrder. To logically reason about
the causality of events in our setting we need to allow for the description of con-
junctive and disjunctive occurrence of events and represent, at the same time, the
order in which the events occur. In the common description of the structural equa-
tion model the occurrence of events is encoded as boolean formulae. In these for-
mulae, boolean variables represent the occurrence of an event (true = event oc-
curred, false = event did not occur). These variables are connected via the boolean
and- or or-operators to express conjunctive or disjunctive constraints on their oc-
currence. Note that this representation does not yet allow for expressing logical
constraints on the order in which events need to occur. We first define a mathe-
matical model that allows us to logically reason about the occurrence of events in
sets of execution sequences forming counterexamples in stochastic model check-
ing. Technical Systems evolve in discrete computation steps. A system state s is
defining a valuation of the system state variables. In our setting, we limit ourselves
to considering systems that only contain Boolean state variables representing the
occurrence of events, as described above. We use a set of atomic propositions that
represent the Boolean state variables we consider. A computation step is charac-
terized by an instantaneous transition which takes the system from some state s
to a successor state s′. The transition from s to s′ will be triggered by an action
a, corresponding to the occurrence of an event. Since we wish to derive causality
information from sets of finite computations, which we obtain by observing a fi-
nite number of computation steps, our main interest will be in sets of state-action
sequences. We define the following model as a basis for our later formalization of
the logical connection between events.

76 M. Kuntz, F. Leitner-Fischer, and S. Leue

Definition 1. State-Action Trace Model. Let S denote a set of states, AP a
finite set of atomic state propositions, and Act a finite set of action names.

– A finite sequence s0, a0, s1, a1, . . . an−1, sn with, for all i, si ∈ S and ai ∈ Act,
is called a state-action trace over (S,Act).

– A State-Action Trace Model (SATM) is a tuple M = (S,Act,AP,L,Σ) where
Σ = {σ1, . . . σk} such that each σi is a state-action trace over (S,Act), and
L ∶ S → 2AP is a function assigning each state the set of atomic propositions
that are true in that state.

We assume that for a given SATM M , AP contains the variables representing
the events that we wish to reason about. We also assume that for a given state-
action trace σ, L(si) contains the event variable corresponding to the action
ai−1. Notice that we consider event instances, not types. In other words, the
n− th occurrence of some event of type E will be distinct in AP from the n+1st
occurrence of this event type. We next define an event order logic allowing us to
reason about boolean conditions on the occurrence of events. The logic is using
a set A of event variables as well as the boolean connectives ∧, ∨ and ¬. To
express the ordering of events we introduce the ordered conjuction operator
.
The formula A
 B is satisfied if and only if events A and B occur in a trace
and A occurs before B. The formal semantics of this logic is defined on SATMs.
Notice that the
 operator is a temporal logic operator and that the SATM
model is akin to a linearly ordered Kripke structure.

Definition 2. Semantics of event order logic. Let M = (S,Act,AP,L,Σ) a
SATM, φ and ψ formulae of the event order logic, and let A a set of event vari-
ables, with A ∈ A, over which φ and ψ are built. Let σ = s0, a0, s1, a1, . . . an−1, sn

a state-action trace over (S,Act). We define that a formula is satisfied in state
si of σ as follows:

– si ⊧ A iff A ∈ L(si).
– si ⊧ ¬φ iff not si ⊧ φ.
– si ⊧ φ ∧ψ iff ∃j, k ∶ i ≤ j, k ≤ n . sj ⊧ φ and sk ⊧ ψ.
– si ⊧ φ ∨ψ iff ∃j, k ∶ i ≤ j, k ≤ n . sj ⊧ φ or sk ⊧ ψ.
– si ⊧ φ
ψ iff ∃j, k ∶ i ≤ j ≤ k ≤ n . sj ⊧ φ and sk ⊧ ψ.

We define that a sequence σ satisfies a formula φ, written as σ ⊧ φ iff ∃i . si ⊧ φ.
We define that the SATM M satisfies the formula φ, written as M ⊧ φ, iff
∃σ ∈ Σ . σ ⊧ φ.

In order to perform comparison operations between paths we define a number
of path comparison operators.

Definition 3. Path Comparison Operators. Let M = (S,Act,AP,L,Σ) a SATM,
and σ1 and σ2 state-action traces in M.

– =: σ1 = σ2 iff ∀e ∈ Act . σ1 ⊧ e ≡ σ2 ⊧ e.
– ≐: σ1 ≐ σ2 iff ∀e1, e2 ∈ Act . σ1 ⊧ e1
 e2 ≡ σ2 ⊧ e1
 e2.

From Probabilistic Counterexamples via Causality to Fault Trees 77

– ⊆: σ1 ⊆ σ2 iff ∀e ∈ Act . σ1 ⊧ e ⇒ σ2 ⊧ e. Furthermore, σ1 ⊂ σ2 iff σ1 ⊆ σ2

and not σ1 = σ2.
– ⊆̇: σ1⊆̇σ2 iff ∀e1, e2 ∈ Act . σ1 ⊧ e1
 e2 ⇒ σ2 ⊧ e1
 e2. Furthermore, σ1⊂̇σ2

iff σ1⊆̇σ2 and not σ1 ≐ σ2.

We are now ready to adopt the SEM to event orders. We interpret the SEM
equations over a given SATM M . Again, without providing a detailed formal-
ization, we assume the existence of a function order1 assigning an order to the
occurrence of the events M in the actual world, as well as a function order2

which assigns a potentially different order in the alternate world. An event order
logic formula ψ is considered a cause for an event represented by the event order
logic formula ϕ, if the following conditions are satisfied:

AC1: Both ψ and ϕ are true in the actual world, assuming the context defined
by the variables in U , given a valuation val1(V) and an order order1(V).
AC2: The set of endogenous events V is partitioned into sets Z and W , where the
events in Z are involved in the causal process and the events in W are not involved
in the causal process. It is assumed that X ⊆ Z and that there exist valuations
val2(X) and val2(W) and orders order2(X) and order2(W) such that:

1. Changing the values of the variables in X and W from val1 to val2 and the
order of the variables in X and W from order1 to order2 changes ϕ from
true to false.

2. Setting the values of the variables in W from val1 to val2 and the order of
the variables in W from order1 to order2 should have no effect on ϕ as long
as the values of the variables in X are kept at the values defined by val1,
and the order as defined by order1, even if all the variables in an arbitrary
subset of Z ∖X are set to their value according to val1 and order1.

AC3: The set of variables X is minimal: no subset of X satisfies conditions AC1
and AC2.

If a formula ψ meets the above described conditions, the occurrence of the
events included in ψ is causal for ϕ. However, condition AC2 does not imply that
the order of the occurring events is causal. We introduce the following condition
to express that the order of the variables occurring in ψ, or an arbitrary subset
of these variables, has an influence on the causality of ϕ:

OC1: Let Y ⊆X . Changing the order order1(Y) of the variables in Y to an arbi-
trary order order2(Y), while keeping the variables in X ∖ Y at order1, changes
ϕ from true to false.

If for a subset of X OC1 is not satisfied, the order of the events in this subset
has no influence on the causality of ϕ.

Fault Tree Generation. In order to automatically synthesize a fault tree from
a stochastic counterexample, the combinations of basic events causing the top
level event in the fault tree have to be identified. Using a stochastic model checker
we compute a counterexample which contains all paths leading to a state corre-
sponding to the occurrence of some top level event T . This is achieved by com-
puting the counterexample for the CSL formula P =?(true U t), where t is a

78 M. Kuntz, F. Leitner-Fischer, and S. Leue

state formula representing the top level event T . We interpret counterexamples
in the context of an SATM M = (S,Act,AP,L,Σ). We assume that Σ is par-
titioned in disjoint sets ΣG and ΣC , where ΣC contains all traces belonging to
the counterexample, whereas ΣG contains all maximal simple system traces that
do not belong to the counterexample. The disjointness of ΣC and ΣG implies
that M is deterministic with respect to the causality of T . Furthermore, we de-
fine MC = (S,Act,AP,L,ΣC) as the restriction of M to only the counterexample
traces, and refer to it as a counterexample model. W.l.o.g. we assume that every
trace σ ∈MC contains a last transition executing the top level event T , so that its
last state sn ⊧ T , which implies that Mc ⊧ T . In our interpretation of the SEM,
actual world models will be derived from ΣC , whereas alternate world models are
part of ΣG. Notice that in order to compute the full model probability of reaching
T it is necessary to perfom a a complete state space exploration of the model that
we analyze. We hence obtain MG at no additional cost. We next define the candi-
date set of paths that we consider to be causal for T . We define this set in such a
way that it includes all minimal paths. Paths are minimal if they do not contain
a subpath according to the ⊆ operator that is also a member of the candidate set.

Definition 4 (Candidate Set). Let MC = (S,Act,AP,L,ΣC) a counterexam-
ple model, and T a top level event in MC . We define the candidate set of paths
belonging to the fault tree of T as CFT(T):

CFT (T) = {σ ∈ ΣC ∣∀σ
′
∈ ΣC . σ′ ⊆ σ⇒ σ′ = σ}. (1)

Notice that the candidate set is minimal in the sense that removing an event
from some path in the candidate set means that the resulting path is no longer
in the counterexample ΣC . Given a counterexample model MC , we state the
following observations regarding the paths included in ΣC :

– Each σ ∈ ΣC can be viewed as an ordered conjunction A1
 . . .
An−1
T of
events, where T is the top level event that we consider.

– On each path in the counterexample, there has to be at least one event
causing the top level event. If that was not the case, the top level event
would not have occurred on that path and as a result the path would not be
in the counterexample.

The algorithm that we propose to compute fault trees is an over-approximation
of the computation of the causal events X since computing the set X precisely
is not efficiently possible [11]. Instead of computing the set X of events that are
causal for some ϕ, we compute the set Z of events, which consists of all events
that are part of the causal process of ϕ. Z will then be represented by ψ. Since
X is a subset of Z we can assure that no event that is causal is omitted from
the fault tree. It is, however, possible that due to our overapproximation events
that are not in X are added to the fault tree. This applies in particular to those
events that are part of the causal process, and hence mediate between X and ϕ.
However, as we show in Section 4, adding such events can be helpful to illustrate

From Probabilistic Counterexamples via Causality to Fault Trees 79

how the root cause is indirectly propagating by non-causal events to finally cause
the top level event. We do not account for exogenous variables, since we believe
them to be less relevant in the analysis of models of computational systems
since the facts represented in those models all seem to be endogenous facts of
the system. However, should one wish to consider exogenous variables, those can
easily be retrofitted. We now define tests that will identify the set Z of ordered
conjunctions of events that satisfy the conditions AC1 to AC3 and OC1, and
which hence can be viewed as part of the causal process of the top level event.
The starting point for this computation is the candidate set of Definition 4.

Test for AC1: The actual causal set Z that our algorithm computes is a subset
of the events included in the candidate set CFT (T) for some given top level
event T . Since we assume that every path includes at least one causal event, Z
is not empty. We may hence conclude that CFT (T) ⊧ ψ and CFT (T) ⊧ ϕ.

Test for AC2(1): We check for each path σ ∈ CFT(T) whether the ordered
conjunctions of events that it is representing fulfills the condition AC2(1). We
assume that the set of events Z is equal to the events occurring on the path
σ. We further assume that W = V ∖ Z and that V = Act. W hence contains all
events that are possible, minus the ones that occur on path σ. More formally,
for a given σ, Z = {e ∈ V ∣σ ⊧ e}. This corresponds to using the valuation val1 to
assign true to all variables in Z and false to all variables in W in the formulation
of AC2(1). Changing the valuation of the variables in Z to move from val1 to
some val2 can imply removing variables from Z. Due to the minimality of σ this
implies that the resulting trace σ′ is no longer in ΣC . Testing of this condition
is hence implicit and implied by the minimality of the candidate set.

Test for AC2(2): We need to check that moving W from val1 to val2 and from
order1 to order2 has no effect on the outcome of ϕ as long as the values of X are
kept at the values defined by val1 and the order defined by order1. Recall that
W denotes all events that are not currently considered to be causal, and that we
compute Z as an overapproximation of X . For a path σ ∈ CFT(T) changing W
from val1 to val2 and from order1 to order2 implies that events are added to σ.
Thus, we check for each path σ ∈ CFT(T) whether there exists some path σ′ ∈ ΣG

for which σ⊂̇σ′ holds. If there is no such path, there are no val2 and order2 of
W that change the outcome of ϕ, and as a consequence AC2(2) is fulfilled by σ.
If we do find such a path σ′, it contains all variables in Z with val1 and order1

and some events W with val2 and order2 that change the outcome of ϕ. In other
words, the non-occurrence of the events in W on σ was causal for ϕ. In order to
identify those events, we search for the minimal paths R = {σ′ ∈ ΣG∣σ⊂̇σ

′
}. For

each path in R we negate the events that are in σ but not in σ′ and add them to
the candidate set. Subsequently, we remove σ from the candidate set. Consider
the case Z = G
O
T
C in our rail road crossing model. It is necessary that no
event G occurs between O and T for this ordered conjunction of events to lead
to a hazard. If the system execution G
O
G
 T
C is possible, which means
that there is a path representing this execution in the set NCX(A) for top level
event A, we hence have to replace Z by Z ′ = G
O
 ¬G
 T
C.

80 M. Kuntz, F. Leitner-Fischer, and S. Leue

Test for AC3: Due to the minimality property of the candidate set, no test for
AC3 is necessary.

Test for OC1: We need to decide whether for all ordered conjunctions in CFT(T)
the order of the events is relevant to cause T . For each path σ ∈ CFT(T), we
check whether the order of the events to occur is important or not. If the order of
events in σ is not important, then there has to be at least one path σ′ ∈ CFT(T)
for which σ = σ′ and not σ =̇ σ′. For each event ei in σ we check for all other
events ej with i < j whether σ′ ⊧ ei
 ej for all σ′ ∈ CFT(T). If σ′ ⊧ ei
 ej for all
σ′ ∈ CFT(T), we mark this pair of events as having an order which is important
for causality. If we can not find such a σ′, we mark the whole path σ as having
an order which is important for causality.

Adding Probabilities. In order to properly compute the probability mass that
is to be attributed to the TLE T in the fault tree it is necessary to account for all
paths that can cause T . If there are two paths σ1, σ2 ∈ ΣC which, when combined,
deliver a path σ12 ∈ ΣC , then the probability mass of all three paths needs to be
taken into account when calculating the probability for reaching T . To illustrate
this point, consider an extension of the railroad example introduced above. We
add a traffic light indicating to the car driver that a train is approaching. Event R
indicates that the traffic light on the crossing is red, while the red light being off
is denoted by event L. The top level event A denoting the hazard is expressed as
a state proposition applicable to the underlying stochastic model that states that
neither the red light is on not the gate is closed, and that the train approaches and
the car is in the crossing. Assume that the above described test would identify the
following ordered conjunctions of events to be causal: ¬G
T
C and ¬L
T
C.
Due to the minimality property of CFT(A) the ordered conjunction ¬G
 ¬L

T
 C would be missing. We would hence lose the probability mass associated
with the corresponding trace in the counterexample, as well as the qualitative
information that the simultaneous failure of the red light and the gate also leads
to a hazardous state. To account for this situation we introduce the combination
condition CC1. CC1: Let σ1, σ2, ...σk ∈ CFT(L) paths and ψ1, ψ2, ..., ψk the event
conjunctions representing them. A path σ is added to CFT(L) if for k ≥ 2 paths
in CFT(L) it holds that σ ⊧ ψ1 ∧ σ ⊧ ψ2 ∧ ... ∧ σ ⊧ ψk. We can now assign each
path in the candidate set the sum of the probability masses of the paths that it
represents. This is done as follows: The probability of a path σ1 in CFT(L) is
the probability sum of all paths σ′ for which σ1 is the only subset in in CFT(L).
The last condition is necessary in order to correctly assign the probabilities to
paths which where added to the fault tree by test CC1. All paths still in the
candidate set are part of the fault tree and have now to be included in the
fault tree representation. The fault trees generated by our approach all have a
normal form, that is they start with an intermediate-gate representing the top
level event, that is connected to an OR-gate. The paths in the candidate set
CFT(L) will then be added as child nodes to the OR-gate as follows: Paths with
a length of one and hence consisting of only one basic event are represented
by the respective basic event. A path with length greater than one that has

From Probabilistic Counterexamples via Causality to Fault Trees 81

no subset of labels marked as ordered is represented by an AND -gate. This
AND -gate connects the basic events belonging to that path. If a (subset of a)
path is marked as ordered it is represented by a PAND -gate that connects the
basic events in addition with an Order Condition connected to the PAND -gate
constraining the order of the elements. The probability values of the AND -gates
are the corresponding probabilities of the paths that they represent. In order
to display the probabilities in the graphical representation of the fault tree, we
add an intermediate event as parent node for each AND -gate. The resulting
intermediate events are then connected by an OR-gate that leads to the top
event, representing the hazard. Since the path probabilities are calculated for
a path starting from an initial state to the hazard state, the probability of the
OR-gate is the sum of the probability of all child elements.

Scalability and Complexity. As we show in detail in [15], the complexity
of our algorithm is cubic in the size of the counterexample. The case studies
presented in Section 4 show that the fault tree computation finishes in several
seconds, while the computation of the counterexample took several minutes.
Hence, the limiting factor of our approach is the time needed for the computation
of the counterexample.

4 Case Study

We now briefly discuss a case study illustrating the applicability of our approach.
Notice that for reasons of limited space we have to refer the reader to [15] for
more detail, and also for more case studies. This case study is taken from [1]
and models an industrial size airbag system. The airbag system architecture
that we consider consists of two acceleration sensors whose task it is to detect
front or rear crashes, one microcontroller to perform the crash evaluation, and
an actuator that controls the deployment of the airbag. Although airbags save
lives in crash situations, they may cause fatal behavior if they are inadvertently
deployed. This is because the driver may loose control of the car when this de-
ployment occurs. It is therefore a pivotal safety requirement that an airbag is
never deployed if there is no crash situation. We are interested in generating
the fault tree for an inadvertent ignition of the airbag. In CSL, this property
can be expressed using the formula P=?(noCrash U≤T AirbagIgnited). Notice
that we assume the PRISM models in practical usage scenarios to be auto-
matically synthesized from higher-level design models, such as for instance by
our QuantUM tool [16]. However, the case study presented in this paper was di-
rectly modeled in the PRISM language. We computed the counterexamples using
our counterexample generation tool DiPro [2], which in turn uses the PRISM
model checker. Figure 1 shows the fault tree generated by CX2FTA. For better
readability we have omitted the order constraints of the PAND -gates. While the
counterexample consists of 738 paths, the fault tree comprises only 5 paths. It is
easy to see by which basic events, and with which probabilities, an inadvertent de-
ployment of the airbag is caused. For instance, there is only one single fault that
can lead to an inadvertent deployment, namely FASICShortage. It is also easy to

82 M. Kuntz, F. Leitner-Fischer, and S. Leue

Fig. 1. Fault Tree of the Airbag System

t Runtime CX (sec.) Paths in CX Mem. CX Runtime FT Paths in FT Mem. FT

10 1 147 (≈ 19.12 min.) 738 29.17 MB 1.3 (sec.) 5 27 MB

100 1 148 (≈ 19.13 min.) 738 29.20 MB 1.3 (sec.) 5 27 MB

1000 1 263 (≈ 21.05 min.) 738 29.49 MB 1.8 (sec.) 5 27 MB

Fig. 2. Experiment results for T=10, T=100 and T=1000

see that the combination of the basic events FETStuckHigh and FASICStuckHigh
only lead to an inadvertent deployment of the airbag if the basic event FETStuck-
High occurs prior to the basic event FASICStuckHigh. The case study shows that
the fault tree is a compact and concise visualization of the counterexample which
allows for an easy identification of the basic events that cause the inadvertent de-
ployment of the airbag, along with the corresponding probabilities. If the order of
the events is important, this can be seen in the fault tree by the PAND -gate. In
the counterexample computed by DiPro one would have to manually compare the
order of the events in all 738 paths, which is a tedious and time consuming task.
Figure 2 shows the memory and run time consumption of the fault counterexam-
ple and fault tree computation2. The computational effort is dominated by the
counterexample computation. Increasing the parameter t (mission time) in the
process model has only a marginal influence on the computational effort needed.

5 Related Work

Work described in [7,20] interprets fault trees in terms of temporal logic. This is
the opposite direction of what we aim to accomplish, namely to derive fault trees

2 Experiments where performed on a PC with an Intel Core2Duo CPU (3.06 Ghz) and
8 GBs RAM.

From Probabilistic Counterexamples via Causality to Fault Trees 83

from system execution models. Various approaches to derive fault trees semi-
automatically or automatically from various semi-formal or formal models have
been proposed, e.g. [19,8,18]. Contrary to our method, none of these methods
uses sets of system execution sequences as the basis of the fault tree derivation,
or provides an automatic probabilistic assessment of the synthesized fault tree
nodes. These approaches also lack a justification of the causality model used.
Our work extends and improves on the approach of [6] in the following ways: We
use a single set of system modeling and specification languages, namely PRISM
and CSL. Whereas in the approach of [6] only minimal cut sets are generated,
we generate complete fault trees. Contrary to [6], we support PAND-gates and
provide a justification for the causality model used. Work documented in [5] uses
the Halpern and Pearl approach to determine causality for counterexamples in
functional CTL model checking. However, this approach considers only func-
tional counterexamples that consist of single execution sequences. [11] contains
a careful analysis of the complexity of computing causality in the SEM. Most
notable is the result that even for an SEM with only binary variables computing
causal relationships between variables is NP-complete.

6 Conclusion

We presented a method and tool that automatically generates a fault tree from
a probabilistic counterexample. We demonstrated that our approach improves
and facilitates the analysis of safety critical systems. The resulting fault trees
were significantly smaller and hence easier to understand than the corresponding
stochastic counterexample, but still contain all information to discern the causes
for the occurrence of a hazard. The justification for the causalities determined by
our method are based on an adoption of the Strucural Equation Model of Halpern
and Pearl. We illustrated how to use this model in the analysis of computing
systems and extended it to account for event orderings as causal factors. We
presented an over-approximating implementation of the causality tests derived
from this model. To the best of our knowledge this is the first attempt at using
the structural equation model in this fashion. In future work, we plan to further
extend our approach, in particular to support the generation of dynamic fault-
trees [10]. We are also interested in incorporating causality analysis directly into
model checking algorithms.

Acknowledgments. The authors thank Mark Burgess for giving them access
to the FaultCAT source code.

References

1. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety Analysis of an Airbag System Using Probabilistic FMEA and Probabilistic
Counterexamples. In: Proc. of QEST 2009. IEEE Computer Society, Los Alamitos
(2009)

84 M. Kuntz, F. Leitner-Fischer, and S. Leue

2. Aljazzar, H., Leue, S.: Debugging of Dependability Models Using Interactive Vi-
sualization of Counterexamples. In: Proc. of QEST 2008. IEEE Computer Society,
Los Alamitos (2008)

3. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. Soft. Eng. (2009)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Soft. Eng. (2003)

5. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterexam-
ples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 94–108. Springer, Heidelberg (2009)

6. Böde, E., Peikenkamp, T., Rakow, J., Wischmeyer, S.: Model Based Importance
Analysis for Minimal Cut Sets. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 303–317. Springer, Hei-
delberg (2008)

7. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic Fault Tree Analysis for Reactive
Systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

8. Chen, B., Avrunin, G., Clarke, L., Osterweil, L.: Automatic Fault Tree Derivation
From Little-Jil Process Definitions. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick,
P. (eds.) SPW 2006 and ProSim 2006. LNCS, vol. 3966, pp. 150–158. Springer,
Heidelberg (2006)

9. Collins, J. (ed.): Causation and Counterfactuals. MIT Press, Cambridge (2004)
10. Dugan, J., Bavuso, S., Boyd, M.: Dynamic Fault Tree Models for Fault Tolerant

Computer Systems. IEEE Trans. Reliability (1992)
11. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artifi-

cial Intelligence (2002)
12. Halpern, J., Pearl, J.: Causes and explanations: A structural-model approach. Part

I: Causes. The British Journal for the Philosophy of Science (2005)
13. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic

model checking. IEEE Trans. Softw. Eng. (2009)
14. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-

matic Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

15. Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples
via causality to fault trees. Technical Report soft-11-02, Chair for Software
Engineering, University of Konstanz (2011),
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/

soft-11-02.pdf
16. Leitner-Fischer, F., Leue, S.: QuantUM: Quantitative safety analysis of UML mod-

els. In: Proc. of QAPL 2011 (2011)
17. Lewis, D.: Counterfactuals. Wiley-Blackwell, Chichester (2001)
18. McKelvin Jr, M., Eirea, G., Pinello, C., Kanajan, S., Sangiovanni-Vincentelli, A.:

A Formal Approach to Fault Tree Synthesis for the Analysis of Distributed Fault
Tolerant Systems. In: Proc. of EMSOFT 2005. ACM, New York (2005)

19. Pai, G., Dugan, J.: Automatic synthesis of dynamic fault trees from UML system
models. In: Proc. of ISSRE 2002. IEEE Computer Society, Los Alamitos (2002)

20. Schellhorn, G., Thums, A., Reif, W.: Formal fault tree semantics. In: Proc. IDPT
2002. Society for Design and Process Science (2002)

21. U.S. Nuclear Regulatory Commission. Fault Tree Handbook, NUREG-0492 (1981)
22. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier, Ams-

terdam (2009)

http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-11-02.pdf
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-11-02.pdf

Rigorous Evidence of Freedom from

Concurrency Faults in Industrial Control
Software

Richard Bonichon1, Géraud Canet1, Löıc Correnson1, Eric Goubault1,
Emmanuel Haucourt1, Michel Hirschowitz1,

Sébastien Labbé2, and Samuel Mimram1

1 CEA, LIST,
Gif-sur-Yvette, F-91191, France
firstname.lastname@cea.fr

2 EDF Research & Development
6 quai Watier, Chatou, F-78401, France

firstname.lastname@edf.fr

Abstract. In the power generation industry, digital control systems may
play an important role in plant safety. Thus, these systems are the ob-
ject of rigorous analyzes and safety assessments. In particular, the qual-
ity, correctness and dependability of control systems software need to be
justified. This paper reports on the development of a tool-based method-
ology to address the demonstration of freedom from intrinsic software
faults related to concurrency and synchronization, and its practical ap-
plication to an industrial control software case study. We describe the
underlying theoretical foundations, the main mechanisms involved in the
tools and the main results and lessons learned from this work. An im-
portant conclusion of the paper is that the used verification techniques
and tools scale efficiently and accurately to industrial control system
software, which is a major requirement for real-life safety assessments.

Keywords: Digital control systems, software dependability, formal ver-
ification, concurrency, deadlock.

1 Introduction — Intrinsic Software Faults

Dependability assessment of digital control systems require elements from con-
trol systems designers in order to establish the excellence of production; e.g. evi-
dence of systematic, fully documented and reviewable engineering process, qual-
ity assurance, test and simulation at different stages of development, operational
experience and demonstration of conformity to applicable standards.

Complementary measures may be taken in order to demonstrate properties,
and provide rigorous evidence of the freedom from postulated categories of faults.
Considered faults include intrinsic software faults, i.e. faults in a software design
that can be identified independently of functional specifications.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 85–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

86 R. Bonichon et al.

Technical studies and surveys performed in recent years have led to consider
three main categories of software intrinsic faults as relevant to this domain, i.e.
intrinsic faults that might be postulated in software important to availability.
The taxonomy we rely on [24] should be comprehensive, though not exhaustive.
It has been established by using various sources:

– Experience gained in software formal verification at EDF (e.g. [28] and in-
ternal technical reports) and other institutions or companies sharing similar
interest in such methods [1, 15, 25];

– Community lists of software faults, like CWE [12];
– Lists of addressed faults published by software analysis tool vendors.

The mentioned categories of faults are the following:

– Faults in concurrency and synchronization (detailed below);
– Faults in dynamic handling of memory, namely: memory leaks, segmentation

faults and other memory-related undesirable behaviors;
– Other, more “basic”, faults such as divisions by zero, out-of-bounds array

access, use of uninitialized variables, other numeric manipulation errors, etc.

Depending on the importance to safety of a system software, some of the above
categories of faults can be ruled out by design. For instance in critical software,
dynamic management of the memory is usually not allowed by design rules.
In this paper, only the concurrency aspects are developed; specifically when
considering these aspects, it is of interest to demonstrate the absence of the
following intrinsic faults:

– Resource starvation such as deadlocks and livelocks, e.g. points where no
further progress is possible for a given program run;

– Non-determinism or race condition, e.g. points where a program may be-
have differently given the same inputs (because side effects depend upon
synchronization);

– Incorrect protection of shared resources, e.g. concurrent and non protected
accesses to a shared variable;

– Incorrect handling of priorities;
– Unexpectedly unreachable program states, e.g. no path may lead to a given

state while it was supposed to be reachable.

In some cases, intrinsic faults are unlikely to be detected via classical V&V meth-
ods1, for instance faults that might be triggered in specific configurations of vari-
ables (e.g. division by zero, arithmetic overflow), or after long runs (e.g. overrun
in a very large buffer, out-of-memory error due to a small leak), etc.

Tool-based analytic approaches to systematically identify intrinsic faults prefer-
ably rely on formal verification techniques. The gained confidence can then be
used in higher level assessments, e.g. to support claims about I&C software con-
tribution to the reliability of a safety function, or to alleviate concerns regarding
digital Common Cause Failures.
1 Functional correctness still needs to be addressed with appropriate approaches, e.g.

functional testing, theorem proving or simulation.

Rigorous Evidence of Freedom from Concurrency Faults 87

2 Tool-Based Methodology — Outline

This paper reports on the development of a tool-based methodology to demon-
strate the freedom from intrinsic software faults related to concurrency in in-
dustrial control software. The following two related projects are involved (both
projects have eponymous tools):

– MIEL: Interactive model extraction from software — Analyze software written
in C language in order to facilitate code understanding and extract represen-
tative models to be analyzed by third-party tools;

– ALCOOL: Analysis of coordination in concurrent software — Develop a theory,
algorithms and a static analysis tool with the ability to verify synchronization
properties (particularly, freedom from intrinsic faults) in complex software.

The tool-based methodology developed in these two projects aims at analyzing
software that can be found in digital control systems either safety related, or
important to availability, in power plants. Compared to the most critical software
parts, complex programming mechanisms might be more freely used in such
software, e.g. concurrent interactions and synchronization.

On the other hand, the dependability requirements for such systems are high;
then the system lifecycle must (at least partly) establish required properties,
e.g. predictability. In particular, design measures are generally applied to ef-
fectively reduce the complexity and restrict the set of potential vulnerabilities.
Memory allocation, task and synchronization resources creation are indeed to
be performed only during a dedicated initialization phase. Then, the behavior in
normal operation is intended mostly cyclic and steady. For instance, an iteration
of a loop is expected to “know” as little as possible from previous iterations.
Also, communication and synchronization are expected to be restricted to the
necessary. The presented tool-based methodology is intended to take advantage
of those characteristics, to provide rigorous verification tools with high efficiency.

The rest of the paper is structured as follows. The tools MIEL and ALCOOL,
together with their theoretical foundations are described in Sec. 3. An industrial
software case study and practical experiments are described in Sec. 4. Some
related works are presented in Sec. 5. Finally, the main results, lessons learned
and perspectives to this work are synthesized in Sec. 6.

3 Theoretical Framework and Tools

3.1 Static Analysis for Model Extraction and the MIEL Tool

The MIEL tool is a model extractor for C programs. It runs as a plug-in of the
Frama-C static analysis platform [11, 17], which is dedicated to the analysis of
software source code written in the C programming language.

The main requirement for models extracted by MIEL is to be conservatively
representative with respect to the specified point of interest, i.e. behaviors re-
lated to a specific aspect of interest in the original program must be included in
the behaviors denoted by the corresponding model. Various intrinsic aspects of

88 R. Bonichon et al.

f u n c t i o n pthread create
of t ype th r ead c r e a t i o n
has arg 3 of t ype

f u n c t i o n name

f u n c t i o n pthread mutex unlock of t ype r e l e a s e
has arg 1 of t ype semaphore

f u n c t i o n pthread mutex lock of t ype l o c k
has arg 1 of t ype semaphore

Fig. 1. Excerpts of MIEL description file: POSIX thread creation (left), locks (right)

software can be of interest, including calls to memory management, concurrency,
synchronization or communication primitives.

Accordingly, extracted sets of information may then be provided as models to
dedicated external tools, with the purpose of demonstrating or refuting proper-
ties. The MIEL tool is primarily geared toward extracting models from concurrent
programs; its algorithm applies also to sequential programs.

Model extraction is based on a description file, which indicates the points of
interests in the program: a list of functions, together with a signature (using
types known by MIEL).2 Only arguments of interest should be specified in a
signature. For example, a user interested in threads or processes created in a
program using POSIX primitives, might write the description of Fig. 1 (left).
This declares to the analyzer, first, that every occurrence of thread creation
must appear in the model, and second, that the starting functions of threads are
given in the third argument of pthread create. Now, considering synchronization
faults, e.g. deadlocks, the model must also encompass all events where locks are
taken and released. Fig. 1 (right) suggests a suitable description.

The MIEL tool implements a syntactic model extraction algorithm, which is
sound for a specific class of software where the interesting function identifiers
are syntactically reachable. That is to say, the functions of interest must not be
aliased, and resource requests of interest must be syntactically distinct. We will
see in the following how these soundness requirements are consistent with the
characteristics of the targeted systems software.

Considering the typical design features of the targeted classes of software
(safety related or important to availability, cf. Sec. 2), it is expected that synchro-
nization or memory management primitives can be easily identified (no aliases
on these function names). It is also expected that loop unrolling is sufficient to
make sure accesses to different synchronization or memory resources (threads,
mutexes, semaphores, memory cells, etc.) can be syntactically distinguished. This
can be achieved through code annotation within Frama-C. Detailed examples of
the annotations needed for the presented case study are given in Sec. 4.2.

3.2 Geometric Semantics for Concurrency Analysis, ALCOOL Tool

The ALCOOL tool is based on the directed algebraic topology of cubical areas.
Roughly speaking, a cubical area of dimension n ∈ N is a finite union of hyper-
rectangles of dimension n ∈ N (i.e. finite products of n non empty intervals of the
real line R). As mathematical objects, the cubical areas enjoy a structure which

2 The types used to classify functions include: thread creation, process creation, lock,
release, delay, priority, interrupt handler, ...

Rigorous Evidence of Freedom from Concurrency Faults 89

p

P
(a

)

V
(a

)

P (a)

V (a)

P
(a

)

V
(a

)

P (a)

V (a)

P
(a

)

V
(a

)

P (a)

V (a)

Fig. 2. The forbidden square

is implemented as a library used by the ALCOOL tool. Basically it takes as input
a program written in a specific input language (in practical cases, models are
preferably automatically generated by MIEL) and produces a geometric model
which is a cubical area. From this model, ALCOOL then can identify forbidden
states, deadlocks, unreachable states, critical sections. Using an algorithm which
performs the “prime” decomposition of a cubical area [3], ALCOOL can also find
the subgroups of processes which actually run independently from each others.

The PV language was introduced by E.W. Dijkstra to illustrate the problems
which may arise when designing parallel programs [13]. In the original version,
P and V respectively stand for the dutch words “pakken” (take) and “vrijlaten”
(release). The processes indeed share a pool of resources, and each of them may
request the authorization to access a resource a by executing the instruction
P (a). If a is available, then it is granted to the process until it releases it by
executing the instruction V (a). Otherwise, the process stops and waits until the
resource is dropped by the previous holder.

On the practical side, the development of the ALCOOL tool was originally driven
by the need for dealing with industrial C programs. The ALCOOL input language
(called PV in the following), therefore contains a broader set of concurrency
primitives, including features from POSIX and VxWorks.

We now illustrate the abilities of ALCOOL through some examples. Consider
the sequential process π := P (a).V (a), where a is a resource that can be held by
a single process at a time (a mutex). Then run two copies of π simultaneously:
π|π (cf. Fig. 2). Generally, each running process is associated with a dimension,
therefore the geometric model is here 2-dimensional. The point p represents
a state in which both instruction pointers, which are the projections of p, lie
between P (a) and V (a). That is, in this state both copies of the process π hold
the resource a, which is by definition forbidden (not feasible). The geometric
model is thus R

2\[1, 2[2: all the points in the gray square are forbidden.
The fact intervals are open or closed depends on whether an instruction is

executed exactly when it is reached by the instruction pointer. In this framework,
the program execution traces correspond to increasing continuous paths in the
geometric model (cf. Fig. 2). The library dealing with cubical areas allows ALCOOL
to identify these, all represented by the same cubical area.

For the next example in Fig. 3 (left), we consider two processes π0 :=
P (a).P (b).V (b).V (a) and π1 := P (b).P (a).V (a).V (b) running concurrently. We
have two resources a and b each of which generates a forbidden rectangle. In this

90 R. Bonichon et al.

Fa
P(a)

V(a)
P

(a
)

V
(a

)

Fb

P(b)

V(b)

P
(b

)

V
(b

)

F

P(b)

P(a)

V(a)

V(b)

P
(a

)

P
(b

)

V
(b

)

V
(a

)

P(b)

P(a)

V(a)

V(b)

P
(a

)

P
(b

)

V
(b

)

V
(a

)

deadlock zone

Fig. 3. Deadlock examples: The Swiss flag (left), The 3 dining philosophers (right)

example we have a potential deadlock: if the first process takes the resource a
while the second one takes b, then both won’t be able to progress further.

The 3-dimensional models arise from the study of programs made of 3 pro-
cesses, such as the well-known 3 dining philosophers, cf. Fig. 3 (right). In this
picture, the central (red) cube represents the deadlock zone.

As we shall see, ALCOOL can also perform the factorization of a PV pro-
gram from its geometric model. In the next example we introduce counting
semaphores: resources that can be shared by more than 2 processes. We suppose
a and b are mutexes and c is a 3-semaphore, meaning c can be held by 2 processes
at a time but not 3. Then we consider the following processes:

πa := P (a).P (c).V (c).V (a)
πb := P (b).P (c).V (c).V (b)

Then we consider the PV program πa|πb|πa|πb. A handmade analysis reveals
that the semaphore c is in fact useless. The program can indeed be split into
two groups of processes {1, 3} and {2, 4}. Each group cannot hold more than
one occurrence of the c resource, so it cannot run out of stock. The ALCOOL tool
detects this situation by performing an algebraic factorization, proving that the
geometric model of the program can be written as a 2-fold Cartesian product:

(
[0, 1[×[0,∞[∪ [4,∞[×[0,∞[∪ [0,∞[×[0, 1[∪ [0,∞[×[4,∞[

)2

From a theoretical point of view, a cubical area can be written as a Cartesian
product in a unique way (compare with natural numbers and prime numbers).
This feature is extremely important since it allows, when the decomposition of

Rigorous Evidence of Freedom from Concurrency Faults 91

the geometric model is not trivial, to split the analysis of a program into the
analysis of several simpler subprograms.

The cubical area library lies upon some facts we now state. In the sequel, a
cubical area should be understood as a finite union of hyperrectangles.

– The intersection of finitely many cubical areas of dimension n is a cubical
area of dimension n;

– The complement (in R
n) of a cubical area of dimension n is a cubical area

of dimension n;
– Any cubical area has a “normal form” given by the collection of all its max-

imal sub-hyperrectangles. A hyperrectangle contained in a cubical area X
is said to be maximal (in X) when any strictly bigger hyperrectangle is not
contained in X ;

– The previous assertions over the n dimensional cubical areas are compatible
with the action of the symmetric group Sn (in other words the permutation
of coordinates in a “coherent” way);

– There is a notion of directed homotopy so that each equivalence class of
directed path over a cubical area is characterized by a cubical area X . Indeed,
a path γ is in the class EX if and only if its image {γ(t) | t ∈ [0, 1]} is
contained in X .

More details about the way theoretical facts are exploited by ALCOOL may be
found in [19]. The cubical areas are special cases of pospaces, they are intro-
duced in [26] without any mention to their directed homotopy aspects. Gentle
introductions to the latter can be found in [18] and [16]. An abstract treatment
of Directed Algebraic Topology can be found in [20].

4 Case Study

This section reports on a practical application of the verification approach pre-
sented in Sec. 3. Section 4.1 briefly describes a real-world software unit, which is
embedded in a programmable logic controller. Then, we explain in Sec. 4.2 how
the verification framework and tools support rigorous evidence of freedom from
synchronization faults in this software.

4.1 Industrial Control System Software

Software under analysis in the present case study is a processing unit of an indus-
trial programmable logic controller (PLC) used in digital control systems.The
source code is written in C language; its size is approximately 85 kloc, where 1
kloc = 1 000 lines of code (107 kloc including specific header files and 135 kloc
including all header files).

This software is involved in processing inputs and outputs (interfacing control
systems with sensors and actuators, including local processing of I/O data), han-
dling network communications, self-monitoring and maintenance functions. For
other low-level internal resource management and processing, the software relies

92 R. Bonichon et al.

on a commercial real-time kernel threads API: for scheduling, handling of prior-
ity and interruption, creation and management of threads and communication
resources such as semaphores and queues.

The following is a succinct description of the software architecture and nom-
inal dynamic behavior. After kernel initialization, the main thread configures
interruptions, connects interruption routines, and creates all the needed threads
and communications resources (there are about 10 of each item created). Each
thread is created with one of the following purposes: handling process inputs,
screening and detecting state changes in I/O boards; handling time-controlled
inputs and outputs and network communications; PLC configuration; update
of redundant processing unit, self-checking, etc. These threads run concurrently
until the end of the main thread. Shared data include queues, semaphores (some
of which are gathered in arrays), some events and configuration values.

4.2 Verification of Synchronization Properties

Model Extraction. As explained in Sec. 3.1, users of MIEL need to check that
each call to a function of interest in the source file can be syntactically seen
as such in the source files. Concerning our case study, code inspection indicates
that some parts need annotations for the abstracted model to be correct. As
argued earlier, two conditions might invalidate that correction: aliases for syn-
chronization primitives names, and calls to synchronization primitives nested
within loops. In the former case, we have seen in Sec. 2 that relying on design
considerations, it is expected that there is no alias on synchronization primitives
names (we have also confirmed this assumption by code inspection). In the latter
case, we rely on loop unrolling to extract a correct model.

More precisely, where semaphores are locked then unlocked, the encompassing
loop has to be syntactically expanded by Frama-C before the analysis by MIEL,
as in Fig. 4. Actually, every part of the original code that is both a remote parent
of a call to a function of interest, and located within a loop will need to have its
loop unrolled in this way. With the additional use of semantic constant folding
(done by a Frama-C plug-in) the semaphores of Fig. 4 can be identified in the
model without ambiguity (because syntactically different after constant folding).

After the initial phases of specifying the aspects of interest in the program —
in this case: primitives related to semaphores, threads and message queues —
and inserting the appropriate annotations, MIEL performs an automatic analysis.
Fig. 4 shows the whole description file needed for the case study. No additional
code modifications or annotations are needed.

Given the code snippet of Fig. 4 (right), MIEL yields a model sketched in
Fig. 5. During the analysis, the entry points of threads are automatically found.
Launching MIEL analysis of the case study files takes a few seconds on a recent
Linux workstation. It yields a quite large model file: ≈ 2000 lines in the PV
language (fifty times smaller than the original C code).

Verification. Whether programs are concurrent or not, the analysis of programs
with loops is a problem known to be undecidable. Hence, ALCOOL analyzes are
parametrized by the number of synchronization steps to be unrolled to find

Rigorous Evidence of Freedom from Concurrency Faults 93

f u n c t i o n semTake of t ype l o c k
has arg 2 of t ype d e l a y

arg 1 of t ype semaphore

f u n c t i o n semGive of t ype r e l e a s e
has arg 1 of t ype semaphore

f u n c t i o n taskSpawn
of t ype th r ead c r e a t i o n
has arg 5 of t ype f u n c t i o n name

f u n c t i o n msgQSend of t ype send
has arg 5 of t ype pr ior i ty

arg 4 of t ype d e l a y
arg 1 of t ype queue

f u n c t i o n msgQReceive of t ype r e c e i v e
has arg 4 of t ype d e l a y

arg 1 of t ype queue

/∗@loop pragma UNROLL 10; ∗/
f o r (i = 0 ; i < 10 ; i ++) {

i f (message[i]) {
i f (semTake(sem array[i],

NOWAIT))
{

...
message[i] = 0;
new frame[i] = ... ;
semGive(sem array[i]);

}

Fig. 4. Inputs: MIEL description file for the case study (left), Frama-C annotation for
loop expansion (right)

exec loop =
(((P(sem array 0).V(sem array 0))

+ ...) + ...).
(((P(sem array 1).V(sem array 1))

+ ...) + ...).
...
(((P(sem array 9).V(sem array 9))

+ ...) + ...).

Geometric Model (forbidden area):

[0, +∞[2×[1, +∞[×[0, +∞[10

∪ [0, +∞[3×[1, +∞[×[0,+∞[9

∪ [0, +∞[7×[1, +∞[×[0,+∞[5

∪ [0, +∞[9×[1, +∞[×[0,+∞[3

∪ [0, +∞[10×[1, +∞[×[0, +∞[2

∪ [0, +∞[11×[1, +∞[2

Deadlock Attractor: ∅
Cr i t i c a l sec t ions: No con f l i c t .
Unreachable area: ∅

Fig. 5. Outputs: Part of the PV model for the code of Fig. 4 (left), ALCOOL output on
the case study (right)

possible intrinsic faults in concurrency. During the analysis, ALCOOL priorly
chooses branches of “if then else” on which resource primitives appear. The
idea is to focus the verification effort on scenarios that might lead to a syn-
chronization fault. The results are displayed as in Fig. 5. Here, the geometric
model has dimension 13 (no graphical representation available). Back to the def-
inition of intrinsic faults related to synchronization and concurrency in Sec. 1,
the results displayed by ALCOOL give evidence of freedom from deadlocks (item
“Deadlock attractor”), incorrect protection of shared resources (item “Critical
sections”), and unexpectedly unreachable program states (item “Unreachable
area”). Non-determinism and priorities are currently not supported.

When the depth of analysis varies, the qualitative results remain the same as
in Fig. 5. As shown in Fig. 6, the computation time grows non-linearly with the
depth of analysis. The analysis takes less than one hour at depth 106, and less
than one minute at depth 105. Depth 5×106 can be practically reached (around
17 hours; computation times obtained on a Z600 Linux workstation).

94 R. Bonichon et al.

Fig. 6. ALCOOL: Computation time versus depth of analysis

We recall that depth of analysis is here expressed in terms of calls to synchro-
nization primitives; the associated concrete traces in the original program are
consequently far longer, referring to the 1 : 50 ratio between model and source
code (cf. Sec. 4.2, part “model extraction”).

As we have seen, analyzes with ALCOOL can be practically performed at a
significant depth. The significance is consolidated under the assumption that
loop iterations have limited memory from previous iterations (cf. Sec. 2). More
generally, these results confirm the considerations in Sec. 2 about how the char-
acteristics of the addressed classes of programs can be helpful when designing or
using formal analysis methods. Code inspection in this software case study indeed
shows that synchronization primitives are moderately used (few occurrences of
resource requirements, limited interactions between tasks...). The resulting con-
current model is quite simple, given the size of the software, and compared to
what absolute concurrency may allow.

In cases where ALCOOL finds a synchronization fault, the variables behaviors
have to be thoroughly studied in order to check whether the execution traces
that lead to the fault are in fact feasible or not.

No intrinsic fault related to concurrency has been found in the original source
code; this outcome is likely when considering high integrity software. In the
remainder of this section, we will see how voluntarily inserted faults can be
detected by the tools (the instance presented is a deadlock).

Voluntary Insertion of a Deadlock. This short presentation is meant as an
example; the fault detection ability of the tools is based on the framework in
Sec. 3 and is validated elsewhere (against sets of sample codes). We actually
insert three threads in the original annotated code of the case study. Fig. 7 (left)
shows the additional code accordingly. These additional threads implement three
dining philosophers in a configuration known to lead to starvation. Fig. 7 (right)
shows a snippet of the PV model generated by MIEL, focused on the additional
threads. Fig. 8 shows that ALCOOL indeed finds the deadlock induced by the three
additional threads.

Rigorous Evidence of Freedom from Concurrency Faults 95

vo i d Ph1(vo i d) {
semTake(mutex a, WAITFOREVER) ;
semTake(mutex b, WAITFOREVER) ;
semGive(mutex a) ;
semGive(mutex b) ;

}
vo i d Ph2(vo i d) {

semTake(mutex b, WAITFOREVER) ;
semTake(mutex c, WAITFOREVER) ;
semGive(mutex b) ;
semGive(mutex c) ;

}
vo i d Ph3(vo i d) {

semTake(mutex c, WAITFOREVER) ;
semTake(mutex a, WAITFOREVER) ;
semGive(mutex c) ;
semGive(mutex a) ;

}

s t a t i c vo i d c reate tasks (vo i d) {
mutex a = semBCreate() ;
mutex b = semBCreate() ;
mutex c = semBCreate();

taskSpawn("Russell " ,90,
VX NO STACK FILL,1000,Ph1,
0,0,0,0,0,0,0,0,0,0);

taskSpawn("Goedel" ,90,
VX NO STACK FILL,1000,Ph2,
0,0,0,0,0,0,0,0,0,0);

taskSpawn("Hilbert " ,90,
VX NO STACK FILL,1000,Ph3,
0,0,0,0,0,0,0,0,0,0);

/∗Rest of the init ia l code ∗/

do Ph1 =
(P(mutex a).P(mutex b)
.V(mutex a).V(mutex b))

do Ph2 =
(P(mutex b).P(mutex c)
.V(mutex b).V(mutex c))

do Ph3 =
(P(mutex c).P(mutex a)
.V(mutex c).V(mutex a))

....

i n i t : do Task1 | do Task2
| do Task3 | do Task4
| do Task5 | do Task6
| do Task7 | do Task8
| do Task9 | do Task10
| do Task11 | do Task12
| do Task13 | do Ph3
| do Ph2 | do Ph1

Fig. 7. Inserting philosophers in the original source code (left), Philosophers in the PV

model (right)

Geometric Model (forbidden area):

[0, +∞[2×[1, +∞[×[0, +∞[13 ∪ [0, +∞[3×[1, +∞[×[0,+∞[12

∪ [0, +∞[9×[1, +∞[×[0, +∞[6 ∪ [0, +∞[11×[1, +∞[2×[0,+∞[3

∪ [0, +∞[13×[1, 3[×[2, 4[×[0, +∞[∪ [0, +∞[13×[2, 4[×[0, +∞[×[1, 3[

∪ [0, +∞[14×[1, 3[×[2, 4[

Local Deadlock Attractor: [0, +∞[13×[1, 2[3

Fig. 8. ALCOOL output on the modified case study

5 Related Work

Tools implementing model checking techniques [2, 9] usually work on a represen-
tative model of the program to be analyzed, e.g. SPIN [21], FAST [5], UPPAAL [6].
While SPIN addresses general concurrent systems and their synchronization is-
sues, UPPAAL is dedicated to real-time systems and is thus more focused on to
timing issues, e.g. delays. The FAST tool is dedicated to the analysis of infinite
systems. It mainly aims at computing the exact (infinite) set of configurations

96 R. Bonichon et al.

reachable from a given set of initial configurations. In some cases, the verification
models can be generated by auxiliary tools, e.g. the MODEX tool for SPIN [22];
the TOPICS tool for FAST [23]. As seen in sections 3 and 4, the ALCOOL tool can
similarly be used in conjunction with the MIEL automatic model extractor.

Automata theory is a widely used framework for the theoretical foundations
of model checking tools; for instance SPIN, FAST and UPPAAL respectively work
on Büchi automata, counter automata and timed automata.

In contrast, the ALCOOL tool is based on the topological notion of directed
spaces. Generally speaking, the parallel composition operator is modeled by the
Cartesian product in a well-suited category: �A|B� = �A� × �B�

An automaton is a directed graph endowed with some extra structure. Di-
rected graphs form a category in which any Cartesian product exists though
they do not fit to concurrency theory. Our claim is that using directed spaces is
natural since the Cartesian product in the category of topological spaces behave
as concurrency theory expects.

Other existing approaches include predicate abstraction and refinement (ARMC
[27], BLAST [7], SLAM [4]), symbolic model checking (NuSMV [8]), or combining
model checking and theorem proving (SLAB [14]).

6 Conclusion

This paper reports on the development of a tool-based methodology to demon-
strate the freedom from certain types of software faults, and its practical applica-
tion to an industrial control software case study. Two main phases are involved:
automatically extract a correct and representative model from C code, and then
check for properties in the model.

Lessons Learned. The methodology presented in this paper aims at analyzing
software that can be found in systems either safety related, or important to avail-
ability, in power plants. Experience in assessments of control systems has lead
us to identify generic characteristics for such software (cf. Sec. 2). For instance,
memory allocation, task and synchronization resources creation are usually per-
formed only during a dedicated initialization phase. We have also relied on a
taxonomy of synchronization faults that might be postulated in control systems
software, established in previous works (cf. Sec. 1), and discussed how the tools
can give rigorous evidence against a part of it. Finally, Sec. 4 shows that the
tools scale up efficiently to analyze a real-world control system software unit.
Also, voluntarily inserted faults have been identified.

An important learning is that generic characteristics of targeted classes of
software can be taken in account in order to provide rigorous verification tools
with high efficiency.

The soundness of this approach depends on the following requirements. The
main requirement (R1) is that there is no dynamic creation of threads nor syn-
chronization resources. The other requirements hold only for model extraction
with MIEL: (R2) the programming language must be C, (R3) there must be no

Rigorous Evidence of Freedom from Concurrency Faults 97

aliases on the names of the functions of interest, and (R4) calls to functions of in-
terest must be syntactically distinct. An important claim regarding applicability
of the methodology is that these requirements are compatible with the generic
characteristics of the targeted class of software. Under these assumptions, the
methodology should widely apply within the considered class.

Additionally, let us examine the following cases. If one wants to analyze soft-
ware where:

– only (R1) holds, then ALCOOL can be applied to a model extracted by other
means than MIEL (e.g. expert knowledge or another tool);

– only (R1) to (R3) hold: the required user manipulation for having a sound
model extraction with MIEL should remain fairly reasonable and practicable,
i.e. unrolling loop so that each access to synchronization resources becomes
syntactically noticeable and distinct for MIEL, as in Sec. 4.2. If user inter-
vention is thought too demanding, one would consider the case below.

– only (R1) and (R2) hold: we are currently working on extending the method-
ology with a enhanced model extractor, to deal with this case; cf. Sec. 6, part
“ongoing work”.

Ongoing Work. We are currently experimenting the use of semantic analyzes
using Frama-C’s value analysis [10] to provide a sound value analysis for con-
current programs in order to formally and accurately identify synchronization
variables and threads, and use this information to refine model extraction.

The ALCOOL tool is based on a mathematical library which allows it to deal
with geometric models drawn on a higher dimensional torus. However the rep-
resentation of a finite directed graph on a hypertorus, which is known to be
theoretically possible, has not been implemented yet. Roughly speaking, ALCOOL
is meant to provide any concurrent program with a mathematical structure which
generalizes the notion of control flow graph. Once this structure is determined,
standard methods from static analysis can be applied. The tool-based approach
should then provide a finer-grained analysis of message passing mechanisms.

References

1. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local
non-aliasing. In: PLDI, pp. 128–140 (2003)

2. Baier, C., Katoen, J.P.: Principles of Model-Checking. MIT Press, Cambridge
(2008)

3. Balabonski, T., Haucourt, E.: A geometric approach to the problem of unique
decomposition of processes. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 132–146. Springer, Heidelberg (2010)

4. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

5. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to
practice. STTT 10(5), 401–424 (2008)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

98 R. Bonichon et al.

7. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. STTT 9(5-6), 505–525 (2007)

8. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic
model checker. STTT 2(4), 410–425 (2000)

9. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

10. Cuoq, P., Prevosto, V.: Frama-c’s value analysis plug-in. CEA LIST Technical
Report (2010), http://frama-c.com/download/frama-c-value-analysis.pdf

11. Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Correnson, L., Monate,
B., Prevosto, V., Puccetti, A.: Experience report: OCaml for an industrial-strength
static analysis framework. In: ICFP, pp. 281–286 (2009)

12. CWE Common Weakness Enumeration —, http://cwe.mitre.org/
13. Dijkstra, E.W.: Cooperating sequential processes. In: Programming Languages:

NATO Advanced Study Institute, pp. 43–112. Academic Press, London (1968)
14. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: Slab: A certifying

model checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R.
(eds.) TACAS 2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010)

15. Emanuelsson, P., Nilsson, U.: A Comparative Study of Industrial Static Analysis
Tools. Linköpink University Technical Report (2008)

16. Fajstrup, L., Goubault, E., Raußen, M.: Algebraic topology and concurrency. The-
oretical Computer Science 357, 241–278 (2006)

17. Frama-c Software Analyzers —, http://frama-c.com/
18. Goubault, E.: Geometry and concurrency: a user’s guide. Mathematical Structures

in Computer Science 10(4), 411–425 (2000)
19. Goubault, E., Haucourt, E.: A practical application of geometric semantics to static

analysis of concurrent programs. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 503–517. Springer, Heidelberg (2005)

20. Grandis, M.: Directed Algebraic Topology. New Mathematical Monographs. Cam-
bridge University Press, Cambridge (2009)

21. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Reading (2003)

22. Holzmann, G.J., Ruys, T.C.: Effective bug hunting with spin and modex. In:
Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, p. 24. Springer, Heidelberg (2005)

23. Labbé, S., Sangnier, A.: Formal verification of industrial software with dynamic
memory management. In: IEEE PRDC. pp. 77–84 (2010)

24. Labbé, S., Thuy, N.: Formal verification of freedom from intrinsic software faults
in digital control systems. In: ANS NPIC&HMIT, pp. 2191–2201 (2010)

25. Larochelle, D., Evans, D.: Statically detecting likely buffer overflow vulnerabilities.
In: USENIX Security Symposium, pp. 177–190 (2001)

26. Nachbin, L.: Topology and Order. Mathematical Studies, vol. 4. Van Nostrand,
Princeton (1965)

27. Podelski, A., Rybalchenko, A.: Armc: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2006)

28. Thuy, N., Ourghanlian, A.: Dependability assessment of safety-critical system soft-
ware by static analysis methods. In: DSN, pp. 75–79 (2003)

http://frama-c.com/download/frama-c-value-analysis.pdf
http://cwe.mitre.org/
http://frama-c.com/

Evolutionary Risk Analysis: Expert Judgement

Massimo Felici1, Valentino Meduri1,
Bjørnar Solhaug2, and Alessandra Tedeschi1,�

1 Deep Blue S.r.l.
Piazza Buenos Aires 20, 00198 Roma, Italy

alessandra.tedeschi@dblue.it

http://www.dblue.it/
2 SINTEF ICT

P.O. Box 124 Blindern, 0314 Oslo, Norway

Abstract. New systems and functionalities are continuously deployed in
complex domains such as Air Traffic Management (ATM). Unfortunately,
methodologies provide limited support in order to deal with changes and
to assess their impacts on critical features (e.g. safety, security, etc.).
This paper is concerned with how change requirements affect security
properties. A change requirement is a specification of changes that are to
be implemented in a system. The paper reports our experience to support
an evolutionary risk analysis in order to assess change requirements and
their impacts on security properties. In particular, this paper discusses
how changes to structured risk analysis models are perceived by domain
experts by presenting insights from a risk assessment exercise that uses
the CORAS model-driven risk analysis in an ATM case study. It discusses
how structured models supporting risk analysis help domain experts to
analyse and assess the impact of changes on critical system features.

Keywords: Air Traffic Management, Change Requirements, Security
Requirements, Evolutionary Risk Analysis, CORAS.

1 Changes and Risks

Standards, guidelines and best practices advise to assess the impact of changes.
In safety-critical contexts, or other domains characterised by stringent critical
non-functional requirements (e.g. reliability, security, safety), it is necessary to
assess how changes affect system properties. This aspect concerns system arti-
facts at any developmental stage. For instance, safety cases need to be adapted in
order to take into account any emergent system knowledge (e.g. system failures),
system requirements need to change in order to accommodate evolving environ-
mental factors, testing activities need to be performed again in order to assess
software and configuration changes. Similarly, risk analysis needs to take into ac-
count changes and emergent hazards because changes and evolution may affect
the risk picture. On the one hand, changes and evolution may introduce new or

� Corresponding author.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 99–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.dblue.it/

100 M. Felici et al.

different threats and stress system vulnerabilities. On the other hand, changes
and evolution may provide opportunities for enhancing system dependability.

Unfortunately, support throughout the system lifecycle for systematically
dealing with changes and evolution is patchy. Recent research (e.g. see [18, 19,
24, 25, 26] for work concerned in particular with the AMT domain) highlights
some challenges for risk assessment methodologies. This paper is concerned with
challenges for current risk assessment methodologies in dealing with changes in
particular for safety-critical domains such as ATM. It discusses an evolutionary
risk analysis by means of structured models. Changes may affect various system
artifacts (e.g. requirements, design models). They require such artifacts to be
updated and reassessed eventually. This inevitably increases project costs as-
sociated with maintaining a valid risk assessment for the system. It may affect
reusing strategies as well as any effort to localise changes into specific arguments
(hence, increasing intrinsic system complexities). However, although different
structured models (e.g. design models, risk models, safety arguments, etc.) are
used to support risk analysis, this paper is concerned with whether structured
models provide suitable support in order to acquire expert judgement while risk
analysis deals with changes — How do models support assessing the impact of
changes? How do changes into models shift risk perception? This paper reports
our experience of evolutionary risk analysis supported by the CORAS approach.
Section 2 reviews relevant work on risk analysis, and highlights guidelines and
methodologies drawn from the ATM domain. Section 3 describes a case study
drawn from ongoing activities within the ATM domain. Section 4 introduces
the basic concepts of the CORAS approach to model-driven risk analysis. Sec-
tion 5 reports our evolutionary risk analysis and the investigation results taking
into account expert judgements during dedicated risk analysis sessions. Section
6 summarises our lessons learned.

2 Related Work on Risk Analysis

The ISO 31000 risk management standard [1] defines risk management as coor-
dinated activities to direct and control an organisation with regard to risk, where
risk can be understood as the combination of the likelihood and consequence of
an unwanted incident. The risk management process includes the phases of con-
text establishment, risk assessment and risk treatment. Context establishment
involves defining the target of analysis and setting the risk criteria, whereas risk
assessment involves risk identification, risk analysis and risk evaluation. The risk
analysis estimates the likelihoods and consequences of risks, and the risk evalu-
ation compares the resulting risk levels with the criteria in order to determine
which risks must be mitigated by treatment options. The ISO 31000 standard
stresses the importance of handling changes. However, the standard comes with
no explicit guidelines for how to manage and assess changing risks. Other estab-
lished risk analysis methods such as OCTAVE [2] and CRAMM [3, 4] follow a
process similar to ISO 31000. Such methods focus on a particular configuration
of the target at a particular point in time, and the results are therefore valid

Evolutionary Risk Analysis: Expert Judgement 101

only for this particular snapshot and for the assumptions being made. When ad-
dressing changing systems, there is a need for risk analysis methods that comes
with guidelines and techniques for how to understand, to assess and to document
risks as changing risks. There is a need for risk modelling techniques to facilitate
the tasks of assessing changing risks. Structured risk models represent unwanted
incidents with their causes and consequences by graphs (e.g. Cause-consequence
analysis and Bayesian networks [9]), trees (e.g. Fault Tree Analysis [6], Event
Tree Analysis [7] and Attack trees [8]) or block diagrams [5].

CORAS threat diagrams [11] describe how threats exploit vulnerabilities to
initiate threat scenarios and unwanted incidents, as well as the likelihoods and
consequences of incidents. Risks graphs represent an abstraction of each of the
above mentioned risk modelling techniques in the sense that each of them can be
understood as a risk graph instantiation [12]. Risk graphs facilitate the structur-
ing of events that lead to incidents, as well as the estimation of likelihoods. The
notation is provided a formal semantics and comes with a calculus for reason-
ing about likelihoods. Unfortunately, risk modelling techniques provide limited
support for the identification, modelling and assessment of changing risks. This
paper presents an evolutionary risk analysis that generalises the risk graph nota-
tion in order to support the modelling of risks that evolve. This generalisation is
in turn instantiated in CORAS, thus supporting a CORAS risk analysis process
with methods and techniques for assessing and documenting evolving risks.

The risk associated with the high-couple and complex interactions emerging
among system ‘components’ is characterising for many technology systems [15],
in particular ATM systems. The socio-technical nature of such systems involves
diverse entities interacting within operational environments. The SHEL model
characterises the socio-technical nature of ATM systems and their distributed
nature [16]. Causal analysis of failures in such systems highlights that failures
are often interaction or organisational failures. The Cheese model provides a
characterisation how failures emerge within organisations [17]. Safety mecha-
nisms and barriers address to a certain extent threats and vulnerabilities across
organisational layers [17]. Such concepts underlie safety nets in the ATM domain
[20]. The EUROCONTROL Permanent Commission approved a number of ATM
safety regulatory requirements, known as ESARRs, but these represent only one
element of a wider framework for ATM safety regulation. These requirements
are mandatory for all EUROCONTROL Member States and aim at harmonis-
ing the ATM safety regulation across the ECAC area. ECAC States not member
of EUROCONTROL are strongly encouraged to adopt the ESARRs as well. EU-
ROCONTROL, through the Safety Regulation Commission (SRC), is developing
a harmonised framework for the safety regulation of ATM, for implementation
by States. The core of the framework is represented by harmonised safety reg-
ulatory requirements, ESARRs. ESARR 4 (Risk Assessment and Mitigation in
ATM) [21] and ESARR 6 (Software in ATM systems) [22] are of particular rel-
evance. In order to comply with the ESARRs and to support the deployment
of ATM systems, EUROCONTROL is developing the Integrated Risk Picture

102 M. Felici et al.

Methodology (IRP) [23]. Relevant guidelines and requirements stress that risk
analysis needs to deal with changes, hence, an evolutionary risk analysis.

3 ATM Case Study

In Air Traffic Management the increase of air traffic is pushing the human per-
formances to the limit, and the level of automation is growing dramatically to
deal with the need for fast decisions and high traffic load. There is an increase in
data exchange between aircraft and ground and between Area Control Centers
(ACCs) due to new systems, equipments and ATM strategies. There is a growing
relevance for dependability, security and privacy aspects. Software and devices
must adapt to evolution of processes, introduction of new services, and modifica-
tion of the control procedures. This adaptation shall preserve safety, security and
dependability and be able to face new and unexpected security problems arising
from evolution. Introducing Safety and Security relevant methodologies in the
ATM context requires us to understand the risk involved in order to mitigate the
impact of possible future threats and failures. The ATM 2000+ Strategic Agenda
[29] and the Single European Sky ATM Research [30] (SESAR) Initiative, in-
volve a structural revision of ATM processes, a new ATM concept and a system
approach for the ATM Network. This requires ATM services to go through sig-
nificant structural, operational and cultural changes that will contribute towards
SESAR. The SESAR Operational Concept is a trajectory based system, which
relies on precise trajectory data, combined with cockpit displays of surrounding
traffic. The execution of such trajectory by Air Traffic Management services will
ensure that traffic management is carried out safely and cost efficiently within
the infrastructural and environmental constraints.

Changes to the business trajectory must be kept to a minimum. Modifications
to the business trajectory are best met through maintenance of capacity and
throughput rather than optimisation of an individual flight. Changes will ideally
be performed through a Collaborative Decision Making mechanism but without
interfering with the pilots’ and controllers’ tactical decision processes required for
separation provision, for safety or for improvement of the air traffic flow, thanks
to the new tools that will be introduced in the Controller Working Position
(CWP). Sharing access to accurately predicted, business trajectories information
will reduce uncertainty and give all stakeholders a common reference, permitting
collaboration across all organisational boundaries.

Fundamental to the entire ATM Target Concept is a net-centric operation
based on: (1) a powerful information handling network for sharing data; (2) new
air-air, ground-ground and air-ground data communications systems, and; (3) an
increased reliance of airborne and ground based automated support tools. The
ATM case study is concerned with changes to operational processes of managing
air traffic in Terminal Areas. Arrival management is a very complex process,
involving different actors. Airport actors are private organisations and public
authorities with different roles, responsibilities and needs. The subsequent intro-
duction of new tools (e.g. Queue Managers) and the introduction of a new ATM

Evolutionary Risk Analysis: Expert Judgement 103

network for the sharing and management of information affect the ATM system
at an organisational level.

3.1 Organisational Level Change

The introduction of the AMAN (Arrival Manager) affects Controller Working
Positions (CWPs) as well as the Area Control Center (ACC) environment as a
whole. The main foreseen changes in the ACC from an operational and organi-
sational point of view are the automation of tasks (i.e. the usage of the AMAN
for the computation of the Arrival Sequence) that in advance were carried out
by Air Traffic Controllers (ATCOs), a major involvement of the ATCOs of the
upstream Sectors in the management of the inbound traffic. These changes will
also require the redefinition of the Coordinator of the Arrival Sequence Role, who
will be responsible for monitoring and modifying the sequences generated by the
AMAN, and providing information and updates to the Sectors. The AMAN’s
interfaces provide access to different roles, and authorisations need to make in-
formation available only to authorised personnel or trusted systems.

3.2 Security Properties

Main aspects of security in ATM relate to self protection of facilities and re-
sources of the ATM system as well as coordination with Air Defense authorities
for exchange of information and coordination in case of aviation security inci-
dents. The ATM is above all a cooperative system, based on mutual trust pri-
marily between airspace users and ATM staff. Traffic surveillance relies currently
on sensors that can bring additional confidence to the integrity of information
received. Surveillance of traffic and monitoring of information may be used to
detect civil aircraft operating in such a manner as to raise suspicion of seizure by
terrorists or hijackers. The introduction of new systems and the reorganisation
of ATM services are facing new security issues. Both ATM security and safety
are concerned with protecting ATM assets and services, that seeks to safeguard
the overall airspace from unauthorised use, intrusion or other violations. EU-
ROCONTROL has recently issued several guidelines highlighting security as a
critical factor for future ATM developments and identifying relevant security

Table 1. Security Properties

Security Property Description

Information Protection Unauthorised actors (or systems) are not allowed to ac-
cess confidential queue management information.

Information Provision The provisioning of information regarding queue man-
agement sensitive data by specific actors (or systems)
must be guaranteed 24 hours a day, 7 days a week, taking
into account the kind of data shared, their confidentiality
level and the different actors involved.

104 M. Felici et al.

methodologies [27, 28]. Table 1 identifies critical security properties to be guar-
anteed at the process and organisational level. Our risk analysis study focuses
on such security properties.

4 Model-Driven Risk Analysis: The CORAS Approach

CORAS [11] is an approach to risk analysis that consists of three tightly inte-
grated parts, namely the CORAS method, the CORAS language and the CORAS
tool. The method is based on the ISO 31000 risk management standard [1] and
consists of eight steps. The four first steps correspond to the context establish-
ment, whereas the remaining four are risk identification, risk estimation, risk
evaluation and risk treatment. The method comes with concrete tasks and prac-
tical guidelines for each step, and is supported by several risk analysis techniques.
The CORAS language consists of five kinds of diagrams, each of which provides
support for specific tasks throughout the whole risk assessment process. The
method is supported by the tool, which is an editor for on-the-fly risk modelling.
The most important kind of CORAS diagram is threat diagrams which are used
for risk identification and risk estimation. The language constructs are firmly
based on an underlying well-defined conceptual framework for reasoning about
risk, and includes: human and non-human threats, vulnerabilities, threat scenar-
ios, unwanted incidents and assets. Threat diagrams are used for on-the-fly risk
modelling during structured brainstorming that involves personnel with expert
knowledge about the target of analysis. In such a setting, the diagrams must be
intuitive and easy to understand, also for people with little technical background
and little experience in risk analysis. For this reason, the CORAS language con-
structs are graphical, easily understandable symbols. In the following we describe
and exemplify selected parts of the generalised CORAS approach and the risk
analysis of the ATM case study, focusing on the identification and modelling of
changing risks since this is the core part of the process [13].

Context Establishment. The context establishment includes making the target
description, setting the focus and scope of the analysis, identifying the assets,
and setting the risk evaluation criteria. In the setting of evolving systems, the
context establishment moreover includes the specification of the changes to the
target, the changes in assets or asset values, and the changes to the evaluation
criteria, if any. Figure 1 shows the risk evaluation criteria partially based on the
EUROCONTROL safety regulatory requirement (ESARR4) [21].

Fig. 1. Risk evaluation criteria

Evolutionary Risk Analysis: Expert Judgement 105

Our target of analysis, both its structure and its behavior before and after
the changes, were specified by UML 2.0 diagrams [14]. In the risk analysis, the
identified assets of confidentiality and availability correspond to the security
properties of Information Protection and Information Provision, respectively.

Risk Identification. The risk identification was conducted as a structured brain-
storming involving personnel with first hand knowledge about the target of
analysis and strong background from ATM. By conducting a walkthrough of
the UML target description, the risks were identified by systematically identify-
ing unwanted incidents, threats, threat scenarios and vulnerabilities. The results
were documented by means of CORAS threat diagrams. So far, the methods
and techniques are as for traditional risk analyses. However, a guiding principle
for our risk analysis method generalised to handle evolving systems and risks is
that only the risk analysis results that are affected by the system changes should
be addressed anew. In our generalisation of CORAS we provide techniques and
language support for tracing changes from the target system to the risk model so
as to enable the identification of the parts of the risk models that are not affected
by changes and therefore maintain their validity. Because our main concern in
this paper is to present the insights from the evolutionary risk assessment case
study regarding expert judgement, we refer to the full report for further details
about the method and techniques [13]. Figure 2 shows a fragment of a CORAS
threat diagram resulting from the identification of changing risks.

Fig. 2. Threat diagram with changing risks

Compared with the standard CORAS language, there are two main language
extensions to support the risk analysis of evolving systems. First, the rectangle
icons with the system diagram symbol (e.g. the one named Task T1 - the first
task in the arrival management work process) exemplify the new construct for
referring to the target of analysis. Second, the threat diagram language con-
structs of threat, unwanted incident, asset, etc. are generalised to three modes
with different appearances, namely the modes before, after and before-after. The
before constructs are in grey shade and dashed outline and represent parts of the
risk picture that are valid only before the changes. The after constructs are in
colour and solid outline and represent parts that are valid only after the changes.

106 M. Felici et al.

The before-after constructs are two-layered and represent parts that are valid
both before and after changes. The explicit references to the target system in the
threat diagrams facilitate the identification of the parts of the risk picture that
are affected by system changes. For example, in the ATM risk analysis, the radar
was not subject to the ATM system changes. Hence, the vulnerability Insufficient
radar maintenance and the threat scenario Loss of radar signal in MRT (multi-
radar tracking) are maintained under change. The threat scenario Monitoring
of A/C (aircraft) in the sector fails, on the other hand, is affected due to the
introduction of the ADS-B (automatic dependent surveillance-broadcast). Notice
that we take into account here the dependencies of elements on their preceding
elements in the threat diagrams. The different appearance of the three modes of
the language constructs facilitates the immediate recognition of the risk changes
that are modelled. This feature is an important part of supporting the risk
identification brainstorming and for appropriately documenting the results. In
order to highlight the risk changes, the CORAS tool implements the functionality
of changing between the views of before, after and before-after. Figure 3 shows
such feature on an extract of the threat diagram.

Fig. 3. Two views on changing risks

Risk Estimation. The risk estimation basically amounts to estimating likelihoods
and consequences for unwanted incidents. Usually, we also estimate likelihoods
for threat scenarios in order to get a better basis for estimating the likelihood of
unwanted incidents and to understand the most important sources of risks. The
CORAS calculus provides rules for calculating and reasoning about likelihoods.
Diagram elements of mode before-after are assigned a pair of likelihoods. The
former denotes the likelihood before the changes. The latter denotes the likeli-
hood after the changes. Diagram elements of mode before or after are assigned
only a single likelihood. The distinction is likewise for the consequence estimates.
Hence, the threat diagrams document not only risks that emerge, disappear or
persist, but also how risk levels change. For example, the threat scenario Mon-
itoring of A/C in the sector fails is assigned the likelihood likely before the
changes and the likelihood possible after the changes. The likelihood drops due
to the introduction of the ADS-B. Information provisioning fails is an unwanted
incident, and therefore constitutes a risk. Its likelihood is possible both before

Evolutionary Risk Analysis: Expert Judgement 107

and after the changes, while its consequence for the Availability asset is minor
as annotated on the relation between the unwanted incident and the asset.

Risk evaluation. During the risk evaluation we first calculate the risk levels by
using the risk matrix exemplified in Figure 1 and the likelihood and consequence
estimates from the risk estimation. We then compare the risk levels with the risk
evaluation criteria to determine which risks that must be treated or evaluated
for treatment. The risk estimation is supported by CORAS risk diagrams which
we do not show here due to space constraints. These diagrams show the changing
risks together with the threats that initiate them and the assets they harm. The
unwanted incident Information provisioning fails, for example, has the likelihood
possible and the consequence minor before and after the ATM system changes,
which yields a low risk level.

Risk treatment. The purpose of the risk treatment is to identify options for
risk mitigation for the unacceptable risks. In the presence of changes, the treat-
ments should ensure that an acceptable level of risk is maintained under planned
changes or foreseen evolutions. This final step of the process is conducted as a
structured brainstorming with a walkthrough of the threat diagrams document-
ing the unacceptable risks. The CORAS treatment diagrams support such task.

5 Expert Judgement in Evolutionary Risk Analysis

This section discusses further the risk analysis concerned with the Organisation
Level Change and the security properties of information protection and infor-
mation provision. The technical solutions we use in the ATM case study are
the modelling language for documenting and reasoning about changing risks,
and the assessment method for conducting and documenting the risk analyses
of changing and evolving systems. Our work is concerned with supporting struc-
tured approaches to changes, capturing security properties affected by changes,
and providing mechanisms dealing with subsequent changes. The investigation
involved a focused risk analysis of the ATM Changes Requirements and their
relevant Security Properties. The risk analysis was conducted by means of design
models capturing the main entities characterising an ATM domain. In order to
take into account how change requirements, i.e. planned changes that are to be
implemented, affect the ATM contexts and their organisations, the risk analysts
produced structured (UML) models capturing the ATM settings before and after
the changes. These models were reviewed and revised by ATM experts who are
currently involved in various activities concerning the SESAR project. The mod-
els were used as starting point for the risk analysis in order to have a common
understanding of the change requirements among the people (i.e. ATM experts)
involved in the risk analysis exercise. Figure 4, for instance, shows a conceptual
model of an ACC after changes. The shaded elements represent parts that are
introduced to the ACC, whereas the diagonally striped element represents a part
that is modified. Similar models have been drawn for other aspects characteris-
ing ATM settings and practices (e.g. different UML models capturing different

108 M. Felici et al.

roles and procedures). These models supported discussion and communication
between ATM experts and Risk Analysis modellers. Moreover, they have been
used to focus and organise the risk analysis on both before and after changes.

Fig. 4. Conceptual overview of ACC after changes

The risk analysis trial was conducted during a dedicated two-day workshop.
The first day of the workshop was dedicated to the risk analysis of the before
case. The second day of the workshop was dedicated to the risk analysis of the
after case, that is, to the risk analysis regarding the change requirements and
how they potentially affect security properties. Table 2 shows examples of the
identified hazardous situations modelled and analysed by CORAS diagrams.

Table 2. Examples of hazardous situations

Who/what
caused it?

What is the scenario or inci-
dent? What is harmed?

What makes it
possible?

Target
element

System Failure Loss of the AMAN leads to loss
of provisioning of information to
ATCO

AMAN

Attacker Attacker broadcasts false ADS-B
signals, which lead to the provi-
sioning of false arrival manage-
ment data.

Use of ADS-B;
dependence on
broadcasting

ADS-B

Software failure Provisioning of unstable or incor-
rect sequence by the AMAN lead-
ing to ATCO reverting to manual
sequencing

Immature (unre-
liable) software

AMAN

Evolutionary Risk Analysis: Expert Judgement 109

The first activity involved a high-level risk analysis of the AMAN introduc-
tion. The structured models were used in order to support a walkthrough analysis
of the change requirements and to identify potential hazardous situations. The
subsequent risk analysis phases involved risk identification, risk estimation and
risk evaluation. Figure 5 shows sample risk analysis models for the after case.
The model supports a structured risk analysis of change requirements and their
impact on critical security properties. Among the risk analysis outcomes were
models assessing emergent risk due to the change requirements and their im-
pact on critical security properties. These models supported a systematic way
of analysing the risk of changes and their impact on security aspects.

Fig. 5. A sample risk model for reduction of functionality

Note that the model captures different hazards and relate them to the target
of analysis as well as to other relevant hazards. The resulting network of causal-
ities is used in order to assess the impact of changes on the risk picture and
relate them to specific security properties. The same network of causalities is
then used to assess the risk in terms of frequency of events and their severities.
This is useful to revise risks with respect to emergent hazards related to the
change requirements. The final phases involved the identification and discussion
of suitable mitigations for the analysed hazards. ATM experts were involved in
the risk analysis. They reviewed the models describing the change requirements
and actively participated in the risk analysis trial. In order to account for model
effectiveness as a means to investigate risk analysis with respect to change re-
quirements, we collected relevant information about the experts’ profiles and
perceptions. At the beginning of the risk analysis trial, ATM experts as well
as other project partners filled in a Safety Culture Questionnaire. The question-
naire has been developed and tailored by Deep Blue taking into account relevant
information drawn from the ATM domain [31, 32]. It covered ten different ar-
eas (e.g. Regulation and Standards, Safety Assessment) by fifty three questions
contributing to Safety Culture. Figure 6 shows a Safety Culture Profile for one
of the ATM experts taking parts in the risk analysis trials.

110 M. Felici et al.

Fig. 6. Safety Culture Profile

The reason we collected expert knowledge with respect to Safety Culture is
because Risk Management and Change Management are often critical practices.
This allows us to understand further the relationship between safety and risk
with respect to change requirements and relevant security properties. After each
one of two risk analysis sessions, we collected other information by an Evolution-
ary Risk Questionnaire. Figure 7 shows some of the questionnaire statements.

Fig. 7. Sample questionnaire statements

The questionnaire has been developed and tailored by Deep Blue in order to
account of perceived hazards, hence risk perception, as captured by risk analysis
models concerning current and future change requirements. The questionnaire
consists of twelve different points drawn from relevant work in the ATM domain
[33], and is concerned with Area of Changes (AoC) as a means to discuss relevant
changes requirements and hazards pertinent to current and future ATM. Figure
8 shows the questionnaires’ outcomes (for the same expert). It is interesting
to notice how risk perceptions change with respect to current situation and
future ones. The dedicated risk analysis sessions helped to capture this shift in
perception with respect to change requirements. The specific points highlighted
by the questionnaire identify aspects for further investigation in order to refine
and gain confidence on the risk analysis concerning future changes requirements.

The identification of specific areas of concerns for changes supports the use of
structured models in order to assess the impact of changes. However, evolution-
ary risk analysis needs to be organised and supported adequately.

Evolutionary Risk Analysis: Expert Judgement 111

Fig. 8. Evolutionary risk perception

6 Conclusions

This paper enhances how structured models may support expert judgement while
conducting an evolutionary risk analysis. The use of structured models tailored
and organised for an evolutionary risk analysis helps to identify potential areas of
concerns due to changes. The evolutionary risk analysis presented in this paper
consists of different activities: (1) identify relevant design models, (2) build risk
assessment models for before and after the changes, (3) run dedicated before
and after risk analysis sessions, (4) monitor (by means of qualitative assess-
ment) risk perception shifts in order to identify areas of concerns. Our empirical
results provide insights supporting evolutionary risk analysis by means of struc-
tured models and expert judgement. The generality of the different activities
would support the evolutionary risk analysis across different domains. Further
work intends to involve an increasing number of experts in order to gain further
evidence supporting evolutionary risk analysis, but also to support statistical
accounts of how changes affect risk perceptions in risk analysis.

Acknowledgements. This work has been supported by the Security engineer-
ing for lifelong evolvable systems (SecureChange) project, FP7-EC-GA-231101.

References

1. ISO 31000, Risk Management: Principles and Guidelines, International Organiza-
tion for Standardization (2009)

2. Alberts, C.J., Davey, J.: OCTAVE criteria version 2.0. Technical report CMU/SEI-
2001-TR-016. Carnegie Mellon University (2004)

3. Barber, B., Davey, J.: The use of the CCTA risk analysis and management method-
ology CRAMM in health information systems. In: 7th International Congress on
Medical Informatics, MEDINFO 1992, pp. 1589–1593 (1992)

4. CRAMM - The total information security toolkit, http://www.cramm.com/ (ac-
cessed March 2, 2011)

5. Robinson, R.M., Anderson, K., Browning, B., Francis, G., Kanga, M., Millen, T.,
Milman, C.: Risk and Reliability. An Introductory Text, 5th edn. R2A (2001)

6. IEC 61025, Fault Tree Analysis (FTA), International Electrotechnical Commission
(1990)

http://www.cramm.com/

112 M. Felici et al.

7. IEC 60300-3-9, Dependability management - Part 3: Application guide - Section 9:
Risk analysis of technological systems - Event Tree Analysis (ETA), International
Electrotechnical Commission (1995)

8. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s J. 24(12), 21–29
(1999)

9. Nielsen, D.S.: The cause/consequence diagram method as basis for quantitative
accident analysis. Technical report RISO-M-1374, Danish Atomic Energy Com-
mission (1971)

10. Ben-Gal, I.: Bayesian networks. In: Ruggeri, F., Kenett, R.S., Faltin, F.W. (eds.)
Encyclopedia of Statistics in Quality and Reliability. John Wiley & Sons, Chich-
ester (2007)

11. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS
Approach. Springer, Heidelberg (2011)

12. Brændeland, G., Refsdal, A., Stølen, K.: Modular analysis and modelling of risk
scenarios with dependencies. Journal of Systems and Software 83(10), 1995–2013
(2010)

13. Lund, M.S., Solhaug, B., Stølen, K., Innerhofer-Oberperfler, F., Felici, M., Meduri,
V., Tedeschi, A.: Assessment Method, SecureChange deliverable (2011)

14. OMG Unified Modeling Language, Superstructure, version 2.2, Object Manage-
ment Group (2009)

15. Perrow, C.: Normal accidents: living with high-risk technologies. Princeton Uni-
versity Press, Princeton (1999)

16. Edwards, E.: Man and machine: Systems for safety. In: Proceedings of British Air-
line Pilots Associations Technical Symposium, British Airline Pilots Associations,
pp. 21-36 (1972)

17. Reason, J.: Managing the Risks of Organizational Accidents, Ashgate (1997)
18. Pasquini, A., Pozzi, S.: Evaluation of air traffic management procedures - safety

assessment in an experimental environment. Reliability Engineering & System
Safety 89(1), 105–117 (2005)

19. Pasquini, A., Pozzi, S., Save, L.: A critical view of severity classification in risk
assessment methods. Reliability Engineering & System Safety 96(1), 53–63 (2011)

20. EUROCONTROL. Safety Nets - Ensuring Effectiveness (2009)
21. EUROCONTROL safety regulatory requirements (ESARR), ESARR 4 - risk as-

sessment and mitigation in ATM, Edition 1.0 (2001)
22. EUROCONTROL safety regulatory requirements (ESARR), ESARR 6 - Software

in ATM Systems, Edition 1.0 (2003)
23. EUROCONTROL, Baseline Integrated Risk Picture for Air Traffic Management

in Europe, EEC Note No. 15/05 (2005)
24. Brooker, P.: The Überlingen accident: Macro-level safety lessons. Safety Sci-

ence 46(10), 1483–1508 (2008)
25. Felici, M.: Evolutionary safety analysis: Motivations from the air traffic manage-

ment domain. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005.
LNCS, vol. 3688, pp. 208–221. Springer, Heidelberg (2005)

Computer-Aided PHA, FTA and FMEA for

Automotive Embedded Systems

Roland Mader1,2, Eric Armengaud1,3, Andrea Leitner2,
Christian Kreiner2, Quentin Bourrouilh1, Gerhard Grießnig1,2,

Christian Steger2, and Reinhold Weiß2

1 AVL List GmbH
{roland.mader,quentin.bourrouilh,gerhard.griessnig}@avl.com
2 Institute for Technical Informatics, Graz University of Technology
{andrea.leitner,christian.kreiner,steger,rweiss}@tugraz.at

3 Virtual Vehicle Competence Center (ViF)
eric.armengaud@v2c2.at

Abstract. The shift of the automotive industry towards powertrain
electrification introduces new automotive sensors, actuators and func-
tions that lead to an increasing complexity of automotive embedded sys-
tems. The safety-criticality of these systems demands the application of
analysis techniques such as PHA (Preliminary Hazard Analysis), FTA
(Fault Tree Analysis) and FMEA (Failure Modes and Effects Analy-
sis) in the development process. The early application of PHA allows to
identify and classify hazards and to define top-level safety requirements.
Building on this, the application of FTA and FMEA supports the veri-
fication of a system architecture defining an embedded system together
with connected sensors and controlled actuators. This work presents a
modeling framework with automated analysis and synthesis capabilities
that supports a safety engineering workflow using the domain-specific
language EAST-ADL. The contribution of this work is (1) the defini-
tion of properties that indicate the correct application of the workflow
using the language. The properties and a model integrating the work
products of the workflow are used for the automated detection of errors
(property checker) and the automated suggestion and application of cor-
rective measures (model corrector). Furthermore, (2) fault trees and a
FMEA table can be automatically synthesized from the same model. The
applicability of this computer-aided and tightly integrated approach is
evaluated using the case study of a hybrid electric vehicle development.

1 Introduction

Nowadays automotive embedded systems incorporate up to 70 microcontrollers
that communicate via bus systems, gather sensor data and command actuators
of the vehicle. This complexity still increases. One of the reasons is the shift
of the automotive industry towards powertrain electrification that goes along
with the introduction of new sensors, actuators and functions. The automotive
embedded system is responsible for the management of the components (e.g.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 113–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

114 R. Mader et al.

high voltage battery, electric motor) that can be found in electrified vehicles and
components (e.g. transmission, engine) which are parts of traditional vehicles as
well. It is obvious that the correct and safe operation of an electrified vehicle
depends on the correct operation of its embedded system.

Due to the safety-criticality of automotive embedded systems, they are devel-
oped according to rigorous development processes such as defined by ISO 26262,
the functional safety standard for the automotive domain. These development
processes incorporate the application of analysis techniques. Among the applied
techniques are the following:

– PHA (Preliminary Hazard Analysis): PHA [12] is an analysis technique
that is qualitatively applied early in the development process by a team of
people with a wide variety of expert knowledge and skills. The purpose of
PHA is the identification, classification and assessment of potential hazards
of a newly developed vehicle, caused by failures. The early knowledge about
these hazards allows to define top-level safety requirements, even if less de-
tailed and quantitative information about the vehicle is available.

– FTA (Fault Tree Analysis): FTA [12] belongs to the group of deductive
analysis techniques. FTA starts with the identified hazards and tracks them
back to possible faults that can lead to the occurrence of the top faults.
Relationships between effect and cause are defined using logical operators
that combine the effects of events. This analysis technique can be applied
to verify a system architecture defining an embedded system together with
connected sensors and controlled actuators.

– FMEA (Failure Modes and Effects Analysis): FMEA [12] belongs
to the group of inductive analysis techniques. Individual failures of system
components are considered and their causes (e.g. fault of a component) are
identified. Then the effects on the complete system in terms of hazards are
determined. This analysis technique can be applied to verify a system archi-
tecture as well.

This work presents a modeling framework with automated analysis and syn-
thesis capabilities. This modeling framework supports an ISO 26262-compatible
automotive safety engineering workflow. Results are annotated using the domain-
specific language EAST-ADL [1]. The contribution of this work is (1) the defini-
tion of properties that indicate the correct application of the workflow using this
language. The properties and a model integrating the work products of the work-
flow are used for the automated detection of errors (property checker) and the
automated suggestion and application of corrective measures (model corrector).
Furthermore, (2) fault trees and a FMEA table can be automatically generated
from the model allowing the qualitative application of FTA and FMEA. The
fault trees and the FMEA table are consistent to the PHA results. Minimum
cut sets can be automatically extracted from the synthesized fault trees.

The remainder of this work is organized as follows. Section 2 reviews related
work. Section 3 describes the ISO 26262-compatible safety engineering workflow.
Section 4 describes how the workflow can be supported by the property checker.

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 115

Section 5 describes how the model corrector can be used to correct errors and
how fault trees and a FMEA table can be automatically generated. Section 6
describes the experimental evaluation of the approach using the case study of a
hybrid electric vehicle development. Finally Section 7 concludes this work.

2 Related Work

Approaches that aim on supporting safety engineering by fault tree generation
and/or FMEA generation are reviewed in this section. An approach that com-
bines system architecture modeling and FTA is described in [14]. The approach
allows continuous assessment of an evolving system design. A system model is
input to HAZOP (Hazard and Operational Studies). Each component of the
system model is analyzed and component failure modes are determined. The
HAZOP result is a model that defines failure modes that can be observed at
the component outputs as results of internal component malfunctions as well as
deviating component inputs. In [13] an extension of [14] is presented that al-
lows FMEA table generation. In [2] the extended approach is integrated with an
EAST-ADL modeling tool using a model transformation technique. This allows
synthesis of fault trees and FMEA tables from EAST-ADL models.

In [4] tool support for automated FMEA generation is presented. Input to
the presented method is a component model of a system including so called
safety interfaces that can be automatically generated. Safety interfaces can be
seen as formal descriptions of the components in terms of failures affecting the
components. From the safety interface descriptions cFMEAs (Component Failure
Modes and Effects Analysis) can be created for each component. Subsequently
the cFMEAs are input to the generation of a system-level FMEA.

A methodology that combines safety analyses and a component-oriented,
model-based software engineering approach is described in [3]. The authors aim
on supporting safety analyses in the earlier stages of development. A hierarchical
model for component-based software engineering is available. The model allows
to define a failure specification and a failure realization as well as a functional
specification and a functional realization for each software component. Fault
trees can be generated from the component model.

In [10] a computer-aided approach to fault tree generation is described. The
approach requires the creation of a model of the system under investigation.
This model describes system structure, system behavior as well as the flows of
information and energy through the system. Moreover top events are defined for
system parameters such as component inputs or component outputs. This model
is input to a trace-back algorithm that generates a fault tree.

The authors of [11] integrate architectural modeling languages with safety
analysis languages to improve consistency. When a safety-critical software archi-
tecture is developed an initial architecture is proposed. This architecture is an-
notated and enriched with safety-relevant information. Safety analysis of the ar-
chitecture is carried out. Results influence the software architecture. This design
and analysis process is cyclic. A meta model for component-based, safety-aware

116 R. Mader et al.

architectures (SAA) is available allowing to complement architectural descrip-
tions with safety-relevant information such as safety objectives and mitigation
means. Meta models for FTA and FMECA (Failure Modes, Effects and Critical-
ity Analysis) are proposed. A tool implementation is presented that allows the
generation of FTA models and FMECA models from a SAA model.

Each of the reviewed approaches uses a system model describing the sys-
tem components complemented with safety-relevant information (typically about
faults and failures and their propagation). This underlying model is used by all
approaches as input to fault tree generation and/or for FMEA table generation,
supporting the application of FTA and/or FMEA. In none of these approaches
the application of the workflow for creation of the underlying model is aided by
automated checking or model correction. Our approach supports this, support-
ing fault tree generation and FMEA table generation and furthermore elabora-
tion of the underlying model that integrates the work products of the presented
workflow. This strongly supports coping with the complexity imposed by the
embedded system of an electrified vehicle.

3 Safety Engineering Workflow

We present an ISO 26262-compatible, automotive safety engineering workflow
that is based on the workflows described in [15] and [9]. The workflow can be
subdivided into multiple phases. Iterations between phases are possible. The pre-
sented workflow is illustrated in Figure 1. In the course of the workflow an EAST-
ADL model is annotated, systematically enhanced and refined using a modeling
framework. The elaborated model integrates the work products (e.g. analysis re-
sults, requirements, system architecture) of the workflow phases. EAST-ADL is a
domain-specific language and tailored to the needs of the automotive domain. It
is diagrammatic [5] such as UML. It consists of syntactic elements such as boxes,
ovals, lines or arrows. Its abstract syntax is defined by its meta model and its
semantic domain and semantic mapping are defined using natural language [5].
The workflow phases are thereafter described:

1. Definition of the Analysis Subject: First information about the vehi-
cle under development is collected and modeled. Functions of the vehicle
(e.g. motoring or recuperative braking) are defined. Requirements to these
functions are determined and allocated (e.g. conditions for activation or de-
activation). In addition relevant modes (e.g. drive, creep or acceleration) are
identified for each function and associated with the requirements.

2. Identification of Hazards and Hazardous Events: Based on the def-
inition of the analysis subject, PHA (for more details see also [9]) is car-
ried out. Possible malfunctions are identified. Hazards are derived for each
malfunction (e.g. unintended acceleration of the vehicle). Thereafter opera-
tional situations such as traffic situations (e.g. oncoming traffic on a high-
way in a curve) and maintenance situations (e.g. vehicle at lifting ramp)
are defined. Moreover use cases describing the behavior (e.g. overtaking or

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 117

Fig. 1. Computer-Aided Safety Engineering Workflow

118 R. Mader et al.

changing oil) of the related actors (e.g. driver or mechanic) are described.
Hazardous events are determined for relevant combinations of hazards, use
cases and operational situations. Moreover relevant modes are identified for
each hazardous event. The criticality of each hazardous event is assessed in
terms of its controllability, severity and exposure and an ASIL (Automotive
Safety Integrity Level) [7] is determined.

3. Derivation of Safety Goals: For each hazardous event that has an ASIL
assigned (ASIL A, ASIL B, ASIL C or ASIL D), a safety goal is derived and
associated. Furthermore, a safe state is defined (e.g. switch open) for each
safety goal. Alternatively a safe mode (e.g. limp home mode) is determined.
The determined safety goals are top-level safety requirements.

4. Definition of Safety Concept: The safety concept is derived from the
safety goals. This safety concept consists of functional and technical safety re-
quirements to the automotive embedded system, connected sensors and con-
trolled actuators. Traces are created between safety goals, functional safety
requirements and technical safety requirements.

5. Definition of System Architecture: The system architecture is defined
in terms of the embedded system, connected sensors and controlled actua-
tors. Moreover the parts of the environment are modeled that interact with
the sensors and actuators. Thereafter the functional and technical safety
requirements are allocated to the components of the system architecture.
Furthermore functions are allocated to the components of the system archi-
tecture.

6. Investigation and Annotation of Faults and Failures: Information
flows and energy flows through the embedded system, connected sensors,
controlled actuators and their environment are investigated. Possible faults
and failures are estimated and their propagation is analyzed and annotated.
Moreover it is investigated and annotated how the failures lead to the mal-
functions that were identified during PHA. Thereafter FTA and FMEA are
applied.

After the completion of these working steps, requirements to software and hard-
ware are derived from the safety concept. Software and hardware are fully spec-
ified, implemented, integrated, verified and validated. However these working
steps are beyond the scope of this work.

Due to the complexity of contemporary vehicles, the application of the work-
flow is cumbersome and error-prone. Therefore we propose to aid the safety
engineering workflow defined above by automated property checking (property
checker), automated model correction (model corrector), automated fault tree
synthesis and automated FMEA table synthesis (see Section 4 and Section 5).
This allows to early identify erroneously applied working steps and enables the
automated suggestion and application of corrective measures. Moreover it is not
necessary to construct fault trees and FMEA tables manually. Instead, they are
consistently generated from the EAST-ADL model. While property checker and
model corrector aid the entire workflow, FTA generator and FMEA generator
are especially useful for the verification of the system architecture defining an

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 119

embedded system together with connected sensors and controlled actuators. The
automated analysis and synthesis capabilities of the modeling framework provide
guidance and strongly support the application of the workflow and the creation
of a complete and consistent set of work products.

4 Computer-Aided Checking

Properties are defined that indicate the correct application of the activities of
the safety engineering workflow (see Section 3). A property checker is part of
the modeling framework (see Figure 1) and continuously checks the evolving
EAST-ADL model and presents violating modeling elements to the user. If no
properties are violated, the EAST-ADL model indicates the correct application
of the workflow. If the property checker identifies violated properties, the erro-
neous application of the workflow is unveiled. The property checker does not
only allow the early identification of errors, it is also a valuable guide, while the
workflow is applied. In addition to properties for the earlier phases of the safety
engineering workflow (see [9]), properties for the later phases are presented in
Table 1.

Assume M is an EAST-ADL model, MMM is the EAST-ADL meta model
and P is the set of properties an EAST-ADL model is expected to hold. Assume
e is a modeling element of the EAST-ADL model, t is a type defined by the
EAST-ADL meta model and p is a property (Expression 1).

eεM, tεMMM , pεP (1)

Moreover, I(e, t) pertains, if e is of type t, D(t, p) pertains, if p is defined for t
and H(e, p) pertains if p holds for e. If M indicates the correct application of
the workflow, Expression 2 is valid. In this case no modeling elements violate
properties.

¬∃e¬∃t¬∃p(I(e, t) ∧ D(t, p) ∧ ¬H(e, p)) (2)

If a model M shows the erroneous application of the workflow, Expression 3 is
valid. In this case at least one modeling element violates a property.

∃e∃t∃p(I(e, t) ∧ D(t, p) ∧ ¬H(e, p)) (3)

5 Automated Synthesis

5.1 Model Correction

Correction rules are defined that impose possible solutions to problems indicated
by the property checker (see also Section 4). A model corrector is part of the
modeling framework (see Figure 1). Possible solutions are suggested on demand
by the model corrector, based on the evolving EAST-ADL model and the cor-
rection rules. A user can decide to accept a suggestion of the model corrector

120 R. Mader et al.

Table 1. Properties of the EAST-ADL model are automatically checked

ID Meta Class Property Definition

28 SafetyGoal At least one safety requirement is derived

29 QualityRequirement Traceable to a safety requirement or a SafetyGoal,
if it is a safety requirement

30 QualityRequirement Is allocated to at least one
AnalysisFunctionPrototype, if it is a safety
requirement

32 Environment An environmentModel is defined

34 AnalysisLevel A functionalAnalysisArchitecture has been defined

39 FunctionFlowPort Has at most one FunctionConnector to a
FunctionFlowPort of type out or inout associated,
if type in

40 FunctionPort A type is defined

40a FunctionPort Connected by at least one FunctionConnector

40c FunctionPort A complementary description has been defined

40b FunctionConnector Connector is connected to two FunctionPorts

41 AnalysisFunctionPrototype A type is defined

42 AnalysisFunctionPrototype Has a complementary description

42a AnalysisFunctionPrototype An ErrorModelPrototype is defined
for every AnalysisFunctionPrototype

37 AnalysisFunctionType At least one FunctionPort has been defined

42b AnalysisFunctionType An ErrorModelType is defined for every
AnalysisFunctionType

48 FaultInPort Has only one FaultFailurePropagationLink to a
FailureOutPort associated

51 FaultFailurePort A functionTarget path is defined

51a FaultFailurePort A type is defined

52a FailureOutPort Has a complementary description

53 ErrorModelPrototype A type is defined

54 ErrorModelPrototype A functionTarget is defined

55 ErrorBehavior An externalFailure is defined

56 ErrorBehavior The defined failureLogic is legal and recognized

57 ErrorBehavior An owner is defined

58 InternalFaultPrototype Has a complementary description

59 InternalFaultPrototype Is owned by at least one ErrorBehavior

60 VehicleFeature Every function is allocated to at least one
AnalysisFunctionPrototype

62 FeatureFlaw Is mapped onto a FailureOutPort

63 EABoolean A note is defined

64 RangeableDatatype A note is defined

65 EAFloat The lower threshold is defined

66 EAFloat The upper threshold is defined

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 121

Table 2. Possible solutions to problems that are automatically suggested

ID Meta Class Suggested Solution

28 SafetyGoal Creation and association of safety requirement

28 SafetyGoal Associate one of the untraceable safety requirements

29 QualityRequirement Associate to existing SafetyGoal, if it is a safety
requirement

29 QualityRequirement Associate to existing safety requirement, if it is
a safety requirement

30 QualityRequirement Allocation to existing AnalysisFunctionPrototype,
if it is a safety requirement

32 Environment Creation and association of
AnalysisFunctionPrototype

34 AnalysisLevel Creation and association of
AnalysisFunctionPrototype

40 FunctionPort Association of existing EAInteger

40 FunctionPort Association of existing EAFloat

40 FunctionPort Association of existing EABoolean

40c FunctionPort Creation and association of Comment

40b FunctionConnector Remove connector

41 AnalysisFunctionPrototype Association of existing AnalysisFunctionType

42 AnalysisFunctionPrototype Creation and association of Comment

42a AnalysisFunctionPrototype Association of existing ErrorModelPrototype

37 AnalysisFunctionType Creation and association of FunctionPort

42b AnalysisFunctionType Creation and association of ErrorModelType

42b AnalysisFunctionType Association of existing, unassociated
ErrorModelType

51 FaultFailurePort Association of existing AnalysisFunctionPrototype

51a FaultFailurePort Association of existing EAInteger

51a FaultFailurePort Association of existing EAFloat

51a FaultFailurePort Association of existing EABoolean

52a FailureOutPort Creation and association of Comment

53 ErrorModelPrototype Creation and association of ErrorModelType

53 ErrorModelPrototype Association of existing ErrorModelType

54 ErrorModelPrototype Association of existing AnalysisFunctionPrototype

55 ErrorBehavior Association of existing, unassociated FailureOutPort

56 ErrorBehavior Change to and (type OTHER)

56 ErrorBehavior Change to or (type OTHER)

57 ErrorBehavior Creation and association of ErrorModelType

57 ErrorBehavior Association of existing ErrorModelType without
ErrorBehavior

58 InternalFaultPrototype Creation and association of Comment

59 InternalFaultPrototype Association of existing ErrorBehavior

60 VehicleFeature Allocation to existing AnalysisFunctionPrototype

62 FeatureFlaw Allocation to existing FailureOutPort

122 R. Mader et al.

or to solve the problem in another way. If a suggested, possible solution is ac-
cepted, the EAST-ADL model is automatically modified and corrected making
a manual modification superfluous. If a suggestion is rejected the EAST-ADL
model remains unchanged. In addition to correction rules for the earlier phases
of the safety engineering workflow (see [9]), correction rules for the later phases
are presented in Table 2.

Assume M is an EAST-ADL model, MMM is the EAST-ADL meta model, P
is the defined set of properties and S is the set of defined suggestions. Assume
e1 is a modeling element of the EAST-ADL model, t1 is a type defined by the
meta model, p1 is a property and s1 is a suggestion (Expression 4).

e1εM, t1εMMM , p1εP, s1εS (4)

Assume that before an automated model correction is carried out (precondition),
e1 is of type t1 and violates p1 that is defined for t1 (Expression 5).

I(e1, t1) ∧ D(t1, p1) ∧ ¬H(e1, p1) (5)

If the user accepts suggestion s1, the EAST-ADL model M is automatically
corrected and transformed to EAST-ADL model M ′ by function γ depending
on M , e1, t1, p1 and s1 (Expression 6).

γ(M, e1, t1, p1, s1) → M ′ (6)

After the modification (postcondition) e1 is an element of M ′, e1 is still of type
t1 and does not violate p1 any more (Expression 7).

e1εM
′, I(e1, t1) ∧ D(t1, p1) ∧ H(e1, p1) (7)

5.2 Fault Tree and FMEA Table Synthesis

The modeling framework (see Figure 1) contains a FTA generator and a FMEA
generator. The EAST-ADL model that is created in the course of the safety
engineering workflow (see Section 3) is input to them. The FTA generator is
able to synthesize fault trees (see Figure 2). The fault trees show, how each
safety goal can be violated by the faults and failures of the embedded system,
connected sensors or controlled actuators. The FMEA generator is able to syn-
thesize a FMEA table (see Figure 3). The FMEA table shows failure modes
of the components, causative faults for these failure modes and effects of these
failure modes in terms of violated safety goals.

The FTA generator considers the recommendations of IEC 61025 [6]. There-
fore the shapes of the symbols of the fault trees are adapted to the shapes
of the symbols recommended by IEC 61025. Basic events (faults, failures) are
represented by circles, complex events (faults, failures, malfunctions, hazards,
hazardous events, violated safety goals) are represented by rectangles and gates
(and, or) are represented by the corresponding logic symbols. The FTA genera-
tor uses the identified safety goals as top events of the generated fault trees (one

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 123

Fig. 2. Fault trees can be synthesized from the EAST-ADL model

fault tree per safety goal is generated) and adds the causative malfunctions,
hazards and hazardous events that were identified during PHA as offsprings.
Component faults, component failures and gates that were identified during the
definition of the error model are used as offsprings of the malfunctions. Thus the
generated fault trees are consistent to the earlier elaborated PHA results.

It is possible to automatically extract the minimum cut sets from each fault
tree. A minimum cut set [12] is a set of basic events leading to the top event (vi-
olation of the safety goal) that cannot be reduced in number. For every violated
safety goal the minimum cut sets can be displayed on demand (see Figure 2).

Assume M is an EAST-ADL model and S is the subset of M that contains
hazards, hazardous events, safety goals, system architecture and the error model
(see Expression 8).

S ⊆ M (8)

Given that Expression 2 holds for all eεS, FTA generator ρ(S) can generate
graphical fault trees Υ that allow examining how component faults and failures
can contribute to the violation of safety goals (see Expression 9).

124 R. Mader et al.

Fig. 3. A FMEA table can be synthesized from the EAST-ADL model

ρ(S) → Υ (9)

The FMEA generator creates a FMEA table containing four columns denoting
the names of the components (Component), the component failure modes leading
to the violation of safety goals (Failure Mode), faults that potentially cause the
component failure modes (Possible Causative Faults) and the violated safety
goals (Violated Safety Goal). The generated FMEA table is consistent to the
fault trees and the earlier elaborated PHA results, because FTA generator and
FMEA generator use the same model S as input.

Given that Expression 2 holds for all eεS, FMEA generator α(S) can generate
a graphical FMEA table Ξ that allows to examine how component failures can
lead to the violation of safety goals (see Expression 10).

α(S) → Ξ (10)

6 Experimental Evaluation

A plugin for the open source tool Papyrus [8] was created that allows property
checking, model correction, fault tree generation and FMEA table generation
such as described in Section 4 and Section 5. Thereafter the approach was ex-
perimentally evaluated using the case study of a hybrid electric vehicle develop-
ment. This type of vehicle contains an additional electric motor that supplements
the internal combustion engine providing substitutive or additive torque. This
electric motor is controlled by the automotive embedded system. The safety en-
gineering workflow such as defined in Section 3 was carried out for a part of a

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 125

hybrid electric vehicle powertrain being aided by the property checker and the
model corrector.

Although the safety engineering workflow was carried out only for a part of the
hybrid electric vehicle powertrain, the resulting EAST-ADL model contains 457
interconnected modeling elements. Each of them contains numerous attributes.
The property checker identifying erroneously applied activities (see Section 4)
and the model corrector suggesting and applying model corrections (see Sec-
tion 5.1) strongly supported the application of the workflow and allowed coping
with the complexity. Illustrations of property checker and model corrector can
be found in [9].

During PHA the hybrid electric vehicle was identified to be safety-critical,
because its failures can cause malfunctions such as battery overcharging (Bat-
teryOvercharging). This malfunction can lead to hazards such as fire or explosion
of the battery (FireExplosion). Fire or explosion of the battery during vehicle
operation imposes a hazardous event (FireExplosionDuringCityTraffic). There-
fore the safety goal AvoidBatteryOvercharging was defined to control or mitigate
the corresponding hazard.

In later phases of the workflow, a part of the system architecture including
networked ECUs (electronic control unit), connected sensors and controlled actu-
ators was defined. Furthermore the relevant parts of the interacting environment
were modeled. The propagation of faults and failures was estimated and anno-
tated. The failure UnintendedNegativeTorque2 of the component EMotor was
identified to be causative for the malfunction BatteryOvercharging. This failure
can occur due to a failure of the E-motor or faults propagated from a sensor and
networked ECUs such as the BMU (Battery Management Unit).

Fault trees and a FMEA table were synthesized from the annotated model
(see Section 5.2). Figure 2 depicts a fault tree that shows the relations between
safety goal AvoidBatteryOvercharging, hazardous event FireExplosionDuringCi-
tyTraffic, hazard FireExplosion, malfunction BatteryOvercharging as well as the
causative faults and failures of the components. The extracted minimum cut sets
that can cause the violation of the safety goal are also depicted.

Figure 3 shows a part of the synthesized FMEA table. The table shows that
a failure mode of the HCU (Hybrid Control Unit) can lead to the violation of
the safety goal AvoidBatteryOvercharging. Moreover possible causative faults are
listed.

7 Conclusion

This work presents a modeling framework with analysis and synthesis capabil-
ities. This modeling framework supports a safety engineering workflow. In the
course of the workflow a model is annotated using the domain-specific language
EAST-ADL. This model integrates the work products of the workflow phases.
The modeling framework contains a property checker that allows to unveil the
incorrect application of the workflow and a model corrector that suggests and au-
tomatically performs corrections of the evolving model. Moreover fault trees and

126 R. Mader et al.

a FMEA table can be automatically synthesized allowing the application of qual-
itative FTA and FMEA. This tightly integrated approach ensures consistency
of PHA results, fault trees and FMEA table. The approach was evaluated using
the case study of a hybrid electric vehicle development. While the analysis and
synthesis capabilities of the modeling framework did not replace the intellectual
process of applying the workflow, they strongly supported its application.

