


Lecture Notes in Computer Science 6829
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Kyung-Hyune Rhee DaeHun Nyang (Eds.)

Information Security
and Cryptology -
ICISC 2010

13th International Conference
Seoul, Korea, December 1-3, 2010
Revised Selected Papers

13



Volume Editors

Kyung-Hyune Rhee
Pukyong National University
Department of IT Convergence Application Engineering
599-1 Daeyeon 3-Dong Namgu, Busan 608-737, Republic of Korea
E-mail: khrhee@pknu.ac.kr

DaeHun Nyang
INHA University
Department of Computer Science and Information Technology
253 Yonghyun-dong, Nam-gu, Incheon 402-751, Republic of Korea
E-mail: nyang@inha.ac.kr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24208-3 e-ISBN 978-3-642-24209-0
DOI 10.1007/978-3-642-24209-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936884

CR Subject Classification (1998): E.3, K.6.5, C.2, D.4.6, G.2.1, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

ICISC 2010, the 13th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during December 1–3, 2010. It was orga-
nized by the Korea Institute of Information Security and Cryptology (KIISC).
The aim of this conference was to provide a forum for the presentation of new
results in research, development, and applications in the field of information se-
curity and cryptology. It also intended to be a place where research information
can be exchanged.

The conference received 99 submissions from 27 countries, covering all areas
of information security and cryptology. The review and selection processes were
carried out in two stages by the Program Committee (PC) of 64 prominent
experts via online meetings through the iChair Web server. First, each paper was
blind reviewed by at least three PC members, and papers co-authored by the PC
members were reviewed by at least five PC members. Second, individual review
reports were revealed to PC members, and detailed interactive discussion on each
paper followed. Through this process, the PC finally selected 28 papers from 16
countries. The acceptance rate was 28.2%. The authors of selected papers had
a few weeks to prepare for their final versions based on the comments received
from the reviewers. These revised papers were not subject to editorial review
and the authors bear full responsibility for their contents.

The conference featured one tutorial and two invited talks. The tutorial was
delivered by Tatsuaki Okamoto from NTT Information Sharing Platform Labo-
ratories. The invited speakers were Sakir Sezer from ECIT SoC Research Division
and Giuseppe Ateniese from The Johns Hopkins University.

There are many people who contributed to the success of ICISC 2010. We
would like to thank all the authors who submitted papers to this conference. We
are deeply grateful to all 64 members of the PC, especially to those who shep-
herded conditionally accepted papers. It was a truly nice experience to work with
such talented and hard-working researchers. We wish to thank all the external
reviewers for assisting the PC in their particular areas of expertise. We would
also like to thank the iChair developers for allowing us to use their software.

Finally, we would like to thank all the participants of the conference who made
this event an intellectually stimulating one through their active contribution and
all organizing members who nicely managed the conference.

December 2010 Kyung-Hyune Rhee
DaeHun Nyang
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Analysis of Nonparametric Estimation Methods

for Mutual Information Analysis

Alexandre Venelli1,2

1 IML - ERISCS Université de la Méditerranée,
Case 907, 163 Avenue de Luminy
13288 Marseille Cedex 09, France

2 Vault-IC France, an INSIDE Contactless Company
Avenue de la Victoire, Z.I. Rousset,

13790 Rousset, France
avenelli@insidefr.com

Abstract. Mutual Information Analysis (MIA) is a side-channel attack
introduced recently. It uses mutual information, a known information
theory notion, as a side-channel distinguisher. Most previous attacks use
parametric statistical tests and the attacker assumes that the distribu-
tion family of the targeted side-channel leakage information is known.
On the contrary, MIA is a generic attack that assumes the least possible
about the underlying hardware specifications. For example, an attacker
should not have to guess a linear power model and combine it with a
parametric test, like the Pearson correlation factor. Mutual information
is considered to be very powerful however it is difficult to estimate. Re-
sults of MIA can therefore be unreliable and even bias. Several efficient
parametric estimators of mutual information are proposed in the litera-
ture. They are obviously very efficient when the distribution is correctly
guessed. However, we loose the original goal of MIA which is to assume
the least possible about the attacked devices. Hence, nonparametric esti-
mators of mutual information should be considered in more details and,
in particular, their efficiency in the side-channel context. We review some
of the most powerful nonparametric methods and compare their perfor-
mance with state-of-the-art side-channel distinguishers.

Keywords: Side-channel analysis, mutual information analysis, entropy
estimation, nonparametric statistics.

1 Introduction

Side-channel analysis is a technique that uses information leaked by a physical
implementation of cryptographic algorithms. The concept of using side-channel
information to break a cryptosystem was introduced by Kocher [12]. In his paper,
Kocher analyses differences in the computation time of certain cryptographic
operations that depend on a secret. On embedded devices, monitoring the power
consumption or recording the electromagnetic radiations is easy to realize and
is very revealing of the computations executed by the system. Statistical tests

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 A. Venelli

are used in side-channel cryptanalysis so that an attacker does not need to
know precise implementation details in order to extract secret keys. Generally,
once the side-channel information is recorded from a device, the attacker post
processes it and evaluates it by some statistical analysis. In 1999, Kocher et
al. [13] introduced the concept of Differential Power Analysis (DPA), a side-
channel attack that uses the difference of means as statistical test. The attacker
makes a key hypothesis and partitions side-channel measurements into two sets
depending on the value of a key-dependent computation in the cryptographic
algorithm. Then, the adversary computes the difference of means of the two sets
for each key hypothesis. If the difference shows distinct peaks, the corresponding
key hypothesis is assumed to be correct.

A lot of research in the side-channel domain consist in proposing relevant
statistical tests to enhance the results of these attacks. In 2004, Brier et al.
[4] introduce the use of the Pearson correlation factor as statistical test. The
corresponding side-channel attack is called Correlation Power Analysis (CPA).
This correlation factor seems to give the best results on the vast majority of
embedded devices. This is mostly due to the technology Complementary Metal
Oxyde Semiconductor (CMOS) that is used in the industry to build smart cards.
It is commonly assumed that the number of bits of a bus or an internal register,
that flip at a given time, is linearly proportional to the current absorption of the
device [17]. This supposition seems correct on most CMOS systems. As the CPA
finds the linear dependencies between power consumption curves and a leakage
function based on a key guess and a plaintext value, it is very powerful.

Making an assumption on the power consumption characteristic details of a
device can be considered a strong hypothesis for an attacker. In 2008, Gierlichs
et al. [8] propose a side-channel attack effective without any knowledge or re-
strictive assumption about the power model of the device, i.e. the relationships
between the power consumption of the device and its processed data. The at-
tack is called Mutual Information Analysis (MIA) and uses mutual information
as a side-channel distinguisher. When the CPA only records linear relations,
the estimation of mutual information does not need to have assumptions about
the dependencies of the variables. Even if the MIA is more generic, in practice
the CPA often performs better on CMOS logic. However for devices using spe-
cial types of logic, as the dual-rail logic [10,5], the assumption that the relation
between processed data and power consumption is linear should not hold.

The poor performance of the MIA compared to the CPA [8,20,24,29] may
not be inherent to its properties but due to its inefficient estimation in most
cases. The MIA, as presented in the original paper [8], uses histograms, the
less effective method to estimate mutual information. Different authors [24,16]
propose more efficient techniques to estimate mutual information, however the
techniques make assumptions on the power model of the device, i.e. paramet-
ric techniques. In this paper, we focus our analysis on nonparametric methods
for mutual information estimation. We then review and evaluate the efficiency
of each method when applied with MIA. Finally, we compare state-of-the-art
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side-channel distinguishers with the most performant nonparametric estimators
of mutual information.

Section 2 summarizes the fundamentals of information theory as well as in-
troduces generalized mutual information. In Section 3, we study some of the
most used statistical tests of the the side-channel literature. Section 4 reviews
classical methods of estimation of mutual information, and more particularly,
nonparametric methods. We evaluate the different techniques of estimation in
the context of side-channel analysis on various setups in Section 5. Section 6
concludes the article.

2 Information Theory Framework

Shannon in [26] laid down foundations of information theory in communication
systems. The entropy in a signal corresponds to the quantity of information
it contains. In the context of cryptanalysis and more particularly side-channel
attacks, one is interested in how much information is generated from a cryp-
tographic device. If the device leaks information when it processes a secret, an
attacker could recover the leakage through side-channel analysis and hence ob-
tain information, e.g. bits of the secret. Mutual information is a measure closely
related to entropy. It is a special case of the notion of relative entropy which
records something close to a distance between two distribution functions.

2.1 Basics on Probability Theory

Let X be a random variable which takes on a finite set of values {x1, x2, . . . , xn}.
Let P(X = xi) be the probability distribution of X . Hence, the function f : x �→
P(X = x) is often called the probability density function (pdf) of X . Similarly,
we define the function F : x �→ P(X ≤ x) as the cumulative distribution function
(cdf) of X .

The entropy of X is defined as

H(X) = −
∑

x

f(x) log(f(x)).

Let H(X) and H(Y ) be the entropy of X and Y respectively. The joint entropy
of X and Y is defined as

H(X, Y ) = −
∑
x,y

P(X = x, Y = y) log(P(X = x, Y = y)).

The conditional entropy of X given Y , noted H(X |Y ), is defined as

H(X | Y ) =
∑

y

P(Y = y)H(X | Y = y), with

H(X | Y = y) = −
∑

x

P(X = x, Y = y) log(P(X = x, Y = y)).
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The mutual information I(X ; Y ) quantifies the amount of information between
two variables X and Y . It is defined as

I(X ; Y ) = H(X) − H(X | Y ).

Mutual information is in fact a special case of the Kullback-Leibler (KL) diver-
gence [15]. This divergence measures the dissimilarity between two distributions.
Let f and g be two pdf of a random variable X . The KL divergence, also called
relative entropy, is then defined as

DKL(f ‖ g) =
∑

x

f(x) log
f(x)
g(x)

.

The mutual information can then be described as

I(X ; Y ) = DKL(f(x, y) ‖ f(x)f(y)).

2.2 Generalized Mutual Information

Let X be a discrete random variable as previously defined. The Rényi entropy
[25] of order α is defined as

Hα(X) =

{
1

1−α log
∑

x f(x)α for α ≥ 0, α �= 1
−∑

x f(x) log f(x) for α = 1.

The entropy of Shannon corresponds to H1(X). With the previous definition of
Rényi entropy, we can introduce the quantity

Iα(X ; Y ) = Hα(X) + Hα(Y ) − Hα(X, Y ).

The quantity Iα has the following property:

Iα ≥ 0 if and only if α = 0 or 1.

The value Iα only corresponds to the classical definition of mutual information
in these two cases. However in [23, Basic Theorem, Ch. 3], the authors consider
the case α = 2. Using the collision entropy H2, they call the quantity I2(X ; Y )
Generalized Mutual Information (GMI) where either the random variable X or
Y is uniformly distributed. In this case, the GMI and the classical mutual infor-
mation are both strictly positive and measure both the independence between
two variables. The GMI is particularly interesting as there is a more efficient
method of estimation based on kernel estimators (Sec. 4.3) [22].

3 Classical Side-Channel Distinguishers

3.1 Differential Side-Channel Model

Let K be a random variable representing a part of the secret. Let X be a ran-
dom variable representing a part of the input, or output, of the cryptographic



Analysis of Nonparametric Estimation Methods for MIA 5

algorithm. Suppose an attacker wants to target an intermediate value computed
with the function F that takes as parameters X and K. Let L be a random
variable representing the side-channel leakage generated by the computation of
F (X, K). In practice, the attacker is only able to obtain N realizations of the
random variable L, noted VL = (l1, . . . , lN), as he inputs N different values of X ,
noted VX = (x1, . . . , xN ). Using a distinguisher function D, he combines these
two vectors plus an hypothesis on the value of the secret k′. If the distinguisher
D is relevant and if the leakage vector VL brings enough information on F (X, K),
then the correct value k taken by K can be recovered. In the literature, some
worked on creating a model for F (X, K). For example, taking the Hamming
weight of the output of F [18], the Hamming distance [4] or simply its value [8]
was considered. Other researches were conducted on the distinguisher function
D that plays a fundamental role in the attack. Depending on the choice, the
function is able to extract more or less information from the side-channel leak-
ages. We briefly review in the following the statistical tests used as function D
proposed in the literature.

3.2 Difference of Means

Kocher et al. [13] proposed the concept of differential side-channel attack in
1999. In their original paper, the authors use a Difference of Means (DoM) as
distinguisher function. It is in fact a simplified student T-test, a well-known
statistical test. For simplicity reasons, we suppose the function F (X, K) only
outputs the least significant bit of the result. Let k′ be an hypothesis on the
secret. The attacker can form two sets:

G0 = {L | F (xj , k
′) = 0} and G1 = {L | F (xj , k

′) = 1} .

Finally, he computes the difference of means between the two partitions as:

Δk′ =

∑
l∈G0

l

|G0| −
∑

l∈G1
l

|G1| .

If the attacker detects a significant difference between the two sets, he can sup-
pose that the hypothesis k′ is correct.

3.3 Pearson Correlation Factor

Introduced by Brier et al. [4] in the context of side-channel analysis, the Pearson
correlation factor, also called Pearson rho or product-moment correlation, mea-
sures linear dependencies between two variables X and L. The authors called
the attack Correlation Power Analysis (CPA). In practice, if the attacker is only
able to obtain N realizations of the leakage function, then the formula is:

ρk′(X, L) =
N

∑
i liF (xi, k

′) − (
∑

i li
∑

i F (xi, k
′))√

N
∑

i l2i − (
∑

i li)
2
√

N
∑

i F (xi, k′)2 − (
∑

i F (xi, k′))2
.
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Pearson correlation calculations are based on the assumption that both X and
L values are sampled from a normal distribution. Hence, Pearson rho is part
of parametric tests. On the contrary, methods that do not assume a particular
distribution family for the data are said to be nonparametric.

3.4 Cluster Analysis

Differential Cluster Analysis (DCA) was introduced in [3]. It uses classical cluster
analysis statistics in the side-channel analysis context. The principle of cluster
analysis is to group similar objects into respective categories, i.e. clusters, and
then use a statistical method in order to discover structures in the observed
data. In side-channel analysis, the clusters often correspond to the outputs of the
attacked intermediate value, which is similar to the mutual information technique
presented Sec. 4. Amongst the statistical function used to characterize clusters
proposed in [3], the use of variance seems particularly suited.

3.5 Nonparametric Correlation Statistics

Nonparametric tests make no assumptions about the distribution parameters
of the variables. They do not rely on the estimation of parameters such as the
mean or the standard deviation. Therefore, they are often called parameter-free
or distribution-free methods. The most commonly used nonparametric equiva-
lents to Pearson correlation factor are Spearman R, Kendall tau and coefficient
Gamma. The coefficient Gamma [9] is similar to Kendall tau and is not very
relevant in our analysis.

The use of the Spearman R has been proposed in [2]. Spearman R assumes
that the variables are on a rank ordered scale. If several values of the variables
are equal, which is the case in the context of side-channel analysis, the formula
for Spearman R is the same as for Pearson’s rho. The rank of identical values is
the mean of their respective ranks.

Kendall tau [11] is similar in terms of results to Spearman R. However, its
computation and its statistical meaning is different. Kendall measures the degree
of relationships between variables whereas Pearson and Spearman test the null
hypothesis that there is no relationships between variables. There is different
versions of Kendall statistic. In our context, one should use the coefficient that
makes adjustments for tied values:

τb =
Nc − Nd√

(N(N − 1)/2 − t)(N(N − 1)/2 − u)
,

where Nc is the number of pairs ranked in the same order on both variables, Nd

is the number of pairs ranked differently on the variables, t is the number of tied
values in the first variable, u is the number of tied values in the second and N
is the number of observations.

In [29], the authors propose to use other nonparametric statistics: the
Kolmogorov-Smirnov (K-S) test and the Cramér-von Mises (CVM) test. These
tests are very similar to the DCA and the mutual information analysis. Indeed,
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the data is placed in different clusters, each typically covering a range of val-
ues of the attacked intermediate value. Let FX(x) and FL(x) be the empirical
cumulative distribution functions of the sample populations X and L. The K-S
test between the variables X and L is:

DKS(X ‖ L) = supx |FX(x) − FL(x)| .
The CVM test is defined similarly as:

DCVM(X ‖ L) =
∑

x

(FX(x) − FL(x))2.

4 Estimators of Mutual Information

Gierlichs et al. in [8] propose the use of mutual information as side-channel dis-
tinguisher in an attack called Mutual Information Analysis (MIA). The authors
present this method as an interesting alternative to the powerful CPA as the
attacker does not have to assume a particular power consumption model for the
targeted device (Sec. 3.1). Indeed, mutual information records both linear and
non-linear relationships between variables while CPA only measures linear ones.
In theory, MIA should be considered more generic as the attacker makes less
assumptions about the device. However in practice, the results of MIA are not
good compared to CPA [29,24,20]. In fact, the efficiency of MIA is closely related
to its chosen estimator of mutual information. Some authors studied parametric
estimation methods and their efficiency combined with MIA [24,7,16]. On the
contrary, nonparametric estimators are not thoroughly researched [28], although
they fit the original purpose of MIA more suitably.

4.1 Parametric vs Nonparametric Estimation

There are two basic approaches to estimation: parametric and nonparametric.
In this paper, we restrict ourselves to the nonparametric field. Parametric es-
timation makes assumptions about the regression function that describes the
relationship between dependent variables. Therefore, the density function will
assume that the data are from a known family of distributions, such as normal,
and the parameters of the function are then optimized by fitting the model to
the data set. Nonparametric estimation, by contrast, is a statistical method that
has no meaningful associated parameters. There is often no reliable measure
used for the choice of the parameters. However, this type of estimation seems
more suitable to the original purpose of the MIA: a generic side-channel attack
that makes the less assumptions possible. Hence, this paper seeks to introduce
efficient nonparametric pdf estimation methods in the context of side-channel
analysis.

4.2 Histogram-Based Estimator

The most simple and time efficient method to estimate pdf is using histograms.
An histogram consists in a partition of the range of values of each variables into
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b discrete bins of equal length. The pdf of each bin is estimated by the relative
frequency of occurrence of samples in the bin. Let X be a random variable with
N realizations. The b partitions are defined as: ai = [o + ih, o + (i + 1)h] where
o the value of the origin, h is the width of the bins and i = 0, . . . , b − 1. Let ki

be the number the measurements of X that lie in the interval ai. The pdf fi of
X can be approximated as

f̂i =
ki

N
.

As this method is nonparametric, its parameters are not easily determined. The
choice of the number of bins b or their width can be non-trivial. In any case,
the partitioning must be the same for both variables. Even if Histogram-based
Estimation (HE) is computationally efficient, its results contain more statistical
errors than other methods.

4.3 Kernel Estimator

Kernel Density Estimation (KDE) constructs a smooth estimate of the density by
centering kernel functions at data samples [19]. The kernels weight the distance
of each points in the sample to the reference point depending on the form of
the kernel function and according to a given bandwidth h. In KDE, h plays a
similar role as b in HE. In fact, the uniform kernel function forms an histogram.
Gaussian kernels are most commonly used and we use them as well in this study.
Let {x1, . . . , nN} be N realizations of the random variable X . The pdf estimate
using a Gaussian kernel is given by:

f̂(x) =
1
N

1
h
√

2π

N∑
i=1

exp
(
− (x − xi)2

2h2

)
.

This estimation method is quite costly in computational time. Kernel estimators
are considered to be very good for density estimation of one-dimensional data
however it is not always the case for mutual information estimation.

4.4 k-Nearest Neighbor Estimator

Kraskov et al. [14] present a new estimator based on distances of k-Nearest
Neighbors (KNN) to estimate densities. The authors consider a bivariate sample
and, for each reference point, a distance length is computed so that k neighbors
are within this distance length noted ε(i) for a reference point i. The number of
points with distance ε(i)/2 gives the estimate of the joint density at the point
i. The distance is then projected into each variable subspace to estimate the
marginal density of each variable. The estimation of MI using KNN depends on
the choice of k. In [14] the authors explain that statistical errors increase when k
decreases. In practice, we should use k > 1, however if k is too large, systematic
errors can outweigh the decrease of statistical errors. KNN gives good results
with less statistical errors than previous methods but with a computationally
heavy algorithm [21].
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4.5 B-Spline Estimator

In [6] Daub et al. introduce the use of B-spline functions as entropy estimators.
A B-spline curve is a generalized Bézier curve. It is specified by the parameters:

– the degree d, or order k = d + 1, so that each segment of the piecewise
polynomial curve has degree d or less,

– a sequence of m + 1 numbers, t0, . . . , tm, called knot vector, such that ti ≤
ti+1, ∀i ∈ {1, . . . , m − 1},

– control points, b0, . . . , bn.

A B-spline curve is defined in terms of B-spline basis functions. The i-th basis
function of degree d, noted Bi,d, defined by the knot vector t0, . . . , tm is defined
by the Cox-de Boor recursion formula as follows:

Bi,0(z) =
{

1 if ti ≤ z < ti+1

0 otherwise.

Bi,d(z) =
z − ti

ti+d − ti
Bi,d−1(z) +

ti+d+1 − z

ti+d+1 − ti+1
Bi+1,d−1(z),

for i = 0, . . . , n and d ≥ 1. Finally, the property:

n∑
i=0

Bi,d(z) = 1,

for any value of z, makes B-spline basis functions suitable as a pdf estimator.
This estimator is noted BSE. More details on the use and advantages of BSE in
the side-channel context are available in [28].

5 Experimental Analysis

We analyze in this section the practical efficiency of nonparametric estimators
of mutual information in the context of side-channel attacks. We compare their
performances with state-of-the-art proposed side-channel distinguishers:

– classical parametric test, CPA (Sec. 3.3),
– nonparametric tests, SPE (Sec. 3.5), CVM (Sec. 3.5),
– cluster analysis, DCA with variance as criterion function (Sec. 3.4),
– mutual information with parametric estimation, Cumulant-based Estimator

(CE) [16] which is the most powerful parametric estimator,
– mutual information with nonparametric estimation, GMIA (Sec. 2.2), HE

(Sec. 4.2), KDE (Sec. 4.3), KNN (Sec. 4.4), BSE (Sec. 4.5).

In order to compare the efficiency of side-channel attacks, we use common metrics
proposed in the literature [27]. Guessed Entropy (GE) is the average position of
the correct key hypothesis in the sorted vector of hypothesis at the end of the
attack. Results using another metric are presented in Appendix A.



10 A. Venelli

Attacks are performed on two different setups: the publicly available power
curves of DPA Contest 2008/2009 [30] of a DES implementation and curves
acquired on an Atmel STK600 board with an Atmel AVR ATmega2561 [1] of a
multi-precision multiplication algorithm.

On DPA Contest 2008/2009 curves of a DES, the intermediate value targeted
is the output the SBox in the last round. For the attacks using mutual infor-
mation with nonparametric estimation, we consider no power model, i.e. the
value of the data. The Hamming weight model is used for the other attacks.
Each attack is performed on 135 sets of 600 power curves in order to average
the results. We evaluate each distinguishers and present the results in Fig. 1.
Attacks can be assigned to different groups depending on their efficiency. The
best seems to be CE, CPA and SPE which are all parametric tests. The fol-
lowing attacks are KDE, DCA and CVM amongst which are the first mutual
information nonparametric ones. The BSE is next, followed by KNN, GMIA and
HE.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

G
ue

ss
ed

en
tr

op
y

Number of curves

CPA
CVM

GMIA
KDE
KNN

HE
BSE

CE
SPE

DCA

Fig. 1. Guessed entropy results on DPA Contest 2008/2009 curves of a DES

The same attacks are also performed on curves acquired on a STK600 develop-
ment board with a 8-bit Atmel AVR ATmega2561. This setup is not particularly
well suited to perform side-channel attacks. Therefore the power traces contains
significantly more noise than the DPA Contest ones. We attack a column-wise
multi-precision multiplication algorithm implemented in software. The targeted
values are the intermediate 8-bit multiplications xi × yj considering one of the
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multiplicand known by the attacker. As with the previous setup, we do not
consider a power model for the attacks using mutual information with nonpara-
metric estimation. The other attacks assume the Hamming weight model. Each
attack is performed on 20 sets of 2000 power curves. We obtain a slightly differ-
ent performance from several attacks (Fig. 2). As previously, the most powerful
attacks are still CE, CPA and SPE. However BSE seems to perform much better
and is at the same level as CVM, DCA and KDE. The estimators BSE and KDE
are the most efficient nonparametric methods but BSE is more computationally
efficient than KDE, hence an more interesting choice.
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Fig. 2. Guessed entropy results on STK600 curves of a multi-precision multiplication

With this overall comparison of state-of-the-art side-channel distinguishers,
we can note differences between classical statistical tests performance and their
efficiency in the side-channel context. For example, the KNN estimator should
be less subject to statistical errors than BSE or KDE. However it performs
worse in this scenario. Classical parametric tests are still amongst the most
powerful in most cases. In particular the recently presented Cumulant-based Es-
timator [16], a parametric estimator of mutual information, is very interesting.
These experimental analysis also show the gain obtained when using efficient
nonparametric estimators of mutual information. Even if the MIA attack is not
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the most powerful, its performance is greatly improved compared to the classical
histogram estimator that has been used in the literature as a reference.

6 Conclusion

In this paper, we review some of the most statistically powerful nonparametric
estimators of mutual information in the context of side-channel analysis. The
distinction between parametric and nonparametric methods is important and
should be clearly made when comparing side-channel distinguishers efficiency.
Depending on the supposed knowledge of the adversary, one of these two classes
of attacks needs to be considered. We also note that, in terms of performance,
nonparametric estimation in MIA is not as bad as previously thought. The KDE
and BSE estimators perform quite well for an acceptable computational overhead
in the case of BSE. Even if the study is done on CMOS devices, we can expect
a similar improvement of performance on different types of logic when using
efficient nonparametric methods.
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A First-order Success Rate Results

We present here the results of the success rate metric on the two platforms
detailed in Sec. 5. First-order success rate is, for a given number of curves,
the probability that the correct key hypothesis is ranked first in the sorted
vector of hypothesis. These results are consistent with the guessed entropy metric
presented in Sec. 5.
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Abstract. Bias analysis is an important problem in cryptanalysis. When
the critical bias can be expressed by the XOR of many terms, it is well-
known that we can compute the bias of their sum by the famous Piling-up
lemma assuming all the terms are independent. In this paper, we consider
the terms of the sum are dependent and we study above bias problem.
More precisely, let each term be a Boolean function of a variable over
GF (2)n. We assume the distribution D of the XOR of k variables is
known, each variable is uniformly distributed individually, and more-
over, the XOR of k variables and (k − 1) variables all are independent.
We give a simple expression for the bias of the sum of k Boolean func-
tions. It takes time O(kn · 2n) to compute the bias, while under the
independence assumption, it takes time O(k · 2n) to compute by Piling-
up lemma. We further compare the general bias in our problem with the
bias in the independent case. It is remarkable to note that the former can
differ significantly from the latter. As application, we apply our results
to cryptanalysis of two real examples, Bluetooth encryption standard
E0 and Shannon cipher, which show a strongly biased and weakly bi-
ased D respectively. For E0, our analysis allows to make the best known
key-recovery attack with precomputation, time and data complexities
O(237). For Shannon cipher, our analysis verifies the validity of the es-
timated complexity O(2107) of the previous distinguishing attack [5]. As
comparison, we also studied a variant of Shannon cipher, which shows
much stronger dependency within the internal states. We gave a distin-
guishing attack on the Shannon variant with reduced complexity O(293).

Keywords: linear cryptanalysis, bias, Piling-up lemma, E0, Shannon
cipher.

1 Introduction

In linear cryptanalysis [8], bias analysis is an important problem. A large bias will
make distinguishing attacks or even key-recovery attacks possible. The cryptan-
alyst is thus often faced with the problem of trying to find a possibly large bias
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for a cipher. When the critical bias can be expressed by the XOR of many terms
and when there shows no clear dependency between them (though we are also
sure that they are not really independent), it is convenient and common to as-
sume these terms are independent and use the famous Piling-up lemma [8] to
combine the individual bias of each term to get the total bias estimate. This
independence assumption, however, is not always appropriate to approximate
the total bias. In [6], it was shown that in the context of block ciphers, the ap-
proximation by Piling-up lemma sometimes can differ considerably from the real
value of the bias.

In this paper, we take the dependency1 between the terms of the sum into
account and study the above bias problem. More precisely, let each term be a
Boolean function2 of a variable over GF (2)n. We assume the distribution of the
XOR of k variables is known, each variable is uniformly distributed individually,
and moreover, the XOR of k variables and (k− 1) variables all are independent.
We give a simple expression for the bias of the sum of k Boolean functions. It
takes time O(kn · 2n) to compute the bias. It grows linearly in k and is practical
for modest n. In contrast, under the independence assumption, it needs O(k ·2n)
time to compute the bias by Piling-up lemma. Note that a special case of our
result was given in [9] previously; [9] considered the bias of our problem when
all the functions are the same and the XOR of all variables is the constant of
the all zero vector.

Furthermore, we compare the general bias in our problem with the bias in
the independent case. We note that the former can differ significantly from the
latter: 1) if one function is balanced, then the real bias is always no smaller than
the bias in the independence case; 2) if no functions are balanced, then the real
bias can be smaller than the bias in the independence case, which implies that
the convenient independence assumption sometimes over-estimates the real bias;
3) if all functions are the same and k is even, then the real bias can be negative,
while the bias in the independence case is never negative.

As one application, our result is applied to analyze precisely the bias for the
famous encryption standard E0, which is used in the short-range wireless radio
standard Bluetooth [2]. We observe that the dependency between the involved
variables is strong. We show that if the multiple polynomial of the related LFSR
feedback polynomial has even weight, we have four largest biases; if the weight
is odd, we have two largest biases. In comparison, according to the traditional
bias estimate approach based on independence assumption, it was believed that
there are two largest biases [7], regardless of the multiple polynomial weight.
We demonstrate that the two biases used in the key-recovery attack [7] are
both under-estimated and should be doubled instead. This allows to make the
best known key-recovery attack on E0, with precomputation, time and data
complexities O(237).

Another application is a recently proposed stream cipher Shannon [11] de-
signed by Qualcomm group [10]. We revisit the keystream bias of Shannon

1 The bias problem which considered dependency of another form was studied in [3].
2 Not necessarily the same Boolean function.
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studied in [5]. We show that unlike E0, the dependency within Shannon in-
ternal states is weak. The estimated complexity O(2107) of the distinguishing
attack [5], which assumed that the internal states were independent, is still valid.
Meanwhile, we study a variant of Shannon cipher, which shows much stronger
dependency within the internal states. A distinguishing attack on the Shannon
variant with reduced complexity O(293) is proposed. Note that if the internal
states were assumed to be independent, the keystream bias of this Shannon
variant remains the same as that of the Shannon cipher and so does the attack
complexity O(2107).

The rest of the paper is organized as follows. Section 2 introduces our main
bias problem. In Section 3, we apply our results to Bluetooth E0, which allows
to make the best key-recovery attack known so far. We demonstrate another
application of our theory to Shannon cipher and a Shannon variant in Section
4. Finally we conclude in Section 5.

2 Our Bias Problem

In linear cryptanalysis [8], the following problem is frequently encountered to
the cryptanalyst: given Boolean functions f1, f2 : GF (2)n → GF (2), what is
the bias δ of f1(a) ⊕ f2(b)? Here, the bias of a Boolean variable X refers to
Pr(X = 0) − Pr(X = 1). Due to the famous Piling-up Lemma [8], this problem
has a very simple solution when the inputs a and b are independent and uniformly
distributed: δ = δ1 · δ2, where δ1, δ2 is the bias of of f1(a), f2(b) respectively.

In this paper, we are interested in the above problem for the case that a
and b are dependent. We will study the case that a, b is uniformly distributed
individually and the only dependency relation between them is that a⊕ b is not
uniformly distributed (but a and a ⊕ b are independent). Formally speaking,
given f1, f2 : GF (2)n → GF (2) and a distribution D over GF (2)n, we study
the bias δ of f1(a) ⊕ f2(b) assuming that the uniformly distributed n-bit a, b
satisfy that a and a⊕ b are independent and that a⊕ b complies with the given
distribution D. Note that if D is a uniform distribution, from our assumption we
can deduce that a and a⊕ b are independent and uniformly distributed. Hence,
a and b are independent and uniformly distributed. Our problem then degrades
to the old well-known problem and we have δ = δ1 · δ2.

Algorithm 1. Computing the bias δ of f1(a) ⊕ f2(b)
u← 0
for all n-bit a do

for all n-bit x do
b← a⊕ x
u← u + D(x) · (−1)f1(a)⊕f2(b)

end for
end for
output δ ← u/2n
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Clearly, δ can be computed by a naive computation as shown in Algorithm 1.
It needs time O(22n). Note that the bias δ as computed by Algorithm 1 can be
expressed by

δ =
1

2n

∑
a

(−1)f1(a)
∑

b

(−1)f2(b)D(a ⊕ b). (1)

Define functions g1, g2 : GF (2)n → {1,−1} as follows

g1(x) = (−1)f1(x) (2)
g2(x) = (−1)f2(x) (3)

We can rewrite Eq.(1) by

δ =
1
2n

∑
a

g1(a) ·
∑

b

g2(b) · D(a ⊕ b) (4)

=
1
2n

∑
a

g1(a) · (g2 ⊗ D)(a) (5)

=
1
2n

(g1 ⊗ g2 ⊗ D)(0) (6)

where ⊗ denotes the convolution. As convolution can be computed efficiently by
Fast Walsh Transform (FWT), we finally have proved the following result.

Theorem 1. Given f1, f2 : GF (2)n → GF (2) and a distribution D over GF (2)n,
assuming that the uniformly distributed n-bit a, b satisfy that a, a ⊕ b are inde-
pendent and that a ⊕ b complies with the given distribution D, the bias δ of
f1(a) ⊕ f2(b) can be expressed by

δ =
1

22n

∑
x

ĝ1(x) · ĝ2(x) · D̂(x),

where the Walsh Transform F̂ of F is defined by F̂ (x) =
∑

y(−1)x·yF (y) and
g1, g2 are defined in Eq.(2), Eq.(3) respectively.

Note that it needs O(n × 2n) time to compute δ by above theorem, while it
needs O(2n) time to compute δ under the independence assumption by Piling-
up lemma. Moreover, Theorem 1 can be easily generalized to the following result.

Corollary 1. Given f1, f2, . . . , fk : GF (2)n → GF (2) and a distribution D over
GF (2)n, assuming that the uniformly distributed n-bit a1, a2, . . . , ak satisfy that
a1, . . . , ak−1, a1 ⊕ · · · ⊕ ak are independent and that a1 ⊕ · · · ⊕ ak complies with
the given distribution D, the bias δ of f1(a1) ⊕ · · · ⊕ fk(ak) can be expressed by

δ =
1

2kn

∑
x

ĝ1(x) · ĝ2(x) · · · ĝk(x) · D̂(x),

where gi(x) = (−1)fi(x) for i = 1, . . . , k.
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It needs O(kn× 2n) time to compute δ. It grows linearly in k. It is practical for
modest n, for example n ≤ 32. Without our result, the naive computation needs
O(2kn) time. In contrast, note that under the independence assumption, it takes
time O(k × 2n) to compute the bias by Piling-up lemma.

Next, let us see how the distribution D affects the bias δ. First, if D is a
uniform distribution, we can deduce that ai’s are independent and uniformly
distributed. On one hand, Piling-up lemma directly tells us that δ = δ1 ·δ2 · · · δk,
where δi denotes the bias of fi. On the other hand, from the assumption D is
uniform distribution, we know that D̂(x) = 1 for x = 0 and D̂(x) = 0 for x �= 0.
By Corollary 1, we have

δ =
1

2kn
ĝ1(0) · ĝ2(0) · · · ĝk(0)

As δi = 1
2n ĝi(0), we also have δ = δ1 · · · δk. Thus we have seen that our result

incorporates the Piling-up lemma as a special case.
Second, if a1 ⊕ a2 ⊕ · · ·⊕ ak = a0 for a fixed n-bit a0, that is, D(a0) = 1, then

D̂(x) = 1 if x · a0 = 0 and D̂(x) = −1 if x · a0 = 1. By Corollary 1, now we have

δ =
1

2kn

( ∑
x:a0·x=0

ĝ1(x) · · · ĝk(x) −
∑

x:a0·x=1

ĝ1(x) · · · ĝk(x)

)
. (7)

Note that when a0 = 0, we have

δ =
1

2kn

∑
x

ĝ1(x) · · · ĝk(x). (8)

The above result (8) with f1 = f2 = f3 = f4 and k = 4 was shown in [9].
Thirdly, let β = maxx �=0 D̂(x) be the largest bias of D. And we consider a

general D with β �= ±1. Note that regardless of D, we always have D̂(0) = 1.
From Corollary 1,

δ =
1

2kn

⎛⎝ĝ1(0) · · · ĝk(0) +
∑

x:0<|D̂(x)|<1

ĝ1(x) · · · ĝk(x) · D̂(x)

⎞⎠ . (9)

In case that D is a weakly biased distribution, the second addend on the right-
hand side of Eq.(9) is negligible compared with the first addend (because β  1
and the number of biases which are roughly on the same order of magnitude is
also very small). Thus, we can have the approximation below

δ ≈ 1
2kn

ĝ1(0) · · · ĝk(0) = δ1 · · · δk.

If D is not weakly biased, the bias δ cannot be approximated by the bias in the
independence case. In Section 3, Section 4, we will demonstrate with an example
of strongly biased and weakly biased D respectively.

When comparing the value of the bias δ in our problem with the bias in the
independent case, we point out three important remarks below.
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Remark 1. If δi = 0 for i ∈ {1, . . . , k} (or equivalently fi is balanced), then it
is easy to see that δ in our problem is always no smaller than the bias in the
independent case.

Examples: see Section 3.

Remark 2. If δi �= 0 for all i = 1, . . . , k, it is possible to have δ < δ1 · · · δk.

Examples: see Section 3.
This implies that the independence assumption, which is so often used for

convenience, sometimes would over-estimate the real bias.

Remark 3. If f1 = · · · = fk and k is even, it is possible to have δ < 0. In
comparison, note that the bias in the independent case can never be negative.

As an illustrative example to Remark 3, consider k = 2, f1 = f2 with f1(0) =
f1(2) = f1(3) = 1 and f1(1) = 0, D(0) = D(1) = 1/8, D(2) = D(3) = 3/8. We
can check that δ = −3/16 and the bias in the independent case is δ2

1 = 1/4.

3 Application One: E0

In this section, we will see that our proposed new tool in Section 2 is applicable
to a precise bias analysis of the famous encryption standard E0, which is used in
the short-range wireless radio standard Bluetooth [2]. E0 uses a 128-bit secret
key. It uses four (regularly clocked) LFSRs of 128 bits in total and a 4-bit Finite
State Memory (FSM). The FSM updates its 4-bit state at each clock by the
outputs of the LFSRs, and the FSM outputs one bit c0

t out of its 4-bit state.
The keystream bit zt at each clock is computed as

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t , (10)

where xi
t denotes the output of LFSR Ri. For a complete and detailed description,

see [2].
In [7], the bias within a consecutive sequence of {c0

t} up to 26 bits was sys-
tematically analyzed. Let M be a 26 bit vector. It was shown [7] that when
M = (11111)2 or M = (100001)2 (in binary form), the absolute value of the bias
of M · c0

t c
0
t−1 · · · c0

t−25 is the largest 25
256 . Let βi(x) be the feedback polynomial

of LFSR Ri and βi(x) is a primitive polynomial. It is well-known that the the
equivalent LFSR, which can generate the same sequence of x1

t ⊕x2
t ⊕x3

t ⊕x4
t , has

the feedback polynomial β(x) =
∏4

i=1 βi(x). Let p(x) = xp1 ⊕xp2 ⊕ · · · ⊕xpw be
the multiple polynomial of β(x) with degree d and weight w, where d = pw >
. . . > p2 > p1 = 0. We have the following equality always holds for all t0,

w⊕
i=1

(x1
t0+pi

⊕ x2
t0+pi

⊕ x3
t0+pi

⊕ x4
t0+pi

) = 0. (11)

Therefore, we have the following equality always holds for all t0,
w⊕

i=1

M · (zt0+pi , . . . , zt0+pi+25) =
w⊕

i=1

M · (c0
t0+pi

, . . . , c0
t0+pi+25) (12)
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by the keystream generation function. According to [7], the exact bias δ0 of
M · (c0

t0 , . . . , c
0
t0+25) can be calculated. From this, the total bias δ of the sum of

w such terms, which is

w⊕
i=1

M · (c0
t0+pi

, . . . , c0
t0+pi+25), (13)

was deduced in [7] to be δ = δw
0 by the Piling-up lemma. Therefore, by Eq.(12),

[7] concluded that E0 keystream output has a bias of δw
0 , which was then used

to mount the best known attacks on one-level E0 [7].

3.1 Our Analysis

Note that the above application of the Piling-up lemma to deduce δ = δw
0 is

based on the assumption that with i = 1, 2, 3, 4,

xi
t0+p1+1, . . . , x

i
t0+p1+24,

xi
t0+p2+1, . . . , x

i
t0+p2+24,

...
xi

t0+pw+1, . . . , x
i
t0+pw+24,

together with the FSM states at t = t0 +p1 +1, t0 +p2 +1, . . . , t0 +pw +1 all are
independent. Furthermore, it was formally proved in [7] that for w = 1 this is
true assuming the initial states are random and uniformly distributed. In fact,
we can check the following equality always holds:

w⊕
j=1

xi
t0+pj+1,

w⊕
j=1

xi
t0+pj+2, . . . ,

w⊕
j=1

xi
t0+pj+24 = 0, (14)

for i = 1, 2, 3, 4, where 0 denotes the all zero vector. This implies that the above
independence assumption is wrong and the Piling-up lemma is not appropriate
to use to deduce the bias δ of (13). On the other hand, in order to apply Corollary
1 in Section 2 and calculate the real bias δ of (13), we can use (14) to deduce
the relevant distribution D as follows.

We let D represents the distribution of the 4 ∗ 24 + 4 = 100 bit vector, in
which, the least significant 4 bits consists of the XOR of the FSM state at
t = t0 + pi + 1 with i = 1, . . . , w, and the most significant 96 bits consists of the
XOR of x1

t0+pi+1,. . . ,x1
t0+pi+24, x2

t0+pi+1,. . . ,x2
t0+pi+24, x3

t0+pi+1,. . . ,x3
t0+pi+24,

x4
t0+pi+1,. . . ,x4

t0+pi+24 at i = 1, . . . , w respectively. Assuming that the FSM
states at t = t0 + p1 + 1, t0 + p2 + 1, . . . , t0 + pw + 1 are random and uniformly
distributed, from (14) we deduce that D(0) = D(1) = D(2) = · · · = D(15) = 1

16 .
It is easy to know the Walsh coefficients of D: D̂(x) = 1 for all x whose least
significant 4 bits are zeros (denoted by LSB4(x) = 0) and D̂(x) = 0 otherwise.
Define f : GF (2)100 → GF (2), which maps the FSM state at t = t0 + 1 and 4
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LFSR outputs at t = t0 + 1, . . . , t0 + 24 to M · (c0
t0 , . . . , c

0
t0+25). Consequently,

following Corollary 1, we compute the bias δ of (13) as

δ =
1

2100w

∑
x∈GF (2)100:LSB4(x)=0

(ĝ(x))w
,

where g(x) = (−1)f(x). From Section 2, we know that δ ≈ δw
0 if D is a very

weakly biased distribution. However, the Walsh spectrum of D indicates that
this approximation may not be appropriate.

3.2 Our Results

Due to limited computation power, we only compute for all 8-bit M , where f :
GF (2)� → GF (2) and 
 ≤ 28. Table 1 – Table 4 compare the real bias δ with δw

0

for M = (11111)2, M = (100001)2, M = (10111)2, M = (110001)2, M = (1011)2,
w = 2, . . . , 6 (‘X’ denotes no bias). Our computation shows that the bias can be
roughly approximated by using these largest ĝ(x)w , where D̂(x) = 1. Thus, the
number and the sign of these largest ĝ(x), where D̂(x) = 1 determine the value of
the bias. Of all 8-bit M ’s, we found out that when D̂(x) = 1, the largest |ĝ(x)| is
achieved with M = (11111)2, (100001)2, (10111)2, (110001)2. Furthermore, each
of above M has 6 positive and 2 negative, 2 positive and 6 negative, 4 positive and
4 negative, 4 positive and 4 negative largest respectively. Consequently, as shown
in Table 1 – Table 4, it is easy to see that when w is even, the largest bias (up to 8
bits) is achieved with M = (11111)2, (100001)2, (10111)2, (110001)2; if w is odd,
the largest bias (up to 8 bits) is achieved with M = (11111)2, (100001)2 only. This
is in clear contrast to the result [7] of the traditional bias estimate approach based
on independence assumption, which concluded that M = (11111)2, (100001)2 are
the only largest biases (up to 26 bits) regardless of parity of w.

Meanwhile, we give examples here to illustrate our important remarks in Sec-
tion 2. Table 4 shows a good example to Remark 1, where the bias approximation
by Piling-up lemma shows no bias but our result proves wrong. With regards

Table 1. Comparison of δ with δw
0 for w = 2, . . . , 6, where M = (11111)2

w 2 3 4 5 6

log2|δ| -3 -8 -10.5 -14.7 -17

log2|δw
0 | -6.7 -10 -13.4 -16.7 -20

Table 2. Comparison of δ with δw
0 for w = 2, . . . , 6, where M = (100001)2

w 2 3 4 5 6

log2|δ| -2.6 -7 -10.4 -14.7 -17

log2|δw
0 | -6.7 -10 -13.4 -16.7 -20
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Table 3. Comparison of δ with δw
0 for w = 2, . . . , 6, where M = (10111)2

w 2 3 4 5 6

log2|δ| -3 X -10.2 X -17

log2|δw
0 | -12 -18 -24 -30 -36

Table 4. Comparison of δ with δw
0 for w = 2, . . . , 6, where M = (110001)2

w 2 3 4 5 6

log2|δ| -2.6 -12.1 -10.2 -22.7 -17

log2|δw
0 | X X X X X

Table 5. Comparison of our improved key-recovery attack on one-level E0 with previ-
ous attacks

attack precomputation time data memory

[1] X 267.6 223.1 246.1

[4] 228 249 223.4 237

[7] 237 239 239 227

this paper 237 237 237 227

to Remark 2, the bias with w = 3 or 5 in Table 3 shows that the independence
assumption over-estimates the real bias here.

Based on our above bias analysis, we can now improve the best known key-
recovery attack [7] on one-level E0 as follows. Note that to recover the shortest
LFSR R1 in [7], the multiple polynomial of

∏4
i=2 βi(x) is used rather than the

multiple polynomial of β(x). This affects the relevant distribution D as well as
the bias. Assuming that the involved state of R1 and the involved state of FSM
are random and uniformly distributed, D is uniformly distributed over 25+4=29
bits rather than over 4 bits as mentioned in Section 3.1. Similar analysis shows
that the bias is 2−15.7 for w = 5 with M = (11111)2, M = (100001)2. Finally,
Table 5 compares our improved attack with the previous attacks [1, 4, 7]. This
is the best key-recovery attack on E0 known so far with precomputation, time
and data complexities O(237).

4 Application Two: Shannon Cipher

Shannon [11] is a recently proposed synchronous stream cipher designed by G.
Rose et al. from Qualcomm [10]. It has been designed according to Profile 1A of
the ECRYPT call for stream cipher primitives, and it uses a secret key of up to
256 bits. The internal state uses a single nonlinear feedback shift register. This
shift register state at time t ≥ 0 consists of 16 elements st+i (i = 0, . . . , 15) of
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32-bits. Let zt denotes the 32-bit output of Shannon at time t. The following
important relation was identified and formally proved in [5]:

(zt ≪ 1) ⊕ zt+16

= f1(st+21 ⊕ st+22 ⊕ K) ⊕ f2((st+11 ⊕ st+24) ≪ 1) ⊕
f1(st+25 ⊕ st+26 ⊕ K) ⊕ f2((st+15 ⊕ st+28) ≪ 1) ⊕
f2(st+19 ⊕ st+32) ⊕ f2((st+3 ⊕ st+16) ≪ 1), (15)

where f1, f2 : GF (232) → GF (232) are nonlinear and defined in [11], and K is
a 32-bit secret constant derived from the initialization process. Treating each
term in the right-hand sum (15) as independent ones, [5] uses Piling-up lemma
to compute the largest bias of (15) from the individual bias of each term. The
largest bias (15) was shown in [5] to be 2−56. In total, 32 such equally largest
biases makes the complexity O(2107) for the distinguishing attack (see [5]).

4.1 Our Analysis on Shannon Cipher and a Shannon Variant

Here, we want to analyze the influence of the dependency between the terms in
the right-hand sum (15) to the total bias. Our starting point is that (15) can be
viewed as the sum of three items, f1(st+21 ⊕ st+22 ⊕K)⊕ f1(st+25 ⊕ st+26 ⊕K),
f2((st+11 ⊕ st+24) ≪ 1) ⊕ f2((st+15 ⊕ st+28) ≪ 1) and f2(st+19 ⊕ st+32) ⊕
f2((st+3 ⊕ st+16) ≪ 1). For each item, the inputs are dependent as explained
below. The input difference to the two terms of the first item is

(st+21⊕st+22⊕K)⊕(st+25⊕st+26⊕K) = (st+21⊕st+25)⊕(st+22⊕st+26). (16)

As the Shannon keystream output is defined as zt = st+9 ⊕ st+13 ⊕ f2(st+3 ⊕
st+16), we have st+9 ⊕ st+13 = zt ⊕ f2(st+3 ⊕ st+16). We rewrite (16) by

zt+12 ⊕ zt+13 ⊕ f2(st+15 ⊕ st+28) ⊕ f2(st+16 ⊕ st+29) (17)

Given the keystream, we consider zt+12 ⊕ zt+13 as a known value (denoted by
ct+12). Let Df2 be the distribution of f2 assuming a uniform distribution of
the input. From (17), the distribution D(x) of the input difference to the item
f1(st+21 ⊕ st+22 ⊕ K) ⊕ f1(st+25 ⊕ st+26 ⊕ K) can be expressed by D(x) =
Df2 ⊗ Df2(x ⊕ ct+12), where ⊗ denotes convolution. Similarly, we express the
distribution D′(x) of the input difference to the item f2((st+11 ⊕ st+24) ≪
1) ⊕ f2((st+15 ⊕ st+28) ≪ 1) by D′(x) = Df2 ⊗ Df2((x ≫ 1) ⊕ αt+2), where
αt+2 = zt+2 ⊕ zt+15 is known from the keystream.

For the bias pattern (also called output mask) 0x410a4a1 used in [5], we use
Corollary 1 to compute the bias for f1(st+21⊕st+22⊕K)⊕f1(st+25⊕st+26⊕K)
and f2((st+11 ⊕ st+24) ≪ 1) ⊕ f2((st+15 ⊕ st+28) ≪ 1) respectively. We found
that D, D′ are very weakly biased, and they show no significant fluctuations
over the value of ct+12, αt+2 respectively. We conclude that the dependency
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of the internal states of Shannon is weak and the keystream bias (15) can be
approximated3 with Piling-up lemma, which was estimated as O(2−56) in [5].
Thus, the estimated complexity O(2107) of the distinguishing attack [5], which
uses 32 such largest biases, is still valid.

Furthermore, we consider a variant of Shannon when both f1, f2 only uses
one element from the shift register as the input instead of two in the Shannon
cipher. For convenience of our discussion, we consider the variant of removing
the second s term in the inputs of both f1, f2 (K is still present). The keystream
bias relation (15) for our Shannon variant then becomes

(zt ≪ 1) ⊕ zt+16 = f1(st+21 ⊕ K) ⊕ f1(st+25 ⊕ K) ⊕
f2(st+11 ≪ 1) ⊕ f2(st+15 ≪ 1) ⊕ f2(st+19) ⊕ f2(st+3 ≪ 1). (18)

Under the independence assumption, this will not change the keystream bias.
However, note that the involved distributions of the input difference change now.
We can see that now D(x) = Df2(x ⊕ zt+12), D′(x) = Df2((x ≫ 1) ⊕ zt+2),
D′′ = f1 ⊗ f2. Given a bias pattern, we can use Corollary 1 to compute the
individual bias (denote by δ1, δ2, δ3 respectively) of f1(st+21 ⊕ K) ⊕ f1(st+25 ⊕
K), f2(st+11 ≪ 1) ⊕ f2(st+15 ≪ 1) and f2(st+19) ⊕ f2(st+3 ≪ 1). With the
bias pattern M = 0x9292949 and zt+12 = 0x80, δ1 ≈ 2−18; in contrast, the
independence assumption makes δ1 = 0. Meanwhile, we have4 δ2 ≈ δ3 ≈ 2−16,
which are approximately the same as using Piling-up lemma to compute. Thus,
given zt+12 = 0x80, the bias of M · ((zt ≪ 1) ⊕ zt+16) is 2−18−16−16 = 2−50.
This translates to a distinguishing attack with complexity O(2100). Moreover,
we found 15 other bias patterns5 with corresponding zt+12’s, which all have
δ1 ≈ 2−19, δ2 ≈ δ3 ≈ 2−16. Considering all these biases, we have a distinguishing
attack with complexity 2(19+16+16)∗2/16 = 298.

Additionally, we can prove that given the values of M and zt+12, δ1 remains
the same for the bias patterns M ≪ a and zt+12 ≪ a, where a = 0, . . . , 31. We
give a brief sketch of proof here. In order to prove above statement, it suffices
to show that δ1 = δ′1, where δ′1 denotes the corresponding bias for M ′ = M ≪
1. Let g1(x) = (−1)M·f1(x) and g′1(x) = (−1)M ′·f1(x). First, we have g1(x) =
g′1(x ≪ 1) for all x. From this we deduce ĝ1(x) = ĝ′1(x ≪ 1) for all x. On
the other hand, we use the property that f2(x ≪ a) = f2(x) ≪ a for all
x (see [5]) to deduce Df2(y) = Df2(y ≪ 1) for all y. So, Df2(x ⊕ zt+12) =
Df2((x⊕ zt+12) ≪ 1). Finally we apply Corollary 1 to conclude δ1 = δ′1. Hence,

3 Note that the input difference to another item f2(st+19⊕st+32)⊕f2((st+3⊕st+16) ≪
1) is ((st+3 ≪ 1) ⊕ st+19) ⊕ ((st+16 ≪ 1) ⊕ st+32). From [5], the following holds
(st ≪ 1) ⊕ st+16 = f1(st+12 ⊕ st+13 ⊕ K) ⊕ f2((st+2 ⊕ st+15) ≪ 1). Thus the
distribution D′′ of the input difference to this item is D′′ = Df1 ⊗Df1 ⊗Df2 ⊗Df2 .
From Df1 , Df2 we deduce that D′′ is too flat and we can approximate the bias of
this item by Piling-up lemma.

4 Here δ2 fluctuates insignificantly over the value of zt+2.
5 They are 0x424a425, 0x420a525, 0x420a4a5, 0x420a425, 0x414a4a5, 0x414a4a1,

0x410a4a5, 0x9294949, 0x9292929, 0x9290949, 0x1292929, 0x1012929, 0x292949,
0x292941, 0x24a525.
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each bias pattern can be expanded to 32 ones of equal bias, and we can further
decrease the complexity of our attack on Shannon variant to 298/32 = 293.

5 Conclusion

In this paper, we study the bias problem of the XOR of many Boolean function
outputs, whose inputs are dependent. When all inputs are independent, our bias
problem degrades to the old well-known problem and can be solved by Piling-
up lemma. We give a simple expression to compute the bias efficiently. It takes
time O(kn · 2n). It turns out that our result generalizes the previous work of [9].
Furthermore, we note that the general bias in our problem can differ significantly
from the bias in the independent case. As a general guideline, we note that when
the distribution D of the XOR of the involved variables is weakly biased, the
bias can be approximated by using the Piling-up lemma; otherwise, it is not
appropriate to use the Piling-up lemma to compute the bias. As application,
we demonstrate with two real examples, E0 and Shannon cipher, which have a
strongly biased and weakly biased D respectively. For E0, our analysis allows
to make the best known key-recovery attack with precomputation, time and
data complexities O(237). For Shannon cipher, our analysis verifies the validity
of the estimated complexity O(2107) of the previous distinguishing attack [5].
As comparison, we also studied a variant of Shannon cipher, which shows much
stronger dependency within the internal states. We gave a distinguishing attack
on the Shannon variant with reduced complexity O(293).
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Abstract. In this paper we investigate the differential properties of
block ciphers in hash function modes of operation. First we show the
impact of differential trails for block ciphers on collision attacks for vari-
ous hash function constructions based on block ciphers. Further, we prove
the lower bound for finding a pair that follows some truncated differential
in case of a random permutation. Then we present open-key differential
distinguishers for some well known round-reduced block ciphers.

Keywords: Block cipher, differential attack, open-key distinguisher, Cryp-
ton, Hierocrypt, SAFER++, Square.

1 Introduction

Block ciphers play an important role in symmetric cryptography providing the
basic tool for encryption. They are the oldest and most scrutinized cryptographic
tool. Consequently, they are the most trusted cryptographic algorithms that are
often used as the underlying tool to construct other cryptographic algorithms.
One such application of block ciphers is for building compression functions for
the hash functions.

There are many constructions (also called hash function modes) for turning
a block cipher into a compression function. Probably the most popular is the
well-known Davies-Meyer mode. Preneel et al. in [27] have considered all possible
modes that can be defined for a single application of n-bit block cipher in order to
produce an n-bit compression function. They have found that there are 12 modes
that are resistant against generic attacks. Later these findings have been formally
proven in [7]. To make hash functions resistant against the birthday-paradox
attack, it is better to use double-block modes. Basic double-block modes have
been proposed in [8,14,20]. Note that the Tandem-DM mode has been proven to
be collision resistant in [12], while a weakness in MDC-2 was found in [17].

Proofs of security of the above modes are performed under the assumption
that the underlying block cipher is ideal. This assumption is not satisfied if the
� The work was done while this author was visiting Macquarie University.
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cipher is used to build hash functions. Note that the ideal cipher is related to
the concept of pseudo-random permutation, where the adversary does not know
the cryptographic key. Clearly, for hash function constructions based on block
ciphers, the adversary fully controls the key.

Biham and Shamir introduced differential analysis in [3] and successfully an-
alyzed DES. The idea is to follow the propagation of a difference in the state
of the cipher throughout consecutive rounds. When the input-output differences
can be predicted with a sufficiently high probability, then the cipher can be
distinguished from a pseudo-random permutation. This concept can trivially be
adjusted for the case, where the adversary knows/controls the key of the cipher
(open-key differential distinguishers). The goal of adversary in this case would
be to find an input-output pair of differences for the cipher that can be predicted
with a probability higher than in a random permutation.

Unlike in the secret-key model, where the complexity of an attack is usually
bounded by the size of the key space (i.e. 2k for a k-bit key), the attacks in
the open-key model are bounded by the size of the state space (i.e. 2n for an
n-bit state). Therefore, some of the published attacks in the secret-key model
(precisely, the attacks with a complexity higher than 2n) become worse than
simple generic attacks, when applied in the open-key model.

Our Contributions. We investigate the impact of block cipher open-key differen-
tial distinguishers on hash function modes of operation. Our main contributions
can be summarized as follows:
1. For a variety of hash function modes based on block-ciphers, we determine

which collision finding attack variants (collisions, pseudo collisions, semi-
free start collisions, or free start collisions) are feasible, assuming that the
adversary is given a specific differential trail for the underlying block cipher
in the open-key model. We target all Preneel-Govaerts-Vandewalle (PGV)
single-block-length compression modes, as well as four double-block-length
modes.

2. We examine several well known block ciphers (Crypton, Hierocrypt-3,
SAFER++, Square, and generic Feistel ciphers) and for each of them, we
present new known-key and chosen-key differential distinguishers - see Table
1. Our distinguishers use the rebound attack [25] as a starting point, but
we obtain substantial improvements in the number of attacked rounds by
exploiting some cipher-specific properties that allow us to manipulate bits
of the subkeys (a similar technique was used in the context of analysing
the Whirlpool function [21]). In the chosen-key model, for substitution-
permutation (SP) ciphers, we obtain an explicit formula for the number of
additional rounds that can be attacked for free, when the cipher has an
invertible key schedule.

3. To show the efficiency of our distinguishers, we give a proof of a lower bound
on the complexity of differential distinguishers in the case of a black-box
random permutation. Although this bound has been used for a while (mainly
as an upper bound, e.g. in [13] it is called a limited-birthday distinguisher),
as far as we know, it has never been formally proved.
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Table 1. Summary of attacks on the ciphers examined in the paper. The “Encryptions”
column gives the expected number of encriptions in the case of a SP cipher, while the
“Lower bound” column – the expected number of encryptions required in the case of
a random permutation. In case of n-bit Feistel cipher r is a number of covered rounds,
and 2c is the complexity of some differential attack.

Cipher Distinguisher Rounds Encryptions Lower bound Reference

Crypton Known-key 7 248 261 Section 5.1
Chosen-key 9 248 261 Section 5.1

Hierocrypt-3 Known-key 3.5 248 261 Section 5.1
Chosen-key 4.5 248 261 Section 5.1

SAFER++ Known-key 6.5 2120 2128 Section 5.2
Chosen-key 6.5 2112 2128 Section 5.2

Square Known-key 7 248 261 Section 5.1
Chosen-key 8 248 261 Section 5.1

n-bit Feistel Differential attack r 2c

with k-bit key Known-key r + 2 2c Section 5.3
Chosen-key r + � 2k

n
� 2c Section 5.3

Organization. The paper is organized as follows. In Section 2 we define the open-
key distinguishers and review techniques for constructing differential trails. In
Section 3, we present our findings about the impact of block cipher differential
trails on the security of hash function modes. Section 4 contains our lower bound
on the complexity of differential distinguishers for black-box random permuta-
tions. In Section 5, we present our cipher specific known-key and chosen-key
differential distinguishers for various block ciphers. Section 6 concludes the pa-
per.

2 Preliminaries

2.1 Open-Key Distinguishers for Block Ciphers

A distinguisher is one of the weakest cryptographic attacks that can be launched
against a secret-key cipher. In this attack, there are two oracles: one that sim-
ulates the cipher for which the cryptographic key has been chosen at random
and the other simulates a truly random permutation. The adversary can query
both oracles and their task is to decide which oracle is the cipher (or random
permutation). The attack is considered to be successful if the number of queries
required to make a correct decision is below a well defined level.

The idea of open-key distinguishers was introduced by Knudsen and Rijmen
in [18] for analysis of AES and a class of Feistel ciphers. They examined the
security of these block ciphers in a model where the adversary knows the key.
Later, the same approach was used in the attack on 8-round reduced AES-
128 [13] and for analysis of Rijndael with large blocks [26], where the authors
defined a new security notion for a known-key cipher. The idea of chosen-key
distinguishers was introduced in the attack on the full-round AES-256 [5]. This
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time the adversary is assumed to have a full control over the key. A chosen-key
attack was launched on 8-round reduced AES-128 in [6].

Both the known-key and chosen-key distinguishers are collectively known
open-key distinguishers. The adversary has the knowledge of the key or even
can choose a value of the key. To succeed, the adversary has to discover some
property of the attacked cipher that holds with a probability higher than for a
random permutation.

Differential distinguishers in the open-key model are defined in similar way as
in the secret-key model. The adversary builds a differential trail (ΔP , ΔK) → Δ2

for the block cipher EK(P ). In other words, he finds a pair1 of plaintexts (P1,P2)
and a pair of keys (K1, K2), together known as a differential pair, such that
P1⊕P2 = ΔP , K1⊕K2 = ΔK and EK1(P1)⊕EK2(P2) = Δ2. The pair (ΔP , ΔK)
is the input difference, while Δ2 is the output difference. At least one of ΔP and
ΔK has to be non-zero. For example, the trails given in [6,13,26] have differences
only in the plaintext, while the trail from [5] has differences in both the key and
the plaintext.

2.2 Design of Differential Distinguishers for Block Ciphers

We will focus our analysis on substitution-permutation (SP) block ciphers. Each
round of such ciphers consists of two types of transformations: 1) a non-linear
layer of S-boxes, and 2) a linear-diffusion layer (LD). The non-linear layer oper-
ates on bytes, i.e. the inputs to the S-boxes are bytes of the state. The linear-
diffusion layer may apply different transformations such as multiplications of the
columns/rows of the state matrix by a fixed diffusion matrix, transpositions of
rows/columns, rotations of elements of the state matrix, subkey additions, and
others.

Differential trails for ciphers are given as a sequence of input-output word
differences of each transformation of the state. Since SP ciphers are usually
byte-oriented, these trails can be given as a sequence of active bytes, i.e. bytes
that have differences. Depending on the properties of the S-box layer and the
linear-diffusion layer, the adversary can built two types of trails.

The first type is a standard differential trail, where the exact values of the
input-output differences for each layer and for each round of the trail are fixed.
The probability of these trails depends on the differential properties of the S-
boxes, i.e. the probability that a given input difference to the S-box will produce
a given output difference. Note that when these differences are fixed, then the
trail in the linear-diffusion layer holds with probability 1.

The second type is a truncated differential trail [16]. In this trail only the
position of the active bytes is important, while the actual difference values are
ignored. Since, the S-box operates on a single byte, it means it cannot change an
active byte to a non-active and vice-versa. Hence the adversary concentrates only
on the linear-diffusion layer and finds the probability of a particular configuration
of input-output active bytes.

1 Actually the adversary can build many pairs of plaintexts and keys.
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Although for SP ciphers the truncated differential approach is common, fur-
ther in our analysis we will use both types of differential trails, together with
trails with a difference in the plaintext only.

2.3 Techniques for Differential Trail Constructions

A major improvement in the analysis of SP cryptographic algorithms was the
introduction of the rebound attack [25]. The idea is as follows. If we assume
that the adversary controls the input to the S-boxes, then any input-output
difference 2 to this layer can be obtained for free (simple table lookups). In other
words, when Δ1, Δ2 are fixed, then it is easy to find x such that S(x + Δ1) ⊕
S(x) = Δ2. In two consecutive middle rounds the adversary first fixes both the
input differences of the LD layer in the first round, and the output differences
of the LD layer of the second round. Then he goes forward through the first
LD layer and backwards through the second LD layer. He ends up with fully
determined differences, since the layers are linear. In between there is only one
S-box layer (composed of a number of S-boxes), which can be passed for free
when the adversary fixes the values, i.e. when he finds the proper solutions x
of the above equation. Therefore, at the beginning of the first, and at the end
of the second middle round, not only the differences, but now also the values
have been fixed. The rounds that precede and follow the two middle rounds are
passed probabilistically.

The technique of the rebound attack was improved with the Super-Sbox crypt-
analysis [11,13,21]. When the round diffusion is incomplete then two layers of
S-boxes can be passed for free using a precomputed lookup tables. The idea is
similar to the one of the original rebound attack, but bigger lookup tables are
used.

ki
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D
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Fig. 1. Chosen-key dis-
tinguisher for SP ciphers

The key can be used to gain an additional degree
of freedom, which in return can lead to more S-box
layers passed for free. When the adversary controls the
key, then the rebound attack can be extended to one
or two additional rounds, depending on the size of the
key. The subkey (roundkey) is xored in each round of
the cipher. The first S-box layer can be passed for free
using the previous rebound technique (by fixing not
only the difference, but the exact values as well). The
second S-box layer can be passed for free as well if
the adversary controls the input values to this layer
by solving the appropriate equations. These values can
be manipulated with the subkey, i.e. the adversary can
choose a proper subkey such that the inputs to the
S-box layer can be of arbitrary value (yet, their difference is fixed). Hence, the
adversary can pass the second S-box layer for free if he controls the subkey of this
round. Let us explain the idea on an example (See Fig.1). Let Δ1 → Δ2 → Δ3

2 Only half of the input-output differences are possible, but for each of them there are
two different input values, hence on average it is true.
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be an arbitrary two-round differential trail. First the adversary finds (with the
rebound attack) a pair of states that satisfies the differential trail of the first
round, i.e. he finds a pair (A, A⊕Δ1) that produces (B, B ⊕Δ2) on the output.
Then independently, he finds a pair of states for the second round, i.e. he finds
(C, C ⊕ Δ2) that produces the output (D, D ⊕ Δ3). In the last step he has to
fix a proper subkey ki+1 for the second round, which will connect the output of
the first round and the input of the second round. To do so, the adversary fixes
ki+1 = B ⊕C, and as the result he obtains a pair of states (A⊕ ki, A⊕ ki ⊕Δ1)
that satisfy the two round differential trail.

Similarly, the adversary can pass more S-box layers when he controls the sub-
keys of these layers. An obvious requirement for the subkeys of these additional
rounds is that they need to be independent. Otherwise, a change in a subkey
in one round will change the value of a subkey in another round, which might
lead to incorrect input values for the S-box layer of this second round. A second
requirement is an invertible key schedule. Since the adversary controls the values
of the subkeys of some middle rounds, he has to be able to produce the values
of the subkeys of the rounds that precede and follow these rounds, hence he has
to find the master key from the fixed subkeys. It is important to notice that this
technique requires a negligible memory.

2.4 Building the Differential Trails

For each of the techniques discussed above, the adversary first builds a trail that
may have a plenty of active S-boxes in some middle rounds and a few at the ends
of the trail. Then, a pair of values that follows the differential trail only in these
middle rounds is found with complexity 1. The rest of the rounds, before and
after the middle rounds, are covered probabilistically since the adversary has no
degree of freedom left.

Finding the optimal differential trails with no difference in the key can be
done automatically since the ciphers considered in this paper are byte-oriented
with a block size of 16 bytes. This leads to a search space of 216 possible starting
values.

Some of the ciphers are based on the so-called wide trail strategy [10], and
provide an efficient method for estimating the probability of the best round-
reduced standard differential trails. These estimation are based on the differential
properties of the S-boxes and the diffusion properties of the LD layers, which
are often maximum distance separable mappings.

3 Impact of Block Cipher Known Key Differential Trails
on Hash Modes

The most popular design of cryptographic hash is based on iterative use of a
compression function. This construction is also known as the Merkle-Damg̊ard
(MD) structure. Early compression functions were using block ciphers as the
main building block. Assume that we have a single instance of a block cipher
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EK(P ) and wish to design a compression function that takes a 2n-bit input
(H, M) and outputs a n-bit string F (H, M). This problem has been investigated
in [7,27] and it has been shown that there are 12 structures (modes) that are
secure. An example of one such structure is the well-known Davies-Meyer (DM)
mode that is defined as F (H, M) = EM (H)⊕H (see mode 5 in Table 2), where
H and M are the chaining value and the message, respectively.

In this work, we consider four types of collision attacks against the compres-
sion functions:

1. Collisions - for a fixed chaining value H0, the adversary tries to find two
distinct messages M1, M2 such that F (H0, M1) = F (H0, M2).

2. Pseudo collisions - for a message M , the adversary wishes to find two distinct
chaining values H1, H2 such that F (H1, M) = F (H2, M).

3. Semi-free start collisions - the adversary attempts to find two distinct mes-
sages M1, M2 and a chaining value H such that F (H, M1) = F (H, M2).

4. Free start collisions - the adversary tries to find two distinct chaining val-
ues H1, H2, and two distinct messages M1, M2 such that F (H1, M1) =
F (H2, M2).

We investigate the resistance of compression functions based on block ciphers
against the attacks described above. We assume that the adversary can build
a differential trail for the cipher with differences not only in the plaintext, or
in the key, but also in both the plaintext and the key. For example, for the
DM compression function, this means the adversary can find a pair of chaining
values (H1, H2) and a pair of messages (M1, M2) (possibly in one of the pairs
the two values are equal) such that H1 ⊕ H2 = ΔH , M1 ⊕ M2 = ΔM and
F (H1, M1)⊕F (H2, M2) = ΔH ⊕Δ2. Hence, when the adversary can build some
trail, i.e. when he cannot control the exact values of the differences ΔH , Δ2,
then he can find a differential distinguisher for the DM compression function.
On the other hand, when the adversary can build a specific trail for the cipher
with a difference in the plaintext (H is the plaintext input to the cipher), such
that ΔH ⊕ Δ2 = 0, then he can find: 1) free-start collisions, if ΔM , ΔH �= 0,
2) pseudo-collisions, if ΔM = 0, ΔH �= 0, 3) collisions or semi-free start collisions,
if ΔM �= 0, ΔH = Δ2 = 0 (note that this implies that there are key collisions in
the cipher since in DM, the message is the key).

The same approach can be applied to the other 11 modes. We try to find
the all possible collision attacks under the assumption that the adversary can
control the relation between the input and the output differences of a trail in
the cipher. Our findings are presented in Table 2.

Often the block size of a cipher is too small to be secure in the compression
mode. Hence, there is a class of compression functions, also called double-block-
length ones, whose output size is two times bigger than the block size of the
underlying cipher. We investigate the security of such functions proposed by Lai-
Massey in [20], Hirose in [14] and Bracht et al. in [8]. Our results are presented
in Table 3.



36 I. Nikolić et al.

Table 2. The first column consists of numbers from [7]. The entries in the columns
plaintext, key, plaintext and key show the best collision attacks for the modes when
there is difference only in the plaintext, only in the key or both in the plaintext and key,
respectively. The abbreviations C, PC, SFSC, FSC stand for collision, pseudo-collision,
semi-free start collision, free start collision, respectively.

mode
(ı)

h′ plaintext key
plaintext
and key

1 Eh(m)⊕m C, SFSC PCa FSC

2 Eh(h⊕m)⊕ h⊕m C, SFSC PC PC, FSC

3 Eh(m)⊕ h⊕m C, SFSC PC FSC

4 Eh(h⊕m)⊕m C, SFSC PC PC, FSC

5 Em(h)⊕ h PC Ca, SFSCa FSC

6 Em(h⊕m)⊕ h⊕m PC FSC C, SFSC, FSC

7 Em(h)⊕ h⊕m PC C, SFSC FSC

8 Em(h⊕m)⊕ h PC FSC C, SFSC, FSC

9 Eh⊕m(m)⊕m FSC PCa C, SFSC, FSC

10 Eh⊕m(h)⊕ h FSC Ca, SFSCa PC, FSC

11 Eh⊕m(m)⊕ h FSC PC C, SFSC, FSC

12 Eh⊕m(h)⊕m FSC C, SFSC C, PC, FSC

a When key collisions exist in the cipher.

Table 3. In the first column A-DM, T-DM, DBL and MDC-2 are abbreviations of
Abrest DM, Tandem DM, Double-Block-Length and Modification Detection Code 2
respectively (see [20] for the first two, [14] for the third and [8] for the last). The
abbreviations C, PC, SFSC, FSC stand for collision, pseudo-collision, semi-free start
collision, free start collision, respectively.

mode (h′, g′) plaintext key
plaintext
and key

A-DM
h′ = Eg,m(h)⊕ h
g′ = Em,h(ḡ)⊕ g

FSC C, SFSC PC, FSC

T-DM
h′ = Eg,m(h)⊕ h

g′ = Em,Eg,m(h)(g)⊕ g
FSC C, SFSC PC, FSC

DBL
h′ = Eh‖m(g ⊕ c) ⊕ g ⊕ c

g′ = Eh‖m(g)⊕ g
PC C, PC, SFSC, FSC PC, FSC

MDC-2
h′ = (Eh(m)⊕m)L ‖ (Eg(m)⊕m)R

g′ = (Eg(m)⊕m)L ‖ (Eh(m)⊕m)R C, SFSC PCa FSC

a When key collisions exist in the cipher.

Although we have analyzed the collision resistance of the above modes, the
differential trails for the underlying ciphers in the open-key model can be used
as a standalone cryptanalytical result for the compression functions.
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4 Lower Bound on Complexity of Differential
Distinguisher for Random Permutations

In this section we present a lower bound on the complexity of differential distin-
guishers for a black-box random permutation. This allows us to fairly compare
our cipher-specific distinguisher complexities in Section 2.2 to the best possible
black-box distinguisher. Although a similar upper bound has been used before
(see, e.g. [13]), our result proves that it is indeed close to the best possible. To
our knowledge, such a lower bound has not been published before, and may be
of independent interest.

When the key is fixed, a block cipher becomes a permutation. An open-key
differential distinguisher with no difference in the key is valid if the complexity
of finding a differential pair is less than the complexity of finding such pair in
a random permutation. When the input and output differences are fully fixed,
in n-bit random permutation the complexity of finding a differential pair is 2n,
hence any differential distinguisher with a probability higher than 2−n is valid.
When the input difference is fixed, and the output difference can take values
from a set of the cardinality 2c, then for a random permutation, a differential
pair can be found after performing 2n−c encryptions. The general case when both
the input and the output differences are taken from sets of fixed cardinalities, is
discussed in the following lemma.

Lemma 1. Let DI , DO denote subsets of {0, 1}n, which are closed under ⊕, i.e.
x⊕ y ∈ DI (respectively DO) for x, y ∈ DI (resp. DO). For any attacker making
queries to a random n-bit permutation π and its inverse π−1, the complexity
(measured in expected number of oracle queries) of finding a pair of inputs (x, y),
where x ⊕ y ∈ DI , |DI | = 2cI , such that π(x) ⊕ π(y) ∈ DO, |DO| = 2cO , is lower
bounded as Q ≥ min(2

n
2 −2, 2n−(cI+cO)−3).

Proof. Since DI and DO are closed under ⊕, we may partition {0, 1}n into input
sets A1, . . . , AN , where each |Ai| = |DI | = 2cI , N = 2n

|DI | = 2n−cI , such that
x ⊕ y ∈ DI for x, y ∈ Ai for i = 1, . . . , N . Similarly, we have a partition into
output sets B1, . . . , BM where |Bj | = |DO| = 2cO , M = 2n

|DO| = 2n−cO for all
j = 1, . . . , M .

Let us define the following game G0: attacker A has an access to a random
permutation oracle π : {0, 1}n → {0, 1}n and its inverse π−1, making a total of
q queries to these oracles.

In the following games Gk (k = 0, 1, 2), let Ek be the following event: A finds
x �= y with x, y ∈ Ai and π(x), π(y) ∈ Bj for some i, j while interacting with
game Gk.

We show below the following upper bound:

Pr(E0) ≤ q2

2n
+

q

2n−(cO+cI)
. (1)

Before we explain the formal proof, we remark that the intuition for this result
is as follows. The first term q2

2n is the upper bound on the collision probability
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error due to the fact that we simplify the problem by replacing the random
permutation π with a random function. The last term arise because at each
query to π (resp. π−1) which is in some input set Ai (resp. output set Bj) there
are at most 2cI points in Ai whose image under π is already defined (resp. at
most 2cO points in Bj whose image under π−1 is already defined), thus occupying
at most 2cI out of the 2n−cO output sets (resp. at most 2cO out of the 2n−cI

input sets).
We first show that (1) implies the claimed expected complexity bound. In

game G0, let T denote the random variable defined as the number of oracle
queries until the event E0 occurs. We lower bound the expected value Q = E(T )
as follows. Let p(q) denote the right hand side of (1), and let q∗ be such that
p(q∗) = 1

2 . Since Pr(T ≤ q) ≤ p(q), we have

Q ≥
∑
q>q∗

Pr(T = q) · q ≥ q∗ · Pr(T > q∗) ≥ q∗

2
. (2)

Now, for i ∈ {1, 2}, let qi denote the value of q such that the ith term on the
right hand side of (1) is equal to 1

4 . Since there are 2 terms in (1), we may take
min(q1, q2) as lower bound for q∗. Since q1 = 2

n
2 −1 and q2 = 2n−(cI+cO)−2, the

claimed lower bound on Q follows.
It remains to prove (1). We will do this by building a chain of games, starting

with G0, which are similar until bad is set (for further details of this methodology
see for example [2]).

First define a game G1 to be similar to G0 except that the permutation π
is replaced by a relation P ⊂ {0, 1}n × {0, 1}n that is injective and functional,
but not necessary defined in whole domain. According to naming convention
in [2] relation P is called partial permutation, whereas injectivity and functional
conditions together are named “permutation constraint”. Initially P is empty
and through execution of G1 its values are being sampled randomly with respect
to “permutation constraint”. Whenever P (x) (resp. P−1(y)) is needed first it is
checked if P (resp. P−1) is defined on x (resp. y). If this is the case then appro-
priate value is returned, otherwise P (x) (resp. P−1(y)) is sampled uniformly at
random from img(P ) (resp. img(P−1)), where img(P ) is complement of image
of P . Because the sampling is the same as in Game G0, we have

Pr(E0) = Pr(E1). (3)

Next we define game G2 which is the same as G1 except “permutation con-
straint” for P does not need to be fulfilled. That means the values P (x) (resp.
P−1(y)) are sampled at random from {0, 1}n, but the game stops immediately
when the “permutation constraint” is not satisfied. Unless the “permutation
constraint” is violated by the occurrence of a collision between a new output
value returned by P and a previous output value of P or input value queried
to P−1 (resp. a collision between a new output value returned by P−1 and an
previous output value of P−1 or input value queried to P ), the games G1 and
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G2 proceed identically. Since at each query there are at most q previous P (resp.
P−1) output values already defined, we have

|Pr(E2) − Pr(E1)| ≤ q2

2n
. (4)

At this stage we stop building chain of games and we upper bound the probability
Pr(E2) directly. We claim that

Pr(E2) ≤ q

2n−(cO+cI)
. (5)

Let x denote the qth query of the attacker, define the following variables for
i = 1, . . . , N and j = 1, . . . , M :

– aF
i = number of P oracle queries made so far which are in Ai,

– aR
i = number of P−1 oracle answers given so far which fell in Ai,

– bF
j = number of P−1 oracle queries made so far which are in Bj ,

– bR
j = number of P oracle answers given so far which fell in Bj .

Suppose that x is a query to P and that x ∈ Ai for some i. We have so far aF
i +aR

i

points in Ai whose Bj sets are already defined. Hence the event E2 will occur only
if the uniformly random (in {0, 1}n) answer of P falls in one of those output sets,
so it will happen in this query with probability ≤ aF

i +aR
i

M ≤ |DI |
M = 1

2n−(cI+cO) ,
using aF

i + aR
i ≤ |DI | (since the game did not stop so far). Similarly, if x is

a query to P−1 and x ∈ Bj for some j, then E2 will occur in this query with

probability ≤ bF
j +bR

j

N ≤ |DO|
N = 1

2n−(cI+cO) . It follows that E2 occurs among the
first q queries with probability bounded by (5), as claimed. This completes the
proof of the Lemma. �

5 Differential Trails for Specific Block Ciphers

We have searched for differential trails in the following ciphers: Crypton,
Hierocrypt-3, SAFER++, and Square. Specifically, we have tried to build stan-
dard and/or truncated trails, which can be used in a rebound-type attack. For
some of the ciphers, the probabilities for the both standard and truncated dif-
ferential trails were higher than in a random permutation. In this case, only the
trails (which are usually truncated) with higher probability are presented.

The trails for the chosen-key distinguishers were built upon the trails for
the known-key distinguishers by increasing the number of the full active middle
rounds which can be covered for free when a proper subkey is fixed. When n-bit
key is used, with an invertible key schedule that produces s-bit subkeys, then the
chosen-key distinguisher has �n

s � more rounds then the known-key distinguisher.
Due to space limitation, we will not give a full description of the attacked

ciphers, but rather, introduce them briefly using the original notions and defini-
tions from the source papers.
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5.1 Crypton, Hierocrypt-3 and Square

Crypton [22], Hierocrypt-3 [28], and Square [9] are 128-bit SP block ciphers and
have a various number of internal rounds depending on the length of the key. The
best published attacks in the secret-key model are on 8 rounds of Crypton [15],
3-3.5 rounds of Hierocrypt-3 [1], and 8 rounds of Square [19].

The internal state of each cipher can be seen as 4 × 4 matrix of bytes, while
a round consists of three types of transformations of the state: 1) byte-wise ap-
plication of a non-linear S-box, 2) matrix-wise linear-diffusion (LD) layer that
applies different linear transformations of various bytes of the matrix to intro-
duce a sufficient diffusion among the bytes of the state, 3) subkey addition –
a simple xor of the round key to the matrix. A round of Crypton consists of
an S-box layer γ, LD layer composed of two transforms π and τ , and subkey
addition σ. Hierocrypt-3 has six round transforms: two S-box layers [S], two LD
layers [MDSL] and [MDSH ], and two subkey additions [AK]. A round of Square
consists of four transforms: S-box layer γ, LD layer with two transforms θ and
π, and a subkey addition σ. It is important to notice that all three ciphers have
a non-linear, but invertible, key schedule. The 256-bit key versions of Crypton
and Hierocrypt-3, have a key schedule such that each two consecutive 128-bit
subkeys are independent.

For each cipher, we can build 7-round truncated differential trails (7 S-box
layer trail in case of Hierocript), that have a full active state in the middle
round, but only a few active S-boxes in the rest of the 3+3 rounds (S-box layers
of Hierocript). These trails can be used to construct known-key distinguishers
on 7 rounds of the ciphers, based on the rebound technique. Since the ciphers
have invertible key schedules, we can increase the number of attacked rounds by
switching from the known-key to the chosen-key attacks and using the degrees
of freedom of the subkeys. Hence, we can construct a chosen-key differential
distinguisher on 8 rounds of Crypton with 128-bit keys, and 9 rounds of Crypton
with 256-bit keys (the additional round comes from extra 128-bit freedom of
the key; the chosen-key has � 256

128� = 2 more rounds than the known-key, see
Section 2.3). For Hierocrypt-3, the result is a chosen-key distinguisher on 8 S-box
layers = 4 rounds for 128-bit keys, and on 9 S-box layers=4.5 rounds for 256-
bit keys. Square only supports 128-bit keys, hence the chosen-key distinguisher
works on 8 rounds, which is indeed the total number of rounds of this cipher.

The trails used in the chosen-key distinguishers for 9, 4.5 and 8 rounds of
Crypton, Hierocrypt-3, and Square, respectively are given in the Appendix A.
Since the middle full-active state round(s) are covered by the rebound attack and
by fixing the subkeys used in these rounds, we can assume that the probability
of the trails in these rounds is 1. Hence, we count only the probability of the
rest of the rounds. In each of the three trails, we have twice 2−24 – that is the
probability that the linear-diffusion transformation will turn four active bytes
into one active byte. The probability of the trail in the rest of the layers is
1. Therefore, to find pairs of plaintexts and ciphertexts that will follow the
truncated differential trails, one has to start with 248 pairs of states that pass
the middle rounds (each pair can be build with negligible complexity). Out of 248
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pairs, 224 will produce four-to-one active byte in the first half of the trail, leading
to a plaintext difference as the one in the trail. Out of these 224, one will produce
four-to-one active in the second half of the trail and a ciphertext difference as
the one in the trail. Now, let us try to compare our complexity of 248 encryptions
to the complexity in a case of a random permutation. By Lemma 1, to find this
complexity we have to find the cardinalities of the plaintext and the ciphertext
differences in the truncated trails. Although some of the plaintext/ciphertext
differences in the trails have full active states, they are obtained by a linear
transformation of some state with a four active bytes. Hence the cardinalities in
all cases are 24·8 = 232, and the complexity of producing a pair for a random
permutation, that follows the trails, is at least min(2

128
2 −2, 2128−(32+32)−3) = 261

encryptions.
To test the correctness of our results, we have constructed a chosen-key distin-

guisher on mCrypton [23], which has the same design as Crypton, but instead of
bytes (8-bit words), it works with nibbles (4-bit words), and uses a non-invertible
key schedule. The above distinguishers for Crypton can easily be applied to a
modified version of mCrypton with a (invertible) key schedule identical to the one
of Crypton. The chosen-key distinguisher for 9 rounds of this modified mCryp-
ton was implemented on a PC, and a differential pair was found. The results are
given in Appendix B.

5.2 SAFER++

SAFER++ [24] is a 128-bit SP block cipher. The version with 128-bit key has
7 rounds and the best published attack works for 5.5 rounds [4]. A round of
SAFER++ consists of: 1) a byte-wise subkey addition, 2) a byte-wise S-box
layer, 3) a byte-wise subkey addition, and 4) a state-wise linear-diffusion layer
in the form of four 4-PHT. The subkey additions are modular and xor, and
two different S-boxes are used. After the last round, there is an extra subkey
addition. The key schedule is linear.

When the subkeys are fixed, then the S-box layer can be merged with the
subkey additions to form another S-box layer, with the same input and output
size. In other words, the subkey addition together with S-box and the subkey
addition can be seen simply as some S-box (since the bytes of the subkeys are
different, the S-boxes are also different). Hence, we can assume that a round of
the cipher is composed of an S-box layer and a linear-diffusion layer, and all the
additions in the cipher are modular.

Our automatic search for the best round-reduced standard differentials has
found that there exist only two three-round trails with 10 active S-boxes (the
rest of the trails have more than 10 active S-boxes). The first trail has 4,2,4 while
the second has 2,3, and 5 active S-boxes in the first, the second, and the third
round, respectively. We have used two 4-2-4 trails in our standard differential
attack (see Fig.2). We attack 6.5 rounds of SAFER++, which is the full cipher,
except for the first round, where the three transforms: subkey addition, S-box
and subkey addition, are missing. As far as we know this is the first rebound
attack with standard differentials. Therefore, we will describe it in more details.
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Fig. 2. Standard differential trail for 6.5 rounds of SAFER++ for the chosen-key dis-
tinguisher and 128-bit key. The first round is without the S-box layers, crossed square
represents fixed 8-bit difference. The detailed trail is given in Fig.7 of the Appendix A.

First, to cancel the effects of the last extra subkey addition, we fix the MSB
of the bytes 1, 3, 9, 12, 13, 14, 15, 16 of the last subkey to zero, while the values
for the other bits of the subkey are randomly chosen. Then, from the mentioned
subkey, we find the value of the master key, and the values for all remaining
subkeys. Now we are ready to start the rebound attack.

We assign differences to the bytes 2, 3, 5, 13 (and no difference to other bytes)
of the state before the linear layer in round 3. The differences should be such
that after the linear layer all bytes are active (this holds for almost any assigned
values). Similarly, we assign differences to the bytes 2, 4, 9, 12 of the state after
the linear layer in round 4, go backwards through the linear layer and obtain a
full active state. In between the top and the bottom active states, there is only
the S-box layer, hence we match the differences through this layer, i.e. we fix
the values of the bytes such that all the input differences produce all the output
differences. Since the values of the full state have been fix, the rest of the rounds
are passed probabilistically. There are 2, 4, 4, 2, 4 active S-boxes (16 in total)
in the rounds 2, 3, 5, 6, 7, respectively.

If we assume that the differential propagation through all of the S-boxes occurs
with the probability 2−7 then the complexity of the whole attack is 27·16 = 2112

encryptions. Note that for a fixed key, we have 264 starting values for the rebound
attack. We can choose different keys (such that the last subkey has the MSB of
the mentioned above bytes fixed to zero) to get the necessary number of starting
pairs for the differential attack. Since the input and output differences of the
differential pair are fully fixed, such a pair in a random permutation can be
found with 2128 encryptions.

5.3 Feistel Ciphers

Feistel ciphers with a SP round function can have a number of rounds covered
for free in the known and chosen-key differential attacks. When the key is known,
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the S-box layers of two consecutive rounds can be attacked independently since
the round function uses only half of the input. For a given two-round differential,
first a pair of input states that satisfy the differential of the first round function
is fixed, and then a pair of states of the second round function. Therefore, in
an known-key attack, any differential trail can be extended by two additional
rounds (this should not be confused with the distinguishers on 7-round Feistel
ciphers proposed in [18]).

F

k1

A B

F

k3

E G

F

k2

CD

L R

Fig. 3. Chosen-key dis-
tinguisher for 3-round
Feistel ciphers

Assume that the adversary can control the key in
a Feistel cipher. As the size of the input to the round
function and the size of the round key are (usually)
half as big as in the SP ciphers, the number of rounds
that can be attacked for free is twice as big as for the
SP ciphers. Let us examine the possibility of obtaining
a pair of states for a three-round differential. Let n-
bit Feistel cipher has an invertible key schedule that
generates n

2 -bit subkeys. To find a pair of states that
follows some three-round differential:

(ΔL
1 , ΔR

1 ) → (ΔL
2 , ΔR

2 ) → (ΔL
3 , ΔR

3 ) → (ΔL
4 , ΔR

4 )

(the pair of states is (L, R), (L⊕ΔL
1 , R⊕ΔR

1 )), the ad-
versary builds, as in the rebound attack, three pairs of states, separately for each
round, that satisfy the one-round differentials, i.e. he finds the values A, C, E,
such that

F (A) ⊕ F (A ⊕ ΔL
1 ) = ΔR

1 ⊕ ΔL
2 ,

F (C) ⊕ F (C ⊕ ΔL
2 ) = ΔR

2 ⊕ ΔL
3 ,

F (E) ⊕ F (E ⊕ ΔL
3 ) = ΔR

3 ⊕ ΔL
4 .

Let F (A) = B, F (C) = D, F (E) = G. Then, in order to connect these three
one-round differentials, the following conditions for the subkeys k1, k2, k3 apply:

L ⊕ k1 = A,

R ⊕ B ⊕ k2 = C,

L ⊕ D ⊕ k3 = E.

From the first and the third equation, we get the relation k1 ⊕ k3 = A ⊕ D ⊕ E
(note that the adversary does not control the values of A, D, E because they are
fixed by the rebound attack). To satisfy this relation, the keys k1, k3 have to be
independent (or be linearly dependent – but this is not common for ciphers).
Once this is satisfied, the solution (L, R, k1, k2, k3) for the system can be found
in linear time. Hence in general, the master key has to be at least 3n

2 -bit long.
A similar analysis applies to cases when a higher number of rounds has to be

covered for free. The only difference is that the resulting system has more equa-
tions. When r rounds are fixed, the system has r equation and r + 2 unknowns:
L, R, k1, . . . , kr. In order to find the solution in linear time, for any invertible key
schedule, the subkeys have to be independent. Hence, to attack an additional r
rounds of a n-bit Feistel cipher the key has to be at least rn

2 -bit long.
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6 Conclusions

We have examined the application of the differential trails in analysis of ciphers
that are used for compression function constructions. We have considered both
the known-key and chosen-key models. Specifically, we have analyzed the colli-
sion resistance of all compression functions based on single block ciphers as well
as the four known double-block compression functions, when specific differential
trails for the underlying ciphers can be built. Furthermore, we have presented
differential distinguishers for Crypton, Hierocrypt-3, SAFER++, and Square.
For these ciphers, we have shown that when the attack model is switched from
secret-key to open-key, the number of rounds that can be attacked increases.
We have given as well a formal proof of lower bound of constructing pair that
follow a truncated trail in the case of a random permutation. Our results are
summarized in Table 1.

The area of open-key distinguishers is largely unexplored. Finding
similar distinguishers based on related-key differentials remains an open
problem.
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Ivica Nikolić is supported by the Fonds National de la Recherche Luxembourg
grant TR-PHD-BFR07-031. Josef Pieprzyk and Ron Steinfield are supported
by Australian Research Council grant DP0987734. Przemys�law Soko�lowski is
supported by cotutelle Macquarie University Research Excellence Scholarship
(cotutelle MQRES) and partially supported by Ministry of Science and Higher
Education grant N N206 2701 33, 2007-2010.

References

1. Barreto, P.S.L.M., Rijmen, V., Nakahara Jr., J., Preneel, B., Vandewalle, J., Kim,
H.Y.: Improved SQUARE Attacks Against Reduced-Round HIEROCRYPT. In:
Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 165–173. Springer, Heidelberg
(2002)

2. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Biryukov, A., Cannière, C.D., Dellkrantz, G.: Cryptanalysis of SAFER++. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidelberg
(2003)

5. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key At-
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Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

22. Lim, C.H.: A Revised Version of Crypton - Crypton V1.0. In: Knudsen, L.R. (ed.)
FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)

23. Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

http://eprint.iacr.org/2010/073.pdf


46 I. Nikolić et al.
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A Differential Trails for Crypton, Hierocrypt-3,
SAFER++ and Square

Fig. 4. Truncated differential trail for 9 rounds of Crypton for chosen-key distinguisher
and 256-bit key

Fig. 5. Truncated differential trail for 4.5 rounds of Hierocrypt for chosen-key distin-
guisher and 256-bit key
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Fig. 6. Truncated differential trail for 8 rounds of Square for chosen-key distinguisher
(σ′ = σ(θ(k0)))

B Truncated Differential Trail for Modified mCrypton

The key scheduling in the test implementation of mCrypton has been adopted
from Crypton and has following way:

Let K be a 128-bit encryption key and K = k0 . . . k31 where each ki is four-
bit nibble for i = 0, . . . , 31. At first two temporal values U and V are derived
from K so that U [i] = k8ik8i+2k8i+4k8i+6 and V [i] = k8i+1k8i+3k8i+5k8i+7 for
i = 0, 1, 2, 3. Next for U ′ = γ(U) and V ′ = γ(V ) the eight expanded keys are
evaluated as:

E[i] =
⊕
j �=i

U ′[j] E[i + 4] =
⊕
j �=i

V ′[j]

for i = 0, 1, 2, 3 with use of which the 13 subkeys for each encryption round are
generated according to the following procedure:

Fig. 7. Standard differential trail for 6.5 rounds of SAFER++ for chosen-key distin-
guisher and 128-bit key
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1. for the first and the second round:

K1[i] = E[i] ⊕ C[0] ⊕ MCi K2 = E[i + 4] ⊕ C[1] ⊕ MCi

for i = 0, 1, 2, 3,
2. for the remaining eleven rounds (r = 2, . . . , 12) two steps are executed alter-

natively:

(a) for r even:

{E[0], E[1], E[2], E[3]} ← {E[1]�12, E[2]�8, E[3]�b3, E[0]�b3},
Kr[i] = E[i] ⊕ C[r] ⊕ MCi,

(b) for r odd:

{E[4], E[5], E[6], E[7]} ← {E[7]�b1, E[4]�b1, E[3]�4, E[0]�8},
Kr[i] = E[i + 4] ⊕ C[r] ⊕ MCi,

for i = 0, 1, 2, 3,

where C[0] = f53a, C[k] = C[k − 1] + f372 mod 216 for k = 1, . . . , 12, MC0 =
acac, MCk = MC�b1

k−1 for i = 0, 1, 2, 3 and �ba represents bit-left-rotation by a
bits within each four-bit nibble.