Acknowledgment. The authors wish to thank the ”COMET K2
Forschungsförderungs-Programm” of the Austrian Federal Ministry for Trans-
port, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Eco-
nomics and Labour (BMWA), Österreichische Forschungsförderungsgesellschaft
mbH (FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG)
for their financial support. Additionally we would like to thank the supporting
company and project partner AVL List GmbH as well as Graz University of Tech-
nology. Further information about the MEPAS project can be found at http://
www.v2c2.at/mepas.

References

1. ATESST2 Project Consortium: EAST-ADL Domain Model Specification, version
2.1, Release Candidate 3 (2010)

2. Biehl, M., DeJui, C., Törngren, M.: Integrating Safety Analysis into the Model-
based Development Toolchain of Automotive Embedded Systems. In: Proc. of the
Conference on Languages, Compilers and Tools for Embedded Systems, pp. 125–
131 (2010)

3. Domis, D., Trapp, M.: Integrating Safety Analyses and Component-Based Design.
In: Proc. of the 27th International Conference on Computer Safety, Reliability and
Security, pp. 58–71 (September 2008)

4. Elmqvist, J., Nadjm-Tehrani, S.: Tool Support for Incremental Failure Mode and
Effects Analysis of Component-Based Systems. In: Proc. of the Design, Automation
and Test in Europe Conference and Exhibition (DATE 2008), pp. 921–927 (April
2008)

5. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Transactions on Computers 37, 64–72 (2004)

6. International Electrotechnical Commission: IEC 61025 - Ed. 2.0 Fault tree analysis
(FTA) (2006)

7. International Organization for Standardization: ISO/DIS 26262-3 Road vehicles -
Functional safety - Part 3: Concept phase (2009)

8. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,
Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset
for MDA. In: Proc. of the Fifth European Conference on Model-Driven Architec-
ture Foundations and Applications (ECMDA-FA 2009), pp. 1–4 (June 2009)

9. Mader, R., Grießnig, G., Leitner, A., Kreiner, C., Bourrouilh, Q., Armengaud, E.,
Steger, C., Weiß, R.: A Computer-Aided Approach to Preliminary Hazard Analysis
for Automotive Embedded Systems. In: Proc. of the IEEE International Conference
and Workshops on Engineering of Computer Based Systems (ECBS), pp. 169–178
(2011)

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 127

10. Majdara, A., Wakabayashi, T.: A New Approach for Computer-Aided Fault Tree
Generation. In: Proc. of the 3rd Annual IEEE Systems Conference, pp. 308–312
(2009)

11. de Miguel, M., Briones, J., Silva, J., Alonso, A.: Integration of safety analysis in
model-driven software development. IET Software 2, 260–280 (2008)

12. Leveson, N.G.: Safeware: system safety and computers. Addison-Wesley Publishing
Company, Reading (1995)

13. Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated
safety analysis and optimisation techniques. The Journal of Systems and Soft-
ware 76, 77–89 (2004)

14. Papadopoulos, Y., Maruhn, M.: Model-Based Synthesis of Fault Trees from Mat-
lab - Simulink models. In: Proc. of the International Conference on Dependable
Systems and Networks (DSN 2001), pp. 77–82 (July 2001)

15. Sandberg, A., Chen, D.J., Lönn, H., Johansson, R., Feng, L., Törngren, M.,
Torchiaro, S., Kolagari, R.T., Abele, A.: Model-Based Safety Engineering of In-
terdependent Functions in Automotive Vehicles Using EAST-ADL2. In: Proc. of
the 29th International Conference on Computer Safety, Reliability and Security,
pp. 332–346 (September 2010)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 128–142, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Statistical Anomaly-Based Algorithm for On-line Fault
Detection in Complex Software Critical Systems

Antonio Bovenzi1, Francesco Brancati2, Stefano Russo1, and Andrea Bondavalli2

1 Dipartimento di Informatica e Sistemistica (DIS),
Università degli Studi di Napoli “Federico II”, Napoli, Italy

{antonio.bovenzi,sterusso}@unina.it
2 Dipartimento di Sistemi e Informatica (DSI), Università degli Studi di Firenze, Italy

{Francesco.brancati,bondavalli}@unifi.it

Abstract. The next generation of software systems in Large-scale Complex
Critical Infrastructures (LCCIs) requires efficient runtime management and
reconfiguration strategies, and the ability to take decisions on the basis of
current and past behavior of the system. In this paper we propose an anomaly-
based approach for the detection of online faults, which is able to (i) cope with
highly variable and non-stationary environment and to (ii) work without any
initial training phase. The novel algorithm is based on Statistical Predictor and
Safety Margin (SPS), which was initially developed to estimate the uncertainty
in time synchronization mechanisms.

The SPS anomaly detection algorithm has been experimented on a case
study from the Air Traffic Management (ATM) domain. Results have been
compared with an algorithm, which adopts static thresholds, in the same
scenarios [5]. Experimental results show limitations of static thresholds in
highly variable scenarios, and the ability of SPS to fulfill the expectations.

Keywords: Anomaly detection, SPS, on-line software fault diagnosis.

1 Introduction

Large scale Complex Critical Infrastructures (LCCI), such as transport infrastructures
(e.g., the novel European Air Traffic Management federated system1) or power grids,
play a key role into several fundamental human activities. It is easy to think about
their economic and social impact: the consequences of an outage can be catastrophic
in terms of efficiency, economical losses, consumer dissatisfaction, and even indirect
harm to people.

LCCIs are the result of the integration of heterogeneous stand-alone subsystems
and their scale is strongly increasing, due to deregulation and the development of
“mixed market infrastructures” [10] and technological improvement. Such
interconnection requires not only designing a way to interconnect heterogeneous
systems, but also imposes that legacy systems have to operate beyond the original
design parameters [9].

1 http://www.sesarju.eu/

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 129

These systems rely on the efficacy of services, such as system management,
replication, load balancing and group communication, which require suitable
algorithms able to take runtime decisions on the basis of actual and past behavior of
the system. All these characteristics exacerbate the complexity of the infrastructure,
making crucial the designing of intelligent on-line monitoring and detection
mechanisms to infer (i) if the whole system is performing well and, if not, (ii) how to
face with possible failures.

Huge amount of data, coming from different probes spread over the system, need
to be analyzed in order to reveal that something is not working properly. In other
words, it must be possible to identify the case where anomalies occurred in the
system. With the term anomaly we refer to changes in the variable characterizing the
behavior of the system caused by specific and non-random factors [11], e.g., overload,
the activation of faults, malicious attacks, etc.

It is an interesting open issue to detect relevant anomalies in systems that exhibit
variable and non-stationary behavior, and may be affected by perturbations.
Moreover, the detection problem is exacerbated when the anomaly detector has to
support timely decisions based on online instead of offline analysis.

Detection systems usually assume worst-case thresholds to allow distinguishing
between nominal behaviors and anomalies [5][6]. However these thresholds are
typically tuned in a preliminary training phase and cannot fit all dynamically
changing situations in which the system could evolve. For instance, these thresholds
may depend on the application requirements, on system operational parameters and
on the current environment, and usually there are not a-priori fixed for the entire
system, and for all the system life-cycle; therefore, detectors can take advantage from
the possibility to adapt the expected thresholds online, e.g., because of operational
conditions modifications.

This work proposes an anomaly-based approach for software fault detection in
complex critical system, exploiting statistical analysis on data gathered at the
Operating System level. The proposed detector is able (i) to cope with variable and
non-stationary behavior, (ii) to perform an online (instead of offline) analysis and (iii)
to work without any initial training phase.

The detector receives data coming from a monitoring infrastructure, described in
[5], and it exploits the Operating System tracking mechanisms to collect different
kinds of information (e.g., syscall errors, signals, scheduling time of processes),
which reveal to be useful for detection.

The statistical analysis is performed by means of a recent algorithm, i.e., Statistical
Predictor and Safety Margin (SPS), which was initially designed to estimate the
synchronization uncertainty of a software clock [7]. Our intuition was that such
algorithm could be exploited to detect anomalies, due to software faults activation, in
high variable context. Such intuition is confirmed by our experimental results, which
encourage further research.

The detector performance have been evaluated by means of an experimental
campaign (see section 5) on a case study coming from the ATM (Air Traffic
Management), namely the SWIM-BOX®, which is a prototype developed at SESM2
to allow the cooperation and the interoperability of future ATM systems. Results have

2 SESM s.c.a.r.l., a Finmeccanica company. http://www.sesm.it/

130 A. Bovenzi et al.

been compared with an algorithm, which adopts worst-case thresholds (in the
following we refer to this algorithm as Static Thresholds Algorithm), in order to
explore possible improvements adopting this algorithm in the same situations [5]. The
experimental campaign involved a complete and sound testing activity, which
explores the performance of both the algorithms using a large set of possible
configurations. In particular, we execute fault injection experiments to accelerate the
failure related data collection, which allows labeling the relevant anomalies (namely,
those due to fault activation).

To evaluate performance we relied on the metrics for failure prediction used by
Malek in [1] and the Quality of Service (QoS) metrics for failure detectors provided
by Chen, Tuoeg and Aguilera in [12], furthermore an analysis of which class of
metrics best describes this class of algorithm has been provided.

The paper is organized as follows. Section 2 gives a brief description of the
Detection Framework, section 3 introduces the main steps to adapt the SPS algorithm
to this context, section 4 gives a survey of the most used metrics in literature, section
5 describes the experimental campaign and section 6 analyzes the obtained results.
Finally conclusion and future work are in section 7.

2 The Detection Framework

The Detection Framework was proposed in [5]. The Authors propose an approach
based on indirectly (and locally) inferring the health of the monitored component by
observing its behavior and interactions with the external environment. The basic idea
is to shift the observation perspective and to leverage OS support to detect application
failures.

2.1 Assumptions

System Model. The aim is to detect failures in complex Off-The-Shelf (OTS) based
safety critical software systems. These are often distributed on several nodes, which
communicate through a networking infrastructure. However, we focus on a single
node of the system to perform failure detection and we do not care of system
topology. In this context, failure detection is performed at process (thread) level.

Failure Model. According to the failure classification proposed in [1] we focus on (i)
crash failures and (ii) hang failures, i.e., failures which cause the delivered service to
be halted and the external state of the service to be constant. In our context, a service
is crashed when the process terminates unexpectedly (e.g., due to run-time
exceptions). Thus we refer to systems whose failures are to an acceptable extent
halting failures only, namely fail-halt (or fail-stop) system. For a more detailed
description of this class of failures we refer to [5].

2.2 The Detection Approach

The detection framework is based on the combination of several OS level monitors.
As suggested by intuition, combining multiple alarms coming from several sources
allows revealing a higher number of failures, as well as to gain a better accuracy, if
compared to detector without combination.

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 131

Fig. 1. The detection framework architecture

As depicted in Figure 1, multiple monitors keep track of OS data related to a
given process (thread). Each monitor is followed by an alarm generator . If the
monitored value does not belong to the specified range , , an alarm is
triggered. Actual thresholds have to be preliminary tuned for each monitored variable,
during a so-called training phase (see the Trainer block in Figure 1). Training is
performed by means of an initial profiling phase analyzing both normal and faulty
runs (namely, runs when a failure occurs). As previously stated, alarms, triggered by
alarm generators, are combined in order to improve detection quality.

The detector D performs the overall detection by means of a simple heuristic
defined as the weighted sum of single alarms, where weights are defined after the
training phase. A failure is finally detected if the output of exceeds a given
threshold tuned during the training phase too.

2.3 Limitations of the Static Thresholds

As described in previous section static threshold algorithms perform well enough if
the environmental conditions in which the system operates are similar to the training
phase. Performance goes worse if the operational conditions of system differ from
those of the training phase since the evaluated thresholds may no longer be able to
model the nominal behavior. This last situations is no far from real scenarios if we
consider Large scale Complex Critical Infrastructures (LCCI) as possible application
field, in which detection algorithms have to deal with highly variable scenarios, in
which the whole system evolves in time and space dimension, alternating periods of
heavy workloads, which involved high number of nodes and heterogeneous type of
service requests, with periods of low computational activities. In this type of
environment, training phases need to be performed periodically in order to keep tuned
the algorithm. Since this kind of dynamical environment changes are often very hard
to predict an algorithm that computes adaptive, instead of static, thresholds could
overcome such limitations because, as shown in Section 6, it does not depend from an
initial training phase.

3 Using SPS Algorithm to Estimate Adaptive Thresholds

In this section we first give an overview of SPS algorithm, by discussing its
assumptions and by showing how it can be used to provide adaptive thresholds to the

Trainer

132 A. Bovenzi et al.

detector, then we illustrate the fundamental differences between static and adaptive
thresholds.

3.1 SPS-Based Detection Algorithm

The SPS algorithm was initially designed to compute uncertainty interval at a time
within a given coverage, namely the probability that the next value of the time series
will be inside the uncertainty interval. This algorithm can be adapted to compute
adaptive bounds for anomaly detection activities with minor changes. As shown in
[7], the uncertainty computed by SPS algorithm consists in a combination of left and
right bounds. These bounds are computed starting from three quantities: (i) the last
value of the series, (ii) the output of a predictor function and (iii) the output of a
safety margin function. The output of the SPS at is constituted by the two
values: max 0, Θ min 0, Θ

Where Θ is the last value of the time series (i.e., the estimated offset for the time
synchronization environment). In computing uncertainty in time synchronization the
requirements state that the uncertainty interval must contain the global time, so we
distinguish left from right uncertainty by considering the offset only if it is negative in
the former, positive in the latter.

We adapted the computation of the bounds assuming symmetrical values for the
predictor and the safety margin functions (and)
and computing the adaptive bounds as: - -

Where and are the upper and the lower bounds at time , and is the
last value of the series.

The predictor function provides an estimation of the behavior of the time series.
The safety margin function aims at compensating possible errors in the prediction
and/or in the measurement of the actual value of the time series. The safety margin is
computed at and it is updated only when new measurements arrive. We refer to [7]
for technical details about the predictor and the safety margin functions.

The set-up parameters used by SPS are: four probabilities , , , , that
can be combined in one single parameter (coverage of the algorithm) and the two
different values for memory depth . The performance achieved by SPS
depends on these parameters [7].

Computational cost of the SPS algorithm depends on the computation of a
population-weighted variance. Since variance is computed using sums of the
elements, the computational cost of the algorithm is linear with the number of
samples. If we use accumulators to store the value of the sums in memory, the
computational cost of SPS becomes constant. This last solution is obviously preferred
when we want to use the algorithm at runtime considering a large set of samples.

3.2 SPS Assumptions

The measurements provided by monitors are received at regular interval of time. Let
be k the number of different monitored variables.

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 133

Def. 3.1 (timeseries). A time series , … , is an ordered set of real-valued
variables.
Def. 3.2 (anomaly). With respect to a monitored time series , an anomaly is a
change in the characteristics of , caused by specific and non-random factors.

The continuous stream of data points constitutes the collection of
measurements. These measurements correspond to certain physical events in the event
space S, which we assume can be divided into two subspaces corresponding to normal
events (SN) and anomalous events (SA).

In order to apply SPS algorithm to time series , we make the following
assumptions.

Random Walk Model. We assume that the monitored process behavior can be
modeled as a random walk, with or without drift. Namely, the variability of the
process is the result of the cumulative effect of small but unavoidable constant and
casual factors.

Interleaved Behavior. We assume that the environment alternates stable periods,
during which the monitored process has some stability properties (i.e., it is under
control), with transient periods (smaller compared with the stable), during which a
variation of environmental or system condition occurs (due to workload, new
configuration) involving a change in the characteristics of the monitored process. This
assumption is supported by the results of many recent works [13].

Transient Period Changing. We assume that, during the transient period, changes in
the monitored processes behavior consist in continuous increments or decrements
with respect to previous values. These changes are due to some specific factors, which
are not casual, such as: a modification of system structural parameters (e.g., the
number of active nodes), overloading conditions (e.g., due to a burst of requests), the
activation of a residual fault leading to system failures (e.g., crashes, hangs).

It is worth noting that, the proposed detection approach does not make any
assumptions about the stationarity of the monitored variables. Namely, if the
statistical properties of the monitored process (e.g., mean and variance) change over
time, the detection of anomalies is still possible. Relaxing the stationary hypothesis
makes the detector more suitable for real variable contexts with respect to the case in
which these properties are statically derived by means of preliminary profiling phase.

3.3 The Detector Equipped with SPS

The detector can be easily equipped with SPS modifying the alarm generator
component, (i.e., in Figure 1). SPS continuously processes data received from the
associated monitor, thus it will be in charge to provide adaptive thresholds to each .
In this way the training phase, which in the previous version of the detector was
necessary to compute static thresholds and to find weights for each monitor, is totally
avoided.

134 A. Bovenzi et al.

3.4 Comparison between Adaptive and Static Thresholds Algorithm

Figure 2 shows adaptive thresholds computed by SPS compared with Static thresholds
for the same monitored variable (total number of timeouts expired for scheduling of
processes).

SPS thresholds signals the failure (at about 160), while, as we can observe in the
left part of Figure 2, the monitored value is very often above the upper static
threshold, producing a lot of False Positive.

Fig. 2. Static thresholds and Adaptive thresholds on monitored data

4 Metrics for Performance Evaluation

In order to provide a fair and sound comparison between SPS and Static Thresholds
Algorithm we analyze criteria that should be used to characterize on-line detectors
performance for our target applications. We first summarize some of the most used
metrics in literature then we must specify, which metrics are the most representative
in our scenario and why.

Roughly speaking the goal of an on-line failure detector is i) to reveal all the
occurring failures, ii) to reveal them timely and ii) not to trigger false alarms.

To ease the description of metrics and to better understand their meaning we
introduce some definitions:

• True Positive (TP): if a failure occurs and the detector triggers an alarm;
• False Positive (FP): if no failure occurs and an alarm is given;
• True Negative (TN): if no real failure occurs and no alarm is raised;
• False Negative (FN): if the algorithm fails to detect an occurring failure.

Clearly many TPs and TNs are good, while the vice versa for FPs and FNs.
Metrics coming from diagnosis literature are usually used to compare the

performance of detectors [9]. For instance coverage measures the detector ability to
reveal a failure, given that a failure really occurs; accuracy is related to mistakes that
a failure detector can make. Coverage can be measured as the number of detected

50 100 150 200 250 300

20

40

60

80

100

Seconds

N
u

m
b

e
r o

f t
im

e
o

u
ts

 p
e

r
se

co
n

ds

Socket timeouts of monitored processes

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 135

failures divided by the overall number of failures, while for accuracy there are
different metrics.

Basseville et al. [3] consider the mean delay for detection (MDD) and the mean
time between false alarms (MTBFA) as the two key criteria for on-line detection
algorithms. Analysis are based on finding algorithms that minimize the mean delay
for a given mean time between false alarms and on other indexes derived from these
criteria.

In [2] metrics borrowed from information retrieval research are used, namely
precision and recall. In their context recall measures the ratio of failures that are
correctly predicted, i.e., TP/(TP+FN), while precision measures the portion of the
predicted events, which are real failure, i.e., TP/(TP+FP). Thus perfect recall
(recall=1) means that all failures are detected and perfect precision (precision=1)
means that there are no false positives. A convenient way of taking into account
precision and recall at the same time is by using F-measure, which is the harmonic
mean of the two quantities. Since in diagnosis the ratio of failures correctly detected
(recall) is also called coverage, in the following we refer to it as coverage.

However using solely precision and coverage is not a good choice because they do
not account for true negatives, and since failures are rare events we need to evaluate
the detector mistake rate when no failure occurs. Hence, in combination with
precision and coverage, one can use False Positive Rate (FPR), which is defined as
the ratio of incorrectly detected failures to the number of all non-failures, thus
FP/(FP+TN). Fixing Precision and Coverage, the smaller the false positive rate, the
better. Another metric is Accuracy [2], which is defined as: the ratio of all correct
decisions to the total number of decisions that have been taken, i.e.,
(TP+TN)/(TP+TN+FP+FN).

Chen, Toueg and Aguilera [12] propose three primary metrics to evaluate detectors
quality, in particular their accuracy. The first one is Detection Time (DT), which,
informally, accounts for the promptness of the detector. The second one is the Mistake
Recurrence Time (TMR), which accounts for time elapsed between two consecutive
erroneous transitions from Normal to Failure. Finally they define Mistake Duration
(TM), which is related to the time that detector takes to correct the mistake. Other
metrics can be simply derived from the previous one. For instance, Average Mistake
Rate (), represents the number of erroneous decisions in the time unit; Good period
duration (TG) measures the length of period during which the detector does not trigger
a false alarm; Query accuracy probability (PA) is the probability that the failure
detector's output is correct at a random time.

Bearing in mind classes of our target applications we believe that, when dealing
with long running and safety critical systems, mistake duration (and thus TG) is less
appropriate than Coverage, accuracy and , since just an alarm may be sufficient to
trigger the needed actions (e.g., put the system in a safe state). Coverage is essential
because if the detector does not reveal a failure, then more severe (and potentially
catastrophic) consequences may happen. Accuracy and are useful to take into
account false positives because each failure detector mistake may result in costly
actions (such as shut down, reboot, etc.).

136 A. Bovenzi et al.

The query accuracy probability is not sufficient to fully describe the accuracy of a
failure detector, in fact, as discussed in [12], for applications in which every mistake
causes a costly interrupt the mistake rate is an important accuracy metric too.

We point out the differences between Accuracy, defined in [2], and PA defined in
[12]. Since we consider a fail stop model, TP<<TN, so if FP<<TN, then Accuracy≈1.
For these reasons we consider PA as more representative than Accuracy to compare
SPS algorithm with Static Thresholds Algorithm.

Finally we introduced an additional parameter for performance evaluation, the
time-to-detection d. This parameter represents the maximum delay to detect a failure.
Thus, considering the time when a failure occurs, if an alarm is raised after
we do not account it as a TP. To be sure that a true positive is effectively related to
the failure we set (where is the memory depth of SPS algorithm).

Table 1. Metrics for performance evaluation of failure detectors

Metric Formula Metric Formula

Coverage (C) / Accuracy-Coverage TradeOff C A

Precision (P) / MTBFA
(Mean Time Between Mistakes)

F-Measure 2 / MDD
(Mean Delay for Detection)

FPR
(False Positive Rate) / λM (Average Mistake Rate) 1/

Accuracy (A) PA (Query accuracy probability)

5 Experimental Campaign

We performed an experimental campaign with the aim of comparing performance of
two Detection frameworks using both Static Thresholds and SPS algorithm as alarm
generators.

The testing activity was performed analyzing a large amount of data monitored in a
real and complex case application, namely the SWIM-BOX®. The application is
made of several OTS, e.g., OS, the application Server (JBoss) and the data
distribution middleware (OpenSplice). We executed tests under different workloads
and faultloads, using fault injection technique described in [4], in order to accelerate
the failure related data collection. The monitored data of each test was loaded into a
well-structured data-repository following an OLAP approach [13]. The two
algorithms are then applied and evaluated in a post-processing phase.

5.1 Case Study Description

The SWIM-BOX® is actually a pilot prototype, which has been implemented in the
framework of the SWIM SUIT FP6 European project3, to support global

3 http://www.swim-suit.aero/swimsuit/

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 137

interoperability for the novel Air Traffic Management (ATM) systems. It is a complex
OTS-based application, which offers several facilities to SWIM-BOX users:
synchronous/asynchronous communication pattern (i.e. request/reply,
publish/subscribe), security services (e.g., authentication, authorization, encryption)
and distributed and transactional data storage.

The case study scenario consists of two legacy entities, named the Contributor and
the Manager, which collaborate by means of the SWIM-BOX to manage Flight Data
Plan.

Fig. 3. Simplified interaction scenario

Figure 3 describes an example of the interaction between the legacy systems. The
Contributor acts as the subscriber, waiting for Flight Object updates (i.e., an entities
including several data related to a flight) to be published. Also, it periodically reads
all the available Flight Object summaries. Conversely, the Manager is in charge of (i)
executing a given number of operations (e.g., Flight Data Object creations and
updates) at a variable rate (20 to 300 operations/min in the experiments), as well as of
(ii) distributing data over the network. Once all the operations have been completed
the Contributor requires unsubscribing. Two legacy entities Manager and Contributor,
represent the system under test.

5.2 The Experimental Activity

Detection Framework analyzes several variables by means of the monitoring
infrastructure described in [5]. Monitors are based on OS instrumentation facilities,
which allow implanting probes into the kernel and register corresponding probe
handlers. Probes are breakpoints inserted dynamically into the kernel module
avoiding recompiling and rebooting. When a breakpoint is hit, a handler routine is
launched to register an event with the needed information (e.g., input parameters or
return values of called functions).

The events collected during this experimental campaign are shown in Table 2.
Monitors are associated to probes and provide measurements by aggregating the

number of events recorded by a probe in a given time period. Other monitors,

138 A. Bovenzi et al.

measure the disk/network throughput, by summing bytes read or write, respectively
on the disk and on the network interfaces. The total number of types of monitor is 18.

This infrastructure is completely configurable such that one can choose (i)
processes and network interfaces to observe, (ii) timeouts associated to a particular
probe (when needed) and (iii) the sample period of monitors (i.e., the interval of time
between two consecutive measurements).

Table 2. Probe description

Probe Trigger condition for events registration
System call error code An error code is returned

Time scheduling of process Timeout exceeded since the process is preempted

Signal A signal is received

Process/Thread creation/termination Creation or Termination of a Process (Thread)

I/O on Disk Timeout exceeded since last disk read/write

I/O on Socket Timeout exceeded since last socket read/write

Holding time for Mutex/Semaphore Timeout exceeded for mutex/semaphore possession

Waiting time for Mutex/Semaphore acquisition Timeout exceeded for mutex/semaphore acquisition

Disk Throughput A byte is read/write

Network Throughput A byte is send/received

We evaluate the overhead of the monitoring infrastructure by measuring the
execution time of our application when the monitors are turned off and when they are
enabled. Overhead results almost negligible (about 3%).

Table 3. Experimental activity dimensions

Dimensions Description
Target
System

Characteristics of the Target System,(CPU, RAM, disk speed, …)

Events Monitored events

Run Information on the executed run (start time, end time, …)

Scenario In this campaign we considered only the scenario described in 5.1: Two Entity, one
Manager and one Contributor.

Workload Adopted Workloads differs from message rate, message burst rate and message per
burst.

Faultload Several faults injected (one per injection) by means of code mutation technique [4].

Monitored data were stored in an online data repository following an OLAP
approach [13]. Dimensions and description of the OLAP repository are shown in
Table 3.

We considered a subset of the mathematical combinations of all dimensions, and
performed 17 faulty runs and 19 nominal runs. After the execution of the runs both
algorithms were applied in a post-processing phase, varying several configurations.

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 139

Combinations of runs and considered configurations give 6300 different sets of data
(see sec.5.3).

5.3 The Post Processing Phase

After the execution of all the runs both Algorithms are applied in a post-processing
phase, varying several configurations. The evaluation of metrics is carried out by
applying algorithms to dataset, which have not been used for parameters tuning. For
these reasons the dataset is divided into a training set and a validation set, which
consist respectively in 6 and 30 runs.

Post Processing SPS. SPS algorithm was applied varying the following parameter:
coverage : 0.9, 0.99, 0.9999 , memory depth (in terms of number of data

considered in the statistics): 10, 20 , time for detection : , , . To be sure

that a true positive alarm is effectively related to the failure we set . Combining
these tree dimension we obtains 18 different configurations for SPS.

Post Processing Static Thresholds. Static Thresholds algorithm was applied by
varying (i) method for the evaluation of thresholds for each monitor and the
time for detection : 3, 6, 10, 20 . In particular we estimate the thresholds on the
training set using 3 different methods: , , , ,2 , 2 . The total number of configurations is 12.

For Both SPS and Static Threshold we consider 5 values for parameter in the
global detector, so we have a total of 150 different configurations. All 90 SPS
configurations was post processed for the validation set (30 runs), while the 60 Static
Algorithm configurations were post processed first for validation set by carrying out
the training phase of algorithm, and then to the validation set without the training
phase, for a total of 6300 sets of analyzed data.

6 Results Analysis

We pointed out 3 different scenarios to be compared: SPS Algorithm; Static
Thresholds Algorithm with a training phase; Static Thresholds Algorithm without a
training phase.

Since it could be very difficult and confusing but also not useful to compare the
two algorithms for all possible configurations and all metrics we decided to compare
only the best configuration for the two algorithms. To select the best configuration
among all the metrics described in section 4, we introduced a synthetic measure
S | | | | | | 1 | | 1| |) that takes into account most relevant metrics that are not correlated together.
Synthesis allows weighting the metrics according to the type of system at hand. For
our purposes we considers metrics with the same weight.

Configurations with best Synthesis measure were 0.99, 20, 20, t=0.4
for SPS, 3, 0.5 for Static Thresholds with the training phase and 3,0.3 for Static thresholds without a training phase. It’s noteworthy that the absence of
the training phase for Static algorithm involves setting all weight to 1 in the global
detector.

140 A. Bovenzi et al.

Fig. 4. Compared experimental results

The following metrics: average Mistake Duration (aTM), average Mistake Rates
(aMR), average Query Accuracy (aPA), Accuracy-Coverage tradeoff (A*C), and the
Synthesis metric has been normalized in Figure 4 to ease the comparison, while the
absolute values are showed in Table 4.

Table 4. Experimental results

 aTM (sec) aMR aPA A*C Synthesis
SPS Algorithm 3.611111 0.009804 0.95098 0.96004 0.914551

Static T. without training 11.63951 0.032724 0.674494 0.582356 0.59768

Static T. with training 4.75 0.023715 0.85584 0.974436 0.842296

The weakness of static thresholds algorithm described in section 2.3 has been
proved by the poor results achieved without the training phase. Moreover, SPS-based
detection algorithm shows better results, proving that adaptive thresholds give an
effective gain in this class of detectors.

7 Conclusion and Future Work

This work proposes an anomaly-based approach for software fault detection in
complex critical systems, exploiting statistical analysis on data gathered at the
Operating System level. The proposed approach relies on the SPS algorithm, which
was initially designed to compute uncertainty in clock synchronization [7].
Performance of this algorithm has been evaluated by means of an experimental
campaign and compared with a static threshold algorithm proposed in [5]. The
comparison has been made, first exploring the existing metrics in literature [2],[12]
and then applying the most representative to both algorithms. Experimental results

 A Statistical Anomaly-Based Algorithm for On-line Fault Detection 141

confirm the limitations of static threshold algorithms in highly variable scenarios,
where the operational conditions of system differ from those of the training phase.
Moreover results show that, compared to static threshold based algorithms, the SPS
algorithm is able (i) to cope with variable and non-stationary behavior, (ii) to work
without any initial training phase, and (iii) to perform better even when a training
phase is applied, in terms of coverage, query accuracy probability, mistake rate and
mistake duration.

As future work we will implement this algorithm to test and validate it when
executed online and compare it with other techniques used in failure detection field,
such as machine learning algorithm, and ARIMA models [3].

Acknowledgment. This work has been partially supported by the Italian Ministry for
Education, University, and Research (MIUR) in the framework of the Project of
National Research Interest (PRIN) “DOTS-LCCI: Dependable Off-The-Shelf based
middleware systems for Large-scale Complex Critical Infrastructures” (dots-
lcci.prin.dis.unina.it).2008. It is also in the context the ”Iniziativa Software” Project,
an Italian Research project which involves Finmeccanica company and several Italian
universities (www.iniziativasoftware.it).

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. Dependable Secure Computing (2004)

2. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM
Computing Surveys, CSUR (2010)

3. Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: theory and application.
Prentice-Hall, Inc., Englewood Cliffs (1993)

4. Natella, R., Cotroneo, D.: Emulation of transient software faults for dependability
assessment: A case study. In: Proceedings of the Eighth European Dependable Computing
Conference, EDCC (2010)

5. Carrozza, G., Cinque, M., Cotroneo, D., Natella, R.: Operating System Suppor t to Detect
Application Hangs. In: International Workshop on Verification and Evaluation of
Computer and Communication Systems, VECoS (2008)

6. Irrera, I., Duraes, J., Vieira, M., Madeira, H.: Towards Identifying the Best Variables for
Failure Prediction Using Injection of Realistic Software Faults. In: Pacific Rim
International Symposium on Dependable Computing. IEEE, Los Alamitos (2010)

7. Brancati, A., Bondavalli, A., Ceccarelli, A.: Safe estimation of time uncertainty of local
clocks. In: International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication (2009)

8. Salfner, F.: Event-based failure prediction: an extended hidden Markov model approach,
Dissertation.de, Berlin (2008)

9. Daidone, A.: Critical infrastructures: a conceptual framework for diagnosis, some
applications and their quantitative analysis. PhD thesis, Università degli studi di Firenze
(December 2009)

10. Johnson, C., Malek, M.: Progress achieved in the research area of Critical Information
Infrastructure Protection by the IST-FP6 Projects CRUTIAL, IRRIIS and GRID.
Technical report, EU Report (March 2007)

142 A. Bovenzi et al.

11. Montgomery, D.C.: Controllo statistic della qualità, 1st edn. McGraw-Hill italia, New
York (2000)

12. Chen, W., Toueg, S., Aguilera, M.K.: On the Quality of Service of Failure Detectors. In:
Proceedings of the 2000 International Conference on Dependable Systems and Networks
(formerly FTCS-30 and DCCA-8) (2000)

13. Casimiro, A., Lollini, P., Dixit, M., Bondavalli, A., Verissimo, P.: A framework for
dependable QoS adaptation in probabilistic environments. In: Proceedings of the 2008
ACM Symposium on Applied Computing (2008)

14. Madeira, H., Costa, J., Vieira, M.: The OLAP and data warehousing approaches for
analysis and sharing of results from dependability evaluation experiments. In: 2003
International Conference on Dependable Systems and Networks, 2003, pp. 86–91 (June
22-25, 2003)

Security Analysis of

Smart Grid Data Collection Technologies

Luigi Coppolino, Salvatore D’Antonio,
Ivano Alessandro Elia, and Luigi Romano

University of Naples “Parthenope”, Department of Technology, Italy
{luigi.coppolino,salvatore.dantonio,

ivano.elia,luigi.romano}@uniparthenope.it

Abstract. In the last few years we are witnessing a dramatic increase
in cyber-attacks targeted against Critical Infrastructures. Attacks against
Critical Infrastructures are especially dangerous because they are tailored
to disrupt assets which are essential to the functioning of the society as
a whole. Examples of Critical Infrastructure sectors include transporta-
tion, communication, and utilities. Among these, power grids are possibly
the most critical, due to the strong dependency of virtually all Critical
Infrastructures on the power infrastructure. We have conducted a secu-
rity analysis of two key technologies which enable data collection in Power
Grids, namely synchrophasor devices and Phasor Data Concentrators. We
emphasize that the study has been conducted on a commercial
synchrophasor produced by a major vendor, and on a widely used open
source product for the Phasor Data Concentrator application. We describe
the experimental setup, present the main results, and comment the find-
ings of our research.

Keywords: Phasor Measurement Units, Synchrophasors, Phasor Data
Concentrators, Security Analysis, Power Grids, Smart Grids.

1 Rationale and Contribution

Information Technology (IT) and Operational Technology (OT)1 are progres-
sively converging, as reported by the independent analyst Gartner in [1]: “the
nature of the OT systems is changing, so that the underlying technology such
as platforms, software, security and communications is becoming more like IT
systems”. If on the one hand such a convergence is a source for new opportu-
nities, on the other it results in new challenges and threats, especially when
it occurs in systems providing critical functions (such as energy distribution,
e-health, transportation, etc.). Indeed weaknesses and vulnerabilities of the un-
derlying IT systems, can be exploited to compromise the correct provisioning
of critical services. Evidence is showing that Critical Infrastructures (CIs) are
already exposed to Cybersecurity attacks [2][3] and they will be even more so in
1 The term Operational Technology in this report is used as a synonym of physical-

equipment-oriented technology.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 143–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 L. Coppolino et al.

the future, as suggested by both McAfee and Symantec in some recent reports
[4][5]. In particular, in [4] McAfee describes a major hacking initiative, called
“the night dragon” (since it originated in China), specifically targeting power
grid systems. Given that Power Grids will evolve towards Smart Grids, the pos-
sibility of successful attacks against Power Grid IT management layers might
have a dramatic impact in the future, when Smart Grids will be provided of
reconfiguration abilities able to trigger automated reactions in case of detection
of abnormal behavior of the network. The correct selection of a reconfiguration
strategy depends on the ability to precisely monitor the status of the grid. Pha-
sor Data Concentrator (PDC) and Phasor Measurement Unit (PMU) represent
key technologies for Power Grid data monitoring, where electrical waves in the
power distribution infrastructure are analyzed to evaluate the system status and
to diagnose possible problems and faults. A more precise view of the power distri-
bution network can be obtained by correlating information gathered by multiple
PMUs deployed in a single grid. This correlation is made possible by the adop-
tion of synchrophasors, that is synchronized PMUs with a common time source
from a GPS radio clock. In this context, guaranteeing the integrity of collected
measurements is of paramount importance, since their alteration may result in
wrong reconfiguration actions and possibly in money losses and blackouts with
unpredictable cascade effects, possibly affecting multiple countries [28][29][30].

In this paper we have conducted a security analysis of two key technologies
which enable data collection in Power Grids, namely synchrophasor devices and
Phasor Data Concentrators. Among the projects that rely on the use of these tech-
nologies, we can cite the NASPI network (NASPInet) [13]), a framework
project involving members of the NERC[14] corporations and the U.S. Depart-
ment of Energy and the North American consumers and utilities, and the Fre-
quency Monitoring Network (FNET) [15] project which is aimed to detect power
systems anomalies by means of Frequency Disturbance Recorders (FDRs) and In-
formation Management Systems (IMSs).

We emphasize that the study has been conducted on a commercial product by
a major vendor (as far as the synchrophasor is concerned), and on a widely used
open source product (as far as the Phasor Data Concentrator is concerned). We
have set up a simplified - yet realistic - testbed, and we have conducted a pene-
tration testing campaign against the two aforementioned components. As a result
of the testing sessions, we exposed several vulnerabilities, some of which can be
easily exploited for conducting attacks to current smart grid data collection infras-
tructures if proper measures are not taken and additional protection devices are
not integrated in the system. We explicitly note that major synchrophasor ven-
dors and power operators take security very seriously, and that is why they pro-
vide a plethora of products, which allow security enhanced deployment of smart
grid data collection infrastructures. These solutions pursue security at the sys-
tem level, rather than at the level of individual devices/components. Commercial
products and/or best practices which provide answers to some of the problems
which we have pointed out include: [19][20][21][22][23][24][25][26][27].

Security Analysis of Smart Grid Data Collection Technologies 145

The rest of the paper is organized as follows. In Section 2 we introduce syn-
chrophasor and other related technologies (including the most used standard for
PMU communications, namely the C37.118 protocol). In Section 3 we present
the experimental testbed, and the key results of our security analysis. Finally,
we provide some concluding remarks in Section 4.

2 Smart Grids and Phasor Measurement Units

Even if the phasor mathematical concept dates back to more than one hundred
years ago, the first evaluation of phase differences started in the early 80s, when
several instrumentations helped to have the same time-synchronized reference
in different locations (e.g. LORAN-C, GOES satellite, and HBG radio trans-
mission). The synchrophasors are the evolution of the first-generation devices,
traditionally known as PMU [12], that add real time monitoring capabilities,
which are enabled by the use of a Global Positioning System (GPS) synchronized
time source.

Observing the power line dynamics needs real time measurement, which is
not achievable with current state of the art SCADA technology (since the most
common versions of traditional SCADA systems are unable to offer real time
dynamics and angle evaluations). The use of GPS gives the opportunity of ex-
ploiting an UTC timestamp and using it as reference to evaluate the phasor
angle in the same time slice in different locations of the Power Grid. This UTC
time is given with a fractional seconds precision. Among the others, the GPS
clock is also a reference for the PMU signal sampling rate.

The need for increasing the reliability and efficiency of power distribution ser-
vices led to improve the capabilities and security properties of power distribution
systems. The adoption of interconnected infrastructures has allowed the power
companies to exchange information, maintain frequency and voltages stabilities
and control undesirable load shed events; moreover systems maintenance costs
were reduced, and new emergency plans and techniques could be developed.

Smart grids allow new paradigms in power generation, consumption, and
delivery by the adoption of new emerging communication and information tech-
nologies and frameworks. Smart grid networks (Fig. 1) are made of several func-
tional units, each one in charge of different tasks (specifically: each consumer
manages a smart controller and meter connected to a collector node; the collec-
tor node receives inputs from several residences and transmits them to an utility
station through the Internet; the utility is in charge of transmitting data to the
distribution and the transmission system, usually through an intranet).

Today synchrophasors are used for substation analysis, power systems analy-
sis, and wide area control.

The most important monitoring activities for the power stakeholders can be
divided in two main categories: normal operations and emergency operations.
In the first case the power supplier should check for frequency deviations: the
generators have a tight frequency bandwidth operativity, so larger deviations
can induce transmission trips also from several energy suppliers, due to the

146 L. Coppolino et al.

Fig. 1. A schematic representation of the main components of a smart grid

interconnection of generation sources. During normal operations stakeholders
consider also the voltage deviations: even if less restrictive than the frequency
ones, these deviations must be controlled to avoid overcoming the tolerance range
and check for events like uncontrolled brownout or voltage surges.

During the emergency operations the most important events to face are the
loss of generation and the loss of transmission (input and output): in the case of
generation loss and input transmission outages, the power load is greater than
the supplied power and the working frequency shows a huge deviation.

In the substation analysis synchrophasors are used for verifying the voltage
and current phasing of the substation, giving a reference for the equipment. They
can also help in voltage measurement refinement, solving issues involving the
meter equipment or devices. Moreover synchrophasors can interact with a legacy
SCADA system for measurement verifications, since they are more accurate and
work at higher rate than SCADA systems.

In the field of power system analysis synchrophasors allow wide area dis-
turbance monitoring with timeliness capabilities: since there is a common time
reference the synchrophasors are easily correlated and processed in real-time.
Synchrophasors voltage measurements support the system state estimation: typ-
ical SCADA evaluation were based on magnitude only, inaccurate and not time
aligned measurements. Since the monitoring of a wide area can induce commu-
nication difficulties, the synchrophasors data are more often used as an input for
a disturbance recorder (SDR), so that some events are recorded and evaluated
locally and then reported to wide area collectors.

The wide area control consists in detecting known events or anomalies and
take countermeasures for them. Among the others we have the anti-islanding
control (islanding is a phenomenon affecting power grids, as a result of a power
system failure, where the power grid is separated in two or more fragments called

Security Analysis of Smart Grid Data Collection Technologies 147

islands): in this case the system tries to disconnect the generator from the grid
in timely manner. Synchrophasors are used also for the so called black start of
a generation unit.

One of the most interesting analyses developed by means of synchrophasors
coordinated observations is the evaluation of propagating generator trips [16].
Events observation puts in evidence that a generator trip event causes a fre-
quency reduction. The frequency variation, observed in a certain point, propa-
gates on the transmission lines, showing the same frequency reduction in other
sites with a certain delay. Using the triangulation technique, at the locations
with the same phase, we can identify the site of the event. Moreover we can
estimate the power trip imbalancing, since it is proportional to the frequency re-
duction: the propagating effect and the power reduction estimation can be used
to forecast serious events like blackouts, or simply to prepare the remote power
supplier with storage energy sources.

In 2005 the C37.118 protocol was produced as a evolution of the 1344 stan-
dard [6] to facilitate integration of synchrophasor technology. The C37.118 is
an IEEE standard that defines the protocol for phasor data transmission and
synchrophasors devices configuration.

The C37.118 communication standard specifies data types and classes iden-
tities; however it does not specify the underlying data communication protocol
or medium; usually C37.118 messages are transmitted over TCP, UDP or higher
level protocols.

The C37.118 is a lightweight protocol: it has a real-time data stream, oc-
casionally interleaved with configuration information messages. There are five
types of messages: Data Frame, Configuration Frame 1, Configuration Frame 2,
Header Frame, Command Frame. All the messages contain binary data, except
the header messages and some fields in the Configuration Frame that contain hu-
man readable (ASCII) coded words. The Data Frames must contain synchropha-
sor and frequency measurements and optionally other analog values (i.e. power
flows) or status words (i.e. breaker status). The C37.118 standard is usually im-
plemented with the client/server paradigm, where the PMU acts as server and
the PDC host as client. The Command Frame is sent by the PDC to start or
stop the data transmission or to request configuration information. The standard
specifies that, if the lower level protocol is the TCP-UDP/IP, each message must
be encapsulated in one frame and completed with the CRC word. The standard
has been conceived with the possibility to collect measurements coming from dif-
ferent PMUs or PDCs. For this reason the data frames have an initial ID field,
used by the collector to identify different sources. Moreover each frame could
contain a different number of PMU measurements: each PMU is identified with
an ID and a station name in ASCII code (16 bytes); moreover each PMU has
different phasor and status channels: each channel or phasor could be identified
with an ASCII label of 16 bytes. The Header Frame contains labels about each
PMU/PDC that are transmitted in ASCII format within 16 bytes words.

We highlight that the standard does not inherently grant security in the mes-
sage exchange operations. Moreover there is no specification for the underlying

148 L. Coppolino et al.

transmission protocol. So the standard could suffer for vulnerabilities at lower
(transmission) and upper (message content) level. These vulnerabilities can be
exposed in the case of devices in some way joined to public networks.

3 Experimental Testbed and Campaign

3.1 Testbed Setup

Figure 2 shows the testbed we used for our security analysis.
Even though the testbed architecture is a simplified version of a real set-up

(which would typically consist of multiple hierarchal levels of PDCs, and also
include additional components with the capability of enforcing specific protection
mechanisms), we emphasize that our testbed is based on components which are
actually used in Smart Grid networks which are currently being deployed. Thus,
many of the vulnerabilities which we expose in our study may well be present in
real set-ups, especially those - which are not rare indeed - where security-related
best practices have been disregarded.

Fig. 2. The schema of the testbed used for our analysis

In smart grid data collection infrastructures, multiple Phasor Measurement
Units (PMU) are deployed across a power grid measuring different parameters
which provide indications of its health, including phasor measurements. Each
measurement is timestamped using a GPS clock. The collected measurements
and the associated timestamps are sent to a central PDC, where data is analyzed,
processed, stored, and presented to the operator. The timestamping of collected
measures enables time-based cross correlation of data.

As already mentioned, our setup is based on realistic components (in partic-
ular, we have used a commercial synchrophasor device, which is widely used in
this type of applications). The PDC receives phasor data from the synchropha-
sor using the C37.118 protocol which is the IEEE standard protocol for phasor
data management. It uses the OpenPDC[7] platform developed by the TVA
(Tennessee Valley Authority) [17], which is the most widely used open source
platform for phasor data concentrator applications development.

Security Analysis of Smart Grid Data Collection Technologies 149

The OpenPDC platform is compatible with almost all the standard protocols
in this application domain (FNET, IEEE 1344 and C37.118 among others) and
allows generation time-sorted concentrated data streams. The platform has a
modular architecture that gives the developer a great level of freedom allowing
her to create applications that perform complex elaboration over the received
data. The architecture is composed of three layers (Fig. 3):

Fig. 3. The schema of a Phasor Data Concentrator application based on OpenPDC

– Input Adapter Layer
– Action Adapter Layer
– Output Adapter Layer

The Input Adapter Layer allows the development of a module for the interaction
with any protocol used to send data to the application. The Action Adapter
Layer is where the data elaboration and analysis is performed. The Output
Adapter Layer allows integration with different presentation and storage media.
In our application phasor data from different locations is transmitted using the
IEEE C37.118 standard protocol and collected by an Input Adapter in the ap-
plication. The data are then transferred to an Output Adapter that stores all
the measurements in a MySQL database.

3.2 Key Findings and Results

In this subsection we describe the procedures performed in our security analysis
and highlight the weak points we have discovered in the different parts of the
synchrophasors based PDC monitoring network. Figure 4 summarizes our key
findings highlighting the four main areas that have been analyzed in our work:
the remote management of the synchrophasor, the passwords management and
maintenance policies, the synchrophasor communication with the PDC applica-
tion, and the PDC implementation.

Remote Management of the Synchrophasor. The first part of our analy-
sis has targeted the administrator communications with the synchrophasor. In
our setup the synchrophasor is connected to the network through an Ethernet
port. The synchrophasor allows remote managing by its administrator over the
TCP/IP through Telnet [8], FTP [9], IEC 61850 [10], DNP3 [11] protocols.

150 L. Coppolino et al.

Fig. 4. The main attack points highlighted by our analysis

We have analyzed the protocols behavior using a network sniffer to assess the
security of the communications. Our tests highlighted that Telnet communica-
tions are totally in cleartext and, as shown in Figure 5, also the authentication
passwords are sent without any encryption. Also the other supported protocols
do not provide any inherent security performing all communications in cleartext
and exposing the synchrophasor to the same vulnerabilities of Telnet.

Password Eavesdropping: the lack of encryption on this communications is a
great vulnerability to the confidentiality and integrity of the remote management
of the synchrophasor. All the passwords that grant administrator privileges to
the device are completely exposed to any malicious eavesdropper.

Fig. 5. A Telnet session highlighting the cleartext authentication with the
synchrophasor

Security Analysis of Smart Grid Data Collection Technologies 151

An attacker may sniff all the passwords and then use them to gain complete
access to the synchrophasor. With this kind of privileges an attacker would be
enabled to modify both the synchrophasor’s configurations and the acquired
phasor measurements.

Passwords Management and Maintenance. The accounting system of the
device has a hierarchical structure: there aren’t formal users in the system but
the only existing account may be granted different level of privileges using dif-
ferent passwords for each level. To access to the higher level privileges the user
must escalate through all the lower levels by sequentially providing the appro-
priate password. The privileges are granted for a limited period of time that is
configurable, with a default value set to 5 minutes. After this period of time the
privileges are withdrawn and the user is brought back to the lowest privileges
level. The system is provided with some protection against password brute forc-
ing since after three consecutive failed attempts the access is forbidden for 30
seconds and an alarm is raised. The system allows to exclude or limit remote
access from certain ports.

Weak policies on password selection and maintenance: the main security weak-
nesses of the passwords management and maintenance subsystem are:

1. The default passwords are very common and simple alphabetic strings which
are prone to dictionary attacks.

2. Passwords are editable but no constraints is given for the strength of new
passwords. Unwary users are enabled to set very weak or guessable pass-
words.

3. Multiple levels can share a common password. Since users are usually lazy
when dealing with passwords they could use the same password for all the
level of privileges and often they will do.

4. Passwords can be totally disabled by hardware intervention by tampering
the front panel and setting off a jumper.

Synchrophasors Communication with the PDC Application. As we
highlighted in section 2, the C37.118 protocol does not provide encryption and
thus in not inherently protected from eavesdropping. Any user accessing a node
that is in between the two endpoints of the C37.118 communication (the syn-
chrophasor and the PDC application) is capable of reading all the messages
exchanged that contain measurements and configuration information. Moreover
no authentication or other means of verification are used to identify the source
of the messages.

Channel reliability and integrity weaknesses: as depicted in Fig. 6 this ap-
proach is prone to man-in-the-middle attacks: a malicious eavesdropper can eas-
ily read the message exchanged between one of the PMUs and the PDC for a
certain period of time in order to learn the relevant parameters of the communi-
cation. Then he can either modify the communication parameters as they flow
or impersonate the PMU by accurately forging all the subsequent messages.

152 L. Coppolino et al.

PDC Implementation. We have analyzed the code provided in the Open-
PDC’s C37.118 input adapter that was used as input point for our PDC appli-
cation.

We have discovered that the content of the messages was not verified by the
input adapter and that it was possible to include any string in the text fields
of the C37.118 messages without producing errors on the adapter. Moreover no
sanitization was performed in the other adapters allowing the forged content to
reach database used for the storage of the Phasor measurements.

Fig. 6. An attacker compromising an OpenPDC application

Lack of input validation and sanitization: the PDC application is capable of
receiving data streams from many different PMUs deployed across the monitored
smart grid and the application stores the data from each source PMU in a
different table. The number of source PMUs can vary during the operation of
the PDC application as new synchrophasors are installed and connected the
monitoring system. Since the C37.118 protocol is a smart protocol it is expected
that the PMU and the PDC exchange some configuration messages before the
PMUs starts sending its measurements. The configuration messages announce
the identity of the PMU to the PDC and provide details about the structure and
the type of the messages that will follow. For this reason the application uses
this information obtained from the PMU’s configuration messages to create a
new table in the database to store the data from the new PMU. The new table is
created according to the information provided by the PMU in the configuration
messages: the name of the table is generated using the identifier associated to
the PMU and the structure of the records of the table are created according to
the data structure that the PMU is supposed to send.

In this situation the attacker can leverage the unjustified trust that the ap-
plication designer has put in the source of the messages it receives (see section
3.2) to inject SQL code in the application’s database. The attacker may forge
the PMU identification name at his will and the application will use that name
to generate the name of the new table in the database that will be used to store
the measurements from that PMU. The attacker can perform an SQL Injection
attack to the application simply attaching some SQL code to the identification
name it provides to the application and that SQL code will be executed on the

Security Analysis of Smart Grid Data Collection Technologies 153

database. The possible malicious exploitations of this attack are countless and
we describe some in the following.

The more immediate exploitation could be the deletion of a whole table con-
taining the measurement of one of the PMUs. The attacker can add a “DROP
table name;” command to its name leading to the complete deletion of a mea-
surements table. This type of attack could be used repeatedly to erase all the
collected data from all the PMUs and thus preventing any assessment of the
health status of the grid.

Another possible exploitation could be based on injecting “DELETE” com-
mands. In this way the attacker could selectively erase only some records from
the database. This is a much more stealthy approach as it doesn’t completely
remove all the stored data but only those records that the attacker wants to
hide. For instance a terrorist attacker could use this selective deletion to erase
evidences of a physical attack brought to the power grid without completely
taking down the database which would probably alert the operators.

A smarter attacker could use a more subtle approach: injecting well-crafted
SQL “ALTER” commands she can change the names of the tables containing
the measurements of other PMUs. In this way she can smartly swap the names
of different tables logically assigning measurements collected from one PMU to
another PMU and so deceive the operator that is monitoring the grid. As we
described in Section 2 the phasor measurements are used not only to foresee
but also to locate possible malfunctions and blackouts in the grid trough trian-
gulation. Using a very finely tuned orchestration of the attack the application
can be tricked so that it incorrectly locates the position of an upcoming mal-
function. The operator will react to a dangerous situation basing his planning
on information that was maliciously modified by the attacker and thus focusing
his attention on the wrong area of the grid. A possible consequence of an attack
that follows this approach is that a technical team is sent to a specific position in
the gird to solve a problem while that problem is being generated in completely
different part of the grid.

4 Conclusions

In this paper we have conducted a security analysis of two key technologies which
enable data collection in Power Grids, namely synchrophasor devices and Phasor
Data Concentrators. The study has been conducted on a commercial product
by a major vendor (as far as the synchrophasor is concerned), and on a widely
used open source product (as far as the Phasor Data Concentrator is concerned).
We have used a simplified - yet realistic - testbed, and we have conducted a
penetration testing campaign against the two aforementioned components. We
have collected evidence proving that state of the art components for building
smart grid data collection infrastructures have several vulnerabilities, some of
which can be easily exploited if proper measures are not taken and additional
protection devices are not integrated in the system.

This is a major security risk, since attacks to Power Grids may dramatically
impact the operation of virtually all human activities.

154 L. Coppolino et al.

Our analysis has been conducted on a simplified yet realistic scenario, which
is in many respects similar to the setup which is being used in the development
of the largest Phasor Network actually deployed, namely NASPInet, operated
by the North American Synchrophasor Initiative (NASPI [18]).

In our study we have highlighted how even modern, cutting edge technologies
for smart grid data collection may be affected by traditional security issues such
as lack of encryption of the communication channels, lack of input validation
and sanitization, weak password policies, and man-in-the-middle and dictionary
attacks.

In accordance with the findings of some recent reports about attacks targeting
critical infrastructures ([4], [5]) we have proved that some of the most common
attacks from the domain of classic IT security may well affect critical infras-
tructures, and the level of risk will probably become higher and higher in the
future.

With this work we want to raise the awareness of practitioners about the
existing threats, and emphasize the need for increased attention in the design,
development, and deployment phase of a smart grid data collection network.
As a final comment, we want to emphasize that it is crucial that developers of
critical applications take security in due account. In particular, the training of
practitioners with a strong security background is a necessary pre-requisite to
face the challenges the increasing adoption of Information Technology (IT) in
Smart Grids in particular and in Critical Infrastructures in general.

Acknowledgments. The research leading to these results has received funding
from the European Commission within the context of the Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement No. 225553 (INSPIRE
Project), Grant Agreement No. 248737 (INSPIREINCO Project) and Grant
Agreement No. 257475 (MAnagement of Security information and events in Ser-
vice Infrastructures, MASSIF Project). It has been also supported by the Italian
Ministry for Education, University, and Research (MIUR) in the framework of
the Project of National Research Interest (PRIN) “DOTS-LCCI: Dependable
Off-The-Shelf based middleware systems for Large-scale Complex Critical In-
frastructures”.

References

1. IT and Operational Technology: Convergence, Alignment and Integration, Gart-
ner (February 2011), http://www.gartner.com/it/page.jsp?id=1590814 (last ac-
cessed 30/05/2011)

2. Beech E.: Cyberspies penetrate electrical grid: report. Reuters top ten news stories
(April 2009),
http://www.reuters.com:80/article/topNews/idUSTRE53729120090408

(last accessed 30/05/2011)
3. Details of the first-ever control system malware, cnet,

http://news.cnet.com/8301-27080_3-20011159-245.html

(last accessed 30/05/2011)

http://www.gartner.com/it/page.jsp?id=1590814
http://www.reuters.com:80/article/topNews/idUSTRE53729120090408
http://news.cnet.com/8301-27080_3-20011159-245.html

Security Analysis of Smart Grid Data Collection Technologies 155

4. McAfee, Global Energy Cyberattacks: Night Dragon (February 2011)
5. Symantec Intelligence Quarterly Report: October- December - Targeted Attacks

on Critical Infrastructures (December 2010)
6. 1344 IEEE Standard for Syncrophasors for Power Systems, IEEE (1995)
7. openPDC, http://openpdc.codeplex.com/
8. Postel J. B., Reynolds J. K.: TELNET Protocol Specification, (RFC854). IETF

Network Working Group (May 1983)
9. Postel J. B., Reynolds J. K.: File Transfer Protocol (FTP) (RFC959). IETF Net-

work Working Group (October 1985)
10. Zhang J., Gunter C. A.: IEC 61850 - Communication Networks and Systems in

Substations: An Overview of Computer Science, University of Illinois at Urbana-
Champaign

11. DNP3 (Distributed Network Protocol), http://www.dnp.org/
12. Phadke, A.: Synchronized phasor measurements in power systems, vol. 6(2), pp.

10–15 (April 1993)
13. Dagle, J.: The north american synchrophasor initiative (naspi). In: 2010 IEEE

Power and Energy Society General Meeting, pp. 1–3 (2010)
14. The North American Electric Reliability Corporation (NERC),

http://www.nerc.com/

15. Zhong, Z., Xu, C., Billian, B., Zhang, L., Tsai, S.-J., Conners, R., Centeno, V.,
Phadke, A., Liu, Y.: Power system frequency monitoring network (fnet) implemen-
tation, vol. 20(4), pp. 1914–1921 (2005)

16. Gardner, R., Liu, Y.: Fnet: A quickly deployable and economic system to monitor
the electric grid. In: 2007 IEEE Conference on Technologies for Homeland Security,
pp. 209–214 (May 2007)

17. Tennessee Valley Authority (TVA), http://www.tva.gov
18. NASPI Network (NASPInet), http://www.naspi.org/naspinet.stm
19. Secure Communications, Schweitzer Engineering Laboratories, Inc.,

http://www.selinc.com/securecommunications/ (last accessed 30/05/2011)
20. Cybersecurity, Schweitzer Engineering Laboratories, Inc.,

http://www.selinc.com/cybersecurity/ (last accessed 30/05/2011)
21. Stewart J., Maufer T., Smith R., Anderson C., Ersonmez E.: Synchrophasor Secu-

rity Practices, Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=8502 (last accessed
30/05/2011)

22. Smith R.: Cryptography Concepts and Effects on Control System Communica-
tions, Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=5200 (last accessed
30/05/2011)

23. Hurd S., Smith R., Leischner G.: Tutorial: Security in Electric Utility Control Sys-
tems, Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=3491 (last accessed
30/05/2011)

24. Mix S.: Primer Discussion on Cyber Security: What do the CIP Standards Mean for
SynchroPhasors in the future?, North American Electric Reliability Corporation
(NERC), http://www.naspi.org/meetings/workgroup/2009 february/

presentations/nerc cyber security mix 20090205.pdf

(last accessed 30/05/2011)

http://openpdc.codeplex.com/
http://www.dnp.org/
http://www.nerc.com/
http://www.tva.gov
http://www.naspi.org/naspinet.stm
http://www.selinc.com/securecommunications/
http://www.selinc.com/cybersecurity/
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=8502
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=5200
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=3491
http://www.naspi.org/meetings/workgroup/2009_february/presentations/nerc_cyber_security_mix_20090205.pdf
http://www.naspi.org/meetings/workgroup/2009_february/presentations/nerc_cyber_security_mix_20090205.pdf

156 L. Coppolino et al.

25. Introduction to NISTIR 7628, Guidelines for Smart Grid Cyber Security, The
Smart Grid Interoperability Panel Cyber Security Working Group,
http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf

(last accessed 30/05/2011)
26. Braendle M.: Cyber security - effectively and efficiently tackling the challenges

ahead, ABB,
http://www.abb.com/cawp/seitp202/a6a42387602e83828525784200766310.aspx

(last accessed 30/05/2011)
27. Hadley M.D., McBride J.B., Edgar T.W., O’Neil L.R., Johnson J.D.: Secur-

ing Wide Area Measurement System, Pacific Northwest National Laboratory,
http://www.oe.energy.gov/DocumentsandMedia/Securing_WAMS.pdf

(last accessed 30/05/2011)
28. Larsson, S., Danell, A.: The black-out in southern Sweden and eastern Denmark

September 23, 2003. In: Power Systems Conference and Exposition, pp. 309–313
(2006)

29. Corsi, S., Sabelli, C.: General blackout in Italy Sunday September 28, 2003. Power
Engineering Society General Meeting, 2, 1691–1702 (2004)

30. U.S. - Canada Power System Outage Task Force, Final report on the august 14,
2003 blackout in the united states and canada: Causes and recommendations (April
2004)

http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
http://www.abb.com/cawp/seitp202/a6a42387602e83828525784200766310.aspx
http://www.oe.energy.gov/DocumentsandMedia/Securing_WAMS.pdf

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 157–170, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Modeling Aircraft Operational Reliability

Kossi Tiassou1,2, Karama Kanoun1,2, Mohamed Kaâniche1,2,
Christel Seguin3, and Chris Papadopoulos4

1 CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France
2 Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS,

F-31077 Toulouse Cedex 4, France
firstname.lastname@laas.fr

3 ONERA/DCSD/CD, 2 Avenue Edouard Belin, 31055 Toulouse Cedex 4, France
christel.seguin@onera.fr

4 AIRBUS Operations Ltd., New Filton House, Golf Course Lane, Filton, Bristol, BS99 7AR,
United Kingdom

Chris.Papadopoulos@Airbus.com

Abstract. The success of an aircraft mission is subject to the fulfillment of
some operational requirements before and during each flight. As these
requirements depend essentially on the aircraft system components and the
mission profile, the effects of failures can be very significant if they are not
anticipated. Hence, one should be able to assess the aircraft operational
reliability with regard to its missions in order to be able to cope with failures.
This paper addresses aircraft operational reliability modeling to support
maintenance planning during the mission achievement. We develop a modeling
approach to represent the aircraft system operational state taking into account
the mission profile as well as the maintenance facilities available at the flight
stop locations involved in the mission. It is illustrated using Stochastic Activity
Networks (SANs) formalism, based on an aircraft subsystem.

Keywords: operational reliability, model-based assessment, aircraft system,
maintenance planning.

1 Introduction

With the increasing interest in air transportation and the competitive market aircraft
operators have to deal with, aircraft operational disruptions become a key concern in
the aviation field. In order to avoid economical losses due not only to inoperability
but also to customer dissatisfaction, airlines need to anticipate on the events that may
disrupt the achievement of their aircraft missions. Aircraft missions are achieved in
compliance with operational requirements depending principally on the current
operational state of the aircraft system components and the mission profile. Thus, an
attention must be paid to the effects of the aircraft system component failures and the
corresponding maintenance actions. Failures that may disturb the achievement of the
aircraft mission must be handled with adequate corrective actions. However, the
ability to promptly cope with these failures depends on the location where they occur.

158 K. Tiassou et al.

Maintenance facilities are not the same at all airports. Generally, airlines have more
facilities at their main base than at the other airports. Therefore, the maintenance
resources must be adapted to the aircraft missions. The issue is to have an assessment
method that can support mission assignments and maintenance activities forecasting.
Model-based dependability assessment is well suited to support this process.

Our work aims at developing an assessment approach, based on dependability
modeling, that makes it possible to continuously assess the ability to keep operating
up to a given time or location. The model will be used while planning the missions
and during their achievement. To plan the mission, the model can be used to estimate
the period of time during which the aircraft system can be operated without reaching
adverse states. This allows to determine the mission profile the aircraft must be
assigned. Once a mission is assigned to the aircraft, the model can be used during its
achievement to assess the ability to succeed in continuing on the remaining part of the
mission. The model can also support maintenance activities planning. The best
maintenance strategy can be determined comparing the probabilities to accomplish
the missions considering different alternatives.

To cover these issues, the model should be able to take into account the various
situations in which it may be used. Our approach consists in developing generic
stochastic sub models that can be dynamically updated and configured to represent
the current state of the aircraft, with regard to the mission to achieve.

The remainder of this paper is structured as follows. Section 2 describes how
aircraft missions are carried out together with the verification of the operational
requirements fulfillment. Section 3 presents some related works. Section 4 is devoted
to the modeling approach, which is implemented in section 6 using an aircraft
subsystem as example. The subsystem is presented in section 5. Section 7 presents an
example of evaluation result. Finally Section 8 concludes the paper.

2 Description of Mission Achievement

The achievement of the mission is such that each flight is followed by a stop where
the aircraft is prepared for next flight. The preparation for the next flight consists of
routine maintenance activities, cabin cleaning, catering, baggage and cargo
processing, and passenger boarding.

At each stop, the aircraft is inspected and the discrepancies that are reported during
the previous flight are checked. If a component is found inoperative, a dispatch
decision is taken regarding the next flight. The flight captain refers to an approved
document called Minimum Equipment List (MEL) where the components are listed
with the status “go”, “go if” or “no go”:

- The “go” status is the case where the aircraft can fly with the component failed.
- The “go if” status allows the flight provided some conditions (on other

components, operational performance and maintenance activities) are fulfilled.
This includes a given deadline to repair the component.

- The “no go” status prevents the aircraft from flying. The failed component must
be repaired before any flight.

 Modeling Aircraft Operational Reliability 159

Fig. 1. Dispatch status outcomes

The dispatch is allowed if there is no “no go” and all “go if” conditions are
acceptable. When the aircraft does not meet the dispatch requirements following a
failure, maintenance activities are initiated in order to solve the problem. The
magnitude of the failure effect depends thus on the ability to solve the problem at the
considered location before the planned departure time. Actually, the flight is
considered delayed only after exceeding a given tolerable time frame. Figure 1
summarizes the possible outcomes of the dispatch decision.

When the dispatch is allowed, the aircraft can depart after passenger, cargo and the
other ground service processing. Then, the flight begins by the taxing of the aircraft to
runway where the takeoff is initiated. During this period or even after the takeoff, the
flight can be aborted as a result of a critical failure. The aircraft then returns back to
the departure airport. Actually, during the entire flight, it may be diverted if the
aircraft capability is degraded. Procedures, stated in the Flight Manual (FM), the
Flight Crew Operating Manual (FCOM) or the Quick Reference Handbook (QRH),
are used to determine whether the flight must be diverted or not [1].

The adverse situations while operating an aircraft are operational interruptions,
namely flight delays, cancellations, in flight turn-back and diversions. Delays and
cancellations occur on ground, while turn-back and diversion occur in flight.

3 Related Work

To the best of our knowledge, aircraft operational reliability modeling has been
seldom addressed in the literature. The studies carried out are rather concentrated on
safety aspects (see [3, 10, 14] for instance), and most works about operational
reliability are for design enhancement purpose [2, 13]. In [6], the issues of delays and
safety in airline maintenance are addressed. A probabilistic risk analysis model is
developed in order to quantify the effect of airlines maintenance policies on their
aircraft operability. A decision support approach to maintenance planning is presented
in [7]. That is, thanks to redundancy, the aircraft can continue operating with some
equipment inoperative, however, it is time limited and can increase the risk of

160 K. Tiassou et al.

occurrence of an interruption. The approach proposes a method to schedule the repairs
taking into account some optimization criteria: cost, remaining useful life and
operational risks. The approach is based on generating alternatives on which is
defined a utility function. It is worth noting that the work does not account for
reliability measure. It uses the reliability measure as input. In [1], the operational
consequences of system failures are studied using event tree analysis. The paper
discusses the possible consequences of failures taking into account the flight phase
during which they have occurred. A modeling approach based on the fault trees of the
targeted aircraft system is presented in [2], together with a computing algorithm to
estimate the bounds of the considered probability measure. The approach considers a
series of flight cycles and provides a means to evaluate the probability of occurrence
of one of three events at each cycle: “No Go dispatch”, “Accepted Degraded Mode”
which corresponds to the case where a “go if” occurs and the airline accepts to
perform the corresponding tasks, “Refused Degraded Mode” which is a “go if” that is
not accepted by the airline. Note that the paper only deals with dispatch events and
does not consider in-flight operational consequences. The probability of failure of
more than one component during a flight is also neglected.

Concerning modeling aspects, the problem is generally categorized, with regard to
the system, as a Phase Mission System (PMS) problem. Mura and Bondavalli [8]
analyze the PMS and present a dependability modeling approach. It is shown that,
under some given conditions, the model can be processed using an analytical method.
Chew et al. [9] address the problem using the concept of maintenance-free operating
periods; the system evolves through a series of phases with no possible maintenance.
The developed model is solved by simulation.

Of all these works, none is aimed directly at modeling aircraft operability during its
missions’ achievement. The closest works [1, 2] are carried out for long-term
operational dependability analysis and are based on event trees and fault trees. This
paper addresses aircraft operational reliability using stochastic state-based models.
Our work is intended to develop a reliability model that one can use to cope with
operability issues during aircraft missions’ achievement. The modeling approach is
presented in the following section.

4 Modeling Approach

As presented in section 2, the aircraft has to fulfill some operational requirements
(dispatch requirements) before flying and some requirements (in-flight requirements)
during the flight. We distinguish:

- the minimal system requirements given by MEL (Min_Sys_Req) that are
independent of the mission profile and which must be fulfilled in order to operate
the aircraft whatever the mission.

- the requirements (M_Prof_Req) that are specific to the mission profile. These
include the mission dependent dispatch requirements and the requirements in
flight. They are composed of the requirements specific to the flights composing
the mission.

 Modeling Aircraft Operational Reliability 161

The evaluation is based on the fulfillment of these requirements. The objective is to
evaluate the probability of occurrence of the adverse events that may lead to an
operational interruption. We distinguish two reliability measures:

- While planning a mission, the aircraft system reliability (SR) is evaluated with
regard to Min_Sys_Req in order to determine the maximum number of flight
hours that can be achieved without maintenance. This is used to determine the
length of the mission or to plan maintenance activities.

- Once a mission is assigned to the aircraft and during its achievement, the
reliability measure (MR) which corresponds to the probability to achieve the
mission without an operational interruption, is evaluated with regard to
Min_Sys_Req and M_Prof_Req in order to determine whether a preventive
action must be initiated or not.

4.1 Structure of the Model

Figure 2 shows the overall structure of the model composed of four levels.

Fig. 2. Overall structure of the model

Operational Level: it represents the succession of periods during which the aircraft is
either flying or on ground.

Requirements Level: it consists of the aggregation of the requirements from the
potential contributors to the continuity of the mission. These requirements are the
representation of Min_Sys_Req and M_Prof_Req. These requirements are formulated
as complements of Boolean expressions, representing the different combinations
leading to an operational interruption.

System Level: It describes the aircraft system. The system is decomposed into
subsystems and atomic components according to its design logic or its functions. This
level describes the components failure scenarios.

Maintenance Level: It describes the maintenance possibilities at the various airports
involved in the mission profile. It is intended to represent the predefined maintenance
policies related to the airports. This has an impact on the repair time of the system
components at a given stop. The maintenance activity itself is modeled at the system
level.

162 K. Tiassou et al.

We build generic sub models corresponding to each of the main levels in the above
structure. The composition of these sub models will form an initial model, which is to
be configured and parameterized with online data in order to obtain the overall model.

The approach can be implemented using an appropriate formalism. In this paper,
we consider the Stochastic Activity Networks (SANs) formalism and the associated
Möbius tool [5], which provide compositional operators that are convenient to master
the complexity of the model. A brief description of SANs is given in the followings.

4.2 SANs Formalism

Stochastic activity networks are an extension of Petri nets (PN). SANs consist of four
primitive objects: places, activities, input gates, and output gates. Activities are the
equivalent of transitions in PN. They are either timed or instantaneous. Timed
activities have durations and a time distribution function. Instantaneous activities
represent actions that complete immediately when enabled. Input gates are used to
control the enabling of activities and define the marking changes that will occur when
an activity completes. Each input gate is defined with an enabling predicate and a
function. Output gates are like input gates and are used to change the state of the
system when an activity completes. An output gate is defined only with a function.
The function defines the marking changes that occur when the activity completes.
Input gates and output gates are represented graphically as triangles (see Figure 3).

Fig. 3. Input and output gates

An activity is enabled when the predicates of all input gates connected to the
activity are true, and all places connected to incoming arcs contain tokens, i.e., have
non zero markings. Once enabled, the activity samples its delay distribution function
to determine the time delay before the activity fires. When the activity fires, it updates
the state of the model by subtracting tokens from places connected by incoming arcs,
adding tokens to places connected by outgoing arcs, and executing the functions in
input and output gates.

Möbius allow the construction of composed models. Indeed, for a large system, it
may be helpful to compose the overall model based on sub-models that have less
complexity. This is feasible using the Join and Replicate operators. The Join operator
combines several models sharing some state variables. The Replicate operator is used
to create copies of models; the copies are combined into a global model. The copies
may hold some state variables in common. A Join node may have other Joins,
Replicates, or other sub models defined as its children.

This formalism is used to develop a case study implementing the modeling
approach. The case study concerns a subsystem that controls one of the movable

 Modeling Aircraft Operational Reliability 163

surfaces of the aircraft [11], referred to as CMS in the rest of the paper. The
subsystem is described in the following section.

5 CMS Presentation

The subsystem is composed (see Figure 4) of three primary computers (P1, P2, P3), a
secondary computer S1, three servo-controls (ServoCtrl_G, ServoCtrl_B and
ServoCtrl_Y), a backup control module (BCM) and two backup power supplies
(BPS_B and BPS_Y).

Fig. 4. The subsystem

The computers are connected to the servo-controls, which move the surface. S1 and
P1 are connected to the servo-control ServoCtrl_G, P2 is connected to ServoCtrl_B,
and P3 is connected to ServoCtrl_Y. The connection between a computer and a servo-
control form a control line that can act on the surface. We have:

P1 control line (PL1): formed by the connection between P1 and ServoCtrl_G,
P2 control line (PL2): formed by the connection between P2 and ServoCtrl_B,
P3 control line (PL3): formed by the connection between P3 and ServoCtrl_Y,
S1 control line (SL): formed by the connection between S1 and ServoCtrl_G.
We have also Backup control line (BCL), which is based on BCM, BPS_B, BPS_Y,
ServoCtrl_Y and ServoCtrl_B.

Initially the secondary computer S1, the backup control module BCM and the backup
power supplies BPS_B and BPS_Y are inhibited. The surface is then controlled by the
three primary control lines (PL1, PL2, PL3). When the three primary control lines
fail, S1 is activated and the system switches to SL. If the latter also fails, BCM,
BPS_B and BPS_Y are activated enabling the backup control. Therefore, three
control modes can be distinguished: the primary control (PC), the secondary control
(SC) and the backup control (BC). Figure 5 summarizes the control modes.

Fig. 5. The control modes and associated control lines

164 K. Tiassou et al.

Related Operational Requirements: According to [4]1, the failure of P2,
ServoCtrl_G, ServoCtrl_Y, ServoCtrl_B, BCM, BPS_B or BPS_Y leads to “no go”
status. P1, P3 and S1 are “go if” items with “go if” conditions stated respectively at
sections MMEL 27-93-01-1, MMEL 27-93-01-3 and MMEL 27-94-01-1 of the
document. The dispatch conditions resulting from these sections are respectively
(P1=ok) ∨ (S1=ok ∧ P3=ok); (P3=ok) ∨ (S1=ok ∧ P1=ok); (S1=ok) ∨ (P1=ok ∧
P2=ok ∧ P3 =ok)2. In the three cases, the failed component must be repaired before
the deadline of 10 days. These conditions are not dependent on any mission profile.
Therefore, they are part of Min_Sys_Req.

Min_Sys_Req = (P2 =ok ∧ BCM =ok ∧ BPS_B =ok ∧ BPS_Y =ok ∧
(P1 =ok ∨ (S1 =ok ∧ P3 =ok)) ∧ ServoCtrl_G =ok ∧
(P3 =ok ∨ (S1 =ok ∧ P1 =ok)) ∧ ServoCtrl_Y =ok ∧

 (S1 =ok ∨ (P1 =ok ∧ P3 =ok)) ∧ ServoCtrl_B =ok).

(1)

Using the control lines previously defined, this expression becomes:

Min_Sys_Req = (PL2 =ok ∧ (PL1 =ok ∨ (PL3 =ok ∧ SL =ok)) ∧
 (PL3 =ok ∨ (PL1 =ok ∧ SL =ok)) ∧ BCL =ok ∧

 (SL =ok ∨ (PL1 =ok ∧ PL3 =ok))).

(2)

There is no operational requirement related to the subsystem in the FCOM.

6 The Model

The model is the aggregation of sub models corresponding to the levels presented in
section 4.1. Note that only one subsystem is considered here. Due to space limitations
only the operational, requirements and system levels sub models are shown.

6.1 The System Level Sub Model

The system level sub model consists of the representation of CMS. To simplify its
presentation, it is decomposed into three sub models corresponding to the control
modes given in Figure 5. In all the three sub models, places representing the
subsystem’s components functional state (ok or failed) are named after these
components. Activities named xxx_failure represent failures events. Their enabling is
conditioned by the presence of a token in place flight. Activities Maintainxx represent
maintenance activities and their enabling is conditioned by the presence of a token in
place Maintain. Places flight and Maintain represent respectively whether a flight is
ongoing or not, and whether a maintenance period is ongoing or not. Their markings
are controlled by the operational level sub model (Figure 10). For clarity purpose,
some places involved in the predicate or function of the input gates are not explicitly
linked to them; this is allowed by SANs.

1 [4] is actually a Master MEL(MMEL). MELs result from the completion of MMELs with

airline specific policies and are not public documents. MMELs are established by the
aircraft’s manufacturer.

2 These are not actually the full conditions, we only consider the conditions related to the
components involved in the subsystem described.

 Modeling Aircraft Operational Reliability 165

Primary control (PC) model is given in Figure 6. The transitions representing the
maintenance activities (Maintainxx) are at the left side and the failure events
(xxx_failure) at the right side of the places. Their associated input gates control their
firings. For example IGP1F and IGMP1 are defined as follows:

IGP1F Predicate : P1->Mark() && flight->Mark() Function : P1->Mark()=0; PL1->Mark()=0;
IGMP1 Predicate : P1->Mark()==0 && Maintain->Mark() Function : P1->Mark()=1;

if (ServoCtrl_G->Mark()) PL1->Mark()=1; P1defExp->Mark()=0;

Fig. 6. PC sub model

Transition P1(3)deferExpire represents the expiration of the deadline before which
the computer must be repaired after being failed. This doesn’t concern P2 since its
status is “no go”. Places PLi represents the state of the lines PLi. PLi is marked when
Pi and the corresponding ServoCtrl_x in the line are marked. The markings of places
Maintain and flight are used in the predicates of the input gates to enable the failure
and maintenance activities as explained above.

Secondary control (SC) is represented in Figure 7. Place S1Active represents the
activation state of S1. That is when PC fails, the instantaneous activity S1_active fires
in order to mark place S1Active, representing the failover to SL. S1_inhib models the
inhibition event. It fires when one of PL1, PL2 and PL3 becomes marked again,
removing the token from S1Active. PL1, PL2 and PL3 are shared with the PC sub
model, which controls their makings. They are only used in the predicates of IGS1A
and IGS1I to express whether PC is failed or not. S1_hidden_failure and
S1_active_failure model respectively the failure events of S1 while inhibited and
activated. SL represents the functioning state of the secondary control line. It holds
when S1 and ServoCtrl_G hold. ServoCtrl_G is shared with PC sub model.

Fig. 7. SC sub model

166 K. Tiassou et al.

The Backup control (BC) model is depicted in Figure 8. BPS_BActive and
BPS_YActive describe the inhibition and the activation of BPS_B and BPS_Y. That is,
when PL1 and SL are inoperative, BPS_B and BPS_Y are activated to supply power
to BCM. They are inhibited when PL1 or SL is operative. BPS_BActive and
BPS_YActive are updated by their associated instantaneous transitions, which fire
according to the marking of PL1 and SL as described above.

Fig. 8. BC sub model

ActivateBCM represents the use of the BCM to control the surface; when none of
the primary and secondary control lines is operative and BPS_B or BPS_Y supply the
BCM with electric power, the BCM is activated to attempt to control the surface via
ServoCtrl_Y or ServoCtrl_B. B_YCoutput and B_BCoutput represent respectively the
use of power from BPS_Y and BPS_B. BCL represents the fulfillment of the
requirements on the components of the line. It is marked when BCM, BPS_B, BPS_Y,
ServoCtrl_B and ServoCtrl_Y are marked. Places Maintain and Flight are shared with
the operational level sub model; PL1, PL2, PL3, ServoCtrl_B and ServoCtrl_Y with
PC sub model; and SL with SC sub model. Their marking are used as input to the BC
sub model as they are involved in the activation and inhibition of the BC.

As only one subsystem is considered in this case study, the system level sub model
corresponds to the composition of PC, SC and BC sub models (see Figure 11).

6.2 The Requirement Level Sub Model

Figure 9 shows the aggregation of the requirements fulfillments from the system level
sub models.

 Modeling Aircraft Operational Reliability 167

Fig. 9. Requirement level sub model

Place Min_Sys_Req models the requirements fulfillment. The firings of the
instantaneous activities toFul and toNot update the place according to the condition
expressed in section 5 (expression (2)). Min_Sys_Req is used at the operational level.
Places PL1, PL2, PL3, SL and BCL are shared with the system level sub model.
M_Prof_Req is not represented here due to the fact that the subsystem has no mission
profile related requirement. Nevertheless, its representation will be similar.

6.3 The Operational Level Sub Model

The operational level sub model is shown in Figure 10. The upper part represents a
flight and the lower part represents the activities on ground at a stop. Place Maintain
is shared with the system level sub model indicating the ongoing of a maintenance
period. Place Req_fulfilment is an extended place representing the requirements
fulfillment. It should be composed of Min_Sys_Req and M_Prof_Req, which are
shared with the requirements level sub model. Since no mission profile related
requirement is considered here, the share concerns only Min_Sys_Req at the
requirements level. A flight is represented by three phases Taxing_to_Climb,
In_Flight and Landing. During the Taxing_to_Climb the flight can be aborted and it
can be diverted during the In_Flight phase. The input gates AbortCondition and
Diversion_Condition represent the conditions under which these interruptions can
occur (in-flight requirements fulfillment). The conditions are stated using the marking
of Req_fulfilment. Place flight indicates whether a flight is ongoing or not. It is shared
with the system level sub model.

Fig. 10. Operational level sub model

The sub model of a ground period consists of the representation of the preparation
for the next flight and the readiness for departure on time. The beginning of the
preparation for the upcoming flight is represented by the marking of places
Ground_Preparation and Scheduled_Maintenance, stating that the scheduled ground

168 K. Tiassou et al.

period is ongoing and the system is under scheduled maintenance (routine check for
instance)3. When the scheduled maintenance is finished (activity
planned_M_TimeEnd fires), the place Dispatchability then holds and the
instantaneous activity Allow can fire if the dispatch requirements, stated in the
predicate of Dispatch_Condition, are fulfilled. Otherwise the instantaneous activity
requireMaintenance fires if the corrective action requires maintenance tasks (stated
by the predicate of No_Dispatch_m), place Dispatchability still holds until the
corrective action succeeds (predicate of Dispatch_Condition becomes true) and the
flight is allowed. In the current illustration, the dispatch requirements fulfillment
consist of testing if the marking of field Min_Sys_Req in the extended place
Req_fulfilment is zero or not. Until then, the scheduled ground duration may have
elapsed (firing of activity plannedgroundTimeEnd moving the token to place
PendingDeparture) and the tolerable delay may be running out. A delay or
cancellation occurs if the tolerated time to dispatch is exceeded. The timed transition
OtherTimeConsuming represents the other activities (passengers and baggage
processing …) that may consume time, causing delay. Place Prog (at right) is an
extended place representing the list of flights to be achieved. The input gate IGN
indicates whether there is a next flight to achieve or not (end of the mission or not).

6.4 The Global Model

The global model results from the composition of the sub models corresponding to the
four levels. It is shown in Figure 11.

Fig. 11. The global model

7 Example of Results

Since the model is intended to be used during the achievement of the mission, the
initial markings and the parameters such as the distribution laws of the timed
activities are to be set online using online data. In order to provide an example of
evaluation, some values of the parameters are assumed here. We assume that all the
events represented by timed activities at system level (Figures 6, 7, 8) have
exponential distributions, except P1deferExpire and P3deferExpire, which have
deterministic durations. The values of failure rates used for the example are between
10-4/hour and 10-6/hour. For the parameters of the operational level sub model, we
consider a mission of 4 flights per day over a week. We assume that the timed
activities of the operational level sub model have deterministic durations. Each flight
takes 3 hours. The planned duration of a ground period is of 1.5 hour during the day

3 These tasks are aimed at detecting failures, and not to repair any failed component.

 Modeling Aircraft Operational Reliability 169

and 7.5 hours at the end of the day (after 4 flights). We evaluate the mission reliability;
MR(t). For illustration purposes, we consider that the in-flight requirements are the
same as the dispatch requirements (Min_Sys_Req). The mission reliability MR(t) is the
probability to have no tokens in places Delay_Or_Cancellation, Back_to_Ramp and
Diversion of Figure 10. Figure 12 shows the mission reliability considering two initial
states of the primary computer P1: P1-OK (P1 is OK at the starting of the mission), and
P1-KO (P1 is in failure at the starting of the mission), the other components are
assumed to be OK at the starting of the mission.

Fig. 12. Mission Reliability

From the evaluation, the time from which the reliability becomes lower than a
given threshold can be determined. For example, considering 0.98 as reliability
threshold, one has to consider strengthening its ability to maintain after 144h in case
of P1-OK and 72h in case of P1-OK. The curves also illustrate a situation where one
has to decide on whether it is preferable to defer the maintenance of computer P1,
knowing that there is one week remaining mission to achieve. With the assumed
parameters, the reliability of the one-week mission will increase from 0.952 to 0.978
if P1 is repaired before the starting of the mission. Other examples of missions and of
system reliability measures are given in [12].

8 Conclusion

This paper is aimed at developing a model that one can use to assess aircraft
operational reliability. The model is intended to be used before and during aircraft
mission achievement. A modeling approach has been developed considering aircrafts
systems particularities and how the missions are achieved. The proposed model is
composed of generic sub-models corresponding to components that may be involved
in aircraft operability. An illustration of the modeling approach with SANs formalism
has been given using an aircraft subsystem.

The current work is focused on the construction of the initial model that will be
used to assess the operational reliability. The model, however, must be updated during
the achievement of the missions in order to take into account the current situation
during which it will be used. The modeling approach is designed to facilitate these
updates. Changes concerning the aircraft system components states and failures
distributions will be taken into account in the system level sub model. Missions’
update will be managed with the operational level sub model. It is expected that the

170 K. Tiassou et al.

system level sub model update will rely on diagnosis and prognosis modules. Data
from the flight plans will be used to configure the operational level sub model.

The model update is currently achieved manually. Methods to dynamically
integrate the updates and automatically re-assess the reliability, after the occurrence
of a major event, are under investigation [15].

References

1. Ahmadi, A., Soderholm, P.: Assessment of Operational Consequences of Aircraft Failures:
Using Event Tree Analysis. In: 2008 IEEE Aerospace Conference, pp. 1–14 (2008)

2. Saintis, L., et al.: Computing in-service aircraft reliability. International Journal of
Reliability, Quality and Safety Engineering 16(02), 91 (2009)

3. Prescott, D., Andrews, J.: Aircraft safety modeling for time-limited dispatch. In:
Proceedings of Annual Reliability and Maintainability Symposium, pp. 139–145 (2005)

4. Master Minimum Equipment List, Airbus A-340-200/300,
http://fsims.faa.gov/wdocs/mmel/
a340-200-300%20original%2005-30-08.htm,
http://fsims.faa.gov/wdocs/mmel/
a340-200-300original05-30-08.pdf

5. Daly, D., et al.: Möbius: An extensible tool for performance and dependability modeling.
In: Schaumnurg, I.L., Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS
2000. LNCS, vol. 1786, pp. 332–336. Springer, Heidelberg (2000)

6. Sachon, M., Paté-Cornell, E.: Delays and safety in airline maintenance. Reliability
Engineering & System Safety 67(3), 301–309 (2000)

7. Papakostas, N., et al.: An approach to operational aircraft maintenance planning. Decision
Support Systems 48(4), 604–612 (2010)

8. Mura, I., Bondavalli, A.: Markov Regenerative Stochastic Petri Nets to Model and
Evaluate Phased Mission Systems Dependability. IEEE Transactions on
Computers 50(12), 1337–1351 (2001)

9. Chew, S., et al.: Phased mission modelling of systems with maintenance-free operating
periods using simulated Petri nets. Reliability Engineering & System Safety 93(7), 980–
994 (2008)

10. Kehren, C., et al.: Advanced Simulation Capabilities for Multi-Systems with AltaRica. In:
Proceedings of the 22nd International System Safety Conference (ISSC), System Safety
Society, pp. 489–498 (2004)

11. Bernard, R., et al.: Experiments in model-based safety analysis: flight controls. In: First
IFAC Workshop on Dependable Control of Discrete Systems, Cachan (2007),
http://sites.google.com/site/pierrebieber/publications/DCDS0
7_FlightControlsModel_RB.pdf

12. Tiassou, K., Kaâniche, M., Kanoun, K., Seguin, C.: DIANA Operational Reliability —
Modelling the Rudder System Using AltaRica and Stochastic Activity Networks, LAAS
report No 11001

13. Bineid, M., Fielding, J.P.: Development of an aircraft systems dispatch reliability design
methodology. The Aeronautical Journal 110(1108), 345–352 (2006)

14. Ramesh, A., et al.: Advanced methodologies for average probability calculation for
aerospace systems. In: 26th International Congress of the Aeronautical Sciences (2008)

15. Tiassou, K., Kanoun, K., Kaâniche, M., Seguin, C., Papadopoulos, C.: Operational
Reliability of an Aircraft with Adaptive Missions. In: Proceedings of the 13th European
Workshop on Dependable Computing - EWDC 2011, p. 9 (2011)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 171–184, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Integrated Approach for Availability and QoS
Evaluation in Railway Systems

Antonino Mazzeo1, Nicola Mazzocca1, Roberto Nardone1,3, Luca D’Acierno2,
Bruno Montella2, Vincenzo Punzo2, Egidio Quaglietta2,

Immacolata Lamberti3, and Pietro Marmo3

1 Dipartimento di Informatica e Sistemistica, University of Naples “Federico II”
Via Claudio 21, 80125 Naples, Italy

{mazzeo,nicola.mazzocca,roberto.nardone}@unina.it
2 Dipartimento di Ingegneria dei Trasporti, University of Naples “Federico II”

Via Claudio 21, 80125 Naples, Italy
{luca.dacierno,bruno.montella,vinpunzo,

egidio.quaglietta}@unina.it
3 Ansaldo STS, RAMS - Transportation Solutions Business Unit

Via Argine 425, 80147 Naples, Italy
{Immacolata.Lamberti,Pietro.Marmo}@ansaldo-sts.com

Abstract. Prediction of service availability in railway systems requires an
increasing attention by designers and operators in order to satisfy acceptable
service quality levels offered to passengers. For this reason it is necessary to
reach high availability standards, relying on high-dependable system
components or identifying effective operational strategies addressed to mitigate
failure effects. To this purpose, in this paper an innovative architecture is
proposed to simulate railway operation in order to conduct different kinds of
analysis. This architecture encompasses a set of components considering, in an
integrated way, several system features. Finally an application to a first case
study demonstrates the impact on quality of service and service availability of
different recovery strategies. Complexity of a railway system requires a
heterogeneous working group composed of experts in transport and in computer
science areas, with the support of industry.

Keywords: quality of service prediction, service availability prediction, railway
simulation, failures mitigation.

1 Introduction

Planning and designing phases of both railway infrastructure components (stations,
rail tracks, vehicles, signalling equipments, etc.) and operation strategies at control
centre (e.g. service timetable, recovery strategies after service breakdowns, shunting
movements, etc.) aim at satisfying both dependability constraints as imposed by
customer specifications and overall the total transportation demand (people, goods or
both) foreseen for a considered area, respecting certain requirements of service
quality. Railway networks can be considered in fact as complex demand-oriented

172 A. Mazzeo et al.

systems, since the reasons why they are built are strongly related to the contentment
of certain transportation demand levels as well as the improvement of economic and
environmental conditions of surrounding areas. Therefore it is clear that the
attainment of determined standards of service quality offered to passengers, represents
a fundamental issue to increase both system attractiveness and global benefits to
railway operators and their customers. To this purpose train operator companies and
infrastructure managers, have the hard task of assuring established service availability
levels: such aim can be reached not only equipping railway infrastructure with high-
dependable components (using high-reliability and high-maintainability items) but
also determining effective operational strategies which minimize impacts of
components failures on service levels. In particular decisional phases addressed to
identify amongst several alternatives, the most appropriate designing or operational
solution, are strongly supported by opportune railway simulation models, since the
high complexity degree of railway networks prevents system behaviour to be
described by analytical closed-form solutions.

computer-based
control centre

infrastructure
controls

state

timetable

recovery strategies

ordinary strategies
vehicles

infrastructure

railway system

Fig. 1. Railway system composition

As illustrated in figure 1 railway systems contain computer-based elements which
aim at controlling both infrastructure (e.g. interlocking areas, telecommunications,
switch machines, etc.) and vehicles to perform safe train movements on the track.
Nowadays different models have been developed which lead to different and non-
integrated models which are separately addressed to simulate railway system
operations or analyze its respective components. The first kind of models can be
classified on the basis of the considered level of detail in macroscopic, mesoscopic
and microscopic. Macroscopic models ([1], [2]) depict at high abstraction level
railway infrastructure. They are mostly used during long-term planning tasks to
determine preliminary physical characteristics of the network (e.g. number of stations,
inter-station lengths, etc.) as well as system capacity values to satisfy the level of
transportation demand estimated. Mesoscopic models ([3]), thanks to their “multi-
scale” structure containing both areas modelled on a macroscopic level and areas
modelled on a microscopic level, consent to realize “simplified” railway simulations
minimizing computational efforts. Microscopic models ([4], [5]), instead represent
with high detail level each element of railway infrastructure allowing for the precise
evaluation of system operations. The second type of models, instead, are not
addressed to system operations simulation, since they are used especially for
availability evaluation at subsystem level.

 An Integrated Approach for Availability and QoS Evaluation in Railway Systems 173

The accurate assessment of service levels induced by designing and operational
alternatives, strongly need to consider the overall interactions amongst the different
items composing railway system. In particular railway operators need to analyze how
interventions on mitigation strategies (implemented by computer-based elements)
addressed to reach certain availability targets, affect Quality of Service perceived by
passengers. To this purpose an integrated approach for railway service simulation is
proposed to contemporary estimate both QoS and service availability, consenting to
dominate the complexity of real railway systems. An innovative architecture
encompasses different interacting modules, each one depicting a specific feature of
both infrastructure and computer-based control centre. Such approach will therefore
conduct to have a more complete view when analyzing different designing solutions
and overall strategic alternatives.

The second paragraph of this paper will briefly summarize theory and
methodologies to estimate parameters of both quality of service offered to passengers
and operational availability, while the third paragraph will deal with an accurate
description of the proposed simulation architecture. In the fourth paragraph a practical
application on a Mass Rapid Transit case study will illustrate the effect on both
service availability and quality, induced by different operation strategies to recover
normal service after a failure of a train. Finally concluding comments will be
explained.

2 Quality of Service and Service Availability for a Railway System

In this section Quality of Service and Service Availability will be defined, specifically
referring to the field of railway transportation systems. Policies and regulations which
introduce such questions at international level are considered. Then a paragraph
dedicated to clearly illustrate the strong dependencies between such issues is reported.

2.1 Quality of Service and Passengers Satisfaction

Quality of Service (QoS) offered by a railway system to its customers, certainly
represents one of the most important issues that a railway operator has to consider. In
fact, also in accordance with the international literature on marketing science, only the
achievement of passengers’ satisfaction as well as an acceptable quality of service
will let railway operators be competitive in the domain of people transportation ([6]).

The term “satisfaction” for a customer of a railway line, involves different issues
such as: the cost of the service (e.g. price of the ticket), the journey time, quality
parameters like punctuality, cleanness, safety, travel time variability (connected to
service reliability) and so on. According to classical literature ([7]), customer’s
satisfaction is reached when the so called “user’s generalized cost” is minimized. In
particular, the generalized cost Ci of a single customer for choosing alternative i, can
be expressed as a linear combination of the K attributes concerning that alternative
XK,i weighted by their respective homogenization coefficients βK,i, which mostly
represent specific costs of the attribute:

Ci = ∑K βK,i · XK,i (1)

174 A. Mazzeo et al.

For a passenger railway line, specific cost attributes can be constituted for example by
quantitative variables like average passenger waiting time at stations, total on-board
travel time, cost of the ticket to access the service, arrival delays at destination, as
well as qualitative variables (often considered as dummy variables) such as comfort
of the journey, cleanness of trains and stations, travel safety, and so on.

Moreover, in literature, applications of quality measuring methodologies to real
case studies, show how the estimation of quality parameters (through direct detections
or surveys to passengers) can lead to the identification of quality-critical infrastructure
sections which call for improvements. On this basis, it can be possible to branch also
complex railway systems in smaller and less complex regions which are
homogeneous from the service quality point of view. In such a way more effective
analyses could be conducted only for the most critical regions to identify designing or
operational solutions addressed to improve the respective quality levels. Anyway in
this paper QoS perceived by passengers will be measured by means of the users’
generalized cost which in turn will be calculated considering the only “total journey
time” (i.e. the sum of the on-board travel time and the average waiting time at
stations) as specific attribute.

2.2 Service Availability in Railway Systems

The norm EN 50126 ([8]) defines for railway networks the term “availability” as the
ability of a certain system to perform required functions under given conditions, over
a certain time period assuming that the needed sources of help are provided. This
means that a system with a high level of availability will mostly fulfill the requested
kind of service under the defined framework conditions, and therefore will assure
high levels of Service Availability (SA). As is evident, the availability of service is
strongly related to system availability, since a failure of a system component will tend
to reduce railway system functions and consequently its operational availability.

In order to guarantee acceptable SA levels railway operators can achieve high
values of system availability employing high-dependability components (i.e. high
reliable and maintainable items) or adopt operational strategies addressed to minimize
failures effects on system availability. To this purpose a set of regulations have been
recently introduced in the field of railway systems to define a list of management
procedures which aim at performing the so called RAMS (Reliability, Availability,
Maintainability and Safety) throughout the railway system lifecycle. Such procedures
have the objective of achieving certain qualitative and quantitative targets for each
element of railway system (subsystems and components), in order to guarantee
determined standards of availability and therefore of SA, which are reliable and safe
at the same time. Anyway SA is usually represented by mathematical indexes often
described by the ratio between performed (actual) and target (designed) service
measures. In particular such indexes are defined and specified within contracts
between customers (train operators or infrastructure managers) and railway systems
designers or manufacturers. Common SA indexes are for example: “system
availability” expressed as the ratio between the time of performed and scheduled
service (in minutes), or “punctuality” defined as the ratio between the number of on-
time trips and the total number of trips arrived at a certain station. In particular
punctuality can be expressed as:

 An Integrated Approach for Availability and QoS Evaluation in Railway Systems 175

punctuality = (ts - tl) / ts · 100 (2)

where ts is the number of scheduled trips within a certain time period and tl is the
number of lost trips (i.e. the number of trips which does not arrive at the considered
station) calculated over the same time interval. In this paper, punctuality index will be
considered to measure SA.

2.3 Relationships between QoS and SA in Railway Systems

As is evident, QoS perceived by passengers of a railway system is strongly dependent
on levels of SA achieved by railway operators on the system itself. In fact passengers’
satisfaction is related to the gap between expected (ideal) and perceived (actual) level
of QoS. In turn perceived QoS levels strongly depend on the discrepancy between
targeted and delivered SA levels achieved by service providers. Such relationship is
clearly depicted in the loop shown in figure 2, as illustrated by AFNOR, the French
Organization for Standardisation ([9]). Therefore only if this loop is retained the
service is considered as successfully offered. It seems clear that in order to increase
the attractiveness of a passenger railway system, railway operators must seriously
take into account this matter starting to adequate both infrastructure characteristics
(e.g. signalling system, number of stations, etc.) and operation strategies (e.g.
timetable, train movements to recover normal service after a system breakdown) in a
demand-orientated way.

Fig. 2. Service level loop in railway transportation systems (AFNOR, 2006)

For these reasons, decisional phases at each level, require not only the investigation
of the effects induced by a certain management solution (infrastructural or
operational) on network performances, but also their respective impacts on passengers
flows. Since the high level complexity of this problem, decisional activities both
during designing and real-time rescheduling stages, strongly needs to be supported by
opportune simulation systems which consent the evaluation of repercussions on both
SA and QoS, induced by different solutions to identify the most effective one.

176 A. Mazzeo et al.

3 Simulation System Architecture

Here an integrated architecture is introduced for the simulation of railway system
operations and the contemporary assessment of both SA and QoS levels. Outputs
returned by such architecture can be analyzed with three different goals: evaluating
the impact of disturbances on service, estimating the variation induced to the SA
related to QoS; estimating the efficiency having different configurations of track
layout allowing to choose the one that has the greater impact on cost reduction;
identify the optimal configuration of the plants and of operation and maintenance
staff.

Fig. 3. Simulation system architecture

The necessity to estimate a non-completed (and project dependant) set of indexes
makes necessary the decomposition of the architecture in a core component on which
it is possible to connect different evaluators for measurement of interest parameters.
The explicit architecture is depicted in figure 3: the core component is the kernel of
the architecture and it reproduces system operational conditions service taking into
account any kind of stochastic disturbance on service; the Simulation Log Files
developed in output, in a very large number, contain the list of all instant of arrival
and departure of each train at each station; a group of evaluator make use of
Simulation Log Files to evaluate interest parameters. For the present paper scope of
work we have connected two particular evaluators for the estimation of the two
indexes showed in previous paragraph: user’s generalized costs and punctuality.

High dimensions and complex internal relationships of a railway system requires
the integration of heterogeneous modules in the core, each one manage the evolution
of a particular feature during the simulation. In particular, as depicted in figure 4,
these modules are: operational strategies, state of subsystems, passengers travel
demand and movement on track. With respect to the railway system composition, as
already shown in figure 1, the operational strategies module implements the control-
centre functions while the others modules simulate infrastructure components.

 An Integrated Approach for Availability and QoS Evaluation in Railway Systems 177

movement on track

operational
strategies

passengers
travel demand

state of
subsystems

Fig. 4. Internal organization of core component

3.1 Operational Strategies Module

This module is responsible for the implementation of operational strategies controlled
by computer-based control centre. In particular, it is possible to distinguish three main
functionalities: the respect of the timetable, the execution of ordinary strategies and the
implementation of the recovery strategies, when needed. The module authorizes train
departures according to timetable and obviously respecting signalling system aspects
which safely regulates train movements on the track. Moreover such module enables the
activation of apposite train movements which aim at performing specific operational
strategies mostly addressed to restore ordinary service after a component failure.

3.2 State of Subsystems Module

The state of subsystems module deals with the simulation of operating mode of all
subsystems involved in service fulfilment. In particular, this module simulates the
evolution between different operating modes according to the failure rates and
probability of state passing of each failure-prone component (vehicles, on board
signalling system, central signalling system, infrastructure, etc.). The model use a
Markov chains: the states represent different operating modes of the component and
on the arcs there is the probability of state passing between a couple of them,
calculated from component failure rates. Some of the arcs of the complete graph may
be associated with null probability when those transitions are not feasible during
operation. Obviously, this module permits to simulate the nominal operation, in case,
for example, of timetable validation, setting null all the failure probability.

3.3 Passengers Travel Demand Module

This module is dedicated to the simulation of passengers demand. In particular
passengers origin-destination matrix relative to a certain time period, is considered as
input datum. Such module is constituted of an assignment model which by means of
consistency equations calculates, during simulation, passengers boarding and
alighting flows at stations, returning as output the on-board flows for each station and
for each train run.

3.4 Movement on Track Module

This module is responsible for simulation of train movements on track. Inputs of this
module are all physical and mechanical characteristics of both track and vehicles.
Such module assumes the master role during simulation, collaborating with other
modules. A classical compositional strategy ([10]) based on the cooperation of basic
elements (e.g. stations, block sections, terminals, pocket tracks, etc.) is used; thanks to

178 A. Mazzeo et al.

well-defined composition rules, these basic elements can be joined together in order
to produce the track layout you want to simulate in an enough simple way.

To simulate both ordinary and degraded train service, a dynamic integration
between different simulation approaches has proved to be an effective solution to
overcome the limits of applicability of models at high level of detail, but
computationally inefficient (i.e. microscopic), and models unable to describe local
and transient train dynamics even though very efficient (i.e. mesoscopic) ([16]). In
fact a combined approach, which dynamically integrates micro- and mesoscopic
models allows to efficiently simulate large-scale networks or deal with a large number
of simulations (e.g. when performing probability analyses), preserving the accuracy
needed to evaluate QoS and SA. In particular, the mesoscopic approach is
implemented by means of Stochastic Activity Networks (SAN) formalism and uses
timed transitions to model travel times between stations, whilst the microscopic
approach, designed in C++, explicitly simulate train dynamics integrating the
Newton's motion formula .

4 Case Study: A Mass Rapid Transit System

To clearly understand the usefulness of the simulation architecture proposed in this
paper, it is necessary to implement a practical application on a case study, in
particular a Mass Rapid Transit system has been considered. As shown in figure 5,
this network is constituted of a 12 km long double-track layout with 15 stations and
two terminals to let trains change their path or reverse direction. An ETCS level 1
signalling system type regulates train movements on the track. Furthermore a pocket
track to store away corrupted trains is located between station 7 and 8. Scheduled
train headway is set to 6 minutes while train dwell times are all equal to 20 seconds
for each station. The depot is pinpointed between first and second station, it has three
connections with the line: one is used for entering vehicles in service, another one is
used instead to allow the service entrance of hot spare vehicles, and the last one is
used for train admission to the depot. Total train running time (including dwell times
at stations) is 1251 sec. for 1-15 direction and 1257 sec. for 15-1 direction. Minimum
train inversion time at is about 20 sec. at terminal 15 and 140 sec. at terminal 1, while
the maximum synchronization time awaited at terminals to perform a constant
headway is 66 sec.

Fig. 5. Schematic layout of the considered MRT system

Passenger travel demand considered for the line is reported in terms of on-board
passengers flows (both for 1-15 and 15-1 direction) referring to a working-day peak-
hour in the morning. As can be seen, the maximum passenger flow assessed for 1-15
direction is equal to 8500 pax/h, while for the opposite direction (15-1) this value is
3189 pax/h (figure 6).

 An Integrated Approach for Availability and QoS Evaluation in Railway Systems 179

0

2,000

4,000

6,000

8,000

10,000
1-

-2

2-
-3

3-
-4

4-
-5

5-
-6

6-
-7

7-
-8

8-
-9

9-
-1

0

10
--

11

11
--

12

12
--

13

13
--

14

14
--

15

15
--

14

14
--

13

13
--

12

12
--

11

11
--

10

10
--

9

9-
-8

8-
-7

7-
-6

6-
-5

5-
-4

4-
-3

3-
-2

2-
-1

Travel demand [pax/h]

Interstation tracks

Fig. 6. Passenger travel demand data loading the system

In this application a total time interval of 3 hours has been observed, considering
that hourly passenger flows previously described, preserve exactly the shown trend
within each hour of the considered period. According to the scheduled train headway
defined by timetable, a total of 30 train runs for each direction have been analyzed. In
particular during ordinary service conditions, simulation outputs return total on-board
passengers flows for each train run and for each inter-station track (figure 7). As can
be seen, each train run shows the same passengers load (in fact on-board passengers
diagrams relative to each train run are overlapped).

0

500

1,000

1,500

1-
-2

2-
-3

3-
-4

4-
-5

5-
-6

6-
-7

7-
-8

8-
-9

9-
-1

0

10
--

11

11
--

12

12
--

13

13
--

14

14
--

15

15
--

14

14
--

13

13
--

12

12
--

11

11
--

10

10
--

9

9-
-8

8-
-7

7-
-6

6-
-5

5-
-4

4-
-3

3-
-2

2-
-1

Travel demand [pax]

Interstation tracks

Run 1 Run 2 Run 3 Run 4 Run 5
Run 6 Run 7 Run 8 Run 9 Run 10
Run 11 Run 12 Run 13 Run 14 Run 15
Run 16 Run 17 Run 18 Run 19 Run 20
Run 21 Run 22 Run 23 Run 24 Run 25
Run 26 Run 27 Run 28 Run 29 Run 30

Fig. 7. On-board passengers for each train run for ordinary service condition

In particular no limits have been set for train capacity (i.e. the maximum number of
passengers that a train can contain). Moreover for the calculation of the users’
generalized cost the “total journey time” (i.e. the sum of the on-board travel time and
the average waiting time at stations) has been considered as cost function attribute,
using a value of the specific cost β of 5€€ /h. Within ordinary service the total
passengers’ generalized cost estimated over all passengers flows during the entire
time interval is 63893 €€ .

Successively a failure scenario has been considered, supposing that the second
train run along 15-1 direction experiences a breakdown after his departure from
station 15 causing a degraded functioning state of the train no. 1 which increases the
respective travel time of 2 times. Then in such conditions three different recovery
strategies have been analyzed and for each one the effects on both QoS offered to
passengers and SA have been assessed. Descriptions and simulation results obtained
for each strategy are reported in the following paragraphs.

180 A. Mazzeo et al.

4.1 First Operational Strategy: Return to Depot and Successively Substitution

This strategy consists in keeping on service the corrupted train in degraded
conditions, until it reaches the depot near station no. 1. Once this has entered the
depot it is substituted by a hot spare vehicle (train no. 9) which starts its service from
station no. 1 (obviously along 1-15 direction). As shown in figure 8, due to the higher
travel time experienced by the broken vehicle, a consistent delay is transferred to
other trains. The delay suffered by trains induces a passenger overloading of runs
(figure 9), especially for those which enter on service after the occurring of the failure
event.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9700 11700 13700 15700 17700 19700

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9

Fig. 8. System operation for the first recovery strategy

Moreover this effect is obviously higher for train runs along 1-15 direction
(because of the higher demand level) and slowly tend to fade away after the entrance
of the spare. Anyway for this strategy the total generalized cost estimated is 83905 €€ .
Therefore with respect to ordinary service conditions such strategy determines an
increase in the total generalized cost (i.e. a decrease in passengers’ satisfaction) of
about 31%. The effect induced by such strategy on SA has been detected through
measuring the punctuality index at terminal station no. 1. In particular such index is
equal to 76.57%.

0

1,000

2,000

3,000

1-
-2

2-
-3

3-
-4

4-
-5

5-
-6

6-
-7

7-
-8

8-
-9

9-
-1

0

10
--

11

11
--

12

12
--

13

13
--

14

14
--

15

15
--

14

14
--

13

13
--

12

12
--

11

11
--

10

10
--

9

9-
-8

8-
-7

7-
-6

6-
-5

5-
-4

4-
-3

3-
-2

2-
-1

Travel demand [pax]

Interstation tracks

Run 1 Run 2 Run 3 Run 4 Run 5
Run 6 Run 7 Run 8 Run 9 Run 10
Run 11 Run 12 Run 13 Run 14 Run 15
Run 16 Run 17 Run 18 Run 19 Run 20
Run 21 Run 22 Run 23 Run 24 Run 25
Run 26 Run 27 Run 28 Run 29 Run 30

Fig. 9. On-board passengers for each train run for the first recovery strategy

 An Integrated Approach for Availability and QoS Evaluation in Railway Systems 181

4.2 Second Operational Strategy: Preventive Insertion

Such strategy instead considers that a minute after the failure has occurred a hot spare
from the depot is put on service from station no.1 along 1-15 direction, while the
corrupted train, although is degraded, continues its service along 15-1 direction until
it reaches station no. 1 and enters the depot.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9700 11700 13700 15700 17700 19700

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9

Fig. 10. System operation for the second recovery strategy

As in the first strategy, also for this one a passenger overloading of train runs
happens (figure 11) especially for 1-15 direction, but in this case train loading rates
are lower, since the delay transferred from the corrupted train to other trains is lower.
However for this second strategy the assessed total passengers’ generalized cost is
70614 €€ . This means that with respect to regular conditions such strategy induces an
increase of about 11% of the total generalized cost. The immediate introduction of the
spare vehicle makes punctuality index be 83.23%, reducing the overdue runs from 6
to 4 (figure 10).