Example of a differential trail for mCrypton:

i A[i] D[i] Dγ [i] Dπ◦γ [i] Dτ◦π◦γ [i] K[i]

1

0 1 d 3

7 7 0 1

1 b 6 5

e a 3 b

6 1 b 9

e 7 1 f

4 b b 3

c f 4 5

c 0 0 0

c 0 0 0

8 0 0 0

4 0 0 0

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

9 8 2 2

e 6 1 5

a 7 a 2

d d 3 4

2

1 1 a c

9 1 3 7

5 9 d 2

e 7 1 4

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

9 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

8 0 0 0

9 0 0 0

9 0 0 0

1 0 0 0

8 9 9 1

0 0 0 0

0 0 0 0

0 0 0 0

e 0 8 d

c a 4 2

a 5 4 1

2 b c 7

3

7 9 5 2

c a 2 8

6 a 3 d

6 8 a 0

8 9 9 1

0 0 0 0

0 0 0 0

0 0 0 0

9 a f d

0 0 0 0

0 0 0 0

0 0 0 0

8 8 b 5

9 a 7 c

9 2 e d

1 a d 9

8 9 9 1

8 a 2 a

b 7 e d

5 c d 9

3 5 3 4

b 8 b 0

c 8 1 9

e 2 9 a

4

6 c b 1

a d 6 f

f 9 b 8

1 6 8 2

8 9 9 1

8 a 2 a

b 7 e d

5 c d 9

d 5 4 b

5 e 9 3

1 1 4 2

d b 2 4

d 4 5 1

1 e a d

1 1 f c

9 a b e

d 1 1 9

4 e 1 a

5 a f b

1 d c e

5 9 5 7

c e d 2

f 3 6 0

d b 2 4

5

8 6 f 0

e 0 d 0

0 0 7 0

0 d 0 7

d 1 1 9

4 e 1 a

5 a f b

1 d c e

1 6 a 7

b c 4 8

e 9 b 4

2 2 9 5

1 f d a

e e 6 b

c 1 4 d

5 1 3 2

1 e c 5

f e 1 1

d 6 4 3

a b d 2

3 d 5 0

3 8 e a

5 4 4 0

b f 1 7

i A[i] D[i] Dγ [i] Dπ◦γ [i] Dτ◦π◦γ [i] K[i]

6

0 0 0 5

0 0 6 6

0 0 0 0

7 2 3 0

1 e c 5

f e 1 1

d 6 4 3

a b d 2

e 8 2 7

c a 6 e

a 2 6 d

6 a 4 b

e a 6 f

0 0 0 0

0 0 0 0

0 0 0 0

e 0 0 0

a 0 0 0

6 0 0 0

f 0 0 0

9 e 0 c

8 a e a

b 0 4 6

b f b 1

7

d e 7 f

b 7 3 7

0 d 4 d

3 3 0 2

e 0 0 0

a 0 0 0

6 0 0 0

f 0 0 0

e 0 0 0

c 0 0 0

a 0 0 0

6 0 0 0

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 e 4 0

1 7 8 d

1 f 6 c

5 e 4 7

8

1 b 5 0

f 0 e c

1 7 1 2

9 2 4 7

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0

4 0 0 0

2 0 0 0

6 0 0 0

6 4 2 6

0 0 0 0

0 0 0 0

0 0 0 0

9 8 c 2

d a b 9

4 0 a 9

5 0 a 7

9

7 7 3 d

e e e d

0 0 2 a

b b c 0

6 4 2 6

0 0 0 0

0 0 0 0

0 0 0 0

f 9 c c

0 0 0 0

0 0 0 0

0 0 0 0

e 9 8 4

d 9 4 c

b 1 c c

7 8 c 8

e d b 7

9 9 1 8

8 4 c c

4 c c 8

3 3 3 4

e 6 8 0

6 b 9 2

5 b 9 9

10

8 5 d 0

9 0 2 6

9 e 5 2

5 e a 9

e d b 7

9 9 1 8

8 4 c c

4 c c 8

7 2 9 9

a 8 d d

1 c f e

6 2 7 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 3 c 3

8 2 0 9

8 8 3 a

8 c 1 e

Fig. 8. The columns in the table represent: i - round number, A[i] - value of the state
in round i, D[i] - difference between two states in round i, Dγ [i] - difference between
two states after γ in round i, Dπ◦γ [i] - difference between two states after π◦γ in round
i, Dτ◦π◦γ [i] - difference between two states after τ ◦ π ◦ γ in round i, K[i] - subkey in
round i. The trail was obtained for K = 679ff202d5834e529d9cf7013a4d8218.
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Abstract. HIGHT is a lightweight block cipher, proposed in CHES 2006
, and on the process of ISO/IEC 18033-3 standardization. It is a 32-round
Feistel-like block cipher with 64-bit block and 128-bit key. In this paper,
we present the first attack on the full HIGHT using related-key rectangle
attack with 2123.169 encryptions, 257.84 data, and 4 related keys. Our
related-key rectangle attack is valid for 2126 weak keys and this attack
can be easily extended to an attack for the full key space faster than an
exhaustive key searching using 4 related keys.

We observe that an “add-difference” of master keys is propagated to
an add-difference of subkeys with probability 1, so we can find 3-round
local collisions of HIGHT by considering an add-difference as a relation
of keys. Exploiting these local collisions and “over-simplified” structure
of key-schedule, we construct a new 15.5-round related-key differential
trail with relatively high probability. We construct a 24-round related-key
rectangle distinguisher with probability 2−117.68 from an 8.5-round and
a 15.5-round related-key truncated differential trail with local collisions
by applying the ladder switch technique, and then suggest an attack on
full rounds of HIGHT with this distinguisher. Our result implies that
HIGHT cannot be regarded as an instantiation of the ideal cipher used
in some provably secure schemes.

Keywords: HIGHT, Block cipher, Cryptanalysis, Related-key rectangle
attack.

1 Introduction

In designing a block cipher, a strong key schedule has not been a main consid-
eration. However, for recent years, the related-key attacks exploiting a weakness
of a key schedule have provided interesting results [3,4,5,7]. Most of them indi-
cate that simple structure of a key schedule causes weakness useful for certain
attacks. We have KASUMI and AES as such examples. KASUMI, known as the
A5/3 algorithm for GSM security, has a linear key schedule. It is fully broken
by the related-key rectangle attack [2] and practically broken by the related-key
sandwich attack [7]. The key schedules of AES have a lot of symmetry in their
structures and use at most four S-boxes to generate a 128-bit subkey for a round.
So the full rounds of AES-192 and AES-256 are attacked by the related-key am-
plified boomerang and the related-key boomerang attacks, respectively [4]. A

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 49–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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practical key recovery attack on 13 out of 14 rounds of AES-256, which has been
recently proposed, also uses related keys [5].

HIGHT [8] is a block cipher which has a linear(in a modular addition point
of view) key schedule with few propagations. It was proposed at CHES 2006
for lightweight computing environments such as radio frequency identifications
(RFID). Also, HIGHT is a block cipher standard approved by Telecommuni-
cations Technology Association (TTA) of Korea and international standardiza-
tion activities are in progress to include the HIGHT into ISO/IEC 18033-3 [9].
HIGHT is a 32-round block cipher in 8-branch type II generalized Feistel struc-
ture with 64-bit block and 128-bit key. The round functions of HIGHT is designed
with bit-wise exclusive OR, addition modulo 28, and rotations. Such design as-
pects make HIGHT more efficient than most existing block ciphers including
AES-128 on hardware implementation. The designers of HIGHT analyzed its se-
curity against various attacks including related-key attacks and they concluded
that at least 20 rounds of HIGHT is secure against these attacks. But at ICISC
2007, Lu et al. presented some cryptanalytic results on the HIGHT reduced to 25,
26, and 28 rounds with or without initial and final whitening key additions, using
impossible differential, related-key rectangle, related-key impossible differential
attacks [10]. Moreover, at ACISP 2009, Özen et al. improved the attack results
of ICISC 2007 into an impossible differential attack on 26 rounds of HIGHT
and a related-key impossible differential attack on 31 rounds of HIGHT [13].
At CANS 2009, Zhang et al. pointed out an error in the 12-round saturation
distinguisher introduced by designers of HIGHT and gave a saturation attack
on 22 rounds of HIGHT with initial and final whitening keys using 17-round
saturation distinguisher [15].

In this paper, we present a related-key attack on the full HIGHT slightly
faster than the exhaustive key search. The attack consists of a related-key rect-
angle attack for a quarter of key space and an exhaustive key searching for the
rest three-quarter of key space in the related-key attack model. Our related-key
rectangle attack uses a 24-round related-key rectangle distinguisher with prob-
ability 2−117.68. This distinguisher is constructed from an 8.5-round(E0) and a
15.5-round(E1) related-key truncated differential trail by combining them with
the ladder switch technique and E1 is a combination of three local collisions. The
local collision is a related-key differential trail whose input and output differences
are zero and in our attack, and we find two types of 4-round local collision and
combine them alternately by using the byte-wise rotational property of subkey
positioning. Every subkey byte is defined by a modular addition of a byte of
encryption key and a predefined constant, so we give an add-difference for re-
lation of keys to avoid paying probability for generating subkey differences by
key schedule. For E0, we modify a known related-key differential trail [10,11] to
avoid a flaw shown in Appendix A and transform it into related-key truncated
differential trail to reduce data complexity. So we construct a related-key rect-
angle attack for a quarter of key space with 2123.17 time and 257.84 data and an
attack for whole key space with 2125.833 time and 257.84 data. The time and data
complexities for attacking HIGHT is given in the Table 1.
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Table 1. Summary of the attacks on HIGHT(Imp.:Impossible, Diff.:Differential,
Rel.:Related, Rec.:Rectangle, Wek.:Weak Key)

Rounds Attack
Complexities

References
Data Time

18 Imp. Diff. 246.8 2109.2 [8]
22 Saturation 262.04 2118.71 [15]
25 Imp. Diff. 260 2126.78 [10]
26 Imp. Diff. 261 2119.53 [13]
26 Rel.-Key Rec. 251.2 2120.41 [10]
28 Rel.-Key Imp. 260 2125.54 [10]
31 Rel.-Key Imp. 263 2127.28 [13]
32 Rel.-Key Rec. for Wek. 257.84 2123.17 This paper
32 Rel.-Key attack 257.84 2125.833 This paper

To our knowledge, this is the first cryptanalytic result on the full rounds of
HIGHT. Our attack has very high complexity but clearly, it shows that HIGHT
does not reach the security goal in the related-key attack model, required for a
block cipher which has a 64-bit block and a 128-bit key. It is also an evidence
that HIGHT cannot be regarded as an instantiation of an ideal cipher. Namely,
HIGHT would not be used as a substitute for an ideal cipher in applications
which are provably secure based on ideal cipher, e.g., some block-cipher-based
hash function schemes.

This paper is organized as follows. Section 2 gives the specifications of HIGHT.
In Section 3, two types of local collisions of HIGHT and its probability are in-
troduced and a weak key space is classified. In Section 4, a 24-round related-key
rectangle distinguisher of HIGHT is presented with its separation into E0 and
E1 and estimation of its probability. Attack procedure and complexity analysis
are shown in Section 5. Finally, Section 6 concludes this paper. In Appendix A,
some flaws in calculating a probability of differential trail include key addition
is pointed out. A complexity of exhaustive key searching in related-key model
is presented in Appendix B. An overall view of our attack is depicted in Ap-
pendix C.

2 Description of HIGHT

Throughout this paper, we use the following notations.

– ⊕ : bitwise exclusive OR(XOR)
– � : addition modulo 28

– Δ(∇) : a notation of xor-difference, an xor-difference Δx indicates that a
pair (x, x′)is defined by x′ = x ⊕ Δx

– Δ+(∇+) : a notation of add-difference, an add-difference Δ+x indicates that
a pair (x, x′)is defined by x′ = x � Δ+x
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– X [i1, i2, ..., in] : concatenation of X [i1], X [i2], ..., and X [in]
– MSBi(X) : the most significant i bits of a string X
– LSBi(X) : the least significant i bits of a string X

– (ΔX, ΔY ) �→ ΔZ : an event that (x�y)⊕(x′�y′) = ΔZ, where x⊕x′ = ΔX
and y ⊕ y′ = ΔY

HIGHT takes a 64-bit plaintext P and a 128-bit key K, and its 32-round en-
cryption procedure produces a 64-bit ciphertext C. From now on, we present
any 64-bit variable A and any 128-bit variable B as a tuple of eight bytes
(A[7], ..., A[1], A[0]) and a tuple of sixteen bytes (B[15], ..., B[1], B[0]).

The key schedule produces 128 8-bit subkeys SK[0], ..., SK[127] from a 128-bit
key K = (K[15], ..., K[0]): for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7,{

SK[16i + j] ← K[j − i mod 8] � δ[16i + j],
SK[16i + j + 8] ← K[(j − i mod 8) + 8] � δ[16i + j + 8],

where δ[0], ..., δ[127] are public constants.
Let Xi−1 = (Xi−1[7], ..., Xi−1[0]) and Xi = (Xi[7], ..., Xi[0]) be the input and

output of the round i − 1 for 1 ≤ i ≤ 32, respectively, where ‘round i’ denotes
the (i + 1)-th round(i.e. round 0 implies the first round).

The encryption procedure of HIGHT is as follows.

1. Initial Transformation:

X0[0] ← P [0] � K[12]; X0[2] ← P [2] ⊕ K[13];
X0[4] ← P [4] � K[14]; X0[6] ← P [6] ⊕ K[15];
X0[1] ← P [1]; X0[3] ← P [3]; X0[5] ← P [5]; X0[7] ← P [7].

2. Round Iteration for 1 ≤ i ≤ 32:

Xi[0] ← Xi−1[7] ⊕ (F0(Xi−1[6]) � SK[4i − 1]);
Xi[2] ← Xi−1[1] � (F1(Xi−1[0]) ⊕ SK[4i − 2]);
Xi[4] ← Xi−1[3] ⊕ (F0(Xi−1[2]) � SK[4i − 3]);
Xi[6] ← Xi−1[5] � (F1(Xi−1[4]) ⊕ SK[4i − 4]);
Xi[1] ← Xi−1[0]; Xi[3] ← Xi−1[2]; Xi[5] ← Xi−1[4]; Xi[7] ← Xi−1[6],

where bijective linear functions F0 and F1 are defined by{
F0(x) = x≪1 ⊕ x≪2 ⊕ x≪7,
F1(x) = x≪3 ⊕ x≪4 ⊕ x≪6.

3. Final Transformation:

C[0] ← X32[1] � K[0]; C[2] ← X32[3] ⊕ K[1];
C[4] ← X32[5] � K[2]; C[6] ← X32[7] ⊕ K[3];
C[1] ← X32[2]; C[3] ← X32[4]; C[5] ← X32[6]; C[7] ← X32[0].
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3 Local Collisions in HIGHT

Local collision is firstly introduced by Chabaud et al. in [6] for finding collisions
in SHA-0 hash function using differential cryptanalysis. In block cipher crypt-
analysis, if a difference caused only by a subkey difference is eliminated by other
subkey differences with some probability a few rounds later, we call this property
a local collision in block cipher. In HIGHT, we observe that there are two types
of local collision which are depicted in Fig. 1.

(a) Local collision type A (b) Local collision type B

Fig. 1. Local collisions in HIGHT

3.1 Probabilities of Local Collisions

Fig. 1-(a) shows how the only nonzero differences Δ+SK[i], Δ+SK[i + 5], and
Δ+SK[i + 9] in the form of the local collision type A lead to zero output dif-
ferences of the round. Its probability is computed as r =

∑
α r1(α)r2(α)r3(α)

where

r1(α) = Pr(((X ⊕ Y ) + Z) ⊕ ((X ⊕ (Y + Δ+SK[i])) + Z) = α),
r2(α) = Pr((X + Y ) ⊕ ((X ⊕ F0(α)) + (Y + Δ+SK[i + 5])) = 0),
r3(α) = Pr((X + Y ) ⊕ (X + (Y + Δ+SK[i + 9])) = α).

Similarly, Fig. 1-(b) shows how the only nonzero differences Δ+SK[i], Δ+SK[i+
5], and Δ+SK[i + 9] in the form of the local collision type B lead to zero output
differences of the round. Its probability is computed as s =

∑
β s1(β)s2(β)s3(β)

where
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s1(β) = Pr((X + Y ) ⊕ (X + (Y + Δ+SK[i])) = β),
s2(β) = Pr(((X ⊕ Y ) + Z) ⊕ (((X ⊕ F1(β)) ⊕ (Y + Δ+SK[i + 5])) + Z) = 0),
s3(β) = Pr(((X ⊕ Y ) + Z) ⊕ ((X ⊕ (Y + Δ+SK[i + 9])) + (Z ⊕ β)) = 0).

By an exhaustive computation, we can see the expected values of r and s when
(Δ+SK[i], Δ+SK[i + 5], Δ+SK[i + 9]) = (0x10, 0x68, 0x10) are 2−5.1420 and
2−8, respectively, and we the following 8 possibilities of (Δ+SK[i], Δ+SK[i +
5], Δ+SK[i + 9]) yielding the same probabilities:

(0x10, 0x68, 0x10), (0x10, 0x68, 0xf0), (0xf0, 0x68, 0x10), (0xf0, 0x68, 0xf0),
(0x10, 0x98, 0x10), (0x10, 0x98, 0xf0), (0xf0, 0x98, 0x10), (0xf0, 0x98, 0xf0).

We observed that the probability r that the local collision type A with (Δ+SK[i],
Δ+SK[i + 5], Δ+SK[i + 9]) = (0x10, 0x68, 0x10) occurs is nonzero only when
α = 0x10 or 0x30. Under the observation, the probability r is actually 2−4.67807,
2−5.41504, or 2−6.41504. So, we regard 2−6.41504 as a lower bound of r.

Similarly, we observed that the probability s that the local collision type
B with (Δ+SK[i], Δ+SK[i + 5], Δ+SK[i + 9]) = (0x10, 0x68, 0x10) occurs is
nonzero only when β = 0x70. Especially, for β = 0x70, s2(β) is nonzero only
when

SK[i + 5] ∈ T = {x ∨ 0x18|x ∈ GF(28)}.
When SK[i + 5] ∈ T , the local collision of type B occurs with the probability
s = 2−6. Otherwise, it does not occur. Note that the fraction of T in GF(28) is
1/4.

3.2 Local Collisions to a Long Differential Trail

We can use a sequence of local collisions, ‘type A – type B – type A’ to construct
a 12-round related-key differential trail. Let i be a multiple of 4(i.e. Δ+SK[i] be
the right most subkey difference of round i/4). If Δ+SK[i], Δ+SK[i + 5], and
Δ+SK[i+9] are induced by the only nonzero add-differences Δ+K[j1], Δ+K[j2],
and Δ+K[j3] of master-key bytes, then by rotational property of key schedule,

Δ+K[j1] = Δ+SK[i] = Δ+SK[i + 17] = Δ+SK[i + 34],

Δ+K[j2] = Δ+SK[i + 5] = Δ+SK[i + 22] = Δ+SK[i + 39],

Δ+K[j3] = Δ+SK[i + 9] = Δ+SK[i + 26] = Δ+SK[i + 43],

and differences of other subkeys are all zero if differences of other master key
bytes are zero.

Therefore, if there exist nonzero add-differences Δ+K[j1], Δ+K[j2], and
Δ+K[j3] such that the probabilities p1, p2, and p3 of local collisions from i/4
to (i/4 + 3)-th round, from (i/4 + 4) to (i/4 + 7)-th round, and from (i/4 + 8)
to (i/4 + 11)-th round are all nonzero, then we can find a 12-round related-key
differential trail of HIGHT with probability p1 × p2 × p3 by combining them
sequentially.
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From the arguments in Section 3.1, when we take (Δ+K[j1], Δ+K[j2], Δ+K[j3])
= (0x10, 0x68, 0x10), the 12-round related-key differential trail is valid only for a
quarter of the whole key space and its probability is lower bounded by 2−18.83008.

4 Related-Key Rectangle Distinguisher for 24 Rounds of
HIGHT

4.1 Related-Key Rectangle Distinguisher

A rectangle distinguisher assumes that a block cipher EK : {0, 1}n → {0, 1}n

with an arbitrary key K can be represented by a composition of two sub-ciphers
E0K and E1K , i.e. EK = E1K ◦ E0K , where n is the bit-length of block. Our
approach to construct a related-key rectangle distinguisher is somewhat different
from previous works in the point that we use xor-difference for plaintexts or
ciphertexts and add-difference for keys.

Assume that we have two related-key differentials for E0 and E1 with the
following probabilities

p =Pr[E0K(P ) ⊕ E0K�Δ+K(P ⊕ ΔP ) = ΔY ], (1)
q =Pr[E1K(Y ) ⊕ E1K�∇+K(Y ⊕∇Y ) = ∇C]. (2)

We consider four encryption oracles with 4 related keys denoted by EK1, EK2,
EK3, and EK4 and the relations between keys are as follows,

K2 =K1 � Δ+K, K4 = K3 � Δ+K,

K3 =K1 � ∇+K, K4 = K2 � ∇+K.

For a plaintext quartet (P1, P2, P3, P4) such that P1 ⊕ P2 = P3 ⊕ P4 = ΔP ,
let Yi = E0Ki(Pi) and Ci = EKi(Pi) = E1Ki(Yi) for 1 ≤ i ≤ 4. If the event
Y1 ⊕ Y2 = Y3 ⊕ Y4 = ΔY and the event Y1 ⊕ Y3 = ∇Y occur, we obtain
Y2 ⊕ Y4 = ∇Y because

Y2 ⊕ Y4 = (Y2 ⊕ Y1) ⊕ (Y1 ⊕ Y3) ⊕ (Y3 ⊕ Y4)
= ΔY ⊕∇Y ⊕ ΔY = ∇Y.

Therefore, for a randomly chosen plaintext quartet (P1, P2, P3, P4) such that
P1⊕P2 = P3⊕P4 = ΔP , we have C1⊕C3 = C2⊕C4 = ∇C with the probability
p2 · 2−n · q2, from (1) and (2). If there exist more than two values for ΔY and
∇Y , the probability is amplified to

p̂2 · 2−n · q̂2, where p̂2 =
∑
ΔY

p2 and q̂2 =
∑
∇Y

q2. (3)

Our attack assumes more than two values for ΔP so our probability calculation
in the next section would be slightly differ from (3).
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4.2 Related-Key Rectangle Distinguisher of HIGHT

Related-key differential trail for E0 is based on a trail introduced in [10,11] but
significantly modified to avoid the flaw explained in Appendix A and changed
into truncated differential to reduce the data complexity. Related-key differential
trail for E1 includes three local collisions as described in Section 3.1.

We define E0 and E1 by partial rounds from round 3 to round 10.5 and
round 10.5 to round 26, respectively(0.5 round implies computation of 2 round
functions out of 4 round functions in a round). The input and output bytes to
E0 and E1 and corresponding differences are described in Table 2, where the A,
B, and C are defined by sets of hexadecimal values as follows,

A ={14, 1c, 24, 2c, 34, 3c,54, 5c, 64, 6c, 74, 7c, d4, dc, e4, ec},
B ={14, 1c, 24, 2c, 34, 3c,54, 5c, 64, 6c, 74, 7c, d4, dc, e4, ec, f4, fc},
C ={10, 30, 70, f0}.

Table 2. Byte positions and differences of both inputs and outputs for distinguishers
of E0 and E1

E0

Pos-
itions

Input (X3[7], X3[6], X3[5], X3[4], X3[3], X3[2], X3[1], X3[0])

Output (X12[7], X11[5], X10[3], X10[2], X11[2], X12[2], X13[2], X13[1])

Differ-
ences

Input (0x0, 0x0, A, 0x80, 0x0, 0x0, 0x0, 0x0)

Output (0x0, 0x0, 0x0, B, 0x80, 0x0, 0x0, 0x0)

Δ+K (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x80, 0x0)

E1

Pos-
itions

Input (X12[7], X11[5], X10[3], X10[2], X11[2], X12[2], X13[2], X13[1])

Output (X27[7], X27[6], X27[5], X27[4], X27[3], X27[2], X27[1], X27[0])

Differ-
ences

Input (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, C)
Output (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0)

∇+K (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10, 0x0, 0x0, 0x0, 0x68, 0x0, 0x0, 0x0, 0x10, 0x0)

The related-key differential trails for E0 and E1 are depicted in the the fol-
lowing fig. 5 in Appendix C.

Probability of Related-Key Differential Trail for E0. Our attack begins
with gathering plaintext pairs which satisfy ΔX3[5] ∈ A, ΔX3[4] = 0x80, and
ΔX3[0, 1, 2, 3, 6, 7] = 0x0. Let ai denote each element in A, where i = 0, 1, ..., 15.
The number of pairs such that ΔX3[5] = ai is same to the number of pairs such
that ΔX3[5] = aj for all 0 ≤ i, j ≤ 15. Let ui denote the probabilities that
ΔX3[5] = ai and ΔX4[6] = 0 for i = 0, 1, ..., 15, then

ui = Pr[ΔX4[6] = 0|ΔX3[5] = ai] × Pr[ΔX3[5] = ai],
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and since Pr[ΔX3[5] = ai] = 2−4 for all i = 0, 1, ..., 15, the probability ū such
that ΔX4[6] = 0, among prepared pairs is calculated by

ū =
15∑

i=0

ui =
1
16

15∑
i=0

Pr[ΔX4[6] = 0|ΔX3[5] = ai] > 2−4.09312.

Let bi denote each element in B and vi denote the probabilities that ΔX10[2] = bi

for i = 0, 1, ..., 17, then the probability p̂2 that both related-key differential trails
for E0 are satisfied with the same output difference is calculated by

p̂2 = ū2 ·
17∑

i=0

v2
i > 2−8.18624 × 2−3.83007 > 2−12.017.

Probability of Related-Key Differential Trail for E1 For each element ci

in C, let the probabilities wi be defined by

wi = Pr[ΔX14[2] = 0|ΔX13[1] = ci],

for i = 0, 1, 2, 3, then ΔX14[0, 1, ..., 8] = 0 with probabilities wi. Both w3 and
w4 are 2−3 for all SK[52], whereas w1 and w2 are among 2−1, 2−2, and 2−3

according to SK[52]. So the lower-bound of wi(i = (0, 1, 2, 3) is 2−3.
Since we assume that ∇+K[1] = 0x10, ∇+K[5] = 0x68, and ∇+K[9] = 0x10,

we can calculate a nonzero probability q such that three local collisions occur
sequentially as described in Section 3.1. As we know that both the first and the
third local collisions during round 15∼18 and round 23∼26 are of type A and
their probabilities are bounded below by 2−6.41504 and the second local collision
during round 19∼22 is of type B and its probability is 2−6, the probability q
such that related-key differential trail from round 15 to 26 is calculated by

2−6.41504−6−6.41504 = 2−18.83008 < q.

Hence, the probability q̂2 that both related-key differential trails for E1 are
satisfied is calculated by

q̂2 =
3∑

i=0

w2
i · q2 ≥ 2−4 × 2−37.66016 = 2−41.66016 > 2−41.661.

Therefore, we have a 24-round related-key rectangle distinguisher with the prob-
ability

p̂2 · 2−64 · q̂2 ≥ 2−12.017−64−41.661 = 2−117.678 > 2−117.68.

The probabilities occurring by additions between differences are computed by ex-
haustive counting with PC. By experiments on PC, we make sure that suggested
probabilities of related-key differential trail for E0 and E1 are lower bounds of
the actual ratio of right pairs for E0 and E1 respectively, under the assumption
that plaintexts and related keys are randomly chosen.
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5 Related-Key Rectangle Attack for the Full Rounds of
HIGHT

In this section, we describe the attack for the full rounds of HIGHT by using the
24-round related-key rectangle distinguisher explained in Section 4.1 for round
3 to round 26. However, note that the distinguisher is valid only for a quarter of
the key space. So, we apply a related-key rectangle attack for a quarter of the
key space and an exhaustive key search for the other part of the key space. The
outline of our attack is as follows.

1. Related-key rectangle attack: We denote the set of the key quartets by
K1 such that the 24-round related-key rectangle distinguisher in Section 4.1
is valid. Assuming that we are given a key quartet from K1, we perform a
related-key rectangle attack which consists of the following phases.

(a) Constructing the plaintext set: We construct the plaintext set S for
extracting the plaintext quartets required for the related-key rectangle
distinguisher.

(b) Guessing and filtering: Let Z1 be required key bits to check whether
a plaintext quartet from the plaintext set S satisfies the input differences
of the distinguisher. We guess a value z1 for Z1 and select the plaintext
quartets from S satisfying the input differences of the distinguisher with
z1. Then, we discard the quartets whose ciphertext differences do not
match with the output differences of the distinguisher.

(c) Counting and sorting: Let Z2 be required key bits to check whether
a surviving quartet satisfies the output differences of the distinguisher.
For each candidate (z1, z2) for (Z1, Z2), we count the number of quartets
satisfying the output differences of the distinguisher and restore it to the
counter t(z1,z2). We sort the list of (z1, z2) according to t(z1,z2).

(d) Searching with the list: We exhaustively search for the remained
key bits for candidates with remarkably high t(z1,z2) until a right key
quartet is found. If no right key quartet is found, go to (b) Guessing
and filtering phase.

2. Exhaustive key searching: We denote the key space of HIGHT by K and
let K2 = K\K1. Unless we find a right key quartet in K1 in the way of the
related-key rectangle attack phase, we try to search it exhaustively for K2

in the way described in Appendix B.

5.1 Attack Procedure

Let sets D, E ,F , and G be defined by

D ={x ∨ 0x18|∀x ∈ GF(28)},
E ={0x00, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe0},
F ={0x18, 0x28, 0x38, ..., 0xf8},
G ={0x10, 0x30, 0x70, 0xf0}.
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Constructing the plaintext set
1. Choose 58657 ≈ 215.84 structures Si of 240 plaintexts i

lP each, i = 1, 2, ...,
58657, l = 1, 2, ..., 240, where in each structure, the 0, 6, 7-th bytes of i

lP
are fixed, and the remaining 5 bytes take all the possible values. Obtain the
ciphertexts i

lC, i
lC

∗, i
lC

′, and i
lC

′∗ of i
lP encrypted with four related keys

K1, K2, K3, and K4 respectively, where keys have a relation described in
Table 2 of Section 4.1.

Guessing and filtering
2. Guess the 9 bytes K1[0, 1, 2, 5, 6, 10, 12, 13, 14] such that SK1[82] ∈ D and

do as follows, where SKi is subkey bytes produced by a secret key Ki.

(a) Compute the subkeys SK1[0, 1, 2, 5, 6, 10], and their related subkeys.
Partially encrypt plaintext bytes i

lP [1, 2, 3, 4, 5] for each i
lP through par-

tial rounds 0, 1, and 2 with 5 guessed subkey bytes and its related subkey
bytes to get the following sets of intermediate values,

{i
lX2[3], i

lX3[5], i
lX3[6], i

lX2[6], i
lX2[7]},

{i
lX

∗
2 [3], i

lX
∗
3 [5], i

lX
∗
3 [6], i

lX
∗
2 [6], i

lX
∗
2 [7]},

{i
lX

′
2[3], i

lX
′
3[5], i

lX
′
3[6], i

lX
′
2[6], i

lX
′
2[7]},

{i
lX

′∗
2 [3], i

lX
′∗
3 [5], i

lX
′∗
3 [6], i

lX
′∗
2 [6], i

lX
′∗
2 [7]},

for all 1 ≤ i ≤ 215.84 and 1 ≤ l ≤ 240.
(b) Find all pairs (i

lP, i
uP ) such that i

lX2[3] ⊕ i
uX∗

2 [3] = 0x80, i
lX3[6] ⊕

i
uX∗

3 [6] = i
lX2[6]⊕i

uX∗
2 [6] = i

lX2[7]⊕i
uX∗

2 [7] = 0x0, and i
lX3[5]⊕i

uX∗
3 [5] ∈

A and store the corresponding ciphertext pairs (i
lC, i

uC∗) encrypted with
each K1 and K2 in a hash table H, for all 1 ≤ i ≤ 215.84.

(c) Find all pairs (j
vP, j

wP ) such that j
vX ′

2[3] ⊕ j
wX ′∗

2 [3] = 0x80, j
vX

′
3[6] ⊕

j
wX ′∗

3 [6] = j
vX ′

2[6] ⊕ j
wX ′∗

2 [6] = j
vX ′

2[7] ⊕ j
wX ′∗

2 [7] = 0x0, and j
vX

′
3[5] ⊕

j
wX ′∗

3 [5] ∈ A and store the corresponding ciphertext pairs (j
vC′, j

wC′∗)
encrypted with each K3 and K4 in a hash table I, for all 1 ≤ j ≤ 215.84.

80

80

0 0 0

0

0 0

000 * * * * *

: Guessed key bytes
*: All possible values

0r

1r

2r

Fig. 2. Constructing plaintext sets and choosing pairs
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(d) Store all quartets (i
lC, i

uC∗, j
vC′, j

wC′∗) defined by all pairs (i
lC, i

uC∗) ∈ H
and (j

vC
′, j

wC′∗) ∈ I, for all 1 ≤ i, j ≤ 215.84 and 1 ≤ l, u, v, w ≤ 240 in a
hash table J .

(e) For all quartets (i
lC, i

uC∗, j
vC′, j

wC′∗) in J , do filtering by the following
steps. In each steps, discard the quartets which do not satisfy the con-
ditions and if less than 3 quartets are remained, then go to Step 2 with
another key guessing.

i. Check if i
lC[0, 1] ⊕ j

vC′[0, 1] = 0, i
uC∗[0, 1] ⊕ j

wC′∗[0, 1] = 0, i
lC[2] ⊕

j
uC′[2] ∈ E , and i

vC
∗[2] ⊕ j

wC′∗[2] ∈ E(2−42 filtering).
ii. Compute and check if i

lX31[3]⊕j
uX ′

31[3] ∈ F , and i
vX

∗
31[3]⊕j

wX ′∗
31[3] ∈

F(2−8 filtering).

iii. Check if Pr[(F0(i
lC[6] ⊕ j

uC′[6]), 0) �→ i
lC[7] ⊕ j

uC′[7]] > 0 and Pr[(F0

(i
vC∗[6] ⊕ j

wC′∗[6]), 0) �→ i
vC

∗[7] ⊕ j
wC′∗[7]] > 0(2−5.65514 filtering).

iv. Compute ΔT = i
lX30[4]⊕ j

uX ′
30[4] and ΔT ′ = i

vX
∗
30[4]⊕ j

wX ′∗
30[4], and

check if Pr[(F1(ΔT ), 0) �→ i
lC[6]⊕j

uC′[6]] > 0 and Pr[(F1(ΔT ′), 0) �→
i
vC∗[6] ⊕ j

wC′∗[6]] > 0 (2−5.65514 filtering).

v. Compute and check if Pr[(F1(i
lX31[4] ⊕ j

uX ′
31[4]), ΔT ) �→ i

lC[5] ⊕
j
uC′[5]] > 0 and Pr[(F1(i

vX∗
31[4]⊕j

wX ′∗
31[4]), ΔT ′) �→ i

vC
∗[5]⊕j

wC′∗[5]] >
0 (2−4.69704 filtering).

vi. If 3 or more quartets (i
lC, i

uC∗, j
vC

′, j
wC′∗) remained, record them and

go to Step 3; otherwise, go to Step 2 with another guess.

10

10

00 0 00

0 0 0

0 0

31r

30r

2-(e)-i

2-(e)-ii

2-(e)-iii 2-(e)-iv

2-(e)-v

: Guessed key bytes
: Check points

Fig. 3. Filtering of wrong quartets. The numbers nearby the check points indicate the
corresponding steps from 2-(e)-i to 2-(e)-v.

Counting and sorting
3. In the following step 4 to step 12, discard the quartets with each key bytes

guessed in each step which do not satisfy conditions. In each steps, if less
than 3 quartets are remained, then go to Step 2 with another key guessing.

4. Guess the LSB4(K1[15]) to compute LSB4(SK1[126]) and its related keys.
For each key and remained quartet, check (a) LSB4(i

lX29[3] ⊕ j
uX ′

29[3]) = 0
and (b) LSB4(i

vX∗
29[3] ⊕ j

wX ′∗
29[3]) = 0.
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5. Guess MSB4(K1[15]) to compute MSB4(SK1[126]) and its related keys.
For each key and remained quartet, check (a) MSB4(i

lX29[3]⊕ j
uX ′

29[3]) = 0
and (b) MSB4(i

vX∗
29[3] ⊕ j

wX ′∗
29[3]) = 0.

6. Guess LSB4(K1[9]) to compute LSB4(SK1[120]) and its related keys. For
each key and remained quartet, check (a) LSB4(i

lX30[1] ⊕ j
uX ′

30[1]) = 0 and
(b) LSB4(i

vX∗
30[1] ⊕ j

wX ′∗
30[1]) = 0.

7. Guess MSB4(K1[9]) to compute MSB4(SK1[120]) and its related keys. For
each key and remained quartet, check (a) MSB4(i

lX30[1]⊕ j
uX ′

30[1]) = 0 and
(b) MSB4(i

vX∗
30[1] ⊕ j

wX ′∗
30[1]) = 0.

8. Without key guessing, check if i
lX28[0]⊕j

uX ′
28[0] ∈ G and i

vX
∗
28[0]⊕j

wX ′∗
28[0] ∈

G.
9. Without key guessing, check if i

lX28[1]⊕j
uX ′

28[1] = 0 and i
vX∗

28[1]⊕j
wX ′∗

28[1] =
0.

10. Guess LSB4(K1[3]) and LSB4(K1[11]) to compute LSB4(SK1[122]) and its
related keys. For each key and remained quartet, check (a) LSB4(i

lX30[5] ⊕
j
uX ′

30[5]) = 0 and (b) LSB4(i
vX

∗
30[5] ⊕ j

wX ′∗
30[5]) = 0.

11. Guess MSB4(K1[3]) and MSB4(K1[11]) to compute MSB4(SK1[122]) and
its related keys. For each key and remained quartet, check (a) MSB4(i

lX30[5]⊕
j
uX ′

30[5]) = 0 and (b) MSB4(i
vX

∗
30[5] ⊕ j

wX ′∗
30[5]) = 0.

12. Guess K1[8] to compute SK1[127] and its related keys. For each key and re-
mained quartet, check (a) i

lX31[7]⊕j
uX ′

31[7] = 0 and (b) i
vX∗

31[7]⊕j
wX ′∗

31[7] = 0.

10

68

10

10

00 0 0 0 0 0

00 0 0 0 0

00 0 00

0 0 0

00

30r

31r

29r

28r

: Guessed key bytes

: Check points
: Newly guessed key bytes

4,5

6,7

89

10,11

12

Fig. 4. Key counting procedure. The numbers nearby the check points indicate the
corresponding steps from 4 to 12.

Searching with the list
13. If there exist a recorded K1[0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15] who have

3 or more remaining quartets (i
lC, i

vC
∗, j

uC′, j
wC′∗), then exhaustively search

the remaining two key bytes for K1[4] and K1[7] with more than two known
plaintexts and its corresponding ciphertexts. If a 128-bit key is suggested,
output it and its related keys as the keys of encryption oracles of the full
rounds of HIGHT, otherwise go to Step 2 with another guess.

An overall view of our related-key rectangle attack is shown in Fig. 5 in Ap-
pendix C.
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5.2 Complexity Analysis

The probability of 24-round related-key rectangle distinguisher used in our at-
tack is 2117.68. So, we form the plaintext structures such that we are given 2119.68

quartets satisfying the input differences of the distinguisher and expect approx-
imately 4 right quartets after guessing K1[0, 1, 2, 5, 6, 10, 12, 13, 14].

Since we use structures Si includes 240 plaintexts and 16 kinds of input dif-
ferences of distinguisher(set A which is defined in Section 4.2) is assumed, we
have 244 pairs per structure and we can consider 22m+88 quartets from 2m struc-
tures thus the number of required structures is 2m = 215.84. Hence, our attack
requires 215.84+40 = 255.84 plaintexts and encrypts them with four encryption
oracles defined by four related keys to get 257.84 ciphertexts and that is the data
complexity of our attack.

In the first step of the attack procedure in the above section, the number of
queries to four encryption oracles with related keys is 257.84 but this is negligible
in total complexity.

We guess 9 bytes of K1[0, 1, 2, 5, 6, 10, 12, 13, 14] in step 2 with a restriction
on K1[6] that SK1[82] ∈ D, so total number of guessed key is 270. Moreover, an
attack procedure and tested quartets when 9 bytes of K are guessed as K1 is
identical to an attack procedure and tested quartets when 9 bytes of K�Δ+K are
guessed as K1, so the total number of key guessing for K1[0, 1, 2, 5, 6, 10, 12, 13, 14]
is reduced to 269.

From step 2-(a) to 2-(d), we explain how we make 2119.68 quartets from 215.84

structures and step (e), we explain how we filter out the wrong quartets. For
steps from 2-(a) to 2-(d), we partially encrypt all plaintexts in each structure
for 6/128 HIGHT with 4 related keys and choose the pairs satisfying the input
differences of distinguisher, so these steps require

4 × 6 × 2−7 × 255.840+69
≈ 2122.425

encryptions and yields two hash tables H and I of 259.84 ciphertext pairs, respec-
tively. In step 2-(e), we partially decrypt for 1/128 HIGHT and 2/128 HIGHT
to compute (i

lX31[3] ⊕ j
uX ′

31[3], i
vX∗

31[3] ⊕ j
wX ′∗

31[3]) and (ΔT, ΔT ′), respectively,
so these step requires

3 × 2−7 × 257.840+69
≈ 2121.425

decryptions.
In step 2-(e)-i, we check that two bytes of ciphertext differences are 0, and

another one byte of ciphertext difference is equal to one of 8 elements in E , so
the filtering ratio of this step is 2−2×2×8−2×5 = 2−42.

In step 2-(e)-ii, i
lX31[3] ⊕ j

uX ′
31[3] and i

vX
∗
31[3] ⊕ j

wX ′∗
31[3] must be one of 16

elements in F , because SK1[120] ⊕ SK3[120] = SK2[120] ⊕ SK4[120] = 0x10,
and SK1[116]⊕SK3[116] = SK2[116]⊕SK4[116] = 0x68, so the filtering ratio
of this step is 2−2×4 = 2−8.

Since the average ratio of Δx and Δz which satisfy that Pr[(Δx, 0) �→ Δz] > 0
is 2−2.82757, the filtering ratios of step 2-(e)-iii and iv are both 2−5.65514, and since
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the average ratio of Δx, Δy, and Δz which satisfy that Pr[(Δx, Δy) �→ Δz] > 0
is 2−2.34852, the filtering ratio of step 2-(e)-v is 2−4.69704. Therefore, after filtering
steps,

2119.68−42−8−2×5.65514−4.69704 = 253.67268 < 253.68

quartets are left in average.
From step 3 to step 12 are key searching steps with 253.68 quartets. The time

complexities and number of remained quartets for each step are calculated in
Table 3.

Table 3. Complexities of key searching steps

Step
Key
guess
(bit)

# of
Quar-
tets to
test

Time Complexity
Elimi-
nation
Ratio

# of remaining
quartets

Key
guess
(sum,
bit)

# of quartet per a
key

4-(a) 4 253.68 21+53.68+4−7 = 250.68 2−4 253.68+4−4 = 253.68 4 253.68−4 = 249.68

4-(b) 0 253.68 21+53.68−7 = 246.68 2−4 253.68−4 = 249.68 4 249.68−4 = 245.68

5-(a) 4 249.68 21+49.68+4−8 = 246.68 2−4 249.68+4−4 = 249.68 8 249.68−8 = 241.68

5-(b) 0 249.68 21+49.68−8 = 242.68 2−4 249.68−4 = 245.68 8 245.68−8 = 237.68

6-(a) 4 245.68 21+45.68+4−7 = 243.68 2−1.5 245.68+4−1.5 = 247.18 12 247.18−12 = 235.18

6-(b) 0 247.18 21+47.18−7 = 242.18 2−1.5 247.18−1.5 = 246.68 12 246.68−12 = 234.68

7-(a) 4 246.68 21+46.68+4−7 = 244.68 2−1.5 246.68+4−1.5 = 248.18 16 248.18−16 = 232.18

7-(b) 0 248.18 21+48.18−7 = 243.18 2−1.5 248.18−1.5 = 247.68 16 246.68−16 = 230.68

8 0 247.68 22+47.68−7 = 242.68 2−4 247.68−4 = 243.68 16 243.68−16 = 227.68

9 0 243.68 22+43.68−7 = 238.68 2−16 243.68−16 = 227.68 16 227.68−16 = 211.68

10-(a) 8 227.68 21+27.68+8−7 = 229.68 2−2.58 227.68+8−2.58 = 233.1 24 233.1−24 = 29.1

10-(b) 0 233.1 21+33.1−7 = 227.1 2−2.58 233.1−2.58 = 230.52 24 230.52−24 = 26.52

11-(a) 8 230.52 21+30.52+8−7 = 232.52 2−2.58 230.52+8−2.58 = 235.94 32 235.94−32 = 23.94

11-(b) 0 235.94 21+35.94−7 = 229.94 2−2.58 235.94−2.58 = 233.36 32 233.36−32 = 21.36

12-(a) 8 233.36 21+33.36+8−7 = 235.36 2−5.17 233.36+8−5.17 = 236.19 40 235.19−40 = 2−4.81

12-(b) 0 236.19 21+35.19−7 = 230.19 2−5.17 236.19−5.17 = 231.02 40 231.02−40 = 2−8.98

Total 40 250.9001 230.74 40 231.02−40 = 2−8.98

Time complexities in Table 3 except step 8 and step 9 are calculated by the
early abort technique [11] so these steps are divided into two sub-steps which
check that each pair of ciphertexts or intermediate values is valid for a right
quartet. The time complexities for each steps are calculated by the multiplica-
tions of the number of partially decrypted ciphertexts, the number of remaining
quartets from the previous step, the number of guessed keys, and the ratio of
partial rounds to HIGHT encryption.

In steps 6, 7, 10, 11, and 12, although we check 8-bit difference. Since a part
of quartets are already discarded in the filtering steps by some conditions for
the 8-bit difference, we can eliminate with the remaining ratios.

The number of remaining quartets is calculated by multiplication of the num-
ber of remaining quartets from the previous step, the number of guessed keys in
current step, and the elimination ratio of current step. Using this, we check that
how many quartets are counted for each guessed key in average, and if this ratio
is significantly less than 1, we can conclude that the right quartets and right
key are distinguished from wrong quartets and wrong keys. After step 12, total
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number of guessed keys is 240 and the number of remaining quartets is 231.02, so
we expect

231.02−40 = 2−8.98

quartets are remained for a key in average while more than 3 quartets are re-
mained if guessed key is right key. Thus we have to test quartets until step 12,
and the computational complexity from step 4 to step 12 is 250.9001.

Therefore, the computational complexity of our related-key rectangle attack
for a quarter of key space is

2122.425 + 2121.425 + 269+50.9001 < 2123.169,

and since the computational complexity of exhaustive key searching for the re-
maining part of key space is 3 × 2124 = 2125.585, the total computational com-
plexity of our related-key attack is

2123.169 + 2125.585 = 2125.833.

6 Conclusions

In this paper, we find a 24-round related-key rectangle distinguisher using a
local-collision property of 4 rounds of HIGHT and extremely deep ladder switch
technique when add-differences are used for a relations of keys. This distinguisher
can be regards as a 25-round distinguisher because the distinguisher is followed
by one round truncated differential trail with probability 1. Based on this distin-
guisher, we present a related-key rectangle attack on the full rounds of HIGHT
for a large weak key space and we consider a related-key attack which is valid
for whole key space faster than 2126 encryptions required for the exhaustive key
searching with 4 related keys. Time complexity of our attack is very marginal
and seems to be hard to realize to extract the secret key bits. However, our result
gives an evidence for the fact that HIGHT cannot be regarded as an instantiation
of the ideal cipher.

References

1. Biham, E.: How to Forge DES-Enhanced Messages in 228 Steps. CS 884 (August
1996)

2. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

3. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key Re-
covery Attacks of Practical Complexity on AES Variants With Up To 10 Rounds.
To appear in EUROCRYPT 2010, Available at Cryptology ePrint Archive, Report
2009/374 (2010), http://eprint.iacr.org/2009/374

4. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

http://eprint.iacr.org/2009/374


Related-Key Attack on the Full HIGHT 65

5. Biryukov, A., Khovratovich, D.: Feasible Attack on the 13-round AES-256. Cryp-
tology ePrint Archive, Report 2010/257

6. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

7. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

8. Hong, D., Sung, J., Hong, S., Kim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

9. International Organization for Standardization. ISO/IEC 18033-3:2005. Informa-
tion technology – Security techniques – Encryption algorithms – Part 3: Block
ciphers (2005)

10. Lu, J.: Cryptanalysis of reduced versions of the HIGHT block cipher from CHES
2006. In: Nam, K., Rhee, K. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 11–26.
Springer, Heidelberg (2007)

11. Lu, J.: Cryptanalysis of Block Ciphers. PhD thesis, Royal Holloway, University of
London, England (July 2008)

12. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties
of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)
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A Some Flaws in Previous Attack on Reduced Rounds of
HIGHT

As mentioned in Section 1, Lu et al. present a related-key rectangle attack on 26
rounds of HIGHT which uses two related-key differential trails for 10 rounds(for
E0) and 8 rounds(for E1) of HIGHT, respectively. Their 10-round related-key
differential trail for E0 covers rounds from 3 to 12, with the following input and
output differences,

(0x2a, 0x43, 0x80, 0x0, 0x0, 0x0, 0x0, 0x0) −→ (0x0, ?, ?, 0x80, 0x0, 0x0, 0x0, 0x0),

where the relation of the key is ΔK[2] = 0x80 and ΔK[i] = 0x0 for i =
0, 1, 3, 4, 5, ..., 15. They compute the amplified probability 2−19.98 of E0 for some
possible values for positions marked by ‘?’, and this probability is computed
based on the fact that the probability of the first 1-round differential trail,
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(0x2a, 0x43, 0x80, 0x0, 0x0, ..., 0x0) → (0x43, 0x80, 0x0, 0x0, ..., 0x0, 0x0)

is 2−3. This probability arise from the following equation (4).

Prx,k[(x � k) ⊕ ((x ⊕ 0x2a) � k) = 0x2a] = 2−3. (4)

Here, we can observe that for a fixed k, the probability in equation (4) can be
different from 2−3, moreover, the probability in equation (4) is 0 for 148 out of
256 keys. Also, the probability of the related-key differential trail for E1 has the
same flaws. The number of k such that the probability of the first round of E1
is 0 is 158.

In block cipher cryptanalysis, a target secret key is assumed to be fixed,
so in some cases the related-key differential trails for E0 and E1 in [10] are
not satisfied with suggested probabilities. Thus, the related-key rectangle attack
in [10] is regarded as an attack valid only for weak keys.

B Exhaustive Key Searching in the Related-Key Model

The validity of an attack on a cipher is usually proved through comparison of
the complexities with those of an exhaustive key searching in the same attack
model. Let f1, ..., ft−1 be simple bijective relations. We assume that we are given
t distinct encryption oracles Ef0(K), Ef1(K), ..., Eft−1(K) for a related-key tuple
(f0(K), f1(K), ..., ft−1(K)), where f0 is the identity function. We also assume
that the encryption oracle has the block size n and the key space K has 2k

elements. Especially, we focus on the case of k/2 ≤ n < k because our target is
HIGHT. In this setting, the exhaustive key searching consists of the following
phase.

1. Choose and fix two plaintexts P and P ∗, and get the ciphertexts Ci and C∗
i

for each encryption oracle Efi(K).
2. Repeat the following phases.

(a) Randomly pick one K ′ of key candidates, compute C = EK′(P ), and
check whether there exists a Ci such that C = Ci.

(b) If such Ci is found, compute C∗ = EK′(P ∗), and check whether C∗
i = C∗.

(c) If a match (C, C∗) = (Ci, C
∗
i ) is found, halt and output K ′ as the right

value of fi(K). Otherwise, discard K ′, f−1
1 (K ′), ..., f−1

t−1(K ′) from search
space, and go to (a) and try again.

This is not new and similar approaches were mentioned in [1,14]. We can expect a
match is found with 2k−log2 t trials. The match yields one of f0(K), f1(K), ..., ft−1

(K) with a high probability. So, the time complexity of this attack is dominated
by 2k−log2 t encryptions. Therefore our attack is forced to have the time com-
plexity less than 2126, since we use t = 4 related keys of k =128 bits.
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C An Overall View of Our Related-Key Rectangle Attack
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Fig. 5. Related-key differential trails of HIGHT
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Abstract. We propose preimage attacks against PKC98-Hash and
HAS-V. PKC98-Hash is a 160-bit hash function proposed at PKC 1998,
and HAS-V, a hash function proposed at SAC 2000, can produce hash
values of 128+ 32k (k = 0, 1, . . . , 6) bits. These hash functions adopt the
Merkle-Damg̊ard and Davies-Meyer constructions. One unique charac-
teristic of these hash functions is that their step functions are not injec-
tive with a fixed message. We utilize this property to mount preimage
attacks against these hash functions. Note that these attacks can work
for an arbitrary number of steps. The best proposed attacks generate
preimages of PKC98-Hash and HAS-V-320 in 296 and 2256 compression
function computations with negligible memory, respectively. This is the
first preimage attack against the full PKC98-Hash function.
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1 Introduction

Cryptographic hash functions (hereafter, simply referred to as hash functions)
are indispensable in achieving secure systems such as digital signatures and
cryptographic protocols. However, since collisions were found [1] for the widely
used hash function MD5 [2], analytic methods against hash functions have been
greatly improved and the security of existing hash functions has become doubt-
ful. The security of hash functions is usually evaluated by demonstrating crypt-
analysis. Therefore, it is important to analyze hash functions using various struc-
tures to understand the security of the existing hash functions and to design
secure hash functions.

There are many security requirements for hash functions depending on the us-
age. Specifically, the following three properties are the most important: collision
resistance, second preimage resistance, and preimage resistance.

A hash function was proposed at PKC 1998 [3] without a specific name, and
we call it PKC98-Hash as it was referred to in [4]. The hash function adopts spe-
cial features such as a message-dependent rotation. However, the most unique
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characteristic is that a step function is not injective. This design is very different
from many other hash functions adopting a Davies-Meyer mode [5, Algorithm
9.42], which is a block-cipher based construction. Let us compare the behaviors
of these two designs when a message input is fixed. When two different chain-
ing variables are input to the standard Davies-Meyer mode, they never collide
except for the last feed-forward computation. On the other hand, PKC98-Hash
compresses the data in every step. From this observation, the following are in-
teresting objectives on PKC98-Hash from the view of hash function design.

1. Obtaining collisions seem easier than in the standard Davies-Meyer construc-
tion.

2. Is it possible to use this property to mount a preimage attack?
3. Is there any advantage to this structure compared to the standard Davies-

Meyer mode?

History of the cryptanalysis against PKC98-Hash shows that the first perception
is correct. Han et al. [6] showed that Boolean functions used in PKC98-Hash do
not satisfy the Strict Avalanche Criterion (SAC) which is intended to be satis-
fied by the designers, and a collision can be found in 230 compression function
computations (hereafter, if the unit of computational complexity is expressed in
terms of compression function computations, we omit it for the sake of simplic-
ity. Otherwise, we explicitly write the unit) if these functions are replaced with
any function satisfying the SAC. Chang et al. [7] extend this attack and show
that a collision can be found in 237.13 by making a good differential path for the
non-SAC functions. They also showed an example of a pair of colliding messages.
Moreover, Mendel et al. [8] reduces the complexity to 220.5 using the collision
finding techniques described in [1].

While several collision attacks have been proposed, only one preimage attack
has been proposed so far [4]. It applies a recently developed framework of the
meet-in-the-middle preimage attack [9,10,11] to PKC98-Hash, and finds an at-
tack against 80 steps out of 96 steps. However, note that this attack includes a
technically vague point1.

To obtain deep knowledge of a hash construction such as PKC98-Hash, more
hash functions with a similar structure should be analyzed. HAS-V [12] is a
hash function for this case. HAS-V was proposed as a candidate to meet the
requirement of KCDSA [13], which is one of the ISO standard digital signature
algorithms. It can output 128 + 32k (k = 0, 1, . . . , 6) bits of hash values, and
its compression function consists of two copies of the Davies-Meyer compression
function. For HAS-V-320, Mendel et al. [14] showed that pseudo-near-collisions
can be found with a complexity of 1, and preimages can be found with a com-
plexity of 2162. Mouha et al. [15] showed some results on finding collisions for
simplified variants of HAS-V.

1 The paper simply indicates “step−1” in Section 5.3, and how to compute the inverse
of the step function is not mentioned. Because the step function is not injective, we
doubt that the step function can easily be inverted consistently with the message
schedule.
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Table 1. Summary of Current Results Compared to Previous Best Results

Complexity Preimage
No. Attack Memory length

Reference Target steps Type Time (words) (blocks)

[4] PKC98-Hash 80 PPI 2144 Negligible —
PI 2152 7× 216 2

Sect. 3.1 PKC98-Hash Full PPI 2128 Negligible —

Sect. 3.2 PKC98-Hash Full PI 296† Negligible 1

Sect. B.1 PKC98-Hash Full PI 2128 Negligible 34

[14] HAS-V-(128 + 32k) (k ≥ 2) Full PPI 2160 Negligible —
PI 2162 20× 2160 161

Sect. 4.1 HAS-V-320 Full PI 2256 Negligible 1

Sect. B.3 HAS-V-256 Full PI 2249.2 Negligible 1
HAS-V-288 Full PI 2253.5 Negligible 1

Sect. 4.2 HAS-V-320 Full PPI 2128 Negligible —

Sect. 4.3 HAS-V-128 + 32k (k < 6) Full PPI 296 Negligible —

PPI: Pseudo-preimage attack, PI: Preimage attack
Bold-face fonts indicate the best results.

†: Success probability of this attack is 1 − e−1.

In this paper, we show how to exploit the non-injective property of the step
function of PKC98-Hash, and propose the first preimage attack against the full
specification. Moreover, this attack can work for any number of steps. The best
proposed attack generates 1-block preimages with a complexity of 296. However,
for a randomly given target hash value, the attack can generate preimages with a
probability of 1− e−1 ≈ 0.63 at most due to the effect of the message-dependent
rotation. Note that, as a second-preimage attack, this attack succeeds with high
probability if the given first-preimage is two blocks or more. We also show that by
combining the non-injective property with a multi-collision technique [16], we can
efficiently convert from pseudo-preimages to a preimage. This guarantees that
for any given target hash value, preimages can be computed with a complexity
of 2128. Second, we apply the techniques to HAS-V. As a result, we can find
preimages of one block long with only a negligible sized memory. Moreover, we
can find pseudo-preimages of HAS-V-160 and HAS-V-128 while the previous
work could not obtain any results on these output sizes. Again, this attack can
work for any number of steps.

The analytic approach is totally different from the previous meet-in-the-
middle preimage attack [4]. Table 1 summarizes the current results compared
to the previous best results. These results show the weakness of non-injective
step functions. Note that the attack in Section B.2 shows that the choice of the
feed-forward operation sometimes makes the difference in security. It may be
useful for hash function designers to take this result into account.
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2 Preliminaries

2.1 Specification of PKC98-Hash

PKC98-Hash was proposed by Shin et al. [3]. Note that there are unclear parts
in [3, Section 3] and we basically follow the interpretation by [4, Section 2.2].

PKC98-Hash is an iterated hash function based on the Merkle-Damg̊ard de-
sign principle [5, Algorithm 9.25]. It processes 512-bit message blocks and pro-
duces a 160-bit hash value. To ensure that the message length is a multiple of
512 bits, an unambiguous padding method is applied. We refer to [3] for the
description of the padding method. Let M = M0‖M1‖ · · · ‖Mt−1 be a t-block
message (after padding). Hash value H (= Ht) is computed by the iteration
of compression function CF : {0, 1}160 × {0, 1}512 → {0, 1}160 using recurrence
Hi+1 ← CF(Hi, Mi) (i = 0, . . . , t−1), where H0 is a predefined initial value. The
compression function of PKC98-Hash adopts the Davies-Meyer structure [5, Al-
gorithm 9.42]. It basically consists of two parts: the state update transformation
and the message schedule.

Message Schedule. The 512-bit input Mi is divided into 16 words X0‖X1

‖ · · · ‖X15 of 32 bits. Xj (j = 16, 17, . . . , 23) is computed with Xj ← (Xj−16 ⊕
Xj−14 ⊕ Xj−9 ⊕ Xj−4)≪1, where ≪b denotes b-bit left rotation. The message
input of each step is determined by wj ← Xρr(j mod 24) (j = 0, 1, . . . , 95), where
ρ is a permutation defined in Table 2 and r ← �j/24�.

Table 2. Permutation ρ in PKC98-Hash

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ρ(j) 4 21 17 1 23 18 12 10 5 16 8 0 20 3 22 6 11 19 15 2 7 14 9 13

State Update Transformation. The state update transformation starts from
a (fixed) initial value of five 32-bit words and updates them in 96 steps. In each
step one message word wj is used to update the five state variables Aj , Bj , Cj ,
Dj , and Ej as shown below:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Aj+1 ← Ej

Bj+1 ← (fr(Aj , Bj , Cj , Dj , Ej) + wj + Kr)≪sj

Cj+1 ← B≪10
j

Dj+1 ← Cj

Ej+1 ← Dj

, (1)

where r is �j/24�, Kr is a constant defined by the specification, and sj is
Xρ3−r(j mod 24) mod 25. fr(A, B, C, D, E) is defined as⎧⎨⎩

f0 = (A ∧ B) ⊕ (C ∧ D) ⊕ (B ∧ C ∧ D) ⊕ E
f1 = B ⊕ ((D ∧ E) ∨ (A ∧ C))
f2 = A ⊕ (B ∧ (A ⊕ D)) ⊕ (((A ∧ D) ⊕ C) ∨ E)

, (2)

where f3 = f1 and “∧,” “⊕,” and “∨” represent bitwise logical AND, XOR, and
OR, respectively. We sometimes omit the AND symbol.
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Aj Bj Cj Dj Ej

fr

wj + Kr +

sj ≪ ≪ 10

Aj+1 Bj+1 Cj+1 Dj+1 Ej+1

Fig. 1. Step Function in PKC98-Hash

Finally, feed-forward is computed; The initial value A0, B0, . . . , E0 and the
output of the last step A96, B96, . . . , E96 are added by wordwise modular addi-
tion2 as an output of the compression function.

2.2 Specification of HAS-V

HAS-V was proposed by Park et al. in [12]. It processes 1024-bit message blocks
and produces a hash value of 128+32k (k = 0, 1, . . . , 6) bits. HAS-V also adopts
the Merkle-Damg̊ard structure. Again, let M = M0‖M1‖ · · · ‖Mt−1 be a t-block
message (after padding). We refer to the description of the padding method
in [12]. Hash value H is computed by the iteration of compression function
CF : {0, 1}320×{0, 1}1024 → {0, 1}320 using the recurrence Hi+1 ← CF(Hi, Mi)
(i = 0, 1, . . . , t− 1) where H0 is a predefined initial value. Compression function
CF updates chaining value Hi in two-parallel lines (left and right) adopting
the Davies-Meyer structure where the intermediate values of the two lines are
swapped at the end of each round.

Message Schedule. A 1024-bit input Mi is divided into two 512-bit blocks
X‖Y ← Mi, and then divided into 2 sets of sixteen words,{

X0‖X1‖ · · · ‖X15 ← X
Y0‖Y1‖ · · · ‖Y15 ← Y

We denote expanded messages to compute step j of the left and right com-
pression functions by w�′

j and w�′
j , respectively. The index of w�′

j and w�′
j are

identical and determined by Table 3, where w�′
j and w�′

j for j = 16, 17, 18, 19
are computed by XOR of 4 message words indexed by Table 4.

2 There is no description of this operation in the original paper. We can interpret
it as XOR instead of the modular addition. However, this choice is not important
because the best proposed attack can work in both cases. As an independent interest,
in Section B.2, we show an attack that works well for addition feed-forward, but not
for XOR.
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Table 3. Message Ordering in HAS-V (Common between w�′
j and w�′

j)

Step
Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 116 17 18 19

0 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15
1 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0
2 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3
3 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12
4 18 15 9 5 3 19 12 8 6 2 16 13 11 7 1 17 14 10 4 0

Table 4. Extra Message Words for HAS-V

j Round 0 Round 1 Round 2 Round 3 Round 4

16 0,1,2,3 3,6,9,12 12,5,14,7 7,2,13,8 15,9,5,3
17 4,5,6,7 15,2,5,8 0,9,2,11 3,14,9,4 12,8,6,2
18 8,9,10,11 11,14,1,4 4,13,7,15 15,10,5,0 13,11,7,1
19 12,13,14,15 7,10,13,0 8,1,10,3 11,6,1,12 14,10,4,0

Table 5. Amount of Shift for HAS-V Step Function

j mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
sj 5 11 7 13 15 6 13 9 5 11 7 12 8 15 13 8 15 6 7 14

State Update Transformation. The state update transformation updates in-
termediate value Hi = p�′

0‖p�′
0 in two parallel lines using the same step function

in both lines:⎧⎨⎩
p�′

0‖p�′
0 ← Hi,

p�′
j+1‖p�′

j+1 ← Rj(p�′
j , w

�′
j)‖Rj(p�′

j , w
�′

j) (j = 0, 1, . . . , 99),
Hi+1 ← Hi + (p�′

100‖p�′
100).

Rj : {0, 1}160 × {0, 1}32 → {0, 1}160 is the step function of HAS-V described
below. It is used to update the p�′

j and p�′
j in 5 rounds of 20 steps each using

w�′
j and w�′

j computed by the message schedule. p�′
j and p�′

j are swapped after
each round to make the two lines dependent on each other.

For each “�” (left side) and “�” (right side), step function Rj(p′j , w
′
j) is com-

puted as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Aj+1 ←
{

A
≪sj

j + fr(Bj , Cj , Dj, Ej) + w′
j + Kr (for left side “�”)

A
≪sj

j + f4−r(Bj , Cj , Dj, Ej) + w′
j + Kr (for right side “�”)

Bj+1 ← Aj

Cj+1 ← B≫2
j

Dj+1 ← Cj

Ej+1 ← Dj

,

(3)
where r is �j/20�, Kr is a constant defined by the specification, and sj is defined
in Table 5.
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fr(B, C, D, E) is defined as follows.⎧⎨⎩
f0 = BC ⊕ (B ⊕ 1)D ⊕ CE ⊕ DE
f1 = BD ⊕ C ⊕ E
f2 = BC ⊕ (B ⊕ 1)E ⊕ D

, (4)

where 1 represents bit-string, 132. Moreover, f3(B, C, D, E) = f1(C, B, D, E)
and f4(B, C, D, E) = f0(B, D, C, E).

Finally, feed-forward is computed; The initial values and the output of the
last step are added by wordwise modular addition in both lines as an output of
the compression function.

When the digest is shorter than 320 bits, output tailoring is applied after the
last iteration of the compression function. Table 9 in Appendix A shows the
details of the output tailoring of HAS-V.

Alternative Description. For the following analysis, we use the alternative
description shown in [14, Section 3]. Let hi‖gi ← Hi and h(hi, Mi) and g(gi, Mi)
denote the state update function in the left and right stream. CF can be written
as {

hi+1 ← hi + g(gi, Mi)
gi+1 ← gi + h(hi, Mi)

Notations p�
j , p�

j , w�
j , and w�

j correspond to the variables indicated with
prime notation but the swapping procedure is omitted. That is, p�

0‖p�
0 = h0‖g0,

p�
1 = p�′

1, and p�
22 = p�′

22, for example. Figures 2 and 3 show the graphical
explanation of this correspondence.

2.3 Conversion from Pseudo-preimage Attack to Preimage Attack

[5, Fact 9.99] describes a generic conversion from a pseudo-preimage attack to
a preimage attack. When the complexity of a pseudo-preimage attack is 2t, a
preimage attack can be constructed in 2(n+t)/2+1 where n is the number of bits
in the internal state length, that is, 160 for PKC98-Hash and 320 for HAS-V.
The memory complexity of the converted attack requires the order of 2(n−t)/2.

When the pseudo-preimage attack satisfies several conditions, more effective
conversion can be used such as a tree structure [17], P3 graph [14,18], and
GMTPP [19].

2.4 Pseudo-preimage Attack against HAS-V

Mendel and Rijmen [14, Algorithm 1] proposed an algorithm to invert the com-
pression function of HAS-V as given below.

Input: The final hash value hi+1‖gi+1 and an arbitrary intermediate hash value
hi.

Output: Intermediate hash value gi and message Mi such that CF(hi‖gi, Mi)
= hi+1‖gi+1.
1. Guess Mi and calculate: gi ← gi+1 − h(hi, Mi).
2. Check if the following equation holds: hi+1 = hi + g(gi, Mi).

The time complexity of the attack is expected to be 2160.
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Hi

hi(= p�′
0) gi(= p�′

0)
↓ ↓

Round 1 Round 1
←Interchange→

Round 2 Round 2
←Interchange→

Round 3 Round 3
←Interchange→

Round 4 Round 4
←Interchange→

Round 5 Round 5
←Interchange→

↓ ↓
� �
↓ ↓

hi+1 gi+1

Hi+1

Fig. 2. Original Description of HAS-V
Compression Function

Hi

hi(= p�
0) gi(=p�

0)
↓ ↓

Round 1 Round 1

Round 2 Round 2

Round 3 Round 3

Round 4 Round 4

Round 5 Round 5

� �
↓ ↓

hi+1 gi+1

Hi+1

Fig. 3. Alternative Description of
HAS-V Compression Function

3 Preimage Attacks against PKC98-Hash

This section describes the vulnerability of non-injective step functions. In all
proposed attacks, we exploit the following property:

The value of one input chaining variable can be ignored for the remaining
computations.

In Section 3.1, we show that this property leads to a simple pseudo-preimage
attack with 2128 computations. Then, in Section 3.2, we apply this idea to gener-
ate preimages of 1-block long with 296 computations. However, due to the effect
of the message-dependent rotation, this attack only works with the probability
of 1 − e−1 for a randomly given target.

We also show that non-injective step functions enable attackers to convert
pseudo-preimages to a preimage by performing a pre-computation with a lower
complexity level. Because the best proposed attack in Section 3.2 directly gener-
ates preimages, the impact of this attack is limited, and thus we explain it only
in the appendix. However, explaining this conversion will be useful to learn bad
behaviors of non-injective step functions. In addition, by combining this conver-
sion with the results of Section 3.1, we can generate preimages for any given
target value with 2128 computations. In Appendix B.1, we explain this conver-
sion that combines the ideas of the weak property of non-injective step functions
with the multi-collision technique [16]. Then, in Appendix B.2, we show another
efficient conversion that works well only if the feed-forward operation is modular
addition, not XOR.
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3.1 Basic Idea and Its Application for Pseudo-preimage Attack

Equation (1) shows that register A is only used for the input of fr inside the
step function. Moreover, for f0 = (A ∧ B) ⊕ (C ∧ D) ⊕ (B ∧ C ∧ D) ⊕ E in
Eq. (2), A does not impact the output when B = 0. Therefore, if B0 is set to 0,
A96‖B96‖C96‖D96‖E96 can be computed regardless of the value of A0. By utiliz-
ing these properties, we develop a pseudo-preimage attack against compression
function CF of PKC98-Hash as follows.

For given hash value HA‖HB‖HC‖HD‖HE,

1. Let the input of CF be A0‖B0‖C0‖D0‖E0. Set B0 to 0 and C0, D0, and E0 to
randomly fixed values. Note that A96‖B96‖C96‖D96‖E96 can be computed
without knowing the value of A0.

2. Randomly generate message M which is the input of CF, and compute the
output. Confirm whether or not the output agrees with the given hash value
without HA, that is HB‖HC‖HD‖HE .

3. If it agrees, set A0 as HA − A96, and we have a pseudo-preimage;

HA‖HB‖HC‖HD‖HE = CF(A0‖B0‖C0‖D0‖E0, M)

Since the success probability of Step 2 is about 2−128 (= (2−32)4), we have a
pseudo-preimage of CF with high probability by iterating the above procedure
2128 times. Although this attack can be converted to a preimage attack, we only
describe it in Appendices because it is not the main purpose of this subsection.

3.2 One-Block Attack Utilizing More Weakness

This attack uses two major improved techniques compared to the basic attack
in Section 3.1.

Start from real IV. The attack in Section 3.1 requires that B0 be fixed to 0 to
ignore the impact of the value of A0. Because register B of the initial value
of PKC98-Hash is not 0, the attack cannot generate 1-block long preimages.
We solve this problem by using an ignoring property in the latter step of CF.
Namely, we set an intermediate variable to the form of (x‖cB‖cC‖cD‖cE),
where x is an unfixed value and cB, cC , cD, and cE are constant values
making the output of the fr function in this step independent of x. Then,
the remaining steps become independent of x and we use the freedom de-
grees of message words so that a given hash value can be computed from
(x‖cB‖cC‖cD‖cE). Finally, the attack complexity is the one that achieves
(x‖cB‖cC‖cD‖cE), which is 2128 and faster than the brute force attack.

Reduce the complexity more. The attack in Section 3.1 only makes one
chaining variable (A0) irrelevant to the remaining computations. This limits
the advantage of the attack to at most 232. We solve this problem by contin-
uing to ignore the intermediate variable in several steps. Remember that the
fr function for the last round is f1(A, B, C, D, E) = B⊕ ((D∧E)∨(A∧C)).
We observe that f1(x, 0, 0, 0, y) returns 0 regardless of the values of x and y.
At the next step, the input of f1 function can be written as (y, cB, 0, 0, 0),
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Table 6. Intermediate Variables in the Last 5 Steps

j Aj Bj Cj Dj Ej wj sj

91 x 0 0 0 y X19 X19

92 y A≫10
96 0 0 0 X8 X20

93 0 E≫10
96 A96 0 0 X9 X21

94 0 D≫10
96 E96 A96 0 X11 X22

95 0 C≫10
96 D96 E96 A96 X1 X23

96 A96 B96 C96 D96 E96

where cB is a fixed constant. f1(y, cB, 0, 0, 0) returns cB regardless of y. Fi-
nally, the attack complexity can be improved to that achieving (x, 0, 0, 0, y)
at an intermediate step, which is 296.

By considering the above two improvements, we set the value of (A91, B91, C91,
D91, E91) to (x, 0, 0, 0, y) and adjust each variable for a fixed target during the
last five steps. Table 6 shows how to control the last five steps, and Eq. (5) shows
the message schedule for the last five steps.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X19 = (X3 ⊕ X5 ⊕ X10 ⊕ X15)≪1

X20 = (X4 ⊕ X6 ⊕ X11 ⊕ (X0 ⊕ X2 ⊕ X7 ⊕ X12)≪1)≪1

X21 = (X5 ⊕ X7 ⊕ X12 ⊕ (X1 ⊕ X3 ⊕ X8 ⊕ X13)≪1)≪1

X22 = (X6 ⊕ X8 ⊕ X13 ⊕ (X2 ⊕ X4 ⊕ X9 ⊕ X14)≪1)≪1

X23 = (X7 ⊕ X9 ⊕ X14 ⊕ (X3 ⊕ X5 ⊕ X10 ⊕ X15)≪1)≪1

(5)

Based on Table 6, we develop the following procedure for given hash value
HA‖HB‖HC‖HD‖HE.

1. Set A96 ← HA − A0, B96 ← HB − B0, C96 ← HC − C0, D96 ← HD − D0,
and E96 ← HE − E0, where A0‖B0‖C0‖D0‖E0 (= H0) is the initial value.

2. Set Aj , Bj , Cj , Dj , and Ej as specified in Table 6 for j = 95, 94, . . . , 91,
where x and y are unfixed values. Compute wj ← B

≫sj

j+1 − K3 − f1(Aj ,
Bj , Cj , Dj , Ej) for j = 95, 94, 93, 92 to achieve these values. Remember that
f1(x, 0, 0, 0, y) and f1(y, A≫10

96 , 0, 0, 0) are fixed constants regardless of the
values of x and y. On s92, s93, s94, and s95, we set arbitrary values.

3. For Step 91, by exhaustively trying the least significant 5 bits of w91 (= s91 =
X19), check if there exists X19 satisfying the following with respect to the
least significant 5 bits. Fix the least significant 5 bits and compute X19 =
(A≫10

96 )≫X19mod25 − f1(Aj , Bj, Cj , Dj, Ej) − K3. If the least significant 5
bits of the newly computed X19 matches the fixed value, the solution exists.
Otherwise, the attack fails.

4. Set X13, X14, and X15 as the appropriate padding rule for a 1 block message.
Now, we determine the full bits of X1, X8, X9, X11, X13, X14, X15, and X19.

5. We have not yet determined X0, X2, X3, X4, X5, X6, X7, X10, and X12,
but we have the constraint for X19. So, we still have 32 × 8 = 256 free bits.
Equation (5) specifies 5×4 bits for sj for j = 95, 94, 93, 92. In total, we have
256− 5 × 4 = 236 free bits by solving the linear system in GF(2) of Eq. (5).
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Note X19, X20, . . . , X23 include at least one non-determined message word,
for example, X3, X4, . . . , X7.

6. For each message candidate, compute A91‖B91‖C91‖D91‖E91. This will match
the form of ∗‖0‖0‖0‖∗ with probability 2−96. Hence, we expect to find a
preimage in 296.

At Step 3, the success probability of the check is approximately 1− (1− 1
32 )32 ≈

1 − e−1. In fact, for 232 candidates of A96, we experimentally confirmed the
success probability of the check. As a result, 2745131115 points out of 232 points
passed this check. This is almost the same, but strictly speaking it is 1.11%
better than the original approximation: 232 · (1 − e−1) ≈ 2714937127.

4 Preimage Attack against HAS-V

Mendel and Rijmen [14] proposed a preimage attack on HAS-V-(128 + 32k)
(k ≥ 2) with 2162 in time and 20 × 2160 in memory. The generated preimages
are 161 blocks long.

Equation (3) shows that, inside the step function of HAS-V, register E of an
intermediate variable is only used for the input of fr. Hence, the same approach
as PKC98-Hash is possible. In Section 4.1, we propose a 1-block preimage attack
on HAS-V with a complexity of 2256 compression function operations by using
an idea similar to that in Section 3.2. Due to its complexity, the attack can be
applied to 320-bit and 288-bit outputs. Moreover, if the details of the output
tailoring function are carefully analyzed, the complexity for a 288-bit output
can be slightly improved, which takes 2253.5, and we can attack a 256-bit output
faster than 2256, which takes 2249.2. Because the analysis on the output tailoring
function is too complicated and too specific for HAS-V, we show these optimiza-
tion only in Appendix B.3. In Section 4.2, we propose the basic idea to obtain
the best pseudo-preimage attack on HAS-V by using the idea in Section 4.1. Fi-
nally, in Section 4.3, we further reduce the complexity for tailored output sizes
by carefully considering the output tailoring function. Note that these attacks
are the first results on HAS-V-160 and HAS-V-128.

4.1 One-Block Attack

As was done in Section 3.2, we set an intermediate variable (input to Step 98)
to the form of (cA‖cB‖cC‖cD‖∗E) for both left and right sides, where ∗E is an
unfixed value and cA, cB, cC , and cD are constant values making the output of
fr independent of ∗E . Note that, for the left and right sides, fr(B, C, D, E) for
the last round is BC ⊕ (B ⊕ 1)D⊕CE ⊕DE and BD⊕ (B ⊕ 1)C ⊕CE ⊕DE,
respectively. Both of them are independent of E as long as C = D is satisfied. For
a random message, the form (cA‖cB‖cC‖cD‖∗E) is satisfied with a probability
of 2−128 on each side. Hence, the attack will succeed in 2256 (= (2128)2). The
detailed attack procedure is as follows.
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Table 7. Intermediate Variables in the Last 2 Steps

j A�
j B�

j C�
j D�

j E�
j A�

j B�
j C�

j D�
j E�

j w�
j w�

j

98 C�≪2
100 D�≪2

100 E�
100 E�

100 x C�≪2
100 D�≪2

100 E�
100 E�

100 y X4 Y4

99 B�
100 C�≪2

100 D�
100 E�

100 E�
100 B�

100 C�≪2
100 D�

100 E�
100 E�

100 X0 Y0

100 A�
100 B�

100 C�
100 D�

100 E�
100 A�

100 B�
100 C�

100 D�
100 E�

100

1. For a given hash value and initial value H0, compute A�
100, B�

100, . . ., E�
100

by reversely applying the feed-forward operation.
2. Compute A�

j , B�
j , . . ., E�

j for j = 98, 99 as specified in Table 7, and
message words X0, Y0, X4, and Y4 by solving the first assignment line for
w′

j in Eq. (3).
3. Set Y13, Y14, and Y15 as an appropriate padding rule for a 1-block message.
4. Set non-specified message words Xj and Yj randomly, compute Steps 0 to

97, and confirm whether or not the output of Step 97 p�
98‖p�

98 matches

C�≪2
100 ‖D�≪2

100 ‖E�
100‖E�

100‖ ∗ ‖C�≪2
100 ‖D�≪2

100 ‖E�
100‖E�

100‖ ∗

The match will occur with the probability 2−256, and we expect to find a
preimage in 2256.

Since the output tailoring function of HAS-V can easily be inverted, we can also
compute 1-block preimages of HAS-V-288 with the complexity of 2256.

4.2 A Pseudo-preimage Attack

Section 2.4 describes a pseudo-preimage attack in 2160. We further reduce the
complexity by combining the idea described in Section 4.1. Note that this attack
is a pseudo-preimage attack and thus the goal is finding a pair of hi‖gi and Mi

which generates a given hash value hi+1‖gi+1 (gi can be given instead of being
chosen by the attacker). This attack uses the left half of Table 7.

1. For given hash value hi+1‖gi+1 and right half of input gi, compute A�
100,

B�
100, . . ., E�

100 (only the left side) by reversely applying the feed-forward
operation, namely gi+1 − gi.

2. Set A�
j , B�

j , . . ., E�
j for j = 98, 99 as specified in Table 7, so that A�

100,
B�

100, . . ., E�
100 can be achieved for any unfixed value x. Compute X0 and

X4 using Eq. (3).
3. Set Y13, Y14, and Y15 as an appropriate padding rule for a 1-block message.
4. Generate non-specified message words Xj and Yj randomly, and compute

the following.

p�
0 ← gi,

p�
j+1 ← R(p�

j , w
�

j) for j = 0, 1, . . . , 99,
p�

0 ← hi+1 − p�
100,

p�
j+1 ← R(p�

j , w
�

j) for j = 0, 1, . . . , 97.
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Table 8. Two Neutral Words Allocation

j A�
j B�

j C�
j D�

j E�
j w�

j

98 c0 ⊕ 1 y c0 c0 x X4

99 c0 ⊕ 1 y≫2 c0 c0 X0

100 (c0 ⊕ 1)≫2 y≫2 c0

A�
j B�

j C�
j D�

j E�
j w�

j

0 c1 c≫2
1 y′ c1 Y0

1 c≫2
1 c≫2

1 y′ Y1

hi+1 gi+1

hi gi

p�

98

p�

2

� �A C D

match?

Output Tailoring

Tailored hash value

2-96

unfixed

Independent of 
unfixed words

p�

100

p�

0

Fig. 4. Pseudo-Preimages on Tai-
lored HAS-V

5. If the newly computed p�
98 matches the form of C�≪2

100 ‖D�≪2
100 ‖E�

100‖E�
100

‖∗, we obtain a pseudo-preimage. Otherwise, go back to Step 4.

The success probability of Step 5 is 2−128, and we expect to find a pseudo-
preimage in 2128.

Since we can easily invert the output tailoring function, we expect to find
pseudo-preimages faster than with a brute-force search for all output lengths of
HAS-V except for the 128-bit output.

4.3 Pseudo-preimage Attacks with Output Tailoring

Regarding HAS-V with shorter hash lengths, we can further reduce the com-
plexity of the pseudo-preimage attack in Section 4.2 by using the redundancy
introduced in the output tailoring function.

Overall Strategy. Similar to Section 4.2, we make unfixed words in the last
several steps of the left line (p�

98). However, different from Section 4.2, we make
two unfixed words. The overall strategy is as follows, which is also illustrated in
Fig. 4.

– Set two unfixed words on registers B and E of p�
98.

– Set intermediate variables in p�
98, p�

99, p�
100, p�

0, and p�
1 so that p�

2 and
the following computations can be carried out independently of the values
of unfixed words.

– For a randomly chosen message, compute p�
2 → p�

100 → p�
0 → p�

98. Finally
check that the registers of A, C, and D of the computed p�

98 match the values
of p�

98 set in advance.

Computations from p�
98 to p�

2 and Use of Output Tailoring Function.
Table 8 describes the intermediate variables at the last 3 steps of the left line
and the first 2 steps of the right line. c0 and c1 are constants to be determined
by the method below and x and y are unfixed variables. y′ is a variable that
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changes depending on y. The variables in Table 8 guarantee that two unfixed
words (registers B and E of p�

98) never impact p�
2 regardless of their values.

We explain this computation step by step.

• f4(B, C, D, E) for the left line is BD ⊕ (B ⊕ 1)C ⊕ DE ⊕ CE.
For R(p�

98, w
�
98): fr(y, c0, c0, x) = (y∧c0)⊕((y⊕1)∧c0)⊕(c0∧x)⊕(c0∧x) =

c0 ⊕ 0 = c0.
For R(p�

99, w
�
99): fr(c0 ⊕ 1, y≫2, c0, c0) = ((c0 ⊕ 1)∧ c0)⊕ (c0 ∧ y≫2)⊕ (c0 ∧

c0) ⊕ (y≫2 ∧ c0) = c0.
• Assume that p�

0 in Table 8 can be achieved from p�
98 in Table 8. We later

show that this assumption is reasonable. The Boolean function of the right
line for the first round, fr, is the same as f4 for the left line, which is
BD ⊕ (B ⊕ 1)C ⊕ DE ⊕ CE.

For R(p�
0, w

�
0): fr(c1, c

≫2
1 , y′, c1) = (c1 ∧ y′) ⊕ ((c1 ⊕ 1) ∧ c≫2

1 ) ⊕ (y′ ∧ c1) ⊕
(c≫2

1 ∧ c1) = c≫2
1 .

For R(p�
1, w

�
1): fr(∗, c≫2

1 , c≫2
1 , y′) = (∗ ∧ c≫2

1 ) ⊕ ((∗ ⊕ 1) ∧ c≫2
1 ) ⊕ (c≫2

1 ∧
y′) ⊕ (c≫2

1 ∧ y′) = c≫2
1 .

Finally, we can conclude that the two unfixed words of p�
98 are always ignored

in the fr function in each step, and thus do not impact p�
2.

The remaining problem is how to satisfy the above assumption, namely, how
we choose variables c0 and c1 so that they are consistent with the transformation
from p�

100 to p�
0. Specifically, we need to make sure that C�

100 + C�
0, which

is (c0 ⊕ 1)≫2 + c≫2
1 , is equal to the third word of gi+1 and, at the same time,

E�
100 + E�

0, which is c0 + c1 is equal to the fifth word of gi+1 (We do not have
to consider register D because y′ is a variable that can change depending on the
value of y). This is usually impossible if gi+1 is a given and a fixed target value.
Therefore, this attack is impossible for HAS-V-320. However, for the shorter
outputs, there exist multiple candidates of gi+1 that can produce the given short
hash values. This redundancy introduced by the output tailoring function enables
us to satisfy the constraints on registers C and E simultaneously.

Satisfying Constraints Between p�
100 and p�

0. Let us denote five words of
hi+1 and gi+1 by A�‖B�‖C�‖D�‖E� and A�‖B�‖C�‖D�‖E�, respectively. The
output tailoring function is shown in Table 9. The goal here is to find a tuple of
values (c0, c1, C

�, E�) that can produce the given target hash value of a reduced
size and satisfy equations (c0 ⊕ 1)≫2 + c≫2

1 = C� and c0 + c1 = E�.
We start with an observation: C� may not have freedom depending on the

output size. For example, in a 256-bit case, 8 LSBs of C� can take any value
by choosing E�

[15−8] so that C�
[7−0] + E�

[15−8] can be equal to the 8 LSBs
of the 6th word of the given target value. However, the other 24 bits of C�

must be fixed uniquely. Therefore, in this attack procedure, we regard that C�

is fixed by the given target hash value (Even if C� has the freedom, we fix
C� to one of the possible values and do not use the freedom). Hence, if we
determine the value of c0 (resp. c1), the value of c1 (resp. c0) will be fixed by
(c0 ⊕ 1)≫2 + c≫2

1 = C�. This also fixes the value of E� by c0 + c1 = E�. Then,
we have another observation: For a given hash value, E� can take any value for
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any output sizes. Table 9 shows that for all output sizes, E� is always added
by other variables. Hence, for any value of E�, we can produce the given target
hash value by appropriately choosing values of these added variables.

Finally, the constraints on registers C and E can always be satisfied and the
variables in Table 9 can always be set.

Attack Procedure. The detailed attack procedure for the tailored HAS-V is
as follows.

1. Fix the value of C� so that it can be consistent with the given target hash
value. Then, choose arbitrary value c0 and compute c1 by using (c0⊕1)≫2+
c≫2
1 = C� and E� by using c0 + c1 = E�.

2. Compute A�, B�, . . ., E�, A�, B�, and D�. We can choose any possible
value as long as they produce the target hash value. Moreover, compute X4

to satisfy B�
0 = c1.

3. Randomly generate message words except for X4 and intermediate variables
between the left line of Step 98 and the right line of Step 1 that are not
determined yet, and compute the following:

p�
j+1 ← R(p�

j , w
�

j) for j = 99
p�

j+1 ← R(p�
j , w

�
j) for j = 0, 1, . . . , 99

p�
0 ← (A�‖B�‖C�‖D�‖E�) − p�

100

p�
j+1 ← R(p�

j , w
�

j) for j = 0, 1, . . . , 97

4. If the newly computed p�
98 matches the form of (c0⊕1‖∗‖c0‖c0‖∗), we find

a pseudo-preimage. Otherwise, go back to Step 3.

The success probability of Step 4 is 2−96, and we expect to find a pseudo-
preimage in 296.

5 Conclusions

This paper presented attacks against Davies-Meyer hash functions with non-
injective “block cipher”, including PKC98-Hash and HAS-V. The best attacks
in the paper are: a preimage attack on PKC98-Hash in time 296, a preimage
attack on HAS-V in time 2256, and a pseudo-preimage attack on tailored HAS-V
in time 296. All of these attacks only require a negligible amount of memory.

The non-injective property of the step function enables attackers to cancel a
part of the input chaining variable of the compression function. This property
leads to a simple pseudo-preimage attack and an efficient conversion method from
pseudo-preimages to a preimage. Moreover, the attacks work for any number
of steps. Therefore, we suggest that hash function designers should avoid the
Davies-Meyer construction with non-injective state-update functions.
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A Output Tailoring of HAS-V

When the length of output is shorter than 320, the output tailoring shown in
Table 9 is applied, where A�‖B�‖C�‖D�‖E�‖A�‖B�‖C�‖D�‖E� is a 320-bit
output of the HAS-V compression function, and suffix [u − v] means the bit-
string extracted from bit positions v to u and the rightmost bit is the 0th bit.

B Additional Attacks

This section describes the evidence why the attacks work correctly. The details
are very complicated so we did not include these results in the main body of the
paper.

B.1 Efficient Pseudo-preimage Conversion Using a
Partial-Multi-collision

This section describes an efficient conversion from pseudo-preimages to a preim-
age by combining the property of non-injective step functions with the idea of
multi-collisions proposed by Joux [16]. This method can be used for both of
modular-addition feed-forward and XOR feed-forward. Because the attack in
Section 3.2 can directly find preimages and has a lower level of complexity, the
impact of this attack for PKC98-Hash is limited. However, the attack would be
useful to learn the behavior of non-injective functions, and thus we explain the
attack.

The attack generates a preimage of 34 blocks. For given H34, compute as
follows. The attack is also illustrated in Fig 5.

http://wiki.uni.lu/esc/
http://eprint.iacr.org/2010/016
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Table 9. HAS-V Output Tailoring

Output 0th word 1st word 2nd word
length 3rd word 4th word 5th word

(in bits) 6th word 7th word 8th word

128 A� + A� + E�
[31−16] B� + B� + E�

[15−0] C� + C� + E�
[31−16]

D� + D� + E�
[15−0]

160 A� + A� B� + B� C� + C�

D� + D� E� + E�

192 A�+(E�
[31−21]‖D�

[20−10]) B�+(E�
[20−10]‖D�

[9−0]) C�+(E�
[9−0]‖D�

[31−21])

A�+(E�
[31−21]‖D�

[20−10]) B�+(E�
[20−10]‖D�

[9−0]) C�+(E�
[9−0]‖D�

[31−21])

224 A�+(E�
[31−24]‖D�

[23−16]) B�+(E�
[23−16]‖D�

[15−8]) C�+(E�
[15−8]‖D�

[7−0])

D�+(E�
[7−0]‖D�

[31−24]) A� + E�
[31−21] B� + E�

[20−10]

C� + E�
[9−0]

256 A� + E�
[31−24] B� + E�

[23−16] C� + E�
[15−8]

D� + E�
[7−0] A� + E�

[31−24] B� + E�
[23−16]

C� + E�
[15−8] D� + E�

[7−0]

288 A� + E�
[31−25] B� + E�

[24−18] C� + E�
[17−12]

D� + E�
[11−6] E� + E�

[5−0] A�

B� C� D�

H0 : IV

H1 :   A(1)|| 0 ||C(1)||D(1)||E(1)

H2 :   � || 0 ||C(2)||D(2)||E(2)

M0

M1 M1’

H3 :   � || 0 ||C(3)||D(3)||E(3)

M2 M2’

H32 :   � || 0 ||C(32)||D(32)||E(32)

H33 :     �� || 0 ||C(33)||D(33)||E(33)

M32 M32’

H33 :  A(33)|| 0 ||C(33)||D(33)||E(33)

M34

H34 :  HA || HB || HC || HD || HE

Step 3

Step 1

Step 2

(pre-comp)

(pre-comp)

Step 4 Find the 
match.

Initial value

1 candidate for A(1)

21 candidates for A(2)

22 candidates for A(3)

231 candidates for A(32)

232 candidates for A(33)

Given target

Pseudo-preimage

Fig. 5. Efficient Conversion from PPI to PI with Partial Multi-Collision

1. Generate M0 randomly until ∗‖0‖ ∗ ‖ ∗ ‖∗ = CF(H0, M0) holds. Let A(1)‖0
‖C(1)‖D(1)‖E(1) = CF(H0, M0).

2. For i = 1, 2, . . . , 32, find (Mi, M
′
i) such that the outputs of CF(Hi, Mi) and

CF(Hi, M
′
i) collide with registers C, D, and E and register B is 0. Let the



86 Y. Sasaki, F. Mendel, and K. Aoki

colliding values be ∗‖0‖C(i+1)‖D(i+1)‖E(i+1). Store A
(i)
96 and A

′(i)
96 , which

will be used later. Note that we can compute registers B, C, D, and E of
Hi+1 without knowing the value of A(i) or A′(i).

3. Find a pseudo-preimage for the last block by using the attack in Section 3.1.
First, fix registers B, C, D, and E of the input chaining variable to 0, C(33),
D(33), and E(33), and fix the target hash value to H34. Then, find A(33) and
M33 where H34 = CF(H33, M33) and M33 satisfy the padding for a 34-block
message.

4. Determine which of Mi and M ′
i (i = 1, 2, . . . , 32) should be used for a preim-

age. This is done by the exhaustive search, namely, for all message combi-
nations, check A(33) fixed in Step 3 is achieved or not. This can work with
high probability, because the following equation holds.

A(33) = A(1) +
31∑

i=0

{
A

(i)
96 if Mi is used.

A
′(i)
96 if M ′

i is used.

This can be done with the previous technique such as one described in [20].
Note that we write the case that the feed-forward operation is modular
addition. Replace the modular operation with XOR if the feed-operation is
XOR.

The complexity of the attack is as follows.

1. 232 because we need to specify that register B is 0.
2. For each i, collision without register A can be found in 264, and register B of

such a collision is 0 with a probability of approximately 2−32. In total, 2101

(= 32 × 264 · 232). The computation can be done with negligible memory,
while we can compute this in 285 with 248 blocks of memory.

3. 2128 followed by Section 3.1.
4. Less than 232 because 32 additions are expected in less than one CF com-

putation.

In total, 232 + 2101 + 2128 + 232 ≈ 2128 computations are required to obtain a
preimage. Note that Steps 1 and 2 can be pre-computed before the target hash
value is given. Also note that if 232 words of memory is allowed, Step 4 can also
be precomputed.

The above attack uses 2 collisions. We can shorten the length of the preimage
with a slightly higher level of complexity and much more memory. When we use
k-collisions, the length of the multi-collision part is

⌈
logk(232)

⌉
blocks, and the

complexity for pre-computation is⌈
logk(232)

⌉× 232 × (k! × 296×(k−1)/k)

and the memory requirement for the attack is approximately 296×(k−1)/k blocks.
Thanks to the Joux and Lucks attack [21], we can reduce the memory complexity
to 232 for the case of k = 3. When k ≤ 6, the increase of the time complexity is
negligible with the use of k-collisions.
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H0
286−→ Z

232−→ ∗0 ∗ ∗∗ 2128−→ H

Fig. 6. Intermediate Values

B.2 Efficient Pseudo-preimage Conversion Applicable for Addition
Feed-Forward

In this section, we describe another efficient conversion from pseudo-preimages
to a preimage. This conversion is worse than the one in Section B.1 with respect
to two points: 1) pre-computation requires higher level of complexity, and 2) the
generated preimages are longer (233 blocks). However, this attack has a unique
characteristic where the attack works well for modular-addition feed-forward but
does not work for XOR feed-forward. As far as we know, this is the first case
where the attack efficiency is significantly different between these two operations,
and thus, we explain the attack.

Note that this attack uses an expandable message. (a, b)-expandable message
is a set of messages, where each message outputs the same hash value and the
block length of each message covers all values between a and b for a given in-
put H . (k, k+2k−1)-expandable messages can be computed in 2k+k×2n/2+1 [22].

Followed by Section 3.1, we can find (A′, M∗) in 2128 that satisfies

A‖0‖C‖D‖E = CF(A′‖0‖C‖D‖E, M∗)

with given A, C, D, and E. Let X be −A96, then we have

A′ = A + X.

Because X is the constant only depending on C, D, E, and M∗,

A‖0‖C‖D‖E = CFi((A + iX)‖0‖C‖D‖E, M∗)

holds. Utilizing the property, we compute a preimage of HA‖HB‖HC‖HD‖HE .
Figure 6 shows a graphical explanation of this attack.

1. Construct a (33, 33 + 233 − 1)-expandable message whose input is H0, and
let Z be its output.

2. Find (A′′, C, D, E, MZ) such that A′′‖0‖C‖D‖E = CF(Z, MZ), by randomly
choosing MZ .

3. Find (A, MLAST) such that HA‖HB‖HC‖HD‖HE = CF(A‖0‖C‖D‖E, MLAST)
using Section 3.1. MLAST should follow the padding rule for a message whose
length is 512 × 233 + 447 bits.

4. Find (A′, M∗) such that A‖0‖C‖D‖E = CF(A′‖0‖C‖D‖E, M∗) using Sec-
tion 3.1.
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5. Compute i such that A′′ ≡ A + i(A′ −A) (mod 232). If there is no solution,
go back to Step 4.

6. With the preceding and appropriate expandable part depending on i to sat-
isfy the padding rule, MZ‖(M∗)i‖MLAST is a preimage for the given hash
value.

The complexity of the attack is as follows.

1. 233 + 33 × 281 ≈ 286.
2. 232 because we need to specify the second word as 0.
3. 2128 followed by Section 3.1.
4. 2128 followed by Section 3.1.
5. Negligible but the success probability is about 2

3 , where the success probabil-
ity is estimated as follows. Let X = A′−A and Y = A′′−A. Assume X and Y
are uniformly distributed. When X is odd, there is a solution. This happens
with probability 1

2 . When X is even and Y is odd, there is no solution. When
X is even, Y is even, and X/2 is odd, there is a solution. This happens with
probability 1

23 . We can continue to confirm the parity of each bit to the most

significant bit, thus the success probability is 1
2 + 1

23 + 1
25 + · · · ≈ 1

2
1− 1

22
= 2

3 .

6. The time to output a message whose length is about 233 blocks, and we
regard this step as negligible.

In total, the complexity is about

286 + 232 + 2128 +
(

2
3

)−1

2128 ≈ 2129.3.

The length of the preimage is about 233 blocks, but the memory requirement of
the attack is negligible since most of the message block is a repetition of M∗ and
thus all we have to remember is a counter which tells the number of repetitions
of M∗. Moreover, we can compute the expandable message with a memoryless
collision search.

In Step 5, we need to solve modular equation mod232. If the feed-forward
operation in Davies-Meyer is ⊕, the equation hardly has a solution, and the
attack described above does not work well. When designing a hash function,
the difference in security between modular addition and XOR of feed-forward
operation in Davies-Meyer as well as the difference in performance may need to
be considered.

B.3 One-Block Attack on PKC98-Hash with Output Tailoring

We can compute 1-block preimages of HAS-V-256 faster than the brute-force
search using the redundancy in the output tailoring function, and we can also
reduce the complexity of the attack against HAS-V-288 using the same idea.