0

1,000

2,000

3,000

1-
-2

2-
-3

3-
-4

4-
-5

5-
-6

6-
-7

7-
-8

8-
-9

9-
-1

0

10
--

11

11
--

12

12
--

13

13
--

14

14
--

15

15
--

14

14
--

13

13
--

12

12
--

11

11
--

10

10
--

9

9-
-8

8-
-7

7-
-6

6-
-5

5-
-4

4-
-3

3-
-2

2-
-1

Travel demand [pax]

Interstation tracks

Run 1 Run 2 Run 3 Run 4 Run 5
Run 6 Run 7 Run 8 Run 9 Run 10
Run 11 Run 12 Run 13 Run 14 Run 15
Run 16 Run 17 Run 18 Run 19 Run 20
Run 21 Run 22 Run 23 Run 24 Run 25
Run 26 Run 27 Run 28 Run 29 Run 30

Fig. 11. On-board passengers for each train run for the second recovery strategy

182 A. Mazzeo et al.

4.3 Third Operational Strategy: Store Away on Pocket Track

The last analyzed strategy consists in keeping on service the broken train in degraded
conditions along 15-1 direction, until it reaches section between station 8 and 7 where
it is stored away on the pocket track there located. Then a hot spare from the depot is
put on service from station no.1 along 1-15 direction (figure 12).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9700 11700 13700 15700 17700 19700

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9

Fig. 12. System operation for the third recovery strategy

This highlights that such strategy strongly mitigates the impacts of train knock-on
delays transferred from the corrupted train to the other runs (figure 13). Anyway the
total passengers’ generalized cost calculated for this strategy is 64234 €€ , and with
respect to ordinary conditions determines a cost increase (i.e. a satisfaction decrease)
of only 0.5%. The value of the punctuality index during the considered simulation
period is 94,57%, but higher costs for the installation of the pocket track are necessary
to put in practice this strategy.

0

500

1,000

1,500

1-
-2

2-
-3

3-
-4

4-
-5

5-
-6

6-
-7

7-
-8

8-
-9

9-
-1

0

10
--

11

11
--

12

12
--

13

13
--

14

14
--

15

15
--

14

14
--

13

13
--

12

12
--

11

11
--

10

10
--

9

9-
-8

8-
-7

7-
-6

6-
-5

5-
-4

4-
-3

3-
-2

2-
-1

Travel demand [pax]

Interstation tracks

Run 1 Run 2 Run 3 Run 4 Run 5
Run 6 Run 7 Run 8 Run 9 Run 10
Run 11 Run 12 Run 13 Run 14 Run 15
Run 16 Run 17 Run 18 Run 19 Run 20
Run 21 Run 22 Run 23 Run 24 Run 25
Run 26 Run 27 Run 28 Run 29 Run 30

Fig. 13. On-board passengers for each train run for the third recovery strategy

5 Conclusions and Future Works

This paper proposes a modular architecture for railway service simulation. This
architecture allows to assess several indexes in particular relative to SA and QoS,
evaluating the impact of stochastic disturbances on service. Given the complexity of a

 An Integrated Approach for Availability and QoS Evaluation in Railway Systems 183

railway system each module which constitutes the proposed simulation architecture
can only be developed by a heterogeneous working group made of computer science
and transportation experts with a remarkable support of the industry. The application
of such simulation architecture to a real-scale MRT case study, demonstrates that the
impacts on service due to a certain failure scenario can be mitigated in several ways
adopting different recovery strategies. Obtained results show how the proposed
architecture enables the contemporary evaluation of several service level indexes and
consequently verify the attainment of contract requirements and functional
specifications in general. Such aspect, together with the capability of this approach to
dominate complexity of real scale railway systems, confirm its relevance in industrial
research area.

Moreover the simulation can be performed during all the project lifecycle,
providing important information since the early stages of project design, when almost
20% of the total ownership cost of the system is already “frozen”. The proposed
simulation system evaluates capability of a railway system to fulfil target indexes,
thus permitting to identify proper remedial actions, allowing also to avoid penalty
payments. In addition to this, it is important to remember that, on average, a retrofit
cost is almost 4 times higher than a cost sustained in the design phase. Moreover it
can be said that such integrated approach could support both railway operators and
railway industry to acquire more confidence on requirements compliance during
decisional phases at each level.

Prototype versions of the modules described in this architecture have been
developed to date, using a multiformal approach (mainly made of SAN networks)
combined with C++ programs. Future work will be addressed to describe and develop
interfaces in a formal way in order to permit easy replacement and reuse.

References

1. Kettner, M., Prinz, R., Sewcyk, B.: NEMO – Netz – Evaluations-Modell bei den OBB.
Eisenbahntechnische Rundschau (ETR) 3, 117–121 (2001)

2. Kettner, M., Sewcyk, B.: A model for Transportation Planning and Railway Network
Evaluation. In: Proceedings of the 9th World Congress on Intelligent Transport Systems,
Chicago, USA (October 14-17, 2002)

3. Marinov, M., Viegas, J.: A mesoscopic simulation modelling methodology for analyzing
and evaluating freight train operations in a rail network. Simulation Modelling Practice
and Theory 19, 516–539 (2011)

4. Nash, A., Huerlimann, D.: Railroad Simulation using Open-Track. In: Computers in
Railways IX. WIT Press, Southampton (2004)

5. Siefer, T., Radtke, A.: Railway Simulation, Key for Operation and Optimal Use. In:
Proceedings of the 1st International seminar of Railway and Operations Modelling and
Analysis, Delft, the Netherlands (June 8-10, 2005)

6. Kotler, P.: Marketing Management, Analysis, Planning, Implementation and Control.
Prentice Hall, Englewood Cliffs (1991)

7. Cascetta, E.: Transportation System Analyses, models and applications. Springer, New
York (2009)

8. CENELEC: Railway applications – Specification and demonstration of reliability,
availability, maintainability and safety (RAMS). EN 50126 (1999)

184 A. Mazzeo et al.

9. AFNOR Group, http://www.afnor.org (last access 15.03.2011)
10. Hagalisletto, A.M., Bjork, J., Chieh Yu, I., Enger, P.: Constructing and Refining Large-

Scale Railway Models Represented by Petri Nets. IEEE Trans. On System, Man and
Cybernetics-Part C: Applications and Reviews 37(4), 444–460 (2007)

11. Grupe, P., Nunez, F., Cipriano, A.: An event-driven simulator for multi-line metro system
and its application to Santiago de Chile metropolitan rail network. Simulation Modelling
Practice and Theory 19(1), 393–405 (2009)

12. Kaakai, F., Hayat, S., El Moudni, A.: A hybrid Petri nets-based simulation model for
evaluating the design of railway transit stations. Simulation Modelling Practice and
Theory 15(8), 935–969 (2007)

13. Vittorini, V., Iacono, M., Mazzocca, N., Franceschinis, G.: The OsMoSys approach to
multi-formalism modeling of systems. Software and Systems Modeling 3(1), 68–81
(2003)

14. Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.: A new modeling approach to the
safety evaluation of N-modular redundant computer systems in presence of imperfect
maintenance. Reliability Engineering & System Safety 94(9), 1422–1432 (2007); ESREL
2007, the 18th European Safety and Reliability Conference (2007)

15. Flamini, F., Mazzocca, N., Moscato, F., Pappalardo, A., Pragliola, C., Vittorini, V.:
Multiformalism techniques for critical infrastructure modelling. International Journal of
System of Systems Engineering 2(1), 19–37 (2010)

16. Quaglietta, E., Punzo, V., Montella, B., Nardone, R., Mazzocca, N.: Towards a hybrid
mesoscopic-microscopic railway simulation model. In: 2nd International Conference on
Models and Technologies for ITS (2011)

Using a Software Safety Argument Pattern

Catalogue: Two Case Studies

Richard Hawkins, Kester Clegg, Rob Alexander, and Tim Kelly

The University of York, York, U.K.
{richard.hawkins,kester.clegg,rob.alexander,tim.kelly}@cs.york.ac.uk

Abstract. Software safety cases encourage developers to carry out only
those safety activities that actually reduce risk. In practice this is not
always achieved. To help remedy this, the SSEI at the University of York
has developed a set of software safety argument patterns. This paper
reports on using the patterns in two real-world case studies, evaluating
the patterns’ use against criteria that includes flexibility, ability to reveal
assurance decits and ability to focus the case on software contributions
to hazards. The case studies demonstrated that the safety patterns can
be applied to a range of system types regardless of the stage or type of
development process, that they help limit safety case activities to those
that are significant for achieving safety, and that they help developers nd
assurance deficits in their safety case arguments. The case study reports
discuss the difficulties of applying the patterns, particularly in the case of
users who are unfamiliar with the approach, and the authors recognise in
response the need for better instructional material. But the results show
that as part of the development of best practice in safety, the patterns
promise signicant benets to industrial safety case creators.

1 Introduction

Providing a compelling software safety argument is a fundamental but challeng-
ing part of demonstrating that a system is safe. Part of the problem is providing
evidence for low-level argument claims, but there are also difficulties in structur-
ing the argument in an intelligible and maintainable way. To help with this latter
problem, we have developed a catalogue of software safety argument patterns
which guide engineers in structuring safety arguments.

The pattern catalogue is summarized in [1] and documented fully in Appendix
B of [2]. The philosophy underpinning these patterns is that developers must
demonstrate assurance in the same fundamental safety claims for all software
used in a safety related role; the difference between arguments for different sys-
tems is in the way in which these claims are ultimately supported. The patterns
we have created define the expected structure of a software safety argument
which supports all of the fundamental safety claims.

We intend for the patterns to provide benefits to several different stakeholders.
When a developer uses them during the earlier stages of a systems lifecycle, they
should find it easier to identify areas where the assurance of the system may be

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 185–198, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

186 R. Hawkins et al.

weak. They can then make changes (to the system or its operating restrictions)
to address these areas of concern. The patterns can also help reviewers of a
software system to identify where assurance deficiencies may exist, and provide
a common baseline for agreeing acceptability. In essence, the patterns attempt
to encourage best practice in creating and reviewing software safety arguments.

In order to check the effectiveness of the patterns in achieving these aims we
applied the patterns to a number of industrial case studies to determine their
effectiveness. In this paper we describe some of our experiences of applying the
patterns on two of these safety-critical software projects.

In particular, we wanted to assess the patterns in the software safety argument
pattern catalogue against the following desirable criteria:

– The patterns should be easy to understand and apply by software develop-
ment teams.

– The patterns should be flexible enough to apply to any safety-critical soft-
ware system.

– The patterns should ensure that the resulting software safety argument is
explicitly focused on controlling the software contribution to system hazards.

– It should be easy to judge the sufficiency of an argument created using the
patterns.

In the next section we give an overview of the pattern catalogue. Sections 3 and
4 then describe our experiences in two case studies: a prototype autonomous
vehicle controller, and an aircraft avionics software system. Finally, Section 5
draws some conclusions from these experiences and outlines the future for the
pattern catalogue.

2 Software Safety Argument Pattern Catalogue

Prior to the development of our pattern catalogue, the main extant work in
the area was that of Weaver [3]. Weaver’s catalogue was unique in its time in
that, unlike that of Kelly [4], it was specifically aimed at software systems, and
specifically designed to connect its patterns together in order to form a single
coherent argument. However, Weaver’s catalogue has a number of weaknesses.
First, the patterns take a fairly narrow view of assuring software safety, in that
they focus on the mitigation of known failure modes in the design. Mitigation
of failure modes is important, but there are other aspects of software assurance
which should be given similar prominence. Second, issues such as safety require-
ment traceability and mitigation were considered at a single point in Weaver’s
patterns. This is not a good approach; it is clearer for the argument to reflect
the building up of assurance relating to traceability and mitigation over the de-
composition of the software design (see later discussion on the tiered approach).
Finally, Weaver’s patterns have a rigid structure that leaves little scope for any
alternative strategies that might be needed for novel technologies or design tech-
niques.

The other relevant existing patterns are those developed by Fan Ye [5] specifi-
cally to consider arguments about the safety of systems including COTS software

Using a Software Safety Argument Pattern Catalogue: Two Case Studies 187

products. Ye’s patterns provide some interesting developments from Weaver’s,
including patterns for arguing that the evidence is adequate for the assurance
level of the claim it is supporting. Although we do not necessarily advocate the
use of discrete levels of assurance, the patterns are useful as they support argu-
ing over both the trustworthiness of the evidence and the extent to which that
evidence supports the truth of the claim.

The patterns we created were deliberately constructed such that they make no
assumptions about project, application or domain specific details. For example
they are designed to be applicable for any software development process, any
software design methodology, diverse types of system-level hazards and diverse
software requirements.

The key organizing assumption for the patterns was that as the software
system moves through the development lifecycle there are numerous assurance
considerations against which evidence must be provided. Jaffe et al [8] proposed
an extensible model of development which captures the relationship between
components at different “tiers” (a set of tiers for one project might be for example
the software architecture, the software high-level and low-level designs, and the
source code). For our purposes we can note that at each tier, different assurance
considerations arise. Our patterns are explicitly based on a view of software
development as this process of refinement through tiers, and they consider the
relationship between the design information at various tiers and the resulting
assurance considerations. The number and type of tiers used in the specific
design process being used is irrelevant, so long as the assurance considerations
are sufficiently addressed at each tier.

Figure 1 summarises the assurance considerations that are repeated at each
tier of a software development lifecycle. At each tier, the pattern instantiator
must provide evidence which is sufficient to address each of these considerations,
and they must provide a compelling argument which explains how the evidence
addresses each assurance consideration. It follows that as software development
progressed through more detailed design tiers, more assurance evidence is gen-
erated.

From Figure 1, the assurance considerations defined for each tier can be seen
to be:

1. The safety requirements placed upon the software have been met.
2. Those safety requirements are appropriate for the design at this tier and are

traceable to higher tiers.
3. Hazardous errors have not been introduced into design at this tier.
4. Hazardous failure behaviour has been assessed — it has been determined

what could go wrong at this tier and how it is mitigated.

If a safety argument is to be compelling, then it is crucial that the high-level
structure of the argument is correct. This requires that the argument focuses ex-
plicitly on how the software can contribute to system level hazards. Our patterns
provide this structure by forcing users to consider each system hazard in which

188 R. Hawkins et al.

Design Tiers
Safety Assurance Considerations

(defined by patterns)

Software design tier n+1

Safety requirements are satisfied
S/w design tier n

Safety Assurance Considerations
(defined by patterns)

Safety requirements are appropriate for
this tier and traceable to higher tiers

Safety requirements are appropriate for
this tier

Hazardous design errors have not been
introduced

Hazardous behaviour assessed and
mitigated

Safety requirements are satisfied

Hazardous design errors have not been
introduced

Hazardous behaviour assessed and
mitigated

Fig. 1. System safety requirements

software may play a role and to identify the specific software behaviour which
may contribute to the hazard. This might involve, for example, working system-
atically over the base events in fault tree. If an argument creator understands
the specific functions or properties of the software in which assurance is required,
then they can focus the argument and evidence on those things. This structured
approach should help to discourage spurious information being included in the
safety argument “just in case”.

2.1 Identifying Assurance Deficits

There will be aspects of all safety-related software systems for which assurance
is not demonstrated with complete certainty; there will always be things relating
to the behaviour of the software system which remain unknown or unclear. We
refer to such uncertainties as assurance deficits since they can undermine the
assurance that can be demonstrated. It is important to note that assurance
deficits do not necessarily correspond to faults or defects in the system, but
instead to an inability to demonstrate complete certainty in each safety claim in
the argument.

For example, it may be known that the compiler being used has some unde-
fined behaviour. It may be known that a design model used may not accurately
represent certain real environmental features or that a component has not been
exhaustively tested. Or it may be known that an assumption that has been made
about partitioning of some software modules may not actually hold in all cases.

The argument patterns can help identify where such assurance deficits exist.
These assurance deficits may relate to the safety evidence generated or to the
safety argument itself. It is through managing assurance deficits that the required
assurance can be achieved.

Using a Software Safety Argument Pattern Catalogue: Two Case Studies 189

3 Case Studies

The next two sections describe case studies where the software safety case pat-
terns were used on real products. The first is the control software for a prototype
autonomous vehicle and the second for an aircraft avionics system. Each of the
case studies highlights different ways that using the patterns can benefit the
production of safety case arguments by indicating where those arguments are
either missing evidence to back up safety claims or failing to identify clearly the
software contribution to the hazards being considered. The case studies differ
in the stage of technology readiness, the type of software deployment and the
derivation of safety properties. They also differ in terms of the level of experience
of the engineers creating the safety case. Despite these differences, the patterns
were sufficiently flexible to be used and provide benefits to both safety cases.

3.1 Prototype Autonomous Vehicle Case Study

As part of a SEAS DTC [9] project on safety of autonomous systems we craeted
a safety argument for an autonomous system drawn from the SEAS DTC Ex-
emplar 2 scenario [10]. The system chosen was a prototype Unmanned Ground
Vehicle (UGV) that formed part of a larger System of Systems (SoS), including
an Unmanned Aerial Vehicle (UAV) and ground control units. As a high-level
hazard and safety analysis for the SoS had already been completed using pre-
viously developed techniques [11], we decided to construct a partial safety ar-
gument that would start at a system level hazard for the UGV and end with
arguments justifying the safety of software that could contribute to that hazard.
The UGV in question is an adapted all-terrain vehicle (the Wildcat) produced
by the Advanced Technology Centre of BAE Systems. The current prototype is
able to operate without a driver, to follow an off-road GPS waymarked route by
calculating the best path within the waymarked corridor and is able to avoid
static objects. As with many UGVs it is heavily reliant on GPS signals for
their autonomous operation. However, in cases where the GPS signal is lost or
jammed, the vehicle is able to continue to plan its path by taking measurements
from the Inertial Measurement Unit (IMU) in conjunction with other on-board
sensors (such as LIDAR). Unfortunately the IMU measurements (and therefore
estimates of the vehicle’s position) are subject to drift over time, giving an el-
lipse of uncertainty with regard to the vehicle’s true position that can grow in
an unbounded fashion in some scenarios (e.g. after entering a long tunnel). This
could result in the vehicle colliding with objects or the side of the road as it
miscalculates its position.

While there are many potential collisions that could be described, the ap-
proach adopted was first to identify potential accidents and the hazards that
could lead to those accidents occurring. Based on the hazards, we next iden-
tified a set of top level system safety requirements. These requirements were
then further decomposed using techniques derived from the Goal-Oriented Re-
quirements Engineering (GORE) approach of Lamsweerede and others [12]; this
proved fairly straightforward and intuitive.

190 R. Hawkins et al.

The act of decomposing the system safety requirements gave rise to safety
requirements over the software that form the starting point for instantiating the
software safety case patterns discussed in this paper. Our intention was not to
conduct an exhaustive safety review of a particular hazard and its mitigation;
instead we chose to restrict ourselves to a particular aspect of one hazard (object
collision after loss of GPS signal, see Table 1, safety requirement SR2-4) and to
follow the instantiation of a software safety case pattern to the point at which
evidence would normally be presented to meet the software safety requirements
defined at the lowest levels. This naturally excluded much peripheral work that
would have been essential to a full safety case, as either the technical information
was not to hand or we felt it was not directly related to the part of the safety
case we were covering.

Table 1. System safety requirements

Safety
requirement

Description Notes System or
software
components

SR2 – top
level

While moving, the UGV avoids
collisions with objects.

Top level SR2 depends on
availability of GPS, sensor
ranges and quality of their
data, path planning and
vehicle driver functions.

All of UGV

SR2-1

Vehicle restricts speed such that
stopping is possible before collision
occurs with objects.

Stopping can be affected by
traction, gradient, steering,
hardware or vehicle damage.

Sensors.

Actuators.

SW: Driver.

SR2-2

Vehicle restricts speed such that it
can manoeuvre to avoid objects in
its path before collision occurs.

Steering can be affected by
speed, camber, traction, rate
of turn or hardware and
vehicle damage.

Sensors.

Actuators.

SW: Pilot,
Driver.

SR2-3

Vehicle restricts speed such that it
can plan a new path to avoid
objects.

Sufficient time is allowed for
vehicle to plan new path even
in complex environments.

Sensors.

SW: Planner.

SR2-4

In cases where GPS is lost or
blocked, vehicle to maintain last
good path until GPS signal is re-
established.

New plans can be formed
relying on IMU data but this
carries significant risk.

Sensors.

Actuators.

SW: Planner,
Platform
Manager.

SR2-5

On re-establishing a GPS, the
vehicle converges path differences
between estimated position and true
position in a safe manner.

Convergence carries
significant risk, as the degree
of positional error is
impossible to predict and
object avoidance may be
impossible if vehicle needs to
“teleport” to true position.

Sensors.

SW: Planner.

SR2-6

If vehicle is unable to maintain a
planned path, vehicle is brought to
emergency stop

Ability to plan a new path is
limited by CPU processing
and sampling speeds, current
speed of vehicle and
complexity of environment.

Sensors.

SW: Pilot,
Driver,
Platform
Manager.

Using a Software Safety Argument Pattern Catalogue: Two Case Studies 191

The software safety case patterns require that the software contributions to
the hazard in question have been identified. There are various ways this top
level contribution can be obtained; for example, it might occupy one node in a
causal model, such as a fault tree analysis. For the instantiations of the software
safety case pattern to be as easily as possible, it is important that the high level
software contribution to the hazard is clearly understood and defined, as this
forms the starting point of the software safety case and defines the context in
which the case is made.

The first thing that the use of the patterns helped to do was to highlight that
the top level software contribution to the hazards had not been clearly identified
for the prototype UGV. The reason for this is that safety requirements are not
typically expressed by describing how the system or software can contribute to
a hazard. Instead, safety requirements tend to be framed in language that states
the requirement as “necessary to mitigate” the hazard. Thus from our system
safety requirements we have SR2 decomposed to SR2-4 (see Table reftab2, note
have selected just that which is related to the loss of GPS signal referred to
above):

System Safety Requirements
SR2
While moving, the UGV avoids collisions with objects.
SR2-4
In cases where GPS is lost or blocked, vehicle maintains last good path
until GPS signal is re-established.

Neither of these explicitly defines the hazard or mentions the software contribu-
tion to it. In fact SR2-4 does not specify how the vehicle should maintain a good
path; it could be through hardware, software or a combination of both. The use
of the patterns highlights the importance of making the software contributions
to hazards explicit. Note that for our purposes, we are only concerned with the
software contribution with regards to loss of the GPS signal (there are other
software contributions we do not define here). We were able to transform the
requirement above into the following expression of a contribution to a hazard.

Hazard described in SR2
UGV collides with static object.
Software contribution to Hazard in SR2
Software fails to plan safe path for vehicle when GPS signal is lost or
blocked.

This rewriting of SR2-4 gives a clear starting point from which to construct a
safety argument using the patterns. From this point downward in the decom-
position we can refer to safety requirements over the software, as shown by the
software safety requirements extract in Table 2 that decomposes SR2-4 by ap-
portioning software safety responsibilities (note that the full decomposition is
much more detailed and goes down to the level of individual program functions
and variable declarations).

192 R. Hawkins et al.

Table 2. Transistion from system to software safety requirements

Software
Safety

requirement

Description Notes / mitigation in design / other
risks.

Risks / hazards
introduced as a

function of
design decision

SR2-4

In cases where GPS
is lost or blocked,
vehicle to maintain
last good path until
GPS signal is re-
established.

New paths can be formed using IMU
data but this carries unspecified levels
of risk.

SR2-4-1

Where GPS signal is
momentarily lost,
software takes
positional input from
IMU to continue
planning new paths
until GPS signal is re-
established.

Paths planned without GPS data
become increasingly inaccurate.

If vehicle starts to skid or loses traction,
IMU data becomes unreliable.

Positional “drift”
can grow in an
unbounded
fashion during
loss of GPS
signal, therefore
vehicle could
collide with an
object it knew
about and had
planned to avoid.

SR2-4-2

If vehicle experiences
loss of GPS signal for
longer than 30
seconds, software
brings vehicle to halt.

Bringing vehicle to halt within a GPS
“tunnel” may result in vehicle being
unable to continue mission.

Vehicle falls into
enemy hands or
becomes “lost” to
accompanying
UAV.

Case Study Findings. Before the patterns were used to guide the develop-
ment of the safety case argument an explicit distinction had not been made
between the system level safety requirements and the software contribution to
the hazard. This led to some confusion when first instantiating the patterns, as
the patterns require that the software contributions to hazards are identified.
This is a strength of the software safety argument patterns, as they encourage
the derivation of the software contributions and this represents good practice for
software safety. The diagram in Figure 2 illustrates how the patterns force this
distinction to be made - at the different design tiers, it must be demonstrated
that the safety requirements are appropriate for that tier and are traceable to
higher tiers. It can be seen that as the design tiers become more detailed and
more software-specific, so the safety requirements for that tier must do also.
Figure 2 shows how clear traceability can thus be established up to the system
hazards.

We should note, here, that the system in this case study was a prototype
product whose design is yet to be finalised. Perhaps we should not expect such
a product to have something as specific as a fault tree (which would isolate
the software contribution to the hazard in language that is more suited to the
pattern);this type of safety analysis is more common on products with a higher
level of technology readiness. Here, we carried out a fairly intuitive system to
software safety requirements decomposition - given our prototype’s operational
scenario, and the fact it is undergoing further development, this is probably not
inconsistent with real industrial practice. If this is the case, then care needs to be
taken to explicitly define both the hazard and the top level software contribution
to it, perhaps outside the main decomposition tables. Indeed, whether using the

Using a Software Safety Argument Pattern Catalogue: Two Case Studies 193

Design Tiers Safety Assurance Considerations
(defined by patterns)

System architecture

Software System

Software Architecture

Requirements capture explicit definition of
software contribution

Safety requirements are appropriate for
this tier and traceable to higher tiers

Requirements capture system hazards

Requirements capture specific behaviours
associated with hazard

System Hazards

Could contribute to

Hazard associated with
software

Specific software
behaviour

Could contribute to

Fig. 2. Transistion from system to software safety requirements

patterns or not, it is beneficial to carry this exercise out so as to have a clear
understanding of the software contribution across the system. As everything
below this point in the decomposition will be a safety requirement on the software
rather than the system, the software safety requirements can be inserted into
the corresponding tiers of the pattern alongside the evidence selected to meet
those requirements.

It should be noted that this Wildcat UGV case study was carried out by
researchers who had no prior experience of using the patterns and limited ex-
perience with safety cases in general. Despite this, implementing the patterns
was relatively easy, and helped ensure we had adequately covered the neces-
sary assurance considerations. The patterns themselves provide a well structured
framework within which to document design rationale regarding mitigation of
hazards and justification of evidence. By tying this to tiers within the software
architecture, the patterns make it obvious where to locate arguments about de-
sign decisions at a particular level. This, in turn, ties argument claims closely
to specific elements in specific design or implementation artefacts, which helps
argument assessors judge the sufficiency of the resulting argument.

3.2 Aircraft Safety Critical Software System Case Study

The system considered in this case study was a safety critical aircraft avionics
system. The system comprised of a single line replacement item; the software for
this was the subject of the case study.

194 R. Hawkins et al.

The potential safety hazards associated with the system are partially miti-
gated by means of hardware safety interlocks independent of the system software.
This approach minimises the contribution to safety from the software. Software
involved hazards can also be addressed by ensuring that the integrity of the
CPU commands to the hardware is sufficient to mitigate these hazards. This
was achieved by the use of a high integrity Safety Monitor component within
the main application software. The application software is split into two compo-
nents, the Controller and the Safety Monitor. The Controller implements all of
the actual system functionality, but all critical outputs are routed as requests to
the Safety Monitor. The Safety Monitor sees the same set of real world inputs
as the Controller and continuously calculates the safety state of the system. All
critical outputs which are passed from the Controller to the Safety Monitor are
checked against defined System Level Safety Properties, and the Safety Monitor
vetos any outputs which would infringe any of the safety properties. Any safe’
outputs (those which are determined not to infringe any safety properties) are
routed by the Safety Monitor onto the software device drivers.

The system level safety properties are the necessary conditions under which
the behaviour of the system is considered to be safe. The properties were iden-
tified from the system hazards during system Preliminary Hazard Identification
and Analysis. A formal definition (using the Z specification language) of the
safety properties was provided in order to state the necessary conditions pre-
cisely and unambiguously.

This case study was undertaken at a fairly early point in the software de-
velopment lifecycle. However, even at this early stage enough information was
available about the design and development of the software, and plans in place
for the later stages of the development, that a detailed software safety argu-
ment could be formed using the software safety argument patterns as guidance,
particularly for the aspects of the argument relating to the Safety Monitor

Case Study Findings. The use of the software safety argument patterns high-
lighted a number of potential assurance deficits associated with the software.
Thus identified, the significant assurance deficits could be dealt with. If the pat-
terns had not been used then the assurance deficits may well not have been
discovered until later in the development process, increasing the cost and pos-
sibly causing schedule slips of the system. Here, we will focus our discussion
on one particular deficit, which relates the provision of sufficient evidence for
certain safety properties.

The issue is illustrated in Figure 3. The left-hand side of the figure shows the
tiers of design for the Safety Monitor software, while the right-hand side shows
one of the safety assurance considerations at that tier (as determined from the
patterns) and how that consideration is met. The argument patterns demand
that direct evidence of satisfaction of safety properties is provided. The diagram
shows the way in which this evidence was provided for the software at each
design tier.

It can be seen that at the software system level, evidence is generated by per-
forming system tests that check the behaviour of the software is as defined by the

Using a Software Safety Argument Pattern Catalogue: Two Case Studies 195

safety properties specification. At the level of the software architecture, a sep-
arate specification is defined for each architectural element (module). Evidence
can be generated at this tier through module testing against the specification
for each module. Note that this evidence is not directly checking the behaviour
of the module against that defined by the safety properties specification. This
is acceptable as long as the safety properties required of the safety monitor
module have been correctly captured in the safety monitor specification. The
patterns highlight the importance of demonstrating that the safety properties
are adequately interpreted for the Safety Monitor module.

For the class design of the safety monitor module there can be seen to be no
evidence which can directly show that the classes behave in accordance with the
safety properties. Although unit testing is performed, this is evidence only that
the Safety Monitor behaves according to the design specification. In order for
unit testing to meet the safety assurance consideration, we also need assurance
that the class design correctly captures the required high-level safety properties.
Again, the patterns highlighted the importance of adequately interpreting the
safety properties for each of the classes in the safety monitor module design.

Finally in Figure 3, it can be seen that static analysis is provided as evidence
at the level of the source code. The analysis was conducted using SPARK proof
annotations [6] included in the safety monitor code. Again, for this evidence to be
effective from an assurance perspective, it must be demonstrated that the proof
annotations completely and correctly capture the required safety properties.

Design Tiers Safety Argument Assurance
(defined by patterns)

Software System

Software Architecture

Class Design

Source Code

Safety Properties (Z spec)

Safety Monitor Z spec

Captured in

Module testing

Direct evidence of satisfaction of safety
properties

Unit testing

SPARK proof annotations

Demonstrate
equivalence to

Static analysis

System testing

UML
Models

SPARK
ADA

Fig. 3. Transistion from system to software safety requirements

This example illustrates how, by encouraging the developer to consider explicit
assurance claims relating to the required safety properties at every tier of design
decomposition, the software safety patterns highlighted the potential pit-falls of
any “gap” between the safety properties themselves and the tier against which
evidence is provided. The patterns identified that the most effective strategy

196 R. Hawkins et al.

from an assurance perspective would be to explicitly interpret the required safety
properties at each level of design decomposition.

Other potential assurance deficits were highlighted by the use of the patterns
in this case study. A lack of assurance regarding potential hazardous failures
at each design tier was identified. Every time there is a decomposition in the
design, there is the potential to introduce erroneous behaviour into the design
which could manifest itself as a hazardous software failure. There had been
analysis conducted to identify new or additional failure modes of the software
at the architecture level (although this was fairly unstructured), but application
of the patterns highlighted a need to perform similar analysis at other levels of
design.

4 Conclusions

The case studies we have undertaken have given us confidence that they have
the desirable criteria defined at the start of this paper:

– The patterns should be easy to understand and apply by software develop-
ment teams.

– The patterns should be flexible enough to apply to any safety-critical soft-
ware system.

– The patterns should ensure that the resulting software safety argument is
explicitly focused on controlling the software contribution to system hazards.

– It should be easy to judge the sufficiency of an argument created using the
patterns.

It is clear that the patterns are fairly easy to understand. This has been demon-
strated through the relative ease with which they were applied to the autonomous
system by people completely unfamiliar with the patterns.

It has been shown that the patterns are very flexible. The two case studies
reported here were on very different types of software system, but the patterns
proved to be equally applicable. This was particularly reassuring in the case of
the prototype autonomous vehicle, which is a novel system at an early stage of
development.

Both case studies made it clear that the resulting safety assurance argument is
very focused on demonstrating how the software contributions to system hazards
are controlled. This is an advantage over the unfocussed safety arguments that
are often produced. It was seen in the case of the aircraft software system that the
development team noted how the structure of the generated argument helped
to clearly highlight to them which of their software safety and development
activities were most important from a safety assurance perspective. In particular,
they commented that the case study revealed that many of the things that they
focus their attention on are general assurance activities, rather than activities
that explicitly help to address specific software contributions. This could help
to focus attention on the activities which are most important to software safety
assurance. In addition, it makes it easier to judge the sufficiency of the resulting

Using a Software Safety Argument Pattern Catalogue: Two Case Studies 197

argument, since the relationship between the generated evidence and the safety
of the system was clear and explicit.

Most importantly, the case studies have shown that applying the patterns
can identify potential assurance issues, which can then be addressed as early as
possible. If left unidentified, such issues could lead to safety problems during
operation.

The case studies have also identified areas where more work on the patterns
would be beneficial. In particular we think that clearer guidance is required
on the process of instantiating the patterns for a particular application. This
would seem to be particularly required when creating large, complex safety
cases. For such large complex software systems, it would also be beneficial to
provide guidance on how to group arguments with respect to the corresponding
design elements in order to keep a clear relationship between the software design
structures, and the structure of the argument.

The argument structures in the software safety argument patterns discussed
in this paper are broadly in line with the new “assured safety case” structure
presented by Hawkins et al in [7]. The patterns will be reviewed to ensure they
are completely consistent with that structure. The constraints in this new format
for safety cases have the potential to further focus software safety arguments on
those claims and evidence that matter the most.

Acknowledgements. The authors would like to thank the Systems Engineer-
ing for Autonomous Systems Defence Technology Centre (SEAS DTC) and the
Software Systems Engineering Initiative (SSEI), both funded by the UK Ministry
of Defence, which supported the two case studies described in this paper.

References

1. Hawkins, R., Kelly, T.: A Systematic Approach for Developing Software Safety
Arguments. In: Proceedings of the 27th International System Safety Conference,
Huntsville, AL (2009)

2. Menon C., Hawkins R., McDermid J.: Interim standard of best practice on software
in the context of DS 00-56 Issue 4. Technical Report SSEI-BP-000001. Software
Systems Engineering Initiative, York (2009), https://ssei.org.uk/documents/

3. Weaver, R.A.: The safety of Software - Constructing and Assuring Arguments.
PhD thesis, Department of Computer Science, The University of York (2003)

4. Kelly, T.: Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD
thesis, Department of Computer Science, The University of York (1998)

5. Ye, F.: Justifying the Use of COTS Components within Safety Critical Applica-
tions. PhD thesis, Department of Computer Science, The University of York (2005)

6. Barnes, J.: High Integrity Ada - The SPARK Approach. Addison Wesley, Reading
(1997)

7. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A New Approach to Creating
Clear Safety Arguments. In: Proceedings of the Nineteenth Safety-Critical Systems
Symposium (SSS 2011), Southampton (2011)

8. Jaffe, M., Busser, R., Daniels, D., Delseny, H., Romanski, G.: Progress Report on
Some Proposed Upgrades to the Conceptual Underpinnings of DO178B/ED-12B.
In: Proceedings of the 3rd IET International Conference on System Safety (2008)

https://ssei.org.uk/documents/

198 R. Hawkins et al.

9. Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre
(DTC) http://www.seasdtc.com/

10. Bardo B.: Autonomous Systems — A New Partnership Between Man and Machine.
Presentation to SEAS DTC (2010),
http://www.innovate10.co.uk/uploads/BillBardo-theSEASDTC.pdf

11. Alexander, R., Herbert, N., et al.: Deriving Safety Requirements for Autonomous
Systems. In: Proceedings of the 4th SEAS DTC Technical Conference, Edinburgh
(2009)

12. Lamsweerde, A.: Goal-Oriented Requirements Enginering: A Roundtrip from Re-
search to Practice. In: Proceedings of the Requirements Engineering Conference,
12th IEEE International (2004)

http://www.seasdtc.com/
http://www.innovate10.co.uk/uploads/BillBardo-theSEASDTC.pdf

Integration of a System for

Critical Infrastructure Protection
with the OSSIM SIEM Platform:

A dam case study

Luigi Coppolino1, Salvatore D’Antonio2,
Valerio Formicola2, and Luigi Romano2

1 Epsilon S.r.l., Naples, Italy
luigi.coppolino@epsilonline.com

2 University of Naples ”Parthenope”, Department of Technology, Italy
{salvatore.dantonio,valerio.formicola,luigi.romano}@uniparthenope.it

Abstract. In recent years the monitoring and control devices in charge
of supervising the critical processes of Critical Infrastructures have been
victims of cyber attacks. To face such threat, organizations providing
critical services are increasingly focusing on protecting their network
infrastructures. Security Information and Event Management (SIEM)
frameworks support network protection by performing centralized corre-
lation of network asset reports. In this work we propose an extension of a
commercial SIEM framework, namely OSSIM by AlienVault, to perform
the analysis of the reports (events) generated by monitoring, control and
security devices of the dam infrastructure. Our objective is to obtain
evidences of misuses and malicious activities occurring at the dam mon-
itoring and control system, since they can result in issuing hazardous
commands to control devices. We present examples of misuses and mali-
cious activities and procedures to extend OSSIM for analyzing new event
types.

Keywords: Critical Infrastructure Protection, SIEM, dam, OSSIM.

1 Introduction

Misuses and malicious activities occurring at systems for Critical Infrastructure
Protection (CIP) can have catastrophic consequences, such as financial losses
and danger for life [1]. We refer to misuses as unintentional incorrect uses of
the system: for example, unintentional violations of the operating procedures
guaranteeing safety for users, staff and people in general. Instead, we refer to
malicious activities as conscious activities aimed at compromising the correct
operation of the system: for example, cyber attacks to communication networks
supporting the critical infrastructures.

In recent years the monitoring and control devices in charge of supervising
the critical processes of Critical Infrastructures have been victims of cyber at-
tacks [2][3]. Typically the supervision of critical processes (i.e. key processes for

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 199–212, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

200 L. Coppolino et al.

the critical infrastructure operation and for providing services) is realized by
means of devices able to measure and modify process state parameters (namely
sensors and actuators). Particularly the attacks have turned into intrusions, by
exploiting the vulnerabilities of the Commercial-Off-The-Shelf (COTS) compo-
nents, such as the legacy Supervisory Control And Data Acquisition (SCADA)
systems: the SCADA systems are hardware and software solutions widely used
to perform monitoring and control operations.

In such a scenario, the organizations that provide critical services, such as
energy, water, oil, gas distribution, transportation, have to face several chal-
lenges: avoid regulation, policy and procedure violations; protect their network
infrastructure from cyber attacks; guarantee proper operation of monitoring and
control systems for the safeguard of population, staff and users.

To provide network protection, currently adopted solutions are based on man-
agement tools that assess the global level of security of the network infrastruc-
ture. Particularly interesting from this perspective are frameworks based on
Security Information and Event Management (SIEM) systems, since they are
able to analyze in a single point the reports produced by several kinds of de-
vices deployed over the network infrastructure. Specifically the analysis of the
SIEM framework is based on gathering and correlating the operating and secu-
rity reports (also called ”events”) generated by Information and Communication
Technology (ICT) appliances, applications and security tools, finally producing
detailed and concise reports about the security level of the occurred events.

In this work we propose an extension of a commercial SIEM framework,
namely OSSIM by AlienVault, to perform the analysis of the events reported
by the components responsible for monitoring, controlling and protecting the
processes and the operation of a critical infrastructure, specifically a dam. Our
objective is to obtain evidences of malicious activities and misuses on the dam
monitoring and control system, since they can result in issuing hazardous com-
mands to the control devices.

We present our work in three main tasks. (1) We provide some examples of
misuses and malicious activities that could result in issuing hazardous commands
to the dam control devices. (2) We show how to extend the SIEM framework to
process events generated by security, monitoring and control devices of the dam
infrastructure (such as structural and environmental sensors): we have adopted
the open source product OSSIM, developed and maintained by the AlienVault
company, since it is extensible and highly customizable and allows to build com-
ponents able to analyze new kinds of events. (3) We show how to implement new
correlation rules in OSSIM in order to exploit the information of the events gen-
erated by security and process control systems and obtain evidences of misuses
and malicious activities.

In Section 2 we present related works about most advanced technologies for
dam and critical infrastructure monitoring and to supervise systems for CIP by
means of SIEM based tools. In Section 3 we give more details about the dam
monitoring and control systems. In Section 4 we describe the SIEM framework
technology and the OSSIM product. In Section 5 we provide some examples of

Integration of a System for Dam Protection with OSSIM SIEM Platform 201

misuses and malicious activities and give details about the implementation of
rules and plugins in OSSIM.

2 Related Work

This section shows that works proposing innovative approaches and technologies
to monitor and control dam infrastructures do not address security issues [4] [5]
[6]. On the other hand, works proposing to enforce the security of systems for
CIP by means of SIEM based frameworks, give no relevance to the events related
to critical process domain.

2.1 Use of SIEMs for Critical Infrastructure Protection

The DATES (Detection and Analysis of Threats to the Energy Sector) project,
sponsored by the National Energy Technology Laboratory (NETL) of the U.S.
Department of Energy, develops several intrusion detection technologies for con-
trol systems [7]. DATES adopts the commercial SIEM ArcSight to detect a
network ”traversal” attack to a corporate or enterprize network: the paper de-
scribes how to detect, by means of a SIEM framework, the attempt of controlling
the system managing the critical processes; the attack is described as sequential
violation of machines on the network hosting the field monitoring and control
devices. The SIEM correlates intrusion events related to the hosts on the field
network: anomaly based Intrusion Detection Systems are in charge of revealing
attack attempts by looking at deviations from the normal behavior of field de-
vices. In [8] is presented a joint work of Universidad ICESI and Sistemas TGR
S.A. to implement the Security Operations Center (SOC) Colombia product. The
system extends the OSSIM SIEM to evaluate reports produced by two different
kinds of physical devices, specifically a fire alarm panel and an IP surveillance
camera. Moreover it introduces a new interface to facilitate the creation of new
correlation rules.

2.2 Advanced Monitoring and Control for Dam Infrastructure

In [4], the Korean Water Resource Corporation (Kwater) multi-purpose dam
safety management system (KDSMS) has been proposed. KDSMS implements
a workflow to coordinate the surveillance activities of dam field engineers, dam
staff located in headquarter offices and experts in remote research centers. The
framework manages different personnel profiles: each identity is responsible for
transmitting reports, approving and notifying actions and for correlating differ-
ent kinds of evidences or to require proper controls at the dam infrastructure.

In [5] a work by the Technical University of Lisbon is presented. The paper
presents the prototype of a knowledge-based system to support engineers re-
sponsible for dam safety assessment. The system, named SISAS, is composed of
a centralized management tool in charge of analyzing sensor data to evaluate the
dam health, by comparing the measures with alert thresholds computed from

202 L. Coppolino et al.

reference models. The final diagnosis is reported to the operator by means of
graphical interfaces, providing suggestions to recover from dangerous situations.

In [6], is presented a work financed by the Swiss Nation Center of Competence
in Research (NCCR) Mobile Information & Communication Systems (MICS)
and the European FP6 Wirelessly Accessible Sensor Populations (WASP) project.
SensorScope faces the issue of effective monitoring in harsh weather conditions
by means of wireless sensors. The prototype is composed of a sink station box
and a wireless sensor network made of TinyOS based devices. The framework is
in charge of retrieving measures of meteorological and hydrological parameters,
such as wind speed and direction.

3 Dam Monitoring and Control

Dam infrastructure is designed to provide services related to the usage of wa-
ter reservoirs: food water supplying, hydroelectric power generation, irrigation,
water sports, wildlife habitat granting, flow diversion, navigation are just some
examples.

Fig. 1. Automation evolution in dam monitoring and control systems

Since dam infrastructure has large geographical extension, monitoring and
control operations must be performed in distributed fashion. In addition, some
critical controls need to be orchestrated among several remote sites: for exam-
ple the mechanisms related to the production of hydroelectric power require to
control the reservoir discharges feeding the downriver plants. To monitor and
control such a complex system, a large number of devices are deployed. Typi-
cally these devices are technologically heterogenous and present several levels of
automation: old control systems require heavy manual interaction with human
operators; more advanced systems allow real-time environmental analysis and
perform automatic control procedures. In Figure 1 we show the evolution trend
for these systems: the Automated Data Acquisition System (ADAS) is designed
to acquire measures and data from sensor devices deployed over the dam in-
frastructure and store and transmit them to personal computers for assessment.

Integration of a System for Dam Protection with OSSIM SIEM Platform 203

Typically personal computers are placed next to sensor devices or in remote loca-
tions. In addition to automatic acquisition of measures, the Supervisory Control
And Data Acquisition (SCADA) systems are designed to supervise and con-
trol the processes, by issuing commands to configure the actuator operations.
Since ADAS is designed to perform monitoring operations, its components can
be adapted to the SCADA system: for example, sensors can provide measures
to the SCADA devices. As a matter of fact, currently deployed ADASs include
devices able to perform control operations autonomously.

Fig. 2. Deployment of the dam monitoring and control system

Figure 2 shows some components of a SCADA-based dam monitoring and
control system. We have not represented the ADAS, since its functionalities are
implemented by the SCADA system. Both SCADA systems and ADASs include
instruments to measure geotechnical parameters related to dam structure, water
quality, water flows, environment, mechanism states, device states [9] [10]. In
the context of automated monitoring, the instrumentation is based on sensors
producing analog or digital signals. Measures are collected by devices placed next
to or inside the dam facilities: Remote Terminal Units (RTUs) in the context
of SCADA systems, and Remote Monitoring Units (RMUs) in the context of
the ADASs. RTUs are in charge of converting sensor signals to digital data and
sending them to remote SCADA system components or master RTUs (Main
RTUs). Similarly, RMUs are in charge of transferring the measures to local or
remote personal computers. Typical RMU devices are the Data Loggers.

ADASs include Monitoring and Control Units (MCUs) able to perform con-
trol operations autonomously. Similarly, more advanced RTUs and the Pro-
grammable Logic Controllers (PLCs) are able to control actuator devices.

Typically the ADAS parameter assessment is performed by application spe-
cific softwares installed on general purpose personal computers. PCs can be
hosted in dam facilities or in remote locations. The SCADA system adopts a

204 L. Coppolino et al.

supervisor server (SCADA server) displaced next to the monitored process or
in remote locations. Typically the SCADA server manages the dynamic pro-
cess database, system logics, calculations, alarm database. The SCADA system
includes client applications (SCADA clients) hosting process specific Human Ma-
chine Interfaces (HMIs). In figure 2 the Monitoring station represents the ma-
chine hosting the SCADA client; the Control station hosts the SCADA server
and other components such as storage units and databases.

To realize short distance connections (for example RTU-main RTU, RTU-local
SCADA server, RMUs-PCs), both SCADA systems and ADASs rely on several
kinds of solutions: typically Local Area Networks based on fiber optic, telephone
and Ethernet cables. For long distance connections Wide Area Networks based
on power line communications, radio bridges, satellite links, cellular networks,
telephone lines.

Central stations host SCADA components in charge of orchestrating the moni-
toring and control operations of several infrastructures using the water reservoirs.
As shown in the figure, the Central station supervises several dams, hydropower
plants, flow monitoring stations and other remote monitoring and control sites.
The Visualization stations are public access zones, deployed to show the dam
”health” to population living near to the reservoir or at downriver. Visualization
station and some components of the Monitoring, Control and Central stations
are composed of typical ICT devices like routers, firewalls, Intrusion Detection
Systems, Intrusion Prevention Systems, Web Server, Databases, Storage Units,
Application servers, Gateways, Proxies. Moreover, identification devices perform
access control to the SCADA units.

3.1 Dam Sensors

Physical sensors are adopted to monitor the operating environment conditions of
the dam: monitoring some parameters is necessary to guarantee safe execution of
critical processes, avoid hazardous controls and prevent possible critical failures
or damages to the dam infrastructure. To monitor environmental parameters,
several instruments and sensor devices exist. We provide a short list of them
and a brief explanation of their principal usage in Table 1.

Table 1. Dam instrumentation

Instrument Parameter or physical event

Inclinometer/Tiltmeter Earth or wall inclination or tilt

Crackmeter Wall/rock crack enlargement

Jointmeter Joint shrinkage

Piezometer Seepage or water pressure

Pressure cell Concrete or embankment pressure

Turbidimeter Fluid turbidity

Thermometer Temperature

Integration of a System for Dam Protection with OSSIM SIEM Platform 205

With regards to the most advanced technologies, we mention the smart sen-
sors. These devices have increased the capabilities of the metering process in
several aspects. Indeed, smart sensors have introduced the possibility to process
the measures on the sensor boards, sending alarm messages in case of suspect
environmental conditions. Other kinds of smart devices, such as the sensors of
the Wireless Sensor Network (WSN), have provided capabilities in terms of pro-
tection mechanisms able to isolate faulted and misbehaving nodes (also named
”motes”).

4 SIEMs Overview

Security Information and Event Management (SIEM) systems are tools in charge
of assessing the security level of the network infrastructure, by processing the
reports generated by ICT applications, appliances and security devices deployed
over the network. One of the most negative aspects of currently deployed security
systems is the generation of too false positives: this limits their effectiveness since
some relevant events pass unnoticed to the administrator behind the multitude of
events. Main objective of the SIEM is to reduce this high false positive rate and
emphasize the occurrence of events otherwise unnoticed. Its main functionality
is to centralize the event analysis and produce a detailed and effective report by
a multi-step correlation process.

Follows a description of the SIEM framework components.
Source Device is the component producing information to feed the SIEM;

reports of normal or suspicious activities are generated by applications (Web
Server, DHCP, DNS,...), appliances (router, switch,...) or operating systems
(Unix, Mac OS, Windows,...). Even if not strictly part of the SIEM architecture,
the Source is a fundamental component for the SIEM framework. Typically, most
of the reports are logs in application specific format.

Log Collection component is responsible for gathering logs from Source De-
vices. It works adopting push or pull based paradigm.

Parsing and Normalizing component is in charge of parsing the information
contained in the logs and to traduce this from the native format to a format
manageable by the SIEM engine. Moreover, the Normalization component is in
charge of filling the reports with extra information required during the correla-
tion process.

Rule and Correlation Engines trigger alerts and produce detailed reports;
they work on the huge amount of logs generated by the Source Devices. The
Rule engine raises the alert after the detection of a certain number of conditions,
while the Correlation Engine correlates the information within the evidences to
produce a more concise and precise report.

Log Storage component stores logs for retention purposes and historical queries;
usually the storage is based on a database, a plain text file or binary data.

Monitoring component allows the interaction between the SIEM user and the
SIEM management framework. Interactions include report visualization, incident
handling, policy and rule creation, database querying, asset analysis, vulnerabil-
ity view, event drilling down, system maintaining.

206 L. Coppolino et al.

As we will see soon, these components are all implemented and customizable
in the OSSIM SIEM.

4.1 OSSIM

OSSIM (Open Source Security Information Management)[11] is an open source
SIEM released under the GPL licence and developed by AlienVault [12]. OSSIM
does not aim at providing new security detection mechanisms but at exploiting
already available security tools. OSSIM provides integration, management, and
visualization of events of more then 30 [13] open source security tools. More
important, OSSIM allows the integration of new security devices and applications
in a simple way.

All the events collected by OSSIM undergo a process of normalization in order
to be managed by the SIEM core. After the normalization, OSSIM performs
event filtering and prioritization by means of configurable policies.

OSSIM provides capabilities in terms of event correlation, metric evaluation
and reporting. Indeed, OSSIM performs per event risk assessment and correlation
process. Correlation process produces events more meaningful and reliable than
those generated by single security tools. The objective of the correlation is to
reduce the number of false positives to produce less reports for human operator.

OSSIM performs three types of correlations:

Inventory Correlation. performs event filtering by assessing the possibility
that a given attack may affect a specific kind of asset (i.e. a Windows threat
to a Linux box).

Cross Correlation. re-evaluates the event ”reliability” by comparing each event
with the result of the vulnerability analysis (i.e. if an event reports an at-
tack to an IP and that host is vulnerable to that attack, the event reliability
raises).

Logical Correlation. executes the correlation directives defined by condition
trees. Conditions are built on Boolean logic expressed in hierarchical struc-
tures. Correlation directives are customizable and configurable by the user.

Architecture. OSSIM architecture is based on software components that can
be deployed in several ways across many networks: in this way, OSSIM can be
used to monitor different network domains. Main components of OSSIM are
represented in Figure 3:

Detector: it is any tool that supervises the assets. Detectors are in charge of
reporting operating or security-related ”events”. OSSIM is already enabled
to be connected with a huge number of Detector tools and the Collectors of
these tools come already packaged within the framework. Other Detectors
can be added to OSSIM by developing new Collectors enabling OSSIM to
accept new types of events.

Collector: it is the component in charge of: (1) gathering events form dif-
ferent sensors; (2) parsing and normalizing the events; (3) forwarding the

Integration of a System for Dam Protection with OSSIM SIEM Platform 207

Fig. 3. Deploymnet of OSSIM components

normalized events to the Server component. The software component that
implements these tasks is the OSSIM-Agent. Event collection is organized
in a plugin based system. Each different source of events is associated with
a plugin able to parse and normalize a specific data format. Event parsing
and normalization is performed using Python style regular expressions.

Monitor: this component is very similar to the Detector, but it’s activated only
after a request (query) by the Server. Monitors generate ”indicators”. The
OSSIM server can query a Monitor to gather additional information and
perform a more precise correlation process. Indicators reach the Server by
means of the same mechanisms used for the ”events”.

Sensor: it is the combination of the Detector tool and the related Collector.
Server: the OSSIM-Server component implements the intelligence of the SIEM.

The Server component has two main functionalities: SIEM and Logging.
The SIEM subsystem performs risk assessment, correlation, and real-time
monitoring; moreover, it allows mechanisms for vulnerability scanning. The
SIEM behavior is totally configurable through policies. Polices are used to
set up event management and alert creation. The Logger subsystem is used
to store raw events for forensic analysis. All the events are provided with
a digital signature that allows their use for legal evidence. OSSIM supports
encrypted channels from event source to Data Logger component.

Database: the OSSIM-Database is a MySQL database used to store both con-
figurations (handled by means of the web interface) and the asset inventory.

Web interface: it is implemented in the OSSIM-Framework software. It pro-
vides the visualization interface of the entire framework. It allows the han-
dling of all the events and alarms generated by Sensors and OSSIM-Server.
The Web interface is used to configure policies, to perform network scanning,
to query the database. The web interface is implemented in PHP and HTML
code and runs on a Python daemon process.

208 L. Coppolino et al.

Figure 3 represents a typical architecture of the OSSIM framework. Detectors
can be deployed either along with their Collectors or separately. In the latter
case the raw events produced by Detectors must reach the Collector through
the network. To transfer these events, OSSIM adopts several protocols: Rsyslog,
FTP, SAMBA, SQL, OSSEC, SNARE among others. Collector components can
be deployed together with the OSSIM-Server or remotely. In the latter case, to
protect the Collector-Server communication, Virtual Private Networks are set
up. Monitors are deployed just like Detectors, but are triggered by the Server.

5 Changing the SIEMs to Provide Safety

As seen, OSSIM actions can be described in the following steps: extract informa-
tion from events (or indicators) generated by the Source Devices deployed over
the network infrastructure; apply a policy and execute the correlation process
to perform risk assessment; finally, raise an alert message (and a ticket) to the
administrator. Our main idea is to detect misuses and malicious actions (such
as cyber attacks) occurring at the monitoring and control system of the dam in-
frastructure. We correlate reports produced by ICT appliances and applications,
monitoring and control devices (physical sensors, SCADA servers, PLCs, RTUs,
RMUs), security devices and applications (identification, authentication mecha-
nisms,...). We describe how to implement new plugins for the OSSIM-Agent and
write new correlation rules (directives) to detect misuses and malicious activities.

5.1 Examples of Misuses and Malicious Activities on the Dam
Monitoring and Control System

In this section we provide some examples of misuses and malicious activities
occurring at the dam monitoring and control system. Moreover we indicate some
possible events to be correlated by the SIEM. We remark that this list is far
from being exhaustive and is a hint for future considerations about the safety
and cyber security relationship in systems for CIP.

Alteration of Measurement Data: Physical sensors measure unexpected val-
ues: for example the piezometer measures water levels out of the structural
range or expected profile (in specific environmental conditions). The SIEM
framework correlates this event with events or indicators produced by secu-
rity Source Devices and evaluates the probability of sensor device tampering.
Examples of security events are: changes in the sensor devices’ Operating
System fingerprint, traffic profile anomalies on the field network, connection
attempts to the machines controlling the sensors. Altering measurement data
is dangerous because parameters out of range can trigger automatic control
procedures.

Malicious Control Commands: Parameters have sudden changes further to
controls operated by actuators. The SIEM correlates this physical event with
events reporting controls issued by the SCADA server. Moreover the SIEM
verifies if the control issued by the SCADA is consequence of a predefined

Integration of a System for Dam Protection with OSSIM SIEM Platform 209

behavior, like a scheduled operation or a change in the automatic control
procedure. In the latter case the SIEM correlates these events with security
events related to the SCADA system components.

Missing Control Commands: Sensors measure physical parameter values in-
side the expected ranges and/or the sensor supervisor unit does not report
any alerting event (or reports a normal event). In case of critical condi-
tions for the infrastructure, altered measures or missing reports can result
in missing safety controls causing damages to the dam infrastructure (”dam
failures”). Events about malicious activities against the SCADA system com-
ponents can be correlated with the analysis of model-based physical predic-
tors.

Control Station Hacking: The control station issues control commands mod-
ifying the procedures of the RTU or PLC systems. Controls or changes are is-
sued by an operator enabled to access the control station, but not to perform
these operations, as reported by the identification procedure. The identifica-
tion procedure can be realized by means of Radio Frequency IDentification
(RFID) or by biometric recognition devices.

5.2 Customizing OSSIM to Process New Events

To perform comprehensive event analysis by means of the SIEM framework,
our first task has been to extend OSSIM with new Source Devices, in particular
sensors, control units and security devices. Typically Source Devices generate two
kinds of information, namely ”events” and ”indicators”. Events are generated
after specific occurrences: for example, SCADA servers and PLCs generate events
reporting the issue of control commands or the detection of anomalous parameter
profiles (i.e. threshold exceeding); security devices produce evidences of security
related events (i.e. access to control station). Indicators are sent to the SIEM
framework after a query by the SIEM server: RTUs, Data Loggers and SCADA
servers can be in charge of retrieving measures of physical parameters; security
devices can provide indicators about specific vulnerabilities (i.e. open ports).
Indicators and events can be used to define the correlation rules to detect misuses
and malicious activities, as shown in the following lines.

As seen in the previous section, data from ”field” devices are transferred
by RTUs with several communication protocols: DNP3, ModBus (TCP/IP),
Profibus (DP/PA), Profinet, IEC 60870-5-104, ICCP, OLE for Process Control
(OPC), OPC Unified Architecture, just to cite some. Even if OSSIM provides
a large number of parsers for the most common log formats or communication
protocols, users can provide new plugin modules to make the SIEM able to
work with legacy or custom message formats. To integrate new parsers with
the OSSIM SIEM, users extend the plugin set within the Collector component.
The source type that feeds a plugin can be classified as ”monitor” or ”detector”.
Monitors are pull based sources and produce indicators, while detectors are push
based and produce events. To feed the Collector agent, transfer methods or
protocols must be specified (log, mysql, mssql, wmi): it’s suggested to adopt the
Syslog protocol, since it is more suitable to be parsed by the Regular Expression

210 L. Coppolino et al.

Fig. 4. Example of OSSIM rule

engine; moreover the Syslog server can be configured to filter events and drop
values (as measures) out of valuable ranges.

RegExp (Regular Expression) plugins are in charge of extracting useful in-
formation and filling the Normalized event. Normalized events contain optional
and mandatory fields useful to the correlation process. Each plugin is identi-
fied by the Id (unique) and more Sub-Ids (Sids); Sids are useful to create rules
and correlation directives. Indeed, rules use Sids to identify different kinds of
event messages generated by the data source (for example: plugin Id identifies
logs produced by Apache servers in general, Sids identify specific events on the
Apache server).

To feed OSSIM with environmental parameters we have adopted a commercial
Data Logger. Data loggers can perform measurements and store or forward them
to remote servers. The following string contains a sample log of the piezometer
measure reporting the seepage or groundwater level.

D,088303,"JOB1",2011/03/11,11:27:02,0.016113,1;
A,0,8.621216e-06,-1.4952594;0075;CC8C

Normalized events are sent to the SIEM Server. The Server applies a policy to
the event (Correlation, Forwarding, Action, Discard), basing on: Time Range,
Plugin Group, Source and Destination Addresses, Ports. If not discarded, the
event undergoes the Risk Assessment process and becomes Enriched event. The
Enriched event has several metrics: Reliability, that represents how much the
reported event is probably a suspect activity; Priority value, that represents the
absolute importance of the event with no reference to a specific host or environ-
ment; Asset value, that states what is the importance of the assets involved in
that event. The Risk is computed by combining metrics in a single value. After
Risk Assessment, the event can be processed by the Correlation engine. Corre-
lation produces a new event that, as such, is subjected to new Risk Assessment
process. If the Risk is bigger than one, the Alarm event is generated. We give
full scale value to Asset and Priority metrics involving events related to physical
sensors.

Most interesting Correlation mechanism we considered is the Logical Correla-
tion, implemented by means of directives written in xml syntax or, more easily,
by means of visual editors (in the Web Interface). Main objective of the directive
is to assess Priority and Risk for a certain number of collected events. Directives

Integration of a System for Dam Protection with OSSIM SIEM Platform 211

specify the Id and Sid of the events involved in the rule: since the Id is unique
per event source, we can correlate the Id of physical sensor messages with the Id
of security devices, ICT applications, SCADA components and so on. Monitor
directives can verify the met of several conditions (equal, less than,...) related
to the event fields, such as measures; Detector directives are focused on event
”occurrence”, that is the repetition of the same event. In the latter case, the
environmental monitoring units are in charge of transmitting to the SIEM the
results of their analysis.

In Figure 4 we show a simple rule of the ”Control station hacking” misuse: the
first event is produced by RFID device (id=1001), where Sids 1,2 indicate the
access by two employees with no authorization to issue commands; the second
event is reported by an application on the Control station (id=1002) and is
triggered by the execution of a new control command.

6 Conclusion and Future Works

Dams infrastructures are designed to provide services related to the use of wa-
ter reservoirs (typically in conjunction with different infrastructures, such as
hydropower plants). These complex systems are monitored and controlled by
several components in charge of providing supervision during the processes. The
monitoring and control procedures, orchestrated among several sites, are per-
formed issuing commands and processing data by means of a large number of
components (legacy COTS SCADA systems, ICT appliances and applications):
typically these components are not designed with security in mind. In such a
complex scenario, misuses and malicious activities can represent threats to so-
ciety, safety and business. Indeed, malicious activities like cyber attacks, can be
aimed at changing the automatic control procedures, alter the measures pro-
duced by sensor devices, issue control commands.

In this work we propose an extension of the OSSIM SIEM by AlienVault,
to perform the analysis of events generated by the security devices (recognition
devices, authentication tools,...) and process specific devices (SCADA servers,
RTUs, ...) responsible to supervise the operations and the processes of the dam
infrastructure. Our objective is to obtain evidences of misuses and malicious
activities on the monitoring and control systems, since they can result in issuing
hazardous commands to the control devices of the dam infrastructure.

In next works we reserve to perform a more detailed analysis about the safety
and cyber security relationship within the systems for CIP and assess the relia-
bility of the reports produced by our prototype.

Acknowledgments. The research leading to these results has received funding
from the European Commission within the context of the Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement No. 225553 (INSPIRE
Project), Grant Agreement No. 248737 (INSPIRE-INCO Project) and Grant
Agreement No. 257475 (MAnagement of Security information and events in Ser-
vice Infrastructures, MASSIF Project). It has been also supported by the Italian

212 L. Coppolino et al.

Ministry for Education, University, and Research (MIUR) in the framework of
the Project of National Research Interest (PRIN) ”DOTS-LCCI: Dependable
Off-The-Shelf based middleware systems for Large-scale Complex Critical In-
frastructures”.

References

1. Regan, P.J.: Dams as systems - a holistic approach to dam safety. In: 30th Annual
USSD Conference Sacramento, California (2010)

2. White Paper, Global Energy Cyberattacks: “Night Dragon”, McAfee�
Foundstone�Professional Services and McAfee Labs (2011)

3. White Paper, Symantec�Intelligence Quarterly Report, Targeted Attacks on Crit-
ical Infrastructures, http://bit.ly/g8kpvz (October-December, 2010)

4. Jeon, J., Lee, J., Shin, D., Park, H.: Development of dam safety management
system. Advances in Engineering Software 40(8), 554–563 (2009) ISSN 0965-9978

5. Farinha, F., Portela, E., Domingues, C., Sousa, L.: Knowledge-based systems in
civil engineering: Three case studies. In: Advances in Engineering Software. Se-
lected papers from Civil-Comp 2003 and AICivil-Comp 2003, vol. 36(11-12), pp.
729–739 (November-December 2005) ISSN 0965-9978

6. Ingelrest, F., Barrenetxea, G., Schaefer, G., Vetterli, M., Couach, O., Parlange, M.:
SensorScope: Application-specific sensor network for environmental monitoring.
ACM Trans. Sen. Netw. 6(2) Article 17 (2010)

7. Briesemeister, L., Cheung, S., Lindqvist, U., Valdes, A.: Detection, correlation, and
visualization of attacks against critical infrastructure systems. In: Eighth Annual
International Conference on Privacy Security and Trust (PST), 2010, August 17-19,
pp. 15–22 (2010), doi:10.1109/PST.2010.5593242

8. Madrid, J.M., Munera, L.E., Montoya, C.A., Osorio, J.D., Cardenas, L.E., Bedoya,
R., Latorre, C.: Functionality, reliability and adaptability improvements to the OS-
SIM information security console. In: IEEE Latin-American Conference on Com-
munications, LATINCOM 2009, September 10-11, pp. 1–6 (2009)

9. Myers, B.K., Dutson, G.C., Sherman, T.: City of Salem Utilizing Automated Mon-
itoring for the Franzen Reservoir Dam Safety Program. In: 25th USSD Annual
Meeting and Conference Proceedings (2005)

10. Parekh, M., Stone, K., Delborne, J.: Coordinating Intelligent and Continuous Per-
formance Monitoring with Dam and Levee Safety Management Policy. In: Associa-
tion of State Dam Safety Officials Conference Proceedings, at the 2010 Dam Safety
Conference (2010)

11. Karg, D., Casal, J.: Ossim: Open source security information management. Tech.
report, OSSIM (2008)

12. AlienVault�, http://alienvault.com/
13. AlienVault OSSIM Available Plugins, http://alienvault.com/community/plugins

http://bit.ly/g8kpvz
http://alienvault.com/
http://alienvault.com/community/plugins

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 213–227, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Case Study on State-Based Robustness Testing of an
Operating System for the Avionic Domain

Domenico Cotroneo, Domenico Di Leo, Roberto Natella, and Roberto Pietrantuono

Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II,
Via Claudio 21, 80125, Naples, Italy

{cotroneo,domenico.dileo,roberto.natella,
roberto.pietrantuono}@unina.it

Abstract. This paper investigates the impact of state on robustness testing, by
enhancing the traditional approach with the inclusion of the OS state in test
cases definition. We evaluate the relevance of OS state and the effects of the
proposed strategy through an experimental campaign on the file system of a
Linux-based OS, to be adopted by Finmeccanica for safety-critical systems in
the avionic domain. Results show that the OS state plays an important role in
testing those corner cases not covered by traditional robustness testing.

Keywords: Robustness Testing, Operating Systems, Safety-Critical Systems,
DO-178B, FIN.X-RTOS.

1 Introduction

The importance of high robustness in safety-critical systems is well recognized
[1][2][3]. The Operating System (OS) is the foundation of any software system, and
an OS failure may affect the system as a whole; thus, assessing its robustness is one of
the most important tasks to perform during verification of critical software systems.
Robustness testing techniques are conceived to assess the system’s ability to not fail
in presence of invalid inputs and unforeseen conditions.

Due to the kind of bugs for which robustness testing is conceived, and to the
complexity and size of OS code, performing an effective robustness testing campaign
is challenging. Robustness bugs are characterized by rare and subtle activation
conditions, which are hard to find during functional testing [1][2][3]. Unfortunately,
in OSs there are so many factors potentially involved in bug activation (such as I/O
events and task scheduling), that it is difficult to include all of them when generating
robustness test cases. As a result, many OS defects found in the field are related to
boundary conditions and error handling, as shown in [3]. This difficulty is further
exacerbated by the OS architecture, whose subsystems are tightly coupled, making it
hard to isolate the reproduction of rare conditions for each of them. Considering these
issues, it is clear that achieving high test coverage in OSs becomes a really tricky task.

In the literature, much effort has been devoted to assess robustness of OSs through
the injection of invalid inputs via APIs (i.e., system calls/driver interfaces) with the
goal of assessing their robustness. From results of these studies, an important

214 D. Cotroneo et al.

emerging aspect is that, to improve the effectiveness of robustness testing, test cases
should consider one more variable, other than exceptional inputs; that is, the current
state of the OS. Indeed, the OS state can significantly affect its execution, as well as
the test case outcomes. Executing a given robustness test case in different states
increases the probability to explore those parts of the code most rarely reached, i.e., it
increases the final coverage: states representing “unusual” conditions combined with
exceptional inputs can produce very rare execution patterns.

Starting from these studies, this paper investigates the impact of OS state, or part
thereof, on robustness testing. We introduce a robustness testing strategy that
accounts for the state of the file system (in terms of resource usage, concurrent
operations, and other aspects). First, a model of the file system is presented that
considers both entities a file system is composed of, and resources it uses and that
contribute to determine its state. Then, the impact of the state on the achieved
coverage is assessed through experiments performed on an industrial case study.
Finmeccanica is in the process of developing a certifiable Linux-based OS, namely
FIN.X-RTOS, compliant to the recommendations of the DO-178B standard [4], that is
the reference standard in the avionic domain. In this process, evidences should be
provided that the OS underwent a thorough robustness assessment campaign in terms
of coverage. Results show that testing the OS by accounting for its state improves the
final coverage, and hence the confidence in OS robustness, allowing to reach those
corner cases not covered by traditional robustness testing.

After a related work section, the approach is described in Section 3. Section 4
shows obtained results in terms of coverage and via examples of achieved corner
cases in the OS code; Section 5 concludes the paper.

2 Related Work

Past work approached robustness testing of operating systems from different points of
view; they differ with respect to the OS interface under test (system calls or device
driver interface), the assumed fault model, and the failure modes that were analyzed.

BALLISTA [1][2] was the first approach for evaluating and benchmarking the
robustness of commercial OSs with respect to the POSIX system call interface [5].
BALLISTA adopts a data-type based fault model, that is, it defines a subset of invalid
values for every data type encompassed by the POSIX standard. Examples of invalid
inputs for three data types are provided in Table 1. Test cases are generated by all the
combinations of invalid values of the system call’s data types: a test case consists of a
small program that invokes the target system call using a combination of input values.

Table 1. Examples of invalid input values for the three data types of the write(int filedes,
const void *buffer, size_t nbytes) system call

File descriptor (filedes) Memory buffer (buffer) Size (nbytes)
FD_CLOSED BUF_SMALL_1 SIZE_1
FD_OPEN_READ BUF_MED_PAGESIZE SIZE_16
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE
FD_DELETED BUF_XLARGE_1GB SIZE_PAGEx16
FD_NOEXIST BUF_HUGE_2GB SIZE_PAGEx16plus1

 A Case Study on State-Based Robustness Testing of an Operating System 215

Test outcomes are classified by severity according to the CRASH scale: a
Catastrophic failure occurs when the failure affects more than one task or the OS
itself; Restart or Abort failures occur when the task launched by BALLISTA is killed
by the OS or stalled; Silent or Hindering failures occur when the system call does not
return an error code, or returns a wrong error code. BALLISTA found several invalid
inputs not gracefully handled (Restarts and Aborts), and some Catastrophic failures
related to illegal pointer values, numeric overflows, and end-of-file overruns [1].

OS robustness testing evolved in dependability benchmarks in the framework of
the DBench European project [6][7]. A dependability benchmark has been proposed
to assess OS robustness in terms of OS failures, reaction time (i.e., mean time to
respond to a system call in presence of faults) and restart time (i.e., mean time to
restart the OS after a test). Valid inputs are intercepted and replaced with invalid ones,
by using a data-type based fault model, as well as by fuzzing (i.e., random values) and
bit-flips (i.e., a correct input is corrupted by inverting one bit). In dependability
benchmarking, the workload has a key role: it is used for exercising the system in
order to assess its reaction. To obtain realistic measures, the workload should be
representative of the expected usage profile (e.g., database or mail server [6][7]). In
[8], a stress test campaign on the Linux kernel assessed the influence of the workload
on kernel performance and memory consumption over long time periods. In this
work, we further investigate the influence of the external environment, and propose a
state model for generating tests that includes the OS workload.

Robustness testing has been adopted for assessing OSs with respect to its interfaces
to device drivers, since drivers are usually provided by third party developers and are
buggier than other OS components [9]. The fault models mentioned above were
adopted also in this case [10], and have been compared in terms of their ability to
expose robustness bugs [11]. In [12], a fault injection approach is proposed that
mutates the device driver code (by artificially inserting bugs) instead of injecting
invalid values at the OS interface. These studies found that OSs are more prone to
failures in case of device driver faults than application faults, since developers tend to
omit checks in the device driver interface to improve performance, and because they
trust device drivers more than applications. Other works assessed the robustness of
OSs with respect to hardware faults (e.g., CPU or disk faults), by corrupting code and
data [13][14][15][16]. Similarly to system call testing, these approaches either rely on
a representative workload for exercising the system, or neglect the system state.

The influence of OS state gained attention in recent work on testing device drivers
[17][18]. In [17], the concept of call blocks is introduced to model repeating
subsequences of OS function calls made by device drivers, since they issue recurring
sequences of function calls (e.g., when reading a large amount of data from a device):
therefore, robustness testing is more efficient when it is focused on call blocks instead
of injecting invalid inputs at random time. Sarbu et al. [18] proposed a state model for
device driver testing, using a vector of boolean variables. Each variable represents an
operation supported by the device driver: at a given time t, the ith variable is true if the
driver is performing the ith operation. Case studies on Microsoft Windows OSs found
that the test space can be reduced using the state model. Prabhakaran et al. [15]
proposed an approach for testing journaling file systems, which injects disk faults at
specific states of file system transactions. These studies showed that the OS state has
an important role in testing such complex systems; however, they model a specific

216 D. Cotroneo et al.

part of OS state (e.g., device drivers or journaling) and do not consider the overall
state of the OS components, such as the file system and process scheduling.

3 Testing Approach

Since OS components can be very complex and their state has a significant influence
on the OS correct behavior, it is necessary to take the states of the Component Under
test (CUT) into account, and assess its robustness as the state changes. According to
this view, a hypothetical test plan is expressed through two dimensions: the
exceptional inputs and the states. Inputs are selected as usual (e.g., boundary values)
while the state varies in S = {s1, s2 … sn}. In order to apply this strategy, we need to
test the CUT with both a test driver and a state setter. The former injects invalid
inputs to its interface, whereas the latter is responsible for producing the state
transition or keeping the component in a given state sk (see Figure 1).

Invalid Inputs State

e1,e2, e3 si
e1,e2, e3 sk

… …

Fig. 1. Robustness testing conducted with the CUT in two different states si and sk

In complex components the state representation (i.e., the state model) plays a key
role. It can be considered at several levels of abstraction, hence determining the
number of potential states the state setter should cope with. This aspect is relevant for
our approach, since it can affect the efficiency and the feasibility of robustness
testing. Thus the state model should satisfy these requirements: i) it should be easy to
set and control by the tester, ii) it should represent the state at a level of abstraction
high enough to keep the number of test cases reasonably small and iii) it should
include those configurations that are the most influential on the component behavior.
Thus, with this regard, the model that we define expresses the state of an OS
component without detailing its internals, since they are not always easy to
understand and to manage, and would inflate the number of states.

3.1 Modeling the File System

In this work, we experiment the described strategy by applying it to the File System
(FS) component. We choose the FS because it is a critical and bug-prone component
[8][19] (its failure can corrupt persistent data or lead to unrecoverable conditions).
Furthermore, the behavior of the FS is influenced by its internal state and the other
components with which it interacts (e.g., virtual memory manger, scheduler).
Following the previous requirements, we conceived a model for the FS (Figure 2).

Test Plan

 A Case Study on State-Based Robustness Testing of an Operating System 217

Fig. 2. File System model

Moreover, the model is easily adoptable across different FS1 implementations; as a
consequence, the proposed model does not take specific “internal design” of a FS into
account (e.g., inode that are adopted in some UNIX file system, but not in others).

The model is a UML representation of the FS, with three main classes: Item,
FileSystem and OperationalProfile. FileSystem represents the contents of
data on the disk as a whole. It includes the state attributes that are not specific of a
file. The class attributes are reported in Table 2.

Table 2. FileSystem attributes

Attributes Description Type
Partition Type Typology of the partition Primary, Logical

Partition size Size of the partition on which is installed the FS Byte
Partition allocated The Current size of the allocated partition Byte
Max file size The maximum dimension of a file on the FS Byte
Block size The dimension of a block Byte
FS implementation The type of file system NTFS, ext2, ext3
of files allocated The number of files in the FS Integer

of directories The number of directories in the FS Integer
FS layout The tree that represents the FS Balanced,

Unbalanced
of items allocated The current number of items allocated in the FS Integer

The choice of attribute values defines the test cases. Attributes like Partition
Allocated can assume values from a minimum (e.g.,1MB) to the maximum
allowable (e.g., 2TB). Therefore, the number of test cases, just for one parameter,
grows rapidly. However, test cases in which the values of Partition Allocated
varies with very small increments (e.g., from 1MB to 2MB) can be of little interest
(e.g., 1MB or 2Mb both are values for a small partition). Thus, it is necessary to
define criteria to keep the number of test cases reasonably low and cover a reasonable

1 In this work, the term “File System” refers to the OS component for managing files. The term

“filesystem” refers to the contents on the storage, e.g., the structure of tree.

218 D. Cotroneo et al.

set of test scenarios. Hereafter, we illustrate potential choices for those attributes that
the tester can set except for the attributes assigned by OS (e.g., Max file size).

The attributes Block size and Partition size are typically set when the file
system is formatted for the first time. In a hypothetical test campaign, these values
could assume minimum, maximum and intermediate values. The attribute
Partition allocated can be expressed as a percentage of Partition size,
therefore the tester can set scenarios in which the file system is totally full, partially
full or empty.

The attribute FS layout deals with the tree representing the directory hierarchy
on the FS. In particular, it can assume the values: balanced, i.e., trees in which the
number of sub-directories is almost the same on each directory, and unbalanced, i.e.,
trees in which the number of sub-directories significantly differs. In order to generate
balanced and unbalanced trees, we introduce P({dk+1dj}), i.e., the probability that a
new directory, dk+1, is a child of a directory, dj, already present in the tree. This
probability allows, to some extent, to control the structure of the hierarchy, once
Number of Directory allocated is fixed. For P({dk+1dj}), we provide the
following formulas for generating balanced and unbalanced trees, although other
choices are possible (e.g., to use a well-known statistical distribution):

∑
=+ k

i

jjkunbalanced

ddepth
ddepthddP

1

1

)(

1)(})({

(1)

∑
=+ k

i

j
jkbalanced

ddepth
ddepth

ddP

1

1

)(
1

1
)(

1
})({

(2)

})}({})...({max{: 111 kkk ddPddPdctoryParentDire ++= (3)

where k is the number of current directories in the tree, and N the number of
directories to be created; k is increased until k=N. In (1), new directories are more
likely to form an unbalanced tree, since the higher the depth of a node is, the higher
the probability to have children. In (2), new directories are more likely to group at the
same depth. The parent directory (3) is the one with the highest value of P({dk+1dj}).

As for the FileSystem class, it is possible to conceive several criteria for
assigning values to the attributes. For instance, the attribute Name can assume
alphabetical and numerical characters with equal probability or the length should not
overpass a given value. The attributes Permission and Owner can be assigned in
such a way that a given percentage of files are executable by the owner only, another
percentage is readable by all users and so on. The attribute Size can be fixed for all
files, generated according to a statistical distribution.

The Item class represents the entity which a FileSystem is made of. For this
class, we define typical attributes that are available in every OS. Such attributes are:
name of the item, permission (e.g., readable, writeable, executable), owner (root,
nobody, user) and size. The classes that inherit from Item represent the different
types of file in a UNIX file system. Files are randomly generated to populate the

 A Case Study on State-Based Robustness Testing of an Operating System 219

directory tree mentioned above; the location and type of file can be determined
according to statistical distributions.

The FS, like other OS subcomponents, uses resources such as cache, locks and
buffers. We refer to these resources as auxiliary resources, that is, resources that
serve for managing an Item of a FS. For instance, if a thread performs I/O operations
it is likely to stimulate auxiliary resources: indeed, buffers are instantiated; locks to
control the access to them are used, and so forth. These resources are part of the
internal state of the FS, although they are not included in our model, since (i) they
cannot be easily controlled by the tester, and (ii) they are dependent on the FS
internals. Moreover, most of these resources are instantiated at run-time, and they are
not part of the filesystem on the disk. The presence of these resources, however,
cannot be neglected because they may influence the state of the FS and potentially
change test outcomes. Therefore, in order to include both the behavior of the auxiliary
resources in our model and the manner in which the FS is exercised, we introduce the
OperationalProfile class. It expresses the degree of usage of the auxiliary
resources and more generally, the way the FS is stimulated. This class does not
directly model the auxiliary resource, but it allows to know the way in which the FS is
invoked while performing a test. Thus the tester, indirectly, is aware of the
mechanisms that are stimulated, e.g., if there are threads invoking I/O operations it is
likely that caching and mutex mechanisms are invoked. The OperationalProfile
attributes are reported in Table 3.

Table 3. OperationalProfile attributes

Attributes Description Type
Number of tasks
invoking FS ops.

Number of tasks that invokes I/O operations
(like read, write, open).

Integer

Average number of ops/s Average number of operations made by a task Integer
Ratio of read/write ops. Ratio of read/write operations made by a task Float

The OperationalProfile attributes are related to the performance of the File

System and the hardware, which can limit the rate of FS operations that can be served
by the system within a reasonable latency. Therefore, the selection of these attributes
should be preceded by a capacity test aiming at assessing the maximum operation rate
allowed by the system. A capacity test consists in gradually increasing the operations
rate, given a fixed number of concurrent tasks (e.g., 2, 4 or 16), until the I/O
bandwidth is saturated, i.e., the amount of transferred data per second reaches its peak
[14]. After that the I/O bandwidth is known, the tests can select a discrete set of usage
levels (e.g., 10% and 90% of I/O bandwidth) and the ratio between read and write
operations (e.g., 2 read operations per 1 write operation).

4 Experimentation

In this section, we present an experiment aimed at analyzing the effects of the state on
robustness testing, by comparing the proposed approach with a “stateless” approach

220 D. Cotroneo et al.

and with stress testing. The proposed approach has been applied on the FIN.X Real-
Time Operating System (RTOS) developed by Finmeccanica. It is a Linux-based OS
aimed at industrial applications in the avionic domain. The original Linux kernel has
been enhanced by providing hard real-time and scalability on multi-core architectures
and removing unessential parts. FIN.X-RTOS is accompanied with documentation
and evidences recommended by the DO-178B safety standard [4]. At time of writing
the requirements of the standards at level D have been fulfilled (software functions
that may cause "a minor failure condition"), and FIN.X-RTOS is currently on the
assessment process for the more stringent requirements of level C (software functions
that may cause "a major failure condition"), which encompass robustness testing and
full statement coverage.

4.1 Experimental Setup

The proposed approach has been applied to the ext3 file system available in FIN.X-
RTOS. We selected a set of system calls to test, described in Table 4. The system
calls are commonly used by applications and exercise different parts of the FS code.

Table 4. System calls tested

System Call Description
access check user's permissions for a file
dup2 duplicate a file descriptor
lseek reposition read/write file offset
mkfifo make a FIFO special file (a named pipe)
mmap map files or devices into memory
open open and possibly create a file or device
read read from a file descriptor
unlink delete a name and possibly the file it refers to
write write to a file descriptor

To apply the proposed strategy, we selected, without loss of generality, two well-

known tools for supporting testing execution, namely Ballista and Filebench2. With
regard to Figure 1, Ballista plays the role of test driver, while FileBench is the state
setter. The Ballista tool is currently distributed with the Linux Test Project tool suite.
We ported the original version to FIN.X-RTOS. FileBench is a tool for FS
benchmarking: the user can customize a workload by configuring I/O access patterns
in terms of number of threads, access type and so on. In our test campaign, we choose
a realistic scenario in which the partition of filesystem is partially full (75% of Partiton
size) and there are tasks invoking FS operations, e.g., read and write. Leveraging on
the model introduced in section 3, we create a logical partition with a balanced tree
and the number of directories is 10 each one populated with 100 small files. No other
items have been considered. Table 5 summarizes the values that we selected for the
FileSystem entity’s attributes. Table 6 shows the values selected for the File entities;
all the files, apart from Name, have the same values. Table 7 specifies the attributes of
OperationalProfile, which are typical values for FS benchmarking [6][8].

2 http://www.ece.cmu.edu/~koopman/ballista/ - http://www.fsl.cs.sunysb.edu/~vass/filebench/

 A Case Study on State-Based Robustness Testing of an Operating System 221

Table 5. FileSystem values

Attribute Value

Partition type Logical
Partition size 2GB
Partition allocated 1,5GB

Block size 4096

File system implementation ext3

Number of files allocated 1000

Number of directories allocated 10

Number of items allocated 1010

Table 6. File values

Attribute Value
Name Numeric string with length equals to five
Permission Readable, Writeable, Executable
Owner Root
Size 1500Kb

Table 7. OperationalProfile values

Attributes Values
Number of tasks invoking FS operations 16

Average number of operations per second 10
Ratio of read/write operations 1

Those instances of File, FileSystem, and OperationalProfile reproduce

stressful conditions in which to test the FS. By stressing the FS with read and write
operations on a full allocated partition, we aim at creating exceptional conditions: in
fact, with this setting, it is more likely to experiment conditions in which disk blocks
are not available, seek operations have to traverse several directories, and so on.

4.1.1 Definition of Test Campaigns
We carry out three experimental campaigns:

1. Stateless robustness testing. Ballista injects faults to the selected system
calls (Table 4). The faultload to apply to the parameters of the system call
belongs to the default Ballista configuration. An example of such a faultload
is represented in Table 1. This test campaign lasts 15 minutes.

2. Stress testing. FileBench invokes the system calls read and write on the
files previously allocated for 1 hour. The operations produced by FileBench
reflect the attributes of OperationalProfile (Table 7). Ballista is not
executed.

222 D. Cotroneo et al.

3. Stateful robustness testing. FileBench and Ballista work at the same time.
Ballista and FileBench use the same configuration (faultload and operations
executed) of the previous campaigns. The entire test campaign lasts 1 hour.

The experimental duration for the first test campaign is the time that Ballista spends
to execute all the test cases. The second campaign lasts the time necessary for Ballista
to execute all the tests while FileBench is running. The time for the third test
campaign is set to 1 hour in order to compare the results between the second and third
campaign over the same duration time.

4.2 Results

We first analyze the outcomes of robustness tests, which are classified according to
the CRASH scale (see Section 2). Table 8 provides the summary produced by Ballista
in the default configuration (i.e., all potential test cases are generated). We did not
observe any Catastrophic failure, and only a small number of Restart and Abort
failures occurred. This result was expected, since the OS is a mature and well-tested
system, and is consistent with past results on POSIX OSs [1], in which only a small
number of corner cases led to Catastrophic failures (e.g., an OS crash). The relevance
of Restart and Abort failures is a controversial subject, since OS developers tend to
consider them as a “robust” behavior of the OS [1]. According to this point of view,
we do not consider Restarts as severe failures: several OSs (e.g., QNX, Minix)
intentionally deal with a misbehaving task by killing it in some specific cases (e.g.,
manipulation of an invalid memory address, or lack of privileges for performing an
operation), in order to avoid further error propagation within the system. Similarly,
Abort failures can represent an expected (and desirable) behavior of the OS, such as in
the case of the read() and write() system calls that can bring a task in a “waiting
for I/O” state. For these reasons, a “Restart” or “Abort” outcome cannot be considered
as a “failure” without a detailed analysis of the expected behavior. It should be noted
that stateful robustness testing differs from stateless robustness testing with respect to
the number of Restart outcomes, mostly due to failed memory and disk allocations.
Although we cannot conclude that these outcomes represent OS failures, this result
points out that OS state can affect test outcomes and the assessment of OS robustness.

Table 8. Results of robustness tests

Function # Tests Stateless robustness testing Stateful robustness testing
Restart # Abort # Restart # Abort

access()
dup2()
lseek()
mkfifo()
mmap()
open()
read()
unlink()
write()

3,986
3,954
3,977
3,870
4,003
3,988
3,924

500
3,989

0
0
0
0
0
0
0
0
0

4
0
0
5
0
8

253
1

68

1
1
0
1
0

40
1
0
4

4
0
0
5
0
8

253
1

68
Total 32,191 0 339 48 339

 A Case Study on State-Based Robustness Testing of an Operating System 223

However, the stateful tests cover a scenario not considered by stateless tests, and
therefore they represent an additional evidence of the robust behavior of the OS. As a
result, we observed an increased coverage of kernel code after executing the stateful
tests; this aspect is relevant since coverage is a measure of test confidence and a
requirement for software in safety-critical systems (e.g., DO-178B at level C [4]).

We analyzed statement coverage of file system code, which is the target of our
tests. The file system code is arranged in three directories: the code in the "fs/"
directory is independent from the specific file system implementation (i.e., it is shared
among several implementations such as ext3 and NTFS); the "ext3" directory
provides the implementation of the ext3 file system; finally, the "jbd" directory
provides a generic support for journaling file systems. Data about coverage was
collected using GCOV. Table 9 compares the statement coverage with respect to the
three considered scenarios. We observed differences in coverage between stateless
(second column) and stateful robustness testing (fourth column), ranging between
0.49% and 15.11%. Part of the code is covered by the plain state setter (i.e., without
using Ballista); the remaining part is covered due to interactions between Ballista and
the OS state (some examples are provided in the following). In particular, stateful
testing exercised those parts of the file system that interact with other subsystems
(e.g., interactions between "fs/buffer.c" and the memory management subsystem, and
between "fs/fs-writeback.c" and disk device drivers). The coverage improvement is
more significant for the journal-related code (i.e., the JBD component in “fs/jbd”).
This effect can be attributed to the interactions between file system transactions and
the state of I/O queues. For instance, a transaction commit can be delayed due to
concurrent I/O operations, therefore affecting the management of data buffers within
the kernel and the file system image on the disk. Although the improvement is less
significant for the implementation-independent code, the proposed approach has been
useful for improving test coverage with no human effort. This aspect is relevant since

Table 9. Statement coverage

Source file Stateless robustness
testing

Stress testing Stateful robustness
testing

fs/binfmt_elf.c
fs/buffer.c
fs/dcache.c
fs/exec.c
fs/fs-writeback.c
fs/inode.c
fs/namei.c
fs/select.c
fs/ext3/balloc.c
fs/ext3/dir.c
fs/ext3/ialloc.c
fs/ext3/inode.c
fs/ext3/namei.c
fs/jbd/checkpoint.c
fs/jbd/commit.c
fs/jbd/revoke.c
fs/jbd/transaction.c

319/850 (37.53%)
529/1320 (40.08%)
371/880 (42.16%)
479/807 (59.36%)
146/273 (53.48%)
252/527 (47.82%)
918/1392 (65.95%)
237/402 (58.96%)
384/556 (69.06%)
140/219 (63.93%)
181/337 (53.71%)
719/1204 (59.72%)
607/1088 (55.79%)
102/263 (38.78%)
300/362 (82.87%)
108/228 (47.37%)
489/697 (70.16%)

331/850 (38.94%)
553/1320 (41.89%)
341/880 (38.75%)
392/807 (48.57%)
169/273 (61.90%)
307/527 (58.25%)
626/1392 (44.97%)
237/402 (58.96%)
385/556 (69.24%)
143/219 (65.30%)
186/337 (55.19%)
729/1204 (60.55%)
654/1088 (60.11%)
141/263 (53.61%)
302/362 (83.43%)
105/228 (46.05%)
500/697 (71.74%)

332/850 (39.06%)
565/1320 (42.80%)
387/880 (43.98%)
486/807 (60.22%)
174/273 (63.74%)
316/527 (59.96%)
925/1392 (66.45%)
239/402 (59.45%)
398/556 (71.58%)
144/219 (65.75%)
189/337 (56.08%)
737/1204 (61.21%)
781/1088 (71.78%)
142/263 (53.99%)
318/362 (87.85%)
116/228 (50.87%)
545/697 (78.19%)

224 D. Cotroneo et al.

FIN.X-RTOS is mostly composed by third-party code re-used from the Linux kernel;
covering this code can be very costly, due to the lack of knowledge of kernel internals
and the inherent complexity of OS code (e.g., heuristics for memory management).

In order to better understand the interactions between OS state and test cases, we
analyzed more in depth part of the kernel code only covered by stateful robustness
testing. Figure 3 shows an example of corner case in the kernel code not covered in
stateless testing (the code is highlighted in bold font; part of the code was omitted; we
kept some comments from developers). The real_lookup() routine is invoked
when file metadata are not in the page cache, and the FS needs to access to the disk. It
blocks the current task on a semaphore (using the mutex_lock() primitive) until a
given directory can be accessed in mutual exclusion. It then checks if metadata have
been added to the cache during this wait period. Usually, metadata are not found, and
the routine performs an access to the disk. In stateful testing, a different behavior was
observed, since the cache has been re-populated during the wait period (developers
refer to this situation as "nasty case"), and additional operations are executed (e.g., to
check that metadata are not expired due to a timeout in distributed file systems). This
code was only executed in stateful testing due to interactions with the cache that occur
when concurrent I/O operations are taking place.

Fig. 3. Example of kernel code covered due to interactions between the file system and caching
(from real_lookup(), fs/namei.c:478)

Another example is provided in Figure 4, which is related to concurrency of kernel
code. The ll_rw_block() routine performs several low-level accesses to the disk,
and each access is controlled by a “buffer head” data structure. During the inspection
of the list of buffer heads, one of them could have been locked by another concurrent
task; this condition is detected by the test_set_buffer_locked() primitive,
which may fail to lock the buffer head in some cases. Stateful testing covered this rare
scenario, and it is worth being tested to verify that pending I/O is correctly managed.

 A Case Study on State-Based Robustness Testing of an Operating System 225

Fig. 4. Example of kernel code covered due to concurrent I/O requests (from ll_rw_block(),
fs/buffer.c:2941)

Finally, we analyzed an example of kernel code interacting with memory
management, which is provided in Figure 5. The try_to_free_buffers() routine
is invoked by the file system when the cache for file system data (the "page cache")
gets large and pages need to be freed for incoming data. It may occur that a file
system transaction involves I/O buffers allocated over several pages, and these pages
cannot be de-allocated until the transaction commits. Pages are then marked with
“mapping == NULL” in order to be reclaimed later (the drop_buffers() routine
checks that I/O buffers in the page are not being used). As suggested by the comment
in the code, this condition is unlikely to occur; the code has been executed in stateful
testing since memory management has been put under stress.

Fig. 5. Example of kernel code covered due interactions between the file system and memory
management (from try_to_free_buffers(), fs/buffer.c:3057)

5 Conclusion and Future Work

This paper investigated the impact of OS state on robustness testing through an
experiment on the File System of a Linux-based OS for critical applications. In order
to include the OS state in the robustness test plan, we introduced a model of the File
System by including a set of factors (such as file tree layout and concurrent I/O
operations) that are most influential on the File System behavior, and that can be
controlled by the tester. We performed an experiment using the proposed model,
which highlighted the influence OS state on the test outcomes and on statement
coverage. In particular, robustness tests were able to reach corner cases with complex

226 D. Cotroneo et al.

interactions with other subsystems (such as scheduling, caching and memory
management), which are not covered by traditional robustness testing. In turn, this
approach comes in handy to achieve an increased confidence in OS robustness with
low human effort, since both robustness test cases and OS states can be automatically
generated once programmed by the tester.

Future work encompasses an experimental campaign with more robustness tests
and OS states, in order to assess the full potential of robustness testing. Moreover, we
plan to analyze test planning strategies in order to achieve the best trade-off between
time and the code coverage or the explored states. Another direction is to extend the
approach to other subsystems. For instance, a model similar to the FS could be
introduced for the virtual memory manager, by including the amount and type of
memory areas allocated by processes, physical free memory, swap usage and so on.

Acknowledgements. We would like to thank Mariana Esposito for her valuable
contributions, and Francesco Rogo and MBDA Systems for their technical support
with FIN.X-RTOS. This work has been funded by the FP7 European project
CRITICAL-STEP (http://www.critical-step.eu) IAPP no. 230672, and by the Italian
research project “Iniziativa Software”, which involves the Finmeccanica company
and Italian universities (http://www.iniziativasoftware.it).

References

1. Koopman, P., DeVale, J.: The exception handling effectiveness of POSIX operating
systems. IEEE Trans. on Software Engineering 26(9) (2002)

2. Koopman, P., Sung, J., Dingman, C., Siewiorek, D., Marz, T.: Comparing operating
systems using robustness benchmarks. In: SRDS (1997)

3. Sullivan, M., Chillarege, R.: Software Defects and their Impact on System Availability-A
Study of Field Failures in Operating Systems. In: FTCS (1991)

4. RTCA Inc., Software considerations in airborne systems and equipment certification,
RTCA DO-178B, EUROCAEED-12B (1992)

5. IEEE Standard for Information Technology-Portable Operating System Interface (POSIX).
IEEE Std 1003.1b-1993, IEEE CS (1994)

6. Kanoun, K., Crouzet, Y., Kalakech, A., Rugina, A.-E., Rumeau, P.: Benchmarking the
Dependability of Windows and Linux using PostMarkTM Workloads. In: ISSRE (2005)

7. Kalakech, A., Kanoun, K., Crouzet, Y., Arlat, J.: Benchmarking The Dependability of
Windows NT4, 2000 and XP. In: DSN (2004)

8. Cotroneo, D., Natella, R., Pietrantuono, R., Russo, S.: Software Aging Analysis of the
Linux Operating System. In: ISSRE (2010)

9. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operating
systems errors. In: SOSP (2001)

10. Albinet, A., Arlat, J., Fabre, J.C.: Characterization of the Impact of Faulty Drivers on the
Robustness of the Linux Kernel. In: DSN (2004)

11. Johansson, A., Suri, N., Murphy, B.: On the selection of error model(s) for OS robustness
evaluation. In: DSN (2007)

12. Duraes, J., Madeira, H.: Multidimensional characterization of the impact of faulty drivers
on the operating systems behavior. IEICE Trans. on Information and Systems 86(12)
(2003)

 A Case Study on State-Based Robustness Testing of an Operating System 227

13. Gu, W., Kalbarczyk, Z., Iyer, R.K., Yang, Z.: Characterization of Linux kernel behavior
under errors. In: DSN (2003)

14. Skarin, D., Barbosa, R., Karlsson, J.: GOOFI-2: A tool for experimental dependability
assessment. In: DSN (2010)

15. Bairavasundaram, L.N., Rungta, M., Agrawa, N., Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H., Swift, M.M.: Analyzing the effects of disk-pointer corruption. In: DSN (2008)

16. Dreges, R.J., Nanya, T.: Analysis of Inter-Module Error Propagation Paths in Monolithic
Operating System Kernels. In: EDCC (2010)

17. Johansson, A., Suri, N., Murphy, B.: On the impact of injection triggers for OS robustness
evaluation. In: ISSRE (2007)

18. Sarbu, C., Johansson, A., Suri, N., Nagappan, N.: Profiling the operational behavior of OS
device drivers. Empirical Soft. Eng. 15(4) (2009)

19. Prabhakaran, V., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Model-based failure
analysis of journaling file systems. In: DSN (2005)

Formal Methods for the Certification of
Autonomous Unmanned Aircraft Systems

Matt Webster1,�, Michael Fisher2, Neil Cameron1, and Mike Jump1,3

1 Virtual Engineering Centre, Daresbury Laboratory, Warrington, UK
Tel./Fax: +44 (0) 1925 864850

matt@liv.ac.uk
2 Department of Computer Science, University of Liverpool, UK

3 School of Engineering, University of Liverpool, UK

Abstract. In this paper we assess the feasibility of using formal methods, and
model checking in particular, for the certification of Unmanned Aircraft Systems
(UAS) within civil airspace. We begin by modelling a basic UAS control system
in PROMELA, and verify it against a selected subset of the CAA’s Rules of the
Air using the SPIN model checker. Next we build a more advanced UAS control
system using the autonomous agent language Gwendolen, and verify it against
the small subset of the Rules of the Air using the agent model checker AJPF. We
introduce more advanced autonomy into the UAS agent and show that this too
can be verified. Finally we compare and contrast the various approaches, discuss
the paths towards full certification, and present directions for future research.

Keywords: Model Checking, Formal Methods, Unmanned Aircraft System, Au-
tonomous Systems, Certification.

1 Introduction

An Unmanned Aircraft System (UAS, plural UAS) is a group of elements necessary
to enable the autonomous flight of at least one Unmanned Air Vehicle (UAV) [8]. For
example, a particular UAS may comprise a UAV, a communication link to a ground-
based pilot station and launch-and-recovery systems for the UAV. UAS are now rou-
tinely used in military applications, their key advantages coming from their ability to
be used in the so-called “dull, dangerous and dirty” missions, e.g., long duration/per-
sistence flights and flights into hostile or hazardous areas (such as clouds of radioactive
material) [20]. There is a growing acceptance, however, that the coming decades will
see the integration of UAS into civil airspace for a variety of similar applications: se-
curity surveillance, motorway patrols, law enforcement support, etc. [21,15]. However,
in order for this integration to take place in a meaningful way, UAS must be capable of
routinely flying through “non-segregated” airspace. Today, for most useful civil appli-
cations, UAS can fly in UK civil airspace but in what is known as segregated airspace,
that is, airspace which is for the exclusive use of the specific user. For routine UAS oper-
ations, this will not be an acceptable solution if the demand for UAS usage increases as
is envisaged. The UK projects ASTRAEA and ASTRAEA II and the FAA’s Unmanned

� Corresponding author.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 228–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 229

Aircraft Program Office (UAPO) are tasked with meeting this regulatory challenge, but
a summary of the issues is considered pertinent. Guidance on the UK policy for op-
erating UAS is given in [8]. The overarching principle is that, “UAS operating in the
UK must meet at least the same safety and operational standards as manned aircraft.” A
UAS manufacturer must therefore provide evidence to the relevant regulatory authority
that this is indeed the case.

For manned aircraft, there is a well understood route for manufacturers to demon-
strate that their vehicle and its component systems meet the relevant safety standards
(see, for example, [12]). However, the manufacturer does not have to concern itself
with certification of the pilot: it is assumed that a suitably qualified crew will operate
the aircraft. For a UAS, however, the human operator may be out of the control loop
and therefore the manufacturer must demonstrate that any autonomous capabilities of
the aircraft, in lieu of an on-board human pilot, do not compromise the safety of the air-
craft or other airspace users. The acceptable means to achieve this end, i.e., regulatory
requirements, have yet to be formalised even by the regulators.

In this paper, we investigate the potential usefulness of model checking in providing
formal evidence for the certification of UAS. The work described here develops a new
approach and describes a study examining the feasibility of using formal methods tools
to prove compliance of an autonomous UAS control system with respect to a small
subset of the “Rules of the Air” [7]. Demonstrating that the decisions made by the
autonomous UAS are consistent with those that would be made by a human pilot (in
accordance with the Rules of the Air), could provide powerful evidence to a regulator
that the UAS would not compromise the safety of other airspace users. Thus, the work
described herein may be a first step in answering the question as to whether or not
formal verification tools have the potential to contribute to this overall ambition.

This is but one step towards the certification of autonomous UAS in non-segregated
UK airspace, yet it allows us to show how a route to full certification might be relieved
of some of the burden of analysis/testing required at present. This can save time and
increase reliability, but might come at the cost of an increased level of expertise required
of the analysts involved in the certification process. In particular, we focus on using
formal methods to verify the high-level “decision-making” aspects of autonomous UAS
control which may eventually complement or replace human decision-making for UAS.
The model checking approaches we describe could help to establish the robustness of a
given decision-making system, and when combined with existing approaches to aircraft
software engineering, could provide a route to certification of autonomous UAS.

1.1 Approach

Since the route to airframe and automatic flight control system certification is already
established, the main, and possibly the only, difference between a UAS and a human-
piloted aircraft is the core autonomous control system, plus all of the systems that are
directly associated with it, e.g., power supplies, etc. Thus, a vital part of certification
would be to show that this core autonomous control (in the form of an “intelligent”
agent) would make the same decisions as a human pilot/controller should make (this
is, after all, one of the piloting skills that a human pilot must obtain to be awarded a
licence). In general, analysing human behaviour is, of course, very difficult. However,

230 M. Webster et al.

in the specific case of aircraft certification, pilots should abide by the Rules of the Air.
Thus, our approach here is to verify that all of the choices that the agent makes conform
to these Rules. It should be recognised that demonstrating that an autonomous agent’s
decisions will conform to the Rules of the Air is not the same as providing sufficient
evidence for certification. However, demonstrating that this is the case will provide one
piece of evidence that will support any application for certification of a system.

To show how this might be done, we chose a small subset of the Rules of the Air
and encoded these in a formal logic. (“The Rules of the Air Regulations 2007,” is large:
around 15,000 words plus accompanying images [7].) We modelled a UAS control sys-
tem as an executable agent model (initially using PROMELA [13], but later in a higher-
level agent language [1]), and applied model checking to verify that the UAS agent
satisfied the selected subset of the Rules of the Air.

Fig. 1. An approach to certification via the Rules of the Air. (Image: SSgt. R. Ramon, USAF.)

Our approach is summarised in Fig. 1. Clearly, the closer the UAS design/model is to
the actual UAS control system implementation and the closer the logical specification
is to the actual meaning of the “Rules of the Air”, the more useful model checking will
be in generating analytical evidence for certification. Ideally, the UAS model/design
should be a description of all the decisions/choices the UAS can possibly make. For
the purposes of this study, we assume that standard verification and validation (V&V)
techniques for high integrity software have been used to ensure that the UAS control
system does actually correspond to this design/model. Ideally, we would also like to
capture all of the Rules of the Air in a precise, logical form. However, there are several
problems with this. First, the Rules of the Air are neither precise nor unambiguous —
thus it is very hard to formalise their exact meaning without making the formulation
very large. Next, the number of rules is too large to tackle them all within this study.
Finally, some of the rules implicitly use quite complex notions, such as “likelihood”,
“knowledge”, “the other pilot’s intention”, “expectation”, and so on (see below for some
examples). While extending our formalisation to such aspects will be tackled in the
second half of this study, our initial step is to select a small number of rules that are
clear, unambiguous, and relevant to UAS.

1.2 Paper Structure

In Section 2 we describe the software tools to be used for UAS agent verification and
describe how the small subset of the Rules of the Air for verification was chosen. Then,

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 231

in Section 3 we model a basic UAS agent in PROMELA, and verify it against a small
subset of the Rules of the Air using the SPIN model checker. The concept of an “agent”
is a popular and widespread one, allowing us to capture the core aspects of autonomous
systems making informed and rational decisions [27]. Indeed, such agents are typically
at the heart of the hybrid control systems prevalent within UAS. We will say more about
the “agent” concept later but, initially, we simply equate “agent” with “process”. Thus,
we model the UAS’s choices/decisions as a single process in PROMELA, and use SPIN

to show that the UAS agent satisfies the selected subset of the Rules of the Air.
In Section 4 we construct a UAS control system based on a rational agent model.

This is written using the autonomous agent language Gwendolen [10], and we show
that it can be verified against the same Rules of the Air using the agent model checker
AJPF [2,11]. We introduce more advanced autonomous behaviour into the UAS agent,
and verify that this acts in accordance with the subset of the Rules of the Air.

There are two main reasons for using a rational agent model. The first was to al-
low more “intelligence” in the UAS agent itself. This extended the agent’s choices to
take into account not only the UAS’s situation but also the agent’s beliefs about the
intentions of other UAS/aircraft. The second reason is to consider more than the literal
meaning of the Rules of the Air. Specifically, we noticed that there is often an implicit
assumption within these rules. For example, “in situation A do B” might have an im-
plicit assumption that the pilot will assess whether doing B in this particular situation
would be dangerous or not. Really such rules should be: “in situation A do B, unless the
UAS believes that doing B will be likely to lead to some serious problem”. In piloting
parlance, the agent needs to demonstrate airmanship. Thus, in Section 4 we show how
we might “tease” out such aspects into formal specifications involving intentions/beliefs
that could then be checked through our verification system.

Finally, in Section 5 we compare the different approaches to UAS agent modelling
and verification, and we present directions for future research.

2 Model Checking

Model checking is a variety of formal verification in which a logical property is exhaus-
tively evaluated against all executions of a system [9]. Typically, the logical property is
expressed within a temporal logic. This allows us to refer to properties that occur now,
in the next moment, and at selected moments in the future. As well as classical logic
operators, temporal logic also provides operators such as ‘�’, meaning “at all future
moments”. Thus, “�(x ⇒ y)” means that at all future moments within the execution, if
x is true then y must be true. This is distinct from “x ⇒ �y” which means that, if x is
true then y must be true at all future moments.

In the model checker we first utilise, called SPIN [13], the program to be checked is
written in the PROMELA programming language. The SPIN model checker then exhaus-
tively checks our required temporal formula against all possible executions of the pro-
gram. If successful, this means that no matter how the program executes, the required
property will still be true. However, if the model checker finds a specific execution that
violates the required property, it identifies this to the user.

Although we begin by using the PROMELA language and SPIN for verification, we
later use a more sophisticated language, Gwendolen [10], a high-level agent-based

232 M. Webster et al.

programming language, to develop more advanced UAS control. We check the Gwen-
dolen program against the same logical requirements, but as SPIN only checks PROMELA

programs, we must use a different model checker called AJPF [2,11] to establish cor-
rectness of the Gwendolen program with respect to the logical properties.

2.1 Selecting Rules of the Air for Model Checking

We chose a small subset of just three Rules of the Air [7] which were relevant for a
straightforward flight of a powered UAS vehicle (e.g., taxiing to take-off, navigation,
sense-and-avoid, and landing). It was also desirable to choose rules which might po-
tentially come into conflict, as this would present a greater challenge for engineering
and verification of the UAS. We also had to leave out certain rules concerning specific
heights and distances, as we did not intend to describe such detailed information within
our UAS model. In addition we wanted to focus on two key scenarios for UAS engi-
neering: (i) “sense-and-avoid”, where the UAS must detect objects that it may collide
with and take evasive action; and (ii) partial autonomy, where the UAS proceeds au-
tonomously but checks with a human for permission to perform certain actions. Both
are essential abilities of autonomous UAS [21]. Thus, the rules chosen were as follows:

1. Sense and Avoid: “. . . when two aircraft are approaching head-on, or approxi-
mately so, in the air and there is danger of collision, each shall alter its course
to the right.” (Section 2.4.10)

2. Navigation in Aerodrome Airspace: “[An aircraft in the vicinity of an aerodrome
must] make all turns to the left unless [told otherwise].” (Section 2.4.12(1)(b))

3. Air Traffic Control (ATC) Clearance: “An aircraft shall not taxi on the apron or
the manoeuvring area of an aerodrome without [permission].” (Section 2.7.40)

The first rule is relevant for the sense-and-avoid scenarios (see (i) above), and the third
rule is relevant for partial autonomy (see (ii) above). The second rule is interesting
because it may conflict with the first rule under certain circumstances, e.g., where an
object is approaching head-on and the UAS has decided to make a turn. In this case, the
UAS vehicle may turn left or right depending on which rule (1 or 2) it chooses to obey.

Simplification was necessary to encode the above “rules” so that they could be model
checked. For instance, in the second rule, there are a number of factors which could
“tell” the UAS vehicle to make a turn to the right, such as the pattern of traffic at an
aerodrome, ground signals, or an air traffic controller. We chose to model all of these
under the umbrella term “told otherwise”, and not to model these factors separately.