The outline of the attack is as follows.
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Table 10. Intermediate Variables to Compute 1-Block Preimage of HAS-V-256

j A�
j B�

j C�
j D�

j E�
j A�

j B�
j C�

j D�
j E�

j w�
j w�

j

97 D�≪2
100 E�≪2

100 C�≪2
100 C�≪2

100 x X10

98 C�≪2
100 D�≪2

100 E�
100 C�≪2

100 C�≪2
100 C�≪2

100 D�≪2
100 E�

100 E�
100 y X4 Y4

99 B�
100 C�≪2

100 D�
100 E�

100 C�≪2
100 B�

100 C�≪2
100 D�

100 E�
100 E�

100 X0 Y0

100 A�
100 B�

100 C�
100 D�

100 E�
100 A�

100 B�
100 C�

100 D�
100 E�

100

0 A�
0 B�

0 C�
0 D�

0 E�
0 A�

0 B�
0 C�

0 D�
0 E�

0 Fixed

A� B� C� D� E� A� B� C� D� E�

E�
[31−24] E�

[23−16] E�
[15−8] E�

[7−0] E�
[31−24] E�

[23−16] E�
[15−8] E�

[7−0]

Adjust-
able

HA� HB� HC� HD� HA� HB� HC� HD� Given

1. Setup the intermediate variables similar to Section 4.1. Moreover, the least
significant few bits of register B will not influence the following computation
for updating register A.

2. Compute the right line, and check the match. The least significant few bits
of register B will influence a register that inputs to the output tailoring
function.

3. Fortunately, the influenced bits cannot influence the intermediate values for
the left line. We can finally absorb the influenced bits by matching in the
left line.

Table 10 shows the initial setup for the attack. Let A�, B�, . . ., E� be the
input of the output tailoring function and HA�‖HB�‖HC�‖HD�‖HA�‖HB�‖HC�

‖HD� be the given hash value for the preimage to be computed. How to construct
Table 10 is as follows. Note that we have full redundancy in register E, since
E�

0 +E�
100 = E� and E�

0 +E�
100 = E� hold. First, we construct the equations

using the variables with E�
99 and E�

100, then we compute these variables from
the fixed and the given values.

– Focus on the right line. For Step 98, we want to ignore E�
98 and B�

98. We
can ignore the variables under the condition D�

98 = C�
98 (= E�

100), since
the Boolean function of the step is f0.

– For Step 99, we want to ignore C�
99. It can be achieved with B�

99 = E�
99

(= D�
98). Using the condition in Step 98, we have

C�≪2
100 = E�

100 (6)

– For the output of Step 99, namely j = 100, D�
100 should be consistent with

the output tailoring function and feed-forward operation,

D�
100 = HD� − D�

0 − E�
[7−0]. (7)

– Now focus on the left line. For Step 97, we want to ignore E�
97 and B�

97

(= E�
100). This can be achieved by D�

97 = C�
97 (= E�

99), since the Boolean
function of the step is f4.
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– For Step 98, we want to ignore C�
98 (= E�

100). This can be achieved by
1⊕ B�

98 = E�
98 (= D�

97). Using the condition in Step 97, we have

1⊕ D�≪2
100 = E�

99 (8)

– For Step 99, we need to ignore D�
99 (= E�

100). This can be achieved by
B�

99 = E�
99. That is,

C�≪2
100 = E�

99. (9)

Focusing on Eq. (7), for all possible HD� , we can only adjust the least significant
8 bits of D�

100 at most. The adjustment is achieved by E�
[7−0], and its value

determines the least significant 8 bits of E�
100. From Eqs. (8) and (9), we need

to satisfy
1⊕ D�≪2

100 = C�≪2
100 . (10)

Rotating two bits, and substituting 1⊕D�
100 = −(1+D�

100) and D�
100 = HD�−

D�
0 −E�

[7−0] and C�
100 = HC� −C�

0 −E�
[15−8], we have E�

[15−8] + E�
[7−0] =

HC� +HD�−C�
0−D�

0+1. Since we can choose an arbitrary value for E�
99 using

X0, the least significant 9 bits of Eq. (10) can almost always be satisfied using
E�

[15−8] and E�
[7−0]. This condition can cancel the influence of the following

computation in D�
99[10−2] (= E�

100[10−2]) and C�
98[10−2] (= E�

100[10−2]). The
range we want to cancel is [7 − 0] in E�

100, the shared bits we can cancel are
E�

100[7−2]. Thus, we choose E�
99 ← C�≪2

100 , and adjust the least significant few
bits of D�

100.
When all bits in E� and E� are determined, all variables in Table 10 are deter-

mined. We choose E� and E� to satisfy the remaining and unsatisfied condition
B�

99[7−2] = E�
99[7−2] and B�

98[7−2] = E�
98[7−2] which comes from Eqs. (6) and

(8) as follows.

1. Fix E�
[15−8] randomly.

2. Compute C� ← HC� − E�
[15−8], and C�

100 ← C� − C�
0.

3. Compute E�
100[7−0] ← (C�≪2

100 )[7−0] to satisfy the part of Eq. (6), and
E�

[7−0] ← E�
100[7−0] + E�

0[7−9] (mod 28).
4. Compute D� ← HD�−E�

[7−0] and D�
100 ← D�−D�

0. Compute C�
100[7−0] ←

(1⊕ D�
100)[7−0] to satisfy the part of Eq. (8).

5. Compute C�
[7−0] ← C�

100[7−0]+C�
0[7−0] (mod 28) and E�

[15−8] ← HC�[7−0]−
C�

[7−0] (mod 28).
6. Choose E�

[31−16], E�
[31−16], and E�

[7−0] randomly, and compute A�, B�,
. . ., E�. Note that some bits are already determined.

7. Compute the intermediate variables A�
j , B�

j , . . ., E�
j for j = 97, 98, 99, 100,

and A�
j , B�

j , . . ., E�
j for j = 98, 99, 100. Note that some bits are already

determined.
8. Reversely compute the message words X10, X4, X0, Y4, and Y0 using Eq. (3).

We are now ready to write the detailed attack procedure.

1. Choose all message words that are not determined yet.
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2. Compute R(p�
j , w

�
j) for j = 0, 1, . . . , 97 and confirm whether or not the

resulting p�
98 matches the form of

C�≪2
100 ‖((D�≪2

100 )[31−10]‖ ∗[9−4] ‖(D�≪2
100 )[3−0])‖E�

100‖E�
100‖ ∗ .

If there is no match, go back to the first step. The match will occur with
probability 2−122.

3. Compute E�
[7−0] ← HD�[7−0]−D�

0[7−0]−D�
100[7−0] (mod 28), and reassign

E�
100[7−0] ← E�

[7−0] − E�
0[7−0].

4. Compute R(p�
j , w

�
j) for j = 0, 1, . . . , 96 and confirm whether or not the

resulting p�
97 matches the form of D�≪2

100 ‖E�≪2
100 ‖C�≪2

100 ‖C�≪2
100 ‖∗. If there

is no match, go back to the first step. The match will occur with probability
2−128.

As a result, we will find a preimage in 2250.

Note for Weak Hash Values. After setting up the intermediate variables in
Table 10, (C�≪2

100 )[k] = (D�≪2
100 )[k] for k = 0, 1 holds with probability 1

2 . Thus,
we can compute a preimage for 1

4 of the hash value in 2248, 1
2 of the hash value

in 2249, and 1
4 of the hash value in 2250. On average, the attack complexity is

2249.2.

An Attack against HAS-V-288. We can attack HAS-V-288 in a similar
manner. On the right line, we can cancel the effect of B�

98[7−2]. On the left
line, unfortunately we cannot satisfy Eq. (10) anymore because E� is directly
used to compute a part of the hash value. However, the condition is sometimes
automatically satisfied for a given hash value. For l = 0, 1, . . . , 6, we can compute

a preimage of HAS-V-288 in 2256−l for (6
l)
26 of the hash values. On average, the

attack complexity is 2253.5.
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Abstract. Recently, Alomair et al. proposed the first UnConditionally
Secure mutual authentication protocol for low-cost RFID systems(UCS-
RFID). The security of the UCS-RFID relies on five dynamic secret keys
which are updated at every protocol run using a fresh random number
(nonce) secretly transmitted from a reader to tags.

Our results show that, at the highest security level of the protocol (se-
curity parameter= 256), inferring a nonce is feasible with the probability
of 0.99 by eavesdropping(observing) about 90 runs of the protocol. Find-
ing a nonce enables a passive attacker to recover all five secret keys of
the protocol. To do so, we propose a three-phase probabilistic approach
in this paper. Our attack recovers the secret keys with a probability that
increases by accessing more protocol runs. We also show that tracing a
tag using this protocol is also possible even with less runs of the protocol.

Keywords: RFID, Authentication Protocol, Passive Attack.

1 Introduction

As of today, RFID (Radio Frequency Identification) is referred to as the next
technological revolution after the Internet. A typical RFID system involves a
reader, a number of tags, which may range from the battery-powered, to the
low-cost ones with even no internal power, and a database. RFID systems enable
the identification of objects in various environments. They can potentially be
applied almost everywhere from electronic passports[20,21], contactless credit
cards[19], to supply chain management[22,23,24].

Keeping RFID systems secure is imperative, because they are vulnerable to
a number of malicious attacks. For low-cost RFID systems, security problems
become much more challenging, as many traditional security mechanisms are
inefficient or even impossible due to resource constraints. Some existing solutions
utilize traditional cryptographic primitives such as hash or encryption functions,
which are often too expensive to be implemented on low-cost RFID tags.

Another method of securing RFID systems has been the lightweight ap-
proach. These solutions base themselves on mostly lightweight operations (e.g.
bitwise or simple arithmetic operations) instead of more expensive cryptographic

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 92–103, 2011.
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primitives. The HB-family(HB+,HB++, HB*,etc.) [1,2,3,4,5,7,6,8] and the MAP-
family(LMAP,EMAP,M2AP,etc)[9,10,11] authentication protocols, are some ex-
amples of this kind. However, proposed lightweight protocols so far have been
targeted to various successful attacks and therefore, the search for a concrete
lightweight solution for authentication in low-cost RFID tags still continues.

Recently, Alomair et al. embarked on the notion of UnConditionally Secure
mutual authentication protocol for RFID systems (UCS-RFID)[17]. UCS-RFID’s
security relies mainly on the freshness of five secret keys rather than the hard-
ness of solving mathematical problems. Freshness in the keys is guaranteed with
a key updating phase at every protocol run by means of a fresh random number
(nonce). This nonce is generated at the reader side due to low-cost tags con-
straints, and delivered to the tag secretly. This allows the tags to benefit from
the functionalities of random numbers without the hardware to generate them.

Our Contribution. In this paper, we present a three-phase probabilistic pas-
sive attack against the UCS-RFID protocol to recover all the secret keys in
the protocol. Our attack is mainly based on a weakness observed in the proto-
col(section 3). To put in a nutshell, the weakness implies that the more outputs
we have from consecutive runs of the protocol, the more knowledge we will ob-
tain on the nonces in these protocol runs. In other words, having more number
of protocol run outputs observed, we are able to determine some of the nonces
(victim nonces) with higher probability. It should be noted that this weakness
has also been tackled by the authors in [17]. Nevertheless we will show that the
security margin they expected from the protocol has been overestimated. Find-
ing the victim nonce in the protocol paves the way toward adopting an attacking
scenario to achieve all of the five secret keys in the system.

Outline. The remainder of this paper is organized as follows. In section 2, we
briefly describe the UCS-RFID protocol. In section 3 the weakness of the protocol
is investigated thoroughly. Section 4 and 5 describes our attacking scenario to
recover the keys, and trace the tag in the protocol. Finally, section 6 concludes
the paper.

2 Description of the UCS-RFID Protocol

The UCS-RFID authentication protocol consists of two phases: the mutual au-
thentication phase and the key updating phase. The former phase mutually au-
thenticates an RFID reader and a tag. In the latter phase both the reader and
the tag update their dynamic secret keys for next protocol runs.

In this protocol, first the security parameter, N , is specified and a 2N -bit
prime integer, p, is chosen. Then, each tag T is loaded with an N -bit long iden-
tifier, A(0), and five secret keys, k

(0)
a , k

(0)
b , k

(0)
c , k

(0)
d and k

(0)
u chosen independently

and uniformly from Z2N , Zp, Zp\{0}, Z2N and Zp\{0} respectively.

Notation
- N : security parameter.
- p: a prime number in Z2N
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- Ax, Bx, Cx, Dx: observable outputs of xth protocol run
- n = nl||nr: random number in Z2N

- nl, nr: left and right half-nonces

2.1 Mutual Authentication Phase

Figure 1 shows one instance run of the mutual authentication phase in the UCS-
RFID protocol. The reader starts the interrogation with a “Hello” message which
is responded by tag’s dynamic identifier A(i). The reader then looks up in the
database for a set of five keys(ka, kb, kc, kd, ku) which corresponds to A(i). If
this search is successful, it means that the tag is authentic. Having the tag
authenticated, the reader generates a 2N -bit random nonce n(i) uniformly drawn
from Z

∗
p, calculates messages B(i) , C(i) by (2),(3) and sends them to the tag.

Specifications
- Public parameters: p, N .

- Secret parameters(shared between R and T ): k
(0)
a , k

(0)
b , k

(0)
c , k

(0)
d , k

(0)
u .

Mutual Authentication Phase
(1) R⇒ T : Hello

(2) T ⇒ R : A(i)

(3) R⇒ T : B(i), C(i)

(4) T ⇒ R : D(i)

Fig. 1. ith run of the mutual authentication phase in the UCS-RFID protocol

A(i) ≡ n
(i−1)
l + k(i)

a mod 2N (1)

B(i) ≡ n(i) + k
(i)
b mod p (2)

C(i) ≡ n(i) × k(i)
c mod p (3)

The tag first checks the integrity of the received messages by (4):

(B(i) − k
(i)
b ) × k(i)

c ≡ C(i) mod p (4)

This check implies the authenticity of the reader as well. Then, the tag extracts
the nonce n(i) by (5.)

n(i) ≡ (B(i) − k
(i)
b ) mod p (5)

To conclude the mutual authentication phase, the tag transmits D(i) as a receipt
of obtaining n(i).

D(i) = n
(i)
l ⊕ k

(i)
d (6)
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2.2 Key Updating Phase

After a successful mutual authentication, both the reader and the tag update
their keys and dynamic identifier (A(i)) for the next protocol run.

k(i+1)
a = n(i)

r ⊕ k(i)
a (7)

k
(i+1)
b ≡ k(i)

u + (n(i) ⊕ k
(i)
b ) mod p (8)

k(i+1)
c ≡ k(i)

u × (n(i) ⊕ k(i)
c ) mod p (9)

k
(i+1)
d = n(i)

r ⊕ k
(i)
d (10)

k(i+1)
u ≡ k(i)

u × n(i) mod p (11)

A(i+1) ≡ n
(i)
l + k(i+1)

a mod 2N (12)

It should be noted that the dynamic values have been proved to preserve their
properties of independency and uniformity after updating[17].

3 Observation

In this section, we shed more light on a weakness in the UCS-RFID protocol
which becomes the origin of our proposed attack presented in the subsequent
section.

By xoring (7) and (10), we have:

ki+1
a ⊕ ki+1

d = ki
a ⊕ ki

d (13)

Equation (13) shows that the difference between ka and kd remains the same for
two consecutive runs of the protocol. This statement can also be generalized for
every r arbitrary run of the protocol the as following:

kr+1
a ⊕ kr+1

d = kr
a ⊕ kr

d = . . . = k0
a ⊕ k0

d = L (14)

By using (14), for outputs A and D in m consecutive runs of the protocol, we
have:

A(i) ≡ n
(i−1)
l + k(i)

a mod 2N (15)

D(i) = n
(i)
l ⊕ (k(i)

a ⊕ L) (16)

A(i+1) ≡ n
(i)
l + (k(i)

a ⊕ n(i)
r ) mod 2N (17)

D(i+1) = n
(i+1)
l ⊕ (k(i)

a ⊕ L ⊕ n(i)
r ) (18)

...

A(i+m−1) ≡ n
(i+m−2)
l + (k(i)

a

i+m−2⊕
j=i

n(j)
r ) mod 2N (19)

D(i+m−1) = n
(i+m−1)
l ⊕ (k(i)

a ⊕ L

i+m−2⊕
j=i

n(j)
r ) (20)
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It is apparent that we have a set of 2m equations with 2m + 2 variables. These
variables can be divided into two groups:

1. 2m half-nonces: n
(i−1)
l , . . . , n

(i+m−1)
l , n

(i)
r , . . . , n

(i+m−2)
r

2. L and k
(i)
a .

So, if we fix the value of variables L and k
(i)
a , we end up with 2m equations and

2m half-nonce variables. This implies that the 2m half-nonces can not be chosen
independently and fulfil the above equations simultaneously. In other words, if
we observe the outputs of m consecutive runs of the protocol, it is only necessary
to search over all possible sequences of k

(i)
a and L, which is 22N , and then it will

be possible to find all 2m half-nonces uniquely. As we will see, this weakness is
the result of introduction of a tighter bound for the half-nonces while we keep
observing more runs of the protocol.

By the randomness nature of the generated half-nonces, the total number
of possible sequences for them(22N ) is uniformly distributed over them. This
implies that each of the 2m half-nonces is expected to have a bound of 2m

√
22N

possible values (comparing to its previous bound which was N). Therefore, for
m consecutive protocol runs, the total number of possible values distributed over
the 2m half-nonces is 2m

2m
√

22N [17].
Now, if we exclude the value which half-nonces has taken already(2m

2m
√

22N −
2m), we can calculate the probability that at least one half-nonce does not receive
another possible value (remains constant). To do so, we utilize the well-known
problem in probability theory(i.e. Given r balls thrown uniformly at random at
b bins, the probability that at least one bin remains empty which is calculated
by (21))[18]:

Pr(at least one bin remains empty) = 1 −
(
r−1
b−1

)(
b+r−1

b−1

) (21)

Now, it only requires to substitute b = 2m and r = 2m.
2m
√

22N −2m in (21) and
then we will have (22). The result is plotted in Figure 2.

Ph = Pr(at least one half-nonce remains constant) = 1 −
(
2m.

2m√
22N−2m−1

2m−1

)
(
2m.

2m√
22N−1

2m−1

)
(22)

Figure 2 shows the probability of inferring at least one half-nonce in terms of the
number of consecutive runs of the protocol required to be observed to do so. For
example, if we observe 35 runs of the protocol runs with N=256, we will be able
to determine at least one of the 70 transmitted half-nonces with the probability
of more than 0.99.

We will use the term ”victim half-nonce” for inferred half-nonce and notation
mh instead of m for the number of consecutive runs of the protocol required to
infer one half-nonce hereafter.
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Fig. 2. The number of consecutive protocol runs an adversary must observe(m) in
order to infer at least one half-nonce for N = 128, 256

4 Our Attack Scenario

In the previous section, we presented a probabilistic approach to find the number
of consecutive runs of the protocol to infer one half-nonce. But in our attack,
we need to have a complete nonce(left and right corresponding half-nonces) to
recover all secret keys. To achieve this goal, we propose an attacking scenario
which consists of the three following phases:

1. Finding the total number of necessary consecutive runs of the protocol to
find a complete victim nonce (mt).

2. Finding the victim nonce.
3. Recovering the secret keys.

4.1 Phase I: Finding mt

In section 3, we proposed a probabilistic way to calculate the number of con-
secutive runs that must be observed by an adversary to infer a half-nonce(mh).
It is obvious that if we keep observing more runs of the protocol(i.e. more than
mh), after each extra observation, another half-nonce can be inferred. This is
simply possible by eliminating the two equations which contain the first victim
half-nonce and adding two newly observed equations to the set of equations (15-
20) and then, we again have 2mh equations and 2mh + 2 variables which yield
another half-nonce inference.

If we intend to find a complete nonce, we must continue observing the runs
of the protocol until we infer two corresponding victim half-nonces to form a
complete nonce. To do so, we should first calculate the probability that the
inferred half-nonce at (me + mh)th run matches one of the previously victim
half-nonces.



98 M.R.S. Abyaneh

As we know, after mh runs of the protocol, we accomplish to find one victim
half-nonce, after me extra runs of the protocol, we have β = 2mh+2me equations
and β half-nonces which me + 1 of them can be inferred. The probability that
none of these me + 1 half-nonces match is:

Pr(Having no pair after mh + me runs) =
(β − 1)

β
× (β − 2)

β
× . . . × (β − me)

β

=
∏me

i=1(β − i)
β(me)

(23)

Consequently, the probability of having at least one pair after observing me runs
is simply calculated by (24).

Pe = Pr(Having at least one pair of matching half-nonces after mh + me runs)

= 1 −
∏me

i=1(β − i)
β(me)

(24)

By using (22) and (24) the total number of protocol runs to have at least one
complete victim nonce (mt = mh + me) can be calculated by (25) and is plotted
in Figure 3.

Pt = Pr(Having at least one complete nonce after mt runs)
= (Pe|mh = h) × Pr(mh = h) = (Pe|mh = h) × Ph(h) (25)

Remark. The authors of [17] have also calculated mt by using some other pro-
tocol outputs (B and C). Figure 3 compares our results with what the authors
”Expected”. This comparison has been conducted for two different security pa-
rameters N=128,N=256 which are plotted on the left and right respectively. The
results show that the security margin of the protocol in terms of the number of
consecutive runs that must be observed to infer one nonce is less than what the
designers of the protocol expected. In other words, we need less number of pro-
tocol runs to infer at least one nonce. For example a passive adversary is able to
infer a complete nonce with high probability of 0.99 by eavesdropping less that
60 and 90 runs of the protocol for the key size of 128 and 256 bits respectively.
These numbers were expected to be 110 and 200 respectively.

4.2 Phase II: Finding the Constant Nonce

Having mh consecutive runs of the protocol observed, we have one constant
half-nonce or one half-nonce with only one possible value. In order to find this
half-nonce, we adopt the following algorithm.

Algorithm Inputs :A(i), . . . , A(i+mt−1), D(i), . . . , D(i+mt−1)

1. Determine a level of confidence(probability) for the final results.
2. Find the mh, mt related to the determined probability from Figures 1,2

respectively.
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Our Result Expected

Fig. 3. Comparison of expected security margin of the UCS-RFID protocol and our
results in terms of the number of consecutive protocol runs an adversary must observe
in order to infer at least one nonce

3. Calculate me = mt − mh

4. Choose two random numbers from Z2N and assign them to L,k(i)
a respec-

tively.
5. Find 2m nonces (n(i−1)

l , . . . , n
(i+mh−1)
l , n

(i)
r , . . . , n

(i+mh−2)
r ) as follows.

– Find n
(i−1)
l from (15) i.e. n

(i−1)
l ≡ A(i) − k

(i)
a mod 2N .

– Find n(i) from (16) i.e. n
(i)
l = D(i) ⊕ (k(i)

a ⊕ L).
– Find n

(i)
r from (17) i.e. n

(i)
r ≡ (A(i+1) − n

(i)
l mod 2N ) ⊕ k

(i)
a .

...

– Find n
(i+mh−2)
r from (19)i.e. n

(i+mh−2)
r ≡ (A(i+mh−1) − n

(i+mh−2)
l mod 2N ) ⊕

(k
(i)
a

⊕i+mh−2
j=i n

(j)
r ).

– Find n
(i+mh−1)
l from (20) i.e. n

(i+mh−1)
l = D(i+mh−1)⊕(k

(i)
a ⊕L)

⊕i+mh−2
j=i n

(j)
r .

6. Repeat 4 and 5 as many times as we observe that only one half-nonce keeps
its value for all of the repetitions.

7. Save the constant(victim) half-nonce.
8. Observe another run of the protocol.

– A(i+mh) ≡ n
(i+mh−1)
l + (k(i)

a
⊕i+mh−1

j=i n
(j)
r ) mod 2N

– D(i+mh) = n
(i+mh)
l ⊕ (k(i)

a ⊕ L
⊕i+mh−1

j=i n
(j)
r ).

9. Replace the equations corresponding to the found victim half-nonce with
two newly observed equations in the equation set (15-20).

10. Repeat 4,5,6,7,8 for me times.



100 M.R.S. Abyaneh

11. Match two corresponding victim half-nonces(e.g. n
(j)
l , n

(j)
r ).

12. Output the victim nonce (n(j) = n
(j)
l ||n(j)

r ).

4.3 Phase III: Key Recovery

In the previous two phases of our attack, we accomplished to find a complete
victim nonce n(j) ,with a certain probability, by observing mt consecutive runs of
the protocol. Now, we present how an adversary is able to recover all five secret
keys of the protocol. To find k

(j)
a , k

(j)
b , k

(j)
c and k

(j)
d , we should follow(26-29).

k(j)
a ≡ (A(j+1) − n

(j)
l ) ⊕ n(j)

r mod 2N (26)

k
(j)
b ≡ B(j) − n(j) mod p (27)

k(j)
c ≡ (

1
n(j)

mod p) × C(j) mod p (28)

k
(j)
d = n

(j)
l ⊕ D(j) (29)

To recover k
(j)
u , we need to find the nonce in the next run (n(j+1)), thus we

should calculate the updated keys for the (j + 1)th run using (7) and (10).

k(j+1)
a = k(j)

a ⊕ n(j)
r (30)

k
(j+1)
d = k

(j)
d ⊕ n(j)

r (31)

Then we have:

n
(j+1)
l = D(j+1) ⊕ k

(j+1)
d (32)

k(j+2)
a = A(j+2) ⊕ n

(j+1)
l (33)

Using (30) and (33), we can write:

n(j+1)
r = k(j+2)

a ⊕ k(j+1)
a (34)

Finally, by using (27),(32) and,(34) we can find k
(j)
u .

k(j)
u ≡ B(j+1) − n(j+1) − (k(j)

b ⊕ n(j+1)) mod p (35)

The procedure above provides us with our objective to recover all of the secret
keys with a certain probability(Pt). This probability can be increased by paying
the price of having more protocol run outputs available.

Furthermore, as it can be seen from the (32) and (34), next nonce is also
achievable. This implies that the secret keys of the next run can also be calculated
by using (26-35) for the next run. This is an ongoing procedure which yields the
keys of any arbitrary run of the protocol(r) which r > j. Being able to generate
the future secret keys, an adversary is capable of either impersonating both the
reader and the tag or tracing the tag.
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5 On the Traceability of the UCS-RFID

In the previous section, we presented a probabilistic key recovery attack against
the UCS-RFID protocol. We mentioned that according to Figure 3, we need
to have about 90 runs of the protocol to be almost sure that our found keys
are correct. But with less number of protocol run outputs, we still can apply
an attack against the traceability of the protocol. In this section, we formally
investigate the untraceability of the UCS-RFID based on the formal description
in [12].

5.1 Adversarial Model

According to [12], the means that are accessible to an attacker are the following:
We denote a tag and a reader in ith run of the protocol by Ti and Ri, respectively.

– Query(Ti, m1, m3): This query models the attacker A sending a message m1

to the tag and sending the m3 after receiving the response.
– Send(Ri, m2): This query models the attacker A sending a message m2 to

the Reader and being acknowledged.
– Execute(Ti,Ri): This query models the attacker A executing a run of protocol

between the Tag and Reader to obtain the exchanged messages.
– Reveal(Ti): This query models the attacker A obtaining the information on

the Tag’s memory.

A Passive Adversary, AP , is capable of eavesdropping all communications be-
tween a tag and a reader and accesses only to the Execute(Ti,Ri): .

5.2 Attacking Untraceability

The result of application of an oracle for a passive attack OP ⊆ {Execute(.)} on
a tag T in the run i is denoted by wi(T ). Thus, a set of I protocol run outputs,
ΩI(T ), is:
ΩI(T ) = {wi(T )|i ∈ I} ; I ⊆ N ;(N denotes the total set of protocol runs).
The formal description of attacking scenario against untraceability of a protocol
is as following:

1. AP requests the Challenger to give her a target T .
2. AP chooses I and calls Oracle(T, I,OP) where |I| ≤ lref receives ΩI(T ).
3. AP requests the Challenger thus receiving her challenge T1, T2 ,I1and I2

4. AP calls Oracle(T1, I1,OP) , Oracle(T2, I2,OP) then receives ΩI1(T1) , ΩI2(T2).
5. AP decides which of T1 or T2 is T , then outputs her guess T́ .

For a security parameter,k, if AdvUNT
AP (k) = 2Pr(T́ = T ) − 1 > ε then we

can say that the protocol is traceable.
For UCS-RFID case, as Figure 3 implies, an adversary AP needs only to access

to about 40 and 65 consecutive runs of the protocol to be able to determine n(j)

with a probability of more than 0.5 (e.g. 0.6) for k =128 and 256 respectively and
then according to section 4.3, she will be able to recover the keys of subsequent
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runs. After, key recovery, the adversary can easily distinguish a target tag with
any other challenge tag given by the challenger. So we have:
∀lref ≥ 40, AdvUNT

AP (128) = 2Pr(T́ = T ) − 1 = 0.1 > ε.
∀lref ≥ 65,AdvUNT

AP (256) = 2Pr(T́ = T ) − 1 = 0.1 > ε.

6 Conclusions

The design of suitable lightweight security protocols for low-cost RFID tags
is still a big challenge due to their severe constraints. Despite of interesting
proposals in the literature, this field still lacks a concrete solution.

Recently, Alomair et al have proposed the first authentication protocol based
on the notion of unconditional security. Regardless of some inefficiencies in UCS-
RFID authentication protocol, such as: large key sizes, using modular multipli-
cation ,etc ,which makes this protocol an unsuitable nominate for low-cost RFID
tag deployment, we presented a passive attack which showed that even the se-
curity margin which was expected to be yielded by UCS-RFID has also been
overestimated.

In our attack, we showed that a passive adversary is able to achieve the
all secret keys of the system with a high probability of 0.99 by eavesdropping
less that 60 and 90 runs of the protocol for the key size of 128 and 256 bits
respectively. Tracing the tag in the protocol is also feasible even by less number
of runs of the protocol (e.g. 40, 65).

Our results suggest a major rethink in the design of the authentication proto-
cols for RFID systems based on unconditional security notion. Drastic changes
are necessary to fulfil both technological constraints and security concerns in
RFID systems.
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Abstract. Let N = pq be RSA modulus where primes p and q are of

the same bit-length. If |ρq − p| = N
1
4 +γ where ρ is a known constant

satisfying 1 ≤ ρ ≤ 2 and the constant γ satisfies 0 < γ < 1
4
, we show the

factorization attack on N and weak key attack against RSA modulus N .
We present algorithms to find the factorization of N in time O(Nγ+ε)
by some square root attacks, such as the baby-step giant-step method
and a more sophisticated square root attack. Using similar techniques
of Blömer and May (PKC 2004), we present a weak key attack and find
new weak keys over the work of Maitra and Sarkar (ISC 2008).
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1 Introduction

RSA is a public key cryptosystem, which was proposed by Rivest, Shamir and
Adleman [12] in 1978. The public exponent e and the private exponent d are
chosen to be inverse of each other modulo φ(N) = (p − 1)(q − 1).

It is well-known that small prime difference makes RSA insecure. In [14],
Weger showed that if p − q is small, RSA system with small exponent is much
more vulnerable. In [8] [9], Maitra and Sarker revisited Wiener’s continued frac-
tion method and showed that given ρ (1 ≤ ρ ≤ 2) is known to the attacker
the RSA keys are weak when d = N δ and δ < 1

2 − γ
2 , where the RSA modulus

N = pq with |ρq − p| ≤ Nγ

16 . And using similar techniques they also present new
result over the work of Blömer and May [1]. In fact, a similar result was also
obtained independently by Han and Xu [5].

In this paper, we investigate the square root attack on factoring N = pq with
small |ρq − p| where ρ is a known constant satisfying 1 ≤ ρ ≤ 2. We show that
for |ρq − p| = N

1
4+γ and 0 < γ < 1

4 , one can find the factorization of N in time
O(Nγ+ε). Furthermore, we present a weak key attack against RSA with small
|ρq−p|. We find new weak keys over the work of Maitra and Sarkar [8]. And we are
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able to show that for |ρq − p| = N
1
4+γ there are at least N1−γ−ε weak RSA-keys.

From this, we get a probabilistic factorization algorithm with expected running
time O(Nγ+ε). This result perfectly matches our factoring algorithm result.

On the other hand, one can see that the weak key attack has a nice inter-
polation property towards our factoring algorithm: As |ρq − p| decreases, the
number of weak public keys increases. For γ approaching zero almost all keys
are weak, corresponding to the fact that N can be factored without any hint
that is encoded in e.

The remainder of this paper is organized as follows. In section 2, we investigate
algorithms of factorization. In section 3, we present new result on weak RSA keys.
We conclude this paper in section 4.

2 Factorization Attack

Let N = pq be an RSA-modulus, where p and q are primes of equal bit-size (wlog
q < p < 2q). Let p− q = Nθ. If 0 < θ ≤ 1

4 , we have that p−√
N < p− q ≤ N

1
4 .

Then it is known that the factorization of N can be recovered by the following
Coppersmith’s theorem [2].

Theorem 1 (Coppersmith). Let N = pq where primes p and q are of the
same bit-size. Suppose we given an approximation of p with additive error at
most N

1
4 . Then N can be factored in time polynomial in log N .

If 1
4 < θ < 1

2 , Weger [14] showed that the Fermat factoring method can factor
N in time O(N2θ− 1

2 ). Here we show a square root attack by applying the baby-
step giant-step method of Shanks [13] which deals with the discrete logarithm
problem.

Theorem 2. Let N = pq where primes p and q satisfy p − q = Nθ with 1
4 <

θ < 1
2 , then N can be factored in time O(Nθ− 1

4+ε).

Proof. We have

(p − q)2 = (p + q)2 − 4N = (p + q − 2
√

N)(p + q + 2
√

N).

Hence

p + q − 2
√

N =
(p − q)2

p + q + 2
√

N
<

(p − q)2

4
√

N
=

1
4
N2θ− 1

2 . (1)

The exponent of the multiplicative group modulo N is lcm(p − 1, q − 1). Let
λ(N) = lcm(p − 1, q − 1). Here as usual, we assume gcd(p − 1, q − 1) = 2 and

λ(N) =
(p − 1)(q − 1)

2
=

N + 1
2

− p + q

2
. (2)

Choose M to be an integer no less than 1
2
√

2
Nθ− 1

4 . By (1) and (2), we have that
there exist integers u0 and v0 such that

λ(N) =
N + 1

2
−

⌊√
N
⌋
− u0 − v0 · M

with 0 ≤ u0, v0 < M .
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We choose an integer a such that gcd(a, N) = 1. We have that aλ(N) ≡
1 mod N . Let b = a

N+1
2 −�√N�. We construct two lists as follows,

L1 =
{

av·M mod N
∣∣ 0 ≤ v < M

}
and

L2 =
{

b · a−u mod N
∣∣ 0 ≤ u < M

}
.

According to Algorithm 7.5.1 in [3], we can sort these lists and find a common
value av0·M = b · a−u0 mod N in time O(M log M). A low-storage alternative
is to use Pollard’s λ method [11]. Then u0 and v0 are known and p + q can be
recovered by p + q = 2

(⌊√
N
⌋

+ u0 + v0 · M
)

. Finally we can get p and q from

the solutions of the equation y2 − (p + q)y + N = 0. Thus the factorization of N
follows.

Instead of considering p − q = Nθ, now we consider the case 2q − p = Nθ to
get an additional result. We present an algorithm to factor N = pq with small
2q − p by using a more sophisticated square root attack which applied to RSA
with small CRT secret exponent. One can see [10] for details.

Theorem 3. Let N = pq where primes p and q satisfy 2q − p = Nθ with
1
4 < θ < 1

2 , then N can be factored in time O(Nθ− 1
4+ε).

Proof. We have

(2q − p)2 = (p + 2q)2 − 8N = (p + 2q − 2
√

2N)(p + 2q + 2
√

2N).

If 2q − p = Nθ, then

p + 2q − 2
√

2N =
(2q − p)2

p + 2q + 2
√

2N
<

(2q − p)2

4
√

2N
≤ 1

4
N2θ− 1

2 .

Hence

φ(N) = N + 1 − p − q = N + 2 − (p + 2q) + (q − 1)

= N + 2 −
⌊
2
√

2N
⌋
− w + (q − 1) (3)

with the unknown w satisfying 0 ≤ w < 1
4N2θ− 1

2 .
By (3), we have that

N + 2 −
⌊
2
√

2N
⌋
− w ≡ 0 mod (q − 1), (4)

and
w − (N + 2 −

⌊
2
√

2N
⌋
) ≡ 0 mod (q − 1). (5)

Since w < q − 1 and q is a prime, we can recover w from equation (5). Choose
an integer a such that gcd(a, N) = 1. We have aq−1 ≡ 1 mod q. Thus by (5), we
have

aw−(N+2−�2√2N�) = 1 mod q.
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Choose M to be an integer no less than 1
2Nθ− 1

4 . Since w ≤ 1
4N2θ− 1

2 , we have
that w can be written as w = u0 + v0 · M with the unknown integers u0 and v0

satisfying 0 ≤ u0, v0 ≤ M .
Let b̄ = a−(N+2−�2√2N�) mod N , and

G(x) =
M∏

v=0

(
b̄ · aM·vx − 1

)
mod N.

Computing the polynomial G(x) takes time O(M) and storing G(x) requires
space O(M). Note that G(au0) ≡ 0 mod q since w = u0 + v0 · M . Evaluate
G(x) mod N at au for all 0 ≤ u ≤ M . This gives a list of M numbers, one of
which has a non-trivial gcd with N . Then the factorization of N is obtained.

This method requires the evaluation of G(x) at M points. By the Fast Fourier
Transform (FFT), one can evaluate a polynomial of degree M at M points in time
O(M log M) operations (see Chapter 10 in [4]). Since G(x) is a polynomial of
degree M +1, these M numbers can be obtained in time O(M log M) operations.
One of these values has a non-trivial gcd with N , which can be calculated in time
O(M log N) operations by the Euclidean algorithm. This completes the proof of
Theorem 3.

Now we consider the case |ρq − p| = Nθ with a known constant ρ satisfying
1 < ρ < 2.

Theorem 4. Let N = pq be an integer where primes p and q satisfy |ρq − p| =
Nθ with 1

4 < θ < 1
2 . If ρ is a known simple fraction between 1 and 2, then N

can be factored in time O(Nθ− 1
4+ε).

Proof. Since ρ is a known simple fraction between 1 and 2, we write ρ = s
t with

the known integers s and t satisfying s > t > 0 and gcd(s, t) = 1. We have
|sq − tp| = tNθ, and

sq + tp − 2
√

stN =
(sq − tp)2

sq + tp + 2
√

stN

<
t2N2θ

4
√

stN
<

t

4
N2θ− 1

2 . (6)

Since

t(N − p) − s(q − 1) = 0 mod (q − 1),

we have
tN + s − (tp + sq) = 0 mod (q − 1). (7)

By (6), we have that tp + sq can be written as

tp + sq =
⌊
2
√

stN
⌋

+ w,



108 X. Meng

with 0 < w ≤ t
4N2θ− 1

2 . Thus by (7) we have

tN + s −
⌊
2
√

stN
⌋
− w = 0 mod (q − 1). (8)

This is similar to equation (4). Then similarly as proving Theorem 3, we have
that Theorem 4 holds.

3 Weak Key Attack and New Weak Keys

In [1], Blömer and May proved that p and q can be found in polynomial time

for every N and e satisfying ex + y = 0 mod φ(N), with 0 < x ≤ 1
3

√
φ(N)

e
N

3
4

p−q

and |y| ≤ p−q

φ(N)N
1
4
ex. And if p − q = N

1
4 +γ , it is proved that the number of

these weak keys is at least N1−γ−ε. In [8], Maitra and Sarkar showed that the
same result holds for 2q − p = N

1
4+γ instead of p − q. Later in [9], Maitra and

Sarkar considered the case |ρq − p| = N
1
4 +γ , and proved that the factorization

of N can be recovered in polynomial time for every N and e satisfying ex + y =

0 mod φ(N), with 0 < x ≤ 1
6

√
φ(N)

e N
3−4γ

8 and |y| ≤ |ρq−p|
φ(N)N

1
4
ex. And it is

obtained that the number of these weak keys is at least N
1
2−ε. In this section,

we revisit the weak key attack and find new weak keys. As usually, we formalize
the notion of weak keys as follows.

Definition 1. Let C be a class of RSA public keys (N, e). The size of the class
C is defined by

SizeC(N) =
∣∣∣{e ∈ Z

∗
φ(N)|(N, e) ∈ C}

∣∣∣ .
A class C is called weak if:
1. SizeC(N) = Ω(N τ ) for some τ > 0;
2. There exists a probabilistic algorithm A that on every input (N, e) ∈ C outputs
the factorization of N in time polynomial in log N .

Now we revisit the weak key attack and then present new weak keys over the
work of Maitra and Sarkar [9].

Theorem 5. Let N = pq be an integer with primes satisfying 11N
1
4 ≤ |ρq−p| =

Nθ <
√

N where ρ is a known constant satisfying 1 < ρ ≤ 2. Denote ρ− 1 by ρ̄.
Define [ρ̄q] = �ρ̄q� if �ρ̄q� is even, otherwise [ρ̄q] = �ρ̄q�. Suppose that e satisfies
the equation

ex + y + k[ρ̄q] = kφ(N) (9)

for k > 0. Then N can be factored in polynomial time in log N when 0 < x ≤
1
3

√
φ(N)

e
N

3
4

|ρq−p| and |y| ≤ |ρq−p|
φ(N)N

1
4
ex.

We will apply the following classical theorem on diophantine approximations
(see Corollary 2, [1, § 2] in [6]).
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Lemma 1 (Legendre). Let ξ be a real number. If the coprime integers X and
Y satisfy ∣∣∣∣ξ − X

Y

∣∣∣∣ <
1

2Y 2
,

then X
Y is a convergent of ξ.

Now we show the proof of Theorem 5, which is similar to the proof of Theorem
4 in [1].

Proof. We have (ρq− p)2 = N2θ = (p + ρq)2 − 4ρN = (p + ρq− 2
√

ρN)(p + ρq +
2
√

ρN), hence

p + ρq − 2
√

ρN =
N2θ

(p + ρq + 2
√

ρN)
<

N2θ

4
√

N
.

Rearrange the terms in (9), we have

ex + y = k(N + 1 − p − [ρq]).

Let z = 2�√ρN� − p− [ρq], and M = N + 1 − 2�√ρN�. Then by the above, we
have that

ex + y = k(M + z), (10)

and
e

M
− k

x
=

kz − y

Mx
. (11)

Here we can assume gcd(k, x) = 1. Since if gcd(k, x) = t, we have that t divides
y, which gives us an equation ex′ + y′ = 0 (mod M + z) with even smaller
parameters x′ and y′. Hence we can assume that k

x is a fraction in its lowest
terms.

By Lemma 1, the fraction k
x is among the convergents of the continued fraction

expansion of e
M if | e

M − k
x | < 1

2x2 is satisfied. Thus it remains to show that∣∣∣∣kz − y

Mx

∣∣∣∣ <
1

2x2
.

We have |y| ≤ 1
4ex and

3
4

ex

φ(N)
≤ k =

ex + y

M
≤ 6

4
ex

φ(N)
,

where the last inequality holds for N > 288. Wlog we assume N > 288 during
the proof of the theorem. We have |z| ≤ 1

4N2θ− 1
2 and

|kz − y| ≤ |kz| + |y| ≤ 6
4

ex

φ(N)
1
4
N2θ− 1

2 + Nθ− 1
4 x ≤ ex

φ(N)
N2θ− 1

2 .

Therefore we have to satisfy

ex

φ(N)
N2θ− 1

2
1

Mx
<

1
2x2

.

This holds by our upper bound x ≤ 1
3

√
φ(N)

e
N

3
4

|ρq−p| and N > 288.
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Hence the fraction k
x must be among the convergents of the continued fraction

expansion of e
M . There are only O(log N) many convergents, thus we can apply

the following process to each candidate for k and x until our algorithm succeeds.
We now show that the correct k and x yield the factorization of N . Let us

write (10) as
ex

k
− M = z − y

k
. (12)

Since the left is know to us, we can compute an approximation of z up to some
unknown error term y

k , which can be bounded by |yk | ≤ 4
3Nθ− 1

4 using (11).
Let S = 2�√ρN� + M − ex

k . Since p + [ρq] = 2�√ρN� − z, we have that S is
an approximation of p + [ρq] with additive error at most 4

3Nθ− 1
4 using (12). Let

T =
√

S2 − 4ρN . Now we show that T is well defined by proving S2−4ρN ≥ 0.
Since S = p+[ρq]− y

k , we write S = p+ρq +� with |�| ≤ |yk |+1 ≤ 4
3Nθ− 1

4 +1.
We have that S2−4ρN = (p+ρq+�)2−4ρN = (ρq−p)2+2�(p+ρq)+�2. Since
p+ρq ≤ (2+

√
2)
√

N , we have that 2�(p+ρq) ≤ 2(4
3Nθ− 1

4 +1) · (2+
√

2)
√

N <

11Nθ+1
4 ≤ N2θ, which holds by our lower bound Nθ ≥ 11N

1
4 . This implies

S2 − 4ρN ≥ 0.
We now show that T is an approximation of |ρq − p| with an additive error

that can be bounded by N
1
4 . Since |yk | ≤ 4

3Nθ− 1
4 < 1

2

√
N ≤ 1

4 (p + ρq), we have
that S = p + [ρq] + y

k ≤ 5
4 (p + ρq). Then we have

T − |ρq − p| =
√

S2 − 4ρN − |ρq − p|
=

(S − (p + ρq))(S + (p + ρq))√
S2 − 4ρN + |ρq − p|

≤
4
3Nθ− 1

4 · 9(2+
√

2)
4

√
N

Nθ
≤ 12N

1
4 .

We suppose that ρq > p. Thus the term 1
2 (S −T ) is an approximation of p with

error at most ∣∣∣∣12(S − T ) − p

∣∣∣∣ =
1
2

(|S − p − ρq − T − p + ρq|)

≤ 1
2

(|S − p − ρq| + |T − ρq + p|)

≤ 2
3
Nθ− 1

4 +
12
2

N
1
4 ≤ 7N

1
4 .

Let p̄ = 1
2 (S−T ). Then one of the seven values p̄+2kN

1
4 , k = −3,−2,−1, 0, 1, 2, 3

is an approximation of p up to an error of at most N
1
4 in absolute value. We

apply Coppersmith’s algorithm (Theorem 1) to all these values. The correct term
will then lead to the factorization of N .

If ρq < p, then the term 1
2 (S + T ) is an approximation of p, and the fac-

torization of N can also be recovered. This completes the proof of Theorem
5.
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Every key tuple (N, e) that satisfies (9) with 0 < x ≤ 1
3

√
φ(N)

e
N

3
4

|ρq−p| and

|y| ≤ |ρq−p|
φ(N)N

1
4
ex yields the factorization of N in polynomial time. These tuples

(N, e) are weak keys that should not be used in the design of a crypto-system.
Our attack in Theorem 5 defines a weak class C. We are going to discuss how

large this weak class is. We are interested in a lower bound of C.

Theorem 6. Let p and q be safety prime numbers with |ρq − p| = N
1
4 +γ and

0 < γ < 1
4 . Further, let C be the weak key class that is given by the public key

tuples (N, e) defined in Theorem 5 with the additional restriction that e ∈ Z
∗
φ(N)

and e > φ(N)
4 , then

SizeC(N) = Ω

(
N1−γ

log log2(N2)

)
.

Proof. Denote Θ(N) = φ(N) − [ρ̄q]. Let C̄ be the weak keys that is given by
the public key tuples (N, e) defined in Theorem 5 with the additional restriction
that e ∈ Z

∗
Θ(N) and e > Θ(N)

4 . Similarly as the proof of Theorem 7 in [1], we
have

SizeC̄(N) = Ω

(
N1−γ

log log2(N2)

)
.

If p and q are safety prime numbers, then p = 2p′ + 1 and q = 2q′ + 1, and
φ(N) = 4p′q′ with p′ and q′ being primes. Thus we have

φ(N)∑
i=φ(N)/4

gcd(i,φ(N)/4) �=1

1 ≤ 3
√

N.

We have

SizeC(N) =
∣∣∣{e ∈ Z

∗
φ(N)|(N, e) ∈ C}

∣∣∣
≥

∣∣∣{e ∈ Z
∗
Θ(N)|(N, e) ∈ C, gcd(e, φ(N)) = 1}

∣∣∣
≥ SizeC̄(N) − 3

√
N

= Ω

(
N1−γ

log log2(N2)

)
.

This completes the proof of Theorem 6.

Thus when p and q are safety prime numbers, the result of Theorem 5 presents
new weak keys other than those N

1
2−ε weak keys presented in [8].

4 Conclusion

In this paper, we investigate the cryptoanalysis of RSA modulus N = pq with
small prime combination |ρq − p| where ρ is a known constant (1 ≤ ρ ≤ 2). We



112 X. Meng

show some square root attacks on the factorization of N , and also present a weak
key attack against RSA modulus N . When p and q are safety prime numbers,
we find new weak keys over the work of Maitra and Sarkar [8].
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Abstract. We propose a new computational problem and call it the
twin bilinear Diffie-Hellman inversion (BDHI) problem. Inspired by the
technique proposed by Cash, Kiltz and Shoup, we have developed a new
trapdoor test which enables us to prove that the twin BDHI problem
is at least as hard as the ordinary BDHI problem even in the presence
of a decision oracle that recognizes a solution to the problem. The rela-
tion between the two problems implies that many of the cryptographic
constructions based on ordinary BDHI problem can be improved with
a tighter security reduction. As one such application, we present a new
variant of Sakai-Kasahara Identity-Based Encryption (SK-IBE) with a
simple and efficient security proof in the random oracle model, under
the computational BDHI problem. We also present a new Identity-Based
Key Encapsulation Mechanism (ID-KEM) based on SK-IBE, which has
a better security analysis than previous results.

Keywords: bilinear Diffie-Hellman inversion problem, twin bilinear
Diffie-Hellman inversion problem, trapdoor test, identity-based encryp-
tion, identity-based key encapsulation.

1 Introduction

The bilinear Diffie-Hellman inversion (BDHI) problem has found its applica-
tions in many cryptographic constructions, such as identity-based encryption
(IBE) [6, 11, 22], identity-based key encapsulation mechanism [12], identity-
based signatures (IBS) [2], identity-based signcryption [2], identity-based key
agreement (IBKA) [14, 21], and verifiable random function [18] etc.

In this paper, we introduce a new problem based on the original BDHI prob-
lem, named the twin bilinear Diffie-Hellman inversion problem, which has the
following properties:

– The twin BDHI problem can easily be employed in many cryptographic
constructions where one would usually use the ordinary BDHI problem; as
a result, it will improve the security analysis of these constructions.

– The twin BDHI problem is hard, even given access to the corresponding
decision oracle, assuming the ordinary BDHI problem is hard.

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 113–132, 2011.
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1.1 Related Work

In EuroCrypt 2008, Cash, Kiltz and Shoup [10] proposed a new computational
problem called the twin Diffie-Hellman (DH) problem, i.e. given a random triple
of the form (X1, X2, Y ) ∈ G

3 for a cyclic group G, compute dh(X1, Y ) and
dh(X2, Y ), where dh is the DH function. They also proposed the strong twin DH
problem, which is the twin DH problem under the condition that an adversary
is given access to a corresponding decision twin DH oracle. They developed an
ingenious trapdoor test, which enables them to prove that the strong twin Diffie-
Hellman problem is as hard as the original Diffie-Hellman problem. They also
extended this technique to the bilinear Diffie-Hellman (BDH) problem.

Trapdoor test is the main contribution of [10]. Concretely speaking, when a
DH adversary B is given a challenge (g, X, Y ) = (g, gx, gy), it creates a twin DH
challenge with a trapdoor by setting X1 = X and X2 = gs/Xr

1 . In this way, a
linear relation with two degrees of freedom: x2 = s−rx1 is embedded into the twin
DH challenge. Based on the observation that the solution exponents (x1ŷ, x2ŷ)
are linear to (x1, x2), B can answer the twin DH decision queries by testing if the
linear relationship holds accordingly between Ẑ1 and Ẑ2. This trapdoor test can
be extended to BDH problem in an analogous way without any difficulty, since
the BDH problem is a natural extension of the DH problem in groups equipped
with a bilinear map. Using the trapdoor test as a tool, they proved that the strong
twin DH/BDH problem is as hard as the ordinary DH/BDH problem. Benefiting
from this result, they improved a bunch of cryptographic schemes by tailoring
them to fit the twin-type problem, such as Diffie and Hellman non-interactive key
exchange protocol [17], Cramer-Shoup encryption [15], Boneh-Franklin identity
based encryption [7], etc. Particularly, we call the tailoring method as twinning
technique.

For clarity of further discussion, we take a close look at how to apply the
twinning technique to Boneh-Franklin IBE (BF-IBE for short) scheme. The
twin BF-IBE uses two hash functions, K (outputs symmetric keys) and H
(hashes identities to group elements), and a symmetric cipher (Enc, Dec). The
master public key is (X1, X2), where Xi = gxi for i = 1, 2. The master pri-
vate key is (x1, x2). The private key for an identity ID ∈ {0, 1}∗ is (S1, S2) =
(H(ID)x1 , H(ID)x2). To encrypt a message M for identity ID, one chooses y ∈ Zp

at random and sets Y = gy, Z1 = e(H(ID, X1))y, Z2 = e(H(ID, X2))y , derives
k = K(ID, Y, Z1, Z2), encrypts C = Enc(k, M). To decrypt using the private key
(S1, S2) for ID, one computes Z1 = e(S1, Y ), Z2 = e(S2, Y ), k = K(ID, Y, Z1, Z2),
then decrypts M = Dec(k, C). We highlight that this is essentially a KEM-DEM
construction.

We study the possible improvements brought by the twinning technique as
follows, with an emphasis on public key encryption schemes based on the DH-
type problems in the random oracle model [4].

1. Tighten the security reductions to the computational DH-type problems.
Public key encryption schemes based on the DH-type problems can be di-
vided into two groups, one is based on the decisional problem [6, 16, 19], the
other one is based on the computational problems [1, 7, 22]. In the provable
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security paradigm, the standard security notions (CPA and CCA) of pub-
lic key encryption systems are formally defined via an interactive decisional
problem: it is hard for an adversary to distinguish the challenge ciphertext
is the encryption of M0 or M1. When the underlying hard problem is also a
decisional problem, the simulator always outputs its solution based on the
adversary’s output. When the underlying hard problem is a computational
problem, a common proving technique in the random oracle model is the
simulator extracting the solution from a randomly picked entry in the asso-
ciated random oracle query list, whose correctness is based on the assertion
that if the adversary can answer the decision problem with advantage ε,
then it must issue the associated query related to the challenge with proba-
bility at least 2ε. However, the “random picking” step loses a factor of Qh in
the security reduction, where Qh is the maximum number of random oracle
queries an adversary can make. If applying the twin technique to the original
scheme, the simulator can identify the wanted query precisely with the help
of a corresponding decision oracle. Thereby the security reduction can be
tighten by a multiplicative factor Qh immediately.

2. Facilitate a kind of redundancy free KEM construction without making a
stronger assumption.
For the public key encryption schemes based on the DH/BDH problem,
there exists a simple and elegant KEM construction which derives a sym-
metric key from a DH/BDH tuple. For example, in DHIES [1] (based on
the strong DH assumption), Abdalla, Bellare and Rogaway constructed the
KEM as k := K(yr), where y = gx is the public key. The associated ci-
phertext C is gr. In [20], Libert and Quisquater proposed a redundancy free
variant of BF-IBE (based on the Gap-BDH assumption). Their scheme essen-
tially adopts the KEM-DEM methodology, and the ID-KEM is constructed
as k := K(e(ga, gb)r) [20], while ga is the master public key and gb is the
public key of ID. The associated ciphertext C is gr. It is easy to see that
(gx, gr, yr) is a DH tuple, and (ga, gb, gr, e(ga, gb)r) is a BDH tuple. Com-
pare to other KEM constructions, the advantage of this special construction
is that it is redundancy free. So it is not very surprisingly that the associated
security reduction requires a decisional DH/BDH oracle available to distin-
guish “valid” decapsulation queries. This explains why such a kind of KEM
construction has to resort to the strong DH/BDH assumptions. Via applying
twinning technique to this kind of KEM construction, the security can be
reduced to the ordinary assumption at a minor cost of the ciphertext size
and the computation overhead. For example, Cash, Kiltz and Shoup [10] im-
proved ElGamal encryption and BF-IBE in this way. The resulting schemes
are redundancy free.

1.2 Our Contributions

Cash, Kiltz and Shoup [10] mentioned that their ideas can also be applied to
the Sakai-Kasahara IBE scheme (SK-IBE for short) [22] based on the BDHI
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assumption in an analogous way as they did to BF-IBE. However, after investi-
gating their approach, it appears to us that building such a trapdoor test for the
BDHI problem and employing it to the SK-IBE or the SK-ID-KEM is in fact
not trivial.

Our motivation of this work is to figure out: 1) how to construct a trapdoor
test for the BDHI problem, and 2) how to apply the twinning technique to the
schemes based on the BDHI problem.

The contributions of this paper can be summarized as follows:

1. We first define the twin BDHI problem as

2bdhi(g1, g
x
1 , . . . , gxq

1 ; g2, g
y
2 , . . . , gyq

2 ) �→ (e(g1, g1)1/x, e(g2, g2)1/y)

then devise a trapdoor test which allow a BDHI adversary to implement an
effective decision oracle for the twin bdhi predicate:

2bdhip(g1, g
x
1 , . . . , gxq

1 , Tx; g2, g
y
2 , . . . , gyq

2 , Ty) :=

(e(g1, g1)1/x, e(g2, g2)1/y) ?= (Tx, Ty)

Note that the formalization of the BDHI problem is quite different from that
of the DH/BDH problem, due to the exponentiation 1/x of the solution not
being linear to the exponentiations xi appearing in the problem. So it is
not straightforward to construct a trapdoor test for the BDHI problem in
a similar way as Cash, Kiltz and Shoup did for the DH/BDH problem. We
overcome this obstacle by embedding two relations in the twin BDHI in-
stances simultaneously: one is between the generators by setting g2 = gax+b

1 ;
the other one is between the exponentiations by setting y = cx. Exploit-
ing the bilinearity of the pairing, the two relations are verifiable without
knowing the corresponding discrete logarithms xi. In this way we build an
efficient trapdoor test for the BDHI problem. With the trapdoor test as a
basic tool, we prove that strong twin BDHI problem is at least as hard as
the ordinary BDHI problem. Thus a decisional twin BDHI oracle is available
in the security reduction without relying on a strong assumption.

2. SK-IBE [22], as a representative of the IBE family featured by exponent
inversion [9], is proven to be secure based on the computational BDHI
problem [11]. If we follow the strategy that Cash, Kiltz and Shoup used
in twin BF-IBE [10] to improve SK-IBE, we need to construct an ID-KEM
as k = K(yr, y, e(g, g)r), where the public key of ID is y and the ciphertext
is yr [13]. As the preceding remark indicates, a special oracle named the
bilinear inversion DH predicate (bidhp) [13] is needed to keep the simulation
coherent in the security reduction (bidhp(g, ga, gb, T ) := e(g, g)a/b ?= T ). Ap-
parently such an oracle cannot be built from the trapdoor test for the BDHI
problem, since the bidhp input is incompatible with the bdhip input. So
their strategy is not applicable for SK-IBE. However, we can still apply the
twinning technique to SK-IBE in a common way to enjoy a tighter security
reduction, just as we analyzed before. We show how to tailor SK-IBE [11]
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and SK-ID-KEM [12] to fit the twin BDHI problem, yielding twin SK-IBE
and twin SK-ID-KEM, which outperform the original schemes in terms of
efficiency especially for security analysis. A comparison to prior schemes is
shown in Table 1.

Table 1. Comparison to prior schemes

Scheme Type Ciphertext size Key size Enc Dec Reduction factor

Chen et al.[11] IBE |G|+ 2� |G| 2E 1E+1P 1/Qh1Qh2(Qh3 + Qh4)
Ours IBE 2|G|+ 2� 2|G| 4E 2E+2P 1/Qh1

Chen et al.[12] ID-KEM |G|+ � |G| 2E 1E+1P 1/Qh1Qh2(Qh3 + Qh4)
Ours ID-KEM 2|G| + � 2|G| 4E 2E+2P 1/Qh1

P denotes a pairing operation, and E a group exponentiation in G or GT . A com-
mon estimate used here are Qhi = 260 for 1 ≤ i ≤ 4 (suggested by Bellare and
Rogaway [4]).

Judging from appearances our schemes seem to be less efficient because our
schemes double the number of group exponentiations and pairing operations in
computation overheads and increase one group element in the ciphertext, one
group element in the private key. Before illustrating why our twin schemes are
more efficient than prior schemes at the same security level, we first review
the concept of the tightness of security reduction [3, 19]. Consider a scheme
with a security reduction showing that an adversary attacking the scheme in
time t with advantage ε implies another adversary breaking some intractable
problem in time t + ω1 with advantage ε′ ≥ ε/ω2. The tightness of security
reduction refers to the values of ω1 and ω2. If the underlying assumptions are
the same, the scheme with a looser security reduction needs to increase the
size of the groups to obtain the same security level of the one with a tighter
security reduction. Using the general method, exponentiations and pairings in a
group whose elements can be represented in r bits takes roughly O(r3) time. As a
concrete example, performing two 128-bit group exponentiations/pairings can be
significantly faster than a single 256-bit group exponentiation/pairing. From the
comparison in Table 1, we learn that to obtain the same security guarantee, the
group size of [11] and [12] is roughly 120 bits larger than the size of our schemes.
Therefore at the same security level, our twin schemes are more efficient than
prior schemes while the ciphertext size and the key size are roughly the same.

2 The Twin Bilinear Diffie-Hellman Inversion
Assumption

In this section, we introduce the twin bilinear Diffie-Hellman inversion problem.
Let us first review some necessary facts about bilinear maps. Suppose G and GT

are two multiplicative groups of prime order p, and g is the generator of G. The
groups are equipped with a map e : G × G → GT which satisfies the following
properties:
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– bilinear: for all u, v ∈ G and all a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
– non-degeneracy: e(g, g) �= 1GT .
– computable: there is an efficient algorithm to compute e(u, v) for all u, v ∈ G.

2.1 The BDHI Assumption

We recall that the bilinear Diffie-Hellman inversion (BDHI) problem, denoted by
q-BDHI, is defined [6] as follows: given the q + 1 tuple (g, gx, . . . , gxq

) ∈ (G∗)q+1

as input, compute e(g, g)1/x ∈ G
∗
T . More formally, we explain this problem by

using the following BDHI function:

bdhi: G
q+1 → GT

(g, gx, . . . , gxq

) �→ e(g, g)1/x

We also use a predicate

bdhip(g, gx, . . . , gxq

, T̂ ) := e(g, g)1/x ?= T̂

to denote the corresponding decisional BDHI problem.

Definition 2.1. We say that the (decisional) (t, q, ε)-BDHI assumption holds
in G if no t-time algorithm has advantage at least ε in solving the (decisional)
q-BDHI problem in G.

2.2 The Twin BDHI Assumption

We define the twin q-BDHI function as

2bdhi: (G∗)2(q+1) → G
2
T

(g1, g
x
1 , . . . , gxq

1 ; g2, g
y
2 , . . . , gyq

2 ) �→ (bdhi(g1, g
x
1 , . . . , gxq

1 ), bdhi(g2, g
y
2 , . . . , gyq

2 )).

We also define a corresponding twin q-BDHI predicate:

2bdhip(g1, g
x
1 , . . . , gxq

1 , T̂x; g2, g
y
2 , . . . , gyq

2 , T̂y) :=

2bdhi(g1, g
x
1 , . . . , gxq

1 ; g2, g
y
2 , . . . , gyq

2 ) ?= (T̂x, T̂y).

The twin q-BDHI assumption states that given random g1, g2 ∈ G
∗ and x, y ∈ Z

∗
p

it is hard to compute 2bdhi(g1, g
x
1 , . . . , gxq

1 ; g2, g
y
2 , . . . , gyq

2 ). The strong twin q-
BDHI assumption states that given random g1, g2 ∈ G

∗ and x, y ∈ Z
∗
p it is hard

to compute 2bdhi(g1, g
x
1 , . . . , gxq

1 , g2, g
y
2 , . . . , gyq

2 ), along with access to a decision
oracle for the predicate 2bdhip(g1, g

x
1 , . . . , gxq

1 , ·; g2, g
y
2 , . . . , gyq

2 , ·), which on input
(T̂x, T̂y), returns 2bdhip(g1, g

x
1 , . . . , gxq

1 , T̂x; g2, g
y
2 , . . . , gyq

2 , T̂y).
We have the following result to address the relation between the BDHI as-

sumption and the strong twin BDHI assumption:
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Theorem 2.2 The (q + 1)-BDHI assumption holds if the strong twin q-BDHI
assumption holds.

To prove this theorem we first create a trapdoor test as follows.

Theorem 2.3 (Trapdoor Test for the Twin BDHI Problem) Let G be a
cyclic group of prime order p, generated by g ∈ G. Suppose (g, gx, . . . , gxq+1

) is
given as a BDHI instance. Pick three random values a, b and c from Zp. Let
g1 = g, then define g2 = gax+b

1 , y = xc and form (g2, g
y
2 , . . . , gyq

2 ) accordingly.
Then we have:

1. y and g2 are uniformly distributed over Zp and G
∗, respectively;

2. (g1, g
x
1 , . . . , gxq

1 ) and (g2, g
y
2 , . . . , gyq

2 ) are independent;
3. if Tx = e(g1, g1)1/x and Ty = e(g2, g2)1/y, then the probability that the truth

value of
(Tx)b2/c · e(g1, g1)2ab/c · e(gx

1 , g1)a2/c = Ty (1)

does not agree with the truth value of

Tx = e(g1, g1)1/x ∧ Ty = e(g2, g2)1/y (2)

is at most 1/p; moreover, if (2) holds, then (1) certainly holds.

Proof. Observe that the items 1 and 2 holds because a, b, c are randomly chosen
from Zp. Now we begin to prove item 3. In the conditional probability space on
fixed values of g1, g2, x and y (c is implicitly fixed), b is uniformly distributed
over Zp. If (2) holds, by substituting the two equations in (2) into (1), we see
that (2) certainly holds. Conversely, if (2) does not holds, we show that (1) holds
with probability at most 1/p. Observe that (1) is equivalent to(

Tx

e(g1, g1)1/x

)b2

=
(

Ty

e(g2, g2)1/y

)c

. (3)

It is easy to see if Tx = e(g1, g1)1/x and Ty �= e(g2, g2)1/y , then (3) certainly
does not hold, since GT is a group of prime order. This leaves us with the case
Tx �= e(g1, g1)1/x and Ty = e(g2, g2)1/y. In this case, the right hand side of (3)
is 1. There are two values or no value for b satisfying (3). Since b is uniformly
distributed over Zp, (3) holds with probability at most 2/p in this case. �

Using the trapdoor test, we can prove Theorem 2.2. For an adversary B against
the BDHI problem, denote Adv-BDHIB to be the possibility that B solves the
BDHI problem. For an adversary A against the strong twin q-BDHI problem,
denote Adv-2BDHIA to be the possibility that A solves the strong twin BDHI
problem. We have:

Theorem 2.4 Suppose A is a strong twin q-BDHI adversary that makes at most
Qd queries to its decision oracle, and runs in time at most τ . Then there exists
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a (q + 1)-BDHI adversary B with the following properties: B runs in time at
most τ , plus the time to perform O(Qd log p) group operations and some minor
bookkeeping; moreover,

Adv-BDHIB ≥
(

1 − 2Qd

p

)
Adv-2BDHIA.

Proof. The (q + 1)-BDHI adversary B works as follows, given a (q + 1)-BDHI
challenge instance, B randomly chooses a, b, c ∈ Zp at random and generate the
twin BDHI challenge instance as showed in Theorem 2.3. Second, B processes
each decision query using the trapdoor test. Finally, when A outputs (Tx, Ty)
to B, B outputs Tx as its solution to the BDHI challenge. Provided the oracle
simulation is perfect, and adversary A’s view is identical to its view in the real
environment. It remains to calculate the accuracy of the trapdoor test. Note that
the probability of the trapdoor test returning a wrong decision result for a query
is at most 2/p, and this happens at most Qd times. Therefore the trapdoor test
can simulate the decision oracle perfectly with probability at least 1 − 2Qd/p.
This proves the result we desire. �

We remark that the above result also holds when the q-BDHI problem and the
twin q-BDHI problem are constructed in asymmetric pairing groups. In the next
two sections, we present a variant of SK-IBE [11, 22] and a variant of SK-ID-
KEM [12] respectively. The related security notions of IBE and ID-KEM will be
shown in Appendix A.

3 Twin SK-IBE

In this section, we apply the twinning technique to SK-IBE [11], to yield the
twin SK-IBE scheme, which works as follows:

Setup. The system parameters are generated as follows:
1. Pick two random generators g1, g2 ∈ G

∗.
2. Pick two random element s1, s2 ∈ Z

∗
p and set u1 = gs1

1 and u2 = gs2
2 .

3. Pick four cryptographic hash functions H1 : {0, 1}∗ → Z
∗
p, H2 : GT × GT →

{0, 1}n for some for some integer n > 0, H3 : {0, 1}n × {0, 1}n → Z
∗
p × Z

∗
p

and H4 : {0, 1}n → {0, 1}n.
The message space is M = {0, 1}n. The ciphertext space is C = G

2 × {0, 1}n ×
{0, 1}n. The master public key mpk and the master secret key msk are given by

mpk = (g1, g2, u1, u2), msk = (s1, s2).

Extract. The private key for identity ID ∈ {0, 1}∗ is generated as follows:

dID = (d1, d2) =
(

g
1

s1+H1(ID)
1 , g

1
s2+H1(ID)
2

)
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Encrypt. A message M ∈ M is encrypted for an identity ID as follows:

1. Compute t1 = u1g
H1(ID)
1 = g

s1+H1(ID)
1 and t2 = u2g

H1(ID)
2 = g

s2+H1(ID)
2 .

2. Choose a random σ ∈ {0, 1}n and compute (r1, r2) = H3(σ, M).
3. Set the ciphertext to be C = (tr1

1 , tr2
2 , σ ⊕ H2(e(g1, g1)r1 , e(g2, g2)r2), M ⊕

H4(σ)).

Decrypt. Let C = 〈U1, U2, V, W 〉 ∈ C be a ciphertext encrypted using ID. Then
C can be decrypted by dID = (d1, d2) as:
1. Compute V ⊕ H2(e(U1, d1), e(U2, d2)) = σ.
2. Compute W ⊕ H4(σ) = M .
3. Set (r1, r2) = H3(σ, M). Test whether U1 = tr1

1 and U2 = tr2
2 . If not, reject

the ciphertext; otherwise output M .

Theorem 3.1 Twin SK-IBE is chosen ciphertext secure (IND-ID-CCA) provided
that Hi (1 ≤ i ≤ 2) are random oracles and the (Qh1 + 1)-BDHI assumption
holds. Specifically, suppose there exists an IND-ID-CCA adversary A against twin
SK-IBE that has advantage ε. Suppose during the attack A makes at most Qhi

queries to Hi for 1 ≤ i ≤ 2 respectively. Then there exists an algorithm B′ to
solve the (Qh1 + 1)-BDHI problem with advantage

Adv-BDHIB′ ≥ 2ε · 1
Qh1

(
1 − 2Qh1

p

)
and a running time O(time(A)).

Proof. We first build an algorithm B that uses A to solve the strong twin Qh1-
BDHI problem in G. B is given as input a random strong twin Qh1-BDHI instance
(ĝ1, ĝ1

x, . . . , ĝ1
xq

; ĝ2, ĝ2
y, . . . , ĝ2

yq

). B’s goal is to output Z1 = e(ĝ1, ĝ1)1/x and
Z2 = e(ĝ2, ĝ2)1/y. B works by interacting with A in an IND-ID-CCA game, spec-
ified in Appendix A.1, as follows:

Preparation. Let q = Qh1 , B builds generators g1, g2 ∈ G
∗ for which it knows

q− 1 triples of the form (w0 + wi, g
1/(x+wi)
1 , g

1/y+wi

2 ) for random w1, . . . , wq−1 ∈
Z
∗
p. This is done as follows:

1. Pick random w0, . . . , wq−1 ∈ Z
∗
p and let f(z) be the polynomial f(z) =∏q−1

i=1 (z + wi). Reformulate f to get f(z) =
∑q−1

i=0 ciz
i. The constant term

c0 is non-zero because wi �= 0. The ci are computable from wi.
2. Compute

g1 =
q−1∏
i=0

(ĝ1
xi

)ci = ĝ1
f(x); u1 = g−w0

1

q−1∏
i=0

(ĝ1
xi+1

)ci = g−w0
1 ĝ1

xf(x) = gx−w0
1 ;

g2 =
q−1∏
i=0

(ĝ2
yi

)ci = ĝ2
f(y); u2 = g−w0

2

q−1∏
i=0

(ĝ2
yi+1

)ci = g−w0
2 ĝ2

yf(y) = gy−w0
2 .



122 Y. Chen and L. Chen

3. Check that g1 ∈ G
∗. The case g1 = 1G means that wj = −x for some easily

identifiable wj , at which point B would be able to solve the challenge directly.
Similarly, check that g2 ∈ G

∗. The case g2 = 1G means that wj = −y for
some easily identifiable wj , at which point B would be able to solve the
challenge directly. We thus assume that all wj �= −x, wj �= −y.

4. For any i = 1, . . . , q − 1, it is easy for B to construct the triple (w0 +
wi, g

1/(x+wi)
1 , g

1/(y+wi)
2 ). To see this, write fi(z) = f(z)/(z+wi) =

∑q−2
i=0 diz

i.

Then g
1

x+wi
1 = ĝ1

fi(x) =
∏q−2

i=0 (ĝ1
xi

)di and g
1

y+wi
2 = ĝ2

fi(y) =
∏q−2

i=0 (ĝ2
yi

)di .
5. B computes

T ′
1 =

q−2∏
i=0

(ĝ1
xi

)ci+1 = ĝ1

f(x)−c0
x , T1 = e(T ′

1, ĝ1
f(x)+c0) = e(ĝ1, ĝ1)

f(x)2−c20
x ,

T ′
2 =

q−2∏
i=0

(ĝ2
yi

)ci+1 = ĝ2

f(y)−c0
y , T2 = e(T ′

2, ĝ2
f(y)+c0) = e(ĝ2, ĝ2)

f(y)2−c20
y .

We will use these values throughout the simulation.
Setup. B sets the master public key mpk = (g1, g2, u1, u2), implicitly sets the
master secret key msk = (x − w0, y − w0), which is unknown to B. B generates
a set S containing w0, and (w0 + wi) for i = 1, . . . , q − 1.
H1-queries. At any time algorithm A can query the random oracle H1. To
respond to these queries B maintains a list of tuples 〈IDi, Wi〉 indexed by IDi

(as explained below). We refer to this list as the L1 list which is initially empty.
When A queries the oracle H1 at a point IDi algorithm B responds as follows:
1. If IDi already appears on L1 in a tuple 〈IDi, Wi〉 then B responds with

H1(IDi) = Wi ∈ Z
∗
p.

2. Otherwise, B randomly picks an element from S,
– If the element has the form w0 +wj , B adds the pair 〈IDi, Wi = w0 +wj〉

into L1 and answers A with H1(IDi) = w0 + wj .
– If the element is w0, B adds the pair 〈IDi, w0〉 into L1 and responds A

with H1(IDi) = w0.
– Delete this element from S.

Note that either way H1(IDi) is uniform in Z
∗
p and independent of A’s current

view as required.
H2-queries. To respond the queries to H2 oracle, B maintains a list of tuples
〈vi,1, vi,2, θi〉 indexed by (vi,1, vi,2) (as explain below). We refer to this list as the
L2 list which is initially empty. To respond to a query on (vi,1, vi,2), B carries
out the following operations:

1. If there is a tuple indexed by (vi,1, vi,2) on L2, B responds with θi.
2. Otherwise, B randomly picks a θi ∈ {0, 1}n, runs the self-decryption func-

tion (as described below in the simulation algorithm of decryption oracle)
with composing 〈vi,1, vi,2, θi〉 and each tuple 〈 ˆID, Ĉ〉 in the current R list



The Twin Bilinear Diffie-Hellman Inversion Problem and Applications 123

(as explained below) as input. If the self-decryption function returns false,
B responds to A with θi and inserts 〈vi,1, vi,2, θi〉 in L2. Otherwise, B picks
another θi ∈ {0, 1}n until the self-decryption function returns false on input
〈vi,1, vi,2, θi〉 and each tuple 〈 ˆID, Ĉi〉. For a randomly chosen θi, the proba-
bility that 〈vi,1, vi,2, θi〉 enables at least one 〈 ˆID, Ĉ〉 in the R list to be valid
is at most |R|/p. Thus for a random chosen θi the self-decryption function
returns false with probability at least 1 − |R|/p. Hence B can find such a θi

efficiently. The intuition of running the self-decryption function is to keep
the coherence of the decryption oracle (as explained below): an “invalid”
ciphertext is always invalid.

Phase 1: Private key queries. To respond to the private key query on IDi, B
does the following:

1. If the tuple in L1 indexed by IDi has the form of 〈IDi, w0 + wj〉, then B
answers A with dIDi

= (g
1

x+wj

1 , g
1

y+wj

2 ).
2. If the tuple in L1 indexed by IDi has the form of 〈IDi, w0〉, then B cannot

answer it and aborts the game.

Phase 1: Decryption queries. In order to simulate the decryption oracle in
coherence with H2 oracle, B maintains a list of tuples 〈IDj , Cj〉. We refer to this
list as the R list, which is initially empty. We remark that the R list stores all
the decryption queries which are rejected by B. Let 〈IDi, Ci〉 be a decryption
query issued by algorithm A, where Ci = 〈Ui,1, Ui,2, Vi, Wi〉. B simulates the
decryption oracle to answer this query as follows:

– If B can extract the private key dIDi = (di,1, di,2) of IDi, B uses the private
key to processes the decryption query normally.

– If B can not extract the corresponding private key, B runs the following test
with composing 〈IDi, Ui,1, Ui,2, Vi, Wi〉 and each tuple 〈v̂1, v̂2, θ̂〉 on the L2

list as input:
1. Compute σ̂ = Vi ⊕ θ̂, M̂ = Wi ⊕ H4(σ̂), (r̂1, r̂2) = H3(M̂, σ̂);
2. Check if Ui,1 = tr̂1

i,1, Ui,2 = tr̂2
i,2, v̂1 = e(g1, g1)r̂1 , and v̂2 = e(g2, g2)r̂2

hold simultaneously, where ti,1 = u1g
H1(IDi)
1 , ti,2 = u2g

H1(IDi)
2 .

3. If so, return true. Else, continue the test with next input. Finally, if no
input can go through this test, return false.

If the test return true, B returns the associated M̂ . Otherwise, B returns
⊥ to A and inserts 〈IDi, Ui,1, Ui,2, Vi, Wi〉 into the R list. Particularly, we
refer to the above test as the self-decryption function. The correctness of
the decryption oracle simulation is based on the fact that an adversary does
not have the capbility to generate a valid ciphertext without making the
associated random oracle queries, which is implied by the chosen ciphertext
security of twin SK-IBE (the hypothesis we use in the proof).

Challenge. Once A decides that Phase 1 is over it outputs two messages M0,
M1 and a target identity ID∗ on which it wishes to be challenged. B operates as
follows:
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1. If H1(ID∗) �= w0, then B aborts.
2. Otherwise, B randomly picks r′1, r

′
2 ∈ Z

∗
p, a string σ∗ ∈ {0, 1}n, and a random

bit β ∈ {0, 1}. B sets the ciphertext C∗ = 〈U∗
1 , U∗

2 , V ∗, W ∗〉, where U∗
1 = gr′

1 ,
U∗

2 = gr′
2 , V ∗, W ∗ are two random strings from {0, 1}n. Notice that g

r′
1

1 =
(gx−w0+w0

1 )r′
1/x, g

r′
2

2 = (gy−w0+w0
2 )r′

2/y, thus the real randomness factors are
r∗1 = r′1/x, r∗2 = r′2/y. B responds to A with C∗.

We remark that C∗ is a valid ciphertext with probability at most 1/p. However,
two claims below show that this does not affect the validity of the security
reduction at all.
Phase 2. B proceeds in the same way as it did in Phase 1.
Guess. A outputs its guess β′ for β.

When the IND-ID-CCA game finishes, for each tuple 〈v1, v2, θ〉 on the L2 list, B
computes Z1 = v

1/r′
1

1 , Z2 = v
1/r′

2
2 , Tx = (Z1/T1)1/c2

0 , Ty = (Z2/T2)1/c2
0 , then

submits (Tx, Ty) to its twin q-BDHI decision oracle until the decision oracle
returns true. B outputs the associated (Tx, Ty) as its answer to the twin q-BDHI
challenge.

It is easy to see that if A queries H2 at (v∗1 , v∗2), where v∗1 = e(g1, g1)r′
1/x and

v∗2 = e(g2, g2)r′
2/y, then Z1 = e(g1, g1)1/x = e(ĝ1, ĝ1)f(x)2/x, Z2 = e(g2, g2)1/y =

e(ĝ2, ĝ2)f(y)2/y; Z1/T1 = e(ĝ1, ĝ1)c2
0/x, Z2/T2 = e(ĝ2, ĝ2)c2

0/y. Therefore, the as-
sociated Tx = (Z1/T1)1/c2

0 = e(ĝ1, ĝ1)1/x and Ty = (Z2/T2)1/c2
0 = e(ĝ2, ĝ2)1/y

are the desired answer. We borrow the proving technique from [7] to show that
if algorithm B does not abort, it outputs the correct answer (Tx, Ty) with prob-
ability at least 2ε.

Let abort be the event that B aborts during the simulation above, F be
the event that algorithm A issues a query for H2(v∗1 , v∗2) during the simulation
above. Define event F ′ = F |abort, which means the probability that at the end
of the simulation (v∗1 , v∗2) appears in some entry on L2 if B does not abort. We
show that Pr[F ′] ≥ 2ε. This will prove that algorithm B outputs (Tx, Ty) with
probability at least 2ε if it does not abort. We also study the event F in the
real attack game, namely the event that A issues a query for H2(v∗1 , v∗2) when
communicating with a real challenger and a real random oracle for H2.

Claim 1: Pr[F ′] in the simulation above is equal to Pr[F ] in the real attack.

Proof. Let F ′
� be the event that A makes a query for H2(v∗1 , v∗2) in one of its first

� queries to the H2 oracle in the simulation that B does not abort. Let F� be
the event that A makes a query for H2(v∗1 , v∗2) in one of its first � queries to the
H2 oracle in the real attack. We prove by induction on � that Pr[F�] is equal to
Pr[F ′

� ] in the simulation for all � ≥ 0. Clearly Pr[F ′
0] = Pr[F0] = 0. Now suppose

that for some � > 0 we have that Pr[F ′
�−1] is equal to Pr[F�−1]. We show that

the same holds for F ′
� and F�. We know that:

Pr[F ′
� ] = Pr[F ′

� |F ′
�−1]Pr[F ′

�−1] + Pr[F ′
� |¬F ′

�−1]Pr[¬F ′
�−1]

= Pr[F ′
�−1] + Pr[F ′

� |¬F ′
�−1]Pr[¬F ′

�−1] (4)
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We argue that Pr[F ′
� |¬F ′

� ] is equal to Pr[F�|¬F�−1] in the real attack. To see this
observe that as long as A does not issue a query for H2(v∗1 , v∗2), its view during
the simulation is identical to its view in the real attack (against a real challenger
and a real random oracle for H2), because all responses to H1, H2 queries and
the challenge are distributed as in the real attack. We also remark that if A
issues the query for H2(v∗1 , v∗2), A will distinguish the simulation from the real
attack by detecting the challenge is not a genuine one, however, this does not
affect the security reduction. Therefore, Pr[F ′

� |¬F ′
�−1] is equal to Pr[F�|¬F�−1]

in the real attack. It follows by (4) and the inductive hypothesis that Pr[F ′
� ] in

the real attack is equal to Pr[F ′
� ] in the simulation. By induction on � we obtain

that Pr[F ′] is equal to Pr[F ] in the real attack. �

Claim 2: In the real attack we have Pr[F ] ≥ 2ε.

Proof. In the real attack, if A never issues a query for H2(v∗1 , v∗2) then the
decryption of C is independent of A’s view (since H2(v∗1 , v∗2) is independent of
A’s view). Therefore, in the real attack Pr[β = β′|¬F ] = 1/2. By definition of
A, we know that in the real attack |Pr[β = β′] − 1/2| ≥ ε. We show that these
two facts imply that Pr[F ] ≥ 2ε. To do so we derive upper and lower bounds on
Pr[β = β′]:

Pr[β = β′] = Pr[β = β′|¬F ]Pr[¬F ] + Pr[β = β′|F ]Pr[F ]

≤ Pr[β = β′|¬F ]Pr[¬F ] + Pr[F ] =
1
2

Pr[¬F ] + Pr[F ] =
1
2

+
1
2

Pr[F ],

Pr[β = β′] ≥ Pr[β = β′| �= F ]Pr[¬F ] =
1
2
− 1

2
Pr[F ].

It follows that ε ≤ |Pr[β = β′] − 1/2| ≤ 1
2Pr[F ]. Therefore, in the real attack

Pr[F ] ≥ 2ε. �

To complete the proof we still have to bound the probability that B aborts during
the game. Throughout the simulation, B will abort the game for the following
two reasons:

1. A issues the private query on ID∗, the probability of which is Qe/Qh1.
2. A does not choose ID∗ as the challenge identity, the possibility of which is

1 − 1/(Qh1 − Qe).

So the probability that B does not abort during the simulation is

Pr[abort] =
(

1 − Qe

Qh1

)(
1

Qh1 − Qe

)
=

1
Qh1

. (5)

Therefore the advantage of B against strong twin BDHI problem is

Adv-2BDHIB ≥ Pr[F |abort]Pr[abort] = 2ε · 1
Qh1

. (6)
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Combined with Theorem 2.2, we have

Adv-BDHIB′ ≥ 2ε · 1
Qh1

(
1 − 2Qh1

p

)
.

The running time of B′ is easy to be verified. �

4 Twin SK-ID-KEM

In this section, we apply the twinning technique to a KEM scheme from SK-
IBE [12], to yield the twin SK-ID-KEM scheme. We present the scheme by
describing the four algorithms: Setup, Extract, Encaps, Decaps.

Setup. To generate system parameters, the algorithm works as follows:
1. Pick two random generators g1, g2 ∈ G

∗.
2. Pick two random s1, s2 ∈ Z

∗
p, compute u1 = gs1

1 and u2 = gs2
2 .

3. Pick four cryptographic hash functions H1 : {0, 1}∗ → Z
∗
p, H2 : GT × GT →

{0, 1}n for some integer n, H3 : {0, 1}n → Z
∗
p×Z

∗
p and H4 : {0, 1}n → {0, 1}λ

for some integer λ.
The key space is K = {0, 1}n. The ciphertext space is C = G

∗ × G
∗ × {0, 1}n.

The master public key mpk and the master secret key msk are given by

mpk = (g1, g2, u1, u2), msk = (s1, s2)

Extract. Given an identity ID ∈ {0, 1}∗, the algorithm sets the private key to
be

dID = (d1, d2) =
(

g
1

s1+H1(ID)
1 , g

1
s2+H1(ID)
2

)
Encaps. To encapsulate a key of ID do the following:
1. Pick a random σ ∈ {0, 1}n and compute (r1, r2) = H3(σ).

2. Compute t1 = u1g
H1(ID)
1 = g

s1+H1(ID)
1 and t2 = u2h

H1(ID)
1 = g

s2+H1(ID)
2 .

3. Set the ciphertext to be C = (tr1
1 , tr2

2 , σ ⊕ H2(e(g1, g1)r1 , e(g2, g2)r2)).
4. Encapsulate the key k = H4(σ).
Decaps. Let C = (U1, U2, V ) ∈ C be a ciphertext encrypted using ID. To decrypt
C using the private key dID = (d1, d2) compute:
1. Compute V ⊕ H2(e(U1, d1), e(U2, d2)) = σ.
2. Compute (r1, r2) = H3(σ). Test whether U1 = tr1

1 and U2 = tr2
2 . If not, reject

the ciphertext.
3. Output k = H4(σ).

Theorem 4.1 Twin SK-ID-KEM is IND-ID-CCA secure provided that Hi (1 ≤
i ≤ 2) are random oracles and the (Qh1 + 1)-BDHI assumption holds. Spe-
cially, suppose there exists an IND-ID-CCA adversary A against twin SK-ID-
KEM that has advantage ε. Suppose during the attack A makes at most Qe
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extraction queries, Qd decapsulation queries, and at most Qhi queries on Hi for
1 ≤ i ≤ 2 respectively. Then there exists an algorithm B to solve the (Qh1 + 1)-
BDHI problem with advantage

Adv-BDHIB′ ≥ 2ε · 1
Qh1

(
1 − 2Qh1

p

)
and running time O(time(A)).

Proof. We first build an algorithm B that uses A to solve the strong twin
q-BDHI problem in G. B is given as input a strong twin q-BDHI instance
(ĝ1, ĝ1

x, . . . , ĝ1
xq

; ĝ2, ĝ2
y, . . . , ĝ2

yq

) and is expected to output Z1 = e(ĝ1, ĝ1)1/x

and Z2 = e(ĝ2, ĝ2)1/y. B works by interacting with A in an IND-ID-CCA game
as follows:

Preparation. Same as in the proof of twin SK-IBE scheme in Section 3.
Setup. Same as in the proof of twin SK-IBE scheme Section 3.
H1-queries. Same as in the proof of twin SK-IBE scheme Section 3.
H2-queries. Same as in the proof of twin SK-IBE scheme Section 3, except that
we replace the self-decryption funtion with the corresponding self-decapsulation
function (as explained below).
Phase 1: Private key queries. Same as in the proof of twin SK-IBE scheme 3.
Phase 1: Decapsulation queries. In order to simulate the decapsulation or-
acle coherently with a H2 oracle, B maintains a list of tuples 〈IDj , Cj〉. We refer
to this list as the R list, which is initially empty. The R list is used to store the
invalid ciphertexts issued by A. Let 〈ID, Ci〉 be a decapsulation query issued by
algorithm A, where Ci = 〈Ui,1, Ui,2, Vi〉. B simulates the decapsulation oracle to
answer this query as follows:

– If B can extract the private key dIDi
= (di,1, di,2) of IDi, B uses the private

key to process the decapsulation query normally.
– If B can not extract the corresponding private key, for every tuple (v̂1, v̂2, θ̂)

on L2, B runs the following test with composing 〈IDi, Ui,1, Ui,2, Vi〉 and each
tuple 〈v̂1, v̂2, θ̂〉 on the L2 list as input,

1. Compute ti,1 = u1g
H1(IDi)
1 , ti,2 = u2g

H1(IDi)
2 ;

2. Compute σ̂ = Vi ⊕ θ̂, (r̂1, r̂2) = H3(σ̂).
3. Check if Ui,1 = tr̂1

i,1, Ui,2 = tr̂2
i,2, v̂1 = e(g1, g1)r̂1 , and v̂2 = e(g2, g2)r̂2

simultaneously.
4. If so, return true. Else, continue the test with the next input.
5. Finally, if no input can go through this test, return false.
If the test returns true, B returns the associated M̂ . Otherwise, B returns ⊥
to A and inserts 〈IDi, Ui,1, Ui,2, Vi〉 into the R list. Particularly, we refer to
the above test as the self-decapsulation function.

Challenge. Once A decides that Phase 1 is over it outputs a target identity ID∗

on which it wishes to be challenged. B operates as follows:
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1. If the H1(ID∗) �= w0, then B aborts.
2. Otherwise, B randomly picks r′1, r

′
2 ∈ Z

∗
p, a string σ∗ ∈ {0, 1}n. B sets the

ciphertext C∗ = 〈U∗
1 , U∗

2 , V ∗〉, where U∗
1 = g

r′
1

1 , U∗
2 = g

r′
2

2 , V ∗ is a random
string from {0, 1}n. Note that g

r′
1

1 = (gx−w0+w0
1 )r′

1/x, g
r′
2

2 = (gy−w0+w0
2 )r′

2/y,
so the real random factors are r∗1 = r′1/x, r∗2 = r′2/y. B picks a random
bit β ∈ {0, 1}, if β = 0, B picks a random string k0 ∈ {0, 1}λ and returns
(C∗, k0) to A. If β = 1, B computes k1 = H2(σ∗) and responds to A with
(C∗, k1).

We remark that C∗ is a valid ciphertext with probability at most 1/p. However,
this does not affect the final result of the security reduction.

Phase 2. B proceeds the same way as it did in Phase 1.
Guess. A outputs its guess β′ for β.

The remaining part of the proof is almost identical to the proof of the twin SK-
IBE scheme in Section 3. Due to lack of space, we include the complete proof in
the full version. We give the final result as follows. The advantage of B against
the twin strong BDHI problem is

Adv-2BDHIB ≥ 2ε · 1
Qh1

(7)

Combined with Theorem 2.2, we have

Adv-BDHIB′ ≥ 2ε · 1
Qh1

(
1 − 2Qh1

p

)
The running time of B′ is easy to be verified. �

5 Conclusion

In this paper we propose a new computational problem, named the twin bilinear
Diffie-Hellman inversion assumption. We construct a new trapdoor test which
enables us to prove that the strong twin Diffie-Hellman inversion problem is at
least as hard as the original bilinear Diffie-Hellman inversion problem. Based
on this result, we show how to apply the twinning technique to SK-IBE and
SK-ID-KEM, respectively. It is worth to point out that the improvement on
the tightness of security reductions of SK-IBE [11] and SK-ID-KEM [12] comes
from two aspects, one which benefits from the twinning technique, the other one
which benefits from the using of self-decryption/self-decapsulation function.
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A Security Notions

In this section, we briefly review the security notions for IBE and ID-KEM.

A.1 Chosen Ciphertext Security for IBE

Recall that an IBE system consists of four algorithms [7]: Setup, KeyGen, Encrypt,
Decrypt. Via (mpk, msk) = Setup(1κ) the PKG generate the master key pair
(mpk, msk). Via sk ← KeyGen(msk, ID) the PKG uses the master secret key msk
to generate the private key sk corresponding to ID. Via C ← Enc(mpk, M, ID)
the encryption algorithm encrypts messages for a given identity and the decryp-
tion algorithm decrypts ciphertexts using the private key via M ← Dec(sk, C).
The definition of adaptive chosen ciphertext security for IBE was first formalized
by Boneh and Franlkin in [7, 8]. An IBE scheme E is said to be secure against an
adaptively chosen ciphertext attack (IND-ID-CCA) if no probabilistic polynomial
time (PPT) algorithm A has a non-negligible advantage against the challenger
in the following game:

Setup. The challenger run the Setup on security parameter κ to generate the
public parameters mpk and the master secret msk, gives the adversary the public
parameters, and keeps the master secret to itself.
Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract
to generate the private key di corresponding to IDi. It sends di to the adversary
A.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm
Extract to generate the private key di corresponding to IDi. It then runs
algorithm Decrypt to decrypt the ciphertext Ci using the private key di. It
sends the resulting plaintext to the adversary A.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, . . . , qi−1.

http://eprint.iacr.org/
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Challenge. Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts M0, M1 ∈ M and an identity ID on which it wishes to
be challenged. The only constraint is that ID did not appear in any private key
extraction query in Phase 1. The challenger picks a random bit β ∈ {0, 1} and
sets C = Encrypt(mpk, ID, Mβ). It sends C as the challenge to the adversary.
Phase 2. The adversary issues more queries qm+1, . . . , qr where qi is one of:

– Extraction query 〈IDi〉 �= ID. Challenger responds as in Phase 1.
– Decryption query 〈IDi, Ci〉 �= 〈ID, C〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess. Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if
β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adver-
sary A’s advantage over the scheme E by AdvCCA

E,A(κ) =
∣∣Pr[β = β′] − 1

2

∣∣, where
κ is the security parameter. The probability is over the random bits used by the
challenger and the adversary.

Definition A.1. We say that an IBE scheme E is IND-ID-CCA secure if for any
probabilistic polynomial time IND-ID-CCA adversary A the advantage AdvCCA

E,A(κ)
is negligible.

A.2 Chosen Ciphertext Security for ID-KEM

The natural way to perform public key encryption for large messages is to use
hybrid encryption. A hybrid encryption consists of two parts: one part uses public
key techniques to encrypt a one-time symmetric key, known as the key encap-
sulation mechanism (KEM), while the other part uses the symmetric key to en-
crypt the actual message, known as the data encapsulation mechanism (DEM).
Cramer and Shoup first formalized the concept of KEM/DEM in [16]. Bentahar
et al. [5] extended the KEM concept to the identity based setting. An identity
based key encapsulation mechanism consists of four polynomial-time algorithms:
(Setup, KeyGen, Encap, Decap). Algorithms Setup and KeyGen behave exactly as
those of IBE. Via (C, k) ← Encap(mpk, ID) the randomized encapsulation algo-
rithm creates an uniformly distributed symmetric key k ∈ {0, 1}λ, together with
a ciphertext C; via k ← Decap(sk, C) the possessor of private key sk decrypts
ciphertext C to get back a key k ∈ {0, 1}λ or a special symbol ⊥.

The notion of adaptive chosen ciphertext security for identity based key encap-
sulation mechanism is similar to that for IBE, except that there are no challenge
messages to encrypt. Instead, in the challenge phase the challenger flips a coin
β ∈ {0, 1}, and the adversary is given a ciphertext C∗ and a string k∗, which
will be a session key if β = 1, or a random string if β = 0.

Setup. The challenger takes a security parameter κ and runs the KeyGen al-
gorithm. It gives the adversary the resulting system parameters. It keeps the
master key to itself.
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Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:
– Extraction query 〈IDi〉. The challenger responds by running the algorithm

Extract to generate the private key di corresponding to the identity IDi. It
sends di to the adversary.

– Decapsulation query 〈IDi, Ci〉. The challenger responds by running algorithm
Extract to generate the private key di corresponding to IDi. It then runs
algorithm Decapsulate to decapsulate the encapsulation Ci using the private
key di. It sends the resulting session key to the adversary.

Challenge. Once the adversary decides that Phase 1 is over it outputs an iden-
tity ID∗ on which it wishes to be challenged. The only constraint is that ID∗

did not appear in any private key extraction query in Phase 1. The challenger
computes (C∗, k∗

1) = Encapsulate(mpk, ID∗), then picks a random bit β ∈ {0, 1}.
If β = 1, it sends (C∗, k∗

1) as the challenge to the adversary, where k∗
1 is the real

session key. Otherwise, it sends (C∗, k∗
1) as the challenge to the adversary, where

k∗
0 is randomly chosen from K.

Phase 2. The adversary issues more queries qm+1, . . . , qr where query qi is one
of:

– Extraction query 〈IDi〉 where IDi �= ID∗. Challenger responds as in Phase 1.
– Decapsulation query 〈IDi, Ci〉 �= 〈ID∗, C∗〉. Challenger responds as in Phase

1.
Thess queries may be asked adaptively as in Phase 1.
Guess. Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if
β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adver-
sary A’s advantage over the ID-KEM scheme E by AdvCCA

E,A(κ) =
∣∣Pr[β = β′] − 1

2

∣∣,
where κ is the security parameter. The probability is over the random bits used
by the challenger and the adversary.

Definition A.2. We say that an ID-KEM scheme E is IND-ID-CCA secure if for
any probabilistic polynomial time IND-ID-CCA adversary A the advantage
AdvCCA

E,A(κ) is negligible.
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Sébastien Canard1,�, Iwen Coisel2,��,
Giacomo De Meulenaer2,���, and Olivier Pereira2

1 Orange Labs - 42 rue des Coutures - BP6234 - F-14066 Caen Cedex - France
sebastien.canard@orange-ftgroup.com
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Abstract. In a group signature scheme, group members are able to
sign messages on behalf of the group. Moreover, resulting signatures are
anonymous and unlinkable for every verifier except for a given author-
ity. In this paper, we mainly focus on one of the most secure and effi-
cient group signature scheme, namely XSGS proposed by Delerablée and
Pointcheval at Vietcrypt 2006. We show that it can efficiently be imple-
mented in a sensor node or an RFID tag, even if it requires 13 elliptic
curve point multiplications, 2 modular exponentiations and one pairing
evaluation to produce a group signature. This is done by securely out-
sourcing part of the computation to an untrusted powerful intermediary.
The result is that XSGS can be executed in the MICAz (8-bit 7.37MHz
ATmega128 microprocessor) and the TelosB (16-bit 4MHz MSP430 pro-
cessor) sensor nodes in less than 200 ms.