3 Reactive UAS Agents

Through consultations with researchers from the Autonomous Systems Research Group
at BAE Systems (Warton, UK) we have modelled fragments of a typical UAS agent rel-
evant to our selected scenario. Here, it is assumed that the UAS agent will be composed
of a set of rules concerning the successful completion of the mission and the safe flight
of the aircraft. Each rule has a condition which must be satisfied for that rule to be
applied, and a consequence of applying that rule. For example, a rule might look like:

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 233

IF aircraft_approaching_head_on THEN turn_right

This would be the part of the agent designed to deal with the “Sense and Avoid” scenario
described in Section 2.1. Clearly there would be many other rules in the agent to deal
with other situations, such as running low on fuel, take off, landing, etc. The idea is that
the complete set of rules would enable the flight of the UAS, so that the UAS would
respond appropriately in every situation. Another such rule could be:

IF ATC_clearance_rcvd THEN set_flight_phase_taxi; taxi_to_runway_and_wait

This rule would specify that when the UAS receives clearance from the ATC, it will
set its flight phase to “taxi” and start taxiing to the runway where it will wait for take-
off clearance. In general, this kind of agent is known as a reactive agent, as it reacts
to situations without reasoning about them. (In later sections we will also consider a
practical reasoning, or rational, agent for controlling a UAS.)

Fig. 2. UAS Models in PROMELA and Gwendolen. Arrows represent information flow.

3.1 Modelling a Reactive UAS Agent in PROMELA

A simple model of a partial UAS control system has been written using PROMELA,
the process modelling language for the SPIN model checker [13]. The UAS is divided
into a number of components: the Executive, the Sensor Unit (SU) and the Navigation
Manager (NM). In Fig. 2, the role of the Executive is to direct the flight of the UAS
based on information it receives about the environment from the SU and the NM. The
NM is an independent autonomous software entity (i.e., an agent) on-board the UAS
which detects when the UAS is off-course and needs to change its heading; it sends
messages to the Executive to this effect. When the UAS’s heading is correct, the NM
tells the Executive so that it can maintain course. The SU is another agent on-board the
UAS whose job it is to look for potential collisions with other airborne objects. When it
senses another aircraft, it alerts the Executive; the SU then notifies the Executive when
the detected object is no longer a threat. Another essential part of the model is the ATC.
The Executive communicates with the ATC in order to request clearance to taxi on the
airfield. The ATC may either grant or deny such clearance. Thus, our simple reactive
UAS models sense-and-avoid scenarios as well as navigation and ATC clearance.

In PROMELA, we model the Executive, the SU, the NM and the ATC as processes,
which communicate using message-passing channels (see Fig. 2). For simplicity we
specify the NM and the SU as non-deterministic processes which periodically (and
arbitrarily) choose to create navigation and sensory alerts. The Executive process has a

234 M. Webster et al.

variable, called state, which has different values to represent the different parts of the
UAS’s mission: WaitingAtRamp (start of mission), TaxiingToRunwayHold-
Position, TakingOff, EmergencyAvoid, etc.

Each step in the process is modelled by a different value of the state variable. Once
the UAS model becomes “airborne”, the Executive may receive messages from both the
SU and the NM. If the Executive receives a message from the SU saying that there is an
object approaching head-on, then it changes state to “Emergency Avoid” and alters the
course of the UAS to the right (by updating a variable direction). When the SU tells
the NM that the object approaching head-on has passed, the Executive will continue on
the heading and in the state it was in before the alert, e.g., if it was changing heading
and turning left then it will go back to this behaviour. At any point the Executive may
receive a message from the NM advising it to alter its heading, maintain its current
heading or, eventually, land.

Certain elements of a real-life UAS are not modelled here. We do not model the
“real world” environment of the UAS explicitly; rather we use the SU to send sensory
alerts on a non-deterministic basis. Likewise, the NM does not really navigate, as there
is no “real world” in the model to navigate through, and so it sends navigation alerts
on a non-deterministic basis. Also, we do not model the flight control systems of the
UAS or any aspects of the vehicle itself, as without a “real world” model these are
unnecessary. However, we make these simplifications without loss of accuracy in the
verification process: our aim is verify the behaviour of the Executive, to ensure that it
adheres to the “Rules of the Air” according to the information it possesses about the
current situation, and so using the SPIN model checker we can ascertain whether the
Executive behaves in the desired manner.

3.2 Model Checking the Rules of the Air in SPIN

As we have a system capturing selected behaviour within a UAS, together with elements
of its environment (e.g., ATC), we can check its compliance with the Rules of the Air
identified in Section 2.1 using the SPIN model checker. The temporal logic form of
these three rules are as follows.

1. Sense and Avoid: �(objectIsApproaching =⇒ {direction = Right})
2. Navigation in Aerodrome Airspace:

�
[(

changeHeading ∧ ¬objectIsApproaching
∧nearAerodrome ∧ ¬toldOtherwise

)
=⇒ ¬{direction = Right}

]

3. ATC Clearance:

�({state = TaxiingToRunwayHoldPosition} =⇒ haveATCTaxiClearance)

The UAS agent model was found to satisfy all three properties.

4 Rational UAS Agents

The reactive UAS agent model presented so far, written in PROMELA, is quite basic in
terms of autonomy. The UAS follows a series of reflexive responses to environmental

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 235

changes, e.g., a message has come from ATC saying taxi clearance has been given, so
update the UAS state to “Taxiing.” It may be desirable to encode more complex au-
tonomous behaviours based on ideas from intelligent agent theory, such as the Beliefs–
Desires–Intentions (BDI) framework for autonomous agents [22]. As suggested by the
name, agents comprise beliefs (i.e., their information about the world), desires (i.e.,
their long term aims), and intentions (i.e., the things the agent is doing to try to achieve
its desires). Such approaches offer a natural way of specifying, engineering and de-
bugging high-level autonomous behaviour [27]. Another advantage is model checking
autonomous behaviour: we can see the state of the agent’s beliefs, desires and intentions
at the point a particular logical property is violated.

To model BDI agents we use a BDI agent language as PROMELA is not designed for
this purpose. To use PROMELA in this way, beliefs, desires and intentions would have to
be constructed from the native PROMELA constructs such as processes, variables, etc.
In contrast, BDI agent languages have these features “built-in”. Therefore the software
engineer is more able to focus on the behaviours of the autonomous system when using
a BDI agent language than when using PROMELA. Likewise, the SPIN model checker
used to verify PROMELA programs does not contain any operators concerning agents’
beliefs, desires or intentions, whereas agent model checkers let us specify different
agents’ beliefs, desires and intentions within the property being checked.

Gwendolen [10] is a BDI agent programming language designed specifically for
agent verification. Gwendolen agents consist of beliefs, goals, intentions and plans.
(Goals are desires which are being actively pursued.) Each plan consists of a triggering
event, a guard and a number of “deeds” which are executed if the plan is triggered and
the guard is satisfied. A Gwendolen agent begins with sets of initial beliefs and goals,
and a set of plans. The agent selects a subset of plans based on its beliefs about the
current situation and its current goals, i.e., what it wants to achieve.

We have constructed a model of a UAS agent written in Gwendolen. Our UAS agent
consists of 44 different plans, several of which are shown below. The UAS is similar in
behaviour to the agents written in PROMELA: it taxies, holds, lines up and takes off, and
once airborne it performs simple navigation and sense/avoid actions. Finally, it lands.
The UAS agent believes initially that it is waiting at the ramp at the beginning of its
mission, and that it has no forward direction. It has an initial goal (here, “!p” means a
goal to perform some action) — to run the “startup procedure” — and a set of plans.
For instance, the first plan says that if a belief that normal flight is underway is added
(the trigger, +normalFlight), the agent will delete the last message from the sensor unit
(−su(S)) and will undertake an action to send a message to the sensor unit requesting
information (send(su, poll)). The “{. . .}” in this case is a guard condition on the plan.
Here ‘�’ always evaluates to “True”.

Agent: exec
Initial Beliefs: waitingAtRamp, direction(none)
Initial Goals: !pstartup
Plans:
+normalFlight: {�} ← −su(S), send(su , poll);
+!p pollAgents : {�} ← −su(S), send(su , poll);
+su(S): {�} ← −nm(N), send(nm,poll);

236 M. Webster et al.

+nm(N): {B su(S), ¬G makeDecision(S,N) } ← +!p makeDecision(S,N);
+nm(X,N): {B su(X,S), ¬G makeDecision(S,N) } ← +!p makeDecision(S,N);
+!p makeDecision(objAppr,headingOk) : {B normalFlight} ← +!p handleObjAppr;
+!p makeDecision(objAppr,changeHeading) : {B normalFlight} ← +!p handleObjAppr;
+!p handleObjAppr : {B normalFlight , B direction (D)} ← −normalFlight, lock ,

−direction (D), + direction (right), unlock, +emergencyAvoid, +objectIsApproaching ,
+!p pollAgents;

The chief difference between the Gwendolen and PROMELA models is that the Execu-
tive’s behaviours are specified in terms of beliefs, desires and intentions, which provide
a richer language for describing autonomous behaviour. For instance, “the UAS is taxi-
ing”, “the UAS wants to taxi”, “the UAS believes it is taxiing”, and “the UAS intends
to taxi”, are all distinct for a BDI agent. Furthermore it is possible to reason about other
agents’ beliefs, such as “the UAS believes that the ATC believes the UAS is taxiing”,
allowing for richer interactions between different parts of the model than is found with
similar processes in PROMELA.

The trade-off is that whilst BDI agent software is more representative of natural-world
intelligent systems and provides improved expressiveness for describing autonomous
systems, the added complexity of the agent programs makes subsequent model checking
much slower. In general, we talk in terms of minutes and hours for verifying UAS agent
programs, as opposed to milliseconds for the simpler PROMELA programs.

In our implementation the architecture of the Gwendolen UAS model is slightly dif-
ferent from the PROMELA model. Firstly, we modelled the Executive as a Gwendolen
agent, but the ATC, NM and SU were modelled within the agent’s Java environment.
The reason for this was that it makes intuitive sense; the Executive is the autonomous
part of the model on which we focus our model checking efforts, and therefore is pro-
grammed in Gwendolen, a language for autonomous agents. Also, a future objective
is to be able to connect the Executive to simulated sensors and navigation systems
within a networked simulation environment, and replacing the Java simulated environ-
ment with a networked simulated environment was simpler than connecting Gwendolen
agent models of the SU, NM and ATC to the networked simulation environment. In
model checking terms there is little difference; the simulated SU, NM and ATC in Java
perform the same function as the corresponding processes in PROMELA, and enable the
full state space of the Executive to be explored.

4.1 Model Checking Reasoning UAS Agents

Agents are often written in agent programming languages, so we need an agent model
checker to verify agent programs [4]. We use AJPF (for Agent JPF), which works by
providing a Java interface for BDI agent programming languages called the Agent In-
frastructure Layer (AIL) [17]. Interpreters for agent programming languages are writ-
ten using the AIL, and the resulting Java program can then be verified via AJPF [2,11].
AJPF is, in turn, built on JPF, the Java PathFinder model checker developed at NASA
Ames Research Center [25,16]. For example, an agent program written in Gwendolen
is executed by an interpreter written in Java and using the AIL. Temporal properties can
then be checked against the model using AJPF. We verified our UAS agent model using

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 237

this method. For consistency we used the same subset of the Rules of the Air earlier
used for the PROMELA UAS model. The properties verified are as follows.

1. Sense and Avoid: �(B(exec,objectIsApproaching) =⇒ B(exec,direction(right)))
2. Navigation in Aerodrome Airspace:

�(B(exec,changeHeading)∧B(exec,nearAerodrome)∧¬B(exec, toldOtherwise)
=⇒¬B(exec,direction(right)))

3. ATC Clearance: �(B(exec, taxiing) =⇒ B(exec, taxiClearanceGiven))

Here we use the belief operator ‘B’ to specify beliefs about the agents being verified,
e.g., property 1 translates as, “It is always the case that if the agent ‘exec’ believes that
an object is approaching, then it also believes that its direction is to the right.”

In order to test the usefulness of our UAS model, we introduced a minor error into
the code to simulate a typical software engineering error. Normally, when the UAS has
discovered that there is an object approaching head-on and that it should also change
heading it prioritises the former, as avoiding a potential collision takes precedence over
navigation. However, our error caused the UAS to have no such priority. The net effect
on the UAS behaviour is that it would start to turn right to avoid the object, but would
then turn left to navigate (as it was within aerodrome airspace). Specifically, the errant
code was as follows:

+!p makeDecision(objAppr,changeHeading){ B¬normalFlight(X) } ← +!p handleObjAppr(X),
+!p handleChangeHeading(X);

The model checker found the fault when we verified the “Sense and Avoid” property.

4.2 Model Checking More Advanced Autonomy in UAS Agents

The UAS agent model constructed so far will always turn right when an object is ap-
proaching head-on. This is in accordance with the Rules of the Air. However there may
be occasions when it is advantageous (or indeed necessary) for the UAS agent to dis-
obey certain Rules of the Air in order to maintain a safe situation. For instance, consider
the case where an object is approaching head-on, and the UAS agent “knows” it should
turn to the right. However, the approaching aircraft may indicate that its intention is to
turn to the left (e.g., by initiating a roll to the left, manifested by its left wing dropping).
At this point a rational pilot would assume that the other aircraft is going to turn left,
and would realise that turning right would greatly increase the possibility of a collision.
Turning left would be the more rational action to take. Likewise, if the other aircraft’s
intention is to turn right, the rational action is to turn right. If the intention is unknown,
then the rational action is to follow the Rules of the Air, i.e., turn right.

We added several plans to our UAS agent model in order to make the agent adopt this
more advanced autonomous behaviour. The sensor unit was re-written, so that instead
of sending an “object approaching head-on” message, it now sends information about
intentions, e.g., “object approaching head-on and its intention is to go left.” The UAS
was then enhanced to take into account beliefs about the other object’s intentions when
making a decision about which way to go when an object is approaching head-on:

+!pmakeDecision(objectApproaching(intentionTurnLeft),changeHeading) :
B normalFlight(X) <- +intention(turnLeft),+!phandleObjAppr(X)

238 M. Webster et al.

In other words, “When the Executive has to decide between an object approaching
head-on (and intending to turn left) and a directive from the navigation manager to
change heading, and the Executive believes it is in normal flight mode, it will add the
belief that the object’s intention is to turn left, and will add as a goal to handle the object
approaching by taking evasive action.” Adding such advanced autonomy will cause the
UAS agent to disobey the Rule of the Air concerning turning right when an object is
approaching head-on in the name of safety. The reason is that there will be times when
there is an object approaching head-on, but the UAS turns left because it has detected
the intention of the object is to turn left. For this reason we must modify the properties
being checked. For instance the rule in Section 4.1 concerning turning right when there
is an object approaching head-on becomes:

�(B(exec,objectIsApproaching)∧B(exec, intention(right)) =⇒ B(exec,direction(right)))

In other words, “It is always the case that if the Executive believes there is an object
approaching head on and the intention of the object is to turn right, then the UAS turns
right.” We verified similar properties for the cases where the intention is to turn left and
where the intention is unknown, finding that the agent satisfied all three cases, as well
as the “Navigation in Aerodrome Airspace” and “ATC Clearance” properties.

It is important to note that, in practice, there is no conflict between this advanced
autonomous behaviour and the Rules of the Air, as the advanced behaviour is similar to
what would be expected of a human pilot. All Rules of the Air are subject to interpre-
tation, i.e., the previously mentioned airmanship; there are times when the strict Rules
of the Air must be disobeyed in order to maintain safe operations.

5 Conclusions

We have constructed basic agent models of Unmanned Aircraft Systems for two dif-
ferent model checking platforms: PROMELA / SPIN for standard model checking and
Gwendolen / AJPF for agent model checking. In each case we tested our UAS model
against a small subset of the Rules of the Air corresponding to the following cases:

1. Sense and Avoid;
2. Navigation in Aerodrome Airspace; and
3. Air Traffic Control Clearance.

These rules were chosen as interesting cases of UAS autonomy: “Sense and Avoid”
and “human in the loop” cases (rules 1 and 3 respectively) are essential for UAS en-
gineering [21]. In addition, rules 1 and 2 are interesting because they are potentially
conflicting, presenting an interesting challenge for engineering and verification.

The model we constructed in SPIN / PROMELA was very fast in terms of verification,
requiring only milliseconds and megabytes to model-check a Rule of the Air. However,
its low-level process-modelling and state-transition systems presented problems when it
came to modelling more advanced autonomy, as this is something for which those ver-
ification systems were not designed. Agent languages in the BDI tradition (Gwendolen
being one such example) allow faster and more accurate engineering of autonomous
systems, but this comes at a price: in our example, the time required for verification of
a single Rule of the Air property increased to minutes and hours.

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 239

The models and temporal requirements we have used are relatively straightforward.
However, since most of the elements within the UAS control system are likely to be
similarly simple and since quite a number of Rules of the Air are similarly straight-
forward, then our preliminary results suggest that it is indeed feasible to use formal
methods (and model checking in particular) to establish UAS compliance with at least
some of the Rules of the Air. The areas where the models/designs might be more sophis-
ticated and where the Rules of the Air go beyond a straightforward representation are
considered in the subsequent section of future work. We are confident that this approach
can move us towards acceptable certification for autonomous UAS.

A possible disadvantage of our approach, from the perspective of certification of air-
worthiness, is that for an existing UAS agent (written in a compiled language such as
SPARK Ada) any models written in PROMELA or Gwendolen may not be accurate, so
that the verification process will not lead to useful evidence for certification. A well-
known way to avoid this problem is to specify the agent architecture using a process
modelling language, and then use a formal software development methodology to ac-
curately implement the specification. Alternatively, in the case of AJPF, implementation
may not even be necessary as the result of the verification process is code executable
within a Java virtual machine — the agent is effectively already implemented.

Another possible difficulty is in justifying the abstractions made during the mod-
elling process. Applying our approach to a given autonomous UAS control system re-
quires modelling the system, e.g., using PROMELA or the Gwendolen agent language.
The conclusions drawn from model checking are only as useful as our confidence in
the model itself; therefore model validation is important when applying our approach
to implemented autonomous UAS systems. For similar reasons, the properties used for
model checking would need to be validated with respect to required standards of be-
haviour.

5.1 Impact

Two principal questions for UAS manufacturers are whether Formal Methods has any-
thing to offer autonomous UAS, and if so, what kind of approaches should be used
and in what manner? These are the questions that we have started to answer but the
answer is by no means complete; the construction of the models described in the paper
has shown that the SPIN and Agent JPF model checkers are well-suited to the task of
specifying and analysing autonomous UAS behaviour. Furthermore, the paper demon-
strates that these models can be checked to be in accordance with a small subset of the
Rules of the Air, a statutory document specifying many of the requirements of pilots
and aircraft in UK airspace. Therefore the paper has demonstrated that Formal Meth-
ods could indeed be useful for providing evidence to regulatory authorities that a given
autonomous UAS is airworthy and presents no additional risks beyond those currently
encountered by traditional manned aircraft. This is a small but crucial first step on the
road to certification, which is likely to require intensive investigation by both academic
and industrial researchers over the coming years. This work has begun to show how
the problem of verifying that an autonomous computer system is equivalent to a human
might be tackled.

240 M. Webster et al.

5.2 Related and Future Work

This paper has focused on the problem of engineering and certification of autonomous
UAS, with the emphasis on verification of high-level decision making. However there is
a wealth of literature in the field of control engineering concerning automatic flight con-
trol systems (e.g., autopilot, autoland) designed to assist the safe operation of manned
vehicles [18]. In addition there is much in the literature concerning Airborne Collision
Avoidance Systems (ACAS) which have tackled the sense-and-avoid problem, primar-
ily in the arena of manned aircraft [26]. In this paper we attempted to formalise Rules
of the Air (written in natural language) to derive properties describing the desired be-
haviour of autonomous UAS. These properties could then be checked against a model of
an autonomous UAS control system. Deriving formal specifications from requirements
written in natural language has also been examined elsewhere, e.g., [19].

There have been several uses of formal methods in UAS. For example: Sward used
SPARK Ada to prove correctness of UAV cooperative software [24]; Chaudemar et al.
use the Event-B formalism to describe safety architectures for autonomous UAVs [6];
Jeyaraman et al. use Kripke models to model multi-UAV teams and use SPIN to ver-
ify safety and reachability properties amongst others [14]; Sirigineedi et al. use Kripke
models to model UAV cooperative search missions, and use the SMV model checker
to show that the UAVs do not violate key safety properties [23]. Formal methods have
also been applied to autonomous systems in the aerospace domain: Pike et al. describe
an approach to V&V of UAVs using lightweight domain-specific languages; Brat et
al. use the PolySpace C++ Verifier and the assume–guarantee framework to verify au-
tonomous systems for space applications [5]; while Bordini et al. proposed the use of
model checkers to verify human–robot teamwork in space [3]. Importantly, none of
these use formal verification to establish that an autonomous systems is “equivalent”
(even to a limited extent) to a human pilot, as we do here.

In this paper we have only modelled a very basic UAS. Adding functionality would
add complexity to the model and likely increase verification time, although quantify-
ing this is difficult without having a more complete model to hand. For a complete
test of UAS airworthiness we also need to verify the UAS subsystems with which our
“Executive” communicates: various avionics systems including sensors, actuators and
automatic flight control systems would all need to be certified separately and together,
presumably using existing methods such as SPARK Ada.

However, an obvious next step is to expand the functionality of the UAS as we have
described it, and test whether it is possible to verify it against increasingly large sub-
sets of the Rules of the Air. Another interesting avenue would be to obtain “real-life”
UAS source code, or an abstract state transition system describing the behaviour of an
already-operational UAS, and generate a model of its control system in order to verify
different aspects of its airworthiness.

A key area for future research is in the management of complexity: as the complex-
ity of the model of autonomous UAS behaviour increases, so will the time and space
required for verification by the model checker. However it is possible that novel abstrac-
tions, modelling techniques and advances in computer technology and model checking
software will mitigate this problem.

Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems 241

An immediate aim is to use the formally verified Executive agent within a virtual
prototype of an autonomous UAS, including agent(s), UAV, complex flight control sys-
tem, sensors and ground control station, and test whether Monte Carlo methods can be
used to quantify UAS behaviour and provide evidence for certification.

Acknowledgements. The authors would like to thank Charles Patchett and Ben Gorry
of BAE Systems (Warton) for their guidance and support.

This work is supported through the Virtual Engineering Centre (VEC), which is a
University of Liverpool initiative in partnership with the Northwest Aerospace Alliance,
the Science and Technology Facilities Council (Daresbury Laboratory), BAE Systems,
Morson Projects and Airbus (UK). The VEC is funded by the Northwest Regional De-
velopment Agency (NWDA) and European Regional Development Fund (ERDF) to
provide a focal point for virtual engineering research, education and skills development,
best practice demonstration, and knowledge transfer to the aerospace sector.

References

1. Bordini, R., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Tools and Applications. Springer, Heidelberg (2009)

2. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent
Programs. In: Proc. 23rd Int. Conf. Automated Software Engineering (ASE), pp. 69–78.
IEEE Computer Society Press, Los Alamitos (2008)

3. Bordini, R.H., Fisher, M., Sierhuis, M.: Formal Verification of Human-Robot Teamwork. In:
Proc. 4th Int. Conf. Human-Robot Interaction (HRI), pp. 267–268. ACM, New York (2009)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model Checking Rational Agents.
IEEE Intelligent Systems 19(5), 46–52 (2004)

5. Brat, G., Denney, E., Giannakopoulou, D., Frank, J., Jonsson, A.: Verification of Autonomous
Systems for Space Applications. In: Proc. IEEE Aerospace Conference (2006)

6. Chaudemar, J.-C., Bensana, E., Seguin, C.: Model Based Safety Analysis for an Unmanned
Aerial System. In: Proc. Dependable Robots in Human Environments, DRHE (2010)

7. Civil Aviation Authority. CAP 393 Air Navigation: The Order and the Regulations (April
2010), http://www.caa.co.uk/docs/33/CAP393.pdf

8. Civil Aviation Authority. CAP 722 Unmanned Aircraft System Operations in UK Airspace
— Guidance (April 2010) http://www.caa.co.uk/docs/33/CAP722.pdf

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
10. Dennis, L.A., Farwer, B.: Gwendolen: A BDI Language for Verifiable Agents. In: Logic and

the Simulation of Interaction and Reasoning. AISB 2008 Workshop (2008)
11. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model Checking Agent Programming

Languages. Automated Software Engineering (in press)
12. European Aviation Safety Agency. Certification Specifications for Large Aeroplanes CS-25

(October 2003) ED Decision 2003/2/RM Final 17/10/2003.
13. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. AW (2004)
14. Jeyaraman, S., Tsourdos, A., Zbikowski, R., White, B.: Formal Techniques for the Modelling

and Validation of a Co-operating UAV Team that uses Dubins Set for Path Planning. In: Proc.
American Control Conference (2005)

15. Johnson, C.: Computational Concerns in the Integration of Unmanned Airborne Systems
into Controlled Airspace. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp.
142–154. Springer, Heidelberg (2010)

http://www.caa.co.uk/docs/33/CAP393.pdf
http://www.caa.co.uk/docs/33/CAP722.pdf

242 M. Webster et al.

16. Java PathFinder, http://javapathfinder.sourceforge.net
17. Model-Checking Agent Programming Languages, http://mcapl.sourceforge.net
18. McRuer, D., Graham, D.: Flight control century: Triumphs of the systems approach. Journal

of Guidance, Control and Dynamics 27(2), 161–173 (2004)
19. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural language re-

quirements. In: Proceedings of the 20th International Symposium on Software Reliability
Engineering, ISSRE 2009, pp. 185–194. IEEE Computer Society, Los Alamitos (2009)

20. Office of the Secretary of Defense. Unmanned Aircraft Systems Roadmap 2005–2030. US
DoD Publication (2005)

21. Patchett, C., Ansell, D.: The Development of an Advanced Autonomous Integrated Mission
System for Uninhabited Air Systems to Meet UK Airspace Requirements. In: Proc. Interna-
tional Conference on Intelligent Systems, Modelling and Simulation (2010)

22. Rao, A., Georgeff, M.: Modeling Agents within a BDI-Architecture. In: Proc. 2nd Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR), pp.
473–484. Morgan Kaufmann, San Francisco (1991)

23. Sirigineedi, G., Tsourdos, A., Zbikowski, R., White, B.A.: Modelling and Verification of
Multiple UAV Mission Using SMV. In: Proc. FMA 2009. EPTCS, vol. 20 (2009)

24. Sward, R.E.: Proving Correctness of Unmanned Aerial Vehicle Cooperative Software. In:
Proc. IEEE International Conference on Networking, Sensing and Control (2005)

25. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering 10(2), 203–232 (2003)

26. Williams, E.: Airborne Collision Avoidance System. In: Cant, T. (ed.) Proc. 9th Australian
Workshop on Safety Critical Systems and Software, SCS 2004. Conferences in Research and
Practice in Information Technology, vol. 47, pp. 97–110 (2004)

27. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons, Chichester
(2002)

http://javapathfinder.sourceforge.net
http://mcapl.sourceforge.net

Verifying Functional Behaviors of Automotive Products
in EAST-ADL2 Using UPPAAL-PORT

Eun-Young Kang1,2, Pierre-Yves Schobbens1, and Paul Pettersson2

1 Computer Science Faculty, University of Namur, Belgium
2 MDH PROGRESS Research Centre, Västerås, Sweden

{eun-young.kang,pierre-yves.schobbens}@fundp.ac.be
paul.pettersson@mdh.se

Abstract. We study the use of formal modeling and verification techniques at an
early stage in the development of safety-critical automotive products which are
originally described in the domain specific architectural language EAST-ADL2.
This architectural language only focuses on the structural definition of functional
blocks. However, the behavior inside each functional block is not specified and
that limits formal modeling and analysis of systems behaviors as well as efficient
verification of safety properties. In this paper, we tackle this problem by propos-
ing one modeling approach, which formally captures the behavioral execution
inside each functional block and their interactions, and helps to improve the for-
mal modeling and verification capability of EAST-ADL2: the behavior of each
elementary function of EAST-ADL2 is specified in UPPAAL Timed Automata.
The formal syntax and semantics are defined in order to specify the behavior
model inside EAST-ADL2 and their interactions. A composition of the functional
behaviors is considered a network of Timed Automata that enables us to verify
behaviors of the entire system using the UPPAAL model checker. The method has
been demonstrated by verifying the safety of the Brake-by-wire system design.

1 Introduction and Main Themes

EAST-ADL2 is an architecture description language for the development of automo-
tive embedded systems [1]. Advanced automotive functions [15,6] are increasingly de-
pendent on software and electronics. These automotive embedded systems are becom-
ing progressively complex and critical for the entire vehicle. Model-based development
(MBD) is a means to manage this complexity and develop embedded systems in a way
that increases safety and quality. The EAST-ADL2 modeling approach addresses this
topic and provides means to integrate the engineering information from documents,
spreadsheets and legacy tools into one systematic structure, an EAST-ADL2 system
model.

Our aim is to use formal modeling techniques at an early stage in the development
life cycle of automotive embedded systems, and to use symbolic simulators and model
checkers as debugging and verification tools to ensure that the predicted function be-
haviors of the modeled system in EAST-ADL2 satisfy certain requirements under given
assumptions on the environment where the system is supposed to operate.

EAST-ADL2 expresses the structure and interconnection of the system. System be-
havior is defined based on the definition of a set of elementary functional blocks and

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 243–256, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

244 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

their triggers and interfaces. However, the behavioral definition inside each elementary
functional block is not specified, which limits the automatic translation from EAST-
ADL2 models to other formal models for efficient verification. Instead, the execution
of each function is described with external behavioral annexes and legacy tools includ-
ing general UML tool and domain-specific tools, e.g., Simulink or UML [13]. This
restricts the construction of a complete system behavior model and verification of the
behavior of the entire system model with verification tools.

To achieve our goal by improving the aforementioned restriction, we propose a for-
mal approach which facilitates the verification of system function behaviors in EAST-
ADL2 by using UPPAAL-PORT model-checker [8]: this approach specifies a behavior
inside of each elementary function (block) in Timed Automata (TA) and constructs a
complete system behavior model by the parallel composition of local behaviors. In par-
ticular, we specify the execution of each function behavior in the UPPAAL-PORT TA
model and consider a composition of the function behaviors as a network of TA so that
the behaviors of the entire system in EAST-ADL2 can be formally defined. Then this
network TA can be analyzed and verified by UPPAAL-PORT model checker.

This work is organized as follows. Section 2 introduces technology and background,
EAST-ALD2 and UPPAAL-PORT toolkit as used in our approach. Section 3 presents
our approach for verifying system behaviors in EAST-ADL2 by using UPPAAL-PORT
model checker: this approach formally captures the behavior inside each functional
block and their parallel compositional interactions. Furthermore, the formal definition
enables transformation of the given model to models of UPPAAL-PORT tool for model
checking. In section 4, our method is demonstrated in verifying the safety of the Brake-
by-wire system design. We discuss further work and conclude in Section 5.

2 Background

2.1 EAST-ADL2

The goals of modeling with EAST-ADL2 are to deal with complexity control and
improve safety, reliability, cost, and development efficiency through MBD. For this,
EAST-ADL2 structures a system model into multiple abstraction levels in terms of the
development life cycle of automotive embedded systems.

EAST-ADL2 is an information model, connecting different views of the system.
The views are influenced by the different engineering traditions and backgrounds. This
concept allows EAST-ADL2 to handle various types of information including require-
ments, vehicle features, system environment, application functions, deployment of soft-
ware and hardware resources, behaviors, non-functionality properties such as variabil-
ity, timing constraint, dependability, and V&V related information. Abstract solution,
design, and implementation details are found in different abstraction levels in the model:
the highest abstraction level, Vehicle(Feature) level, characterizes a vehicle by means
of features and defines implementation-independent information such as features and
requirements. Fig. 1 depicts an overview of the system model and the abstraction levels
of EAST-ADL2.

At Analysis level, functionality is realized based on the features and requirements.
These features and requirements are refined by the decision of logical design with the

Verifying Functional Behaviors of Automotive Products 245

Fig. 1. The structure of an EAST-ADL2 System Model

definition of logical abstract functions of features and their interactions, and require-
ments. The model at this level is used for the analysis of control requirements, tim-
ing constraints, data consistency between interfaces, hazard identification, etc. Design
level contains concrete functional definition according to the realized logical design. In
particular, functional definition of application software, functional abstraction of hard-
ware and middleware are presented, as well as hardware architecture being captured
and function-to-hardware allocation being defined. Implementation level, i.e. the soft-
ware architecture, is represented using the AUTOSAR standard and allocates software
modules to a network of Electronic Control Units (ECUs) according to the AUTOSAR
standard [2]. As in Fig. 1, EAST-ADL2 extensions are constructs for requirements, vari-
ability, behaviors, dependability, and V&V activities, etc. EAST-ADL2 is intended to be
an integration framework for functionality defined in different notations and tools. The
behavioral definition therefore relies on the definition of a set of elementary functions
that are executed based on the assumption of run-to-completion execution (read inputs
from ports, compute, and write outputs on ports). This is chosen to enable analysis and
behavioral composition and make the function execution independent of behavioral no-
tations. Details of those issues are explained in Section 3.

2.2 UPPAAL-PORT

UPPAAL-PORT is a model checking tool for component based modeling, simulation,
and verification of real-time and embedded systems modeled as real-time components.
It can be used as an Eclipse plugin together with the SAVE integrated development envi-
ronment (IDE)[16,17] in order to support graphical modeling of internal component be-
haviors as an UPPAAL-PORT TA and composition of components. The model checker
of UPPAAL-PORT verifies properties expressed in a subset of timed computational
tree logic (TCTL). The current input file format for UPPAAL-PORT is a component

246 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

C2

C1

(b) SAVECCM Components Model(a) Function Blocks in EAST−ADL2

F1

F2

A2A

(d) Target Model

FC1

FC2

assigned (c) UPPAAL−PORT TAs

MODEL CHECKING

formalized

aligned

verified

Counter Example

Counter Example

Counter Example

NoSAT

NoSAT

NoSAT
verified

System Textual Descriptions

Functional Requirements

Behavioral Constraints
Timing Constraints

Refines Models

Refines Models

Modifies/Refines Requirements

SAT

Quality Requirements

Fig. 2. Methodology Roadmap

modeling language, SAVE-CCM [3], which describes the architectural framework for
modeling real time embedded applications with particular emphasis on automotive do-
main and safety concerns. In particular, SAVE-CCM is used to create components and
interconnections among them, and supports run-to-completion semantics. We use this
architectural framework of SAVE-CCM for mapping from functional blocks and their
interconnectors in EAST-ADL2 to components and their interconnections in SAVE-
CCM respectively.

For analysis purpose, an UPPAAL-PORT TA model is assigned to each of the SAVE-
CCM components in order to describe timing and functional behaviors of the component.
Since EAST-ADL2 is intended for use with different behavioral notations, UPPAAL-
PORT TA is perfectly appropriate to use. This UPPAAL-PORT TA communicates with
other ones through ports and the values of the ports defined by binding TA variables to the
ports of components, and supports synchronous execution with other regular UPPAAL
TA models. Thus, by defining local behaviors of each EAST-ADL2 function block with
UPPAAL-PORT TAs, their synchronous run-to-completion execution semantics should
make it possible to integrate the contained TA into a model representing the complete
system. Since EAST-ADL2 also supports requirements, the invariants and other logical
criteria used for modeling function behaviors with UPPAAL-PORT TAs refer to require-
ments in EAST-ADL2. The SAVE-CCM/UPPAAL-PORT is not an intermediate step. It
is the target model we want to build as a long term goal. So the behaviors of a given
system (functions and their interactions) will be more effectively analyzed.

3 Approach and Proposed Solution

To achieve our aforementioned goal in section 1, we propose a formal approach which
facilitates the verification of system behaviors in EAST-ADL2 by using UPPAAL-PORT
model-checker independently of any hardware constraints and topology mapping. It

Verifying Functional Behaviors of Automotive Products 247

mainly focuses on the higher level of functional behavior of applications at Analysis
level in terms of its Feature level with three distinct phases – architectural and behav-
ioral mapping, behavior specification, and verification (model checking). We will dis-
cuss those phases in more detail in following sections.

3.1 Architecture and Behavioral Semantics Mapping

This architectural mapping step, called A2A, is an architecture-to-architecture repre-
sentation from (a) to (b) in our methodology roadmap Fig.2. The EAST-ADL2 model
architecture frame at Analysis level in the Papyrus UML (Fig.2-(a)) is mapped to SAVE-
CCM architecture frame (Fig.2-(b)). However, this stage is not concerned with the ac-
tual representation of the data.

This stage performs a semantic anchoring between the domains of EAST-ADL2 and
that of SAVE-CCM. The purpose of the semantic anchoring is to map concepts from
EAST-ADL2 to SAVE-CCM in a way that preserves the semantics of the original model
without changing the structure of the model heavily. Each elementary AnalysisFunction
(AF) has its own logical execution and no internal concurrency, therefore it maps well
to a SAVE-CCM component. In this case, there is a convenient and obvious mapping
possibility: we design a system model in SAVE-CCM from the given system at Analy-
sis level in EAST-ADL2. We assign one SAVE-CCM component per AF element in the
EAST-ADL2 system (i.e. BreakController, ABS, etc). The original interconnectors and
associated ports in EAST-ADL2 are mapped to the interconnections between ports of
SAVE-CCM components respectively and that enables communication with other com-
ponents according to their original AF element. One or more ports and elements of EAST-
ADL2 models may be realized by one port and one component of SAVE-CCM models,
as these may have several signals or data elements per interface that are simplified (as
abstracted design) in one port and one component in our SAVE-CCM design model.

Inside each AF, the data transformation and its own behaviors are described as TAs
based on the assumption of synchronous run-to-completion execution. There are two
types of function interactions in EAST-ADL2: either a FlowPort interaction whereby
a function performs a computation on provided data, or a ClientServer interaction
whereby the execution of a service is called upon by another function. The Flow-
Port interactions are matched to the interconnections of SAVE-CCM components. The
ClientServer interactions are explained by the execution of the TA inside a component
and its synchronization with other TAs.

The triggering of each AF is defined either as time-driven or event-driven on one of
the input ports. There are two types of function entities, time-discrete function and time-
continuous function. Time-discrete function is done after a computational delay, i.e. ex-
ecution time. Time-continuous function defines the transfer function from input to out-
put, and the computation rate is infinite. Since the semantic of AF is run-to-completion,
there should be no infinite delays in the local UPPAAL-TA model, the time-continuous
function is not concerned in our semantic anchoring and we deal only with time-discrete
function. The time-discrete function is invoked either by time-triggered in which time
alone causes execution to start, or event-triggered, which is caused by data arrival or
calls on the input ports. Those trigger conditions are matched to those of a clock com-
ponent, trigger ports and data type ports in SAVE-CCM, respectively.

248 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

3.2 Behavior Specification

We have shown a straightforward mapping from the informal semantics of EAST-ADL2
to the formal semantics of SAVE-CCM. Since EAST-ADL2 allows the use of different
behavioral notations, we capitalize on this advantage to specify FunctionBehavior by
assigning an UPPAAL-PORT TA model to each SAVE-CCM component mapped from
its corresponding AF (especially ADLFunctionPrototype) respecting the triggering def-
inition, and execution time of each AF as well as its requirements. This TA model
encapsulates the ”execution behaviors” of AF and is used for verification in terms of
real-time properties by using UPPAAL-PORT model-checker. Our tooling composes
such local automata in parallel to a composed TA (network TA). The purpose of this
phase is to construct a target model (Fig.2-(d)) by filling the architectural frame model
(Fig.2-(b)) with the corresponding UPPAAL-PORT TAs (Fig.2-(c)). In this case, textual
system description, quality/functional requirements and behavioral/timing constraints
are referred to specify FunctionBehavior in UPPAAL-PORT TAs (Fig.2-(c)).

We define an EAST-ADL2 model below. Essentially, this model is a tuple 〈N,CE〉,
where N is a set of ADLFunctionalPrototypes AFs, and CE ⊆ N ×N is the set of in-
terconnectors between AFs. Output variables of one AF may be connected to input
variables of another AF. The clock component in SAVE-CCM [18] is used to define
time-triggered activations. It periodically generates the triggering event to activate the
component and its connected components in a sequence by sending a trigger signals
through the ports. For detailed semantics of the SAVE-CCM language (the subset of
ProSave), we refer the reader to [18]. These triggering (or data) signals arrive at a port
with a one-place buffer. It is stored in that buffer, and for other ports it is forwarded to
connected ports.

The behavior B inside an AF, noted �B�AF , is modeled as an UPPAAL-PORT TA
= 〈L, l0, l f ,VC,VD,E, I〉, where L is a set of locations, l0 ∈ L is the initial location, l f ∈ L
is the final location, such that no edges in E are leading out from l f , and is used to
model the termination of an execution of AF. VC and VD is a set of clock and data
variables respectively. I assigns an invariant to each of the locations. E is a set of edges,
represented as l

g,a,u−→ l′, where l is a source location, l′ is a destination location, g is a
guard, a is an action, u is an update.

The execution of behavior inside FA is determined, (i.e, a SAVE-CCM component is
triggered) in terms of triggering values, which can be generated from the clock compo-
nent of SAVE-CCM (named active). When the triggering value is active, the component
is triggered via its input trigger port and its input data ports are mapped to data vari-
ables. VD in TA are updated with those variables by read-input-from-ports action, noted
READ(Pin), (respectively write-output-to-ports, noted WRITE(Pout)), which are atomic
and urgent (in the sense that time is not allowed to pass when a component reads or
writes). A component is initially idle after the read action it switches to its executing
locations until its internal computation is done. After the write action, which forwards
data in variables via interconnections from the output ports, the component becomes
idle again and the trigger port is updated to inactive. Formally the behavior of AF is
defined as follows:

Definition 1 (Behavior of AF). The behavior of AnalysisFunction AF is a tuple B =
〈L∪{l⊥}, l⊥, l0, l f ,VD ∪P,VC,E ∪{er,ew}, I⊥〉 where

Verifying Functional Behaviors of Automotive Products 249

– l⊥ is the idle location.
– P is the set of ports of the component described as Pin ∪Pout ∪Ptrig, where Pin is a

set of input ports, Pout is a set of output ports, Ptrig ⊆ Pin is the set of trigger input
ports.

– er = l⊥
g,r,u−→ l0, if g is triggered, r is the ”read-input-from-ports” action, READ(Pin),

and u updates VD with input values (Pin\Ptrig).
– ew = l f

g,w,u−→ l⊥, if g is true, w is the ”write-outputs-on-ports” action, WRITE(Pout),
and u resets Ptrig to ”inactive”

– I⊥(l⊥) = true, I⊥ = I(l) for l �= l⊥

The TA of a composition C, TA(C), is defined as a network of local TA. For AFi and
its corresponding component Ci ∈ C, the write action in TA(Ci) is extended to update
the input ports (noted Pin. j) of a target component Cj ∈C according to interconnections
from the out ports of Ci (noted Pout.i). An interconnection connects a source port p ∈
Pout.i to a target port p′ ∈ Pin. j whenever variables in Pin of C are enabled in a way that
if p′ is a trigger port then p′ is activated, otherwise p′ = p. The edges e of TA(Ci) are
explained with extended write actions as follows.

Definition 2 (Extended Write Actions). The behavior B inside AFi, �B�AFi , is TA(Ci)
= 〈 L, l0, l f , VD, VC, {XWRITEi(e) | e ∈ E}, I〉 such that

– XWRITEi (l
g,a,u−→ l′) � (l

g,w,u−→ l′ ; WRITE(Pout.i)), if a = w and g is triggered (holds).
Note that ; is defined as sequential execution

– XWRITEi (l
g,a,u−→ l′) � l

g,a,u−→ l′ , for a �= w

The automata TA(C) is then the network of each TA(Ci) for Ci ∈C.

An environment is modeled as TAEnv in a similar way. The resulting composition is
thus defined as the network TA(C)× TAEnv, where any edge in TAEnv updating ports
Pin of C, is extended with an update WRIT E(Pout.Env). This is similar to the adaption of
the XWRITE action that is used to build TA(Ci) in Definition 2.

3.3 Verification: Model Checking

The execution of each FunctionBehavior in EAST-ADL2 is specified by UPPAAL-
PORT TA in SAVE-CCM and its composition is considered as the network TA: the
formal semantics of SAVE-CCM used in this paper was given in section 3.2. For the
semantics of the full SAVE-CCM language, we refer the reader to [7]. The entire sys-
tem (network TA) is considered in terms of a timed transition system [18], then this
entire system is verified by UPPAAL-PORT model-checker. Quality requirements (e.g,
timing, safety, deadlock freedom) in terms of functional requirements (e.g, behavioral
constrains, timing constraints), see Fig.2-Requirements aspect, are formalized in linear
time logics based on the UPPAAL logic, which can be verified over the target model
(Fig.2-(d)) by UPPAAL-PORT model checker.

In particular, the quality requirements are derived from a given system’s textual de-
scriptions. One may verify certain delay, reaction and synchronization constraints (i.e,
overall behavioral constraints of a system) according to the quality requirements. For

250 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

example, a plausible reaction constraint is 250 ms. In contrast, functional requirements
describe particular constraints of a function such as timing constraints and trigger ele-
ments linked to an AF block. They define the triggering and execution time of the AF.
UPPAAL-PORT model checker verifies those two types of requirements as safety prop-
erties in a way that (a) if a property is satisfied by the target model, then a functional
requirement linked to an AF is updated to a satisfy relation and generic constraints of
the AF are stored as valid invariants in the V&V structure (VVOutcome linked to the
explained requirement, VVCase, etc) of the EAST-ADL2 model. (b) If a property is
violated (depicted as NoSAT arrows in Fig.2) then our UPPAAL-PORT model checker
returns some counterexamples that can help analysts to refine the behavioral constraints
of the system model or modify generic constraints, and identify correct constraints for
the AF that it concerns. Thus, the models in EAST-ADL2 are updated with the timing
assumptions analysts make as well as the analysis results.

4 Current Result and Example

Our approach has been applied and demonstrated on a case study, the Break-by-Wire
System (BWS), from our industrial partner VOLVO. It has been first modeled using Pa-
pyrus UML [11] for EAST-ADL2 in the ATESST2 project [1]. First, the BWS Papyrus
UML model at Analysis level in EAST-ADL2 domain is translated to a SAVE-CCM
model. This step is depicted in Fig. 2-(a) and the result is shown in Fig. 3.

Fig. 3. The BWS architectural model (actual screenshot from the SAVE-CCM modeling tool)

Verifying Functional Behaviors of Automotive Products 251

Fig. 4. BWS DeviceSensor TA

Secondly, FunctionBehaviors are specified in UPPAAL-PORT TAs and then are as-
signed to components in the SAVE-CCM model in terms of their corresponding func-
tion entities in EAST-ADL2. The functional and quality requirements of the system
were given as either informal description in ATESST2 project case study reports or as
timing/trigger constraints requirement entities linked to AFs in EAST-ADL2. The archi-
tecture of the system is represented by SAVE-CCM components filled with UPPAAL-
PORT TAs. One of the TAs in this step is shown in Fig.4.

Finally, the requirements formalized in UPPAAL logics over the result from the sec-
ond step are verified by model-checking with some assumptions we make regarding
timing: there is a data flow from a pedal to a brake actuator. The functions are periodic
and mutually unsynchronized. A perfect clock is assumed in the sense that it generates
periodic triggering in order to activate (run) the components with a periodicity of one
time unit. Each function has its execution time which is modeled with a delay loca-
tion in its TA. Based on those assumptions, properties of safety, deadlock freedom and
liveness are verified successfully.

Data flows through ports between function blocks of BWS are simulated by using
the UPPAAL-PORT plug-in for the Eclipse IDE in Fig.5. The direction of data flow
is indicated by the arrow. We use this simulator in order to trace or detect fault flow
paths. This is facilitated by its intuitive graphical interface that allows analysts to step
forward and backward along the simulation. Apart from the simulation, we have so far
verified 28 properties of the system. A list of selected properties is given below and
their verification results are established as valid:

252 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

\∗ De f inition o f each component
C1 = Environment
C2 = DeviceSensor
C3 = BCC : Brake calculator and controller
C4 = WheelSpeed
C5 = VehicleSpeed
C6 = ABS : Anti lock Braking System
C7 = Actuator ∗\

– Deadlock freedom: A[] 1 not deadlock
– Leads-to property based on the internal variables of function components: every

time the system is invoked by its environment it will eventually execute ABS which
calculates the brake force according to the brake pedal position, wheel speed, vehi-
cle speed:

• (C1.WheelDynamic ∨ C1.BrakePedal ∨ C1.VehicleDynamic)
→ (C6.mode == ABS ∧ C6.ForceCtr)

– Leads-to property based on the values of ports: if the BrakePedal function device
sends out a value of its position then the value should be received by the BrakeCon-
troller function:

• (C1.BrakePedal ∧ C1.EBPP == 1) → (C3.BrakeCtr ∧ C3.BCCin == 1)
– State correspondence check: one internal state of a component corresponds to what

is happening in the states of other environment components. The following three
properties describe that while one of the function components, BCC, WheelSensor,
VehicleSensor is executing, the other two function components are not executing:

• A[] C5.VSensormode =⇒ (¬ C4.WSensormode ∧ ¬ C3.BrakeCal)
• A[] C4.WSensormode =⇒ (¬ C3.BrakeCal ∧ ¬ C5.VSensormode)
• A[] C3.BrakeCal =⇒ (¬ C5.VSensormode ∧ ¬ C4.WSensormode)

– Execution time property: each function component should execute within its given
local execution time (t = 2), 0 ≤ clock ≤ 2. In other words, it should not exceed its
given local execution time:

• A[] C7.exec =⇒ (C7.clock ≤ 2 ∧ C7.clock ≥ 0)

Since the current version of UPPAAL tool only provides reachability analysis, we first
verified a certain delay in an AF component, such as its local execution time, as an
invariant property. In order to verify bounded response time properties formula of the
form f 1 →≤T f 2, meaning if a request (f1) becomes true at a certain time point, a
response (f2) must be guaranteed to be true within a time bound (T), we apply the
early experiments in [9], which showed how to check such properties with a certain
syntactical manipulation on the system model, to our work either by (1) adding ob-
server components syntactically to the system model or (2) making observer automata
and synchronizing them with the actual system automata. Then we verify if both ob-
servers success states can be reached in parallel with the main actual system under the
synchronization constraints.

1 A[] P: ”P holds for any reachable configuration” is written A[] in UPPAAL format.

Verifying Functional Behaviors of Automotive Products 253

Fig. 5. BWS data flow simulation trace using UPPAAL-PORT

We construct one observer TA, illustrated in Fig 6, which contains an observer clock
constraint (obsClock) as an invariant. This observer restricts the time bound of response
time (MAX TIME). By applying this observer TA in our experiment, we successfully
evaluate bounded response time properties in a way that the error location, which vio-
lates the bounded time condition, is never reached from any location of the main actual
system model. The verification result is given below:

– When the brake pedal mode is activated, the actuator reacts timely under its given
time bound (MAX TIME) as a failsafe against serious accident. i.e.,
• A[] C1.BrakePedal =⇒ (¬ ObsTA.error ∧ C7.Actuator). The property is

valid. In other words, if the BrakePedal function component is invoked, it
should not reach the error location of the observer TA, which violates the
MAX TIME bounded time condition, while the Actuator component is exe-
cuting.

Search order is breadth first and uses conservative space optimization. The state space
representation uses difference bound matrices (DBM). Verifying properties takes an av-
erage of around 2 seconds per verified property on an Intel T9600 2.80 GHz processor.
The verification tool only needs to explore a maximum of 3584 states to verify proper-
ties such as deadlock freedom.

254 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

error

run
obsClock<=MAX_TIME

waitForAction

obsClock>MAX_TIME

_urgent!

obsClock=0 active1
_urgent!

obsClock=0

Fig. 6. Observer TA of bounded response time properties

5 Related Work

For safety-driven system development in the automotive domain, feature based analy-
sis is prescribed by ISO standard as the state-of-the art approach to functional safety.
However at early stage it is difficult to see function dependencies that would result in
updated function requirements. Therefore, A. Sandberg et al. [14] provide one approach
that performs iterative analysis to manage changes in the safety architecture at analysis
level and still meet function specific safety goals derived at vehicle level. In Compari-
son to our work, their main concern is to define the semantics for requirement selection
in order to ensure correct inclusion of requirements for a function definition. There is
no formal modeling approach to the behavioral definition of the language.

L. Feng et al. [5] bring modeling formalisms to the existing behavioral principle of
the system by transforming EAST-ADL2 behavior model to the SPIN model. Thus the
requirements on the system design can be verified by model checking. In contrast to our
work, there is no notion for the timing constraints in the behavior model. Indeed, formal
analysis on the real-time properties of the behavior model is not considered at all.

6 Conclusion and Future Work

In this paper, we studied the use of formal modeling and verification techniques at an
early stage in the development of safety-critical automotive products which are origi-
nally described in the EAST-ADL2 architectural language. While EAST-ADL2 focuses
on the structural definition of functional block, we propose a method to formally spec-
ify behaviors inside each functional block in TAs mainly at Analysis level in terms of
Feature level in EAST-ADL2, and verify them by using the UPPAAL-PORT model
checker. The formal syntax and semantics of functional behaviors are defined. A com-
position of those behaviors is considered as a network of TA that allows us to verify the
entire system using the UPPAAL-PORT model checker. Moreover, this paper presents
a technique to verify bounded response time properties by adding observer components

Verifying Functional Behaviors of Automotive Products 255

or TA syntactically to the system model and synchronize them in parallel with the ac-
tual system automata. The contribution improves behavior modeling, verification and
analysis capability of EAST-ADL2, and the result shows the applicability of model
checking in safety-critical automotive products. We started from the informal descrip-
tion of quality and functional requirements in order to model the execution behaviors
of ADLFunctions and manually specified them in TAs. A possible further work would
be to define a formal, real-time semantics of UML diagrams so that engineers can use
this familiar language. They can then be translated automatically to TAs.

In future works, we plan to extend our work: (1) From tooling perspective, in Papyrus
(an Eclipse based tool platform for EAST-ADL2), UML modeling tools and domain-
specific tools, e.g. Simulink, are used as external tools. They describe the data transfor-
mation inside each AF and exchange information via Plugins. Thus, an UPPAAL-PORT,
which is in fact also an Eclipse based Plugin tool, would be developed as an EAST-ADL2
Plugin and be integrated with other EAST-ADL2 tools for analysis. The analysis invari-
ants and outcome should be recorded in the EAST-ADL2 structure as valid constraints
for requirements and V&V. Ideally this process should be done fully automatically. (2)
Another future work encludes more elaborated verification of non-functional properties,
and more refined configurations of the generated model. For example, minimizing the
use of certain resources, such as CPU, energy, memory, etc, while preserving functional
correctness, timing requirements and other resource constraints. The results presented
here are promising steps towards these goals. (3) Since the current UPPAAL tool only
provides reachability analysis, observer TAs were used to verify bounded response time
properties in this work. In order to extend this restriction, Memory Event Clocks Tem-
poral Logic (MECTL) formula, created in our early work [12,10], will be adapted to
improve fully decidable real-time expressiveness, using a tool chain that employs the
UPPAAL model checker to verify properties on a system.

Furthermore, we plan to study a new design interface theory for timed-component
systems [4], considered as Timed I/O automata with game semantic, that would support
compositional design and verification of timed component-based embedded systems.
We will employ an extended UPPAAL-TIGA, which is an engine for solving timed
games in order to manipulate this design methodology.

Acknowledgement. This work was funded by PROGRESS Research Centre at MDH
in Sweden, FUNDP PRECISE Research Center in Information Systems Engineering
(CERUNA project) Namur University, and Belgian Science Policy (MoVES project).
We also wish to acknowledge the participation of collaborator Volvo Technology Cor-
poration from Sweden. Special thanks to Henrik Lönn and Lei Feng (Volvo Technology
Corporation, Gothenburg, Sweden) for their valuable feedback.

References

1. Advancing Traffic Efficiency and Safety through Software Technology Phase 2, European
project (2010), http://www.atesst.org

2. AUTomotive Open System Architecture (2010), http://www.autosar.org

http://www.atesst.org
http://www.autosar.org

256 E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson

3. Carlson, J., Håkansson, J., Pettersson, P.: SaveCCM: An analysable component model for
real-time systems. In: Liu, Z., Barbosa, L. (eds.) Proceedings of the 2nd Workshop on Formal
Aspects of Components Software (FACS 2005). Electronic Notes in Theoretical Computer
Science, vol. 160, pp. 127–140. Elsevier, Amsterdam (2006)

4. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed i/o automata: a com-
plete specification theory for real-time systems. Hybrid Systems, 91–100 (2010)

5. Feng, L., Chen, D., Lönn, H., Törngren, M.: Verifying system behaviors in east-adl2 with the
SPIN model checker. In: IEEE International Conference on Mechatronics and Automation,
Xi’an China (August 2011)

6. Grimm, K.: Software technology in an automotive company - major challenges. In: Interna-
tional Conference on Software Engineering, p. 498 (2003)

7. Håkansson, J.: Design and verification of component based real-time systems. PhD thesis,
Uppsala University (2009)

8. Håkansson, J., Carlson, J., Monot, A., Pettersson, P., Slutej, D.: Component-based design and
analysis of embedded systems with UPPAAL PORT. In: Cha, S., Choi, J.-Y., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 252–257. Springer, Heidelberg
(2008)

9. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear controller. In: Stef-
fen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 281–297. Springer, Heidelberg (1998)

10. Jerson Ortiz, J., Legay, A., Schobbens, P.-Y.: Memory event clocks. In: Chatterjee, K., Hen-
zinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 198–212. Springer, Heidelberg
(2010)

11. Open Source Tool for Graphical UML2 Modeling (2010), http://www.papyrusuml.org
12. Raskin, J.-F., Schobbens, P.-Y.: State clock logic: A decidable real-time logic. In: Maler, O.

(ed.) HART 1997. LNCS, vol. 1201, pp. 33–47. Springer, Heidelberg (1997)
13. Rumbaugh, J., Jacobson, I.: United Modeling Language User Guide, 2nd edn. Addison-

Wesley, Reading (1998)
14. Sandberg, A., Chen, D., Lönn, H., Johansson, R., Feng, L., Törngren, M., Torchiaro, S.,

Tavakoli-Kolagari, R., Abele, A.: Model-based safety engineering of interdependent func-
tions in automotive vehicles using EAST-ADL2. In: Schoitsch, E. (ed.) SAFECOMP 2010.
LNCS, vol. 6351, pp. 332–346. Springer, Heidelberg (2010)

15. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automotive appli-
cations. Computer 40(10), 42–51 (2007)

16. SAVE-IDE project at source net, http://sourceforge.net/projects/save-ide/
17. Sentilles, S., Håkansson, J., Pettersson, P., Crnkovic, I.: SAVE-IDE, an integrated devel-

opment environment for building predictable component-based embedded systems. In: Pro-
ceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2008 (September 2008)

18. Suryadevara, J., Kang, E.-Y., Seceleanu, C., Pettersson, P.: Bridging the semantic gap be-
tween abstract models of embedded systems. In: Grunske, L., Reussner, R., Plasil, F. (eds.)
CBSE 2010. LNCS, vol. 6092, pp. 55–73. Springer, Heidelberg (2010)

http://www.papyrusuml.org
http://sourceforge.net/projects/save-ide/

Establishing Confidence in the Usage of Software

Tools in Context of ISO 26262

Joachim Hillebrand1, Peter Reichenpfader1, Irenka Mandic2,
Hannes Siegl2, and Christian Peer2

1 Virtual Vehicle Research and Test Center, Graz, Austria
{joachim.hillebrand,peter.reichenpfader}@v2c2.at

2 Magna E-Car Systems GmbH & Co OG, Graz, Austria
{irenka.mandic,hannes.siegl,christian.peer}@magnaecar.com

Abstract. The development of safety-critical electric/electronic (E/E)
automotive systems is performed by an increasing number of software
tools. Hence it is very important that software tool malfunctions do not
have an impact on the final product. This paper proposes a systematic
methodology to establish confidence in the usage of software tools. The
approach has been developed on the basis of an industrial development
project and is compliant to the framework required by the standard ISO
26262. The methodology is based on a multi-layered analysis that system-
atically identifies the risk of tool-introduced errors and error detection
failures and allows for the derivation of the tool confidence level (TCL).
The benefit of this methodology is to identify and reuse already existing
verification measures in the development process for establishing confi-
dence in the usage of software tools. Furthermore, the approach allows
introducing new verification measures to optimize the overall develop-
ment process.

Keywords: tool qualification, ISO 26262, automotive, tool confidence,
functional safety, embedded systems.

1 Introduction

In the development of electric/electronic (E/E) automotive systems a multitude
of software development tools is employed. A typical automotive development
process involves the use of tools for requirement engineering, configuration man-
agement, hardware development (e.g. PCB layout), modeling of control systems,
code generation, testing and so forth. However, there is no guarantee that soft-
ware tools are free of errors. It is essential to avoid that tool malfunctions affect
the developed E/E system without being detected in the following development
phases according to the established development process. This is of particu-
lar importance for the development of safety-critical automotive systems where
safety-relevant system failures may cause dangerous situations for drivers, pas-
sengers and other traffic participants. The new standard for functional safety of
road vehicles - ISO 26262 [5] - demands measures to establish confidence in soft-
ware tools, but the formulation leaves freedom to the industry to find a suitable

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 257–269, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

258 J. Hillebrand et al.

way to apply it in a dedicated development process. In this context automotive
companies and not the tool vendors are responsible for establishing confidence in
the tools. The reason for this is that only the automotive companies themselves
have knowledge about the actual application of the tools in their development
process.

The scope of this paper is the development of a suitable classification method-
ology for software tools. The methodology not only allows to establish confidence
in the usage of software tools, but it also derives verification measures that can
be applied in the development process.

2 State of the Art

So far, there is no commonly accepted approach for tool qualification or certi-
fication across standards [2]. One of the most stringent safety standards is the
avionics standard DO-178B [11][6] that requires tool qualification for all tools
involved in the creation of airborne software. This standard does not permit
software development with unqualified tools. In a similar way, software devel-
oped for industrial automation and machinery industry needs to be qualified
according to IEC 61508 Edition 2.0 [4]. When applied in this field, the literature
speaks of tool certification instead of tool qualification. The automotive standard
ISO 26262 [5] is derived from IEC 61508 Edition 2.0 and speaks in this context
of confidence in the usage of software tools . The tool qualification approaches
between these two standards differ significantly.

Tool
functionality
and usage

TD3

TI1

TI0

TD2

TD1

TCL3

TCL2

TCL1

Tool
impact

Tool error
detection

Tool confidence
level

Tool
qualification

measures

No tool qualification
high

medium

low

Evaluation of software tool by analysis Qualification of
software tool

ASIL

Tool
functionality
and usage

TD3

TI1

TI0

TD2

TD1

TCL3

TCL2

TCL1

Tool
impact

Tool error
detection

Tool confidence
level

Tool
qualification

measures

No tool qualification
high

medium

low

Evaluation of software tool by analysis Qualification of
software tool

ASIL

Fig. 1. ISO 26262 Tool Classification Scheme

In order to determine the required level of confidence in a software tool, ISO
26262 requires the tools to be assessed in a project-specific usage context. First,
the use cases for a tool need to be documented. Based on the documented use
cases, it shall be evaluated if and how a malfunction in the software tool or an
erroneous output produced by the tool can violate a safety requirement. Then,
the probability of preventing or detecting these malfunctions and erroneous out-
puts of the tool need to be evaluated. As a result of this analysis, a required

Establishing Confidence in the Usage of Software Tools 259

tool confidence level (TCL) is determined. For a TCL=1 no further activities
need to be performed. For TCL>1, ISO 26262 requires further tool qualification
measures. These measures are out of scope of this paper. Figure 1 shows the
tool classification scheme defined in ISO 26262. The standard leaves freedom to
the industry to define the way of its implementation. Some tool vendors pro-
pose reference workflows [7] as a solution to establish confidence in the usage
of tools. This approach facilitates the classification of the tool in the workflow,
because the workflow usually contains a set of measures for error prevention and
detection. On the other hand, reference workflows are based on strictly defined
sets of tools which are not tailored to project specific needs and cause a strong
dependency on the tool vendor and its proposed partners. The focus of tool error
detection is to a large extend just shifted onto specific verification tools. Some
tool vendors provide pre-defined templates [12][8] in addition to reference work
flows that help the tool user for establishing tool confidence. However, this ap-
proach is tailored to specific tools and can not be used for an entire development
project involving a multitude of software tools. Besides these approaches, there
are at the time of writing no established methods for best practices in industry
[2]. Due to those reasons, a tool-vendor independent approach is proposed to
establish tool confidence that complies with the requirements from ISO 26262.

3 Problem Statement

In a typical industrial development process it is difficult to consider software
tools separately in the context of tool classification. This can be illustrated in
the following example.

First, there is a software package that provides an environment for numerical
calculus. Another tool is using this software package for the modeling of dynamic
systems. A third tool extends the second with methods for automated code
generation. All tools are controlled with scripts executed in the first tool. Due to
the close and not self-evident interaction of these different tools, it is challenging
to determine the origin of a malfunction in this tool compound. Consequently,
the versions of employed tools and compatibility issues also have a major impact
when a tool chain is set up.

Traditionally, it is avoided to change the tool version during a development
project and introduce a new tool version at the start of a project. In addition, it
is quite common that users are involved in several development projects simul-
taneously in order to apply their expertise efficiently. This leads to the fact that
users need to work with several versions of the same tool and also with several
coordinated tool bundles. It can be seen that there is a strong dependency be-
tween employed tools and specific development projects. The establishment of
tool confidence also depends on other influence factors like project deliverables
with development workflows and requirements and recommendations demanded
by ISO 26262, see Figure 2.

260 J. Hillebrand et al.

Use-Case-
Definition

UC 01 UC 02 UC 03 UC xx

T1

T3
T2 T1

T3
T1 T3

T5
Tx

Ty

TCL - Determination

Process Standards – ISO 26262

Company
Projects

Deliverables

Tools

Development Workflows

Requirements

Recommendations Recommendations

Requirements

Fig. 2. Characteristics influencing the confidence in the usage of software tools

For establishment of tool confidence, ISO 26262 requires the definition of
following information [5]:

1. Identification and version number of the software tool
2. Configuration of the software tool
3. Use case(s) of the software tool
4. Environment in which the software is executed
5. The maximum ASIL among the safety requirements
6. Methods to qualify the software tool, if required based on the level of confi-

dence

Most of that information can be defined easily, except the use cases that are
ambiguously defined. A use case describes the user’s interaction with a software
tool or an applied subset of the software tool’s functionality. However, ISO 26262
does not define how the use cases can be derived in an industrial context in an
environment of tightly interlinked tools within a development process. The main
challenge for establishing tool confidence is to find a systematic way to break
down the tool landscape used within a company into manageable segments. In
the following section, we will present a methodology that specifies use cases and
thereupon derives the tool confidence levels (TCL) for a software tool.

Establishing Confidence in the Usage of Software Tools 261

4 Proposed Approach

The focus of this approach is to establish a methodology that provides guidance
for systematically identifying software tool malfunctions in a specific develop-
ment project. The methodology has been developed on the basis of a represen-
tative industrial development project for automotive electric/electronic systems.
The motivation for the approach is practical acceptance and applicability in the
industry. Therefore, the methodology has been iteratively derived by means of
interviews that involved all development groups for the chosen project.

PProject Analysis

Workflow
Analysis

E1 E2 E3 E4 E5 E6

Working Step
Analysis

Use Case
Determination

Identification of
Tool Errors

1 2 3 4 5 6 7

01 02 15141312111009080706050403

Error Prevention
and Detection

Analysis

Analysis of Prevention Measures

Analysis of Verification Measures Fine-grained
TCL Determination

Derivation of additional
Verification Measures

Potential Tool Errors
classified by Error Types

Fig. 3. Methodology

The methodology consists of following five phases:

– Project analysis
– Workflow analysis
– Working step analysis
– Use case determination

262 J. Hillebrand et al.

– Identification of Tool Errors
– Analysis of Error Prevention and Detection

The whole methodology is performed in a top-down sequence where each fol-
lowing phase refines its predecessor. Figure 3 shows a graphical illustration of
the structure of the methodology. The depicted tree structure gives an example
of a real industrial project where the methodology has been applied to. One
project is in that case segmented into seven workflows. Each of them is assigned
to a development team within an organization. In the given example, the chosen
workflow number three is in turn divided into 15 working steps, whereas each of
them is segmented into up to five use cases.

Each analysis step is compliant to ISO 26262 and can be mapped to the
relevant parts with the respective requirements and work products. This enables
a continuative basis for an assessment by accredited auditors.

4.1 Project Analysis

The first step is a mapping of development processes to adequate parts of the
V-model. The development processes in a company are typically well defined
in internal process standards. Such standards give information on essential pro-
cess steps and their process owners for product development. Considering dif-
ferent customers and obligation to use customer specific tools, such standards
are insufficient as a basis for tool classification. The mapping to parts of the V-
model is important because ISO 26262 also standardizes the respective phases.
One workflow can therefore represent one section of ISO 26262, e.g. software
unit design and implementation that is defined in part 6, chapter 8 of ISO
26262. In the organizational structure of a company, one or several workflows
may be handled by one team. The top of Figure 4 shows an example for a
part of the workflow analysis. This part shows the V-model and the break-
down of respective tasks concerning software development. Not included in this
example are additional workflows from e.g. hardware development or system
development.

4.2 Workflow Analysis

The next step is the detailing of workflows that are executed within the devel-
opment project. This is done by interviewing responsible persons of each devel-
opment step. This gives a deeper understanding of essential requirements that
are given by ISO reference on the specific part of the workflow. Furthermore,
descriptions for all essential results (work products) are given and also recom-
mendations for reviewing and testing them. As a first result such a workflow
map shows:

– Description of all essential workflow steps
– Description of used tools and their relevant input and output files within a

workflow step

Establishing Confidence in the Usage of Software Tools 263

A.No Work step Output DocumentsUsed Tools
Tool

Input DocumentsV

Code Generator F In-House Tool G
Code
generation6

Support Tools

Model-based
design of
software

5 Model-based Design
Tool A

In-House Tool B

In-House Tool C

In-House Tool D

Extension - Tool E

Verification Tool E
To

ol
 H

D

D

Numbers represent ISO
26262 chapters

Doc11.mdl
11

Doc13.ini
13

Doc14.c
14

Doc15.h
15

Doc12.dd

1212

Doc10.mdl

1010

Doc10.mdl

10

Doc02.drs

0302

Doc6.xml

0606

10

Doc11.mdl
11

Doc13.ini
13

Doc05.drs
05

6-
9

6-
10

6-
11

4-
8

6-8

6-7

4-7

6-6

Software
architectural

design

HW/SW
Interface

Spec. of
SW requ.

Software
integration and

testing

HW/SW Integration
testing

Verification of
SW requ.

Software unit
testing

Software unit
design and

implementation

A

B

C

D E

F
G

H

Doc16.a2l
16

Workflow
Project
(Example only
illustrates
software-
relevant parts)

Fig. 4. Example for Project Analysis (top) and Workflow Analysis (bottom)

The workflow illustration is mainly based on typical workflow descriptions,
such as eEPK [3] or UML [1]. In order to give a basis for tool classification it
is necessary to focus on tools in usage. For this purpose there are distinguishing
factors for the used tools:

– Distinction of tools by producer (Inhouse-tool or contract manufacturer)
– Software Licence (freeware, open source or commercial)
– Distinction of intended use (usage as main tool or support tool)

In the workflow analysis these tool types are considered by additional text (e.g.
In-house tool) or by use of colored boxes. The reason for adding this information
is to illustrate the maturity level, support level and the impact on the product
being developed in the analysis. For illustration of used tools swimlanes are used,
where on the left side the main tools are displayed and on right side support

264 J. Hillebrand et al.

tools are shown. There are also two columns for input and output data used in
each working step which are arranged on left and right side of tool swimlanes.
Tools and files are combined together in working steps.

Such a working step provides following characteristics:

– a unique identifier (activity number)
– a short description of working step
– Mapping to relevant ISO V-model
– Assignment of relevant input and output documents
– Illustration of used tools on inner swimlane

When applying the workflow analysis in the chosen industrial project, it has
been detected that it is sometimes difficult to clearly separate the software tools
from each other and hence create separate workflows (e.g. due to iterative loops
leading to high interaction). For such cases, the workflow combines software tools
to a tool compound. An example can be seen in Figure 4, activity number five.

The result of this step is a collection of all relevant workflows within devel-
opment with reference to ISO 26262. These maps are the basis for the working
step analysis.

4.3 Working Step Analysis

In this step all workflow maps are analyzed in detail. In particular input and
output files of each step are checked. Each file, that is referenced in the differ-
ent workflow maps is described in a file list. The file list shows the following
distinctive features:

– whether it is a single file or a collection of files
– whether a file is reviewed or not reviewed within development
– Mapping to adequate parts of ISO 26262 requirements
– linkage to relevant work products of ISO 26262

The list also gives a short description on file content and allocates a unique iden-
tifier number to each file. This number is referenced in each workflow step. The
working step analysis can also be used to derive measures for the detection and
prevention of errors in the development process. An example are available review
checklists for specific work products in an organization that can be analyzed and
upgraded with this input. These checklists provide criteria for requirement speci-
fication review, architecture review, implementation review and verification and
validation. The criterias have been collected from ISO 26262 as well as other
standardized works such as MISRA-C [9]. These checklists are the basis for the
verification of all documents to be reviewed.

4.4 Use Case Determination

The purpose of the use case determination is a further break-down of the work-
steps into use cases. The detailing of such use cases is done with interviews

Establishing Confidence in the Usage of Software Tools 265

of responsible persons. According to ISO 26262, use cases describe the user’s
interactions with a software tool or an applied subset of the software tool’s func-
tionality. Even when a single workflow cannot be broken down any further in
the workflow analysis due to the interconnectedness of software tools, there is
some potential by separating a workflow step according to input and output files
or the sequence of tool usage. If e.g. a whole software tool compound is used to
create two output files, the use case determination may lead to one use case per
output file. As opposed to the workflow analysis, the use case analysis may con-
sider intermediate results that are not filed work products in the development
process. The practical application of the use case determination in the industrial
project showed that about half of the worksteps can be broken down further into
several use cases. For the remaining worksteps there is a one-to-one mapping to
use cases. The results of the use case determination are the basis for the tool
error classification.

4.5 Identification of Tool Errors

After the workflows are broken down into atomic use cases, the proposed method-
ology identifies error possibilities in each use case. This is also performed by use
of interviews with responsible persons. Since errors can occur in manifold ways,

Implementation

SW Tool or
Tool Compound

Tool Use Case

Input
Files /
Documents

Output
Files

User

Operating
Environ-
ment

E6E6

E2E2

Conception

User

Input 1

01

Input 1

01

Output 2
02

Output 2
02

E5E5

Process
Tool configuration

E1E1

Non-
Machine-
readable

documents

E4E4E3E3

Machine-
readable

files

Tool

Tool/User Interaction

Fig. 5. Error Model

266 J. Hillebrand et al.

Table 1. Error Types

Error
Type

Description Example (Spreadsheet application)

E1 Input error, errors when reading in-
put files

Parsing error when importing CSV files

E2 Processing error of tool or tool com-
pound

Calculation of incorrect sum in some
circumstances

E3 Error in process configuration
Errors caused by various configura-
tion files and settings

Use of wrong or outdated template files

E4 Error in operating environment
Errors caused by operating system,
hardware and network failures

Language settings in operating system
lead to different decimal point presen-
tation in spreadsheet application

E5 Misconception by user
Tool-independent errors introduced
by user due to wrong interpretation

Selection of wrong cell range due to
user misinterpretation

E6 Implementation errors by user
Tool-specific handling and imple-
mentation errors

Typing or pointing errors, choice of
wrong function or creating the wrong
formula, accidentally overwritten for-
mulae, copy/paste errors [10]

the main errors are derived by using an error model for each use case as depicted
in Figure 5.

The generic error model illustrated in Figure 5 has been developed in a way
that it can describe arbitrary tool/user scenarios. As shown in Table 1, it allows
deriving six basic error types that can be used to classify errors. The error type
E1 and E2 are specific errors that can occur with the respective software tool.
These errors include all serious intricate problems tools can cause, e.g. mistakes
on generated code, incomplete coverage during testing and so forth. E3 and E4
are general errors that consider the embedding of the software tools into the
project including process and environment. E5 and E6 take into account errors
that occur in interaction of users with software tools. The latter two error types
are strictly speaking not part of a use case analysis. They are added in order to
get the complete overview of software tool and user interaction. The benefit of
this extension is that consistent verification measures can be derived.

The error types have been defined as generic as possible in order to apply it
to various different types of software tools. Table 2 shows an example how the
tool error classification can be performed. In the depicted case the selected use
case is a spread sheet tool that is used by a developer for the management of test
vectors. Potential tool errors are identified by listing all errors that apply for the
respective use case. In a typical software development process this methodology
will reveal more than one potential error per error type. In Table 2, these errors
are treated in a combined way, i.e. there is one line per error type. For a larger
number of potential errors, a more fine-grained approach may be feasible.

Establishing Confidence in the Usage of Software Tools 267

Table 2. Tool Error Classification Check list (exemplary spreadsheet application)

Identification of Tool Errors Analysis of Error Prevention and Detection

Measures

Use Case E
rr

o
r

T
y
p
e

Potential Errors P
re

v
en

ti
o
n

R
ev

ie
w

T
es

t

Detailed
description

Detection
probability

T
D

T
I

T
C

L

E1 Search path of tool in-
cludes several input files
with same name

X Versioning high 1 1 1

E2 Software bug when cal-
culating values in cells

X Review of
output files

high 1 1 1

Use Case
X.Y Man-
agement of
Test Vectors

E3 Use of wrong templates;
use of different language
settings; Use of different
tool version

X Prevention by
configuration
management

high 1 1 1

E4 Saving on network drive
without quota; Hard disk
failure

X Versioning;
hard disk fail-
ure is random
failure

high 1 1 1

E5 User fills in wrong cell
due to misunderstanding
of requirements

X Review of
output files

high 1 1 1

E6 Typing mistakes of user X Plausibility
check in extra
cells in table

medium 2 1 2

4.6 Analysis of Error Prevention and Detection

The right side of Table 2 illustrates the derivation of verification measures. The
goal of this task is to achieve a high detection probability of software tool mal-
functions. The verification measures are systematically grouped into three cate-
gories:

– Prevention: The error can be avoided by preventive measures due to the
development process or configuration management. In an industrial context,
the analysis of prevention measures must be based on existing documentation
of process information.

– Review: The error can be detected by a review of work products. In a rig-
orous analysis the review examines the availability of checklists for specific
development steps and verifies the quality and completeness of the review
protocols.

– Test: The error can be detected by a test with another software tool within
the product-specific tool chain. The analysis of tests verifies the quality of
performed tests, e.g. if test cases are generated systematically.

268 J. Hillebrand et al.

Many of these verification measures may already be present in the respective
development process. Therefore, one benefit of this methodology is to identify
and reuse already existing verification measures for establishing confidence in the
usage of software tools. In a mature industrial development process, formal and
systematic checklists can be a basis for the derivation of verification measures.
Another benefit of the methodology is the ability to optimize the overall devel-
opment process for cases where verification measures are not sufficient before
applying this methodology. When applying in industrial context, Table 2 needs
to be further refined in order to achieve a rigorous and comprehensive checklist.
One possibility is to strictly split up several potential errors listed under one
error type into separate lines for derivation of separate measures.

The detection probability of tool errors is estimated in interviews with ex-
perts that are most familiar with the respective measures. In the shown example
the detection probability is classified in three levels that are directly mapped to
tool error detection (TD) levels, tool impact level (TI) and consequently tool
confidence levels (TCL) defined in ISO 26262. The estimation of detection prob-
abilities have been performed by using a conservative way as defined in ISO
2626.

5 Conclusion and Outlook

This paper gives an overview of a systematic methodology to establish confidence
in the usage of software tools in an industrial project for the development of
automotive systems. The methodology involves a multi-layered analysis that
allows to systematically break-down the complex interaction of software tools
into lists of use cases and classify the potential errors on a fine-grained level.
The tool confidence levels (TCL) can be derived in compliance with ISO 26262.
Development processes are linked to ISO reference processes described in ISO
26262 and all requirements, recommendations and work products given by ISO
26262 are referenced by internal deliverables. The industrial application of the
approach has shown that the systematic methodology is deployable for all kind of
software tools in the development of electric/electronic automotive systems. The
benefit of the methodology is the derivation of verification methods that allows to
optimize the overall development process. The applicability of the methodology
has been proven in the course of an industrial development project. Future work
will analyze how the methodology can be applied to large scale industrial systems
where tool confidence needs to be established in families of projects.

Acknowledgments. The authors would like to acknowledge the financial
support of the COMET K2 - Competence Centres for Excellent Technologies
Programme of the Austrian Federal Ministry for Transport, Innovation and Tech-
nology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth
(BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG). We would further-
more like to express our thanks to our supporting industrial and scientific project

Establishing Confidence in the Usage of Software Tools 269

partners, namely Magna E-Car Systems GmbH & Co OG and to the Graz Uni-
versity of Technology.

References

1. Alhir, S.S.: UML in a Nutshell. O’Reilly, Sebastopol (1998) ISBN 1-56592-448-7
2. Conrad, M., Munier, P., Rauch, F.: Qualifying Software Tools According to ISO

26262. In: MBEES, pp. 117–128 (2010)
3. Kindler, E., et al.: On the semantics of EPCs: A vicious circle. In: Proceedings of

the EPK 2002: Business Process Management using EPCs. pp. 71–80 (2002)
4. IEC 61508-2.0 Functional safety of electrical/electronic/programmable electronic

safety-related systems (2010)
5. ISO 26262 - Draft International Standard Road Vehicles - Functional Safety - Part

8: Supporting Processes (2009)
6. Kornecki, A.J., Zalewski, J.: Experimental evaluation of software development tools

for safety-critical real-time systems. ISSE 1(2), 176–188 (2005)
7. Beine, M.: A Model-Based Reference Workflow for the Development of Safety-

Critical Software. In: Embedded Real Time Software and Systems (ERTS 2010),
Toulouse (2010)

8. Conrad, M., Sauler, J., Munier, P.: Experience Report: Two-Stage Qualification
of Software Tools. In: Proc. 2. EUROFORUM ISO 26262 Conference, Stuttgart,
Germany (September 27-28, 2010)

9. MISRA: MISRA-C:2004 Guidelines for the Use of the C Language in Vehicle Based
Software. Motor Industry Research Association, Nuneaton CV10 0TU, UK (2004)

10. Powell, S., Baker, K., Lawson, B.: Errors in operational spreadsheets. Journal of
Organizational and End User Computing 21(3), 24–36 (2009)

11. RTCA Special Committee 167: Software considerations in airborne systems and
equipment certification. Recommendation DO-178B, RTCA, Inc, Washington DC,
USA (December 1992)

12. The Mathworks, Inc: IEC Certification Kit product page,
http://www.mathworks.com/products/iec-61508

http://www.mathworks.com/products/iec-61508

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 270–283, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Fault-Based Generation of Test Cases from
UML-Models – Approach and Some Experiences

Rupert Schlick1, Wolfgang Herzner1, and Elisabeth Jöbstl2

1 AIT Austrian Institute of Technology, Safety & Security Department,
A-1220 Vienna, Austria

{Rupert.Schlick,Wolfgang.Herzner}@ait.ac.at
2 Graz Univ. of Technology, Institute for Software Technology

A-8010 Graz, Austria
ejoebstl@ist.tugraz.at

Abstract. In principle, automated test case generation – both from source code
and models – is a fairly evolved technology, which is on the way to common
use in industrial testing and quality assessment of safety-related, software-
intensive systems. However, common coverage measures such as branch or
MC/DC1 for source code and states or transitions for state-based models
provide only very limited information about the covered (implementation)
faults. Fault-based test case generation tries to improve this situation by looking
for detecting faults explicitly. This paper describes an approach combining
fault- and model-based testing which has been realized in the European project
MOGENTES2, using UML state machines for representing requirements, and
discusses results of its application to a use case from the automotive domain.

Keywords: model-based test case generation, fault models, MOGENTES,
UML, action systems, mutation testing, ioco (input/output conformance).

1 Introduction and Motivation

The continuously increasing complexity and pervasiveness of safety-related (embed-
ded) systems requires adequate means for assessing and asserting their correct opera-
tion and reliability, in particular of their software. While formal verification of
software – clearly the strongest quality assurance – is successfully applied in a growing
number of cases (e.g. [9][22]), the nature of embedded systems – namely their close
interaction with the physical environment as well as the specific constraints and limita-
tions of embedded computing platforms – renders the application of formal verification
methods of limited value for embedded software. One reason is that it is not sufficient
to only prove the correctness of source code or the model input for code generation
itself, but also that of every step/tool along the chain from code development (either

1 “Modified Condition / Decision Coverage”: each sub-condition of a Boolean expression in a

decision has at least once contributed to the value of the whole expression.
2 “MOdel-based GENeration of Tests for Embedded Systems”, EU Frame Programme 7,

contract number 216679; www.mogentes.eu

 Fault-Based Generation of Test Cases from UML-Models – Approach 271

manually or automated from models) down to the execution within the target environ-
ment [17]. This is possible (see e.g. [20]), but very expensive, and hence pays only for
the most critical parts of a system. Consequently, testing remains the major quality
assessment technique in industry.

Testing, of course, needs test cases, which specify at least the input to the system
and the expected result or behavior. Developing and maintaining smart test cases
manually is expensive and often requires deep domain knowledge, which contributes
significantly to the overall testing costs of a system development. For safety-critical
applications, these testing costs can make up to 50% and more of the overall design
and development costs [14].

In the last decades a number of automated test case generation methods and tools
have been developed, either from source code (e.g. [15]) or from models (a state-of-
the-art survey is given in [2]). It turns out, however, that the usual metrics used for
test suite quality evaluation and driving the test case generation bear the risk of miss-
ing faults. Consider, for example, the following code fragment for deciding the type
of a triangle with edge lengths a, b, and c (which is gratefully taken from [3]):

if ((a = b) and (b = c)) then r := “equilateral”
else if ((a = b) or (a = c) or (b = c))
 then r := “isosceles”
 else r := “scalene”

If it is tested with the three test cases (full branch coverage)

<a: 1, b: 1, c: 1, r: equilateral>
<a: 2, b: 2, c: 1, r: isosceles>
<a: 2, b: 3, c: 4, r: scalene>

then a typo such as “(a = a)” instead of “(a = b)” in the first line would remain unde-
tected. However, replacing the second test case by

<a: 1, b: 2, c: 2, r: "isosceles">

would detect this fault.
The EU-project MOGENTES aimed at improving this situation by developing me-

thods for the automated generation of test cases, which deliberately try to find imple-
mentation faults. This paper describes one of its approaches and its application to one of
the four use cases addressed in MOGENTES (from automotive and railway interlocking
domains), and discusses results and experiences, in particular with respect to require-
ments modeling. By representing requirements as UML-models, this approach com-
bines fault- and model-based test case generation.. It is a black-box testing technique;
the generated test cases are intended to be applied at the target (embedded) system.

Therefore, after discussing related work in the next section, section 3 gives an
overview about the approach and section 4 about the use case. Section 5 discusses
results and experiences, with a focus on requirements modeling, while the last section
contains the conclusion and an outlook on future work.

2 Related Work

The large number of publications on mutation testing shows that this is an active field
of research. Jia and Harman give a good overview of existing work on mutation

272 R. Schlick, W. Herzner, and E. Jöbstl

testing in their survey [13]. Another survey closely related to our work was conducted
in the beginning of the MOGENTES project. It gives an overview of the state of the
art in model-based testing [2].

Test case generation from UML state charts has also already been a topic of vari-
ous publications. Since we cannot name all, here are some exemplary pieces of related
work: Gnesi et al. [12] concentrate on a subset of UML state charts, formulate the
semantics for this subset by transition systems with input/output pairs and present a
test case generation algorithm for these systems. Seifert et al. [16] use Compact Se-
mantic Automaton (CSA) to formalize state charts. Fröhlich et al. [11]. employ AI
planning to derive test suites with a given coverage. Weißleder et al. [21] derive
boundary values for testing from UML class and state diagrams and OCL expressions.

To our knowledge, Weiglhofer was the first who came up with the idea of using an
ioco checker(input/output conformance, [18]) for mutation testing. Weiglhofer tested
against Lotos specifications [4]. We apply the technique to UML state machines,
which, to our knowledge, has not been done before. In fact, mutation testing of UML
state machines has been a topic before but in terms of model validation [10]. [8]
presents results for testing state charts by state-based testing of classes. Classical
mutation testing is used for an evaluation of the approaches.

A complementary approach to mitigate the lack of completeness of testing is run-
time verification (see e.g. http://runtime-verification.org). It aims at checking the final
system against correctness properties (assertions, pre/post-conditions, contracts etc.)
while running. If a conflict is detected, the system can react and execute a recovery
strategy or a safe termination procedure.

Such features help to improve fault-tolerance and reliability, such as conventional
(and presumably more expensive) techniques like redundancy and diversity serve for.
While the used formal representation can be verified, the recovery functionality itself
again needs to be tested. Further, in safety- and/or time-critical applications, it may be
crucial that requirement violations simply do not occur.

3 Fault-Based Test Case Generation (FBTCG) from UML in
MOGENTES

3.1 Terms and Concepts

A mutation is a syntactically correct modification of some code or model, such that
the modified artifact remains executable (interpretable).

A fault model describes the kind of mutation (mutation operator), and may contain
additional information such as parameters – e.g. the replacing item, possible applica-
tion locations (within the artifact) and related semantics.

They of course depend on the specification language where they are applied. For
instance, for UML state machines following fault models:

In general, small local mutations are used, based on two assumptions:

1. competent programmers do not make big mistakes, but are not immune against
typos or small faults,

2. there exists a coupling effect so that complex errors will be found by test cases that
were designed to detect simple errors.

 Fault-Based Generation of Test Cases from UML-Models – Approach 273

Table 1. Examples of fault models for state diagrams

Fault model Parameter Typical Meaning and result
Replacing trigger event
by another one

New trigger event Confusion of triggers – transition is activated
by another event

Setting transition guard
to TRUE

-- Equivalent to forgetting a guard condition -
transition will always execute on trigger
event

Setting transition guard
to FALSE

-- Equivalent to forgetting a transition - transi-
tion will never be executed

Aiming transition at
another state

New target state Confusion of transition result – trigger event
will lead to another (system) state

In principle, fault models can be applied to all locations in the artifact where the re-
spective mutation is possible. For instance, the first, third and last one in table 1 can
be applied to all transitions in a state graph, while the second one can only be applied
to transitions with a guard.

3.2 Test Case Generation Steps

It was decided to use UML state diagrams for representing use case requirements for
several reasons: (a) one objective of MOGENTES was to generate test cases for as-
sessing fulfillment of requirements (rather than for a specific source code coverage).
A motivation is that the source code was not available or the use case providing part-
ners were not in the position to provide the source code to the research partners. (b)
State diagrams were well suited to represent most of the requirements. (c) For UML,
not only many (free) tools are at hand, but also it is increasingly used by the industrial
partners. (d) Generating test cases from requirements automatically delivers also the
test oracles, i.e. the means to decide if the results match the expected results.

In short, following steps are needed for fault-based generation of test cases from
UML models:

1. Definition of UML classes and their relationships, which denote basic structural
aspects given in the requirements.
Definition of the state diagrams for these classes, specifying the behavioral aspects
defined in the requirements. For this, we used also OCL3 for specifying transition
guards. The resulting model is considered as the original.

2. Generate the mutants, by applying the fault models (mutation operations) at all
possible locations with additional selection of parameters. In MOGENTES, this
was done while transforming the UML model to object-oriented action systems
(OOAS, [6]) and subsequently into Back’s action systems (AS, [5]). This transfor-
mation is done because the semantics of action systems is fully formally defined,
which is not the case for UML models. Furthermore, actions systems are well
suited for the next steps.

3 Object Constraint Language, http://www.omg.org/spec/OCL/2.0/

274 R. Schlick, W. Herzner, and E. Jöbstl

3. For each mutant, a conformance check with the original model is performed. This
is done by exploring the behaviors of the original and the mutated action systems.
In this way, two Labeled Transition Systems (LTSs) are created. Then, the syn-
chronous product modulo ioco of these two LTSs is calculated. If non-
conformance is found, test case generation starts. The resulting test cases are able
to detect whether the modeled fault (mutant) has been implemented. The used con-
formance relation is input output conformance (ioco, [18]). The result of this con-
formance check is a product graph. It contains a set of fail states representing non-
conformance. For further details see [7].

4. To extract test cases from this product graph, a search for paths leading to non-
conformance, i.e. a fail state, is performed. The resulting test case is again an LTS.
Basically, it consists of the inputs and outputs along this path, together with the fi-
nal step from the original. Several different test case extraction strategies have
been implemented and compared. Some aim to reduce the resulting test suites. For
further details on test case extraction see [1]. Within MOGENTES, test cases are
output in a so-called abstract test case (ATC) format.

5. The selected test cases (e.g. minimal set finding all mutants) are transformed into a
format suitable for the respective use case.

3.3 The MOGENTES UML/OOAS Tool Chain

To carry out the steps outlined before, following tools have been used or developed.

1. UML models are developed using Papyrus (v1.1).
2. For mutation and UML→→OOAS transformation, the tool Ummu was developed

using VIATRA2 [19] in the Eclipse framework.
3. For translating OOAS into non-object-oriented action systems, the tool Argos was

implemented.
4. For exploring the action systems, check for their conformance, and test case extrac-

tion from the product graph, the tool Ulysses was developed.
5. To test and simulate at model level, several “model animators” were developed.
6. For each use case, a transformation tool from ATC format to the test case format

used by the respective test environment was developed.

4 Example Use Case - Car Alarm System (CAS)

This use case from the industrial partner Ford Forschungszentrum Aachen (FFA)
refers to a conventional intrusion and anti-theft alarm system for cars. The following
three requirements describe the system’s behavior:

1. The system is armed 20 seconds after the vehicle is locked and the bonnet, luggage
compartment and all doors are closed.

2. The alarm sounds for 30 seconds if an unauthorized person opens the door, the
luggage compartment or the bonnet. The hazard flasher lights will flash for five
minutes.

3. The anti-theft alarm system can be deactivated at any time – even when the alarm
is sounding – by unlocking the vehicle from outside.

 Fault-Based Generation of Test Cases from UML-Models – Approach 275

Of course, in practice more requirements have to be considered, e.g. for handling
sensor faults, but the three requirements above specify the core functionality. Due to
this small number of (though not atomic) requirements which can be well modeled by
state machines, it was chosen as basic use case.

Fig. 1. State diagram of a simplified car alarm system, with two possible mutations: (A) setting
the guard for transition Alarm→Locked to false and (B) removing the trigger on signal Alarm
from transition Armed→Alarm

Modeling is an iterative process. This was also the case for the CAS. Figure 1
shows a late version of its state machine. Note the two example mutations: one block-
ing a transition (A) and one removing a signal trigger (B).

The test case for A (see Table 2) has several steps and traverses a large part of this
state machine. Thereby it also kills mutations in several other places. To show that the

Table 2. Test cases for mutations A and B from Fig. 1. ctr denotes controllable actions i.e.
inputs to the system, obs denotes observable actions i.e. system outputs; obs delta denotes
quiescence

Step Mutation A Mutation B

1 ctr Lock ctr Lock
2 wait 20 wait 20
3 obs Armed obs Armed
4 ctr Alarm obs delta
5 obs Unarmed pass
6 obs OpticalAlarm_On
7 obs AcousticAlarm_On
8 wait 30
9 obs AcousticAlarm_Off

10 wait 270
11 obs OpticalAlarm_Off
12 Pass

276 R. Schlick, W. Herzner, and E. Jöbstl

transition Alarm→Locked is actually available, the system is steered to this transition
and the test case passes if the output OpticalAlarm_Off resulting from this transition
can be observed. The test case for B (see Table 2) on the other hand is rather short,
but ends with a delta observation before the pass verdict. The delta observation
represents quiescence, which means there is no further output from the system with-
out a preceding input. To verify that the transition from Armed to Alarm does not take
place without receiving an Alarm signal, the tester needs to check if there are no fur-
ther observables. Obviously, in reality this can only be shown within a time bound
which has to be defined for each application individually.

5 Results and Discussion

This chapter presents results of generating test cases for the CAS. It also reports some
experiences with the other demonstrators of the MOGENTES project, in particular
with respect to modeling and the selection of faults. Relevant points are illustrated by
means of the CAS.

5.1 Test Case Generation

For an earlier, more complex CAS model shown in Fig. 2 with 11 states and 21 transi-
tions, 111 mutants were generated, using 15 applicable fault models. For these 111
mutants, 152 test cases were generated, using the minimal search depth strategy;
hence, for each mutant at least one test case was generated, but it was also checked
whether a test case would find also other mutants. Following observations can be
summarized:

─ The strongest test case covers (detects) 75% of all mutants, while the weakest
covers only one mutant.

─ But this single test case is needed, because it detects a mutant not “killed” by
any other test case! (It ends with quiescence, similar to mutation B above.)

─ Some hierarchical relationships among mutation operators concerning coverage
can be observed, but there is no strict containment relation (i.e. that the test cas-
es from one mutation operator always kill all the mutants from another mutation
operator in the same location).

Of course, all of these test cases together find all mutants, but establish a very ineffi-
cient test suite. It was therefore of interest to find a minimal test suite for all 111 mu-
tants. However, several “minimality criteria” can be imagined, e.g. (a) smallest num-
ber of test cases, (b) minimum number of I/O steps, (c) shortest testing time as given
by included time-outs. For (a), a set of 8 test cases could be found (of course contain-
ing that test case mentioned above, which finds only one mutant).

For the other (larger) use cases of the MOGENTES project, a similar coverage
comparison between test cases generated for each mutant would have been computa-
tionally too expensive, both because of the TCG effort itself (as shortly addressed in
section 6) and because of the effort of checking thousands of possible test cases
against multiple hundreds of mutants. To cope with the TCG effort problem, the mod-
els were simplified or decomposed. For instance, for one use case, it was possible to

 Fault-Based Generation of Test Cases from UML-Models – Approach 277

separate an initial device address negotiation phase from the operating mode simply
by limiting the allowed input values. (This is supported by ioco, because it permits the
use of partial specifications, which may accept fewer inputs than the implementation.)
Another optimization step was to check whether already computed test cases detect a
new mutant, and only if this was not the case a new test case was computed. This does
not necessarily lead to an optimized set, but saves days or weeks of computing time.
Following table illustrates the different levels of complexity of the models.

5.2 Source Code Coverage with Model-Based Test Case Generation

In general, black and white box testing complement each other – correctly applying
both is usually better than using only one. Black box testing as done in this case aims
at coverage of the requirements.

Evaluating source code coverage can be done by instrumenting the source code be-
fore applying the test cases. For this, an emulation of the system can be used; there is
usually no need to check this on the target platform. Parts which remain uncovered
should be scrutinized: when a sufficiently chosen set of mutation operators has been
applied; there is a high probability that these uncovered parts realize non-required
functionality.

In case a test case generator for achieving a certain level of source code coverage is
available, the model can be used to verify the system outputs (test oracle). Since test
case generation for classical code coverage tends to be cheaper than mutation-based
methods, these test cases can also serve for seeding the mutation-based test case gen-
eration. Already killed mutants can be left out, thereby reducing the computation
effort.

5.3 Modeling Experiences

As already argued, it was decided to develop models representing the use case re-
quirements, in particular UML state diagrams, and to generate test cases which find
faults in these models. This strategy has been chosen, because it allows a more direct
assessment of conformance to requirements than deriving test cases from the source
code (which is also not always available). Since a mutated model represents a corres-
pondingly wrong interpretation (or implementation) of the affected requirement(s), it
can be expected that the generated test cases detect corresponding deviations from a
correct implementation of the requirements. It can be summarized that these expecta-
tions have been fulfilled, and therefore the taken approach has been proved as appro-
priate for the generation of strong and efficient test suites. However, there are a num-
ber of subtle aspects to consider in the specification of models for representing re-
quirements. Some interesting ones are discussed in the following.

Model Verification. In most cases, requirements are given in natural language, which
often leads to ambiguities and misinterpretation. Actually, verifying conformance of
models with requirements can be expensive. In MOGENTES, manual inspection was
considered to be sufficient, mainly because assuring model correctness was not a
main concern. Further, the resulting test cases often uncover discrepancies between
the requirements and the model.

278 R. Schlick, W. Herzner, and E. Jöbstl

Fig. 2. Earlier CAS model with Open/Close and Lock as separate inputs

For instance, requirement 1 for the CAS was first interpreted such that “lock” and
“close” were considered as two inputs, resulting in the model given in Fig. 2, i.e. it
was first understood that the car can be open while being locked without raising an
alarm. After clearing up this misunderstanding, the corrected model as shown in Fig.
1 resulted. (Close is now a precondition for Lock, treated outside of the model.)

Conclusion: deviations of (test) models from requirements can cause strange test
cases which lead to detection of the modeling faults, but it does not replace confor-
mance verification between model and requirements.

Too Detailed Models / Underspecified Requirements. A related situation occurs
when the modeler decides on details not given in the requirements, either because
they were forgotten to be specified, or by purpose, because the respective aspect is
left open for implementation.

Fig. 3. CAS state diagram with non-deterministic state transition

 Fault-Based Generation of Test Cases from UML-Models – Approach 279

For instance, from the CAS requirements it was unclear whether the AlarmArmed
output stays high during the alarm or not, as well as whether after the alarms turned off,
the system is in state armed or just locked. Making decisions on such aspects during
modeling would either cause the model to deviate from the requirements (under-
specification) or restrict the modeled behavior unnecessarily (implementation freedom).

In principle, non-determinism can be exploited for deliberately unspecified aspects.
For instance, the model variant in Fig. 3Fehler! Verweisquelle konnte nicht
gefunden werden. contains a non-deterministic transition from Alarm exit (after 300
time units) to either Locked or Armed. (It should be noted that the used notation is not
common but allowed by the UML 2.1 specification.)
An example for under-specification is that the requirements do not explicitly disallow
moving from the Unlocked state to the Alarm state on an Alarm input signal, which
would actually be ioco conform. To avoid this, an Alarm input to the state Unlocked
can be added, as indicated in Fig. 4.

Conclusion: clarify under-specifications with the user. If they are by purpose, use
non-determinism if possible to explicitly allow the behavior, otherwise, clarify and
complete the requirements before continuing with the test model.

Fig. 4. Addition of “alarm” input to Unlocked state of CAS model

“Too Elegant” Models (“Over-factoring”). There is a risk that by using more
sophisticated elements of the modeling language or simply by following good style,
modelers, will make the models more “elegant” and compact than useful for mutation
testing. good style. This often includes bringing information to one point in order to
avoid redundancy (“factoring”).

In case of the alarm system, already the use of exit actions and nested states leads
to an interesting situation: The exit action of state Alarm, i.e. deactivation of the opti-
cal alarm, occurs in three situations: when the optical alarm times out (transition
Alarm→Locked), when the car is unlocked while being in state FlashAndSound, and
when the car is unlocked while being in state Flash. An implementation for some
reasons might handle the latter two with different code parts and miss to deactivate
the optical alarm when leaving state Flash. But a mutation removing the exit action
would be already found by unlocking the car in state FlashAndSound. In this case,
there is no mutation forcing a test case for the third situation.

Conclusion: requirements should be specified as atomic as possible, and be
represented 1:1 in models. Since forcing a modeler to avoid reuse and powerful mod-
eling elements severely reduces the readability of models as well as other advantages
of modeling itself, this is only a partial solution. Instead, de-factoring could either be
integrated into the fault model application or the model could be transformed into a

280 R. Schlick, W. Herzner, and E. Jöbstl

canonical intermediate model, making sophisticated “short notations” explicit. In the
first case, for instance, the fault model for an exit action mutation could include pa-
rameters selecting the outgoing edges where the mutation shall be applied. In the
second case, constructs as exit and entry actions as well as transitions from nested
states would be replaced.

5.4 Test Case Application - Adaptive Test Cases

Due to the inherently concurrent nature of UML, transitions in parallel regions of a
state machine – in multiple instances of the same class or in instances of different
classes – might occur in arbitrary sequences. Therefore, also the implementation
should be allowed to do it one way or the other. This as well as above mentioned
intentional non-determinism can result in adaptive test cases, where the next input
depends on a former, non-deterministic, output of the system under test. However, in
MOGENTES most test environments from the industrial partners were not able to
cope with adaptive test cases without substantial modifications.

Only a part of this issue can be dealt with in the transformation of “abstract” test
cases to the target notation (see step 6 in 3.3).

Fig. 5. Example for model (over-)factoring: (top) by combining transitions sharing the same
trigger, and its avoidance, (bottom) by spreading an exit action to all exiting transitions (al-
though in this case still not introducing separate transitions from states FlashAndSound and
Flash which would solve the above mentioned problem)

 Fault-Based Generation of Test Cases from UML-Models – Approach 281

Conclusion: be clear about the capabilities of the target test environment and address
this either by extending the test environment or by, e.g., avoiding concurrency and
non-determinism in the model.

6 Summary and Outlook

In this paper, an approach for model-based mutation testing has been presented,
which uses UML-state diagrams for requirements modeling. Furthermore, experi-
ences from its application to a specific use cases from the automotive domain have
been discussed. Its main benefits are automatically generated test cases, which

─ include oracles (i.e. expected results) according to requirements (which is diffi-
cult when deriving test cases from source code),

─ can explicitly detect faults (requirements violations) in target systems,
─ fulfill conventional coverage metrics such as states, transitions, equivalence

classes, or border values,

Hence, the generated test cases not only are stronger with respect to finding faults
than those developed with conventional coverage metrics, but also minimize the dis-
tance from the model to the final system. Of course, only modeled faults (more pre-
cisely: mutations) will be found, but at least our approach yields a known a priori
coverage of faults.

Besides the research issues mentioned in the previous section, i.e.

─ selection of fault models
─ good (requirements/test) model design, in particular to optimize finding imple-

mentation faults

A major issue to be addressed in future is the state space explosion during test case
generation, which is partially worsened by the problem of equivalent mutants (muta-
tions which do not change the model’s behavior), and which currently limits the ap-
plication of this approach to rather small or sufficiently simplified models. Strategies
to be investigated include symbolic computation, model decomposition, and to exploit
known techniques for model checking like partial order reduction. Of course, it is also
of interest to extend the approach to other modeling techniques, e.g., to UML activity
diagrams or sequence charts.

Acknowledgement. Besides Bernhard Aichernig, Harald Brandl, and Willibald
Krenn from Graz Univ. of Technology, who contributed significantly to the ground
on which the reported work was built upon, we thank our MOGENTES partners from
Ford, in particular Johannes Wiessalla, for the CAS example and fruitful discussions.

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Efficient Mutation Killers in Action.
In: Proceedings of the 4th IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST (March 2011) (in press)

282 R. Schlick, W. Herzner, and E. Jöbstl

2. Aichernig, B.K., Krenn, W.: Model-Based Generation of Test-Cases (for Embedded Sys-
tems) – State of the Art Survey. Deliverable 1.2 of EU FP7 project MOGENTES,
http://www.mogentes.eu/public/deliverables/
MOGENTES_1-19a_1.1r_D1.2_Survey_Part-a.pdf

3. Aichernig, B.K., He, J.: Mutation testing in UTP. Journal of Formal Aspects of Compu-
ting 21(1-2) (February 2009)

4. Aichernig, B.K., Peischl, B., Weiglhofer, M., Wotawa, F.: Protocol conformance testing a
SIP registrar: An industrial application of formal methods. In: Proceedings of the 5th IEEE
International Conference on Software Engineering and Formal Methods, pp. 215–224.
IEEE, London (2007)

5. Back, R.J.R., Kurki-Suonio, F.: Distributed cooperation with action systems. ACM Trans.
Program. Lang. Syst. 10(4), 513–554 (1988) ISSN 0164-0925

6. Bonsangue, M.M., Kok, J.N., Sere, K.: An approach to object-orientation in action sys-
tems. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 68–95. Springer, Heidelberg
(1998)

7. Brandl, H., Weiglhofer, M., Aichernig, B.K.: Automated Conformance Verification of
Hybrid Systems. In: Proceedings of the 2010 10th International Conference on Quality
Software (QSIC 2010), pp. 3–12. IEEE Computer Society, Los Alamitos (2010) ISBN
978-0-7695-4131-0

8. Briand, L.C., Di Penta, M., Labiche, Y.: Assessing and improving state-based class test-
ing: a series of experiments. IIEEE Trans. Software Eng. 30, 770–783 (2004)

9. Chaki, S., Clarke, S., Groce, A., Jha, S., Veith, H.: Formal Verification of Software Com-
ponents in C. Trans. of SW Engineering 30(6), 388–402 (2004)

10. Fabbri, S.C.P.F., Maldonado, J.C., Sugeta, T., Masiero, P.C.: Mutation testing applied to
validate specifications based on statecharts. In: Proceedings 10th International Symposium
on Software Reliability Engineering (Cat. No.PR00443), Boca Raton, FL, USA, pp.
S.210–219

11. Fröhlich, P., Link, J.: Automated test case generation from dynamic models. In: Hwang, J.
(ed.) ECOOP 2000. LNCS, vol. 1850, pp. 472–492. Springer, Heidelberg (2000)

12. Gnesi, S., Latella, D., Massink, M., Moruzzi, V., Pisa, I.: Formal test-case generation for
uml statecharts. In: Proc. 9th IEEE Int. Conf. on Engineering of Complex Computer Sys-
tems 2004, pp. 75–84 (2004)

13. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering PP(99), 1

14. Myers, G.J., Sandler, C.: The Art of Software Testing. John Wiley & Sons, Chichester
(2004) ISBN 0471469122

15. Oster, N., Saglietti, F.: Automatic test data generation by multi-objective optimisation. In:
Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 426–438. Springer, Heidelberg
(2006) ISBN 3-540-45762-3

16. Seifert, D., Helke, S., Santen, T.: Test Case Generation for UML Statecharts. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 462–468. Springer, Heidelberg
(2004)

17. Shao, Z.: Certified Software. Comm. ACM 53(12), 56–66 (2010)
18. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In: Margaria, T., Stef-

fen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146. Springer, Heidelberg (1996)
19. VIATRA, http://dev.eclipse.org/viewcvs/indextech.cgi/

gmt-home/subprojects/VIATRA2

 Fault-Based Generation of Test Cases from UML-Models – Approach 283

20. Walter, D., Täubig, H., Lüth, C.: Experiences in applying formal verification in robotics.
In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 347–360. Springer, Hei-
delberg (2010)

21. Weißleder, S., Schlingloff, B.H.: Deriving input partitions from UML models for automat-
ic test generation. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 151–163.
Springer, Heidelberg (2008)

22. Yang, Q., Ma, D., Zhao, Y., Li, Z.: Towards a Formal Verification Approach for Imple-
mentation of Web Services Specifications. In: Proc. of 2010 IEEE Asia-Pacific Services
Computing Conf., pp. 269–276 (December 2010)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 284–295, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ISO/IEC 15504-10: Motivations for Another
Safety Standard

Giuseppe Lami, Fabrizio Fabbrini, and Mario Fusani

Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell’Informazione
via Moruzzi, 1 – I-56124 Pisa, Italy

{giuseppe.lami,fabrizio.fabbrini,mario.fusani}@isti.cnr.it

Abstract. This paper presents the new standard ISO/IEC 15504 Part 10 Safety
Extension. It has been developed to extend the well-known ISO/IEC 15504
standard for process assessment and improvement in order to make consistent
judgment regarding process capability or improvement priorities for safety
related systems development. In order to avoid misunderstanding and confute
reluctance and worry related to such a new standard, its contents, purpose and
intended are explained in this paper. Moreover, comparison between the
ISO/IEC 15504 Part 10 and other existing safety standards for software is
provided as well as a discussion on possible integrations and consequent
benefits of its usage.

Keywords: Software Process Assessment, Software Safety Standards.

1 Introduction

Addressing software-related safety issues is an ever-growing need in the industry for
several reasons; the most important of them is the increasing importance of software
in safety-related systems.

Addressing the software process quality as a way to increase the confidence in the
quality of the resulting software product has been a key issue for three decades.

Today two principal schemes exist to evaluate software process quality and guide
its improvement: CMMI [1] (Capability Maturity Model Integration) and ISO/IEC
15504 [10] standard.

While some differences between CMMI (developed by the Software Engineering
Institute of the Carnegie Mellon University, Pittsburgh, PA) and ISO/IEC 15504 exist
in terms of structure and intended usage, they share some basic concepts, first of all
the concept of Process Capability. Process Capability is defined as the likelihood a
process achieves its defined goals.

Nevertheless neither CMMI nor ISO/IEC 15504 provide a sufficient basis to
perform a process capability evaluation with respect to the development of complex
safety critical systems.

 ISO/IEC 15504-10: Motivations for Another Safety Standard 285

For this reason in 2007 a Safety Extension to CMMI-DEV called +SAFE [2] has
been released. The aim was to extend CMMI to provide an explicit and specific
framework for functional safety with respect to the development of complex safety-
critical products. +SAFE is not specific to any safety standard: any standard that
defines safety principles, methods, techniques, work products, and product assessment
methods may be used to satisfy the goal of the framework as appropriate. The +SAFE
framework has been conceived to be used both for appraising safety-critical products
suppliers and for improving an organization’s capability in developing, sustaining,
maintaining, and managing safety-critical products.

Also ISO/IEC JTC1/SC7 WG10 in 2009 launched a New Work Item in order to
develop a new Technical Report (to be called ISO/IEC 15504 part 10 [3]) containing
additional processes and guidance to support the use of the existing exemplar process
assessment models for systems and software when applied to the assessment of safety
related systems development in order to make consistent judgment regarding process
capability and/or improvement priorities.