Keywords: Constrained devices, server-aided computation, group sig-
nature, anonymity.

1 Introduction

Group signatures have been introduced by Chaum and van Heyst [9], and showed
to be extremely useful in various applications such as anonymous credentials, e-
cash, e-vote and identity management. These signatures allow any member of
a group to sign a document and any verifier to confirm that the signature has
been computed by a group member. Moreover, group signatures are anonymous
and unlinkable for every verifier except, when needed, for a given authority.
While being very appealing, implementing these signature schemes on low-power
devices, like sensor nodes or RFID tags, appears to be a particularly challenging
task, as the computation of a signature typically requires numerous modular
exponentiations or pairing evaluations. For instance, it is necessary to compute
13 elliptic curve point multiplications, 2 modular exponentiations and 1 pairing
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to produce a DLIN based eXtremely Short Group Signature (XSGS) [14], one
of the most efficient and powerful schemes available today.

In this paper, we design a cooperative variant of the XSGS group signature
scheme [14]. Our result is efficient enough to permit the group member to be
associated to a constrained device which interacts with an intermediary (which
can belong to the group member, e.g. a personal computer).

Related Work. The way to embed cryptography into low-power devices has been
largely studied by the cryptographic community. One solution is to make pre-
computations but this has the drawback of consuming a lot of memory space
and thus simply shifts the problem. Another possibility is to modify the crypto-
graphic mechanism to fit the device restrictions. This has already been done in
the RFID case [19,15] or when considering the integration of group signatures in
a smart card [8,36]. This may necessitates important modifications of the initial
algorithm, and may imply some stronger (and questionable) assumptions such
as, e.g. , tamper-resistance.

In this paper, we focus on a second approach, which consists in studying how
a more powerful entity can help a small device to provide a group signature,
as introduced in [27] and later used for DAA in e.g. [6]. Another approach has
also been taken in the CAFE project [10,11], which consists in designing schemes
where a powerful prover interacts with a non-trusted smart card to perform some
computations in such a way that the prover is unlinkable w.r.t. the smart card.

Our Contributions. The introduction of an intermediary device in a signature
scheme must be carefully understood if one wants to avoid introducing severe
security flaws in the system. Our contribution in this direction is threefold.

To begin with, we propose the first complete security model for coopera-
tive group signatures. Our model allows clarifying the exact level of trust that is
placed into the intermediary, this trust directly impacting the amount of compu-
tation that can be outsourced by the tag. The trust we place in the intermediary
is quite limited: even compromised, it is not able to impersonate the signer. With
this property, the security of standard group signature systems can be improved:
the group members’ secrets can be stored in well-protected embedded devices
like contactless smart cards instead of being present in their personal computer,
which may be unsecure (e.g. infected with a trojan).

Then, we propose a new cooperative group signature scheme, based on the
XSGS protocol [14], and prove its security in our model. Our scheme is efficient
enough to be implemented on small embedded devices.

We demonstrate this by documenting implementation results on two common
wireless sensor nodes, the MICAz and the TelosB sensor nodes, the processor of
the TelosB node being also used in contactless secure government electronic ID
chips. The on-line phase of the protocol can be completed in less than 200 ms.
The off-line phase requires four to six seconds to be completed, but this can be
mitigated with a coupon mode (from [29] and the EU project CAFE ESPRIT
7023), which allows a node to pre-compute or pre-load up to 5000 coupons in
advance, while satisfying the memory constraints of our devices. We also show



Group Signatures are Suitable for Constrained Devices 135

that, in our case, new coupons can be added at any time (at home, for instance),
without any problem.

This article thus provides fundamental building blocks for the deployment of
low-power privacy preserving applications, in contexts where the nodes involved
in the applications cannot perform heavy computations, which is the case most
of the time for the moment.

Outline. After a brief reminder on group signatures (Section 2), we extend the
standard security properties to the cooperative setting (Section 3). Next, we
present our cooperative XSGS protocol and prove its security with respect to
our new security definitions (Section 4). We eventually demonstrate that our
protocol can be executed on small devices, by presenting and discussing the
performance of its implementation on small wireless sensor devices, of which the
controllers are also sometimes included in RFID tags (Section 5).

2 Definition of Group Signature Schemes

In [9], Chaum and van Heyst introduce the notion of group signature
schemes [1,3,17,14,5,22] where members of the group can sign documents and
any verifier can confirm that the signature comes from a group member. More-
over, group signatures are anonymous and unlinkable for every verifier except
for a given authority.

2.1 Generic Description of Group Signatures

Formally speaking, a group signature scheme GS is described by the following
polynomial-time procedures, where λ is a security parameter.

– GenParam is a probabilistic algorithm which takes as input 1λ and which
outputs the public parameters of the system PP = (Gpk, Rpk, params) where
Gpk is the group’s public key, Rpk is the public key of the opening manager
and params are public parameters (e.g. mathematical groups, generators,...),
it also outputs the group manager’s secret key gmsk and the opening man-
ager’s secret key rsk;

– UserKeyGen is a probabilistic algorithm which attributes to a user a pair
of secret/public key (usk, Upk) respecting a PKI.

– Join is a probabilistic protocol between the group manager and a new group
member Ui to provide the latter with his group secret key gsk[i]. The group
manager makes an entry Tab[i] in the registration table Tab, with the entire
transcript of the process.

– Sign is a probabilistic algorithm which takes as input a secret signing key
gsk[i] and a message m and returns the group signature σ on m;

– Verif is a deterministic algorithm which takes as input a message m, and
a signature σ and returns either 1 if the signature is valid or 0 otherwise;
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– Open is a deterministic algorithm which takes as input the opening manager
secret key rsk, the registration table Tab, a message m and a signature σ and
returns either an identity i or the symbol ⊥ to indicate a failure, together
with a proof τ of this claim;

– Judge is a deterministic algorithm which takes as input the registration
table Tab, a message m, a signature σ, an identity i and a proof τ and returns
1 if the proof τ is a valid proof that user i has produced the signature σ and
0 otherwise.

2.2 Security Properties

We outline the formal security properties from the BSZ model, introduced by
Bellare et al. [2], that are expected for (dynamic) group signature schemes.

– Correctness: a signature produced by a valid user Ui must be accepted by a
verifier. Furthermore, the opening of this signature must return the identity
of Ui and the judge must validate this opening.

– Anonymity: given several signatures of a user (randomly chosen among two
users), it is infeasible to distinguish which of these two users have produced
this set of signatures.

– Traceability: it is infeasible to produce a valid signature which cannot
be opened or where the proof outputted by Open cannot be verified. This
property must be verified even if several users and the group manager collude.

– Non-Frameability: it is infeasible, even for the opening and the group
manager, to claim falsely that a signature has been produced by a user.

To prove that a scheme ensures these properties, Bellare et al. [2] define for
each of these properties an experiment played by an adversary. Depending on
the concerned property, the adversary has several possibilities to interact with
the system. For example, an adversary can corrupt some users and thus obtains
their group secret keys. In some cases, the group manager can be corrupted and
thus the adversary can play his role during a Join procedure. All the possible
interactions are realized through oracles which are listed below. Moreover, a list
of honest users HU and one of corrupted users CU are needed.

– OCreateU: this oracle generates a new user i using UserKeyGen.
– OAddU(i): this oracle adds a new user i in the group using UserKeyGen

and the interactive protocol Join. The identity of this new user is added to
the list HU . The new public key Upki is outputted.

– OSJoin(i): during the request to this oracle, the adversary will play the role
of the group manager during a Join protocol with a new honest user. First
of all, the oracle generates a new user i with UserKeyGen and simulates
him during the protocol with the adversary. This new user is added to HU .

– OUJoin: this oracle simulates the group manager during a Join protocol where
the adversary plays the role of the user.
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– OCrptU(i): this oracle gives the total control of the user i to the adversary. In
other words, the adversary obtains all the information related to this user
(secret keys, random values, ...). The member i is moved from HU to CU .

– OReveal(i): this oracle outputs the secret keys (usk[i], gsk[i]) of the member i.
– OSignU(i, m): this oracle outputs the signature σ on m of the member i and

adds the tuple (m, σ, i) in Set (initially empty).
– OOpen(m, σ): this oracle outputs the identity of the user which produced σ.
– OChooseb(m, i0, i1): if i0 or i1 have not been given as input to OCrptU (i.e.

i0, i1 /∈ HU), this oracle outputs the signature σ on the message m of the
member ib (where b is a bit). σ cannot be given in input to the OOpen oracle.

2.3 Some Group Signature Constructions

In this paper we focus on group signatures based on the use of pairings [3,17,14]
since they are relatively efficient (compared to standard model based group signa-
tures [22]) and does not need the manipulation of big integers (contrary to [1,7]).
The BBS scheme [3] only considers static group while others [17,14] are secure
in the dynamic case [2]. We here base our study on a variant of the XSGS pro-
tocol from [14], which one is described in Appendix A. In fact, our study is also
relevant for the scheme in [17] but we have chosen the XSGS one as it includes
a complete security study1. To prevent the use of the XDH assumption, which
may be seen as a too strong assumption, we adapt XSGS (as suggested in [14])
by replacing the El Gamal encryption scheme [18] by the Linear encryption [3],
at the cost of a slightly bigger group signature. In a nutshell, a user owns a group
secret key gsk and a certificate (A, x) such that (x + gmsk).A = G1 + gsk.Rpk1,
where G1 is a parameter, Rpk1 the opening manager public key, and gmsk is the
group manager secret key. To sign a message on behalf of the group, a member
produces a double encryption of A and a signature of knowledge of m which
must prove that the double encryption contains a part of a valid certificate (and
is thus linked to the group master secret key).

The main drawback of XSGS is that it needs one pairing evaluation, many
elliptic curve point multiplications and modular exponentiations (13 and 2 re-
spectively) to produce a group signature. But this is the case for many other
group signature schemes. In fact, this complexity places XSGS as one of the most
efficient group signature scheme which is today available. Our purpose in this
paper is now to propose a secure (see next section) and efficient (see Sections 4
and 5) cooperative version of XSGS.

3 Security of Cooperative Group Signatures

A cooperative group signature [27] allows a group member, with constrained
resources, to be helped by some powerful entity, called an intermediary, in the
1 In order to reach the full anonymity property described in [2], the proposal in [14]

uses the Naor-Yung methodology [30], and thus twice the same encryption scheme
with the same message together with a proof. The scheme in [17] does not totally
uses this method and the resulting security is not discussed in the paper.
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production of the group signature. The group member is here the constrained
device, while the role of the intermediary is played by a more powerful entity, e.g.
a personal computer. Note that the cooperative system also requires verifiers,
which have the same role as in standard group signatures. The problem on
which we focus is that the intermediary may have some more knowledge that is
traditionally not available for the adversary. We thus give all the assumptions
about the intermediary and we next adapt the security properties of a group
signature scheme in this context. This work has not been totally done in [27,6].

3.1 Concept and Assumptions

We first assume that the intermediary does not know any secret information and
thus, at the beginning of a protocol, the signer may transfer some data to the
intermediary in order to decrease its computation complexity. Consequently, an
adversary may obtain more information to break the security of the scheme, e.g.
by eavesdropping. It is thus obvious that we must model all her new abilities.

In the cooperative setting, the “standard” adversary (meaning the adversary
of the original group signature scheme) can be improved in three different man-
ners. Firstly, the adversary can obtain from the intermediary all data that have
been sent by the device. Secondly, she can eavesdrop all communications during
a signature protocol (at least the shared data but potentially more information).
Finally, she can impersonate the intermediary, and thus obtain all the exchanged
information. Moreover, she can learn all the choices made by the intermediary
during the protocol (e.g. random values). It is clear that the last adversary is
more powerful than the two others. Consequently, we only formally model this
one in the cooperative setting and thus introduce the new following oracle.

– OPartialSign(i,m): this oracle simulates for the adversary the behaviour of the
user i realizing the cooperative signature of a message m. Several exchanges
between the oracle and the adversary can be done as it simulates a real coop-
erative protocol execution between a constrained device and the adversary
playing the role of the intermediary.

Based on this new adversary’s ability, we must adapt the security properties of
group signature schemes to the cooperative setting, based on the formal model
of Bellare et al. [2].

3.2 Adaptation of the Correctness

The first security property concerns the correctness and focus on the signature,
the opening and the judge verification. In our cooperative context, we decide
that the intermediary realizes the connection with the “outside world”. Thus, if
it decides to send a false signature, the signer cannot do anything to rectify this.
Consequently, it seems impossible to ensure such correctness when the adversary
can actively participate during the experiment. Nevertheless, the cooperative
protocol should at least ensure the “standard” correctness property.
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Definition 1. The correctness predicate of a group signature scheme, denoted
EGSS

corr , is verified for a user i and a message m if and only if the following
conditions are verified:

Verif(m,Sign(gsk[i], m)) = 1 ∧ Open(rsk, Tab, m,Sign(gsk[i], m)) = (i, τ)
∧ Judge(Tab, m,Sign(gsk[i], m), i, τ) = 1

We denote EGSS
corr (i, m) = 1 if this predicate is true, and 0 otherwise.

A cooperative scheme ensures the correctness property if there exists a negli-
gible function ε(λ) such that:

∀(i, m) : Pr[EGSS
corr (i, m) = 0] < ε(λ)

Remark 1. In case the intermediary is “behind” the signer and has no link with
the verifier, it is possible to define a strong cooperative completeness where
the intermediary can be corrupted. Since this is not the practical case we are
studying, we will not consider it.

We say that a protocol is the cooperative version of another one (called the
standard one) if their outputs are constructed identically. Then, a cooperative
version of a protocol ensures the correctness property if the standard is also
correct in the BSZ model [2].

3.3 Adaptation of the Anonymity

From the anonymity point of view, it is possible to assume that the signer and
the intermediary live in a personal environment. In fact, as the intermediary
can most of the time recognize the signer by some other means, allowing it to
know the user identity does not introduce a threat. In this case, the cooperative
scheme should only verifies the “standard” anonymity property. More precisely,
if the initial group signature scheme provides anonymity (in the BSZ sense),
then a cooperative version necessarily verifies this “weak” anonymity property.
By doing this assumption, it is generally possible to transfer more data to the
intermediary and thus to reduce the signer’s complexity by a better factor.

Definition 2 (Anonymity Property). A cooperative scheme ensures the ano-
nymity property if there exists a negligible function ε(λ) such that:∣∣∣Pr

[A(gmsk) → 1
∣∣ b = 1

]− Pr
[A(gmsk) → 1

∣∣ b = 0
]∣∣∣ < ε(λ)

for any polynomial adversary A, who have access to OCreateU, OAddU, OSJoin,
OUJoin, OCrptU, OReveal, OSignU, OOpen and OChooseb .

Remark 2. In some cases, being unlinkable w.r.t. the intermediary is a really
important issue and needs to be studied. For the completeness of the model,
it is consequently possible to provide a stronger definition for the coopera-
tive anonymity property. The adversary is thus additionally given access to the
OPartialSign oracle in the above experiment.
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3.4 Adaptation of the Traceability

Concerning the two remaining security properties, it is necessary to give access to
the adversary the OPartialSign(i,m) oracle in the cooperative versions of the related
experiments.

Definition 3 (Traceability Property). The traceability predicate of a group
signature scheme, denoted EGSS

trac , is verified for (m, σ) if and only if the following
conditions are verified:

Verif(m, σ) = 1 ∧
[
Open(m, σ, rsk) = ⊥ ∨(

Open(m, σ, rsk) = (Upk, τ) ∧ Judge(σ, m, τ, Upk) = ⊥
)]

We denote EGSS
trac (m, σ) = 1 if this predicate is true, and 0 otherwise.

A cooperative scheme ensures the traceability property if there exists a negli-
gible function ε(λ) such that for any polynomial adversary A, who have access
to OCreateU, OAddU, OSJoin, OUJoin, OCrptU, OReveal, OSignU, OOpen, OPartialSign:

Pr
[
A(gmsk) → (m, σ) : EGSS

trac (m, σ) = 1
]

< ε(λ).

Note that the traceability predicate is verified even when the user, which possess
Upk, is corrupted, as in the standard security definition [2].

3.5 Adaptation of the Non-frameability

We next study the non-frameability property, for which we introduce a list Set
which contains all valid signatures outputted during the experiment (i.e. realized
by the OSignU oracle).

Definition 4 (Non-Frameability Property). The non-frameability predicate
of a group signature scheme, denoted EGSS

NonFra, is verified for (m, σ) if and only if
the following conditions are verified, where (Upki, τ) = Open(m, σ, rsk, Tab):

Verif(m, σ) = 1 ∧ (m, σ, i) /∈ Set ∧ i ∈ HU ∧ Judge(m, σ, τ, Upki, Tab) = 1.

We denote EGSS
NonFra(m, σ) = 1 if this predicate is true, and 0 otherwise.

A cooperative scheme ensures the non-frameability property if there exists a
negligible function ε(λ) such that for any polynomial adversary A, who have
access to OAddU, OCrptU, OReveal, OSignU, OOpen, OPartialSign:

Pr
[
A(gmsk, rsk) → (m, σ) : EGSS

NonFra(m, σ) = 1
]

< ε(λ).

4 The Cooperative Version of XSGS

Our aim is now to adapt the XSGS protocol [14] (described in Appendix A) in
a secure cooperative manner such that it can be embedded in a RFID tag. For
this reason, we consider that the tag is not anonymous w.r.t. the reader. We
thus describe a cooperative version of the XSGS scheme and prove its security.
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4.1 Protocol Description

To obtain the best possible gain in terms of efficiency, we adapt the XSGS proto-
col such that the user will not be anonymous for the intermediary. However, we
will prove that all the other security properties remain. Thus, at the beginning
of a signature protocol, the user transmits its certificate (A, x), which is part of
its group secret key (see Appendix A for details) to the intermediary which will
performs all the computations related to this certificate. The user keeps secret
his group secret key and computes all values based on it. The obtained cooper-
ative version of the protocol is described in Figure 1. The efficiency gain from
the user’s point of view is huge as there only remains one point multiplication
to compute instead of one pairing, 13 point multiplications and 2 modular expo-
nentiations in the DLIN based XSGS protocol. In this section we use notations
introduced in Section 2 and Appendix A. In a nutshell, a group member owns a
group secret key gsk and a certificate (A, x) obtained during the Join protocol.
The revocation manager has two couples of key (rsk1, Rpk1), (rsk2, Rpk2). The
group public key is denoted GMpk. Finally, (q, G1, G2, GT , e, ψ) is a bilinear en-
vironment (see Appendix A.1) and H denotes a cryptographically secure hash
function.

σ = (U, T1, T2, T3, T4, T5, T6)

U IA, x, P ′
6

z′, c

sz

z = z′ + gsk

sz = rz + c.z

α1, β1, α2, β2 ∈R Zq

T1 = α1.G; T2 = β1.G′; T3 = A + (α1 + β1).Rpk1;

T4 = α2.G; T5 = β2.G′; T6 = A + (α2 + β2).Rpk2

rα1 , rβ1
, rα2 , rβ2

, rx ∈R Zq

P1 = rα1 .G; P2 = rβ1
.G′; P3 = rα2 .G; P4 = rβ2

.G′;

P5 = (rα1 + rβ1
).Rpk1 − (rα2 + rβ2

).Rpk2;

z′ = (α1 + β1)x;

c = H(m, T1, T2, T3, T4, T5, T6, P1, P2, P3, P4, P5, P6)

sα1 = rα1 + c.α1 (mod q); sβ1
= rβ1

+ c.β1 (mod q);

sα2 = rα2 + c.α2 (mod q); sβ2
= rβ2

+ c.β2 (mod q);

sx = rx + c.x (mod q)

U = (c, sα1 , sβ1
, sα2 , sβ2

, sx, sz)

P6 = e(T3, G2)rx e(Rpk1, GMpk)
−(rα2+rβ2

)
e(P ′

6, G2)

P ′
6 = rz.Rpk1

rz ∈R Zq

Fig. 1. Sign procedure of the cooperative XSGS Protocol

4.2 Security Analysis

Intuitively, the transmission of the certificate does not introduce any security
flaw since both Traceability and Non-Frameability assume that even the
group manager cannot break these properties. As this entity knows all users’
certificates, it should be also hard for an active adversary to break them. Nev-
ertheless we will formally prove these results. Note that our proof are in the
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random oracle model as in the original paper [14]. First of all, we prove that
our cooperative protocol perfectly realizes a XS group signature, and thus that
it verifies the correctness property.

Theorem 1. The Coop-XSGS protocol ensures the Correctness property.

Proof. Recall that for this property we assume that the intermediary has a
honest behaviour and executes perfectly his part of the protocol. We remark
that only the signature of knowledge U slightly deviates from the standard one
and we need to verify its correctness. More precisely, the deviation is on the P6

value. Based on the pairing property (see Section A.1) it is obvious that:

P6 = e(T3, G2)rxe(Rpk1, GMpk)−(rα1+rβ1)e(P ′
6, G2)

= e(T3, G2)rxe(Rpk1, GMpk)−(rα1+rβ1)e(Rpk1, G2)rz

Thus, the whole group signature is computed identically as in the standard
protocol. Consequently, the cooperative protocol is correct. ��
Theorem 2. The Coop-XSGS protocol ensures the Anonymity property.

Proof. As explained in Section 3.3 and since the scheme ensures correctness, the
proposed cooperative scheme ensures the anonymity. ��
Theorem 3. The Coop-XSGS protocol ensures the Traceability property.

Proof. This proof is obvious since the adversary has no more information than
the adversary in the standard model. Indeed, this property is verified even when
the adversary represents a collusion of members (thus knowing their group se-
cret keys and certificates). Thus, the cooperative version of the XSGS protocol
trivially verifies the traceability property. ��
Theorem 4. The Coop-XSGS protocol ensures the Non-Frameabilty property.

Proof. In the original proof (see proof of Theorem 11 in [14]), the authors use the
“unforgeability techniques” to retrieve the certificate and the group secret key
used in a signature outputted by an adversary. Thus, they build an algorithm
which interacts with this adversary in order to break the discrete logarithm
either in G1 or in G2 (depending of the retrieved group secret key). This proof
only works if the adversary does not know the group secret key of the targeted
user. As the Join procedure does not leak any information about it, their proof
is correct. For the cooperative protocol, this proof can also be applied if we prove
that an active adversary cannot learn any information about this secret key.

For this purpose, we first highlight the fact that the protocol between the
constrained device and the intermediary can be interpreted as a Schnorr proto-
col (see [33] for further details) which has been proven to be a zero-knowledge
proof of knowledge. As a consequence, the values P ′

6 and sz do not reveal any
information about gsk. It is next obvious that the intermediary has no informa-
tion about the value rz under the discrete logarithm assumption. Consequently,
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given a fixed value of sz , whatever the value gsk is equal to, there exists one
value rz such that sz = rz + ((α1 + β1)x + gsk)c. As a result, a perfect simula-
tion of 〈P ′

6, c, sz〉 can be realized as for the zero-knowledge property of Schnorr’s
protocol (see [33]). Then, if rz is uniformly chosen in Zp, the group secret key
of the user is perfectly hidden in sz. ��
Theoretically speaking, this protocol appears to be really efficient. However, in
order to demonstrate this efficiency in practice, we describe in the next section
an implementation of this new cooperative protocol.

5 Implementation of Coop-XSGS in a RFID Tag

To assess the suitability of the cooperative XSGS protocol for small portable
devices, we have implemented it using a wireless sensor node for the prover
and a laptop for the powerful helping entity. Wireless sensor nodes are small au-
tonomous devices equipped with a small microcontroller and a transceiver. In this
work, we studied the performances of the protocol on two representative sensor
node platforms, the MICAz [12] equipped with an 8-bit 7.37MHz ATmega128L
microprocessor and the TelosB [13], based on the 16-bit 4MHz MSP430 proces-
sor. These devices are conceptually quite close to contactless smart cards. For
instance, the TI RF360 chip for contactless secure government electronic ID em-
beds the same MSP430 processor as the TelosB node [34]. Therefore, although
we consider an active device, the results of our implementation can easily be
extended to platforms such as contactless smart cards.

The protocol implemented follows the cooperative sign procedure described
in Figure 1. The most costly operation for the prover is the point multiplication
P ′

6 = rz .Rpk1. It can be computed prior to the interactions with the intermediary,
either during idle time (in case of an active device) or precomputed and preloaded
on the tag. The latter case corresponds to the coupon mode, as in [20], where
a coupon is a pair of (rz , rz .Rpk1) loaded on the device. In the following, the
operation leading to P ′

6 is denoted as the off-line phase, although it might still
be computed on-line in the case of a passive device avoiding coupons.

Concerning the pairing parameters, we chose an asymmetric pairing, as it
allows to use small-length inputs on the tag, reducing therefore the storage and
bandwidth costs. For the elliptic curves on which the pairing is applied, we
selected the so-called type D curves (following the classification of [25]), i.e., the
ordinary curves with embedding degree 3, 4 or 6 known as MNT curves [28]. This
type of curve ensures a small input length (around 170 bits for an embedding
degree 6) together with an efficient pairing computation [25].

The prover computations were coded in TinyOS [35] on both the MICAz
and TelosB sensors. For the point multiplication, we extended the TinyECC
library [24] to support the MNT curves. The parameters of the used curve were
taken from the PBC library [26] written by B. Lynn. They are labeled as the d159
parameters, where 159 is the size of the base field of the curve. Their security
level is equivalent to the hardness of the discrete log problem on 6 · 159 =
954 bits. Parameters for a higher security could be selected if required. On the
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Table 1. Running times of the various phases of the cooperative XSGS protocol. The
on-line phase of the sign procedure takes less than 200 ms.

Phase Detail Time (ms)

Off-line Sign
Prover (MICAz) 3800
Prover (TelosB) 6400

Intermediary 195

On-line Sign
Prover (MICAz) 7
Prover (TelosB) 9

Intermediary 65
Communication 120

Total < 200

Verify – 55

Open – 35

intermediary side, the computations were implemented in C using the GMP [21]
library and the PBC library to achieve the pairings. They took place on a laptop
equipped with a 64-bit 1.4 GHz Intel Core 2 Duo. The pairing computations were
rather fast in this setting: 11 ms were sufficient to perform a Tate pairing.

The running times for the various parts of the sign procedure are given in
Table 1. The on-line phase of the protocol is performed in less than 200 ms with
both sensor nodes. The communication delay and the intermediary computations
are the main components of the on-line phase latency. The time required by the
prover computations, i.e. , the calculation of sz, is marginal (<10 ms).

In the off-line phase, the computation of the point multiplication giving P ′
6

lasts about 4 and 6 seconds on the MICAz and TelosB respectively. While rea-
sonably efficient, the TinyECC library, on which our implementation is based,
is however significantly slower than recently proposed ECC implementations on
sensor nodes. We therefore expect the point multiplication to be significantly
faster using the same techniques as for instance the implementation proposed
in [23], which performs a fixed-base point multiplication in less than a second
on a 192-bit elliptic curve group. As a result, even if the prover device has to
compute the point multiplication P ′

6 during the on-line phase, the whole proce-
dure can be done within a few seconds (much less if a dedicated hardware ECC
engine is available on the tag).

The fast on-line phase of the cooperative protocol makes group signatures
of practical interest for small devices like contactless smart cards. By contrast,
signing with the original XSGS protocol would require a much longer interaction
between the passive device and the reader. To give a rough idea, a pairing eval-
utation takes about 5.5 second on the MICAz (with the TinyPBC library [31])
and an ECC point multiplication requires 0.71 second with the implementation
from [23] (there are 13 of these in XSGS): the whole protocol would take on the
order of 15 seconds with the MICAz.
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Table 2. Storage requirements (in bytes) of our implementation on the sensor nodes.
In coupon mode, 21 B must be added per stored coupon.

Mode Memory MICAz TelosB

Coupon RAM 1067 (26%) 1071 (10%)
ROM 23764 (18%) 14470 (29%)

No Coupon RAM 1699 (41%) 1739 (17%)
ROM 36576 (28%) 19164 (39%)

The original XSGS protocol would also consume a considerable amount of
memory. On the other hand, the memory usage of the cooperative protocol is
relatively modest (Table 2), even when the ECC point multiplication is per-
formed on the node. The tiny operating system already consumes a significant
fraction of the used memory (about 700 B RAM and a little more than 10 kB
ROM on both nodes). A coupon (rz , rz .Rpk1) requires normally 60 B, i.e. three
20-B field elements, but it can be reduced to a little more than 20 B using point
compression and a PRNG sequence for storing all the rz , as done in [20]. As
the coupons can be placed in RAM or ROM, their storage in both the MICAz
and TelosB is not a problem. Considering the available memory resources, the
MICAz and the TelosB could be filled with more than 5000 and 2500 coupons
respectively, which is more than practical for many applications.
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A XSGS Group Signature

In this section, we give some useful tools and next focus on the XSGS group
signature scheme, using additive notations.

A.1 Some Notations and Tools

Bilinear Groups. Let G1, G2 and GT be multiplicative cyclic groups of prime
order q and let ψ be an isomorphism from G2 to G1. G1 (resp. G2) is a generator
of G1 (resp. G2). Finally, let e be a computable bilinear map G1×G2 −→ GT such
that e(G1, G2) �= 1 and for all P1 ∈ G1, P2 ∈ G2 and a, b ∈ Z, e(a.P1, b.P2) =
e(P1, P2)ab. (q, G1, G2, GT , G1, G2, e, ψ) is called a bilinear environment.

Zero-Knowledge Proofs of Knowledge. Roughly speaking, a Zero Knowl-
edge Proof of Knowledge (ZKPK) is an interactive protocol during which an
entity P proves to a verifier V that he knows a set of secret values α1, . . . , αq

verifying a given relation R without revealing anything else. These protocols
are also used to prove that some public values are well-formed from secret val-
ues known by the prover. It is possible to transform these protocol into non-
interactive proof of knowledge, generally called signature of knowledge, using
the Fiat-Shamir heuristic [16].

In the sequel, we denote by SoK(α1, . . . , αq : R(α1, . . . , αq)) a signature of
knowledge of the secrets α1, . . . , αq verifying the relation R. We also define π as
the interactive protocol between a prover P , on input α1, . . . , αq and R and a
verifier V on input R and which allows P to prove that she knows the secrets in
a zero-knowledge manner. The output of V is either 1 if the prover is accepted
and 0 otherwise.

http://www.ti.com/rfid/docs/manuals/brochures/govid_trifold.pdf
http://www.tinyos.net/
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A.2 Decision Linear Problem and Encryption

The Decision Linear Problem has been introduced in [3] and is defined as follows.

Definition 5. Given G, G′, H, α.G, β.G′, γ.H ∈ G as input, the Decision Linear
Problem consists to decide if γ = α + β or not.

A great advantage of this problem is that it is still a hard problem even in bilinear
groups where the DDH problem is easy. Based on this problem, the authors of [3]
introduced a new encryption scheme called Linear Encryption:

– GenParam(1λ): let G be a group of prime order q. Select three generators
G, G′ and Rpk such that there exists rsk1, rsk2 ∈ Zq which verify Rpk =
rsk1.G = rsk2.G

′. The public-key of the system is the tuple (G, G′, Rpk)
while the secret key is (rsk1, rsk2).

– Enc(m): to encrypt the message m ∈ G, this algorithm selects two random
values α, β ∈ Zq and computes T1 = α.G, T2 = β.G′, T3 = m + (α + β)Rpk.
The encrypted message is (T1, T2, T3).

– Dec(T1, T2, T3): to decrypt a message, this algorithm computes m = T3 −
rsk1.T1 − rsk2.T2.

To define the parameters of this scheme verifying is Rpk = rsk1.G = rsk2.G
′, a

solution is described by the next steps:

– choose a random generator G ∈ G;
– choose a random value rsk ∈R Zq and compute G′ = rsk.G;
– choose a first secret key rsk1 ∈R Zq and compute Rpk = rsk1.G;
– compute rsk2 = rsk1/rsk (mod q).

A.3 The XSGS Group Signature Scheme

We now focus on the XSGS protocol, introduced by Delerablée and Pointcheval
in [14]. For security reasons (see Section 8.1 of the extended version of [3] for more
details), we use the XSGS scheme without the XDH assumption. We thus use the
double linear encryption scheme, introduced by Boneh et al. in [3] and described
in Appendix A.2, instead of a double ElGamal encryption, as suggested in [14].
The group signature scheme is described by the following procedures, where λ
is a security parameter.

– GenParam(1λ): this procedure generates the public parameters of the sys-
tem and also the keys of the different entities as follows:
• a bilinear environment (q, G1, G2, GT , e, ψ);
• the parameters for the double linear encryption, i.e. a generator G ∈R G1

and another generator G′ = rsk.G where rsk ∈R Zq.
• the secret keys of the opening judge (rsk1, rsk3) ∈R Z

2
q, rsk2 = rsk1/rsk,

rsk4 = rsk3/rsk and the associated public keys Rpk1 = rsk1.G = rsk2.G
′

and Rpk2 = rsk3.G = rsk4.G
′;
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• the secret key gmsk ∈R Zq of the group manager GM and the associated
public key GMpk = gmsk.G2;

• the parameters of Paillier’s encryption scheme [32] for ExtCommit;

The public parameters of the system are PP = {λ, q, G1, G2, GT , e, ψ, G1,
G2, G, G′, GMpk, Rpk1, Rpk2}.

– UserKeyGen(1λ): before that a user, denoted Ui, can join a group, he has
to be registered in a PKI. This procedure permits to ensure the unlinkability
and the non-repudiation of the system. At the end of this procedure, the user
obtain a couple of key (uski, Upki). The value Upki is added in a table UPK
which is supposed public.

– Join[Ui(uski, Upki) ↔ GM(UPK, gmsk)]: this interactive protocol between a
user Ui and the group manager results by the adhesion of the new user to the
group. Consequently, the user obtain a group certificate certi = (Ai, xi), and
his group secret key gski. The group manager add an entry (Upki, Ai, xi, S)
in Tab, where S is a signature of Ai made by the user Ui with his secret key
uski. This interactive protocol is presented in Figure 2 where ExtCommit is
an extractable commitment done with the Paillier’s encryption scheme [32].

U = SoK(gski : C = gski.Rpk1 ∧ c = ExtCommit(gski))

GM

V = SoK(α : B = α.D);

D := e(Ai, G2);

B := e(G1 + C, G2)/e(Ai, GMpk);

xi ∈R Zq ;

Ai := G1 + 1
gmsk+xi

.C;

Checks U et C ∈ G1;

B := e(G1C, G2)/e(Ai, GMpk);

D := e(Ai, G2);

Checks V et Ai ∈ G1;

S = PkiSign(uski, Ai)
S

xi

Verif(S, Upki, Ai)

Adds(Upki, Ai, xi, S) in Tab
Checks if (xi + gmsk).Ai = G1 + gski.Rpk1 with:

e(Ai, G2)xi e(Ai, GMpk)e(Rpk1, G2)−gski = e(G1, G2)

Ui

c, C, U

Ai, V

c = ExtCommit(gski)

gski ∈R Zq; C = gski.Rpk1

Fig. 2. XSGS Join protocol

– Sign(m, gski, certi): the signature of m is composed of two steps
• a double linear encryption, namely, the user randomly chooses (α1, β1,

α2, β2) ∈R Zq and computes the fours values

T1 = α1.G; T2 = β1.G
′; T3 = A + (α1 + β1)Rpk1;

T4 = α2.G; T5 = β2.G
′; T6 = A + (α2 + β2)Rpk2;

• a signature of knowledge U , where z = (α1 + β1).x + gski:

U = SoK
(
α1, β1, α2, β2, x, z : T1 = α1.G ∧ T2 = β1.G

′ ∧ T4 = α2.G

∧T5 = β2.G
′ ∧ T3 − T6 = (α1 + β1)Rpk1 − (α2 + β2)Rpk2 ∧

e(T3, G2)xe(Rpk1, GMpk)−(α1+β1)e(Rpk1, G2)−z =
e(G1, G2)

e(T3, GMpk)

)
(m).
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The user outputs the signature σ = (T1, T2, T3, T4, T5, T6, U).

– Verif(m, σ) this procedure simply verifies the correctness of the signature
of knowledge U , as detailed in Section A.4.

– Open(m, σ, (rsk1, rsk2, rsk3, rsk4), Tab) if σ is valid, the opening judge com-
putes A = T3 − (rsk1.T1 + rsk2.T2) and realizes the signature of knowledge
τ = SoK

(
rsk1, rsk2 : A = T3 − (rsk1.T1 + rsk2.T2) ∧ Rpk1 = rsk1.G ∧ Rpk1 =

rsk2.G
′). By using Tab, the judge can retrieve the key Upki associated to the

user certificate A. Then he outputs Upk, S(= PkiSignusk(A)), A and τ .
– Judge(m, σ, A, τ, Upk, Tab) this procedure verifies the correctness of the sig-

nature of knowledge τ . The signature S, stored in Tab, permits to check
that the certificate A is the one which have been given to the user during
the Join procedure. If both signatures (τ and S) are valid, the procedure
outputs 1 else it outputs 0.

This protocol ensures all the security requirements of a group signature scheme
under the q-SDH [4] and the decision linear assumption (see Section A.2). We
refer the interested reader to [14] and [3] for the security aspects of this scheme.

A.4 Focus on the Signature of Knowledge

During the signature of a message, a user must produce the signature of knowl-
edge U . We detailed here how this should be done.

– Choose rα1 , rβ1 , rα2 , rβ2 ∈R Zp; rx, rz ∈R Zq

– Compute

P1 = rα1 .G; P2 = rβ1 .G
′; P3 = rα2 .G; P4 = rβ2 .G

′;
P5 = (rα1 + rβ1)Rpk1 − (rα2 + rβ2)Rpk2;

P6 = e(T3, G2)rxe(Rpk1, GMpk)−(rα1+rβ1)e(Rpk1, G2)−rz

– Compute c = H(m, T1, T2, T3, T4, T5, T6, P1, P2, P3, P4, P5, P6)
– Compute

sα1 = rα1 + c.α1 (mod q); sβ1 = rβ1 + c.β1 (mod q);
sα2 = rα2 + c.α2 (mod q); sβ2 = rβ2 + c.β2 (mod q);
sx = rx + c.x (mod q); sz = rz + c.z (mod q).

The signature is the tuple U = (c, sα1 , sβ1 , sα2 , sβ2 , sx, sz).
The verification of this signature of knowledge is done as follow. The verifier

first computes:

– P1 = sα1 .G− c.T1, P2 = sβ1 .G
′− c.T2, P3 = sα2 .G− c.T4, P4 = sβ2 .G

′− c.T5

and P5 = (sα1 + sβ1)Rpk1 − (sα2 + sβ2)Rpk2 − c.(T3 − T6)

– P6 = e(T3, G2)sxe(Rpk1, GMpk)−(sα1+sβ1)e(Rpk1, G2)−sz

(
e(G1,G2)

e(T3,GMpk)

)−c

Finally the verifier validates the signature of knowledge if:

c = H(m, T1, T2, T3, T4, T5, T6, P1, P2, P3, P4, P5, P6).



A Lightweight 256-Bit Hash Function for

Hardware and Low-End Devices: Lesamnta-LW

Shoichi Hirose1, Kota Ideguchi2, Hidenori Kuwakado3, Toru Owada2,
Bart Preneel4, and Hirotaka Yoshida2,4

1 Graduate School of Engineering, University of Fukui
3-9-1, Bunkyo, Fukui 910-8507, Japan

2 Systems Development Laboratory, Hitachi, Ltd.
292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa 244-0817, Japan

3 Graduate School of Engineering, Kobe University
1-1 Rokkodai, Nada, kobe 657-8501, Japan

4 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

Abstract. This paper proposes a new lightweight 256-bit hash func-
tion Lesamnta-LW with claimed security levels of at least 2120 with re-
spect to collision, preimage, and second preimage attacks. We adopt
the Merkle-Damg̊ard domain extension; the compression function is con-
structed from a dedicated AES-based block cipher using the LW1 mode,
for which a security reduction can be proven. In terms of lightweight im-
plementations, Lesamnta-LW offers a competitive advantage over other
256-bit hash functions. Our size-optimized hardware implementation of
Lesamnta-LW requires only 8.24 Kgates on 90 nm technology. Our soft-
ware implementation of Lesamnta-LW requires only 50 bytes of RAM
and runs fast on short messages on 8-bit CPUs.

Keywords: Hash functions, lightweight cryptography, security reduc-
tion proofs.

1 Introduction

The next decade will witness an ever growing demand for applications using small
electronic devices such as sensor nodes, RFID tags and smart devices. These
devices have to cope with security problems such as confidentiality, and more
importantly, authentication and privacy. The key tools to develop these applica-
tions are lightweight cryptographic algorithms which can be implemented under
restricted resources, such as low-cost, low-energy, or low-power environments.
Lightweight cryptographic algorithms such as PRESENT [11], H-PRESENT [12],
KATAN [14], MAME [45], SQUASH [41] and QUARK [2] have been proposed to
target these environments. The lightweight symmetric-key encryption algorithms
attract users for providing very compact authentication using MACs.

Among these cryptographic techniques, we argue that cryptographic hash
functions are of particular importance because hash functions are needed in
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any serious library: they can be used in applications such as digital signatures,
certificates, MAC algorithms, randomness extraction, and public key encryp-
tion (e.g., RSA-OAEP), etc. During the last years, there has been substantial
progress in cryptanalysis [46,47] of widely-used hash functions such as MD5 [39]
and SHA-1 [37]. In response, NIST started the SHA-3 competition in 2007
[38], and selected 14 hash functions as Round-2 candidates in last July. Thus,
lightweight software/hardware implementations could use SHA-256 [37] or the
SHA-3 Round-2 candidates. However, most of these hash functions could be too
expensive for small devices since they are designed for generic purpose; they are
fast on high-end 32/64-bit CPUs and have in general a large internal state for
the resistance against multi-collision-type of attacks [29,30].

We argue that there is an increasing demand for lightweight hash functions
providing a high security level. A reasonable application would be code signing
for small but highly sensitive devices which can be targeted at medical appli-
cations or car electronics. Code signing requires hashing and public key cryp-
tography (PKC). Some recent works [3,22] have shown that implementations of
elliptic curve cryptography (ECC) can be so compact that implementations of
ECC are targeted at wireless sensor networks (WSN). Therefore it would be a
nice challenge to fit ECC and hashing in a small area such as 25 Kgates.

In addition, applications using small portable electronic devices employing
low-cost 8-bit CPUs have gained increasing attention. It has been reported
that about 55 % of all CPUs sold in the world are 8-bit microcontrollers and
microprocessors and over 4 billion 8-bit controllers were sold in 2006 [48,40].
Since the memory size of devices employing low-cost CPUs are often very small,
RAM/ROM requirements are an important factor for implementations.

This paper proposes a 256-bit lightweight hash function, Lesamnta-LW. Its
domain extension is the strengthened Merkle-Damg̊ard construction and its un-
derlying component is an AES-based block cipher taking a 256-bit plaintext
and a 128-bit key. Note that Lesamnta-LW is somewhat a lightweight version
of Lesamnta [25] that was submitted to the SHA-3 competition. The feature of
Lesamnta-LW is summarized below.

1. Lesamnta-LW can be implemented efficiently on both of a dedicated hard-
ware and 8-bit CPUs. In hardware, it only requires 8.24 Kgates on 90 nm
technology, which is substantially smaller than those of most of Round-2
SHA-3 candidates. In software, it gains clear advantages over SHA-256 with
respect to speed on short messages and RAM requirements for 8-bit CPUs.

2. The compression function is a new mode of a block cipher, called the LW1
mode. Notice that the PGV mode cannot be used because Lesamnta-LW
uses the block cipher such that the key size is smaller than the block size
in order to achieve the efficient implementation. Unlike the DM mode and
the MMO mode, the LW1 mode does not have the feedforward of inputs,
which contributes to reduction of the size of required memory. This structure
enables us to provide proofs reducing the security of Lesamnta-LW to that of
the underlying block cipher which has also been designed to offer adequate
security against all relevant known attacks.
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3. Lesamnta-LW is designed to provide at least 2120 security levels against
both collision and (second-)preimage attacks, where 2120 = 2n/(n + 1) with
n = 128. Actually, it is easy to see that a meet-in-the-middle attack can find
a preimage of Lesamnta-LW with complexity at most 2128.

For the security levels, an ideal 256-bit hash function would provide the 2256

security level against preimage attacks. However, the 2120 security level is suf-
ficient for most applications, especially on small devices. We give preference to
the hardware cost over the preimage resistance in the design of Lesamnta-LW.
The security and the cost do not go together generally.

As an important application of Lesamnta-LW, we consider the key-prefix (KP)
mode which is similar to HMAC but more efficient. The KP mode of a hash
function is required in PPP Challenge Handshake Authentication Protocol [42].
We give a security reduction for this mode.

The outline of this paper is as follows. In Sect. 2, we explain our design
strategy. In Sect. 3, we give the specification of the Lesamnta-LW hash function.
In Sect. 4, we discuss the provable security of Lesamnta-LW. In Sect. 5, we
evaluate the security of Lesamnta-LW against all relevant attacks. Section 6
presents implementation results. Section 7 concludes the paper.

2 Design Principle

Our main design goal is to develop a secure 256-bit hash function which achieves
small hardware/software implementations. More specifically, the most important
aspects are to have security proofs, to have a small footprint for hardware, and
to have low working memory (RAM) requirement for software. Our next target
is to achieve fairly fast speed, considering the ways hash functions are used: the
processing message length and the modes of operation, etc. This is because the
required efficiency could include speed on very short messages such as IDs or
speed of the pseudorandom function from a hash function such as HMAC or
Key-Prefix mode as discussed in this paper.

2.1 Padding Method

For the padding method of Lesamnta-LW, the last block does not contain any
part of the message input. It only contains the length of the message input. This
property is required to guarantee preimage resistance of Lesamnta-LW.

2.2 LW1 Mode

Sophisticated designs and attacks on block ciphers were presented in the AES
competition. Knowledge on block ciphers is useful in designing secure hash func-
tions. This is why Lesamnta-LW is designed as a block-cipher-based hash func-
tion. A few reasons for choosing the LW1 mode are also listed below. First, from
the viewpoint of attacks on a block cipher, recent collision attacks use the fact
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that an attacker can directly control the key of a block cipher. In contrast, the
LW1 mode does not allow attackers to control the key of the block cipher di-
rectly. Second, the LW1 mode is theoretically analyzed. It enables us to reduce
the security of Lesamnta-LW to that of the underlying block cipher to a greater
extent than the popular DM mode used by the SHA family.

2.3 Block Cipher

The block cipher is designed to meet the following requirements:

– The security analysis should be simple to have confidence in the design.
– It should be compact in software/hardware.
– It should offer a reasonable speed on high-end/low-end CPUs.

For this purpose, the block cipher is an AES-based design such that Lesamnta-
LW can gain certain clear advantages over know block-cipher based designs such
as SHA-256 and MAME. The key scheduling function ensures a strong non-
linearity and an excellent diffusion property by re-using the 32-bit permutation
of the mixing function; this reduces the hardware complexity since a part of
the hardware can be reused. The round constants sequentially generated from a
linear feedback shift register introduce randomness and asymmetry into the key
scheduling function.

3 Specification

3.1 Message Padding

The first step of the hash computation is the padding of the message. The pur-
pose of the padding is to ensure that the input consists of a multiple of 128 bits.
Suppose that the length of a message M is l bits. Append the bit “1” to the end
of the message, followed by k +63 zero bits, where k is the smallest non-negative
integer such that l + k ≡ 0 (mod 128). Then, append a 64-bit block equal to
the number l as expressed in binary representation. The length of the padded
message should now be a multiple of 128 bits.

3.2 Compression Function and Domain Extension

Lesamnta-LW is a Merkle-Damg̊ard iterated hash function [19,36] using the com-
pression function operates as follows on the 128-bit words H

(i−1)
0 , H

(i−1)
1 , and

M (i):
h(H(i−1), M (i)) = E(H(i−1)

0 , M (i) ‖ H
(i−1)
1 ) ,

where H(i−1) = H
(i−1)
0 ‖ H

(i−1)
1 and E(K, ·) is a 256-bit block cipher with a

128-bit key K. We call this method to construct a compression function the LW1
mode, which is illustrated in Fig. 1.
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E

M(1)

E

M(2)

E

M(N−1)

E

M(N)

H
(0)

H
(0)
0

1 H
(N)
1

H
(N)
0

Fig. 1. The domain extension using the LW1 mode

3.3 Block Cipher

Lesamnta-LW uses a 64-round block cipher E that takes as input a 128-bit key
and a 256-bit plaintext. The block cipher consists of two parts: the key scheduling
function mapping the key to the round keys and the mixing function taking as
input a plaintext and the round keys to produce a ciphertext. Both of them
use a type-1 4-branch generalized Feistel network (GFN) (cf. Zheng et al. [50]).
One round of the block cipher is illustrated in Fig. 2. The input variables to
round r for the mixing function and the key scheduling function are denoted by
(x(r)

0 , x
(r)
1 , x

(r)
2 , x

(r)
3 ) and (k(r)

0 , k
(r)
1 , k

(r)
2 , k

(r)
3 ) respectively. Each x

(r)
i is a 64-bit

word and each k
(r)
i is a 32-bit word.

3232
32

32

64

64

64

64
G

QQ

Q

R

C(r)

k
(r)
0 k

(r)
1 k

(r)
2 k

(r)
3

k
(r+1)
0 k

(r+1)
1 k

(r+1)
2 k

(r+1)
3

K(r)K(r)

x
(r)
0 x

(r)
1 x

(r)
2 x

(r)
3

x
(r+1)
0 x

(r+1)
1 x

(r+1)
2 x

(r+1)
3

key scheduling function mixing function
function G

Fig. 2. The round function

The mixing function consists of XORs, a wordwise permutation, and a non-
linear function G. Taking as input a 32-bit round key K(r), the mixing function
updates its intermediate state in the following manner:

x
(r+1)
0 = x

(r)
3 ⊕ G(x(r)

2 , K(r)), x
(r+1)
1 = x

(r)
0 , x

(r+1)
2 = x

(r)
1 , x

(r+1)
3 = x

(r)
2 .

The function G consists of XOR operations, a 32-bit non-linear permutation Q,
and a function R. For a 64-bit input y = y0 ‖ y1 and a 32-bit round key K(r),
G(y, K(r)) is defined as follows:

G(y, K(r)) = R(Q(y0 ⊕ K(r)) ‖ Q(y1)).



156 S. Hirose et al.

Using the AES components [18], the function Q is defined as follows:

Q = MixColumns ◦ SubBytes.

The SubBytes transformation is a non-linear byte substitution that takes 4
bytes s0, s1, s2, s3 as input and operates independently on each byte by using
the AES S-box. It proceeds as follows:

s′i = S-box(si) for 0 ≤ i < 4.

The MixColumns step is a bytewise operation that takes 4 bytes s0, s1, s2, s3 as
input. The MixColumns step is given by the AES MDS matrix multiplication
defined over GF(28) as follows:⎡⎢⎢⎣

s′0
s′1
s′2
s′3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤⎥⎥⎦
⎡⎢⎢⎣

s0

s1

s2

s3

⎤⎥⎥⎦ .

For a 64-bit input s = s0 ‖ s1 ‖ s2 ‖ s3 ‖ s4 ‖ s5 ‖ s6 ‖ s7, the function R(s) is
defined as follows: R(s) = s4 ‖ s5 ‖ s2 ‖ s3 ‖ s0 ‖ s1 ‖ s6 ‖ s7.

One round of the key scheduling function consists of the following two steps:
Firstly, it generates the r-th round-key K(r) = k

(r)
0 .

Secondly, it updates the intermediate state in the following manner:

k
(r+1)
0 =k

(r)
3 ⊕ Q(C(r) ⊕ k

(r)
2 ), k

(r+1)
1 =k

(r)
0 , k

(r+1)
2 =k

(r)
1 , k

(r+1)
3 =k

(r)
2 ,

where the 32-bit round constants C(r) are defined in Appendix A.

4 Provable Security

In this section, it is assumed that Lesamnta-LW consists of a block cipher with
its key length n and its block length 2n; specifically, n = 128.

4.1 Collision Resistance

The collision resistance of Lesamnta-LW can be proved in the ideal cipher model
using the technique by Black et al. in [10]. Lesamnta-LW has a claimed security
level of at least 2120 block-cipher operations against collision attacks.

Definition. Let BC(κ, ν) be the set of all (κ, ν) block ciphers, where κ and ν
represents their key size and block size, respectively. Let H [E] be a hash function
using a block cipher E. Let A be an adversary trying to find a collision for H [E].
The col-advantage of A against H [E], Advcol

H[E](A), is given by

Pr
[
AE = (M, M ′) ∧ M �= M ′ ∧ H [E](M) = H [E](M ′) |E $← BC(κ, ν)

]
,

where the probabilities are taken over the coin tosses by A and the uniform
distribution on BC(κ, ν). H [E] is said to be collision-resistant if Advcol

H[E](A) is
negligible for any efficient A.
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Result. The following theorem gives an upper bound on the probability of find-
ing a collision of Lesamnta-LW in the ideal cipher model. A proof is given in
Appendix B.

Theorem 1. Let A be a col-adversary against Lesamnta-LW asking at most q
queries to E. Then, for n ≥ 4 and q ≥ 1,

Advcol
LW(A) ≤ 2nnq

22n − q
+

q2

22n − q
+

q

n! · 2n
.

4.2 (Second) Preimage Resistance

The preimage resistance of Lesamnta-LW can also be proved in the ideal cipher
model using the same technique. Since the compression function is invertible,
the Lesamnta-LW hash function also has a claimed security level of at least 2120

block-cipher operations against (second-)preimage attacks. On the other hand,
Lesamnta-LW cannot provide security larger than 2128 because of the LW1 mode.

We note that a second-preimage attack such as the Kelsey-Schneier attack [30]
is ineffective in attacking Lesamnta-LW because of the designed security level.
For example, consider the Kelsey-Schneier attack using a (264 − 1)-bit message,
which is the maximum acceptable length of a message. Then, the complexity
of the attack is about 2192. However, Lesamnta-LW provides at most the 2128

security level against preimage-finding attacks.

4.3 Keyed Hashing Mode

Key-Prefix Mode. The key-prefix (KP) mode is a method to construct a
pseudorandom function (PRF) from a given hash function. It simply feeds K‖M
to the hash function as an input, where K is a secret key and M is a message
input. This mode uses a hash function as a black box. In this sense, it is similar
to HMAC.

The KP mode of Lesamnta-LW with the first half of the output chopped off
resists any distinguishing attack that requires much fewer than 2128 queries if
the underlying block cipher is a pseudorandom permutation (PRP) and it also
has a mild security property given later.

Definition. Let F(X ,Y) be a set of all functions from X to Y. Let F : K×X → Y
be a keyed function from X to Y, where K is its key space. Let A be a probabilistic
algorithm which has oracle access to a function from X to Y and outputs 0 or
1. The prf-advantage of A against F is given by

Advprf
F (A) =

∣∣∣Pr[AFK = 1 |K $← K] − Pr[Aρ = 1 | ρ $← F(X ,Y)]
∣∣∣ ,

where the probabilities are taken over the coin tosses by A and the uniform
distributions on K and F(X ,Y). F is called a PRF if Advprf

F (A) is negligible for
any efficient A.
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Let P(X ) be a set of all permutations on X . Let F : K ×X → X be a keyed
permutation on X . Then, the prp-advantage of A against F is given by

Advprp
F (A) =

∣∣∣Pr[AFK = 1 |K $← K] − Pr[Aρ = 1 | ρ $← P(X )]
∣∣∣ .

F is called a PRP if Advprp
F (A) is negligible for any efficient A.

Result. Let h be the Lesamnta-LW compression function: h(H(i−1), M (i)) =
E(H(i−1)

0 , M (i)‖H(i−1)
1 ). Let B = {0, 1}n. Let G1[E] : B × B → B2 be a keyed

function such that G1[E](K, M) = h(h(IV, K), M), where K ∈ B and M ∈
B. Let G2[E] : B2 × B → B2 be a keyed function such that G2[E](K ′, M) =
h(K ′, M), where K ′ ∈ B2 and M ∈ B.

Theorem 2. Let A be a prf-adversary against the KP mode of Lesamnta-LW.
Suppose that A runs in time at most t, and makes at most q queries, and each
query has at most � message blocks. Then, there exist a prp-adversary B1 against
E and an adversary B2 against G1[E] such that

Advprf
KP-LW(A) ≤ �q · Advprp

E (B1) + AdvG2[E]
G1[E](B2) +

�q(q − 1)
22n+1

.

where

AdvG2[E]
G1[E](B2) =

∣∣∣Pr[BG1[E](K,·)
2 = 1 |K $← B] − Pr[BG2[E](K,·)

2 = 1 |K $← B2]
∣∣∣ .

Both B1 and B2 make at most q queries and run in time at most t + O(�qTE),
where TE represents the time required to compute E.

G2[E] is a PRF if E is a PRP. Thus, AdvG2[E]
G1[E](B2) is negligible for any efficient

B2 if E is a PRP and G1[E] is a PRF.
The proof of Theorem 2 is omitted due to the page limit.

HMAC. Lesamnta-LW supports HMAC specified in FIPS PUB 198-1:

HMAC(K, M) = H((K ⊕ opad)‖H((K ⊕ ipad)‖M)) ,

where H represents Lesamnta-LW and K is a secret key. The security of HMAC
using Lesamnta-LW can also be reduced to the security of the underlying block
cipher. HMAC using Lesamnta-LW resists any distinguishing attack that re-
quires much fewer than 2128 queries if the underlying block cipher E is a PRP,
and G1[E]((K ⊕ opad)‖·) and G1[E]((K ⊕ ipad)‖·) are independent PRFs.

5 Preliminary Analysis

We evaluate the security of Lesamnta-LW and the underlying block cipher against
all relevant attacks. In the analysis of the block cipher, the attacker can have at
most 2128 complexity because of the key length (128 bits) of the cipher rather than
the plaintext length (256 bits). The descriptions of our analysis regarding higher
order differential attack, interpolation attack, slide attack, and related-key attack
are given in Appendix C.
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5.1 Differential and Linear Attacks on Block Ciphers

We explain our method of evaluating the security against differential cryptanal-
ysis [8]. We can apply a similar method to linear cryptanalysis [35] because of
its duality to differential cryptanalysis [16]. In order to do this, we compute up-
per bounds on the probabilities of differential characteristics with the following
method:

– Make abstraction of the exact differences used in these characteristics and
then just consider patterns of active S-boxes.

– Perform experiments with the Viterbi algorithm to compute lower bounds on
the minimum number of the active S-boxes, considering the MDS property.

We can observe that the minimum number of the active S-boxes for 24 rounds
is 24. Therefore the probabilities of differential characteristics of 24 rounds of
Lesamnta-LW are upperbounded by 2−144 because the maximum differential
probability of AES S-box is 2−6. As a result, it is very unlikely to apply differ-
ential/linear attacks to the full Lesamnta-LW.

5.2 Collision Attacks Using the Message Modification

Wang et al. [46,47] showed methods for finding collisions for widely used hash
functions such as SHA-1. Their approach is based on the differential cryptanal-
ysis and the message modification technique which can be used to reduce the
attack complexity by using degrees of freedom in the message block space.

In the case of attacks on Lesamnta-LW using the above differential collision
finding methods, the attacker has to use messages of at least two blocks because
the message block is shorter than the chaining variable. Using multiple block
messages, he has some control over 384 bits of the input to the compression
function. However, out of these 384 bits, the only input bits over which he can
have control in a deterministic way are 128 bits, which correspond to the message
block input. He can have control over the remaining 256 bits corresponding to
the chaining variable input only in a probabilistic way. On the other hand, we
can show that the maximum differential characteristic probabilities for 44 rounds
of the mixing function and for 24 rounds of the key scheduling function are less
than 2−256 and 2−128 in the same way we did in Sect 5.1. Their methods for
finding collisions require a differential characteristic with a large probability and
a large degree of freedom in the message block space. Considering the limited
number of bits he can use in a deterministic way and differential characteristics
he can find which have a very small probability, we expect that it is very unlikely
to apply the differential collision finding methods to Lesamnta-LW.

5.3 Attacks on the Compression Function of Lesamnta

Recently, attacks [13] on the compression function of Lesamnta [25] have been
reported. Their main idea is to find some structure in round constants. More
specifically, the following properties in Lesamnta are exploited:
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– The round constants consisting of two words are word-symmetric up to the
least significant bit.

– In one round of the key scheduling function, if the two halves of the input
to non-linear function are swapped, then the output is also swapped.

In the case of Lesamnta-LW, the round constants are generated from an LFSR.
Therefore, it is difficult to find in them a structure useful for these attacks.
The non-linear function Q in the key scheduling function does not have this
symmetry due to the linear diffusion layer which uses a single MDS matrix
rather than two. On the other hand, the non-linear function G in the mixing
function has this symmetry but this is destroyed by the asymmetry introduced
from the fact that only 32 bits of round key are added to the 64-bit input to G.
Hence, the second property does not hold for Lesamnta-LW. We conclude from
the above discussions that these attacks are not relevant to Lesamnta-LW.

5.4 Collision Attack on the 11-Round Lesamnta-LW

We show how to construct collisions for 11-rounds of Lesamnta-LW by applying
the method used in collision attacks on Lesamnta in [25]. Now suppose that
we can find 296 messages m∗ such that all message blocks produce the same
value in the lowest 64-bit word of the chaining variable, H3. Then, we know that
due to the birthday paradox two of these message blocks also lead to the same
values H0, H1, and H2. In other words, we have constructed a collision for the
compression function.

Our attack uses the characteristic for 11 rounds given in Table 1. Note that
the symbol ? denotes an arbitrary difference and Δ denotes a message block
difference.

Table 1. Characteristic for the collision attack

Round message block 0 1 2 3 4 5 6 7 8 9 10

Δ − − ? Δ − ? ? Δ ? ? ?
Inputs − Δ − − ? Δ − ? ? Δ ? ?

− − Δ − − ? Δ − ? ? Δ ?
− − − Δ − − ? Δ − ? ? Δ

It is easy to see that this characteristic can be used to fix 64 bits of the output
of the compression function. It can be summarized as follows.

1. Select an arbitary 64-bit value d.
2. Choose a random message block m = M0‖M1‖M2‖M3 and compute H =

H0‖H1‖H2‖H3. Check if H3 = d for a predefined value d.
3. If H3 �= d, then adjust Δ = H3 ⊕ d accordingly.
4. Now we have to construct m∗ by adjusting m such that H3 = d as follows:

m∗ = (M0 ⊕ Δ)‖M1‖M2‖M3 .
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Hence, we can find a message block m∗ such that H3 = d for an arbitrary value of
d with a complexity of about 2 compression function evaluations. Therefore, we
can find a collision for the 11 rounds of the compression function (and the hash
function) of Lesamnta-LW with a complexity of about 297 compression function
evaluations.

6 Implementation Results

6.1 Low-Area ASIC Implementation Results

We have estimated speed and gate count of a hardware architecture of Lesamnta-
LW, MAME, and SHA-256. In Table 2, our results1 are compared to known
results on other hash functions such as BLAKE-32 [1], ECHO-224/256 [4],
Fugue-256 [24], Grφstl-224/256 [23], Luffa-224/256 [15], and Skein [21]. It is
clear that Lesamnta-LW achieves very small implementation and it is substan-
tially smaller than most SHA-3 Round-2 candidates. For designs with a com-
parable size, Lesamnta-LW offers a reasonably fast speed for the same clock
frequency.

Table 2. Our ASIC implementation estimates of Lesamnta-LW, MAME, and SHA-
256 with known results on other hash functions. For Imple. Scope, Full means a fully
autonomous implementation including the complete functionality of a hash function
while Core means an implementation of core functionality comprising only important
parts of a hash function such as the compression function. The digest size of SHA-3
candidates is omitted.

Algorithm Impl. Logic Area Throughput Clock Throughput/ Throughput
Scope Process (Kgates) (Mbit/s) (MHz) Area @30MHz

(Mbit/s)

BLAKE [44] Full 0.35 μm 25.57 15.4 31.25 0.60 14.78
ECHO [34] Full 0.13 μm 82.8 373 66.6 4.50 168.02
Fugue [24] Full 90 nm 59.22 2000 500 33.77 120.00
Grφstl[44] Full 0.35 μm 14.62 145.9 55.87 99.79 78.34
Luffa [31] Full 0.13 μm 18.26 2461 250 134.78 295.32
Skein [44] Full 0.35 μm 12.89 19.8 80 1.54 7.43

MAME [45] Core 0.18 μm 8.1 440 333 54.32 39.64
SHA-256 [20] Full 0.35 μm 10.9 22.5 50 2.06 13.5

T-Quark×16 [2] Full 0.18 μm 4.64 0.05 0.1 0.01 15

Lesamnta-LW Full 90 nm 8.24 125.55 188.3 15.31 20.00
MAME Full 90 nm 12.95 1164.48 436.68 89.9 80.0
SHA-256 Full 90 nm 14.6 1766 220.8 120.0 239.9

1 Note that the values in Throughput/Area and Throughput@30MHz could con-
siderably vary, depending on the technology (logic process). Hence implementa-
tion comparisons between these algorithms using the same technology will be
welcome.
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6.2 Software Implementation Results

For software, Lesamnta-LW is targeted at RAM requirement on the 8-bit CPU
employed in smart devices. In low-cost 8-bit CPU applications, hash functions
should require limited resources, memory and computation time. We argue that
the most important constraint for hash functions is basically the limited RAM
which could be critical in many cases.

8-bit CPU. We have estimated RAM requirements of SHA-3 candidates, SHA-
256, and Lesamnta-LW. Our results are shown in Table 3. It is clear that
Lesamnta-LW achieves very small implementation and substantially smaller than
most SHA-3 Round-2 candidates.

We have estimated speed of Lesamnta-LW and SHA-256 on an 8-bit CPU
Renesas H8 in assembly language. Our results show that it takes 66434 cycles
for Lesamnta-LW to process a one-block message of 128-bit length, which is
about 20% faster than SHA-256. However, as for the bulk-speed, our Lesamnta-
LW implementation requiring 50 bytes of RAM runs at 1650.9 cycles/byte which,
60% slower than our SHA-256 implementation requiring 330 bytes of RAM.

Table 3. Our estimates of RAM requirements on low-cost 8-bit CPUs

Algorithm RAM(bytes) Algorithm RAM(bytes)

BLAKE[1] 96 JH[49] 128
BMW[28] 192 Keccak[6] 200

CubeHash[5] 128 Luffa[15] 96
ECHO[4] 320 Shabal[17] 176
Fugue[24] 120 SHAvite-3[7] 128
Grøstl[23] 128 SIMD[33] 384
Hamsi[26] 96 Skein[21] 96

Lesamnta-LW 50 MAME[45] 64

32-bit CPU. We have estimated speed of Lesamnta-LW and SHA-256 on the
Intel Core i5 processor which offers instructions for fast encryption of AES.
Lesamnta-LW runs at 39.5 cycles/byte in assembly language while SHA-256
runs at 26.9 cycles/byte in ANSI C. Our results show that Lesamnta-LW is
reasonably fast on this platform.

7 Conclusion

A new lightweight 256-bit hash function Lesamnta-LW has been proposed in this
paper. The security of Lesamnta-LW is reduced to that of the underlying block
cipher. Lesamnta-LW achieves a very small hardware/software implementation.
Moreover, Lesamnta-LW is efficient on short messages on 8-bit CPUs.
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A Lesamnta-LW Example

Initial Hash Value and Round Constants. For Lesamnta-LW, the initial
hash value H(0) is H

(0)
0 ‖H(0)

1 ‖H(0)
2 ‖H(0)

3 ‖H(0)
4 ‖H(0)

5 ‖H(0)
6 ‖H(0)

7 , where each H
(0)
i

is a 32-bit word 00000256 in hex.
The round constants of sixty-four 32-bit words and the algorithm to generate

them are presented in Fig. 3. The algorithm is based on the linear feedback shift
register (LFSR) of the following primitive polynomial:

g(x) = x32 + x31 + x29 + x28 + x26 + x25 + x24 + x23 + x20

+ x19 + x17 + x16 + x15 + x12 + x11 + x8 + 1.
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a432337f 945e1f8f 92539a11 24b90062

6971c64c d6e3f449 2c2f0da9 33769295

eb506df2 708cebfe b83ab7bf 97df0f17

9223b802 7fa29140 0ff45228 01fe8a45

ed016ee8 1da02ddd ee8aba1b 46c4c223

53cd0d24 d1b46d24 c1fb4124 c3f2a4a4

c3b39814 c3bbbf82 759191b0 0eb23236

b7fd6c86 a0d48750 141a90ea 6f65b45d

e0d2092b 470fd445 e5df4528 1cbbe8a5

eea9c2b4 c618f4d6 aee8345a 783be0cb

5412e979 3c712e0f 87567c21 2619bca4

df0efb14 c02c13e2 75e3643c d571a007

9a766de0 134ecdbc d9a41537 9becdb46

a556b1a8 14aad635 efabe566 abde566c

ceb6064d f4e87f69 286e7ccd e8337039

2bf51d27 85a6fa44 cb7913c8 196f2279

ConstantGenerator(word C[64])

begin

word c;

c = ffffffff; /*in hexadecimal*/

for i = 0 to (64 * 3) - 1

/* Galois LFSR */

if c & 00000001 == 00000001

c = (c >> 1) ^ dbcdcc80;

else

c = c >> 1;

end if

if i mod 3 == 0

C[i/3] = c;

end if

end for

end

Fig. 3. The round constants C(i)s ( in hex ) and a pseudocode for generating them

Let the message M be the 24-bit (l = 24) ASCII string “abc”, which is
equivalent to the following binary string: 01100001 01100010 01100011.

Then the resulting 256-bit message digest is

2558c1d3 7f9f307b e3cddad4 a23c8654
518f6079 7eb491e7 3758727d fc83de65 .

B Proof of Theorem 1

Our analysis uses the following result by Suzuki et al. [43] on multi-collisions.

Proposition 1. Suppose that there are q balls and t buckets and that the balls
are thrown one by one at random into the buckets. For 2 ≤ s ≤ q, let Col(t, q, s)
be the event that there exists at least one bucket that contains at least s balls.
Then,

Pr[Col(t, q, s)] ≤ 1
ts−1

(
q
s

)
.

Corollary 1. Let t = 2s and q = 2s−2. Then, for s ≥ 4,

Pr[Col(2s, 2s−2, s)] ≤ 1
s! · 2s

.

Proof. If s ≥ 4, then 2 ≤ s ≤ 2s−2. From Proposition 1,

Pr[Col(2s, 2s−2, s)] ≤ 1
(2s)s−1

(
2s−2

s

)
≤ 1

2s(s−1)

(2s−2)s

s!
=

1
s! · 2s

.

�
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Proof of Theorem 1. For 1 ≤ i ≤ q, let (ti, ki, wi‖xi, yi‖zi) be a tuple such that
E(ki, wi‖xi) = yi‖zi and ti ∈ {e, d} obtained by the i-th query. ti represents the
type of the i-th query: encryption (e) or decryption (d). Let G1, G2, . . . , Gq be
a sequence of directed graphs such that Gi = (Vi, Li), where

– V1 = {k1‖x1, y1‖z1}, L1 = Li ∪ {(k1‖x1, y1‖z1)}, and
– Vi = Vi−1 ∪ {ki‖xi, yi‖zi}, Li = Li−1 ∪ {(ki‖xi, yi‖zi)} for 2 ≤ i ≤ q.

Each edge (ki‖xi, yi‖zi) is labeled by (ti, wi). Notice that yi‖zi = h(ki‖xi, wi),
where h is the Lesamnta-LW compression funcuion specified in Sect. 2.2.

Suppose that the adversary A first finds a collision of Lesamnta-LW with the
i-th query. Then, there must be a path in Gi from IV0‖IV1 to some colliding
output, which does not exist in G1, . . . , Gi−1. This path also contains the nodes
ki‖xi and yi‖zi, and the edge (ti, wi).

If ti = e, that is, the i-th query is an encryption query, then there must be
an event such that yi‖zi ∈ {yj‖zj | 1 ≤ j ≤ i − 1} ∪ {kj‖xj | 1 ≤ j ≤ i − 1} ∪
{IV0‖IV1}. If ti = d, then there must be an event such that ki‖xi ∈ {yj‖zj | 1 ≤
j ≤ i − 1} ∪ {IV0‖IV1}.

For the case where ti = d and ki‖xi ∈ {yj‖zj | 1 ≤ j ≤ i − 1}, let us look

into the new path in Gi mentioned above. Let IV0‖IV1
(tj1 ,Mj1 )−→ vj1

(tj2 ,Mj2 )−→
· · · (tjl−1 ,Mjl−1 )−→ vjl−1

(tjl
,Mjl

)−→ vjl
be the prefix of the path, where vjl−1 = ki‖xi,

(tjl
, Mjl

) = (d, wi) and vjl
= yi‖zi. We start from vjl

and go back toward
IV0‖IV1 until we first find an edge (e, Mjk

) or reach the node IV0‖IV1 without
finding such an edge. Suppose that we reach IV0‖IV1. Then, it implies that
there is an event such that ti′ = d and ki′‖xi′ = IV0‖IV1 for some i′ such that
1 ≤ i′ < i. On the other hand, suppose that we find an edge (e, Mjk

). Then, it
implies that there is an event such that ti′ = e and yi′‖zi′ ∈ {kj‖xj | 1 ≤ j < i′}
for some i′ such that 1 < i′ < i, or an event such that ti′ = d and ki′‖xi′ ∈
{yj‖zj | 1 ≤ j < i′ ∧ tj = e} for some i′ such that 1 < i′ ≤ i.

From the discussions above, if A finds a collision with at most q queries, then
it implies that there must be at least one of the following events for some i such
that 1 ≤ i ≤ q:

Eai ti = e and yi‖zi = IV0‖IV1,
Ebi ti = e and yi‖zi ∈ {yj‖zj | 1 ≤ j ≤ i − 1} ∪ {kj‖xj | 1 ≤ j ≤ i − 1},
Eci ti = d and ki‖xi = IV0‖IV1,
Edi ti = d and ki‖xi ∈ {yj‖zj | 1 ≤ j < i ∧ tj = e}.

It is easy to see that

Pr[Eai] ≤ 1
22n − (i − 1)

, Pr[Ebi] ≤ 2(i − 1)
22n − (i − 1)

, Pr[Eci] ≤ 2n

22n − (i − 1)
.

For Edi, the probability of multicollision on yj should be taken into consideration.
From Corollary 1, for 1 ≤ q ≤ 2n−2,

Pr[Edi] ≤ (n − 1)2n

22n − (i − 1)
+

1
n! · 2n

.
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Precisely speaking, the distribution of yj‖zj is not uniform on {0, 1}2n since
E is a keyed permutation. However, since Pr[yj ∈ {y1, . . . , yj−1]}] ≤ Pr[yj �∈
{y1, . . . , yj−1]}], the probability of multicollision is smaller in this case.

Thus, for 1 ≤ q ≤ 2n−2,

Advcol
C[E]+(A) ≤

q∑
i=1

(Pr[Eai] + Pr[Ebi] + Pr[Eci] + Pr[Edi])

≤ 2nnq

22n − q
+

q2

22n − q
+

q

n! · 2n
.

The upper bound exceeds 1 for n ≥ 4 and q > 2n−2. �

C Other Attacks on Block Ciphers

C.1 Higher Order Differential and Interpolation Attack

The higher order differential attack [32] can be mounted if the bits in the in-
termediate state of the cipher are expressed by Boolean polynomials of degree
most d which is a reasonably small value. In the case of Lesamnta-LW, we found
that every output bit of the S-box can be expressed as a Boolean polynomial of
degree 7 in terms of input bits. Our experiments confirmed that the degree of
such polynomials with 19 rounds reaches to the required degree 256. Therefore,
we expect that Lesamnta-LW is secure against higher order differential attacks.

The interpolation attack [27] can be mounted if the number of terms in a
polynomial expression for a cipher over some field is reasonably small. Lesamnta-
LW uses the AES S-box which can be expressed as a polynomial of degree 254
over GF(28). Our experiments have confirmed that after the 16th round, each
byte in the intermediate state of the mixing function depends on all the 32
variables while this is not the case just after the 15 rounds. We expect that the
number of coefficients grows fast after the 16th round due to the high degree of
the S-box and that the full Lesamnta-LW is secure against interpolation attacks.

C.2 Slide and Related-Key Attacks

The round constants introducing randomness into the key scheduling function
preclude slide attacks [9] which exploit the similarity between rounds.

Regarding the related-key attacks, we can show that the maximum differential
characteristic probabilities for 24 rounds of the key scheduling function are less
than 2−128 as we did in Sect 5.1. Hence, we expect that it is unlikely to apply
related-key attacks to Lesamnta-LW.
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– Renesas R© and H8 R© are registered trademarks of Renesas Technology Cor-
poration.
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Abstract. Pairings in elliptic curve cryptography are functions which
map a pair of elliptic curve points to a non-zero element of a finite field.
In recent years, many useful cryptographic protocols based on pairings
have been proposed. The fast implementations of pairings have become
a subject of active research areas in cryptology.

In this paper, we give the geometric interpretation of the group law on
Hessian curves. Furthermore, we propose the first algorithm for comput-
ing the Tate pairing on elliptic curves in Hessian form. Analysis indicates
that it is faster than all algorithms of Tate pairing computation known
so far for Weierstrass and Edwards curves excepted for the very special
elliptic curves with a4 = 0, a6 = b2.

Keywords: Elliptic curve, Tate Paring, Hessian form.

1 Introduction

Pairings on elliptic curves are currently of great interest due to their applications
in a number of cryptographic protocols such as identity-based encryption [3],
group signatures [4], short signatures [12] and the tripartite Diffie Hellman [13].
For implementing such protocols, it is essential to have an efficient algorithm of
pairing computation.

Miller [16,17] proposed the first algorithm for iteratively computing the Weil
and Tate pairings. Various improvements were published in [5,6,8,11]. In 2009,
Arène et.al. [1] first use the geometric interpretation of the group law to show
how to compute the Tate pairing on twisted Edwards curves. Their algorithm
is faster than all previously proposed formulas for pairings on Edwards curves
and competitive with all published formulas for pairing computation on Weier-
strass curves. However, to the best of our knowledge, no formulas for pairing
computation on Hessian curves are proposed.

The use of Hessian curves in cryptology are explained by [7], [14] and [18].
Smart [18] showed that some sample curves from IEEE, SECG standards can be
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transformed into Hessian form and the point operation for Hessian curves can be
implemented in a highly parallel way. As a result, the Hessian curves can provide
around a 40 percent performance improvement over the Weierstrass curves [18].
Furthermore, Joye and Quisquater [14] suggest that the unified formula for the
addition of points on Hessian curves can be used as a means for preventing side
channel attack.

In this paper, we consider the problems on Hessian curves. One of our contri-
bution is giving the geometric interpretation of the group law on Hessian curves.
As far as we know, this is the first geometric interpretation. Another contribution
is that we develop explicit formulas for computing pairings on Hessian curves.
Excepted for the very special elliptic curves with a4 = 0, a6 = b2, our formulas
are fastest for Tate pairing computation up to date.

2 Preliminaries

Let Fp be a finite field with p elements where p > 2 is prime. Consider positive
integer r such that r is relative prime to the characteristic of the field Fp. Denote
the embedding degree by k, i.e. the smallest positive integer such that r divides
pk − 1. The elliptic curve in Weierstrass form is defined as

E : y2 = x3 + ax + b,

where a, b ∈ Fp, 4a3 + 27b2 �= 0 ∈ Fp. Let P be a point in E(Fpk)[r] and
Q ∈ E(Fpk ). Define fi,P to be a function on the elliptic curve with its divisor
div(fi,P ) = i(P )−(iP )−(i−1)(O), i ∈ Z. Consider the divisor D = (Q+R)−(R)
with R being a random point in E(Fpk ) such that D is coprime with (P )− (O).
Then the reduced Tate pairing [9] is a map

er : E(Fpk )[r]× E(Fpk )/rE(Fpk )→ F
∗
pk/(F∗

pk)r;

(P, Q) �→ (fr,P (D))(p
k−1)/r.

If the function fr,P in the definition is normalized, then one can simply work
with the point Q , i.e. the reduced Tate pairing is:

er(P, Q) = (fr,P (Q))(p
k−1)/r.

Let giP,jP be the function such that div(giP,jP ) = (iP )+(jP )−((i+j)P )−(O),
then giP,jP = liP,jP /v(i+j)P , where liP,jP is the equation of the line through iP ,
jP and v(i+j)P is the equation of the vertical line through (i + j)P . From the
definition of fr,P , we can see that

div(fi+j,P ) = (i + j)(P )− ((i + j)P )− (i + j − 1)(O)
= i(P )− (iP )− (i− 1)(O)
+ j(P )− (jP )− (j − 1)(O) (1)
+ (iP ) + (jP )− ((i + j)P )− (O)
= div(fi,P ) + div(fj,P ) + div(giP,jP ).
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Therefore fi+j,P = fi,P ·fj,P ·giP,jP . This leads to the following algorithm which
computes the Tate pairing [16,17].

Algorithm 1. Miller’s algorithm.
Input: integer r =

∑l
i=0 bi2i with bi ∈ {0, 1}, bl = 1

and P ∈ E(Fp)[r], Q ∈ E(Fpk )[r].

Output: f = f
(pk−1)/r
r,P .

1. f ← 1, R← P ;
2. for i← l− 1 down to 0 do

f ← f2 · gR,R(Q), R← 2R;
if bi = 1 then f ← f · gR,P (Q), R← R + P ;

3. Return f ← f (pk−1)/r.

3 Geometric Interpretation of the Group Law on Hessian
Curves

An elliptic curve in Hessian form is defined by

H : X3 + Y 3 + Z3 = 3dXY Z,

where d ∈ K with d3 �= 1. The identity element is represented by (−1 : 1 : 0).
The negative of (X : Y : Z) is (Y : X : Z). Birational maps between Weierstrass
and Hessian curves can be found in [2]. The addition formulas are given by
(X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) where

X3 = 2Y 2
1 X2Z2 − 2X1Z1Y

2
2 ,

Y3 = 2X2
1Y2Z2 − 2Y1Z1X

2
2 ,

Z3 = 2Z2
1X2Y2 − 2X1Y1Z

2
2 .

The doubling formulas are given by

X3 = (2X1Y1 − 2Y1Z1)(2X1Z1 + 2(X2
1 + Z2

1 )),
Y3 = (2X1Z1 − 2X1Y1)(2Y1Z1 + 2(Y 2

1 + Z2
1)),

Z3 = (2Y1Z1 − 2X1Z1)(2X1Y1 + 2(X2
1 + Y 2

1 )).

Suppose the computational costs of a multiplication, a squaring in the field K
are denoted by m,s. The point addition algorithms in [7] and [14] require 12m,
while point doubling costs 3m+6s [10].

Theorem 1. Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) be two points on
H(K). Define P3 = P1 + P2. Let l1 be the line passing through P1 and P2 while
l2 be the line passing through P3 and −P3. Then we have

div(l1/l2) = (P1) + (P2)− (P3)− (O).
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Proof. Let l1 : cXX + cY Y + cZZ = 0 be the line passing through P1 and P2,
where cX , cY , cZ ∈ K.

If P1 �= P2, then we obtain two linear equations in cX , cY and cZ

cXX1 + cY Y1 + cZZ1 = 0,

cXX2 + cY Y2 + cZZ2 = 0.

It follows that

cX =
∣∣∣∣Y1 Z1

Y2 Z2

∣∣∣∣ = Y1Z2 − Z1Y2,

cY =
∣∣∣∣Z1 X1

Z2 X2

∣∣∣∣ = Z1X2 −X1Z2,

cZ =
∣∣∣∣X1 Y1

X2 Y2

∣∣∣∣ = X1Y2 − Y1X2.

Recall that the negative point of P3 = (X3 : Y3 : Z3) is −P3 = (Y3 : X3 : Z3).
Consider the equation

cXY3 + cY X3 + cZZ3

= (Y1Z2 − Z1Y2)Y3 + (Z1X2 −X1Z2)X3 + (X1Y2 − Y1X2)Z3

= (Y1Z2 − Z1Y2)(X2
1Y2Z2 − Y1Z1X

2
2 ) + (Z1X2 −X1Z2)(Y 2

1 X2Z2 −X1Z1Y
2
2 )

+(X1Y2 − Y1X2)(Z2
1X2Y2 −X1Y1Z

2
2)

= 0.

This implies −P3 lies on the line l1. Therefore

div(l1) = (P1) + (P2) + (−P3)− 3(O). (2)

Let l2 be the line passing through P3 = (X3 : Y3 : Z3) and −P3 = (Y3 : X3 : Z3).
The equation of l2 can be easily get that

(Y3Z3 −X3Z3)(X + Y ) + (X2
3 − Y 2

3 )Z = 0.

Since the identity element is O = (−1 : 1 : 0), it follows that the point O also
lies on the line l2. Therefore

div(l2) = (P3) + (−P3)− 2(O). (3)

Combine Eq.(2) and Eq.(3), we have

div(l1/l2) = (P1) + (P2)− (P3)− (O).

In the case of P1 = P2. Let l1 be the line tangent to H(K) at P1 and it can get
that l1 : ∂E

∂X1
X + ∂E

∂Y1
Y + ∂E

∂Z1
Z = 0. Using the similar method, we can also get

div(l1/l2) = (P1) + (P2)− (P3)− (O). ��
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By Theorem 1, we can know the geometric interpretation of the group law on
Hessian curves.

Suppose P, Q are two points on a Hessian curve. The sum R, of P and Q,
is defined as follows. First draw a line through P and Q which intersects the
Hessian curve at a third point. Then R is the reflection of this point about the
line y = x. Fig. 1 depicts the addition on x3 + y3 + 1 = 7xy over real field.

The double R, of P, is defined as follows. First draw the tangent line to the
curve at P . The line intersects the curve at a second point. Then R is the
reflection of this point about the line y = x.

Fig. 1. Point addition on x3 + y3 + 1 = 7xy over R

4 Formulas for Pairings on Hessian Curves

Similarly to Eq. (1), using Theorem 1, we can prove the relation

fi+j,P = fi,P · fj,P · giP,jP

on Hessian curves. This means pairings on Hessian curves can be computed by
Miller’s algorithm [17].

In most cryptographic protocols, P can be chosen such that < P > is the
unique subgroup of order r in H(Fp). Suppose the embedding degree k is even,
then the field extension Fpk is usually constructed via a quadratic subfield as
Fpk = Fpk/2(α), with α2 = δ ∈ Fpk/2 . Since k is the smallest positive integer
such that r|(pk − 1), it follows that (pk − 1)/r is a multiple of pu − 1 for some
proper divisor u of k. So all elements of F

∗
pu map to 1 when raised to the power

(pk − 1)/r.
Without loss of generality, we suppose d ∈ Fpk/2 , and select a ∈ Fpk/2 ran-

domly. Repeat a = a + 1 until ∃b ∈ Fpk/2 such that (a + bα)3 + (a− bα)3 + 1 =
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3d(a2 − b2α2) and r dividing the order of Q = (a + bα : a − bα : 1) ∈ H(Fpk).
Note that ∀u|k, Q �∈ H(Fpu). The point Q constructed in this way can be ap-
plied to identity based cryptosystems [3]. Even if we restrict the point Q as
(a+ bα : a− bα : 1), it does not affect the security of the ID-based protocol since
the point Q is a public point.

To describe clearly, in Algorithm 1, we call f ← f · l1(Q)
l2(Q) , R← R+P addition

and f ← f2 · l1(Q)
l2(Q) , R ← 2R is referred as doubling. Since l2(Q) = (Y3Z3 −

X3Z3)(X + Y ) + (X2
3 −Y 2

3 )Z = (Y3Z3−X3Z3)2a + X2
3 −Y 2

3 ∈ Fpk/2 , it follows
that l2(Q)(p

k−1)/r = 1. Therefore we only need to consider numerator l1(Q) in
additions and doublings.

4.1 Addition

Let R = (X1 : Y1 : Z1) and P = (X2 : Y2 : Z2) be two points on H(Fp).

f · l1(Q)
= f · [cX(a + bα) + cY (a− bα) + cZ ]
= f · [(cX + cY )a + (cX − cY )bα + cZ ]

where cX = Y1Z2−Z1Y2, cY = Z1X2−X1Z2, cZ = X1Y2−Y1X2. So the explicit
formulas for computing f ← f · l1(Q)

l2(Q) , R← R + P are given as follows:
A = Y1 ·Z2, B = Z1 · Y2, C = Z1 ·X2, D = X1 ·Z2, E = X1 · Y2, F = Y1 ·X2,

cX = A−B, cY = C −D, cZ = E −F , f = f · [(cX + cY )a + (cX − cY )bα + cZ ],
X3 = A · F −B ·E, Y3 = D ·E − C · F , Z3 = B · C −A ·D.

The cost of these formulas is 1M+km+12m, where M denotes the cost of a
multiplication in Fpk while m is the cost of a multiplication in Fp. Multiplications
by a, b ∈ Fpk/2 need (k/2)m each. If the base point P has Z2 = 1, the above
costs reduce to 1M+km+10m.

4.2 Doubling

Let R = (X1 : Y1 : Z1) be a point on H(Fp). Since the result of f2 · l1(Q)
l2(Q) will not

change if the numerator and the denominator are multiplied by 2 simultaneously,
we can consider:

f2 · 2l1(Q)
= f2 · 2[(cX + cY )a + (cX − cY )bα + cZ ]

where cX = 3X2
1 −3dY1Z1, cY = 3Y 2

1 −3dX1Z1, cZ = 3Z2
1 −3dX1Y1. Hence the

explicit formulas for computing f ← f2 · l1(Q), R← 2R are given as follows:
A = X2

1 , B = Y 2
1 , C = Z2

1 , D = (Y1 +Z1)2−B−C, E = (X1 +Z1)2−A−C,
F = (X1 + Y1)2 −A−B, 2cX = 6A− 3dD, 2cY = 6B − 3dE, 2cZ = 6C − 3dF ,
f = f2 · [(2cX + 2cY )a + (2cX − 2cY )bα + 2cZ ], X3 = (F −D)(E + 2A + 2C),
Y3 = (E − F )(D + 2B + 2C), Z3 = (D − E)(F + 2A + 2B).
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The cost of these formulas is 1M+km+1S+3m+6s, where S is the cost of a
squaring in Fpk . Note that we have ignored the cost of multiplication by d for
the reason that d can be selected specially.

We give an overview of the best formulas in the literature for pairing com-
putation on Edwards curves and for the different forms of Weierstrass curves in
Jacobian coordinates. Their performance is summarized in Table 1. We compare
the results with our new pairing formulas for Hessian curves. We find that our ad-
dition algorithm is fastest and our doubling algorithm is only slower than the one
in [8]. However, the curves considered in [8] are extremely special: for p ≡ 2 mod 3
these curves are supersingular and thus have k = 2 and for p ≡ 1 mod 3 a total
of 3 isomorphism classes is covered by this curve shape. Therefore, our new for-
mulas for Tate pairings on Hessian curves are faster than all formulas excepted
for the very special curves with a4 = 0, a6 = b2.

Table 1. Costs of pairing computation

DBL mADD

J ,[5],[11] 1M+km+1S+1m+11s+1ma4 1M+km+9m+3s
J ,[1],[11] 1M+km+1S+1m+11s+1ma4 1M+km+6m+6s
J ,a4 = −3,[5] 1M+km+1S+7m+4s 1M+km+9m+3s
J ,a4 = −3,[1] 1M+km+1S+6m+5s 1M+km+6m+6s
J ,a4 = 0,[5],[6] 1M+km+1S+6m+5s 1M+km+9m+3s
J ,a4 = 0,[1] 1M+km+1S+3m+8s 1M+km+6m+6s
P ,a4 = 0, a6 = b2,[8] 1M+km+1S+3m+5s 1M+km+10m+2s+1mb

E ,[11] 1M+km+1S+8m+4s+1md 1M+km+14m+4s+1md

E ,[1] 1M+km+1S+6m+5s 1M+km+12m
H, this paper 1M+km+1S+3m+6s 1M+km+10m

5 Conclusion

In this paper, we first give the geometric interpretation of the group law on
Hessian curves, and then propose a new algorithm to compute Tate pairings
on elliptic curves in Hessian form. Compared with the methods for Weierstrass
curves and Edwards curves, our algorithm is fastest for pairing computation
excepted for the very special curves with a4 = 0, a6 = b2.
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Abstract. The DECT Standard Cipher (DSC) is a proprietary stream
cipher used for enciphering payload of DECT transmissions such as cord-
less telephone calls. The algorithm was kept secret, but a team of cryp-
tologists reverse-engineered it and published a way to reduce the key
space when enough known keystreams are available [4]. The attack con-
sists of two phases: At first, the keystreams are analyzed to build up an
underdetermined linear equation system. In the second phase, a brute-
force attack is performed where the equation system limits the number
of potentially valid keys. In this paper, we present an improved variant
of the first phase of the attack as well as an optimized FPGA imple-
mentation of the second phase, which can be used with our improved
variant or with the original attack. Our improvement to the first phase
of the attack is able to more than double the success probability of the
attack, depending of the number of available keystreams. Our FPGA
implementation of the second phase of the attack is currently the most
cost-efficient way to execute the second phase of the attack.

Keywords: DECT, DECT Standard Cipher, DSC, Stream Cipher,
FPGA, Hardware-Accelerated Cryptanalysis.

1 Introduction

Digital Enhanced Cordless Telecommunications (DECT) is a standard for short
range cordless communication. DECT is mostly used for phones, however other
applications like wireless payment terminals, traffic control and room monitor-
ing are possible. With more than 800 million DECT devices sold1, it is one of
the most commonly used systems for cordless phones besides GSM, UMTS and
CDMA. The DECT standard provides mutual authentication of devices and en-
cryption of the payload, however both features are optional and need not be
implemented on a device. DECT uses the DECT Standard Authentication Al-
gorithm (DSAA) for authentication and key exchange and the DECT Standard
Cipher (DSC) for encryption.

1 http://www.etsi.org/WebSite/NewsandEvents/201004 CATIQ.aspx
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First attacks on DECT [2,3] showed that some devices do not use encryption
and authentication at all and can easily be eavesdropped on. Even if encryption
is used and long-term and session keys are generated in a secure manner, it
is still possible to decipher phone calls. In 2009, the DECT Standard Cipher
was reverse-engineered and a correlation attack on the cipher was published [4]
by Nohl, Tews and Weinmann (NTW-attack). With 215 available keystreams
generated with different initialization vectors (IVs), it is possible to recover the
session key within minutes to hours on a fast PC or Server. Different tradeoffs
are possible. This allows decryption of the call recorded, but does not reveal the
long-term keys or keys for the previous or next call.

In this paper, we present an optimized NTW-attack, which reduces the time to
recover the key or the number of keystreams required. The optimizations are of
general nature and can be used in conjunction with optimized implementations
of the attack for CUDA graphics cards or the PS3 cell processor [4] or any other
kind of parallel processing hardware. In the second part of the paper we present
an optimized FPGA implementation of our optimized NTW-attack, which is
currently the most cost-efficient way of searching through the remaining key
space the NTW-attack determines.

In Section 2 we describe the attack scenario and point out where our work can
be applied. In Section 3, we give an introduction to DSC and the original attack
on DSC developed by Nohl, Tews, and Weinmann. Knowledge of the structure of
the original attack is essential to understand our improvements. In Section 4, we
present our improvements of the first phase of the NTW attack. In a nutshell we
introduce a key ranking method making the correct key more likely to be found
earlier in the second phase of the attack. In Section 5 we present an FPGA
implementation which can be used in conjunction with our improvements from
Section 4 to execute the second phase of the attack in the most cost-efficient
way currently known. Section 6 concludes our work.

2 Attack Scenario

In this paper, we show that an attacker who is able to eavesdrop on DECT
communication can decrypt the encrypted payload faster and more efficiently
than previously known. In contrast to some other attack scenarios [2], our attack
is passive, i.e. no data needs to be sent by an attacker. Therefore, a victim is not
able to detect the presence of an attacker.

At first, the attacker needs to record the raw DECT data being sent over the
wireless interface. He can do so, for example, by using a DECT PC-Card using
a modified firmware 2 or a generic software radio like USRP3.

Using the recorded data, the attacker has several options depending on the
type of communication and the security services being applied. If the attacker is
able to listen to the pairing process between the base station and the handset,
he needs at most 104 ≈ 213.3 tries to recover the resulting long-term key (UAK).
2 https://dedected.org/trac/attachment/wiki/25C3/talk-25c3
3 http://www.ettus.com/
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Further decryption is trivial as all other keys are derived from the UAK. However,
regular pairing only takes place once when a handset is being installed to a
base station and only if the handset is not pre-paired to the station by the
manufacturer.

Therefore, we assume that an attacker is only able to eavesdrop on a regular
DECT call. In this case, if encryption is enabled, he can either attack the key
derivation scheme of DSAA [2,3] that generates the session keys, or he can attack
the payload encryption algorithm DSC. Attacking DSAA is especially suitable
if the attacked devices have a weak PRNG.

When attacking DSC, the attacker must be able to extract valid DSC key-
streams from the recorded data. This is possible because some messages can be
predicted – for example, the call duration counter is implemented on the base
station for several DECT phones, and the counter value is sent to the handset
once per second using a control message. An attacker can predict messages of
that type when he knows the start time of the call.

An attack against DSC requires a relatively large number of known keystreams
for a reasonable success probability. In this paper, we introduce two means to
increase the performance of a DSC attack, which can be applied independent
from each other: On the one hand, we provide an algorithmic improvement, and
on the other hand, we provide a very efficient implementation on an FPGA.

3 Cryptanalysis of the DECT Standard Cipher

The DECT Standard Cipher is a proprietary stream cipher designed for DECT.
It takes a 64 bit key and a 35 bit initialization vector (IV) and generates a
keystream of variable length. DECT supports frames of different lengths and
formats. For common voice calls, a keystream of 720 bits is generated and split
into two keystream segments. The first 360 bits of the output of DSC are used
to encrypt traffic from the base station (Fixed Part, FP) to the phone (Portable
Part, PP). The first 40 bits can be used to encrypt control traffic (C-channel
traffic). If a frame contains no C-channel data, the first 40 bits are discarded.
The remaining 320 bits are used to encrypt the actual voice data (B-field). The
second part of the keystream is used to encrypt frames sent from the PP to the
FP. Again, the first 40 bits are used to encrypt C-channel traffic if present. The
remaining 320 bits are used to encrypt the voice data.

The internal design of DSC consists of 4 linear feedback shift registers R1,
R2, R3, and R4 of length 17, 19, 21, and 23 bits. Three of them are irregularly
clocked, the last one with a length of 23 bits is regularly clocked. A non-linear
output combiner is used to generate the output using six bits from the three
irregularly clocked registers. Initially, the 35 bit IV is zero-extended to 64 bit
and prepended to the 64 bit cipher key resulting in an 128 bit input to the
cipher. The input is then clocked into the most significant bit of each register
using regular clocking. After the key loading, every bit of every register is just
a linear combination of key and IV bits. After key loading, 40 blank rounds are
performed using irregular clocking.
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To attack DSC, Nohl, Tews, and Weinmann used the following approach: If
DSC would be regularly clocked, one could easily recover the secret key. Of
course DSC is not regularly clocked, but the probability that register R1 has
been clocked i times, R2 has been clocked j times, and R3 has been clocked k
times when the lth bit of output is produced is:

pi,j,k,l =
(

40 + l

i− (80 + 2l)

)(
40 + l

j − (80 + 2l)

)(
40 + l

k − (80 + 2l)

)
2−(40+l)3

Let s = x
(i)
1,0, x

(i)
1,1, x

(j)
2,0, x

(j)
2,1, x

(k)
3,0 , x

(k)
3,1 be the six bits of registers R1, R2, and

R3, which contributes to the keystream generated by DSC at this moment. To
eliminate some variables we may write x

(i+1)
1,0 instead of x

(i)
1,1 because the bit is

simply shifted with the next clock. x
(j+1)
2,0 = x

(j)
2,1 and x

(k+1)
3,0 = x

(k)
3,1 also holds.