At the time of writing this paper ISO/IEC 15504-10 has finally reached a rather
stable version over its standardization path. ISO/IEC 15504-10 is the main object of
this paper.

While the scope and intended usage of ISO/IEC 15504-10 are well defined, in the
software safety community such a new standard is being accompanied by a certain
reluctance and worry because it is perceived as another standard against which
compliance can be claimed and then as an additional source of requirements and
constraints for the industry. In order to confute such a perception, in this paper the
contents of ISO/IEC 15504-10 will be described as well as its scope, purpose and
intended usage. Moreover, to add even more clarity, in this paper the mutual
relationships between ISO/IEC 15504-10 and other existing safety standards will be
discussed.

The paper is structured as follows: in section 2 a description of the structure and
content of ISO/IEC 15504-10 is provided as well as its purpose and scope. In section
3 a comparative analysis between ISO/IEC 15504-10 and the principal existing safety
standards addressing software is discussed. In section 4 the integration of ISO/IEC
15504-10 with the existing safety standards for software is discussed along with the
critical points to be addressed when 15504-10 will be used in practice. Finally, in
section 5 conclusions are given.

2 ISO/IEC 15504-10 Safety Extension

ISO/IEC 15504 Process assessment is a well-known standard that provides a scheme
for assessing the capability of system/software processes and a way to improve them.
Process capability is defined as a characterization of the ability of a process to meet
current or projected business goals. ISO/IEC 15504 provides a general framework in
which assessments can take place.

286 G. Lami, F. Fabbrini, and M. Fusani

However the ISO/IEC 15504 process assessment models for systems and software
do not currently provide a sufficient basis for performing a process capability
assessment of processes involved in the development of complex, safety critical
systems. Even the Automotive SPICE standard [11, 12] (a standard developed as a
tailored version of the ISO/IEC 15504 for the automotive domain) provides little
support for its use in a safety-related context.

In this section, we first provide a description of the overall ISO/IEC 15504
structure as well as its underlying principal concepts, then describe in more detail the
ISO/IEC 15504-10 structure and contents.

2.1 ISO/IEC 15504: Overview

It is not the aim of this section to extend our description to the different parts of the
standard; our aim is to give the reader understand the basic concepts underlying the
standard.

The purpose of ISO/IEC 15504 is to provide a scheme for evaluating the capability
of the system/software process and a way to improve them.

The three fundamental concepts of the standard are: the Process Reference Model
(PRM), the Process Assessment Model (PAM) and the Measurement Framework.

PRM: it is a model comprising the definition of the processes in a lifecycle described
in terms of “process purpose” and “process outcomes”, together with an architecture
describing the main relationships between processes. In other words, the PRM is the
set of the descriptions of the processes to be assessed. The standard doesn’t include
any specific PRM but it defines the requirements for defining a PRM. These
requirements are described in ISO/IEC 15504 – Part 2.

PAM: it is a model suitable for the purpose of assessing process capability, based on
one or more PRMs. The PAM provides a two-dimensional view of process capability:
in one dimension, it describes a set of process entities that relate to the processes
defined in the specific PRM (it is called Process Dimension); in the other dimension
the PAM describes capabilities that relate to the process capability levels and process
attributes according to the Measurement Framework defined in the standard.

Measurement Framework: it provides a schema for use in characterizing the
capability of an implemented process with respect to the PAM. Capability is defined
on a six-value ordinal scale. The scale represents increasing capability of the
implemented process (starting from level 0: incomplete process, to level 5: optimizing
process). In table 1 the description of the six Capability Levels within the ISO/IEC
15504 Measurement Framework is provided, along with the associated Process
Attributes to be fulfilled to achieve a certain Capability Level. For the description of
the meaning of each capability level, refer to [10]. The achievement of a certain
capability level is established by the rating of specific Process Attributes (i.e.
measurable characteristics of process capability applicable to any process). The
measurement of the Process Attribute uses a four-value rating scale.

 ISO/IEC 15504-10: Motivations for Another Safety Standard 287

The three basic concepts described above along with their relationships are
graphically shown in figure 1.

SPICE (Software Process Improvement and Capability dEtermination) is the
acronym used to identify a major international initiative launched in early 90’s to
support the development of the new International Standard ISO/IEC 15504 for
(Software) Process Assessment. The SPICE project was set up under the auspices of
the Subcommittee 7 (Software Engineering) of Joint Technical Committee between
ISO (International Organization for Standardization) and IEC (International
Electrotechnical Commission) through its Working Group on Process Assessment
(WG10).

The project had three principal goals:

- to develop a working draft for a standard for software process assessment,
- to conduct industry trials of the emerging standard,
- to promote the technology transfer of software process assessment into the

software industry worldwide.

The first two goals having been satisfyingly accomplished [Rout 2007], the SPICE
activity has continued with the implementation of more normative and informative
parts (including Parts 5 and 6, that present exemplar PRMs referring to the
ISO/IEC 12207 and ISO/IEC 15288 standards), up to the Part 10 that is discussed
this paper.

Table 1. Capability Levels description

Capability Level 0
Incomplete Process

The process is not implemented, or fails to achieve its process
purpose.

Capability Level 1
Performed Process

The implemented process achieves its process purpose

 Process Attribute 1.1 Process performance
Capability Level 2
Managed Process

The previously described Performed process is now implemented
in a managed fashion (planned, monitored and adjusted) and its
work products are appropriately established, controlled and
maintained.

 Process Attribute 2.1 Performance management
 Process Attribute 2.2 Work product management
Capability Level 3
Established Process

The previously described Managed process is now implemented
using a defined process that is capable of achieving its process
outcomes.

 Process Attribute 3.1 Process definition
 Process Attribute 3.2 Process deployment
Capability Level 4
Predictable Process

The previously described Established process now operates within
defined limits to achieve its process outcomes

 Process Attribute 4.1 Process measurement
 Process Attribute 4.2 Process control
Capability Level 5
Optimizing Process

The previously described Predictable process is continuously
improved to meet relevant current and projected business goals

 Process Attribute 5.1 Process innovation
 Process Attribute 5.2 Continuous optimization

288 G. Lami, F. Fabbrini, and M. Fusani

SPICE and ISO/IEC 15504 are often used as synonyms in the common understanding
even though they are different.

Fig. 1. ISO/IEC 15504: basic concepts

2.2 ISO/IEC 15504-10: Overview

In order to make consistent judgment regarding process capability or improvement
priorities, additional guidance and processes are needed in any ISO/IEC 15504 PRM
and PAM. With this intention, in 2009, a New Work Item proposal was submitted to
ISO/IEC JTC1/SC7 Secretariat with the aim of developing a safety extension to
ISO/IEC 15504.

At the date this paper is written, ISO/IEC 15504-10 Safety Extension (currently a
DTR – Draft Technical Report) has finally reached a stable version over its
standardization path.

The DTR is composed of two principal parts: Process definitions and Lifecycle
guidance.

2.2.1 ISO/IEC 15504-10: Process Definitions
Three processes have been defined in clause 4 of the ISO/IEC 15504-10 DTR. These
are the Safety Management process, the Safety Engineering process and the Safety
Qualification process. The Process definition complies with the ISO/IEC 15504
standard style where each process definition is composed of:

- Process Name and Id.
- Process Purpose
- Process Outcomes

 ISO/IEC 15504-10: Motivations for Another Safety Standard 289

The processes defined in ISO/IEC 15504-10 are reported below in tabular format:

Process ID SAF.1

Process
Name

Safety Management

Process
Purpose

The purpose of the Safety Management Process is to ensure that
products, services and life cycle processes meet safety objectives.

Process
Outcomes

As a result of the successful implementation of the Safety
Management process:
1) Safety principles and safety criteria are established.
2) The scope of the safety activities for the project is defined.
3) Safety activities are planned and implemented.
4) Tasks and resources necessary to complete the safety activities are

sized and estimated.
5) Safety organization structure (responsibilities, roles, reporting

channels, interfaces with other projects or OUs …) is established.
6) Safety activities are monitored, safety-related incidents are

reported, analyzed, and resolved.
7) Agreement on safety policy and requirements for supplied

products or services is achieved.
8) Supplier’s safety activities are monitored.

Process

ID
SAF.2

Process
Name

Safety Engineering

Process
Purpose

The purpose of the Safety Engineering process is to ensure that safety
is adequately addressed throughout all stages of the engineering
processes.

Process
Outcomes

As a result of the successful implementation of the Safety Engineering
process:
1) Hazards related to product are identified and analyzed.
2) Hazard log is established and maintained.
3) Safety demonstration for the product lifecycle is established and

maintained.
4) Safety requirements are defined.
5) Safety integrity requirements are defined and allocated.
6) Safety principles are applied to development processes.
7) Impacts on safety of change requests are analyzed.
8) Product is validated against safety requirements.
9) Independent evaluations are performed.

290 G. Lami, F. Fabbrini, and M. Fusani

Process ID SAF.3

Process
Name

Safety Qualification

Process
Purpose

The purpose of the Safety Qualification process is to assess the
suitability of external resources when developing a safety-related
software or system.

Process
Outcomes

As a result of the successful implementation of the Safety
Qualification process:

1) Safety qualification strategy for external resources is developed.

2) Safety qualification plan is developed and executed.

3) Safety qualification documentation is written.

4) Safety qualification report is produced.

2.2.2 ISO/IEC 15504-10 Safety Extension: Lifecycle Guidance
Clause 5 of ISO/IEC 15504-10 DTR provides guidance for assessors in considering
specific safety-related aspects when a process assessment is performed in an
environment where safety-related software/systems are developed. Guidance is
provided in tabular format, and gives the assessors, for each process contained in
ISO/IEC 15504-5 and ISO/IEC 15504-6 (i.e. those parts of the ISO/IEC 15504
standard where software and system related processes are respectively identified), an
indication of the additional issues to be taken into account at assessment time. The
issues are provided by means of sentences indicating specific relationships between
the processes in ISO/IEC 15504-5 and ISO/IEC 15504-6 and those in ISO/IEC
15504-10. Moreover, relevant aspects to be considered to improve the completeness
of the data-gathering phase of the assessment are highlighted.

3 Comparison of ISO/IEC 15504-10 with the IEC 61508 Family
Standards

ISO/IEC 15504-10 Safety Extension differs from existing safety standards for
software in terms of purpose, scope and intended usage. These differences are
presented and discussed in this section.

Different safety standards for software-intensive systems exist. They differ from each
other principally on the basis the intended application domain they are to be applied to.

The well-known standard IEC 61508 [4] addresses functional safety of
electrical/electronic/programmable electronic safety-related systems. It provides
general requirements for specific lifecycle phases of such systems, including those
regarding the development of the software parts and their integration in the system.
These requirements, mainly technical although not excluding management, come
from the instantiation of engineering processes in a typical V-like system lifecycle
[13, 14, 15]. The concept of processes as re-usable and improvable sets of practices,
on which both SPICE and CMMI are grounded, is missing in IEC 61508 and in its
derived standards. On the other hand, SPICE and CMMI have no concern on how

 ISO/IEC 15504-10: Motivations for Another Safety Standard 291

practices and techniques are implemented in a system lifecycle. In this sense, these
two categories of standards - the processes-oriented one and the lifecycle-oriented one
- are complementary to each other.

Yet, due to the fact that, in practice, the final product of lifecycle processes is a
defined system, the lifecycle evidence to be compared against a specific SPICE PRM
and those to be compliant with IEC 61508 or derivates (for a product generated by
executing the same processes) may partially overlap. This fact is causing a debate
among the interested parties, but the complementarity cannot be denied and solutions
to this problem are likely to be found. The issue involves economic aspects and is
interesting indeed, but is out of the scope of this paper.

As mentioned, other standards have been derived from IEC 61508 according to the
application domain (e.g. railways, automotive, medical) they refer to. In particular,
the more recent of them is ISO 26262 [5] that addresses functional safety in the
automotive domain. In this standard, basically another lifecycle-oriented one, some
lifecycle processes have been defined, possibly partially mappable to the ones defined
in ISO/IEC 12207 and ISO/IEC 15288,

IEC 61508 and its derived domain-specific safety standards are a representative
sample of safety standards used in software development. For this reason, in this
section, they are compared with ISO/IEC 15504-10 in order to point out the
differences and possible commonalities.

For clarity reasons we consider the following issues to compare: intended use (i.e.
the way it should be used), purpose, scope, reference domain, clauses.

Intended use: The IEC 61508 family standards, each of them in its application
domains, are used as reference software life cycles as well as requirement schemes
against which compliance can be claimed and required.

The context in which ISO/IEC 15504-10 should be used is different.
It has been developed in order to give the ISO/IEC 15504 assessors and improvers

the possibility to perform compliant assessment and improvement initiative also in
contexts where safety-relevant systems are developed. In fact, because developing
safety-critical systems requires specialized processes, techniques, skills and
experience, process amplifications are needed in the area of safety management,
safety engineering and the selection and qualification of software tools and libraries.
Moreover, additional informative components concerning additional lifecycle
verification activities related to the methods and techniques selected for the safety
integrity levels are needed too.

The Safety Extension, developed as a standalone document, has be conceived to be
used in conjunction with the Part 5 and/or Part 6 process assessment models by
experienced assessors with minimal support from safety domain experts.

The Safety Extension has been developed independent of any specific safety
standards that define safety principles, methods, techniques and work products,
however elements of relevant safety standards will be able to be mapped to the Safety
Extensions and the Safety Extensions will be extendable to be able to include specific
safety standards requirements.

The Safety Extension does not include a glossary of new terms such as hazard,
FMEA, safety argument, safety incident etc. Such terms will be defined with
reference to existing source materials with commonly accepted terms and usage.

292 G. Lami, F. Fabbrini, and M. Fusani

Purpose: The common characteristic of the IEC 61508 family standards is that they
are conceived to provide a scheme that, on the basis of a defined integrity level of the
system under development, set requirements for the development project and the
organization that carries out it.

The purpose of the ISO/IEC 15504-10, on the contrary, is to provide a way to
measure the capability of safety-related processes (Safety Management, Safety
Engineering and Safety Qualification) as well as a scheme for their improvement.
These facts are very important in order to avoid misinterpretations about the role of
the ISO/IEC 15504-10.

Scope: The scope of application of the IEC 61508 family standards includes the
technical and managerial activities of a development project. The scope of the
ISO/IEC 15504-10 is instead limited to the SAF.1, SAF.2 and SAF.3 processes.

Application domain: The IEC 61508 is a generic standard not related to any specific
application domain. The standards belonging to its family are typically developed
with the aim to be specific for a particular application domain. In fact, for instance,
the ISO 26262 [5] is for the automotive domain, the IEC 60880 [9, 16] for nuclear
power, the EN 50128/9 [8] for rail transport, the IEC 60601 [6] for medical electrical
equipment.

The ISO/IEC 15504-10 is not intended for any specific application domain.

Clauses: The clauses contained in the IEC 61508 family standards can be, according
to the defined Integrity level, mandatory or recommended. They are then to be
considered as technical constraints for a project under development.

On the contrary ISO/IEC 15504-10 does not prescribe any specific technique or
method, it enlarges the scope in which the ISO/IEC 15504 can be used maintaining
the original characteristic of considering the process (the “what”) and not requiring
the adoption of any specific technique or method (the “how”).

4 Integrating ISO/IEC 15504-10 with Existing Safety Standards

In this section the way ISO/IEC 15504-10 may be integrated with other existing
domain-specific safety standards belonging to the IEC 61508 family is discussed.

The main activities in the scope of the IEC 61508 family of standards can be
divided into two groups: Safety related activities, Technical and Project Management
activities [4, 13].

Safety related activities are: Hazard analysis & risk assessment, Safety analysis,
Functional Safety concept, Definition of technical safety concept, Safety management
(overall, during development, after SOP), Safety qualification (tools, libraries,
components), Safety validation (for software and system).

Technical and project management activities are: Configuration Management
(CM), Project management, Problem Resolution & Change management,
Documentation, Quality management, Software/System Requirements Management,
Software Development, Software/system Validation and Verification.

As a first step the activities covered by both IEC 61508 and ISO/IEC 15504-10 are
identified.

 ISO/IEC 15504-10: Motivations for Another Safety Standard 293

Fig. 2. Overlapping between IEC 61508 and ISO/IEC 15504-10 processes-related activities

In figure 2 the overlapping area is represented in the grey circle.
To complete the discussion about the integration between IEC 61508 and ISO/IEC

15504-10 we may refer to the two typical scenarios in which the two standards could
be integrated.

Scenario 1: Compliance with one of the IEC 61508 family standards achieved
In this case, from the achievement of the compliance with an IEC 61508 family
standard the achievement of Capability Level 2 (Managed) of the processes in
ISO/IEC 15504-10 can be inferred.

In fact, the accomplishment of the clauses of the IEC 61508 family standard
guarantees the performance of the three processes in ISO/IEC 15504-10 (then the
fulfillment of the Process Attribute 1.1) as well as a sufficient degree of management
of the project performance (Process Attribute 2.1) and Work Product management
(Process Attribute 2.2) related to those three processes.

Scenario 2: Capability level 2/3 achieved for the processes in ISO/IEC 15504-10
In this case, achieving Capability Level 2 or 3 guarantees that the processes in
ISO/IEC 15504-10 are performed, managed and (if Capability Level 3 is achieved)
defined at the organizational level and applied (possibly with some tailoring).
Unfortunately, since ISO/IEC 15504-10 addresses the processes (i.e. it says what to
do but not how) there is no guarantee that the clauses of the IEC 61508 family
standard are satisfied by the way the processes of ISO/IEC 15504-10 are performed.

Finally, in order to complete the analysis of the possible integration between the
IEC 61508 family standards and ISO/IEC 15504-10, the following question should be
answered: Since compliance with a safety standard for software requires effort, why
should my organization spend additional effort for ISO/IEC 15504-10?

The answer should be based on the following considerations:

ISO/IEC 15504-10 allows safety processes to be assessed in terms of process
capability. This offers a new opportunity to improve those processes. In fact, the

294 G. Lami, F. Fabbrini, and M. Fusani

benefits derived from the application of ISO/IEC 15504 in terms of process
improvement can be extended to safety processes. Improving capability means
obtaining a more efficient and repeatable development process; reducing the risk of
missing project goals (and then to maintain projects within schedule, cost and quality
estimations), and identifying improvement areas in the organization. In other words,
even though the compliance with a safety standard for software can be achieved
independently of the capability level of processes, on the other hand improving the
capability of processes allows an organization to enhance the way such a compliance
can be obtained and maintained by reducing project risks and long term costs.

Moreover, adopting the ISO/IEC scheme allows for a measurement scheme for
process capability that can be used to claim the achievement of a certain capability
level for the key processes, as those dealing with safety. Such a possibility allows for
the establishment of benchmarking mechanisms.

5 Conclusions

ISO/IEC 15504 is a well-known standard that provides a scheme for assessing the
capability of the software processes and a way to improve them. Process capability is
defined as a characterization of the ability of a process to meet current or projected
business goals.

The published ISO/IEC 15504 process assessment models for systems and
software do not currently provide a sufficient basis for performing a process
capability assessment of processes with respect to the development of complex safety
critical systems. For this reason a Safety Extension of the ISO/IEC 15504 is going to
be issued under the name of ISO/IEC 15504 Part 10 Safety Extension (ISO/IEC
15504-10). ISO/IEC 15504-10 differs from the existing safety standards for software
in terms of purpose, scope and intended usage. These differences have been presented
and discussed in this paper. In particular, unlike the existing safety standards (for
instance IEC 61508, IEC 60880, EN 50128 and ISO 26262) ISO/IEC 15504-10
Safety Extension does not provide a software life cycle and has not been conceived as
a certification scheme with which compliance can be claimed. On the contrary, it does
provide a way to measure the capability of safety-related processes (Safety
Management, Safety Engineering and Safety Qualification) as well as a scheme for
their improvement. These points are very important in order to avoid
misinterpretations of the role of ISO/IEC 15504-10.

Moreover, in this paper, the relationships between ISO/IEC 15504-10 and IEC
61508 (and the standards derived from it) have been discussed. The advantages of the
integration of these two standards have been identified as well as the mutual support
they can provide to each other: in particular, their integration allows an organization
aiming at being compliant with a IEC 61508 family standard to extend the possibility
to assess and improve process capability also for safety related process.

References

1. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Reading (2004)

2. Software Engineering Institute “+SAFE, V1.2 A Safety Extension to CMMI-DEV, V1.2.
Technical Note CMU/SEI-2007-TN006 (2007)

 ISO/IEC 15504-10: Motivations for Another Safety Standard 295

3. International Organization for Standardization. ISO/IEC 15504 International Standard
Information Technology – Software Process Assessment- Part 10: Safety Extension
ISO/IEC DTR 15504-10 (2010)

4. International Electrotechnical Commission Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems (IEC 61508) (2005)

5. International Standardization Organization Road Vehicles – Functional Safety (ISO/DIS
26262) (2010)

6. International Electrotechnical Commission Medical Electrical Equipment – Part 1:
General requirements for safety and essential performance (IEC 60601-1) (2005)

7. CENELEC EN 50128 Railway application – Communications, signaling and processing
systems – Software for railway control and protection systems (2001)

8. CENELEC EN 50129 Railway application – Communications, signaling and processing
systems – Safety related electronic systems for signaling (2003)

9. International Electrotechnical Commission Nuclear power plants – Instrumentation and
control systems important to safety- software aspects for computer-based systems
performing category A functions (IEC 60880) (2006)

10. International Organization for Standardization. ISO/IEC 15504 International Standard
Information Technology – Software Process Assessment (2008)

11. Automotive SPICE, Process Assessment Model (PAM) v2.5 (2010)
12. Automotive SPICE, Process Reference Model (PRM) v4.5 (2010)
13. Smith, D.J., Simpson, K.G.L.: Functional Safety: A Straightforward Guide to Applying

IEC 61508 and related Standards, 2nd edn. Elsevier, Butterworth Heinemann (2004)
14. Gall, H.: Functional Safety IEC 61508 / IEC 61511. The impact to Certification and the

User. In: Proc. Of the IEEE/ACS International Conference on Computer Systems and
Applications (2008)

15. Bilich, C.G., Zaijun, H.: Experiences with the Certification of a Generic Functional Safety
Management Structure According to IEC 61508. In: Buth, B., Rabe, G., Seyfarth, T. (eds.)
SAFECOMP 2009. LNCS, vol. 5775, pp. 103–117. Springer, Heidelberg (2009)

16. Lahtinen, J., Johansson, M., Ranta, J., Harju, H., Nevalainen, R.: Comparison between
IEC 60880 and IEC 61508 for certification purposes in the nuclear domain. In: Schoitsch,
E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 55–67. Springer, Heidelberg (2010)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 296–309, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Automatic Synthesis of SRN Models from System
Operation Templates for Availability Analysis

Kumiko Tadano, Jiangwen Xiang, Masahiro Kawato, and Yoshiharu Maeno

Service Platforms Research Laboratories, NEC Corporation
Kawasaki 211-8666, Japan

{k-tadano@bq,j-xiang@ah,m-kawato@ap,y-maeno@aj}.jp.nec.com

Abstract. In order to cost-effectively verify whether system designs of
information systems satisfy availability requirements, it is reasonable to utilize
a model-based availability assessment of system design containing
administrative operation procedures and a system configuration, because it does
not require installing and testing in a real environment. However, since the
model-based availability assessments typically require special expertise in
mathematical modeling, it would be difficult for a practical system designer to
build a correct availability model to assess his/her system design. Although
there have been several methods to automatically synthesize the availability
model from widely-used design description languages, the synthesized models
do not capture impacts caused by operations in operation procedures on
availability. To address this issue, this paper proposes a method to
automatically synthesize an availability model in the form of stochastic reward
net (SRN) from Systems Modeling Language (SysML) diagrams to specify
operation procedures and system configurations. Modeling all the features of
individual operations is impractical because the amount of required information
in SysML diagrams input by system designers becomes larger as the number of
features increases. To design the availability models with a smallest possible
number of features, we classify typical availability-related features of
operations into operation templates. The feasibility of the proposed method is
studied by a case study based on a real system of a local government. We
succeeded in synthesizing the availability models from the SysML diagrams
based on an operation procedure and system configuration of the real system,
and analyzing the synthesized availability models with an existing model
analysis tool.

Keywords: availability model, stochastic reward Nets (SRNs), Petri nets,
Systems Modeling Language (SysML), system operations.

1 Introduction

In order to verify wether system designs of information systems satisfy availability
requirements, a system designer needs to quantitatively evaluate the system
availability of the system. To evaluate system availability with limited budget, it is
substantially reasonable to utilize a model-based availability assessment of system

 Automatic Synthesis of SRN Models from System Operation Templates 297

design containing administrative operation procedures and a system configuration,
because it does not require installing and testing in a real environment. Many model-
based availability assessments of complex information systems have been performed
successfully [1] [2] [3]. However, since the model-based availability assessments
typically require special expertise in mathematical modeling, it would be difficult for
a practical system designer to build a correct availability model to assess his/her
system design.

An automated availability model synthesis method is necessary to support a model-
based availability assessment of the system design. Several researchers proposed the
methods to automatically derive stochastic models for availability/reliability/
performance assessment such as Dynamic fault tree (DFT) [9], Timed Petri Net (TPN)
[8], Stchastic Petri net (SPN) [10], Generalized Stochastic Petri Nets (GSPN) [11] [12],
Deterministic and Stochastic Petri Nets (DSPN) [13], Stochastic Well-formed Net
(SWN) [14] and Stochastic Reward Nets (SRN) [7] [15], from widely-used design
description languages such as Unified Modeling Language (UML) [4], Systems
Modeling Language (SysML) [5] and Architecture Analysis & Design Language
(AADL) [6]. However, the models synthesized by these existing methods do not
capture an impact caused by an operation procedure on system availability. Not only
system configuration, but also administrative operation procedures impose a
significant impact on the system availability. Quantitative assessment of the impact of
various operations in the administrative operation procedures in a systematic manner
is necessary.

To address this issue, this paper proposes a method to automatically synthesize an
availability model in the form of stochastic reward net (SRN) [16] from SysML
diagrams to specify operation procedures and system configurations. The synthesized
SRN can be used to assess the impact of the operation procedure on the availability.
Modeling all the features of operations is not practical for the following reasons: (1)
the amount of information which the system designer needs to input increases as the
number of features increases, and (2) it would take long time to calculate the system
availability when the number of features is large, since the number of states in the
models increases as the number of features increases. We choose the smallest number
of features significant in modeling availability and classify them into five categories.
This method is one of the essential functions of our case-based system assessment
environment (CASSI) [17]. We apply the method to the information system for a
local government as a case study, and analyze the availability model synthesized from
SysML diagrams of operation procedure and system configuration.

2 Availability Model Synthesis Method

In this section, we propose a method to automatically synthesize an availability model
in the form of SRN from SysML diagrams to specify operation procedures and system
configurations.

2.1 Definition of System Designs

In this study, we define system design as follows. System design is created by a
system designer. System design contains procedures of system administration

298 K. Tadano et al.

operations (henceforth, "operation procedures" for short) and a system configuration.
The system configuration describes the system components such as operating
systems, databases and applications which compose the system. The operation
procedure is composed of system administration operations (henceforth, "operations"
for short) such as status check, backup and change of configuration settings. The
operations are performed by a system operator in accordance with the predetermined
operation procedure.

2.2 Overview of Availability Assessment Process

Figure 1 shows the process to predict availability of the system as a target of
assessment. At first, a system designer inputs SysML diagrams for the system design
and values of parameters associated with portions of the SysML diagrams. The
SysML diagrams consist of Activity Diagrams (AD) to describe system operation
procedure, and Internal Block Diagrams (IBD) to describe system configuration.

Next, the availability model synthesis method automatically translates the input
SysML diagrams to SRN with predefined SRN model modules stored in the
translation rules repository. The availability model consists of a control flow model
and operation models synthesized from AD, and system configuration models
synthesized from IBD.

Finally, availability measures such as steady-state availability are calculated from
the output availability models with such analysis tools as SPNP/SHARPE[18], [19].
This paper focuses on the availability model synthesis method which translates the
operation procedure and system configuration to SRN automatically.

SysML Diagram

Availability model

System
designer

input

Availability model synthesis

Availability analysis

Internal Block Diagram (IBD)

Activity Diagram (AD)

System configuration model

Control flow model

Operation model

Availability measures

improve

feedback

Translation rules repository
Corresponding
SRN model
modules

Portions of
SysML
diagram

Corresponding
SRN model
modules

Portions of
SysML
diagram

Fig. 1. Overview of availability assessment process

2.3 Approach for Availability Model Synthesis

It is not practical to model the all features of individual operations because the
amount of information which the system designer needs to input increases as the
number of features increases. In addition, it would take long to calculate the system
availability when the number of features is large, since the number of states in the
models increases as the number of features increases. To reduce the number of

 Automatic Synthesis of SRN Models from System Operation Templates 299

necessary features in synthesizing the models, the operations are classified into the
following five categories as the minimal set of features in modeling availability.

(1) operations which do not influence availability (e.g. checking status)
(2) operations which cause planned outage (e.g. scheduled maintenance)
(3) operations whose failure may cause failure of the system component (e.g.

making mistakes in configuration)
(4) operations which recover the system from the planned outage (e.g. recovery

from the scheduled maintenance)
(5) operations which recover the system from unexpected errors（e.g. recovery

from the system failure）

The operations (1) are not included in the availability models. Details of the
operations (5) depend on the case-by-case decision of the human system operator or
the service person called by the system operator, and cannot be determined in
advance. Thus the operations of (5) are defined as a special transition to make the
whole system recovered with an execution time much longer than other operations.
The rest of the operations (2), (3), and (4) are represented by pre-defined operation
templates described in SRN. Malicious operations which reduce availability are not
within the scope of the paper (For security analysis, see [20]).

2.4 Availability Model Synthesis Process

The availability model synthesis method defines the translation rules between the
input SysML diagrams and the output availability model. The availability model
synthesis includes the following steps. Individual steps are detailed in the subsections.

(Step 1) user input
(Step 2) translation of operation procedure
(Step 3) translation of individual operations
(Step 4) translation of system configuration

2.4.1 User Input
The proposed method supports Activity Diagrams (AD) and Internal Block Diagrams
(IBD) as an input. AD represents operation procedures, and one of the elements in
AD called action represents an operation to control the components in a system. IBD
represent static system configurations, and one of the elements called part represents
a system component like OS. Figure 2 shows examples of input IBD with a part and
AD with an action. Parameter values associated with an action representing an
operation are the success probability of the operation cop, time to complete the
operation top, the probability at which the failure of the operation causes the failure of
the operation target ctgtfail, the operation target, and the corresponding operation
category for the operation described in Section 2.3. The operation category is
determined according to three questions in Table 1. Depending on the answers to the
questions, one of the categories (1) to (4) is selected. The parameter value associated
with the flow final node is the repair probability of the system from an unexpected
error μ. These parameter values are input in a note associated with the action or the
flow final node in AD. Regarding IBD, a parameter value associated with a part
corresponding to a system component is the failure probability of the system
component λ. These parameter values are utilized as transition probabilities of

300 K. Tadano et al.

synthesized availability models in the form of SRN. The parts corresponding to the
operation targets are specified as the values of “operation target” in the notes
associated with actions in AD by the system designer. Although SysML allocation
also can be used to express various associations between elements, we use notes since
SysML diagrams would be complicated if we use allocations when there are many
operations and different operation targets. By inputting these parameter values in the
notes in SysML diagrams before the synthesis of the SRN model, the system designer
does not have to be aware of the underlying SRN models. When multiple operations
are included in a single command such as reboot, multiples actions are used to
describe the command in AD.

The system designer defines operation procedure as either scheduled or failure
recovery. The scheduled operation procedure is carried out depending on the elapsed
time. In this case, the system designer specifies the time. The failure recovery
operation procedure is carried out when a failure happens. In this case, the system
designer specifies the part of the IBD as a trigger to initiate the procedure.

The system designer also defines availability measures of interest. This paper
focuses on the system availability and the probability at which the operation
procedure is in execution as the measures of interest. To define the system
availability, the system designer specifies under what conditions the system is
regarded as available. To determine the conditions, the system designer selects the
part(s) in IBD corresponding to the system component(s) which need(s) to be
functioning. Based on the conditions, system availability is computed in analysis
phase. The probability at which the operation procedure is in execution is
automatically calculated.

operation x

repair probability of the system from an unexpected failure μ= 0.333

success probability of operation x: cop_x = 0.99

time to complete the operation x: top_x = 1/60 [h]

probability at which failure of operation x causes target failure: ctgtfail_x = 0.5

operation target = system component A

operation category = 2

ad operation procedure A

Initial node

Activity final node

Flow final node
Decision node

Action node

note

Component Y

Ibd system configuration A

Failure probability of component Y λ= 0.0001

part

note

Fig. 2. Examples of input SysML diagrams: an Activity Diagram (AD) and an Internal Block
Diagram (IBD)

Table 1. Questions on the features of operations for the system designer

Questions Answers
YES No

(i) Does the operation stop its target component
(i.e., planned outage) on purpose?

Select (2) Go to Question (ii)

(ii) Can the operation failure cause unplanned
outage (failure) of its target component accidently?

Select (3) Go to Question (iii)

(iii) Does the operation start up is target
component from planned outage?

Select (4) Select (1)

 Automatic Synthesis of SRN Models from System Operation Templates 301

2.4.2 Translation of Operation Procedure
Figure 3 shows the process of translation of an Activity Diagram (AD). The AD is
divided, and translated into pre-defined SRN modules stored in the translation rules
repository. The SRN module to represent the conditional branch which depends on
the status of the operation has places Pop_exec, Pop_success, and Pop_fail. The places are the
interfaces to operation models. If the operation succeeds, a token moves to the next
operation. If all the operation succeeds, the token moves to the place Pend and returns
to initial place Pwait. If the operation fails, the operation (5) is executed to recover
from the unexpected error. The system recovers in the average time trepair (=1/μ) and
the token returns to the place Pstart.

If the operation procedure is failure recovery, the transition Tstart is enabled by
guard function g4 when a certain system configuration model (see 2.4.4) is in the
DOWN state. If the operation procedure is scheduled, an element of AD called “wait
time action” is translated to the SRN module to represent clock shown in Figure 4,
and the transition Tstart is enabled by guard function g4 in regular time interval tp. The
SRN model is a collection of these translated SRN modules.

Pop_success

Prepair

μ

Pwait

Pstart

Pop_fail

Poperating

Pop_end

Pop_exec

operation model

2.Translate each part to a
predefined SRN module

Operation A

[success]

[fail]

Each operation

1.Split AD into parts

Operation
procedure start

Operation
procedure end

g4
Tstart

Pend

Operation A

Operation B

[success]

[fail]

Input activity
diagram (AD)

Pop_success

Palert

1/talert

Pwait

Pstart

Pend

Pop_fail

Poperating
Pop_exec

g4Tstart

3.Compose SRN modules
into a control flow model

Pop_end

Palert

Operation
Procedure
stop

Initial node

Activity final node

Flow final node

Decision node

Action node

Fig. 3. Translation of an input Activity Diagram (AD) into a control flow model

1/tp

Pstartop PclockPwait

Pstart

g4Tstart

Element in Activity Diagram Corresponding SRN module

Wait time action

Fig. 4. Translation of an element of an input Activity Diagram (AD) into a SRN module in the
case that the operation procedure is performed in a certain time interval, i.e., triggered by the
elapsed time

2.4.3 Translation of Individual Operation
The actions in AD are translated to operation models with the operation templates
shown in Figure 5, which are stored in the translation rules repository. The operation
templates are for the operation categories (2), (3), (4) in Section 2.3.

302 K. Tadano et al.

User’s answer to the question

Pop_exec: the operation is being executed
Pop_fail: the operation failed
Pop_sucess: the operation succeeded
Pstop: the target is stopped as planned

top: average time to complete the operation
cop: success probability of the operation

(2) Operation stops the target

ctgtfail: probability at which
operation failure causes target
failure

Parameters

Pstartup: the target is started up
from planned outage

(4) Operation starts the target

Ptgt_fail: operation failure caused
target failure
Ptgt_avail: operation failed but
nothing happened

(3) Operation may cause the
failure of the target

Places

Corresponding
operation
templates

User’s answer to the question

Pop_exec: the operation is being executed
Pop_fail: the operation failed
Pop_sucess: the operation succeeded
Pstop: the target is stopped as planned

top: average time to complete the operation
cop: success probability of the operation

(2) Operation stops the target

ctgtfail: probability at which
operation failure causes target
failure

Parameters

Pstartup: the target is started up
from planned outage

(4) Operation starts the target

Ptgt_fail: operation failure caused
target failure
Ptgt_avail: operation failed but
nothing happened

(3) Operation may cause the
failure of the target

Places

Corresponding
operation
templates

cop
1-cop

1/top

ctgtfail1-ctgtfail

Pop_exec

Pop_fail

Ptgt_avail Ptgt_fail

Ptgt

Pop_sf

Pop_success

cop
1-cop

1/top

ctgtfail1-ctgtfail

Pop_exec

Pop_fail

Ptgt_avail Ptgt_fail

Ptgt

Pop_sf

Pop_success

cop
1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstop

cop
1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstop

cop

1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstartup

cop

1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstartup

Fig. 5. Operation templates used for the synthesis of operation models

2.4.4 Translation of System Configurations
The parts in IBD are translated to system configuration models. Each system
configuration model includes UP and DOWN states. This simple system
configuration model can be merged with SRN models representing complex system
configurations such as redundant configurations including clustering and
hot/warm/cold standby by the method proposed in Ref. [15].

Figure 6 shows the SRN modules used for the synthesis of system configuration
models. The state transitions of SRN modules are as follows.

(a) intrinsic (spontaneous) failure
(b) unplanned (unexpected) outage when the token is in Ptgt_fail in the operation

template (3)
(c) planned outage when the token is in Pstop in operation template (2)
(d) recovery from the unplanned outage when the token is in Prepair in the

control flow model
(e) recovery from the planned outage when the token is in Pstartup in the

operation template (4)

The SRN modules (a) and (d) are mandatory. Table 2 shows the required SRN
modules which depends on the selected operation templates. The same places of the
required SRN modules are merged into one.

(e) Recovery
from planned
outage

(d) Recovery
from failure

(c) Planned outage
by operation

(b) Unplanned
outage caused by
operation failure

(a) Intrinsic failure

g3: Enabled if a
token is in Pstartup

g3: Enabled if a
token is in Prepair

g2: Enabled if a
token is in Pstop

g1: Enabled if a
token is in P

ｔｇｔfail

Guard
functions

Pdown: the system
component is down

Pup: the component is
functioning

Places

λ：intrinsic failure
probability

Parameters

Model
modules

UPDown

(e) Recovery
from planned
outage

(d) Recovery
from failure

(c) Planned outage
by operation

(b) Unplanned
outage caused by
operation failure

(a) Intrinsic failure

g3: Enabled if a
token is in Pstartup

g3: Enabled if a
token is in Prepair

g2: Enabled if a
token is in Pstop

g1: Enabled if a
token is in P

ｔｇｔfail

Guard
functions

Pdown: the system
component is down

Pup: the component is
functioning

Places

λ：intrinsic failure
probability

Parameters

Model
modules

UPDown

λ

Pdown

Pup

Pdown

Pup

Tfailg1

Pdown

Thalt

Pup

g2

Pdown

Pup

Pdown

Pup

g3 g4Trepair Tstartup

Fig. 6. SRN modules used for synthesis of system configuration models

 Automatic Synthesis of SRN Models from System Operation Templates 303

Table 2. SRN module required for synthesis which are determined by operation templates
selected in 2.4.3

Selected operation templates Required SRN modules for synthesis
(2) (c)
(3) (b)
(4) (e)

3 Case Study

We applied the method to a system containing DataBase Management System
(DBMS) and load balancer for a real local government shown in Ref. [22] as a case
study. In the case study, first we classify the operations in the operation procedures in
[22] according to the classification in 2.3. Then we show the synthesis of the
availability model from SysML diagrams describing an operation procedure and
system configuration by the proposed method, and the analysis of the synthesized
availability model with SPNP.

3.1 Classification of Operations

We classify the operations in the operation procedures in [22] according to the
classification in 2.3. As for the operations corresponding to the operation category (5),
we count the number of operations to call the service person when unexpected errors
occur. Note that although such operations are not always explicitly stated in the
operation procedures, in reality, the system designer needs to call the service person
for unexpected errors of any operations. In Table 3, only operations which are
explicitly stated in Ref [22] are included in the counting.

Table 3 shows the result of classification of the operation for this system. The total
number of operations is 132. Regarding the features of operations, the numbers of
operations are (1) 67, (2) 14, (3) 21, (4) 17, and (5) 13, respectively. Most are the
operations (1) which are not included in the availability models. The number of
operations in (2), (3), and (4) is similar. Most of the operations were successfully
classified by the classification described in Section 2.3.

The following types of operations are difficult to handle by the current proposed
method.

• When the operation does not impose any immediate bad impact, but may
influence the availability in the long run (e.g. deletion of back-up files),
human aid, rather than the automatic synthesis of the models, is necessary.

• When the specification of the operation is not clearly/completely described,
the system designer needs to determine which operation category is suitable
for the operation when it is input as AD.

• When the operation is optional (e.g. operation which may be carried out if
the system operator has much time, file delete operation which is carried
out only when sufficient amount of server disk is not available), whether or
not the operation is carried out depends on the situation. The system
designer needs to determine whether or not to include the operation in AD.

304 K. Tadano et al.

Table 3. The numbers of the operations included in a real operation procedure

System
component

Sub procedure The number of contained operations

 (1)
None

(2)
Stop

(3)
Failure

(4) Start from
planned outage

(5) Repair from
unplanned outage

Load
balancer

Manual failover
procedure

2 3 0 2 0

 Status check
procedure

5 0 0 0 0

 Recovery
procedure

8 0 1 4 5

Database
server

Manual failover
procedure

4 6 1 4 0

 Status check
procedure

16 0 0 0 0

 Recovery
procedure

32 5 19 7 8

Total 67 14 21 17 13
 132

3.2 Numerical Example

In this section, we analyze the availability model synthesized from SysML diagrams
of an operation procedure and its target system components with SPNP [18].

3.2.1 Target System
The system consists of a load balancer, two application (AP) servers, and two data
base (DB) servers (DB1 and DB2). We assess the impact on availability of the system
components by the operation procedure to recover from the failure of operating
system (OS) of DB1. The target system components of the operation procedure are
o:Operating system, h:Heartbeat, and p:PostgreSQL on the DB servers. This operation
procedure includes complicated data synchronization. Heartbeat and Pgpool services
are set to start automatically when the OS starts. Operations corresponding to the
operation category (1) are not included in modeling as mentioned in Section 2.3, since
the operations do not affect availability. In this case study, the operation procedure of
recovery from the failure of Heartbeat or PostgreSQL is not included.

3.2.2 Input SysML Diagrams
Figures 7 and 8 show the AD for the operation procedure and the IBD representing
the system configuration of the DB servers, respectively. The notes associated with
the actions in Figure 7 describe the values of the operation categories and the targets
of operations only, since the space is limited. The rest of parameter values are
described later. The parenthetic numbers in notes in the AD indicates the operation
categories in Section 2.3. 14 operations in the figure 7 are classified to the operation
templates (2), (3), or (4). These categories (2), (3), and (4) include 4, 6, and 4
operations, respectively. In this case study, the AD does not include optional
operations in the operation procedure (e.g. file delete operation which is carried out

 Automatic Synthesis of SRN Models from System Operation Templates 305

1

2

3

4

Turn on the physical
machine

Check if OS started
successfully

[fail]
[success]

Login to DB1 as the
postgres user

Check if there is no error
in the log file

[fail]
[success]

Set the permission of the
directory

Create data directory
used by PostgreSQL

[fail]
[success]

Check if data are
successfully synchronized

Stop PostgreSQL

Stop the Heartbeat
service

Login to DB2 as the
postgre user

[fail]
[success]

[fail]
[success]

[fail]
[success]

Become the root user

Check if there is no error
in the log file

[fail]
[success]

[fail]
[success]

Copy the configuration file

Become the postgre user

Initialize the data directory
of PostgreSQL

[fail]
[success]

[fail]
[success]

[fail]
[success]

Shutdown DB servers

[fail]
[success]

[fail]
[success]

Startup PostgreSQL with
a different port number

[fail]
[success]

[fail]
[success]

Stop PostgreSQL

Change directory

[fail]
[success]

[fail]
[success]

[fail]

Startup PostgreSQL with
a different port number

Copy data file for synchro-
nization from DB2

[fail]
[success]

[fail]

[success]

Import the copied files to
PostgreSQL

[fail]
[success]

(2)
DB1:o,h,p
DB2:o,h,p

(2)
DB1:h
DB2:h

(1)
DB1:o

(4)
DB1:o,h,p

(1)
DB2:o

(2)
DB2:p

(4)
DB2:p

(1)
DB2:p

(1)
DB1:o

(1)
DB1:p

(1)
DB1:p

(2)
DB1:p

(1)
DB1:o

(1)
DB1:o

(3)
DB1:o

(1)
DB1:o

(3)
DB1:o

(3)
DB1:o

(4)
DB1:ｐ

（3）
DB1:o

(3)
DB1:ｐ

(1)
DB1:ｐ

[success]

Become the Postgres
user

[fail]
[success]

Check the status of
Pgpool

[fail]
[success]

Connect to the database

[fail]
[success]

(1)
DB1:o

(1)
DB1:p

(1)
DB1:p

Startup DB servers

[fail]
[success]

(4)
DB1:o,h,p
DB2:o,h,p

5

6

7

8

9

10

11

12

13

14

Dump the databases for
data synchronization

[fail]
[success]

(3)
DB2:p

Rename the data
directory of database

[fail]
[success]

(1)
DB1:o

Fig. 7. Activity Diagram (AD) representing the operation procedure of the target system. The
AD shows the repair procedure for a failure of an operating system of DB1.

Pgpool-HA Heartbeat

Operating system

PgpoolPostgreSQL

Ibd database service

APCUPSD

Pgpool-HA Heartbeat

Operating system

PgpoolPostgreSQL

Ibd database service

APCUPSD

Fig. 8. Internal Block Diagram (IBD) representing the system configuration of the target
system

only when sufficient amount of server disk is not available). Although six components
are included in the IBD, operation targets are OS, Heartbeat and Pgpool only.

3.2.3 Output Synthesized SRN Models
Figure 9 shows the operation models synthesized from the actions in AD. Figure 10
shows the system configuration models synthesized from the IBD. The system
configuration model includes UP and DOWN states. Six SRN models represent OS,
Heartbeat, and PostgreSQL running on DB1 and DB2. The availability measures are
as follows. Steady-state availabilities of OS, Heartbeat, and PostgreSQL running on
DB1 are calculated as the probabilities at which tokens are in the places Pup_1o, Pup_1h,
and Pup_1p in the system configuration models of DB1. Table 4 shows the conditions
which enable the transitions with the guard functions in the system configuration
model in Figure 10. The probability at which the operation procedure is in execution
is calculated. This can be calculated as the probability at which the token is not in
Pwait in the control flow model. We do not show the synthesized control flow model in
this Section. This is because the synthesized control flow model is the same as the

306 K. Tadano et al.

control flow model shown in Figure 2, except that the number of contained SRN
modules representing the conditional branches is 14. Table 5 shows the parameter
values of the synthesized availability model which consists of a control flow model,
operation models and system configuration models.

(2), (3), (8),(16)

(2) Operation stops the
target

(1), (4),(12),(17)(5),(6),(7),(9),(10),(11),(13),(14),
(15)

Correspondi
ng actions

(4) Operation which
starts the target

(3) Operation may cause the
failure of the target

Operation
models

(2), (3), (8),(16)

(2) Operation stops the
target

(1), (4),(12),(17)(5),(6),(7),(9),(10),(11),(13),(14),
(15)

Correspondi
ng actions

(4) Operation which
starts the target

(3) Operation may cause the
failure of the target

Operation
models

cop
1-cop

1/top

ctgtfail1-ctgtfail

Pop_exec

Pop_fail

Ptgt_avail Ptgt_fail

Ptgt

Pop_sf

Pop_success

cop
1-cop

1/top

ctgtfail1-ctgtfail

Pop_exec

Pop_fail

Ptgt_avail Ptgt_fail

Ptgt

Pop_sf

Pop_success

cop
1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstop

cop
1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstop

cop

1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstartup

cop

1-cop

1/top

Pop_exec

Pop_fail

Pop_sf

Pop_success

Pstartup

Fig. 9. Operation models synthesized from actions of the Activity Diagram shown in Fig.7

DB2

DB1

PostgreSQLHeartbeatOperating system

DB2

DB1

PostgreSQLHeartbeatOperating system

Pdown_2p

Pup_2p

λ_2p Tfail_2p

g1_2p

Thalt_2p

g2_2p g3_2p g4_2p

Trepair_2p Tstartup_2p

λ_2p Tfail_2p

g1_2p

Thalt_2p

g2_2p g3_2p g4_2p

Trepair_2p Tstartup_2p

λ_2p Tfail_2p

g1_2p

Thalt_2p

g2_2p g3_2p g4_2p

Trepair_2p Tstartup_2p

λ_2h

Pdown_1p

Pup_1p

λ_1p Tfail_1p

g1_1p

Thalt_1p

g2_1p g3_1p g4_1p

Trepair_1p Tstartup_1p

Pdown_1p

Pup_1p

λ_1p Tfail_1p

g1_1p

Thalt_1p

g2_1p g3_1p g4_1p

Trepair_1p Tstartup_1p

λ_1p Tfail_1p

g1_1p

Thalt_1p

g2_1p g3_1p g4_1p

Trepair_1p Tstartup_1p

λ_2o

Pdown_2o

Pup_2o

Thalt_2o

g2_2o g3_2o g4_2o

Trepair_2o Tstartup_2o

Pdown_2o

Pup_2o

Thalt_2o

g2_2o g3_2o g4_2o

Trepair_2o Tstartup_2o

Pdown_2h

Pup_2h

Thalt_2h

g2_2h g3_2h g4_2h

Trepair_2h Tstartup_2h

Pdown_2h

Pup_2h

Thalt_2h

g2_2h g3_2h g4_2h

Trepair_2h Tstartup_2h

Pdown_1h

Pup_1h

Thalt_1h

g2_1h g3_1h g4_1h

Trepair_1h Tstartup_1h

Pdown_1h

Pup_1h

Thalt_1h

g2_1h g3_1h g4_1h

Trepair_1h Tstartup_1h

λ_1h

Pdown_1o

Pup_1o

λ_1o Tfail_1o

g1_1o

Thalt_1o

g2_1o g3_1o g4_1o

Trepair_1o Tstartup_1o

Pdown_1o

Pup_1o

λ_1o Tfail_1o

g1_1o

Thalt_1o

g2_1o g3_1o g4_1o

Trepair_1o Tstartup_1o

λ_1o Tfail_1o

g1_1o

Thalt_1o

g2_1o g3_1o g4_1o

Trepair_1o Tstartup_1o

Fig. 10. System configuration models synthesized from the Internal Block Diagram shown in
Fig.8

3.2.4 Analysis Results
Table 6 shows the results of the analysis of the synthesized availability model using
SPNP. The steady-sate availabilities of Heartbeat and PostgreSQL are very small. On
the other hand, the steady-sate availability of OS is very large. This is because the
operation procedure of recovery of OS is included. The results indicate that recovery
operation procedure has a big impact on availability of the target system component.
Recovery operation procedures for Heartbeat and PostgreSQL are supposed to
increase the availability of Heartbeat and PostgreSQL to the values similar to OS. In
terms of the cost, if fewer operation procedures are included, the human labor cost
decreases. Instead, the down time cost would increase. With the availability modeling
and analysis, we can discover the most cost-effective operation procedures which
minimize the total cost.

 Automatic Synthesis of SRN Models from System Operation Templates 307

Table 4. Conditions under which guard functions used in system configuration models shown
in Fig.10 enable transitions

Guard
functions

Places which enable the
transitions

 Guard
functions

Places which enable the
transitions

g1_1o Ptgt_fail of (7),(8),(9),(11) g2_2o Pstop of (13)
g2_1o Pstop of (13) g3_2o Prepair
g3_1o Prepair g4_2o Pstartup of (14)
g4_1o Pstartup of (1),(14) g2_2h Pstop of (2),(13)
g2_1h Pstop of (2),(13) g3_2h Prepair
g3_1h Prepair g4_2h Pstartup of (14)
g4_1h Pstartup of (1),(14) g1_2p Ptgt_fail of (5)
g1_1p Ptgt_fail of (12) g2_2p Pstop of (3),(13)
g2_1p Pstop of (6),(13) g3_2p Prepair
g3_1p Prepair g4_2p Pstartup of (4),(14)
g4_1p Pstartup of (1),(10),(14)

Table 5. Parameter values of the synthesized availability model

Parameters Description Values
top_x Time to complete operation x (x=1,2,..14) 1/60 [h]
cop_x Success probability of operation x 0.99
ctgtfai_x Probability at which failure of operation x causes target failure 0.8
μ Probability of recovery from the unexpected error 1/3 [1/h]
λ Failure probability of system components 1/1440 1/h]

Table 6. The results of the analysis of the synthesized availability model

Availability related measures Values
Steady-state availability of operating system of DB1 0.99960
Steady-state availability of Heartbeat of DB1 0.34487
Steady-state availability of PostgreSQL of DB1 0.38182
The probability at which the operation procedure is in execution 0.00067

(5.87 [hour/year])

4 Summary and Future Work

In this paper, we propose a method to synthesize SRN automatically from System
Modeling Language [6] (SysML) diagrams to specify operation procedures and
system configurations. The synthesized SRN can be used to assess the impact of the
operations on the availability. We choose the smallest number of features significant
in modeling availability and classify them into five categories. We applied the method
to the information system for local governments as a case study, and analyze the
availability model synthesized from SysML diagrams of operation procedure and
system configuration.

For future works, we are going to improve the operation templates by deriving
general laws regarding the features of operations, develop a method to obtain more
accurate parameters (measurement and theory), and address general redundant

308 K. Tadano et al.

configurations by introducing the method in [15] to synthesize from the SysML
diagrams to describe the system architecture.

References

1. Trivedi, K.S., Wang, D., Hunt, D.J., Rindos, A., Smith, W.E., Vashaw, B.: Availability
Modeling of SIP Protocol on IBM WebSphere. In: Proc. of PRDC 2008 (2008)

2. Smith, W.E., Trivedi, K.S., Tomek, L.A., Ackaret, J.: Availability analysis of blade server
systems. IBM System J. 47(4) (2008)

3. Castelli, V., Harper, R.E., Heidelberger, P., Hunter, S.W., Trivedi, K.S., Vaidyanathan, K.,
Zeggert, W.P.: Proactive management of software aging. IBM Journal of Research and
Development 45, 311–332 (2001)

4. OMG Unified Modeling Language (OMG UML), Superstracture Version 2.3,
http://www.omg.org/spec/UML/2.3/

5. OMG Systems Modeling Language (OMG SysML) Version 1.2 (2010),
http://www.omg.org/spec/SysML/1.2/

6. The SAE Architecture Analysis & Design Language (AADL) (2009),
http://standards.sae.org/as5506a/

7. Huszerl, G., Majzik, I., Pataricza, A., Kosmidis, K., Dal Cin, M.: Quantitative Analysis of
UML Statechart Models of Dependable Systems. The Computer Journal 45(3), 260–277
(2002)

8. Bondavalli, A., Maizik, I., Mura, I.: Automated Dependability Analysis of UML Designs.
In: Proc. 2nd Int. Symp. on Objectoriented Real-time Distributed Computing, ISORC
1999 (1999)

9. Pai, G.J., Dugan, J.B.: Automatic synthesis of dynamic fault trees from UML system
models. In: Proc. of the 13th Int. Symp. on Software Reliability Engineering (ISSRE
2002), pp. 243–254 (2002)

10. Khan, R.H., Heegaard, P.E.: Translation from UML to SPN model: A performance
modeling framework for managing behavior of multiple collaborative sessions and
instances. In: Proc. of Int. Conf. on Computer Design and Applications, ICCDA (2010)

11. Rugina, A.E., Kanoun, K., Kaâniche, M.: A System Dependability Modeling Framework
Using AADL and GSPNs. In: DSN 2006 Workshops on Software Architectures for
Dependable Systems (WADS 2006), pp. 14–38 (2006)

12. Rugina, A.E., Kanoun, K., Kaâniche, M.: The ADAPT Tool: From AADL Architectural
Models to Stochastic Petri Nets through Model Transformation. In: EDCC 2008, pp. 85–
90 (2008)

13. Bernardi, S., Merseguer, J., Petriu, D.C.: A Dependability profile within MARTE. Journal
of Software and Systems Modeling, 1–14 (August 2009)

14. Bernardi, S., Merseguer, J.: Performance evaluation of UML design with Stochastic Well-
formed Nets. Journal of Systems and Software 80(11), 1843–1865 (2007)

15. Machida, F., Kim, D.S., Trivedi, K.S.: Component-based Availability Modeling for Cloud
Service Management. In: Proc. 21st Int. Symp. on Software Reliability Engineering,
ISSRE 2010 (2010)

16. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. John Wiley, New York (2001)

17. Kimura, D., Osaki, T., Yanoo, K., Izukura, S., Sakaki, H., Kobayashi, A.: Evaluation of it
systems considering characteristics as system of systems. In: Proc. of 6th IEEE
international conference on System of Systems Engineering (SoSE 2011). IEEE, Los
Alamitos (in press 2011)

 Automatic Synthesis of SRN Models from System Operation Templates 309

18. Hirel, C., et al.: SPNP: Stochastic petri nets. Version 6.0. In: Haverkort, B.R.,
Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 354–357.
Springer, Heidelberg (2000)

19. Trivedi, K.S., Sahner, R.: Sharpe at the age of twenty two. SIGMETRICS Perform. Eval.
Rev. 36(4), 52–57 (2009)

20. Roy, A., Kim, D.S., Trivedi, K.S.: Cyber security analysis using attack countermeasure
trees. In: Proc. the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, CSIIRW 2010 (2010)

21. Swain, A.D., Guttman, H.E.: Handbook of human reliability analysis with emphasis on
nuclear power plant applications. NUREG/CR-1278, USNRC (1983)

22. Operation procedure document Ver. 1.0 (2008),
http://www.bsnnet.co.jp/info/press/2007ipa/9_01.pdf

A Collaborative Event Processing System for

Protection of Critical Infrastructures from
Cyber Attacks �

Leonardo Aniello, Giuseppe Antonio Di Luna,
Giorgia Lodi, and Roberto Baldoni

University of Rome “La Sapienza”
Via Ariosto 25, 00185, Rome, Italy

{aniello,lodi,diluna,baldoni}@dis.uniroma1.it

Abstract. We describe an Internet-based collaborative environment that
protects geographically dispersed organizations of a critical infrastruc-
ture (e.g., financial institutions, telco providers) from coordinated cyber
attacks. A specific instance of a collaborative environment for detecting
malicious inter-domain port scans is introduced. This instance uses the
open source Complex Event Processing (CEP) engine ESPER to cor-
relate massive amounts of network traffic data exhibiting the evidence
of those scans. The paper presents two inter-domain SYN port scan de-
tection algorithms we designed, implemented in ESPER, and deployed
on the collaborative environment; namely, Rank-based SYN (R-SYN)
and Line Fitting. The paper shows the usefulness of the collaboration in
terms of detection accuracy. Finally, it shows how Line Fitting can both
achieve a higher detection accuracy with a smaller number of participants
than R-SYN, and exhibit better detection latencies than R-SYN in the
presence of low link bandwidths (i.e., less than 3Mbit/s) connecting the
organizations to Esper.

1 Introduction

The seamless, ubiquitous, and scalable nature of the Internet has made it a con-
venient platform for critical infrastructures (e.g., telco, financial, power grids) as
it allows them to benefit from reduced maintenance and management costs, and
at the same time, offer a wider range of on-line and user-friendly services (such
as on-line banking and e-commerce). The growing intersection between these
critical infrastructures and Internet has however exposed them to a variety of
security related risks, such as increasingly sophisticated cyber attacks aiming at
capturing high value (or, otherwise, sensitive) information, or disrupting service
operation for various purposes. Today’s cyber attacks result in both tangible
and intangible economic losses due to the lack of service availability and infras-
tructural resilience, and the decreased level of trust on behalf of the customers1.
� This research is partially funded by the EU project CoMiFin (Communication Mid-

dleware for Financial Critical Infrastructures [10]).
1 Recent studies evaluate around 6 millions dollars per day the tangible loss for a

utility company of a down of an e-service [14].

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 310–323, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Collaborative Event Processing for Critical Infrastructures Protection 311

SW
sensor s r

Raw
data Pre-

Processing

Organization N

SW
sensor s r

Raw
data Pre-

Processing

Organization 1

SW
sensor s r

Raw
data Pre-

Processing

Organization 2

SW
sensor s r

Raw
data Pre-

Processing

Organization 3

Pre-
g Processingg

ganization N

Pre-
g Processingg

ganization 1

Pre-
Processing

ganization 2

Pre-
gProcessingg

ganization 3

g gg

g g

ggg
Collaborative

Processing System

Collaborative
Analysis 192.168.0.75

18.0.23.50

192.168.0.75

18.0.23.50

 192.168.0.75555

18.0.23.500 0

blacklist

contract

Fig. 1. Collaborative Event Processing System for inter-domain stealthy port scan

Hence, this economic argument pushes such organizations to collaborate in order
to set more appropriate defense strategies.

We consider one of the most widespread mechanisms used by attackers for
obtaining information on possible vulnerabilities of any target, i.e., port scan.
Port scan is a preparatory action performed in several coordinated cyber attacks
such as worm spreading, botnet formation and DDoS attacks. Single organiza-
tions use Intrusion Detection Systems (IDSs) to defend themselves from such
actions. However, nowadays attackers attempt to perform their activities in a
stealthy fashion in order to elude local IDSs. In particular, attackers distribute
the port scans both in space and in time executing what we call an inter-domain
stealthy port scan. In an inter-domain stealthy port scan a few ports of interest
at different organizations are probed in order to circumvent configured thresh-
olds (distribution in space), and single probes are delayed so as to bypass time
window controls (distribution in time).

In this paper we propose a collaborative approach that allows us to address the
general problem of protecting geographically dispersed organizations, belonging
to different administrative domains, from cyber attacks. This is the typical sce-
nario of organizations belonging to a critical infrastructure such as inter-utility
of large scale power systems [17], networked telecommunication providers [24] or
financial infrastructure [10]. In particular, we provide a novel collaborative event
processing system for detecting inter-domain malicious port scan activities (see
Figure 1). The system consists of two principal components: an event engine
and a so-called gateway, collocated at each organization network. A gateway
captures network packets and executes a pre-processing on those packets; that
is, it filters out the packets that are not relevant with respect to the processing
of the specific port scan detection algorithm (it might also aggregate the packets
in order to reduce the overall computation to be performed at the event engine
side). The pre-processed packets are sent to the event engine that correlates the
data in order to discover spatial and/or temporal relationships among apparently
uncorrelated data that would have been undetected by in-house IDSs.

312 L. Aniello et al.

The collaborative processing system is based on the Esper Complex Event
Processing (CEP) engine [5]; through it we designed a novel port scan detection
algorithm named Line Fitting. Line Fitting is implemented on the top of the
collaborative system by means of a set of SQL-like queries that can be configured
at run time. We compare Line Fitting with another algorithm, namely Rank-
based SYN (R-SYN) algorithm which we developed in the context of an intra-
organization intrusion detection system [13]. The use of Esper is motivated by
both the low cost of ownership compared to other similar systems [9] and the
ability of dynamically adapting the detection logic by integrating/removing SQL-
queries for facing new threats that may arise.

We carried out an experimental evaluation in order to assess the detection
and false positive rates of the two algorithms by using real network traces that
include malicious port scans. The assessment aims to evaluate the impact of
the collaboration on such metrics. Additionally, we computed the latency of the
detection in both algorithms when 3, 6 and 9 organizations participate in the
system. Results show that an increased number of collaborative organizations
leads to a more accurate detection. At the same time, collaboration has a rea-
sonable impact on the detection latency: in the presence of link bandwidths
connecting the organizations to the engine in the range of [6.5Mbit/s, 3Mbit/s],
the collaborative system exhibits detection latencies which are acceptable for the
inter-domain port scan detection application. In general, we observe that Line
Fitting achieves high levels of accuracy with a smaller number of organizations
than R-SYN, and with low link bandwidths (less than 3Mbit/s) it also shows
better detection latencies compared to R-SYN.

Finally, our collaborative processing system can manage (i) anonymized data
(during the pre-processing) for privacy purposes, (ii) contract lifecycle (to join
the collaborative processing system) and (iii) monitoring the adherence to the
contract. Contracts and their monitoring are used to enforce trust among pos-
sibly distrusting participants in the system, thus fostering the collaboration.
These topics are outside the scope of this paper; interested readers can refer to
CoMiFin documents where they have been extensively investigated [22],[21],[10].

The rest of the paper is organized as follows. Section 2 introduces Line Fitting.
Section 3 describes the architecture we designed and implemented of a collabo-
rative processing system for inter-domain stealthy port scan detection based on
Esper. Section 4 introduces the implementation of Line Fitting in Esper, and
Section 5 discusses the principal experimental results we have obtained from a
comparison between Line Fitting and the previously implemented R-SYN. Sec-
tion 6 discusses principal related work and finally Section 7 concludes the paper.

2 Cyber Attacks: Distributed Stealthy Port Scan

We show the benefits of the collaborative approach in the case of inter-domain
stealthy port scans detection. A scanner S sends a SYN packet to a target T

Collaborative Event Processing for Critical Infrastructures Protection 313

on a specific port P and waits for a response. If a SYN-ACK packet is received,
S can conclude that P is open and optionally reply with an RST packet to
reset the connection. We call this kind of connections incomplete connections. In
contrast, if an RST-ACK packet is received, S can consider P as closed. If no
packet is received at all and S has some knowledge that T is reachable, then S
can conclude that P is filtered. Otherwise, if S does not have any clue on the
reachability status of T , it cannot assume anything about the state of P .

Not all the port scans can be considered malicious. For instance, there exist
search engines that carry out port scanning activities in order to discover Web
servers to index [19]. It becomes then crucial to distinguish accurately between
actual malicious port scanning activities and benign ones.

Line Fitting SYN Port Scan Detection Algorithm. The underlying prin-
ciple of Line Fitting concerns the observation that a scanner does not repeatedly
perform the same operation towards specific hosts or ports: if the attempt fails
on a T :P a scanner likely carries out a malicious port scan towards different
targets. The rational behind Line Fitting can be summarized as follows.

Let (ip, port) be the pair that identifies a destination host and a TCP port.
Given a set of pairs C : IP ×Port, where IP is the set of IP addresses and Port
is the set of TCP ports, the purpose of an inter-domain stealthy SYN port scan
is to find out the subset A ⊆ C representing active TCP ports. A pair (ipj, porti)
is active if and only if a service on port porti is available at the destination IP
ipj. The standard behavior for a scanner is to issue few requests for each element
in C in order to obtain the status of the pair (ipj , porti).

Owing to these observations we define I = A \ C as the set of inactive pairs:
every request issued to an element in I may lead to a failure. As failures are
common during port scan activities, we can assume that I �= ∅ and that |I| ≥
|A|.

The line fitting algorithm takes into account the set Fh which is a multiset of
failures generated by the source host h (an element of I generated by h becomes
an element of the set Fh). We use the multiset since the multiplicity of any
failure is crucial: we observe that in case of a normal failure (e.g., DNS crashes,
service unavailability) the set Fh contains few elements with high multiplicity.
In contrast, in case of a port scan the set includes many elements with low
multiplicity. An ideal scanner issues few connections towards different (IP, Port)
pairs exhibiting a “fitting curve” behavior; i.e., a horizontal line y = bx + q
where b = 0, considering the pairs on x-axis and the multiplicities on y-axis. In
contrast, a non ideal malicious port scan can emerge when b is close to 0.

Therefore, Line Fitting correlates data of the TCP three way handshake look-
ing for patterns that are similar to a horizontal line representing few requests
towards different (IP, port) pairs distributed over time. The patterns can be
found by applying a linear fitting algorithm with the elements in Fh, check-
ing then the similarity between the obtained fitting line and the ideal one. The
algorithm we have designed and implemented can be described as follows.

314 L. Aniello et al.

Algorithm 1. Line Fitting algorithm
1. ∀x ∈ Fh if (x is inlier) List h.add(x)
2. (b, q)=LinearFitting(List h);
3. if(Match(b , q)){
4. portscanner(h); }

For all the elements x of type [destIP, port, multiplicity], the check at line 1
of the algorithm “if x is inlier” is done using the mean and standard deviation
of the series m(Fh) which is the list of multiplicities of all elements in Fh. If
the multiplicity of x is in the interval [m − kd , m + kd] where m is the mean,
d the standard deviation and k a constant value, x is considered inlier and is
counted for the linear fitting (Line 2 of the algorithm). The linear fitting is
realized through the least squares method and it produces two values of the
fitting curve, namely, b and q which are then analyzed: if b and q are <= than
specific thresholds (the Match method in Line 3 of the algorithm; we set these
thresholds to 1 and 6 respectively in our implementation) the source host h is
considered a scanner and included in a blacklist (Line 4 of the algorithm).

R-SYN Port Scan Detection Algorithm. The Rank-based SYN (R-SYN)
port scan detection algorithm adapts and combines three port scan detection
techniques; namely (i) Half Open connections detection, (ii) Horizontal and Ver-
tical port scans detection, and (iii) Entropy-based failed connections detection.
The first technique aims at counting the number of incomplete connections. The
second technique aims at identifying connection attempts to both a port across
a range of IP addresses and a range of ports on a single destination host, and
it uses a modified version of the Threshold Random Walk (TRW) mechanism
introduced in [19]. The third technique aims at discriminating honest failures
from malicious port scans. Finally, R-SYN employs a ranking mechanism that
combines the results obtained from the three techniques in order to minimize
the probability to miss a scanner which cheats by behaving apparently in a good
way. The interested readers can refer to [13] for a detailed description of the
R-SYN algorithm.

3 Collaborative Port Scan Detection System Architecture

Figure 2 illustrates the architecture of the collaborative processing system. The
system consists of so-called Gateway components installed at each organization’s
network participating in the collaborative system, and a single Esper [5] CEP en-
gine instance used for processing purposes and deployed at any of the available
organizations (the CEP engine could be hosted by the organization adminis-
trating the processing system). These two components are described in detail
below.

Gateway. Traffic data are captured from the monitored networks of organiza-
tions. The data are to be normalized and transformed in Plain Old Java Objects
(POJOs) in order to be analyzed by the engine. To this end, the Gateway has

Collaborative Event Processing for Critical Infrastructures Protection 315

Fig. 2. Collaborative ESPER-based CEP architecture

been designed and implemented so as to (i) take as input the flows of network
data (TCP data in Figure 2), (ii) filter them to maintain packets related to
TCP three-way handshaking only, and, finally (iii) wrap each packet in a proper
POJO to be sent to Esper.

We implemented TCPPojo for TCP packets. The POJO maps every field in
the header of the protocol. POJOs are serialized and sent through Java sockets
to Esper. When sending the POJOs our implementation maintains the order
of the packets captured within the single organization, which is crucial when
evaluating sequence operators in the Esper engine.

Complex Event Processing (CEP). The Esper CEP engine [5] receives PO-
JOs that represent the events it has to analyze (input streams). The processing
logic is specified in a high level SQL-like language named the Event Process-
ing Language (EPL). In order to detect malicious port scanning activities a
number of EPL queries are defined and executed by the engine, as shown in
Figure 2. EPL queries run over a continuous stream of POJOs and produce out-
put streams. When an EPL query finds a match against its clauses in its input
stream, it generates a new tuple that is added to its output stream. A Subscriber
is a Java object that can be subscribed to a particular output stream so that
whenever the query outputs a new tuple, the update() method of the Subscriber
is invoked using the tuple as argument.

We have implemented both algorithms as a set of EPL queries in Esper. In this
paper we report the EPL implementation of the Line Fitting, only. The interested
readers can refer to [13] for details on the implementation of R-SYN. Note that
although the main implementation queries of R-SYN are unchanged since those
discussed in [13], we have however modified the previous implementation in order
to avoid the use of external data structures for the computation of the entropy-
based failed connections. Our new implementation of R-SYN is fully realized
through EPL queries, thus entirely exploiting the powerfulness of the language.

316 L. Aniello et al.

4 Line Fitting Implementation in Esper

For the implementation of the Line Fitting algorithm we first use general queries
that filter specific packets of interest. In particular, filtering queries act on the
TCPPojo input stream and filter both SYN packets and any packets involved in
the TCP 3-way handshaking.

We then keep track, in the so-called halfopen connection output stream, of
incomplete connections using the following query:

//Half Open (HO) connections
insert into halfopen_connection
select ...
from pattern [
every a = syn_stream --> (
(b = syn_ack_stream(...) --> (

(timer:interval(60 sec) or <c>) and not <d>
) where timer:within(61 sec)))]

We exploit the pattern construct of Esper to detect patterns of incomplete connec-
tions. In particular, a is the stream of SYN packets, b is the stream of SYN-ACK
packets, < c > is the stream of RST packets and < d > is the stream of ACK pack-
ets, all obtained through the filtering queries previously mentioned. Such pattern
matches if the involved packets are within a time window of 61 seconds.

In addition, we need to maintain the connections to unreachable hosts and
closed ports. To this end, we use the query below for detecting unreachable
hosts; it searches a data pattern in which a SYN packet is not followed by any
packet matching the expression (< b > or < c >) within a time interval of 2
seconds. < b > represents the stream of SYN-ACK packets and < c > the RST-
ACK packets stream. We also use the query for detecting connection attempts to
closed ports for which we search patterns of SYN packets followed by RST-ACK
packets within a time interval of 5 seconds.

//Connections to Hosts Unreachable(HU)
insert into host_unreach
select ..., 0 as up, 1 as down
from pattern [
every a = syn_stream -->

timer:interval(2 sec) and
not (or <c>)

]

//Connections to Closed Ports(CP)
insert into closed_port
select
from pattern[every a=syn_stream -->

<c> where timer:within(5 sec)
]

Finally, Line Fitting needs to create the stream of events representing failed
connections (failures); for this purpose, we use the following queries:

//Create failures stream from CP
insert into failures
select id,dst,1 as card
from closed_port
where closed=1

//Create failures stream from HU
insert into failures
select id,dst,1 as card
from host_unreach
where down=1

Collaborative Event Processing for Critical Infrastructures Protection 317

//Create failures stream from HO
insert into failures
select id,dst,1 as card
from halfopen_connection

and for each couple (IP, Port) it returns the multiplicity of the multiset using
the following query:

insert into multiset
select sourceIP,destIP,destPort,count(*) as N
from failures
group by sourceIP,destIP,destPort

Only one subscriber is associated with Line Fitting: it generates the list of scan-
ner IP addresses waiting for 5 distinct events of type failures from the HO, HU,
and CP streams and applies the least square method for the final computation.

5 Experimental Evaluation

We have carried out an experimental evaluation of the two algorithms. Such eval-
uation aims at assessing two metrics; namely the detection accuracy in recognizing
distributed stealthy port scans and detection latency.

Testbed. For our evaluation we used a testbed consisting of a cluster of 10
Linux Virtual Machines (VMs), each of which equipped with 2GB of RAM and
40GB of disk space. The 10 VMs were hosted in a cluster of 4 quad core 2.8 Ghz
dual processor physical machines equipped with 24GB of RAM. The physical
machines are connected to a LAN of 10Gbit.

The layout of the components on the cluster consisted of one VM dedicated
to host the Esper CEP engine. Each of the remaining 9 VMs represented the
resources made available by 9 simulated organizations participating in the col-
laborative processing system. Each resource hosted the Gateway component. We
emulated a large scale deployment environment so that all the VMs were con-
nected with each other through an open source WAN emulator we have used
for such a purpose. The emulator is called WANem [11] and allowed us to set
specific physical link bandwidths in the communications among the VMs.

Traces. We used five intrusion traces. The first four were used in order to test
the effectiveness of our algorithms in detecting malicious port scan activities
whereas the latter has been used for computing the detection latency (see next
paragraph). All traces include real network traffic of a network that has been
monitored. The traces are obtained from the ITOC research web site [2], the
LBNL/ICSI Enterprise Tracing Project [3] and the MIT DARPA Intrusion de-
tection project [1]. The content of the traces is described in Table 1. In each
trace, the first TCP packet of a scanner always corresponded to the first TCP
packet of a real port scan activity.

318 L. Aniello et al.

Table 1. Content of the traces

trace1 trace2 trace3 trace4 trace5

size (MB) 3 5 85 156 287

number of source IPs 10 15 36 39 23

number of connections 1429 487 9749 413962 1126949

number of scanners 7 8 7 10 8

number of pckts 18108 849816 394496 1128729 3462827

3way-handshake pckts 5060 13484 136086 883500 3393087

length of the trace (sec.) 5302 601 11760 81577 600

3way-handshake pckt rate (p/s) 0.95 22.44 11.57 10.83 5655

Detection Accuracy. In order to assess the accuracy of R-SYN and Line
Fitting, we partitioned the traces simulating the presence of 9 organizations
participating in the collaborative processing system; the resulting sub-traces
were injected to the available Gateways of each participants in order to observe
what the two algorithms were able to detect. To this end, we ran a number
of tests considering four accuracy metrics (following the assessment described
in [27]): (i) TP (True Positive) which represents the number of suspicious hosts
that are detected as scanners and are true scanners; (ii) FP (False Positive)
which represents an error of the detection; that is, the number of honest source
IP addresses considered as scanners; (iii) TN (True Negative) which represents
the number of honest hosts that are not detected as scanners; (iv) FN (False

Negative) which represents a number of hosts that are real scanners that the
system does not detect. With these values we computed the Detection Rate DR

and the False Positive Rate FPR as follows: DR = TP
TP+F N

, and FPR = F P
F P+TN

.
In all traces, with the exception of trace 4, we observed that none of the two

algorithms introduced errors in the detection of port scanners; that is, in those
cases the FPR was always 0% in our tests. In trace 4 of size 156MB, R-SYN
exhibited a FPR equal to 3.4% against a FPR equal to 0% of Line Fitting; that
is, R-SYN introduces 1 False Positive scanner.

Figure 3 shows the obtained results for the Detection Rate (DR). In this
Figure, it emerges that the collaboration can be beneficial for sharpening the
detection of port scanners. In both algorithms, augmenting the number of par-
ticipants in the collaborative processing system (i.e., augmenting the volume of
data to be correlated) leads to an increase of the detection rate as computed
above. However, the behavior of the two algorithms is different: Line Fitting
(light grey bars in Figure 3) converges more quickly to the highest detection
rate compared to R-SYN (black bars in Figure 3); that is, in Line Fitting a
smaller number of participants to the collaborative processing system and then
a lower volume of data are required in order to achieve 100% of detection rate.
This is principally due to a higher number of processing steps R-SYN executes
and to R-SYN’s subscribers that have to accumulate packets in order to carry
out their TRW computation. In addition, R-SYN examines both good and ma-
licious behaviors assigning a positive score to good ones. This implies that in

Collaborative Event Processing for Critical Infrastructures Protection 319

Fig. 3. Port scan DR vs number of organizations in the collaborative processing system
for R-SYN and Line Fitting algorithms. Each organization contributes to the processing
with a number of network packets that is on average 1/9 of the size of the trace.

some traces R-SYN has to wait more packets in order to effectively mark IP
addresses as scanners.

Detection Latency. In the port scan attack scenario, the detection latency
should be computed as the time elapsed between the first TCP packet of the
port scan activity is sent by a certain IP address and the collaborative processing
system marks that IP address as scanner (i.e., when it includes the address in
the blacklist). Note that we cannot know precisely which TCP packet should
be considered the first of a port scan, since that depends on the true aims of
who sends such packet. As already said, in our traces the first TCP packet of a
scanner corresponds to the first TCP packet of a real port scan activity so that
we can compute the detection latency for a certain IP address x as the time
elapsed between the sending of the first TCP packet by x and the detection of
x as scanner.

In doing so, we need the timestamps of the packets. For such a purpose we
developed a simple Java application named TimerDumping which (i) takes a trace
as input; (ii) sends the packets contained in the trace (according to the orig-
inal packet rate) to the Gateway using a simple pipe; and (iii) maintains the
timestamp of the first packet sent by each source IP address in the trace.

We deployed an instance of TimerDumping on each VM hosting the Gateway
component. Each TimerDumping produces a list of pairs < ip address, ts >, where
ts is the timestamp of the first TCP packet sent by ip address. The timestamps

320 L. Aniello et al.

are then used as beginning events for detection latency computation. Since there
are more TimerDumping instances, pairs with the same IP address but different
timestamps may exist. In those cases, we consider the oldest timestamp.

Timestamps are generated using local clocks of the hosts of the cluster. In
order to ensure an acceptable degree of synchronization, we configured all the
clustered machines to use the same NTP server which has been installed in a
host located at the same LAN. The offset between local clocks is in the order
of 10 milliseconds which is accurate for our tests as latency measures are in the
order of seconds.

For detection latency tests we used the trace of 287MB and changed the
physical link bandwidths to the Esper in order to show in which setting one
of the two algorithms can be preferable. Link bandwidth is controlled by the
WANem emulator. We varied the physical link bandwidth using the WANem
emulator with values ranging from 1Mbit/s up to 6.5Mbit/s. Figure 4 shows the
average detection latency in seconds we have obtained in different runs of the
two algorithms.

Fig. 4. R-SYN and Line Fitting detection latencies in the presence of 3, 6, and 9
participants in the collaborative processing system

As illustrated in this Figure, for reasonable link bandwidths of a large scale
deployment scenario (between 3Mbit/s up to 6.5Mbit/s) both algorithms show
a similar behavior with acceptable detection latencies for the inter-domain port
scan application (latencies vary between 0.6 to 35 seconds). However, Line Fit-
ting outperforms R-SYN in the presence of relatively low link bandwidths (look-
ing at the left hand side of the curves, Line Fitting exhibits a detection latency
of approximately 150 seconds when 9 participants are available against 250 sec-
onds of R-SYN). In addition, in case of R-SYN, only, results show that when
the collaborative system is formed by a higher number of participants (e.g., 9),
detection latencies are better than those obtained with smaller collaborative
systems. This is principally caused by the larger amount of data available when
the number of participants increases: more data allow us to detect the scanners
more quickly. In contrast, when 3 or 6 participants are available we need to wait
more in order to achieve the final result of the computation. This behavior is
not shown in case of Line Fitting for which an increased amount of information

Collaborative Event Processing for Critical Infrastructures Protection 321

is not sufficient to overcome the drawback related to the congestion on low link
bandwidths (e.g., 1Mbit/sec).

6 Related Work

Many free IDSs exist that are deployed in enterprise settings. Snort [8] is an open
source Network Intrusion Prevention/Detection System that performs real-time
traffic analysis and packet logging on IP networks to detect probes or attacks.
Bro [6] is an open-source Network IDS that passively monitors network traffic
and searches suspicious activity. Its analysis includes detection of specific attacks
using both defined signatures and events patterns, and unusual activities. In con-
trast to standalone IDSs, collaborative IDSs [4],[20],[25] significantly reduce time
and improve efficiency of misuse detections by sharing information on attacks
among the IDSs distributed at multiple organizations [26]. The main underlying
principle of these approaches, namely the large-scale information sharing and
collaborative detection, is similar to the ours. However, these systems are highly
optimized for a specific type of attack whereas our Esper based architecture is a
general-purpose system which can be effective against diverse attack scenarios.

CEP and Stream Processing (SP) systems play an important role in the
IT technologies [9],[12],[23]. However, all these systems exhibit high cost-of-
ownership. To this end, our solution employs open source CEP systems (e.g.,
JBoss Drools [7], Esper [5]).

The issue of using massive complex event processing among heterogeneous
organizations forming a critical infrastructure for detecting network anomalies
and failures has been suggested and evaluated in [18] and raised in [17]. Also
the usefulness of collaboration and sharing information for telco operators with
respect to discovering specific network attacks has been pointed out in [24].
In these works, it has been clearly highlighted that the main limitation of the
collaboration approach concerns the confidentiality requirements. These require-
ments may be specified by the organizations that share data and can make the
collaboration itself hardly possible as the organizations are typically not willing
to disclose any private and sensitive information. This is also a critical issue in
our collaborative system; however, in the context of the CoMiFIn project and
of companion papers, we have deeply investigated how this architecture can be
adapted to handle such issues [22],[21].

7 Concluding Remarks

It is well known that responsible information sharing among organizations that
belong to the same economic infrastructure is a key factor for increasing their
productivity (with consequent benefits for customers) such as improving compet-
itiveness and cost reduction [16]. On the cyber security side, information sharing
can facilitate the detection and prevention of cyber attacks.

The paper presented a collaborative processing system based on the Esper
CEP engine. The system protects organizations willing to share specific network

322 L. Aniello et al.

data showing the evidence of distributed cyber attacks. The system has been
instantiated for the detection of inter-domain port scanning. Two port scan de-
tection algorithms have been designed and implemented, namely Line Fitting
and R-SYN algorithms. Results show the effectiveness of the collaboration: aug-
menting the number of participating organizations, the detection accuracy in-
creases. As for detection latencies, the collaboration has a reasonable impact: in
the presence of link bandwidths in the range of [3Mbit/s, 6.5Mbit/s] the two al-
gorithms exhibit acceptable detection latencies for our application. However, we
note that Line Fitting outperforms R-SYN in terms of both detection accuracy
and latency.

Future works include instrumenting the collaborative processing system to
detect botnet-driven HTTP session hijacking attacks [15]. We are also investi-
gating how to distribute the processing over a network of Esper sites in order
to scale in terms of participating organizations. As shown in the performance
results, the link bandwidth of Esper becomes a bottleneck when the number of
organizations sending data increases. Thus, we wish to create a network of Esper
sites able to distribute the load of the organizations’ data and execute a first
line of data aggregation and correlation.

References

1. 2000 DARPA Intrusion Detection Scenario Specific Data Sets,
http://www.ll.mit.edu/mission/communications/ist/corpora/

ideval/data/2000data.html

2. ITOC Research: CDX Datasets,
http://www.itoc.usma.edu/research/dataset/index.html

3. LBNL/ICSI Enterprise Tracing Project,
http://www.icir.org/enterprise-tracing/

4. DShield: Cooperative Network Security Community - Internet Security (2009),
http://www.dshield.org/indexd.html/

5. Where Complex Event Processing meets Open Source: Esper and NEsper (2009),
http://esper.codehaus.org/

6. Bro: an open source Unix based Network intrusion detection system, NIDS (2010),
http://www.bro-ids.org/

7. JBoss Drools Fusion (2010), http://www.jboss.org/drools/drools-fusion.html
8. Snort: an open source network intrusion prevention and detection system, IDS/IPS

(2010), http://www.snort.org/
9. System S. (2010), http://domino.research.ibm.com/comm/

research projects.nsf/pages/esps.index.html

10. Communication Middleware for Monitoring Financial Critical Infrastructures
(2011), http://www.comifin.eu

11. WANem The Wide Area Network emulator (2011),
http://wanem.sourceforge.net/

12. Akdere, M., Çetintemel, U., Tatbul, N.: Plan-based complex event detection across
distributed sources. PVLDB 1(1), 66–77 (2008)

13. Aniello, L., Lodi, G., Baldoni, R.: Inter-Domain Stealthy Port Scan Detec- tion
through Complex Event Processing. In: Proc. of 13th European Workshop on De-
pendable Computing, Pisa (May 11-12, 2011)

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/2000data.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/2000data.html
http://www.itoc.usma.edu/research/dataset/index.html
http://www.icir.org/enterprise-tracing/
http://www.dshield.org/indexd.html/
http://esper.codehaus.org/
http://www.bro-ids.org/
http://www.jboss.org/drools/drools-fusion.html
http://www.snort.org/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://www.comifin.eu
http://wanem.sourceforge.net/

Collaborative Event Processing for Critical Infrastructures Protection 323

14. Baker, S., Waterman, S.: In the Crossfire: Critical Infrastructure in the Age of
Cyber War (2010)

15. Bogk, A.: Advisory: Weak PNG in PHP session ID generation leads to session
hijacking (March 2010)

16. Cate, F., Staten, M., Ivanov, G.: The value of Information Sharing. In: Protecting
Privacy in the New Millennium Series, Council of Better Business Bureau (2000)

17. Hauser, C.H., Bakken, D.E., Dionysiou, I., Harald Gjermundrød, K., Irava, V.S.,
Helkey, J., Bose, A.: Security, trust, and qos in next- generation control and com-
munication for large power systems. IJCIS 4(1/2), 3–16 (2008)

18. Huang, Y., Feamster, N., Lakhina, A., Xu, J.: Diagnosing network disruptions with
network-wide analysis. In: Proc. of the 2007 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pp. 61–72. ACM,
New York (2007)

19. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using
sequential hypothesis testing. In: Proc. of the IEEE Symposium on Security and
Privacy (2004)

20. Locasto, M.E., Parekh, J.J., Keromytis, A.D., Stolfo, S.J.: Towards collaborative
security and p2p intrusion detection. In: IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point, NY (June 15-17, 2005)

21. Lodi, G., Baldoni, R., Chockler, G., Dekel, E., Mulcahy, B.P., Martufi, G.: A
contract-based event driven model for collaborative security in financial informa-
tion systems. In: Proc. of the 12th International Conference on Enterprise Infor-
mation Systems, Funchal, Madeira - Portugal (2010)

22. Lodi, G., Baldoni, R., Elshaafi, H., Mulcahy, B., Csertain, G., Gonczy, L.: Trust
Management in Monitoring Financial Critical Information Infrastructures. In:
Proc. of the 2nd International Conference on Mobile Lightweight Wireless Systems
- Critical Information Infrastructure Protection Track, Barcelona (May 2010)

23. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A Scalable Application Place-
ment Controller for Enterprise Data Centers. In: 16th International Conference on
World Wide Web (2007)

24. Xie, Y., Sekar, V., Reiter, M.K., Zhang, H.: Forensic Analysis for Epidemic Attacks
in Federated Networks. In: ICNP, pp. 43–53 (2006)

25. Zhou, C.V., Karunasekera, S., Leckie, C.: A peer-to-peer collaborative intrusion
detection system. In: 13th IEEE International Conference on Networks, Kuala
Lumpur, Malaysia (November 2005)

26. Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and
collaborative intrusion detection. Computer and Security 29, 124–140 (2009)

27. Zhou, C.V., Karunasekera, S., Leckie, C.: Evaluation of a Decentralized Archi-
tecture for Large Scale Collaborative Intrusion Detection. In: Proc. of the 10th
IFIP/IEEE International Symposium on Integrated Network Management (2007)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 324–337, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Fault-Tolerant, Dynamically Scheduled Pipeline
Structure for Chip Multiprocessors

Hananeh Aliee and Hamid Reza Zarandi

Department of Computer Engineering and Information Technology
Amirkabir University of Technology (Tehran Polytechnic)

{h.aliee,h_zarandi}@aut.ac.ir

Abstract. This paper presents a dynamically scheduled pipeline structure for
chip multiprocessors (CMPs). This technique exploits existing Simultaneous
Multithreading (SMT), superscalar chip multiprocessors’ redundancy to provide
low-overhead, and broad coverage of faults at the cost of performance
degradation for processors. This pipeline structure operates in two modes: 1)
high-performance and 2) highly-reliable. In high-performance mode, each core
works as a real SMT, superscalar processor. Whereas, the main contribution of
the highly-reliable mode is: 1) To enhance the reliability of the system without
adding extra redundancy strictly for fault tolerance, 2) To detect both transient
and permanent faults, and 3) To recover existing faults. The experimental
results show that the diagnosis mechanism quickly and accurately diagnoses
faults. The fault detection latency for this technique is equal to the pipeline
length of the processor, while it provides high fault detection coverage.
Moreover, the reliable processor can function quite capably in the presence of
both transient and permanent faults, despite of not using redundancy beyond
which is already available in a modern microprocessor. Also, in the highly-
reliable mode, the static and dynamic power consumption is declined by 25%
and 36%, respectively.

Keywords: Reliability, Transient fault, Permanent fault, Fault tolerance,
Pipeline structure, Chip multiprocessor, Superscalar processor.

1 Introduction

Technology scaling leads to widespread use of chip multiprocessors as a promising
solution to use the large number of transistors [1-2]. Chip Multiprocessors (CMPs)
provide higher levels of integration to achieve both high performance and reasonable
power consumption within a packaged chip [3]. However, in forthcoming CMOS
technology generations, this aggressive scaling poses critical reliability issues for
various phenomena such as high energy particle strikes, voltage fluctuation, aging,
lower supply voltage, and reduction in transistor size [4-6]. Due to being sporadic and
unpredictable, transient-fault demands concurrent detecting and recovering.
Therefore, fault tolerance is an area of major concern in recent designs.

To improve system reliability, there are various techniques. The three main
commonly used techniques are mentioned here. The first one is information

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 325

redundancy techniques which involve adding extra information to existing
information. These are mainly based on Error Detection/Correction Codes (ECC) or
parity technique, which has been widely utilized to protect memory cells such as
cache and register files [7]. The second one is hardware redundancy or spatial
redundancy technique involving replication of hardware units, so that the same
program will be executed by different pieces of hardware in parallel and their
execution results could be compared to verify the correctness of the execution.
Although it provides very high fault coverage, the hardware cost is also doubled [8].
The last one is categorized as time redundancy or temporal redundancy techniques
which involve re-executing a program several times on the same pipeline [9]. The
potential drawback of this scheme is that it might significantly reduce the overall
performance.

As an example, to protect processors from soft errors, one approach is to execute
two identical copies of a program simultaneously as independent threads [1]. The
main challenges in these techniques are input replication and output comparison
which requires interconnection buffers among the redundant copies. These extra
buffers are shared among the copies and are fed by the main thread which makes them
a single point of failure. Moreover, although they may require a few hardware
because they use time redundancy in places where hardware redundancy is not
critical, they are more time consuming than hardware-based approaches. In contrast,
lockstep is used in the commercial fault-tolerant processors, such as IBM S/390 G5
[10] and Compaq Nonstop Himalaya [11]. Components are fully replicated and cycle-
by-cycle synchronized to ensure that in each cycle, they perform same operation on
same inputs and produce same outputs in the absence of faults. In fully replicated
hardware components, fault detection coverage is more than previous methods
because they do not have shared resources among redundant cores; however such
systems are relatively expensive which precludes it from wide spread.

In this paper, we do not consider adding extra redundancy strictly for fault
tolerance, because cost is such an important factor for commodity microprocessors.
The key observation made by previous research [12-13] is that modern superscalar
microprocessors, particularly simultaneously multithreaded (SMT) microprocessors,
already contain significant amounts of redundancy for purposes of exploiting
Instruction Level Parallelism (ILP) and enhancing performance. This is more when
the number of cores in the combination of CMP/SMT increases. Superscalar
processors exploit ILP by fetching and executing multiple instructions per cycle from
a sequential instruction stream. The pipeline of the superscalar processor can handle
more than one instruction per cycle, as long as each instruction occupies different
pipeline stages [14]. SMT processors such as Intel Core i7, IBM POWER7, Sun
Niagara and Rock, improve microprocessor utilization by sharing hardware resources
across multiple active threads [15-17].In this paper, we aim to tolerate faults by
leveraging existing chip multiprocessors redundancy, at the cost of performance
degradation for processors in the presence of faults.

To this end, we introduce a two-mode pipeline structure which can operate either
in high-performance or highly-reliable mode. In high-performance mode, two distinct
sets of programs (like two independent threads) can be run simultaneously in each
core consisting two pipelines. So, the core can work with almost twice the speed of a
typical core. While in the highly-reliable mode, the instructions of a program are

326 H. Aliee and H.R. Zarandi

fetched and replicated in the pipelines. To ensure fault detection and recovery, the
results of the pipelines are compared at the commit stage before presenting in the
output. In the presence of a fault, the faulty instruction is re-executed. To reduce the
cost of hardware replication, cores can be scheduled in different modes, so only the
critical applications are run in the highly-reliable mode and other cores are operated in
high-performance mode without performance degradation. This diagnosis mechanism
quickly and accurately diagnoses faults. Moreover, the reliable microprocessor can
function quite capably in the presence of both transient and permanent faults, despite
of not using redundancy beyond which is already available in a modern
microprocessor.

The experimental results on a MIPS-based superscalar processor with the ability of
executing two instructions in parallel prove that the proposed technique in the highly-
reliable mode decreases the static and dynamic power consumption by 25% and 36%,
respectively. Also, the modifications to the base processor architecture do not affect
the critical path delay, so the clock frequency is fixed. The fault detection latency for
this technique is equal to the pipeline length of the processor, and it provides high
fault detection coverage.

The rest of this paper is organized as follows. Section 2 describes the background
on superscalar processors. In section 3, the proposed technique is discussed. Section 4
contains experimental results. Section 5 discusses the current solutions for fault
detection and recovery. Finally, conclusions are presented in section 6 followed by
references.

2 Background

This section discusses background on the main area we exploits in this paper:
superscalar processors.

2.1 Superscalar Processors

A superscalar processor is one that is capable of sustaining an instruction-execution
rate of more than one instruction per clock cycle. The pipeline of a superscalar

Fig. 1. Superscalar architecture [14]

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 327

processor can handle more than one instruction as long as it maps each instruction to a
different pipeline stage. When the maximum capacity of a scalar processor is one
instruction per cycle, the maximum capacity of a superscalar processor is more than
one instruction depending on the level of parallelism supported in the processor. Fig. 1
shows a regular superscalar architecture [14] which fetches up to two instructions per
cycle. Fetched instructions are then decoded and passed to the register renaming logic.
Instructions are then placed in one of the instruction queues and waits until they are
issued. Instructions are issued in functional units and after completing the execution,
they are retired in order. This architecture provides some forms of hardware
redundancy which is exploits in this paper to ensure reliable execution if correct
execution is an essential feature of an application.

Adding simultaneous multithreading (SMT) to superscalar processors, which can
be done with little overhead [14], overcomes underutilization of a superscalar
processor due to missing instruction-level parallelism, where a processor can issue
multiple instructions from multiple threads each cycle.

3 The Proposed Technique

In this work, we modify an SMT processor to both detect and recover faults using
instruction-level redundancy by taking advantage of available resources in an SMT
processor. This architecture operates either in highly-reliable or high-performance mode.
Unlike a true SMT processor which is capable of handling n threads concurrently, this
structure, in highly-reliable mode, supports n/2 threads while the instructions of each
thread are mapped to two distinct pipeline units in the same processor. The top view of
this mode resembles an SMT processor with the set of n/2 threads. The processor is
scheduled, so each instruction can be executed twice. Redundant instructions are cycle-
by-cycle synchronized and move concurrently through the pipeline stages. All replication
and checking are performed transparently. In contrast, in high-performance mode, it acts
as a real SMT processor without any overhead.

In this paper, we focus on extending an SMT, superscalar processor with two
thread contexts and two pipeline structures to support our idea. Nevertheless, we can
easily extend our design to support superscalar machines with more resources.

3.1 Hardware Details

Without loss of generality, suppose a simplified MIPS-based processor pipeline [14]
as a base processor. The processor contains two floating point units and two integer
units. We assume that all functional units are completely pipelined. Each cycle, two
instructions from two distinct threads are given control of the fetch unit. They are then
decoded, issued, and executed. If they are memory operations (e.g. load and store
instructions), they can access memory at memory stage to read from or write to
memory. Finally, they are written back into register files in writeback stage. Data
hazards are resolved by bypass unit. Also, interrupts and exceptions are taken into
account by a system coprocessor. To handle branch hazards, branch prediction is
provided by a history table per thread context which contains the last branch
instruction results.

328 H. Aliee and H.R. Zarandi

Fig. 2. The pipeline in the highly-reliable mode in the proposed technique

3.2 Highly-Reliable Mode

The main objective of the proposed technique is providing reliability for programs
that require it and running other programs with the highest possible performance. To
enhance the reliability of a superscalar processor, it is possible to take advantage of its
available resources. Fig. 2 shows the pipeline of the proposed technique in the highly-
reliable mode. In this mode, the instructions are fetched from one of the thread. After
fetching an instruction, it is passed to two available pipelines in the processor. Output
comparison involves checking register writeback values and memory store value. A
mismatch in the outputs shows a fault in one of the components; which should be
prevented from propagating into the system. The comparators in Fig. 2 are
responsible for comparing the outputs and announcing the occurrence of an error in
the presence of a fault in one of the outputs.

To reduce the overall power consumption of the system, components which are not
employed can go to stand-by mode. In this figure, gray boxes refer to stand-by
components. These components are idle because they are outside of sphere of
replication [1]. The shared components are those which are accessed by both the main
and the redundant instructions. These modules are required to either provide similar
inputs (e.g. fetch unit) or compare the outputs (e.g. writeback unit and bus controller).

3.2.1 Input Replication
Inputs to the pipelines should be handled carefully to ensure that both of them follow
the same path and are cycle-by-cycle synchronized. Data from the outside of the
sphere of replication should be replicated in the pipelines, so they receive same data
values. Otherwise, the mismatch in their outputs is considered as a hardware fault.
The inputs which need to be replicated are listed here:

Fetched Instructions: In this technique, in each cycle, both pipelines should execute
same instruction. Fetch unit, reads instructions from memory, then pass them to

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 329

decode stages. The instructions go through the pipeline concurrently and reach
memory and writeback stages at the same time which is essential for lockstep
redundancy where in each cycle, the outputs are compared before propagating to the
rest of the system out of the sphere of replication.

Load Data: Corresponding loads from replicated instructions must return the same
values to each instruction. In temporal approaches, this is handled by employing some
interconnection buffers which store loaded values of the leading thread for other
trailing thread [1]. This is due to different access time of threads which may lead to
inconsistency between their load values. However, in the suggested solution in this
paper, this problem does not occur, because the pipelines are entirely synchronized
and load instructions reach the memory stage at the same cycle; therefore a load value
can be delivered to the both instructions without requiring extra buffer.

Exceptions and Interrupts: Interrupts and exceptions should be delivered to both set
of instructions at precisely the same point in their execution. The exceptions and
interrupts are managed in the coprocessor which is not shown in Fig. 2. If an interrupt
or exception occurs, the fetch unit can easily redirect the program flow and start to
fetch essential instructions. In this design, both pipelines receive identical
instructions, so exceptions and interrupts are not concerned and this part of the
processor can be left unmodified.

Register Values: Register files are not in sphere of replication. Hence, the outputs
from this module must be replicated to ensure that both redundant instructions receive
identical inputs. For that, it is enough to idle one of the register files and both
pipelines work with a shared register file.

These concepts prove that in the proposed technique, the input replication can be
easily managed with negligible overhead and effort.

3.2.2 Output Comparison
The sphere of replication boundary defines where outputs are compared. The outputs
of the sphere of replication must be compared to guarantee that all data reaching out
of this domain are reliable and correct. There are four types of values which
necessitate comparing:

Store Values: Before forwarding a store value to the memory, both the address and
the value of the store operations must be checked. Since redundant instructions reach
the memory stage at the same clock, it is enough to verify their address and value at
bus controller unit. The bus controller receives the address and the value of both
memory stages. In highly-reliable mode, it first compares the values and the
addresses, and then if there is no mismatch, it sends necessary signals to the memory
to store the data. Otherwise, it sends an error signal to the fetch unit with the Program
Counter (PC) value of the current store instructions for recovery phase, and no data is
written in the memory. In thread-level redundancy, leading thread writes its store
values in a store buffer and the second thread compares its address and data with the
existing values in the buffer. So, in compared to the proposed technique, thread-level
redundancy consumes more buffers.

Load Address: In the case of load operation, the load address of redundant
instructions must be verified before reading from the memory. It is the responsibility

330 H. Aliee and H.R. Zarandi

of the bus controller to get the load addresses from the both memory stages and
compares them. A mismatch indicates a fault.

Register Values: In the writeback stage, the instructions in the pipeline write their
register values in the register file. In this design, the register file is not in the sphere of
replication, so the values written in this module must be checked to be fault free.
Otherwise, faults are propagated to later instructions without being detected. In this
case, the fault detection latency will be increased. Moreover, when a fault is detected,
the origin of the fault is not recognizable.

Branch Prediction Outputs: Branch predictor determines the next PC to be fetched
after a branch instruction. Due to lockstep execution, the predicted PC of redundant
instructions must be verified before announcing to the fetch unit. In highly-reliable
mode, one of the branch predictors is off and the other one is responsible for checking
the branch outcomes.

3.2.3 Fault Recovery
Whenever a fault is detected in the system, an error signal is passed to the fetch unit.
In addition to the error signal, the PC of the faulty instruction is also passed to this
unit. In each clock, the fetch unit checks the error signal. If the signal is active, it
starts to fetch from the PC indicating the faulty instruction and clears the other
pipeline stages. Hence, if the fault is transient, it will be recovered by re-executing the
instruction. In this condition, the fault recovery latency is 5 cycles maximum.

3.2.4 Permanent Fault Detection
The introduced technique can detect permanent faults as well as transient ones.
However, it cannot distinguish permanent from transient faults. Permanent faults can
be detected based on this fact that if over a period of time, more than a specific
threshold of errors has been attributed to the system; it is very likely that this system
has a permanent fault. To recognize permanent faults, a counter is specified to count
the number of times an error has occurred in the system. When a mismatch is detected
between the outputs of two redundant instructions, the counter is incremented by one
and the execution is restarted from the faulty instruction (recovery phase). If the next
execution is fault free, the counter is reset; otherwise if the counter exceeds the
specific threshold, a permanent fault is reported. In the case of a permanent fault, the
processor is marked as faulty and should stop its work.

3.3 High-Performance Mode

For some applications in the system, reliability may not be necessary. Therefore, these
applications can be programmed in high-performance mode. In this mode, the
processor operates as a true SMT, superscalar processor with the ability of performing
two threads concurrently. The pipeline structure of the processor in this mode is
similar to Fig. 2, however in this mode, all the units are active. The speed of a
processor in high-performance mode is twice the speed of that processor in highly-
reliable mode. The fetch unit can issue up to two instructions from two available
threads. The instructions are then decoded and executed in decode and execution

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 331

units, respectively. In this mode, each instruction in the pipeline accesses the memory
for load and store operations independently through separate bus controller.
Moreover, each thread has its own register file and branch predictor.

3.4 Switching between High-Performance and Highly-Reliable Mode

In a CMP system, applications may have different features from reliability point of
view. Some of them may have critical effect on the system, so they should be
executed in highly-reliable mode to ensure that they produce correct outputs. To this
end, cores in a CMP system can be scheduled in different modes based on the
application running on them. The mode of each core can be programmed dynamically
at run time with the help of the operating system.

4 Experimental Results

To implement this method, an instruction-level emulator in VHDL language is
exploited; it borrows significantly from MIPS-I which is a MIPS-based emulator.
This emulator is modified to provide the architecture mentioned in section 3. In this
section, a brief comparison between the proposed techniques and two traditional
schemes is addressed: the fully replicated hardware-based technique (FR) which
duplicates a scalar processor with a single pipeline, and Simultaneously and
Redundantly Threaded processors with Recovery (SRTR) [23]. It is assumed that
each processor in FR technique has half the resources (functional units and data cache
ports) of the SMT processor. In SRTR, two similar copies of a thread run on the SMT
processor. One of the threads (the leading thread) goes ahead of the other redundant
thread (the trailing thread). The instructions of the leading thread are committed only
if they are checked by the trailing thread. A mismatch in comparison shows the
occurrence of a fault in the system which is recovered by re-executing the faulty
instruction. The parameters of the employed SRTR are presented in table 1 [23]. The
SRTR is evaluated on an SMT processor similar to the architecture describes in the
previous section.

Table 1. SRTR parameters

SRTR Parameters
PredQ/LVQ/StB/RVQ 48/96/48/80 entries

Slack 32 instructions

Table 2. Comparison of the base superscalar processor versus the proposed technique

Architecture # of Instructions
per Clock

Clock Freq.
(MHz)

Static Power
(mW)

Dynamic
Power (mW)

Superscalar 2 30 1.094 1.676
Proposed
Technique

High-Performance 2 30 1.094 1.676
Highly-Reliable 1 30 0.819 1.075

332 H. Aliee and H.R. Zarandi

4.1 Fault Model

In this paper, we targets soft error which is a random event such as transient bit flips,
that corrupts the value stored in a memory without damaging the cell itself [25]. The
registers in processor’s datapath from fetch to writeback stage are vulnerable to soft
error. Other memory cells such as cache arrays are out of the sphere of replication and
they are protected with information redundancy such as ECC and parity. However,
these codes cannot be exploited for pipeline registers due to timing-critical nature of
processor datapaths. The proposed technique in this paper protects these vulnerable
memory cells to reduce the effect of soft errors.

4.2 Results

Table 2 presents the number of instructions per clock, clock frequency, static power,
and dynamic power of the base superscalar processor employed in this paper, and the
proposed technique in both high-performance and highly-reliable mode. The
superscalar processor architecture is described in previous section. The results are
extracted using Synopsys tool chain [26] with the technology size of 65nm. The
results prove that without considering stall, the optimistic number of committed
instructions in each clock in the superscalar processor is similar to the proposed
technique in high-performance mode, which is two times higher than the number of
executed instructions per clock in the highly-reliable mode. This level of reduction is
due to dual execution of each instruction in the highly-reliable mode for tolerating
faults. The clock frequency of these three structures is equal which shows that the
extra hardware which is employed for voting, has no effect on the critical path delay.
In contrast, the static power and dynamic power have degraded 25% and 36%,
respectively, in the highly-reliable mode in compared to two others. This reduction in
power consumption is because of the components which are idle in the highly-reliable
mode such as register file and bus controller. From this table, it can be concluded that
in the high-performance mode, the processor behavior is similar to the base
superscalar processor, while in the highly-reliable mode, the total performance is
lower than the performance of the base processor, and however the power
consumption has been decreased.

Table 3. Reliability comparison of FR, SRTR and the proposed technique

Technique # of Memory
Bits

of Covered
Memory Bits

Fault Detection
Coverage (%)

Fault Detection
Latency

FR 1723 1723 100 5
SRTR 10522 7450 100 Slack + 5
Proposed Technique 1818 1818 100 5

Table 4. Performance and area comparison of FR, SRTR and the proposed technique

Technique Perf. Degradation (%) Redundant Area
FR 32 One Processor + Comparators
SRTR 17 Comparators + Buffers
Proposed
Technique

High-Performance 0 Comparators
Highly-Reliable 13 Comparators

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 333

4.2.1 Reliability Comparison
Table 3 estimates the fault coverage of the proposed techniques and compares that
with FR and SRTR. The second column in this table estimates the number of datapath
registers of the processor pipeline. The third column shows the number of registers
which are fault-tolerant. Also, the fourth column presents the percentage of SEU fault
detection coverage in these techniques. Finally, the last column shows the transient
fault detection latency for these techniques. The total number of memory bits in the
sphere of replication for FR is almost the same as the proposed technique. In SRTR,
the interconnection buffers between the leading thread and the trailing thread have
increased the number of memory bits noticeably, however any fault in these buffers
are detected. FR, SRTR [19], and the proposed technique cover all the memory bits in
the sphere; therefore the fault coverage is 100% for these structures.

When a fault takes place in one of the stages in the pipeline, the transient fault
detection latency for FR and the proposed technique are approximately equal to the
pipeline length (5 stages in this example). However for SRTR, this latency is equal to
the slack value plus the pipeline length (37 in this example). SRTR benefits from
slack to increase the performance of the trailing thread. In SRTR, the leading thread
runs ahead of the trailing thread by the slack value. So, the trailing thread verifies the
output of the leading thread after slack cycles. It can be concluded that FR and the
proposed technique provide similar fault coverage, but they have less fault detection
latency than SRTR.

4.2.2 Performance and Area Comparison
Table 4 presents the performance degradation and the redundant area used for
implementing each of the mentioned methods. The results in this table are in
compared to our base SMT machine running one thread. The FR method degrades the
performance for 32% [1], because each processor in this method has half the
resources of the base SMT machine. In SRTR, two independent threads run
concurrently and the processor can issue up to two instructions from the redundant
threads each cycle which declines the performance of the system by 18%. Finally, to
evaluate the performance of the proposed technique, it is implemented using
Simplescalar tool set [27]. The set of benchmarks from SPEC2000 has been executed
to extract the results. The results show that the proposed technique is 13% slower on
average than the base machine. The high-performance mode of the proposed
technique has no effect on the performance.

FR adds a scalar processor as a checker to checks the execution in the main
processor. It then compares the external pins on each cycle. SRTR adds
interconnection buffers and comparators to an SMT processor. Finally, the proposed
technique adds only comparators to an SMT processor. FR and the proposed
technique have almost equal area, while SRTR consumes more area than the proposed
technique because of the interconnection buffers. Moreover, the proposed technique
can be implemented with less modification to an SMT processor in compared to
SRTR.

The main advantage of the proposed technique is that it provides higher
performance with lower complexity than SRTR. More importantly, this technique can
be scheduled dynamically in run time. Moreover, in a CMP system, each core can be
programmed independently based on the application running in that core.

334 H. Aliee and H.R. Zarandi

5 Related Work

Prior researches have employed variety of fault tolerance schemes. There have been
several proposals to add extra redundancy to tolerate faults.

One of the most common and simple fault-tolerant solutions is duplicating
hardware and compare the results [18]. Hardware-based fault tolerance solutions are
transparent to programmers and system software, but require extra hardware. Compaq
NonStop Himalaya detects soft errors by running identical copies of a program on two
identical synchronized microprocessors. It locksteps the microprocessors and
compares the external pins on each cycle. Also, IBM S/390 system replicates
execution unit in the pipeline and execute identical instructions and data. [20] presents
an approach to tolerate faults by utilizing instruction redundancy. It uses instruction
reissue mechanism to tolerate transient faults accruing in the arithmetic and logical
function by executing each committed instruction twice. The main disadvantage of
this technique is that it only covers faults in functional unit not other components in a
processor.

Mixed-Mode Multi-core (MMM) [21] enables one set of applications to run with
high reliability in DMR mode, while another set, the performance applications, can
avoid the penalty of DMR. The problems with this technique are its complexity as
well as extra redundancy that should be considered for non-DMR applications to
protect the integrity of reliable applications needing DMR.

To reduce the hardware cost of hardware-based fault tolerance approaches, several
temporal techniques have been proposed which are more flexible and cheaper in
terms of physical resources. Active Stream/Redundant Simultaneous Multithreading
(AR-SMT) [22] is the first to use SMT processors to execute copies of the same
program. In AR-SMT, two explicit copies of the program run concurrently on the
same processor resources. Simultaneous and Redundant Threads (SRT) [1] processor
improves on AR-SMT via the two optimizations of slack fetch and checking only
stores. Later, Simultaneously and Redundantly Threaded processors with Recovery
(SRTR) [23] enhances SRT to support recovery. It does not allow any leading
instruction to commit before checking occurs. The recovery is done by re-executing
the faulty instruction. Chip-Level Redundantly Threaded multiprocessor (CRT) [24]
applies SRT’s detection to CMP in which the leading and trailing threads are executed
on different processors to reduce the probability of a fault corrupting both threads.

[19] proposes two semi-complementary techniques called Partial Explicit
Redundancy (PER) and Implicit Redundancy Through Reuse (IRTR). This solution
achieves better trade-off between fault coverage and performance degradation,
however it increases the number of inter-thread communication buffers which makes
it more complex than SRT. All these techniques rely on specialized hardware
extensions.

6 Conclusion

This paper presents a fault-tolerant pipeline structure which is implemented with
negligible modification to an SMT processor. SMT processors already contain
significant amounts of redundancy for purposes of exploiting ILP and enhancing

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 335

performance. The proposed technique in this paper utilizes the available redundancy
in these architectures to tolerate faults if it is essential. This technique operates in two
modes: high-performance and highly-reliable. In high-performance mode, the
processor works as a regular SMT processor with no performance and power
overhead. In highly-reliable mode, the processor pipeline is scheduled so that each
fetched instruction is mapped to two distinct pipelines in the base SMT processor.
The redundant instructions execute concurrently through the pipelines. The lockstep
feature of this technique makes input replication and output comparison easy to
implement which are two real concerns in temporal redundancy solutions. When their
results are ready to be presented in the output, the results are first verified to ensure
that no fault will be propagated out of the sphere of replication. When a fault is
detected, the fault is recovered by re-executing the faulty instruction.

The experimental results on a MIPS-based superscalar processor prove that the
proposed technique in the highly-reliable mode decreases the static and dynamic
power consumption by 25% and 36%, respectively. Finally, the fault detection latency
for this technique is equal to the pipeline length of the processor, and it provides high
fault detection coverage.

References

1. Reinhardt, S.K., Mukherjee, S.S.: Transient-Fault Detection via Simultaneous
Multithreading. In: The Proceedings of the 27th Annual International Symposium on
Computer Architecture (ISCA 2000), Canada, pp. 25–36 (June 2000)

2. Gibson, D., Wood, D.A.: Forward flow: a Scalable Core for Power-Constrained CMPs. In:
The Proceedings of the 37th Annual International Symposium on Computer Architecture
(ISCA 2010), USA, pp. 1–12 (June 2010)

3. Bhattacharjee, A., Martonosi, M.: Thread Criticality Predictors for Dynamic Performance,
Power, and Resource Management in Chip Multiprocessors. In: Proceedings of the 36th
Annual International Symposium on Computer Architecture (ISCA 2009), USA, pp. 290–
301 (June 2009)

4. Sanchez, D., Aragon, J.L., Garcia, J.M.: Extending SRT for Parallel Applications in Tiled-
CMP Architecture. In: The Proceedings of the 23rd IEEE International Symposium on
Parallel and Distributed Processing (IPDPS 2009), USA, pp. 1–8 (July 2009)

5. Prvulovic, M., Zhang, Z., Torrellas, J.: ReVive: Cost-Effective Architectural Support for
Rollback Recovery in Shared-Memory Multiprocessors. In: The Proceedings of the 29th
Annual International Symposium on Computer Architecture (ISCA 2002), USA, pp. 111–
122 (May 2002)

6. Aggrarwal, N., Smiths, J.E., Saluja, K.K., Jouppi, N.P., Ranganathan, P.: Implementing
High Availability Memory with a Duplication Cache. In: The Proceedings of the 41st
IEEE/ACM International Symposium on Microarchitecture (MICRO 2008), USA, pp. 71–
82 (November 2008)

7. Zarandi, H.R., Miremadi, S.G.: A Highly Fault Detectable Cache Architecture for
Dependable Computing. In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.)
SAFECOMP 2004. LNCS, vol. 3219, pp. 45–59. Springer, Heidelberg (2004)

8. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore Soft Error Rate Stabilization
Using Adaptive Dual Modular Redundancy. In: The Proceedings of the Conference on
Design, Automation and Test in Europe (DATE 2010), Germany, pp. 27–32 (March 2010)

336 H. Aliee and H.R. Zarandi

9. Kumar, S., Hari, S., Li, M., Ramachandran, P., Choi, B., Adve, S.V.: mSWAT: Low-Cost
Hardware Fault Detection and Diagnosis for Multicore Systems. In: The Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
2009), USA, pp. 122–132 (December 2009)

10. Siegel, T.J., et al.: IBM’s S/390 G5 Microprocessor Design. IEEE Micro 19(2), 12–23
(1999)

11. Compaq Computer Corporation, Data Integrity for Compaq Nonstop Himalaya Servers
(1999), http://nonstop.compaq.com

12. Bower, F.A., Sorin, D.J., Ozev, S.: Online Diagnosis of Hard Faults in Microprocessors.
ACM Transactions on Architecture and Code Optimization (TACO) 4(2), article 8 (June
2007)

13. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: Exploiting Structural Duplication for
Lifetime Reliability Enhancement. In: The Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA 2005), USA, pp. 520–531 (June 2005)

14. Tullsen, D.M., et al.: Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor. In: The Proceedings of the 23rd Annual
International Symposium on Computer Architecture (ISCA 1996), USA, pp. 191–202
(June 1996)

15. Eyerman, S., Eeckhout, L.: Probabilistic Job Symbiosis Modeling for SMT Processor
Scheduling. In: The Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2010), USA, pp.
91–102 (March 2010)

16. Ramirez, T., Pajuelo, A., Santana, O.J., Valero, M.: Run ahead Threads to Improve SMT
Performance. In: The Proceedings of the 14th International Symposium on High
Performance Computer Architecture (HPCA 2008), UT, pp. 149–158 (February 2008)

17. Eyerman, S., Eeckhout, L.: Per-Thread Cycle Accounting. IEEE Micro 30(1), 71–80
(2010)

18. Timor, A., Mendelson, A., Birk, Y., Suri, N.: Using Underutilize CPU Resources to
Enhance Its Reliability. IEEE Transactions on Dependable and Secure Computing 7(1),
94–109 (2010)

19. Gomaa, M.A., Vijaykumar, T.N.: Opportunistic Transient-Fault Detection. In: The
Proceedings of the 32nd International Symposium on Computer Architecture (ISCA
2005), pp. 172–183 (June 2005)

20. Sato, T.: Exploiting Instruction Redundancy for Transient Fault Tolerance. In: The
Proceedings of the 18th International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT 2003), USA, pp. 547–555 (November 2003)

21. Wells, P.M., Chakraborty, K., Sohi, G.S.: Mixed-Mode Multicore Reliability. In: The
Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2009), USA, pp. 169–180
(March 2009)

22. Rotenburg, E.: AR-SMT a Microarchitectural Approach to Fault Tolerance in
Microprocessors. In: The Proceedings of 29th Annual International Symposium on Fault-
Tolerant Computing Systems (FTCS 1999), USA, pp. 84–91 (June 1999)

23. Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-Fault Recovery Using Simultaneous
Multithreading. In: The Proceedings of the 29th Annual International Symposium on
Computer Architecture (ISCA 2002), USA, pp. 87–98 (May 2002)

 A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors 337

24. Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed Design and Evaluation of
Redundant Multithreading Alternatives. In: The Proceedings of the 29th Annual
International Symposium on Computer Architecture (ISCA 2002), USA, pp. 99–110 (May
2002)

25. Aggarwal, N., Ranganathan, P., Jouppi, N.P., Smith, J.E.: Configurable Isolation: Building
High Availability Systems with Commodity Multi-Core Processors. In: The Proceedings
of the 34th International Symposium on Computer Architecture (ISCA 2007), USA, pp.
340–347 (June 2007)

26. Ragel, R., Ambrose, A., Peddersen, J., Parameswaran, S.: RACE: A Rapid, Architectural
Simulation and Synthesis Framework for Embedded Processors. In: Hinchey, M.,
Kleinjohann, B., Kleinjohann, L., Lindsay, P.A., Rammig, F.J., Timmis, J., Wolf, M.
(eds.) DIPES 2010. IFIP AICT, vol. 329, pp. 137–144. Springer, Heidelberg (2010)

27. Burger, D.A., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. Technical report
#1342, University of Wisconsin-Madison, Computer Science Department (June 1997)

FloGuard: Cost-Aware Systemwide Intrusion Defense
via Online Forensics and On-Demand IDS Deployment

Saman Aliari Zonouz1, Kaustubh R. Joshi2, and William H. Sanders1

1 University of Illinois
2 AT&T Labs Research

Abstract. Detecting intrusions early enough can be a challenging and expensive
endeavor. While intrusion detection techniques exist for many types of vulnerabil-
ities, deploying them all to catch the small number of vulnerability exploitations
that might actually exist for a given system is not cost-effective. In this paper, we
present FloGuard, an on-line intrusion forensics and on-demand detector selec-
tion framework that provides systems with the ability to deploy the right detec-
tors dynamically in a cost-effective manner when the system is threatened by an
exploit. FloGuard relies on often easy-to-detect symptoms of attacks, e.g., par-
ticipation in a botnet, and works backwards by iteratively deploying off-the-shelf
detectors closer to the initial attack vector. The experiments using the EggDrop
bot and systems with real vulnerabilities show that FloGuard can efficiently lo-
calize the attack origins even for unknown vulnerabilities, and can judiciously
choose appropriate detectors to prevent them from being exploited in the future.

1 Introduction

Automatic response to security attacks that exploit previously unknown vulnerabilities
can help the majority of computer systems that are not supported by dedicated secu-
rity teams. If an attack’s initial infection point can be isolated to an individual process
or file, response techniques such as online attack signature generation and filtering,
e.g., [10,31] can be effective. However, the usefulness of such approaches for unknown
”zero-day” attacks is often hampered by lack of early and accurate detection of un-
known vulnerability exploitations. There are approaches in the literature for detecting
many different types of vulnerability exploitations such as buffer overflows [7], SQL in-
jections and other format string attacks [30], and brute-force attacks [5]. Nevertheless,
many computer systems today run with very little protection against unknown attacks,
and often the first sign of compromise happens too late, either by users noticing de-
graded system performance, or ISPs detecting that the system is part of a BotNet or
DDoS attack [23]. If such a range of detection options are available in the literature,
why are they not used?

We hypothesize that there are two main challenges to early but effective attack de-
tection: cost and precision. Many of the detection mechanisms cited earlier are simply
too expensive to be continuously deployed. For example, bounds checking techniques
such as CRED have overheads of as much as 300% [28], while taint-tracking can add

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 338–354, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 339

as much as 20X (Section 7). As one broadens the range of vulnerability types to be de-
tected and the number of system components to be protected, the overheads add up, and
push the cost threshold beyond which a technique becomes infeasible even lower. The
move to mobile devices with limited compute power and battery life further exacerbates
this problem. Detection mechanisms such as anomaly detectors or syscall sequence de-
tectors that have low precision (i.e., high false positive rates) are rarely used even if their
computational costs are low. On the other hand, cheap detectors do exist, e.g., change
detectors for critical files [32], or anomaly detectors [5], but they often only detect the
consequences of an attack, not the actual vulnerability that was exploited.

In this paper, we introduce FloGuard, which extends our previous work [34], an
online forensics and backtracking framework that takes a system-wide cost-sensitive
approach to attack detection and tracing. It uses the observation that although it may
be difficult to notice the immediate effects of an exploit inexpensively, the ultimate
consequences of attacks are often easier to detect. For example, inexpensive in-network
scanning techniques such as BotGrep [23] can detect participation in a botnet or DDoS
attack. Malware scanners such as ClamAV [17] can detect previously known payloads
even if the attack vector is unknown, and anomaly detectors can detect deviations in
a system’s performance or modifications to its critical files. Once an attack is detected
in this manner, FloGuard can roll the system back to a clean checkpoint1, determine
possible paths the attack could have taken to reach its detection point using an online
forensics algorithm, and deploy additional security detectors to catch and detect the
attack at an earlier stage the next time that it is attempted. By iteratively repeating this
process, it can deploy detectors successively closer to the initial attack vector until such
a time that the attack can be stopped by automatic prevention techniques, such as input
signature generation or quarantining.

To determine the set of detectors to enable and disable in every iteration, FloGuard
uses an Attack-Graph-Template (AGT), which is an extended attack graph that enumer-
ates possible attack and privilege escalation paths in the system. AGTs include possible
paths, not ones known to be in the particular implementation being protected. E.g., an
AGT for a server written in C can include privilege escalation using a buffer-overflow
exploit, even though there may be no such known vulnerability. Therefore, AGTs can
be constructed automatically by using system call monitoring to track all information
and control flow paths between a system’s privilege levels via processes, sockets, and
files. During the forensics phase, FloGuard solves an optimization problem based on the
the deployed detectors’ outputs, the cost and coverages of the unused detectors, and the
paths encoded by the AGT to determine which detectors to deploy for the next round.

We believe that FloGuard is one of the first frameworks to effectively balance the cost
of security detection mechanisms against their coverage. By invoking mechanisms “on-
demand” only when they are needed to forensically evaluate an attack that is already
known to exist for the target system, FloGuard can utilize expensive mechanisms such
as buffer bounds checking and taint tracking that are known to have good coverage
characteristics. Furthermore, since FloGuard is a whole-system tool, it can initiate its
detection and forensics analysis based on a wide range of attack consequences that may

1 We define a clean snapshot as the last system snapshot before all potential attack entry points,
e.g., a socket connection, that could have influenced the detection point.

340 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

Attack Consequence
 Detected Attack Consequence Detected

AGT generation
2System Setup

Computer System

1
Forensics

Vul2

3
VulDB

CVE-2005-4357
Vul2
…

4
Available IDSes

6
Monitor Selection

Max (Vulnerability Coverage)
Min (Computational Overhead)

5
Update IDSes

Computer System

7
Snapshots

Snapshot1: 3/1/2011

8

Fig. 1. FloGuard Architecture

be many processes and files away from the initial attack vector. Finally, the models
we use are designed so that new security mechanisms can be easily integrated into its
decision-making, making FloGuard a flexible and extensible detection tool that can be
practically used for a wide variety of attack types.

The basic premise behind FloGuard is not that one cannot statically determine the
necessary IDSes to install for “known” vulnerability (e.g., using CERT); instead, we
content that statically deploying all the necessary IDSes or countermeasures to protect
against the entire universe of “unknown” vulnerabilities that may be present in a system
is not feasible from a performance and/or usability standpoint. We currently focus on
scripted zero-day worms and malware exploiting both known and unknown vulnerabili-
ties. These usually generate easy to detect consequences such as network scanning, and
participation in botnets. Our focus is not on stealthy attacks (e.g., Stuxnet).

We demonstrate FloGuard’s capabilities against a modified real-world bot, namely
Eggdrop [20], and several attacks against multiple real applications with a number of
actual vulnerabilities in them. We show how FloGuard can integrate several off-the-
shelf IDSes to detect a range of attacks that lie beyond any single tool’s capabilities.

2 Architecture

We begin by describing FloGuard’s architecture and its overall operation. Figure 1
shows a bird’s-eye view of different components in FloGuard. FloGuard assumes a
virtual machine environment and requires the target system to operate as a guest VM2.
FloGuard itself operates in the hypervisor/host OS of the VM environment to protect
itself from attack and facilitate secure snapshotting facilities. Our prototype makes use
of the Qemu [8] system emulator. The main inputs that FloGuard requires from a sys-
tem administrator are a Vulnerability-Detector database (VulDB) and an initial set of
“attack consequence detectors.”

Attack consequence detectors are lightweight detectors that can operate continuously
to detect the eventual symptoms of an intrusion, and cannot be disabled by an attack.
Examples include in-network botnet/DDoS tracking done by ISPs and hypervisor-based
file-integrity checkers. The output of an attack consequence detector is a process, port,
or file that exhibits the symptoms of an attack. The VulDB encodes information about
the kinds of vulnerabilities that FloGuard is to guard against and the intrusion detection
systems available to it. The database does not require knowledge of the specific vulner-
abilities that may actually be present in the target system (which are unknown), but just

2 In fact, VMs are not strictly needed, but they make incremental snapshots more efficient.

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 341

the high-level types, e.g., buffer overflow or SQL injection, that are possible and for
which detection mechanisms are available.

During normal operation, FloGuard turns on the consequence detectors and period-
ically collects incremental snapshots of the system. It also keeps an append-only log
of all system calls that are sent to a secure backend through a unidirectional commu-
nication link. When the attack consequence detector produces an alert (i.e., the detec-
tion point), FloGuard parses the syslogs, and determines the set of all potential attack
sources (entry points) ((similar to [16, 14]). The last system snapshot taken before all
the potential attack sources is marked as the last clean snapshot. FloGuard produces an
Attack Graph Template (AGT), which by design consists of a superset of actual attack
paths using the syslogs from the clean snapshot to the detection point3.

Through an iterative forensics analysis process, FloGuard invokes intrusion detec-
tors, during each iteration (attack repetition), to refine the AGT from possible attack
paths into an actual path. For each iteration, FloGuard selects a new set of detectors,
rolls the system back to a past clean snapshot, deploys the detectors, and waits for a re-
peat attempt of the attack. After the iteration, FloGuard uses the outputs of the intrusion
detectors to determine which paths in the AGT can be implicated or eliminated, and
produces a refined AGT that is a subset of the original one. Eventually, once the actual
attack path gets identified, a mitigation mechanism can then be used to block similar
attacks in future. Thus, only the detectors related to vulnerabilities that are present in
the system and for which an exploit actually exists need to be deployed in the process.
Because FloGuard makes use of securely logged syscalls, it does not rely on any knowl-
edge of what the attacker may do in the future. Additionally, because FloGuard works
based on logged past activities within the system, it can work against social engineering
attacks by tracing the attack path back to the executable which was downloaded during
the social engineering phase of the attack.

3 Vulnerability-Detector DB

The vulnerability-detector database encodes all the domain knowledge about vulnera-
bility types, detection mechanisms, and the applications in the system that are used by
the forensics engine to make its detection decisions.

Vulnerability Types. In general, vulnerabilities are software flaws that are used by an
adversary in the penetration step of an attack to obtain a privilege domain on a machine.
The vulnerability types set in the VulDB includes all “possible” types of vulnerabilities
that could potentially exist in different parts of the target system. A vulnerability type
represents general vulnerability classes, e.g., buffer overflow, that encompass all target
systems, without mentioning their context. It does not represent a specific vulnerability
in the system, e.g., the vulnerable application’s name and the exact location in the appli-
cation’s code. In addition, the VulDB also contains a target-system-specific mapping of

3 It is important to mention that FloGuard also addresses kernel vulnerabilities. The last possible
exploitation by the attacker, which would give him or her the highest privilege, is the root
escalation. And that last exploitation (i.e., a consequence) is also logged, because logs are sent
real-time to a backend server, and are later used for forensics analysis.

342 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

vulnerabilities to processes in the system. The mapping can be positive or negative (e.g.,
the eVision application [4] could be vulnerable to a SQL injection attack while the sshd
daemon could not). Since the system’s actual vulnerabilities are unknown, these map-
pings represent potential vulnerabilities, not known ones. The mappings are optional,
and FloGuard assumes that every process can be vulnerable to every vulnerability type
if the mapping is missing.

Detection Mechanisms. The second element in the VulDB is the set of intrusion de-
tection systems (IDSes) that are available to FloGuard to monitor different parts of the
target system. Different kinds of IDSes that together cover as many different vulner-
ability types as possible are preferable. For each detection mechanism, FloGuard also
requires a relative cost measure, e.g., CPU overhead, associated with the detector when
it is deployed. The cost measure is only used to compare one intrusion detector against
another; so as long as a uniform measure is used for all the detectors, it is not necessary
for the cost to represent any specific performance or overhead measure. Ultimately,
FloGuard’s main objective is to protect a system from attack once its corresponding
vulnerability gets identified. While each detector can be converted into a rudimentary
intrusion mitigator (by restarting the target process once the detector detects an intru-
sion), specialized mitigation mechanisms that may not detect attacks but can block them
can also be included in the VulDB database. For example, a “disable account” action
cannot detect attacks per se, but can block password attacks.

Detector-Capability Matrix. The detector-capability matrix indicates the ability of a
given IDS to detect various vulnerability types. The matrix is defined over the Cartesian
product of the vulnerability type set and the set of IDSes. Each matrix element shows
how likely it is that each IDS, due to false positives and negatives, could detect an
exploitation of a specific vulnerability type. In our experiments, we have used discrete
N, L, M, H and C notations to represent no, low, medium, high and complete coverages,
respectively. The detection capability matrix is later employed by the forensics and
detector selection algorithms in deciding on the minimum-cost set of intrusion detection
systems with maximum exploit detection capability.

4 Attack Graph Templates

Generally, every cyber attack scenario (path) consists of a number of subsequent ex-
ploits. In other words, the adversary, with initially no access to the system, can subse-
quently exploit various vulnerabilities to achieve the privilege required for his or her
malicious goal, e.g., modifying a sensitive system file. Throughout this paper, exploits
are represented as (process, vulnerability type) pairs in which the first and second ele-
ments denote, respectively, the vulnerable application, e.g., eVision, and the vulnerabil-
ity type, e.g., buffer overflow, in the application.

Traditionally, an attack graph for a computer system represents a collection of known
penetration scenarios according to a set of known vulnerabilities in the system [29]. In
this section, we present the attack graph template (AGT), i.e., an extended attack graph,
which is intended to cover all “possible” attack types. As an example, the attack graph
template for a web server addresses the possibility that the server application might be

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 343

vulnerable to buffer overflow attacks, even if there is no such known vulnerability in
the application. The attack graph template is a state-based graph in which each state is
defined to be the set of the attacker’s privileges in that state. State transitions in AGT
(each mapped to a vulnerability exploitation) represent privilege escalations. Formally,
the AGT encodes all possible attack paths from the initial state, in which the attacker has
no privilege, to the goal state, in which the attacker has achieved the required privilege
to accomplish his or her malicious goals.

In general, unknown vulnerability exploitations in a given application could be in
any part of the application code; however, almost all of them are of known types, such
as buffer overflow or SQL injection. Furthermore, as each IDS can detect certain types
of exploits, generating AGTs that consider all possible vulnerability exploitations in
applications allows FloGuard to determine which state transitions in an AGT get de-
tected if a particular set of IDSes are deployed. Additionally, as the AGT is designed to
consider all exploit types that constitute a finite set, the order (#states) and size (#state
transitions) of AGT are finite, and often manageable in practice (see Section 7).

Automatic AGT Generation. FloGuard is particularly interested in the syscalls that
cause data dependencies among the OS-level objects4. A dependency relationship is
specified by three things: a source object, a sink object, and a timestamp5. For exam-
ple, the reading of a file by a process causes that process (sink) to depend on that file
(source). Given a detection point and the syscall logs, the dependency graph is generated
using an algorithm similar to BackTracker [16]. Syslogs are parsed and analyzed line
by line from the beginning to the detection point; their corresponding source and sink
objects are created or updated; and a directed edge, labeled with the event’s occurrence
time, is created between those nodes.

We run two optimizations on the dependency graph before converting it to AGT.
First, using time-sensitive backward reachability analysis, we eliminate irrelevant ver-
tices/edges that do not causally affect the state of the detection point [19]. Second, by
calculating transitive closure of the graph, we get rid of all the non-process nodes; any
pair of processes get connected if there is a causal directed path [19] between them
consisting of only non-process nodes. Finally, the refined dependency graph is used to
generate the AGT. The idea is to consider any dependency graph edge connecting two
nodes from different privileges (security contexts), a potential vulnerability exploitation
by the attacker to obtain the privilege of the process to which the edge directs.

To convert the dependency graph to AGT, we traverse the dependency graph and
concurrently update the AGT. First, the initial state of AGT with an empty privilege set
is created. Starting from each entry point node in the graph, we run a causal depth-first
search (DFS), i.e., with increasing time tags on the edges of the paths being traversed.
While DFS is recursively traversing the dependency graph, it keeps track of the current
state in the AGT, i.e., the set of privileges already gained through the path traversed so

4 Throughout the paper, we use the term OS-level objects for processes, regular files, directo-
ries, symbolic links, character devices, block devices, FIFO pipes, and all thirty-five types of
sockets, including internet sockets, i.e., AF INET, interchangeably.

5 We also log the security context of the objects. For instance, on a SE-Linux system, the web
server directory is associated with the security type httpd sys content t.

344 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

far by DFS. When DFS traverses a dependency graph edge that crosses over privilege
domains, a state transition in AGT happens if the current state in AGT does not include
the privilege domain of the process to which the edge directs. The transition is between
the current state and the state that includes exactly the same privilege set as the current
state plus the privilege of the process directed by the dependent graph edge. In fact,
more than one transition edge might be created, depending on how many vulnerability
types could potentially exist in the process, according to the VulDB.

Once the depth-first search is over, AGT is generated such that all its terminal states
include the privilege domain of the process that had caused the detection point event
during the attack. The last step would be to add a goal state to the AGT and connect
all the terminal states to it using NOP (No-OPeration) edges, meaning that no action
is needed to make the transition. Once the AGT is generated, the forensics analysis
(Section 5) tries to identify the exact path traversed by the attacker.

5 Intrusion Forensics

The forensics analysis by FloGuard requires two logging subroutines. First, we assume
that an incremental snapshot of the system is taken periodically, e.g., once a day; there-
fore, we could go back to any time instant in the past that coincides with one of the
snapshot times. Second, syscalls are being logged and stored in a secure back-end stor-
age device while the system is operating. That enables FloGuard to generate the AGT
for any past time interval.

FloGuard employs an iterative forensics algorithm; it restores a clean system
snapshot and waits for attackers to launch similar attacks (exploiting the same vul-
nerability) several times. During each iteration, it deploys a different IDS to gather
further evidence regarding the attack. The deployed IDSes are chosen based on their
cost, detection capabilities, and the generated AGT. In particular, FloGuard chooses
the intrusion detector d∗ for each forensics iteration using the following equation:
d∗ ← argmaxd∈D{Coverage(AGT,d)/Cost(d)}, where D is the set of available IDSes;
Coverage(AGT,d) denotes the expected number of already-unmonitored transitions in
AGT that are monitored by d. Using VulDB, FloGuard knows what vulnerability ex-
ploitations (state transitions) each IDS can detect; therefore, after each iteration, it can
prune the AGT based on the deployed IDS and its alerts during the attack. More specif-
ically, the detected vulnerability exploitations are marked, and the rest (the vulnerabil-
ities whose exploitations did not get reported, while being monitored, by the deployed
IDS) can safely be removed from the AGT. The refined AGT is used to choose the IDS
for the next iteration (attack repetition). FloGuard continues the forensics iterations un-
til the refined AGT consists of one marked path from its initial state to the goal state.
The marked path is the actual path traversed during the attack.

In practice, detection systems are not always accurate, and sometimes either produce
false positives or miss some misbehaviors (false negatives). FloGuard takes such inac-
curacies into account by using their corresponding rates provided in VulDB6 (otherwise,

6 Before the calculations, the qualitative values in VulDB are mapped to their corresponding
crisp values as follows. N and C are mapped to 0 and 1, respectively. L, M, and H are, respec-
tively, mapped to 0.25, 0.5, and 0.75.

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 345

a default value is used) and defining the edge weights we (which are all initially set to
1). In particular, if an IDS d reports a vulnerability exploitation e during a forensics
iteration i, the corresponding edge (state transition) in AGT is not completely removed;
instead, its weight is updated using the equation we

i ← we
i−1 × [1−FPR(d,e)], according

to its previous weight and the false positive rate (FPR) of the IDS d in monitoring the
exploit e. Similarly, in case no incident is reported, the weight is updated based on the
IDS’s false negative rate using the equation we

i ← we
i−1 ×FNR(d,e).

Essentially, to provide a precise automated forensics analysis, FloGuard must tra-
verse the time dimension back and forth. FloGuard’s implementation provides two
different solutions, which are conceptually identical. 1) If the infrastructure supports
system-wide restore/replay, FloGuard uses it to restore the past snapshot and replay the
whole system several times, running the same forensics analysis as mentioned above,
until the exact attack path in AGT is identified. 2) If the system-wide restore/replay is
not supported, as described in this section, instead of making use of a restore/replay
mechanism, FloGuard waits for the attacker to repeat the attack in the future. As our
main target is scripted attacks, worms, and malware threats, so the repetition assumption
is reasonable. In the unlikely scenario that an unprotected exploit is never re-exploited
(i.e., an attack never repeats), forensics may not even be required - a simple rollback
to pristine state will suffice. In this paper, we focus on the second situation due to the
space limit; however, the main concept is the same for both solutions.

6 Monitor Selection

Once the attack path in the AGT is identified, FloGuard chooses the cost-optimal set
of IDSes, as mitigation mechanisms (unless it is statically defined in VulDB) to deploy
in the system permanently until the administrators install suitable patches. FloGuard
selects and deploys a subset of IDSes that cooperatively detect and block exploitations
of the known vulnerabilities represented by the refined AGT after the forensics analysis.

Formally, FloGuard decides upon the subset of IDSes to handle known vulnerabili-
ties using D∗

k = argminDi⊆D[∑d∈Di
Cost(d)×argmaxAP∈AGT C(AP,Di)]7, where AP rep-

resents an attack path (sequence of exploits) from the initial state to the goal state in
AGT . D is the set of available IDSes. The C(AP,Di) function denotes the overall cost if
the system operates with IDSes d ∈Di turned on. The overall cost is determined through
consideration of two factors: 1) detection cost (performance penalty); and 2) damage
cost by the attacker trying to get from the initial to the goal state through the attack path
AP. Depending on the exploits in AP and the detection capability of the IDSes in Di,
AP might, but would not necessarily, be cut at some point between the initial and goal
state by one of the detectors. Formally, the C function is defined as follows:

C(AP,Di) = ∑
e∈AP

[
Depth(APe). ∏

e′∈APe

[we′ . min
d∈Di

FNR(d,e′)]
]
, (1)

which formulates the damage by the attacker before he or she gets caught by any of
the deployed IDSes Di. Briefly, we used the detection latency from the initial exploit

7 In effect, the equation picks the subset of IDSes, that minimize the maximum possible cost
that would result (according to AGT) if the system operated with that IDS subset deployed.

346 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

0

2

4

6

8

10

12

CoreHTTP eVision RoomPHP.. SSH

Ti
m

e
(m

se
c)

Application

Original
Instrumented

(a) Instrumentation Overhead

1
10

100
1000

10000
100000

1000000
10000000

#Logged Syscalls

#Nodes in dep-graph

#Dep-graph after
refinement

#Dep-graph after
reachability analysis

(b) Logs and Graph Sizes

0
5

10
15
20
25
30

Parsing Logs &
Dep-graph
Construction

Graph Refinement

Reachability
Analysis

Total

(c) Time Requirements

Fig. 2. Automated AGT Generation for Four Attack Scenarios

node to the detection point as the damage cost, since it determines how much rollback
(and data loss) is needed. More formally, Equation (1) formulates the expected depth of
penetration (number of subsequent vulnerability exploitations) the attacker can cause
following the attack path AP without being detected by any of the deployed intrusion
detectors Di; to do so, the algorithm considers the penetration depth of each subattack
APe (defined as the subpath of AP from the initial state to e) and the likelihood of it
not being detected. The penetration depth for a subattack APe, denoted by Depth, is
defined as the length of the path from the initial state to e through the attack path AP.
The probability that the attack at a specific step APe is not yet detected is calculated
by considering 1) the weights on each exploit e′ in the subpath APe that have been
updated through the forensics iterations; and 2) the false negative rates (denoted by
FNR) of the deployed IDSes (more specifically, the IDS with the lowest false negative
rate) regarding each exploit e′ in the subpath APe. Consequently, the D∗

k equation above
solves the tradeoff and selects the IDS set that minimizes the overall cost according to
the AGT’s structure. In practice, AGTs of actual attacks are small enough to permit a
brute-force optimization of Equation (1).

7 Evaluations

We implemented FloGuard and evaluated it on a real botnet worm and different attack
scenarios against four applications, each with a specific vulnerability. The vulnerability
exploitations included buffer overflow exploitation, a SQL injection vulnerability, PHP
remote code execution, and password attacks.

Experimentation Setup. The experiments were conducted on a system with 2.20 GHz
AMD Athlon TM64 Processor 3700+ CPU, 1 MB of cache, and 2.0 GB of RAM. The
host and guest OSes running on the machine were Ubuntu 9.04 with Linux 2.6.22
kernels. The production system included a web server with several PHP applications, in-
cluding eVision content management system [4], and the RoomPHPlanning [3] schedul-
ing application. Furthermore, the applications could connect to a MySQL database, and
the trusted remote clients made use of SSH to obtain access to the system.

We used a set of IDSes that fall into the following categories. To block malicious
use of library functions and malformed network packets, we used LibSafe [7] and Snort
[27], respectively. To detect viruses and malicious actions on file system objects, we
employed ClamAV [17] and Samhain [32], respectively. We employed Zabbix [5] and
Memcheck in Valgrind [24] to detect anomalous activities, such as DoS or brute-force

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 347

Initial_state

unconfined_t

initrc_t

unconfined_t xserver_t

initrc_t apt_t

apache2

sh

dropbox

goal_state

unconfined_t system_dbusd_t

unconfined_t system_dbusd_t, apt_t

dbus-daemon-lau

sh aptd ldconf

unconfined_t apt_t

sh aptd ldconf

Xorg

unconfined_t xserver_t initrc_t

unconfined_t xserver_t system_dbusd_t unconfined_t xserver_t apt_t

sh aptd ldconfdbus-daemon-lau dbus-daemon
ls system-service touch

unconfined_t xserver_t initrc_t apt_t

sh aptd ldconf

unconfined_t xserver_t system_dbusd_t initrd_t

system-service

unconfined_t xserver_t system_dbusd_t initrd_t apt_t

sh aptd ldconf

dbus-daemon-lau

unconfined_t xserver_t system_dbusd_t apt_t

sh aptd ldconf

Fig. 3. An Automatically Generated AGT for Remote PHP Code Execution

attacks, and general memory access violations, respectively. We used the TEMU [30]
system-wide taint-tracking engine, which runs on the host OS. More specifically, using
TEMU, one can mark some input data, such as network interfaces, as tainted, and then
TEMU will track the information flow and store the executed instructions in a trace
file on the host OS. To actually make use of TEMU, we had to improve its capability
to produce higher-level information (not only instruction-level) regarding file-system
objects, such as names of the files that are being dynamically tainted. We improved
its implementation by using The Sleuth Kit (TSK) [9] to read the file system in the
virtual machine’s image file; this enabled us to dynamically translate disk-level tainted
addresses, which are generated by TEMU, to file system object names, such as file
names and their absolute addresses.

Services and Vulnerabilities. Next, we describe the vulnerabilities and the affected
services in our experiments. SQL injection: According to CVE-2009-4669, multiple
SQL injection vulnerabilities in RoomPHPlanning 1.6 allow attackers to execute arbi-
trary SQL commands. Buffer overflow: Based on CVE-2007-4060, an off-by-one error
in the CoreHTTP 0.5.3.1 web server allows remote attackers to execute arbitrary code
via an intelligently handcrafted HTTP request. PHP remote code execution: According
to CVE-2008-6551, multiple directory traversal vulnerabilities in e-Vision 2.0 allow at-
tackers to include and execute arbitrary PHP files. The weak password: Our production
system includes accounts with weak passwords that open up the opportunity to make
use of password-cracking software tools, e.g., John the Ripper [2]. We implemented a
Perl password brute-force script that reads a file storing a large number of passwords
and tries them against the target system.

Instrumentation Overhead. We implemented the syscall interception as a loadable
kernel module; however, recently, other approaches like [18] have proposed interception
of system calls from within the hypervisor using the previously generated signatures of
the process memory images. However, that approach also assumes that the root domain
is tamper-proof, since the attacker with root access can modify kernel data structures
and consequently make the signatures useless. We configured the /etc/syslog.conf
file such that all the syslogs are directly sent through a uni-directional link to a secure
backend machine; therefore, all the system calls logged before the attacker gets access
to the root domain are trusted.

The syscall interception module is always loaded while the system is operating. We
measured the performance overhead by FloGuard’s syscall interception module (see
Figure 2(a)). For the first three applications, the figure shows the average response time

348 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

0
20
40
60
80

100

CP
U

 u
sa

ge
 (p

er
ce

nt
ag

e)

Intrusion Detection Systems

(a) CPU Usage Cost

0
200
400
600
800

1000
1200

#P
ro

ce
ss

ed
 H

TT
P

re
qu

es
ts

Intrusion Detection System

(b) Impact on Availability

0
10
20
30
40
50
60
70

0 2000 4000 6000 8000

Sn
ap

sh
ot

tin
g

O
ve

rh
ea

d
(s

ec
)

Modified Data Size (MB)

(c) Snapshotting Overhead

Fig. 4. Cost Evaluation of Individual Intrusion Detection Systems and the Snapshotting Procedure

for subsequent HTML requests for the CoreHTTP server, and PHP page requests for the
eVision and RoomPHPlanning applications. The SSH results show the time required to
transfer 100 KB of data from the server. In fact, our logging requirements are very
modest. We only log a subset of syscalls that indicate data flow between processes/files
(15 out of 350 call types) and only the first interaction when multiple syscalls are present
between the same nodes. We ignore all syscall arguments except source or destination
process/file IDs, and our encoding requires 10 bytes per syscall. Our 4 attack scenarios
produced 40k records per minute (i.e., 576MB/day). Furthermore, syscall types repeat
frequently, and after compression, each trace required an average of 10MB per day.

Attack-Graph Template Generation. We have collected the intercepted syscalls for
the four abovementioned attacks. Figure 2(b) shows the number of syscalls for each
attack on the system (the first columns). For each attack, once the attack consequence
detector reports the detection point event, which was a sensitive file modification for
all the attacks, the parser started reading the syslogs line by line (approximately 300K
lines per second) and automatically creates the directed dependency graph. The second
columns show the number of nodes in the generated dependency graph for each attack.
The third columns illustrate the number of nodes in the generated dependency graph
after non-process nodes are removed. The last phase (fourth columns) before generation
of the AGTs is to further prune the dependency graph using reachability analysis.

Figure 2(c) shows how long (seconds) each of the abovementioned steps took. Be-
cause in our implementations, the syslogs parsing and the initial dependency graph
creation are done concurrently, we report the time they took as a single result (first
columns in Figure 2(c)). The second and third columns report the results for the graph
refinement steps. Most of the total time is spent on parsing the syslogs and producing
the initial dependency graph. As the reachability analysis significantly prunes the de-
pendency graph, the time required to convert the resulting graph to AGT was less than
1 second in our experiments. Figure 3 shows the automatically generated AGT (using
the Graphviz-dot tool) for the remote PHP code execution attack scenario. The AGT
is represented using the SE-Linux privilege domains; however, for systems with tradi-
tional two-level discretionary access control, i.e., user and root, the nodes in AGT will
have those two privilege levels only.

IDS Computational Cost. We measured the CPU overhead for individual IDSes. As
illustrated in Figure 4(a), the TEMU engine puts the highest load on the system. Sec-
ond, we deployed all of the IDSes and evaluated their impact on the system’s overall

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 349

throughput (see Figure 4(b)), which is defined as the maximum number of client re-
quests, generated by HTTPTrafficGen [1], that could be processed within a fixed amount
of time.

Periodic Snapshots. We measured the average performance overhead of the incremen-
tal system-wide snapshotting. Figure 4(c) illustrates the time needed for the engine
to snapshot the whole system given the amount of data modified since the previous
snapshot. As a case in point, if 2 GB of data are modified, e.g., downloaded, in the vir-
tual machine between two successive snapshots, i.e., 30 minutes in our experiments, it
takes about 13.4 seconds on average to pause the system and take and store a complete
system-wide snapshot8. In our experiments, the snapshot restoration process was done
quite fast, i.e., 3.2 seconds on average.

Intrusion Forensics. Finally, we present iterative intrusion forensics analysis results for
six different attack scenarios. As the consequence detector, Samhain was configured to
check the marked sensitive files and directories against its database and fire an alert
upon identifying a modification or access.

First, we start with the buffer overflow attack scenario. While the CoreHTTP web
server was operating after the snapshot, we remotely launched a buffer overflow ex-
ploit, which we had created manually using GDB, and got shell access to the machine.
We then modified the web server’s configuration file, i.e., chttp.conf, which had
been marked to be monitored by Samhain. Upon receiving the Samhain alert, FloGuard
started its forensics analysis by parsing the syscall logs from the last snapshot to the de-
tection point, and generating the AGT. As shown in Table 1, the initial AGT consisted
of 6 possible attack paths based on the intercepted syscalls during the attack. Having
employed the monitor selection algorithm, FloGuard picked Valgrind as the first detec-
tor, as it maximized the coverage/cost measure, to deploy to monitor the web server.
Consequently, the past clean snapshot was retrieved, Valgrind was deployed, and the
system started its normal operation while FloGuard was waiting for the next repetition
of the attack. We then relaunched the attack. Valgrind did not detect the buffer overflow
in CoreHTTP, since it does not perform bounds checking on static arrays (allocated on
the stack). After the first iteration, AGT was pruned, and the resulting AGT consisted
of 3.7 expected number of attack paths (the fractional number is due to IDS uncertain-
ties). Using the refined AGT and the detector-capability matrix, FloGuard chose the
next detector, i.e., Valgrind on the sh process, and the iterative forensics continued un-
til Libsafe was picked to monitor the web server that successfully detected the buffer
overflow in CoreHTTP. Consequently, LibSafe was permanently turned on to detect and
block similar attacks until the administrator manually patches the system.

The second attack scenario was the PHP remote code execution in the
eVision-2.0 CMS application. We launched the attack using the Perl exploit from
http://www.exploit-db.com against eVision-2.0 that enabled us to upload an ar-
bitrary file using the local file inclusion. Consequently, we could remotely execute any
arbitrary command on the server. As shown in Table 1, we modified the /etc/passwd
file, which was marked to be monitored by Samhain. The first detector to turn on for

8 Using the VirtualBox framework, taking live snapshots, w/o pausing the system, is possible.

http://www.exploit-db.com

350 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

Table 1. Iterative Intrusion Forensics Analysis

Attacks CoreHTTP: Buffer Overflow eVision: Remote Code Execution SSH: Password Brute-force RoomPHPlanning: SQL Injection
DP /var/www/chttp.conf /etc/passwd /var/log/auth.log /var/lib/mysql/RMP/rp resa.MYD

#Paths IDS Overhead Dctd? #Paths IDS Overhead Dctd? #Paths IDS Overhead Dctd? #Paths IDS Overhead Dctd?
It.1 6 V(corehttp) 1.8X No 53 TEMU(sh) 16.8X No 4 V(ssh) 0.1X No 5 V(mysql) 1.2 No
It.2 3.7 V(sh) 1.3X No 9 V(apache2) 1.7X No 1.7 Zabbix 0.3X No 2.6 Zabbix 0.3 No
It.3 1.4 LS(corehttp) 0.2X Yes 6.8 V(sh) 0.2X No 0.9 LS(ssh) 0.1X No 1.7 Snort 0.8 Yes
It.4 0.9 4.4 Zabbix 0.3X No 0.4 Snort 0.3X Yes 0.9
It.5 3.4 ClamAV 0.5X Yes 0.3
It.6 2.4

the forensics analysis was TEMU, because of its capability in tracing back the data
from the process sh that caused the detection point event (see Figure 3). The sh pro-
cess was then traced by TEMU’s tracebyname command, and the actual data source,
i.e., the apache2 process (see Figure 3), was identified via the list tainted files
command, which we had implemented by translating disk-level addresses to filenames.
TEMU helped FloGuard to prune the AGT to include only the paths exploiting possible
vulnerabilities in the apache2 process. Finally, the ClamAV detection system detected
the uploaded file during the attack, and FloGuard, using the VulDB, decided to turn off
the magic quotes (even though this might have affected other applications).

The third attack, i.e., SSH password brute-force, was remotely launched using a Perl
password trial script. Subsequent password trials made Samhain fire an alert upon the
/var/log/auth.log file modification. In forensics analysis, Snort finally detected the
password brute-force attack. The next attack scenario was to modify a sensitive database
file through the exploitation of a SQL injection. Upon receiving the Samhain alert,
FloGuard, as shown in Table 1, selected Valgrind and Zabbix to be deployed in the
first and second iterations, respectively; however, neither detected any misbehavior in
the system. Finally, in the last iteration, FloGuard picked Snort, which successfully
detected the SQL injection by identifying SQL meta-characters in the incoming data.

Both Snort rules picked by FloGuard in attacks #3 and #4 are non-standard rules
(one written by us and one disabled by default) that cannot be permanently deployed
because they have a high likelihood of false positives. On the other hand, FloGuard
correctly identifies the specific rule that must be enabled, and which port to enable it
on only when an attack is detected, thus eliminating false positives. Furthermore, be-
cause FloGuard can keep multiple detectors for the same type of attack on standby, it
degrades gracefully. E.g., If the Snort rule had missed the MySQL injection attack #4
because HTTPS was used, then FloGuard would have picked the much more expensive
TEMU as the detection mechanism. Such graceful degradation cannot be achieved by
static deployment. For attack #2, the ClamAV detector checks only for the presence
of a commonly used PHP payload. Since the actual exploit is assumed to be zero-day
without a patch, and the mitigation action turns off PHP magic quotes. Doing so perma-
nently can impair system functionality. Finally, other “detectors” such as disabling an
account or quarantining a process are even more disruptive and can never be deployed
permanently. But FloGuard can use them. We will add these clarifications in the prose.

We also experimented with FloGuard on a multi-step attack scenario. We deployed
the Zabbix consequence detector in the target machine. First, having exploited the eVi-
sion vulnerability, we got shell access on the target system. Then, to maintain control
over the system, through reboots and software patches, we tried to get the administrative

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 351

(a) The Dependency Graph (b) The Refined Graph (c) AGT

Fig. 5. The Generated Graphs for the Multi-step Attack

password of the system using the John the Ripper password cracker. The tool started
subsequent password trials that over-consumed the system’s computational resources
(96% CPU usage on average); this caused the Zabbix anomaly detector to fire an alert,
making FloGuard start the forensics analysis. Due to space limits, only a portion of
the generated dependency graph (which had 286 vertices) is shown in Figure 5(a).
john-mmx was marked as the process causing the detection point. Figure 5(b) shows
the graph, after the refinement procedures, which had a total of 7 vertices. Figure 5(c)
shows the generated AGT, in which the apache2 process is the only possible entry
point (initial vulnerability exploitation) for the attack. FloGuard went through the it-
erative forensics analysis and picked Valgrind for the first detector that was unable to
detect any misbehavior; however, the second chosen detector, i.e., ClamAV, detected
the downloaded file osirys.txt.gif during the PHP code execution. Consequently,
FloGuard then turned off the magic quotes in the target machine.

Finally, we evaluated FloGuard against an updated real and well-known IRC bot-
net worm, namely Eggdrop [20]. We remotely launched the worm, hitting the target
system as one of its victims. The worm accomplished several actions: it exploited the
buffer-overflow vulnerability in the CoreHTTP web server; it downloaded, installed,
and launched the Eggdrop package; the bot got connected to the EFNet IRC channel
and then started listening on the tcp port 3355 to commands received through telnet
from the remote attackers; later, the bot scanned the network to find the next victim
machine to compromise; finally, it received remote commands trying to access some
sensitive files in the system. The Samhain file integrity checker detected the file access
and marked the event as the detection point. Figure 6 shows the generated AGT for the
attack. On the third forensics iteration, FloGuard chose to deploy LibSafe, which suc-
cessfully detected the buffer overflow violation. Consequently, LibSafe was deployed
permanently to block similar attacks in the future.

8 Related Work

Several papers in the literature propose parts of what FloGuard achieves. However, we
are not aware of any other approach that can perform on-demand, cost-aware intrusion

352 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

Fig. 6. The Generated AGT for Eggdrop Botnet Worm

detector deployment to defend against multi-stage attacks affecting multiple parts of a
system. Several approaches perform alert correlation across multiple IDSes like [12].
Also, BotHunter [15] introduce a aggregation algorithm to recognize successful bot
infections. However, both methods assume that all the appropriate intrusion detectors
have already been chosen and deployed.

The concept of on-demand re-execution in a modified environment has also received
some attention. Rx [26] and First-Aid [13] re-execute applications in a different exe-
cution environment, but they are not targeted towards security exploits. Bouncer [10],
Vigilante [11], and Sweeper [31] combine an IDS along with program slicing or sym-
bolic execution to trace-back from the detection point and produce input filters that can
block the exploit packets. FLIPS [21] employs re-execution with instruction set ran-
domization to detect root vulnerabilities. Shadow Honeypots [6] use re-execution in
space (i.e., another machine) instead of time. However, most of these techniques only
support detection of a single type of vulnerability (usually memory errors), and rely
on the ability to detect attacks within the same process as the exploit entry-point. They
cannot trace multi-step attacks that are detected in other parts of the system. Moreover,
they do not consider multiple types of detectors and associated cost factors. FloGuard
complements systems such as Sweeper by tracing detection points across multiple pro-
cesses.

Attack graphs [35] have been extensively used to document known system vulner-
abilities and attack paths. Two main drawbacks of the current approaches are 1) their
inability to address unknown attacks, e.g., zero-day attacks, and 2) to improve scalabil-
ity, their logic-based state notion does not represent system-level detailed information,
significantly limiting their practical usage.

There has also been work on intrusion forensics analysis. Mukkamala et al. [22] use
neural networks to discover sources of information breaches. Carrier [9] presents file-
system-based forensics techniques to determine the source of security breaches by in-
vestigating their effects on the file-objects. Taser [14], BackTracker [16] and Panorama
[33] aid off-line forensic analysis by producing taint-traces of file and process con-
nections that led to a detected security breach. Because these forensics tools are based
on passive data collection, they are either very pessimistic, marking most activities as
malicious, or optimistic, thus missing many malicious activities that occur during an at-
tack. In comparison, because FloGuard can actively deploy additional detection mecha-
nisms to validate or refine its suspected attack paths, it can support much more realistic
analysis. Nevertheless, pessimistic techniques that automatically produce system-level
taint-graphs can be used to automatically produce initial AGTs for FloGuard.

Intrusion prevention solutions (IPS) [35] have mainly focused on how to recover
from attacks after the system is compromised. Zonouz et al. [35] introduce RRE, a

FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics 353

game-theoretic IPS, whose goal is to take cost-optimal responsive actions against the
adversary. EMERALD [25], a dynamic cooperative IPS, introduces a layered approach
to correlate monitor reports through different abstract layers of the network. Unlike
FloGuard, IPS solutions assume that a complete set of monitors are already deployed,
and their main objective is not to identify previously unknown system vulnerabilities
and exploitations to avoid identical attacks in the future.

9 Conclusion

We presented FloGuard, a cost-aware intrusion forensics system that uses online
forensics and on-demand IDS deployment. FloGuard enables systems to defend against
attacks that exploit various classes of previously unknown vulnerabilities. Our experi-
ments show that FloGuard can deploy off-the-shelf IDSes only when they are needed
and help protect systems against previously unknown vulnerabilities with minimal snap-
shotting overheads during normal operation.

References

1. HTTPTrafficGen (2008), http://www.nsauditor.com/
2. John the Ripper (2008), http://www.openwall.com/john/
3. RoomPHPlanning (2008), http://www.beaussier.com/
4. e-Vision (2009), http://sourceforge.net/projects/e-vision/
5. Zabbix (2010), http://www.zabbix.org/
6. Anagnostakis, K., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E., Keromytis, A.:

Detecting targeted attacks using shadow honeypots. In: USENIX-Security, p. 9 (2005)
7. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack smashing at-

tacks. In: USENIX-ATC, pp. 251–262 (2000)
8. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX-ATC, p. 41 (2005)
9. Carrier, B.: File System Forensic Analysis. Addison-Wesley Prof., Reading (2005)

10. Costa, M., Castro, M., Zhou, L., Zhang, L., Peinado, M.: Bouncer: Securing software by
blocking bad input. In: SOSP, pp. 117–130 (2007)

11. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: End-to-end containment of internet worms. In: SOSP, pp. 133–147 (2005)

12. Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts. In: Lee, W.,
Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85–103. Springer, Heidelberg
(2001)

13. Gao, Q., Zhang, W., Tang, Y., Qin, F.: First-aid: Surviving and preventing memory manage-
ment bugs during production runs. In: EuroSys, pp. 159–172 (2009)

14. Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recovery system. In:
SOSP, pp. 163–176 (2005)

15. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting malware in-
fection through IDS-driven dialog correlation. In: USENIX-Security, pp. 1–16 (2007)

16. King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP, vol. 37(5), pp. 223–236 (2003)
17. Kojm, T.: ClamAV (2009), http://www.clamav.net/
18. Krishnan, S., Snow, K.Z., Monrose, F.: Trail of bytes: Efficient support for forensic analysis.

In: CCS, pp. 50–60. ACM, New York (2010)
19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. ACM-

Comm. 21(7), 558–565 (1978)

http://www.nsauditor.com/
http://www.openwall.com/john/
http://www.beaussier.com/
http://sourceforge.net/projects/e-vision/
http://www.zabbix.org/
http://www.clamav.net/

354 S.A. Zonouz, K.R. Joshi, and W.H. Sanders

20. Li, C., Jiang, W., Zou, X.: Botnet: Survey and case study. In: ICICIC, pp. 1184–1187 (2009)
21. Locasto, M., Wang, K., Keromytis, A.D., Stolfo, S.J.: FLIPS: Hybrid adaptive intrusion

prevention. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 82–101.
Springer, Heidelberg (2006)

22. Mukkamala, S., Sung, A.H.: Identifying significant features for network forensic analysis
using artificial intelligent techniques. IJDE, 1 (2003)

23. Nagaraja, S., Mittal, P., Yao Hong, C., Caesar, M., Borisov, N.: BotGrep: Finding P2P bots
with structured graph analysis

24. Nethercote, N., Seward, J.: Valgrind: A program supervision framework. In: Runtime-
Verification WS (2003)

25. Porras, P., Neumann, P.: EMERALD: Event monitoring enabling responses to anomalous
live disturbances. In: Proc. of the Info. Systems Security Conf., pp. 353–365 (1997)

26. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Treating bugs as allergies: A safe method to
survive software failures. In: SOSP, pp. 235–248 (2005)

27. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: USENIX-LISA, pp.
229–238 (1999)

28. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: NDSS, pp. 159–
169 (2004)

29. Schneier, B.: Attack trees. Dr. Dobb’s Journal (1999)
30. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome,

J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer security via binary
analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008)

31. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y., Song, D.:
Sweeper: A lightweight end-to-end system for defending against fast worms. EuroSys 41(3),
115–128 (2007)

32. Wotring, B., Potter, B., Ranum, M., Wichmann, R.: Host Integrity Monitoring Using Osiris
and Samhain. Syngress Publishing (2005)

33. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-wide in-
formation flow for malware detection and analysis. In: CCS, pp. 116–127 (2007)

34. Zonouz, S.A., Joshi, K.R., Sanders, W.H.: Cost-aware systemwide intrusion defense via on-
line forensics and on-demand detector deployment. In: CCS-SafeConfig, pp. 71–74 (2010)

35. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M.: RRE: A game-theoretic intrusion
Response and Recovery Engine. In: DSN, pp. 439–448 (2009)

Reducing Complexity of Data Flow Testing in the
Verification of a IEC-62304 Flexible Workflow

System

Federico Cruciani1 and Enrico Vicario2

1 I+ s.r.l., Piazza Puccini ,26 - 50144 Florence, Italy
f.cruciani@i-piu.it

2 Università degli Studi di Firenze

Abstract. In the development of SW applications, the workflow ab-
straction gives primary relevance to the way how some process can be
accomplished through a sequence of connected steps. This largely condi-
tions analysis, implementation architecture, and verification. In particu-
lar, testing activities are naturally oriented towards a data flow approach,
which effectively exercises dependencies among steps. In several appli-
cation scenarios, the workflow model cannot completely determine the
sequencing of actions and it must rather leave space to variability. While
easily encompassed both in the analysis and implementation stages, this
comprises a major hurdle for the testing stage due to the explosion in
the number of allowed execution orders and paths.

We address the problem reporting on the verification of the control
software of a Computer Assisted Surgery system. In this case, the work-
flow abstraction captures the constraints of a medical protocol, and vari-
ability in the order of steps reflects dynamic adaptation of the course
of actions to the specific characteristics of each patient. This largely in-
creases the testing effort needed to accomplish the prescriptions of the
IEC-62304 certification standard. To cope with the problem, we show
how data flow analysis can be used to identify an appropriate set of con-
straints that can be exploited in the verification stage, so as to reduce
the test suite while preserving coverage.

Keywords: Workflow architecture, Workflow verification, Data Flow
testing.

1 Introduction

Workflow applications are commonly used to automate processes that require
a sequence of steps to be performed in a certain order to complete a task[2].
Typical areas of application include business process management, manufactur-
ing and supply management, healthcare protocols. In general, a workflow appli-
cation can be conveniently implemented by letting an executable specification
of a process be enacted by an operational engine. This enables consistent reuse
of the engine among multiple applications, facilitates evolutionary maintenance

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 355–368, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

356 F. Cruciani and E. Vicario

of processes, and centers the overall SW life cycle on a process-oriented model
that can be effectively agreed among software engineers, stakeholders, and users.
In so doing, the overall development can be accompanied by effective tools in-
cluding UML Activity diagrams supporting representation [3][4], formal models
providing theoretical foundation [5], and frameworks providing a basis for effec-
tive enactment [6].

Various testing strategies for workflow applications have been proposed, mainly
relying on the automated derivation of a Control Flow Graph (CFG) abstraction
[6][7] that drives test case selection or coverage analysis. CFGs can be derived
directly from workflow specifications such as UML Activity diagrams[4][3]. A
data flow model can be built from the requirements and this model can conve-
niently be exploited also in formal verification, following a kind of model-based
approach to design develop, and test the system. Model verification of workflows
allows indeed the early detection of sequencing problems such as deadlock or
non terminating behaviors[8].

In the transition stage of the SW life cycle, and in particular in the accep-
tance step, the process model provides a native abstraction enabling application
of the consolidated theory of data flow testing in functional perspective[9]. In
particular, according to all-uses criterion, the workflow is operated so as to ex-
ercise at least one path from each step where some relevant variable is modified
to each the next step where the same variable is used. Though not prescribed
by certification standards, this criterion has proven to effectively increase fault
coverage capability with respect to branch coverage [10] while maintaining the
testing effort in the range of polynomial complexity.

However, when testing comes to input generation and test execution, full
coverage of the all-uses criterion still remains a complex task, especially when
execution involves user interfaces and physical system devices. The complexity
is further exacerbated whenever the automated process is not completely deter-
mined and rather enables multiple orders of execution determined during the
run-time, resulting in a so-called flexible workflow[11][12]. This case is relevant
for any procedure where some of prescribed actions can be executed in different
orders without compromising the integrity of the overall process. In the end, this
kind of flexibility often serves to smooth the stiff mechanism of workflow appli-
cations, which work finely in setting rules more than accommodating exceptions.
This takes a specific relevance in the healthcare context, where a crucial role is
played by dynamic adaption of the execution order of a protocol according to
the course of actions applied to a specific patient.

In this paper, we report on testing activities performed in the verification of
the control software of a Computer Assisted Surgery system subject to ISO-62304
standard for medical software[1]. The SW under test is organized as a flexible
workflow application that accompanies the steps of a surgical protocol. During
the certification process, in order to compensate lacks in the structural coverage
of component items, integration testing was planned and executed so as to attain
all-uses coverage of the workflow specification. In doing so, the complexity of
the test plan could yet be limited through the assumption of design choices

Reducing Complexity of Data Flow Testing 357

that statically guarantee equivalence conditions among different paths and thus
permit a substantial simplification of the test suite while preserving its coverage
capability.

The rest of the paper is organized as follows. The characteristics of the ap-
plication case and its testing requirements are described in Sect.2. In section 3,
we introduce a model abstracting data flow behavior of a workflow in a high-
level Directed Acyclic Graph (DAG) showing how this can be extracted from a
specification accepting multiple execution orders, and how this reduces testing
complexity in the application case. Conclusions are drawn in Section 4.

2 Testing Requirements for a Computer Assisted Surgery
System

Miró1 is a workflow application for Computer Assisted (image guided) Surgery
applied to knee arthroplasty. The software is based on BLU-IGS, an ad-hoc
workflow engine optimized for orthopedical surgical procedures that supports a
product line of softwares for hip arthroplasty, kinematic analysis, knee prosthesis
implant and revisioning.

Fig. 1. A screenshot of Miró during the navigated execution of tibial cut. The dotted
line indicates the planned cutting plane while the continuous line represent the actual
position of the cutting guide.

Miró integrates an infrared optical localizer of surgical tools, used to track
position of fiducials markers placed to the patient’s bone, so as to provide a
reference system through which the anatomy of the patient limb is then recon-
structed by means of registration of anatomical points through a pointer tool.
Data acquired through the pointer are then used to build the anatomical ref-
erence systems for tibia and femur allowing an intra-operative planning of the
1 Miró is developed by I+ s.r.l. as part of the BLU-IGS system distributed by Orthokey

LLC: http://www.orthokey.com/index.php/totalknee.

http://www.orthokey.com/index.php/totalknee

358 F. Cruciani and E. Vicario

final prosthesis implant. Surgical tools are then referred with respect to these
anatomical reference systems and navigated during the operation to verify the
correct positioning of the tibial and femoral components.

The control software accompanies the surgeon along a workflow protocol com-
posed by phases or steps including tibial and femoral registration, implant po-
sitioning planning, navigation of femoral tibial cut. Many of these phases deter-
mine choices that condition the subsequent steps (e.g. the selection of the type
of prosthesis to implant). The process is composed by data acquisition and op-
erational steps strictly bound to the conventional surgical protocol. As in most
existing competitors products, the current version of Miró follows a fixed execu-
tion order, forcing the surgeon to adapt his way of performing the operation to
the built-in procedure. This lack of flexibility now appears to be a major hurdle
for the adoption of Computer Assisted Surgery, despite this has been demon-
strated to improve the quality of results, in particular in restoring the neutral
alignment of the leg[13][14][15]. To cope with this issue, the new BLU-IGS ver-
sion is moving towards a more flexible workflow engine, allowing the surgeon to
vary the execution order, either to best fit his way of operating, or according
to the patient anatomy. Some of the phases in the procedure are constraining,
e.g. the type of prosthesis to implant. In the fixed workflow solution, this choice
has to be performed at the intial stage of the operation, thus determining the
behavior of some of the subsequent steps. Flexibility in this case would allow
to postpone constraining choices to a latter phase of the operation, when the
anatomy of the patient is more clear and the choice can leverage on a more
complete understanding of the case.

2.1 Testing Requirements for IEC 62304

The international standard IEC 62304 specifies life cycle requirements for the
development of medical software and software within medical devices [1]. A Cru-
cial element of the standard is the concept of design for patient safety, for which
a fundamental role is played by risk analysis (including hazard identification),
evaluation, and control.

In the case of Miró, the attainment of this objective had to face the infamous
(yet common in real practice) problem of components classified as Software Of
Unknown Provenance (SOUP). Specifically in this case, these are software items
integrated in the overall 20000 lines of C++ code of Miró, that had been al-
ready developed and generally available but that had not been developed for
the purpose of being incorporated into a medical device subject to certification
requirements. In order to compensate the presence of SOUP components with
non-compliant structural coverage of unit tests, a higher responsibility and effort
was charged on integration testing. Specifically, a grey-box testing approach was
planned (and agreed in the certification process), with the goal of covering all
the interactions among components for which unit testing coverage had not been
attained. To this end, the test plan was targeted to attain def-use coverage (for
each definition of any variable of global scope, cover at least one path reaching
each subsequent use of that variable) and all du-paths (for each definition of any

Reducing Complexity of Data Flow Testing 359

variable of global scope, cover each path reaching each subsequent use of that
variable) [9].

Disciplined reasoning on UML activity diagrams of the basic process identi-
fies 3 paths that are sufficient to cover the def-use criterion and 9 sufficient to
ensure all-du paths. However, the addition of flexible choices to the basic process
dramatically increases the set of feasible executions and the set of combinations
among definitions and uses of data coupling different steps of the protocol. In
principle, since the process consists of 13 steps, this results in 13! possible orders
of execution. Fortunately enough, the protocol includes dependencies between
states that constrain feasible executions (e.g., the navigation of tibial cutting
guide can not be executed before the registration of tibial reference system).
Despite the reduction, this still results in 96 test cases, which subtends a huge
testing and documentation effort due to at least two major factor exacerbating
complexity. On the one hand, functional tests on the integrated system must be
manually performed by simulating a complete intervention for each path, with
a significant effort also in the generation of input data for each path. On the
other hand, due to accuracy requirements on measurements taken by the system
during the surgical protocol, the oracle verdict on the results of each single test
requires that device measurements and numerical processing be shown accurate
up to 1mm and 1◦ to get benefits compared to conventional procedure.

This type of complexities suggested that the code be partially refactored so
as to implement a few basic design-for-testability principles that could permit
a significant reduction in the complexity of the Test Plan. In this particular
scenario, each variable, either a cutting plan, an anatomic reference system or
a point acquired during registration, is bound to be defined only in a single
step where its value is acquired or calculated. Its value will then be used by
some other subsequent steps, but, the only portion of code where the value can
be modified remains the step where the value is assigned. We are interested in
testing the IUT with all-uses coverage [9] of the behavior model specified in
functional requirements. In so doing, we guarantee that behaviors allowed by
the functional specification are tested so as to cover all-nodes, all-edges and also
a relevant subset of all paths. Specifically, paths are covered according so as to
guarantee that for each variable x defined in some step X and later used in some
step Y without any intermediate side-effect on x, at least one test is performed
that reaches Y from X without ever modifying x. We will show that in this
case, the data flow testing applied in functional perspective, not only detects an
effective set of paths to test, but also helps, adding some appropriate constraints,
to keep under control the variability introduced by the execution of the process
in a flexible workflow.

3 Abstraction and Problem Formulation

It is worth in this context, to exactly define and classify the type of workflow we
are working on. From a data flow perspective each variable has an only point in
which is defined and this can be verified by static inspection of the code.

360 F. Cruciani and E. Vicario

There are two kinds of variables involved: some variables are used to calculate
or measure quantitative data, and some variables that correspond to choices,
for instance the type of implant the surgeon decide to use. This second set of
variables, in other words, affects a subset of steps where based on their values
one of several branches is chosen within the execution of the step itself, i.e. some
steps implement different behaviors according to some pre determined condition.
As for the variables we have thus two kind of steps: some steps can be viewed as
a basic block while some other steps hide execution branches. However, we can
consider each step in the procedure as an extended basic block, i.e. a sequence of
consecutive instructions always executed from start to finish that may contain
branches.

We also assume that a set of dependency between states can be derived by
static analysis of the process.

The surgical process is composed by a set of steps S that must all be performed
but can be serialized in any way satisfying a given partial order ≺⊆ S × S
reflecting the constraints of the surgical protocol.

Our workflow can thus be defined as W = 〈S,≺〉 where S is the set of possible
phases that can be executed in different combination in the process, and ≺ is a
set of high-level dependencies among steps.

As an example, be S the workflow composed by the set of steps S =
{A, B, C, D, E, F, G}. The control flow across nodes is conditioned by a set of
variables V = {a, b, c, d, e, f, g} with global scope, i.e. variables that are defined
and used in different activities.

Fig. 2. Two possible execution order of the process

The dependency between steps implies that some process constraints have to
be introduced to avoid sequencing problems i.e. the use in a particular step of a
variable that has not yet been assigned.

3.1 Data Flow Perspective

In order to define the set of constraints we need to analyze all steps in the
workflow model specification. We need order constraints [16][12] to avoid the
execution of a step N which uses a variable that is defined in step M prior to
the execution of M . This kind of constraints indicates that two steps have to be
executed in an exact order but could have other independent workflow steps in
between. This dependency relation between two steps can be naturally defined
by using the data flow perspective.

Reducing Complexity of Data Flow Testing 361

As in [9], it is here convenient to distinguish among c-uses and p-uses, i.e.
references to variable that condition the value assigned to some other variable
(computational use) or the the result of a decision determining the flow of ac-
tions in the control flow graph (predicate use), respectively. In particular, in our
setting, a p-use can determine the choice among different ways how some activity
is performed. For instance, the selection of a type of prosthesis in some activity
A might define a global variable a, which in turn is later p-used in some activity
F to select the way how some measure is taken. This results in different modes
of execution for F , say {F1, F2, F3...}, which may define different variables, say
{f1, f2, f3...}. It may also happen that in some subsequent activity G, the same
variable a is p-used again to select among different modes {G1, G2, G3, ...} each
of which uses in respective manner the variables {f1, f2, f3...} defined in F .

This setting directly reflects explicit needs of the context of use, and it is
quite easily implemented in a workflow oriented SW architecture. However, a
major hurdle for its practical realization arises in the testing stage. In fact,
attaining all-def coverage for this variety of behaviors is by far beyond the limits
of a feasibility. And, relaxation of the aim from all-uses to all-edges does not
substantially change the nature of the problem. In fact, tests are here performed
at the system level, and each of them requires manual application of a sequence
of physical steps, which basically reproduce those of a surgical operation. Just
to give an idea of the order of complexity that can be reasonably afforded, in the
certification of the first release of the product which did not include workflow
flexibilities, the test suite specified in the test plan was made by 9 cases.

In order to complete the specification of this flexible workflow we need to
introduce some definitions.

Definition 1. Let M, N be two steps of the procedure and adu(M), adu(N) the
corresponding sets of all definitions and uses of variables. We will say that N
depends on M if ∃ any variable x thus that def(x) ∈ adu(M) and p−use(x)|c−
use(x) ∈ adu(N).

Definition 2. Let M, N be two steps and adu(M), adu(N) the correspondents
sets of definitions and uses of variables and V (N) and V (M) the corresponding
set of used or defined variables, we will say that N and M are independent if
V (M) ∩ V (N) = ∅.
Definition 3. A Dependency Graph is a pair DG = 〈S, Γ 〉 were S is a set of
vertexes each of them representing a step, and Γ is a set of pairs (x, y) ∈ S2

called set of directed edges between two vertexes each of them representing a
dependency between the two steps.

Looking at this problem in data flow perspective we can define for each possible
state which variables are involved and how[6].

We are going to define for each state X the set of all defs and uses denoted as
adu(X) and we will consider each step, from a data flow perspective, as a basic
block [9][17].

Predicate uses within a step cause that state to be split in parts: F and G have
been split in F, F1, F2 and G, G1, G2. This is based on the concept of extended

362 F. Cruciani and E. Vicario

Fig. 3. The adu sets for the example workflow. For each step the set of all definitions
and uses of variable is reported.

basic block. Note that execution of F1 or F2 within the step F is implicitly
determined in the definition of variable a and does not correspond to a surgeon
choice during the step F . The only choice here would be the execution of F
rather than any other eligible step.

These two steps in the example behave differently according to the value of a
that, in this example can have two values 1 or 2, anyway both the steps can be
considered as extended basic block. In fact the execution flow within the block
is deterministic.

We can represent the set of order constraints in a DG as in fig.4(a). Any possi-
ble order of execution can be obtained by picking nodes from the DG respecting
all dependencies from other step which have not yet been executed. We show two
possible CFGs in fig.4(b). For each graph we can see that there are two feasible
paths. Both these CFGs respect the set of order constraints explicitly defined by
the data flow analysis of each step.

3.2 Reducing Complexity through Design for Testability

To reduce the testing effort, development was inspired to general principles of
design for testability [18], and in particular to the usage of design patterns that
support of effective and efficient verification of functional assumptions through
static inspection of code architecture[19][20]. Note that, in so doing, the structure
of implementation is conditioned to functional testing objectives.

Reducing Complexity of Data Flow Testing 363

(a) (b)

Fig. 4. In (a) is represented the dependency DAG based on the set of constraints
generated by data flow analysis. In (b) there is an example of two among the many
possible control flow graphs that can be obtained respecting the order constraints. Note
that the control flow graphs represent two possible run time execution of the process
in which state F and G have been split considering the run time value of variables
involved in the corresponding p − use in F and G. For each CFG, or in other words
for any legal execution order would require at least two test cases executing the two
possible path on the graph.

In particular three major assumptions were supported through adequate and
verifiable choices in the implementation structure.

– The structure of implementation of the workflow model was implemented
using the BLU-IGS engine. In so doing, the workflow is explicitly encoded
into a set of states and a set of dependency rules, whose consistency with
the expected specification can be supported by static code inspection.

– Each variable a ∈ V was restrained to be defined within a single activity of
the process:

∀A, B ∈ S, ∀a ∈ V, a ∈ def(A) ∧ a ∈ def(B) → A = B

This constraint was enforced at design level, by making each activity be a
class and each global variable be a private attribute of the class were it is
defined with public get methods and private set method.

– Consistency in subsequent choices subordinated to the p-use of the same
global variable is guaranteed through the verification phase since any incon-
sistency would result on a test failure caused by missing data or incorrect
values.

364 F. Cruciani and E. Vicario

– The choice of a particular step during the procedure is constraining, i.e.
it is not possible to re-execute an already visited operational phase. This
assumption is not restrictive in this case, since for instance it has no sense
to re-acquire a registration point after the cut has been executed.

3.3 Reducing Complexity through Test Equivalence

Under the assumptions enforced at design level, the test suite that guarantees
all-uses coverage can be drastically reduced as most test cases turn out to be
equivalent.

The dependency DAG defines a partial order between states implicitly defining
an equivalence class of CFGs. Based on the example dependency DAG there are
76 possible graphs, or in other words, 76 ways to complete the process without
breaking any order constraint. Considering the data flow analysis that would
make 76 × 2 possible du-paths.

Based on this partial specification, any order in which we complete the task
without breaking any constraint can be obtained by picking a node at a time
from the dependency DAG following the rule that we can pick any node that
does not depends on other node in the DAG. Explored nodes are removed from
the dependency DAG as showed in fig.5.

(a) (b) (c)

Fig. 5. An example of execution of three steps (a),(b) and (c) on the dependency DAG.
In the first step node C is selected, followed by selection of B and C. Once the third
step is complete there are three eligible nodes as next step: A, E and D. Steps F and
G are not eligible until their dependencies are verified. Note that dependency DAG
defines no relation between nodes in the eligible set.

Reducing Complexity of Data Flow Testing 365

The workflow engine must simply enable the choice of a subset of steps that
are eligibles based on a queue of already explored steps and the set of all depen-
dencies.

Any choice made is thus guaranteed to be a valid workflow since all dependen-
cies are respected. Plus all the possible ways of choice order are equivalent since,
at any decision, only a subset of states is eligible. All nodes in that subset are
independent guaranteeing that the order in which steps are performed is equiv-
alent. A similar concept is the one applied in the case Out-Of-Order Execution,
where data flow information is used in order to optimize the CPU resources us-
age, in any case the data flow analysis detect different execution order that do
not affect the final result of computation.

Let be S1 � Sn the sequence of explored states, and be ES = Si1, Si2 · · · , Sim

the set of eligible states, any sequence ∀Six ∈ ES the sequence S1 � Sn → Six

is equivalent.
Expanding this concept in terms of equivalence between du-paths, let be Si

the step that contains the definition of a variable i, and let be Sj a subsequent
step where the value of i is used. Let be Si � Sx � Sj an execution order
that execute the du-path between Si and Sj with respect to variable i. For the
hypothesis of non-interference, Si is the only portion of code where the value of
i is modified, meaning that any step Sx executed between Si and Sj , either is
independent from Si, or contains a use of i, but for sure will not modify its value.
Therefore, a test case executed in this path, would produce the same result as
in any other possible execution path Si � Sy � Sj .

In conclusion, given any of the CGFs that respects all data dependencies, it
is possible to build a test suite covering all-du paths, that produce the same
coverage of all-du paths in any other order of execution.

3.4 Application to Our Case Study

In the application to the case of the Miró system, the equivalence between the
possible CFGs allows to build an equivalent test suite based on one on the
many possible orders of execution. In this case the results is far more relevant,
since it means that the same test suite, and also the corresponding data set for
verification, built for a fixed-workflow scenario is still valid. Fig. 6 illustrates the
abstraction applied to Mirò.

Analyzing the CFG, there are only two variables for which there is at least
a p-use in some step. This variables are indicated as 0.1 and 0.2 and consist
respectively on, the choice of the prosthesis, and the type of acquisition to use as a
reference to evaluate the correct positioning of the femoral prosthesis component.
Both the variables can assume 3 values, leading to a minimal test suite built on
3 path for all-uses and 9 paths for all-du paths using the two variable in all
the possible combinations. The use of this test suite ensures the execution of all
possible behaviors also on SOUP items where unit test level does not provide
any form of verification.

Even though, the use of computer assisted surgery is increasing, it still remains
a lower percentage compared to traditional technique, and that due also to its

366 F. Cruciani and E. Vicario

Fig. 6. Miró Integration Test Plan

lack of flexibility. The Total Knee arthroplasty surgical procedure comprise the
execution of cuts both to the tibia and the femur, surgeons are used to perform
these two phases following one particular order better than the other. A flexi-
ble procedure supports surgeons with this choice, making them more confident
when passing from the conventional technique to a computer assisted procedure,
without the need of modifying their way of conducting the operation.

4 Conclusions

In our case, it has been possible, following this approach, to reuse the integration
test suite detected in the previous software version. In this way, any increase in
terms of cost for integration test execution has been avoided, adding on the same
time the flexibility feature. This advantage is particularly relevant, when consid-
ering that integration test phase is the most complex verification phase in this
context.

Reducing Complexity of Data Flow Testing 367

Most of the effort has been put instead, on verifying the aforementioned as-
sumptions about non-interference of procedure steps on the variables, while at
the level of unit test a test suite has been introduced to test the new workflow
engine, testing the engine on accepting or reject all the possible execution orders.

The last point to verify was the assumption that we can consider a single step
as a basic block. This assumption is indeed a big limitation in the case of the
registration step, where the set of anatomical points are acquired to build the
anatomical reference system. At this level, flexibility allows the surgeon to re-
acquire any of the registration points without the need of re-acquiring all values.
The use of design patterns oriented for testability can help also to remove the
assumption that within the same step a variable can not be re-defined. In other
words this would imply the redefinition of a variable x, that can have been
already c-used in the same step to compute a variable y, causing the risk of
this second variable to be not correctly updated. The information about the
dependency between data related to each step, can be used to automatically
update all dependent data. This automatic update, has been guaranteed by using
an extension of the observer pattern[21], where all variables are encapsulated in a
data class, able to notify changes on its internal state and to observe notification
from other data object in the same step.

Even though the assumptions, valid in this particular study case, appear to be
restrictive, we believe that this kind of approach can be extended to cover more
general workflow specifications. Flexibility is a common issue in many kind of
workflow applications[11], and this approach can easily be applied to any domain
in which a similar workflow modeling is suitable.

In conclusion, this case study reports on how, combining the right integration
testing approach, in our case the data flow testing, with some elements oriented
to design for testability it is possible to implement major changes on a certified
software minimizing the cost of the verification process.

References

1. International Electrotechnical Commission: Medical device software - Software life-
cycle processes, IEC62304:2006 (2006)

2. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and
Parallel Databases 3(2), 119–153 (1995)

3. Fowler, M., Scott, K.: UML distilled (3rd ed.): a brief guide to the standard object
modeling language, 3rd edn. Addison-Wesley Professional, Reading (September 25,
2003) ISBN:978-0321193681

4. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specifica-
tion language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp.
76–90. Springer, Heidelberg (2001)

5. Van Der Aalst, W.M., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

6. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service oriented workflow
applications. In: ICSE 2008 Proceedings of the 30th International Conference on
Software Engineering (2008)

368 F. Cruciani and E. Vicario

7. Mei, L., Chan, W.K., Tse, T.H.: An empirical study of the use of Frankl-Weyuker
data flow testing criteria to test BPEL Web services. In: 33rd Annual IEEE Inter-
national Computer Software and Applications Conference (2009)

8. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

9. Rapps, S., Weyuker, E.J.: Selecting test data using data flow information. IEEE
Transactions on Software Engineering SE-11(4) (April 1985)

10. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineer-
ing 19(8) (August 1993)

11. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Information Systems 30(5), 349–378 (2005),
doi:10.1016/j.is.2004.05.002, ISSN 0306-4379

12. Sadiq, S.W., Orlowska, M.E., Lin, J., Sadiq, W.: Quality of Service in flexible work-
flows through process constraints. In: Enterprise Information Systems, vol. VII,
part 3, pp. 187–195 (2006)

13. Schep, N.W.L., Broeders, I.A.M.J., van der Werken, C.: Computer assisted or-
thopaedic and trauma surgery: State of the art and future perspectives. Original
Research Article Injury 34(4), 299–306 (2003)

14. Saragaglia, D., Picard, F., Chaussard, C., Montbarbon, E., Leitner, F., Cinquin, P.:
Computer-assisted knee arthroplasty: comparison with a conventional procedure.
Results of 50 cases in a prospective randomized study. Rev Chir Orthop Reparatrice
Appar Mot. 87(1), 18–28 (2001)

15. Bathis, H., Perlick, L., Tingart, M., Luring, C., Zurakowski, D., Grifka, J.: Align-
ment in total knee arthroplasty, A Comparison of Computer-Assisted Surgery with
the Conventional Technique. Journal of Bone and Joint Surgery - British 86-B(5),
682–687

16. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Foulger, C.: Data Flow and Validation in
Workflow Modelling. In: ADC 2004, Proceedings of the 15th Australasian Database
Conference, vol. 27 (2004)

17. Binkley, D., Gallagher, K.B.: Program Slicing, Advances in Computers, vol. 43,
pp. 1–50. Academic Press, London (1996)

18. Binder, R.V.: Design for testability in object-oriented systems. Commun.
ACM 37(9), 87–101 (1994), R 10.1145/182987.184077

19. Baudry, B., Le Sunyé, Y., Jézéquel, J.-M.: Towards a ’Safe’ Use of Design Pat-
terns to Improve OO Software Testability. In: Proceeding ISSRE 2001 Proceedings
of the 12th International Symposium on Software Reliability Engineering. IEEE
Computer Society, Washington, DC, USA (2001), table of contents ISBN:0-7695-
1306-9

20. Baudry, B., Le Traon, Y., Sunyé, G.: Testability Analysis of a UML Class Diagram
Software Metrics. In: IEEE International Symposium on Eighth IEEE International
Symposium on Software Metrics (METRICS 2002), p. 54 (2002)

21. Gamma, Helm, Johnson, Vlissides: Design Patterns, Element of Reusable Object-
Oriented Software, 1st edn. Addison-Wesley, Reading (1995)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 369–382, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Improvement of Processes and Methods in Testing
Activities for Safety-Critical Embedded Systems

Giuseppe Bonifacio, Pietro Marmo, Antonio Orazzo,
Ida Petrone, Luigi Velardi, and Alessio Venticinque

AnsaldoSTS, via Argine 425, 80147 Napoli, Italy
{Giuseppe.Bonifacio.interim,Pietro.Marmo,

Antonio.Orazzo,Ida.Petrone.Prof423,Luigi.Velardi,
Alessio.Venticinque.Prof202}@ansaldo-sts.com

Abstract. In order to sustain competitiveness in transport domain, especially in
automotive, aerospace and rail, it is extremely important to control and optimize
the entire development process of complex safety-critical embedded systems. In
this context, the ARTEMIS EU-project CESAR1 (Cost-Efficient methods and
processes for SAfety Relevant embedded systems) aims to boost cost efficiency
of embedded systems development, safety and certification processes by an
order of magnitude. We want to achieve the above target in the railway domain
with particular emphasis on the Verification and Validation (V&V) process
where activities to be performed, due to their complexity, require a significant
amount of economical resources. Starting from an industrial use case (the On-
Board Unit of the European Railway Traffic Management System Level 1,
ERTMS L1) we provide a methodology that overcomes some weaknesses in
testing processes. It supports requirements analysis and automatic test cases
generation, avoiding a computational explosion.

Keywords: Testing, Safety, Requirements engineering, Ontology, V&V.

1 Introduction

The embedded safety-critical systems design and development industry is facing
increasing complexity and variety of systems and devices, coupled with increasing
regulatory constraints while costs, performances and time to market are constantly
challenged. This has led to a profusion of enablers (new processes, methods and
tools), which are neither integrated nor interoperable because they have been
developed more or less independently, addressing only a part of the complexity issue,
such as safety. The absence of internationally recognized open standards is a limiting
factor in terms of industrial performance when companies have to select among these
enablers. The EU-project CESAR will bring significant and conclusive innovations in
the two most improvable systems engineering disciplines such as Requirements
Engineering [1], in particular through formalization of multi viewpoint, multi criteria

1 http://cesarproject.eu/

370 G. Bonifacio et al.

and multi level requirements and Component Based Engineering applied to design
space exploration comprising multi-view, multi-criteria and multi level architecture
trade-offs. CESAR intends to provide industrial companies with a breakthrough in
system development by deploying a customizable systems engineering Reference
Technology Platform (RTP) making it possible to integrate or interoperate existing or
emerging available technologies. The RTP is composed by various tools integrated in
the RTP bus in order to provide a complete environment that covers the phases of
design system, from the system conception and requirement capturing to the system
realization. The RTP architecture is shown in Fig. 1.

Fig. 1. RTP architecture

This will be a significant step forward in terms of industrial performance
improvement that will help to establish de-facto standards and contribute to the
standardization effort from a European perspective. Relying on use-cases and
scenarios from Aerospace, Automotive, Automation and Railway, CESAR is strongly
industry driven. Benefiting from this multi-domains point of view, CESAR addresses
safety aspects of transportation and other societal mobility and environmental
demands. Some key needs identified by AnsaldoSTS (from now on, ASTS) driving
CESAR calls for an innovation boost in particular related to Verification and
Validation (V&V) activities, regulated by international standards (see [2]-[8]),
starting from requirements specifications expressed by system stakeholders, adapted
from standard documents or re-used from previous projects. In this work we present
the ASTS use case that will contribute to the CESAR objectives providing the
assessment of RTP applicability to perform the functional testing activities. This use
case, even if it reflects the industrial “state of the practice” of these tests in the rail
domain, aims to reveal technical gaps that should be closed by one or more technical
innovations and its applicability can be easily extended to other domains.

1.1 ERTMS Level 1 and ASTS Pilot Application

ERTMS, the European Railway Traffic Management System, has been designed by
the European railways and the supply industry supported by the European
Commission to meet the future needs of the European Railways. The deployment of

 Improvement of Processes and Methods in Testing Activities 371

ERTMS will enable the creation of a seamless European railway system and increase
European railway’s competitiveness. ETCS (European Train Control System) is an
ERTMS basic component: it is an Automatic Train Protection system (ATP) to
replace the existing national ATP-systems. UNISIG is an industrial consortium which
was created to develop the ERTMS/ETCS technical specifications and actively
contributes to the activities of the European Railway Agency in order to assure the
“interoperability” that is the main driver for ERTMS in the context of the European
Railway Network. The meaning of “interoperability” is two-fold: on the one hand, it
refers to a "geographical interoperability" between countries and projects (a train
fitted with ERTMS may run on any other ERTMS-equipped line); on the other hand,
it also refers to a technical notion of “interoperability between suppliers” (a train
fitted by a given supplier will be able to run on any other trackside infrastructure
installed by another supplier). This opens the supply market and increases
competition within the industry. The ERTMS/ETCS application has three “levels”
that define different uses of ERTMS as a train control system, ranging from track to
train communications (Level 1) to continuous communications between the train and
the Radio Block Centre (Level 2). Level 3, which is in a conceptual phase, will
further increase ERTMS’ potential by introducing a “moving block” technology. This
Pilot Application (PA) deals with ERTMS Level 1.

ERTMS Level 1 is designed as an add-on to or overlays a conventional line already
equipped with line side signals and train detection equipment which locates the train.

ERTMS Level 1 has two main sub-systems:

• Ground sub-system: collects and transmits track data (speed limitations,
signal-status, etc.) to the on-board sub-system;

• On-board sub-system: analyzes data received from the ground and elaborates
a safe speed profile.

Communication between the tracks and the train are ensured by dedicated balises
(known as “Eurobalises”) located on the trackside adjacent to the line side signals at
required intervals, and connected to the train control centre (Fig. 2). The balises
contain pre-programmed track data. The train detection equipment sends the position
of the train to the control centre. The control centre, which receives the position of all
trains on the line, determines the new movement authority (MA) and sends it to the
balise. Train passes over the balise, receiving the new movement authority and track
data. The on-board computer then calculates its speed profile from the movement
authority and the next braking point. This information is displayed to the driver.

The industrial use case is a specific function of the On-Board SubSystem: the
Linking Function. As described above, balises transmit track data (speed limitations,
signal-status, etc.) to the on-board sub-system.

The aim of Linking Function is:

• to determine whether a balise group has been missed or not found within the
expectation window and take the appropriate action;

• to assign a co-ordinate system to balise groups consisting of a single balise;

372 G. Bonifacio et al.

Fig. 2. On-Board Unit (OBU) ERTMS Level 1

• to correct the confidence interval due to odometer inaccuracy. It is not possible
avoiding the odometer error, also for the best technologies (e.g., due to sliding).
The balise position, instead, is a reference system for train position that resets the
odometric error each time the train passes over a balise.

The linking information transmitted by balise group to the OBU (On-Board Unit) is
composed of:

a) the identity of the linked balise group (the list of expected balises group)
b) where the location reference of the group has to be found
c) the accuracy of this location
d) the direction whereby the linked balise group will be passed over (nominal or

reverse)
e) the reaction required if a data consistency problem occurs with the expected balise

group.

2 State of Art in Testing Activities

The use case reflects the industrial “state of the practice” of the testing activities in the
rail domain and aims to reveal technical gaps that should be closed by one or more
technical innovations. In the testing process it is possible to identify the following
activities: test definition, test execution, test report analysis and test report document
drawing up (a document filled on the basis of test report analysis). A workshop
carried out among experienced test engineers in ASTS, suggested that the above
mentioned activities could be significantly improved. In particular, the technical gaps
identified in each activity and the amount of effort spent to develop each activity
exploiting current techniques and methods are illustrated in the Table 1. The amount

 Improvement of Processes and Methods in Testing Activities 373

of effort put on each testing activity is indicated in percentage points. The sum of
percentage points should be 100%, as it is assumed that 100% represents the current
overall effort spent in the testing process.

Table 1. Effort evaluation in testing activities

Activity Technical Gaps
% of effort

actually spent

Test
Definition

Starting from system requirements, tests are manually defined
and recorded in test cards. Then, the test cards are used for a
manual execution or translated in test scripts, in a proprietary
data format, for an automatic execution.

25%

Test
Execution

In the “current practice”, where an automatic test execution
environment is available, there are interoperability problems
due to different proprietary data formats from heterogeneous
providers. In particular, test data and test logs are expressed
in a proprietary format, usually different for each provider.

15%

Test Report

Analysis
Most of the efforts spent in this phase concerns the test report
analysis that is manually performed.

50%

Test Report
document

Drawing Up

Most of the efforts spent in this phase are due to the test
report document that is manually drawn up.

10%

Actually, the average efforts, using the current ASTS test equipments for a typical

industrial project (more than 2000 test cases generated from almost 1000
requirements), concerning test definition and test script translation phase, is shown in
Table 2.

Table 2. Average evaluation of the effort for Test Definition activity

Activity Average rate Time consumption (1 person)
Test Cards definition from requirements
in Natural Language

40 test/month 50 months

Test Cards translation in Test Script 300 test/month 6,7 months

3 Technical Innovation Needed in Testing Activities

The proposed actions to be taken, in order to improve the above mentioned phases,
are illustrated below. The percentage points below represent the new effort requested
for each activity of the testing process when the technical innovations indicated will
be implemented. As shown in Table 3, technical innovations could reduce ASTS
testing effort of almost the 50%. This represents, indeed, the overall effort spent in the
testing process if the methods indicated for each phase are implemented. Note that the
technical innovations proposed for the Test Execution phase are necessary to allow
different subsystems from heterogeneous providers to work together.

374 G. Bonifacio et al.

Table 3. New effort evaluation in testing activities

The reduction of any efforts is obtained by an analysis, made by a domain expert,
on a simulation of a testing activity in which the Test Validator is supported in his
work by this technical innovation. The results of this process simulation rely on:

• Test Definition: the RTP supports the Test Validator in the automatic generation
of test scenarios from formal requirements. Moreover, the Test Validator has to
define rules to generate a customized set of tests, if needed.

• Text Execution: is independent from this approach and no improvement are
present.

• Test Report Analysis: test oracle has permitted an automatic success report, with
a decrease of log that user must analyze. The effort of Test Validator is only to
analyze failed tests.

• Test Report document Drawing Up: the automatic test report generation is a RTP
specific function that allow to have a draft documentation with test specification
and results of each test. The user must only complete this test report with his
analysis.

3.1 Proposed Solution: ASTS Pilot Application

The scheme in Fig. 3 shows the activities that should be performed to develop the
ASTS PA. The scheme evidences the activities that could be performed in each
CESAR industrial domain (and also in a generic industrial domain), those ones that
should be performed only in the rail domain or specific for a particular company.

 Improvement of Processes and Methods in Testing Activities 375

Fig. 3. Development scheme of ASTS Pilot Application

In the scheme the following activities are identified:

1. System requirements specification (SRS):
System requirements should be specified in a formal requirements specification
language (RSL). The coherence and completeness of the requirements should be
automatically checked by means of RTP functionality.

2. Test definition:
Two complementary approaches should be taken into account when defining the test:
a) Automatic test specification from the SRS:

For each system requirement a test should be automatically specified, in
order to determine whether the system satisfies the requirement.

b) Customizable test generation:
It should be possible to define rules, which allow the user to generate a
customized set of tests (see [9], [10]).

3. Test specification and test oracle description:
The scripts of the identified tests should be expressed using a flexible standard
formalism, for example xml. The test oracle should be automatically defined: it
should define the expected outputs of the test, in order to detect if the actual
outputs obtained by the test are correct or not.

4. Test specification in UNISIG formalism:
The scripts of the identified tests, expressed in a standard formalism, should be
translated to the formalism proposed by UNISIG (Subset 076 [11]) in order to make
the test specifications easily understandable by everybody involved in rail
applications (suppliers, customers, assessors). It should also be possible to translate
the test scripts from the UNISIG formalism to standard one proposed by CESAR.

376 G. Bonifacio et al.

5. Common UNISIG interface to allow test execution:
It is necessary to follow the approach proposed by UNISIG (Subsets 110 [12],
111 [13], 112 [14]), that allows us to convert the test scripts from a standard
format (that is common to all providers) to a proprietary format. Indeed, as
UNISIG has a strategic importance for the rail market, CESAR should be
compliant to all its future disposals in this domain.

6. Test execution and automatic verification:
Test should be executed and the results automatically analyzed, comparing the
actual outputs with the expected ones, defined in the activity 3. This activity is
not common to all domains but depends on the particular application and on the
specific test environment, so it is specific for each company. Each industrial
partner should perform this activity internally, using its own test environment.

7. Common UNISIG interface to allow log analysis:
It is necessary to follow the approach proposed by UNISIG (Subsets 110, 111 and
112) that allows converting the test log from a proprietary format into a standard
format, common to all providers. As in the activity 5, the common interface
should be developed in the research area of CESAR and be exploited only in rail
domain.

8. Automatic drawing up of the test report document:
It is necessary to automatically generate the test report document containing the
test specification and the result of each test. A specific RTP function should pick
up all the elements requested by the user in the customized template from the test
log and use them to automatically generate the test report document.

The efforts spent to perform testing activities with the use of the RTP is expected to
be 50% lower than the ones spent with the use of the current ASTS test equipments.
At present, the technical innovations provided by CESAR project are related to
preliminary phases of ASTS PA. Therefore we expect a reduction of both the efforts
for system requirements specification activity and efforts test definition activity.

4 Instance of RTP with ASTS Use Case

The current version of CESAR RTP is composed by various tools that allow to the
users to manage, analyze, check system requirements, modeling the system, auto code
generation and test cases generation. All these tools are COTS ones and they are
integrated in the RTP bus in order to provide a complete environment that covers the
phases of design system, from the system conception and requirement capturing to the
system realization. The ASTS demonstrator is related to the Requirements Analysis
(DODT, Domain Ontology Design Tool [15]) and Automatic Test Cases Generation
(ATG) by means the connection of two tools to the RTP, as shown in Fig. 4. The first
tool is for requirements specification and completeness, consistency and ambiguity
check. The second tool is for the automatic test cases generation out of formalized,
consistent and not ambiguous requirements. In this phase the project covers the steps
1) and 2) of ASTS Pilot Application. It is planned that the total workflow of previous
section will be developed with next versions of CESAR RTP.

 Impr

Fig. 4. RT

4.1 DODT (Domain Onto

The DODT is a tool that im
natural language (NL) r
boilerplates. Hull, Jackson
elicitation thought of as usi
a particular context. Using f
templates could be created.
capability objects and ev
characteristics etc. ... Some
be able to <action>” or “I
<action>”. In this templat
attributes and shall / shall
use of predefined structure
facilitating understandabili
Additionally, boilerplate
underlying system-related
involved, the system capabi

The boilerplate require
Omoronyia and Reichenba
linking attribute values to
contain the following entitie

Concepts: Concepts are thi
e.g. Balise Group. In additi
e.g. a short paragraph expla

Relations: Relations are d
label. Relations represent k
Group> <send> <message>

Axioms: Axioms express c
subclass relations betwee
requirements analysis, e.g.
improve consistency in the
more specific concepts inste

ovement of Processes and Methods in Testing Activities

TP instance with Ansaldo STS demonstrator

ology Design Tool)

mplements the conversion, in a semi-automatic way, fr
requirements into a semi-formal representation cal
and Dick [16] first suggest this approach to requireme

ing semi-formal requirements that are parameterized to
fixed syntax and variable parts, called attributes predefi
 Users can specify requirement attributes as stakeholde

vents involved in the system, as well as performa
e examples of templates could be “<System> shall / sh
If <state>/<event>, the <System> shall / shall be able
tes <System>, <action>, <state> and <event> are nam
be able to / if / the are named fixed syntax element. T

es allows reducing spelling mistakes, ambiguity, etc., t
ty, categorization and identification of the requireme
RSL acts as an input mechanism for capturing

semantics behind requirements i.e. the stakehold
ilities and so forth.
ements method requires a domain ontology. Stålha
ach [17] extended boilerplates with a domain ontology

ontology concepts. The domain ontology is expected
es:

ings (both physical and abstract) which exist in the dom
ion to its name a concept also contains a textual definiti
aining the meaning of the term “Balise Group”.

direct connections between two concepts with an attac
knowledge in the form “subject verb object”, e.g., “<Ba
>”.

certain formal relations between concepts, e.g. equality
en concepts. Equivalence information can be used

to suggest replacing an occurrence with an equivalen
requirements. Subclass information can be used to sugg
ead of too generic ones.

377

rom
lled
ents
suit

ined
er or
ance
hall
e to
med
The
thus
ents.

the
ders

ane,
y by
d to

main,
ion,

hed
alise

y or
 in

nt to
gest

378 G. Bonifacio et al.

The domain ontology for the On-Board Unit Level 1 was created manually,
directly writing in the DODT ontology editor. The Requirement Engineer (RE) selects
one or more boilerplate-templates and the tool provides suggestions gained from
domain ontology information for the attribute values. Thus the DODT tool is able to
reduce the amount of mechanical work required to the RE compared with a manual
transformation [18].

By means this tool will be executed the following workflow:

1. Requirements are described in DOORS (Dynamic Object Oriented Requirements
Systems) file by RE

2. Requirements are imported in DODT
3. Ontology is created in DODT editor by RE
4. Requirements are specified in boilerplates by RE with support of DODT and

Ontology
5. RE checks completeness, consistency and ambiguity of requirements with DODT

functionality
6. RE stores requirements in a repository of RTP.

After these steps, the V&V Specialist imports these formalized requirements in the
ATG tool that generates a set of test cases requirements-based. In the last part of the
present article the ATG functionalities will be described.

4.2 Example of Requirements Formalization

For the evaluation a set of 40 requirements was chosen. The creation of boilerplates
and formulation of requirements is an interwoven process. The RE determines if
appropriate boilerplates for a requirement exist; if they are missing, he needs to create
new boilerplates before instantiating boilerplate requirements. The task to create
boilerplates is mostly a one-time job with small updates later on, since boilerplates are
to a high degree independent of the domain and can be reused well. Exceptions to this
are the usage of domain-specific boilerplate attributes (the attributes used in this
evaluation are system, entity, action, capability, operational condition and event; all of
them are generic and can be reused) and domain- or project-specific guidelines to
formulate requirements. The Table 4 contains the On-Board Unit Level 1 ontology
domains.

Table 4. Linking Function Ontology contents

 Contents Contents
12 Object Properties 50 Axiom
62 Class 24 Subclass of Axiom
 15 Parameter 17 Equivalent Class
 8 State 9 Contain
 5 System 6 Failure Mode
 3 Verb
 5 Object
 10 Entity
 7 Operational Mode
 6 Action
 3 Capability

 Improvement of Processes and Methods in Testing Activities 379

Some examples of boilerplate requirements, translated from original requirements,
are presented in the Table 5.

Table 5. Examples of system requirements specified using boilerplates formalism

 REQ specified in Natural Language REQ specified in Formal Language
REQ_23 The ERTMS/ETCS on-board

equipment shall ignore (i.e. it will not
consider as LRBG) a balise group
found with its location reference
outside its expectation window.

The <ERTMS/ETCS on-board
equipment> shall not <consider> the
<balise group> if <balise group> have
<location reference> unequal to
<inside expectation window>.

REQ_42 If a message has been received
containing the information “default
balise information”, the driver shall be
informed.

The <SSB> shall be able to <inform>
the <driver> if <balise group> with
<message> equal to <default balise
information>.

4.3 ATG (Automatic Test Generator)

The ATG module must be able to produce test scripts set starting from formal
requirements in a standard format. In this first version, ATG allows a static generation
of test scripts, setting conditions expressed in the requirement and verifying the
consequences. A more complex version will be available in future, implementing a
methodology allowing a dynamic generation of test scripts, based on influences
variables and on specific rules defined by the Test Designer [19].

The ATG is composed by the following components:

• Test Data Generator: generates the test case from Requirements Analysis.
• Oracle: calculates the value of the expected output.
• Test Manager: coordinates the different modules of ATG.
• File comparator: compares the outputs of the test execution with the Oracle

prediction.
• Report Generator: implements test traceability and result of test campaign (i.e.

log error, test report).

Here below is shown an example of the static test generation that summarizes the
algorithm implemented by the ATG. This example is based on the requirement
REQ_23 (Table 5) of the linking function.

The input of the ATG is the formal requirement, according to the following structure:

REQ_23-BP If <balise group> have <location reference> unequal to <inside expectation
window>, the <ERTMS/ETCS on-board equipment> shall not <consider> the
<balise group>

The ATG tool is able to implement the following algorithm:

o Takes in input the set of formal requirements.
o Recognizes the structure of the requirement in terms of:

- PREFIX: pre-conditions to be set in the scenario.
- MAIN: conditions to be verified to be compliant with the requirement.

380 G. Bonifacio et al.

o Recognizes, starting from pre-configured structures, the PREFIX and MAIN
parts:

PREFIX <entity> have <parameter> unequal to <state>
MAIN the <system> shall not <verb> the <entity>

o Instantiates a test script template as the following:

Test ID
BEGIN
VERIFY “initial conditions”
SET SCENARIO: <PREFIX>
START “operation”
VERIFY: <MAIN>
RESTORE “initial conditions”
END TEST

In this template, the statement “initial conditions” and “operation” are predefined
macro, aiming the first one to identify a well defined state, used as initial
conditions for the test and to restore the same initial conditions after the
perturbations introduced by the test, and, the second one, to initiate the operation
required by the test (e.g., train run).
o Instantiates the correct values of each indeterminate part of the PREFIX and

MAIN (i.e. “parameter”, “state”, “system”, “verb”, “entity”).
o Defines the test script using the test script templates and the correct values:

It appears clear that this level of test scripts is very general and doesn’t require any
information related to the owner system. Anyway, at this level, it is necessary, as
shown in Figure 3, to cover last step toward the owner execution environment, in
order to resolve the gap between the “standard level” shown above and the “owner
level” of the real system. It should be noted that all the information required for this
last step are present in the standard test script.

5 Results

The partial results obtained from CESAR project cover two of the most critical parts
of the ASTS PA. Formalization of the requirements and the static automatic
generation of functional test cases are two fundamental milestones, also if applied to
other domain or industrial cases. In this section we present a comparative analysis
between efforts using the current ASTS test equipments for a typical industrial project

g

 Improvement of Processes and Methods in Testing Activities 381

and efforts using the ASTS demonstrator for CESAR project. Also if based on few
cases, the results obtained are sufficient for a good comparison, due to the linear grow
up of the complexity related to the requirements and tests number. From a
comparative analysis between Table 1 and Table 3, we can presume, against the
whole Pilot Application, a possible time reduction of about 50% for test activities.

More precisely, referring to the real use case shown in this article and a typical
project based on almost 1000 requirements and 2000 tests, the comparison between
the old approach and the new one, in terms of time consumption, is the following:

Old approach
In the old approach there were two main steps:

1) Manual definition of Test Cards starting from the requirements in Natural
Language.

2) Manual translation of Test Cards in to the Test Scripts.

The Estimated time to perform these activities for one person is around 50 months.

New approach
In the new approach there are three main steps:

1) Refinement of requirements defined in Formal Language
2) Automatic generation of Test Cards/Scripts form the requirements in Formal

Language
3) Definition of rules to allow the user to generate a customized set of tests.

The Estimated time to perform these activities for one person is around 5 months. It
should be noted that almost this time is related to the step 3.

As a consequence of the above considerations, the time consumption reduction is
around 90% and it is related only to the phase 1) and 2) of the PA.

5 Conclusions and Way Forward

In future works, the RTP will support, by means a new version of the ATG, a more
exhaustive tests definition, obtained combining all possible system inputs and
allowing the user to significantly reduce the number of tests generated, by defining a
set of reduction rules, depending on the domain, specific configuration and other
factors related to the project and the tester designer experience. The real challenge is
to automatically extract the “system inputs” from the requirements. It is expected that
this last innovation will contribute not only to speed up the test activities but also, and
mainly, to improve the quality in terms of reduction of errors in test definition and
completeness of the functional test set, in order to improve the competitiveness
without jeopardizing the safety.

References

1. Kotonya, G., Sommerville, I.: Requirements Engineering. John Wiley & Sons, Chichester
(1998)

2. IEEE Recommended Practice for Software Requirements Specification. IEEE Std 830-
1998 (1998)

382 G. Bonifacio et al.

3. CENELEC EN 50126: Railway applications - The specification and demonstration of
Reliability, Availability, Maintainability and Safety (RAMS) (2001)

4. CENELEC EN 50128: Railway Applications - Communication, signalling and processing
systems - Software for railway control and protection systems (2001)

5. CENELEC EN 50129: Railway applications - Communication, signalling and processing
systems - Safety related electronic systems for signalling (2003)

6. CENELEC EN 50159-1: Railway applications - Communication, signalling and
processing systems – Part 1: Safety-related communication in closed transmission systems
(2001)

7. CENELEC EN 50159-2: Railway applications - Communication, signalling and
processing systems – Part 2: Safety-related communication in open transmission systems
(2001)

8. CENELEC Home Page, https://www.cenelec.org
9. De Nicola, G., di Tommaso, P., Esposito, R., Flammini, F., Marmo, P., Orazzo, A.: A

Grey-Box Approach to the Functional Testing of Complex Automatic Train Protection
Systems. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS,
vol. 3463, pp. 305–317. Springer, Heidelberg (2005)

10. De Nicola, G., di Tommaso, P., Esposito, R., Flammini, F., Marmo, P., Orazzo, A.:
ERTMS/ETCS: Working Principles and Validation. In: Proc. International Conference on
Ship Propulsion and Railway Traction Systems, SPRTS 2005, Bologna, Italy, pp. 59–68
(2005)

11. UNISIG, ERTMS/ETCS – Class 1, Scope of Test Specifications, Subset-076-7, issue 1.0.2
(2009)

12. UNISIG, ERTMS/ETCS – Class 1, Interoperability Test Guidelines, Subset-110, issue
1.0.0 (2009)

13. UNISIG, ERTMS/ETCS – Class 1, Interoperability Test Environment Definition
(General), Subset-111-1, issue 1.0.0 (2009)

14. UNISIG, ERTMS/ETCS – Class 1, Rules for Interoperability Test Scenarios, Subset-112,
issue 0.1.4 (2008)

15. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: Increasing
Requirements Formalism using Domain Ontologies for Improved Embedded System
Development. In: 14th IEEE Symposium on Design and Diagnostics of Electronic Circuits
and Systems, Germany (2011)

16. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, Heidelberg (2005)
17. Stålhane, T., Omoronyia, I., Reichenbach, F.: Ontology-guided requirements and safety

analysis. In: Proceedings of 6th International Conference on Safety of Industrial
Automated Systems, SIAS 2010 (2010)

18. Omoronyia, I., Sindre, G., Stålhane, T., Biffl, S., Moser, T., Sunindyo, W.: A Domain
Ontology Building Process for Guiding Requirements Elicitation. In: Wieringa, R.,
Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 188–202. Springer, Heidelberg
(2010)

19. De Nicola, G., di Tommaso, P., Esposito, R., Flammini, F., Marmo, P., Orazzo, A.: An
experience in validating train control systems by a grey-box testing approach. In: The
Second International Conference on Complex, Intelligent and Software Intensive System,
Technical University of Catalonia Barcelona, Spain (2008)

On the Adoption of Model Checking in

Safety-Related Software Industry

Alessandro Fantechi1,2 and Stefania Gnesi1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy
stefania.gnesi@isti.cnr.it

2 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Italy
fantechi@dsi.unifi.it

Abstract. In the last fifteen years, model checking has been applied
successfully in the design and verification of many safety related soft-
ware systems. However, it is not yet routinely adopted in the industry
of safety-critical systems. In this paper we introduce the model checking
technique and its relations to safety; then we survey the sensible areas
of research related to the current and potential industrial application
of this technique, exploring the current trends, that in our opinion will
bring to a wider adoption of model checking in the next years.

1 Introduction

Due to the possibility offered by model checking to give a definite result on the
satisfaction of a property by a system, model checking has been considered as a
very interesting technique in the realm of critical systems, where safety could be
put at stake by software errors. Indeed, a naive view of model checking makes
immediately evident its potential:

– safety properties have in general a simple expression in temporal logic as
AG(∼ badstate): “in all states, a system is never in an unsafe state”;

– proving such property of a system by model checking means to exhaustively
explore the system state space: a positive answer means that the whole state
space has been verified (100% coverage of states and transitions);

– model checking is a pushbutton technique: in principle once the property is
expressed, there is no need of effort in formal reasoning about the system, and
this makes the technique extremely attractive in the industrial development
process

– in case a safety property is not verified model checkers provide a counterex-
ample that explains the reason why the property is not verified, therefore
pointing to a safety flaw.

This potential is however impaired by several problems that have so far limited
the actual application of the technique to safe software development. The scal-
ability of verification techniques to the huge number of states of complex real
systems is still the main issue, notwithstanding the advances in techniques that

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 383–396, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

384 A. Fantechi and S. Gnesi

address the state space explosion. The definition of (safety) properties by means
of temporal logic or other formalism is not always a simple exercise. Enforced
guidelines for the development of Safety Critical Systems are not always in line
with recent advances of verification technology and tend to favour traditional
verification techniques, namely testing.

This paper surveys the sensible areas of research on, and industrial applica-
tion of, model checking applied to safety critical systems. We will focus first on
the characteristics of safety, also in connection with enforced safety guidelines,
and we will see how modelling and evaluating system safety can benefit from
this technique. Then, we will consider how software safety is strictly related to
software correctness: in this direction the application of formal verification tech-
niques, and in particular model checking, within the development of software
systems is following two different trends: on one side, a verification activity on
models of a system, within a model based development cycle; on the other side,
verification conducted directly on the code. These two trends will be discussed,
especially from the point of view of actual industrial applications.

2 Background: Model Checking and Temporal Logic

Model checking is an automated technique that, given a finite-state model of
a system and a property stated in some appropriate logical formalism (such as
temporal logic), checks the validity of this property on the model [8].

Several temporal logics have been defined for expressing interesting prop-
erties. A temporal logic is an extension of the classical propositional logic in
which the interpretation structure is made of a succession of states at different
time instants. We consider here the popular CTL (Computation Tree Logic), a
branching time temporal logic, whose interpretation structure (also called Kripke
structure) is the computation tree that encodes all the computations departing
from the initial states. The CTL syntax is defined on top of the propositional
connectives, adding temporal connectives: for the purpose of this paper we con-
sider only these basic temporal operators, with their informal semantics:

– EXφ: there exist a computation in which in the next state φ is true
– AXφ: in all computations, in the next state φ is true
– EFφ: there exists a computation in which in a future state φ is true
– AFφ: in all computations, there exists a future state in which φ is true
– EGφ: there exist a computation in all states of which φ is true
– AGφ: in all states of all computations φ is true

Formal verification by means of model checking consists in verifying that a tran-
sition system M , modelling the behaviour of a system, satisfies a temporal logic
formula φ, expressing a desired property for M .