Let zl be the bit of output produced by DSC and zl−1 be the previous bit of
output which is now stored in the memory bit of the output combiner. Because
s is just a linear combination of key and IV bits, we may split it into a key and
IV part s = skey + siv. The linear combination of the IV part siv is known by
the attacker for every keystream and the recovery of skey would reveal 6 bit of
information about the secret key. If O(s, zl−1) = zl holds for a value of s, it
can bee seen as an indication that skey = s + siv for a higher probability than
guessing ( 1

64 ).
To execute the attack, a clocking interval C = [102, 137] of length 35 was

chosen. This leads to 353 = 42875 possible combinations for the number of clocks
i, j, k for the registers R1, R2, and R3 which reveal information about the state
variables x

(102)
{1,2,3},0 . . . x

(138)
{1,2,3},0. For every choice i, j, k of clocking combinations

in this interval a frequency table for the 26 = 64 choices for the key-part key of
s is used. For every consecutive pair of bits zl, zl−1 from the keystream where
the clocking combination has a none negligible probability and for every choice
of s,

p =
∑

l

pi,j,k,l ∗ [O(s, zl−1) = zl] +
1
2

(
1−

∑
l

pi,j,k,l

)
is computed and ln p

1−p is added to the frequency table entry skey = s + siv.
Instead of representing the equations in the frequency table directly as linear
combinations of key-bits, a short form is used where all equations have the
form x

(·)
{1,2,3},0 = {0, 1}. Every entry in the frequency table contains six of those

equations.
After all keystreams have been analyzed, we take every variable v and examine

all frequency tables which contain equations of the form v = bi, bi ∈ {0, 1}. We
take the top-voted entry from these tables and compute pv =

∑
i(2bi − 1) ∗ pi

where pi is the number of votes for the top voted entry in the table. If pv is
negative, we assume that v = 0 holds, 1 otherwise.

In total there are 36 ∗ 3 = 108 different equations. All of them are sorted
according to |pv|. The original attack suggests using the topmost equations (for
example 30 equations) to build an equation system of the form Ak = b for the key
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k. All possible solutions of the system (using 30 equations leads to 264−30 = 234

possible solutions) are then checked against some reference keystreams to check
if one of them generates the reference keystream. If so, it can be assumed that
this solution is in fact the correct key for the cipher.

4 Key Ranking

To improve the original NTW attack, we introduce a key ranking procedure. The
original NTW attack generates equations of the form

∑
i aiki = {0, 1} where ki is

a bit of the key and ai is either 0 or 1. The left part of the equation only depends
on the feedback polynomials of the registers. The right part of the equation is
either 0 or 1, determined by a voting system. The difference between the number
of votes for 0 and 1 is denoted by |pv|. In the original attack, the equations are
sorted by |pv| and the topmost equations are assumed to be correct. Using many
equations results only in a small remaining key space which needs to be searched,
but increases the probability that at least one equation is incorrect and the key
is not found in the set of solutions of the linear equation system.

To improve the attack, we first checked, with which probability the individual
equations are correct. We ran 100 experiments against randomly chosen keys and
counted in how many times the first, second, third... equation in A was correct.
The results are shown in figure 1. The first 10 equations in A (see Section 3) are
correct with a probability of at least 99%. This makes it highly unlikely that one
of the first 10 equations is incorrect. Starting from equation 30, the probability
that the equation is correct drops down to 70-60% for equation 55. This makes
these equations only of minor use for the attack and one can assume that at
least one of these equations is incorrect with high certainty.
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We decided to look for a strategy to generate highly likely sub key spaces in
an order, so that the key spaces which are most likely to contain the correct
key are generated first. The key spaces should still be described by a linear
equation system and should contain many (at least 226 or more) keys, so that
high parallel implementations which can search through such a key space as
developed for the original attack can still be used, communication overhead is
minimized and pipeline stalls due to too small key spaces are avoided. As a
result, at most 36 equations from matrix A should be used.

For the original NTW attack, it is never necessary to compute the success
probability of an equation explicitly. Instead, one can just sort all equations
by |pv|, assuming that equations with a higher difference have a higher success
probability. We decided to compute the explicit probability for an equation from
|pv|. First, one can simulate the attack against 100 random keys (using the same
number of keystreams) and collect all generated equations with their voting
difference and correctness. It is now possible to compute the success probability
P (|pv|) of an equation using this data and a nearest neighbor smoother or similar
methods (e.g. kernel smoother). We used a k-nearest-neighbor smoother for this
paper.

We did not decide to compute the success probability for an equation from
the line number in the matrix A and the number of keystreams. If a systematic
problem in the keystream recovery method used would exist, this could decrease
the success probability of some equations. Using |pv| for computing the success
probability of each equation seems to be more appropriate.

We can formulate our key ranking approach as a best-first-search over a
directed graph: Assuming that we have a set of equations ei with respective
individual success probabilities P (|pxi |) and that the success probabilities are
independent, we can run a best-first-search for the correct key (if we use 64
equations) or for the most promising sub key space (if less than 64 equations are
used). We assume that the set of possible keys or sub key spaces is a directed
graph G = (V, E). A node v consists of a vector c that indicates which equation
ei is correct (ci = 0) and which of the equations is incorrect (ci = 1). The prob-
ability that this node represents the correct sub key space is

∏
i (|ci − P (|pxi |)|).

The node with the highest probability is the node with c = (0, . . . , 0) where all
equations are assumed to be correct. An edge (v1, v2) exists if v1 and v2 differ
only in a single equation, which is assumed to be correct in v1 but assumed to
be incorrect in v2.

We can now run a best-first search for the correct sub key space on this graph
starting at the node with the highest success probability. Using 64 equations
would guarantee that all keys are visited in the exact order of probability, how-
ever we think that the number of equations should be limited so that not too
much time is spent for generating the keys to check and highly parallel hard-
ware like CUDA graphics cards or FPGAs can be used in an efficient way. Using
some kind of data structure for the queue in the best-first-search which allows
inserts, searches and removals in O(log(n)) makes generating the sub key spaces
very time efficient. However, memory consumption increases because up to m · g
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solutions need to be tracked in parallel, when m equations are used and g sub
key spaces have been generated.

4.1 Performance Results

Executing the old attack against 100 randomly chosen keys only resulted in 71%
success rate with 215 keystreams available and 242 keys checked. Using our new
key ranking method allowed us to recover the key in 90% of all tests, with also
242 keys checked in total. We used 35 instead of 22 equations, but checked the
8192 most likely sub key spaces. Figure 2 includes more details.
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Another advantage of our key ranking strategy is, that the attack time doesn’t
need to be fixed at the beginning of the attack. Using just a single equation sys-
tem has the disadvantage that all solutions are checked in an order not depending
on their probability. Checking an equation system with 2n solutions will give the
correct key after having checked 2n−1 solutions in average (if all equations in the
system are correct). Using our approach makes it possible to start the attack with
some reasonable parameters and then just wait for the correct key. If a lot of equa-
tions in A are correct, the correct key will be found much faster in average than
with the original approach. If A contains a lot of incorrect equations, the attack
will take longer, but one can decide to continue or cancel the attack at any point of
time (assuming that enough main memory for the best-first-search is available).

To speed up the final search through all generated sub key spaces, we present
an FPGA implementation of the final search in the next part of this paper.

5 FPGA Implementation

FPGAs are very well-suited for an implementation of the final search phase of a
sub key space. Linear Feedback Shift Registers form the main part of the DSC
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algorithm, and they can be implemented much more efficiently on an FPGA
than on a CPU or GPU platform.

5.1 Basic Implementation Idea

Our improved DSC attack requires the knowledge of a valid reference (IV,
Keystream) pair and an underdetermined equation system

A · k = b (1)

that constrains the key space. A and b are determined by the first part of the
attack (see section 3), k denotes the cipher key.

The FPGA design must iterate over all potentially valid cipher keys accord-
ing to equation (1), compute the keystream and compare it to the reference
keystream. Therefore, a cipher key generator, a DSC keystream generator and
a compare unit comparing the keystream output to the reference keystream is
necessary for the FPGA implementation. The design shall report cipher keys
that produce an identical keystream as the reference.

The most convincing way to implement the key generator is using a counter or
full-cycle LFSR that generates “independent” bits and a combinatorial function
generating “dependent” bits that use the “independent” bits as an input. The
equation systems must be transformed beforehand for this purpose, such that
the dependent bits are described as a function of the independent bits. The DSC
keystream generator can be implemented straight-forward as described in [4].

5.2 Optimizations

Optimizations are possible on several levels compared to a straight-forward im-
plementation. A list of all matrices used for describing the optimizations is given
in Table for clarity reasons.

Table 1. Matrices describing the Key Loading and the Equation System

Matrix Dimension Description

k 64× 1 Cipher Key
sk 128× 1 Session Key

ski,j len(Rj)× 1 Vector that loads the i-th Bit of sk into Register j
ck 128× 1 Zero-extended Cipher Key k
iv 128× 1 Zero-extended Initialization Vector
di 80× 1 DSC State after i clocked in bits, without Output Combiner

di,j len(Rj)× 1 State of Rj after i clocked in bits
Rj len(Rj)× len(Rj) Clock Matrix of Register j
L 80× 128 Load Matrix (Session Key to Initial State)

A′ 128× len(x) Equation System Matrix
b′ 128× 1 Equation System Offset Vector
x len(x)× 1 Key Generator Counter Value
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Simple Improvements: The key generator can be shared among several DSC
units, as it generates one key per cycle whereas the compare units need multiple
clock cycles for verifying one key. Unnecessary control signals may be removed
and logic delays shall be kept short by inserting registers on critical paths.

DSC Speedup: The fundamental DSC implementation as described in [4] re-
quires three clock cycles per bit of keystream output. This can be reduced to
one clock cycle by multiplexing and re-arranging the feedback taps. The corre-
sponding feedback taps can be determined from the feedback matrices R2

j and
R3

j . [1]

Key Loading: [4] suggests to load the session key in 128 clock cycles by clocking
in one bit per cycle. This can be represented as iterating 128 times over the
linear transformation di,j = Rj · di−1,j + ski,j for all four registers j, where
d0 = (0, ..., 0) and ski,j is a vector with the size of register j in which the most
significant position is set to bit i of the session key and all other positions are
zero.

The key can be loaded in one cycle by summarizing the four matrices R1,2,3,4

into one load matrix L such that

d128 = L · sk (2)

holds. A similar optimization is described in [1], but they only propose to load
16 bits per clock cycle.

As a second step of improvement, the calculation of the full cipher key can
be skipped: As described before, the “dependent” part of the cipher key is a
combinational function of the “independent” cipher key bits. A matrix A′ and
a vector b′ transforming an independent value x into the cipher key ck can be
derived from A and b, such that the equation

ck = A′ · x + b′ (3)

generates one key candidate compliant to equation (1) for each value of x. As
the session key is the sum of cipher key and initialization vector,

sk = ck + iv (4)

the whole initial state can be expressed as a function of the independent cipher
key bits by inserting equation (4) into equation (2) and then equation (2) into
equation (3):

d128 = LA′x︸ ︷︷ ︸
dynamic

+ L(b′ + iv)︸ ︷︷ ︸
static

(5)

Hard-Coding: Where the plain NTW attack proposed one equation system
A · k = b, our key ranking allows us to reuse the matrix A and just invert one
or more equations, i.e. modify b, if no key has been found for a particular sub
key space. Hence, only the b vector needs to be loaded into the FPGA at run
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time, while A can be hard-coded into the design by a VHDL preprocessor. This
saves hardware resources on the FPGA, reduces the complexity and eliminates
potentially critical paths.

The reference keystream can be hard-coded as well.

Early Abort: A cipher key can be considered invalid as one bit from the
generated keystream differs from the reference. In such a case, the comparison to
the reference keystream can be aborted early such that the unit can immediately
continue with the next key candidate.

The probability that k subsequent bits of the keystream are correct for a
wrong key is 2−k. On average, the comparison for a wrong key already fails after
two keystream bits. Therefore, n − 2 cycles can be saved in comparison to a
deterministic unit that always compares n bits.

We compare at most 32 bits and thus save 30 cycles on average.

Pre-ciphering Pipeline: With the Early Abort optimization, several DSC
units are competing to be loaded with a new initial state. As the arbitration
logic complexity rises with the number of competing units, this number is to be
kept low. A good way to do this is outsourcing the pre-ciphering phase into a
strictly sequential, deterministic pipeline. With this optimization, the state after
pre-ciphering is directly loaded into the computing DSC units.

Input Buffering: Idle time of the FPGA has a negative impact on the effective
performance. Therefore, an input buffer is used such that the PC can enqueue
multiple tasks and the FPGA can immediately load the next task as soon as the
previous one is finished.

5.3 Implementation

For our implementation, a Xilinx Spartan-3E 1200 (XC3S1200E) FPGA on a
Digilent Nexys 2 board was used. The PC communication was implemented via
the on-board RS-232 interface.

Our final implementation includes all optimizations as described in section
5.2. The runtime of the design is not entirely deterministic, as – for a specific
keystream – the position of the first failing comparison is unknown. Therefore,
the key generator was given the ability to be paused, which is necessary when
all available DSC units are busy.

Figure 3 shows the structure of the key search unit, which forms the essential
part of our hardware design. The dotted lines in the diagram denote the hard-
coded data. The “State Offset” is sent to the FPGA at run time for each sub
key space. It is determined by the attacked IV and the vector b′.

One pipelined key generator (see 5.2) was chosen to serve four DSC units –
this is the maximum number implementable on one Look-Up Table.

The key search unit consumes about 30% of the FPGA resources in total,
such that three instances can be created on our device. This enables searching
three sub key spaces at the same time.
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Fig. 3. Block Diagram of Key Search Unit

5.4 Performance Evaluation

This section compares the performance achieved by our FPGA implementation
with the CUDA performance published in [4].

We used five different, randomly generated equation systems for evaluating
the maximum frequency by synthesizing the design for each of the equation
systems. Table 2 shows the achieved results.

Table 2. Performance Evaluation (using 232 equations)

Max Frequency Performance [ keys
s

] Cost [US$] Cost-Performance

FPGA 140 MHz 408.8 · 106 169 2.42 · 106 keys
US$·s

[4] CUDA / GTX 260 unknown 148 · 106 190 0.78 · 106 keys
US$·s

6 Summary

The final attack could be applied as follows: In the first phase of the attack, the
adversary recovers keystreams by eavesdropping on a DECT call. If a phone is
used which displays a call duration counter that is implemented on the base sta-
tion, the adversary might be able to recover about 5 known keystreams per sec-
ond. After nearly two hours, the adversary has collected 215 known keystreams,
which can be processed in the next phase of the attack.

In the second phase of the attack, the adversary needs to generate frequency
tables from the known keystreams. We did not modify this step in our paper.
In the original attack, Nohl, Tews, and Weinmann used a SUN X4440 using 4
Quad-Core AMD Opteron CPUs running at 2.3 GHz to generate the tables in 20
minutes. This process is highly CPU bound, so that a single Opteron CPU could
accomplish the task in about 80 minutes. Because this can be started while the
first phase is still running, phases one and two need only two hours to complete.
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Fig. 4. Time to completion of the attack using a single FPGA and 232 equations

The runtime of these two phases is only affected by the rate of the keystream
recovery process and the computing power available.

In the third and last phase, the adversary uses the frequency tables generated
in phase two to search for the correct key. He uses a PC which generates the most
likely sub key spaces as described in Section 4 and transfers them to a single
or multiple FPGAs connected via a serial line or other interfaces. The time for
generating the sub key spaces is negligible compared to the time consumed by
the FPGAs to check the sub key space, so that many FPGAs can be supplied
by a single PC.

Figure 4 shows the time to the completion of the last attack phase, using
just a single Xilinx Spartan-3E 1200 (XC3S1200E) FPGA using 215 keystreams.
About 20% of our experiments completed within one hour. The next 20% of our
experiments needed up to one day to complete. The remaining 60% needed more
than a day to complete. Please note that doubling the number of FPGAs used
reduces the total time for the last phase by half and the attack scales almost
perfectly when the number of available FPGAs is increased.
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Abstract. We develop a new, custom-built hardware for emulating con-
tactless smartcards compliant to ISO 14443. The device is based on a
modern low-cost microcontroller and can support basically all relevant
(cryptographic) protocols used by contactless smartcards today, e.g.,
those based on AES or Triple-DES. As a proof of concept, we present a
full emulation of Mifare Classic cards on the basis of our highly optimized
implementation of the stream cipher Crypto1. The implementation en-
ables the creation of exact clones of such cards, including the UID. We
furthermore reverse-engineered the protocol of DESFire EV1 and realize
the first emulation of DESFire and DESFire EV1 cards in the literature.
We practically demonstrate the capabilities of our emulator by spoof-
ing several real-world systems, e.g., creating a contactless payment card
which allows an attacker to set the stored credit balance as desired and
hence make an infinite amount of payments.

Keywords: RFID, contactless smartcards, payment systems, access
control, efficient implementation.

1 Introduction

Radio Frequency Identification (RFID) devices are deployed in a wide range of
transportation and access control systems world-wide. If high privacy or secu-
rity demands have to be met, typically contactless smartcards according to the
ISO 14443 standard [13] are employed, as they offer sufficient computational
power for cryptographic purposes. Moreover, a growing number of payment sys-
tems incorporates secure RFID cards [16], as they offer additional benefits in
terms of flexibility and convenience over their contact-based counterpart. State-
of-the-art contactless cards, such as the electronic passport ePass [8], provide a
high level of security by means of various cryptographic primitives.

In general, RFID technology implies new threats compared to contact-based
systems, for instance, a card residing in a pocket or wallet could be read out or
modified without the owner taking note of it. Due to the cost sensitivity of such
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high-volume applications, card manufacturers are tempted to use outdated but
“cheap” cryptographic components, e.g., in Mifare Classic products.

Since the reverse-engineering of the Crypto1 cipher used in Mifare Classic
cards and the subsequently published attacks (cf. Sect. 3.1), the cards have to
be regarded as insecure, as the secret keys can be extracted in seconds by means
of card-only attacks. Once all keys of the card are known to an attacker, cards
can be modified or duplicated. As many systems in the real world still rely on
these weak cards, severe security threats may arise.

Accordingly, recently installed contactless systems, especially those with high
security demands, are based on the DESFire variant of the Mifare family, and
system integrators upgrade the old Mifare Classic technology to these newer
cards wherever possible. While the 3DES cipher employed in these cards is se-
cure from the mathematical point of view, the implementation on the card is
vulnerable to side-channel analysis, so that it is again possible to extract the
secret keys of a card1, as detailed in Sect. 3.2. Hence, emulating these mod-
ern cards is also practical and renders various attacks in real-world scenarios
possible.

The resulting security weaknesses can become very costly – one example is a
widespread contactless payment system based on Mifare Classic cards as ana-
lyzed in [16], where the credit value on the cards can be modified by an adversary
with minimal efforts. For many of these systems, the read-only Unique Identifier
(UID) of each card constitutes the only means to detect fraud in the backend,
as there are no cards available on the market where the UID can be altered.
In this paper, we exhibit the possibility of emulating and cloning RFID-enabled
smartcards compliant to ISO 14443, including their UID.

1.1 Background and Related Work

Several research groups have proposed custom devices to emulate and counter-
feit RFID devices. However, virtually all emulators presented so far suffer from
certain drawbacks, e.g., insufficient computational resources, high cost, or im-
practical dimensions, limiting the threat they pose in the context of attacking
real-world systems.

A custom RFID emulation hardware called Ghost is presented in [24]. The
Ghost is able to emulate Mifare Ultralight cards which do not use any encryp-
tion. Emulating contactless cards employing secure cryptography seems to be
impossible using this device due to computational limitations. The OpenPICC
project [20] is mainly an RFID sniffing device. There was an approach to offer
support for ISO 14443A, but the project seems to be discontinued. The Prox-
mark III [21] enables sniffing, reading and cloning of RFID tags. Since the device
is based on a Field Programmable Gate Array (FPGA), it is also capable of em-
ulating Mifare Classic cards, but at a comparably high cost of $399. The “HF
Demo tag” [12] is based on an Atmel ATMega128 microcontroller which is not
1 Note that the effort for extracting secret keys from Mifare DESfire cards by means

of side-channel analysis is much higher compared to the Mifare Classic attacks.
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computationally powerful enough to perform encryptions with state-of-the-art
ciphers in the time window given by the relevant protocols. An embedded system
for analyzing the security of contactless smartcards was introduced in [14]. The
attack hardware consists of a so-called Fake Tag and an RFID reader and can
be used for, e.g., practical relay attacks. The device is based on a Atmel AT-
Mega32 [1] processor with a constrained performance and is designed such that
all important functionality is provided by the RFID reader. Hence, in addition
to the lack of computational power, the Fake Tag cannot operate independently
from the reader, which can be a major drawback for practical attacks. The au-
thors also implemented an emulation of Mifare Classic, but similar to the HF
Demo tag, the encryption runs too slow so that timing constraints of the proto-
col cannot be met. We used this work as a starting point for the development of
our new stand-alone RFID emulator.

1.2 Contribution of This Paper

We built a freely programmable low-cost device that is capable of emulating
various types of contactless smartcards, including those employing secure cryp-
tography. The device operates autonomously without the need of a PC, can be
powered from a battery, and possesses an Electronically Erasable Programmable
Read-only Memory (EEPROM) for storing received bitstreams or other non-
volatile information. An attacker using the presented hardware, which can be
built for less than $25, is in full control over all data stored on the emulated
card, including its UID and the secret keys.

In order to demonstrate the capabilities of our emulator in the context of
real-world attacks, we implemented optimized versions of the Crypto1 stream
cipher, the Data Encryption Standard (DES), Triple-DES (3DES) and the Ad-
vanced Encryption Standard (AES), as required for emulating the widespread
Mifare Classic, Mifare DESFire and Mifare DESFire EV1 cards. With the devel-
oped software, it is possible to simulate the presence of one of these cards with an
arbitrarily chosen content and identifier, and hence spoof real-world systems in
various manners. For example, the emulator can behave as a card that automat-
ically restores its credit value after a payment, or that possesses a new UID and
card number on each payment, which impedes the detection of fraud. Besides the
simulation of cards, our hardware allows for sniffing, e.g., reverse-engineering of
protocols, relay attacks, and testing the vulnerability of RFID readers towards
a behavior of the card that does not conform to the specifications, for instance,
with respect to timing, intentionally wrong calculation of parity bits, or buffer
overflows.

The remainder of this paper is structured as follows: in Sect. 2, we present our
custom RFID hardware that serves as a basis for card emulations and attacks.
After giving a brief summary of the relevant characteristics and protocols of Mi-
fare Classic, Mifare DESFire and Mifare DESFire EV1 cards in Sect. 3, we detail
on our implementations of the respective emulations in Sect. 4. Finally, practical
real-world analyses performed with our hardware are described in Sect. 5.
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2 Hardware Setup

In the following, we give a brief introduction to the physical characteristics of
the RFID technology employed in contactless smartcards. Then, our freely pro-
grammable emulator for contactless smartcards is presented.

2.1 RFID Technology

In a typical setup for contactless smartcards, a reading device generates a strong
Electro-Magnetic (EM) field at a frequency of 13.56 MHz for supplying the card
with energy for its operation. The reader acts as master, while the card serves
as slave, thus only the reader can start a communication and issue commands to
the card. The ISO 14443 standard specifies the physical characteristics, the data
modulation and other characteristics of contactless smartcards. For data trans-
mission, the reader encodes the bits using a pulsed Miller code and transmits it
by switching off the EM field for short periods of time. The data to be sent by
the card is encoded using a Manchester-code and is afterwards transmitted via
the EM field using load-modulation with a 847.5 kHz sub-carrier.

2.2 Our Emulator

For the security analyses in this paper, we developed a custom, freely pro-
grammable device termed “Chameleon”, which can emulate contactless smart-
cards compliant to the ISO 14443 standard in a stand-alone manner. Our em-
ulation device consists of off-the-shelf hardware and can be built for less than
$25. It is based on an Atmel ATxmega192A3 microcontroller [2,3] which provides
192 kB of program memory, 16 kB SRAM and 4 kB EEPROM memory. Using
an FTDI FT245RL chip [9], the ATxmega is able to communicate with a PC
via the Universal Serial Bus (USB). This communication link can be used for
debugging purposes and data manipulation at runtime. Figure 1 shows the first
version of our RFID emulation device.

We chose the ATxmega because it features a hardware acceleration of both
DES and AES-128. After loading the key and the data to the corresponding
registers, the ATxmega is able to perform a DES en- or decryption in 16 clock

Fig. 1. Our stand-alone RFID emulation device
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cycles, i.e., one DES round per clock cycle, whereas the AES engine runs con-
currently to the CPU and requires 375 clock cycles until an en- or decryption of
one block is finished. The microcontroller is clocked by an external 13.56MHz
crystal, which is internally doubled using a high frequency Phase Locked Loop
(PLL).

The coupling to the reader is established by a rectangular coil on the Printed
Circuit Board (PCB). Variable capacitors are placed in parallel to form a parallel
resonant circuit that is tuned to the carrier frequency. Analog circuitry assists
the microcontroller in extracting the encoded data from the EM field and trans-
mitting bitstreams. The design is similar to [14] and mainly shapes the signals
according to the ISO 14443 standard and converts them to the appropriate volt-
age levels. Our emulation device can either be powered via the USB interface or
run on battery. As all functionality is directly provided by the microcontroller,
the Chameleon operates autonomously without the support of a PC. The full
schematics of the developed hardware are given in the Appendix B.

3 Mifare Cards

This section covers the details of Mifare Classic, DESFire and DESFire EV1
cards. We present important facts required for the emulation of the cards and
detail on the different authentication protocols, as implemented in Sect. 4.1 and
Sect. 4.2. For reference, the complete protocols including the command codes
and the low-level format are provided in Appendix A.

3.1 Mifare Classic

Since its introduction more than a decade ago, allegedly over 1 billion Mifare
Classic ICs and 7 million reader components have been sold [18]. The cards pro-
vide data encryption and entity authentication based on the proprietary stream
cipher Crypto1 for preventing from attacks like eavesdropping, cloning, replay
and unauthorized reading or modification of the data stored on the card. Crypto1
is based on a Linear Feedback Shift Register (LFSR) with a length of 48 bit.

Basically, a Mifare Classic card can be regarded as a secured EEPROM mem-
ory with an RFID communication interface. In this work, we focus on the by far
most widely employed Mifare Classic 1K version with 1024 byte EEPROM. All
Mifare Classic variants comply to Parts 1-3 of ISO 14443A [13]. While the stan-
dard also allows for higher data rates, the cards communicate at a fixed data
rate of 106 kBit/s. In addition, they feature a proprietary high-level protocol
that diverges from Part 4 of ISO 14443A.

The memory of a Mifare Classic card is divided into sectors, whereas each
sector consists of four blocks, as illustrated in Fig. 2. Each sector can be secured
by means of two cryptographic keys A and B that are stored along with a set of
access conditions in the last block of each sector. Before a sector can be accessed,
a proprietary mutual authentication protocol with the appropriate secret key has
to be carried out, cf. Protocol 1. The access conditions determine the commands
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SECTOR 0

BLOCK 0
BLOCK 1
BLOCK 2
BLOCK 3

16 BYTES

UID BCC MANUFACTURER DATA

KEY A KEY BACCESS CONDITIONS

SECTOR 15

KEY A KEY BACCESS CONDITIONS

BLOCK 60
BLOCK 61
BLOCK 62
BLOCK 63

READ-ONLY

SECTOR TRAILER

SECTOR TRAILER

Fig. 2. The memory structure of a Mifare Classic 1K card

that are allowed for each block of the sector (read, write, increment, decrement)
and define the role of the keys [19]. The other blocks of each sector can be used
for data storage. Note that the first block of the first sector differs from this
scheme: it always contains a UID, along with some other manufacturer-specific
data. The first block is written to the chip at manufacturing time, making it
impossible to change the UID.

When a card is placed close to a reader, the anticollision and select procedure
as defined in ISO 14443A is carried out. Then, an authentication command is is-
sued by the reader that specifies for which sector the authentication is performed.
The card replies with a 32-bit nonce nC generated by its internal Pseudo-Random
Number Generator (PRNG). The reader replies with an encrypted nonce nR and
an answer aR, which is generated by loading nC into the PRNG and clocking it
64 times. For the encryption, the keystream generated by the Crypto1 cipher is
used in groups ks1, ks2, . . . of 32 bit each. After the card has sent the encrypted
answer aC , both parties are mutually authenticated. From that point onwards,
the reader can read, write or modify blocks in the chosen sector. If another sec-
tor has to be accessed, the authentication procedure must be repeated with a
slightly modified protocol.

Reader Card

−−
AUTH || sector
−−−−−−−−−−−−−−→

nC ∈R {0, 1}32

←−−− nC−−−−−−−−−−−−−
nR ∈R {0, 1}32

aR = PRNG(nC , 64)

−
nR ⊕ ks1 || aR ⊕ ks2−−−−−−−−−−−−−−−−→

aR
?= PRNG(nC , 64)

←−−− aC ⊕ ks3−−−−−−−−−−−−−
aC

?= PRNG(nC , 96)

Protocol 1. The Mifare Classic authentication protocol
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Security of Mifare Classic. Since its invention, the internal structure of
Crypto1 was kept secret and no open review process was performed. The ci-
pher and its PRNG were later recovered by [17] using low-cost hardware reverse-
engineering techniques. The authors pointed out several design flaws, i.e., the
short key length of 48 bit, mathematical weaknesses in the feedback functions of
the LFSR, the weak 16-bit PRNG and the fact that the nonce generated by the
PRNG depends on the time elapsed between power-up of the card and the authen-
tication command. Subsequently, strong attacks on Mifare Classic were published:
an attack described in [7] utilizes a fixed timing to generate the same nonces for
repeated authentications and obtain parts of the keystream. A method to recover
a secret sector key is proposed in [10], requiring two recorded genuine authentica-
tions to one sector. The most powerful attacks are card-only attacks as presented
in [11] and [5]. They exploit amongst others the weakness that a card sends an en-
crypted NACK (0x5) each time the parity bits of the message nR⊕ks1 || aR ⊕ ks2
are correct but the decrypted aR is not (cf. Protocol 1). This reveals four bits of
keystream with a probability of 1

256 . Finally, a secret key of a Mifare Classic smart-
card can be extracted within seconds using a combination of card-only attacks as
proposed in [16], hence the cards can be considered fully broken.

3.2 Mifare DESFire and DESFire EV1

Mifare DESFire and Mifare DESFire EV1 cards are compliant to Parts 1-4 of
ISO 14443A. Their UID is seven bytes long, and they support high baud rates

Reader Card

−
AUTH (02 0A 00)
−−−−−−−−−−−−−−−→ nC ∈R {0, 1}64

nR ∈R {0, 1}64 ←−− b0−−−−−−−−−−−− b0 = EncKC (nC)
b1 = DecKR(nR)
r0 = DecKR(b0)
r1 = RotLeft8(r0)

b2 = DecKR(r1 ⊕ b1) −−
b1, b2−−−−−−−−−−−−→ r2 = EncKC (b2)

n′C = RotRight8(r2 ⊕ b1)

←−
ERROR (02 AE)
−−−−−−−−−−−−−− if n′C �= nC

else if n′C = nC
r3 = EncKC (b1)
r4 = RotRight8(r3)

r5 = DecKR(b3) ←−− b3−−−−−−−−−−−− b3 = EncKC (r4)
n′R = RotLeft8(r5)

verify n′R
?= nR

Protocol 2. The Mifare DESFire authentication protocol [4]
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of up to 848 kBit/s. A communication with the cards can be performed in plain,
with an appended Message Authentication Code (MAC), or with full data en-
cryption. Mifare DESFire cards offer 4 kByte of storage and data encryption by
hardware DES and 3DES encryption. Mifare DESFire EV1 cards additionally
provide AES-128 data encryption and are sold in three variants with 2 kByte,
4 kByte and 8 kByte of non-volatile memory, respectively. Each card holds up
to 28 different applications with up to 14 different keys per application. For
DESFire, each application may contain up to 16 files, while for DESFire EV1
the maximum number of files is 32. As in Mifare Classic cards, the UID is un-
changeably programmed into the card at production time. Depending on the
access rights for each application a mutual authentication protocol (see Proto-
col 2 / Protocol 3), ensuring that the symmetric key of the card KC and of the
reader KR are identical, has to be completed before reading and manipulation
of the data.

Previous to the authentication, an application represented by its Application
Identifier (AID) is selected. The reader starts the authentication protocol [4]
with an authenticate command together with the key number that is to be used
during the authentication. Note that Mifare DESFire cards only perform (3)DES
encryptions EncK(·) employing the secret keyK, hence, DESFire readers always
have to use (3)DES decryption DecK(·).

As illustrated in Protocol 2, a DESFire card responds to the authentica-
tion command with an encrypted 64-bit random nonce nC . The reader likewise
chooses a 64-bit random nonce nR, decrypts the received nC , rotates it eight
bits to the left and decrypts nR as well as the rotated nC . The card verifies if
the rotated value equals nC after reverting the rotation. If so, the card encrypts
the first value to obtain nR, rotates it eight bits to the right and encrypts the
result which is then sent to the reader. The rotated and encrypted nonce is ver-
ified by the reader and if this final step is successful, both parties are mutually
authenticated.

We furthermore reverse-engineered the DESFire EV1 authentication proto-
col, as presented in Protocol 3, by eavesdropping on genuine protocol runs. We
found that the protocol of Mifare DESFire EV1 cards using AES-128 diverges
from Protocol 2 as follows. In Protocol 3, en- and decryption are used in the
common sense, i.e., data that is to be sent is encrypted and data that was re-
ceived has to be decrypted. The CBC mode is modified in a way that all en-
or decryptions are chained, even though they operate on different cryptograms.
The Initialization Vector (IV) is not reset when en- or decrypting a new mes-
sage, but instead depends on the previous en- or decryption. The nonces are
extended to a length of 128 bit to match the block size of AES-128 and the sec-
ond rotation is executed in the opposite direction on both sides. Again, AES-128
en- and decryption involving the key K are denoted by EncK(·) and DecK(·),
respectively. Apart from that, the protocol equals the authentication protocol of
Mifare DESFire cards and thus mutually authenticates both parties on successful
execution.
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Reader Card

−
AUTH (02 0A 00)
−−−−−−−−−−−−−−−→ nC ∈R {0, 1}128

r0 = DecKR(b0) ←−− b0−−−−−−−−−−−− b0 = EncKC (nC)
r1 = RotLeft8(r0)
nR ∈R {0, 1}128

b1 = EncKR(nR ⊕ b0)

b2 = EncKR(r1 ⊕ b1) −−
b1, b2−−−−−−−−−−−−→ r2 = DecKC (b1)

r3 = DecKC (b2)
n′C = RotRight8(r3 ⊕ b1)

←−
ERROR (02 AE)
−−−−−−−−−−−−−− if n′C �= nC

else if n′C = nC
r4 = RotLeft8(r2 ⊕ b0)

r5 = DecKR(b3) ←−− b3−−−−−−−−−−−− b3 = EncKC (r4 ⊕ b2)
n′R = RotRight8(r5 ⊕ b2)

verify n′R
?= nR

Protocol 3. The Mifare DESFire EV1 authentication protocol

Security of Mifare DESFire / EV1. The non-invasive side-channel attacks
on RFID devices presented in [15] allow to extract secret information from con-
tactless cards by measuring the electromagnetic emanations of a card while it
carries out a cryptographic operation. The focus is on devices that make use
of DES or 3DES and the first successful key-recovery attack on such devices
is accomplished. In a discussion with the authors, we came to know that the
attacks have been improved since and are applicable to Mifare DESFire cards.
With about 1 000 000 measurements they are able to fully recover the 3DES key
stored on a Mifare DESFire card. Note that their side-channel attack is currently
not applicable to DESFire EV1, which has been certified according to Common
Criteria EAL 4+. However, efficient attacks might come up in the future or the
secret key could obtained by other means, e.g., by exploiting weaknesses of the
backend system.

4 Software Implementations

In this section we detail on our software implementations for emulating several
cards with Chameleon.

4.1 Mifare Classic Emulator

The attacks detailed in Sect. 3.1 imply that an adversary can easily read out the
secret keys and all content of a Mifare Classic card. To produce a duplicate, the
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adversary can write all previously read data to a blank Mifare Classic card. This
results in an almost perfect clone, differing from the original only in the single
block containing the read-only UID of the blank card. If the UID is verified by a
contactless system (compare with [16]), this type of card-cloning becomes useless
in practice. To allow for perfect clones, we implemented the features of Mifare
Classic on Chameleon. Thus, we have complete control of the content of every
memory block, including the previously unchangeable manufacturer block.

Optimized Crypto1. A first approach to emulate a Mifare Classic card on
an AVR ATmega32 microcontroller [22] revealed difficulties in complying to
the timing requirements given in ISO 14443. After a command is issued by the
reader, the card has to reply within 4.8 ms, or the reader will reach a timeout and
abort the connection. Compiling the open-source Crypto1 C-library [6] for an 8-
bit microcontroller results in inefficient code regarding the underlying platform.
Hence, in [22] the time limit of 4.8 ms set in the protocol is exceeded with 11.7 ms
for an 18-byte encryption, neglecting all other necessary computations, such as
encoding the encrypted data. Since an 18-byte encryption is required every time
when reading or writing a block with appended CRC checksum, the existing
implementation is not suitable.

It became obvious that a significant speedup of Crypto1 is essential for a
successful Mifare Classic emulation. Hence, we implemented the cipher from the
scratch in AVR assembly. This allows to optimize the code for an 8-bit platform
and make use of special commands that may not be considered by the C compiler.
Using instructions to access bits of registers directly, the amount of clock cycles
required for an encryption was reduced, amongst others by replacing inefficient
shifting and masking operations to access single bits with instructions that allow
accessing a particular bit in one clock cycle (e.g., SBRC, BST, BLD). We further
implemented the non-linear filter functions fa, fb and fc of Crypto1 with lookup
tables to avoid time consuming boolean AND, OR and XOR operations. In the
first stage, fa is used two and fb three times with a 4-bit input of the state LFSR.
Their output is used to generate a 5-bit input to fc, which in turn generates one
bit of keystream. For both fa and fb, we created a dedicated lookup table that
includes the respective shifting of the output. Thereby, the input of fc can be
easily obtained by ORing the five outputs of fa and fb. This speed advantage
comes at the cost of storing one bit of information in one byte of memory. Finally,
the lookup table fc is a simple 5-bit input, 1-bit output table. The overall size of
the lookup tables is 112 byte, formed by two 16-byte tables for fa, three 16-byte
tables for fb and one 32-byte table for fc. With respect to the 192 kByte size of
the program memory, the tables are negligibly small.

Furthermore, we applied the idea of precomputation. When the nonce nC
is fixed before the authentication protocol is executed, the card is able to pre-
compute the corresponding answers aR and aC which saves time during the au-
thentication process. Precomputation of keystream bits is not possible because
of two reasons. Firstly, since the sector to be accessed by the reader cannot be
predicted, it is not clear which key has to be loaded into the LFSR. Secondly, the
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random reader nonce nR that only becomes known during the authentication
process is an input to the cipher.

4.2 Mifare DESFire (EV1) Emulator

Similarly to the Mifare Classic implementation, we additionally implemented
the authentication protocols of both Mifare DESFire and Mifare DESFire EV1,
as given in Sect. 3.2. For encryption, Mifare DESFire cards use DES/3DES in
CBC mode, whereas Mifare DESFire EV1 cards can use either DES/3DES or
AES-128 in CBC-mode.

4.3 Practical Results

Before carrying out security analyses in the real-world, we thoroughly tested our
emulators in our laboratory. The reliability and accurate timing behaviour of
our emulator was successfully verified with different RFID readers, including an
ACG passport reader and a Touchatag [23] reader. Further tests with real-world
systems are described in Sect.5.

Mifare Classic. With the optimized implementation of Crypto1 detailed in
Sect. 4.1, we successfully emulated Mifare Classic 1K cards with varying content.
Table 1 summarizes the execution times for the relevant operations which are now
all well within the limits specified in ISO 14443. All features, e.g., authentication,
encrypted read and write of blocks, or specifying an arbitrary UID, are fully
functional with the used readers.

Table 1. Execution times of crucial Crypto1 functions

Command Execution time Explanation

setup_crypto1() 98µs Initializes the cipher
auth_crypto1() 542µs Keystream for the authentication
crypto1_1() 8.3µs Generates 1 bit of keystream
crypto1_8() 49µs Generates 8 bits of keystream
crypto1_32() 186µs Generates 32 bits of keystream

Mifare DESFire (EV1) Likewise, we tested our DESFire (EV1) emulations
from Sect. 4.2. Table 2 shows the execution times for the needed cryptographic
functions using the hardware accelerators of the ATxmega. Note that the first
call to an en-/decryption function involves some overhead for the initial setup.
After that, subsequent blocks can be processed faster. For reference, we included
the runtime both for a single block and for ten data blocks in Table 2.

According to [4], an original Mifare DESFire card answers 690µs (9356 clock
cycles at 13.56 MHz) after b1,b2 was received when Protocol 2 is executed. During
this time, two 3DES encryptions are performed (one encryption of two blocks
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Table 2. Execution times of 3DES and AES-128 en-/decryption functions

Command Block count Execution time

TripleDES_CBC_Enc() 1 block 14.1 µs
TripleDES_CBC_Enc() 10 blocks 85.1 µs
AES128_CBC_Enc() 1 block 35.9 µs
AES128_CBC_Enc() 10 blocks 270.2 µs
AES128_CBC_Dec() 1 block 58.4 µs
AES128_CBC_Dec() 10 blocks 304.9 µs

and one encryption of a single block). Our implementation performs about three
times faster than a genuine card, with 219µs (5932 clock cycles at 27.12 MHz)
to produce a valid answer b3 after b1,b2 was received.

A genuine DESFire EV1 card replies with b3 approx. 2.2 ms after having
received b1,b2. In contrast, our implementation only consumes about 438µs and
is thus faster by a factor of five. As we are able to en-/decrypt faster than
both DESFire cards, encrypting or MACing data which is the most critical
part for Mifare Classic does not pose a problem in the context of emulating
DESFire (EV1) cards. For both Mifare DESFire and Mifare DESFire EV1, our
implementation performed successfully with the readers in our laboratory. As
with the emulation of Mifare Classic cards, we are able to equip our emulator
with a UID that is free of choice.

We conclude that the ATxmega microcontroller on our current hardware revi-
sion is powerful enough to handle the amount of computation that is needed for
the emulation of the simple Mifare Classic cards and also for more sophisticated
contactless smartcards using 3DES or AES.

5 Real-World Attacks

We successfully employed the Chameleon to bypass the security mechanisms of
several real-world systems, for example, we utilized the Mifare Classic emulation
to fake a card that is accepted by a widespread payment system. In the following,
we summarize the characteristics of this system and then detail on the attacks
carried out with our hardware.

5.1 A Vulnerable Contactless Payment System

For the identification of a customer of the payment system analyzed in [16], in
addition to the UID each card contains a card number chosen by the system inte-
grator. The credit balance is stored in plain in a value block on the card, without
any extra security measures. The credit can be increased by means of cash or a
credit card at charging terminals, while the cash registers are equipped with RFID
readers to decrease the credit according to the balance due. The contactless cards
furthermore allow to open doors and grant access to restricted areas.
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The system can be easily spoofed, because all cards issued have identical secret
keys. Hence, once the secret keys of one card have been recovered, the content
of any card in the system can be read out or modified. The authors were able to
carry out payments by copying the content of original payment cards to blank
Mifare Classic cards. The so obtained cards are not exact clones, since the UIDs
of the blank cards are different from that of the genuine ones, as detailed in
Sect. 4.1. Consequently, the fraud could be easily detected in the back-end by
verifying the correctness of the UID of a card on each payment.

The authors of [16] mention that the existence of a device that can fully
clone a card including the UID would allow for devastating attacks, but suppose
that these devices, if available, will be very costly so buying and using them
for micropayments would not be profitable. With our developed hardware, the
presence of an arbitrary valid card, e.g., an exact clone including the UID, can
be simulated with minimal effort and cost, as shown in the following.

5.2 Electronically Spoofing a Contactless Payment System

A powerful type of attack that can be conducted with the Chameleon is called
state-restoration. Even if the credit value was stored encryptedly on the payment
card, e.g., using AES with an individual key per card, the content can be simply
reset to the original credit value by dumping the full content of the card before
paying and reprogramming the card (respectively our card emulation device)
with the previous content after the payment.

As a first step to conduct this attack, we extracted the secret keys using
the methods described in Sect. 3.1. Then, we dumped the content of a genuine
card, including the UID, and copied it to our emulation device, thereby creating
an exact clone. Hiding the device in a wallet, we consequently were able to
carry out contactless payments. The credit value was stored in the EEPROM
of our emulator and is decreased according to the balance due. As a result, the
remaining credit displayed to the cashier appears to be correct and our device
was accepted as genuine. The Chameleon allows to recharge the balance to its
original value by restoring the initial dump when the attacker presses a push
button. Finally, unlimited payments could be carried out with our device. Our
practical tests furthermore showed that the Chameleon allows to open doors
when cloning a valid card of an employee. However, if the fraud occuring due
to the state restoration attack would be detected on the long term, the card
number and/or the UID could be blacklisted and blocked for future payments.

For a more powerful attack, we programmed the Chameleon to generate a
new random UID and card number for each payment. In our practical tests with
the payment system, our emulator now appeared like a new card every time.
Again, we were able to carry out payments, but this time, the device cannot be
blacklisted and blocked in the backend.

In a similar manner, we were able to spoof a copy-and-print service that
relies on contactless smartcards. The printers and copy stations are equipped
with RFID readers that decrease the credit stored on the Mifare Classic card
according to the amount of copies or printings carried out. By repeatedly using
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the service and comparing the content of the card between the payments, we
found the block in which the amount of remaining credit was stored, again
without any encryption. We hence programmed our card emulator to simulate
the original card such that the credit appears to be lowered on each payment.
However, the previous state of the card, i.e., charged to a high credit value, can
again be restored by pressing a button on our hardware. As a consequence, we
gain an unlimited amount of copies with our hardware.

Since cards of other customers can be read out from a distance2, the Chameleon
can also be used to clone their cards in a real-world scenario. Reading out the rele-
vant sectors takes less than 100 ms. Several cards of other customers can be stored
in the Chameleon and hence payments can be carried out with cloned cards that
already exist in the payment system. Note that the original card of the customer
remains unmodified and thus still contains the original credit value. Accordingly,
a financial damage will only occur for the payment institution, while the customer
is not affected. Altogether, taking the above illustrated devastating attacks and
its low cost into account, the Chameleon can clearly be profitable for a criminal.

6 Conclusion

We present a microcontroller-based, freely programmable emulator for ISO 14443
compliant RFIDs that allows to simulate various contactless smartcards at a very
low cost. The device works autonomously, operated from a battery, and its card-
sized antenna fits into slots of most readers for contactless smartcards. Due to its
small dimensions, the emulator can be used covertly, e.g., hidden in the purse,
and is well-suited for real-world attacks. Our hardware can be connected to a PC
by means of a USB interface and the non-volatile memory of the microcontroller
allows amongst others to monitor the communication with an RFID reader and
store the acquired data in order to reverse-engineer unknown protocols.

We exposed the protocol of Mifare DESFire EV1 cards, implemented the
(3)DES and AES block ciphers as required, and present the first successful emu-
lation of Mifare DESFire and DESFire EV1 cards in the literature. The current
software further includes the emulation of Mifare Classic cards, based on a highly
optimized variant of the Crypto1 stream cipher. The firmware of our device is not
limited to Mifare cards but can be adapted to support other contactless smart-
cards and their respective protocols, e.g., the electronic passport and cards from
other manufacturers.

We tested the emulations with different RFID readers and show that our
implementations of the ciphers and protocols meet the timing requirements of
all protocols and that the performance in most cases is even faster than that of
original cards. In all our tests, the emulator could not be distinguished from a
genuine card. The device proved to be a valuable tool for the security analysis of
contactless technology and can be used to practically identify security weaknesses
of real-world RFID systems.

2 Modified RFID readers allow for reading distances up to 30 cm.
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Since secret keys of Mifare Classic cards and Mifare DESFire cards can be
extracted by means of mathematical cryptanalysis and side-channel analysis, re-
spectively, our emulator poses a severe threat for many commercial applications,
if it was used by a criminal. To demonstrate the capabilities of our findings we
perform several real-world attacks, amongst others on a contactless payment sys-
tem. We emulate exact clones (including the UID) of Mifare cards, successfully
spoofed an access control system and carried out payments. Furthermore, we
implemented a mode of operation in which our emulator appears as a new card
with a new UID and new content on every payment, which hinders detection of
fraud in the backend.

With contactless payment, ticketing and access control systems being om-
nipresent today, it is crucial to realize that only strong cryptography, together
with sound protocol design and protection against implementation attacks can
ensure long-term security. Bug-fixes for broken systems based on false assump-
tions on certain device characteristics, e.g., UID-based protection schemes for
Mifare Classic, are a fatal design choice, as we demonstrate that exact cloning
of cards is feasible at a very low cost.
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A Authentication Protocols

This appendix provides the commands and the exact binary format for the au-
thentication protocols used in this paper. Note that for DESFire (EV1), the
message format according to ISO 14443A part 4 (including the 16-bit CRC) is
taken into account in the following.

A.1 Mifare Classic Authentication Protocol

Table 3. Authentication protocol between a reader R and a Mifare Classic card C

# Direction Protocol Message Explanation

1 R → C 60, sector (1 byte), CRC1 CRC2 (2 byte) Auth || sector ||
CRC

2 C → R 4 byte nC
3 R → C 4 byte, 4 byte nR ⊕ ks1 || aR ⊕ ks2
4 C → R 4 byte aC ⊕ ks3

A.2 Mifare DESFire Authentication Protocol

Table 4. Authentication protocol between a reader R and a Mifare DESFire card C

# Direction Protocol Message Explanation

1 R → C 02 0A, key (1 byte), CRC1 CRC2 Auth || key number || CRC
2 C → R 02 AF, 8 byte, CRC1 CRC2 Card nonce || b0 || CRC
3 R → C 03 AF, 8 byte, 8 byte, CRC1 CRC2 Reader response || b1 || b2 ||

CRC
4 C → R 03 00, 8 byte, CRC1 CRC2 Success || b3 || CRC

A.3 Mifare DESFire EV1 Authentication Protocol

Table 5. Authentication protocol between a reader R and a Mifare DESFire EV1
card C

# Direction Protocol Message Explanation

1 R → C 02 AA, key (1 byte), CRC1 CRC2 Auth || key number || CRC
2 C → R 02 AF, 16 byte, CRC1 CRC2 Card nonce || b0 || CRC
3 R → C 03 AF, 16 byte, 16 byte, CRC1 CRC2 Reader response || b1 || b2

|| CRC
4 C → R 03 00, 16 byte, CRC1 CRC2 Success || b3 || CRC
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B Schematics

Fig. 3. Schematics of the microcontroller and the USB interface

Fig. 4. Schematics of the power supply and the (de)modulation circuitry
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Abstract. Address space randomization is believed to be a strong de-
fense against memory error exploits. Many code and data objects in a
potentially vulnerable program and the system could be randomized,
including those on the stack and heap, base address of code, order of
functions, PLT, GOT, etc. Randomizing these code and data objects is
believed to be effective in obfuscating the addresses in memory to ob-
scure locations of code and data objects. However, attacking techniques
have advanced since the introduction of address space randomization. In
particular, return-oriented programming has made attacks without in-
jected code much more powerful than what they were before. Keeping
this new attacking technique in mind, in this paper, we revisit address
space randomization and analyze the effectiveness of randomizing various
code and data objects.

We show that randomizing certain code and data objects has become
much less effective. Typically, randomizing the base and order of func-
tions in shared libraries and randomizing the location and order of entries
in PLT and GOT do not introduce significant difficulty to attacks using
return-oriented programming. We propose a more general version of such
attacks than what was introduced before, and point out weaknesses of a
previously proposed fix. We argue that address space randomization was
introduced without considering such attacks and a simple fix probably
does not exist.

Keywords: Address space randomization, return-oriented programming,
software exploit.

1 Introduction

Address Space Randomization (ASR) has been proposed as a technique to fight
against memory error exploits [2,3,4]. Most of these techniques obfuscate addresses
in memory to obscure the location of code and data objects, including those on the
stack and heap, static data, PLT, GOT, and etc. An attacker would then have a
hard time finding out the addresses of code and data objects. This in turn makes
the result of invalid memory access unpredictable. For example, randomizing the
base of the stack and introducing random sized gaps between successive stack
frames could make it difficult for an attack to locate or overwrite the return ad-
dress; randomizing the locations of the PLT and GOT could make it difficult for an
attack to access system functions such as execve() after subverting the program’s
control flow and therefore limit what a successful exploit could perform.
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However, attacking techniques have advanced a lot since the introduction of
address space randomization. In particular, return-oriented programming [14]
has made attacks without injected code more powerful, in many cases able to
perform arbitrary computation. This raises the question of whether randomiz-
ing certain code and data objects is still as effective as what we believed. In
this paper, we show that randomizing the base and order of functions in shared
libraries and randomizing the location and order of entries in PLT and GOT
do not introduce significant difficulty to attacks using return-oriented program-
ming. In particular, we present an attack on a system in which the library base
addresses, the order of library functions, and the PLT and GOT are random-
ized. In the course of presenting the attack, we also detail a few improvements
to return-oriented programming to make our attack more effective. We continue
to show that a previously proposed fix of encrypting GOT might not work in
many cases. We argue that address space randomization was introduced without
considering such attacks, and a simple fix probably does not exist.

Note that what we study here is more than returning to randomized lib(c)
as shown in a previous work [13]. Besides the attack we propose here being
more general, i.e., we consider a system where the order of library functions
are also randomized, we strive to study the effectiveness of randomizing various
code and data objects rather than proposing a particular attack. We analyze the
root cause of attacks using return-oriented programming, point out weaknesses of
mitigation techniques in the previous work [13], and argue that randomizing such
code and data objects are just ineffective and no simple fix exists. To support
our analysis, we evaluate a number of commonly used application programs and
show that encrypting GOT is, in fact, not effective in stopping the attack, since
there are enough gadgets found in the binary program itself to exercise the attack
and returning to libc is not needed.

We caution the readers from drawing from our analysis more than what it
deserves. We are not trying to show that address space randomization is not
effective in general. On the other hand, since there are many code and data ob-
jects that can be randomized, our analysis shows that randomizing some of these
does not necessarily improve the system security because of the new attacking
technique. Address space randomization is certainly effectively in, e.g., making it
difficult for an attack to exploit a vulnerability to subvert the program’s control
flow. What we show in this paper is that after an attack manages to subvert
the program’s control flow, the difficulty of causing the program to execute in a
manner of his choosing using return-oriented programming is not much affected
by randomizing the base and order of functions or location and order of PLT
and GOT.

In summary, the paper makes the following contributions.

– Propose and implement a general attack on an address space randomization
system where the base and order of library functions and location and order
of entries in PLT and GOT are randomized.

– Propose a few improvements to the return-oriented programming to make
our attack more effective.
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– Analyze limitations of the previously proposed attack mitigation technique
of encrypting GOT.

– Discuss on the effectiveness of randomizing the base and order of functions
and location and order of entries in PLT and GOT.

The rest of the paper is organized as follows. In Section 2, we outline the back-
ground and discuss some related work in this area. Section 3 presents an overview
and intuition of our attack. We detail the implementation of our attack in Sec-
tion 4. Section 5 discusses the limitation of a previously proposed attack mitiga-
tion technique and our experimental results on it, and discusses the implications.
We conclude in Section 6.

2 Background and Related Work

There are many code and data objects that can be randomized [2,3,4]. Ta-
ble 1 presents a summary of the important ones and the specific data to be
randomized.

Table 1. Code and data objects to be randomized

Code and data objects What to randomize

Stack-resident variables
Base of stack

Gaps between stack frames

Heap-resident variables
Base of heap

Gaps between heap allocations
Static variables Order of static variables

Program code
Addresses of function call targets

Position independent code

Functions in library
Base of library

Order of functions in library
Gaps between functions in library

Entries in PLT and GOT
Locations of PLT and GOT

Order of entries in PLT and GOT

Randomizing these code and data objects is effective in stopping some partic-
ular types of attacks or steps in some attacks. In this paper, we try to analyze the
effectiveness of randomizing some of these data in making attacks difficult. In
particular, our analysis shows that randomizing functions in library and entries
in PLT and GOT is ineffective. We support this by presenting our general attack
on an address space randomization system and analyzing an attack mitigation
technique previously proposed.

To understand how these randomization helps in making attacks difficult, we
briefly describe the two steps an attack usually needs to perform. First, it needs
to find a way to exploit the vulnerability to subvert the program’s control flow.
Second, it needs to cause the program to execute in a manner of his choosing.
Traditionally, the first step could be done by overflowing a buffer on the stack
and overwriting a return address, although many other techniques, e.g., heap [8]
and integer overflows [18] and format string vulnerabilities [16], could be used.
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The second step can be done by executing injected code [12] or performing a
return-to-libc attack.

Address space randomization [2,3,4] and a variant of it [17] are proposed to
make both steps discussed above difficult. For example, in order to overwrite
a return address on the stack to subvert the program’s control flow, an attack
needs first to locate the return address. If the base of the stack is randomized,
the location of the return address is no longer the same on different executions of
the same program and therefore the attack will be difficult. A brief summary of
the randomizing techniques to make it difficult to subvert the program’s control
flow follows.

– Introducing shadow stack for buffer-type variables;
– Randomizing the base of the stack and heap;
– Introducing random sized gaps between successive stack frames and heap

allocations;
– Avoiding calls using absolute addresses by transforming them into function

pointers.

Address space randomization can also make it difficult for an attack to perform
arbitrary computation after the attack subverts the program’s control flow. For
example, making memory spaces non-writable or non-executable could stop in-
jected code execution. Randomizing functions in the binary and shared library
could make return-to-libc attacks difficult. Here is a summary of randomizing
techniques to make this step difficult.

– Making certain memory spaces non-writable or non-executable;
– Randomizing the order of functions in the binary and shared libraries;
– Introducing random sized gaps and inaccessible pages between functions in

the binary and shared libraries;
– Randomizing the order of static variables;
– Randomizing the location of PLT and GOT;
– Randomizing the order of entries in PLT and GOT;
– Uses position independent code in the program.

In this paper, we assume that an attack has successfully subverted the vulnerable
program’s control flow (first step), and try to evaluate how effective address space
randomization is in making the second step difficult, i.e., in making it difficult
for the attack to perform arbitrary computation.

Our attack uses the idea of return-oriented programming [14,6]. Return-oriented
programming fits the requirement of the attack well because it does not need to
execute any injected code. Only a large number of short instruction sequences
from either the original program or libc is to be executed in order for the attack
to perform arbitrary computation. However, our attack is more challenging than
return-oriented programming on a normal (non-randomized) machine in that
the addresses of the short instruction sequences are randomized and unknown
to the attacker. Although return-oriented programming has been extended to
a number of different environments [5,9,10,11,7], it is non-trivial how it can be
applied on address space randomization systems.
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Perhaps the work to surgically return to randomized libc [13] is the closest
to our work in this paper. In this work, Roglia et al. introduced an attack on
address space randomization assuming the base of the libc library is randomized.
The attack surgically finds the address of a libc function by reading entries in
PLT and GOT using return-oriented programming. The attack we present in
this paper uses the same strategy, but differs in that it also assumes that the
order of library functions are randomized. Roglia et al. also proposed an attack
mitigation technique of encrypting the GOT. In this paper, we argue that such
a technique might not work on programs where enough gadgets are found in
the program binary itself and libc is not needed for the attack. We demonstrate
this by analyzing a few commonly used application programs and show that an
attack on them indeed does not require the use of libc. In general, this paper
is not just about introducing an attack on address space randomization, but
to study the effectiveness of randomizing certain code and data objects, and
to argue that randomizing them is ineffective to defend against attacks using
return-oriented programming, and a simple fix does not exist.

The effectiveness of address space randomization on 32-bit architectures has
been analyzed previously [15]. In this work, a brute force attack is proposed to
guess the libc text segment offset in order to perform a return-to-libc attack.
Experiments show that such an attack is effective on a 32-bit system where the
vulnerable service automatically restarts after crashing. Our attack is different
from this attack in that we derandomize the addresses in an efficient way without
brute forcing. Therefore, our attack has a wider application on systems where
counter-measures are in place to fight against brute force attacks.

3 Attack on Address Space Randomization

As shown in Section 2, there are many code and data objects that can be random-
ized to make different attacks or attack steps difficult. Although return-oriented
programming [14] has made attacks without injected code more powerful, in
many cases able to perform arbitrary computation, intuitively it does not work
well on address space randomization systems because the locations of gadgets
are randomized and hard to be found.

In this section, however, we show that randomizing the base of the library,
order of library functions, entries in PLT and GOT is ineffective in defending
against attacks using return-oriented programming. We show this by presenting
an attack on an address space randomization system where we assume that
position independent code is not in use in the binary program. This assumption
is valid in most existing computing systems because recompilation is needed to
generate position independent code. We show that our attack is able to execute
arbitrary computation after subverting the control flow of the program. This
attack uses the same strategy of the one presented by Roglia et al. [13]. However,
here we assume that the order of library functions is randomized whereas Roglia
et al. only considers the randomized base address.

In the rest of this section, we first give an intuition of the attack we propose
and an overview of the steps involved. In Section 4, we detail the implementation
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of the attack and a few improvements we introduce to make return-oriented
programming more effective in our attack.

3.1 Attack Intuition

As many memory pages are made non-writable or non-executable in an address
space randomization system, our attack tries to use existing code in the system
to perform arbitrary computation. A typical way of performing such an attack
is to use return-to-libc attacks to transfer control to system function execve().
Recall that we assume that the first step of the attack to subvert the control
flow of the program, see Section 2, has been done. Therefore, the most important
next step is to locate the address of a system call in existing code (e.g., in libc)
and then transfer control over there.

Randomizing base address of the library and order of library functions. Ran-
domizing the base address of libc and the order of libc functions are definitely
effective in making our attack more difficult, since the address of these function
has been randomized and cannot be pre-computed in our attack.

Randomizing entries in PLT and GOT. PLT (procedure linkage table) and GOT
(global offset table) play crucial roles in resolution of library functions, and
therefore is a potential target of our attack. As shown in Figure 1, GOT stores the
address of libc functions, while PLT contains entries that jump to the addresses
stored in GOT.

The dependency between randomizing PLT/GOT and randomizing library
base address and functions was well documented — if an attacker knows the
location and offsets of PLT, then the address of libc functions can be found even
if the base address of libc and order of libc functions are randomized [4].

We have seen the dependency between randomizing libc and randomizing
PLT/GOT because addresses of libc functions are used in PLT/GOT. By the
same token, entries of PLT/GOT are used by other parts of the program, in
particular, by call instructions in the code segment. If an attack can locate

Fig. 1. PLT and GOT in a dynamically linked ELF executable
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such call instructions in the program, theoretically the target of the call would
reveal the location and offset in PLT/GOT, too. This analogy can also be seen
from Figure 1.

Another way to look at such an attack is that no matter how well code and
data objects are randomized, the randomized object would need to be accessi-
ble by the original program anyway to enable execution of the program. Ad-
dresses of libc functions are randomized, but the randomized addresses are used
in PLT/GOT to allow libc functions to be called; by the same token, PLT and
GOT can be randomized, but the randomized addresses are used in call in-
structions to allow functions to be called, too. If our attack is able to locate the
call instructions and find out the target of the call, we can find the address of
libc functions indirectly.

3.2 Attack Overview

To demonstrate the chain of dependencies, we propose our attack to perform
arbitrary computation when the binary program does not make use of position
independent code, i.e., when the attacker has access to the vulnerable program
for static analysis. In such a scenario, the attacker can easily locate the call
instructions by disassembling the code segment. However, finding out the (ran-
domized) target of the call still remains nontrivial since it requires a memory
read operation to be executed. Recall that 1) we assume that memory pages are
non-writable or non-executable, and therefore executing injected code is not an
option; 2) libc function addresses have not been found, and therefore return-to-
libc is not an option either.

However, with the advances of return-oriented programming [14], such an
attack becomes possible. Return-oriented programming fits the requirement of
the attack well because it does not need to execute any injected code. Instead, it
can make use of short instruction sequences from the original program (not the
libc since the randomized libc addresses have not been found yet) to perform

Static analysis to locate the
address of a call instruction

Read the target address of
the call instruction

Read the target address
in PLT

Read the target address
in GOT

Transfer conrol to execve()
in libc to obtain a shell

Fig. 2. Overview of our attack
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the read operation (and some others; see Section 4). Figure 2 shows the steps
involved in our attack.

After the control flow of the program is subverted (our assumption), our
return-oriented programming code will first read the target of a call instruction
whose address is known by static analysis of the vulnerable program. After that,
we locate the address and offset through PLT and GOT. Once the entry in
PLT and GOT is located, we read the entry to find out the corresponding libc
function, and eventually we can use the short code sequences inside libc. In the
end, the address of the libc function can be used to obtain a shell for arbitrary
computation by making a system call. Note that our attack works well when
the order of library functions is randomized, which a previously proposed attack
does not consider [13].

4 Attack Implementation

As discussed in Section 3.2, there are a few steps involved in a successful attack,
and each step requires some instructions to be executed. In this section, we
first explain in more details what instructions are needed in each step, and then
present a realization of executing these instructions using a few improvements to
the return-oriented programming. We demonstrate our attack with an example
on apache-2.2.15.

4.1 Instructions Needed to be Executed in Our Attack

The first step in our attack is to find the static address of a useful call instruction
in the code segment of the vulnerable program. There are typically many call
instructions in the code segment, and what we need is 1) one that calls a libc
function; and 2) the corresponding libc function makes a system call. We need
the second requirement in order to make sure that we can later make use of
the system call to execute execve() for arbitrary computation. The one that
we choose is call geteuid at 0x80b85af in apache-2.2.15 (see Figure 3). Note
that many other call instructions could be used.

Finding target address of the call instruction. As shown in Figure 3, the tar-
get address of the call instruction is represented as an offset (0xfffaff54) of

080b85a8 <set_group_privs>:
80b85a8: 55 push %ebp
80b85a9: 89 e5 mov %esp,%ebp
80b85ab: 53 push %ebx
80b85ac: 83 ec 34 sub $0x34,%esp
80b85af: e8 54 ff fa ff call 8068508 <geteuid@plt>
80b85b4: ...

Fig. 3. call instruction in the code segment
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the address of the next instruction (0x080b85b4). Therefore, in order to obtain
the target address of the call instruction (0x08068508), our attack needs two
instructions, i.e., a memory read instruction (at an address of our choosing) to
read the offset, and an add instruction to add the offset to the address of the
next instruction (static).

Finding jump target address in PLT. Every entry in PLT has 3 instructions that
correspond to 16 bytes; see Figure 4. What we are interested in the jump target
in is the first instruction, assuming that the program has been executing for a
while and lazy linking has already initialized the address of the GOT entry in
the first instruction. To find the jump target (0x08d06b90), we need another add
instruction to find the address of the jump target (offset of 2 bytes at 0806850a)
and another memory read instruction to read the jump target address.

08068508 <geteuid@plt>:
8068508: ff 25 90 6b 0d 08 jmp *0x80d6b90
806850e: 68 20 17 00 00 push $0x1720
8068513: e9 a0 d1 ff ff jmp 80656e0 <_init+0x30>

Fig. 4. Entry in PLT

Finding the address of the libc function in GOT This step is simple, as the
jump target found in PLT contains exactly the address of the libc function; see
Figure 5. Therefore, we need only a memory read instruction here.

080d6b90 <_GLOBAL_OFFSET_TABLE_+2972>: e0 8a 09 00

Fig. 5. Entry in GOT

Making a system call Once the address of the libc function (geteuid) is found,
we can make a system call by transferring control to an instruction inside the
libc function. Figure 6 shows the instructions inside geteuid, in which the fourth
instruction call %gs:0x10 is the new system call instruction in Linux. We first
initialize four register values (eax, ebx, ecx, edx) and then transfer control
to this instruction. So our attack in this step simply needs register initiation
instructions.

4.2 Finding Gadgets to Realize the Instructions Needed

In this subsection, we outline how the instructions needed in our attack are real-
ized by return-oriented programming [14]. The idea of return-oriented program-
ming is to use gadgets (short code sequences ended by ret, or by jmp <reg> [6]).
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00098ae0 <geteuid>:
98ae0: 55 push %ebp
98ae1: 89 e5 mov %esp,%ebp
98ae3: b8 c9 00 00 00 mov $0xc9,%eax
98ae8: 65 ff 15 10 00 00 00 call *%gs:0x10
98aef: 5d pop %ebp
98af0: c3 ret

Fig. 6. System call in libc

Note that in our attack, these gadgets have to be found in the vulnerable pro-
gram except in the last step after the libc function address has been found. This
makes our attack more challenging than return-oriented programming in general
where useful gadgets can be easily found in the large libc library.

Since the vulnerable program is usually relatively small when compared to the
libc library, we might not be able to locate the gadgets we want. We propose and
use a few techniques to expand the set of useful candidate gadgets. We do not
further discuss how the last step of our attack can be implemented by finding
useful gadgets in libc since it has been well discussed in the return-oriented
programming paper [14].

Alternative instructions. There could be multiple different instructions that
serve what we need in the operations. Table 2 shows some candidate gadgets
of different instructions for the same purpose needed in our attack. Note that
they are just some examples, and each of them could have different variations,
e.g., by using different registers.

Table 2. Useful gadgets with alternative instructions

Operations Useful gadgets

Memory reading <mov (%eax), %eax; ret;>

Addition
<add %ebp, %ebx; ret;>

<lea (%eax, %ecx, 1), %eax; ret;>

Register writing
<pop %eax; ret;>

<xchg %eax, %edx; ret;>

Combination of instructions. Besides using gadgets of different instructions, we
can also combine different instructions (their corresponding gadgets) together
to realize the intended operation. For example, <or (%eax), %ebx; ret;> or’s
the value at a memory address (specified by eax) with another register (ebx). It
serves the purpose of memory reading if ebx happens to be zero. Even if ebx is
not zero, this gadget can be combined with a register writing to set ebx to be
zero first. Table 3 gives some examples of such combinations.

Instructions with side-effects. Some instructions in a gadget might have no ef-
fect in the execution context or might have side effects that can be reversed
by other gadgets. Although these instructions (and the corresponding gadgets)
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Table 3. Useful gadgets by combining instructions

Operations Useful gadgets

Memory reading
<register writing>

<or (%eax), %ebx; ret;>

Addition loop: <inc %eax; ret;>

Register writing
<mov $const, %eax; ret;>

<lea ($const), %eax; ret;>
<addition>

make our analysis more complicated, taking them into consideration helps us
find more useful gadgets. For example, in searching for gadgets to pop data
from the stack to a register, we only managed to find <pop eax; ret;> and
<pop ecx; ret;> directly from apache-2.2.15. After analyzing instructions
with some side-effects, we managed to find <pop ebx; pop ebp; ret;> and
<pop edx; push eax; std; dec ecx; ret;> with one and three instructions
with side-effects in the middle, respectively.

4.3 Attacks on Apache and Other Programs

With the techniques discussed in Section 4.2, we search the binary code of
apache-2.2.15 and other programs to see if gadgets needed could be found
using the Galileo algorithm [14]. The number of gadgets found for different op-
erations are presented in Table 4.

Table 4. Number of gadgets found

Programs Memory reading Addition Register writing

apache-2.2.15 (695 KB) 2 7 34
vsftpd-2.2.2 (116 KB) 1 3 47
bind-9.7.0 (486 KB) 3 1 17
sendmail-8.14.3 (806 KB) 1 4 14
mplayer-1.0~rc3 (4 MB) 5 19 117
firefox-3.6.3 (50 KB) 0 1 13

Table 4 shows that we manage find the needed gadgets from apache, vsftpd,
bind, sendmail, and mplayer, while relatively small programs, e.g., firefox1,
may not provide enough useful gadgets.

To try out our attack on apache-2.2.15 on a real system, we downloaded the
address space randomization proposed by Bhatkar et al. and migrated the code
to a PAX-enabled Ubuntu 10.04 desktop computer. We configure the system
such that base address of the library, order of library functions, PLT and GOT
are randomized. We then use gdb to overflow a buffer of apache-2.2.15 on the
stack with our attack code. The attack successfully creates a shell for arbitrary
computation. Appendix A shows the shell code that we use in this attack. Since
1 Firefox is a large program, but its binary file, /usr/lib/firefox-3.6.3/firefox-bin (under

Ubuntu-10.04), is only of 50 KB as most functionality is provided in libraries.
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it is possible to find the needed gadgets from various programs as shown in
Table 4, we believe that our attack can be generalized to be applied on other
vulnerable programs. We leave this as our future work.

4.4 Discussions of Our Attack

What we propose is a more general attack which works even when the order of
library functions is randomized, which is different from a previously proposed
attack [13].

Other considerations of our attack. In the discussions above, we have not consid-
ered a level of indirection address space randomization might have introduced,
namely converting direct function calls to indirect ones with function pointers.
Our attack works in the same way when function pointers are used; in fact, the
attack could even be simplified in some cases because offsets might not be used
in indirect calls.

Limitations of our attack. There are a few limitations of our attack. First, we
assume that the control flow of the vulnerable program can be subverted. This
might not be true as address space randomization could make such subverting
very difficult. However, this assumption does not hinder our analysis less impor-
tant because a security system should not rely on the single point of protection
and should try to make attacks difficult even when the first line of defense fails.
Second, we assume that the attacker has access to the vulnerable program to
do static analysis and position independent code is not in use. Our attack relies
on this assumption because we wouldn’t be able to locate the call instruction
should this assumption be invalid. Third, we might not be able to find enough
useful gadgets from the vulnerable program. Although we have shown programs
meeting our attack requirement, it remains future work to study other ways of
finding useful gadgets to generalize our attack.

Extension of our attack. The idea of our attack could be extended to make stack
randomization ineffective, if instructions like mov eax, esp could be found by
using return-oriented programming. We tried using the Galileo algorithm [14]
to search for it, but could not find one in our experiments. Theoretically, this
is possible especially when searching on various sections that are marked ex-
ecutable, e.g., .plt, .text, .fini, .rodata, .eh_frame_hdr, and .eh_frame.
We leave this as future work.

5 Possible Mitigation Techniques and Discussions

Roglia et al. proposed a few mitigation techniques to defend against attacks that
dereference and overwrite GOT [13], which include using position independent
code, self-randomization of the program, and encrypting GOT. Although such
techniques could defend against our attack presented as well, we try to ask a
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deeper question: is address space randomization weak in randomizing GOT only
and therefore becomes effective once the mitigation techniques are in place, or is
it true that randomizing some of the code and data objects (e.g., base and order
of library functions) is simply ineffective when return-oriented programming is
used in an attack?

Before we try to answer this question, we first revisit our attack presented
in Section 3 and Section 4 and see if exploiting GOT is the only way for the
attack to succeed. The answer is definitely not. We try to derandomize the
address of libc functions simply because the library has a larger code base which
could be analyzed offline and usually contains more useful gadgets for return-
oriented programming. However, in many cases, all an attack wants is simply
to be able to make a system call (with values of the attacker’s choice on a
few registers), which might be possible with only gadgets from the vulnerable
program itself without making use of the library. We perform an analysis on
some commonly used application programs by using the Galileo algorithm [14]
and our improvements on it (see Section 4.2) to search for gadgets that allow an
attack to make a system call. Results (see Table 5) show that some programs,
such as the vulnerable version of Ghostscript [1], could be attacked by only
gadgets from the program.

In an attack using return-oriented programming with gadgets in the program
binary only, even fewer gadgets could be required. For example, to execute the
execve() system call, we only need to write four registers (eax, ebx, ecx, edx)
and then execute the system call instruction. Only these two categories of in-
structions (and the corresponding gadgets) are needed. Table 5 shows the number
of gadgets found for a few application programs.

Table 5. Number of gadgets found in some large programs

Programs Register writing syscall (int80 or call *%gfs:0x10)

gs-8.61 (11 MB) 34 130
mencoder-4.3.2 (8.7 MB) 47 5
emacs-23 (11 MB) 143 15
qemu-0.11.1 (2.1 MB) 23 10
qmake 2.01a (3.8 MB) 27 4

This shows that GOT is actually not the most important weaknesses in ad-
dress space randomization in view of attacks using return-oriented programming.
Rather, because address space randomization was proposed well before return-
oriented programming was introduced, it was not designed to defend against
return-oriented programming and therefore it is not surprising that the random-
ization of some of the code and data objects is simply not effective to defend
against return-oriented programming. We argue that the randomization of base
and order of library functions and the location and order of entries in PLT
and GOT are typical examples. Mitigation techniques like encrypting GOT does
not actually make address space randomization secure against return-oriented
programming.
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6 Conclusion

In this paper, we demonstrate our attack on randomizing the base address of
library, order of library functions, and entries in PLT and GOT with return-
oriented programming under the assumption that the attacker has a copy of the
vulnerable program for static analysis. Besides introducing this more general
attack and proposing improvements to return-oriented programming to make
the attack more effective, we also evaluate an attack mitigation technique previ-
ously proposed. Results show that dereferencing GOT is actually not a necessary
step in the attack, and therefore encrypting GOT does not make address space
randomization secure against return-oriented programming.
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A Shell Code of Our Attack

00000000 e8 01 05 08 d0 85 0b 08 3d fe 06 08 bf bf bf bf

00000010 3d fe 06 08 bf bf bf bf ac c6 0c 08 ac c6 0c 08

00000020 3d fe 06 08 bf bf bf bf 3d fe 06 08 bf bf bf bf

00000030 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08

00000040 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08

00000050 51 63 0a 08 e8 01 05 08 58 f4 ff bf 51 63 0a 08

00000060 66 b4 08 08 bf bf bf bf e8 01 05 08 08 80 04 08

00000070 3d fe 06 08 bf bf bf bf 51 63 0a 08 e8 01 05 08

00000080 60 f4 ff bf 51 63 0a 08 66 b4 08 08 bf bf bf bf

00000090 e8 01 05 08 60 f4 ff bf 51 63 0a 08 a8 02 05 08

000000a0 5c f4 ff bf c2 85 06 08 64 f4 ff bf bf bf bf bf

000000b0 e8 01 05 08 5c 82 04 08 3d fe 06 08 bf bf bf bf

000000c0 bf bf bf bf 64 f4 ff bf bf bf bf bf 2f 62 69 6e

000000d0 2f 73 68 00

http://team-teso.net
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Abstract. Spyware – malicious software that passively collects users’
information without their knowledge – is a prevalent threat. After a spy-
ware program has collected and possibly analyzed enough data, it usu-
ally transmits such information back to its author. In this paper, we build
a system to detect such malicious behaving software, based on our prior
work on detecting crimeware. Our system is specifically designed to fit
with thin-client computing, which is popular in some corporate environ-
ments. We provide implementation details, as well as experimental results
that demonstrate the scalability and effectiveness of our system.

Keywords: Spyware, Thin Client Computing.

1 Introduction

Spyware has traditionally targeted individual consumers for purposes of con-
ducting fraud and identity theft. Much of the defense has typically been left
to anti-virus software operating on individual consumers’ PCs and the finan-
cial institutions themselves who monitor for suspicious activity in an attempt to
mitigate financial loss. More recently, the enterprise as has become the target
[16] for spyware where the attackers’ goal is to pilfer corporate information in-
cluding webmail accounts, VPN accounts, and other enterprise credentials. One
study conducted by RSA’s FraudAction Anti-Trojan division found that almost
all Fortune 500 companies have shown activity from the Zeus Trojan [12], one
of the largest botnets. Given that many existing trojans and malware samples
evade detection by traditional anti-virus software most of the time [12], there
is demand for new approaches that can be applied at scalable levels within an
enterprise.

In prior work [4], we developed a system that was designed to detect spyware
proactively through the use of tamper resistant decoys. The system is intended
to complement traditional signature and anomaly based defense systems rather
than replace them. The system works by injecting decoys made up of monitored
information that triggers alerts during exploitation. The system makes the mal-
ware’s task significantly harder by requiring it to distinguish real actions from
simulated actions to in order to avoid decoys. We demonstrated the system’s
ability to detect spyware using various types decoy credentials including those

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 222–232, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Evaluation of a Spyware Detection System Using Thin Client Computing 223

for PayPal, a large bank, and Gmail. The implementation relied upon an out-of-
host software agent to drive user-like interactions in a virtual machine, seeking
to convince malware residing within the guest OS that it has captured legitimate
credentials. The system successfully demonstrated that decoys can be used for
detecting spyware on a single host.

In this work, we explore and demonstrate the scalability of the approach across
many hosts, making this work applicable to enterprise environments. Specifically,
we address threats within a thin-client based environment and propose a novel
architecture for bait injection on thin clients. The maturity of thin-clients has in-
creased their usage in corporate computing environments, making this approach
especially applicable [9,7]. In this system, we rely on virtualized mouse and key-
board devices to inject decoy actions and credentials to an innumerable number
of hosts with very low network and CPU overhead.

In summary, the contributions for this work include:

– An extension of an already proven system that aims to proactively detect
malware on a single host to one that scales to service any number of hosts.

– A thin-client based architecture that supports the injection of bait informa-
tion to and from a scalable number of servers and clients.

– A demonstration of the thin-client based architecture showing that it pro-
vides reasonable performance.

– The results of experiments that examine how these new systems induce mal-
ware to exfiltrate information.

Organization: Section 2 presents previous work, related to ours. In Section 3 we
describe our original system and we detail our new scalable architecture based
on thin client computing. We then present our evaluation results in Section 4
and conclude in Section 5.

2 Related

The use of manually injected human input for generating network requests has
been shown to be useful by Borders et al. [3] for detecting malware. The aim
of their system is to is to thwart malware that attempts to blend in with nor-
mal user activity to avoid anomaly detection systems. Chandrasekaran et al. [5]
expanded upon this system and demonstrated an approach to randomizing gen-
erated human input to foil potential analysis techniques that may be employed
by malware. Work by Holz et al. [8] investigated keyloggers and dropzones, re-
lied on executing maleware in CWSandbox [13] and automating user input with
AutoIt1 for the purpose of detecting harvesting channels. Since AutoIt resides
within the host, attackers are provided with a simple means of detecting and
avoiding it. In prior work, we demonstrated a platform for the automatic gen-
eration and injection of bait information designed to convince malware it has
captured legitimate credentials [4]. In addition, we adapted our original system

1 http://www.autoitscript.com

http://www.autoitscript.com
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to personal workstation environments where the convenience of virtualization is
usually absent [10]. In contrast to all prior work, this effort is focused on design-
ing a system for the large-scale injection of decoys to detect malware that may
otherwise go undetected.

Taint analysis is another technique that has been used to detect credential
stealing malware [6,15]. This approach works well, but does so with a cost of
a 10-20 times slowdown. Taint analysis systems also contain components that
reside on the guest, which is undesirable because they can be used by malware
to detect and elude the injected decoys. Our system aims to be undetectable by
malware residing within so that it is not easily avoided.

The authors of [14] evaluated a number of different remote screen protocols.
Although this is not directly related to the goals of our system, it is closely
related to the evaluation of our system’s application to thin clients.

3 Architecture

In this section, we begin by briefly presenting the goal and architecture of our
original system. We then detail an architecture that demonstrates how the same
approach can be scaled to handle a large number of hosts in a thin client envi-
ronment, which is achieved by exploiting its centralized computation nature.

3.1 Original System

The ultimate goal of our technique is to detect crimeware using tamper resis-
tant injection of believable decoys. In summary, we can detect the existence of
credential stealing malware by (i) impersonating a user login to a sensitive site
(using decoy credentials) and (ii) detecting whether this specific account was
accessed by anyone else except for our system. That would be a clear evidence
that the credentials were stolen and somebody tried to check the validity and/or
the value of that account. Our technique depends on the following properties:

– Out-of-host Detection. Our system must live outside of the host to be
protected. This prerequisite is for the tamper resistance feature of our sys-
tem.

– Believable Actions. The replayed actions must be indistinguishable by
any malware in the host we protect so as to not be easily eluded.

– Injection Medium. There must be a medium, able to transmit user like
actions (mouse, keyboard, etc.) to the protected host.

– Verification Medium. Optionally, but highly preferable, there should be
a medium that can be used to verify the injected actions. This can actually
be the same medium as above, if possible.

Our original system’s implementation was on a personal VM-based environment.
More precisely, in order to fulfill the Out-of-host Detection requirement, our



Evaluation of a Spyware Detection System Using Thin Client Computing 225

Fig. 1. Thin client environment – our system is on the top left corner

system resided on the host operating system and operated on the guest operating
system(s). To verify the Believability of the replayed actions, we conducted a user
study which concluded that the actions generated by our system were indeed
indistinguishable. Moreover, as an Injection Medium, we utilized the X server of
the host operating system to replay the actions. Finally, by slightly modifying
the component of the virtual machine manager that was responsible for drawing
the screen, we were able to verify the actions by checking the color value of
selected pixels.

The original system relied on a language for the creation of believable actions.
It is worth noting here that the approach is generic enough to be used as-is in the
application bellow. This stands because the injection medium is flexible enough
to support replaying of believable actions, although there could be cases where
the believability of the actions can be degraded due to artifacts of the injection
medium itself.

3.2 Thin Clients

The environment we chose to apply our technique to is thin clients, which, al-
though they have been around for a long time, they are recently becoming more
and more prominent in corporate networks. The main benefits of choosing such
a setup are low cost, easy maintenance and energy efficiency.

A typical thin client setup consists of two main components: (i) a central
virtual machine host (can be one physical server or more) and (ii) a collection
of “dummy” computers connected to that host over a local and fast network.
All the computation is offloaded to the central server, leaving the user termi-
nals responsible only for transmitting user actions (keyboard, mouse, etc.) and
remotely displaying the screen output of the virtual machine. Each user is then
able to access and use virtual machines hosted on the central server, using these
terminals (thin clients).

The application of our technique in this case was straightforward. In summary,
we deployed our system like an ordinary thin client that periodically connects to
each hosted virtual machine and injects decoy credentials. It is trivial to show
that this type of application satisfies all the properties, previously introduced.
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First, the out-of-host property is covered by deploying our system as a thin
client and not inside the VMs under protection. Second, all the remote access
protocols used in thin client environments provide a medium both for injection
and verification. Figure 1 depicts what we previously described. On the lower
right corner is the central server, on the left side, the thin clients and on the
top right corner, our system. As our system only needs to communicate with
the central server, we can safely adjust its proximity to it, reducing network
overhead imposed on intermediate links.

In our prototype implementation, we assumed that there is a Linux version of
the client part of the remote access protocol. For instance, in our evaluation (Sec-
tion 4.1) we used VNC [11], which is a standard remote access protocol. Although
this is not a requirement, it greatly improves scalability, because it allows us to
easily initiate many remote access sessions, concurrently. Overall, the implemen-
tation was similar to our original system with the primary exception being that
we leveraged out-of-the-box tools, as opposed to customizing. The main motiva-
tion behind that was to make our system as generic as possible and thus easily
portable to other remote access protocols. More precisely, we used a vanilla version
of GNU Xnee2 for the injection of the previously recorded believable user actions,
both mouse and keyboard. These actions were injected in a full screen view of the
client side remote access software, Xvnc here. For the verification, we used the Im-
ageMagick software suite3. More specifically, we made use of the import utility in
order to grab arbitrary portions of the screen and the compare utility, to count
the absolute number of different pixels. Finally, in order to enable the capability
of concurrently injecting to multiple virtual machines, and thus the scalability of
the system, we leveraged the Virtual Frame buffer (part of the X server). By do-
ing this, we could simultaneously execute many full screen remote access sessions,
each in a distinct X server (using the xvfb-run utility).

4 Evaluation

Our evaluation is divided in three parts, Subsection 4.1 examines the perfor-
mance and scalability factors of our technique, when applied to a thin client
environment. Next, we present the results on an exfiltration study we did us-
ing a relatively large number of malware samples. Finally, we discuss some real
“hits” we had during the evaluation of our system.

4.1 Performance

In order to evaluate the performance and scalability of our system in a thin
client setup, we set up such an environment in our lab. Using that as a testbed,
we measured both the overhead and the limits of our system.

More precisely, we used three Dell PowerEdge R410 servers, each having 8
CPU cores, 24Gb of memory and 1 TB of storage. For the virtualization layer,
2 Website: http://www.gnu.org/software/xnee/
3 Website: http://www.imagemagick.org/

http://www.gnu.org/software/xnee/
http://www.imagemagick.org/
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we chose to use Xen[2,1] because it has built-in remote guest access through
VNC. We installed the Xen hypervisor 4.0.0 on top of Ubuntu 10.04 server
edition. On each server we hosted 32 virtual machines, running Windows XP
SP2 as their guest operating system. In total, our setup was comprised of 96
virtual machines. Our prototype was also running on a virtual machine (on top
of a different host), with just one CPU and 1 GB of memory.

Memory: The amount of memory required by our system is proportional to the
number of concurrent sessions. Each virtual frame buffer consumes its number
of pixels times the number of bytes to encode the color for each of them. For
example, during our evaluation, the screen settings on the Windows guests were
set to 800x600 pixels using 32-bit colors. This equals to 800∗600∗4 = 1, 920, 000
bytes, or ∼2 MB. The total memory consumption for the whole 96 VM set is
∼176 MB.

Scalability: In the first part of our evaluation we examine the scalability of our
system. In order to do that, we monitored both the network and CPU utilization,
under various workloads – in terms of simultaneous injections. More precisely,
the different workloads we used were 24, 48, 72 and 96 concurrent injections
using our bait credentials. As for the VNC settings, we used the default values
(full color and hextile encoding).

Figure 2(a) shows the CPU utilization under each workload. In this figure, we
observe two expected things. First, the CPU load is proportional to the number
of concurrently replayed sessions. Second, we notice an increase in the total
duration. This increase is the result of failed verification attempts, which leads
to more wait periods. These verification failures are caused both because of the
virtual machine host’s high load and network level congestion which causes poor
refresh rates in VNC.
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Fig. 2. CPU and network utilization when simultaneously replaying to 24, 48, 72 and 96
VMs (using full color and HEX encoding). As expected, both metrics are proportional
to the number of the VMs.

The other resource we measured, in order to analyze the scalability of our
system, is network utilization. Figure 2(b) shows the total network usage, under
different workloads. In general, we see that network usage is high in the begin-
ning of the injection sessions (first 30 seconds) and decreases afterwards. This is
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caused because VNC transmits only the portions of the screen that have been
changed. In the very beginning, the whole screen has to be transmitted (first
peak) and right after, Internet Explorer is started in maximized mode (high
usage around the 20th second). Although the network utilization may seem for-
biddingly high at times, we have to keep in mind that (i) we try to measure the
scalability in the worst case scenario – that is all the injection sessions are initi-
ated simultaneously – and (ii) this is a prototype unoptimized implementation,
using of-the-self tools. The most important thing to keep from this measurement
is that our system, even under these conditions, was robust enough to sustain
and adapt to the workload increases.

Optimizations: After we demonstrated the scalability and adaptability to re-
source variations, we experimented with application level optimizations. Al-
though we could achieve much better overall performance by developing custom
injection and verification tools, we wanted to examine the benefits of tweaking
parameters of the remote access protocol – VNC in this case. There are two such
parameters that are related to the quality of the transmitted screen view. These
are: (i) color depth and the encoding algorithm used. The different options for
color depth are: 8, 256 or full colors. Each time something has changed on the
screen, VNC transmits the surrounding rectangle of that portion, encoded in
one of the following ways:

– RAW. This is the simplest out of all the encoding schemes. As its name implies,
rectangles are transmitted in width x height pixel values.

– HEXTILE. In this case, the rectangles to be transmitted are firstly partitioned
in 16x16 tiles. Then, each of them is either sent raw (as above) or using
a variant of Rise-and-Run-length-Encoding, where a sequence of identical
pixels are compacted to a single color value and repeat count.

– ZRLE. Finally, this encoding scheme combines a form of the previous one
with Zlib compression.

In order to measure the benefits and tradeoffs of the different encodings and
color depths, we evaluated four typical combinations. These were full color-RAW,
full color-HEXTILE, 8 colors-HEXTILE and 8 color-ZRLE. For each combination, we
concurrently injected bait credentials to the whole VM set – the 96 of them. As
before, we collected CPU and network utilization statistics. Figure 3(a) shows
the CPU usage under the different encoding-color depth pairs. Using full color
yields slightly higher CPU utilization, but, overall the benefit seems negligible.
On the other hand, network utilization (shown in Figure 3(b)) is indeed affected
by the different encoding-color depth combinations. As expected, using full color
and RAW encoding is the most network demanding scheme. Switching to HEXTILE
encoding clearly results to a first improvement. Finally, lowering the color depth
reduces network utilization even more. It is interesting to see that the encoding
scheme does not play such a big role when using just a few colors. Hence, it
would be sufficient to use even HEXTILE instead of ZRLE, in order to save a few
CPU cycles.
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Fig. 3. CPU and network utilization when replaying to all 96 VMs, using different
combinations of color depth and encoding schemes. RAW encoding is clearly the most
demanding. As for the low color depth ones, there is no big difference between HEX
and ZRLE.

4.2 Exfiltration Study

In order to demonstrate the threat posed by credential stealing spyware, we
conducted a study using a relatively large number of distinct samples. For the
purposes of our study, we used variations of the Zeus (also known as ZBot)
malware which is notorious for its credential stealing capabilities. All the samples
were downloaded from Zeus Tracker4.

In previous work, we also did provide a similar study, but somehow more
limited, as each malware sample was only active on a VM for a small amount
of time – order of a few tens of minutes. In our current study, we installed each
malware sample on a separate VM, running on the virtualized infrastructure we
built in order to simulate a thin client environment. By keeping each malware
active for a relatively long period (weeks or even months) we want to explore
two probable phenomena, not covered by our previous study. Firstly, we want
to examine whether there are malware instances that wait for a period of time
before exfiltrating the stolen credentials, and secondly, it would be interesting to
see whether instances not intended to exfiltrate, get updated in a later time to
do so. Both of these cases, if existent, would require a larger time window than
our previous study, to happen.

We bootstrapped the study by installing all the malware samples available
at the Zeus Tracker, and also we automated the procedure of installing new
samples as they are made available. In total, during the study there were 108
Zeus malware instances installed on distinct VMs running on our Dell servers
for a period of 3 to 4 weeks. During that time, we periodically injected both
Paypal and anonymous bank’s bait credentials. The component that monitors
for external login attempts to the bait accounts was running for the next few
months, as login attempts can occur even months after the credentials are stolen
– based on our previous study. Along with the injections, we also monitored the

4 Site: https://zeustracker.abuse.ch

https://zeustracker.abuse.ch
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Table 1. Top10 domain names / IP addresses that malware communicate with (left).
Top10 script names that exfiltrated data are “dropped” to (right).

# Domain / IP address Count Dropzone Script Count

1 varxx.com 29808 /xt/gate.php 29808
2 nevereversite.ru 18890 /gate321.php 18890
3 95.224.124.151:555 17101 /temp/stuk.php 17820
4 65.60.36.114 13218 /∼ataactc1/z/gate.php 13218
5 podgorz.org 9599 /zuo/zsweb cleaned/gate.php 9599
6 iesahnaepi.ru 8042 /y93/ gate.php 6238
7 wifahquaht.ru 4763 /cp11/zengate.php 4243
8 community.infinitie.net 3436 /cp01/zengate.php 2945
9 esvr3.ru 2945 /k1o/ gate.php 2892
10 phaizeipeu.ru 2702 /cache/lang cache/web/s.php 2888

network traffic in order to see which of the malware samples have already started
exfiltrating data.

Even in a such a short time period, we already encountered thousands of sus-
picious data transmissions. More precisely, we saw that from 74 out of the 108
VMs, outbound HTTP POST messages were transmitted to websites other than
the ones we are navigating to while injecting, or even to raw IP addresses. These
are most probably drop zones for the credentials stolen by the malware samples
and/or configuration or command updates. In total, we recorded 134,302 such
requests. The body of each POST message is in binary format, most probably
encrypted in some way. Table 1 contains both the top 10 host names / IP ad-
dresses that exfiltrated data were sent to and the top 10 script names in the
POST messages that handle the data, along with the number of times they ap-
peared in our logs. By examining the counter values on both lists, we see that
there are cases where there is an one to one match between host names and script
names. After looking into these cases, we saw that these script names were only
accessed on these host names. On the other hand, in the rest of the cases, where
host name counters do not match script name counters, some scripts with the
same name were installed on different hosts and some host names had more than
one scripts installed.

4.3 Feasibility Study

In total, we encountered two hits on the bait accounts from the 108 installed
malware samples (described in the previous subsection). The first one was on an
account from the anonymous bank, after 26 days. The second hit was a Paypal
account access almost two months after (57 days). These results show that our
technique is indeed effective, which does validate that our new architecture is
working.

As far as the number of hits is concerned, it does raise some interesting ques-
tions. On one hand, it could be normal for only a ∼2% of the accounts to be
accessed. Some of the dropzones could be inactive or offline. Or, some malware
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samples may be unable to steal the accounts from the financial services we used,
or their owners were not interested to these type of accounts, etc. On the other
hand, the low hits percentage could be due to the nature of our study. One thing
that we have to keep in mind is the fact that all the malware samples we used
were downloaded from Zeus Tracker. As the attackers get more and more sophis-
ticated and cautious, it would be no surprise to us that they could discard any
credentials reported by malware samples that have been published in sites like
Zeus Tracker. Similarly, as our main goal was the performance and scalability
evaluation, the injection of the bait credentials was periodical and simultaneous
to all the accounts and all the VMs were connected to the Internet through a
single public IP address (NAT). It would be trivial for an attacker with several
malware instances to filter out our credentials as suspicious, because they are all
reported from the same IP address, periodically and simultaneously.

5 Conclusion

We presented the application of our spyware detection technique for a common
setup in multiuser enterprise environments. We demonstrated it for thin client
environments where we utilized out-of-the-box tools to implement our tamper
resistant bait injection and action verification. The system was designed to be
generic and portable to different remote access protocol stacks to make it gen-
erally applicable.

We experimentally demonstrated the scalability of our system when applied
to a thin client environment. Our results showed that our system can success-
fully operate concurrently on a scalable number of VMs. Finally, the study we
conducted using more than a hundred of malware samples revealed a number
of different relationships between the malware samples and the dropzones. In
addition, the relatively small number of bait account accesses from the attackers
raises some interesting questions about their sophistication.
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Abstract. Proposed in response to the growing number of passwords users have
to memorize, password managers allow to store one’s credentials, either on a
third-party server (online password manager), or on a portable device (portable
password manager) such as a mobile phone or a USB key. In this paper, we
present a comparative usability study of three popular password managers: an
online manager (LastPass), a phone manager (KeePassMobile) and a USB man-
ager (Roboform2Go). Our study provides valuable insights on average users’ per-
ception of security and usability of the three password management approaches.
We find, contrary to our intuition, that users overall prefer the two portable man-
agers over the online manager, despite the better usability of the latter. Also, sur-
prisingly, our non-technical pool of users shows a strong inclination towards the
phone manager. These findings can generally be credited to the fact that the users
were not comfortable giving control of their passwords to an online entity and
preferred to manage their passwords themselves on their own portable devices.
Our results prompt the need for research on developing user-friendly and secure
phone managers, owing to the ubiquity of mobile phones.

1 Introduction

Typical credentials employed for user authentication fall into following categories of
authentication “factors”: (1) “Something You Know,” such as passwords or PINs, (2)
“Something You Have,” such as a token or a card, and (3) “Something You Are,” such as
biometrics; or combinations thereof. Of these, passwords or PINs are the most widely
deployed, for authentication to remote servers, ATMs and mobile phones.

For over more than a decade, users have been asked to memorize an increasing num-
ber of passwords [1] to authenticate to various online services. While users can usually
easily memorize a couple of passwords, the current explosion of the number of pass-
words each user has to maintain is severely testing the limits of their cognitive abilities
[2]. This leads to “weak” choices in practice. For example, users often tend to choose
short and “low-entropy” passwords [3,4], enabling offline dictionary attacks and brute-
forcing attempts, or they write passwords down or use the same password at multiple
sites [5].