A first simple algorithm to implement model checking works by labelling each
state of M with the subformulae of φ that old in that state, starting with the
ones having length 0, that is with atomic propositions, then to subformulae of
length 1, where a logic operator is used to connect atomic propositions, then to

On the Adoption of Model Checking in Safety-Related Software Industry 385

subformulae of length 2, and so on. This algorithm requires a navigation of the
state space, and can be designed to show a linear complexity with respect to the
number of states of M .

3 Safety Guidelines

Safety guidelines for the production of software have been issued in several safety
critical systems domains; among them we cite IEC 61508 for embedded systems,
CENELEC EN 50128 for railway signalling, RTCA DO-178B for avionics soft-
ware, MoD DEF-STAN 00-55 for defense equipment. Their issue dating back
at the nineties (when model checking was hardly leaving the research labs to
the software industry), and the fact that only mature technologies are consid-
ered in guidelines for safety-critical systems cannot make a surprise the fact that
model checking is never mentioned. But formal methods are mentioned and even
recommended.

Although with different wordings and shades, guidelines basically agree to
define safety as the capability of a system not to cause, or contribute to, catas-
trophic consequences in case of a failure [3].

Actually, we need to distinguish between two different views of safety: Abso-
lute Safety, when the total absence of safety is sought, or Probabilistic Safety,
in which a residual probability of unsafe behaviour is admitted. The former re-
quires that all causes of threats to safety are removed, and is a conceptual goal
to be pursued when designing a system. Probabilistic safety acknowledges the
existence of possible residual unsafe events, although with less than a required
maximum probability of occurrence: this is a more realistic view, that however
in general requires more sophisticated tools to measure this residual probability
and to guarantee that the expected threshold is respected.

This distinction finds a parallel in the nature of faults. Some faults are random,
and a probability of occurrence can be estimated on the basis of previous failure
experience. Some are systematic, and have their root in some design error; all
design errors should be removed, and it is indeed difficult, or impractical, to
estimate a residual probability of occurrence of a systematic error. Very roughly
speaking, we can say that hardware exhibits random failures, while software
exhibits systematic failures1.

Hence, hardware is mostly subject to quantitative, probabilistic analysis of
safety; on the opposite side, safe software should be just correct. This view is en-
forced by the DEF-STAN 00-55 guidelines, that say: Where safety is dependent
on the safety related software (SRS) fully meeting its requirements, demonstrat-
ing safety is equivalent to demonstrating correctness with respect to the Software
Requirement. Model checking can directly contribute to this demonstration.

1 Although random software faults are commonly reported, they can be in most cases
traced to the random occurrence of events or situations that activate a design fault.
Whether considering these kind of bugs deterministic or random depends ultimately
on the kind of analysis that is considered most effective.

386 A. Fantechi and S. Gnesi

3.1 Safety Integrity Level

Expectations on the safety degree of a system are summarized in the Safety
Integrity Level (SIL), a number ranging typically from 0 to 4, where 4 indicates
the higher criticality, 0 gives no safety concern (in DO178B the term used is
Development Assurance Level, ranging from A – possible catastrophic effect of a
failure of the system – to E – no safety effect of a failure of the system). The SIL
is actually a property of the system, related to the damage a failure of the system
can produce, and is usually apportioned to subsystems and functions at system
level in the preliminary safety assessment; also software functions are associated
a level (Software SIL, Software DAL) in the system safety assessment.

Recommendations given by guidelines are usually graduated along the SIL:
in particular, SIL apportionment allows software developers to concentrate the
verification effort on those functions that are assigned a higher SIL. Accordingly,
model checking could be used to address correctness of higher SIL components,
hence addressing the complexity in a divide and conquer fashion. However, SIL
apportionment to software components is made difficult since it requires indepen-
dence of components (the failure of one should not affect the correct functioning
of the other ones), which is hard to prove, and a typical situation is that all
software modules of an equipment inherit the same (high) SIL.

3.2 Revision of Current Guidelines

Safety guidelines are undergoing periodic reviews; in particular, the revisions of
EN50128 and DO178 deserve a mention for the expectations they have generated
in the respective domains. Indeed, the revised EN50128, due to appear in these
days, marks the first appearance of model checking as one of the formal verifi-
cation techniques for safety critical software. On the other side, while DO-178B
only mentioned Formal Methods among the Additional Considerations, the re-
vision DO-178C, expected to be released in the first half of 2011, will, for the
first time, officially recognize the validity of using Formal Methods within the
avionics software development process: formal methods will be possibly used to
augment or replace verification steps that DO-178B assigns to testing, and will
be allowed to verify requirements correctness, consistency, and augment reviews.
Also, DO-178C will allow formal methods to verify or replace test cases used to
check low level requirements and replace some forms of testing via formal meth-
ods based reviews. There is much space for Model Checking there, although we
are not currently aware of the final text of the norm.

3.3 Tool Qualification

When using a model checker for the certification of a safety-related software, one
of the issues that is often raised is: Is the model checker itself bug-free? That is,
can I trust the model checker tool when it says that a system is safe? DO178B
addresses this issue by Tool Qualification, classifying software tools as:

On the Adoption of Model Checking in Safety-Related Software Industry 387

– Software development tools: Tools whose output is part of the developed
software and thus can introduce errors (this type includes compilers)

– Software verification tools: Tools that cannot introduce errors, but may fail
to detect them: this type may include model checkers.

According to DO178B the qualification criteria for software verification tools
should be achieved by demonstration “that the tool complies with its Tool Oper-
ational Requirements under normal operational conditions”; this demonstration
requires comprehensive testing and the establishment of a controlled develop-
ment process. To our knowledge, no model checker up to now has been qualified.

An alternative to qualification can be found in the proven in use concept from
EN50128: a tool that has a long record of usage within similar projects with no
known failure. Since we are at the beginning of industrial application of model
checking to software code correctness, this is a hardly justifiable alternative.

Another alternative is to adopt diverse redundancy: duplicating the validation
effort by repeating the verification session over two different independent model
checkers, and then compare the result for equality.

4 Safety Properties

If we want to express safety properties by means of temporal logic formulae, it
is natural to resort to the AG operator: Subclasses of AG formulae are often
used; for example, system safety admits that a system may fail, but with a
non-critical failure. Typical is the adoption of safety nets mechanism that avoid
critical failures, and the correct working of a safety net could be expressed by
the formula AG(fault =⇒ AX failsafe): whenever a fault occurs, the next
state of the system is a fail safe state (AGAX form). If model checking this kind
of formula returns a counterexample, it represents a computation path leading
to the unsafe state.

As a further example, taken from the railway signaling sector, is the no-
derailing property: while a train is crossing a point, the point shall not change
its position [15]. This typical system level requirement can be represented in the
AGAX form:

AG((occupied(tci) ∧ setting(pi) = value) =⇒ AX(setting(pi) = value))

whenever the track circuit tci associated to a point pi is occupied, and the point
has the proper setting value, this setting shall remain the same on the next state.

Safety properties are usually confronted with liveness properties, which ask
to a system to be alive, that is, to have at least the possibility to make some
action in the future, and can be exemplified by the EF operator. We will not
discuss further this class of properties, that can be interesting for safety as well
in some cases.

4.1 Bounded Model Checking of Safety Properties

We have already noted that model checking is an exhaustive technique: the
simplest model checking algorithms therefore needs to explore the entire state

388 A. Fantechi and S. Gnesi

space, incurring in the so called exponential state space explosion, since the state
space often has a size exponential in the number of independent variables of the
system. Many techniques have been developed to attack this problem: among
them, two approaches are the most prominent and most widely adopted. The
first one is based on a symbolic encoding of the state space by means of boolean
functions, compactly represented by Binary Decision Diagrams (BDD) [7]. The
second approach considers only a part of the state space that is sufficient to verify
the formula, and within this approach we can distinguish local model checking
and bounded model checking.

If we concentrate on safety properties, that we have seen are often in an
AG form, we note that they however require the exploration of the complete
state space. Hence they can be proved by BDD-based model checking, but they
cannot by the approaches that partially explore the state space. Indeed, such
approaches may succeed in falsifying them: if a violation to an AG property is
found in the partially explored state space, then a negative result can be returned
and a counterexample produced. That is, verification of AG properties is hard,
but falsification is not; or, in other words, model checking used for verification
is more expensive than model checking used for “bug hunting”.

But let us look more in detail to Bounded Model Checking. This technique
aims to prove properties by exploring only a finite depth of the computation
tree of the model. One very efficient way to do this is that all computation paths
from the initial state are analysed to a depth k, by encoding them in a boolean
formula. Suppose we want to check a property of the form AGp on a path of
length k. We can write a boolean formula expressing that at least one state of
the path does not satisfy p:

Init(x0) ∧
k−1∧
i=0

T (xi, xi+1) ∧
k∨

i=0

∼ p(xi) (1)

where xi are state bit vectors (that is, boolean encoding of state enumeration),
Init is a predicate that holds for the initial state, p is the predicate saying that
p holds in that state, T is the transition relation (a boolean function that is true
if a transition exists among the two states). If a satisfying assignments, that is,
a set of boolean values for all the variables that makes the formula (1) true, is
found, then the path does not satisfy AGp and is actually a counterexample.
Finding a satisfying assignment is a NP-complete problem, but efficient SAT
solvers exist that can deal with a huge number of variables in a reasonable time
in most cases: efficient bounded model checkers like the one included in NuSMV
embed such SAT solvers [5].

On the other side, if no satisfying assignment is found, for all the k-long paths
starting from the initial states, we can state that p is true in all states up to
a depth k: but we still don’t know about longer paths, hence we cannot state
that AGp is satisfied. In order to verify the property we would need to look for
longer counterexamples by incrementing the bound k, until the diameter (that
is, the maximum length of a cycle) is reached. However, the diameter might be

On the Adoption of Model Checking in Safety-Related Software Industry 389

very large, and it is not easy to compute it in advance. This task may be eased
in the case of those embedded system that exhibit a cyclic control structure.

4.2 Adoption of Model Checking

These considerations reinforce the observation that falsification is easier than
verification of safety properties, that is, model checking is much more capable
at finding bugs than at certifying the absence of bugs.

This has practical consequences for the adoption of model checking as evidence
in front of an assessor. Another issue to be considered at this regard is that one
must show to the assessor that the proved safety properties are complete, that
is, that no safety violation can slip in because of a “forgotten” property. This
is not an easy task, and should be responsibility of the safety assessment phase,
which should produce in advance a “complete” list of properties to be checked
on the system.

Considering all the observations we have done about safety, the ultimate prob-
lems addressable by model checking can be classified into two main, but overlap-
ping, categories: verification and evaluation of safety of a system, and verification
of software code correctness.

In the first category fall all the cases in which safety properties are verified
over a (quite abstract) model of the system, a model that is typically available
when working at the system design level. Model checking can help to consolidate
the correctness of the model. A particular case is when a modelling of the timing
behaviour at run-time is given (e.g. by means of timed automata) and timing
properties are proven over such model, by proper model checking tools (such as
UPPAAL or KRONOS). Another case is the application of probabilistic model
checking to evaluate quantitative safety properties: in a proper temporal logic
it is possible to express for example the property “after a fault, there is a 99%
probability that the system does not run in an unsafe state”, and a probabilistic
model checker (such as PRISM) can be used to verify it.

The category of verification of software correctness hosts two main approaches,
namely Model Based Development and Code Model Checking (also known as
Software Model Checking).

We will not deal any further with real-time properties, nor with probabilistic
model checking, which would require a more extended discussion. In the following
sections, we discuss instead with some detail those approaches falling in the
second category.

5 Model Checking within Model Based Design

In a large part of the safety-critical systems industry, the Model Based Design
approach has emerged as the main paradigm for the development of software.
In this paradigm, early models are refined to obtain detailed models from which
code can be derived: one option, more and more popular, is that code is au-
tomatically generated, so that the code preserves the behaviour of the detailed

390 A. Fantechi and S. Gnesi

model (modulo correctness of the translator, which in a safety critical regulated
domain is not a trivial issue). Hence, verification is conducted on the detailed
models, either by extensive simulation (which ultimately corresponds to testing
the code) with realistic simulation scenarios, which in some cases are pushed
to interface the model with the hardware (the so called hardware-in-the-loop),
or by formal verification. In the following we briefly discuss three examples of
industrial application of model checking within Model Based Design, taken from
the literature. Indeed, many case studies and pilot projects have been presented
in the literature, but only a few reports, such as those cited in the following, give
interesting data on the overall adoption of model checking in the development
process, also due to confidentiality.

One example from the railway signalling domain is the model based develop-
ment cycle defined at General Electric Transportation Systems (GETS) within
a collaboration with the University of Florence [4,14]. The production process
for Automatic Train Protection (ATP) Systems is based on modeling by means
of Simulink/Stateflow descriptions. Extensive simulation of Stateflow diagrams,
automatic code generation from the diagrams, and back-to-back model/code
testing are employed in the process. When the process was already established,
GETS decided to perform a systematic experimentation with formal verification
by means of Simulink Design Verifier, a test generation and property proving
engine based on Prover Technology [1], that uses a proprietary algorithm based
on bounded model checking with SAT-solvers.

Verification through Design Verifier is performed by translating the property
that one wishes to verify into a formula expressed in the Simulink language. In
the GETS process, the properties are the unit requirements obtained through
the system functional requirements decomposition. The formula expressing the
property has the form of a graphical circuit where the variables observed by the
property are connected by Simulink blocks implementing logical, arithmetic and
time delay operators. The engine verifies that the formula is globally true for
every execution path of the Simulink/Stateflow model. The property is inter-
preted as if the AG operator would be prefixed to it. If the property is violated,
a counterexample showing a failing execution is given in the form of a test case
for the model.

The experience by GETS has produced a domain-dependent classification of
unit requirements: two classes, amounting to more than two thirds of the require-
ments, are shown to be verifiable with this approach, with half the effort of that
required to verify them by testing. For the remaining classes, either translat-
ing the requirement into Simulink formulae is too expensive, or verification fails
to terminate. A traditional, and hence not exhaustive, verification by testing is
more suitable for those classes.

The experience at Airbus [6] has many points in common with the one of
GETS; in this case however the choice of Model Based development environment
has favoured SCADE by Esterel Technologies. Although the adopted V-shaped
software development cycle is highly depending on testing, several studies have
been conducted on the application of model checking techniques to validate

On the Adoption of Model Checking in Safety-Related Software Industry 391

SCADE models. As in the case of Mathworks Stateflow Design Verifier, also
Esterel Technologies SCADE Design Verifier is built on top of the proprietary
very efficient SAT solver by Prover Technology. Also in this case, an observer
based approach to property expression is adopted, this time using the SCADE
synchronous logic blocks and gates.

Formal verification proved effective in the early discover of violations in models
of flight control functions: such violations could not be detected by early tests
performed by simulation runs on the SCADE models, since these early tests do
not consider highly dynamic aspects, e,g, unusual aircraft trajectories, which
are usually taken into account only by later test on a flight simulator; however,
the earlier violations are detected, the cheaper is their correction. A challenge to
formal verification was posed by some models which employed temporal counters,
which produce enormous state spaces: one of these function was solved in 48
computation hours. Counterexamples (that is, detected erroneous executions)
have been reported to be 50 to 160 cycles long, witnessing the intricacy of the
conditions that bring to the error.

Another prominent experience in the avionics domain is the one by Rockwell
Collins [17], where both Simulink/Stateflow and SCADE were used as Model
Based development environments, and several translators have been developed to
apply different model checkers, among which SMV, NuSMV and, again, Prover,
to the models coming from different sources. The first phases in this experience
have confirmed that BDD-based SMV and NuSMV are capable of dealing with
very large state spaces, and that model checking is much more effective than
testing in finding errors: this has been actually proved by a parallel verifica-
tion conducted by two independent verification teams: while the model checking
team found 12 errors, the testing team was not able to find any error, although
spending half of the time spent by the model checking tool.

A more advanced phase has addressed systems that make extensive use of
floating point numbers. Floating point numbers pose a big challenge because
of the complexity of their arithmetics and the implied huge size of the state
space. Abstraction has been attempted by converting floating point to fixed
point, through proper scaling, and converting fixed point into integers, by shift
to preserve the order of magnitude. Resorting to satisfiability modulo theories
(SMT) solvers provided by Prover has been necessary. Due to the resulting loss of
precision, model checking once again has demonstrated itself still very valuable
for debugging, but not at demonstrating correctness.

All the reported experiences witness a convergence towards a few commercial
MBD development environments, and related formal verification engines. Other
common observations were:

– the expression of properties by means of the same (graphical) formalisms
in which the models are designed is a feature particularly appreciated by
designers;

– verification is actually far from being a single push-button experiment. It is
rather an iterative process;

– the tools give however not sufficient support for this iterative process;

392 A. Fantechi and S. Gnesi

– interpretation of counterexamples requires most effort;
– the inherent inability of the tools to supply more than a single counterex-

amples does not help.

Hiding the technicalities of temporal logics to the user is sometimes pushed a
step further. VisualSTATE, by IAR Systems, is another Model Based design
tool that allows the user to describe the behaviour of a system by means of
statecharts. Its verification engine allows only for “built-in” properties, such as
absence of deadlock, or absence of nondeterminism, to be proved.

6 Software Model Checking

The first decade of model checking has seen its major applications in the hard-
ware verification; meanwhile, applications to software have been made at system
level, or at early software design. Later, applications within the model-based
development have instead considered models at a lower level of design, closer
to implementation. But such an approach requires an established process, while
in many cases software is written directly from requirements. Or, software is re-
ceived from third parties, who do not disclose their development process. In such
cases direct verification of code correctness is therefore a must for safety-related
systems: testing is the usual choice, but we know that testing cannot guarantee
exhaustiveness. Direct application of model checking to code is however still a
challenge, because the correspondence between a piece of code and a finite state
model on which temporal logic formulae can be proved is not immediate: in
many cases software has, at least theoretically, an infinite number of states, or
at best, the state space is just huge.

Pioneering work on direct application of model checking to code (also known
as Software Model Checking) has been made at NASA since the late nineties by
adopting in the time two strategies: first, by translating code into the input lan-
guage of an existing model checker – in particular, translating into PROMELA,
the input language for SPIN. Second, by developing ad hoc model checkers that
directly deal with programs as input. In both cases, there is the need to extract
a finite state abstract model from the code, with the aim of cutting the state
space size to a manageable size.

6.1 Abstraction

Abstraction is therefore the key to Software Model Checking. Abstraction elimi-
nates details irrelevant to the property, but is likely to introduce loss of precision,
by producing false positives or false negatives.

Actually, we can distinguish three kinds of abstraction:

– Over-approximation, i.e. more behaviors are added to the abstracted system
than are present in the original;

– Under-approximations, i.e. less behaviors are present in the abstracted sys-
tem than are present in the original;

On the Adoption of Model Checking in Safety-Related Software Industry 393

– Precise abstractions, i.e. the same behaviors are present in the abstracted
and original program.

These kinds of abstraction are useful to classify effective abstraction techniques
such as:

– Limit input values to 0..5 rather than all integer values, limit size of buffers
to 3 instead of unbounded, etc. (under-approximation);

– Property-directed program slicing: only the parts of the program that influ-
ence variables referred to within properties are maintained (precise approx-
imation);

– Abstract Interpretation: Maps sets of states in the concrete program to one
state in the abstract program, Reduces the number of states, but increases
the number of possible transitions from each state, and hence the number of
behaviors [12] (over-approximation);

– Predicate abstraction: abstracts data by considering only certain predicates
on the data. Each predicate is represented by a Boolean variable in the
abstract program [10] (over-approximation).

It can be shown that over-approximation preserves formulae from the universal
fragment of CTL (which do not use the existential quantifier E), that is, if a
formula of this fragment is true on the over-approximated abstract systems, then
it is also true on the concrete system. Dually, under-approximation preserves
formulae from the existential fragment of CTL. Since we are mainly interested
in AG formulae, we consider from now on only over-approximation.

If in checking an AG formula a violation is found in the abstract program,
we cannot say whether it is also an error in the original program. This is not
always the case: a counterexample referring to a violation that is not related to
an error in the original program is called spurious.

6.2 Counterexample-Guided Abstraction Refinement

The presence of a spurious counterexample is an indication that the abstraction
is too coarse. A technique that allows for an automated abstraction refinement
is the Counterexample Guided Abstraction Refinement paradigm (CEGAR)[9],
that can be summarized by the following steps:

1. An over-approximated finite state model is extracted from the code;
2. model checking is run to check if the abstract model satisfies φ;

– If yes, then φ is reported to be satisfied by the examined code and CE-
GAR terminates;

– Otherwise, the model checker reports a counterexample, and the process
go on to the next step;

3. It is determined if the counterexample is spurious. This is done by simulating
the (concrete) program using the abstract counterexample as a guide, to find
out if the counterexample represents an actual program behavior;
– If the counterexample is not spurious, then φ is reported to be not sat-

isfied by the examined code and CEGAR terminates;
– Otherwise, go on with the next step;

394 A. Fantechi and S. Gnesi

4. The abstraction is refined in order to eliminate the detected spurious coun-
terexample. The CEGAR loop goes back to step 2.

This process aims to produce the coarsest abstraction (therefore, with the min-
imum state space) that is able to effectively verify or falsify the formula.

6.3 Software Model Checkers

The first attempts to apply model checking to verification of code have been
conducted mainly, as we have already said, by translation to established model
checker such as SPIN. Later on, a number of model checkers taking code as input
have been developed. Some common characteristics of such tools are:

– the use in most case of an explicit state space representation, which is de-
veloped on-the-fly along the principles of local model checking, where only
the portion of the state space necessary to prove the property is computed
and kept in memory;

– the adoption of a CEGAR abstraction engine;
– they do not require the verifier to express formulae in a temporal logic:

normally assertions in a syntax close to the one of the programming language
have to be defined, and the model checker verifies that such assertions are
verified in every interested computation: again, the assertions are interpreted
as if the AG operator would be prefixed to them.

– hiding the formality to the user is even pushed to provide “built-in” default
properties to be proven, such as absence of division by zero, safe usage of
pointers, safe array bounds, etc. On this ground, such tools are in competi-
tion with tools based on Abstract Interpretation such as Polyspace [13].

Most notorious among software model checkers is JavaPathFinder [18], a project
developed by Nasa to verify Java programs. JavaPathFinder includes the Ban-
dera translator from Java Bytecode to a number of popular model checkers.
Indeed, the tool provides a Java Virtual Machine that does not execute the
bytecode, but checks it over the given assertions. JavaPathFinder has been used
to verify software deployed on space probes; in particular the detection and cor-
rection during the flight of a bug inside software on board of the Deep Space
probe DS-1 has been reported [16].

An interesting application of model checking is for counterexample guided
automatic test generation (ATG). The basic technique is simple: if testing has to
cover some goal, a temporal logic formula expressing the property “the uncovered
goal can never be reached” is checked over the model. If the property is false, a
counterexample is produced, showing an execution that exercises the uncovered
structure. A test case exercising the coverage goal can then be extracted from
the counterexample. A recent implementation of this technique in the railway
signalling domain uses a software model checker, CBMC, for the generation of
test cases for the code under test [2]: the goal in this case is to achieve the 100%
decision coverage required for the code of the ERTMS train control system.
Ansaldo STS reports that this approach allows for the generation of the double
of tests w.r.t. manual generation, with an effort a magnitude order less.

On the Adoption of Model Checking in Safety-Related Software Industry 395

Table 1. Main free model checkers

Model Checker Model specification Property specifica-
tion

SMV (CMU) Network of automata communicating
by shared variables

CTL

http://www.cs.cmu.edu/ modelcheck/smv.html

SMV (Cadence) Network of automata communicating
by shared variables

CTL

http://www-cad.eecs.berkeley.edu/ kenmcmil/smv

NuSMV Network of automata communicating
by shared variables

CTL (LTL)

http://nusmv.fbk.eu

SPIN PROMELA LTL

http://spinroot.com/spin/whatispin.html

Software Model checkers

BLAST C programs C annotations

http://mtc.epfl.ch/software-tools/blast/index-epfl.php

CPAChecker C programs C annotations

http://cpachecker.sosy-lab.org/

CBMC C,C++ programs C assertions

http://www.cprover.org/cbmc/

JavaPathFinder Java Bytecode JPF annotations, ver-
ification API

http://javapathfinder.sourceforge.net/

SLAM C programs C assertions

http://research.microsoft.com/en-us/projects/slam/

Table 1 lists the most known free (software) model checkers; in particular we
notice SLAM, developed by Microsoft, used in-house to check that Windows
device drivers obey API conventions.

7 Conclusions

Model Checking advantages are more and more recognized in several safety-
critical systems domains. Model checking is slowly slipping in safety critical
systems development guidelines, and anyway, just mentioning formal methods
has apparently favoured more penetration of this technique in regulated domains,
w.r.t. unregulated one, such as automotive.

However, model checking shows itself very valuable for debugging, but not
at demonstrating safety (especially in front of an assessor). Still problems of
complexity, scalability, tool support make this technique at best appear as a
side validation possibility to achieve more confidence on what is developed.

Although much advancement is still needed, the next decade will most proba-
bly see a fast growth in Model Checking application to industrial safety critical

396 A. Fantechi and S. Gnesi

systems, including adoption of timed models and of probabilistic model checking,
which we have left out of our discussion.

References

1. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,
reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2006)

2. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Using
Bounded Model Checking for Coverage Analysis of Safety-Critical Software in an
Industrial Setting. J. Autom. Reason. 45(4) (2010)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Trans. Dependable Sec. Com-
put. 1(1), 11–33 (2004)

4. Bacherini,S.,Fantechi,A.,Tempestini,M.,Zingoni,N.:Astoryabout formalmethods
adoption by a railway signaling manufacturer. In: Misra, J., Nipkow, T., Karakostas,
G. (eds.) FM 2006. LNCS, vol. 4085, pp. 179–189. Springer, Heidelberg (2006)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

6. Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.: Model checking flight control
systems: The Airbus experience. In: ICSE Companion 2009, pp. 18–27 (2009)

7. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate Abstraction of
ANSI-C Programs Using SAT. Form. Methods Syst. Des. 25, 105–127 (2004)

11. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. 19, 7–34 (2001)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th POPL, pp. 238–252. ACM, Los Angeles (1977)

13. Deutsch, A.: Static verification of dynamic properties - Polyspace white paper
(2004)

14. Ferrari, A., Grasso, D., Magnani, G., Fantechi, A., Tempestini, M.: The metrô
rio ATP case study. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS,
vol. 6371, pp. 1–16. Springer, Heidelberg (2010)

15. Ferrari, A., Grasso, D., Magnani, G., Fantechi, A.: Model Checking Interlocking
Control Tables. In: FORMS/FORMAT 2010, Braunschweig, Germany (December
2-3, 2010)

16. Havelund, K., Lowry, M., Park, S.J., Pecheur, C., Penix, J., Visser, W., White,
J.L.: Formal Analysis of the Remote Agent Before and After Flight. In: 5th NASA
Langley Formal Methods Workshop, Williamsburg, Virginia (June 13-15, 2000)

17. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

18. Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model Checking Pro-
grams. Automated Software Engineering 10(2), 203–232 (2003)

Equivalence Checking between Function Block

Diagrams and C Programs Using HW-CBMC

Dong-Ah Lee1, Junbeom Yoo1, and Jang-Soo Lee2

1 Division of Computer Science and Engineering, Konkuk University
1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea

{ldalove,jbyoo}@konkuk.ac.kr
http://dslab.konkuk.ac.kr

2 Korea Atomic Energy Research Institute, 150 Deokjin, Yuseong
Daejeon, 305-335, Republic of Korea

jslee@kaeri.re.kr

http://www.kaeri.re.kr

Abstract. Controllers in safety critical systems such as nuclear power
plants often use Function Block Diagrams (FBDs) to design embedded
software. The design program are translated into programming languages
such as C to compile it into machine code for particular target hardware.
It is required to verify equivalence between the design and the implemen-
tation, because the implemented program should have same behavior
with the design. This paper introduces a technique about verifying equiv-
alence between a design written in FBDs and its implementation written
in C language using HW-CBMC. To demonstrate the effectiveness of
our proposal, as a case study, we used one of 18 shutdown logics in a
prototype of Advanced Power Reactor’s (APR-1400) Reactor Protection
System (RPS) in Korea. Our approach is effective to check equivalence
between FBDs and ANSI-C programs if the automatically generated Ver-
ilog program is translated into appropreate one of the HW-CBMC.

Keywords: Equivanelce Checking, Behavioral Consistency, FBDs, Ver-
ilog, ANSI-C, HW-CBMC.

1 Introduction

Controllers in safety critical systems such as nuclear power plants use Func-
tion Block Diagrams (FBDs) to design embedded software. The design is imple-
mented using programming languages such as C to compile it into a particular
target hardware. The implementation must have the same behavior with the
design’s one and it should be verified explicitly. For example, Korea Nuclear
Instrumentation & Control System R&D Center (KNICS) [1] has developed a
loader software, POSAFE-Q Software Engineering Tool (pSET) [2], to program
POSAFE-Q Programmable Logic Controller (PLC). It provides Integrated De-
velopment Environment (IDE) including editor, compiler, downloader, simulator
and monitor/debugger. It uses FBD, Ladder Diagram (LD) and Sequential Func-
tion Chart (SFC) to design a program of PLC software. The pSET translates

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 397–408, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://dslab.konkuk.ac.kr
http://www.kaeri.re.kr

398 D.-A. Lee, J. Yoo, and J.-S. Lee

FBDs program into ANSI-C program to compile it into machine code for PLC.
The ANSI-C program must have same behavior with the FBDs program.

Language difference between the design and the implementation (i.e., FBDs
and ANSI-C) makes preserving behavioral consistency difficult. There are sev-
eral studies and products to guarentee the behavioral consistency. Mathemat-
ical proof or verification of compiler, including code generator and translator,
can help guarentee the behavioral consistency between two programs written in
different languages. Those techniuqes have weaknesses, which are high expendi-
ture [3] and repetitive fulfillment whenever the translator is modified. On the
other hand, RETRANS [4] which is a verification tool of automatically generated
source code, dosen’t consider transformation rules of a specific translator. It ana-
lyzes only the generated source code to reconstruct its inherent functionality and
compares it with its underlying specification to demonstrate functional equiv-
alence between both. This approach requires additional analysis to reconstruct
useful information from the generated source code. Our approach is verification
of equivalence between design program and its implementation program without
additional analysis or transformation of the implementation program.

This paper introduces a technique verifying equivalence between design pro-
gram written in FBDs and its implementation program written in ANSI-C using
HW-CBMC [5]. The HW-CBMC is formal verification tool, verifying equivalence
between hardware and software description. It requires two inputs for checking
equivalence, Verilog for hardware and ANSI-C for software. We used it for veri-
fying equivalence between design program and its implementation program. We
first translated the design program written in FBDs into semantically equivalent
Verilog program [6][7] to use as an input program of HW-CBMC, and verified
equivalence between the Verilog program and the ANSI-C implementation of the
FBD designs. We performed a case study to demonstrate its feasibility with one
of 18 shutdown logics in a prototype of Advanced Power Reactor’s (APR-1400)
Reactor Protection System (RPS) in Korea. We translated FBDs program of
the shutdown logic program into Verilog program. The ANSI-C implementation
of the shutdown logic was implemented manually, because it hadn’t prepared
yet. We found specific features of the HW-CBMC that input program should
follow specific rules related with naming variables or function calls of Verilog
program. We, therefore, should modefy the Verilog program to be appropriate
of the rules, and verified equivalence between the design and implementation of
the shutdown logic. We founded that our approach is feasible to verify equiva-
lence between design program written in FBD and its implementation program
written in ANSI-C using ANSI-C.

The remainder of the paper is organized as follows: Section 2 explains equiv-
alence checking, and translation rules from FBDs into Verilog briefly. Section 3
describes our technique to verify equivalence between design program and its im-
plementation program. Section 4 explains a case study which verify equivalence
between one of 18 shutdown logics in RPS of APR-1400 and its implementation.
Section 4 also explains modification for the Verilog program and results of the
checking. We conclude the paper at Section 5.

Equivalence Checking of FBDs and C Programs Using HW-CBMC 399

2 Related Work

2.1 Equivalence Checking

Equivalence checking is a technique to check behavioral consistency between two
programs. The VIS (Verification Interacting with Synthesis) [9] is a widely used
tool for formal verification, synthesis, and simulation of finite state systems. It
uses Verilog as a front-end, and also provides combinational and sequential equiv-
alence checking of two Verilog programs. The combinational equivalence of the
VIS provides a sanity check when re-synthesizing portions of a network, and its
sequential verification is done by building the product finite state machine. The
checking whether a state where the values of two corresponding outputs differ,
can be reached from the set of initial states of the product machine. On the other
hand, there is a study for equivalence checking between two different discriptions.
[8] presents a formal definition of equivalence between Transaction Level Mod-
eling (TLM) and Register Transfer Level (RTL) is presented. The TML is the
reference modeling style for hardware/software design and verification of digital
systems, and the RTL is a level of abstraction used in describing the operation
of a synchronous digital circuit. The definition is based on events, and it shows
how such a definition can be used for proving the equivalence between both.

2.2 Function Block Diagram

An FBD (Function Block Diagram) consists of an arbitrary number of function
blocks, ’wired’ together in a manner similar to a circuit diagram. The interna-
tional standard IEC 61131-3 [11] defined 10 categories and all function blocks
as depicted in Fig.1. For example, the function block ADD performs arithmetic

Fig. 1. A part of function blocks and categories defined in IEC 61131-3

400 D.-A. Lee, J. Yoo, and J.-S. Lee

addition of n+1 IN values and stores the result in OUT variable. Others are in-
terpreted in a similar way. The FBD described in Fig. 4 which is our case study
consists of a set of interconnection.

2.3 Transformation from FBDs into Verilog

Our approach of equivalence checking using HW-CBMC first translates FBDs
into Verilog. Translation rules were proposed in [6]. The rule consists of three
parts, corresponding to unit, component and system FBDs respectively. It defines
the IEC 61131-3 [11] FBDs as state transition systems.

First part of the rules describes how a unit of FBD is translated into a func-
tion in Verilog language. It first determines Verilog function type, and each input
and its type are declared. Behavioral description of the function is then followed,
such as arithmetic, logic or selection operations. Second part explains translation
rules for component FBDs. The component FBD is a logical block of indepen-
dent function blocks which a number of function blocks are interconnected with
to generate meaningful outputs. The rules of the second part declare a name
of component FBD, ports and register type variables. If an output variable is
also used as input, it is declared as reg type as its value is to be used in the
next cycle. Every Verilog function is called if there is a function according to
its execution order to generate outputs of the component FBD. Every function
block is separately translated as a Verilog function and included in the defini-
tion of module for the component FBD. The last part describes how a system
FBD is translated into a Verilog program. A system FBD contains a number of
component FBDs and their sequential interconnections. While translation rules
for system FBDs look similar to the rules of component FBDs, it calls Verilog
Modules instead of Verilog function. Verilog modules are instantiated and called
according to their execution order with outputs communicated.

2.4 HW-CBMC

The HW-CBMC [5] is a testing and debugging tool for verifying behavioral
consistency between two implementations of the same design: one written in
ANSI-C, which is written for simulation, and one written in register transfer
level HDL, which is the actual product. Motivation of the HW-CBMC is to
reduce additional time for debugging and testig of the HDL implementation in
order to produce the chip as soon as possible. The HW-CBMC reduces cost by
providing automated way of establishing the consistency of HDL implementation
using the ANSI-C implementation as a reference, because debugging and testing
cost of the ANSI-C implementation is usually lower.

The HW-CBMC verifies the consistency of the HDL implementation written
in Verilog using the ANSI-C implementations as a reference. The data in the
Verilog modules is available to the C program by means of global variables, and
the Verilog model makes a transition once the function next timeframe() is called
in C program. The HW-CBMC provides counterexample when a condition of the

Equivalence Checking of FBDs and C Programs Using HW-CBMC 401

function assert(condition) in C program is not satisfied with two trace: One for
the C program and a separate trace for the Verilog module. The values of the
registers in the Verilog module are also shown in the C trace as part of the initial
state.

3 Equivalence Checking

3.1 Equivalence Checking Process

This section introduces how the equivalence checking works in a software devel-
opmenet process for nuclear power plant’s reactor protection system. A part of
exisiting software development process for KNICS’s ARP-1400 RPS is described
in a upper part of Fig. 2 devided by dotted line. Each development phase has
verification or testing techniques to guarantee its correctness. The design phase
uses model checking techniques to verify it against important design properties.
The design written in FBDs is translated into an input language of specific model
checker such as SMV [10] and the model checker verifies that the design program
satisfies its properties. After the model checking, the code generator generates
an implementation written in ANSI-C from the design program. The ANSI-C
program is compiled into executable machine code for PLCs, and the testing of
the executable machine code is performed after being loaded on PLCs. The code

Fig. 2. A part of proposed software development process using equivalence checking
with POSAFE-Q Software Engineering Tool

402 D.-A. Lee, J. Yoo, and J.-S. Lee

generator must guarantee the correctness of its behavior, since it has to translate
all of behavior and feature of FBDs program to ANSI-C program precisely. It,
therefore, is necessary to use a certified code generator or prove the correctness
of a code generator mathematically. The mathematical proof is difficult to apply
and requires high expenditure. It also requires additional proofs whenever the
code generator is upgraded.

Our approach of verifying consistency between design and implementation
programs includes the equivalence checking using the HW-CBMC, described in
a lower part of Fig. 2, without considering the code generator. The HW-CBMC
for equivalence checking requires two input programs, Verilog and ANSI-C pro-
grams. The language of implementation program, the ANSI-C program, is the
same with one of input programs of the HW-CBMC, while the design program
is different. We, therefore, should translate the design program written in FBDs
into semantically equivalent Verilog program. If the equivalence checking is sat-
isfied, then the ANSI-C program will be compiled into executable machine code
for PLCs. If the equivalence checking, on the other hand, is not satisfied, then
we will have to look into the code generator in depth.

3.2 Verilog Program for HW-CBMC

We found that the HW-CBMC has specific rules for input programs. Verilog
program as an input language of the HW-CBMC should keep the rules as fol-
lowing:

– A variable’s name should be different from the module’s name which defines
and uses it.

– Function calls are not allowed.

Our research team has developed automatic FBDtoVerilog translators [6][12],
and the current version uses the rule that a module name should be the same
as that of its output variable name, in accordance with the commonly accepted
usage of FBDs. The HW-CBMC maps variables which are defined as global
variables in ANSI-C program onto the data in Verilog modules. If there is a
variable which has same name with its module, the HW-CBMC maps variables
incorrectly. The variables of module, therefore, must have a different name with
the name of its module.

The FBDtoVerilog translates each function block in FBDs into a Verilog
function, and call it according to the execution order in the Verilog module
definition. However, we found that the HW-CBMC does not allow to use func-
tion calls. In order to allow Verilog program as one input of HW-CBMC, we
must translate a function into a module and the effect of the modification
should be analyzed further. Fig. 3 shows an example of the translation. We
first translated a function GE INT into a module GE INT(), moved it out from
main module(). Next, we declared input arguements and an additional output
arguement. We replaced the function call, GE INT(IN, 7’b0011110), with the
module call, GE INT M GE INT(IN, 7’b0011110, M GE INT OUT). The mod-
ule calls must follow order of function blocks of FBDs in order to make behavior

Equivalence Checking of FBDs and C Programs Using HW-CBMC 403

Function call Module call

module main_module(clk, IN, main_module);
input clk;
input [0:6] IN;
output main_module;
…
wire Ge_int;
…
assign Ge_int = GE_INT(IN, 7'b0011110);
…
function GE_INT;

input [0:6] in1;
input [0:6] in2;
begin

GE_INT = (in1 >= in2);
end

endfunction
….

endmodule
…

module main_module(clk, IN, main_module_OUT);
input clk;
input [0:6] IN;
output main_module_OUT;
…
wire M_GE_INT_OUT;
…
GE_INT M_GE_INT(IN, 7'b0011110, M_GE_INT_OUT);
….

endmodule

module GE_INT(in1, in2, OUT);
input [0:6] in1;
input [0:6] in2;
output OUT;

assign OUT = (in1 >= in2);
endmodule
…

Fig. 3. An example of translation from a function to a module

of the Verilog program same with the FBDs. Fig. 3 also shows remaning output
variable of main module.

4 Case Study

We applied the proposed equivalence checking approach to one of 18 shutdown
logic programs, named th X Pretrip, in ARP-1400 RPS developed in Korea. We
first describe the FBD of th X Pretrip and Verilog program which was automat-
ically generated by the FBDtoVerilog 1.0 in Subsection 4.1. Then we introduce
the desirable modifications required to use the HW-CBMC. Subsection 4.2 shows
the details of C programs generated by the C code generator. Subsection 4.3
shows the equivalence checking of the Verilog and C program in details.

4.1 th X Pretrip Program

The th X Pretrip logic consists of 8 Function Blocks as depicted in Fig. 4.
It creates a warning signal, th X Pretrip (name of logic and output could be
same), when the pretrip condition (e.g., reactor shutdown) remains true for
k Trip Delay time units as implemented in the TOF function block. The num-
ber in parenthesis above each function block denotes its execution order. The
output th Prev X Pretrip from MOVE stores current value of th X Pretrip for
using in the next execution cycle. A large number of FBD is assembled hierar-
chically and executed according to predefined sequential execution order.

As described in Fig. 5, the Verilog program for the th X Pretrip logic has two
inputs, clk and f x, and one output, th X Pretrip. 7 functions and one module
match with function blocks of the th X Pretrip FBDs. The output, th X Pretrip,
will become 0 when the trip condition remains true for 5 time units which TOF
module counts. We modified automatically generated Verilog program. We first

404 D.-A. Lee, J. Yoo, and J.-S. Lee

SUB_INT

GE_INT

LE_INT

NOT

SEL

TOF SEL

MOVE

k_X_Pretrip_Setpoint

k_X_Pretrip_Hys

f_X

k_X_Pretrip_Setpoint

f_X

th_Prev_X_Pretrip

k_Trip_Delay
0

1

th_X_Pretrip

th_Prev_X_Pretrip

2.13 (14) 2.14 (15)

2.15 (16)

2.16 (17) 2.17 (18)

2.18 (19)

2.11 (12)
2.12 (13)

G
IN0

IN1

G

IN0

IN1

IN2

IN1

Q

ET

Fig. 4. Function block diagrams of th X Pretrip

Automatically generated Verilog program Modified Verilog program

module th_X_Pretrip(clk, f_X, th_X_Pretrip);
input clk;
input [0:6] f_X;
output th_X_Pretrip;
…
wire Ge_int;
…
reg th_prev_X_Pretrip;
initial th_prev_X_Pretrip = 1;
assign Ge_int = GE_INT(f_X, 7'b0011110);
…
TOF M1(clk, Sel1, 7'b0000101, tof_out);
assign th_X_Pretrip = MOVE(Sel2);
…
always @(posedge clk) begin

th_prev_X_Pretrip = th_X_Pretrip;
end

function GE_INT;
input [0:6] in1;
input [0:6] in2;
begin

GE_INT = (in1 >= in2);
end

endfunction

function NOT;
…

endmodule

module TOF(clk, IN, DELAY, OUT);
…
endmodule

module th_X_Pretrip(clk, f_X, th_X_Pretrip_OUT);
input clk;
input [0:6] f_X;
output th_X_Pretrip_OUT;
…
wire M_GE_INT_OUT;
…
reg th_prev_X_Pretrip;
initial th_prev_X_Pretrip = 1;
…
GE_INT M_GE_INT (f_X, 7'b0011110, M_GE_INT_OUT);
…
TOF M_TOF(clk, M11OUT, 7'b0000101, M_TOF_OUT);
…
assign th_X_Pretrip_OUT = M_MOVE_OUT;

always @(posedge clk) begin
th_prev_X_Pretrip = th_X_Pretrip;

end
endmodule

module GE_INT(in1, in2, OUT);
input [0:6] in1;
input [0:6] in2;
output OUT;

assign OUT = (in1 >= in2);
endmodule

module NOT(in1, OUT);
…

module TOF(clk, IN, DELAY, OUT);
…

Fig. 5. The automatically generated Verilog program from th X Pretrip FBDs and its
modified one

Equivalence Checking of FBDs and C Programs Using HW-CBMC 405

translated functions into modules. Next we changed function call to module call.
The order of module call must follow the execution order of FBDs. Fig. 5 shows
difference between the two Verilog programs.

4.2 Implementation of ANSI-C Program

We implemented ANSI-C program which has same behavior with th X Pretrip
logic (Fig. 6). The program includes input value generation, synchronization
with the Verilog program and equivalence checking property. The implemented
ANSI-C program works according to the following steps:

Step 1 generate input value nondeterministically, f X = nondet int(), and syn-
chronize inputs with Verilog program using set input() statement.

Step 2 update conditions, Cond {a,b,c} 1 (corresponding FB from 2.11 to 2.15),
and a output signal, th X Pretrip OUT.

Step 3 count time unit (corresponding FB 2.16), timer, where the input variable
is over the limitation named k Pretrip Setpoint.

Step 4 control state of the program, state, by checking the conditions.
Step 5 check equivalence of output of ANSI-C and Verilog programs using as-

sert(th X Pretrip.th X Pretrip OUT == th X Pretrip OUT) statement and
make a transition of the Verilog program using next timeframe() function.

One loop of for statement means one transition of the Verilog program, because
the for loop statement has one next timeframe() function. We, therefore, could
check equivalence between output of Verilog and variable of C program every
transitions. The assert(th X Pretrip.th X Pretrip OUT == th X Pretrip OUT)
statement means that the checking will stop if the output of Verilog program is
not same with the variable of ANSI-C program. If the condition is not satified,
then the HW-CBMC will make two counterexamples of ANSI-C and Verilog
program.

4.3 Euqivalence Checking

In order to verify equivalence between the Verilog and ANSI-C programs us-
ing HW-CBMC, we executed following statement in Visual Studio command
prompt:

>hw-cbcm.exe th_X_Pretrip.v th_X_Pretrip.c --module Pretrip
--bound 20

The th X Pretrip.v is the modified Verilog program of the automatically gen-
erated Verilog from FBDs. The th X Pretrip.c is the ANSI-C program which
is implemented. The main module of the Verilog program is declared using the
option module. The option bound specifies the number of times the transition re-
lation of the module Pretrip. HW-CBMC result shows ”VERIFICATION SUC-
CESSFUL” messssage which means that the Verilog and ANSI-C progmrams

406 D.-A. Lee, J. Yoo, and J.-S. Lee

...
struct module_Pretrip {
 unsigned int f_X;
 unsigned int th_X_Pretrip_OUT;
};//definition of the variables that holds the value of the Verilog module
extern struct module_Pretrip th_X_Pretrip;
int main()
{
 unsigned int f_X=0;
 … //variable declaration

 for(cycle=0; cycle<bound; cycle++)
 {
 //synchronizing Inputs
 f_X = nondet_int(); th_X_Pretrip.f_X = f_X; set_inputs();

 Cond_a_1 = (f_X >= k_Pretrip_Setpoint);
 Cond_b_1 = ((f_X >= k_Pretrip_Setpoint) && (timer == 5));
 Cond_c_1 = (f_X <= k_Pretrip_Setpoint - k_X_Pretrip_Hys);
 th_X_Pretrip_OUT = (state==0 && Cond_a_1)?th_Prev_X_Pretrip:
 (state==0 && !Cond_a_1)?th_Prev_X_Pretrip:
 (state==1 && !Cond_a_1 && !Cond_b_1)?th_Prev_X_Pretrip:
 (state==1 && Cond_a_1 && !Cond_b_1)?th_Prev_X_Pretrip:
 (state==1 && Cond_b_1)?0:
 (state==2 && Cond_c_1)?1:th_Prev_X_Pretrip;
 if(f_X >= k_Pretrip_Setpoint) //count the time unit
 if(timer == 5) timer == 5;
 else timer++;
 else
 timer=0;
 //assertion statement
 assert(th_X_Pretrip.th_X_Pretrip_OUT == th_X_Pretrip_OUT);

 th_Prev_X_Pretrip = th_X_Pretrip_OUT;
 switch(state) //control a state by conditions
 {
 case 0:
 if(Cond_a_1) state = 1;
 else state = 0;
 break;
 case 1:
 …
 }
 next_timeframe();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Fig. 6. Implemented ANSI-C program

Equivalence Checking of FBDs and C Programs Using HW-CBMC 407

Fig. 7. A screen dump of equivalence checking result between th X Pretrip.v and
th X Pretrip.c program

produced same output against the same input generated randomly. Fig. 7 shows
a screen dump of the equivalence checking result.

As a result of this case study, we concluded that the HW-CBMC is effective
for our proposal. Ahthough there is gap between automatically generated Verilog
program and an input program of the HW-CBMC, we could check equivalence
between both if the Verilog program modified successfully.

5 Conclusion

In this paper, we have proposed equivalence checking approach between design
written in FBDs and its implementation program written in ANSI-C using HW-
CBMC. The FBDs should be translated into Verilog language in order to make
the FBDs into an input of the HW-CBMC. The automatically translated Verilog
program, however, was not exactly appropriate to be the input. We modefied
some features of the Verilog program, and made it into the input of HW-CBMC.
As a result of the case study, the equivalence checking between FBDs and ANSI-
C programs using HW-CBMC is effective.

We are planning to verify equivalence between FBDs and its automatically
generated ANSI-C program by pSET. We are also planning to modify translation
rules from FBDs to Verilog in order to make automatically generated Verilog
program appropriate to the HW-CBMC and develop a translator for automation
of this process.

Acknowledgments. This research was partially supported by the MKE(The
Ministry of Knowledge Economy), Korea, under the ITRC(Information Tech-
nology Research Center) support program supervised by the NIPA(National IT
Industry Promotion Agency)” (NIPA-2011-(C1090-1131-0008)) and the KETEP

408 D.-A. Lee, J. Yoo, and J.-S. Lee

(Korea Institute of Energy Technology Evaluation And Planning)”(KETEP-
2010-T1001-01038), the Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education, Sci-
ence and Technology(2010-0002566) and the IT R&D Program of MKE/KEIT
[10035708, ”The Development of CPS(Cyber-Physical Systems) Core Technolo-
gies for High Confidential Autonomic Control Software”].

References

1. Korea Nuclear Instrumentation & Control System R&D Conter,
http://www.knics.re.kr/

2. Cho, S., Koo, K., You, B., Kim, T.-W., Shim, T., Lee, J.S.: Development of the
loader software for PLC programming. In: Proceedings of Conference of the Insti-
tute of Electronics Engineerers of Korea, vol. 30(1), pp. 595–960 (2007)

3. Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research.
Journal of the ACM 50, 63–69 (2003)

4. RETRANS, Institue for Safety Technology (ISTec),
http://www.istec.grs.de/en/produkte/leittechnik/retrans.html?pe_id=54

5. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a ref-
erence. In: Proceedings of the 2003 Asia and South Pacific Design Automation
Conference, pp. 308–311 (2003)

6. Yoo, J., Cha, S., Jee, E.: Verification of PLC programs written in FBD with VIS.
Nuclear Engineering and Technology 41(1), 79–90 (2009)

7. IEEE: IEEE standard hardware dexcription language based on the Verilog hard-
ware description language. (IEEE Std. 1364-2001) (2001)

8. Bombieri, N., Fummi, F., Pravadelli, G., Marques-Silva, J.: Towards Equivalence
Checking Between TLM and RTL Models. In: 5th IEEE/ACM International Con-
ference on Formal Methods and Models for Codesign, MEMOCODE 2007, pp.
113–122 (2007)

9. Sangiovanni-Vincentelli, A., Aziz, A., Cheng, S.-T., Edwards, S., Khatri, S., Kuki-
moto, Y., Qadeer, S., Shiple, T.R., Swamy, G., Hachtel, G.D., Somenzi, F., Pardo,
A., Ranjan, R.K., Brayton, R.K.: VIS: A System for Verification and Synthesis.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432.
Springer, Heidelberg (1996)

10. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

11. IEC (International standard for programmable controllers): Programming lan-
guages 61131- Part 3 (1993)

12. Jee, E., Jeon, S., Cha, S., Koh, K., Yoo, J., Park, G., Seong, P.: FBDVerifier: Inter-
active and Visual Analysis of Counterexample in Formal Verification of Function
Block Diagram. Journal of Research and Practice in Information Technology 42(3),
255–272 (2010)

http://www.knics.re.kr/
http://www.istec.grs.de/en/produkte/leittechnik/retrans.html?pe_id=54

A Framework for Simulation and Symbolic State

Space Analysis of Non-Markovian Models

Laura Carnevali, Lorenzo Ridi, and Enrico Vicario

Dipartimento di Sistemi e Informatica - Università di Firenze
{laura.carnevali,lorenzo.ridi,enrico.vicario}@unifi.it

Abstract. Formal methods supporting development of safety-critical
systems require tools that can be integrated within composed environ-
ments. Sirio is a framework for simulation and analysis of various timed
extensions of Petri Nets, supporting correctness verification and quanti-
tative evaluation of timed concurrent systems. As a characterizing trait,
Sirio is expressly designed to support reuse and to facilitate extensions
such as the definition of new reward measures, new variants of the anal-
ysis, and new models with a different semantics. We describe here the
functional responsibilities and the SW architecture of the framework.

Keywords: Correctness verification, quantitative evaluation, preemp-
tive Time Petri Net, non-Markovian Stochastic Petri Net, stochastic
Time Petri Net, symbolic state space analysis, steady state evaluation,
transient evaluation.

1 Introduction

In safety-critical systems, failures can lead to environmental harm, human prop-
erty damage, injury or even loss of human life. This characterizes a wide and in-
creasing spectrum of application areas including industrial automation, robotics,
railway and flight control, military and space missions. Formal methods can
largely help the development of safety-critical systems by supporting formal
specification of requirements, early verification and evaluation of design choices,
automated code derivation, test planning and execution. The adoption of formal
methods is explicitly recommended by certification standards [29], [13], [25] as a
means to achieve high Safety Integrity Levels (SILs) in the development of SW
with concurrency control, synchronization mechanisms, and distributed process-
ing. The integration of formal methods in the SW life cycle has been actually
practiced in several Model Driven Development (MDD) frameworks [11], [31],
[1], [21]. To this end, a number of tools have been developed that support cor-
rectness verification and/or quantitative evaluation of concurrent timed models.
While the former is targeted to the identification of the set of feasible behaviors,
the latter is aimed at providing a measure of their probability.

Various tools for correctness verification develop upon the formalisms of Timed
Automata (TA) [28], [5] and Time Petri Nets (TPNs) [26], [2], [16], [18], [33],
[10], [22], [9]. In the area of TA, Uppaal [5], [4] is the most well-established tool

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 409–422, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

410 L. Carnevali, L. Ridi, and E. Vicario

for verification of real-time systems modeled as networks of TA enriched with
features that extend their expressivity. In particular, the tool supports schedu-
lability analysis of preemptive task-sets with asynchronous and dense release
times, under the assumption that the model does not include at the same time
both nondeterministic Execution Times and dependencies among release and
completion times of tasks [17]. In the area of TPNs, the Oris Tool [8] imple-
ments symbolic state space analysis of preemptive Time Petri Nets (pTPNs)
[18], [11], an extension of TPNs that encompasses a mechanism of suspension
and resume in the advancement of clocks, enabling schedulability analysis of real-
time systems running under priority preemptive scheduling. Tina [3] and Romeo
[19] support the construction of various abstract state space representations and
the model-checking of reachability properties. In particular, Romeo also sup-
ports approximate and exact state space enumeration of Scheduling-TPNs, an
extension of TPNs with an expressivity comparable with pTPNs.

Several tools for quantitative evaluation support the derivation of performance
and dependability rewards. SHARPE [32] is a SW tool for specification and
analysis of performance and reliability models including including Fault Trees
(FTs) and Fault Trees with Repeated Events (FTREs), reliability graphs, series-
parallel acyclic directed graphs, product-form queuing networks, Markov and
semi-Markov chains, Generalized Stochastic Petri Nets (GSPNs), and Markov
Regenerative Processes (MRPs) [24]. In particular, it facilitates the hierarchical
combination of different model types. DEEM [7] is a dependability modeling
and evaluation tool specifically tailored for Multiple Phased Systems, which im-
plements the solution procedure of Deterministic Stochastic Petri Nets (DSNPs)
underlying a MRP. TimeNet [35] mainly supports modeling and evaluation of ex-
tended Deterministic Stochastic Petri Nets (eDSNPs), which include transitions
with either immediate, deterministic, exponentially distributed, or expolynomi-
ally distributed firing time [30], [14]. In particular, the analysis is performed
under the assumption that at most one generally distributed (GEN) transition
is enabled in any reachable tangible marking (enabling restriction). The Web-
SPN Tool [6] implements analysis of models with multiple concurrently enabled
timers through a discrete abstraction of time, encompassing any kind of GEN
distribution and different memory policies. The Oris Tool [8] supports simula-
tion and analysis of stochastic Time Petri Nets (sTPNs) [33], [10], [22], [9], a
variant of non-Markovian SPNs that extends TPNs with a stochastic charac-
terization of time distributions and choices. As a characterizing trait, the tool
implements symbolic state space enumeration of sTPN models that may include
multiple concurrent GEN timers with possibly overlapping activity cycles, pro-
vided that timers are associated with an expolynomial distribution, enabling
derivation of steady-state and transient probabilities of the underlying General-
ized Semi-Markov Process (GSMP) [27].

The ever increasing variety of modeling formalisms and solution techniques
gives relevance to integration frameworks and reusable components that can sup-
port multi-formalism modeling and multi-solution evaluation of complex and het-
erogeneous systems. Möbius [15] is a multi-paradigm multi-solution framework

A Framework for Simulation and Symbolic State Space Analysis 411

which provides an extensible environment for dependability, security, and perfor-
mance modeling of large-scale discrete-event systems. In particular, it supports
numerical and analytical solution techniques for specific Markovian models as
well as discrete event simulation of a more general class of models. The OsMoSys
Multi-solution Framework [34] comprises a SW environment for the analysis of
multi-formalism models, which provides a strong separation between model rep-
resentation and analysis algorithms. This guarantees a high flexibility both in
modeling and solution phases, and permits to combine different formalisms and
to concurrently apply multiple solvers. SIMTHESys [23] is an open framework
supporting compositional modeling of complex systems based on formalisms such
as Stochastic Petri Nets (SPNs), Queuing Networks (QNs), Bayesian Networks
(BNs), and FTs. DrawNet [20] is a customizable tool for design and solution of
models expressed in any graph based formalism, including Fluid Stochastic Petri
Nets (FSPs), Dynamic Parametric Fault Trees (DPFTs), and BNs.

In this paper, we present a new framework named Sirio for modeling, sim-
ulation, and analysis of various timed extensions of Petri Nets, which notably
include pTPNs and sTPNs. As a characterizing feature, the SW architecture
of Sirio is purposely designed to guarantee high reusability of the code and
to support the implementation of extensions that add new functionalities or
modify the existing ones. This largely easies SW maintenance, helps the val-
idation of new theoretical developments, and facilitates application within an
existing tool such as Oris [8] or integration within a composed environment
such as Möbius [15] or OsMoSys [34]. The SW architecture is organized in:
i) three base libraries supporting representation of the structural elements of
Petri Net models, manipulation of expolynomial functions, and generation of
samples from expolynomial distributions; ii) two component tools implementing
the semantics of Petri Net models and their simulation/analysis. Sirio is de-
veloped by the Software Technologies Laboratory of the University of Florence
(http://www.stlab.dsi.unifi.it) and is available for experimentation.

The rest of the paper is organized as follows. Section 2 describes functional
responsibilities of the Sirio framework; Sections 3 and 4 present the SW archi-
tecture of Sirio base libraries and tools, respectively; Section 5 finally draws
conclusions.

2 Sirio Functional Responsibilities

The Sirio framework includes three base libraries and two component tools, as
shown in Fig. 1. The libraries provide basic functionalities for model represen-
tation and manipulation; the tools support model simulation and analysis.

2.1 Sirio Base Libraries

The Petri Net Library provides support to the representation of various kinds
of Petri Nets models including:

412 L. Carnevali, L. Ridi, and E. Vicario

Analyzer Simulator

Petri Net Lib Symbolic Calculus Lib Sample Generator Lib

Tools

Base libraries

Fig. 1. The SW architecture of the Sirio framework

– Time Petri Nets (TPNs) [16], which enable reachability and timeliness anal-
ysis of densely-timed models;

– preemptive Time Petri Nets (pTPNs) [18], which support schedulability anal-
ysis of real-time systems running under priority preemptive scheduling;

– stochastic Time Petri Nets (sTPNs) [33], [10], [22], which enable derivation of
steady-state and transient probabilities of models with multiple concurrently
enabled GEN timers that underlie a GSMP [27], provided that timers are
associated with an expolynomial distribution [30], [36], [14];

– stochastic preemptive Time Petri Nets (spTPNs) [9], which support steady-
state evaluation of densely-timed preemptive systems with non-Markovian
temporal parameters, under the assumption that timers have expolynomial
distribution with non-pointlike support and those with unbounded support
are all distributed over [0,∞) with negative exponential distribution.

The Symbolic Calculus Library supports representation and manipulation of
mathematical expressions and functions supported over polyhedral and Differ-
ence Bound Matrix (DBM) domains. In particular, the library supports manip-
ulation of expolynomials, which constitute a fairly general class of expressions
including constants, exponentials, and polynomials. An expolynomial is an ex-
pression of the type:

∑H
h=1 ch

∏N
n=1 xαn

n e−λnxn .
The Sample Generator Library supports the generation of pseudo-random

samples from an expolynomial probability distribution function F (x), using dif-
ferent methods depending on the form of the distribution. More specifically, if F
is invertible with inverse function F−1 = f , samples can be generated through
the method of Symbolic Inversion: given a sample y from the uniform distribu-
tion over [0, 1], a new sample from F is obtained as f(y). Otherwise, if F is not
invertible, samples can be generated through:

– the method of Numeric Inversion: given a sample y from the uniform dis-
tribution over [0, 1], a new sample from F is obtained as the unique root of
the monotonic and differentiable function F (x) − y. The root is estimated
through the method of Newton: starting from an initial guess reasonably
close to the unknown root value, root approximations are iteratively derived
by computing the x-intercept of the tangent line that passes from the func-
tion point with x-coordinate equal to the current approximation.

A Framework for Simulation and Symbolic State Space Analysis 413

– the method of Acceptance-Rejection: given an envelope distribution G(x)
such that F (x) < K · G(x) ∀ x for some constant K > 1 and a sample y
from the uniform distribution over [0, 1], a new sample from F is obtained
as a sample x̄ from G that satisfies x̄ < F (x)/(K · G(x))

– the algorithm of Metropolis-Hastings, a Markov Chain Monte Carlo method
which generates a Markov Chain in which each state xk depends on only on
the previous state xk−1: given a proposal probability distribution G(x, xk)
depending on the current state xk and given a sample y from the uniform
distribution over [0, 1], a new sample from F is obtained as a sample x̄ from
G that satisfies y < (F (x̄)G(xk−1))/(F (xk−1)G(x̄)).

2.2 Sirio Tools

The Simulation Tool performs stochastic simulation of Petri Net models and
supports the evaluation of transient and steady-state rewards, both in discrete
time and in continuous time, i.e., the probability of a marking and the mean
time between the firings of two transitions.

The Analysis Tool enables exhaustive state space enumeration of Petri Net
models. Since the Petri Net library supports the representation of a large number
of model types, the Analysis Tool implements various kinds of analysis, allowing
selection of analysis-dependent parameters. In particular, the tool supports both
steady state and transient analysis.

3 Sirio SW Architecture: Base Libraries

3.1 Petri Net Library

Fig. 2 shows the SW architecture of the Petri Net Library, which reflects the
actual syntax of a Petri Net: the PetriNet class aggregates places, transitions,
precondition and postcondition arcs, represented by the Place, Transition,
Precondition, and Postcondition classes, respectively. Each of these classes
is only responsible for maintaining a unique identifier for the associated com-
ponent together with a list of features enriching the behavior of the compo-
nent, i.e., the PlaceFeature, TransitionFeature, PreconditionFeature, and
PostconditionFeature interfaces. As a relevant example, we describe here some
of the features associated with the Transition class, which are classes that im-
plement the TransitionFeature interface:

– TimeTransitionFeature encodes the temporal information of a timed tran-
sition, as defined by the syntax of TPNs [26], [2], [16], i.e., a time interval
[EFT, LFT] ∈ R

+
0 × R

+
0 ∪ {∞};

– StochasticTransitionFeature represents the probability density function
associated with a transition in sTPN models [33], [10];

– PreemptiveTransitionFeature enriches the associated transition with a
list of resources and a priority value, so as to make it suitable for the analysis
in the preemptive setting defined by the theory of pTPNs [18].

414 L. Carnevali, L. Ridi, and E. Vicario

PetriNet

Place Transition PreconditionArc PostconditionArc

<<interface>>
TransitionFeature

<<interface>>
PlaceFeature

<<interface>>
PreconditionFeature

<<interface>>
PostconditionFeature

TimeTransitionFeatureStochasticTransitionFeature PreemptiveTransitionFeature

Fig. 2. A portion of the SW architecture of the Petri Net library

As a characterizing trait, the variety of Petri Net models is not explicitly rep-
resented, but implicitly defined through the features associated with structural
elements of the net. This provides a strong modeling flexibility, supporting the
representation of hybrid models such as partially stochastic Time Petri Nets
(pTPNs) [12] which include both non-deterministic and stochastic transitions,
and guarantees high reusability of the code, since the implementation of new
model types amounts to the implementation of one or more features for struc-
tural net components.

3.2 Symbolic Calculus Library

Fig. 3 shows the SW architecture of the Symbolic Calculus Library. An ex-
polynomial expression [30], [36], [14] is represented by the Expolynomial
class, which implements the Expression interface and aggregates instances of
the Expmonomial class representing terms of the form ch

∏N
n=1 xαn

n e−λnxn . In
turn, an Expmonomial aggregates atomic terms which can be instances of the
MonomialTerm class or the ExponentialTerm class. The Domain interface repre-
sents a multi-dimensional domain and it is specialized into PolyhedralDomain
and DBMDomain. A function is an expression over a domain and is represented
by the Function class, which maintains a reference to the Domain interface and
the Expression interface.

3.3 Sample Generator Library

Fig. 4 shows the SW architecture of the Sample Generator Library. Each sup-
ported sample generation technique is implemented by a concrete class that
realizes the Sampler interface, i.e., SymbolicInversion, NumericInversion,
AcceptanceRejection, and MetropolisHastings.

A Framework for Simulation and Symbolic State Space Analysis 415

<<interface>>
Expression Expolynomial

Expmonomial

AtomicTerm

MonomialTerm ExponentialTerm

<<interface>>
Domain

DBMDomainPolyhedralDomain

Function

Fig. 3. A portion of the SW architecture of the Symbolic Calculus library

<<interface>>
Sampler

SymbolicInversion NumericInversionAcceptanceRejection MetropolisHastings

Fig. 4. The architecture of the Sample Generator library

4 Sirio SW Architecture: Tools

4.1 Simulation Tool

Fig. 5 shows a portion of the SW architecture of the Simulation Tool concern-
ing the evaluation of reward measures. The Reward abstract class implements
the IReward interface and performs operations that are common to the evalu-
ation of all supported reward types, each represented by a class that extends
Reward. In particular, the MarkingProbability and MeanTimeBetweenFirings
abstract classes model the two reward types supported by the tool and each
one is specialized in two different concrete classes for transient and steady-state
regime, respectively. The tool uses composition instead of inheritance to decou-
ple the reward interface from its implementation in continuous/discrete time,
allowing agile definition of new reward types. According to this, basic opera-
tions that are implemented in a different manner depending on the domain of
time are abstracted by the RewardTime interface, which is implemented by the
DiscreteTimeReward and ContinuousTimeReward concrete classes.

416 L. Carnevali, L. Ridi, and E. Vicario

<<interface>>
IReward

Reward

<<interface>>
RewardTime

DiscreteTimeReward ContinuousTimeReward

MarkingProbability MeanTimeBetweenFirings

TransientMarkingProbability

SteadyStateMarkingProbability

TransientMeanTimeBetweenFirings

SteadyStateMeanTimeBetweenFirings

Fig. 5. A portion of the SW architecture of the Simulation Tool, concerning the eval-
uation of rewards

Fig. 6 shows a portion of the SW architecture of the tool concerning the
implementation of the simulation process. The Sequencer class is responsible for
the evolution of the model and maintains a reference to the SuccessorEvaluator
interface, which performs the derivation of the successor state; in turn, a state is
represented by the SimulatorState interface (see also Fig. 9). The simulation
process is performed according to the following algorithm:

– compute the initial state s0;
– at the n-th step, until a stop condition is false:

• compute the set T f (sn−1) of transitions that are firable in sn−1;
• select a transition t in T f(sn−1);
• compute the successor sn of sn−1 through the firing of t.

The Sequencer class is responsible for notifying the Reward class of each exe-
cuted step of simulation; in turn, the Reward class updates reward measures at
each simulation step and notifies the RewardProxy class which is responsible for
maintaining the result of reward evaluation. The simulation process is iterated
until an assigned Execution Time has elapsed or until the model has executed
an assigned number of runs with an assigned number of steps.

Fig. 7 illustrates the allocation of the evaluation of reward measures to dif-
ferent threads. Each reward to be evaluated is associated with an object of the
RewardProxy class. In particular, rewards of the same type that have the same
domain of time are grouped together and the corresponding RewardProxy ob-
jects are associated with the same Reward object. In turn, Reward objects that
share the same Petri Net model, the same sampling generation techniques for the
selection of times-to-fire of model transitions, and the same regime are grouped
together and associated with the same Sequencer object. Finally, the simulation
process managed by each Sequencer object is allocated exclusively to a different
thread. In so doing, the evaluation of rewards is parallelized and the number of

A Framework for Simulation and Symbolic State Space Analysis 417

<<interface>>
IReward

Reward

Sequencer

<<interface>>
SequencerListener

RewardProxy

<<interface>>
RewardListener

Fig. 6. A portion of the SW architecture of the Simulation Tool, concerning the im-
plementation of the simulation process

Sequencer
1

Reward
1

Reward
2

RewardProxy
1

RewardProxy
2

RewardProxy
3

Thread 1

RewardProxy
4

Reward
3

Sequencer
2 Thread 2

Fig. 7. A schema illustrating the allocation of the evaluation of reward measures to
different threads

simulation steps is notably reduced. For instance, the sequential evaluation of
the same reward for an increasing number of firings equal to 10, 000, 20, 000, ...,
and 100, 000 would require 550, 000 simulation steps, while the Simulation Tool
completes all rewards evaluation in 100, 000 steps. Moreover, the simultaneous
evaluation of different rewards along the same simulation runs permits to derive
statistically correlated measures.

Implementation of New Reward Types: amounts to the definition of an
abstract class that extends Reward, two concrete subclasses of this class for
transient and steady-state regime, and, if necessary, the addition of methods
to RewardTime and their concrete implementation in DiscreteTimeReward and
ContinuousTimeReward.

Implementation of the Simulation Process for New Petri Net Models:
amounts to the definition of a class that implements the SuccessorEvaluator
interface, and, in case the state of the model has to carry new additional infor-
mation, the definition of a class that implements the State interface.

418 L. Carnevali, L. Ridi, and E. Vicario

4.2 Analysis Tool

Fig. 8 shows a portion of the SW architecture of the Analysis Tool concerning
the structure of the enumeration algorithm. The tool uses composition instead
of inheritance to customize the behavior of the following general enumeration
algorithm implemented by the Analyzer class:

– generate the initial state n0 and insert it into a queue Q;
– until Q is empty:

• take a new state n from queue Q;
• enumerate all its possible successor transitions;
• for each possible successor transitions:

∗ evaluate the successor state n′;
∗ insert n′ into Q;

The implementation of operations involved in the enumeration algorithm is del-
egated to objects complying with specific interfaces. The EnumerationPolicy
interface manages the insertion and removal of states from queue Q. It is un-
aware of the actual type of states and only knows their order inside Q, so that
different enumeration policies (i.e., LIFO, FIFO, Priority) can be implemented
independently of the specific analysis type. The creation of the initial state is del-
egated to the InitialClassBuilder interface, whose implementations generate
different initial states depending on the kind of analysis. In a similar manner, the
SuccessorEvaluator interface is responsible for the evaluation of the successor
state.

Composition can be further applied to each enumeration step in order to
achieve higher modularity: for instance, all the objects that implement the

<<interface>>
InitialClassBuilder

+ computeInitialClass()

<<interface>>
EnumerationPolicy

+ add()
+ remove()

<<interface>>
SuccessorEvaluator

+ computeSuccessor()

Analyzer

+ analyze(PetriNet p, Marking m)

MarkingEvaluator

+ computeNextMarking()

LIFOPolicySSCSuccessorEvaluator InitialSSCBuilder

Fig. 8. A portion of the SW architecture of the Analysis Tool, concerning the structure
of the enumeration algorithm

A Framework for Simulation and Symbolic State Space Analysis 419

SuccessorEvaluator interface share the portion of code that implements the up-
date of the marking of a Petri Net model after the firing of a transition. To guaran-
tee a reasonable reuse of the code, the MarkingEvaluator class encapsulates the
token game logic and makes it available to every class that could make use of it.

The enumeration procedure uses several structures to encode states, succes-
sion relations between states, and the overall generated state space (usually a la-
beled directed graph). Fig. 9 shows the portion of the SW architecture of the tool
that concerns the representation of the graph of state-classes: AnalyzerState
constitutes the common interface for all the possible kinds of states that are
generated by the analyzer; the Succession interface represents a succession be-
tween two states, carrying additional information depending on the specific kind
of analysis. Composition is also used to provide additional functionalities:

– the SuccessionProcessor class is responsible for processing nodes prior to
the evaluation of their successors or prior to their insertion in queue Q:
the feature is useful, for instance, when the analysis requires some kind of
approximation to limit the complexity of evaluated states;

– the StopCriterion class supports the implementation of criteria to interrupt
the enumeration process at a global level, i.e., no node is further enumerated,
and at the local level, i.e., successors of a specific node are not enumerated;

– the Logger class is responsible for performing logging operations.

Classes implementing stop criteria and logging operations inherit some of their
features from the AnalyzerObserver interface, so as to receive events notifica-
tion during the analysis process.

Implementation of New Types of Analysis: amounts to the definition
of appropriate delegate components of the Analyzer class and, if necessary,
the definition of the corresponding data structure for the encoding of the state
space elements. To exemplify the concept, we describe here the additions that
are needed to implement the theory of transient analysis of sTPN models de-
scribed in [22]. Transient stochastic classes extend the concept of stochastic

<<interface>>
State

<<interface>>
AnalyzerState

StochasticStateClassStateClass

<<interface>>
Succession

StochasticSuccession <<interface>>
SimulatorState

Fig. 9. A portion of the SW architecture of the Analysis Tool, concerning enumeration
and representation of the graph of state-classes

420 L. Carnevali, L. Ridi, and E. Vicario

state classes through the introduction of an age clock that accumulates the
time elapsed since the initial state, enabling the evaluation of transient re-
wards for the underlying non-Markovian process. To encode and manipulate
this additional information in the Sirio framework, a new TransientStateClass
is inherited from StochasticStateClass. Thus, new InitialTSCBuilder and
TSCSuccessorEvaluator classes are implemented in order to manage creation
and evolution of this new type of state class.

5 Conclusions

The development of safety-critical systems may largely benefit from the appli-
cation of formal methods. This requires tool support, which in turn requires
integration platforms and components. Sirio is a framework that implements
simulation and symbolic state space analysis of preemptive and stochastic exten-
sions of TPNs, supporting an integrated approach to correctness verification and
quantitative evaluation of concurrent timed systems. As characterizing features,
the SW architecture of Sirio is easily extensible and guarantees high reusability
of the code. This facilitates SW maintenance operations, provides a suitable en-
vironment where new theoretical results can be experimented, and also easies the
application within an existing toolchain such as Oris [8] or the integration within
a composed environment such as Möbius [15] or OsMoSys [34]. Most relevant
elements of the theory implemented in Siro as well as case studies illustrating
the level of affordable complexity can be found in [18], [33], [10], [22], [9].

References

1. Alur, R., Lee, I., Sokolsky, O.: Compositional refinement for hierarchical hybrid
systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 33–48. Springer, Heidelberg (2001)

2. Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. on SW Eng. 17(3), 259–273 (1991)

3. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal
of Production Research 42(14), 2741–2756 (2004)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL: a Tool-
Suite for Automatic Verification of Real-Time Systems. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer, Heidelberg (1996)

6. Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: A WEB-Accessible Petri
Net Tool. In: Proc. Conf. on Web-based Modeling and Simulation (1998)

7. Bondavalli, A., Mura, I., Chiaradonna, S., Filippini, R., Poli, S., Sandrini, F.:
DEEM: a tool for the dependability modeling and evaluation of multiple phased
systems. In: IEEE Int. Conf. on Dependable Systems and Networks, DSN (June
2000)

A Framework for Simulation and Symbolic State Space Analysis 421

8. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a Tool for Modeling, Verifi-
cation and Evaluation of Real-Time Systems. Int. Journal of Software Tools for
Technology Transfer 12(5), 391–403 (2010)

9. Carnevali, L., Giuntini, J., Vicario, E.: A symbolic approach to quantitative anal-
ysis of preemptive real-time systems with non-markovian temporal parameters. In:
VALUETOOLS (May 2011)

10. Carnevali, L., Grassi, L., Vicario, E.: State-Density Functions over DBM Do-
mains in the Analysis of Non-Markovian Models. IEEE Trans. on SW Eng. 35(2),
178–194 (2009)

11. Carnevali, L., Ridi, L., Vicario, E.: Putting preemptive Time Petri Nets to work
in a V-model SW life cycle. IEEE Trans. on SW Eng., (accepted for publication)

12. Carnevali, L., Ridi, L., Vicario, E.: Partial stochastic characterization of timed runs
over DBM domains. In: Proc. of the 9th International Workshop on Performability
Modeling of Computer and Communication Systems (September 2009)

13. CENELEC. EN 50128 - Railway applications: SW for railway control and protec-
tion systems (1997)

14. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic
process underlying a stochastic Petri net. IEEE Trans. On SW Eng. 20(7),
506–515 (1994)

15. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: An
extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN), pp. 353–358 (2009)

16. Vicario, E.: Static Analysis and Dynamic Steering of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. on SW Eng. 27(1), 728–748 (2001)

17. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)

18. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed State Space Analysis of Real
Time Preemptive Systems. IEEE Trans. SW Eng. 30(2), 97–111 (2004)

19. Gardey, G., Lime, D., Magnin, M., Roux, O.: Romeo: A Tool for Analyzing Time
Petri Nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

20. Gribaudo, M., Codetta-Raiteri, D., Franceschinis, G.: Draw-net, a customizable
multi-formalism, multi-solution tool for the quantitative evaluation of systems. In:
Int. Conf. on the Quantitative Evaluation of Systems (2005)

21. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language
for embedded programming. In: Proc. of the IEEE, pp. 84–99. IEEE, Los Alamitos
(2003)

22. Horvath, A., Ridi, L., Vicario, E.: Transient analysis of generalised semi-markov
processes using transient stochastic state classes. In: Proc. of the Int. Conf. on
Quant. Eval. of Systems, QEST 2010 (2010)

23. Iacono, M., Gribaudo, M.: Element based semantics in multi formalism perfor-
mance models. In: IEEE Int. Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 413–416 (2010)

24. Kulkarni, V.G.: Modeling and analysis of stochastic systems. Chapman & Hall,
Ltd., London (1995)

25. Jordan, P.: IEC 62304 International Standard Edition 1.0 Medical device software
- Software life cycle processes. In: The Institution of Engineering and Technology
Seminar on Software for Medical Devices 2006 (2006)

26. Merlin, P., Farber, D.J.: Recoverability of Communication Protocols. IEEE Trans.
on Comm. 24(9), 1036–1043 (1976)

422 L. Carnevali, L. Ridi, and E. Vicario

27. Glynn, P.W.: A GSMP formalism for discrete-event systems. Proceedings of the
IEEE 77, 14–23 (1989)

28. Alur, R., Dill, D.L.: Automata for Modeling Real-Time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

29. Radio Technical Commission for Aeronautics. DO-178B, Software Considerations
in Airborne Systems and Equipment Certification (1992)

30. Sahnerand, R.A., Trivedi, K.S.: Reliability Modeling Using SHARPE. IEEE Trans.
on Reliability 36(2), 186–193 (1987)

31. The Mathworks. Simulink, http://www.mathworks.com/products/simulink
32. Trivedi, K.S., Sahner, R.A.: Sharpe at the age of twenty two. ACM SIGMETRICS

Perf. Eval. Review 36(4), 52–57 (2009)
33. Vicario, E., Sassoli, L., Carnevali, L.: Using Stochastic State Classes in Quantita-

tive Evaluation of Dense-Time Reactive Systems. IEEE Trans. on SW Eng. 35(5),
703–719 (2009)

34. Vittorini, V., Iacono, M., Mazzocca, N., Franceschinis, G.: The OsMoSys approach
to multi-formalism modeling of systems. Software and Systems Modeling 3, 68–81
(2004)

35. Zimmermann, A.: Dependability evaluation of complex systems with timenet. In:
Proc. Int. Workshop on Dynamic Aspects in Dependability Models for Fault-
Tolerant Systems, DYADEM-FTS 2010 (2010)

36. Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri Net Modelling and
Performability Evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp,
H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer,
Heidelberg (2000)

http://www.mathworks.com/products/simulink

Model-Based Multi-objective Safety

Optimization

Matthias Güdemann and Frank Ortmeier

Computer Systems in Engineering
Otto-von-Guericke University of Magdeburg

{matthias.guedemann,frank.ortmeier}@ovgu.de

Abstract. It is well-known that in many safety critical applications
safety goals are antagonistic to other design goals or even antagonis-
tic to each other. This is a big challenge for the system designers who
have to find the best compromises between different goals.

In this paper, we show how model-based safety analysis can be com-
bined with multi-objective optimization to balance a safety critical sys-
tem wrt. different goals. In general the presented approach may be
combined with almost any type of (quantitative) safety analysis tech-
nique. For additional goal functions, both analytic and black-box func-
tions are possible, derivative information about the functions is not
necessary. As an example, we use our quantitative model-based safety
analysis in combination with analytical functions describing different
other design goals. The result of the approach is a set of best compromises
of possible system variants.

Technically, the approach relies on genetic algorithms for the optimiza-
tion. To improve efficiency and scalability to complex systems, elaborate
estimation models based on artificial neural networks are used which
speed up convergence. The whole approach is illustrated and evaluated
on a real world case study from the railroad domain.

1 Introduction

In virtually all engineering domains two common trends can be identified. Firstly,
system complexity is rising steadily and ever more functionality is provided by
software controls. The second trend is a steady rise of criticality of system failure.
A derailing of a train in the 1950s was much less severe than the same accident
with a modern high-speed train which may cause numerous casualties. As a
consequence, safety analysis has become more difficult and more important.

During the last decade model-based safety analysis methods have become
prominent [27,1,3,23,10] which allow for very precise and reliable safety analysis.
The common idea is to calculate safety assessments (automatically) from a model
of the system. Newest developments also make quantitative, model-based safety
analysis possible, which computes hazard probabilities much more accurate than
traditional methods [2,11,5,8].

But in real-world applications minimal hazard probabilities are not the only
design goal. Most often other antagonistic requirements have to be met as well.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 423–436, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

424 M. Güdemann and F. Ortmeier

One example is of course the cost of a system, but also functionality and avail-
ability must be taken into account. These goals are often negatively affected by
focusing solely on safety aspects, raising the question how “best compromises”
between antagonistic goals can be found.

The approach described in this paper is one way to answer this question. It
is based on the mathematical theory of Pareto optimization adapted to safety
critical systems. In particular, quantitative safety analysis using state-of-the-
art stochastic model checkers is combined with neural networks for efficiency,
scalability and to speed up the necessary computation times. Direct integration
of qualitative model-based safety analysis techniques further increases perfor-
mance and quality of the results. In practice, this means that design variants
not fulfilling required qualitative safety properties are automatically identified
and discarded. This combination leads to an extremely precise characterization
and computation of the best design variants of the analyzed system, which are
difficult to find with traditional methods.

The rest of the paper is structured as follows: Sect. 2 introduces an illustrative
case study which is used throughout the whole paper. In Sect. 3 basics of model-
based safety analysis are briefly discussed and the techniques used in the paper
are introduced. The main scientific contribution is in Sect. 4 which describes and
explains our approach for multi-objective safety optimization and the underlying
algorithms. Finally, the approach is applied to the running example. Related
work is discussed in Sect. 5, while Sect. 6 summarizes the results and gives an
outlook to future work.

2 Case Study

The following case study of a radio-based railroad control was the reference case
study in the priority research program 1064 “Integrating software specifications
techniques for engineering applications” of the German Research Foundation
(DFG). It was supplied by the German railway organization, Deutsche Bahn,
and addresses a novel technique for controlling railroad crossings. This technique
aims at medium speed routes, i.e. routes with maximum speed of 160km

h . The
main difference between this technology and the traditional control of railroad
crossings is that signals and sensors on the route are replaced by radio communi-
cation and software computations in the train and railroad crossing. This offers
cheaper and more flexible solutions, but also shifts safety critical functionality
from hardware to software. The system works as follows:

Trains are assumed to continously monitor their position. When a train ap-
proaches a crossing, it broadcasts a secure-request to the crossing. When a rail-
road crossing receives this secure-request, it switches on the traffic lights, first
the yellow light, then the red light, and finally closes the barriers. Once they
are closed, the railroad crossing is secured for a certain period of time. Shortly
before the train reaches the latest braking point (latest point, where it is possi-
ble for the train to stop in front of the crossing), it requests the status of the
railroad crossing. If the crossing is secured, it responds with a release signal which

Model-Based Multi-objective Safety Optimization 425

radio communication

central office

route
profile defects

Fig. 1. Radio-based railroad crossing

indicates, that the train may pass the crossing. If the train receives no confirma-
tion of the status of the crossing, it will initiate an emergency brake. Behind the
crossing, a sensor detects that the train has passed and an open signal is sent to
the crossing. A schematic view of the case study is depicted in Fig. 1.

One special requirement (from Deutsche Bahn) is, that once the barrier is
closed, it shall reopen automatically after 5 minutes even if no train has passed.
This requirement might seem counter-intuitive, but the background is that peo-
ple waiting at the crossing for a long time without any train in sight, are very
likely to get impatient and cross anyway. But if the crossing is closed, they will
probably drive very slowly which increases the risk of a collision. This case study
was first introduced in [17] and [13] contains a modelling including quantitative
aspects..

3 Model-Based Safety Analysis

One method to examine the safety of such a system is a model-based safety
analysis. It basically consists of three steps: (1) construction of a formal sys-
tem model, (2) qualitative safety analysis and (3) quantitative safety analysis.
There exist numerous variants of for model-based analysis, but they all share
this principle. Although some techniques merge some steps into one (e.g. failure
injection) or only focus on qualitative or quantitative aspects.

3.1 Formal Model Construction

The first step for model-based safety analysis is the construction of a formal
model that captures the nominal behavior of the system. Such a model con-
tains for example the movement and acceleration/deceleration of the train, the
behavior of the barrier of the crossing and the control system. Such a model
already allows to verify the correctness of the system according to its intended
behavior.

426 M. Güdemann and F. Ortmeier

But in safety analysis, it must also be examined what happens if one or more
components do not work as expected. As a consequence, failure mode behavior
must be integrated into the system model. Which failure modes are relevant is
application specific. For standard components catalogs of failure modes exist.
For non-standard system components, there exist structured approaches like
HaZop [16] or failure sensitive specification [25] to identify possibly relevant
failure modes.

For the safety analysis of the case-study, the following six relevant failure
modes were identified: error passed (which means that the sensor misdetects that
the train has already passed the crossing), error odo (which models a deviation
of its measured velocity), error comm (which models a communication failure),
error close (which models that the crossing wrongly signals that it is closed
although it is not), error actuator (which models that the barrier gets stuck
when closing), and error brake (which models failing brakes of the train).

These failure modes are integrated into the nominal system model to form
the extended system model. This integration is done in such a way that the func-
tional behavior is still contained as a real subset (in terms of possible traces).
More details on sound integration of failure mode behavior may be found in [26].
Finally, probabilistic estimations on environment and failure modes must be in-
tegrated. Convenient modeling frameworks for stochastic models are SAML [11]
or SLIM [4].

3.2 Qualitative Safety Analysis

Using the extended system model, qualitative safety analysis can be applied to
compute all combinations of failure modes that can lead to a hazard. In this case
this means the computation of all failure mode combinations that can cause the
train to pass the crossing although the barrier is not closed. This can for example
be computed with deductive cause-consequence analysis (DCCA). The results of
DCCA are the combinations of failure modes that can lead to a system hazard
which are called the minimal critical sets. In the case study, the following sets of
failure modes can cause the hazard, i.e. be the reason that the train enters the
crossing but the barrier is not closed [23]:

– Γ1 := {error passed}
– Γ2 := {error odo}
– Γ3 := {error comm, error close}
– Γ4 := {error comm, error brake}
– Γ5 := {error close, error actuator}
– Γ6 := {error actuator, error brake}

The advantage of DCCA compared to (formal) fault-tree analysis [31,27] is that
DCCA is provably correct and complete. This means that for each computed
critical combination of failure modes, there actually exists a system run on which
it causes the hazard and there exist no other (inclusion-minimal) combinations
of failure modes that can cause the hazard.

Model-Based Multi-objective Safety Optimization 427

3.3 Quantitative Safety Analysis

For certification of a safety critical system according to different norms and
standards, it is most often mandatory to prove that the occurrence probability of
a hazard is below a specified threshold whose amount depends on the application
domain. So, in addition to qualitative information about the possible causes of
a hazard, its occurrence probability is also very important.

In many approaches such a probability is computed in an a-posteriori way.
Most often the probability that failure modes cause the hazard is estimated based
on assumptions like stochastic independence of the failure modes. A method for
accurate computation of hazard probabilities using directly an extended sys-
tem model – i.e. without assumptions about stochastic independence etc. – is
probabilistic DCCA (pDCCA) [12].

For the quantitative analysis of the case study error comm was modeled as
a per-demand failure mode with an occurrence probability of 3.5 · 10−5. The
other failure modes were modeled as per-time failure modes with a failure rate
of 7 · 10−5 1

s for error odo and 7 · 10−9 1
s for the other per-time failure modes.

More details on the combination of failure rates and failure probabilities can be
found in [12], a more detailed description of the quantitative formal modeling of
the railroad case-study can be found in [13]. The computed hazard probability
for the example with pDCCA to an extended system model (described in the
SAML framework) is shown in Eq. (1):

P (H) := P [trueUH] = 5.6286 · 10−7 (1)

It computes the probability that the hazard H occurs (the train passes the
crossing but the barrier is open) expressed in the probabilistic temporal logic
PCTL [14]. It is computed using state of the art stochastic model-checking tools
like PRISM [18] or MRMC [15]. Note, that for actual computation of this number
a lot of assumptions (besides failure rates) had to be made. For example, in the
calculation of the latest breaking point no extra safety margin had been added
and a maximum allowed speed of 115km

h had been assumed. Both are obviously
free parameters of the system and variation of these parameters will affect both
safety and availability (i.e. time delay) of the system.

3.4 Summary

These three steps basically mark the procedure for a qualitative and quantita-
tive model-based safety analysis. A convenient way to do this is to construct the
extended system model in SAML. It allows for the combination of per-demand
and per-time failure modes. It is also tool-independent as it allows for the anal-
ysis of the system with different state of the art verification tools. The necessary
transformations of a SAML model into the input specification of different verifi-
cation tools are semantically funded which guarantees that the qualitative and
quantitative safety analysis are conducted on equivalent models.

Nevertheless, whether a computed hazard occurrence probability is sufficient
or not depends on external requirements. In the case study, it will be defined for

428 M. Güdemann and F. Ortmeier

example by the EN 50128 standard for safety in the railway domain. If it is too
high, the system must be augmented with risk reducing measures to reach the
required threshold. But even if the probability is acceptable, often other aspects
cannot be disregarded: Is this the best compromise for other antagonistic goals
like costs? Is it possible to achieve a lower but acceptable safety threshold while
getting an disproportional larger advantage wrt. antagonistic goals?

For example, reducing the allowed speed a lot will most probably increase
safety but will also increase time delays. Choosing such free parameters is typi-
cally solely based on the experience/intuition of system designers. The approach
presented in the following section is an attempt to help them make this decision.

4 Model-Based Safety Optimization

One way to answer these questions is to use an additional analytic mathematical
model and optimize it to find better system designs [22]. The problem with such
an approach is that it does not reflect whether qualitative safety properties – in
particular critical failure mode combinations – are still valid in a changed system
design. Another problem is the usage of a-posteriori estimation methods which
are often based on unrealistic assumptions and are therefore not very accurate.

Because of these problems and challenges, we propose a different approach
which is based on mathematical optimization, but uses model-based techniques
to compute hazard probabilities and only evaluates system designs for which the
desired qualitative safety properties hold. The approach is completely automatic
and can cope with multiple antagonistic goals. The result is a set of possible
system variants which give the best compromises between the desired goals.

4.1 Multi-objective Optimization

Central to multi-objective optimization is the notion of Pareto sets and Pareto
optimality. Informally, a system is Pareto optimal if there is no way to change
it in such a way that it becomes better wrt. one objective function, without
becoming worse wrt. another one. A Pareto set contains those elements which
are Pareto optimal. As there are multiple objective functions, it is not possible
to define a total ordering, but only a partial ordering. If two elements are in
Pareto order, the worse one is dominated by the better one. For a more detailed
description see for example [19].

In order to be optimizable, variable parameters must exist in a system. This
can be actually free parameters that can be instantiated, e.g. maximal speed of
the train, or varying failure rates for different qualities of system components. It
is also possible to vary complete system components that have the same nominal
behavior but have different other properties, e.g. use redundant sensors instead
of a single sensor. In general, a system will be described as the fixed part, a set of
possible parameter values and a set of possible system component substitutions.
A design variant of the system is then an instantiation of the free parameters
and a selection of the variable system components.

Model-Based Multi-objective Safety Optimization 429

For the case study, three parameters were identified that can be adjusted to get
an optimized system design. The first is the accuracy of the odometer (i.e. using
odometer components of different quality and costs). The quality is measured as
the failure rate λodo of the deviation from the real velocity. This clearly has an
influence on the safety of the system, as the breaking point calculation is based
on the reported value of the odometer. The second parameter is a safety margin
z which is added to the calculated breaking point of the train to compensate
for some wrong sensor data of the odometer or variants in braking coefficients.
This safety margin basically adds a buffer to the distance at which the train
initiates the communication for the closing of the barrier. The third parameter
vallowed is the allowed maximum speed of trains on the track when approaching
the crossing. This velocity directly influences the calculation of the activation
point. Both safety margin and allowed speed directly influence the safety of the
system as the calculation of the activation point of the radio communication is
dependent on these parameters. For the example, we used the interval [0, 1] for
failure rates of the odometer1, possible safety margins between 0 and 200m and
allowed maximum velocities between 1 and 120 km

h . The (antagonistic) objective
functions considered in the example are:

f1(λodo, z, vallowed) := P [trueUH]
f2(λodo, z, vallowed) := cost(λodo)

f3(λodo, z, vallowed) :=
z + xbrake(vallowed)

vallowed
− z + xbrake(vallowed)

vmax

The first function f1 is the occurrence probability of the hazard H , i.e. that the
train enters the crossing while the barrier is not closed. It is computed using
stochastic model-checking of the extended system model instantiated with the
concrete parameters. The second function f2 describes the cost of more accurate
components (i.e. odometer). It is modeled in such a way that the decrease in
failure rate results in an exponential rise in cost (proportional to the negative
logarithm of λodo). The third objective function f3 describes the time delay
caused by lowering the allowed speed of the train at a single crossing (compared
to normal travel time on a track without crossing at a speed vmax = 160km

h).
For multi-objective optimization, every design variant of the system can

then be represented as an element of x ∈ [0, 1] × [0, 200] × [1, 120] and
may be assessed by computing the values of the objective vector function
f(x) = (f1(x), f2(x), f3(x)). The Pareto set for this problem describes all ”best”
compromises. Computing the Pareto set for arbitrary functions is a computa-
tionally hard problem, even more so for non-analytic functions. In the special sit-
uation of model-based quantitative safety analysis, one objective function is the

1 For simplicity, a continuous value is used here. In practice, a fixed number of different
odometers and respective failure rates will be more realistic. Such a situation would
of course be also possible with this approach (even with lower computational effort).

430 M. Güdemann and F. Ortmeier

evaluation of the model with a stochastic model checker. This is treated as a
black-box function for which no information about derivatives or mathematical
properties is known. Therefore, the minimization problem is solved with an op-
timization scheme based on genetic algorithms which do not rely on derivative
information.

Perhaps the biggest challenge for the safety optimization is that evaluation of
f1 (the quantitative safety assessment with pDCCA) needs much longer than the
computation of the analytic functions or even a qualitative safety analysis, the
average running time of one single pDCCA for the example is 11.5min. Normally
genetic algorithms rely on a large number of function evaluations. This problem
is tackled by using adaptive estimators which allow for an a-priori identification
of potentially good system variants. The costly operations are then only applied
on promising candidates.

4.2 Safety Optimization

Our approach for model-based multi-objective safety optimization is based on
the non-dominating sorting genetic algorithm (NSGA-II) [30]. It is one of the
most widely used multi-objective genetic algorithms. It has a very elaborate
strategy to assure diversity in the system variants and has successfully been
applied to many different optimization problems. Combination of genetic algo-
rithms with estimation models to increase the convergence has already been done
by [6]. A NSGA-II variant using artificial neural network estimators to reduce
the number of actual function evaluations is introduced in [20]. This algorithm
has been adapted to allow for the model-based multi-objective optimization of
safety critical systems. The complete approach for the model-based optimization
is shown in Fig. 2.

model

end reached?end not reached?

I

II

III

IVV

VI

VII

VIII

Create Initial
Candidates

Feasibility CheckEval Candidates on

Estimator Model

Create new Candidates

Update Estimator

Evaluate Candidates

Pareto Sort Return Pareto Set

Fig. 2. Schematic View of Model-Based Multi-Objective Safety Optimization

Model-Based Multi-objective Safety Optimization 431

I At first an Initial Set of Candidates for the system design is created. For
system components where different variants with the same functional prop-
erties are available, one specific implementation is selected. For parameters,
an initial value is chosen in a pseudo-random fashion. To ensure that a repre-
sentative choice is made, values are chosen with Latin-hypercube sampling,
either from a uniform distribution over an interval or from a logarithmic
partitioning of an interval (this is desirable e.g. for probabilities where very
small probabilities would be left out on an only uniform distribution).

II In the Feasibility Check, the candidates are checked for admissibility by
verifying qualitative properties, i.e. qualitative safety properties like minimal
critical sets (DCCA). Only candidates that meet the qualitative requirements
are evaluated with quantitative methods. If no admissible candidates are
found in the initial sampling the optimization process is terminated.

III In the Evaluation step, all candidates are evaluated for all objective goal
functions and the results are stored. For safety optimization one objective
function will always be the hazard occurrence probability (we are using pD-
CCA for this).

IV The evaluation results are used in the Pareto Sort step to rank all candi-
dates and compute the current Pareto set. The dominating candidates in the
current population are identified in this step. NSGA-II uses the “crowding
distance” [30] which balances function values and distance of candidates to
increase diversity in the population.

V The results of the evaluation are used to Update the Estimation Model.
In the current implementation this is realized as an artificial neural network
which estimates the values of all objective goal functions for a system variant.
It is based on the fast artificial neural network library libfann [21].

VI In the next step, Creation of New Candidates is done by combining
the most promising existing candidates and mutating in a random fashion.
To ensure diversity and prevent early overfitting, the mutation rate is ad-
justed with the number of generations, and a roulette selection with fixed
probabilities is used to select candidates for combination.

VII The generated new candidates are then Evaluated on the Estimation
Model and the best ones – according to the estimation model – are chosen
for the next iteration. This selects the most promising candidates for concrete
quantitative assessment, thus saving the evaluation time from less-promising
ones. The selected candidates are then checked for qualitative feasibility (step
II) and the algorithm continues.

VIII The algorithm terminates once either the maximal time is reached or the
planned number of generations has been reached and the planned number
of candidates has been evaluated.

4.3 Optimization of the Case Study

It is relatively obvious, that decreasing the failure rate for the odometer directly
increases the cost and that decreasing the allowed speed increases the time delay.
These objective functions are analytic and the effect of the different variables can

432 M. Güdemann and F. Ortmeier

be studied using calculus. Still, finding the best compromise, i.e. an optimum for
both at the same time which is not necessarily an optimum for every objective
function considered in isolation, is difficult.

For the non-analytic “black-box” function f1, the effect of the parameters is
unclear. From the modeling, an increase in the safety margin should decrease
the hazard probability. It also seems obvious that the effect of the allowed speed
on the hazard probability is also directly proportional and that a lower allowed
speed means a decreased risk.

Yet, the “obvious” effect of decreased safety with increased speed does not
really hold. Under closer examination one finds that, although for larger values
for the allowed speed the increase in hazard probability clearly shows (even
rather dramatically for values over 17m

s), the minimum is actually reached at
a value of 4m

s and slower speed increase the hazard probability! This effect is
not expected and would probably lead to wrong assumptions if not checked on
the quantitative model. The reason for this is the requirement that the crossing
reopens after a while even if the train had not passed the crossing (see Sect. 2).

The optimization of the case study was computed with two parallel runs on a
8 core Xeon CPU with 2.66 Ghz and 16G RAM2. An additional advantage of us-
ing the proposed approach for optimization is its trivial parallelization for further
speedup. The population size was 25 and 20 generations were created in total. For
each new generation, 250 candidates were created and evaluated on the estimation
model. So in total 1050 (2 · 25 initial candidates and 2 · 20 · 25 evolved) function
evaluations were conducted which required 4 days and 5 hours. PRISM [18] was
used as verification tool, the model representations were sparse matrices.

The results of the parallel runs were then combined into a single result file to
further increase diversity. The Pareto set was then computed on the combined
results. Note that in contrast to the published original NSGA-II, all evaluated
pDCCA results are stored and used for the final Pareto set computation, not only
the candidates in the last generation of the genetic algorithm. The total number of
elements in the Pareto set is 258. As there are 3 objective functions, it is difficult
to visualize the complete Pareto set. For illustration purposes, a two-dimensional
projection of the Pareto set for the functions f1 and f2 is shown in Fig. 3.

The figure clearly shows, that the initial “guess” (the point marked with the
arrow) is not even in the Pareto set. This means there are system variants which
are better than the original system design with respect to these two objective
functions. This holds true for all other combinations of two objective functions,
which are omitted here because of space restrictions. Analyzing the complete
three-dimensional Pareto set, it turned out that exactly one system variant x∗

was found which is better for all three aspects than the initial system variant
xinitial as shown in the following:

f(x∗) = f

⎛
⎝9.04 · 10−5 1

s
4.97m

67.08km
h

⎞
⎠ =

⎛
⎝4.90 · 10−7

7.70
2.76s

⎞
⎠ <

⎛
⎝5.63 · 10−7

7.96
2.80s

⎞
⎠ = f(xinitial)

2 For the experimental software please contact the authors.

Model-Based Multi-objective Safety Optimization 433

Fig. 3. Projection of the Pareto set onto f1 and f2

4.4 Selection of System Design

In this example there was a single element in the Pareto set which was better in
all aspects than the original reference system. In general, there will be several
dominating candidates. Therefore one of them has to be selected. This is a well-
known problem in multi-criteria optimization. Different criteria are possible to
decide which to choose for general systems [7]. For safety critical systems, hazard
probability must typically be kept below a given threshold. This means that all
systems variants that have a hazard probability above a given threshold must
be discarded. A possible decision strategy might then be to choose the most
cost effective system variant which adheres to the hazard probability threshold
required by a standard. More elaborate approaches are of course possible, but
are not in the scope of this paper.

5 Related Work

A first approach to use hazard probabilities in an optimization approach has
already been described in [24]. It uses analytical mathematical models in an a-
posteriori optimization. This approach is computationally much more efficient.
However, it can not cope with stochastic dependencies and relies on separate
models for quantitative analysis. In addition, quantitative approximations are
much coarser. This approach might be useful alternative to the current estimator
model.

434 M. Güdemann and F. Ortmeier

In [9], a framework for early quality prediction of component-based systems
is proposed. It aims in particular at systems where reliability, safety, availabil-
ity and security are important. But also allows consideration of performance of
the system. Although it mainly considers software systems, the framework could
be extended to also include software-intensive safety critical systems and ad-
ditional non-functional requirements like costs as described in this paper. This
would allow the described model-based multi-objective safety optimization to be
integrated into the larger framework proposed in [9].

In [28], the Hip-Hops [29] methodology is used as the basis for optimization
of safety critical systems. Hip-Hops is a structural approach to safety analysis,
where components with known properties can be combined into a larger system
model and a failure propagation model is used to describe how the system reacts
in case of failure occurrence. Such a structural description is then used to evolve
better system designs with similar properties wrt. functionality, but better failure
tolerance and/or lower costs. For this optimization a variant of NSGA-II is used.

The advantage of our model-based approach is the accompanying increase in
accuracy. On the other hand, as the whole system must be analyzed, it may
suffer from the state-explosion problem, which is less severe for an approach
as [28]. A combination of the two approaches would be interesting, e.g. using
the Hip-Hop approach for the structural description of the system, but analyz-
ing the single components with the more accurate model-based safety analysis.
The optimization could then be applied on either structural level – exchanging
equivalent components – or the parameter level of the components. This could
be an interesting compromise between accuracy and scalability.

6 Conclusion

The paper presented a method to optimize safety-critical systems with respect to
multiple goal functions. It will automatically find (all) best compromises between
feasible safety, affordable cost and functional properties. The approach itself is
generic. It may be combined with any model-based automatic safety analysis
method. In this paper DCCA was used for feasibility checking and pDCCA for
quantitative assessment of the system variants.

The approach guarantees that any specified set of qualitative (safety) prop-
erties holds for each proposed optimized system variant. Combination with very
precise model-based qualitative and quantitative safety analysis methods make
quantitative estimations very accurate and avoid coarse over estimations. Al-
though computational costs are high, a smart estimator model allowed to apply
the approach to a medium-sized case study with a single work station. Possible
parallelization is straight forward, so that it can easily be distributed on a clus-
ter of normal PCs and run over night. Further increases in performance seem
possible through combination with other methods for estimating system safety.

Besides these performance improvement, an interesting area for further re-
search is comparing different multi-objective optimization algorithms in the
context of safety optimization. Another very interesting question is the effect of

Model-Based Multi-objective Safety Optimization 435

different estimation methods on the quality of the optimization. The method
of estimation is crucial for both convergence speed and quality of the results.
Our experiments with the optimization of the case study described in this paper
showed that both the absolute and relative estimation error of the neural net-
work for the estimation of the hazard probability decreased considerable with
the number of available real evaluation data. An interesting question for further
research is how much of the effect comes from generalization and how much from
concentrating the search in similar directions due to the estimation model. Fur-
thermore different estimation methods and also different (adaptive?) strategies
for using the estimations methods will be compared in further research.

Acknowledgment. Matthias Güdemann is funded by the German Ministry of
Education and Science (BMBF) within the ViERforES project (no. 01IM08003C).

References

1. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,
reliable systems using Scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2004)

2. Böde, E., Peikenkamp, T., Rakow, J., Wischmeyer, S.: Model based importance
analysis for minimal cut sets. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 303–317. Springer, Hei-
delberg (2008)

3. Bozzano, M., Villafiorita, A.: Improving system reliability via model checking: the
FSAP/NuSMV-SA safety analysis platform. In: Anderson, S., Felici, M., Little-
wood, B. (eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 49–62. Springer, Heidel-
berg (2003)

4. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.:
Model-based codesign of critical embedded systems. In: Proceedings of ACES-MB,
vol. 507, pp. 87–91. CEUR Workshop Proceedings (2009)

5. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability, and performance analysis of extended AADL models. The Computer
Journal (2010)

6. Branke, J., Schmidt, C.: Faster convergence by means of fitness estimation. Soft
Computing - A Fusion of Foundations, Methodologies and Applications 9, 13–20
(2005)

7. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective
optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós,
J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)

8. Grunske, L., Colvin, R., Winter, K.: Probabilistic model-checking support for
FMEA. In: Proceedings of the QEST. IEEE, Los Alamitos (2007)

9. Grunske, L.: Early quality prediction of component-based systems - a generic
framework. Journal of Systems and Software 80(5), 678–686 (2007); Component-
Based Software Engineering of Trustworthy Embedded Systems

10. Güdemann, M., Ortmeier, F., Reif, W.: Computing ordered minimal critical sets.
In: Proceedings of FORMS / FORMAT (2008)

436 M. Güdemann and F. Ortmeier

11. Güdemann, M., Ortmeier, F.: A framework for qualitative and quantitative model-
based safety analysis. In: Proceedings of HASE 2010 (2010)

12. Güdemann, M., Ortmeier, F.: Probabilistic model-based safety analysis. In: Pro-
ceedings of QAPL. EPTCS (2010)

13. Güdemann, M., Ortmeier, F.: Quantitative model-based safety analysis: A case
study. In: Proceedings of SICHERHEIT. LNI (2010)

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 102–111 (1994)

15. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation, Corrected
Proof. 167–176 (2010) (in press)

16. Kletz, T.A.: Hazop and HAZAN notes on the identification and assessment of
hazards. Technical report, Inst. of Chemical Engineers, Rugby, England (1986)

17. Klose, J., Thums, A.: The STATEMATE reference model of the reference case study
‘Verkehrsleittechnik’. Technical Report 2002-01, Universität Augsburg (2002)

18. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic symbolic model
checker, pp. 200–204. Springer, Heidelberg (2002)

19. Miettinen, K.: Some methods for nonlinear multi-objective optimization. In: Zit-
zler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001.
LNCS, vol. 1993, pp. 1–20. Springer, Heidelberg (2001)

20. Nain, P.K.S., Deb, K.: Computationally effective search and optimization proce-
dure using coarse to fine approximations. In: Proceedings of CEC (2003)

21. Nissen, S.: Implementation of a fast artificial neural network library (fann). Tech-
nical report, Department of Computer Science University of Copenhagen, DIKU
(2003), http://fann.sf.net

22. Ortmeier, F., Reif, W.: Safety optimization: A combination of fault tree analysis
and optimization techniques. In: Proceedings of DSN, Florence. IEEE Computer
Society, Los Alamitos (2004)

23. Ortmeier, F., Reif, W., Schellhorn, G.: Formal safety analysis of a radio-based
railroad crossing using deductive cause-consequence analysis (DCCA). In: Dal Cin,
M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 210–224.
Springer, Heidelberg (2005)

24. Ortmeier, F., Schellhorn, G., Reif, W.: Safety optimization of a radio-based railroad
crossing. In: Proceedings of FORMS / FORMAT (2004)

25. Ortmeier, F.: Formale Sicherheitsanalyse. Logos Verlag, Berlin (2006)
26. Ortmeier, F., Güdemann, M., Reif, W.: Formal failure models. In: Proceedings of

DCDS. Elsevier, Amsterdam (2007)
27. Ortmeier, F., Schellhorn, G.: Formal Fault Tree Analysis - Practical Experiences.

In: Proceedings of AVoCS (2006)
28. Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., Grätz,

U., Lie, R.: Engineering failure analysis and design optimisation with hip-hops.
Engineering Failure Analysis (2010)

29. Pasquini, A., Papadopoulos, Y., McDermid, J.: Hierarchically performed hazard
origin and propagation studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.)
SAFECOMP 1999. LNCS, vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

30. Deb, K., Pratap, A., Agarwal, S., Meyarivan T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation,
181–197 (2002)

31. Vesley, W., Dugan, J., Fragole, J., Minarik II, J., Railsback, J.: Fault Tree Hand-
book with Aerospace Applications. NASA Office of Safety and Mission Assurance
(August 2002)

http://fann.sf.net

Tradeoff Exploration between Reliability, Power

Consumption, and Execution Time

Ismail Assayad1, Alain Girault2, and Hamoudi Kalla3

1 ENSEM (RTSE team), University Hassan II of Casablanca, Morroco
2 INRIA and Grenoble University (POP ART team and LIG lab), France

3 University of Batna (SECOS team), Algeria

Abstract. We propose an off-line scheduling heuristics which, from a
given software application graph and a given multiprocessor architec-
ture (homogeneous and fully connected), produces a static multiproces-
sor schedule that optimizes three criteria: its length (crucial for real-time
systems), its reliability (crucial for dependable systems), and its power
consumption (crucial for autonomous systems). Our tricriteria schedul-
ing heuristics, TSH, uses the active replication of the operations and the
data-dependencies to increase the reliability, and uses dynamic voltage
and frequency scaling to lower the power consumption.

1 Introduction

For autonomous critical real-time embedded systems (e.g., satellite), guarantee-
ing a very high level of reliability is as important as keeping the power con-
sumption as low as possible. We present an off-line scheduling heuristics that,
from a given software application graph and a given multiprocessor architecture,
produces a static multiprocessor schedule that optimizes three criteria: its length
(crucial for real-time systems), its reliability (crucial for dependable systems),
and its power consumption (crucial for autonomous systems). We target homo-
geneous distributed architecture, such as multicore processors. Our tricriteria
scheduling heuristics uses the active replication of the operations and the data-
dependencies to increase the reliability, and uses dynamic voltage and frequency
scaling (DVFS) to lower the power consumption. However, DVFS has an impact
of the failure rate of processors, because lower voltage leads to smaller critical
energy, hence the system becomes sensitive to lower energy particles. As a result,
the failure probability increases. The two criteria length and reliability are thus
antagonistic with each other and with the schedule length, which makes this
problem all the more difficult.

Let us address the issues raised by multicriteria optimization. Figure 1 illus-
trates the particular case of two criteria to be minimized. Each point x1 to x7

represents a solution, that is, a different tradeoff between the Z1 and Z2 criteria:
the points x1, x2, x3, x4, and x5 are Pareto optima [17]; the points x2, x3, and
x4 are strong optima while the points x1 and x5 are weak optima. The set of all
Pareto optima is called the Pareto front.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 437–451, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

438 I. Assayad, A. Girault, and H. Kalla

It is fundamental to understand that no
single solution among the points x2, x3, and
x4 (the strong Pareto optima) can be said, a
priori, to be the best one. Indeed, those three
solutions are non-comparable, so choosing
among them can only be done by the user,
depending on the precise requirements of
his/her application. This is why we advocate
producing, for a given problem instance, the
Pareto front rather than a single solution.
Since we have three criteria, it will be a surface

Z2(x6)
x4

x6

x7

Z1(x6)

x5

Second criterion Z2

First
criterion
Z1

x3
x1x2

Fig. 1. Pareto front for a bicrite-
ria minimization problem

in the 3D space (length,reliability,power).
The main contribution of this paper is TSH, the first tricriteria scheduling

heuristics able to produce a Pareto front in the space (length,reliability,power),
and taking into account the impact of voltage on the failure probability. Thanks
to the use of active replication, TSH is able to provide any required level of relia-
bility. TSH is an extension of our previous bicriteria (length,reliability) heuristics
called BSH [6]. The tricriteria extension presented in this paper is necessary be-
cause of the crucial impact of the voltage on the failure probability.

2 Principle of the Method and Overview

To produce a Pareto front, the usual method involves transforming all the cri-
teria except one into constraints, and then minimizing the last remaining crite-
rion iteratively [17]. Figure 2 illustrates the par-
ticular case of two criteria Z1 and Z2. To ob-
tain the Pareto front, Z1 is transformed into a
constraint, with its first value set to K1

1=+∞.
The first run involves minimizing Z2 under the
constraint Z1<+∞, which produces the Pareto
point x1. For the second run, the constraint is set
to the value of x1, that is K2

1=Z1(x1): we there-
fore minimize Z2 under the constraint Z1<K2

1 ,
which produces the Pareto point x2, and so on.
Another way is to slice the interval [0, +∞) into
a finite number of contiguous sub-intervals of the
form [Ki

1, K
i+1
1].

Z1

x4

x2x3

x5

K4
1 K3

1

Z2

x1

K2
1 K1

1 = +∞

Fig. 2. Transformation method
to produce the Pareto front

The application algorithm graphs we are dealing with are large (tens to
hundreds of operations, each operation being a software block), thereby making
infeasible exact scheduling methods, or even approximated methods with back-
tracking, such as branch-and-bound. We therefore have to use list scheduling
heuristics, which have demonstrated their good performances in the past [10].
We propose in this paper a suitable list scheduling heuristics, adapted from [6].

Using list scheduling to minimize a criterion Z2 under the constraint that
another criterion Z1 remains below some threshold K1 (as in Figure 2), requires

Tradeoff Exploration between Reliability, Power Consumption 439

that Z1 be an invariant measure, not a varying one. For instance, the energy is
a strictly increasing function of the schedule: if S′ is a prefix schedule of S, then
the energy consumed by S is strictly greater than the energy consumed by S′.
Hence, the energy is not an invariant measure. As a consequence, if we attempt
to use the energy as a constraint (i.e., Z1=E) and the schedule length as a
criteria to be minimized (i.e., Z2=L), then we are bound to fail. Indeed, the fact
that all the scheduling decisions made at the stage of any intermediary schedule
S′ meet the constraint E(S′)<K1 cannot guarantee that the final schedule S
will meet the constraint E(S)<K1. In contrast, the power consumption is an
invariant measure (being the energy divided by the time), and this is why we
take the power consumption as a criterion instead of the energy consumption
(see Section 3.5).

The reliability too is not an invariant measure: it is neither an increasing
nor a decreasing function of the schedule. So the same reasoning applies if the
reliability is taken as a constraint. This is why we take instead, as a criterion,
the global system failure rate per time unit (GSFR), first defined in [6]. By
construction, the GSFR is an invariant measure of the schedule’s reliability (see
Section 3.7).

For these reasons, each run of our tricriteria scheduling heuristics TSH mini-
mizes the schedule length under the double constraint that the power consump-
tion and the GSFR remain below some thresholds, respectively Pobj and Λobj . By
running TSH with decreasing values of Pobj and Λobj , starting with +∞ and +∞,
we are able to produce the Pareto front in the 3D space (length,GSFR,power).
This Pareto front shows the existing tradeoffs between the three criteria, allow-
ing the user to choose the solution that best meets his/her application needs.
Finally, our method for producing a Pareto front could work with any other
scheduling heuristics minimizing the schedule length under the constraints of
both the reliability and the power.

3 Models

3.1 Application Algorithm Graph

Most embedded real-time systems are reactive, and therefore consist of some
algorithm executed periodically, triggered by a periodic execution clock. Our

I1

I2 G

O1
I3

C
A

F
B

D

E O2

L24

P4 P3

P1 P2

L34

L12

L14 L23
L13

(a) (b)

Fig. 3. (a) An example of algorithm graph Alg : I1, I2, and I3 are input operations,
O1 and O2 are output operations, A-G are regular operations; (b) An example of an
architecture graph Arc with four processors, P1 to P4, and six communication links

440 I. Assayad, A. Girault, and H. Kalla

model is therefore that of an application algorithm graph Alg which is repeated
infinitely. Alg is an acyclic oriented graph (X ,D) (See Figure 3(a)). Its nodes
(the set X) are software blocks called operations. Each arc of Alg (the set D) is a
data-dependency between two operations. If X �Y is a data-dependency, then X
is a predecessor of Y , while Y is a successor of X . Operations with no predecessor
(resp. successor) are called input operations (resp. output). Operations do not
have any side effect, except for input/output operations: an input operation
(resp. output) is a call to a sensor driver (resp. actuator).

The Alg graph is acyclic but it is infinitely repeated in order to take into
account the reactivity of the modeled system, that is, its reaction to external
stimuli produced by its environment.

3.2 Architecture Model

We assume that the architecture is an homogeneous and fully connected multi-
processor one. It is represented by an architecture graph Arc, which is a non-
oriented bipartite graph (P ,L,A) whose set of nodes is P ∪L and whose set
of edges is A (see Figure 3(b)). P is the set of processors and L is the set
of communication links. A processor is composed of a computing unit, to exe-
cute operations, and one or more communication units, to send or receive data
to/from communication links. A point-to-point communication link is composed
of a sequential memory that allows it to transmit data from one processor to
another. Each edge of Arc (the set A) always connects one processor and one
communication link. Here we assume that the Arc graph is complete.

3.3 Execution Characteristics

Along with the algorithm graph Alg and the architecture graph Arc, we are also
given a function Exe : (X ×P)∪ (D×L) �→ R

+ giving the worst-case execution
time (WCET) of each operation onto each processor and the worst-case com-
munication time (WCCT) of each data-dependency onto each communication
link. An intra-processor communication takes no time to execute. Since the ar-
chitecture is homogeneous, the WCET of a given operation is identical on all
processors (similarly for the WCCT of a given data-dependency).

The WCET analysis is the topic of much work [18]. Knowing the execution
characteristics is not a critical assumption since WCET analysis has been applied
with success to real-life processors actually used in embedded systems, with
branch prediction, caches, and pipelines. In particular, it has been applied to
one of the most critical embedded system that exists, the Airbus A380 avionics
software [16].

3.4 Static Schedules

The graphs Alg and Arc are the specification of the system. Its implementation
involves finding a multiprocessor schedule of Alg onto Arc. It consists of two
functions: the spatial allocation function Ω gives, for each operation of Alg (resp.
for each data-dependency), the subset of processors of Arc (resp. the subset of

Tradeoff Exploration between Reliability, Power Consumption 441

communication links) that will execute it; and the temporal allocation function
Θ gives the starting date of each operation (resp. each data-dependency) on its
processor (resp. its communication link): Ω : X �→ 2P and Θ : X × P �→ R

+.
In this work we only deal with static schedules, for which the function Θ

is static, and our schedules are computed off-line; i.e., the start time of each
operation (resp. each data-dependency) on its processor (resp. its communication
link) is statically known. A static schedule is without replication if for each
operation X (and for each data-dependency), |Ω(X)|=1. In contrast, a schedule
is with (active) replication if for some operation X (or some data-dependency),
|Ω(X)|≥2. The number |Ω(X)| is called the replication factor of X . A schedule is
partial if not all the operations of Alg have been scheduled, but all the operations
that are scheduled are such that all their predecessors are also scheduled. Finally,
the length of a schedule is the max of the termination times of the last operation
scheduled on each of the processors of Arc. For a schedule S, we note it L(S).

3.5 Voltage, Frequency, and Power Consumption

The maximum supply voltage is noted Vmax and the corresponding highest op-
erating frequency is noted fmax. For each operation, its WCET assumes that the
processor operates at fmax and Vmax (and similarly for the WCCT of the data-
dependencies). Because the circuit delay is almost linearly related to 1/V [3],
there is a linear relationship between the supply voltage V and the operating
frequency f . From now on, we will assume that the operating frequencies are
normalized, that is, fmax=1 and any other frequency f is in the interval (0, 1).
Accordingly, the execution time of the operation or data-dependency X placed
onto the hardware component C, be it a processor or a communication link,
which is running at frequency f (taken as a scaling factor) is:

Exe(X, C, f) = Exe(X, C)/f (1)

The power consumption P of a single operation placed on a single processor is
computed according to the classical model of Zhu et al. [19]:

P = Ps + h(Pind + Pd) Pd = CefV 2f (2)

where Ps is the static power (power to maintain basic circuits and to keep the
clock running), h is equal to 1 when the circuit is active and 0 when it is inac-
tive, Pind is the frequency independent active power (the power portion that is
independent of the voltage and the frequency; it becomes 0 when the system is
put to sleep, but the cost of doing so is very expensive [5]), Pd is the frequency
dependent active power (the processor dynamic power and any power that de-
pends on the voltage or the frequency), Cef is the switch capacitance, V is the
supply voltage, and f is the operating frequency. Cef is assumed to be constant
for all operations, which is a simplifying assumption, since one would normally
need to take into account the actual switching activity of each operation to com-
pute accurately the consummed energy. However, such an accurate computation
is infeasible for the application sizes we consider here.

442 I. Assayad, A. Girault, and H. Kalla

For a multiprocessor schedule S, we cannot apply directly Eq (2). Instead, we
must compute the total energy E(S) consumed by S, and then divide by the
schedule length L(S):

P (S) = E(S)/L(S) (3)

We compute E(S) by summing the contribution of each processor, depending
on the voltage and frequency of each operation placed onto it. On the proces-
sor pi, the energy consumed by each operation is the product of the active power
P i

ind+P i
d by its execution time. As a conclusion, the total consumed energy is:

E(S) =
|P|∑
i=1

⎛
⎝ ∑

oj∈pi

(P i
ind + P i

d).Exe(oj , pi)

⎞
⎠ (4)

3.6 Failure Hypothesis

Both processors and communication links can fail, and they are fail-silent (a
behavior which can be achieved at a reasonable cost [1]). Classically, we adopt
the failure model of Shatz and Wang [15]: failures are transient and the maximal
duration of a failure is such that it affects only the current operation executing
onto the faulty processor; this is the “hot” failure model. The occurrence of
failures on a processor (same for a communication link) follows a Poisson law
with a constant parameter λ, called its failure rate per time unit. Modern fail-
silent processors can have a failure rate around 10−6/hr [1].

Failures are transient. Those are the most common failures in modern em-
bedded systems, all the more when processor voltage is lowered to reduce the
energy consumption, because even very low energy particles are likely to create
a critical charge leading to a transient failure [19]. Besides, failure occurrences
are assumed to be statistically independent events. For hardware faults, this hy-
pothesis is reasonable, but this would not be the case for software faults [9].

The reliability of a system is defined as the probability that it operates cor-
rectly during a given time interval. According to our model, the reliability of the
processor P (resp. the communication link L) during the duration d is R=e−λd.
Hence, the reliability of the operation or data-dependency X placed onto the
hardware component C (be it a processor or a communication link) is:

R(X, C) = e−λC Exe(X,C) (5)

From now on, the function R will either be used with two variables as in Eq (5),
or with only one variable to denote the reliability of a schedule (or a part of a
schedule).

Since the architecture is homogeneous, the failure rate per time unit is iden-
tical for each processor (noted λp) and similarly for each communication link
(noted λ�).

3.7 Global System Failure Rate (GSFR)

As we have demonstrated in Section 2, we must use the global system failure
rate (GSFR) instead of the system’s reliability as a criterion. The GSFR is the

Tradeoff Exploration between Reliability, Power Consumption 443

failure rate per time unit of the obtained multiprocessor schedule, seen as if it
were a single operation scheduled onto a single processor [6]. The GSFR of a
static schedule S, noted Λ(S), is computed by Eq (6):

Λ(S)=
− logR(S)

U(S)
with R(S)=

∏
(oi,pj)∈S

R(oi, pj) and U(S)=
∑

(oi,pj)∈S

Exe(oi, pj) (6)

Eq (6) uses the reliability R(S), which, in the case of a static schedule S without
replication, is simply the product of the reliability of each operation of S (by
definition of the reliability, Section 3.6). Eq (6) also uses the total processor
utilization U(S) instead of the schedule length L(S), so that the GSFR can
be computed compositionally. According to Eq (6), the GSFR is invariant : for
any schedules S1 and S2 such that S=S1◦S2, where “◦” is the concatenation of
schedules, if Λ(S1)≤K and Λ(S2)≤K, then Λ(S)≤K (Proposition 1 in [6]).

Finally, it is very easy to translate a reliability objective Robj into a GSFR
objective Λobj : one just needs to apply the formula Λobj=− logRobj/D, where D
is the mission duration. This shows that the GSFR criterion is usable in practice.

4 The Tricriteria Scheduling Algorithm TSH

4.1 Decreasing the Power Consumption

Two operation parameters of a chip can be modified to lower the power
consumption: the frequency and the voltage. We assume that each processor
can be operated with a finite set of supply voltages, noted V . We thus have
V={V0, V1, . . . , Vmax}. To each supply voltage V corresponds an operating fre-
quency f . We choose not to modify the operating frequency and the supply
voltage of the communication links.

We assume that the cache size is adapted to the application, therefore ensuring
that the execution time of an application is linearly related to the frequency [12]
(i.e., the execution time is doubled when frequency is halved).

To lower the energy consumption of a chip, we use Dynamic Voltage and
Frequency Scaling (DVFS), which lowers the voltage and increases proportionally
the cycle period. However, DVFS has an impact of the failure rate [19]. Indeed,
lower voltage leads to smaller critical energy, hence the system becomes sensitive
to lower energy particles. As a result, the fault probability increases both due to
the longer execution time and to the lower energy: the voltage-dependent failure
rate λ(f) is:

λ(f) = λ0.10
b(1−f)
1−fmin (7)

where λ0 is the nominal failure rate per time unit, b>0 is a constant, f it the
frequency scaling factor, and fmin is the lowest operating frequency. At fmin

and Vmin, the failure rate is maximal: λmax=λ(fmin)=λ0.10b.
We apply DVFS to the processors and we assume that the voltage switch time

can be neglected compared to the WCET of the operations. To take into account
the voltage in the schedule, we modify the spatial allocation function Ω to give

444 I. Assayad, A. Girault, and H. Kalla

the supply voltage of the processor for each operation: Ω : X �→ Q, where Q is
the domain of the sets of pairs 〈p, v〉 ∈ P × V .

Figure 4 shows a simple schedule
S where operations X and Z are
placed onto P1, operation Y onto pro-
cessor P2, and the data-dependency
X � Y is placed onto the link L12.
Since we do not apply DVFS to
the communication links, we only
compute the energy consumed by the
processors (see Eq (4)):

L

ti
m

e

0

X � Y

Y

(Cef ,Pind)
L12 P2

(Cef ,Pind)
P1

X
(V1, f1)

Z
(V2, f2)

(V3, f3)

Fig. 4. A simple schedule of length L

– On P1: E(P1) = PindL + CefV 2
1 f1 Exe(X, P1, f1) + CefV 2

2 f2 Exe(Z, P1, f2).
– On P2: E(P2) = PindL + CefV 2

3 f3 Exe(Y, P1, f3).

By applying Eqs (1) and (3), we thus obtain:

P (S)=
E(P1)+E(P2)

L
=2Pind +

Cef

L
.
(
V 2

1 Exe(X, P1)+V 2
2 Exe(Z, P1)+V 2

3 Exe(Y, P2)
)

The general formula for a schedule S is therefore:

P (S) = |P|.Pind +
Cef

L(S)

|P|∑
i=1

⎛
⎝ ∑

oj∈pi

V (oj)2.Exe(oj , pi)

⎞
⎠ (8)

4.2 Decreasing the GSFR

According to Eq (6), decreasing the GSFR is equivalent to increasing the re-
liability. Several techniques can be used to increase the reliability of a system.
Their common point is to include some form of redundancy (this is because the
target architecture Arc, with the failure rates of its components, is fixed). We
have chosen the active replication of the operations and the data-dependencies,
which consists in executing several copies of a same operation onto as many
distinct processors (resp. data-dependencies onto communication links).

To compute the GSFR of a static schedule with replication, we use Reliability
Block-Diagrams (RBD) [11]. An RBD is an acyclic oriented graph (N, E), where
each node of N is a block representing an element of the system, and each arc
of E is a causality link between two blocks. Two particular connection points are
its source S and its destination D. An RBD is operational if and only if there
exists at least one operational path from S to D. A path is operational if and
only if all the blocks in this path are operational. The probability that a block
be operational is its reliability. By construction, the probability that an RBD be
operational is thus the reliability of the system it represents.

In our case, the system is the multiprocessor static schedule, possibly partial,
of Alg onto Arc. Each block represents an operation X placed onto a processor P
or a data-dependency X �Y placed onto a communication link L. The reliability
of a block is therefore computed according to Eq (5).

Tradeoff Exploration between Reliability, Power Consumption 445

Computing the reliability in this way requires the occurrences of the failures to
be statistically independent events. Without this hypothesis, the fact that some
blocks belong to several paths from S to D makes the reliability computation
infeasible. At each step of the scheduling heuristics, we compute the RBD of the
partial schedule obtained so far, then we compute the reliability based on this
RBD, and finally we compute the GSFR of the partial schedule with Eq (6).

Finally, computing the reliability of an RBD with replications is, in general,
exponential in the size of the schedule. To avoid this problem, we insert routing
operations so that the RBD of any partial schedule is
always serial-parallel (i.e., a sequence of parallel macro-
blocks), hence making the GSFR computation linear [6].
The idea is that, for each data dependency X � Y such
that is has been decided to replicate X k times and Y
	 times, a routing operation R will collect all the data
sent by the k replicas of X and send it to the 	 replicas
of Y (see Figure 5).

R

Y �

X1

Xk

Y 1

...
...

Fig. 5. A routing oper-
ation

4.3 Scheduling Heuristics

To obtain the Pareto front in the space (length,GSFR,power), we pre-define a
virtual grid in the objective plane (GSFR,power), and for each cell of the grid
we solve one different single-objective problem constrained to this cell, by using
scheduling heuristics TSH presented below.

TSH is a greedy list scheduling heuristic. It takes as input an algorithm
graph Alg , a homogeneous architecture graph Arc, the function Exe giving the
WCETs and WCCTs, and two constraints Λobj and Pobj . It produces as output
a static multiprocessor schedule S of Alg onto Arc, such that the GSFR of S is
smaller than Λobj , the power consumption is smaller than Pobj , and such that its
length is as small as possible. TSH uses active replication of operations to meet
the Λobj constraint, dynamic voltage scaling to meet the Pobj constraint, and
the power-efficient schedule pressure as a cost function to minimize the schedule
length.

TSH works with two lists of operations of Alg : the candidate operations O(n)
cand

and the already scheduled operations O(n)
sched. The superscript (n) denotes the

current iteration of the scheduling algorithm. One operation is scheduled at each
iteration. Initially, O(0)

sched is empty while O(0)
cand contains the input operations

of Alg . At any iteration (n), all the operations in O(n)
cand are such that all their

predecessors are in O(n)
sched.

The power-efficient schedule pressure is a variant of the schedule pressure
cost function [8], which tries to minimize the length of the critical path of the
algorithm graph by exploiting the scheduling margin of each operation. The
schedule pressure σ is computed for each operation oi, and each processor pj as:

σ(n)(oi, pj) = ETS(n)(oi, pj) + LTE(n)(oi) − CPL(n−1) (9)

446 I. Assayad, A. Girault, and H. Kalla

where CPL(n−1) is the critical path length of the partial schedule composed of
the already scheduled operations, ETS(n)(oi, pj) is the earliest time at which
the operation oi can start its execution on the processor pj , and LTE(n)(oi) is
the latest start time from end of oi, defined to be the length of the longest path
from oi to Alg ’s output operations; this path contains the “future” operations
of oi. When computing LTE(n)(oi), since the future operations of oi are not
scheduled yet, we do not know their actual voltage, and therefore neither what
their execution time will be (this will only be known when these future operations
will be actually scheduled). Hence, for each future operation, we compute its
average WCET for all existing supply voltages.

First, we generalize the schedule pressure σ to a set of processors:

σ(n)(oi,Pk) = ETS(n)(oi,Pk) + LTE(n)(oi) − CPL(n−1) (10)

where ETS(n)(oi,Pk)=maxpj∈Pk
ETS(n)(oi, pj).

Then, we consider the schedule length as a criterion to be minimized, and the
GSFR and the power as two constraints to be met: for each candidate operation
oi ∈ O(n)

cand, we compute the best subset of pairs 〈processor, voltage〉 to execute
oi with the power-efficient schedule pressure of Eq (11): Q(n)

best(oi) = Qj s.t.:

σ(n)(oi,Qj)= min
Qk∈Q

{
σ(n)(oi,Qk)|Λ(n)(oi,Qk)≤Λobj∧P (n)(oi,Qk)≤Pobj

}
(11)

where Q is the set of all subsets of pairs 〈p, v〉 such that p ∈ P and v ∈ V (see
Section 4.1), and Λ(n)(oi,Qk) (resp. P (n)(oi,Qk)) is the GSFR (resp. the power
consumption) of the partial schedule after replicating and scheduling oi on all
the processors of Qk with their respective specified voltages. When computing
Λ(n)(oi,Qk), the failure rate of each processor is computed by Eq (7) according
to its voltage in Qk. Finally, P (n)(oi,Qk) is computed by Eq (8).

To guarantee that the constraint Λ(n)(oi,Qk)≤Λobj is met, the subset Qk

is selected such that the GSFR of the parallel macro-block that contains the
replicas of oi on the processors of Qk is less than Λobj . If this last macro-block
B is such that Λ(B)≤Λobj and if Λ(n−1)≤Λobj, then Λ(n)≤Λobj (thanks to the
invariance property of the GSFR).

Similarly, the subset Qk is selected such that the power constraint
P (n)(oi,Qk)≤Pobj is met. There can exist several valid possibilities for the
subset Qk (valid in the sense that the power constraint is met). However, some
of them may lead to the impossibility of finding a valid schedule for the next
scheduled operation, during step n+1. In particular, this is the case when
the next scheduled operation does not increase the schedule length, because
it fits in a slack of the previous schedule: L(n+1)=L(n). At the same time,
the total energy increases strictly because of the newly scheduled operation:
E(n+1)>E(n). By hypothesis, we have P (n)=E(n)/L(n)≤Pobj , but it follows
that P (n+1)=E(n+1)/L(n+1)=E(n+1)/L(n)>E(n)/L(n)=P (n), so even though
P (n)≤Pobj , it may very well be the case that P (n+1)>Pobj . To prevent this and
guarantee the invariance property of P , we over-estimate the power consump-
tion, by computing the consumed energy as if all the ending slacks were “filled”

Tradeoff Exploration between Reliability, Power Consumption 447

by an operation executed at Pmax. Pmax is the computed power under the
highest frequency fm such that Pind + Pmax = Pind + CefV 2f ≤ Pobj/N , where
N is the processors number. If the consumed power with fm exceeds Pobj , then
the next highest operating frequency f ≤ fm is selected, and so on. Thanks to
this over-estimation, even if
the next scheduled operation
fits in a slack and does not
increase the length, we are
sure that it will not increase
the power-consumption
either. This is illustrated in
Figure 6. For lack of space,
we do not study in this
paper the impact of this
over-estimation on the total

over-estimation

L

0

P
in

d
P

in
dP

in
d

P
in

d
P

in
d

⎧⎨
⎩(V2, f2)

(Cef ,Pind)
L12 P2

(Cef ,Pind)
P1

P
d

P
d

P
d

X � Y

ti
m

e
Pmax

⎫⎪⎬
⎪⎭

Y
(V3, f3)

X
{

(V1, f1)

Z

Fig. 6. Over-estimation of the energy consumption

schedule length.
Once we have computed, for each candidate operation oi of O(n)

cand, the best
subset of pairs 〈processor, voltage〉 to execute oi, with the power-efficient sched-
ule pressure of Eq (11), we compute the most urgent of these operations by:

ourg = oi ∈ O(n)
cand s.t. σ(n)

(
oi,Q(n)

best(oi)
)

= max
oj∈O(n)

cand

{
σ(n)

(
oj ,Q(n)

best(oj)
)}

(12)

Finally, we schedule this most urgent operation ourg on the processors of
Q(n)

best(oj), and we finish the current iteration (n) by updating the lists of
scheduled and candidate operations: O(n)

sched := O(n−1)
sched ∪ {ourg} and O(n+1)

cand :=
O(n)

cand − {ourg} ∪ {t′ ∈ succ(ourg) | pred(t′) ⊆ O(n)
sched}.

5 Simulation Results

We perform two kinds of simulations. Firstly, Figure 7 shows the Pareto fronts
produced by TSH for a randomly generated Alg graph of 30 operations, and a
fully connected and homogeneous Arc graph of respectively 3 and 4 processors;
we have used the same random graph generator as in [6]. The nominal failure
rate per time unit of all the processors is λp = 10−5; the nominal failure rate per
time unit of all the links is λ� = 5.10−4; these values are reasonnable for modern
fail-silent processors [1]; the set of supply voltages is V = {0.25, 0.50, 0.75, 1.0}
(scaling factor).

The virtual grid of the Pareto front is defined such that both high and small
values of Pobj and Λobj are covered within a reasonable grid size. Hence, the
decreasing values of Pobj and Λobj , starting with +∞ and +∞, are selected from
two sets of values: Λobj∈{α.10−β} where α ∈ {4, 8} and β ∈ {1, 2, . . .20}, and
Pobj∈{0.8, 0.6, 0.4, 0.2}. TSH being a heuristics, changing the parameters of this
grid could change locally some points of the Pareto front, but not its overall
shape.

448 I. Assayad, A. Girault, and H. Kalla

The two figures connect the set of non-dominated Pareto optima (the surface
obtained in this way is only depicted for a better visual understanding; by no
means do we assume that points interpolated in this way are themselves Pareto
optima, only the computed dots are). The figures show an increase of the sched-
ule length for points with decreasing power consumptions and/or failure rates.
The “cuts” observed at the top and the left of the plots are due to low power
constraints and/or low failure rates constraints.

Figure 7 exposes to the designer a choice of several tradeoffs between the
execution time, the power consumption, and the reliability level. For instance
in Figure 7 (right), we see that, to obtain a GSFR of 10−10 with a power con-
sumption of 1.5 V , then we must accept a schedule three times longer than if we
impose no constraint on the GSFR nor the power. We also see that, by provid-
ing a 4 processor architecture, we can obtain schedules with a shorter execution
length even though we impose identical constraints to the GSFR and the power.

Secondly, Figure 8 shows how the schedule length varies, respectively in func-
tion of the required power consumption (left) or of the required GSFR (right).
Both curves are averaged over 30 randomly generated Alg graphs. We can see
that the average schedule length increases when the constraint Pobj on the power

GSFR GSFR

Fig. 7. Pareto front generated for a random graph of 30 operations on 3 processors
(left) or 4 processors (right)

Fig. 8. Average schedule length in function of the power (left) or the GSFR (right)

Tradeoff Exploration between Reliability, Power Consumption 449

consumption decreases. This was expected since the two criteria, schedule length
and power consumption, are antagonistic. Similarly, the average schedule length
increases when the constraint Λobj on the GSFR decreases. Again, the two cri-
teria, schedule length and GSFR, are antagonistic.

6 Related Work

Many solutions exist in the literature to optimize the schedule length and the
energy consumption (e.g., [13]), or to optimize the schedule length and the re-
liability (e.g., [4,7,2]), but very few tackle the problem of optimizing the three
criteria (length,reliability,energy). The closest to our work are [19,14].

Zhu et al. have studied the impact of the supply voltage on the failure rate [19],
in a passive redundancy framework (primary backup approach). They use DVFS
to lower the energy consumption and they study the tradeoff between the en-
ergy consumption and the performability (defined as the probability of finish-
ing the application correctly within its deadline in the presence of faults). A
lower frequency implies a higher execution time and therefore less slack time
for scheduling backup replicas, meaning a lower performability. However, their
input problem is not a multiprocessor scheduling one since they study the sys-
tem as a single monolithic operation executed on a single processor. Thanks to
this simpler setting, they are able to provide an analytical solution based on the
probability of failure, the WCET, the voltage, and the frequency.

Pop et al. have addressed the (length,reliability,energy) tricriteria optimiza-
tion problem on an heterogeneous architecture [14]. Both length and reliability
are taken as a constraint. These two criteria are not invariant measures, and
we have demonstrated in Section 2 that such a method cannot always guarantee
that the constraints are met. Indeed, their experimental results show that the re-
liability decreases with the number of processors, therefore making it impossible
to meet an arbitrary reliability constraint. Secondly, they assume that the user
will specify the number of processor failures to be tolerated in order to satisfy
the desired reliability constraint. Thirdly, they assume that all the communica-
tions take place through a reliable bus. For these three reasons, it is not possible
to compare TSH with their method.

7 Conclusion

We have presented a new off-line tricriteria scheduling heuristics, called TSH,
to minimize the schedule length, its global system failure rate (GSFR), and its
power consumption. TSH uses the active replication of the operations and the
data-dependencies to increase the reliability, and uses dynamic voltage and fre-
quency scaling to lower the power consumption. Both the power and the GSFR
are taken as constraints, so TSH attempts to minimize the schedule length
while satisfying these constraints. By running TSH with several values of these
constraints, we are able to produce a set of non-dominated Pareto solutions,
which is a surface in the 3D space (length,GSFR,power). This surface exposes the

450 I. Assayad, A. Girault, and H. Kalla

existing tradeoffs between the three antagonistic criteria, allowing the user to
choose the solution that best meets his/her application needs. TSH is an exten-
sion of our previous bicriteria (length,reliability) heuristics BSH [6]. The tricri-
teria extension is necessary because of the crucial impact of the voltage on the
failure probability.

To the best of our knowledge, this is the first reported method that allows
the user to produce the Pareto front in the 3D space (length,GSFR,power). This
advance comes at the price of several assumptions: the architecture is assumed
to be homogeneous and fully connected, the processors are assumed to be fail-
silent and their failures are assumed to be statistically independent, the power
switching time is neglected, and the failure model is assumed to the exponential.

References

1. Baleani, M., Ferrari, A., Mangeruca, L., Peri, M., Pezzini, S., Sangiovanni-
Vincentelli, A.: Fault-tolerant platforms for automotive safety-critical applications.
In: International Conference on Compilers, Architectures and Synthesis for Embed-
ded Systems, CASES 2003, San Jose (CA), USA. ACM, New-York (2003)

2. Benoit, A., Dufossé, F., Girault, A., Robert, Y.: Reliability and performance op-
timization of pipelined real-time systems. In: International Conference on Parallel
Processing, ICPP 2010, San Diego (CA), USA (September 2010)

3. Burd, T.D., Brodersen, R.W.: Energy efficient CMOS micro-processor design. In:
Hawaii International Conference on System Sciences, HICSS 1995, Honolulu (HI),
USA. IEEE, Los Alamitos (1995)

4. Dogan, A., Özgüner, F.: Matching and scheduling algorithms for minimizing ex-
ecution time and failure probability of applications in heterogeneous computing.
IEEE Trans. Parallel and Distributed Systems 13(3), 308–323 (2002)

5. Elnozahy, E., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Work-
shop on Power-Aware Computing Systems, WPACS 2002, Cambridge (MA), USA,
pp. 179–196 (February 2002)

6. Girault, A., Kalla, H.: A novel bicriteria scheduling heuristics providing a guar-
anteed global system failure rate. IEEE Trans. Dependable Secure Comput. 6(4),
241–254 (2009)

7. Girault, A., Saule, E., Trystram, D.: Reliability versus performance for critical
applications. J. of Parallel and Distributed Computing 69(3), 326–336 (2009)

8. Grandpierre, T., Lavarenne, C., Sorel, Y.: Optimized rapid prototyping for real-
time embedded heterogeneous multiprocessors. In: International Workshop on
Hardware/Software Co-Design, CODES 1999, Rome, Italy. ACM, New York (1999)

9. Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of
independence in multi-version programming. IEEE Trans. Software Engin. 12(1),
96–109 (1986)

10. Leung, J.Y.-T. (ed.): Handbook of Scheduling. Algorithms: Models, and Perfor-
mance Analysis. Chapman & Hall/CRC Press (2004)

11. Lloyd, D., Lipow, M.: Reliability: Management, Methods, and Mathematics. ch.9.
Prentice-Hall, Englewood Cliffs (1962)

12. Melhem, R., Mossé, D., Elnozahy, E.N.: The interplay of power management and
fault recovery in real-time systems. IEEE Trans. Comput. 53(2), 217–231 (2004)

Tradeoff Exploration between Reliability, Power Consumption 451

13. Pering, T., Burd, T.D., Brodersen, R.W.: The simulation and evaluation of dy-
namic voltage scaling algorithms. In: International Symposium on Low Power Elec-
tronics and Design, ISLPED 1998, Monterey (CA), USA, pp. 76–81. ACM, New
York (August 1998)

14. Pop, P., Poulsen, K., Izosimov, V.: Scheduling and voltage scaling for en-
ergy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In:
International Conference on Hardware-Software Codesign and System Synthesis,
CODES+ISSS 2007, Salzburg, Austria. ACM, New York (October 2007)

15. Shatz, S.M., Wang, J.-P.: Models and algorithms for reliability-oriented task-
allocation in redundant distributed-computer systems. IEEE Trans. Reliabil-
ity 38(1), 16–26 (1989)

16. Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Comput-
ing the worst case execution time of an avionics program by abstract interpretation.
In: International Workshop on Worst-case Execution Time, WCET 2005, Mallorca,
Spain, pp. 21–24 (July 2005)

17. T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algo-
rithms. Springer, Heidelberg (2006)

18. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mueller, F., Puaut, I., Puschner, P.,
Staschulat, J., Stenström, P.: The determination of worst-case execution times
— overview of the methods and survey of tools. ACM Trans. Embedd. Comput.
Syst. 7(3) (April 2008)

19. Zhu, D., Melhem, R., Mossé, D.: The effects of energy management on reliability
in real-time embedded systems. In: International Conference on Computer Aided
Design, ICCAD 2004, San Jose (CA), USA, pp. 35–40 (November 2004)

Criticality-Driven Component Integration in

Complex Software Systems

Antonio Pecchia, Roberto Pietrantuono, and Stefano Russo

Dipartimento di Informatica e Sistemistica,
Universitá degli Studi di Napoli Federico II,

Via Claudio 21, 80125, Naples, Italy
{antonio.pecchia,roberto.pietrantuono,stefano.russo}@unina.it

Abstract. Complex software systems are commonly developed by in-
tegrating multiple, occasionally Off-The-Shelf (OTS), components. This
process results into a more modular design and reduces development
costs; however, it raises new dependability challenges in case of safety
critical systems. Testing activities conducted during the development
of the individual components might be not enough to ensure a proper
safety level after the integration. The failures of the components and
their impact on the overall system safety have to be assessed in critical
scenarios. This paper proposes a method to support component integra-
tion in complex software systems. The method uses (i) the knowledge of
the architectural dependencies among the system components, and (ii)
the results of failure-modes emulation experiments, to assess both er-
ror propagation phenomena within the system and the criticality of the
components in the system architecture. This information is valuable to
design effective error-mitigation means and, when needed, to select the
most suitable OTS item if multiple equivalent options are available. The
method is applied to a real world Air Traffic Control system, developed
in the context of an academic-industrial collaboration.

Keywords: Integration, Criticality Assessment, Failure-modes Emula-
tion, Air Traffic Control.

1 Introduction

The development of complex software systems increasingly relies on the integra-
tion of existing services and components (built-in-house and, occasionally, Off-
The-Shelf (OTS)), rather than on items built entirely from scratch. This process
is commonly adopted also in critical domains, because it results, in principle,
into a more modular and reliable design and it allows reducing development
costs and time-to-market [1]. However, this process might raise dependability
issues that are related to the integration and interactions among components
[2],[3], especially in critical contexts, such as avionic and railway systems.

Software items that are reused in the design of a system are often devel-
oped either referring to a different context, i.e., developed for another system,
or without any specific context in mind, i.e., the items have been developed

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 452–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Criticality-Driven Component Integration in Complex Software Systems 453

with the precise goal of being reused. As a result, testing activities conducted
during the development of these items might be not enough to ensure a proper
service during operation, because of unforeseeable interactions with the system
integrating them, and the execution environment. The failures of the individual
components and their impact on the overall system safety have to be carefully
assessed in critical scenarios. Furthermore, the cost of the integration activities
(e.g., components selection, adapters development, integration testing, design of
fault tolerance mechanisms), might be even higher than the cost for developing
components from scratch, especially in large and complex systems.

In this paper we present a method to support component integration in com-
plex software systems. The method uses a model of the system at a high level
of abstraction. The model encompasses the architectural components of the sys-
tem, and formalizes the dependencies among them. The model is then used to
drive failure-modes emulation experiments that aim at investigating error prop-
agation phenomena within the system. Based on the error propagation paths
and the error mitigation means observed in the system, the method determines
a criticality level for each component. A criticality level represents the impact
that the failures of the component have on the overall system, i.e., the impact of
its integration. Criticalities allow engineers (i) identifying the components whose
integration is potentially dangerous (these components require either more inte-
gration testing, or the design of proper fault tolerance mechanisms), (ii) compar-
ing different equivalent components, possibly OTSs, with respect to the impact
they have on the overall system safety. This information supports decisions re-
garding fault tolerance mechanisms, allocation of integration testing efforts, and
comparison/selection of (OTS) components.

The proposed method is applied to a real world Air Traffic Control (ATC) sys-
tem, developed in the context of an academic-industrial collaboration involving
a world leading company, SELEX-SI, and academic partners in the COSMIC1

project. We assess the criticality of the components integrated in the ATC sys-
tem. Furthermore, because of the need of the company’s system developers to
select and to integrate a suitable Data Distribution Service (DDS) in the system
we compare two functionally equivalent DDS platforms from the dependability
perspective. Obtained results show that the experiments conducted according to
the proposed method, allow identifying architectural dependencies and resources
of the execution environment that impact the overall system safety, thus driving
the choices taken by the project team.

The rest of the paper is organized as follows. Section 2 surveys related work in
the area of dependability assessment of critical systems. Section 3 describes the
proposed method and the algorithm implementing it. Section 4 and 5 describe
our experience with the ATC system, and provide the results of the experi-
mental campaign. Section 6 discusses the implications of the results on design
choices.

1 COSMIC is a three-year Italian research project aiming to create a research labora-
tory for the development of a open source middleware for mission critical systems.

454 A. Pecchia, R. Pietrantuono, and S. Russo

2 Related Work

Issues related to the development by integration, such as the difficulties in con-
trolling/testing complex interactions among components [2],[3], make depend-
ability a significant challenge in critical scenarios. Several organizations defined
standards and methodologies, such as [4], [5], [6], to support the development of
dependable systems. These standards define a set of tasks and evidence to pro-
duce during the phases of the software development cycle. However, these tasks
may be time consuming, thus neglecting the needs of current software industry.
Testing and validation efforts can be driven with a preliminary knowledge of the
system, in terms of criticality of its components. The standards suggest adopt-
ing hazard analysis and risk assessment techniques, such as failure modes and
effects analysis (FMEA), hazard and operability (HAZOP), event tree analysis
(ETA), and fault tree analysis (FTA) [8]. For example, in [9] and [10] the authors
describe the hazard analysis methodology used in railway dependable systems.
In [11] safety assessment processes for ATM systems have been proposed.

Several works describe approaches based on a dynamic flow graph methodol-
ogy (DFM) [12], [13] to generate timed fault trees, for assessing the risk associ-
ated with dynamic behaviors. Additionally, methodologies and/or technologies
for the safety assessment of real complex infrastructures and operations have
been proposed. Authors in [14] present a case study to apply a goal-oriented
method for car security-related hazard analysis. In [15], it has been proposed a
model based on a network representation, where objects represent concepts and
links represent relations. Nevertheless, this type of works do not consider the
impact of the system architecture on dependability attributes.

Some issues might compromise the effectiveness of existing approaches in in-
dustrial scenarios. For example, the DFM analysis does not provide mechanisms
to cope with the computational complexity of large-scale software systems. Fur-
thermore, risk assessment is often performed by examining only faults at the
interface level without considering the mitigation means included in the architec-
ture of the system. To overcome these limitations, the proposed method adopts
a system model, whose grain is decided by the analyst; this allows lowering the
complexity of the assessment task. Furthermore, the failure-modes emulation
experiments highlight error mitigation means implemented by the system.

3 Integration Strategy

In the following we describe the integration strategy. Section 3.1 provides back-
ground definitions. The assumptions for the failure-modes emulation experiments
are described in Section 3.2. Section 3.3 formalizes the integration algorithm.

3.1 Background: System Model and Criticality Levels

A software system is assumed to be made by a set of software elements, which
interact to implement the services provided by the system. Elements consist of

Criticality-Driven Component Integration in Complex Software Systems 455

entities and resources. An entity, is a stateful active element, which interacts
with resources and/or other entities. A resource, is stateful passive element,
i.e., it does not interact with any other system element. Interactions can induce
a state modification in the target element (stateful interactions), or they can
leave the state of the element unchanged (stateless interactions).

We focus on the dependencies among the system elements to take into ac-
count propagation phenomena. More specifically, we assume the existence of (i)
a control dependency between two entities A and B (or between an entity A
and a resource R), if there is a direct interaction between them, and (ii) a state
dependency between two entities A and B, if there is an interaction between
A and a resource on which B performs a stateful interaction.

A service provided by the system is implemented via a sequence of inter-
actions. Let s be such a service, with s = 1 . . .N (N is the total number of
services). We associate two matrix to each service s, as follows. To represent
control dependencies, we define a matrix Cs, (n + m)*(n + m), with n denoting
the number of entities and m the number of resources. The element Csij is 1 if
an interaction exists between the entity Ei and the entity (resource) Ej (Rj).
Fig.2 shows an example of this type of matrix with reference to the case study.
To obtain the state dependencies between the elements implementing a service
s, we calculate a matrix Ss, as follows: (i) for each Cs, we extract a matrix Crs,
with a value 1 only for each entity-resource stateful interaction, (ii) then, we
sum each obtained Crs matrix, and transpose the resulting matrix, obtaining
CT , (iii) finally, for each service s, Cs * CT (rows * columns) returns Ss.

The criticality of a system element is quantified via the notion of criticality
level (CL). The value of a CL is related to the severity of the effects of the
element failures. Several standards for mission and safety critical systems, such
as [4], [5], and [7], provide specific CL rankings. In the context of this work,
without loss of generality, we consider a generic ranking encompassing four CLs,
i.e., 1 . . . 4, with 1 denoting the highest CL. We adopt a reverse ranking (higher
the criticality, lower the CL) as in the avionic standards, because of the nature
of proposed case study; however, any other choice would have been equivalent.
Adopted CLs, which, again, represent the risk associated with a system function,
and, in turn, with the software system element(s) implementing the function, are:
HIGH (1), i.e., software whose failure causes or contributes to the occurrence of
a catastrophic condition, MEDIUM (2), for software whose failure results in major
failure conditions, LOW (3), for software whose failure results in minor failure
conditions, NO criticality (4), for software whose failure has no effect.

3.2 Assumptions

The proposed method adopts failure-modes emulation experiments to assess the
integration risk. We assume a set of failure-modes representing how a system el-
ement (either entity or resource) can fail [16]. In the case of entities we consider
(i) crash, i.e., the entity stops providing service due to unexpected failure; (ii)
passive hang, i.e., the entity waits indefinitely for a resource which will never be
released (e.g. deadlocks) or for signals which will never be generated; (iii) active

456 A. Pecchia, R. Pietrantuono, and S. Russo

hang, i.e., the entity indefinitely halts, but it keeps the system resources busy.
Failures related to return values are not considered in this study: we assume
that an interaction with correct parameters does not modify the state inconsis-
tently and returns a correct value, i.e. a value within the expected value domain
[16]. Also, we assume that the underlying network does not alter returned val-
ues (reliable channels assumption). As for resources, we consider the following
failure-modes (i) access denied: the resource becomes unavailable; (ii) read
denied: the resource is accessed, but it can not satisfy a reading request; (iii)
write denied: the resource is accessed, but it can not satisfy a writing request;
(iv) corruption: the content of the resource is altered.

The entity-resource model has to be tailored to the system under analysis and
to the chosen grain and level of abstraction. For example, application compo-
nents and OS processes may be regarded as entities and resources might be OS
resources or databases. Entities and resources have to be identified before apply-
ing the algorithm. Furthermore, we assume that the proposed method is applied
after a preliminary hazard assessment step: for each service the potential hazards
have been identified and assigned a criticality level.

3.3 Algorithm

The integration strategy is formalized as a novel algorithm that, expanding the
set of depending entities recursively, assigns a criticality level to the system
elements involved in the provisioning of a given service. Criticality levels are
represented by i) the CL ranking defined above, for entities, and ii) labels for
resources indicating if they are critical or not for the system. The algorithm
outputs the integration risk for each entity as a result of i) individual criticality,
and ii) failure propagation paths (and intrinsic mitigation means). We report a
C-like version of the algorithm, whose key steps are detailed in the following.

1. void RLAssignement(system Sys){
2. EntitySet E = all the entities
3. EntitySet BorderE = border entities set;
4. ENTITY e, reader, writer, ToExpand;
5. MATRIX C,S; //dependency matrices
6. int N,M; //Number of entities and resources
7. for(e ∈ BorderE){
8. InitialCL = getHaResult(e); //STEP 1: Initial definition of CLs
9. //STEP 2: Control-CL assignment
10. ToExpand = e;
11. Expand (ToExpand); //function defined below
12. //STEP 3: State-CL adjustment
13. //For each pair of entities(ei,ej) set CLs according to Table 1
14 for (Sij ! = 0 ∈ S){ //Sij value is the name of resource causing the dependency
15. readerEntity = getReaders(Sij);
16. writerEntity = getWriters(Sij);
17. if (writerEntity ! ∈ (R.isNotRobust)){//if it is not robust to R failures
18. AssignCL(writer)=min(reader,writer); //it pushes a CL value onto
19. //the writer CL stack
20. SetRobustEntities(Sij,writerEntity) //set the Sij isNotRobust vector
21. }} //value for ”writerEntity” entry
22. }
23. for (e ∈ E){ //STEP 4: Final adjustment of the CL value
24. FinalCL(e) = min(e.CLs);
25. }}

Criticality-Driven Component Integration in Complex Software Systems 457

1. voidExpand (Entity ToExpand) {
2. RESOURCE dcR; ENTITY dcE;
3. EntitySet DCE; ResourceSet DCR;
4. //building depending entities and resources sets
5. int i = getRow(ToExpand)//get the C row corresponding to “ToExpand”
6. for (int j = 0 to N+M){
7. if (Cij != 0) {
8. if (j <= N)
9. DCE = DCE + Ej ;
10. else
11. DCR = DCR + R(j−N);
12. }}
13. //evaluating robustness of ”ToExpand” entity with respect to dcR failures
14. for(dcR ∈ DCR) {
15. if (ToExpand ∈ dcR.isNotRobust)
16. //add ToExpand entity to isNotRobust vector resource dcR
17. SetRobustEntities(dcR,ToExpand);
18. }
19.//evaluating robustness of “ToExpand” entity with respect to dcE failures
20. for(dcE ∈ DCE){
21. if (ToExpand! ∈ dcE.isNotRobust)
22. AssignCL(dcE)= getCL(ToExpand)+1; //lower its risk level
23. else//the same risk level
24. AssignCL(dcE)=getCL(ToExpand);
25. ToExpand = dcE;
26. Expand(ToExpand); //recursive call
27. }}

The main types in the algorithm are: ENTITY, RESOURCE and EntitySet, i.e.
a set of “Entity”. Each ENTITY type has associated a stack of CL values, named
“CLs”, because of possible involvement in more than one service and therefore
in more than one CL assignment. Both RESOURCE and ENTITY types have
associated a vector of entity names, named “isNotRobust”. For each resource
R (entity E), this vector contains all the entities that are experienced as not
robust to the resource R (entity E) failures itself. A set of auxiliary functions is
explained by comments.

The goal is to verify (by diving into the system elements tree) if a specific
element implements mitigation means to tolerate, if not, to stop, the propagation
of a failure induced by other depending elements. In this case, the criticality level
of the failing element can be lowered, or the element can be labeled as non-critical
resource, because its failures are tolerated; otherwise, the criticality level remains
unchanged. The main subsequent steps follow:

STEP 1. A starting CL is assigned to the entities directly responsible for
providing a given service, i.e. the so-called border entities : for all identified haz-
ards related to the given service (again, it is assumed that a preliminary hazard
assessment has been performed (Section 3.2)), the minimum observed CL is
assigned to the border entity.

STEP 2. Given an entity Ei, with an assigned CL value, this step aims to (i)
assign a CL to the entities which it depends on (by a control dependency) and (ii)
assess the robustness of Ei with respect to the failure of resources which it has
a control dependency (due to reading or writing operations). The dependency
relation causes a mutual effect among involved entities, so that a failure in one
of them can impact the behavior of depending ones. If we denote with Ei the
entity with an assigned CL, and with Ej a depending entity, in order to assign a

458 A. Pecchia, R. Pietrantuono, and S. Russo

Table 1. CL assignment due to state dependency. s=min(CL[Ei], CL[Ej])

Ej(write) Not robust Robust
Ei(read)
Not CL[Ej]=s CL unchanged
Robust reading/writing critical resource reading critical resource

CL[Ej]=s CL unchanged
Robust writing critical resource non critical resource

CL to Ej , we consider the behavior of Ei once a failure of Ej occurs. According
to the failure-modes Ei can tolerate the failure of Ej , mitigate it, or it can
not be able to tolerate such a failure. If the failure of Ej is mitigated, we can
lower the criticality level of Ej (i.e. increasing its ranking). Otherwise, we set
CL[Ej] = CL[Ei], because Ej has to be considered as critical at least as Ei. In
other words, if the failure of an entity is mitigated, this entity can be considered
less critical for the overall system. In practice, we evaluate the robustness of an
entity to other entities failures, through failure injections campaigns, according
to the adopted failure-modes. As for resources, we are interested in figuring out
if a resource is risky for the system, i.e., if its failures are not tolerated by the
entities accessing it.

STEP 3. In the third step, we modify CLs according to the state depen-
dencies. Two entities, e.g., Ei and Ej , might depend on each other through a
resource R by either reading or writing access. If both entities read from R,
there is no dependency between them, because they do not alter the state of the
resource. Similarly, if both the entities only write on R (thus no one reads the
changed state) we say that there is no dependency. A dependency exists if one
of the entities writes and the other one reads the resource. In this case, if both
entities have been assigned a CL, there are four possibilities shown in Table 1.
A CL can be modified according to the robustness of the entities to the failures
of R. If the writing entity is robust to the failures of R (e.g., if it can detect
and recover from a failure by exploiting temporal and/or spatial redundancy),
we do not modify the CL assigned in the previous step. Otherwise, if it does not
tolerate the failures of R, i.e., some writings can be lost and this can compromise
the reading entity, we have to consider CL[Ej] at least critical as the reading
entity (i.e., CL[Ej] ≤ CL[Ei]).

STEP 4. In the final step, we adjust the CL values. Since the algorithm
analyzes the system through each of the provided services individually, an entity
Ei might be involved in more than one service and thus assigned more than one
CL. The final CL for Ei is the minimum of observed CLs.

The output of the algorithm is a set of labels: for the entities, they indicates
a CL value; as for resources, each label points out if it is a critical resource for
the system or not. Furthermore, the algorithm allows achieving insights on the
failure propagation paths and intrinsic mitigation means of the system.

Criticality-Driven Component Integration in Complex Software Systems 459

4 Case Study

The proposed integration strategy is applied to an Air Traffic Control (ATC)
system developed in the context of an academic-industrial collaboration. A pre-
liminary experience with this system is presented in [19]. The components and
the middleware layers composing the system are described in Section 4.1. In Sec-
tion 4.2 we present how the proposed strategy has been applied to the system.

4.1 ATC System

The reference case study consists of a real-world ATC system. In particular, we
consider a Flight data PLan (FPL) Processor, developed atop an open-source
middleware platform, named CARDAMOM2. A FPL provides information, such
as, the flight route, the expected trajectory of the airplane, airplane-related infor-
mation, and meteorological data. The ATC system uses (i) services of the
CARDAMOM platform, such as, the Load Balancer (LB), Replication (R), and
System Management (SMG), and (ii) an OMG-compliant3 Data Distribution Ser-
vice (DDS) [17]. The DDS allows the components of the application to transmit
the FPL instances. This is done by means of the read and write facilities pro-
vided by the DDS API, which allows to retrieve and to publish a FPL instance,
respectively.

Fig. 1. Overview of the target system: FPL Processor

Fig.1 depicts the FPL Processor. It is implemented as a CORBA-based dis-
tributed objects system. The FPL Processor is composed by the Facade object
and a pool of Processing Servers managed via the LB service. The system
components interact as follows: the Facade object accepts FPL processing re-
quests (i.e., insert, delete, update) supplied by external Clients and guarantees
the data consistency by means of mutual exclusion among requests accessing
the same FPL instance. The Facade redirects each allowed request to 1 out of
N Processing Server, according to the round robin service policy. The selected

2 CARDAMOM is a CORBA-based middleware platform providing services to sup-
port the development of software architectures for safety and mission critical systems
(http://forge.objectweb.org/projects/cardamom)

3 OMG specification for the Data Distribution Service, http://www.omg.org

460 A. Pecchia, R. Pietrantuono, and S. Russo

server (i) retrieves the specified FPL instance from the DDS middleware (e.g.,
DDS MW in Fig.1) by means of the read facility (ii) executes request-specific
computations, and (iii) returns the updated FPL instance to the Facade. The
latter publishes the updated FPL instance by means of the DDS write facility
and finalizes the request. Machines composing the testbed (Intel Pentium 4 3.2
GHz, 4 GB RAM, 1,000 Mb/s Network Interface equipped) run a RedHat Linux
Enterprise 4. An Ethernet LAN interconnects these machines. As normal oper-
ation profile, Client objects invoke the services provided by the Facade with an
average frequency of 50 requests per second. About 4,000 FPLs instances, each
of them of 77,812 bytes, are shared with the DDS MW.

4.2 Integration Strategy

The proposed strategy is applied to the ATC system as described in Section 3. In
the context of the analysis conducted in this paper, we assume the components of
the ATC application (Client, Facade and processing Servers) to be entities and
the DDS a resource. However, it should be noted that the grain of the model is
defined by the analyst; thus, alternative models might have been chosen without
the need to modify the proposed algorithm.

The interaction matrix is built by taking into account the interactions
among the system components, as described in Section 4.1. The matrix is shown
in Fig.2 (A); it has to be noted that all the services of the system exhibit the
same matrix. The interaction between the Facade and the DDS is stateful, as
the Facade writes the updated version of the FPL instance to the DDS. As a
result, a state dependence exists between each processing Server and the Facade.

The iterative algorithm is applied as follows. The Client, i.e., the border entity
of the reference system, is the entry point of the algorithm (Fig.2 (B) - step 1).
We assume HIGH to be a suitable criticality level for this entity; the choice is

Fig. 2. Experimentation: (A) interaction matrix; (B) steps of the algorithm

Criticality-Driven Component Integration in Complex Software Systems 461

Table 2. Failure-modes emulation: entities (ENT.), resources (RES.)

ENT. ATC component (CORBA object)

crash the process is terminated by means of bad manipulations of an uninitialized pointer
active triggering of an infinite loop in the code
hang

passive infinite wait on a locked semaphore
hang

RES. shared memory semaphore network

the vm area struct related target semaphore is network is made unavailable in
access to the target shared memory deleted with ipcrm two different ways (i) via the
denied is deleted from the addressing command-line util ifconfig eth0 down command

space of the process (ii) network cable disconnection
bits storing the memory access permissions are

read access policies are modified modified with semctl; not meaningful
denied by interacting with the OS 200 is set as new value in the case study

paging sub-system [18]
bits storing the memory access permissions are

write access policies are modified modified with semctl; not meaningful
denied by interacting with the OS 400 is set as new value in the case study

paging sub-system [18]
bit-flip technique. We perform

experiments by flipping target semaphore content negligible for the case study.A
corrupt. a single bit or a bit sequence is modified with semctl dedicated LAN environment

of increasing sizes {10, and the SETVAL flag interconnects testbed machines.
100, 1,000, 10,000, 100,000}

reasonable in the case study since the Client represents the most external point
where the service is delivered. We investigate how the failures emulated in the
Facade object impact the Client in the first iteration of the algorithm (Fig.2
(B) - step 2); obtained results allow allocating a proper criticality level to the
Facade object. We subsequently analyze how the Facade object behaves in case
of failures emulated in the components it depends on, i.e., the processing Server
and the DDS (Fig.2 (B) - step 3). Again, a criticality level is allocated to the
Server and we label the DDS (at the Facade, i.e., writer, side) as critical or
non-critical resource, according to the results of the failure-modes analysis. In
the last iteration (Fig.2 (B) - step 4), we investigate how failures emulated in
the DDS impact the processing Server; the DDS (at the Server, i.e., reader,
side) is labelled as critical or non-critical resource. Failures in the Facade and
Server object are emulated by triggering a faulty piece of code when a request
is invoked by the Client. The adopted emulation mechanisms are described in
Table 2 (ENT.). Experiment results are described in 5.1.

We analyze two OTS alternatives, coming from different vendors, as DDS
middleware. The DDS middleware plays a key role in the described ATC system,
both because (i) of the criticality of the domain and (ii) of the workload. For
reasons of confidentiality we do not disclose the actual names of the vendors; we
refer with DDS 1 and DDS 2 to the two DDS implementations. Both DDSs are
integrated in the ATC system as follows: a shared library (*.so, shared object)
is linked to the component that wants to use the DDS. The library relies on

462 A. Pecchia, R. Pietrantuono, and S. Russo

Fig. 3. Internal architecture of the DDS: (A) DDS 1, (B) DDS 2

external resources, e.g., shared memories and/or semaphores, used as support
data structures (Fig.3). To assess the criticality of the DDS, we investigate how
both the Facade and Server behave in case of failures occurring in the resources
used by the DDS library. Table 2 (RES.) shows how these failures are emulated
in the context of the Linux OS. Failures have been injected during the system
operational time with kernel modules. The analysis of the criticality of the DDS
is reported in Section 5.2 and 5.3, for each implementation, respectively.

5 Failure-Modes Emulation Campaign

We conduct the failure-modes emulation campaign as described in 4.2. Each
emulation experiment has been repeated 10 times, in order to ensure that the
results were not distorted by transitory phenomena.

5.1 ATC Components: Facade and Processing Server

The entry point of the integration algorithm is the Client object, whose criticality
level has been assumed to be HIGH. We analyze the interaction Client/Facade
beforehand; results of the failure-modes emulation experiments allow allocating
a proper criticality level to the Facade. Crash failures of the Facade object causes
the interruption of the service invoked by the Client. For example, an update
request for a FPL instance does not succeed and the new data are lost, raising
an exception. The emulation of hang failures (both active and passive) causes
the interruption of the invoked service; in this case no exception is raised at the
Client side. However, if other services are invoked after a hang failure, the Facade
is able to process the new requests, since it is implemented as a multithreaded
CORBA object. As a result, we conclude that, even if hangs are less critical than
crash failures (the Facade encapsulates specific error mitigation mechanisms), a
service is never able to succeed in case of failures in the Facade object. The
Facade is as critical as the Client. We assign HIGH as criticality level.

We analyze the interaction Facade/Server. Crash failures of the Server ob-
ject cause the request forwarded by the Facade to be lost. However, processing

Criticality-Driven Component Integration in Complex Software Systems 463

Servers are organized as a load-balancing pool. For this reason, when the re-
quest is lost the Facade re-forwards the request to another server, until it is
correctly executed. The emulation of hang failures (both active and passive)
in the Server causes the interruption of the invoked service. Again, no exception
is raised at the Facade side, however, the Server will be able to execute new in-
coming requests because of the multithreaded implementation. We conclude that
the Facade is robust to crashes emulated in the Server; hangs are partially tol-
erated. The processing Server is less critical than the Facade, thus it is assigned
MEDIUM as criticality level.

5.2 Analysis of the DDS 1

The DDS 1 consists of a shared library to be linked to the application, and
internal middleware processes. Applicative processes (i.e., Facade and Processing
Server, respectively) communicate with the DDS internal ones (DA and DB,
networking processes) by means of a shared memory (Fig.3 (A)). Middleware
processes are responsible for the communication among the computing nodes of
a domain. Facade and processing Server interact with shared memories (named
MA and MB, respectively) on both the nodes. We investigate how the failures
emulated in these resources impact the correct behavior of the system.

As depicted in Fig.3 (A) the Facade object interacts with MA. As expected,
the Facade crashes with a “segmentation fault” message in case of an access,
read, or write denied. This is due to the nature of the Linux OS paging sub-
system. The corruption of MA has different consequences, depending on the
modified bits. In particular, the Facade enters a hang state if the corruption
affects lowest MA bits, a crash one, otherwise. The Processing Server inter-
acts with MB. It crashes with a “segmentation fault” message in case of an
access, read, or write denied. Apparently, the corruption of MB does not
make the Processing Server to hang or crash; however, after the emulation ex-
periment, the updated versions of FPL instances are not delivered to the server
anymore. Furthermore, no error notifications are returned.

We conclude that failures of MA and MB always compromise the mission of
the ATC system. MA and MB are critical resources at the writer and reader
side, respectively, since the DDS library, integrated in the ATC components,
does not encapsulate suitable mitigation means to tolerate injected failures.

5.3 Analysis of the DDS 2

The DDS 2 exhibits a different architecture (Fig.3 (B)). All the code of the DDS
is mapped into the application processes in the form of a shared library. As a
result, Facade and processing Servers interact directly with shared memories,
semaphores and the network. Let MA, SA1, SA2 and MB, SB1, SB2 be shared
memories and semaphores at Facade and Processing Server side, respectively.
Let N be the network. Fig.3 (B) depicts the interactions to transmit data, i.e.,
FPLs, between two computing nodes.

The Facade process relies on MA, SA1 and SA2. As we expected, the Facade
object crashes with a “segmentation fault” message in case of an access,

464 A. Pecchia, R. Pietrantuono, and S. Russo

read, or write denied. The corruption of MA does not compromise both the
behavior of the Facade and data transmission (i.e., each subsequent DDS write
invocation correctly succeeds). Furthermore, the improper modification of the
shared memory content is notified with the following message:

“* Transport Shmem attach writer: incompatible shared memory segment

found. All applications using * must use compatible shared memory

protocols”. This warning message is triggered by the DDS library every 10
seconds and it is printed on the console of the Facade. We can conclude that
failures of MA do not necessarily compromise the mission of the ATC system.
In this case, the library of the DDS 2 encapsulates mitigation mechanisms that
tolerate the corruption and notify the faulty state of the resource. SA1 and SA2

access/read denied, and corruption do not affect Facade operations. The
write denied emulated on both the semaphores is notified with the following
messages: “* Mutex lock: OS semop() failure error OXD. * send:!take

semaphore”, and: “* Mutex ive: OS semctl() failure error OXD. * send:

!give semaphore.”, respectively. The warning messages are triggered by the
DDS library every 10 seconds and are printed on the Facade console. We conclude
that failures emulated on SA1 and SA2 do not compromise the mission of the
ATC system. DDS 2 tolerates and notifies emulated failures: thus, semaphores
are not critical resources.

Processing Server uses MB, SB1 and SB2. Failure emulation provides findings
similar to the Facade. DDS 2 tolerates, and occasionally notifies, emulated fail-
ures. Facade and processing Server communicate through N . When we emulate
network unavailability with any of the proposed mechanisms, updated FPL in-
stances are lost. However, both processes do not exhibit any explicit notification.
Communication between the nodes is restored when the network is resumed. N
unavailability compromises the mission of the system, however DDS 2 is robust
to transient failures of the network.

6 Design Implications and Lessons Learnt

Experiments show that the Facade is the most critical object in the ATC sys-
tem. Failures of different types occurring in the Facade are not tolerated by the
Client; furthermore, a crash of the Facade object compromises the mission of
the system as a whole. On the other hand, the processing Server is not partic-
ularly critical. The proposed approach highlights that the system encapsulates
error mitigation means to tolerate the failures occurring in the processing Server.
As a result, most of the testing/validation efforts should be devoted to the Fa-
cade object. Alternatively, additional mitigation means might be included in the
system to reduce the criticality of the Facade, considering the observed failure-
modes. In general, the overall safety level of a system depends on the nature of
the dependencies among its components. Thus, such dependencies should always
be analyzed as showed. Indeed, the architecture of the system and design choices
affect the ability of the system to react and to mitigate the failures.

Criticality-Driven Component Integration in Complex Software Systems 465

The analysis of the two DDSs reveals that different implementations of the same
service, i.e., the data distribution, affect the ability of tolerating failures. We ob-
served that both DDSs use shared memories. In DDS 1 they have a critical role.
Communications occur via sharedmemorybothat theFacadeandProcessingServer.
In other words, it is a single point of failure, since each emulated failure compro-
mises data transmission. DDS 2 uses shared memories too. Anyway, in this case
they provide only support facilities. Their corruption does not compromise data
transmission. DDS 1 does not use semaphores, thus avoiding the introduction of
new potential failure sources. However, they do not represent an actual depend-
ability threat in DDS 2. Even if they are used to access resources, their failures do
not compromise the service completion. Again, the same resource, e.g., the shared
memory provided by the Linux OS, is critical for the first DDS implementation,
but not for the other. This enforces that, in general, distinct OTS implementations
might result in different fault tolerance features with respect to the execution envi-
ronment; these features have therefore to be assessed, in order to make convenient
choices (e.g., choosing a different OTS, or implement fault tolerance mechanisms).

Despite the different features of the DDS, the choice of a less dependable
implementation does not affect the criticality levels of the components in the
proposed case study. As discussed, a state dependence exists between the pro-
cessing Server and the Facade. A state dependence might modify the criticality
level of the writer entity, when it is not robust to the failures of the resource (see
Table 1). However, the Facade, i.e., the writer, is already more critical than the
processing Server, thus the criticality of these two components does not change
due to the dependence. We observe that, in general, both (i) the fault tolerance
capabilities of the OTS, and (ii) the criticality of the components of the system
that use the OTS are worth to be assessed, since the choice of a specific OTS
component depends on both these aspects.

In the future, we will extend the integration approach to other domains and
applications. We aim to compare in terms of dependability, other than differ-
ent architectures, different execution environments. Moreover, we will extend
the approach by considering different kinds of OS/middleware resources, as well
as other failure-modes, in order to increase the accuracy of the experimenta-
tion. One of our goals is to investigate further failure emulation techniques to
deal with software, coming from different suppliers, for which vendor does not
share the code and does not provide practical support for the integration (i.e.,
a failure emulation completely transparent to the OTS internals). This will help
establishing a common procedure, independently from the OTS suppliers.

Acknowledgment. This work has ben partially supported by the project “CRIT-
ICAL Software Technology for an Evolutionary Partnership” (CRITICAL-STEP,
http://www.criticalstep.eu), Marie Curie Industry-Academia Partnerships
and Pathways (IAPP) number 230672, within the context of the EU Seventh
Framework Programme (FP7) and by the Italian Ministry for Education, Uni-
versity, and Research (MIUR) in the framework of the Project of National Re-
search Interest (PRIN) “DOTS-LCCI: Dependable Off-The-Shelf based middle-
ware systems for Large-scale Complex Critical Infrastructures”.

466 A. Pecchia, R. Pietrantuono, and S. Russo

References

1. Hammet, R.: Flight-Critical Distributed Systems: Design Considerations. IEEE
AESS Systems Magazines, 30–36 (2003)

2. Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE Soft-
ware 15(5), 54–59 (1998)

3. Moraes, R.L.O., Durães, J., Barbosa, R., Martins, E., Madeira, H.: Experimental
Risk Assessment and Comparison Using Software

4. CENELEC: EN 50126 Railways Applications. The specification and demonstration
of Reliability,Availability, Maintainability and Safety (RAMS)

5. DO-178B/ED12B Software consideration in airborne systems and equipment cer-
tification. RTCA and EUROCAE (December 1992)

6. SAF.ET1.ST03.1000-MAN-01. Air Navigation System Safety Assessment Method-
ology (v2-0). EUROCONTROL EATMP Safety Management (April 2004)

7. Functional safety and IEC 61508. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems. Produced by IEC/SC65A/WG14,
The working group responsible for guidance on IEC 61508 (September 2005)

8. Storey, N.: Safety-Critical Computer Systems. Pearson and Prentice Hall (1996)
9. Hassami, A.G., Foord, A.G.: Systems safety-a real example (European rail traffic

management system, ERTMS). In: Proc. of the Second IEEE International Con-
ference on Human Interfaces in Control Rooms, Cockpits and Command Centres,
pp. 327–334 (2001)

10. Pasquale, T., Rosaria, E., Pietro, M., Antonio, O.: Hazard analysis of complex
distributed railway systems. In: Proc. of the 22nd IEEE International Symposium
on Reliable Distributed Systems (SRDS 2003), pp. 283–292 (October 2003)

11. Mana, P., De Redet, J.M., Fowler, D.: Assurance Levels for ATM elements: Human
(HAL), Operational Procedure (PAL), Software (SWAL). In: Proc. of the 2nd IEEE
Int. Conference on Institution of Engineering and Technology, pp. 13–19 (October
2007)

12. Garrett, C., Apostolakis, G.: Automated hazard analysis of digital control systems.
Reliability Engineering and System Safety 77, 1–17 (2002)

13. Garrett, C., Guarro, S., Apostolakis, G.: The Dynamic Flowgraph Methodology
for Assessing the Dependability of Embedded Software Systems. IEEE Trans. on
Syst., Man, and Cybern. 25(5), 824–840 (1995)

14. Supakkul, S., Lawrence, C.: Applying a Goal-Oriented Method for Hazard Analy-
sis: A Case Study. In: Proc. of the 4th International Conference on Software Engi-
neering Research, Management and Applications (SERA 2006), pp. 22–30 (August
2006)

15. Hewett, R.: Assessment of Software Risks with Model-Based Reasoning. In: Proc.
of IEEE Inter. Conf. on Systems, Man and Cybernetics, vol. 4, pp. 3238–3243
(2005)

16. Powell, D.: Failure Mode Assumptions and Assumption Coverage. In: Proceedings
of the 22nd Annual International Symposium on Fault-Tolerant Computing, FTCS
1992 (1992)

17. Pardo-Castellote, G.: OMG data-distribution service: Architectural overview. In:
Proc. of the IEEE ICDCS Workshops, pp. 200–206 (2003)

18. Rubini, A., Corbet, J.: Linux Device Drivers, 2nd edn. O’Reilly, Sebastopol (2001)
19. Cotroneo, D., Pecchia, A., Pietrantuono, R., Russo, S.: A failure analysis of data

distribution middleware in a mission-critical system for air traffic control. In: Proc.
of the 4th ACM Int’l Workshop on Middleware for Service Oriented Computing,
pp. 25–30 (2009)

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 467–479, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On the Use of Semantic Technologies to Model and
Control Security, Privacy and Dependability in

Complex Systems

Andrea Fiaschetti1,*, Francesco Lavorato1, Vincenzo Suraci1,
Andi Palo1, Andrea Taglialatela2, Andrea Morgagni3,

Renato Baldelli3, and Francesco Flammini4

1 University of Rome “La Sapienza” - Via Ariosto 25, 00185 Roma, Italy
{fiaschetti,andi,suraci}@dis.uniroma1.it,

francesco.lavorato@yahoo.it
2 TRS SpA. - Via Circumvallazione Esterna - 80014 Giugliano in Campania (Napoli), Italy

andrea.taglialatela@trs.it
3 Elsag Datamat S.p.a. – Via Laurentina 760, 00143 Roma, Italy

{andrea.morgagni,renato.baldelli}@elsagdatamat.com
4 Ansaldo STS S.p.a. - Via Argine 425, 80147 Napoli, Italy

francesco.flammini@ansaldo-sts.com

Abstract. In this paper a semantic approach is presented to model and control
Security, Privacy and Dependability (SPD) in complex interconnected
environment composed by heterogeneous Embedded Systems.

Usually, only the individual properties are locally considered to obtain
desired functionalities and this could result in sub-optimal solutions. With the
use of modern semantic technologies (like OWL or reasoning engines) it is
possible to model not only the individual parameters but also the relations
between the different (and dynamically changing) parts of the systems, thus
providing enriched knowledge and more useful information that could feed
control algorithms.

The model presented in this paper is based on the results obtained during the
first phase of the pSHIELD1 project (conceived and lead by Finmeccanica) and
it is focused on a concrete application coming from a critical scenario in railway
environment: the monitoring of freight trains transporting hazardous material.

Keywords: Ontology, Security, Privacy, Dependability, Model, Common
Criteria.

1 Introduction

The diffusion of Embedded Technologies in everyday life has increased in recent
years. Dozens of components surround us and the intrinsic modularity and connectivity

* Manuscript received on March 21, 2011. Andrea Fiaschetti is the corresponding author

(phone: +39-0677274039; fax: +39-0677274033).
1 ARTEMIS Call 2009 – SP6100204.

468 A. Fiaschetti et al.

capabilities allow them to compose together and to provide enriched and more
complex services and platforms. The composition allows the creation, starting from
elementary devices, of a more complex system with enhanced functionalities: but what
about the Security, Dependability and Privacy of the resulting system? Current
methodologies, like for example the Common Criteria approach [1], can easily address
Security and Dependability assessment for each individual component or algorithm,
but are not able to provide a global view of the complex systems starting from its
elementary components: the system should be assessed as a whole ex-novo. This leads
into a waste of resources (in terms of time and money) and excessive engineering
effort to validate the integrated platforms.

For that reason, the pSHIELD project, funded by ARTEMIS (the Technology
Platform on Embedded System), is proposing an innovative methodology to model
and assess the Security, Privacy and Dependability properties of Embedded System
by means of semantic technologies. Semantic should allow the abstraction of the
system and its functionalities and the extrapolation of SPD relevant information that
can be used by supervisors or controlled to perform action on the individual system’s
components; for that reason, this methodology could be very useful if applied to
safety-critical applications, where the identification and control of Security and
Dependability attributes is a challenging task.

The paper is structured as follows: in Section 2 a generic overview of standard
semantic technology approach is provided; then in Section 3 the solution adopted for
the pSHIELD project is presented as well as the methodology that has lead to its
development. Finally Section 4 will explain how these technologies could be
integrated in a real application scenario and finally in Section 5 conclusions are
drawn.

2 Overview on Semantic Technologies

Since the purpose of this research is to propose a sound framework for an effective
exploitation of semantic technologies in Embedded Systems context in general, and in
particular for Security, Privacy and Dependability issues, we should provide at first a
formal overview on the “State of the Art” methodology to build, verify and maintain
ontology. This State of the Art methodology that we have chosen as reference comes
out from recent valuable work performed by IASI - LEKS (Institute of Informatics
and Systems Analysis - Laboratory for Enterprise Knowledge and Systems) in the
scope of the ONTOMAN, SPEED, COOPER and SITMAR research projects, from
which the following paragraphs are derived.

As a matter of fact, in order to make available large-scale, high quality domain
ontology, effective and usable methodologies are needed to facilitate the process of
ontology building. Ontology building is a task that pertains to the ontology engineers
that we classify as knowledge engineers (KE) and domain experts (DE). Even though
automatic ontology learning methods (such as text mining) significantly support
ontology engineers, speeding up their task, there is still the need of a significant
manual effort, in the integration and validation of the automatically generated
ontology.

 On the Use of Semantic Technologies to Model and Control Security, Privacy 469

Existing ontology building methods only partly are built capitalizing the large
experience that can be drawn from widely used standards in other areas, like software
engineering and knowledge representation. For our purposes, we shall embrace a
methodology for ontology building derived from a well-established and widely used
software engineering process, the Unified Software Development Process.

This is a novel approach to large-scale ontology building that takes advantage of
the Unified Process (UP) and the Unified Modeling Language (UML). This choice
makes ontology building an easier task for modelers familiar with these techniques:
each phase of the method fits in the UP, providing a number of consolidated steps that
guide the process of ontology development. UML has been already shown to be
suitable to this end, confirming its nature of rich and extensible language. What
distinguishes the UP and the ontology building methodology from the other
methodologies, respectively for software and ontology engineering, is their use-case
driven, iterative and incremental nature.

The methodology is use-case driven since it does not aims at building generic
domain ontology, but its goal is the production of ontology that serve its users, both
humans and automated systems (e.g. semantic web services, intelligent agents, etc.),
in a well defined application area. Use cases are the first diagrams that drive the
exploration of the application area, at the beginning of the ontology building process.

The nature of the process is iterative since each interaction allows the designer to
concentrate on part of the ontology being developed, but also incremental, since at
each cycle the ontology is further detailed and extended.

Following the UP, in the methodology we have cycles, phases, iterations and
workflows. Each cycle consists of four phases (inception, elaboration, construction
and transition) and results in the release of a new version of the ontology. Each phase
is further subdivided into iterations. During each iteration, five workflows (described
in the next subsections) take place: requirements, analysis, design, implementation
and test. Workflows and phases are orthogonal in that the contribution of each
workflow to an iteration of a phase can be more or less significant: early phases are
mostly concerned with establishing the requirements (identifying the domain, scoping
the ontology, etc.), whereas later iterations result in additive increments that
eventually bring to the final release of the ontology (Fig.1). Notice that, as illustrated
in the figure, more than one iteration may be required to complete each of the four
phases. This scheme follows faithfully the Unified Process.

The first iterations (inception phase) are mostly concerned with capturing
requirements and partly performing some conceptual analysis. Neither
implementation nor test is performed. During subsequent iterations (belonging to the
elaboration phase) analysis is performed and the fundamental concepts are identified
and loosely structured. This may require some design effort and it is also possible that
the modelers provide a preliminary implementation in order to have a small skeletal
blueprint of the ontology, but most of the design and implementation workflows
pervade iterations in the construction phase. Here some additional analysis could be
still required aiming at identifying concepts to be further added to the ontology.
During the final iterations (transition phase), testing is heavily performed and the
ontology is eventually released. In parallel, the material necessary to start the new
cycle, that will produce the next version of the ontology, is collected. As shown in
Fig. 1, and detailed in the next sections, at each iteration different workflows come

470 A. Fiaschetti et al.

Fig. 1. Mapping onto workflows and phases of UP

into play and a richer and more complete version of the target ontology is produced.
The incremental nature of the methodology requires first the identification of the
relevant terms in the domain, gathered in a lexicon; then the latter is progressively
enriched with definitions, yielding a glossary; adding to it the basic ontological
relationships allows a thesaurus to be produced, until further enrichments and a final
formalization produces the sought reference ontology.

In the following subsections each ontology building workflow is described in
detail.

2.1 The Requirements Workflow

Requirements capture is the process of specifying the semantic needs and the
knowledge to be encoded in the ontology. The essential purpose of this workflow is to
reach an agreement between the modelers, the knowledge engineers, and the final
users, represented by the domain experts. During the first meetings, knowledge
engineers and domain experts establish the guidelines for building the ontology. The
first goal is the identification of the objectives of the ontology users. To this end, it is
necessary to:

─ determining the domain of interest and the scope, and
─ defining the purpose.

These objectives are achieved by:

─ writing one or more storyboards
─ creating an application lexicon
─ identifying the competency questions, and
─ the related use cases.

 On the Use of Semantic Technologies to Model and Control Security, Privacy 471

2.2 The Analysis Workflow

2.2.1 The Conceptual Analysis Consists of the Refinement and Structuring of
the Ontology Requirements Identified in Previous Section

The ontological commitments derived from the definition of scope are extended, by
reusing existing resources and through concept refinement. The application lexicon
will be enriched through the definition of a more general domain lexicon, then
definitions will be added to produce the Reference Glossary.

2.2.2 Considering Reuse of Existing Resources: Identification of the Domain
Lexicon

The domain lexicon is defined as the terminology used in the domain of interest,
extracted by analyzing a corpus of existing resources. The analysis is mainly based on
external resources, such as documents, standards, glossaries, thesauri, legacy
computational lexicons and available ontology. This task, like in the case of the
application lexicon, can be supported by automatic tools. The description of this
activity adheres to the view of linguistic ontology in which concepts, at least the
lower and intermediate levels, are anchored to texts, i.e. they have a counterpart in
natural language.

A statistical analysis shall be done in a corpus of documents of reference to
identify frequently used terms to be included in the domain lexicon. The domain
experts shall decide to include, in this lexicon, all the terms present in, for instance, at
least two standards. Some other terms, present in only one resource, can be included
after approval from a wider panel of experts. After this activity, the domain lexicon
shall contain a number of terms (including synonyms).

2.2.3 Modeling the Application Scenario Using UML Diagrams
The goal of this activity is to model the application scenario and better specify the
Use Case Diagrams, drawn in the requirement workflow, with the aid of Activity and
Class Diagrams. UML diagrams represent a model of the application and will be used
for the validation of the ontology. In principle, all the classes, actors, and activities
modeled in UML must have a corresponding concept in the ontology.

2.2.4 Building the Glossary
A first version of a glossary of the domain of interest has to be built merging the
application lexicon and the domain lexicon. During the merge of the two lexicons we
can organize all the concepts in two major areas: the intersection area and the disjoint
area. Then we use the following “inclusion policy”: the glossary should include all the
concepts coming from the intersection area and, after the domain experts approval,
some concept belonging to the disjoint area. The output is a reference lexicon that will
grow into a glossary by associating one or more definitions to each term. The definitions
should be selected from knowledgeable sources and agreed among domain experts.

2.3 The Design Workflow

The main goal of this workflow is to give an ontological structure to the set of terms
gathered in the Glossary. The refinement of entities, actors and processes identified in

472 A. Fiaschetti et al.

the analysis workflow, as well as the identification of their relationships, is performed
during the design workflow.

2.3.1 Categorizing the Concepts
Each concept is categorized by associating a “kind” to it. Such kinds should include
the major ontological categories, according to proposals of upper ontology, or meta-
ontology,

2.3.2 Refining the Concepts and Their Relations
At this stage, concepts are organized by introducing formal relations among them.
Between sets of synonyms identified in the previous phase. A first step consists in
organizing the concepts in a taxonomic hierarchy through the generalization (i.e.,
kind-of or is-a) relation. To this end, three main approaches are known in the
literature:

─ top-down (from general to particular)
─ bottom-up (from particular to general)
─ middle-out (or combined), which consists in finding the salient concepts and

then generalizing and specializing them. This approach is considered to be the
most effective because concepts “in the middle” tend to be more informative
about the domain.

The resulting taxonomy can be extended with other relations, i.e., part-of and
association. The outcome of this step is Thesaurus, structured according the UML
class diagram relations: generalization (IsA), aggregation (Part-Of) and association. In
parallel, the actual UML diagrams can be built.

2.4 The Implementation Workflow

The purpose of this workflow is to perform the final building step, by formalize
defining the actual ontology in a formal language. The structure of the ontology will
be the one given in the enriched Thesaurus, but here the different elements will be
formally represented. To this end, the Ontology Web Language (OWL) proposed by
the W3C shall be adopted.

The outcome of this workflow is the implementation model, i.e., a reference
ontology encoded in OWL.

2.5 TheTest Workflow

The test workflow allows to verify that the ontology correctly implements the
requirements produced in the first workflow. We envisage two kinds of test.

The first concerns the coverage of the ontology with respect to the application
domain. In particular, the domain experts are asked to semantically annotate the UML
diagrams, representing the application scenario, with the ontology concepts. (This test
is particularly relevant for ontology used in ontology-based reconciliation of
messages).

The second kind of test concerns the competency questions and the possibility to
answer them by using concepts in the ontology. Such questions will trigger a traversal

 On the Use of Semantic Technologies to Model and Control Security, Privacy 473

of the ontology that will produce proper concepts. Competency questions represent a
good test for ontology to be used in search and discovery of resources.

3 pSHIELD Methodology

The described methodology is the most valuable chain to produce ontology and meta-
models for a specific scenario. The novelty proposed in this paper is one step before
of this procedure and is about the choice of the “domains” and “scenarios” that will
feed the five step procedure.

So the problem is: given a clear procedure on how to build ontology, what are we
supposed to describe in it? Starting from that, we can affirm that the context is the one
of Embedded Systems; in particular the more specific contest are the SPD
functionalities provided by their interaction/composition.

The main objective of our approach with semantic models are:

1. the abstraction of the real word from a technology-dependent
perspective into a technology-independent representation.

2. the representation of functional properties by means of ontology as well
3. the identification of the relations between real/structural and functional

world.

So, as depicted in Fig. 2, the problem of modeling SPD in the context of ES is
reduced to the formulation of three different meta-models describing: i) structure, ii)
functions, iii) a relations between structure and functions.

Fig. 2. Proposed approach to model SPD for ES

The bridge has been built thanks to the introduction of a third metamodel taking
into account the atomic attributes that are impacted in this context and to map them in
these two worlds. This concept is depicted in picture Fig. 2.

For each of the three models, a justification is provided below:

3.1 Structural Ontology

The structural ontology (on the left side of the picture) is the easier to model, because
it is a simple description of the Embedded System component. It contains the
hardware components and basic functionalities provided by the individual element
and the related attribute, all in an SPD relevant environment. For example a node, in a
first simplification, is composed by a memory a CPU, a battery and a transmission

474 A. Fiaschetti et al.

Node
+Id: Integer

+Name: String
+State: String = (On, Off)

FunctionalitySPD

Network

Antenna
+Standard: String
+Tipology: String

+Tranciever: String =
(Sender, Receiver)

+Gain: Int

Battery
+Type: String

+Capacity: Float
+Level: String = (High,

Medium, Low)

CPU
+MicroChip: String

+Processore: Int
+Level: String = (High,

Medium, Low)

Memory
+Size: Int

+Level: String = (High,
Medium, Low)

Sensor

Actuator
+Type: String = (Human, Robot,

Server)

Network Device
+Type: String = (Router, Switch,

Hub, Bridge, Repeater)

Middleware

Fig. 3. Structural Ontology for a node

antenna; furthermore the CPU is characterized by the frequency and bit length and, in
SPD relevant context, the possibility of performing hardware cryptography. By doing
so, all the components constituting a complex system can be represented. In Fig. 3 an
example of Node model is provided.

3.2 Functional Ontology

In order to identify the functionalities provided by the systems components, a
preeminent approach based on the Security Certification Process (Common Criteria
[1]) has been chosen. This approach is based on the five-steps reported in the
following:

• Step 1 – What is the overall system?
The overall System is a set of interacting and interconnected Embedded Systems with
specific composability and SPF Functionalities.

• Step 2 – What is the role of the System?
The system, in SPD relevant context, should assure SPD for a certain asset or goods
in a specific scenario. In the following, for convenience, we will replace the
expression “assure SPD” with the generic expression “protect”, even if its real
meaning is different. In Fig. 4 this concept is represented: the green boxes represent
the interconnected ESs and the gray box is the addressed asset/goods (the SPD
functionalities are still missing from this graphical representation because they are
identified in the following steps).

 On the Use of Semantic Technologies to Model and Control Security, Privacy 475

ES ES ES ES

ESES Asset Good

Fig. 4. Step 1 and 2 representation

• Step 3 – What are the asset/goods and the scenario addressed by the System?
The selected scenario (for the purpose of this work) is railways transportation and the
asset/goods is the secure and dependable monitoring of freight trains transporting
hazardous materials. Moreover, since the System should protect itself, it is an
asset/good as well.

• Step 4 – What are the possible menace and/or attack that could affect the
protected asset/goods.

Once the assets and goods, as well as the application scenarios are clearly identified,
it is easy to enumerate all the possible menaces and attacks that could affect the level
of Security, Privacy and Dependability of the system. The output of this activity is a
fundamental input for next step. The logical step is given in Fig. 5.

ES ES ES ES

ESES Asset Good
Menace Attack

Fig. 5. System attacks and menaces

Functionality
+Name: String

+Type: String = (HW, SW)
+SPDdomain: String = (Security,

Privacy, Dependability)
+Functionality: String

Encryption Algorithm
+ClockFrequency: Hz
+PowerSupply: Type

+KeyLength: bit
+PowerConsumption: float

+ByteEncrytionTime:
milliseconds/byte

+ResistanceAttack: Days

Functionality Node

Node Security Mechanism
SPD

...

Fig. 6. Functional Ontology

476 A. Fiaschetti et al.

• Step 5 – What are the SPD functionalities that can prevent or minimize the effect
of the previously identified menace and/or attack?

Starting from the identified menaces and attacks, a set of SPD Functionalities is
identified that are able to prevent or mitigate them. The functionalities are the ones
that we have to represent in our SPD relevant ontology. An example is provided in
Fig. 6. Of course, the node model has relation with the functional ontology.

3.2 SPD Ontology

The last model is given by the SPD attributes that allow the link between the
structural word and the functional word. This is the most simple and, at the same
time, significant ontology. For the purpose of our work we have choose to describe all
Dependability, Security (and Privacy) issues by means of six attributes: availability,
reliability, safety, confidentiality, integrity, maintainability (see Fig. 7).

Fig. 7. SPD attributes

Each structural and functional component is associated to one of more of the
following attributes: for example the cryptography could be related to Confidentiality
and the Node’s CPU is related to cryptography. Then we know that if we want to
address the confidentiality issues of our system we have to take into account the
cryptographic algorithms as well as the CPU characteristics.

The example is trivial, but in more complex system the advantage is disruptive: we
have an high level representation by means of ontology that, thanks to inferential
engines, can provide us a list of all relations and components relevant to our SPD
issues and objective.

4 Application Scenario

This approach is currently under investigation in the pSHIELD project, where the
considered system is a monitoring platform for wagons transporting hazardous
materials (see Fig. 8).

 On the Use of Semantic Technologies to Model and Control Security, Privacy 477

The procedure could be exploited easily as follows:

1. The components equipped in the wagon are modeled with the structural
ontology, with their specification and supported functionalities

2. The SPD functionalitiesd are quickly given by the scenario: dependable
monitoring of goods, confidentiality in collected data, reliability and integrity
of transmission of information.

3. A one-by-one mapping with these functions and the components (sensors, GPS
receiver, GSM antenna, battery pack, …) is a trivial task.

The technology chosen to represent the ontology is OWL DL ([6][7]), since it is the
best compromise between expressiveness and performance. Then obtained models
can be put in the central control unit of the wagon and, both offline and online,
inferential engine (like Jena or Pellet) will monitor the status of the components
involved in the SPD tasks, providing to the operator only a small, but relevant, subset
of information. A further step is the automatic information analysis, so that the system
is able to discriminate, without human intervention, whether an event is relevant for
SPD purposes or not and then take the adequate corrective actions. But this is out of
scope of this work and will be at the bases of future research.

Fig. 8. Application Scenario

478 A. Fiaschetti et al.

5 Conclusion and Future Works

In this paper a methodology to develop semantic representation of Embedded System
and SPD functionalities has been provided. This methodology consists of three steps,
each one in charge of producing a single ontology: the structural one, the functional
one and the SPD attributes. The decoupling of these context eases the development of
the meta-model but, at the same time, the presence of common attributes allows to
easily re-establish relations between components, functions and SPD issues.

Following a well consolidated process, starting from the presented methodology
the three OWL files are produced and can be used in a plenty of applications,
especially in the design (and running) phases of safety critical systems. The design
phase, for example, allows a quicker certification of system’s components, because
the description is standardized an clear, while in the running phase it is possible, by
means of human or automatic reaction, to control the system evolution towards
specific objectives.

The next step is to develop the instances of the OWL file and to store them in the
scenario’s component and to perform simulations to check possibilities and
performance of a system enabled with semantic capabilities. Then the methodology
can be applied in other context, like the ones foreseen by the follow up of the
pSHIELD project (named nSHIELD), the most challenging being the assurance of
SPD in avionic context (UAV control and navigation payload).

Acknowledgments. The research is performed in the context of the pSHIELD
ARTEMIS project. Some of the work performed for the evaluation of semantic
technologies has been carried out in the scope of the EU-FP7 TASS Project.

An acknowledgement goes to the IASI LEKS for having enriched the literature and
the state of the art with a valuable procedure.

References

[1] Common Criteria for Information Technology Security Evaluation, v3.1 (July 2009)
[2] Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using Ontologies in the Semantic Web: A

Survey. Ontologies 14, 79–113 (2007)
[3] Mascardi, V., Locoro, A., Rosso, P.: Automatic Ontology Matching via Upper

Ontologies: A Systematic Evaluation. IEEE Transactions on Knowledge and Data
Engineering 22(5), 609–623 (2010)

[4] Henkel, J., Narayanan, V., Parameswaran, S., Ragel, R.: Security and Dependability of
Embedded Systems: A Computer Architects’ Perspective”. In: 22nd International
Conference on VLSI Design 2009, pp. 30–33 (2009), doi:10.1109/VLSI.Design.2009.114

[5] pSHIELD Technical Annex (June 2010)
[6] Dean, M., Schreiber, G.: OWL Web Ontology Language Reference,

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
[7] McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview,

http://www.w3.org/TR/owl-features/

 On the Use of Semantic Technologies to Model and Control Security, Privacy 479

[8] Compton, M., Henson, C., Lefort, L., Neuhaus, H., Sheth, A.: A Survey of the Semantic
Specication of Sensors. In: Proc. Semantic Sensor Networks 2009, pp. 17–32 (2009)

[9] Gaines, B., Shaw, M.: Integrated knowledge acquisition architectures. Journal of
Intelligent Information Systems 1(1), 9–34 (1992)

[10] Grosso, E., Eriksson, H., Fergerson, R., Tu, S., Musen, M.: Knowledge modeling at the
millennium — the design and evolution of Protégé-2000. In: Proceedings of KAW 1999,
Banff, Canada (1999)

[11] Staab, S., Schnurr, H.-P., Studer, R., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1) (2001)

Author Index

Alexander, Rob 185
Aliee, Hananeh 324
Aniello, Leonardo 310
Armengaud, Eric 57, 113
Assayad, Ismail 437

Baldelli, Renato 467
Baldoni, Roberto 310
Baufreton, Philippe 57
Bernardi, Simona 15
Bieber, Pierre 43
Blanquart, Jean-Paul 57
Bondavalli, Andrea 128
Bonichon, Richard 85
Bonifacio, Giuseppe 369
Bourrouilh, Quentin 57, 113
Bovenzi, Antonio 128
Brancati, Francesco 128
Bürklen, Susanne 29

Cameron, Neil 228
Canet, Géraud 85
Carnevali, Laura 409
Clegg, Kester 185
Coppolino, Luigi 143, 199
Correnson, Löıc 85
Cotroneo, Domenico 213
Cruciani, Federico 355

D’Acierno, Luca 171
D’Antonio, Salvatore 143, 199
Delmas, Rémi 43
Di Leo, Domenico 213
Di Luna, Giuseppe A. 310

Elia, Ivano Alessandro 143

Fabbrini, Fabrizio 284
Fantechi, Alessandro 383
Felici, Massimo 99
Fiaschetti, Andrea 467
Fisher, Michael 228
Flammini, Francesco 15, 467
Formicola, Valerio 199
Fusani, Mario 284

Girault, Alain 437
Gnesi, Stefania 383
Goubault, Eric 85
Griessnig, Gerhard 57
Grießnig, Gerhard 113
Güdemann, Matthias 423

Haucourt, Emmanuel 85
Hawkins, Richard 185
Herzner, Wolfgang 270
Hillebrand, Joachim 257
Hirschowitz, Michel 85
Höfflinger, Jens 29

Jöbstl, Elisabeth 270
Joshi, Kaustubh R. 338
Jump, Mike 228

Kaâniche, Mohamed 157
Kalla, Hamoudi 437
Kang, Eun-Young 243
Kanoun, Karama 157
Kawato, Masahiro 296
Kelly, Tim 185
Knoop, Michael 29
Krammer, Martin 57
Kreiner, Christian 113
Kuntz, Matthias 71

Labbé, Sébastien 85
Lamberti, Immacolata 171
Lami, Giuseppe 284
Laurent, Odile 57
Lavorato, Francesco 467
Lee, Dong-Ah 397
Lee, Jang-Soo 397
Leitner, Andrea 113
Leitner-Fischer, Florian 71
Leue, Stefan 71
Lodi, Giorgia 310

Machrouh, Joseph 57
Mader, Roland 113
Maeno, Yoshiharu 296
Mandic, Irenka 257
Manno, Gabriele 1

482 Author Index

Marmo, Pietro 171, 369
Marrone, Stefano 15
Mazzeo, Antonino 171
Mazzocca, Nicola 171
Meduri, Valentino 99
Merseguer, José 15
Mimram, Samuel 85
Montella, Bruno 171
Morgagni, Andrea 467

Nardone, Roberto 171
Natella, Roberto 213

Orazzo, Antonio 369
Ortmeier, Frank 423

Palo, Andi 467
Papa, Camilla 15
Papadopoulos, Chris 157
Pecchia, Antonio 452
Peer, Christian 257
Peikenkamp, Thomas 57
Petrone, Ida 369
Pettersson, Paul 243
Pietrantuono, Roberto 213, 452
Popov, Peter 1
Punzo, Vincenzo 171

Quaglietta, Egidio 171

Reichenpfader, Peter 257
Ridi, Lorenzo 409
Romano, Luigi 143, 199
Russo, Stefano 128, 452

Sanders, William H. 338
Schindler, Cecile 57
Schlick, Rupert 270
Schobbens, Pierre-Yves 243
Seguin, Christel 43, 157
Siegl, Hannes 257
Solhaug, Bjørnar 99
Steger, Christian 113
Suraci, Vincenzo 467

Tadano, Kumiko 296
Taglialatela, Andrea 467
Tedeschi, Alessandra 99
Tiassou, Kossi 157
Trapp, Mario 29

Velardi, Luigi 369
Venticinque, Alessio 369
Vicario, Enrico 355, 409
Vittorini, Valeria 15

Webster, Matt 228
Weiß, Reinhold 113
Wien, Tormod 57

Xiang, Jiangwen 296

Yoo, Junbeom 397

Zarandi, Hamid Reza 324
Zimmer, Bastian 29
Zonouz, Saman Aliari 338

	Title
	Preface
	Organization
	Table of Contents
	Session 1: Ram Evaluation 1'
	The Effect of Correlated Failure Rates on Reliability of Continuous Time 1-Out-of-2 Software
	Motivation
	The Problem
	Model of the System
	Diagrammatic Representation of the Model
	Möbius Model Parameters
	Measure of Interest

	Littlewood’s Semi-markov Model of Software Reliability
	Discussion
	Relevant Literature
	Conclusion and Future Work
	References

	Model-Driven Availability Evaluation of Railway Control Systems
	Introduction
	The MARTE-DAM Profile
	A DAM Extension for Maintenance and Fault Tolerance
	Automated Generation of RFT Models
	The Radio Block Centre
	DAM Model
	Generation of the RFT Model

	Conclusions and Future Work
	References

	Session 2: Complex Systems Dependability 1
	Vertical Safety Interfaces – Improving the Efficiency of Modular Certification
	Introduction
	Related Work
	Running Example
	The Interface Language
	Common Language
	Application Language
	Platform Language

	Industrial Evaluation
	Conclusion and Future Work
	References

	DALculus – Theory and Tool for Development Assurance Level Allocation
	Introduction
	Development Assurance Level Allocation Process
	Aims of the DAL
	DAL Allocation Rules According to ARP4754a
	Item Independence According to ARP4754A

	DAL Allocation as a Constraint Satisfaction Problem
	Independence Identification
	DAL Allocation

	Tool Support and Experimentations
	Pseudo-Boolean Constraint Solving
	The DALculator
	Lessons Learnt from the First Experimentations

	Conclusion and Perspectives
	Related Work
	Perspectives

	References

	Towards Cross-Domains Model-Based Safety Process, Methods and Tools for Critical Embedded Systems: The CESAR Approach
	Introduction
	State of the Art and of the Practice
	Safety Standards
	Safety Process and Methods: The Safety Views

	Safety Requirements for the Reference Technology Platform
	Safety Process
	Challenges of Process Modelling
	The CESAR Approach to Process Modelling

	Requirements Engineering
	Preliminary Assessment and Way Forward
	References

	Session 3: Formal Verification 1
	From Probabilistic Counterexamples via Causality to Fault Trees
	Introduction
	Counterexamples and Fault Trees
	Computing Fault Trees from Counterexamples
	Case Study
	Related Work
	Conclusion
	References

	Rigorous Evidence of Freedom from Concurrency Faults in Industrial Control Software
	Introduction — Intrinsic Software Faults
	Tool-Based Methodology — Outline
	Theoretical Framework and Tools
	Static Analysis for Model Extraction and the MIEL Tool
	Geometric Semantics for Concurrency Analysis, ALCOOL Tool

	Case Study
	Industrial Control System Software
	Verification of Synchronization Properties

	Related Work
	Conclusion
	References

	Session 4: Risk and Hazard Analysis
	Evolutionary Risk Analysis: Expert Judgement
	Changes and Risks
	Related Work on Risk Analysis
	ATM Case Study
	Organisational Level Change
	Security Properties

	Model-Driven Risk Analysis: The CORAS Approach
	Expert Judgement in Evolutionary Risk Analysis
	Conclusions
	References

	Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems
	Introduction
	Related Work
	Safety Engineering Workflow
	Computer-Aided Checking
	Automated Synthesis
	Model Correction
	Fault Tree and FMEA Table Synthesis

	Experimental Evaluation
	Conclusion
	References

	Session 5: Cybersecurity
	A Statistical Anomaly-Based Algorithm for On-line Fault Detection in Complex Software Critical Systems
	Introduction
	The Detection Framework
	Assumptions
	The Detection Approach
	Limitations of the Static Thresholds

	Using SPS Algorithm to Estimate Adaptive Thresholds
	SPS-Based Detection Algorithm
	SPS Assumptions
	The Detector Equipped with SPS
	Comparison between Adaptive and Static Thresholds Algorithm

	Metrics for Performance Evaluation
	Experimental Campaign
	Case Study Description
	The Experimental Activity
	The Post Processing Phase

	Results Analysis
	Conclusion and Future Work
	References

	Security Analysis of Smart Grid Data Collection Technologies
	Rationale and Contribution
	Smart Grids and Phasor Measurement Units
	Experimental Testbed and Campaign
	Testbed Setup
	Key Findings and Results

	Conclusions
	References

	Session 6: RAM Evaluation 2
	Modeling Aircraft Operational Reliability
	Introduction
	Description of Mission Achievement
	Related Work
	Modeling Approach
	Structure of the Model
	SANs Formalism

	CMS Presentation
	The Model
	The System Level Sub Model
	The Requirement Level Sub Model
	The Operational Level Sub Model
	The Global Model

	Example of Results
	Conclusion
	References

	An Integrated Approach for Availability and QoS Evaluation in Railway Systems
	Introduction
	Quality of Service and Service Availability for a Railway System
	Quality of Service and Passengers Satisfaction
	Service Availability in Railway Systems
	Relationships between QoS and SA in Railway Systems

	Simulation System Architecture
	Operational Strategies Module
	State of Subsystems Module
	Passengers Travel Demand Module
	Movement on Track Module

	Case Study: A Mass Rapid Transit System
	First Operational Strategy: Return to Depot and Successively Substitution
	Second Operational Strategy: Preventive Insertion
	Third Operational Strategy: Store Away on Pocket Track

	Conclusions and Future Works
	References

	Session 7: Case Studies
	Using a Software Safety Argument Pattern Catalogue: Two Case Studies
	Introduction
	Software Safety Argument Pattern Catalogue
	Identifying Assurance Deficits

	Case Studies
	Prototype Autonomous Vehicle Case Study
	Aircraft Safety Critical Software System Case Study

	Conclusions
	References

	Integration of a System for Critical Infrastructure Protection with the OSSIM SIEM Platform: A dam case study
	Introduction
	Related Work
	Use of SIEMs for Critical Infrastructure Protection
	Advanced Monitoring and Control for Dam Infrastructure

	Dam Monitoring and Control
	Dam Sensors

	SIEMs Overview
	OSSIM

	Changing the SIEMs to Provide Safety
	Examples of Misuses and Malicious Activities on the Dam Monitoring and Control System
	Customizing OSSIM to Process New Events

	Conclusion and Future Works
	References

	A Case Study on State-Based Robustness Testing of an Operating System for the Avionic Domain
	Introduction
	Related Work
	Testing Approach
	Modeling the File System

	Experimentation
	Experimental Setup
	Results

	Conclusion and Future Work
	References

	Session 8: Formal Verification 2
	Formal Methods for the Certification of Autonomous Unmanned Aircraft Systems
	Introduction
	Approach
	Paper Structure

	Model Checking
	Selecting Rules of the Air for Model Checking

	Reactive UAS Agents
	Modelling a Reactive UAS Agent in Promela
	Model Checking the Rules of the Air in Spin

	Rational UAS Agents
	Model Checking Reasoning UAS Agents
	Model Checking More Advanced Autonomy in UAS Agents

	Conclusions
	Impact
	Related and Future Work

	References

	Verifying Functional Behaviors of Automotive Products in EAST-ADL2 Using UPPAAL-PORT
	Introduction and Main Themes
	Background
	EAST-ADL2
	UPPAAL-PORT

	Approach and Proposed Solution
	Architecture and Behavioral Semantics Mapping
	Behavior Specification
	Verification: Model Checking

	Current Result and Example
	Related Work
	Conclusion and Future Work
	References

	Poster Session
	Establishing Confidence in the Usage of Software Tools in Context of ISO 26262
	Introduction
	State of the Art
	Problem Statement
	Proposed Approach
	Project Analysis
	Workflow Analysis
	Working Step Analysis
	Use Case Determination
	Identification of Tool Errors
	Analysis of Error Prevention and Detection

	Conclusion and Outlook
	References

	Fault-Based Generation of Test Cases from UML-Models – Approach and Some Experiences
	Introduction and Motivation
	Related Work
	Fault-Based Test Case Generation (FBTCG) from UML in MOGENTES
	Terms and Concepts
	Test Case Generation Steps
	The MOGENTES UML/OOAS Tool Chain

	Example Use Case - Car Alarm System (CAS)
	Results and Discussion
	Test Case Generation
	Source Code Coverage with Model-Based Test Case Generation
	Modeling Experiences
	Test Case Application - Adaptive Test Cases

	Summary and Outlook
	References

	ISO/IEC 15504-10: Motivations for Another Safety Standard
	Introduction
	ISO/IEC 15504-10 Safety Extension
	ISO/IEC 15504: Overview
	ISO/IEC 15504-10: Overview

	Comparison of ISO/IEC 15504-10 with the IEC 61508 Family Standards
	Integrating ISO/IEC 15504-10 with Existing Safety Standards
	Conclusions
	References

	Automatic Synthesis of SRN Models from System Operation Templates for Availability Analysis
	Introduction
	Availability Model Synthesis Method
	Definition of System Designs
	Overview of Availability Assessment Process
	Approach for Availability Model Synthesis
	Availability Model Synthesis Process

	Case Study
	Classification of Operations
	Numerical Example

	Summary and Future Work
	References

	A Collaborative Event Processing System for Protection of Critical Infrastructures from Cyber Attacks
	Introduction
	Cyber Attacks: Distributed Stealthy Port Scan
	Collaborative Port Scan Detection System Architecture
	Line Fitting Implementation in Esper
	Experimental Evaluation
	Related Work
	Concluding Remarks
	References

	A Fault-Tolerant, Dynamically Scheduled Pipeline Structure for Chip Multiprocessors
	Introduction
	Background
	Superscalar Processors

	The Proposed Technique
	Hardware Details
	Highly-Reliable Mode
	High-Performance Mode
	Switching between High-Performance and Highly-Reliable Mode

	Experimental Results
	Fault Model
	Results

	Related Work
	Conclusion
	References

	FloGuard: Cost-Aware Systemwide Intrusion Defense via Online Forensics and On-Demand IDS Deployment
	Introduction
	Architecture
	Vulnerability-Detector DB
	Attack Graph Templates
	Intrusion Forensics
	Monitor Selection
	Evaluations
	Related Work
	Conclusion
	References

	Reducing Complexity of Data Flow Testing in the Verification of a IEC-62304 Flexible Workflow System
	Introduction
	Testing Requirements for a Computer Assisted Surgery System
	Testing Requirements for IEC 62304

	Abstraction and Problem Formulation
	Data Flow Perspective
	Reducing Complexity through Design for Testability
	Reducing Complexity through Test Equivalence
	Application to Our Case Study

	Conclusions
	References

	Improvement of Processes and Methods in Testing Activities for Safety-Critical Embedded Systems
	Introduction
	ERTMS Level 1 and ASTS Pilot Application

	State of Art in Testing Activities
	Technical Innovation Needed in Testing Activities
	Proposed Solution: ASTS Pilot Application

	Instance of RTP with ASTS Use Case
	DODT (Domain Ontology Design Tool)
	Example of Requirements Formalization
	ATG (Automatic Test Generator)

	Results
	Conclusions and Way Forward
	References

	Session 9: Formal Verification 3
	On the Adoption of Model Checking in Safety-Related Software Industry
	Introduction
	Background: Model Checking and Temporal Logic
	Safety Guidelines
	Safety Integrity Level
	Revision of Current Guidelines
	Tool Qualification

	Safety Properties
	Bounded Model Checking of Safety Properties
	Adoption of Model Checking

	Model Checking within Model Based Design
	Software Model Checking
	Abstraction
	Counterexample-Guided Abstraction Refinement
	Software Model Checkers

	Conclusions
	References

	Equivalence Checking between Function Block Diagrams and C Programs Using HW-CBMC
	Introduction
	Related Work
	Equivalence Checking
	Function Block Diagram
	Transformation from FBDs into Verilog
	HW-CBMC

	Equivalence Checking
	Equivalence Checking Process
	Verilog Program for HW-CBMC

	Case Study
	th_X_Pretrip Program
	Implementation of ANSI-C Program
	Euqivalence Checking

	Conclusion
	References

	A Framework for Simulation and Symbolic State Space Analysis of Non-Markovian Models
	Introduction
	Sirio Functional Responsibilities
	Sirio Base Libraries
	Sirio Tools

	Sirio SW Architecture: Base Libraries
	Petri Net Library
	Symbolic Calculus Library
	Sample Generator Library

	Sirio SW Architecture: Tools
	Simulation Tool
	Analysis Tool

	Conclusions
	References

	Session 10: Optimization Methods
	Model-Based Multi-objective Safety Optimization
	Introduction
	Case Study
	Model-Based Safety Analysis
	Formal Model Construction
	Qualitative Safety Analysis
	Quantitative Safety Analysis
	Summary

	Model-Based Safety Optimization
	Multi-objective Optimization
	Safety Optimization
	Optimization of the Case Study
	Selection of System Design

	Related Work
	Conclusion
	References

	Tradeoff Exploration between Reliability, Power Consumption, and Execution Time
	Introduction
	Principle of the Method and Overview
	Models
	Application Algorithm Graph
	Architecture Model
	Execution Characteristics
	Static Schedules
	Voltage, Frequency, and Power Consumption
	Failure Hypothesis
	Global System Failure Rate (GSFR)

	The Tricriteria Scheduling Algorithm TSH
	Decreasing the Power Consumption
	Decreasing the GSFR
	Scheduling Heuristics

	Simulation Results
	Related Work
	Conclusion
	References

	Session 11: Complex Systems Dependability 2
	Criticality-Driven Component Integration in Complex Software Systems
	Introduction
	Related Work
	Integration Strategy
	Background: System Model and Criticality Levels
	Assumptions
	Algorithm

	Case Study
	ATC System
	Integration Strategy

	Failure-Modes Emulation Campaign
	ATC Components: Facade and Processing Server
	Analysis of the DDS_1
	Analysis of the DDS_2

	Design Implications and Lessons Learnt
	References

	On the Use of Semantic Technologies to Model and Control Security, Privacy and Dependability in Complex Systems
	Introduction
	Overview on Semantic Technologies
	The Requirements Workflow
	The Analysis Workflow
	The Design Workflow
	The Implementation Workflow
	TheTest Workflow

	pSHIELD Methodology
	Structural Ontology
	Functional Ontology
	SPD Ontology

	Application Scenario
	Conclusion and Future Works
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