Password Managers (PMs) attempt to solve this conundrum by having a computing
device, rather than the user herself, store (and optionally, generate) passwords, and then
later deliver or recall them to the user whenever access is needed. To this end, a number
of password management schemes have been proposed and are used currently.
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We can broadly distinguish between three categories of password managers: desk-
top manager, online manager and portable manager. A desktop manager (e.g., Mozilla
Firefox, Apple MacOS Keychain, RoboForm [6]) stores strong passwords on the user’s
desktop (i.e., on the terminal used for authentication) while an online manager (e.g.,
LastPass [7] and Mozilla Weave Sync [8]) stores them on remote third-party server(s).1

A portable manager, on the other hand, stores strong passwords on user’s portable de-
vice. Among portable managers, we can further identify two different types: phone-
based password managers (e.g., KeePassMobile for J2ME enabled devices [10] and
OpenIntents Safe for Android [11]) and USB-based password managers (e.g., Robo-
form2Go for USB devices [6]).

In each of these approaches, the strong passwords are typically protected using a
master password; at the time of recalling a specific password, the user simply types in
her master password. If a user is mobile and uses multiple terminals for authentication
(e.g., her desktop at home and her laptop in the office), a desktop manager would not
offer any portability to the user. We, therefore, do not consider desktop managers to be
of much benefit on their own.

The online and portable managers have their own pros and cons. An online man-
ager, although portable, requires the user to trust the third-party service provider(s).
Since user’s passwords would typically be encrypted using her master password and
then stored on remote server(s), they might be vulnerable to offline dictionary attacks.
Imagine if all users were to use a remote manager, the passwords corresponding to all of
them might be susceptible to an adversarial break-in at the end of the server(s). More-
over, often proprietary, a remote manager might not offer the users any transparency in
outsourcing their sensitive information and how this information has been protected.

A portable manager can possibly be more trusted since it can be locally managed
by the user on her own trusted portable device. However, all existing phone managers
typically involve displaying a (long and possibly random) password on the portable
device, which the user is simply asked to copy onto the terminal. Typing in a such a
password might have poor usability. USB managers do not have this drawback, but
they may not offer a desired level of portability and accessibility to a modern user.

The goal of this paper is to formalize an evaluation of existing password managers,
by comparing them in terms of security, ease of use, necessity and level of acceptance,
as perceived by an average web user. To that effect, we present a comparative usabil-
ity study of three popular password managers: an online manager (LastPass), a phone
manager (KeePassMobile) and a USB manager (Roboform2Go).

Our study was performed with a sample of users controlled with respect to techni-
cal background (i.e, computer science students vs. non-technical “average” users). We
find, contrary to our intuition, that users overall preferred the two portable managers
over the online manager, despite the better usability of the latter. Surprisingly, the on-
line manager was the last choice for non-technical people, who mostly preferred the

1 Rather than storing passwords, another password management approach (e.g., PwdHash [9])
derives passwords on-the-fly, based on a master password and a specific variable, e.g. the
URL of the website to authenticate to. From the usability perspective, this approach and desk-
top/online managers are equivalent, in that they only require a master password to be memo-
rized/recalled.
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phone manager. Also, technical people were more inclined towards the USB manager
in comparison to the online manager. These findings can generally be credited to the fact
that the users were not comfortable giving control of their passwords to an online entity
and preferred to manage their passwords themselves on their own portable devices.

We note that the only prior work that directly relates to our study, to the best of our
knowledge, is by Chiasson et. al [12]. The study [12] evaluates two desktop managers
– PwdHash [9] and Password Multiplier [2], and points out underlying usability prob-
lems with these two managers. Our study, on the other hand, aims at evaluating and
comparing three different types of traditional password management approaches, with
a particular focus on mobile users.

2 Background and Research Questions

In this section, we discuss the three password managers in more details and compare
them based on their usability and security characteristics. This background information
will serve as a foundation to frame the research questions that we aim at answering
via our study, and to come up with the usability and security measures across which
the password managers will be compared. We provide a side-by-side comparison of an
online manager, a phone manager and a USB manager in Figure 1.
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Fig. 1. Comparison of Password Management Methods

As discussed in Section 1, online password managers incorporate remote third-party
servers for password storage. Portable managers, on the other hand, consists of a cre-
dential listing on users’ personal portable devices, e.g., a mobile phone and USB drive.

One example of software that falls into the category of online manager is LastPass
[7]. LastPass is a proprietary extension for the Mozilla Firefox web browser which
locally encrypts user credentials using 256 bit AES prior to transmitting them to Last-
Pass’s data centers via SSL. Though their key generation algorithm is not described,
LastPass’s encryption and decryption is protected using a master password which is not
transmitted beyond the local terminal. A similar online password management exten-
sion for Firefox is Mozilla Weave Sync [8]. Weave is an open source solution which
operates by encrypting browser data with asymmetric cryptography; this allows users
to share selected browser data with others if desired. Though each user’s private key is
stored locally as well as on remote Weave servers, in both cases this key is encrypted
with a user specified passphrase. As is the case with LastPass’s master password, this
passphrase is used locally and not transmitted to or stored on the remote server.
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These online password managers introduce some drawbacks, however. Foremost
among these is the issue of trust. This class of managers asks users to trust a remote
server or group of servers with their sensitive data. When a remote server is employed,
the password encrypted with a master password is sent across the internet, making it
much more likely for a malicious entity to capture and store it for later offline dictio-
nary attacks (master password is still user-chosen). Furthermore, should an adversary
manage to break in to one of these servers they would be able to gain access to all the
encrypted passwords for every user stored on that server. Again, the fact that these cre-
dentials are stored as ciphertexts alleviates this issue somewhat, but the threat of a later
offline attack on this data remains. In contrast, an offline attack on a portable password
manager of a user only exposes that particular user’s passwords.

An additional consideration pertaining to remote credential storage is the flexibility
of authentication. Because these remote servers manage passwords for many users, au-
thentication with a user name and password prior to credential retrieval is a necessity.
Portable managers, on the other hand, never requires a user name due to the personal
nature of a user’s mobile device.

Also, as noted in [13], there are several flaws and challenges associated with with
managing credentials through remote servers. Although users desire the additional se-
curity benefits online servers can provide, users are unwilling to compromise on usabil-
ity to improve security. Thus remote servers must be careful not to add security at the
cost of detracting from the overall user experience. Client side software must be easy
to download and install, and should be tightly integrated with the browser or operat-
ing system to prevent users from cutting corners that could potentially lead to social
engineering attacks.

Several portable managers exist for various mobile phone platforms, such as KeeP-
assMobile for J2ME enabled devices [10] and OpenIntents Safe for Android [11]. While
uncomplicated, users of these alternatives must manually transfer their password by
reading it off their mobile device and typing it on their terminal’s keyboard. This may
be clumsy in terms of usability, but also restricts the security of the password manage-
ment solution by limiting the length of passwords that can be used to that which a user
is capable of correctly reading and typing during each authentication.

USB managers (e.g., RoboForm2Go [6]), being personal, offer a similar level of trust
as provided by phone managers. One potential advantage of a USB manager over phone
manager is that the password recalling process is automated. However, mobile phones
appear, at first glance, potentially more appealing to users. USB devices indeed do not
serve any additional purpose other than providing data storage, while mobile phones
are increasingly playing the role of a “digital swiss army knife.”

Strong authentication in existing passwords managers is achieved through the use
of randomly generated password strings. Most existing solutions provide users with
the option of either storing their pre-existing, non-random credentials or generating
new random passwords at registration time. If existing passwords are stored then the
solution does not provide any measure of additional security, only the convenience of
password recall.
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All password management approaches trust the intermediary terminal with the user’s
plaintext credentials, i.e., passwords. This is due to the inherent difficulty of authenti-
cating without introducing server-side modifications.

Our discussion above raises several questions that we intend to answer through our
study. These include:

– How do the three PMs compare in terms of usability? The usability can be measured
with respect to perceived toughness, satisfaction and ease of use.

– How do the three PMs compare in terms of security and protection of passwords?
This covers giving control of passwords to a program and perceived security.

– How do the three PMs compare in terms of their perceived necessity and accep-
tance? In other words, would the users be willing to adopt them in practice?

– How do the three PMs compare in terms of all security and usability measures taken
together?

– How do the three PMs compare across a diverse set of users categorized based on
background (technical or non-technical)? Also, what is the effect of different users’
background on each PM?

3 Study Preliminaries

Password Manager Implementations: Our goal is to compare the three PMs – USB
manager (denoted as USB henceforth), phone manager (Phone) and online manager
(Online) – in terms of their usability and security, as perceived by average users. We also
intend to evaluate each PM according to several underlying tasks, including registration,
login from a personal computer, login from a remote computer, change password, and
login with a changed password (these tasks will be explained in Section 4.2). This
implies that each user would need to execute all these tasks to evaluate a PM, which
might lead to a lengthy overall experimentation period per user. This in turn might cause
user fatigue and influence the results of the study. To avoid this, it was paramount that no
more than one PM of each type (USB, Phone and Online) is selected for the study. This
necessitated that only those PM implementations are selected that are representative of
their respective PM category.

As discussed previously, a number of commercial and popular options exist that can
be used in our study. These include (to name a few) LastPass [7] and Mozilla Weave
Sync [8] as Online managers; KeePassMobile for J2ME enabled devices [10] and Open-
Intents Safe for Android [11] as Phone managers; Roboform2Go [6] and HandyPass-
word [14] as USB Managers. Numerous other implementations exist, as listed in an
online survey of PMs [15]. Fortunately, the user actions involved in all PM implemen-
tations of a given category are roughly very similar to one other. In other words, for
example, to login using any of these USB Managers, the user simply needs to connect
her USB drive to the USB port of her computer terminal, and type in her master pass-
word to unlock the password to be recalled. To login using any of the Phone managers,
the user needs to first unlock her phone with a master password and then copy the pass-
word – to be recalled – displayed on the phone’s screen onto the keypad of the terminal.
Similarly, in order to login using an Online Manager, the user only needs to type in her
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master password on the terminal, the rest of the process being farily oblivious to the
user. The only distinction among these PMs are the underlying software interfaces.

According to the reviews available online [15][16], we chose Roboform2Go as our
USB manager, KeePassMobile as the Phone manager and LastPass as the Online man-
ager. Based on their popularity, we believe these three PMs are quite suitable for our
usability study which aims at comparing the three PM categories (USB, Phone and
Online). We also believe that our selection, and our use of existing and deployed imple-
mentations was a better approach than trying to pursue our study with our own (likely
unpolished) research prototypes of the PMs.

Devices: We used common devices that most users are quite familiar with. We used
Imation 2GB USB 2.0 thumb drive [17] – as our USB manager – with RoboForm2Go
software. We chose Nokia 5310 mobile phone [18] as our Phone manager installed with
KeePassMobile. We used a Dell Desktop as our primary authentication terminal and a
Sony Laptop for the purpose of login from another terminal (see Section 4.2).

Browser: Based on its popularity [19], Mozilla Firefox was used as the Internet browser
throughout our study. Participants were instructed to authenticate, using the three pass-
word managers, to a popular web email service – Gmail.

4 Usability Testing Details

Having made a selection of a password manager for each category (as discussed in Sec-
tion 3), we are now ready to start the usability study. The most obvious method to record
responses from a user is through the use of a 5-point Likert scale, in addition to open-
ended and multiple choice personal preference questionnaires. The questionnaires were
handed over to a user depending on which stage of testing he/she was at. The During
Test questionnaire was posed after the respondent finished performing each one of the
five tasks common to all the three password managers (these tasks will be discussed in
Section 4.2). The Post Test questionnaires, on the other hand, were asked after all the
three password managers had been tested by each user. Based on our discussion in Sec-
tion 2, we decided to evaluate and compare the password managers with respect to the
following usability and security measures. (A similar set of measures have previously
been used in the study of [12]).

• During Test –

1. Toughness: how tough it was to execute each task? (1 question was posed)
2. Satisfaction: how satisfied the users felt with each task? (1 question was posed)

• Post Test –

1. Giving Control: how users felt while giving control into the hands of a soft-
ware/tool to manage their passwords? (4 questions were posed)

2. Perceived Ease: did users find the password manager easy to use? (5 questions
were posed)
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3. Perceived Necessity: did users deem the password manager necessary and accept-
able? (2 questions were posed for all PMs. For Phone and USB, 1 additional ques-
tion was posed regarding the accessibility to mobile devices.)

4. Perceived Security: did users find the password manager secure? (4 questions were
posed)

The users were also posed a few open-ended questions, in each of the above ques-
tionnaires, in order to poll for their opinions about any perceived problems with the
password managers and suggestions for possible improvement.

Finally, a Final Test questionnaire was also presented to each user polling which
password manger he/she preferred the most and asking about their order of preference
based on the level of (1) security, (2) convenience and (3) overall experience.

The main challenge we faced was the sheer number of questions which each user
needed to answer, potentially leading to lazy respondent behavior and user fatigue. Care
was taken so as to minimise both the number of questions and to discard any questions
which showed a tendency of not being answered genuinely (or honestly).

4.1 Study Participants

We recruited a total of 20 participants: 10 technical and 10 non-technical users. In the
rest of this paper, we will refer to our technical users as Students, and non-technical
users as Non-Students, because all technical people were students while all non-technical
people were non-students. The participants were recruited on a first-come first-serve
basis from respondents to emails. Prior to recruitment, each participant was briefed on
the estimated amount of time required to complete the tests and on the importance of
completing the tests in its entirety.

The student participants were all university students, studying towards undergrad-
uate, Master’s and Ph.D. degrees in Computer Science or closely related fields. This
group of our users represented a fairly young, well educated and technology-savvy
sample of user population.

The other group, consisting of the non-students, had an average age difference of
nearly two decades from that of the students. This group was tested to gain insights into
whether such a group – differing in terms of full time occupation – had any impact on
the choices made with respect to the password managers.

There is an obvious concern that, if a technology-savvy group (students) does not
react well to a password management approach, the approach will perform a lot worse
with average users; or on the contrary, if a password manager that fares well with stu-
dents, it might not perform equally well with average users. This concern was our prime
motivation to categorize the respondents into students and non-students.

Our non-students ranged from help-desk personnel, technicians, real estate agents,
restaurant workers to housewives. In addition to the students vs. non-students distinc-
tion, our sample was also controlled, as much as possible, in terms of other important
user-centric characteristics, i.e., gender and age. This was done in order to evaluate the
password managers among a diverse user population pool. The gender split was: 60%
male and 40% female for both students and non-students. Our test users were divided
into three age groups: 40% Young (less than 24 years old), 40% Middle-Aged (25-44
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years old) and 20% Old (45-54 years old). In addition to the students and non-students
category, we have also pursued gender-centric and age-centric analysis. However, due
to space constraints, we only restrict ourselves to the former in the rest of this paper,
which we believe is most important to our study.

Gender, age and other information was collected through a Pre Test questionnaire
completed by our participants prior to starting the test process. None of the study par-
ticipants reported any physical impairment that could interfere with their ability to com-
plete a given task.

4.2 Testing Process

Our study was conducted at two testing locations, one on-campus (at our university)
for the students and the other off-campus for non-students. These two venues were
chosen solely for the purpose of convenience to the targeted participant groups. Same
devices (USB drive and phone) and computer terminal (see Section 3) were used at
both locations giving rise to consistent test set-up across all users. Our study lasted for
a duration of about two months.

An overview of the testing process was given to each respondent prior to the study
and due care was taken to minimise any scope of explicit “priming” of respondents
considering a security-focused nature of our study.2 Such a priming in terms of security
can possibly result in skewed (over-alert) participant behavior and in biased results, as
demonstrated by prior research [20].

As mentioned previously, after administering the Pre Test questionnaire, the respon-
dents were asked to perform five tasks corresponding to each password manager. Any
possible user errors in performing the above tasks were taken note of by the test admin-
istrator (no such errors were observed throughout our study, however).

1. Register involves registering with a password manager the password, username
and other information for a particular web site.

2. Login involves login to a web site, whose password has already been saved with a
password manager.

3. Second Login is similar to the Login task, only difference being the computer is
not the same as the one used in the previous task. This task is aimed at judging the
portability of the password manager from terminal to terminal.

4. Change Password involves changing the password, both with the website and pass-
word manager.

5. Login with New Password involves repeating the login task but with the new pass-
word.

As mentioned in Section 3, the test set-up comprised of a desktop computer which acted
as the primary computer for Login, Change Password and Login with New Password,
and a laptop for Second Login. This set-up, consisting of two computers, was used in
order to closely mimic the tasks akin to a realistic password manager setting.

A randomly chosen 8 character master password was provided to each test user,
which he/she was asked to memorize and use throughout the experiments.

2 Since the study was about password managers, it was neither possible nor meaningful to avoid
implicit priming.
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The respondents were instructed, in advance, to fill-in During Test questionnaires
after each of the above task was completed. As mentioned earlier, the questionnaire
consisted of two simple Likert Scale type questions and two open-ended questions. The
order in which the password managers were presented to the users was randomized so
as to avoid any possible learning effects.

Following the During Test, the respondents were required to fill out the Post Test
questionnaire for each password manager. This too comprised of Likert Scale questions
followed by a few open ended questions. The purpose of this questionnaire was to judge
the changes in attitudes (opinions) of the respondents towards the password managers
after having worked with all three of them.

Finally, the last part of the questionnaire (Final Test) was administered to the respon-
dents. Here the participants ranked the best of the three password managers which they
felt were most appealing with respect to their overall experience with them, the level
of convenience and security provided. This part of the questionnaire also consisted of a
few open-ended questions. These were aimed to better understand the motivating rea-
sons for a respondent to choose a particular password manager, which could not be
captured by the Likert scales or the multiple choice questions.

5 Test Results and Analysis

In this section, we present and analyze our During Test and Post Test Likert scale logged
observations. We also discuss the final preferences provided by our test subjects for the
three PMs evaluated. We present two types of comparison in our analysis throughout:

– Within-Subjects Comparisons: This analysis would tell us how the three pass-
word managers (USB, Phone and Online) fare with one another, corresponding to
the entire user sample as well as corresponding to students and non-students.

– Between-Subjects Comparisons: Using this analysis, we intend to understand the
effect of occupation (student vs. non-student) on the usability and security of three
PMs.

Recall that the During Test data is aimed at evaluating the usability of each PM in terms
of two measures: Toughness and Satisfaction. The Post-Test data, on the other hand,
is for investigating the PMs with respect to usability and security measures: Giving
Control, Perceived Ease, Perceived Necessity and Perceived Security. We analyze the
PMs based on these individual measures first, followed by a principle component and
cluster analysis that evaluates the combined effect of different measures.

In the remainder of this section, we discuss our results and their interpretations.
Unless stated otherwise, statistical significance is reported at the 5% level.

5.1 During Test Analysis

Figure 2 shows the average Likert ratings regarding Toughness and Satisfaction of the
three PMs, for Students and Non-students (also shown are the collective average ratings
for All Users taken together as well as those corresponding to All PMs).

Within-Subjects Comparisons: Observing the bars of the graph along the X-axis, we
find that Phone is deemed the toughest, followed by USB and then Online, for all
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Fig. 2. During Test Toughness and Satisfaction

our users (Students, Non-Students, All Users). In terms of satisfaction, on the other
hand, among both Students and All Users, Online was preferred over USB, followed by
Phone. For Non-Students, however, USB was the first choice, preferred slightly more
than Online and Phone. These results are intuitive because both Online and USB re-
quire a minimal amount of effort from the users and are supposed to be quite fast in
comparison to Phone due to manual transfer of password.

Based on paired t-tests, we found the following statistical differences. Students found
Phone tougher than USB (p = 0.0103) and tougher than Online (p = 0.0028). Students
also found USB more satisfying than Phone (p = 0.0006), Online more satisfying than
USB (p = 0.0238) and Online more satisfying than Phone (p < 0.0001). Non-Students
also found Phone tougher than USB (p = 0.009) and tougher than Online (p = 0.003),
and USB tougher than Online (p = 0.020). In terms of satisfaction levels for Non-
Students, we did not find any statistical difference; the ratings were quite close for
different PMs. For All Users, Phone was deemed tougher than USB (p = 0.043) and
Online (p = 0.00013), and USB was found to be tougher than Online (p = 0.0444).
Also, for All Users, USB was more satisfactory than Phone (p = 0.0498), and Phone
was more satisfactory than Online (p = 0.009).

Between-Subjects Comparisons: Observing the graph of Figure 2 along the Y-axis,
we notice that Non-Students consistently found the three PMs tougher to use when
compared to Students. Likewise, Students found the three PMs more satisfying than
Non-Students. The reason for this is simple: Students are expected to be much more
technologically savvy compared to Non-Students.

Based on unpaired t-tests, following significant differences were noticed:
Non-Students found USB tougher (p = 0.0008) and less satisfactory (p < 0.0001) com-
pared to Students. Non-Students also found Phone tougher compared to Non-Students
(p = 0.003). Students were highly more satisfied with Online (p < 0.0001).

Usability Measures Taken Together: In the previous subsection, we considered the
usability of PMs in terms of two measures: Toughness and Satisfaction. Although the
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two measures were usually negatively correlated with each other (Pearson correlation
coefficient was found to be -0.771, when considering data from all users), in certain
cases the correlation was not entirely clear. In order to understand an overall impact of
Toughness and Satisfaction on the usability of PMs, we pursued principle component
(PCA) and cluster analysis. Due to ease of readability, we do not include the details
regarding this analysis (a similar analysis, however, is later discussed for Post Test
measures in Section 5.2). We only depict the results (using Agglomerative Hierarchical
Clustering) of this analysis in Figure 3.

For All users, we obtain that Online � USB � Phone, and USB and Phone are
clustered together (we use ‘�’ to denote preference). A similar and independent PCA
and cluster analysis for Students and Non-Students indicate the following. For students,
Online� USB � Phone, and Online and USB form a cluster of their own. On the other
hand, for Non-Students, Online � USB � Phone, and USB and Phone are clustered
with each other. These results are intuitive and very much inline with our observations
shown in Figure 2, which we discussed in the previous subsection.
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Fig. 3. During Test Cluster Analysis Based On Principal Components (Dissimilarity vs. PM)

Usability of Individual Tasks: As we explained in Section 4.2, in our experiments,
each PM was tested for several different processes, namely, Register, Login, Second
Login, Change Password, Login with New Password. Since usability of a PM depends
on all these processes, we compare the three PMs based across these processes.

Figure 4 depicts the average Likert scale Toughness ratings for different processes
corresponding to Students, Non-Students and All Users. In this plot, first three bars for
each process correspond to Students (USB, Phone, Online, resp.), next three bars cor-
respond to Non-Students (USB, Phone, Online, resp.) and last three bars correspond to
All Users (USB, Phone, Online, resp.). The Satisfaction ratings were generally inversely
related to the Toughness ratings and are not shown in this paper.

Let us first compare the three PMs across different processes. We note that for each
process, in general, Phone is tougher than the other two PMs. Between USB and Online,
the former is deemed tougher, for all processes. This analysis conforms well with our
overall analysis of During Test data presented in previous subsections.

There are a few exceptions to the above claim, however. Login and Change Password
have the same average ratings for both USB and Online for Students Students deemed
Login with New Password as equally tough for USB and Phone. Register was also rated
at a equal level of toughness by Non-Students. For Second Login, Students found USB
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less tougher than Online. For Second Login and Change Password, Non-Students rated
Phone as only slightly tougher than USB.

5.2 Post Test Analysis

Figure 5 shows the average Likert Post Test ratings regarding Giving Control, Perceived
Ease, Perceived Necessity, and Perceived Security, for Students and Non-students (also
shown are the collective ratings for All users taken together). We discuss the observa-
tions made from these ratings as follows.
Within-Subjects Comparisons:

• Giving Control: Looking at the Giving Control ratings (Figure 5(a)), we find that
Students order of preference is USB, followed by Phone and Online. Non-Students,
on the other hand, like the Phone the best, followed by USB and Online. Collectively
looking at All Users, USB is an overall winner, which seems slightly better than Phone,
which in turn is much better than Online. In general, users felt that USB and Phone
provide a better sense of control compared to Online. This is a surprising finding and is
perhaps due to the fact that managing the passwords locally on their own devices gave
users a sense of control and authority.

Based on paired t-tests, we found the following statistical differences. Students found
USB better than Phone (p = 0.0049) and USB better than Online (p = 0.016). Non-
Students preferred Phone over Online (p = 0.0001), and USB over Online (p =
0.0009). Non-Students prefer USB over Online (p = 0.001) and Phone over Online
(p = 0.030). All Users prefer USB over Online (p < 0.0001), and Phone over Online
(p = 0.00024).

• Perceived Ease: Looking at the Perceived Ease ratings (Figure 5(b)), we find that Stu-
dents order of preference is USB, followed by Online and then Phone. Non-Students,
on the other hand, like the Phone the best, followed by Online and then USB. Collec-
tively looking at All Users, Phone is an overall winner, which is slightly better than
USB, which in turn is slightly better than Online. Here we can see a clear split across
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Fig. 5. Post Test – Students vs. Non-Students

Students and Non-Students: the former still preferred Online or Phone, whereas the lat-
ter found the Phone as the easiest. Paired t-tests, however, did not lead to any significant
statistical differences with respect to Perceive Ease.

• Perceived Necessity: Looking at the Perceived Necessity (Figure 5(c)), we find that
Students order of preference is USB, followed by Online and then Phone. Non-Students,
on the other hand, like the Phone the best, followed by USB and then Online. Collec-
tively looking at All Users, USB is an overall winner, which is somewhat better than
Phone, which in turn is quite better than Online. These findings are somewhat similar
to those in case of Perceived Ease, which means that necessity of a PM was based on its
ease. Based on paired t-tests, Non-Students found USB better than Online (p = 0.0448).
No other significant statistical differences were found.

• Perceived Security: From the average ratings corresponding to Perceived Security
(Figure 5(d)), we can see that USB is generally preferred by all users, and there is not
much to choose between Phone and Online (although Students prefer Online slightly
more so than Non-Students, who slightly prefer Phone).

According to paired t-tests, Students found USB better than Phone (p = 0.0132),
and USB better than Online (p = 0.03). All Users found USB more secure than Phone
(p = 0.0089) and USB more secure than Online (p = 0.012). No other significant
statistical differences were found.
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Between-Subjects Comparisons

• Giving Control: Looking at the Giving Control ratings (Figure 5(a)), Students prefer
USB and Online more than Non-Students, however, Non-Students are more inclined
to use Phone compared to Students. Based on unpaired t-tests, Non-Students preferred
Phone more than Students (p = 0.011).

• Perceived Ease: From Perceived Ease ratings (Figure 5(b)), we observe that Students
prefer USB much more than Non-Students, however, Non-Students are much more in-
clined to use Phone compared to Students. Both somewhat equally prefer Online.

• Perceived Necessity: Looking at the Perceived Necessity (Figure 5(c)), Students pre-
fer USB and Online more than Non-Students, however, Non-Students are more inclined
to use Phone compared to Students. This is very similar to users’ perception of ease as
discussed above.

• Perceived Security: Looking at the Perceived Necessity (Figure 5(d)), there is not
much distinction between the rating of Students and Non-Students. For Phone, however,
Non-Students provided higher ratings.

Accessibility to Portable Devices: In response to whether the users would have their
phone and USB drive handy while accessing a web site, the average ratings (with stan-
dard deviations) were as shown in Table 1. The ratings imply that there is not much to
choose between USB drive and phone when looking at All Users. Students, on the other
hand, rated USB drive as more accessible compared to phone, whereas Non-Students
gave higher ratings to phone. This is perhaps one of the reasons why Students had a
stronger inclination towards using USB PM and why Non-Students preferred Phone.

Table 1. Average ratings (with standard deviation) for accessibility of USB and Phone

All Users Students Non-Students

USB 3.4 (1.095) 3.8 (0.422) 3 (1.414)
Phone 3.4 (1.046) 3.1 (0.876) 3.7 (1.160)

All Usability and Security Measures Taken Together: A usable PM should perform
well with respect to all (not just one of the) usability measures we discussed so far,
i.e., Giving Control, Perceived Ease, Perceived Necessity and Perceived Security. To
this end, we performed linear cross-correlations among the PMs across these usability
measures. We first present a complete analysis over data acquired from all test subjects.
Table 2 shows the correlation coefficients and their respective statistical significance.

The coefficients from less than -0.5 and more than 0.5 are generally regarded as large
[21] and in line with the findings of [22], we cannot regard any of our usability measures
as sufficiently correlated with others that they could be justifiably omitted. On the other
hand, since the measures are mildly correlated, it motivates us to also look at them as a
whole as we show next.
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Table 2. Cross-Correlation of Usability Measures

Control Ease Necessity Security

Control 1 0.287 0.130 0.337
Ease 0.287 1 0.248 0.368

Necessity 0.130 0.248 1 0.374
Security 0.337 0.368 0.374 0.287

Principal Component and Cluster Analysis: Table 3 lists the four principal compo-
nents, denoted PC1, PC2, PC3 and PC4, that explain 100% of the variance in the logged
data. As the first two components, i.e., PC1 and PC2, together explain nearly 70% of
the variance, and PC3 and PC4 have eigenvalues that are less than 1, i.e., explaining
less variance than one original variable [23], we disregard PC3 and PC4 in the follow-
ing analysis. Table 4 shows the factor loadings of PC1 and PC2. As shown, PC1 factors
in all usability measures positively and more in comparison to PC2, while PC2 has a
negative rating for Giving Control and Perceived Ease. This means that high PC1 score
for a PM would indicate its good usability and security, whereas low score for PC2 may
indicate better control and ease.

Table 3. Principle Components of Usability Measures

PC1 PC2 PC3 PC4

Eigenvalue 1.885 0.877 0.686 0.553
Proportion of Variance 47.119 21.913 17.155 13.814
Cumulative Proportion 47.119 69.031 86.186 100.000

Table 4. Factor Loadings of PC1 and PC2

PC1 PC2

Giving Control 0.619 -0.634
Perceived Ease 0.702 -0.130

Perceived Necessity 0.621 0.671
Perceived Security 0.789 0.085

Table 5 depicts how each method scores with respect to PC1 and PC2. We find that
a high PC1 score for USB indicates its superiority as a PM. Online is considered to
have poorest overall usability due to low PC1 score and Phone has a mediocre level of
usability. Figure 6(a) shows how methods form two clusters (using Agglomerative Hier-
archical Clustering), one consisting of USB and Phone together and another consisting
of Online. The figure indicates that our methods can be partitioned into two classes,
with good and poor usability overall. Methods with good usability are USB and Phone.
Online exhibits poor overall usability and security.
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Table 5. Scores for each PM with respect to PC1 and PC2

PC1 PC2

USB 0.612 -0.075
Phone -0.013 -0.244
Online -0.599 0.319

A similar and independent analysis for Students and Non-Students indicate the fol-
lowing (results shown in Figures 6(b) and 6(c), resp.). For students, USB is better com-
pared to both Phone and Online, which form a cluster together, whereby Online is better
than Phone. On the other hand, for Non-Students, USB and Phone form a cluster with
each other (Phone is better than USB) which compares favorably with Online.
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(c) Non-Students

Fig. 6. Post Test Cluster Analysis Based On Principal Components (Dissimilarity vs. PM)

In summary, our Post-Test analysis shows that, for all of our users, Online was sur-
prisingly the last choice (despite its better usability as indicated via our During Test
analysis in Section 5.1). Users either preferred USB or Phone. This can be credited to
the fact that users felt that managing their passwords locally on their own devices gives
them a sense of control and authority, as shown by their ratings for Giving Control.

5.3 Final User Preferences

After having performed the usability experiments with the PMs, we also polled for
users’ final preference based on their experience. We posed the subjects three questions
and asked them to rank the PMs based of their order of preference:

1. Which password manager do you prefer the most?
2. Which password manager according to you offers better security and protection of

your passwords?
3. Which password manager according to you is most convenient to use?

The responses we received are depicted in Table 6. While a large fraction of Non-
Students shows a strong liking for Phone, most Students’ preference was either USB or
Online (although most of them selected Phone to be most secure). In short, our overall
analysis, presented in Section 5.2, conforms well with the final preferences provided by
our users (i.e, All Users, Students and Non-Students).
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Table 6. % of Users Who Preferred a Particular PM (All, S, NS denote All Users, Students,
Non-Students)

Prefer the Most Secure Convenient
PM All S NS All S NS All S NS

USB 40% 40% 40% 25% 30% 20% 35% 30% 40%
Phone 35% 20% 50% 55% 40% 70% 30% 20% 40%
Online 25% 40% 10% 20% 30% 10% 35% 50% 20%

5.4 Answers to Open-Ended Questions

Few of our test users responded to the open-ended questions that we posed. We quote
below some of the interesting feedback that we received.

– Q: From your understanding what does Roboform2Go [USB] do?
A: Manages, stores passwords and makes them portable. We need to know and
remember only one master password, rest is taken care of by the software.

– Q: From your understanding, what does Lastpass [Online] do?
A: Stores passwords on a central server, so makes it “real time” portable but more
vulnerable towards the attacks from cyber criminals.

– Q: Do you have any suggestions for Lastpass? What would make it more useful or
easier to use?
A1: Lastpass server should force users to change the passwords more frequently to
make it cyber-attacks proof
A2: It is good but what if [it] does not respect our privacy and [does] not follow the
code of conduct?

– Q: Why do you prefer this particular type of password manager [USB]?
A: [It is] Easy to handle, portable, comparatively safe.

– Q: Do you think that using a password manager would make it easier to manage
your passwords?
A: Yes, but [it] is not an absolute necessity.

– Q: Why do you prefer this particular type of password manager [Phone]?
A1: My Phone is the most secure of the devices and I always have it present with
me wherever I go.
A2: [It provides] Better sense of security.

– Q: Why do you prefer this particular type of password manager [Online]?
A1: [It is] Easy and no need to carry anything
A2: It is more efficient because no [additional] hardware is required.

To summarize, we find that users are aware of the importance of security of their pass-
words and would be inclined to use password managers. They expressed concerns
regarding off-shoring their passwords to a remote entity due to security and privacy
reasons and may prefer to use their own devices for managing their passwords. They,
however, may not deem password managers as an absolute necessity.

5.5 Discussion and Summary

We now provide a summary of our most notable findings. Our during test analysis shows
that across all users and across non-students, Online � USB � Phone, and USB and
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Phone are clustered together. For students also, Online � USB � Phone, but Online
and USB form a cluster of their own. This finding can be termed intuitive since on-
line PM was expected to possess better usability than the two portable PMs. Moreover,
non-students generally found the three PMs tougher and less satisfactory compared to
Students. The reason for this is simple: students are much more technologically savvy
compared to non-students.

Post test analysis, on the other hand, reveals surprising facts. For all of our users,
the order of preference turned out to be USB � Phone � Online, with USB and Phone
clustered together. For students, the order was USB � Online � Phone, whereby USB
and Online form a cluster together. On the other hand, for non-students, the order of
preference is Phone � USB � Online, and USB and Phone form a cluster. In general,
we found that the portable managers are preferred over the online manager.

The above turn-around from the during test to post test can be credited to the fact that
the users were not comfortable giving Control of their passwords to an online entity and
preferred to manage their passwords themselves on their own portable devices. This
preference reversal from during test to post test results was also confirmed by users’
final preferences about the three PMs.

We also observe that the non-students had a much stronger liking for Phone compared
to students while looking at overall post test data, and in terms of giving control of their
passwords. Being less tech-savvy, non-students perhaps felt much more comfortable and
safe while copying in their passwords (from the phone to authentication terminal) manu-
ally as opposed to letting a device (USB or remote server) doing it for them automatically.

6 Conclusions and Future Direction

We presented a comparative usability study of three notable traditional password man-
agers. Contrary to our intuition, overall the two portable managers were preferred over
the online manager, despite the better usability of the latter. Surprisingly, the online
manager was the last choice for non-technical people, who mostly preferred the phone
manager. Also, technical people were more inclined towards the USB manager in com-
parison to the online manager. These findings can generally be credited to the fact that
the users were not comfortable giving control of their passwords to an online entity and
preferred to manage their passwords themselves on their portable devices.

Based on our results, we can conclude that portable managers represent a more
promising password management approach than online managers. The latter provide
a higher degree of confidence to users in managing their passwords. However, current
portable managers (especially phone managers) do not offer the usability as expected
by average users, thus motivating the need for usable portable managers in the future.
Owing to an ever increasing “always on, always with me” mobile phone usage trend,
we believe that developing user-friendly and secure phone managers is an interesting
and important research direction.
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Abstract. Network signaling and control mechanisms are critical to coordinate
such diverse defense capabilities as honeypots and honeynets, host-based de-
fenses, and online patching systems, any one of which might issue an actionable
alert and provide security-critical data. Despite considerable work in exploring
the trust requirements of such defenses and in addressing the distribution speed
of alerts, little work has gone into identifying how the underlying transport sys-
tems behave under adversarial scenarios.

In this paper, we evaluate the reliability and performance trade-offs for a vari-
ety of control channel mechanisms that are suitable for coordinating large-scale
collaborative defenses when under attack. Our results show that the performance
and reliability characteristics change drastically when one evaluates the systems
under attack by a sophisticated and targeted adversary. Based on our evaluation,
we explore available design choices to reinforce the reliability of the control chan-
nel mechanisms. To that end, we propose ways to construct a control scheme to
improve network coverage without imposing additional overhead.

1 Introduction

The prevalence and effectiveness of large-scale malware phenomena (worms, botnets,
web-based malware) has led to the development of several automated defenses that
detect new threats and generate various kinds of fixes such as patches, filters. The secu-
rity literature is rife with distributed security systems [7,5] which assume that reliable,
scalable and robust Content Distribution Network (CDN) functionality is universally
available. To date, the primary metrics of effectiveness have been propagation time (la-
tency and throughput) and node coverage in the presence of “natural” phenomena such
as churn. However, the conspicuous absence of an adversarial analysis, both in terms of
performance impact and security guarantees (e.g., susceptibility to man-in-the-middle
attacks), is of particular concern as the control channel for security data is a very attrac-
tive target for adversaries. This is especially true for systems that make design decisions
that favor performance over robustness (e.g., using a centralized tracker in BitTorrent).

We argue that such a narrow view of system performance is inadequate and even
dangerous in the presence of malicious adversaries. In other areas of security (spam,
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honeypots and honeynets, anti-virus), we have seen active targeting of protection mech-
anisms and, occasionally, their hijacking and use for malicious purposes. Instead, we
need to consider system behavior in the presence of intelligent, targeted interference
by botnets and other malware. At a minimum, these systems must be able to withstand
attacks that seek to disrupt their primary function: the timely and reliable delivery of
security-critical data to all benign participating nodes and users.

To this end, we conduct an evaluation of control channel mechanisms that have been
proposed for use in distributing security-critical data at massive scale. Specifically, we
evaluate different approaches of centralized, distributed, and hybrid designs in presence
of global adversary. We recognize that this is only part of the security-oriented evalua-
tion criteria that such systems should be subjected to; however, we strive for an in-depth
analysis of a particular aspect of system behavior rather than a shallower examination of
more features. A key contribution of our work is a detailed analysis of existing control
channel mechanisms in a number of realistic adversarial scenarios. Rather than limit-
ing our measurements to simple latency and throughput characterizations, metrics of
coverage, latency, and control efficiency are considered. We use these to investigate the
trade-offs between system performance and resilience to certain type of attacks. Thus,
our work explores the spectrum of possible design choices when creating and deploying
a distribution mechanism for security-critical data.

As a result of evaluation, we find that centralized designs introduce fragile failure
points, centralized entities, or hierarchical indirection, that can cripple performance and
reliability when attacked. Distributed mechanisms also cease to function upon failure of
nodes more than a certain threshold. Furthermore, the attacker can escalate his impact
on distributed mechanisms by taking advantage of heterogeneity of network knowledge
among participants. Extending reliability to some extent, the hybrid mechanism still
inherits the shortcomings of both centralized and distributed systems. To maximize the
reliability benefit of the hybrid mechanism, we explore the design choices available on
integrating two contrasting schemes without sacrificing control efficiency.

The road-map of the paper is as follows. After discussing background work (Sec-
tion 2), the adversarial scenarios are provided in Section 3. In Section 4, we show how
we implemented control mechanisms for evaluation. Section 5 delivers evaluation re-
sults. Our analysis on these results are presented in Section 6 and the paper is concluded
in Section 7.

2 Background

2.1 Control and Signaling Approaches

In contrast to the data transfer channel, the control channel performs its task by signal-
ing small sized management packets to the participating peers. The signaling channel is
responsible for: i) peer join and leave, ii) locating objects iii) resource scheduling and
allocation vi) authentication, integrity, and authenticity and v) application specific tasks
– for instance, a system for alert distribution raises an alarm of urgent security events
using this channel. Traditionally, there were two fundamental but contrasting schools of
thought regarding the design and implementation of the signaling mechanisms – cen-
tralized and distributed. Recently, there are attempts to leverage the strengths of both
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distributed and centralized schemes while avoiding some of their weaknesses by using
a hybrid approach.

Centralized Schemes. These simple and efficient mechanisms require one or a small
set of centralized entities to coordinate the operations of the entire system. However, the
scalability of the system is limited by the network and processing capacity of the control
nodes. As a workaround, a hierarchical control network [27] consisting of super-nodes
(SNs) was proposed. The control plane is implemented by adding layer of super-nodes
which act as the leaders and are in charge of their own sub-networks. Unfortunately,
selecting the right super nodes and the size of the clustering for each sub-network is
still an open problem. This is further exacerbated in dynamic environments with many
joins and leaves. Moreover, akin to the pure centralized solution, each super-node is
single point of failure to its own sub-network.

Distributed Schemes. This class of mechanisms is designed to mitigate the scalability
problems of the centralized design. Their design can be accomplished using either struc-
tured or unstructured overlay networks. Distributed Hash Tables (DHTs) [25,13,22] is
a structured overlay solution that are leveraging the power of consistent hashing [9]. On
the other hand, the gossip-based information sharing protocols [18], also known as epi-
demic or flooding protocols, process requests from clients in unstructured way. The core
implementation relies in flooding search requests to peering neighbors. Nevertheless,
despite their numerous benefits, distributed solutions also come with their own limita-
tions. DHT-based approaches do not work well in practice [20] as their performance is
severely influenced by even a small fraction of slow performing nodes. Moreover, the
gossip protocol becomes very costly as the size of network grows and has difficulty in
locating information with low availability. In following evaluations, we use DHTs to
implement distributed control channel.

Hybrid Schemes. These signaling mechanisms attempt to combine the advantages of
the centralized and the distributed (DHTs) design principles. During normal operations,
a hybrid system uses a fast and efficient centralized channel. It can, however, switch to
a slower but also more robust distributed channel to resolve capacity overload or even
node failures. There is a wealth of recent research on hybrid designs [29,8,10] all of
which share the same basic design principles with minor modifications. Moreover, there
are systems that attempt to combine two distributed mechanisms of structured (DHTs)
and unstructured (gossip protocol) to achieve better search efficiency [12,28].

2.2 Reliability Analysis of Signaling Channels

There exist some previous works that focus on analyzing the reliability of network
systems and the security protection of control channels. For reliability of centralized
systems, there is work relate to the stability of super-node networks. Yang et al. [27]
suggest general guidelines in designing super-node networks and about principles for
reliable design. Mitra et al. [15] propose an analytic framework that correlates super-
nodes’ fraction and their network connectivity with reliability. This work also considers
a global adversary of different knowledge and power. It does not, however, address hy-
brid schemes or provide any comparison between systems. Distributed control systems
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are designed to be more reliable but they introduce new threats and vulnerabilities which
exploit the specifics of each architecture. To counter the shortcomings, researchers pro-
posed a number of implementations [21] and theoretical studies [11,2] with the aim
to improve the reliability of distributed systems. Specific example of control channel
which supervises the entire system’s operation and becomes a viable target to the ad-
versary is the BitTorrent tracker network. Although originally designed as a centralized
control, extensions have been proposed to enhance the reliability of the tracker by hav-
ing distributed tracker or multiple trackers. Unlike previous studies on BitTorrent [4,19]
where the primary interests were performance related factors such as latency and fair-
ness of resource utilization, recent studies [16,17,14] focus more on the system’s relia-
bility.

2.3 Secure Message Propagation Systems

The goal of alert distribution systems is to deliver small size messages to many partici-
pants under a strict time constraint. Ever since fast, self-replicating worms (for instance
Slammer and Nimda viruses) crippled the Internet, there have been many theoretical
studies [30,1,26,24] to build an alert distribution system which can compete against
such worms. The outcome of this line of research was guidelines regarding how fast
the patch propagation should be. However, none of these works consider scenarios of
active adversary who also wants to take over the alert propagation processes.

In addition, RapidUpdate [23] is a research performed by research groups of com-
mercial security vendors. It offers a specific solution to their own alert propagation
model. The goal of the system is to propagate small sized alert messages (less than
200K) and meet distribution deadlines. Having assistance from peers, the RapidUpdate
tries to alleviate the workload of servers/vendors. Another work [7] by a major soft-
ware vendor quantifies the performance of the world’s biggest patch distribution system
– Microsoft’s Windows update. Based on trace analysis, this work delivers interesting
observations on traffic characteristics of patch distribution and end-user’s behavioral
patterns. Nonetheless, no previous study considers the presence of a sophisticated ad-
versary that attempts to disrupt the operation of the alert distribution network.

3 Application Environment and Adversarial Scenarios

The key element of our work is the evaluation of different mechanisms for implement-
ing a rapid and reliable alert distribution system in the adversarial context. Previous
analyses of such systems were largely done without taking into account sophisticated
(or, in many cases, even simple) adversaries who might seek to disrupt the operation of
the system. Such disruption may, for example, be attempted in parallel with an attack,
so as to maximize its impact and minimize the effectiveness of any defenses.

The goal of the adversaries would be to delay distribution and delivery of such alerts,
or to prevent their delivery altogether to as large a fraction of the nodes as possible.
We consider different adversaries, at varying levels of sophistication and resources.
For generality, our evaluation considers the impact such adversaries would have on the
system, in terms of inhibiting communications to/from some fraction of nodes.
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The sophistication of the adversaries in our threat model is determined in terms of
their ability to collect reconnaissance on the internal structure of the alert distribution
mechanism and focus their attack. Thus, at a high level, we distinguish between two
types of adversaries:

– Adversary with random attack: Unsophisticated adversaries who can inhibit com-
munication to/from randomly selected nodes. The fraction of nodes they can bring
down depends on the level of resources available to them.

– Sophisticated adversaries, who exploit knowledge of the system structure to target
nodes such that they maximize the impact of their disruption. We further consider
two sub-types of such adversaries:

1. Adversary with targeted attack: Attackers that know and exploit the high-
level structure of the network topology. Such attackers, for example, know
the identity of and target the super-nodes or other, relatively “fixed” important
nodes in the system.

2. Adversary with degree dependent attack: More powerful adversaries that
somehow have detailed topology information about a large part or all of the
distribution mechanism. Such knowledge includes, for example, the complete
connectivity graph of the participating nodes (or a large fraction thereof).

For all type of the above schemes, selected victim nodes are taken out from the system
as a consequence of the attacks.

4 Implementation

For our evaluation, three different alert distribution systems were implemented on Over-
Sim [3] network simulation framework. Here, we describe how we implemented the
simulation modules. We first talk about the design choices for the signaling channels
and the various reliability parameters that we explored. Then, we cover communication
models considered for alert distribution systems.

4.1 Control Channel

Centralized System. In the case of centralized control, we employed a super node (SN)
network. Among many configuration parameters [27] for the SN network, we carefully
identified the ones that affect the robustness of the overall network: the size of sub-
network (cluster size) and number of super-node replicas (k-redundancy). The cluster
size was tested using a range of different values. The same holds for k-redundancy.
However, in our graphs, we present only the case where k-redundancy is two. We did
so because other values of k-redundancy do not notably change the system’s behav-
ior beyond the one captured by the graphs. We configured the rest of the parameters
unchanged as these parameters have an effect only on the network performance.

Distributed System. For distributed control, we chose Chord [25] to implement a de-
centralized alert notification system. Chord was selected for two reasons. First, Chord’s
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ring-based routing structure and ID space has been well-studied allowing us to com-
pare our performance results with others when the network is not under attack. This
validates our approach beyond the results of a mere simulation. Second, the structural
differences among variants of DHT implementations are not discernible in terms of
robustness. Indeed, most of the hash-based systems use a common architecture that
employs key-based routing [6]. Among many configurable parameters for Chord, we
considered successor list size to be the most important one to the reliability and stability
of the system. This was varied with different values to see its impact on the system’s
maintenance cost and reliability.

Hybrid System. This model aims to achieve better network performance similar to the
centralized systems while maintaining the reliability of the purely decentralized ap-
proaches. In hybrid systems, all nodes initially join both a decentralized and a cen-
tralized signaling channel. For instance, a super-node in the hybrid network is the cen-
tralized entity for its sub-network as well as a regular participant in the DHT channel.
Therefore, the hybrid designs inherit all their configuration parameters. Moreover, peers
in the hybrid network can utilize the primary (centralized) and secondary (decentralized)
signaling channels either in serial or parallel. In our implementation of hybrid systems,
frequent operations such as querying were done first using the centralized and then the
decentralized signaling path. This increases performance under normal operations while
maintaining robustness in case of attacks. However, for less frequent but more critical
functions, such as publishing new information, we used both channels at the same time
to increase resilience without severely impacting the performance of the network.

4.2 Models for Alert Distribution

Publish-Subscribe Model. In this model, peers have the option to subscribe to certain
classes of security events. Polling and pushing are available choices to implement this
model. For our experiments, we used the polling model with 30 seconds of polling
interval. This is a cost-effective and easy-to-implement solution, widely adopted by
most vendors for their online patching system.

Distributed Sensors Model. In this model, participants with proper permission can be
sensors who can detect security incidents and initiate the alert propagation process. This
is typical model used to deploy large scale defense posture but it also comes with issues
of trust – the security information’s integrity and node authentication. For our experi-
ment, only nodes with proper permission can publish new message to subscribers. Their
integrity is examined by super-nodes, in the case of centralized and hybrid mechanisms,
or peering nodes in charge of the ID segment, for distributed schemes.

5 Evaluation

In the section, we describe evaluation results for the alert distribution systems imple-
mented with three different control mechanisms. First, we explain the evaluation met-
rics and then we talk about the reason behind the choice of the Oversim simulation
framework. Lastly, we discuss our evaluation results with and without global adver-
saries. For each evaluation instance, all results are averaged over at least 10 iterations.
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Fig. 1. The evaluation results under normal operations. Figure (a) depicts the mean notification
time and the completion time for 99% of the nodes and for different control plane mechanisms.
Figure (b) presents the total network cost in terms of bytes for the test duration of 600 seconds.

5.1 Evaluation Metrics

To evaluate the reliability and efficiency of the different control plane mechanisms, we
introduce three metrics: coverage, latency, and control efficiency. Coverage is measured
by enumerating the number of nodes that receive the alert message when the system is
under attack. Alternatively, all alert messages that are not delivered within the duration
of the experiment instance are regarded as failures. Latency is defined to be the period
of time that it takes for alerts to reach each participant from the moment that an alert
message is dispatched. Control efficiency is the cost to utilize the control mechanisms.
This is calculated by summing the total number of bytes required for network operations
during the experiment.

5.2 Evaluation Design

To validate the network behavior under adversarial conditions, we implemented three
control mechanisms using the OverSim [3] simulation framework. The use of simula-
tion was mandated for the following reasons:

Scalability. We were interested in observing the behavior of large scale networks imple-
menting signaling systems in the presence of network-wide malicious attacks. Having
tens of thousands of number of participants, Oversim framework enabled us to quantify
the design parameters that really influence the behavior of the system.

Global Adversary. Emulating global adversary in a real-world large-scale testbed is
a costly and time-consuming task and it does not allow repetition of experiments. The
simulation framework not only helped us to instantiate this size of network but also
provided the interface to implement a more precise behavior for the global adversary.
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5.3 Evaluation under Normal Operation

To establish a baseline for our experimental results, we first measured the latency and
control efficiency of the mechanisms without considering a global adversary. For test
topologies of 20,000 nodes, each test instance was measured for 600 seconds of sim-
ulation time. Each test instance contained an alert notification event and the same size
(40KB) of control messages were propagated to all participants. The size is derived
from the average size of Microsoft patches [7]. SN network, implemented for central-
ized mechanism, was configured with different cluster sizes and k-redundancy was fixed
to 2 for all test cases. DHT network was used for the distributed control mechanism and
its successor list size was set to five. Hybrid network inherited parameter from both
systems.

Latency Measurement. The latency results are shown in Figure 1(a). On the X-axis,
from the left to right, we have results for the SN network, Hybrid network, and DHT net-
work. The SN network and hybrid network are configured with different cluster sizes.
For each bar, the dark portion represents the average time for notification and the gray
part represents the time until 99% of the nodes are notified. Large variance was ob-
served for the latency results of SN network. With different cluster sizes, mean latency
ranged from 35 to 230 seconds. Populated sub-networks (lower-layer) accounted for
delays in the case of large cluster size (5,000). For smaller cluster size (50), having
more super-nodes made the upper-layer network the bottleneck. In contrast, for hybrid
network, we observed small variance in latency and less delays. This is because the
secondary, distributed channels masked the errors or failures of the primary channel.
Mean latencies ranged only from 33 to 51 seconds. Not having a secondary channel,
the DHT network took longer than the worst case of hybrid network. However, the
latency remained relatively low (61 seconds).

Control Cost Measurement. Figure 1(b) represents the control cost of different mech-
anisms to propagate alert messages of the same size (40KB). SN network, thanks to
its simple implementation, required the least amount of packets to maintain its control
channel and signaling operations. However, in the case of larger cluster size (5,000),
many number of network errors and retries introduced rapid increase in cost. DHT net-
work required larger amount of control traffic to maintain its distributed data structures.
Hybrid network with large cluster size (5,000) required even more and was the most
expensive control channel due to excessive numbers of network errors from its primary
channel. However, with the proper choice of cluster size, hybrid network could spare
its control cost to become a more efficient solution than the DHT network.

5.4 Evaluation of Adversarial Scenarios

In adversarial scenarios, we again used the topology of 20,000 nodes with longer simu-
lation duration of 1,200 seconds to carefully observe the system’s reaction to malicious
activities. Nodes that could not be notified within this time duration were regarded as
a delivery failure. Two different cluster sizes were plotted for SN network and hybrid
network – 50 to represent a small cluster size and 5,000 for large cluster size. During the
experiment, the alert propagation event was triggered at 100 seconds of the simulation
time and the attack from the adversary was launched five seconds prior to the event.
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Fig. 2. Figures (a) and (b) illustrate the latency and coverage for the random attack scenario
respectively and for different attack intensities. In (a), Y-axis shows average notification time and
in (b), Y-axis shows the percentage of nodes which successfully received the alert message.

Random Attack Evaluation. In this attack scenario, the adversary randomly selects its
victims varying its attack ranges (0%∼ 30%). The latency and coverage results against
this attack are shown in Figure 2(a) and Figure 2(b) respectively. For DHT network,
both latency and coverage were most severely impacted by this attack. Having accept-
able latency from its initial stage, DHT network’s latency steadily increased. Network
failures that impacted coverage started approximately around 17∼ 18%. The coverage
results dropped rapidly from that point onwards. SN network showed better results than
DHT network in terms of both metrics. It is interesting to note that the centralized mech-
anism with a little redundancy configuration (k-redundancy=2) showed better coverage
results than the distributed system. In the DHT network, by distributing certain amount
of connections to all participants, each node’s failure had some influences on the sys-
tem’s connectivity. This resulted in network disintegration and gradual deterioration of
latency beyond a certain threshold. This result is consistent with the observation that
DHT network’s performance is severely influenced by even a small fraction of slow
performing nodes [20]. In the SN network, failures of all SN replicas for a sub-network
significantly deteriorate system’s latency and coverage. But, in the case of random at-
tack, probability to hit all replicas in the same group is exponentially low in regards to
k-redundancy parameter. Irregular spikes in its latency and coverage results indicates
this type of failures where k-redundancy is two. Hybrid-network, by having dual chan-
nels, showed improved coverage and latency results. While the hybrid network showed
smoother results than the SN network overall, systems with smaller cluster size had
better latencies and reduced traffic irregularities.

Targeted Attack Evaluation. In this attack, the adversary takes one step further by
targeting nodes of explicit importance – super-nodes for the SN network and the hy-
brid network. After selecting all available target nodes, the attacker randomly select the
rest of her victims. DHT does not expose any explicit targets. Thus, all the victims are
selected randomly. The attack in this case becomes identical to the random attack. Cov-
erage result against this attack are presented in Figure 3(a). Unlike the DHT network,
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whose results didn’t changed much from the random attack result, the SN network is se-
riously impacted by this attack. Having all super-nodes eliminated, the system stopped
being operational from the very initial stage of attack, less than or around 4%. Similarly,
not having the benefits of its primary SN channel, latency and coverage results of the
hybrid network soon converged to that of the DHT network.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Attack rate (%)

C
ov

er
ag

e 
ra

te SN,clstr=50
SN,clstr=5K
HYBR,clstr=50
HYBR,clstr=5K
DHT

(a) Targeted attack coverage

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Attack rate (%)

C
ov

er
ag

e 
ra

te

SN,clstr=50
SN,clstr=5K
HYBR,clstr=50
HYBR,clstr=5K
DHT

(b) Degree dependent attack coverage

Fig. 3. Figure (a) and (b) present coverage results for the targeted attack and degree dependent
attack respectively and for different attack intensities. Y-axis shows the percentage of nodes who
successfully received the alert message.

Degree Dependent Attack Evaluation. In this attack, the attacker can identify nodes
not only of explicit, but also of implicit importance. For this, she considers each node’s
topological significance. Super nodes maintain more state acting as defaults routes for
the their clusters and thus are higher priority targets. In Figure 4(a), we depict the con-
nection distribution for the hybrid network (of cluster size 50). We present the number
of connections for the super-nodes and regular nodes using different colors. This Figure
illustrates how the attacker chooses its victims for degree dependent attack with differ-
ent attack rates of 1% and 4%. With respective dotted and dashed lines, the nodes with
number of connections above the lines will be the victims.

The coverage result against the attack is presented in Figure 3(b). Similar to the tar-
geted attack, SN network’s coverage deteriorated from the initial stage of the attack. By
choosing nodes with higher connectivity, this attack was highly effective in crippling
the DHT network. DHT’s coverage starts to drop around 7%∼8%. In the case of hybrid
network, the coverage was also impacted by the attack. The outcome for a large clus-
ter size (5,000) with few super-nodes, does not show much difference from the DHT
network’s result. The small cluster size (50) performed better and extended coverage
about 4%, because it was able to distribute the SN connections more evenly across the
network curtailing the reachability failures due to the attacks.

Quantifying the behavior of the different signaling mechanisms when under different
attack scenarios allowed us to make this observation: hybrid network is the efficient so-
lution for both adversarial and normal situations with the following benefits. i) latency-
wise, it was an efficient solution with less configuration sensitivity. ii) with the proper
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choice of cluster size, the system consumes reasonable amount of control cost which
is higher than SN but less than DHT system. iii) Under all type of attacks, it showed
the best resilience in terms of coverage and latency. Another interesting observation is
that SN network, even with less network connections, could show better results than
DHT network against the random attack. However its reliability benefit is immediately
cancelled by sophisticated and targeted attackers.

6 Analysis

Our evaluation shows that the hybrid network gained the number of reliability benefits
by adding a constant number (two) of SN connections to the DHT network. This re-
sult indicates that the number of connections and the way it connects participants can
seriously impact the reliability of the system. Unfortunately, the number of network
connections is constrained by both system and network resources. Therefore, we want
to explore the design space that can enhance reliability by only improving the way it
connects participants. To that end, we investigate different ways of implementing con-
trol systems by using the same number of connections. More concretely, we extend
DHTs with the fixed number (two) of connections in different ways to observe how
these influence the coverage result. The number of connections is the same one used
from the previous evaluations. Of course, this parameter can have significant impact on
coverage results. However, for all proposals, we want to demonstrate how we can add
connections under the same constraints and maximize the coverage benefits.

To further enhance the system’s behavior when attacked, we leverage the benefits of
DHT’s internal structure with a modified routing table. This technique, which exploits
finger-table, is implemented for Chord and is also applicable to other DHT systems.

6.1 Chord Connection Types

The Chord maintains two types of logical network connections. One for the successor
lists and the other for the finger table entries.

– Successor list maintains the list of neighboring nodes. It is an important param-
eter that influences DHT’s reliability and its default size is set to five. Having a
O(log n) size of this connection provably guarantees the stability of the system
which indicates success rate of lookup request.

– Finger table is a core data structure that implements O(log n) routing of Chord.
The upper limit of its size is logarithmic to the size of hash space (in the case of
Chord, this is set to 2160).

Unlike previous proposals which naı̈vely added SN connection to DHT connections,
we implement a hybrid network utilizing existing slots of finger tables. SN connections
can be replaced with immediately preceding entries in the finger table. This does not
increase the required state per node or the total number of connections, but this costs
additional hops for lookup activities due to some sub-optimal entries.
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Table 1. Control mechanisms and their labels

Label Control mechanisms
DHT Chord with successor list size of 5 (default).
DHT S-list Extend DHT by adding 2 connections to successor list. Successor list size is set to 7.
HYBR Hybrid mechanism that naı̈vely integrates 2 additional SN connections to DHT.

This is the hybrid network used from previous evaluations.
HYBR F-table This extends HYBR by integrating 2 additional SN-connections with the finger table.

6.2 Evaluation of Network Coverage

We measured the performance of our proposed modifications in terms of coverage.
To that end, we present our experimental results from the degree dependent attack by
varying its attack rate (0% ∼ 30%) for a network of 20,000 participating nodes. The
cluster size for hybrid network was set to 50 to make the effect of SN connections more
pronounced. With larger cluster sizes, thus smaller SN connections, we expect coverage
results similar to that of a DHT network. Table 1 details specific configurations and their
labels used for evaluations. The evaluation results are presented in Figure 4(b).

The last three configurations (DHT S-list, HYBR, HYBR F-table) from Table 1 are im-
plemented with the same number (two) of additional connections to the original Chord
DHTs (DHT). The result for DHT S-list shows the limited effects of the two additional
success list entries. From Figure 4(b), this improves coverage only by 2 ∼ 3%. The re-
sult for HYBR shows better coverage (5 ∼ 6%) than DHT S-list. Although SN connec-
tions replace connections assigned to the successor list, the structural benefits offered
by the SN network are far greater. This is apparent in the HYBR F-table, by harnessing
the reliability benefits of both successor list entries and SN connections, the coverage
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Fig. 4. (a) enumerates connections for nodes in a hybrid network with cluster size of 50. The dot-
ted and dashed lines show the impact of the degree dependent attack. The attacker choose victims
with number of connection above the lines. (b) presents the coverage for different modifications
and for the degree dependent attack. In X-axis we vary the attack intensity while Y-axis shows
the alert success rate.
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is boosted by 7 ∼ 9%. Furthermore, penalty for having two sub-optimal entries in its
finger table is negligible and requires only a small amount of additional lookup calls
(3.4%).

The experimental results present interesting insight about the trade-offs between net-
work structure and their impact on reliability. We can deduct that additional entries in
the list have limited effect. Thus, it is better to consider other avenues of adding con-
nections in order to enhance system’s reliability. Modifying the finger table can be an
option to consider because it increases coverage without deteriorating its original func-
tionality.

7 Conclusions

We evaluated alert distribution systems implemented using three control channel mech-
anisms under different adversarial scenarios. Our evaluation enabled us to draw a num-
ber of interesting insights regarding the reliability of the signaling channel. The pure
distributed system (DHTs), designed to be robust under attacks, suffers in terms of net-
work performance including latency and coverage. In the case of random attack, DHTs
reliability turned out to be worse than that of a super-node based centralized design.
To alleviate this, we proposed the integration of centralized and the distributed designs.
Our approach consists of structural changes that enable us to seamlessly integrate a SN
network and a DHT network. We evaluated a hybrid network design that offered the
best coverage and reliability under all type of attack scenarios. We believe that with
proper engineering choices, we can further enhance the system’s reliability.
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Abstract. Nowadays, due to the rapid growth of the mobile users, 
personalization and recommender systems have gained popularity. The 
recommender systems serve the personalized information to the users according 
to user preferences or interests and their profiles. Tourism is an industry which 
had adopted the use of new technologies. Recently, mobile tourism has come 
into spotlight. Due to the rapid growing of user needs in mobile tourism 
domain, we concentrated on to gives the personalized recommendation based 
on multi-agent technology in tourism domain to serve the mobile users [7]. The 
objective of this paper is to build a secure personalized recommendation 
system. Attackers can affect the prediction of the recommender system by 
injecting a number of biased profiles. In this paper, we consider detecting or 
preventing the profile injection (also called shilling attacks) by using significant 
weighting and trust weighting that complements to our proposed RPCF 
Algorithm. 

Keywords: Security, Personalization, Recommender System, Collaborative 
Filtering, Profile Injection Attacks, RPCF Algorithm, Significant Weighting, 
Trust Weighting. 

1   Introduction 

The ever-changing trends of our lifestyle require mobility supports [15] which open 
up new accessibility opportunities for tourism industry. Today, tourism systems are 
one of the most important application areas for recommender system. To cope with 
the demand for quality of access, tourism information system should be made 
ubiquitous, time-aware, location-aware and personalized. 

In Modern world, personalization and recommendation systems have gained wide-
spread acceptance and attracted increased public interest in commercial services [6]. 

Collaborative filtering (CF) provides personalized recommendations, based on 
suggestions of users with similar preferences. The development of CF algorithms has 
focused mainly on how to provide accurate recommendations. 

Recommender systems based on CF have the issues for the process of finding 
similar users. An attacker can attempt to influence the behavior of the recommender 
system for other users by using biased (fake) rating profiles to artificially either 
promote or demote a target item. Such attacks have been referred to as shilling attacks 
or profile injection attacks, and attackers as shillers [5]. Since user profiles of shillers 
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looks very similar to an authentic user, it is a difficult task to correctly identify 
shilling attacks. These attacks can cause the degradation of user trust in the objectivity 
and accuracy of the recommender system. 

Our system aims at providing personalized recommendation for mobile users based 
on user profiles for tourism domain. Capturing user profiles naturally involves the 
processing of personal data such as location data, personal preferences (interests), 
travel information and so on. However, the processing of user data requires security 
measures to ensure the user’s fundamental rights to privacy. Current recommender 
systems have the privacy problem [1]. For the privacy concerns, the user’s personal 
data must be protected and proceed in a safe manner. Trust concept can take 
advantage over recommender system. Local trust, reputation, demographic trust and 
location aware reputation [13] can be used to construct a trust model. 

In [8], we proposed RPCF (Rule-based Personalization with Collaborative 
Filtering) algorithm which can address the scalability, sparsity and cold-start problem 
of pure collaborative filtering method and can give the accurate and good quality 
recommendation to the user. In [9], we proposed the architecture of multi-agent 
tourism system (MATS) which provides the most relevant and updated information 
according to the user’s interest by using RPCF Algorithm. In [7], we extended MATS 
for mobile user. 

This paper is an extension of the encyclopedia article [7] that gives the secure 
personalized recommendation based on multi-agent technology in tourism industry to 
serve the mobile users. This paper pays great attention to security issue. The privacy 
and trust management are not considered in this paper. The primary contribution of 
this paper is to detect or prevent the shilling attacks by adopting significant weighting 
and trust weighting that complements to the RPCF algorithm for giving the accurate 
recommendation to the user. 

The rest of the paper is organized as follows. Section 2 describes the theoretical 
background of the system and Section 3 presents the security architecture of the 
personalized recommendation system in detailed. Section 4 points out the 
experimental results of the system. Section 5 concludes with a summary and suggests 
directions for future works. 

2   System Background 

This section describes the system background related with recommender system, 
personalization system and the attack types. 

2.1   Recommender System 

Recommender system can be defined as a specific type of information filtering (IF) 
technique that attempts to present information items (movies, music, books, news, 
images, web pages, etc.) that are likely of interest to the user. The goal of a 
recommender system is to generate meaningful recommendations to a collection of 
users for items or products that might interest them. 

Suggestions for books on Amazon, or movies on Netflix, hotel recommendation on 
Tripadvisor are real-world examples of the operation of industry-strength 
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recommender systems [14]. In order to give recommendation, these systems take 
different information like product ratings, history of purchase or the customer’s 
interests into account. The term collaborative filtering was introduced in the context 
of the first commercial recommender system, called Tapestry [4], which was designed 
to recommend documents drawn from newsgroups to a collection of users. 

Because of the recommender systems are dependent on external sources of 
information, they are vulnerable to attacks. Recommender systems have proven to be 
an important response to the information overload problem, by providing users with 
more proactive and personalized information services. And collaborative filtering 
techniques have proven to be a vital component of many such recommender systems 
as they facilitate the generation of high-quality recommendations by leveraging the 
preferences of communities of similar users. 

2.2   Personalization System 

Personalization means knowing who the user is and can recognize a specific user 
based on a user profile [16]. Personalization involves as a process of gathering and 
storing information about users, analyzing the information and based on the analysis, 
delivering the information to each user at the right time. User satisfaction is the 
ultimate aim of personalization. 

Personalization can be divided into content-based filtering (customization), rule-
based filtering and collaborative filtering.  

Content-based filtering is an information seeking process in which contents are 
selected to satisfy a relatively stable and specific information need. Rule-based 
personalization use “If-then” process and based on a customer’s demographics, past 
purchases, or product attributes. Collaborative filtering (CF) is one of the most 
successful recommender techniques. It is the method of making automatic predictions 
(filtering) about the interests of a user by collecting taste information from many users 
(collaborating). The underlying assumption of CF approach is that those who agreed 
in the past tend to agree again in the future. 

Challenges in collaborative filtering include scalability, sparsity, cold-start, 
accuracy and security. We proposed the RPCF algorithm [8] which is the combination 
of rule-based and collaborative filtering approach to give the recommendation results. 
Our prior work [9] have addressed the scalability, sparsity and cold-start problem by 
using RPCF algorithm and the experimental results showed the improvement of 
accuracy and the quality of recommendation compared with the pure collaborative 
filtering approach.  

The open nature of collaborative recommender systems allows attackers who inject 
biased profile data to have a significant impact on the recommendations produced. A 
collaborative recommender database consists of many user profiles, each with 
assigned ratings to a number of products that represent the user’s preferences. A 
malicious user may insert multiple profiles under false identities designed to bias the 
recommendation of a particular item for some economic advantage. This may be in 
the form of an increased number of recommendations for the attacker’s product, or 
fewer recommendations for a competitor’s product. 
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In this work, we are primarily concerned with security issues of collaborative 
recommender system. Besides addressing the above challenges, our system can be 
able to make accurate predictions in the presence of shilling attacks, and be 
effectively applied in fast-growing mobile applications as well. 

2.3   Attack Types: Profile Injection Attacks (Shilling Attacks) 

An attack type is an approach to constructing attack profiles, based on knowledge 
about the recommender system, its rating database, its products, and/or its users [11]. 
The set of filler items represents a group of selected items in the database that are 
assigned ratings within the attack profile. Attack types can be characterized according 
to the manner in which they choose filler items, and the way that specific ratings are 
assigned. 

The profile injection attacks can be classified in two basic categories called push 
attacks and nuke attacks [10]. Since shilling profiles looks very similar to an authentic 
user, it is a difficult task to correctly identify such profiles. 

For each of the attack types, it is assumed the objective of the attack is to push or 
nuke the recommendations that are made for one particular target item. This item is 
always included in attack profiles and is assigned the maximum rating (rmax) to 
promote the item or minimum rating (rmin) to demote the item as push or nuke attacks, 
respectively. 

Table 1. Push Attack  and Nuke Attack Profiles 

Push Attack Profile Nuke Attack Profile 
item1 item2 ….. itemm-1 target item1 item2 ….. itemm-1 target 

r1 r2 ….. rm-1 rmax r1 r2 ….. rm-1 rmin 

The form of push attack and nuke attack profiles is shown in table 1. An attack 
profile consists of a m-dimensional vector of ratings, where m is the total number of 
items in the system. The rating given to the pushed item, target, is rmax and is the 
maximum allowable rating value and the nuke item, target, is rmin, the minimum 
allowable rating value. The ratings r1 through rm-1 are assigned to the corresponding 
items according to the specific attack model. In our system, the average attack model 
is used to fill the rating of other items. 

The remaining items for attacks profiles are selected for the different attack model 
as random attack, average attack, bandwagon attack and favorite item attack 
(consistency or segmented attack). Due to the space limitation, only the average 
attack model is described. 

Average Attack: Filler items are selected uniformly at random from the system item 
set. Ratings for filler items are assigned based on a more specific knowledge of the 
domain. In this case, filler items are rated randomly on a normal distribution with 
mean equal to the average rating of the item being rated and with the standard 
deviation [2]. 
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3   Architecture of Secure Personalized Recommendation System  

As shown in Fig. 1 we provide the deployment of multi-agents technology. In this 
system, the client device is a handheld device or PDA as a terminal for receiving 
information from a web server and received signal from the GPS satellite. The 
detailed explanation of each module can be found in [9], [7].  

In this paper, we will focus on to build the secure personalized recommendation 
system by applying modified RPCF algorithm for detection profile injection attacks 
(push attack or nuke attack) which is highlighted in interface module of Fig. 1.  

The users are required to define their preferences (interests) as user profiles. The 
user’s information can be changed whenever the users want to revise their interests. 
On receiving the user request, the personalization agent performs the task of gathering 
user information, interest or preferences explicitly and stores the context of 
information as the user profiles.  

The next step is to analyze the information and apply modified RPCF algorithm. 
We picked the significant weighting and trust weighting complements to the RPCF 
Algorithm, which can give the secure personalized recommendations to the users. 

Web Server

Personalization System

Information Management 
Module

Information 
Agent

Query 
Agent

profile

Interface Module
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Interface 
Agent

Personalization  
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Fig. 1. Architecture of Personalized Recommendation System for Mobile User 

3.1   Modified RPCF Algorithm 

In this sub-section, we will promote RPCF algorithm with significant weighting and 
trust weighting to give the accurate recommendation for building secure personalized 
recommendation system. The main focus of this paper is to detect the profile injection 
attacks by applying modified RPCF algorithm as shown in Fig. 2. 

 
Begin 
//Modified RPCF Algorithm 

1 get request 
//get the request from the user 
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2 get user location 
//retrieve user location from GPS satellite 

3 get user profile 
//retrieve user information from the user profile or create user profile for new 

user 
4 if (condition) then (action) 

//take the action by the condition of Rule-Based Personalization 
5 search query information from the database 

//search the corresponding information from the database of knowledge 
repository 
6 compute similarity (identify the two items that are most similar) 

//compute similarity using Pearson Correlation Coefficient 
7 compute weight 

//compute weight using Significant Weighting (eq.(1)) 
8 compute trust-weight 

//compute weight using Trust Weighting (eq.(3)) 
9 compute prediction 

//compute prediction using (eq.(2)) 
10compute MAE 

//compute Mean Absolute Error (MAE) 
11display result (recommendation) 

//display the result to the user which is closet to their interest 
End 
 

Fig. 2. Modified RPCF Algorithm 

3.2   Process of Modified RPCF Algorithm 

Fig. 3 shows the recommendation process of modified RPCF algorithm. The 
modification process made to RPCF algorithm are computing significant weighting 
after computing similarity and trust weighting before making prediction.  

As an example, rule-based filtering process takes the user’s request and used the 
hotel rating to make recommendation to the target user. In this example, hotel rating 
profile contains the attacks inserted by the attacker and the ratings of the 
neighborhood users. The collaborative filtering method firstly computes the similarity 
values of the hotel rating for the targeted user among neighborhood users. 

The item-based filtering method is used to filter the item according to the user’s 
request and user-based filtering is used to filter the most appropriate item among the 
filtered items of the rule-based process based on the similar neighborhood users. 

For instance, the user’s request is “Hotels in Yangon”, the system accept the user’s 
request and retrieve the user’s current location from the GPS and search the hotels 
according to the user’s current location by using rule-based filtering. After searching 
the hotels, the system will give the most appropriate recommendation to the user 
according to the user’s interest by applying collaborative filtering which is computed 
from neighborhood users.  

During this computation process, the significant weighting is computed by using 
the similarity values of the neighborhood users. According to the significant 
weighting results the fewer commonly rated items are pushed out the neighborhood 



272 S.Y. Maw 

 

although there is a higher degree of the similarity to the target user. It follows that 
users who have rated a large number of items will belong to more neighborhoods than 
those users who have rated few items. This is a potential security risk in the context of 
profile injection attacks. 

 
Fig. 3. Recommendation Process by Modified RPCF Algorithm for Hotel Enquiry 

The significance weight of a target user u for a neighbor v is computed as: 
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where n is the number of co-rated items, N is a global constant, and simu,v is Pearson’s 
correlation coefficient. A prediction for the target user is computed by using equation 
(2), replacing simu,v with wu,v. 

An attack profile with a very large number of filler items will necessarily be 
included in more neighborhoods, regardless of the rating value. The risk can minimize 
because a large filler size threshold is required to make the attack successful. In most 
cases, genuine users rate only a small portion of all recommendable items; therefore, 
an attack profile with a very large filler size is easier to detect [17]. 
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The profile injection attacks are detected by applying modified RPCF algorithm. 
Trust model can improve in collaborative filtering [12]. By explicitly calculating a 
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trust value, the reputation of a user can be used as insight into the user’s relevance to 
recommendation. Trust weighting calculates a trust value for every user by cross-
validation using equation (3). 
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The system then computes the prediction. To incorporate values from the trust model 
into recommendation, the system filters the trust value with some threshold value [3]. 
The robustness of relevance weighting is evaluated as item-trust and similarity using 
equation (4). 
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where simu,v is Pearson’s correlation coefficient. A prediction for the target user is 
computed using equation (2), replacing simu,v with wu,v,i. 

4   Experimental Results of the Modified RPCF Algorithm 

In the experiment, the hotel ratings datasets from Travelocity is used to evaluate 
RPCF algorithm. The dataset contains 2721 ratings from 40995 users’ reviews for 740 
hotels. Each user can rate a hotel to express his/her willingness to stay at this hotel 
and a rating is a number ranging from 1 to 5. A higher score indicates a higher 
preference. 

Table 2.  Hotel Rating Profiles showing Push Attack and Nuke Attack 

A Push Attack Favoring H10 A Nuke Attack Favoring H12 
Users 

H1 H2 H3 … H10 … H15 H1 H2 H3 … H12 … H15 
Alice 5 2 5 … ? … 4 5 2 5 … ? … 4 
U1 5 3 3 … 2 … 5 5 3 3 … 4 … 5 
U2 4 3 2 … 3 …  4 3 2 … 5 …  
U3 5 4  … 2 … 4 5 4  … 4 … 4 
U4  4 3 … 1 … 4  4 3 … 5 … 4 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 
Att 1  1  … 5 …   1  … 1 …  
Att 2 2 1  … 5 … 3 2 1  … 1 … 3 
Att 3  1 2 … 5 …   1 2 … 1 …  
Att 4 1  1 … 5 … 2 1  1 … 1 … 2 
Att 5  1 3  5 …   1 3  1 …  
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Table 2 shows the hotel ratings of (genuine) users and attackers. In the sample case 
of push attack, the active user is Alice and the system will predict the rating on H10 
using the ratings of the neighborhood profiles. The attacker, Eve, has injected the five 
attack profiles which give the high rating on H10. The push attack gives the high 
rating to the target item. In the case of nuke attack, the system will predict the rating 
on H12 for the active user Alice using the ratings of the neighborhood profiles. The 
attacker, Eve, has inserted the low rating on H12 to demote the target hotel rating. 

Collaborative Filtering produce the personal recommendation by computing the 
similarity between the ratings of the neighborhood with target user for target item. On 
account of the shilling attacks, the active user can not get the actual rating of the 
target item. By applying modified RPCF algorithm, the push attack and nuke attack 
can be detected. 

The evaluation results are depicted in the following figures with comparison of 
before and after attack detection algorithm is applied for push attack and nuke attack. 
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Fig. 4. Comparison of Hotel Ratings Values for Push Attack 

Nuke Attack
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Fig. 5. Comparison of Hotel Ratings Values for Nuke Attack 

Fig. 4 and 5 present the comparison of the total ratings for hotels of genuine users 
and attackers. Attackers inserted the push attack to H10 and nuke attack to H12 which 
shows the significant difference between the attackers’ rating and genuine users 
rating. The total ratings of the other items are not very different or nearly the same. 
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In the experiment, the similarity measure between users is computed by means of 
Pearson Correlation Coefficient. Similarly, the similarity value is weighted and 
selected the neighboring users that have the highest similarity rating with the active 
user by using Significant Weighting and then computing the Trust Weighting. Finally, 
a prediction from the rating of neighbor is computed. 
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Fig. 6. Comparison of Prediction Values for Push Attack 

 

Comparison of Prediction Values for Nuke Attack
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Fig. 7. Comparison of Prediction Values for Nuke Attack 

Fig. 6 and 7 show the comparison of prediction values of the active user with and 
without shilling attack. Before applying attack detection algorithm, the prediction 
values are very high for the target item which is roughly 5 on account of the push 
attack. After detecting push attack, the prediction values are actual rating values for 
the active user. As shown in the comparison of prediction values for nuke attack in 
Fig. 7, the prediction value is low for the target item and after detecting the nuke 
attack gives the actual rating value. The neighborhood of the attackers is very sparse 
with genuine users. The highly neighborhood is removed from the neighbor and then 
the prediction result is computed. The modified RPCF algorithm can make the actual 
prediction to the active user by detecting the push or nuke attack. 

Finally, the accuracy of a prediction is evaluated by using Mean Absolute Error 
(MAE). The lower MAE presents the more accurate prediction value. As shown in 
Fig.8 and 9, while the fluctuation of the MAE value with the attack is high, the MAE 
value without attack is quite stable. After detecting the push attacks and nuke attacks 
show the value of MAE is much closed to 0 (zero). This means that modified RPCF 
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algorithm made predictions with fewer (even without) errors. Therefore we can say 
that the prediction result of modified RPCF algorithm is accurate and the system is 
robust under the profile injection attacks. 
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Fig. 8. Comparison of MAE Values for Push Attack 

Comparison of MAE for Nuke Attack
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Fig. 9. Comparison of MAE Values for Nuke Attack 

5.   Conclusion and Future Work 

The main purpose of this paper is to build the secure personalized recommendation 
system by adopting Significant Weighting and Trust Weighting which complements 
to RPCF algorithm. This algorithm can detect the profile injection attacks and can 
give the secure personalized recommendation to the user. 

The experimental results showed that the increased in recommendation accuracy 
and improved robustness under profile injection attacks. In this paper, only the 
modified RPCF algorithm is experimented and implemented for the profile shilling 
attack, and the issue of false detection is not analyzed and lack of comparison with 
other algorithm. 

For our future work, we will analyze the false detection issue, examine some other 
detection algorithms and other attack models to build more secure, robust and 
accurate recommendation system. The comparison with other algorithm will also be 
considered. To be a good personalized recommender system, we will focus on to the 
security issues of localization system, wireless network security and mobile security. 
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Security and privacy are the critical issues for developing a recommender system. 
In this work, we only consider the security issue. We plan to publish the privacy-
preserving and trust management recommender system in our next paper.  
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Abstract. In order to protect AES software running on untrusted plat-
forms, Chow et al. (2002) designed a white-box implementation. How-
ever, Billet et al. (2004) showed that the secret key can be extracted with
a time complexity of 230. In this paper, we present an improved white-
box implementation of AES. We use dual ciphers to modify the state
and key representations in each round as well as two of the four classical
AES operations, SubBytes and MixColumns. We show that, with 61200
possible dual ciphers the complexity of Billet et al. attack is raised to
291. Interestingly, our white-box implementation does not require more
memory space than that of Chow et al. implementation.

Keywords: White-box cryptography, dual cipher, AES, block ciphers,
implementation.

1 Introduction

A cryptographic algorithm intended to run on a malicious host is, by definition,
prone to the reverse engineering attacks. The adversary is actually able to mon-
itor its execution as well as any intermediate results generated during the com-
putation. The white-box attack context was introduced by Chow et al. in [8] as a
setting where the adversary is allowed to make observations about the software
and to examine or alter the software intermediate results. In order to protect AES
in such context, they implement the AES encryption or decryption algorithm in
a white-box fashion [9]. However, Billet et al. showed in [4] that the secret key
can be extracted from Chow et al. implementation with a time complexity of
about 230. Michiels et al. presented in [14] a generic attack against white-box
ciphers. They prove that a family of Substitution Linear-Transformation (SLT)
ciphers with special properties of the diffusion matrix cannot be secured by the
method of Chow et al. The attack they present is partially based on the one of
Billet et al.

There is therefore a need for an improved implementation that makes such
attacks more difficult in a white-box context. In [3], Billet and Gilbert proposed
a traceable block cipher from which they can derive from a meta-key many
equivalent keys for the same instance of a cipher. Their construction presents
the advantage of making computationally difficult the calculation of the meta-
key when knowing the derived keys. This has been cryptanalyzed by Faugere
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et al. [11]. In [6], Bringer et al. showed how to improve the security of the trace-
able block cipher by adding some perturbations in its description. The perturba-
tion idea was exploited by the same authors to improve the white-box AES im-
plementation [7]. Indeed, Bringer et al. added perturbations to the global rounds
of AES in order to make its algebraic structure inaccessible. In this instance, the
constants of SubBytes operation are made non-standard and unknown to the
adversary.

In this paper, we propose to build upon Chow et al. ideas to create a version
of white-box AES that better resists to the Billet et al. attack. Our approach
changes the algebraic structure in each round of AES in addition to the mixing
bijections. The use of different algebraic structure for the same instance of an
iterative block cipher was already proposed in [3]. The intrinsic structure of
the block cipher used in [3] is however based on Matsumoto-Imai multivariate
scheme [13] that is different from that of AES. We propose a different method
that works with the AES building block structure and that improves the security
of the white-box implementation. Our modification concerns all the operations
that involve constants within one round (i.e. InvSubBytes, InvMixColumns and
key schedule operations). Moreover, all the elements of a state as well as the
round subkeys are transformed in order to fit the modified structure in each
round.

Our solution relies on using the dual ciphers [2,15,5] and raises the complexity
of Billet et al. attack from 230 to 291. The structure changes make the original
cipher more intricate for the adversary such that he has to repeat the attack of
Billet et al. for all possible combinations of dual ciphers. Although raising the
attack complexity to 291 operations does not provide theoretical security for a
128-bit AES decryption key, it is useful from a practical perspective. In addition
to providing the white-box AES with a protection against practical attacks, our
design implementation is comparable in time and space requirements to that of
Chow et al.

The rest of this paper is organized as follows. Section 2 describes the white-
box AES implementation proposed by Chow et al. In Section 3 we review the
Billet et al. attack as well as the generic attack proposed by Michiels et al. In
Section 4 our improvements to the white-box implementation are detailed, and
in Section 5 we propose an enhanced implementation that is better resistant
against the attacks. Finally, we conclude in Section 6.

2 AES White-Box Implementation

For most cryptographic applications, a program is supplied with an AES decryp-
tion algorithm together with a decryption key. As the decryption key must be
kept secret and inaccessible to the user, the AES decryption algorithm (which
is different from the encryption algorithm) has, in some cases, to be white-box
implemented. This is for example the case when the application is expected to
run on an open platform. In other cases, one may want the white-box implemen-
tation to be backward compatible with a legacy implementation (non white-box)
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used previously. For these reasons, we give in this paper a description of a white-
box implementation for the decryption case (but note that our technique can be
applied to the encryption case as well). The AES-128 will serve for illustration
purposes; but this can be adapted for AES-192 or AES-256.

The first step of the white-box AES implementation (WB-AES), is to convert
AES into a series of look-up tables and to hide the secret keys into these tables.
Compared with a standard AES implementation [10], the operations of the WB-
AES rounds are slightly modified without impacting the input or the output of
the round.

Algorithm 1. Regular Implementation of AES Decryption
S ← AddRoundKey(S,ExpandedKey[10])
S ← InvShiftRows(S)
S ← InvSubBytes(S)
S ← AddRoundKey(S,ExpandedKey[9])
for i = 9 downto 1 do

S ← InvMixColumns(S)
S ← InvShiftRows(S)
S ← InvSubBytes(S)
S ← AddRoundKey(S,ExpandedKey[i − 1])

end for

InvSubBytes (IS) and AddRoundKey are combined in a single step, and the
subkey (calculated using the AES key expansion) is integrated into InvSubBytes
by creating the byte input/output look-up tables T r of round r. InvShiftRows
is implemented by providing shifted input data to the generated tables. The first
round table is slightly different from the other rounds as there is an additional
AddRoundKey. The T -boxes T r are defined as follows:

T 1
i,j(x) := IS(x⊕K0

i,j)⊕K1
i,j , i ∈ [0..3], j ∈ [0..3]

T r
i,j(x) := IS(x) ⊕Kr

i,j , r ∈ [2..10], i ∈ [0..3], j ∈ [0..3].

Kr
i,j represents the subkey byte number 4 · i + j of the round r and K10

i,j is the
decryption key1 K. In total we have 10× 16 = 160 T -boxes.

InvMixColumns operates on the AES state one column at a time. This can be
implemented by multiplying a 32×32 matrix IMC and a vector in GF (2). Mul-
tiplication of a 32-bit vector by the IMC matrix is performed by four separate
multiplications and three 32-bit XORs. To avoid large tables, the matrix IMC
is divided into four 32× 8 matrices (IMC0,. . . ,IMC3) and the multiplication is
performed separately with each matrix.

1 To avoid confusion, we change the subkey numbering to make it correspond to round
numbering in the decryption process. ExpandedKey[10],. . ., ExpandedKey[0] are re-
named to K0, . . . , K10.
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The rounds’ boundaries are also modified. Let a round begin with the T -boxes
computations followed by InvMixColumns and finally InvShiftRows. Under this
condition, the last round does not contain any InvMixColumns operation.

in

in

out out out out out out out out

Linear mapping
128 x 8

� � �

Type I

in

in 8 x 8
Tr

i,j

out out out out out out out out

MB x IMCi
32 x 8

Pr
i,j

Type II

in

in

out out out out out out out out

Qr
i,.×MB−1

32 x 8

Type III

in

in

out
⊕

Type IV

Fig. 1. Mixing Bijection Tables

The next step is to compose each table with random bijections. A mixing
bijection P r

i,j (8× 8 matrix in GF (2)) is inserted before the T -boxes T r
i,j and an

affine bijection MB (32× 32 matrix in GF (2)) is inserted after InvMixColumns
step (type II table). MB is a non-singular matrix with 4 × 4 sub-matrices of
full rank. The mixing bijections of the next round P r+1

i,j and the affine bijection
of the current round MB are inverted (resp. Qr

i,j and MB−1) and combined in
an additional set of look-up tables (type III). In order to avoid large look-up
tables, the mapping MB−1 is split into four blocks, just like InvMixColumns
matrix. The XORs are computed by type IV tables. Finally, the external input
and output encodings are implemented. It consists in selecting two 128 × 128
mixing bijection matrices F and G, defined over GF (2), whose all aligned 4× 4
sub-matrices are of full rank. Multiply F by the inverted input mixing bijections
of the first round (i.e. Q0

i,j , i ∈ [0..3], j ∈ [0..3]), then insert the resulting bijection
F ′ prior to the first round. G is inserted after the last AddRoundKey step. The
external encodings are implemented in type I tables.

3 Known Attacks

3.1 Billet et al. Attack

In the following, we list the different steps of the attack and their complexity. We
refer the reader to [4] for more details. Instead of locally inspecting the tables,
Billet et al. looks at the input and the output of the composition of the tables for
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a round. A round consists of type II tables, type III tables and supporting type IV
tables, i.e. four 4-byte input and 4-byte output mappings. P r

i,j (resp. Qr
i,j) is the

composition of two concatenated 4-bits to 4-bits input (resp. output) encodings
and one 8-bits to 8-bits mixing bijection. P r

i,j and Qr
i,j cancel each other between

two consecutive rounds (i.e. Qr
i,j = Inv(P r+1

i,j ), r ∈ [0..9]).
It was shown that by analyzing a round input/output the non-linear 4-byte

mapping P r
i,j and Qr

i,j can be reduced to one where they are affine. Removing
non-linear part requires 224 computation steps for each mapping.

To recover the affine mapping Qr
0 = A0 ⊕ q0 where A0 is linear and q0 is a

constant, it was first shown in [4] that there exists a unique linear mapping L
and a constant c, such that for all x0 ∈ GF (28)

yi(x0, 0, 0, 0) = L(yj(x0, 0, 0, 0))⊕ c

where yi is a function of (x0, x1, x2, x3) defined as follows:

yi(x0, x1, x2, x3) = Qr
i (αi,0T

r
0 (P r

0 (x0))⊕αi,1T
r
1 (P r

1 (x1))⊕
αi,2T

r
2 (P r

2 (x2))⊕ αi,3T
r
3 (P r

3 (x3)))
(1)

(αi,j are the coefficients of InvMixColumns) and that (L, c) can be determined
with a complexity lower than 216 by solving an over-defined linear system of
equations, involving 2048 equations and 72 unknowns.

Second, by determining the characteristic polynomial of L and knowing the
coefficients of InvSubBytes operation, it is possible to determine A0 with a
time complexity of about 224. From the knowledge of αi,j values, constant q0 is
recovered at the same time by setting the four variables in Equation (1) to a zero
value. Billet et al. show that from the knowledge of the linear part of Qr

0, the
linear parts of Qr

1, Qr
2 and Qr

3 can be computed with a time complexity of 216

for each part. All Qr
i of a round can be recovered similarly. As Qr

i = Inv(P r+1
i ),

P r+1
i is recovered at the same time. Once the mappings are recovered, the bytes

of a subkey round (embedded in the T -boxes) can be retrieved. The bytes are
however in a shuffled order. Nevertheless, computing the Qr

i for two consecutive
rounds makes it possible to get another shuffled subkey. Constraints in the AES
key schedule algorithm enable retrieving both subkeys in the correct order as
well as all other round subkeys.

Finally, the complexity for recovering the affine part of the Qr
i is 216 + 224 +

3 · 216 ≈ 224. The non-affine part of the Qr
i can be recovered with the same time

complexity of 224. Hence, P r
i and Qr

i can be determined in 225 steps. The attack
is performed for two consecutive rounds. The total complexity of the attack is
bounded by 2 · 4 · 4 · 225 = 230.

3.2 Michiels et al. Attack

Michiels et al. presented in [14] another type of attack against white-box ci-
phers. They interestingly remarked that the diffusion operator of a block cipher
makes the white-box implementation relatively vulnerable to attacks. The dif-
fusion operator in the case of AES decryption algorithm is represented by the
InvMixColumns operation. The attack they propose is composed of three steps.
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– The first consists in removing the non-linear part of the mixing bijection
encodings. This step is partially based on the Billet et al. method.

– The second consists in guessing the linear part of the encodings. This step uses
a method for solving linear equivalence problem for matrices (LEPM) [5,12].

– The third is the extraction of the secret key information by algebraic analysis.

In the second step cryptanalysis, a round function is described as a Substitu-
tion Affine-Transformation (SAT) cipher round function. A round function in
a SAT cipher is a cascade of T -boxes T r

i , followed by an affine transformation
br. These components T r

i and br can be computed by an adversary provided
that InvMixColomns operation is known. The last step performs the round key
extraction. This is achieved by obtaining the equivalence between the computed
T r

i and the inverse S-boxes ISr
i of the AES decryption algorithm. The algebraic

equations that need to be solved are:

T r
i = cr

i ◦ ISi ◦ dr
i ,

where cr
i , dr

i are the affine functions that describe the affine relation between T r
i

and ISr
i . Function cr

i depends on br and dr
i contains the key addition operation.

Solving these equations leads to the secret decryption key.

From these two attacks, we learn that the input and output mixing bijec-
tion encodings do not sufficiently hide the rounds’ operations. This is espe-
cially the case if the parameters of the round operations are publicly known.
Indeed, both attacks are based on the fact that coefficients of InvSubBytes and
InvMixColumns are known. Also, they both have a similar complexity when ap-
plied against a white-box AES implementation. Consequently, raising the com-
plexity in the context of Billet et al. attack makes the system to be more difficult
to break with Michiels et al. attack too.

4 Our White-Box Implementation

4.1 General Idea

AES is based on simple algebraic operations over the finite field GF (28). If we
change all the constants in AES, including the irreducible polynomial, matrix
coefficients, affine transformations, we could create new dual ciphers. It is men-
tioned in [2] that 240 new dual ciphers of AES can be so created. The list of
these 240 dual ciphers can be found in [1]. There are even more AES dual ci-
phers according to [15,5]. In [5], authors expand the set of 240 ciphers to a set
of 61, 200 representations that are dual to the AES.

Outputs of AES and dual AES are correlated. There exists a linear transfor-
mation Δ that maps a byte state of AES into a byte state of a dual AES, i.e.
Xdual = Δ(X). The same transformation maps also the AES input or output
like the plaintext P , the ciphertext C and the decryption key K into the dual
AES input or output (i.e. Pdual = Δ(P ), Cdual = Δ(C) and Kdual = Δ(K)).
Other transformations can be built to map a state of any dual AES into a state
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of another different dual AES. An algorithm described in [5] permits to compute
an affine equivalence for two S-boxes S1 and S2.

We present here a method that uses multiple different dual AES within the
same WB-AES implementation.

– We choose a random dual representation for every AES round (10 in total).
– InvSubBytes constants and InvMixColumns matrix of a given round are

replaced by the one of the corresponding dual AES.
– To construct the new T -boxes (T ′

i,j), a key is expanded through all dual AES
key expansions and for each round, we select the corresponding dual subkey.

With these modifications, each round takes a byte state of the corresponding
dual AES and outputs a byte state for the same dual AES. In order to keep, for
a given input, the output of the overall implementation unchanged, the round
input and output have to be encoded with the linear transformation Δ. The en-
coding Δ is used such that a byte state at the input matches the modifications
made in the round internal operations. Considering a round building block B as
a combination of four lookup operations using the new T -boxes and a multipli-
cation by the new matrix IMC′, the encoding will correspond to a composition
Δ ◦B ◦Δ−1.

As the white-box mixing bijections are built using the same principle, our
idea is to incorporate the Δ-encodings within these mixing bijections. There are
two possible strategies. The first uses a single encoding Δr ×Δ−1

r−1 to perform
at the same time the output Δ-decoding of the previous round and the input
Δ-encoding of the current round and to combine it with the mixing bijection
P r

i,j . The second uses one encoding Δr+1 × Δ−1
r to perform at the same time

the output Δ-decoding of the current round and the input Δ-encoding of the
next round and to combine it with the inverse mixing bijection Qr

i,j . The two
strategies are illustrated in Figure 2. Both strategies are similar from a security
perspective. Nevertheless, the first strategy requires changing only type I and II
tables, whereas the second requires modifications in type I, type II and also in
type III tables. Thus, we choose the first for the description.2

– We multiply the linear transformation of the first round (i.e. Δ1) by the
mixing bijections of the first round (i.e. P 1

i,j) resulting in mixing bijections
inserted in type II tables of the first round.

– The linear transformation of the previous round Δr−1 is inverted and left-
multiplied with the linear transformation of the current round (i.e. Δr ×
Δ−1

r−1). The result of the multiplication is combined with the mixing bijec-
tions P r

i,j for r in [2..10].
– The linear transformation Δ10 is inverted and combined with the external

decoding G after the last round.

2 Another strategy consists in combining Δr with the mixing bijection P r
i,j and Δ−1

r

with the inverse mixing bijection Qr
i,j but it brings nothing as the input before type

II tables and the output after type III tables do not change.
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Doing so, all rounds intermediate values will be different from those of classical
WB-AES. Value of InvSubBytes and InvMixColumns constants are not fixed but
vary from round to round depending on the dual parameters beeing used. For
a given input, these modifications do not change the output of our WB-AES,
when compared to Chow et al. implementation’s output.

4.2 Construction of the New Tables

Each dual AES (D-AES) representation is allocated an index from 1 to 61200.
Choose randomly 10 values σr ∈R {1, . . . , 61200} for r = 1, . . . , 10 without
repetition. This random value permits to select, for a round number r of AES,
associated D-AES in which operations are performed. Let Δσr : GF (28) →
GF (28) the linear transformation that maps a byte state of AES into a byte
state of D-AES number σr . Δσr can be represented as an invertible matrix Mr

of size 8 × 8 in GF (2) which maps a representation of a byte of the state array
of AES into a byte of the state array of D-AES(σr). The inverse mapping Δ−1

σr

is obtained by inverting the matrix Mr in GF (2).

The New T -Boxes. InvSubBytes operation can be represented in an algebraic
way:

IS : GF (28)→ GF (28), x �→ IS(x) = A · x + b

where A is a matrix transformation and b is a constant vector. The non-linear
transformation is replaced by ISσr (x) = (Mr ·A ·M−1

r ) · x + Mr · b.

A dual subkey byte is obtained by Kσr

i,j = Mr ·Ki,j from AES subkey byte.
The new look-up tables T σr of round r are built as follows:

T σ1
i,j (x) := ISσ1(x⊕K ′0

i,j)⊕Kσ1
i,j , (i, j) ∈ [0..3]2

T σr

i,j (x) := ISσr (x)⊕Kσr

i,j , r ∈ [2..10], (i, j) ∈ [0..3]2

where K ′0
i,j = Δσ1(K0

i,j), and Kσr

i,j = Δσr (Kr
i,j) for r ∈ [1..10]. The transfor-

mations ISσr are modified from original InvSubBytes according to the matrix
representing Δσr .

The New IMC Matrix. Any constant c in InvMixColumns is replaced by
Mr · c. This means that polynomial constants of InvMixColumns are replaced by
Mr · 0b, Mr · 0d, Mr · 0e and Mr · 09 leading to a new matrix IMC′ = IMCσr .
IMC′ is then combined with a 32×32 random matrix MB just like in the Chow
et al. implementation.

Encoding the Mixing Bijections. In our new design of WB-AES, only the
mixing bijections in type I and II tables are modified.

For type II tables, we multiply the dual transformation of the current round
Δσr with the inverse dual transformation of the previous round, i.e. Δσ(r)×Δ−1

σr−1

with r in [2..10]. Next, we multiply the the result of Δσr × Δ−1
σr−1

with the
input mixing bijections of the current round P r

i,j , which gives us the new mixing
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bijections P ′r
i,j = Δσr ×Δ−1

σr−1
× P r

i,j . For the first round, we multiply the first
dual transformation with P 1

i,j ; the mixing bijections are then P ′1
i,j = Δσ1 × P 1

i,j .
Regarding type I tables, two encodings F and G are put around the initial

white-box implementation. F and G are both randomly chosen as 128 × 128
matrices in GF (2) in which all aligned 4× 4 sub-matrices are of full rank. Prior
to be inserted, F is left-multiplied by Q0

i,j , i ∈ [0..3], j ∈ [0..3] (just like in the
original implementation) and G is multiplied by Δ−1

σ10
. This last operation is

new and has first the effect to undo the Δ-encoding of the last round. Finally,
the resulting 128 × 128 matrices F ′ and G′ are split into 128 × 8 tables and
inserted respectively before the first and the after last AddRoundKey operations.
These tables are followed by 4-bit to 4-bit non-linear input decodings and output
encodings implemented with type IV tables (we omit to describe these encodings
here).

Proposition 1 (correctness). Any T σr

i , r ∈ [1..10] as constructed above for
D-AES(σr), receives as input an AES vector state transformed by Δσr .

Proof. Let (x0, . . . , x31) be an input word for the round r, for which dual cipher
is D-AES(σr). Let (y0, . . . , y31)σr be the output after the table of type III, which
serves as input to type II table of the next round. We have then (y0, . . . , y31)σr =
Qr((z0, . . . , z31)σr ), where (z0, . . . , z31)σr is the output after the InvMixColumns
operation.

When the data is to be processed with type II tables of the round r + 1, the
mixing bijection P r+1 is first applied to the vector (y0, . . . , y31). We have then
as input for the round r + 1 the following

= Δσr+1 ◦Δ−1
σr
◦ P r+1((y0, . . . , y31)σr )

= Δσr+1 ◦Δ−1
σr
◦ P r+1(Qr((z0, . . . , z31)σr ))

= Δσr+1 ◦Δ−1
σr

((z0, . . . , z31)σr )

= Δσr+1((z0, . . . , z31))

= (z0, . . . , z31)σr+1 .
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This shows that the vector is in the correct dual state before being interpreted
by the T -box in the round r + 1 and holds for r in [1..9]. We can show similarly
that the vector being interpreted by the T -boxes of the first round is in the
correct dual state.

We ignored the input encodings and the output decodings implemented by
type IV tables because the input decodings before type II tables cancel the
output encodings after type III tables. ��

5 Security Analysis

5.1 Attacking Our Implementation

Billet et al. attack supposes that classical AES constants in InvSubBytes or
InvMixColumns coefficients are known. Knowing InvSubBytes parameters is
helpful for computing A0 whereas InvMixColumns coefficients, which are based
on the four numbers 0x0b,0x0d,0x0e,0x09, are helpful for determining (L, c) and
the constants qi. Furthermore, an attacker that is able to guess mappings Qr

i

for a round r gets only a shuffled round subkey. To recover the decryption key,
the attacker has to guess the mappings for two consecutive rounds. In our im-
plementation, the subkeys for two consecutive rounds are not related anymore
and were derived from algorithms that use different algebraic structures. Indeed,
InvSubBytes constants and InvMixColumns coefficients as well as constants in
the key schedule algorithm differ for any two rounds depending on the dual
cipher used amongst the 61200 possible ones.

An attacker who observes the inputs of all tables in this implementation would
have access to the encoded version yi = Δσr (xi) of each byte state value xi,
i = 0, . . . , 15. Here Δσr is a secret linear mapping used as input encoding for
the T -boxes T σr

i,j . To reconstruct the byte in the standard AES state, all the
combinations have to be checked by calculating zk

i = Δ−1
k (yi), i = 0, . . . , 15 and

k = 1, . . . , 61200. Then the attacker repeats the attack of Billet et al. twice for
all 61200 possible vector states (zk

0 , . . . , zk
15). This raises the attack complexity to

at least 216 more computation steps, which makes the complexity of the attack
to be 246.

In the context of a Michiels et al. attack, our implementation makes the
diffusion operator to be a variable and thus prevents its vulnerability. Indeed
the diffusion operator depends on the varying dual ciphers, which make steps 2
and 3 of the attack more difficult, i.e. it is more difficult to find out what are the
cascaded T r

i and br as well as the affine relation between T r
i and ISr

i by using
a linear equivalence solver for matrices. This way the attacker needs to discover
more information to realize a successful attack.

5.2 Improving the Resistance

We give in the following a generalization of our construction that provides a
better resistance against the attacks. We have shown in Section 4 how to imple-
ment 10 different dual ciphers in the same white-box implementation. Indeed, we
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changed the dual cipher at the round level (to ease the description). It is possible
to use even more dual ciphers. Since each 4 bytes output of a round depends
only on 4 bytes of input to that round, a different dual AES cipher may be used
for each of the four mappings in a round, which means that up to 4 · 10 = 40
different dual ciphers can be used in a given white-box AES implementation. If
we let yi is the i-th output byte of type III tables of the round r then we have:

y0, y4, y8, y12 depend on x0, x1, x2, x3 ;
y1, y5, y9, y13 depend on x4, x5, x6, x7 ;
y2, y6, y10, y14 depend on x8, x9, x10, x11 ;
y3, y7, y11, y15 depend on x12, x13, x14, x15 .

Without loss of generality, let Δ
(r)
σ0 , . . . , Δ

(r)
σ3 be the four different transformation

matrix associated to the dual ciphers used in round r. Let the bytes (x0, . . . , x3)σ0 =
Δσ0 ·(x0, . . . , x3)t. Using Δ

(r)
σ1 , Δ

(r)
σ2 and Δ

(r)
σ3 we get (x4, . . . , x7)σ1 , (x8, . . . , x11)σ2

and (x12, . . . , x15)σ3 . The resulting bytes are taken as input of type II tables for
which the T -boxes were built as follows:

T 1
i,j(x4·i+j) := ISσi

i (x4·i+j ⊕K ′0
i,j)⊕Kσi

i,j , (i, j) ∈ [0..3]2

T r
i,j(x4·i+j) := ISσi

i (x4·i+j)⊕Kσi

i,j, r ∈ [2..10], (i, j) ∈ [0..3]2,

where K ′0
i,j = Δ

(1)
σi (K0

i,j) and ISσi

i for i ∈ [0..3] are modified from original

InvSubBytes according to the matrix representing Δ
(r)
σi for the round r. Now, as

data are shifted (to implement InvShiftRows) as input to type III tables, care
should be taken as to which product Δ×Δ−1 is to be combined with which of
type II tables of the next round to have the correct input state. As illustrated in
Figure 4, we then encode the mixing bijections of type II tables of round r + 1
as follows:

z
(1)
4·i+j =Δ(1)

σi
× P 1

i,j(y4·i+j), (i, j) ∈ [0..3]2

z
(r+1)
4·i+j =Δ(r+1)

σi
× (Δ(r)

σj
)−1 × P r+1

i,j (y4·i+j), r ∈ [1..9], (i, j) ∈ [0..3]2 .

It can be noted that product Δ
(r+1)
σi × (Δ(r)

σj )−1 changes for each of the 16 tables
in a round r + 1, for r in [1..9]. Similarly, we modify the mixing bijections in
type I.b table as:

z4·i+j = G× (Δ(10)
σj

)−1(y4·i+j), i ∈ [0..3], j ∈ [0..3] .

In the case of Billet et al. attack, an attacker would need to put each 4 bytes
output in the standard AES state. To do so, he has to check 612004 ≈ 263

combinations. The complexity for recovering mixing bijections for a round would
be then 4 · 225 · 263 = 290. For two rounds, the complexity is bounded by 291

computation steps.
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Fig. 4. 4-byte Encoding Method

6 Conclusion

This paper proposed a new white-box implementation for AES. The implementa-
tion shares many features with that of Chow et al. when considering the hiding of
the key using random bijections. However, and contrary to Chow et al. our con-
struction makes InvSubBytes and InvMixColumns operations variable by using
further sets of coefficients. These coefficients are taken from dual representations
of AES.

We illustrated two different ways for modifying the mixing bijections; the
one which involves the minimal changes to the Chow et al. implementation was
fully detailed. The modifications apply to type I and II tables. The way these
tables are constructed better protects the white-box implementations against
known attacks. Remarkably, the proposed implementation does not impact the
code size. Further, the overall performance is unchanged compared to previously
proposed implementations. Yet it raises the expected security level from 230 to
291, offering a good security margin for practical applications.
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Abstract. In cryptography, secure channels enable the confidential and
authenticated message exchange between authorized users. A generic ap-
proach of constructing such channels is by combining an encryption prim-
itive with an authentication primitive (MAC). In this work, we introduce
the design of a new cryptographic primitive to be used in the construc-
tion of secure channels. Instead of using general purpose MACs, we pro-
pose the employment of special purpose MACs, named “E-MACs”. The
main motive behind this work is the observation that, since the message
must be both encrypted and authenticated, there can be a redundancy
in the computations performed by the two primitives. If this turned out
to be the case, removing such redundancy will improve the efficiency
of the overall construction. In addition, computations performed by the
encryption algorithm can be further utilized to improve the security of
the authentication algorithm. In this work, we show how E-MACs can
be designed to reduce the amount of computations required by standard
MACs based on universal hash functions, and show how E-MACs can be
secured against key-recovery attacks.

Key words: Confidentiality, authenticity, message authentication code
(MAC), authenticated encryption, encrypt-and-authenticate, universal
hash families

1 Introduction

There are two main approaches for the construction of secure cryptographic
channels: a dedicated approach and a generic approach. In the dedicated ap-
proach, a cryptographic primitive is designed to achieve authenticated encryp-
tion as a standalone system (see, e.g., [6, 18, 23, 32, 35, 45]). In the generic
approach, an authentication primitive is combined with an encryption primitive
to provide message integrity and confidentiality (see, e.g., [14, 21, 51]).

Generic compositions can be constructed in three different ways: encrypt-and-
authenticate (E&A), encrypt-then-authenticate (EtA), and authenticate-then-
encrypt (AtE). In the E&A composition, the plaintext is passed to the encryp-
tion algorithm to get the corresponding ciphertext, the plaintext is passed to the
MAC algorithm to get the corresponding tag, and the resulting ciphertext-tag
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pair (E(M), MAC(M)) is transmitted to the intended receiver. In the EtA com-
position, the plaintext is passed to the encryption algorithm to get a ciphertext,
the resulting ciphertext is passed to the MAC algorithm to get a tag, and the
resulting (E(M), MAC(E(M))) is transmitted to the intended receiver. In the
AtE composition, the plaintext is passed to the MAC algorithm to get a tag,
the resulting tag is appended to the plaintext message and the result is passed
to the encryption algorithm, and the resulting (E(M, MAC(M))) is transmitted
to the intended receiver. The transport layer of SSH uses a variant of E&A [51],
IPsec uses a variant of EtA [14], while SSL uses a variant of AtE [21].

Over dedicated primitives, generic compositions possess several design and
analysis advantages due to their modularity and the fact that encryption and
authentication schemes can be designed, analyzed, and replaced independently
from each other [38]. Further, and most important, generic compositions can
allow for faster implementations of authenticated encryption when fast encryp-
tion algorithms, such as stream ciphers, are combined with fast MACs, such as
universal hash functions based MACs [38].

The E&A composition has a parallelizable advantage over the EtA and the
AtE constructions. The fact that the encryption and authentication operations
can be performed simultaneously can further increase the efficiency of the generic
composition. On the other hand, the E&A composition imposes an extra require-
ment on the MAC algorithm. As opposed to the EtA and AtE compositions,
the tag in the E&A composition is a function of the plaintext message (not
the ciphertext as in EtA) and is sent in the clear (not encrypted as in AtE).
Therefore, the tag must be at least as confidential as the ciphertext since, other-
wise, the secrecy of the plaintext can be compromised by an adversary observing
its corresponding tag. This implies that generic compositions are more involved
than just combining an encryption algorithm and a MAC algorithm. Indeed,
in [38] and [5], the security of different generic compositions of authenticated
encryption systems is analyzed. Using a secure encryption algorithm (secure in
the sense that it provides privacy against chosen-plaintext attacks) and a secure
MAC (secure in the sense that it provides unforgeability against chosen-message
attacks), it was shown that only the EtA will guarantee the construction of se-
cure channels. Therefore, special attention must be paid to the design of secure
channels if the E&A or the AtE compositions are used.

Although significant efforts have been devoted to the design of dedicated au-
thenticated encryption primitives, and the analysis of the generic compositions,
no effort has been made to design new primitives that utilize the special char-
acteristics of the generic compositions. In this paper, we provide the first such
work. Specifically, we introduce the design of special purpose MACs to be used
in the construction of E&A compositions. The driving motive behind this work
was the intuition that MACs used in the generic composition of authenticated
encryption systems, unlike standard MACs, can utilize the fact that messages
to be authenticated must also be encrypted. That is, since both the encryption
and authentication algorithms are applied to the same message, there might be a
redundancy in the computations performed by the two primitives. If this turned
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out to be the case, removing such redundancy can improve the efficiency of the
overall composition.

One class of MACs that is of a particular interest, due its fast implementa-
tion, is the class of MACs based on universal hash-function families. In universal
hash-function families based MACs, the message to be authenticated is first com-
pressed using a universal hash function in the Wegman-Carter style [13, 49] and,
then, the compressed image is processed with a cryptographic function. Indeed,
processing messages using universal hash functions is faster than processing them
block by block using block ciphers. Combined with the fact that processing short
strings is faster than processing longer ones, it becomes evident why universal
hash functions based MACs are the fastest for message authentication [48].

Recently, however, Handschuh and Preneel [27] discovered a vulnerability in
universal hashing based MACs. They demonstrated that once a collision in the
hashing phase occurs, secret key information can be exposed, allowing subse-
quent forgeries to succeed with high probabilities. Their attack is not directed
to a specific universal hash family and can be applied to all such MACs. The
recommendations of the work in [27] are not to reuse the universal hash func-
tion key, thus going back to the impractical use of universal hash families for
unconditionally secure authentication, or proceeding with the less efficient, yet
more secure, block cipher based MACs.

Contributions. In this paper, we propose the deployment of a new crypto-
graphic primitive for the construction of secure channels using the E&A com-
position. We introduce the design of E-MACs, Message Authentication Codes
for Encrypted messages. By proposing the first instance of E-MACs, we show
how the structure of the E&A system can be utilized to increase the efficiency
and security of the authentication process. In particular, we show how a univer-
sal hash function based E-MAC can be computed with fewer operations than
what standard universal hash functions based MACs require. That is, we will
demonstrate that universal hash functions based E-MACs can be implemented
without the need to apply any cryptographic operation to the compressed image.
Moreover, we will also show how E-MACs can further utilize the special struc-
ture of the E&A system to improve the security of the authentication process.
More specifically, we will show how universal hash functions based E-MACs can
be secured against the key-recovery attack, to which standard universal hash
functions based MACs are vulnerable. Finally, we will show that the extra confi-
dentiality requirement on E-MACs can be achieved rather easily, again, by taking
advantage of the E&A structure.

2 Related Work

Many standard MACs that can be used in the construction of authenticated
encryption schemes have appeared in the literature. Standard MACs can be block
ciphers based, cryptographic hash functions based, or universal hash functions
based. CBC-MAC is one of the most known block cipher based MACs specified in
FIPS publication 113 [19] and the International Organization for Standardization
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ISO/IEC 9797-1 [29]. CMAC, a modified version of CBC-MAC, is presented in
the NIST special publication 800-38B [15], which was based on OMAC of Iwata
and Kurosawa[31]. Other block cipher based MACs include, but are not limited
to, XOR-MAC [2] and PMAC [46]. The security of different MACs has been
exhaustively studied (see, e.g., [3, 43]).

HMAC is a popular example of the use of iterated cryptographic hash functions
to design MACs [1], which was adopted as a standard [20]. Another cryptographic
hash function based MAC is the MDx-MAC of Preneel and Oorschot [42]. HMAC
and two variants of MDx-MAC are specified in the International Organization
for Standardization ISO/IEC 9797-2 [30]. Bosselaers et al. described how crypto-
graphic hash functions can be carefully coded to take advantage of the structure
of the Pentium processor to speed up the authentication process [11].

The use of universal hash families was pioneered by Wegman and Carter
[13, 49] in the context of designing unconditionally secure authentication. The
use of universal hash functions for the design of computationally secure MACs
appeared in [7, 8, 9, 17, 26, 33, 40]. The basic concept behind the design of
computationally secure universal hash functions based MACs is to compress the
message using universal hash functions and then process the compressed output
using a cryptographic function. The key idea is that processing messages using
universal hash functions is faster than processing them block by block using
block ciphers. Then, since the hashed image is typically much shorter than the
message itself, processing the hashed image with a cryptographic function is
faster then processing the entire message.

Since in many practical applications both message confidentiality and authen-
ticity are sought, the design of authenticated encryption schemes has attracted a
lot of attention historically. Variety of earlier schemes based on adding some re-
dundancy to messages before cipher block chaining (CBC) encryption were found
vulnerable to attacks [5]. Establishing secure channels by means of generic con-
structions of authenticated encryption schemes was of particular interest. The
security relations among different notions of security in authenticated encryp-
tion schemes was studied in detail in [5]. In [12], it was shown that EtA schemes
build secure channels and, in [38], the security of the three generic construction
methods is analyzed.

In a different direction, block ciphers that combine encryption and message
authentication have been proposed in the literature. Proposals that use simple
checksum or manipulation detection code (MDC) have appeared in [22, 34, 41].
Such simple schemes, however, are known to be vulnerable to attacks [32]. Other
dedicated schemes that combine encryption and message authenticity include
[6, 18, 23, 32, 35, 45]. In [32], Jutla proposed the integrity aware parallelizable
mode (IAPM), an encryption scheme with authentication. Gligor and Donescu
proposed the XECB-MAC [23]. Rogaway et al. [45] proposed OCB: a block-
cipher mode of operation for efficient authenticated encryption. Kohno et al.
[35] proposed a high-performance conventional authenticated encryption mode
(CWC), which the NIST standard Galois/Counter Mode (GCM) was based
on [16].
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3 Preliminaries

A message authentication scheme consists of a signing algorithm S and a verify-
ing algorithm V . The signing algorithm might be probabilistic, while the verifying
one is usually not. Associated with the scheme are parameters � and N describing
the length of the shared key and the resulting authentication tag, respectively.
On input an �-bit key K and a message M , algorithm S outputs an N -bit string
τ called the authentication tag, or the MAC of M . On input an �-bit key K,
a message M , and an N -bit tag τ , algorithm V outputs a bit, with 1 standing
for accept and 0 for reject. We ask for a basic validity condition, namely that
authentic tags are accepted with probability one. That is, if τ = S(K, M), it
must be the case that V(K, M, τ) = 1 for any K, M , and τ .

In general, an adversary in a message authentication scheme is a probabilistic
algorithm A, which is given oracle access to the signing and verifying algorithms
S(K, ·) and V(K, ·, ·) for a random but hidden choice of K. A can query S to
generate a tag for a plaintext of its choice and ask the verifier V to verify that τ
is a valid tag for the plaintext. Formally, A’s attack on the scheme is described
by the following experiment:

1. A random string of length � is selected as the shared secret.
2. Suppose Amakes a signing query on a message M . Then the oracle computes

an authentication tag τ = S(K, M) and returns it to A. (Since S may be
probabilistic, this step requires making the necessary underlying choice of a
random string for S, anew for each signing query.)

3. Suppose A makes a verify query (M, τ). The oracle returns the decision
d = V(K, M, τ) to A.

The adversary’s attack is a (qs, qv)-attack if during the course of the attack A
makes no more than qs signing queries and no more than qv verify queries. The
outcome of running the experiment in the presence of an adversary is used to
define security. As in [5], we say that the MAC algorithm is weakly unforgeable
against chosen-message attacks (WUF-CMA) if A cannot make a verify query
(M, τ) which is accepted for an M that has not been queried to the signing
oracle S. We say that the MAC algorithm is strongly unforgeable against chosen-
message attacks (SUF-CMA) if A cannot make a verify query (M, τ) which is
accepted regardless of whether or not M is new, as long as the tag has not been
attached to the message by the signing oracle.

As in fast MACs, the proposed E-MAC is based on universal hash-function
families. A family of hash functions H is specified by a finite set of keys K. Each
key k ∈ K defines a member of the family Hk ∈ H. As opposed to thinking
of H as a set of functions from A to B, it can be viewed as a single function
H : K × A → B, whose first argument is usually written as a subscript. A
random element h ∈ H is determined by selecting a k ∈ K uniformly at random
and setting h = Hk.

There has been a number of different definitions of universal hash families
(see, e.g., [13, 26, 36, 37, 44, 47, 49]). We give below a formal definition of one
class of universal hash families called ε-almost universal [9].



Towards More Secure and More Efficient Constructions of Secure Channels 297

Definition 1. Let H = {h : A→ B} be a family of hash functions and let ε ≥ 0
be a real number. H is said to be ε-almost universal, denoted ε-AU, if for all
distinct M, M ′ ∈ A, we have that Prh←H[h(M) = h(M ′)] ≤ ε. H is said to be
ε-almost universal on equal-length strings if for all distinct, equal-length strings
M, M ′ ∈ A, we have that Prh←H[h(M) = h(M ′)] ≤ ε.

4 The Proposed E-MAC

4.1 Overview

Semantic security (or equivalently indistinguishability under chosen plaintext
attacks (IND-CPA) [24]) is the only assumption we make on the underlying
encryption algorithm. In fact, secure deterministic encryption algorithms suffices
for our construction. However, since semantic security is a basic requirement in
most applications, we will assume the use of a semantically secure encryption.

As in fast MACs in the literature, the proposed E-MAC utilizes universal hash-
function families in the Wegman-Carter style [13, 49]. However, as opposed to
universal hash functions based MACs, we will show that E-MACs can be secure
without any post computation on the compressed image. (Recall that universal
hash functions based MACs have two rounds of computations: 1. message com-
pression using universal hash functions and, 2. output transformation, which in
most practical applications a pseudorandom function applied to the compressed
image [9, 27].) That is, as will be shown in the remaining of this section, the
structure of the authenticated encryption system can be utilized to eliminate the
need to employ pseudorandom function families. Thus, improving the speed of
the MAC and reducing the required amount of shared key information (the key
needed to identify the pseudorandom function).

Before we proceed with the detailed description of the proposed E-MAC, we
emphasize that the proposed universal hash family used for the implementation
of the proposed E-MAC is not the only possible solution. In fact, any ε-almost-Δ-
universal (ε-AΔU) hash family, such as the MMH family of Halevi and Krawczyk
[26] and the NH family of Black et al. [9], will satisfy the security requirements
detailed in Section 5. (The ε-AΔU is a stronger notion than ε-AU given in
Definition 1; interested readers may refer to [26] for a formal definition of ε-
AΔU hash families.)

Furthermore, different assumptions about the underlying encryption algo-
rithm may lead to different constructions of E-MACs. That is, whether the en-
cryption is a stream cipher, cipher block chaining (CBC) mode block cipher,
electronic code book (ECB) mode block cipher, etc., can have an impact on the
design and performance of the composition. We only show here how the seman-
tic security of the underlying encryption algorithm can be utilized to improve
the efficiency and security of message authentication. Further improvements in
E-MACs performance using specific modes of operations is left for a continuing
research in this direction.
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4.2 Description

Instantiation. Fix an encryption primitive E that is semantically secure. Based
on a security parameter N , legitimate users agree on an N -bit long prime integer
p. Let K = (k1, k2, . . . , kB), for ki’s drawn uniformly and independently from
Z
∗
p, be the shared secret key that will be used for message authentication. As in

typical universal hash functions, depending on the values of N and B, the key
can be long. One way to generate such a key is via a pseudorandom generator,
e.g., [10, 28]. In such a case, only the seed of the pseudorandom generator is
required to be distributed to the legitimate parties. As in symmetric-key cryp-
tographic systems, the shared secret is distributed to the legitimate users via a
secure channel. With the knowledge of the shared secret, legitimate users can
exchange subsequent messages, over insecure channels, in an authenticated and
confidential way. (Observe that the encryption key KE in our setup is indepen-
dent of the authentication key K.) Only the shared keys are assumed to be
secret; all other parameters such as N , B, and p are publicly known.

Authentication. Without loss of generality, we assume the message can be
divided into B-1 blocks of length N -bits, that is M = m1||m2|| . . . ||mB−1. (We
overload mi to denote both the binary string in the ith block and the integer
representation of the ith block as an element of Zp; the distinction between the
two representations will be omitted when it is clear from the context.) For ev-
ery message M to be encrypted and authenticated, the sender draws an integer
r uniformly at random from Zp anew for each message (this r represents the
coin tosses of S). We emphasize that r must be independent of all r’s gener-
ated to authenticate other messages. The sender encrypts M ||r and transmits
the resulting ciphertext c = E(M ||r) to the receiver (the symbol “||” denotes
the concatenation operation), along with the the N -bit long tag of message M
computed as:

τ =
B−1∑
i=1

kimi + kBr mod p, (1)

where mi denotes the ith block of message M .

Remark 1. A misconception about universal hash-function families is that the
authentication key needs to be as long as the longest message to be authenti-
cated. Obviously, if this was true, universal hashing will be impractical for most
applications. In the literature, there exist standard techniques to hash arbitrary-
length messages using a fixed-length key. The first such technique was proposed
by Wegman and Carter in [50], and later refined by Halevi and Krawczyk in [26].
The work of Black et al. [9] provides a different generic algorithm to transform
any hash function that is ε-AU on equal-length messages, h, to a hash function
that is ε-AU on arbitrary-length messages, h∗. However, for a lack of space and
for a better continuity of the main ideas of the paper, we omit going into the
details of such techniques. (Interested readers may refer to [9, 26, 50] for more
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information.) Therefore, we emphasize that the key K = (k1, k2, . . . , kB) can be
used to authenticate arbitrary-length messages.

Remark 2. Clearly, as will be formally proven in Section 5, the bound on the
probability of successful forgery is dependent on the security parameter N .
Depending on application, one might require lower bounds on probability of
successful forgery. A straightforward way is to increase the security parame-
ter to give lower probability of successful forgery. Another method is to hash
the same message multiple times with independent keys. This, however, will re-
quire a much longer key. A well-studied and more efficient method is to use the
Toeplitz-extension on the hash function [36, 39]. (See, e.g., [9] for a detailed use
of Toeplitz-extension to increase the security of MACs based on universal hash
functions.) Again, we omit describing this topic since it is out of the scope of
this work and refer interested readers to [9, 26, 36, 39] for more details.

Verification. Upon receiving a ciphertext-tag pair, (c, τ), the receiver calls the
corresponding decryption algorithm D to extract the plaintext M ||r. To verify
the integrity of M ||r, the receiver computes

∑B−1
i=1 kimi +kBr and authenticates

the message only if the computed value is congruent to the received τ modulo
p. Formally, the following integrity check must be satisfied for the message to be
authenticated:

τ
?≡

B−1∑
i=1

kimi + kBr mod p. (2)

Remark 3. We emphasize that the random nonce, r, requires no key manage-
ment. It is generated by the sender as the coin tosses of the signing algorithm
and delivered to the receiver via the ciphertext. In other words, it is not a shared
secret and it needs no synchronization.

5 Security Analysis

5.1 Security of the Proposed E-MAC

Assume that message M has been encrypted with any semantically secure en-
cryption scheme. For the rest of the paper, we will refer to M and τ as the
message and the tag generated at the transmitter’s end, respectively; while M ′

and τ ′ represent the message and the tag at the receiver’s end, respectively. For
ease of notation, we will refer to the plaintext message as the concatenation of
M and r. The following lemmas are the main ingredient for the security of the
proposed E-MAC.

Lemma 1. Let mi and ki be the ith message block and ith key, respectively.
For a modified message block m′

i �≡ mi mod p, the probability that kim
′
i ≡ kimi

mod p is zero.

Lemma 1 is a direct consequence of the fact that, for a prime integer p, Zp is a
field.
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Lemma 2. Let k1 and k2 be two secret keys in the proposed E-MAC. The prob-
ability to choose two nonzero integers δ1 and δ2 in Zp such that k1δ1 ≡ k2δ2

mod p is at most 1/(p− 1).

Proof. Fix a δ1 ∈ Z
∗
p. Since every nonzero element in Zp is invertible, the result-

ing (k1δ1 mod p) will be uniformly distributed over Z
∗
p. Similarly, the resulting

(k2δ2 mod p) is uniformly distributed over Z
∗
p. Since k1 and k2 are assumed to

be secret, the probability that k1δ1 ≡ k2δ2 mod p is 1/(p− 1), and the lemma
follows. ��
Lemma 3. Authentication tags are statistically independent of their correspond-
ing messages, and different authentication tags are mutually independent.

The proof of Lemma 3 is provided in Appendix A. Now we can proceed with
the proofs of the main claims of the proposed E-MAC. Recall that applying a
cryptographic function to the compressed image is an essential operation for
the security of standard universal hash functions based MACs. Without such
a cryptographic operation, the key of the universal hash function can be ex-
posed (by chosen message attacks, for instance). We now formally prove two
important claims about E-MACs. Namely, the semantic security of the used en-
cryption algorithm suffices to protect the key of the proposed E-MAC, and tags
do not reveal any information about the plaintext that is not revealed by the
corresponding ciphertext.

Theorem 1. An adversary able to extract any information about the proposed
E-MAC’s secret key, or extract any information about the plaintext from authen-
tication tags is able to break the semantic security of the underlying encryption
algorithm.

Proof. By Lemma 3, each tag is independent of its corresponding message and
the secret key. Therefore, by only observing a single tag, the adversary can-
not reveal any information about the authenticated message or the secret key.
Furthermore, also by Lemma 3, different authentication tags are mutually inde-
pendent. Therefore, the observation of multiple tags gives the adversary no extra
information than what a single tag gives individually. This holds as long as the
coin tosses, the r’s, remain secret. The transmitted r’s, however, are generated
internally and encrypted with the semantically secure algorithm E . Therefore, no
information about the proposed E-MAC’s key nor the authenticated messages
can be exposed, unless the adversary can extract secret information about the
r’s, which can be done only by breaking the semantic security of the encryption
algorithm. ��
Remark 4. In addition to its important statement regarding the secrecy of trans-
mitted messages, Theorem 1 presents an important statement regarding the se-
crecy of the nonce r. Clearly, if some r’s are revealed, partial key information
can be exposed. Other than attacking the system in a non-cryptographic way,
Theorem 1 states that the only way to expose secrete information about the r’s
is by breaking the semantic security of the encryption algorithm. That is, from
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a cryptographic point of view, it is safe to assume that no information about the
r’s will be revealed.

This shows how E-MACs can take advantage of the E&A structure to improve
authentication efficiency and satisfy their secrecy requirement. All that is needed
is to generate a random string, append it to the encrypted plaintext message, and
use it to encrypt the authentication tag. Therefore, as claimed earlier, no post-
processing of the compressed image is required and the secrecy requirement of
E-MACs can be achieved, without expensive computational effort. This result is
not surprising. In fact, it supports the main motive behind this work, namely the
intuition that post-processing the compressed image by a cryptographic function
can be replaced by computations performed by the encryption algorithm (i.e.,
post-processing is redundant in such compositions).

We will now state the main theorem regarding the probability of successful
forgery against the proposed E-MAC.

Theorem 2. Let Σ denotes the proposed E-MAC and let A be an adversary
making a (qs, qv)-attack on Σ. Given the semantic security of the underlying
encryption scheme, A’s advantage of successful forgery is at most

AdvΣ
A =

⎧⎪⎪⎨⎪⎪⎩
qv

p
if qs = 0

qv

p− 1
if qs > 0.

(3)

Proof. From the proof of Lemma 3 (equation (16)), the tag is uniformly dis-
tributed over Zp. Hence, if the adversary makes no signing queries, the proba-
bility of forging a valid tag is 1/p.

Assume that the adversary has queried the signing oracle S(K, ·) for qs times
and recorded (M1, τ1), · · · , (Mqs , τqs). By Theorem 1, given the semantic security
of the encryption algorithm, no information about the E-MAC’s secret key is
revealed by the observed τi’s.

Now, consider calling the queryV(K, M ′, τ ′), where M ′ and τ ′ are any message-
tag pair of the adversary’s choice. We aim to bound the probability of successful
forgery for an M ′ that has not been queried to the signing oracle; that is, M ′ �= Mi

for any i = 1, · · · , qs. We break the proof into two cases: queried tag and unqueried
tag. For ease of notations, ri will be denoted as the Bth block of the ith message,
that is, ri = miB .

Queried tag (M ′, τ ′ = τq): Assume that τ ′ = τq for a q ∈ {1, · · · , qs}. This
case represents the event that a collision in the hashing operation occurs. Then,
V(k, M ′, τ ′) = 1 if and only if the following holds:

B∑
�=1

k� m′
�

?≡ τ ′ ≡ τq ≡
B∑

�=1

k� m� mod p, (4)
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where m′
� denotes the �th block of M ′ and m� denotes the �th block of Mq (note

that we write m� instead of mq
�

for ease of notations since no distinction between
different messages is necessary). We will analyze equation (4) by considering the
following three cases: M ′ and Mq differ by a single block, M ′ and Mq differ by
two blocks, or M ′ and Mq differ by more than two blocks.

1. Assume that only a single message block is different. Since addition is com-
mutative, assume without loss of generality that the first message block is
different; that is, m′

1 �≡ m1 mod p. Since only the first message block is
different, equation (4) is equivalent to

k1m
′
1 ≡ k1m1 mod p. (5)

Therefore, by Lemma 1, the probability of successful forgery given a single
block difference is zero.

2. Assume, without loss of generality, that the first two message blocks are
different; i.e., m′

1 ≡ m1 + δ1 �≡ m1 mod p and m′
2 ≡ m2 + δ2 �≡ m2 mod p.

Then, equation (4) is equivalent to

k1δ1 + k2δ2 ≡ 0 mod p. (6)

Therefore, by Lemma 2, the probability of successful forgery given that ex-
actly two message blocks are different is at most 1/(p− 1).

3. Assume that more than two message blocks are different, i.e., m′
i ≡ mi+δi �≡

mi mod p; ∀ i ∈ I ⊆ {1, 2, · · · , B}; |I| ≥ 3. Then, equation (4) is equivalent
to

kiδi +
∑
j∈I
j �=i

kjδj ≡ 0 mod p, (7)

for some i ∈ I. Therefore, using Lemma 2 and the fact that
∑

j∈I,j �=i kjδj

can be congruent to zero modulo p, the probability of success is at most 1/p.
(The difference between this case and the case of exactly two blocks is that,
even if the δ’s are chosen to be nonzero integers,

∑
j∈I,j �=i kjδj can still be

congruent to zero modulo p.)

From the above three cases, the probability of successful forgery when the forged
tag has been outputted by the signing oracle is at most 1/(p− 1).

Unqueried tag (M ′, τ ′): Assume now that the tag τ ′ is different than all the
recorded tags; that is, τ ′ �= τq for all q = 1, · · · , qs. If τ ′ is independent of the
recorded tags, then the probability of successful forgery is 1/p (using the fact
that the tag is uniformly distributed over Zp). Assume, however, that τ ′ is a
function of τq, for a q ∈ {1, · · · , qs}. Let τ ′ ≡ τq +γ mod p for some γ ∈ Zp\{0}
of the adversary’s choice. (Note that, γ can be a function of any value recorded
by the adversary.) Then, V(K, M ′, τ ′) = 1 if and only if the following congruence
holds:

B∑
�=1

k� m′
�

?≡ τ ′ ≡ τq + γ ≡
B∑

�=1

k� m� + γ mod p, (8)
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where m′
� denotes the �th block of M ′ and m� denotes the �th block of Mq. Bellow

we analyze equation (8) by considering two cases: M ′ and Mq differ by a single
block, or M ′ and Mq differ by more than one block.

1. Without loss of generality, assume that M ′ and Mq differ in the first block
only. That is m′

1 ≡ m1 + δ �≡ m1 mod p and m′
i ≡ mi mod p for all

i = 2, · · · , B. Then, equation (8) is equivalent to

k1δ ≡ γ mod p. (9)

Therefore, by Lemma 2, the probability of success is at most 1/(p− 1).
2. Assume now that M ′ and Mq differ by more than one block. That is, m′

i ≡
mi + δi �= mi mod p; ∀i ∈ I ⊆ {1, 2, · · · , B}; |I| ≥ 2. Then, equation (8) is
equivalent to ∑

i∈I

kiδi ≡ γ mod p. (10)

By Lemma 2 and the fact that
∑

i∈I kiδi can be congruent to zero modulo
p, the probability of success is at most 1/p.

From the above two cases, the probability of successful forgery when the forged
tag has not been outputted by the signing oracle is at most 1/(p− 1).

Therefore, given that A has made at least one signing query, A’s probability
of successful forgery for each verify query is at most 1/(p− 1). ��
Remark 5. Observe that the case of queried tag implies that the used hash family
is ( 1

p−1 )-AU. Similarly, the case of unqueried tag implies that the used hash
family is ( 1

p−1 )-AΔU.
Observe further that the proposed E-MAC is strongly unforgeable under cho-

sen message attacks (SUF-CMA). Recall that SUF-CMA requires that it be
computationally infeasible for the adversary to find a new message-tag pair af-
ter chosen-message attacks even if the message is not new, as long as the tag
has not been attached to the message by a legitimate user [5]. To see this, let
(M, τ) be a valid message tag pair. Assume that the adversary is attempting to
authenticate the same message with a different tag τ ′. For the (M, τ ′) pair to
be authenticated,

∑
i kimi + kBr′ mod p must be equal to τ ′. That is, given τ ′,

r′ must be set to k−1
B (τ ′ −∑

i kimi) mod p for the tag to be authenticated. By
Theorem 1, however, the adversary cannot expose the E-MAC’s key. Therefore,
Theorem 2 holds whether or not the message is new, as long as the tag has not
been attached to the message by the signing oracle.

5.2 Security of the E&A Composition

In [5], Bellare and Namprempre defined two notions of integrity in authenticated
encryption schemes, integrity of plaintexts (INT-PTXT) and integrity of cipher-
texts (INT-CTXT). INT-PTXT implies that it is computationally infeasible for
an adversary to produce a ciphertext decrypting to a message which the sender
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had never encrypted, while INT-CTXT implies that it is computationally infea-
sible for an adversary to produce a ciphertext not previously produced by the
sender, regardless of whether or not the corresponding plaintext is new.

Although the work of [5] shows that the E&A composition is generally inse-
cure, the results do not apply to all variants of E&A constructions. For instance,
the E&A composition does not provide indistinguishability under chosen plain-
text attacks (IND-CPA) because there exist secure MACs that reveal information
about the plaintext ([5] provides a detailed example). Obviously, if such a MAC
is used in the construction of an E&A system, the resulting composition will not
provide IND-CPA. Unlike standard MACs, however, it is a basic requirement of
E-MACs to be as secret as the used encryption algorithm. Indeed, Theorem 1
guarantees that the proposed E-MAC does not reveal any information about the
plaintext that is not revealed by the ciphertext.

Another result of [5] is that the generic E&A does not provide INT-CTXT.
(Although the notion of INT-PTXT is the more natural security requirement
[5] while the interest of the stronger INT-CTXT notion is more in the security
implications shown in [5].) The reason why E&A compositions generally do not
provide INT-CTXT is that one can come up with a secure encryption algorithm
with the property that a ciphertext can be modified without changing its de-
cryption [5]. Obviously, when such an encryption algorithm is combined with
the proposed E-MAC to construct an E&A system, since the tag is computed
as a function of the plaintext, only INT-PTXT is reached.

In practice, however, it is possible to construct an E&A system that does
provide INT-CTXT. For instance, a sufficient condition for the proposed E-MAC
to provide INT-CTXT for the composed system is to be used with a secure one-
to-one encryption algorithm. To see this observe that any modification of the
ciphertext will correspond to modifying the plaintext (since the encryption is
one-to-one). Therefore, by Theorem 2, modified ciphertexts can only be accepted
with negligible probabilities. Indeed, secure E&A systems have been constructed
in practice. A popular example of such constructions is SSH [51], which uses a
variant of E&A the has been proven to be secure in [4].

So far, we have shown that E-MACs can be used to replace standard MACs in
the construction of E&A systems with two additional properties: they can have
provable confidentiality and they can be more efficient (observe that the tag of the
proposed E-MAC is the output of the universal hash function; no post-processing
was performed). What we will show next is that E-MACs can have another security
advantage. More specifically, we will show that E-MACs can utilize the structure
of the E&A system to achieve better resilience to a new attack on universal hash
functions based MACs; namely, the key-recovery attack [27].

6 E-MACs and Key Recovery

Recently, Handschuh and Preneel [27] showed that, compared to block cipher
based, MACs based on universal hash functions have a key-recovery vulnerability.
In principle, a small probability of successful forgery on authentication codes is
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always possible. However, the work in [27] demonstrates that, for universal hash
functions based MACs, once a successful forgery is achieved, subsequent forgeries
can succeed with high probabilities. The main idea in their attacks is to look
for a collision in the message compression phase. Once a message that causes a
collision is found, partial information about the hashing keys can be exposed.
Using this key information an attacker can forge valid tags for fake messages.
We give a detailed example below.

Example 1. Consider the universal hash family presented in this paper. Assume
an adversary calling the signing oracle on M = m1||m2, thus obtaining its
authentication tag τ . The adversary now can call the verification oracle with
M = m2||m1 and the same tag τ . Obviously, the verification will pass if and
only if k1 ≡ k2 mod p (in which case k1m1 + k2m2 ≡ k2m1 + k1m2 mod p).

Although the verification will pass with a small probability, the adversary
can continuously call the verification oracle with M = m2||αim1, for different
αi’s until the message is authenticated. Let M = m2||αm1 be the message that
passes the verification test, for some α ∈ Z

∗
p. Then, the relation

k1 ≡ βk2 mod p, (11)

where β = (αm1−m2)(m1−m2)−1 is exposed. With this knowledge, a man in the
middle can always replace the first two blocks, m1||m2, of any future message
M with β−1m2||βm1 without violating its tag. This is because k1(β−1m2) +
k2(βm1) = k2m2 + k1m1 regardless of values of m1 and m2.

Handschuh and Preneel [27] defined three classes of weak keys in universal hash
functions. Each class can be exploited in a way similar to the one discussed in
the above example to substantially increase the probability of successful forgery
after a single collision. This attack is shared by all universal hash based MACs
[27]. As per [27], the recommended mitigations to this attack are to use the less
efficient block cipher based MACs, or not to reuse the same hashing key for
multiple authentication.

Compared to standard MACs, however, E-MACs can utilize the structure
of the E&A system to overcome the key-recovery problem discovered in [27].
Consider the E-MAC proposed in Section 4, and recall that a random number
r ∈R Zp is generated internally in the E&A process. In the basic construction
of Section 4, the goal of r is to encrypt the authentication tag. However, the
random r can play a pivotal role in key-recovery security.

In the basic construction in Section 4, the universal hashing key is K =
k1||k2|| · · · ||kB and the authentication tag is computed as:

τ =
B−1∑
i=1

kimi + kBr mod p. (12)

Now, with the same shared key, consider another use of r. More specifically, let
the authentication tag be computed as follows:

τ =
B−1∑
i=1

(ki ⊕ r)mi + kBr mod p. (13)
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In other words, r can be used to randomize the key in every authentication call.
Assume the same attack described in Example 1 and let M = m2||αm1 passes

the verification test, for some α ∈ Z
∗
p. This time, however,

k′
1 ≡ βk′

2 mod p, (14)

where k′
1 = k1⊕ r, k′

2 = k2⊕ r, and β = (αm1−m2)(m1−m2)−1 is the relation
revealed to the adversary. For any future authentication, the sender will generate
a new random number r′ that is independent of r. Thus, the keys that will be
used for authentication will be k′′

1 and k′′
2 , where k′′

i = ki ⊕ r′ for i = 1, 2. That
is, from the standpoint of key-recovery attacks, by using equation (13) instead
of equation (12), different authentication tags are computed with different keys.
Therefore, finding a collision in the message compression phase does not lead
to information leakage about the keys, as long as the same nonce does not
authenticate different messages. (Note that there is no need to randomize kB

since it is independent of the message to be authenticated.)

Remark 6. This shows how the system can be designed to utilize the authenti-
cated encryption application to increase the robustness of universal hash func-
tions based E-MACs. This could not have been achieved without the use of the
fresh random number r that was secretly delivered to the verifier as part of the
ciphertext.

7 Conclusion and Future Work

In this work, we studied the encrypt-and-authenticate generic composition of
secure channels. We introduced E-MACs, a new symmetric-key cryptographic
primitive that can be used in the construction of E&A compositions. By taking
advantage of the E&A structure, the use of E-MACs is shown to improve the
efficiency and security of the authentication operation. More precisely, since
the message to be authenticated is encrypted, universal hash functions based
E-MACs can designed without the need to apply cryptographic operations on
the compressed image, since this can be replaced by operations performed by
the encryption algorithm. Further, by appending a random string at the end
of the plaintext message, two security objectives have been achieved. First, the
random string is used to encrypt the authentication tag so that the secrecy of
the plaintext is not compromised by its tag. Second, the random string can be
used to randomize the secret key of the used E-MAC so that it will be secure
against key-recovery attacks.

Since this is only the first work in this direction, bringing more research can
only contribute positively towards the design of more efficient and more secure
authentication. One specific direction that is yet to be investigated is the use
of encryption algorithms that provide more than just semantic security. In par-
ticular, since most secure block ciphers are pseudorandom permutations, using
block ciphers operated in different modes is a promising direction for more im-
provements in the design of E-MACs.
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A Proof of Lemma 3

Proof. Throughout this proof, random variables will be represented by bold
font symbols, whereas the corresponding non-bold font symbols represent spe-
cific values that can be taken by these random variables. Let the secret key
K = k1||k2|| · · · ||kB be fixed. Then, for any tag τ ∈ Zp computed according to
equation (1), and any plaintext message M , the following holds:

Pr(τ = τ |M = M) = Pr
(
r = (τ −

B−1∑
i=1

kimi) k−1
B

)
=

1
p
, (15)

where mi denotes the ith block of the message M . Equation (15) holds by
the assumption that r is drawn uniformly from Zp. The existence of k−1

B , the
multiplicative inverse of kB in the integer field Zp, is a guaranteed since kB is
not the zero element. Furthermore, as a direct consequence of the fact that Zp is
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a field, for an r drawn uniformly at random from Zp, the resulting (kBr mod p)
is uniformly distributed over Zp. Consequently, for any plaintext message M ,
since the tag is a result of adding (kBr mod p) to (

∑
i kimi mod p), and since

(kBr mod p) is uniformly distributed over Zp, the resulting tag is uniformly
distributed over Zp. That is, for any fixed value τ ∈ Zp, the probability that the
tag will take this specific value is given by:

Pr(τ = τ) =
1
p
. (16)

Combining Bayes’ theorem [25] with equations (15) and (16) yields:

Pr(M = M |τ = τ) =
Pr(τ = τ |M = M) Pr(M = M)

Pr(τ = τ)
= Pr(M = M). (17)

Equation (17) implies that the tag τ gives no information about the plaintext
M since τ is statistically independent of M . Similarly, one can show that the
tag is independent of the secret key.

Now, let τ1 through τ� represent the tags for messages M1 through M�, re-
spectively. Further, let r1 through r� be the coin tosses of the signing algorithm
S for the authentication of messages M1 through M�, respectively. Recall that
ri’s are mutually independent and uniformly distributed over Zp. Then, for any
possible values of the messages M1 through M� with arbitrary joint probability
mass function, and all possible values of τ1 through τ�, we get:

Pr(τ1 = τ1, · · · , τ
 = τ
) =
∑

M1,··· ,M�

Pr(τ1 = τ1, · · · , τ
 = τ
|M1 = M1, · · · , M� = M
)

Pr(M1 = M1, · · · , M� = M
)

=
∑

M1,··· ,M�

Pr
(
r1 = (τ1 −

B−1∑
i=1

kim1i ) k−1
B , · · · , r
 = (τ
 −

B−1∑
i=1

kim
i) k−1
B

)
Pr(M1 = M1, · · · , M� = M
) (18)

=
∑

M1,··· ,M�

Pr
(
r1 = (τ1 −

B−1∑
i=1

kim1i ) k−1
B

)
· · ·Pr

(
r
 = (τ
 −

B−1∑
i=1

kim
i) k−1
B

)
Pr(M1 = M1, · · · , M� = M
) (19)

=
∑

M1,··· ,M�

1

p
· · · 1

p
Pr(M1 = M1, · · · , M� = M
) (20)

= Pr(τ1 = τ1) · · ·Pr(τ
 = τ
), (21)

where mji denotes the ith block of the jth message Mj . Equation (19) holds
due to the independence of the ri’s; equation (20) holds due to the uniform
distribution of the ri’s; and equation (21) holds due to the uniform distribution
of the τi’s. Therefore, authentication tags are mutually independent, and the
lemma follows. ��
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optimum algebraic degree, optimum algebraic immunity and a much better non-
linearity than all the previously obtained infinite classes of functions. However,
the lower bound they deduced is not enough to resist fast correlation attacks
[14,15]. In [8], Tu and Deng introduced another class of balanced functions with
optimum algebraic degree, optimum algebraic immunity and a provable good
nonlinearity. However, also these functions are weak against fast algebraic at-
tacks [16,21]. It seems very hard to construct Boolean functions achieving all the
necessary criteria.

Moreover, even if we can find many Boolean functions satisfying all the nec-
essary criteria, they may still be vulnerable to those attacks. In fact, Rønjom
and Cid put forward a nonlinear equivalence of Boolean functions used in a filter
generator and demonstrated that many cryptographic properties may be not in-
variant among functions in the same equivalence class by providing some special
examples [17]. Therefore, Boolean functions with good cryptographic properties
may be equivalent to some functions that are not good and we should assess the
resistance of a cipher against some types of attacks by investigating the whole
equivalence class. They gave the basic idea and many problems were left open.

In this paper, we investigate equivalence of Boolean functions more deeply
using another method and discuss the number of Boolean functions in each
equivalence class. We investigate further the cryptographic properties includ-
ing algebraic degree, algebraic immunity and nonlinearity of the equivalence
classes, and deduce tight bounds on them. We find that there are many equiv-
alence classes of Boolean functions with optimum algebraic immunity, optimum
algebraic degree and a good nonlinearity. Moreover, we discuss how to con-
struct equivalence classes with desired properties and show that it is possible to
construct practical Boolean functions such that their equivalence classes have
guaranteed cryptographic properties.

The paper is organized as follows. In Section 2, the necessary background is
established. We represent sequences and Boolean functions by generator matri-
ces in Section 3. In Section 4, we then introduce equivalence of Boolean functions
and investigate the number of Boolean functions in each equivalence class. We
investigate further the cryptographic properties including algebraic degree, al-
gebraic immunity and nonlinearity of the equivalence classes in Section 5, and
deduce tight bounds on them. In Section 6, we give some equivalence classes of
Boolean functions with optimum algebraic immunity, optimum algebraic degree
and a good nonlinearity. In Section 7, we discuss how to construct equivalence
classes with desired properties and show that it is possible to construct practical
Boolean functions such that their equivalence classes have guaranteed crypto-
graphic properties. We end in Section 8 with a few conclusions.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the finite field F2. A Boolean

function of n variables is a function from F
n
2 into F2. We denote by Bn the set

of all n-variable Boolean functions.
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Any f ∈ Bn can be uniquely represented as a multivariate polynomial in
F2[x1, · · · , xn],

f(x1, ..., xn) =
∑

K⊆{1,2,...,n}
aK

∏
k∈K

xk,

which is called its algebraic normal form (ANF). The algebraic degree of f ,
denoted by deg(f), is the number of variables in the highest order term with
nonzero coefficient.

A Boolean function is affine if there exists no term of degree strictly greater
than 1 in the ANF and the set of all affine functions is denoted by An.

Let
1f = {x ∈ F

n
2 |f(x) = 1}, 0f = {x ∈ F

n
2 |f(x) = 0}.

The cardinality of 1f , denoted by wt(f), is called the Hamming weight of f .
The Hamming distance between two functions f and g, denoted by d(f, g), is
the Hamming weight of f + g. We say that an n-variable Boolean function f is
balanced if wt(f) = 2n−1.

Let f ∈ Bn. The nonlinearity of f , denoted by nl(f), is its distance from the
set of all n-variable affine functions, i.e.,

nl(f) = min
g∈An

d(f, g).

The r-order nonlinearity, denoted by nlr(f), is its Hamming distance to the set
of all n-variable functions of degree at most r.

The nonlinearity of an n-variable Boolean function is upper bounded by 2n−1−
2n/2−1, and a function is said to be bent if it can achieve this bound. Clearly,
bent functions exist only for n even and it is known that the algebraic degree of
a bent function is upper bounded by n

2 [18].
For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if

fg = 0, and the algebraic immunity of f , denoted by AI(f), is the minimum
value of d such that f or f + 1 admits an annihilator of degree d. It is known
that the algebraic immunity of an n-variable Boolean function is upper bounded
by �n

2 � [19].
To resist algebraic attacks, a Boolean function f used in stream ciphers should

have a high algebraic immunity, which implies that the nonlinearity of f is also
not very low since [26]

nl(f) ≥ 2
AI(f)−2∑

i=0

(
n− 1

i

)
.

Many bounds on higher order nonlinearities have also been deduced
[27,28,29,30,31,32].

Let f ∈ Bn. If there are functions g of low degree and h of reasonable degree
such that fg = h, then f is considered to be weak against fast algebraic attacks.
The fast algebraic immunity of an n-variable Boolean function f , denoted by
FAI(f), is defined as

FAI(f) = min
g∈Bn

{2AI(f), deg g + deg(fg)},
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where 1 ≤ deg g < AI(f) [24]. To resist fast algebraic attacks, the Boolean
functions used in stream ciphers should have high fast algebraic immunity and
it is known that FAI(f) ≤ n [10,24].

Two Boolean functions f and g are said to be affine equivalent if there exist
A ∈ GLn(F2) and b ∈ F

n
2 such that g(x) = f(Ax + b). Clearly, algebraic degree,

algebraic immunity and nonlinearity are all invariant under affine transforma-
tion.

In what follows, q = 2n and we denote an element of F
n
2 by a column vector.

For simplicity, we consider a stream cipher being a filter generator that consists of
an LFSR of length n that generates an m-sequence and a filter function f ∈ Bn.

3 Representations of Sequences and Boolean Functions

Let the register generate an m-sequence of period q − 1, and the sequence {st}
obey the recursion

n∑
j=0

mjst+j = 0, mj ∈ F2,

where m0 = mn = 1. That is, m(x) = m0 + m1x + ... + mn−1x
n−1 + xn is its

generator polynomial, and is primitive. The (transpose) companion matrix M
(we call it the generator matrix of the sequence) is

M =

⎛⎜⎜⎜⎜⎝
0 1 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 1

m0 m1 m2 . . . mn−1

⎞⎟⎟⎟⎟⎠ .

Let (st, st+1, . . . , st+n−1)T denote the state of the register at time t. Then the
next state is determined by (st+1, st+2, . . . , st+n)T = M(st, st+1, . . . , st+n−1)T =
M t+1(s0, s1, . . . , sn−1)T . If the initial state of the register is b, then the sequence
can be represented by S = (b, Mb, ..., M q−2b). Here b can be any nonzero n-
dimensional column vector and hence there are exactly q − 1 such S which
correspond to q − 1 different m-sequences. Let b0 = (1, 0, · · · , 0)T . Then these
sequences can be represented by

Sk = (Mkb0, M
k+1b0, ..., M

k+q−2b0),

where 0 ≤ k ≤ q − 2.
Since the number of primitive polynomials of degree n is φ(q−1)/n, there are

φ(q − 1)/n LFSRs generating m-sequences, and different LFSRs correspond to
different sequences. Therefore, there are exactly (q − 1)φ(q − 1)/n m-sequences,
and each sequence can be represented by

Sjk = (Mk
j b0, M

k+1
j b0, ..., M

k+q−2
j b0),
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where 1 ≤ j ≤ φ(q − 1)/n, Mj is the generator matrix of the sequence and
0 ≤ k ≤ q − 2. Clearly, Mk

j b0 is the initial state of the LFSR.
Let T = F

n
2−{0}. Clearly, there are exactly two f ∈ Bn such that 1f∩T = T0,

where T0 is a subset of T . We denote these two functions by f1 and f2. Then f1

differs from f2 only when x = 0 and f1 = f2 +(x1 +1)(x2 +1) · · · (xn +1). Given
any LSFR, the keystream generated by using f1 or f2 as the filter function is the
same. Therefore, f1 and f2 can be viewed as the same function and we consider
the set

B∗
n = Bn/{0, (x1 + 1)(x2 + 1) · · · (xn + 1)}.

Then any f ∈ B∗
n can be represented by its support set in the form

1f = {M i1
j b0, M

i2
j b0, . . . , M

iw

j b0},

where Mj is the generator matrix of the register and 0 ≤ i1 < i2 < . . . < iw ≤
q − 2.

4 Equivalence of Boolean Functions

Rønjom and Cid put forward nonlinear equivalence of Boolean functions in [17],
which can be defined as follows.

Definition 1. Let z be a keystream generated by a filter generator where the
LFSR has primitive feedback polynomial g1(x) and the filter function is f1. f2 ∈
B∗

n is said to be equivalent to f1 (f1 ∼ f2) if there exists an LFSR which filtered
by f2 will generate the same keystream. Particularly, if the two LFSRs have
the same generator polynomial, we say that f1 and f2 are linear equivalent and
denote it by f1 ∼L f2. Otherwise, f1 and f2 are said to be nonlinear equivalent
which is denoted by f1 ∼N f2.

Example 1. Let the generator polynomial be m1(x) = x5 + x2 + 1, the initial
state be (1, 0, 0, 0, 0)T , and the filter function be f1(x) = x1x3 + x1x4 + x2x4 +
x3x4 + x4x5 + x5. Then a full period of keystream is

(0100111110111000101011010000110).

Let the generator polynomial of another LFSR be m2(x) = x5 +x4 +x3 +x2 +1,
the initial state be (1, 0, 0, 0, 0)T , and the filter function be f2(x) = x3 +x4 +x5.
Then the keystream generated will be the same as the above one. Therefore,
f1 ∼N f2. Clearly, deg(f1) = 2, AI(f1) = 2 and nl(f1) = 12, while f2 is a linear
function.

Theorem 1. Given an LFSR and the filter function f ∈ B∗
n, let |1f | = w, where

1 ≤ w < q− 1. Then the number of g ∈ B∗
n such that g ∼L f is q− w

m , where m
is a positive divisor of w and w

(w,q−1) |m.
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Proof. Let the LFSR be represented by Sjk1 , and write

1f = {Mk1+i1
j b0, M

k1+i2
j b0, . . . , M

k1+iw

j b0},

where Mj is the generator matrix of the register and 0 ≤ i1 < i2 < . . . < iw ≤
q − 2. Clearly, g ∼L f if and only if there exists a 0 ≤ k2 ≤ q − 2 such that

1g = {Mk2+i1
j b0, M

k2+i2
j b0, . . . , M

k2+iw

j b0}.

If k1 �= k2, then f = g if and only if there exists an 1 ≤ m ≤ w − 1 such that

k2 + is = k1 + is⊕m (mod q − 1),

for 1 ≤ s ≤ w, where

s⊕m =
{

s + m, if s + m ≤ w,
s + m− w, otherwise.

That is, for 1 ≤ s ≤ w,

k2 − k1 = is⊕m − is (mod q − 1). (1)

Let k0 be the number satisfying the equations (1) such that

k0 − k1 = min
k
{k − k1 (mod q − 1)},

where k satisfy the equations (1). Then a number k2 satisfies the equations (1)
if and only if k0 − k1|(k2 − k1 (mod q − 1)). Therefore, there are exactly q−1

k0−k1
such k2, and each k2 corresponds to a function which is equal to f . Since

k0 − k1 = im+1 − i1 = im+2 − i2 = ... = iw − iw−m

= i1 − iw−m+1 + q − 1 = ... = im − iw + q − 1,

we have w(k0 − k1) = m(q − 1). Therefore, the number of g satisfying g ∼L f is
q − 1 or q − w

m , where 1 ≤ m ≤ w − 1 and w
(w,q−1) |m, and the result follows.

Particularly, if (q − 1, w) = 1, then w
(w,q−1) |m implies m = w. We have the

following two corollaries:

Corollary 1. Let f ∈ B∗
n and |1f | = w, where 1 ≤ w < q−1 and (q−1, w) = 1.

Then the number of g ∈ B∗
n such that g ∼L f is q − 1.

Corollary 2. Let f ∈ B∗
n and |1f | = w, where 1 ≤ w < q − 1. Then there are

φ(q − 1)/n − 1 classes of g ∈ B∗
n such that g ∼N f , and every class contains

q− w
m functions which are linear equivalent to each other, where m is a positive

divisor of w and w
(w,q−1) |m.
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5 Cryptographic Properties of Equivalence Classes

Let f ∈ Bn and

1f = {Mk1+i1
1 b0, M

k1+i2
1 b0, ..., M

k1+iw
1 b0},

where M1 is the generator matrix of the sequence and 0 ≤ i1 < i2 < ... < iw ≤
q − 2. Clearly, any g ∼ f can be represented by

1g = {Mk2+i1
j b0, M

k2+i2
j b0, ..., M

k2+iw

j b0},
where 1 ≤ j ≤ φ(q − 1)/n, Mj is a generator matrix and 0 ≤ k2 ≤ q − 2. Let
f = {g ∈ Bn|g ∼ f} denote the equivalence class to which f belongs. Since
the same keystream can be generated by using Boolean functions of the same
equivalence class as filter functions, to assess the resistance to a certain type of
attack, we should define the corresponding cryptographic criteria by using the
weakest equivalent function. Define

deg(f) = min
g∈f

deg(g), AI(f) = min
g∈f
AI(g),

and
nl(f) = min

g∈f
nl(g).

To resist many kinds of attacks, deg(f),AI(f) and nl(f) should all be high. More-
over, every function equivalent to f should have a good immunity against fast al-
gebraic attacks. Clearly, for the function f1 in Example 1, we have deg(f1) = 1,
AI(f1) = 1 and nl(f1) = 0, which are very bad.

The number of variables of f , denoted by var(f), is the number of variables
appearing in its ANF. Define

var(f ) = min
g∈f

var(g)

To be implemented efficiently, var(f ) should be small.

Lemma 1. Let f ∈ Bn. Then we have deg(f) ≤ n− 1, which is a tight bound.

Proof. Since (x1 + 1)(x2 + 1) · · · (xn + 1) is of degree n, one of f and f +
(x1 + 1)(x2 + 1) · · · (xn + 1) is of degree n, and the other is not. Therefore,
deg(f) ≤ n − 1. In the next section, we can find that there exist many f such
that deg(f) = n− 1, and the result follows.

Lemma 2. Let f ∈ Bn. If there is a balanced function g such that g ∼ f , then
deg(f) ≤ var(f )− 1.

Proof. Let var(f) = m. If m = n, then by Lemma 1 the result follows. If m < n,
then there is an h ∈ Bn such that the number of variables appearing in its ANF
is m. Therefore, |1h| = k2n−m, where k is an integer. Since h is equivalent to a
balanced function, we have |1h| = 2n−1 + c, where c = 0 or ±1. Therefore, c = 0
and h is balanced. We regard h as an m-variable function, that is, h ∈ Bm. Then
h is balanced and deg(h) ≤ m− 1.
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Lemma 3. Let f ∈ Bn. Then we have AI(f) ≤ �n
2 �, which is a tight bound.

Proof. For n odd, f and f +(x1 +1)(x2 +1) · · ·(xn +1) cannot be both balanced.
Say, f is not balanced. Therefore, we have |1f | < 2n−1 or |1f+1| < 2n−1. Since
the number of coefficients of a function with degree at most �n

2 � is 2n−1, there
exists a function g of degree at most �n

2 � such that fg = 0 or (f + 1)g = 0. For
n even, �n

2 � = �n
2 �. Hence, AI(f) ≤ �n

2 �. In the next section, we can find that
there exist many f such that AI(f) = �n

2 �, and the result follows.

Lemma 4. Let f ∈ Bn. Then we have

nl(f) ≤ 2n−1 − 2n/2−1 − 1.

Proof. Clearly, the theorem is true for n odd. For n even, bent functions have
the maximum nonlinearity and the highest possible degree for a bent function
is n

2 . Since one of f and f + (x1 + 1)(x2 + 1) · · · (xn + 1) is of degree n, they can
not be both bent. Therefore, nl(f) ≤ 2n−1 − 2n/2−1 − 1.

Remark 1: For small even n, it is easy to find equivalence classes whose non-
linearity can achieve the bound. However, for general n, we can not find an
equivalence class such that the bound can be achieved. We do not know whether
this bound can be tight for an infinite class and we leave this as an open problem.

Fast algebraic immunity and higher order nonlinearities of an equivalence class
can be defined in a similar way:

FAI(f) = min
g∈f
FAI(g) and nlr(f) = min

g∈f
nlr(g).

We do not want to discuss the bounds on FAI(f) and nlr(f), since it may be
hard to deduce tight bounds on them. Anyway, to resist fast algebraic attacks,
FAI(f) should be high.

In practice, we should use equivalence classes with good cryptographic prop-
erties and choose the functions of them which can be implied efficiently as filter
functions.

6 Equivalence Classes with Optimum Algebraic Degree,
Optimum Algebraic Immunity and a Good Nonlinearity

Given an LFSR and its generator matrix M1, let f1 ∈ B∗
n and

1f1 = {M i
1b0|i = 0, 1, ..., 2n−1 − 1}.

This function has been investigated by many papers and has good cryptographic
properties (see [7,20,22,23]). We now investigate the equivalence class to which
f1 belongs. Clearly, any g ∼ f1 can be represented by

1g = {Mk+i
j b0|i = 0, 1, ..., 2n−1 − 1},

where 1 ≤ j ≤ φ(2n − 1)/n, Mj is a generator matrix and 0 ≤ k ≤ 2n − 2.
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Theorem 2. Let f1 be defined as above. Then deg(f1) = n− 1, AI(f1) = �n
2 �

and

nl(f1) > 2n−1 − (
ln 2
3

(n− 1) +
3
2

)2
n
2 − 1.

In other words, the equivalence class to which f1 belongs has optimum algebraic
degree, optimum algebraic immunity and a good nonlinearity.

Proof. Let g ∼ f1 and

1g = {Mk+i
j b0|i = 0, 1, ..., 2n−1 − 1},

where Mj is a generator matrix and 0 ≤ k ≤ 2n − 2. Then we have

1g(Mjx) = {Mk+i−1
j b0|i = 0, 1, ..., 2n−1 − 1},

and
1g(x)+g(Mjx) = {Mk−1

j b0, M
k+2n−1−1
j b0}.

Therefore, deg(g(x)+g(Mjx)) = n−1. Since g(Mjx) is affine equivalent to g(x)
and algebraic degree is affine invariant, we have deg(g(x)) = deg(g(Mjx)) =
n− 1. Hence, deg(g(x) + (x1 + 1)(x2 + 1) · · · (xn + 1)) = n and deg(f1) = n− 1.
Similar to the proof of Theorem 3 in [20], we have

min{AI(g(x)),AI(g(x) + (x1 + 1)(x2 + 1) · · · (xn + 1))} = �n
2
�.

Therefore, AI(f1) = �n
2 �. From Proposition 6 of [20], we have

nl(g) > 2n−1 − (
ln 2
3

(n− 1) +
3
2

)2
n
2 .

Therefore,

nl(g + (x1 + 1) · · · (xn + 1)) > 2n−1 − (
ln 2
3

(n− 1) +
3
2

)2
n
2 − 1,

and the result follows.

Let f2 ∈ B∗
n and

1f2 = {b0, M1b0, ..., M
r−1
1 b0, M

r+1
1 b0, ..., M

2n−1

1 b0},

where 2n−1 − n−1
2 < r < 2n−1. Any g ∼ f2 can be represented by

1g = {Mk+i
j b0|i = 0, 1, ..., r − 1, r + 1, ..., 2n−1},

where 1 ≤ j ≤ φ(2n − 1)/n, Mj is a generator matrix and 0 ≤ k ≤ 2n − 2.
Similar to the analysis of f1, the equivalence class to which f2 belongs has

optimum algebraic degree, optimum algebraic immunity and a good nonlinearity.
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7 Construction of Equivalence Classes with Desired
Properties

We now discuss how to construct equivalence classes with desired properties.
Let f ∈ B∗

n and 1f = {M i
1b0|i ∈ E}, where E is suitable chosen so that the

equivalence class that f belongs to has desired properties. Clearly, any g ∼ f
can be represented by

1g = {Mk+i
j b0|i ∈ E},

where 1 ≤ j ≤ φ(2n − 1)/n, Mj is a generator matrix and 0 ≤ k ≤ 2n − 2. If we
want AI(f) > r, then we should investigate the following matrices⎛⎜⎜⎝

M i1l1
j b1 M i1l2

j b1 · · · M i1lt
j b1

M i2l1
j b1 M i2l2

j b1 · · · M i2lt
j b1

· · · · · · · · · · · ·
M isl1

j b1 M isl2
j b1 · · · M islt

j b1

⎞⎟⎟⎠ , (2)

where 0 ≤ l1 < l2 < ... < lt < 2n − 1, wt(lj) ≤ r and t =
∑r

i=0

(
n
i

)
, i1 < i2 <

... < is are all in E or not and

s =
{

2n−1 if i1, ..., is ∈ E
2n−1 − 1 if i1, ..., is /∈ E.

It is easily found that AI(f) > r if and only if all these matrices are of rank t. Let
M i

jb0 = (bij1, bij2, ..., bijn)T . If we want deg(f) ≥ d, then we should investigate
the following functions

∑
i∈E

n∏
k=1

(xk + bijk + 1) + c1 · x1x2 · · ·xn,

where c1 = 0 or 1. Clearly, deg(f) ≥ d if and only if all these functions are of
degrees at least n− 1. Let |E| = 2n−1 or 2n−1 − 1. Then

nl(f) = 2n − max
h∈An

(|1f ∩ 0h|+ |0f ∩ 1h|)
= 2n − 2 max

h∈An

|1f ∩ 0h| − c2 = 2n − 2 max
h∈An

|0f ∩ 1h| − c2.

where c2 = 0 or ±1. If we want nl(f) to be high, then maxh∈An(|1g∩0h|) should
be low, where g ∼ f . Therefore, we should investigate the sets

{M i
jb0|i ∈ E} ∩ 0h

and the number of elements of these sets should be small, where 1 ≤ j ≤
φ(2n − 1)/n, Mj is a generator matrix and h ∈ An. The equivalence classes to
which f1 or f2 belongs are examples with optimum algebraic degree, optimum
algebraic immunity and a good nonlinearity. In a similar way we can construct
other equivalence classes with desired properties. In fact, it may be not easy
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Table 1. Cryptographic Properties of the Equivalence Class f

GP VAR AI DEG NL

10110001 8 4 7 106

11000110 5 3 4 80

10001110 8 4 6 104

10111000 8 4 7 102

10110100 8 4 7 106

10010110 8 4 7 106

11110011 8 4 7 102

11100111 8 4 6 100

10010101 8 4 7 106

11010100 8 4 6 108

10110010 8 4 7 100

10100110 8 4 7 104

10101111 8 4 6 104

11111010 8 4 7 108

11100001 8 4 7 104

11000011 8 4 6 104

to construct equivalence classes satisfying all the necessary criteria. Anyway,
the approach described above may be promising, which can be seen from the
following example.

Example 2. Let f ∈ B8. We want to construct an equivalence class f such that
deg(f) ≥ 4, AI(f) ≥ 3 and nl(f) ≥ 58 (this is the lowest possible nonlinearity
of a 8-variable function with the optimum algebraic immunity). Moreover, we
want var(f ) ≤ 5 (that is, there is a function of the equivalence class such that
its ANF contains at most 5 variables). Let 1f = {M ib0|i ∈ E}, where M is the
generator matrix and b0 = (10000000)T . There are many sets E such that the
matrices in (2) are of rank 2. We choose

E = [ 1 5 9 14 15 17 19 20 21 29 30 31 32 36 38 39 40 41 42 43 45 46 47 51
52 58 59 60 61 62 63 64 66 67 70 71 72 73 76 77 82 83 84 85 88 90 95
96 97 98 99 103 105 109 111 112 113 114 115 116 126 127 133 136
137 138 140 142 144 145 146 158 159 160 164 165 166 167 168 169
170 171 173 176 177 178 179 180 181 182 183 184 185 188 189 190
191 193 194 196 198 201 202 203 206 207 208 209 210 211 212 213
214 215 219 220 221 222 224 237 244 245 246 249 250 251 252 253].

There are exactly φ(255)/8 = 16 classes of g ∈ B8 such that g ∼ f , and every
class is characteristiced by a generator polynomial. We can find some crypto-
graphic properties of these classes from Table 1. In the table, GP denotes gener-
ator polynomial (we represent f(x) = x8 + a8x

7 + a7x
6 + a6x

5 + a5x
4 + a4x

3 +
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a3x
2 + a2x + a1 by a1a2a3a4a5a6a7a8), VAR denotes number of variables ap-

pearing in ANF, AI denotes algebraic immunity, DEG denotes algebraic degree
and NL denotes nonlinearity. Clearly, var(f ) = 5, AI(f) = 3, deg(f) = 4 and
nl(f) = 80. It is an equivalence class with desired properties. We now pick out a
function g such that it can be implemented efficiently. Let M1 be the generator
matrix corresponding to the primitive polynomial x8 + x6 + x5 + x + 1. Take
1g = {M i

1b0|i ∈ E}. From Table 1, we have var(g) = 5. In fact,

g = x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x1x2x3 + x1x3x5 + x1x4x5

+x2x3x4 + x2x4x5 + x3x4x5 + x1x2 + x1 + x3 + x5.

It is simple to implement and in effect acting as a 5-variable function.

Remark 2: All functions of the equivalence class g have nonlinearity at least
80, which is greater than the lowest possible nonlinearity 58 of an 8-variable
function with optimum algebraic immunity. If we regard g as a 5-variable Boolean
function, then it is balanced and has optimum algebraic degree 4, optimum
algebraic immunity 3 and nonlinearity 10. Clearly, var(g) = var(g), AI(g) =
AI(g), deg(g) = deg(g) and nl(g) = 8nl(g).

Remark 3: It may be very hard to construct an infinite class of equivalence
classes satisfying all the necessary criteria. However, for a given n, the example
shows that it is possible to construct practical Boolean functions (in few variables
m < n) such that their equivalence classes with respect to F

n
2 have guaranteed

cryptographic properties.

8 Conclusion

In this paper, we investigated equivalence of Boolean functions and discussed
the number of Boolean functions in each equivalence class. We investigated fur-
ther the cryptographic properties including algebraic immunity, algebraic de-
gree and nonlinearity of the equivalence classes, and deduced tight bounds on
them. We found that there are many equivalence classes of Boolean functions
with optimum algebraic degree, optimum algebraic immunity and a good non-
linearity. Moreover, we discussed how to construct equivalence classes with de-
sired properties and showed that it is possible to construct practical Boolean
functions such that their equivalence classes have guaranteed cryptographic
properties.

Previous constructed Boolean functions with good cryptographic properties
may be equivalent to some functions which are not good and we must assess the
resistance of a Boolean function against some types of attacks by investigating
the whole equivalence class. In practice, we should use equivalence classes with
good cryptographic properties and choose the functions of them which can be
implemented efficiently as filter functions.
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Abstract. Secure message transmission (SMT) is a two-party protocol between
a sender and a receiver over a network in which the sender and the receiver are
connected by n disjoint channels and t out of n channels can be controlled by an
adaptive adversary with unlimited computational resources. If a public discussion
channel is available to the sender and the receiver to communicate with each other
then a secure and reliable communication is possible even when n ≥ t + 1. The
round complexity is one of the important measures for the efficiency for SMT.
In this paper, we revisit the optimality and the impossibility for SMT with public
discussion and discuss the limitation of SMT with the “unidirectional” public
channel, where either the sender or the receiver can invoke the public channel,
and show that the “bidirectional” public channel is necessary for SMT.

Keywords: secure message transmission, public discussion, round complexity.

1 Introduction

Dolev, Dwork, Waarts and Yung [7] introduced Secure Message Transmission protocols
to address the problem of delivering a message from a sender S to a receiver R in a
network guaranteeing privacy and reliability. In the network, S is connected to R by
n node-disjoint paths, referred to as wires, up to t < n of which may be maliciously
controlled by the adversary with unlimited computational resources.

A perfectly secure message transmission (PSMT for short) guarantees thatR always
receives message sent by S and the adversary A learns nothing about it. It was shown
that PSMT is possible if and only if n ≥ 2t + 1. For the detail and progress of PSMT,
you may see [7,17,19,2,10,14].

Franklin and Wright [11] relaxed the security requirement for PSMT protocols and
considered probabilistic security in which a privacy parameter ε and a reliability pa-
rameter δ upper-bound the advantage of the adversary in violating the privacy and the
probability that R fails to recover message sent by S, respectively. We refer to secure
message transmission protocols in the relaxed setting as (ε, δ)-SMT protocols and con-
sider that PSMT is a special case of SMT where ε = δ = 0, that is, (0, 0)-SMT. For
further investigation of SMT protocols, you may see [20,9,1,15].

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 325–337, 2011.
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Garay and Ostrovsky [12] studies a model called Secure Message Transmission by
Public Discussion (SMT-PD) as an important building block for achieving secure multi-
party computation [3,6] on sparse networks. (A similar setting was studied earlier by
Franklin and Wright [11]). In this model, in addition to the wires in the standard SMT,
S andR can access to a public channel which the adversary cannot alter but eavesdrop.

Generally speaking, the public channel is more expensive to implement than wires.
Since there are several ways to implement the public channel even on the sparse net-
works [8,21,4,5], the costs are still expensive. Thus, it is desirable to minimize the use
of this expensive resource. One of the typical efficiency measures of SMT-PD protocols
is the number of rounds where each round is one message flow between S andR. Shi,
Jiang, Safavi-Naini and Tuhin [18] (and Garay, Givens and Ostrovsky [13] also) gave
an SMT-PD protocol with 3 rounds, 2 of which invoke the public channel. We say that
an SMT-PD protocol is of (r, r′)-round if the SMT-PD protocol satisfies that r is the
total number of rounds and r′ (≤ r) is the number of rounds in which the public chan-
nel is invoked. Through this paper, we assume that t + 1 ≤ n ≤ 2t, since an efficient
(i.e., polynomial-time) “2-round” PSMT protocol is provided by Kurosawa and Suzuki
[14] when n ≥ 2t + 1. Shi et al. also showed that (3, 2)-round is optimal for SMT-PD
protocols (in case of n ≥ t + 1) by showing the impossibility of useful (3, 1)-round
SMT-PD protocols.

In this paper, we revisit the lower-bounds on the round complexity for SMT-PD
protocols. As mentioned, known round-optimal SMT-PD protocols invoke the public
channel twice: once is for the public transmission from S to R and the other time
is for that from R to S. This means that two types of implementation for the public
channel are necessary. If the message flows over public channel are one-way in SMT-
PD protocols, it is sufficient that we implement only one type of the public channel,
which is more desirable. We first discuss the limitation of SMT with the “unidirectional”
public channel, where either the sender or the receiver can invoke the public channel,
and show that the “bidirectional” public channel is necessary for SMT.

To discuss the directions of the message flows over the public channel, we consider
separately the number of rounds where the message flows are fromS toR over the pub-
lic channel and the number of rounds where the message flows are fromR to S. We say
that an SMT-PD protocol is of (r, r1, r2)-round if the SMT-PD protocol is of r rounds
and satisfies that r1 (resp., r2) is the number of rounds in which the message flows are
from S to R (resp., from R to S). We review some previous results by using our ter-
minology. Known round-optimal SMT-PD protocols [18,13] are of (3, 1, 1)-round. Shi
et al. [18] showed that (r, 1, 0)-round protocol must satisfy that ε + δ ≥ 1 − 1/|M |;
and (r, 0, 1)-round protocol must satisfy that δ ≥ (1 − 1/|M |)/2, where r ≥ 3 and
M denotes the message space. We generalize their results and prove that (i) (r, r′, 0)-
round protocol must satisfy that ε + δ ≥ 1 − 1/|M |; and (ii) (r, 0, r′)-round protocol
must satisfy that δ ≥ (1 − 1/|M |)/2, where r ≥ 3 and r′ ≤ r. The statement (i)
says that any (r, r′, 0)-round protocol is not useful at all. The statement (ii) does not
say anything about the privacy. Actually, we provide an upper-bounding (0, δ)-SMT-
PD protocol (δ ≈ 1/2 when n = 2t), which says that the bound in (ii) is almost
tight.



Public Discussion Must Be Back and Forth in Secure Message Transmission 327

2 Preliminaries

2.1 Model and Notations

Network and Adversary Models. We assume a synchronous, connected point-to-point
incomplete network. Two parties S andR are connected by n node-disjoint paths, called
wires. In addition to the wires, we assume that there is an authentic and reliable public
channel between S andR. Messages over this channel are publicly accessible and cor-
rectly delivered to the recipient. All wires are bidirectional but we consider that public
channels are unidirectional. SMT-PD protocols proceed in rounds. In each round, one
party may send a message on each wire and the public channel, while the other party
will only receive the sent messages. The sent messages will be delivered before the next
round starts.

The adversary A is computationally unbounded. A can corrupt nodes on paths be-
tween S and R. A wire is said to be corrupted if at least one node on the path is
corrupted. We assume that up to t ≤ n− 1 wires can be corrupted by the adversary.A
can eavesdrop, alter or block messages sent over the corrupted wires. A is assumed to
be adaptive, that is, she can corrupt wires during the protocol execution based on the
communication exchanged so far.

Notations. Let M be the message space in which S selects a message. Let MS de-
note the secret message of S, and MR the message output by R. We denote the null
string by ⊥. We write u ← U to denote that a value u is uniformly chosen from a
set U .

2.2 Definitions

The statistical distance of two random variables X and Y over a set U is defined as

Δ(X, Y ) =
1
2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣.

Lemma 1. Let X and Y be two random variables over a set U . The advantage of any
computationally unbounded algorithmD : U → {0, 1} to distinguish X and Y is∣∣Pr[D(X) = 1]− Pr[D(Y ) = 1]

∣∣ ≤ Δ(X, Y ).

In an execution of an SMT protocol Π , S wants to send MS ∈ M to R privately
and reliably. We assume that R always outputs a message MR ∈M at the end of the
protocol.

An execution is completely determined by the random coins of all the parties includ-
ing the adversary, and the message distribution of MS . For P ∈ {S,R,A}, the view
of P includes the random coins of P and the message that P receives. We denote by
VA(m, cA) the view of A when the protocol is run with MS = m and A’s randomness
CA = cA.
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Definition 1. A protocol Π between S andR is an (ε, δ)-secure message transmission
by public discussion (SMT-PD) if the following two conditions are satisfied:

– Privacy: For every two messages m0, m1 ∈M and cA ∈ {0, 1}∗, Π satisfies that

Δ(VA(m0, cA), VA(m1, cA)) ≤ ε,

where the probability is taken over the randomness of S andR.
– Reliability:R recovers the message MS with probability larger than 1− δ. In other

words, it holds that
Pr[MR �= MS] ≤ δ,

where the probability is over the randomness of all the parties S,R andA, and the
distribution of MS .

Observe that the above definition is oblivious of the message distribution. In other
words, any SMT-PD protocol must be secure with the same privacy and reliability pa-
rameters regardless of the concrete distribution over M .

3 Known Results on the Round Complexity

In this section, we review some of known results on the round complexity for SMT-PD
protocols (when n ≤ 2t).

Theorem 1. ([11,18]) Suppose that n ≤ 2t. Then the following statements hold.

1. For any values r ≥ r′ ≥ 1, it is impossible to construct (r, r′)-round (0, 0)-SMT-
PD protocols.

2. For any values r ≥ 1 and 0 ≤ ε ≤ 1, it is impossible to construct (r, 0)-round
(ε, δ)-SMT-PD protocols with δ < (1− 1/|M |)/2.

3. There is neither (2, 1, 1)-round nor (2, 2, 0)-round (ε, δ)-SMT-PD protocol with
ε + δ < 1− 1/|M |.

4. There is no (3, 1, 0)-round (ε, δ)-SMT-PD protocol with ε + δ < 1− 1/|M |.
5. For any 0 ≤ ε ≤ 1, there is no (3, 0, 1)-round (ε, δ)-SMT-PD protocol with δ <

(1− 1/|M |)/2.

In addition, we mention a technical lemma stated in [18], which we also use to derive
our results.

Lemma 2. ([18]) Let Π be an (ε, δ)-SMT-PD protocol and assume that S selects
MS ←M . Then no adversary A can correctly guess MS with probability larger than
ε + 1/|M |. That is,

Pr[MA = MS] ≤ ε +
1
|M | ,

where MA denotes the adversary’s output and the probability is taken over the random-
ness of S, R andA.
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4 Lower Bounds

As mentioned, we have a (3, 1, 1)-round SMT-PD protocol and the protocol is round-
optimal due to Theorem 1. The protocol uses the bidirectional public channel. The
implementation of the bidirectional public channel may be more expensive than that
of the unidirectional public channel. So, SMT protocols with the unidirectional public
channel may be advantageous even if the round complexity becomes larger. Thus, we
consider the possibility of SMT protocol with the unidirectional public channel.

To discuss the possibility of r-round SMT protocol with the unidirectional public
channel, we consider a sequence of randomized functions (f1, f2, . . . , fr, g) which
specifies the functionality of the protocol. The function fi is used to generate the com-
munication in the i-th round. The input of fi consists of the received messages in the
previous rounds and randomness of the caller of the function. For a party P , either S
or R, CP denotes the randomness of P and Mi

P denotes the set of all the messages
received by P during the first i rounds. That is, M0

S = {MS} and M0
R = ∅. If the

initiator of the i-th round is P , we write PiXiYi = fi(Mi−1
P , CP ) to denote the ran-

dom variable corresponding to the communication in the i-th round, where Pi denotes
the communication over the public channel, Xi the communication over the corrupted
wires, Yi the communication over the uncorrupted wires. If the initiator does not invoke
the public channel, then Pi should be null. The function g denotes an output function.
That is, R outputs MR = g(Mr

R, CR) at the end of the protocol.

Now, we are ready to mention our results.

Theorem 2. Suppose that n ≤ 2t. For any r ≥ r′ ≥ 1, there is no (r, r′, 0)-round
(ε, δ)-SMT-PD protocol with ε + δ < 1− 1/|M |.
Proof. We prove the statement by contradiction. Suppose that there exists an (r, r′, 0)-
round (ε, δ)-SMT-PD protocol Π with ε + δ < 1 − 1/|M |. We will construct an
adversaryA who can violate either the privacy or the reliability.

First of all, we give a proof sketch. We will show that for each execution of Π
where S sends a message m to R, there exists another execution (called swapped exe-
cution) where S sends the message m but A impersonates R such that S receives the
identical communication in the two executions and so the two executions cannot be dis-
tinguished. The views of R and A are however swapped in the two executions, and so
if R outputs MR = MS in one of the two executions then A outputs MA = MS in
the swapped execution and so Pr[MA = MS] ≥ Pr[MR = MS ]. Using Lemma 2, we
derive ε + δ ≥ 1− 1/M , which is a contradiction.

Without loss of generality, we assume that wires are labeled by 1, 2, . . . , 2n. We also
assume that n = 2t. (Note that if there exists an (ε, δ)-SMT-PD protocol for n′ < 2t,
the same protocol can be run for n = 2t by neglecting the last n − n′ wires. Thus an
impossibility result for n = 2t still holds for n′ < 2t.)

Before going into the details of the proof, we need a bit more preparation. We parti-
tion A’s randomness CA into four parts (CMA , CA0, CA1, CA2). CA0 is a single bit to
indicate which subset of t wires to corrupt. We assume that CA0 = 0 (resp., CA0 = 1)
specifies that the first (resp., the last) t wires are corrupted. CA1 is used to generate the
forged communication to replace the communication sent by S with, and CA2 is used
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to generate the forged communication to replace the communication sent by R with.
CMA is used to select uniformly a message from M to impersonate S.

By using these notations, we can describe A’s behavior as follows. Without loss of
generality, we assume that CA0 = 1.

– In the j-th round with 1 ≤ j ≤ r,
• When S sends XjYj or PjXjYj , A blocks Yj . Then R receives Xj or PjXj ,

respectively.
• When R sends XjYj , A computes X ′

jY
′
j = fj(Mj−1

A , CA2), then replaces Yj

with Y ′
j . (Here Mj−1

A denotes the messages eavesdropped byA during the first
j − 1 rounds.) Then, S receives XjY

′
j .

– Finally,A outputs MA = g(Mr
A, CA2).

Due to the above strategy, we may assume that CMA = ⊥ and CA1 = ⊥.
Let E be the set of executions of Π , where each execution is determined by the

message MS and the randomness CS , CR and CA used forS,R andA, respectively. We
define a binary relation W 1 ⊆ E×E to specify a pair (E, Ê) of executions as follows:
(E, Ê) ∈W 1 if (1) (MS , CS) are the same for both executions, (2) CÂ0 ⊕ CA0 = 1,
and (3) CA2 = CR̂ and CR = CÂ2.

Lemma 3. Let (E, Ê) ∈W 1. Then the following properties hold.

(a) The view of S in E is identical to her view in Ê, that is, Mr
S = Mr

Ŝ
.

(b) The view of A in Ê is identical to the view ofR in E, that is, Mr
R = Mr

Â
. Thus the

output ofR in E is the same as the output of A in Ê. That is, MR = MÂ holds.

Proof. We show the statements by induction with respect to the rounds. At the begin-
ning of the protocol, i.e., in the 0-th round, the views of S, R, and A are M0

S = M0
Ŝ

=
{MS}, M0

R = M0
R̂

= ∅, and M0
A = M0

Â
= ∅, respectively. These imply that the

statements (a) and (b) hold in the base case j = 0.
Next, we show the inductive step. That is, we assume that the statements (a) and (b)

hold during the first (j − 1) rounds and prove that they hold during the first j rounds.
First, we observe that the protocol is a combination of the following three transmis-

sions:

(α) transmissions from S to R over wires;
(β) transmissions fromR to S over wires;
(γ) transmissions from S to R over wires and the public channel.

Assume that S initiates the j-th round. From the inductive hypothesis, we have M j−1
S =

M j−1

Ŝ
. Since CS is the same in the two executions E and Ê, S in E invokes the public

channel if and only if S in Ê invokes the public channel. Thus, we can consider the
inductive step in the cases (α), (β), and (γ) individually.

Case (α): From the inductive hypothesis, we have Mj−1
S = Mj−1

Ŝ
and Mj−1

R = Mj−1

Â
.

In this case, S does not get any new information. This implies that Mj−1
S = Mj

S and
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Mj−1

Ŝ
= Mj

Ŝ
. Thus, we have Mj

S = Mj

Ŝ
. That is, the statement (a) holds. On the other

hand,R andA get something new in the j-th round. In the execution E,R gets Xj and
A gets Yj . Thus, we have Mj

R = Mj−1
R ∪{Xj} and Mj

A = Mj−1
A ∪{Yj}. In the execution

Ê, the corrupted wires and the randomness are swapped, we have Mj

R̂
= Mj−1

R̂
∪ {Yj}

and Mj

Â
= Mj−1

Â
∪ {Xj}. Thus, we have Mj

R = Mj

Â
. That is, the statement (b) holds.

Case (β): From the inductive hypothesis, we have Mj−1
S = Mj−1

Ŝ
and Mj−1

R = Mj−1

Â
.

In this case, S gets new information in the j-th round. In the execution E, S gets XjY
′
j ,

where Xj is sent by R and Y ′
j is transmission altered by A. More specifically, we

can write that XjYj = fj(Mj−1
R , CR) and X ′

jY
′
j = fj(Mj−1

A , CA2). In the execution

Ê, S gets the same information XjY
′
j . But S gets Xj from A and Y ′

j from R. Note

that we can write fj(Mj−1

Â
, CÂ2) = fj(Mj−1

R , CR) = XjYj and fj(Mj−1

R̂
, CR̂) =

fj(Mj−1
A , CA) = X ′

jY
′
j . Thus, we have Mj

S = Mj

Ŝ
, that is, the statement (a) holds. On

the other hand, R and A do not get anything new. Thus, we have Mj
R = Mj

Â
. That is,

the statement (b) holds.

Case (γ): This case is similar to Case (α). From the inductive hypothesis, we have
Mj−1

S = Mj−1

Ŝ
and Mj−1

R = Mj−1

Â
. We can show that the statement (a) holds as well

as in Case (α). In the execution E, R gets PjXj and A gets PjYj . Thus, we have
Mj

R = Mj−1
R ∪ {PjXj} and Mj

A = Mj−1
A ∪ {PjYj}. In the execution Ê, the corrupted

wires and the randomness are swapped, we have Mj

R̂
= Mj−1

R̂
∪ {PjYj} and Mj

Â
=

Mj−1

Â
∪ {PjXj}. Thus, we have Mj

R = Mj

Â
. That is, the statement (b) holds.

In any cases, we have shown that the statements (a) and (b) during the first j rounds
hold. Thus, at the end of protocol, that is, after the r-th round, the statements (a) and (b)
hold. Furthermore, we have MR = g(Mr

R, CR) = g(Mr
Â
, CÂ2) = MÂ. This completes

the proof of Lemma 3. ��
Let us proceed the proof of Theorem 2. Let S1 ∈ E be the set of all successful ex-
ecutions in which R outputs MR = MS, and pE denotes the probability of execu-
tion E determined by the randomness of all the parties. Define pÊ similarly. Then
Pr[MR = MS ] =

∑
E∈S1

pE . By Lemma 3, if E ∈ S1, A will output MS in the

swapped execution of Ê; therefore Pr[MA = MS ] ≥∑
E∈S1

pÊ .
Additionally, by the definition of W 1 and the observation that CMA = CA1 = ⊥,

we have

pE =
1
|M |2

−rS−rR−rA2−1 = pÊ,

where rS , rR, rA2 denote the length of the randomness of CS CR, CA2 used by S, R
and A respectively.

From the above equation and Lemma 2, it follows that

1− δ ≤ Pr[MR = MS] ≤ Pr[MA = MS ] ≤ 1
|M | + ε.

Therefore, we have 1− 1/|M | ≤ ε + δ, contradicting the assumption on Π . ��
Theorem 3. Suppose that n ≤ 2t. For any r ≥ r′ ≥ 1 and 0 ≤ ε ≤ 1, there is no
(r, 0, r′)-round (ε, δ)-SMT-PD protocol with δ < (1 − 1/|M |)/2.
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Proof. We prove the statement by contradiction. Suppose that there exists an (r, 0, r′)-
round (ε, δ)-SMT-PD protocol Π with δ < (1 − 1/|M |)/2. We will construct an ad-
versaryA who can violate the reliability of Π .

We will show that the reliability of Π will be violated. This is by showing that
for every successful execution there exists an unsuccessful one and so probability of
success is at most 1/2.

We describe A’s behavior as follows. Without loss of generality, we assume that
CA0 = 1.

– In the j-th round with 1 ≤ j ≤ r,
• When R sends XjYj or PjXjYj , A blocks Yj . Then S receives Xj or PjXj ,

respectively.
• When S sends XjYj , A computes X ′

jY
′
j = fj(Mj−1

A , CA1), then replaces Yj

with Y ′
j . Then,R receives XjY

′
j .

– Finally,A outputs MA = g(Mr
A, CA1).

Due to the above strategy, we may assume that CA2 = ⊥. For simplicity, we abuse the
notation MA here to denote the uniformly selected message ofA using the randomness
CMA .

Let E and pE be as defined as in the proof of Theorem 2 and consider a binary relation
W 2 ⊆ E × E where (E, Ê) ∈ W 2 if (1) CR is the same in the two executions; (2)
CÂ0 ⊕ CA0 = 1; and (3) CA1 = CŜ , CS = CÂ1; (4) MS = MÂ and MA = MŜ. We
denote by S2 the set of successful executions in whichR outputs MR = MS under the
condition that MA �= MS .

Lemma 4. Let (E, Ê) ∈W 2. Then the following properties hold.

(a) The views ofR in E and Ê are identical, that is, Mr
R = Mr

R̂
.

(b) The view ofA in Ê is identical to the view of S in E, that is, Mr
S = Mr

Â
. Therefore,

if E ∈ S2 is a successful execution, then Ê �∈ S2 is a failed execution.

Proof. We show the statements by induction with respect to the rounds. At the begin-
ning of the protocol, i.e., in the 0-th round, the views of R are the same in E and
Ê, since M0

R = M0
R̂

= ∅. The views of S and A are M0
S = M0

Â
= {MS} and

M0
A = M0

Ŝ
= {MA}. These imply that the statements (a) and (b) hold in the base case

j = 0.
Next, we show the inductive step. That is, we assume that the statements (a) and (b)

hold during the first (j − 1) rounds and prove that they hold during the first j rounds.
First, we observe that the protocol is a combination of the following three transmis-

sions:

(α) transmissions from S to R over wires;
(β) transmissions fromR to S over wires;
(γ) transmissions fromR to S over wires and the public channel.

Assume thatR initiates the j-th round. From the inductive hypothesis, we have M j−1
R =

M j−1

R̂
. Since CR is the same in the two executions E and Ê,R in E invokes the public
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channel if and only if R in Ê invokes the public channel. Thus, we can consider the
inductive step in the cases (α), (β), and (γ) individually.

Case (α): From the inductive hypothesis, we have Mj−1
R = Mj−1

R̂
and Mj−1

S = Mj−1

Â
.

In this case, R gets something new. In the execution E, R gets XjY
′
j , where Xj is

sent by S and Y ′
j is a forged transmission by A. More specifically, we can write that

XjYj = fj(Mj−1
S , CS) and X ′

jY
′
j = fj(Mj−1

A , CA1). In the execution Ê, S gets the
same information XjY

′
j . ButR gets Xj fromA and Y ′

j from S. Note that we can write

fj(Mj−1

Â
, CÂ1) = fj(Mj−1

S , CR) = XjYj and fj(Mj−1

Ŝ
, CŜ) = fj(Mj−1

A , CA) =
X ′

jY
′
j . Thus, we have Mj

R = Mj−1
R ∪ {XjY

′
j } = Mj−1

R̂
∪ {XjY

′
j } = Mj

R̂
, that is, the

statement (a) holds. On the other hand, since S andA do not get anything new, we have
Mj

S = Mj−1
S = Mj−1

Â
= Mj

Â
. That is, the statement (b) holds.

Case (β): From the inductive hypothesis, we have Mj−1
R = Mj−1

R̂
and Mj−1

S = Mj−1

Â
.

In this case, R does not get anything new in the j-th round. This implies that Mj−1
R =

Mj
R. Thus, we have Mj

R = Mj

R̂
. That is, the statement (a) holds. On the other hand, S

and A get something new in the j-th round. In the execution E, S gets Xj and A gets
Yj . Thus, we have Mj

S = Mj−1
S ∪ {Xj} and Mj

A = Mj−1
A ∪ {Yj}. In the execution Ê,

the corrupted wires and the randomness are swapped, we have Mj

Ŝ
= Mj−1

Ŝ
∪{Yj} and

Mj

Â
= Mj−1

Â
∪ {Xj}. Thus, we have Mj

S = Mj

Â
. That is, the statement (b) holds.

Case (γ): This case is similar to Case (β). From the inductive hypothesis, we have
Mj−1

R = Mj−1

R̂
and Mj−1

S = Mj−1

Â
. We can show that the statement (a) holds as well

as in Case (β). In the execution E, S gets PjXj and A gets PjYj . Thus, we have
Mj

S = Mj−1
S ∪ {PjXj} and Mj

A = Mj−1
A ∪ {PjYj}. In the execution Ê, the corrupted

wires and the randomness are swapped, we have Mj

Ŝ
= Mj−1

Ŝ
∪ {PjYj} and Mj

Â
=

Mj−1

Â
∪ {PjXj}. Thus, we have Mj

S = Mj

Â
. That is, the statement (b) holds.

In any cases, we have shown that the statements (a) and (b) during the first j rounds
hold. Thus, at the end of protocol, that is, after the r-th round, the statements (a) and (b)
hold.

In the executions E and Ê, MS and MA are swapped. If, in E, R outputs MR =
g(Mr

R, CR) = MS, then in Ê, R outputs MR̂ = g(Mr
R̂
, CR̂) = g(Mr

R, CR) = MS =
MÂ. Thus, if MA �= MS and E ∈ S2 then E �∈ S2. This completes the proof of
Lemma 4. ��
To complete Theorem 3, we need one more lemma.

Lemma 5

(c) The occurrence probability of any two swapped executions (E, Ê) ∈ W 2 is the
same, that is, pE = pÊ .

(d) When MS �= MA, the failure probability of R in recovering the secret message is
not less than the success probability ofR, that is,

Pr[MR = MS |MS �= MA] ≤ Pr[MR �= MS |MS �= MA],

where the probability is taken over the randomness and messages selected by S,R
andA.
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Proof. (c) Note that an execution E ∈ E is completely determined by the random-
ness and messages selected by all the parties. Then for each E ∈ E, we have pE =
2−rS−rR−rA/|M |, where rS , rR and rA denote the length of the randomness of CS ,
CR and CA respectively. Similarly, we have pE = 2−rS−rR−rÂ/|M |.

Since CA2 = ⊥, we have rA = rMA + rA0 + rA1, where rMA , rA0, rA1 denote the
length of CMA , CA0, CA1 respectively. Similarly, we have rÂ = rMÂ

+ rÂ0 + rÂ1.
Note that rA0 = rÂ0 = 1 and rMA = rMÂ

= �log |M |�. From the definition of
W 2, we have that rR = rR̂, rS = rÂ1 and rA1 = rŜ . Hence we have rS + rR + rA =
rŜ + rR̂ + rÂ, and pE = pÊ holds.

(d) Let S̄2 = E \ S2 denote the set of failed executions. Since Ê ∈ S̄2 holds for any
E ∈ S2, and the one-to-one correspondence of E and Ê, we get that |S2| ≤ |S̄2|. The
probability that Π fails when MA �= MS can be computed as

Pr[MR �= MS |MS �= MA]
= Pr[E ∈ S̄2] ≥

∑
E∈S2

pÊ =
∑

E∈S2

pE = Pr[MR = MS |MS �= MA]. ��

Let us proceed the proof of Theorem 3. From Lemma 5, we must have Pr[MR �= MS |
MA �= MS ] ≥ 1

2 . Hence

Pr[MR �= MS ] ≥ Pr[MR �= MS |MS �= MA] Pr[MS �= MA] ≥ 1
2

(1 − 1
|M | ).

On the other hand, since Π is a δ-reliable protocol, we have Pr[MR �= MS ] ≤ δ. It
follows that δ ≥ (1− 1/|M |)/2, which contradicts the assumption on Π . ��
Theorem 2 says that any number of invocations of unidirectional public channel is not
helpful. On the other hand, Theorem 3 does not mention the privacy of SMT-PD proto-
cols. Thus, there seems to be room to be improved. In the next section, we will see that
Theorem 3 achieves almost optimal in a weak sense.

5 Upper Bound

In this section, we give an upper-bounding SMT-PD protocol where onlyR invokes the
public channel. Since the protocol uses universal hash functions, we give the definition
and see some property.

Definition 2. Suppose that m > �. A function family H = {h : {0, 1}m → {0, 1}�}
is called strongly universal2 hash function family if for any distinct a1, a2 ∈ {0, 1}m
and any b1, b2 ∈ {0, 1}�, it holds that Prh∈H [h(a1) = b1 ∧ h(a2) = b2] ≤ 2−2�.

Proposition 1. Let H = {h : {0, 1}m → {0, 1}�} be a strongly universal2 hash
function family. Then, for any (a1, c1) �= (a2, c2) ∈ {0, 1}m × {0, 1}�, it holds that
Prh∈H [c1 ⊕ h(a1) = c2 ⊕ h(a2)] ≤ 2−�.

We can use “almost” strongly universal2 hash functions instead of strongly universal2
hash functions to reduce the communication complexity. But, in this paper, we do not
optimize the communication complexity.
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Now, we give an upper-bounding SMT-PD protocol Π1 as follows. The following
protocol is an adaptation of (3,2)-round SMT-PD protocol proposed in [18].

1. (S → R): For i = 1, . . . , n, S randomly selects ri ∈ {0, 1}� and Ri ∈ {0, 1}m
and sends the pair (ri, Ri) toR along wire i.

2. (S ← R): For i = 1, . . . , n, if R correctly receives a pair (r′i, R
′
i) along wire i

(i.e., r′i ∈ {0, 1}� and R′
i ∈ {0, 1}m), R selects hi ←H and computes T ′

i = r′i ⊕
hi(R′

i); otherwise, wire i is assumed corrupted. R then constructs an indicator bit
string B = b1b2 · · · bn where bi = 1 if the wire i is corrupted and bi = 0 otherwise.
Finally,R sends (B, (H1, . . . , Hn)) over the public channel, where Hi = (hi, T

′
i )

if bi = 0; and Hi is empty, otherwise.
3. (S → R): S ignores the wires with bi = 1. For i = 1, . . . , n, if bi = 0, S computes

Ti = ri ⊕ hi(Ri) and checks T ′
i = Ti; if T ′

i = Ti, wire i is assumed consistent;
otherwise, wire i is corrupted. S constructs an indicator bit string V = v1v2 · · · vn,
where vi = 1 if wire i is considered consistent; otherwise vi = 0. S sends the pair
(V, C = MS ⊕ {

⊕
vi=1 Ri}) along every consistent wire j. R receives (Vj , Cj)

along wire j and set V = {(Vj , Cj)}. R chooses some pair (V ′, C′) ∈ V as
follows.

– All the elements in V can be enumerated as (U1, D1), . . . , (Ud, Dd) according
to some order, where d = |V |.

– Let di be the number of indices j such that (Vj , Cj) = (Ui, Di).
– If di < n− t then reset di = 0.
– Choose (V ′, C′) = (Uk, Dk) with probability dk/(

∑
i di).

Finally,R recovers MR = C′⊕{⊕v′
i=1 R′

i} and outputs it, where V ′ = v′1 · · · v′n.

Theorem 4. The protocol Π1 is a (3, 0, 1)-round (0, δ)-SMT-PD protocol, where

δ ≤ t

n
+

n− t

n
· t · 2−�.

Proof. Let B = {i : wire i is corrupted} and G = {i : wire i is consistent}.
First, we upper-bound the reliability parameter. If S can detect all corrupted wires with
(r′i, R

′
i) �= (ri, Ri) and (V, C) = (V ′, C′), then the protocol is perfectly reliable.

The probability of the event when (V, C) = (V ′, C′) is at least (n − t)/n. We
consider that the reliability is always violated when (V, C) �= (V ′, C′). Hence in the
following we assume that (V, C) = (V ′, C′).

In the second round the wires with bi = 1 are detected as corrupted and are ignored
in the third round. Hence in the following we only consider wires with bi = 0. For wire
i, the wire is called bad if (r′i, R

′
i) �= (ri, Ri) but ri ⊕ hi(Ri) = r′i ⊕ h(R′

i). Bad wires
are always included in G. Using Proposition 1 and noting that ri, Ri, r

′
i, R

′
i are fixed

before the second round and then hi is selected with uniform distribution, we have

Pr[wire i is bad] = Pr[ri ⊕ hi(Ri) = r′i ⊕ h(R′
i) ∧ (ri, Ri) �= (r′i, R

′
i)]

≤ Pr[ri ⊕ hi(Ri) = r′i ⊕ h(R′
i) | (ri, Ri) �= (r′i, R

′
i)] ≤ 2−�,
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where the probability is over the randomness of all the parties. Then, the probability of
unreliable message transmission is

Pr[MR �= MS] = Pr

⎡⎣⊕
j∈G

Rj �=
⊕
j∈G

R′
j

⎤⎦ ≤ Pr[∃j ∈ G s.t. Rj �= R′
j ]

≤ Pr[∃ at least one bad wire]

≤
∑
j∈B

Pr[wire j is bad] ≤ t · 2−�,

where the probability is over the random coins of all the parties.
Thus, putting altogether, we can say that the reliability δ satisfies

δ ≤ t

n
+

n− t

n
· t · 2−�.

Next, we estimate the privacy parameter. The adversary can obtain transmissions related
to MS only from the corrupted wires in the third round. Thus, the situation is completely
the same as (3,2)-round SMT-PD protocol by Shi et al.[18]. Thus, the proof of the
perfect privacy for their protocol also works in our case. ��
Let us consider the case where n = 2t. Then, if � is large enough, then the reliability
parameter in Theorem 4 comes close to 1/2. In this sense, the gap between the lower
bound in Theorem 3 and the upper bound in Theorem 4 is slight.

6 Concluding Remarks

We have considered the secure message transmission with unidirectional public chan-
nel. We have shown that any (r, r′, 0)-round protocol must satisfy that ε + δ ≥ 1 −
1/|M |. It says that there is no useful (r, r′, 0)-round SMT-PD protocol. We have also
shown that any (r, 0, r′)-round protocol must satisfy that δ ≥ (1 − 1/|M |)/2. It says
that there may exist an (r, 0, r′)-round (0, 1/2)-SMT-PD protocol. Actually, if n = 2t
then the protocol in Theorem 4 satisfies that δ ≈ 1/2. However, there is still a gap in
general. In other words, either the lower bound in Theorem 3 or the upper bound in
Theorem 4 may be further improved.

Anyway, we may say that SMT-PD protocols require the bidirectional public
channel.
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Abstract. In a distributed oblivious transfer (DOT) the sender is re-
placed with m servers, and the receiver must contact k (k ≤ m) of these
servers to learn the secret of her choice. Naor and Pinkas introduced
the first unconditionally secure DOT for a sender holding two secrets.
Blundo, D’Arco, Santis, and Stinson generalized Naor and Pinkas’s pro-
tocol, in the case that the sender holds n secrets, in the first so-called
(k, m)-DOT-

(
n
1

)
protocol. Such a protocol should be secure against a

coalition of less than k parties. However, Blundo et al. have shown that
this level of security is impossible to achieve in one-round polynomial-
based constructions.

In this paper, we show that if communication is allowed amongst the
servers, we are able to construct an unconditionally secure, polynomial-
based (k, m)-DOT-

(
n
1

)
protocol with the highest level of security. More

precisely, in our construction, a receiver who contacts k servers and cor-
rupt up to k − 1 servers (not necessarily from the set of the contacted
servers) cannot learn more than one secret.

Keywords: Oblivious Transfer, Unconditional Security, Secret Sharing
Scheme.

1 Introduction

Oblivious Transfer (OT) is a cryptographic protocol which allows two parties to
exchange, in total privacy, one or more secret messages. The first OT, introduced
by Rabin [10], enables a sender to transmit a message to a receiver in such a
way that the receiver gets the message with probability 1

2 while the sender does
not know whether the message was received. Even, Goldreich and Lempel [7]
introduced a variant of the original OT for a contract signature application.
This OT, identified as OT-

(
2
1

)
, is an exchange protocol between a receiver and a

sender who has two secret messages; the receiver chooses one of the two messages
and the sender transmits the chosen message to the receiver. At the end of the
protocol, the sender does not know which message was selected and the receiver
knows nothing of the other message.

A major drawback with OT-
(
2
1

)
and with the more general OT-

(
n
1

)
described

by Brassard, Crépeau and Roberts [5] is the restriction in the availability of the
secret messages, because if the unique sender is unavailable, the receiver cannot
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obtain any of the messages. To increase the availability of messages, the sender
distributes them to m servers. However, to keep the messages confidential, a
server is only provided with parts – called shares – of the original messages.
Then, the receiver needs to communicate with at least k servers to gain enough
shares to reconstruct a chosen message. In this distributed model, the sender
does not intervene in the rest of the protocol once he has transmitted the partial
secret messages to the servers.

In 2000, Naor and Pinkas [8] introduced the first distributed model for an
OT in an unconditionally secure setting. In this Distributed Oblivious Transfer
(DOT) protocol, the parties encompass a sender who has two secrets, m servers
owning shares of the secrets, and a receiver whose purpose is to obtain one of
the secrets. The protocol itself is composed of two phases: (i) the initialization
phase and (ii) the transfer phase. During the initialization phase, the sender
generates a bivariate polynomial Q, determines shares from this polynomial and
sends to each of the m servers a different set of shares. In the transfer phase,
the receiver chooses the index of a secret and selects the k servers she intends to
contact. Then, she generates a univariate polynomial S and sends to each of the
k selected servers a value determined by the polynomial S and the identifier of
the server. Each contacted server generates a response based on its program and
the received value from the receiver. The response is sent back to the receiver.
After receiving k responses, the receiver is able to determine the chosen secret.

In [3,4], Blundo, D’Arco, De Santis and Stinson generalize Naor and Pinkas’s
protocol to n secrets, and define a security model composed of four fundamental
conditions that every DOT must satisfy:

C1. Correctness – The receiver is able to determine the chosen secret once she
receives information from the k contacted servers.

C2. Receiver’s privacy – A coalition of up to k − 1 servers cannot obtain any
information on the choice of the receiver.

C3. Sender’s privacy with respect to k − 1 servers and the receiver – A coalition
of up to k − 1 servers with the receiver does not obtain any information
about the secrets.

C4. Sender’s privacy with respect to a “greedy” receiver – Given the transcript
of the interaction with k servers, a coalition of up to k−1 dishonest servers
and the receiver does not obtain any information about secrets which were
not chosen by the receiver.

As it has been pointed out by Blundo et al. in [3,4], the protocol introduced by
Naor and Pinkas only satisfies conditions C1 and C2. Their own protocol satisfies
conditions C1, C2 and C3 only. Actually, they have proven that condition C4
cannot be guaranteed with a one-round DOT protocol – a round being defined
as a set of consistent requests/responses exchanged between the receiver and k
servers.

In this paper, we show that allowing communication amongst the servers
enables us to devise an unconditionally secure DOT protocol that satisfies all the
above conditions. We have chosen to assess the security of our protocol against
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Blundo et al.’s security model because this model covers other unconditionally
secure DOT security models [8,9].

Note that allowing communication amongst the servers is a silent condition
in existing DOT protocols. Indeed, the impossibility result of [3,4], in achiev-
ing condition C4, indicates that, given the transcript of the interaction with k
servers, a coalition of the receiver and only one dishonest server is sufficient for
the receiver to learn all secrets. Therefore, in their protocol there must be a
mechanism for ensuring that the receiver does not contact more than k servers
(see [8]). This kind of mechanism could be implemented with communication
amongst the servers.

The organization of the paper is as follows. In Sect. 2 we review the works
related to ours. After providing definitions and notations in Sect. 3, we briefly
describe our model in Sect. 4, and we list the components involved in our system
in Sect. 5. Section 6 is devoted to the detailed description of the model. In Sect. 7,
we evaluate our proposed scheme and demonstrate that it guarantees conditions
C1, . . . , C4.

2 Related Works

There have been few publications related to unconditionally secure polynomial-
based DOT protocols and the basic principles underlying these protocols are
conceptually similar. In the original DOT protocol [8] introduced by Naor and
Pinkas, as well as in its generalization [3,4] presented by Blundo et al., a sender
distributes some information amongst m servers so that, by contacting k servers,
a receiver is able to learn only one of the secrets held by the sender. A simplified
overview of the (k, m)-DOT-

(
n
1

)
presented in [4] may be described as follows

(operations are executed in a finite field IK = IFp, where p is a prime number):

1. The sender, who has n secrets ω0, . . . , ωn−1 generates a sparse n-variate
polynomial function Q defined by

Q (x, y1, . . . , yn−1) =
k−1∑
i=1

aix
i + ω0 +

n−1∑
i=1

(ωi − ω0)× yi,

where the coefficients ai (1 ≤ i ≤ k − 1) are numbers randomly selected
in IK. We note that ω0 = Q (0, . . . , 0) and, for � ∈ {1, . . . , n − 1}, ω� =
Q (0, . . . , 0, 1, 0, . . . , 0), where the number 1 is in position � + 1.

2. Then, to each server Sj (1 ≤ j ≤ m), the sender transmits the (n−1)-variate
polynomial function Fj defined by

Fj (y1, . . . , yn−1) = Q (j, y1, . . . , yn−1) .

3. In the oblivious transfer phase, the receiver chooses the identifier � of one
secret and generates univariate polynomial functions Zi (1 ≤ i ≤ n − 1) of
degree at most k − 1 such that (Z1(0), . . . , Zn−1(0)) is an (n − 1)-tuple of
zeros if the receiver is interested in ω0 (i.e., � = 0), or an (n − 1)-tuple of
zeros and a single one in position � if the receiver is interested in ω� (where
� ∈ {1, . . . , n− 1}).
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4. Then, the receiver selects a subset Ik ⊂ {1, . . . , m} of k indices and sends
to each server Si (i ∈ Ik) a request (i, Z1(i), . . . , Zn−1(i)). When a server Si

receives such a request, it replies with the share Fi (Z1(i), . . . , Zn−1(i)).
5. After receiving k responses, the receiver interpolates a univariate polynomial

R from the k points (i, Fi (Z1(i), . . . , Zn−1(i))) and calculates the chosen
secret: ω� = R (0).

In this scheme, each server Sj knows the value ωi − ω0 (1 ≤ i ≤ n − 1) as the
coefficient of yi in the polynomial function Fj received from the sender. After
execution of the protocol, the receiver who has learned a secret ω� of her choice
can request the values ωi−ω0 (1 ≤ i ≤ n−1) from a corrupt server and compute
all other secrets. Therefore, a coalition of the receiver and only one dishonest
server enables the receiver to learn all secrets. Indeed, in [3,4], each secret ωi is
masked by multiplying it with a random value ri, but at the end of protocol the
receiver learns all masks as well.

Our observation is that, in [8,3,4], the amount of information given to each
server is too high. A fundamental requirement for achieving condition C4 is that
not only each server, but also any coalition of up to k − 1 servers, should not
gain a linear combination of any of two secrets. To meet this requirement, a
solution consists, for the sender, in storing the secret values in the servers using
a (k, m)-threshold scheme (see Sect. 5.1).

3 Preliminaries

Definition 1. A (k, m)-DOT-
(
n
1

)
protocol is (k−1)-private if, after completion

of the protocol, any subset of up to k − 1 servers cannot learn which secret has
been chosen by the receiver.

Definition 2. A (k, m)-DOT-
(
n
1

)
protocol is (k− 1)-secure if, after completion

of the protocol, any subset composed of up to k−1 servers and the receiver cannot
learn information about the secrets in addition to the information already learned
by the receiver.

Throughout this paper, all operations are executed in a finite field (IK = IFp, +,×),
where p ∈ IN is a prime number, + is the additive law of composition, and
× is the multiplicative law of composition of the field. We assume that p >
max(n, ω1, . . . , ωn, m), where n is the number of secrets, m is the number of
servers, and ω1, . . . , ωn are the n secrets in the system.

Definition 3. If (IK[X ], +,×) is the ring of polynomials over IK and (IKt[X ], +)
the group of polynomials of degree at most t over IK, we say that a polynomial
F =

∑t
i=0 fiX

i of IKt[X ] is quasi-random, if the coefficients fi (1 ≤ i ≤ t) are
randomly selected in IK and the constant term f0 has a predefined value.

Definition 4. By an abuse of language, if F =
∑r

i=0 fiX
i (r ∈ IN, fi ∈ IK)

is a polynomial of IK[X ], we define the polynomial function F : IK → IK, x �→∑r
i=0 fix

i. Note that the additive and multiplicative laws of composition in IK[X ]
are defined such that, for P , Q, R ∈ IK[X ] and for x ∈ IK
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– If R = P + Q, then the corresponding polynomial functions satisfy the rela-
tionship R(x) = P (x) + Q(x),

– Similarly, if R = P ×Q, then the corresponding polynomial functions satisfy
the relationship R(x) = P (x)×Q(x).

Definition 5. Let Φ = (F1, . . . , Fn) be a vector of polynomials of IKt[X ].
We define Φ(x) = (F1(x), . . . , Fn(x)) as the vector of corresponding polynomial
functions. For any element α ∈ IK, we denote Φα = Φ(α) =
(F1(α), . . . , Fn(α)) the vector of polynomial functions F1(x), . . . , Fn(x) evalu-
ated for the argument x = α. By homogeneity, we denote Fα the value of a
polynomial function F applied to the argument x = α.

Definition 6. Let Φ = (F1, . . . , Fn) and Ω = (Z1, . . . , Zn) be two vectors of
polynomials of IKk−1[X ]. We define the scalar product between Φ and Ω as

Φ•Ω =
n∑

i=1

Fi × Zi .

Note that we assume p ≥ 2k− 1, and thus Fi×Zi is a polynomial of IK2k−2[X ].

Lemma 1. Let F be a quasi-random polynomial of IKk[X ] and G a (quasi-
random) polynomial of IKk[X ]. Then, P = F + G is a quasi-random polynomial
of IKk[X ].

Proof. The degree of the sum of two polynomials is lower or equal to the maxi-
mum degree of the two original polynomials. Thus deg P ≤ max(deg F, deg G) ≤
k. It follows P ∈ IKk[X ].

The quasi-random polynomials F , G, and their sum, P , may be written under
the form:

F =
k∑

i=0

fiX
i, G =

k∑
i=0

giX
i, and P =

k∑
i=0

(fi + gi)X i,

where fi ∈R IK and gi ∈R IK (1 ≤ i ≤ k). Therefore, for 1 ≤ i ≤ k, the coefficient
fi + gi is random (the sum of a random element of IK with another element of
IK is random) and the constant term f0 + g0 has a predetermined value. Thus,
P is a quasi-random polynomial. ��
Theorem 1 (Addition of shares). Let F and G be two quasi-random polyno-
mials of IKk−1[X ] generated by Shamir’s (k, m)-threshold schemes (see Sect. 5.1)
to share respectively the secret α and the secret β amongst m users. We also as-
sume that Ik ⊂ {1, . . . , m} is a set of k indices. For each index i ∈ Ik, we define
the shares Fi and Gi. If P is the sum of F and G, then:

(i) P is a quasi-random polynomial of IKk−1[X ],
(ii) P (0) = α + β and for i ∈ Ik, P (i) = Fi + Gi.

In other words, P may be considered as a polynomial generated by Shamir’s
(k, m)-threshold scheme to share the secret α + β.
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Proof

(i) Immediate with the application of Lemma 1.
(ii) From the definition 4 of the additive law of composition in IK[X ], it holds

P (x) = F (x)+G(x), for x ∈ IK. Consequently, for x = 0, P (0) = F (0)+G(0).
As F and G are the sharing polynomials for the secrets α and β, we have
F (0) = α and G(0) = β. It follows P (0) = α + β.
Still from the relationship P (x) = F (x) +G(x), we obtain for i ∈ Ik, P (i) =
F (i) + G(i). From the definition 5 of shares, it follows P (i) = Fi + Gi. ��

Theorem 2 (Product of shares). Let F and G be two quasi-random poly-
nomials of IKk−1[X ] generated by Shamir’s (k, m)-threshold schemes to share
respectively the secret α and the secret β. We assume that m ≥ 2k− 1. For each
index i ∈ Im, we define the shares Fi and Gi. If Q is the product of F and G,
then:

(i) Q ∈ IK2k−2[X ],
(ii) Q(0) = α× β and for i ∈ Im, Q(i) = Fi ×Gi.

Proof.

(i) If F =
∑k−1

i=0 fiX
i (f0 = α and fi ∈R IK, 1 ≤ i ≤ k−1) and G =

∑k−1
i=0 giX

i

(g0 = β and gi ∈R IK, 1 ≤ i ≤ k − 1), then from the explicit form of the
multiplicative law of composition in IK[X ], it follows

Q =
2k−2∑
�=0

( ∑
i+j=�

figj

)
X�

where fi = 0 if i ≥ k and gj = 0 if j ≥ k. The degree of Q is at most 2k− 2,
so Q ∈ IK2k−2[X ].

(ii) Using the definition 4 of the multiplicative law of composition in IK[X ], we
can write Q(x) = F (x)×G(x) for x ∈ IK. In particular, Q(0) = F (0)×G(0) =
α× β. Of course, the relationship is also true for x ∈ Im.

The polynomial Q cannot be considered as quasi-random because it is not irre-
ducible. However, if we add Q to a quasi-random polynomial of IK2k−2[X ] whose
constant term is zero, the resulting polynomial is quasi-random (see Lemma 1)
and may be considered as a polynomial generated by Shamir’s (2k − 1, m)-
threshold scheme to share the secret α× β. ��
Corollary 1. Let Ω = (F1, . . . , Fn) and Φ = (G1, . . . , Gn) be two vectors of
quasi-random polynomials of IKk−1[X ], each polynomial being generated by a
Shamir’s (k, m)-threshold scheme to share secrets (ω1, . . . , ωn) and (ϕ1, . . . , ϕn).
We assume that m ≥ 2k − 1. For each index i ∈ Im, we define the shares
(F1i, . . . , Fni) and (G1i, . . . , Gni). If Q is the scalar product of Ω and Φ, then:

(i) Q ∈ IK2k−2[X ],
(ii) Q(0) =

∑n
i=1 ωi × ϕi and for � ∈ Im, Q(�) =

∑n
i=1 Fi� ×Gi�.
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By simplification, we consider that the polynomial Q is quasi-random. However,
to obtain a quasi-random polynomial, we would have to add Q to a quasi-random
polynomial of IK2k−2[X ] whose constant term is zero. The resulting polynomial
would be quasi-random (see Lemma 1) and could be considered as a polyno-
mial generated by Shamir’s (2k − 1, m)-threshold scheme to share the secret∑n

i=1 ωi × ϕi.

Proof

(i) From Theorem 2(i), Fi×Gi ∈ IK2k−2[X ] (1 ≤ i ≤ n). Then, by generalization
of Theorem 1(i),

∑n
i=1 Fi ×Gi ∈ IK2k−2[X ]. Consequently, Q ∈ IK2k−2[X ].

(ii) From Theorems 2(ii) and 1(ii), it holds Q(x) =
∑n

i=1 Fi(x) ×Gi(x) for x ∈
IK. In particular, Q(0) =

∑n
i=1 Fi(0)×Gi(0) =

∑n
i=1 ωi × ϕi. Of course,

the relationship is also true for � ∈ Im, i.e., Q(�) =
∑n

i=1 Fi(�)×Gi(�).
As Fi(�) = Fi� and Gi(�) = Gi� for i ∈ Im and 1 ≤ � ≤ n, it follows
Q(�) =

∑n
i=1 Fi� ×Gi�. ��

Notations
The Kronecker’s symbol, δij , is equal to 0 if i �= j and equal to 1 if i = j.

By α ∈R IK, we mean that α is chosen randomly from all possible elements
of IK.

Addition and multiplication of vectors (of the same variety) are defined nat-
urally. For example, if U =(u1, . . . , un) and V = (v1, . . . , vn), then U + V =
(u1+v1, . . . , un+vn) and U×V = (u1 × v1, . . . , un × vn). Similarly, the product
α×U between an element α of IK and a vector U = (u1, . . . , un) of n elements
of IK is defined as the vector (α× u1, . . . , α× un).

Each server participating in the protocol is identified by an index selected in
Im = {1, . . . , m}. Thus, the server associated with index i ∈ Im is identified
as Si.

4 Our Model

The setting of our model is similar to the setting of DOT protocols in [8,3,4],
i.e., it encompasses a sender S who owns n secrets ω1, . . . , ωn (n > 1), a re-
ceiver R who wishes to learn a secret ωσ (σ ∈ {1, . . . n}), and m servers. In
addition to these parties, we also need to take into account an adversary whose
characteristics are defined below.

Like other DOT protocols, our protocol is composed of two phases: a setup
phase and an oblivious transfer phase. During the setup step, the sender gen-
erates shares of the n secrets he holds and distributes them to the m servers.
The sender does not intervene in the rest of the protocol. During the oblivious
transfer phase, the receiver has to contact k servers (1 < k ≤ m) to collect
enough shares to construct ωσ.

In our scheme, however, the inequality m ≥ 2k − 1 must be satisfied. This is
because, condition C4 allows the receiver to corrupt up to k−1 servers, in addition
to the k servers chosen by the receiver for gaining shares of the chosen secret.
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4.1 The Adversary

In our DOT, the receiver contacts k servers during the execution of the protocol.
In addition, she is allowed to corrupt up to k − 1 servers, possibly amongst the
contacted servers. That is, the receiver plays the role of a passive adversary who
wishes to breach the sender’s security by learning more than one secret from
the protocol. Like in other DOT schemes (see [8]), we assume the existence of a
mechanism preventing the receiver from contacting more than k servers in one
round.

On the other hand, up to k − 1 servers may collaborate to learn the choice σ
of the receiver. In this scenario, the coalition of servers may be considered as an
adversary who wishes to breach the privacy of the receiver.

4.2 Overview of the Protocol

The key idea of our model is that if a sender holds a vector u = (ω1, . . . , ωn) of
n secrets (n > 1) and if a receiver wishes to learn the secret ωσ (1 ≤ σ ≤ n),
then the receiver contributes with a vector v = (δσ1, . . . , δσn), and the servers
respond with the scalar product of these two vectors, i.e., u •v =

∑n
i=1 ωi × δσi,

which is the requested secret.
To guarantee the security of the sender and the privacy of the receiver, the

vectors involved in the scalar product are shared thanks to Shamir’s [11] thresh-
old schemes. That is, the sender transmits to each server Si (1 ≤ i ≤ m) a vector
ui = (F1(i), . . . , Fn(i)) of n shares, where Fi is the sharing polynomial related to
ωi. In the same way, to obtain a secret ωσ, the receiver selects a subset Ik ⊂ Im

of k indices, sends to each server Sj (j ∈ Ik) a vector vj = (Z1(j), . . . , Zn(j)) of
n shares (Zi is the sharing polynomial related to δσi) and receives k shares of the
chosen secret ωσ. The shares are associated with a polynomial μ of degree k− 1
and so, by interpolation, the receiver is able to determine μ and to calculate the
chosen secret ωσ = μ(0).

5 Components of the System

Our protocol is mainly based on two components.
The first one is a secret sharing scheme, allowing on one hand the sender to

generate and distribute shares of the secrets he holds, and on the other hand
the receiver to generate and distribute shares of the identifier of the secret she
wishes to learn.

The second one is a mechanism which enables a set of users to redistribute
a secret to another set of users. This component requires the availability of
private communication channels between any two users involved in the protocol.
We assume that these communication channels are secure, i.e., any party is
unable to eavesdrop on them and they guarantee that communications cannot
be tampered with.
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5.1 Secret Sharing Scheme

The underlying secret sharing scheme of our DOT protocol is Shamir’s threshold
scheme. In [11], Shamir shows how to share a secret ω ∈ IK amongst m users
u1, . . . , um such that ω can be reconstructed from any set of k (k ≤ m) shares.
Shamir suggests the following algorithm for constructing such secret sharing
schemes, called (k, m)-threshold schemes.

1. A dealer, D, who has a secret ω, chooses m distinct and non-zero elements
of IK, denoted x1, . . . , xm and sends xi to ui via a public channel. For con-
venience, we assume that xi = i.

2. D secretly chooses k − 1 random elements of IK, denoted a1, . . . , ak−1 and
forms the polynomial function f(x) =

∑k−1
�=1 a�x

� + ω.
3. D gives (in private) the share f(i) to the user ui.

In the secret reconstruction phase, a set of at least k participants uses the La-
grange interpolation formula to recover the secret. Without loss of generality, let
u1, . . . , uk be the set of collaborating users in the secret reconstruction phase.
Then the secret can be recovered, using

ω =
k∑

i=1

f(i)
k∏

j=1
j �=i

j

j − i
.

It is well-known that Shamir’s threshold scheme is perfect, i.e., the knowledge
of k − 1 or less shares leaves ω completely undetermined (in the sense that all
its possible values are equally likely).

5.2 Transformation from One to Another Threshold Scheme

There are many applications that require redistribution of a secret from one set
of users to another set of users, with possibly a different threshold. Desmedt
and Jajodia [6] have considered this problem and proposed some protocols. The
specific case of the reduction of the threshold is commonly discussed in multi-
party computation studies. Indeed, if two secrets are shared (Shamir’s scheme)
thanks to two polynomials P1 and P2 of IKk−1[X ], then from the polynomial
Q = P1 × P2 can be generated shares of the product of the two secrets (See
Theorem 2). But the degree of Q (up to 2k − 2) corresponds to a threshold
2k − 1, and so a degree reduction is necessary to obtain a sharing polynomial
corresponding to a threshold k. Such a reduction was introduced, for example,
by Ben-Or, Goldwasser and Wigderson [2].

Below we present a combined method, allowing a set of k1 or more users hold-
ing shares generated by a Shamir’s (k1, m1)-threshold scheme to distribute them
under the form of shares generated by a Shamir’s (k2, m2)-threshold scheme,
where k1 ≥ k2, to a set of m2 users.

Let a secret ω be shared amongst the group of users U = {u1, . . . , um1} thanks
to a polynomial f generated in a (k1, m1)-threshold scheme (k1 ≤ m1). Each
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user ui holds the share f(i). Also, let assume that the users u1, . . . , uk1 wish to
redistribute the secret ω over the set of users V = {v1, . . . , vm2} using a (k2,
m2)-threshold scheme (k2 ≤ m2). Note that U and V are two arbitrary groups
of users. Each user ui ∈ (u1, . . . , uk1) generates a polynomial Hi such that

Hi =
k2−1∑
r=1

hi,rX
r + Li × f(i),

where hi,r ∈R IK (1 ≤ i ≤ k1, 1 ≤ r ≤ k2 − 1) and Li is the truncated Lagrange
basis polynomial Li mod Xk2 where

Li =
k1∏

j=1
j �=i

X − j

i− j
.

Truncating the polynomial Li (1 ≤ i ≤ k1) allows each user ui ∈ (u1, . . . , uk1)
to generate a polynomial Hi of degree k2 − 1 and not k1 − 1 (when k2 < k1), by
application of the technique described by Beaver [1]. Then, for all 1 ≤ j ≤ m2,
the user ui privately sends the value Hi(j) to the user vj ∈ V . Once a user vj ∈ V
obtains k1 partial shares, sent by the users ui ∈ U , he computes a new share
ρj =

∑k1
i=1 Hi(j) as his share of the secret ω.

With this method, the original sharing polynomial f is replaced with a sharing
polynomial g such that

g =
k1∑

i=1

(k2−1∑
r=1

hi,rX
r + f(i)× Li

)

=
k1∑

i=1

k2−1∑
r=1

hi,rX
r +

k1∑
i=1

f(i)× Li

=
k1∑

i=1

k2−1∑
r=1

hi,rX
r + f

where f is the truncated polynomial f mod Xk2 .
The degree of the polynomial g is at most k2−1 and g(0) = f(0) = f(0) = ω.

Therefore, with k2 values ρi = g(i), any set of k2 users in V is able to interpolate
g and to determine the secret ω.

Theorem 3. If k2 ≤ k1, the proposed protocol for transforming a Shamir (k1,
m1)-threshold scheme to a Shamir (k2, m2)-threshold scheme is secure.

Proof. To demonstrate the security of ω, we show that after the new shares
have been obtained, no coalition of k2−1 users or less can infer any information
about ω.

After the redistribution of shares, a coalition of k2 − 1 users holds at most
k2−1 shares f(i) and k2−1 shares g(i). We analyze the worst case, i.e., when all
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the members of the coalition belong to U . First, the coalition cannot interpolate
f and calculate f(0) since k1 shares f(i) would be necessary, and the coalition
only holds k2− 1 ≤ k1− 1 < k1 shares. Second, with only k2− 1 values g(i), and
g being a polynomial of degree k2 − 1, the coalition cannot either interpolate g
and calculate g(0). Consequently, a coalition of k2 − 1 users ui ∈ V is unable to
gain any information on the secret ω. ��

6 A Secure (k, m)-DOT-
(

n

1

)
Protocol

In this section we present our (k, m)-DOT-
(
n
1

)
protocol, which is (k− 1)-private

and (k − 1)-secure. Our protocol, depicted in Fig. 1, is composed of five steps,
described in the following sections.

6.1 Setup Phase

This step is straightforward. The sender, S, distributes the shares of the se-
crets ω1, . . . , ωn amongst the servers S1, . . . , Sm, using Shamir’s (k, m)-threshold
scheme. That is, for each secret ωi (1 ≤ i ≤ n), the sender generates a quasi-
random polynomial Fi ∈ IKk−1[X ] such that

Fi =
k−1∑
j=1

fi,jX
j + ωi, where fi,j ∈R IK, 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1,

and computes the shares of ωi for all servers S� (� ∈ Im). Then, S transmits to
each server S� the vector Ω� = (F1(�), . . . , Fn(�)). The sender does not intervene
in the rest of the protocol.

6.2 Elaboration of the Receiver’s Requests

The receiver, R, chooses the index σ of the secret she wishes to obtain, as well
as a subset Ik ⊂ Im of k indices of the servers she intends to contact. Then, the
receiver generates n quasi-random polynomials Zi ∈ IKk−1[X ] such that

Zi =
k−1∑
j=1

zi,jX
j + δσi, where zi,j ∈R IK, 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1,

and transmits to each server S� (� ∈ Ik) the vector Φ� = (Z1(�), . . . , Zn(�)).

6.3 Redistribution of the Receiver’s Input

In this step the k contacted servers, which have received from R shares gen-
erated by a (k, k)-threshold scheme, redistribute them as shares considered as
generated by a (k, 2k − 1)-threshold scheme. To perform this redistribution,
the servers S� (� ∈ Ik) select a subset I2k−1 ⊂ Im of servers. Then for every
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Let S1, . . . , Sm be m servers.
Input The sender S, contributes with n secrets ω1, . . . , ωn ∈ IK

The receiver R, chooses an index σ ∈ {1, . . . , n}, and contributes with
n private values δσ1, . . . , δσn ∈ {0, 1}

Output R receives ωσ, while S receives nothing.

Step 1 – Setup phase

1. S generates a vector Ω = (F1, . . . , Fn) of n quasi-random polynomials Fi ∈
IKk−1[X], where the constant term of Fi is ωi (1 ≤ i ≤ n).

2. S transmits to the server S
 (� ∈ Im) the vector Ω� = (F1(�), . . . , Fn(�)).

Step 2 – Elaboration of the receiver’s request

1. R chooses σ ∈ {1, . . . , n} and Ik ⊂ Im.
2. R generates a vector Φ = (Z1, . . . , Zn) of n quasi-random polynomials Zi ∈

IKk−1[X], where the constant term of Zi is δσi.
3. R transmits to server S
 (� ∈ Ik) the vector Φ� = (Z1(�), . . . , Zn(�)).

Step 3 – Redistribution of the receiver’s input

1. The contacted servers S
 (� ∈ Ik) select a subset I2k−1 ⊂ Im of 2k − 1 servers
such that Ik ⊂ I2k−1.

2. Each server S
 (� ∈ Ik) generates two polynomial vectors:
(a) Θ�1 = (G
,1, . . . , G
,n) such that G
,i is a quasi-random polynomial of

IKk−1[X] with a null constant term,
(b) Θ�2 =

∏
u∈Ik
u �=


X−u

−u

× Φ�,

and builds a vector Ψ� = Θ�1 + Θ�2 of n polynomials.
3. The value Ψ�

j is sent to the server Sj (j ∈ I2k−1).
4. Each server Sj , once it holds k values Ψ�

j (� ∈ Ik), calculates Φ′
j =

∑

∈Ik

Ψ�
j ,

as its shares from the receiver’s input related to (k, 2k − 1)-threshold schemes.

Step 4 – Computation of the requested secret

1. Each server S
 (� ∈ I2k−1) calculates the scalar product λ
 = Ω� •Φ′
�, which is its

share of the requested secret, Ω0 •Φ0, related to a polynomial of degree 2k − 2.
So, the collaborating set of at least 2k − 1 servers involved in the computation
of Ω0 •Φ0, redistributes its shares using a (k, k)-threshold scheme.

2. S
 (� ∈ I2k−1) generates two polynomials:
(a) H
1, a quasi-random polynomial of IKk−1[X] with a null constant term,
(b) H
2 = L
×λ
, where L
 is the truncated Lagrange basis polynomial L
 mod

Xk, where L
 =
∏

j∈I2k−1
j �=i

X−j

−j

,

and builds a polynomial H
 = H
1 + H
2. The value H

j is sent to the server Sj

(j ∈ Ik).
3. A server Sj , once it holds 2k−1 values H


j (� ∈ I2k−1), calculates the new share
μj =

∑

∈I2k−1

H

j .

Step 5 – Oblivious transfer of the requested secret

1. Sj (j ∈ Ik) sends μj to R.
2. R interpolates a polynomial μ of degree at most k−1, and calculates ωσ = μ (0).

Fig. 1. A secure (k, m)-DOT-
(

n
1

)
protocol
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secret value δσi shared thanks to a polynomial Zi (1 ≤ i ≤ n), they execute
the redistribution protocol described in Sect. 5.2, and reshare that secret value
using a (k, 2k− 1)-threshold scheme. This process is shown in Fig. 1 for vectors
of secret values. The new shares associated with a secret value δσi (1 ≤ i ≤ n)
are considered as generated from a new polynomial that we denote Z ′

i (we also
denote Φ′ = (Z ′

1, . . . , Z
′
n) the vector of sharing polynomials related to the vec-

tor Φ = (δσ1, . . . , δσn) of private values). Therefore, each server S� (� ∈ I2k−1)
obtains a vector Φ′

� = (Z ′
1(�), . . . , Z ′

n(�)) of shares of (δσ1, . . . , δσn).

6.4 Computation of the Requested Secret

Now, each server S� (� ∈ I2k−1) holds a vector Ω� = (F1(�), . . . , Fn(�)) as its
share of the secrets (ω1, . . . , ωn), and a vector Φ′

� = (Z ′
1(�), . . . , Z ′

n(�)) as its
share of (δσ1, . . . , δσn).

The elements of the two vectors Ω and Φ′ are polynomials belonging to
IKk−1[X ]. It follows (Corollary 1) that Ω •Φ′ is a polynomial of degree at most
2k − 2, that (Ω •Φ′)(0) = ωσ and that for i ∈ I2k−1, λ� = Ω� •Φ′

� is a share of
ωσ, generated by the sharing polynomial Ω •Φ′.

So, each server S� (� ∈ I2k−1) calculates the new share λ� = Ω� •Φ′
�. Since at

least 2k−1 servers participate in the computation, they redistribute the resulting
shares λ�, (� ∈ I2k−1), thanks to a (k, k)-threshold scheme (using the method
described in Sect. 5.2), to the servers Sj(j ∈ Ik).

6.5 Oblivious Transfer of the Requested Secret

After redistribution of the secret shares in the previous step, the set of contacted
servers Sj (j ∈ Ik) collectively owns the value of Ω0 • Φ0, under the form of
shares generated by a (k, k)-threshold scheme. Each server Sj (j ∈ Ik) responds
to the receiver’s request with the value μj , which is its share of Ω0 •Φ0 generated
from a sharing polynomial μ of degree at most k−1. The receiver R interpolates
a (k − 1)-degree polynomial corresponding to the k responses, and obtains ωσ.

7 Evaluation of the Protocol

In this section we demonstrate that the proposed protocol satisfies all desirable
conditions listed in [3,4] (i.e., conditions C1, C2, C3, and C4).

7.1 Correctness

We demonstrate that μ(0) = ωσ.
The degree of the polynomial μ is at most k− 1. So, the k shares μj (j ∈ Ik)

are sufficient to interpolate μ.
The redistribution procedure, in Sect. 6.4, does not modify the shared secret.

Thus, the sharing polynomials Ω • Φ′ (before the redistribution) and μ (after
the redistribution) are such that (Ω •Φ′)(0) = μ(0). Because (Ω •Φ′)(0) = ωσ,
it follows μ(0) = ωσ.

Therefore, condition C1 is guaranteed.
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7.2 Receiver’s Privacy

Theorem 4. The proposed (k, m)-DOT-
(
n
1

)
protocol, which is depicted in Fig.

1, is (k − 1)-private.

Proof. The index σ chosen by the receiver is represented under the form of a
vector (δσ1, . . . , δσn) of private values, where δσi = 0 if σ �= i and δσi = 1 if
σ = i. The receiver’s input to the protocol consists of shares of these values.
That is, each element δσi, which is either zero or one, is distributed amongst
the set of k servers S� (� ∈ Ik), using Shamir’s (k, k)-threshold scheme. This is
achieved by generating a vector Φ = (Z1, . . . , Zn) of n quasi-random polynomials
of IKk−1[X ], such that Zi(0) = δσi.

In order to breach the privacy of the receiver, a set of k − 1 colluding servers
(along the execution of the protocol, or after completion of the protocol) should
be able to determine at least one of the values δσi. The set of k−1 collaborating
servers, however, owns k − 1 shares corresponding to each values δσi associated
with a Shamir’s (k, k)-threshold scheme. Due to the perfectness of Shamir’s
threshold scheme, every set of k−1 shares provides the coalition with absolutely
no information about the relevant secret. That is, the inputs of the receiver
guarantees her privacy, during Step 2 of the protocol. Although in the next
step of the protocol, the set of k servers redistribute the private values δσi, to
2k − 1 servers, this transformation does not leak any information to a set of
k − 1 servers (see Theorem 3). In the same way, the redistribution presented in
Sect. 6.4 preserves the privacy of the receiver.

One may argue that, after completion of the protocol, the knowledge of the
output ωσ may help the set of k−1 servers to determine the choice of the secret.
However, this is not the case, since the shares held by the k− 1 servers after the
redistribution may be considered as generated from a (k, m)-threshold scheme,
and thus k−1 shares of any secret provides no information about the secret. ��
Consequently, the condition C2 is guaranteed.

7.3 Sender’s Security with Respect to k − 1 Servers and the
Receiver

At the level of the servers, the role of the vector Ω is the same as the role of
the vector Φ′. That is, a set of k − 1 colluding servers cannot learn any of the
secrets ω1, . . . , ωn (see previous section). Note that, in this scenario, there is no
advantage for the coalition of k−1 servers to collude with the receiver to breach
the sender’s security, since the receiver has no input to contribute in this attack.
Indeed, even if the receiver initiates the protocol by contacting only k−1 servers
(no matter what her input to the kth selected server is), she cannot learn any
of the secrets. This is because, the k − 1 shares she receives from the servers
are considered as generated by a (k, m)-threshold scheme, and thus provide no
information about the secrets.

Remark 1. Actually, this level of security, which is expressed as condition C3,
is achievable easily. Our claim, however, is that the security of the sender can
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be guaranteed against a coalition of k − 1 servers and the receiver, before and
after the protocol is executed. In this scenario, the receiver can examine the
transcripts of the protocol, the secret she has obtained, and all information held
by k − 1 corrupt servers (see the next section).

Remark 2. One may note that, contrary to the protocol presented in [3,4], our
protocol does not require the use of masks. Indeed, in our scheme, a corrupt
server cannot provide the receiver with a linear combination of the secrets
ω1, . . . , ωn because it never owns such a combination.

7.4 Sender’s Security with Respect to a “Greedy” Receiver

Let IC be the set of indices of k−1 corrupt servers. A corrupt server S� (� ∈ IC)
may be one of the servers selected by the receiver in the second step of the
protocol. In this case, � ∈ Ik. We assume the worst scenario from the sender’s
point of view (the best scenario from the “greedy” receiver’s point of view), i.e.,
that all the corrupt servers are selected by the receiver in Step 2 of the protocol
(IC ⊂ Ik). Thus, we assume that the receiver has access to all information of
these k − 1 corrupt servers along the execution of the protocol.

In the initialization step, each server Sc (c ∈ IC) receives from the sender
a vector Ωc = (F1(c), . . . , Fn(c)) of n elements, where the element Fi(c) is the
share allocated to Sc for the secret ωi. Clearly, the knowledge of k − 1 shares
of any secret ωi, provides the receiver with no useful information about the
secret ωi.

In Step 2, the receiver transmits her inputs to servers S� (� ∈ Ik). Obviously,
she cannot learn any information about ω1, . . . , ωn from her inputs.

In Step 3, the contacted servers redistribute the receiver’s private values δσi

(1 ≤ i ≤ n) amongst the servers S� (� ∈ I2k−1), using the method described
in Sect. 5.2. The receiver has access to all partial shares received by servers Sc

(c ∈ IC), and has also access to all partial shares sent by servers Sc (c ∈ IC)
to servers S� (� ∈ I2k−1). At the end of this step, the receiver’s private values,
δσi (1 ≤ i ≤ n), are shared amongst the servers S� (� ∈ I2k−1). The shares
are considered as generated from a (k, 2k − 1)-threshold scheme. Although the
receiver, for each private value δσi, has only access to k − 1 shares owned by
servers Sc (c ∈ IC), she can figure out all the 2k−1 shares elaborated by servers
S� (� ∈ I2k−1). Indeed, for i = 1, . . . , n, the receiver knows δσi and k − 1 shares
of δσi; so she can reconstruct the associated sharing polynomial generated in the
(k, 2k−1)-threshold scheme, and from the polynomial, the corresponding shares
held by servers S� (� ∈ I2k−1). That is, the receiver is able to find out all the
elements of the vector Φ′

� (� ∈ I2k−1).
In Step 4, each server S� (� ∈ I2k−1) computes λ� = Ω� •Φ′

�. The receiver is
able to multiply the corresponding shares of two vectors Ωc and Φ′

c (c ∈ IC),
and thus learns k− 1 shares of ωi × δσi (1 ≤ i ≤ n). She also knows the value of
ωi × δσi (1 ≤ i ≤ n), because if δσi = 0, then the ωi × δσi = 0, and if δσi = 1,
then ωi × δσi = ωσ, which is the secret that the receiver learns at the end of
the protocol. However, contrary to the previous step, knowing a value ωi × δσi
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(1 ≤ i ≤ n) and k− 1 of its shares is not sufficient to learn all other shares. This
is because in Step 4, the value and the shares are associated with a (2k − 2)-
degree polynomial (see Sect. 6.4), generated in a (2k − 1, 2k − 1)-threshold
scheme. Consequently, the receiver cannot learn any useful information about ωi

(1 ≤ i ≤ n, i �= σ). Note that the redistribution of secrets from a (2k−1, 2k−1)-
threshold scheme to a (k, k)-threshold scheme is completely secure (see Sect. 5.2)
and therefore provides the receiver with no information about ω1, . . . , ωn.

Finally, in Step 5, the data held by servers Sc (c ∈ IC) are not modified;
The servers Sj (j ∈ Ik) transmit to the receiver k shares of ωσ, generated by a
(k, k)-threshold scheme and the receiver learns the secret ωσ. That is, there is
no way for the receiver to learn more than the requested secret, and thus the
following is proved.

Theorem 5. The proposed (k, m)-DOT-
(
n
1

)
protocol, which is depicted in Fig.

1, is (k − 1)-secure.

7.5 Efficiency Considerations

In this paper, we have presented a new polynomial-based unconditionally secure
(k, m)-DOT-

(
n
1

)
protocol. Our result significantly improves the security of DOT

protocols. If we compare the efficiency of our protocol to the efficiency of the
(k, m)-DOT-

(
n
1

)
protocol presented in [3,4], we observe that our protocol requires

more computation on the servers’ sides, but less computation on the sender and
receiver’s sides, as shown in Table 1.

Table 1. Efficiency of DOT protocols

Party Blundo et al.’s protocol Our protocol

Sender S 1 distribution of n secrets
c0ω0, . . . , cn−1ωn−1, n masks
c0, . . . , cn−1 and 2× (n− 1) masks
r11, . . . , r

1
n−1, r

2
1, . . . , r

2
n−1

1 distribution of n secrets ω1, . . . , ωn

Receiver R 1 distribution of n private values (0 or
1) and 4 polynomial interpolations

1 distribution of n private values δσi

(1 ≤ i ≤ n) and one polynomial interpolation

Server S�

(worst case)
1 generation of 2 shares from degree 1
polynomials

n transformations from a (k, k) to a
(k, 2k − 1)-threshold scheme, 1
transformation from a (2k − 1, 2k − 1)- to a
(k, k)-threshold scheme, 1 generation of the
scalar product of 2 vectors of length n
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Abstract. Rational secret sharing protocols in both the two-party and
multi-party settings are proposed. These protocols are built in standard
communication networks and with unconditional security. Namely, the pro-
tocols run over standard point-to-point networks without requiring phys-
ical assumptions or simultaneous channels, and even a computationally
unbounded player cannot gain more than ε by deviating from the proto-
col. More precisely, for the 2-out-of-2 protocol the ε is a negligible function
in the size of the secret, which is caused by the information-theoretic MACs
used for authentication. The t-out-of-n protocol is (t−1)-resilient and the
ε is exponentially small in the number of participants. Although secret re-
covery cannot be guaranteed in this setting, a participant can at least re-
duce the Shannon entropy of the secret to less than 1 after the protocol.
When the secret-domain is large, every rational player has great incentive
to participate in the protocol.

Keywords: rational secret sharing, ε-Nash equilibrium, unconditional
security.

1 Introduction

Secret sharing [2,18] is an important tool in cryptography. The widely used t-
out-of-n scheme is that a dealer holding a secret distributes shares among n
players such that any group of t or more players can recover the secret from
their shares while any group of fewer than t players can not. In 2004 Halpern
and Teague [8] studied the problem in a game theoretic sense and proposed
rational secret sharing which is to fulfill the task among rational players who
only act in their own self-interest. As Halpern and Teague pointed out that no
rational player would broadcast his share in a deterministic recovering process,
since keeping silence can guarantee him a utility that is equal to and sometimes
even higher than the utilities of other players (because he might be the only
one who gets the secret). Therefore most previous secret sharing schemes fail
in the rational setting which requires to design a protocol such that all rational
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players have the incentive for participation. Furthermore, it is more desirable
to design a protocol where no player has an incentive to deviate as long as the
other players follow the protocol. This requirement is captured by the notion
of equilibrium in game theory. Although many rational secret sharing schemes
[1,14,12,13,15,5,7,8,9,10,11,20] have been developed achieving kinds of equilibria,
they are less satisfactory in some of the following aspects:

Notions of Equilibria. Halpern and Teague [8] first proposed achieving a Nash
equilibrium surviving iterated deletion of weakly dominated strategies. But Kol
and Naor [10] later pointed out that some “intuitively bad” strategies cannot
be deleted anyway, then they proposed the notion of strict Nash equilibrium re-
quiring that each player’s strategy is his unique best response to other players’
strategies. Although strict Nash equilibrium is a more appealing notion, it is too
restrictive to be achieved in many cases. Kol and Naor only achieved strict Nash
equilibrium in the two-party case assuming the existence of simultaneous broad-
cast channels 1. In non-simultaneous channels, only an approximate equilibrium
(i.e. ε-Nash equilibrium) was achieved. Recently, Fuchsbauer et al. [5] proposed
computational strict Nash equilibrium and computational Nash equilibrium that
is stable with respect to trembles. Efficient schemes achieving these equilibria
were built in standard communication networks, but only computational secu-
rity was guaranteed during the protocols. Moreover, equilibria concerning about
sequential rationality, such as everlasting Nash equilibrium [10] and sequential
equilibrium [20], were also achieved in the simultaneous channel.

Communication Models. Halpern and Teague [8] first assumed private chan-
nels, the simultaneous broadcast channel as well as an on-line dealer. Gordon
and Katz [7] removed the on-line dealer by using a secure multi-party compu-
tation protocol among players, but the simultaneous broadcast channel was still
necessary. Actually, many rational secret sharing protocols [1,14,15,20] rely on
the assumption of simultaneous channels. Besides, some protocols [9,12,13] use
even stronger assumptions such as secure envelopes and ballot boxes.

Coalition-Resilience. The main drawback of Kol and Naor’s construction [10]
is that it cannot resist the collusion attack of even two players. But coalition-
resilience is an important requirement for t-out-of-n secret sharing. Previous
protocols achieved good resilience in either simultaneous broadcast channels [1]
or in the computational setting [5,11].

Unconditional/Computational Security. In the computational setting, equi-
libria with good properties (e.g. coalition-resilience [11]) could be achieved and
more efficient protocols could run in standard communication networks [5], but
it works in the condition that all players are computationally bounded. When
higher security is required or players’ computing power is unclear, a rational secret

1 When using simultaneous broadcast channels, players must decide on what value (if
any) to broadcast in a given round before observing the values broadcast by other
players.
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sharing protocol with unconditional security (i.e., in the information theoretic set-
ting, such as [10]) is more reliable.

It can see that there is a tradeoff between the above aspects. In this work
we focus on rational secret sharing that is coalition-resilient in the information
theoretic setting and standard communication networks, at the cost of achieving
ε-Nash equilibria only. But we will see that the “ε” is quite small and mostly
acceptable.

1.1 Our Results and Main Ideas

We first design a 2-out-of-2 rational secret sharing protocol with unconditional
security in standard communication networks. The main idea is distributing to
player P1 (resp. P2) a list of length l1 (resp. l2) where l2 ≤ l1 ≤ l2 + 1. Each cell
of the lists contains a value, and all the values jointly determine the secret. The
recovering phase consists of at most l1 + 1 iterations. In each iteration, say, the
j-th iteration, P1 first broadcasts the value in his j-th cell, then P2 does similarly.
Since the two cases l1 = l2 + 1 and l1 = l2 both are possible, P1 and P2 cannot
know which case really happens before the protocol ends. Therefore each player
still has an incentive to broadcast the value even if it comes to his last cell. This
protocol achieves an ε-Nash equilibrium, where ε is a negligible function in the size
of the secret and is caused by the information-theoretic MACs used inside.

Then we build a t-out-of-n rational secret sharing protocol that is (t − 1)-
resilient. Since in the information theoretic setting with non-simultaneous chan-
nels, a coalition of t−1 players can easily get the secret earlier than other players
and leave the protocol early, we try to insure that the innocent players (i.e. play-
ers who follow the protocol) get as much information as possible. The main idea
is to divide each cell into two parts where two values are stored respectively, and
the two values are both possible to be the secret if the secret appears in this cell.
In each iteration, players first broadcast the first part of the current cell in some
order, then the second part. The index indicating whether the current value is
the secret or not is to be revealed only after the next value has been recovered.
More precisely, suppose the secret appears in the j-th cell which contains s0

j

and s1
j respectively in the two parts. Even the players in a (t − 1)-coalition at

most know that Prob[s = s0
j ] = q and Prob[s = s1

j ] = 1 − q for some constant
q before seeing the index I1

j (i.e. I1
j = 0 if s = s1

j , and I1
j = 1 if s = s0

j). But
I1
j is to be revealed only after recovering s1

j (by that time s0
j has already been

recovered). Therefore after the coalition determines the secret s and leaves the
protocol, the rest players at least know s = s0

j or s1
j , which is also a pleasant

result when the secret-domain is large. On the other hand, the extra gain of the
deviating coalition is at most ε, where ε is exponentially small in the number of
participants in the recovering process.

1.2 Related Work

Table 1 displays comparisons in some aspects between our protocols in this paper
and those in some previous work.
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Table 1.

equilibrium channel coalition resilience security

KN-[10] strict Nash simultaneous 1-resilient unconditional
ε-Nash non-simultaneous 1-resilient unconditional

ADGH-[1] ε-Nash simultaneous k-resilient computational/
unconditional

FKN-[5] strict Nash non-simultaneous (t− 1)-resilient computational

This paper ε-Nash non-simultaneous (t− 1)-resilient unconditional

Kol and Naor [10] provided constructions in both simultaneous and non-
simultaneous channels in the information theoretic setting. Our constructions
are similar to theirs in that shares are both in the form of lists with different
length and the recovering is accomplished by revealing the lists cell by cell. But
our 2-out-of-2 protocol is more efficient because shorter lists are involved and
simpler cells are contained. Details will be found in the remarks after Theorem 1.
General k-resilience was discussed in [1] where it achieved unconditional security
for k < n

3 and computational security for k < n. But the protocols in [1] relied
on simultaneous channels. Efficient protocols with optimal coalition resilience
in standard communication networks were designed in [5]. Most importantly, it
achieved equilibria with appealing properties, such as strict Nash, and stability
with respect to trembles. But only computational security was guaranteed from
the beginning of the recovering process.

2 Preliminaries

In this section it introduces notions about rational secret sharing and information-
theoretic MACs, as well as concepts of the equilibrium to be achieved in this work.

2.1 Secret Sharing and Players’ Utilities

In a t-out-of-n secret sharing scheme, a dealer (denoted as Dealer hereafter)
holding a secret distributes shares among n players such that the following two
conditions are satisfied:

1. Recoverability. Any group of t or more players puting their shares together
can uniquely determine the secret.

2. Secrecy. Any group of fewer than t players cannot recover the secret.

It usually assumes that Dealer is the trusted third party and each player is either
honest or malicious. In a game theoretic view, it is more realistic to view each
player as a rational party who acts only in his interest. To model rationality, we
define for each player Pi a real-valued utility function ui such that everyone’s
interest is to maximize his utility. The commonly used assumptions for defining
utilities in rational secret sharing are as follows [8]:
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– Each player always prefers to learn the secret than to not learn it;
– Secondarily, each player prefers that the fewer of the other players who get

it, the better.

In particular, we define four utility values for each player Pi :

(1) ui = a if Pi gets the secret while Pj does not for any j �= i;
(2) ui = b if Pi gets the secret and so does Pj for some j �= i;
(3) ui = c if Pi does not get the secret and neither does Pj for any j �= i;
(4) ui = d if Pi does not get the secret while Pj does for some j �= i.

From the common assumptions on utilities, it obviously holds that a > b > c > d.
Let S denote the secret-domain and |S| be the cardinality of S. Then by guessing
the secret uniformly from S, a player at most gets the utility

Urandom =
1
|S|a + (1 − 1

|S|)c .

To make every player has the incentive to participate in a protocol for secret
recovering, it requires b > Urandom.

Concerning about coalitions, for simplicity we additionally assume that

– Once a player joins a coalition, he will never leave the coalition before the
protocol ends;

– Players in the same coalition always share all information they jointly have.

Given an execution of a protocol, let C(i) denote the coalition that Pi joined
in. Thus all players in C(i) have the same utility as Pi. As an extension, we
similarly define the four utility values a, b, c, d for each player Pi as in (1)-(4)
just replacing “j �= i” with “j �∈ C(i)”.

When no coalition is formed, namely, C(i) = {i} for any i ∈ {1, ..., n}, the
problem is much easier [10]. In this work we deal with the most general coalitions
in t-out-of n secret sharing, i.e. 1 ≤ |C(i)| ≤ t− 1.

2.2 Notions of Equilibria

In the recovering process of a secret sharing scheme, view the interaction between
players as a game among the n players. Let σ = (σ1, ..., σn) denote a strategy
profile of players, where σi is Pi’s strategy for 1 ≤ i ≤ n. Usually, we let σ−i

denote the strategy profile of all players except Pi and σC denote the strategy
profile constricted to the coalition C ⊆ {1, ..., n}. Given a strategy profile σ,
it induces the utility ui(σ) for each player Pi. Referring to the definitions in
[1,5,10,11], we give some notions of equilibria as follows:

Definition 1. A strategy σ induces an ε-Nash equilibrium if for any player Pi

and any strategy σ′
i of Pi, it holds that

ui(σ′
i, σ−i) ≤ ui(σi, σ−i) + ε .
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When ε = 0 it is the well-known Nash equilibrium [16]. In some cases, a Nash
equilibrium in the strict sense is hard to compute [3], while computing the ε-
approximate Nash equilibrium is much easier [4]. Therefore, the ε-Nash equilib-
rium is also an appealing notion for a small ε.

Definition 2. A strategy σ induces an k-resilient ε-Nash equilibrium if for any
coalition C of at most k players (i.e. |C| ≤ k) and for any strategy profile σ′

C of
the coalition C, it holds that

ui(σ′
C , σC) ≤ ui(σC , σC) + ε for any i ∈ C ,

where C denotes the complement of C.

When k = 1 it is the ε-Nash equilibrium just defined. In this work, we realize
the resilience for k = t− 1 in a t-out-of-n secret sharing scheme. Obviously, this
is the optimal coalition resilience in the t-out-of-n case.

2.3 Information-Theoretic MACs

We refer to [6] for the description of information theoretically secure message
authentication codes (MACs). A message authentication code consists of three
polynomial-time algorithms (Gen,Mac,Vrfy). The key-generation algorithm Gen
takes as input the security parameter 1m and outputs a key k. The message au-
thentication algorithm Mac takes as input a key k and a message M ∈ {0, 1}≤m,
and outputs a tag t; we write this as t = Mack(M). The verification algorithm
Vrfy takes as input a key k, a message M and a tag t, and outputs a bit b; i.e.,
b = Vrfyk(M, t). We regard b = 1 as acceptance and b = 0 as rejection, and
require that for all m, all k output by Gen(1m), all M ∈ {0, 1}≤m, it holds that
Vrfyk(M, Mack(M)) = 1.

Definition 3. (Gen,Mac,Vrfy) is an information-theoretic MAC if for any M ∈
{0, 1}≤m, k = Gen(1m), t = Mack(M), and for any (computationally unbounded)
adversary A, the following probability is negligible in m:

μ(m) = Prob [(M ′, t′)← A(M, t) : Vrfyk(M ′, t′) = 1
∧

M ′ �= M ] .

For example, an information-theoretic MAC can be built as follows [17,19]: Let
F be a finite field, the key is (α, β) ∈ F

2. For a message M ∈ F, the tag is
generated as t = β − αM ∈ F.

3 Rational Secret Sharing: The 2-Out-of-2 Case

In this section we give a 2-out-of-2 rational secret sharing protocol in standard
communication networks (i.e. point-to-point and non-simultaneous channel) and
with unconditional security. Denote the protocol by Π , we describe Π in terms
of Dealer’s protocol and players’ protocol separately. Actually, Dealer’s protocol
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corresponds to the distributing phase, and players’ protocol corresponds to the
recovering phase where only players are active.

Let S = {0, 1}m be the secret-domain and s ∈ S be the secret. For player
P1 and P2, let a, b, c, d be the utility values as defined in Section 2.1. Suppose
(Gen,Mac,Vrfy) is an information-theoretic MAC.

Dealer’s Protocol
1. Choose an integer l ∈ N according to a geometric distribution with parameter
p 2, where p is a constant to be determined later (in Theorem 1).

2. Determine the two integers l1 and l2 such that l1 + l2 = l + 1 and l2 ≤ l1 ≤
l2 + 1.

3. Randomly select a1, ..., al1 ∈ S and b1, ..., bl2 ∈ S such that

(⊕l1
i=1ai)⊕ (⊕l2

i=1bi) = s .

4. Generate secret keys α1, ..., αl2+1 and β1, ..., βl1 for the MAC by Gen(1m).
Construct two lists L1 and L2 of length l1 and l2 respectively, where for 1 ≤ i ≤ l1
(resp. 1 ≤ i ≤ l2) the i-th cell of L1 (resp. L2) contains ai, Macαi(ai) and βi−1

(resp. contains bi, Macβi(bi) and αi).
5. Send the list L1 and the secret key βl1 (resp. the list L2 and the secret key

αl2+1) to P1 (resp. P2).

Players’ Protocol
It consists of l1 or l1 + 1 iterations. For 1 ≤ j ≤ l1 + 1, the j-th iteration goes
along the following two rounds:

1. Denote by (b′j−1, t
(b)
j−1) the message that P1 received from P2 in last round.

Player P1 first checks if it holds Macβj−1(b′j−1) = t
(b)
j−1 (Note for j = 1 this check

is not needed). If it holds, then P1 sends (aj , Macαj (aj)) to P2; otherwise, P1

quits and outputs (⊕j−1
i=1 ai)⊕ (⊕j−2

i=1 b′i) as the secret.
2. Denote by (a′

j , t
(a)
j ) the message that P2 received from P1 in last round.

Player P2 checks if it holds Macαj (a′
j) = t

(a)
j . If it holds, P2 sends (bj , Macβj (bj))

to P1; otherwise, P2 quits and outputs (⊕j−1
i=1a′

i)⊕ (⊕j−1
i=1 bi) as the secret.

If a player’s list comes to the end, i.e., the j-th cell of his list is empty,
then after verifying the message just received from the opposite, he sends the
message “end” in the j-th iteration. After that both players stop running and
set the secret to be the XOR of all the values revealed so far.

In brief, the recovering process is accomplished by letting the two players alter-
nately reveal their lists cell by cell, while P1 goes first. Figure 1 describes the
recovering process when l1 = l2.

Then we give some intuition as to why the recovering process of Π (i.e. players’
protocol) is an ε-Nash equilibrium for an appropriate choice of p, where ε = ε(m)
is a negligible function in length of the secret.

2 Suppose in each coin toss, the Head appears with probability p. Then l is the number
of independent tosses needed until the first Head turns up.
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a1, Macα1(a1) a2, Macα2(a2), β1 · · · · · · al1 , Macαl1
(al1), βl1−1

L1 :

� �
�

�
���

� �
�

�
���

�
�

�
���

� �
�

�
���

�

(a1, Mac(a1)) (b1, Mac(b1))
(a2, Mac(a2))

(b2, Mac(b2))

(al1 , Mac(al1 ))

(bl2 , Mac(bl2))

end

b1, Macβ1(b1), α1 b2, Macβ2(b2), α2 · · · · · · bl2 , Macβl2
(bl2), αl2L2 :

Fig. 1. The recovering process when l1 = l2

(a) P1 has no incentive to deviate in the first iteration.
Since l1+l2 = l+1 > 1, it must have l2 ≥ 1. Namely, P2 at least holds a value
that contributes to determining s. P1 cannot get this value if his message
broadcast in the first iteration does not pass verification of the MAC. So by
deviating, P1 can get utility at most μ(m)a+(1−μ(m))Urandom, where μ(m)
is the probability of successfully forging an MAC as defined in Definition 3
and Urandom = 1

|S|a+(1− 1
|S| )c is an upperbound of the utility that a player

can get by guessing the secret uniformly from S. By requiring

μ(m)a + (1− μ(m))Urandom < b (1)

P1 has no incentive to deviate in this iteration.
(b) For 2 ≤ j ≤ l1, P1 has no incentive to deviate in the j-th iteration.

Similarly to the analysis in (a), P1 has no incentive to deviate through iter-
ation 2 to l1 − 1. Achieving the l1-th iteration, with probability p it holds
that l2 = l1− 1, i.e. P2’s list has run out. In this situation, P1 can get utility
at most a by deviation. But if l2 = l1 which happens with probability 1− p,
P1 get at most μ(m)a + (1 − μ(m))Urandom. Therefore P1 will not deviate
by requiring

pa + (1 − p)(μ(m)a + (1− μ(m))Urandom) < b . (2)

Note that inequality (2) implies inequality (1).
(c) For 1 ≤ j ≤ l2, P2 has no incentive to deviate in the j-th iteration.

The analysis is similar to that of (b).
(d) P1 (resp. P2) cannot increase his utility more than ε by deviating in the

(l1 + 1)-th (resp. the (l2 + 1)-th) iteration.
In the (l1 + 1)-th iteration and after verifying the MAC, P1 already knows
that l2 = l1 and he can determine s = (⊕l1

i=1ai) ⊕ (⊕l2
i=1b

′
i). But P2 still

does not know whether P1’s list is longer than his or not. P1 can deceive P2

by continuing to send a fake value in the (l1 + 1)-th iteration which passes
verification of the MAC under the secret key αl1+1 = αl2+1, and the success
probability is at most μ(m) due to security of the MAC. Thus P1 can get
utility at most μ(m)a + (1− μ(m))b. Therefore,

ε(m) = μ(m)a + (1− μ(m))b − b = μ(m)(a− b) .

The analysis of P2’s (l2 + 1)-th iteration is similar.
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From the analysis (a)-(d), it immediately has the following theorem.

Theorem 1. If the parameter p satisfies the inequality (2), then the protocol
Π for 2-out-of-2 rational secret sharing induces an ε-Nash equilibrium with ε =
μ(m)(a − b), where μ(m) is the negligible probability of successfully forging an
information-theoretic MAC.

Remark 1. The 2-out-of-2 protocol in [10] used lists of length l′ − 1 and l′ +
d′ − 1 respectively, where l′ and d′ both were chosen according to a geometric
distribution with parameter β. Our protocol Π uses lists of length l1 and l2
respectively where l1 + l2 − 1 is chosen according to a geometric distribution
with parameter p. Since both β and p are determined by the utility values under
the similar inequalities, we can simply regard β = p. Then the expected length
of lists in [10] are 1

p − 1 and 2
p − 1, while our lists are both of length about 1

2p .
That is, we only need the list that is almost half as long as the shorter list in
[10], which means the expected size of shares in our protocol is smaller.

Remark 2. Since in [10] the shorter list was just a prefix of the longer one and
every value alone could possibly be the secret, a player can certainly determine
the secret if he finds all his remain cells contain the same value. To fix this
problem, it masked each value by a random number for each cell. Thus the
cells in [10] contained both the masked value and share of the mask. But in our
protocol, the secret is jointly determined by all values contained in the two lists,
a player cannot determine the secret even if he sees all values in his list. Therefor
no mask is needed in our protocol and our lists consist of simpler cells.

4 Rational Secret Sharing: The t-Out-of-n Case

We now construct a t-out-of-n rational secret sharing protocol in the information
theoretic setting. Since it is in non-simultaneous channels and (t− 1)-resilience
is required, the protocol is not a simple extension of the protocol Π constructed
in Section 3. Denote the t-out-of-n protocol by Π ′. We still describe Π ′ in terms
of Dealer’s protocol and players’ protocol separately.

Dealer’s Protocol
1. Choose integers l∗ and d according to a geometric distribution with param-

eter p′, where p′ is a constant to be determined later (in Theorem 2).
2. Randomly select σ ∈ {0, 1} such that Prob[σ = 0] = q, where q is a constant

to be determined later (in Theorem 2).
3. Construct a list of length l = l∗ + d. For 1 ≤ j ≤ l, the j-th cell contains:

– Main: (s0
j , s

1
j) ∈ S2, where S is the secret-domain. In particular, it requires

sσ
l∗ = s and the other values are randomly chosen.

– Index: (I0
j , I1

j ) ∈ {0, 1}2 where

I0
j =

{
1, if j − 1 = l∗ and σ = 1
0, otherwise , I1

j =
{

1, if j = l∗ and σ = 0
0, otherwise .

For consistence, fix I0
1 = 0.
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– Permutation: πj ∈ Πn where Πn denotes the set of all permutations on
{1, ..., n} 3.

4. Randomly select a permutation π0 ∈ Πn, and send π0 to all players.
5. Suppose i0 ∈ {1, ..., n} appears first in the permutation πl∗−1. Construct

n lists, denoted by L1, ..., Ln, where Li0 is of length l∗ and the other n− 1 lists
are of length l. For 1 ≤ i ≤ n and 1 ≤ j ≤ l, the j-th cell of Li contains: (Note
the list Li0 ends after the l∗-th cell)

– Share of main: s0
ji and s1

ji, where s0
ji (resp. s1

ji) is a (t, n)-share 4 of s0
j (resp.

s1
j).

– Share of index: I0
ji and I1

ji, where I0
ji (resp. I1

ji) is a (t, n)-share of I0
j (resp.

I1
j ).

– Share of permutation: πji which is a (t, n)-share of πj .
– Authentication information: The tags

{Macαj,i,h
(s0

ji), Macα′
j,i,h

(s1
ji), Macβj,i,h

(I0
ji), Macβ′

j,i,h
(I1

ji), Macγj,i,h
(πji) | 1 ≤ h ≤ n,

h �= i }
and the keys {αj,h,i, α

′
j,h,i, βj,h,i, β

′
j,h,i, γj,h,i | 1 ≤ h ≤ n, h �= i}. We note

that the key αj,h,i is used to verify a tag of s0
jh and is stored in the j-th cell

of Li.

6. For 1 ≤ i ≤ n, send the list Li to player Pi.

Players’ Protocol
Suppose k (k ≥ t) players are to jointly recover the secret. The recovering pro-
cess consists of at most l iterations. In the j-th iteration for 1 ≤ j ≤ l, if the
protocol does not end, the players do the following:

1. Recover s0
j . In the order determined by the permutation πj−1, each player

(say, Pi) sends to the other players (s0
ji, Mac(s0

ji)). Hereafter we usually omit
the key in the MAC because it is clearly determined by the message and the
receiver. Players verify the MACs after receiving messages. If all messages pass
the verification, then each player recovers s0

j .
2. Recover I0

j . Still in the order of πj−1 players send their shares along with
MACs, and then recover I0

j .
3. Recover s1

j . Same as above.
4. Recover I1

j . Same as above.
5. Recover πj . Same as above.
In any of the above five steps, a player quits from the protocol at encountering

any one of the following situations.

– His list has run out. Then he quits and sets the secret to be the last value
he recovered. For example, if his list is of length l′ and the protocol does not
end after the first l′ iterations, then he quits in the (l′ + 1)-th iteration and
sets s = s1

l′ .
3 Precisely, the permutation πj denotes an order in which players send messages in

the (j + 1)-th iteration.
4 The share can be generated by Shamir’s (t, n)-threshold secret sharing scheme.
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– Find some index Iδ
j = 1. Then he quits and sets s = s1−δ

j−1+δ.
– Find someone cheats in recovering s0

j . Then he quits and sets s = s1
j−1.

– Find someone cheats in recovering I0
j . Then he quits and sets s = s1

j−1 with
probability 1− q and s = s0

j with probability q.
– Find someone cheats in recovering s1

j . Then he quits and sets s = s0
j .

– Find someone cheats in recovering I1
j . Then he quits and sets s = s0

j with
probability q and s = s1

j with probability 1− q.
– Find someone cheats in recovering πj . Then he quits and sets s = s1

j .

Now we give some analysis to explain why the recovering process of Π ′ induces an
ε-Nash equilibrium with (t−1)-resilience. For simplicity, we neglect the negligible
part of ε caused by successfully forging the MAC. As a warm-up, we first show
that any single player has no incentive to deviate from the protocol. For a single
player Pi, there are two cases:

(a) Pi holds a list of length l.
It is important to note that Pi cannot know he is holding the long list until
the protocol ends or it comes to his last cell (i.e. the l-th cell). Therefore,
for 1 ≤ j < l, Pi guesses l∗ = j and deviates in the j-th iteration, then he
can get utility at most p′a + (1− p′)Urandom. Pi has no incentive to deviate
if it holds

p′a + (1− p′)Urandom < b . (3)

When it comes to the last cell (i.e. the l-th cell) and Pi is not the first one to
send messages according to πl−1, then Pi knows that l∗ = l−1 and s = s1

l−1.
Actually, every other player can also conclude s = s1

l−1 no matter what Pi

does in the l-th iteration. Thus Pi has no incentive to deviate.
(b) Pi holds a list of length l∗.

Similarly, it can see that Pi has no incentive to deviate in the j-th iteration
for 1 ≤ j ≤ l∗ − 1, if the inequality (3) holds. When it comes to the l∗-
th iteration Pi knows he is holding the short list because he is the first to
send messages in that iteration. Since Pi is the first one to talk in the l∗-th
iteration, when Pi determines for sure what the secret is, so do the other
players. Thus Pi has no incentive to deviate.

Then we give some intuition as to why the recovering process of Π ′ is (t − 1)-
resilient. For any coalition C with 1 < |C| ≤ t− 1, there are two cases:

(c) The short list holder is contained in C.
Since the lists are of different length, players in C can easily determine l∗

in advance. Thus ignoring the negligible probability of forging the MAC
successfully, the best option for players in C is to get as much information
about {s0

l∗ , s
1
l∗ , I

1
l∗} as possible and secondarily, to make players outside C

know as little as possible. It is easy to see that if the inequality (3) holds C
has no incentive to deviate before the l∗-th iteration. In the l∗-th iteration,
• If C deviates in recovering s0

l∗ , the best result for C is that they get s0
l∗

while no one else does. Thus C guesses s = s0
l∗ and the other players set
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s = s1
l∗−1. Since Dealer set s = s0

l∗ with probability q, C guesses wrong
with probability 1− q. Therefore by deviating players in C get utility at
most qa + (1− q)c. Requiring

qa + (1− q)c < b , (4)

then C has no incentive to deviate.
• When recovering I0

l∗ , since I0
l∗ only indicates whether s1

l∗−1 is the secret
or not which C has already known. Besides, at this time players outside C
already get s0

l∗ which means they also have opportunity to get the right
secret even if C deviates. Based on the inequality (4), C has no incentive
to deviate.
• If C deviates in recovering s1

l∗ , then players in C set s = s0
l∗ with proba-

bility q and set s = s1
l∗ with probability 1− q. By the protocol Π ′, after

detecting someone cheats in recovering s1
l∗ , each of the players outside C

sets s = s0
l∗ and quits. If Dealer set σ = 0 (which happens with proba-

bility q), then with probability q all players get the right secret and with
probability 1 − q players in C guess wrong while others guess right. If
Dealer set σ = 1 (which happens with probability 1 − q), then players
outside C get the wrong secret, while C guesses right with probability
1− q.
Thus deviation in recovering s1

l∗ makes players in C get utility at most

q(qb+(1−q)d)+(1−q)(qc+(1−q)a) = (1−q)2a+q2b+q(1−q)(c+d) .

By requiring

(1− q)2a + q2b + q(1− q)(c + d) < b , (5)

C has no incentive to deviate.
• If C deviates in recovering I1

l∗ , we will show that players in C can increase
the utility by at most ε = O(λk) where k is the number of participants
in the recovering process and λ < 1 is a constant determined by q.
After deviation players in C can determine the secret, while each player
outside C sets s = s0

l∗ with probability q and s = s1
l∗ with probability

1 − q. Suppose |C| = c, then there are k − c players outside C. If Dealer
set σ = 0, then the probability that none of the k−c players outputs the
right secret is (1 − q)k−c, while if σ = 1, this probability is qk−c. Thus
by deviation players in C get utility at most

UD = q((1− q)k−ca + (1− (1− q)k−c)b) + (1 − q)(qk−ca + (1− qk−c)b)
= (q(1− q)k−c + (1− q)qk−c)a + (1 − q(1− q)k−c − (1− q)qk−c)b .

Therefore ε = UD − b = (q(1 − q)k−c + (1 − q)qk−c)(a − b). Denote
λ = max{q, 1− q}, then ε ≤ λk−c(a− b) = O(λk).
• Neglecting the negligible probability of successfully forging a MAC, C

has no incentive to deviate after recovering I1
l∗ , because C has already

known the secret and players outside C can also output the right secret.
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(d) The short list holder is not contained in C.
Then the coalition C can only know l∗ ≤ l − 1 in advance. By the analysis
similar to that of (a), C has no incentive to deviate in the j-th iteration for
1 ≤ j < l− 1. In the (l− 1)-th iteration, similar to the analysis of the fourth
situation in (c), C can only increase the utility by at most λk−c(a− b) if they
deviates from the protocol.

From the analysis (a)-(d) above, we can get the following theorem.

Theorem 2. Let the parameters p′, q and the utility values satisfy the in-
equalities (3)-(5), then the protocol Π ′ for t-out-of-n rational secret sharing
induces a (t − 1)-resilient ε-Nash equilibrium with ε < λk−t+1(a − b), where
λ = max{q, 1− q} and k is the number of participants in the recovering process.

Remark 3. Note that the inequality (4) and (5) may not simultaneously hold for
some values of a, b, c, d. This can be solved by making some additional assump-
tions on the utility values. For example, assume that a − b < b − c, then the
inequality (4) and (5) are satisfied for a−b

a−c < q < b−c
a−c . Actually, the assumption

a− b < b− c is implied from the natural requirement of Urandom < b for |S| = 2,
i.e. each player still has an incentive to participate in the protocol for recovering
even if the secret is just one bit.

Remark 4. It can see that the ε is exponentially small in the number of partici-
pants. When a large number of players participate in the recovering process or
the utility values a and b are very close, a coalition of (t − 1) players cannot
gain much by deviation form Π ′. Actually, as pointed out in [10] a gain by a
(t− 1)-coalition is inevitable in the information theoretic setting. We leave it as
an open problem to determine the lower bound of ε at achieving (t−1)-resilience
in standard communication networks.

On the other side, although some players quit from the protocol after they
get the secret, leaving the other players (who honestly follow the protocol so far,
thus we call them “innocent players”) cannot determine what the secret is, the
innocent player can at least be sure that the secret must be one of the two values
he has already recovered. Thus in innocent players’ view the Shannon entropy
of the secret reduces to less than 1. When |S| is very large, every rational player
has great incentive to participate in the protocol Π ′ even if he might encounter
a coalition of t− 1 players.

5 Conclusions

In the information theoretic setting of rational secret sharing, only approximate
Nash equilibrium can be achieved in standard communication networks. We re-
alize ε-Nash both for the 2-out-of-2 case and the t-out-of-n case. The 2-out-of-2
protocol is more efficient than previous ones and the ε is a negligible function in
the size of the secret. This negligible function is due to the information-theoretic
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MAC used inside. The t-out-of-n protocol is (t − 1)-resilient and the ε is expo-
nentially small in the number of participants. We leave it as an open problem to
determine the lower bound of ε in both cases.
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Abstract. In this paper, we present oblivious transfer with complex
attribute-based access control policies. The protocol allows a database
server to directly enforce “and” and “or” access control policies (c11 ∧
c12∧. . . c1n1

)∨(c21∧c22∧. . . c2n2
)∨. . .∨(ct1∧ct2∧. . . ctnt

) on each message
in a database without duplication of the message as in Camenisch et al.’s
AC-OT. To realize this protocol, we present the blind attribute-based en-
cryption (ABE) scheme as a building block. Combining the blind ABE
with a credential signature scheme, a generic construction for the obliv-
ious transfer with complicated access control is presented. We also give
a concrete scheme for the construction in which the policy is provided
by an access tree which is represented by a formula involving “and(∧)”
and “or(∨)” boolean operators.

Keywords: Oblivious Transfer, Access Control, Attribute-Based En-
cryption.

1 Introduction

With the growth of the Internet, the need to provide privacy to users accessing
sensitive information is increasing. The traditional approach for protecting user
privacy is to implement an anonymous protocol [13]. Another approach is to
implement oblivious transfer (OT) protocol presented by Rabin [29] in which
user privacy is protected in such a way that a user makes requests to a server,
and at the end obtains the messages of his choices without the server learning
anything about the choices. That is, OT addresses the problem of hiding the
data choices of users rather than user anonymity. So far, plenty of OT protocols
have been proposed to provide user privacy, such as [26,16,20] et.al. As we know,
in traditional OT, a user can arbitrarily retrieve data of his choices from a server
without any restrictions, while this rules out many practical applications, such as
medical or financial data access, pay-per-view TV. In these cases, on one hand,
the database server wants to enforce access control policies on the database
such that each data can be only available, on request, to the users who meet
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the corresponding policies. On the other hand, the users do not want to reveal
what part of the data they are retrieving or more personal information than is
absolutely necessary.

Specially, consider the following motivating example: a paper database server
wants only students in College A or teachers in College B to download mas-
ter’s theses, and wants only teachers in College C to download the PhD theses,
namely, the access control condition for master’s theses is (Student ∧ Col.A) ∨
(Tea ∧ Col.B), and the condition for PhD theses is (Teacher ∧ Col.C). Mean-
while, the users want to protect their identities and choices during the access to
the database, that is, all electronic transactions performed between the server
and the users will not reveal more personal information than is absolutely neces-
sary. To achieve this functionality, some papers [17,7,1,22,12,10] have given their
solutions.

In 1999, Crescenzo et al. [17] proposed conditional oblivious transfer. Later,
in 2004, Blake et al. [7] presented strong conditional oblivious transfer. In 2001,
priced OT [1] was proposed in which each user can buy goods if and only if the
price of the goods is less than the user’s balance. However, neither of the above
schemes provided the user anonymity, and they can only achieve simple access
control such as “ = ” or “ ≥ ”.

In [22], Herranz proposed a primitive called restricted adaptive oblivious
transfer in which the policies defines which subsets of entries of the database
can be available, on request, to the different users. However, the second scheme
is not efficient due to the amount of computational and communication effort
which is required in each execution of the protocol.

To the best of our knowledge, so far there have been two papers that consider
oblivious transfer with access control. One is Coull et al.’s protocol [12] using
stateful anonymous credential which permits a database server to restrict which
messages each user may access, without learning anything about users’ identities
or message choices. However, since the user credential must be re-issued when
each user requests a message each time, the protocol is not very efficient. Another
one is Camenisch et al.’s OT protocol with access control (AC-OT) [10] for
anonymous access to a database where the different records have different control
permissions. Camenisch et al. show that the AC-OT can be implemented using
Coull et al.’s protocol and it is more efficient. However, in AC-OT, for each
message which is associated with a category set, if and only if one user has all
these categories in the set, they can obtain the message by queries. Namely, for
each message, AC-OT just directly achieves “and” access control policy. The
“or” policy can be realized by duplicating the messages in the database with a
second set of categories. For example, for a database in which the complicated
policies for each message such as (c11 ∧ c12 ∧ . . . c1n1

) ∨ (c21 ∧ c22 ∧ . . . c2n2
) ∨

. . . ∨ (ct1 ∧ ct2 ∧ . . . ctnt
) is requested, then using the method to realize “or”

policy in AC-OT, the message must be duplicated for t times, each with a policy
(ci1 ∧ ci2 ∧ . . . cini

). Moreover, when the server initializes the database, he must
encrypt the message for t times under different “and” policies, and the initialized
database will also increase greatly.
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Our Contributions. In this paper, we present an oblivious transfer with
complex attribute-based access control permissions. The protocol can directly
achieve “and(∧)” and “or(∨)” policies on each message without the duplication
of the message. More concretely, for each message, we can directly enforce such
type of access control permissions as (c11 ∧ c12 ∧ . . . c1n1

)∨ (c21 ∧ c22 ∧ . . . c2n2
)∨

. . .∨(ct1 ∧ct2 ∧ . . . ctnt
) on it, where each cij is an attribute. That is, the message

can only be available, on request, to the users who possess at least one attribute
set (ci1 , ci2 , . . . , cini

), i ∈ [1, t].
To realize the functionality of the protocol, we present a new primitive called

blind (ciphertext policy) attribute-based encryption(CP-ABE) as a building
block. Combining the blind ABE with an anonymous credential scheme, a generic
construction for the protocol is proposed. In this construction, a server, n users
and a credential issuer are included. Assume that Ω is an attribute universe
where |Ω| = l. Each user first authenticates to obtain the credentials for his enti-
tled attributes from the issuer. The server initializes the database
(M1, M2, . . . , MN ) by encrypting the messages under the associated access con-
trol policies so that the users must obtain the private keys for the attributes to
decrypt out the messages. In the transfer phase, to obtain the allowed messages
according to the policies, each user first makes requests to the server for the
private keys of his entitled attributes, and simultaneously executes a proof of
knowledge to convince the server that he possesses a valid credential generated
by the issuer for the requested attributes. From the requests, even if the server
colludes with the credential issuer, they cannot learn anything about the at-
tributes or identity of the user. Then after the user obtains the private keys, he
can arbitrarily decrypt out the messages whose associated policies are satisfied
by the user’s attributes.

If we let k be the number of messages a user can access in a database according
to the access control policies, then in our construction, the user needs to interact
with the server for just one time to obtain the private keys to decrypt all the
k allowed messages. Therefore, the communication cost of our construction is
O(N + l).

To present a concrete oblivious transfer protocol with complex access con-
trol policies, we first construct a new blind ABE scheme which achieves “and”
and “or” policies. The access control structure is provided by an access tree in
which leaves are attributes and inner nodes are “∧” and “∨” boolean operators.

Organization. The rest of this paper is organized as follows. In section 2, we
introduce some preliminaries. In section 3, we present the functionality and se-
curity definition for the oblivious transfer with attribute-based access control.
In section 4, a generic construction for oblivious transfer with attribute-based
access control is proposed based on blind attribute-based encryption and cre-
dential signature scheme. In section 5, a concrete scheme for the construction is
given. We give some analysis and extensions in section 6. Finally, we conclude
in section 7.
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2 Preliminaries

Notation. We denote by κ the security parameter and by PPT the property of
an algorithm of running in probabilistic polynomial-time. A function negl(·) is
negligible in κ if for every polynomial p(·) there exists a value N such that for
all n > N it holds that negl(·) < 1/p(n).

2.1 Bilinear Maps

Let G, GT be two (multiplicative) cyclic groups such that |G| = |GT | = p,
where p is a large prime. Let g be a generator of G, and e be an admissible
bilinear map: G × G → GT , satisfying that (1) for all a, b ∈ Zp it holds that
e(ga, gb) = e(g, g)ab; (2) e(g, g) �= 1; and (3) it is efficiently computable.

2.2 Complexity Assumptions

Definition 1. (Computational Diffie-Hellman(CDH) Assumption.) Suppose a
challenger chooses a, b, c, z ∈ Zp at random. The DBDH assumption is that no
polynomial-time adversary is to be able to distinguish the tuple (ga, gb, gc, e(g, g)abc)
from (ga, gb, gc, e(g, g)z)) with more than a negligible advantage.

Definition 2. (Decision Bilinear Diffie-Hellman(DBDH) Assumption[6].) Sup-
pose a challenger chooses a, b, c, z ∈ Zp at random. The DBDH assump-
tion is that no polynomial-time adversary is to be able to distinguish the tu-
ple (ga, gb, gc, e(g, g)abc) from (ga, gb, gc, e(g, g)z)) with more than a negligible
advantage.

Definition 3. (q-Strong Diffie-Hellman(q-SDH) Assumption[4]). Suppose a
challenger chooses x ∈ Zp at random. The q-SDH assumption is that no
polynomial-time adversary is to be able to output a pair (c, g1/(x+c)) where c ∈ Zp

from the tuple (g, gx, . . . , gxq

) with more than a negligible advantage.

2.3 Zero-Knowledge Proof

Throughout the paper, we use known techniques for proving statements about
discrete logarithms such as (1) proof of knowledge of a discrete logarithm modulo
a prime [30,16], (2) proof of knowledge of a pairing preimage [16], (3) proof of
the disjunction or conjunction of any ones of the previous [11,16]. According to
Cramer et al. [11], this class of zero-knowledge (ZK) proof systems (1)(2) can be
combined into ZK proof systems (3) for any disjunctive and conjunctive formula.
Furthermore, using the Fiat-Sahmir heuristic, this class of ZK proof systems can
be converted to non-interactive ZKs at no extra cost. We will use the notation,
for example PoK{(x, r) : y = gxhr ∧ y′ = g′x} [18] to denote a ZK proof of
knowledge of integers x and r such that both y = gxhr and y′ = g′x hold. All
values not enclosed in ()’s are assumed to be known to the verifier.
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2.4 Credential Signature Scheme

A credential signature scheme [14,13] includes three participants: an issuer, a
user and a verifier. It consists of the following four algorithms:

– ISetup(1κ) The credential issuer sets up the key pair (pkI , skI) for issuing
credentials for users, and publishes pkI .

– IssueCred(skI , m) For a message m, the issuer generates the corresponding
credential credm using his secret key skI .

– VerifyCred(pkI , m, credm) The user verifies the credential (m, credm) using
pkI .

– ProveCred(m, credm) The user executes a proof of knowledge with the ver-
ifier

PoK{(m, credm) : credm ∈ IssueCred(skI , m)}.
PoK{(m, credm) : credm ∈ IssueCred(skI , m)} denotes a zero-knowledge proof
of knowledge of a valid credential credm for m.

The credential signature scheme we will use later is the scheme [2] as follows.
The scheme is unforgeable under adaptively chosen message attack based on
q-SDH assumption, where q is the number of signature queries, and that the
associated proof of knowledge is complete, sound and perfect honest-verifier zero-
knowledge.

– ISetup(1k) The credential issuer sets up the parameters as follows: G, GT

are two cyclic groups of order p, and e : G×G→ GT . He chooses at random
xI ∈ Zp and a number of random bases g0, y1, ..., yl, yl+1 ∈ G, and computes
yI ← gxI

0 . He lets skI ← xI , and pkI ← (g0, y1, ..., yl, yl+1, yI).
– IssueCred(skI , (m1, . . . , ml)) For m1, ..., ml ∈ Zp, the issuer chooses random

r, s ∈ Zp, and computes σ ← (g0y
m1
1 ...yml

l yr
l+1)1/(xI+s). The tuple (σ, r, s) is

the credential for the tuple m1, ..., ml.
– VerifyCred(pkI , (m1, . . . , ml), (σ, r, s)) A user verifies the correctness of a cre-

dential by checking whether the equality e(σ, gs
0yI) = e(g0y

m1
1 ...yml

l yr
l+1, g0)

holds.
– ProveCred((m1, . . . , ml), (σ, r, s)) A user proves that he possesses such a

credential (σ, r, s) for m1, . . . , ml by choosing random A, B ∈ G, v, w ∈ Zp,
computing Ã ← σAv, B̃ ← BvAw, and executing a proof of knowledge as
follows:
PoK{(α, β, v, w, m1, ..., ml, s, r) : B̃ = BvAw

∧
1 = B̃−sBαAβ

∧
e(Ã,yI)
e(g0,g0) = e(Ã, g0)−se(A, yI)ve(A, g0)αe(yl+1, g0)r

∏l
i=1 e(yi, g0)mi},

where α = sv and β = sw.

3 OT with Attribute-Based Access Control

3.1 Definition

For the oblivious transfer with complex attribute-based access control(CAC-
OT), we want to implement such functionality: assume that an attribute universe
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Ω of size l is Ω = {a1, a2, . . . , al}, where each element of Ω is a descriptive
attribute. Each user Ui is entitled to a subset of attributes ωi ⊆ Ω. A server
maintains a database DB = {m1, . . . , mN}, and associates each message mi with
an attribute-based access control structure τi ⊆ Ω. Each structure τi specifies
which combination of attributes can obtain the corresponding message mi. The
server requests that only the users whose attributes satisfy τi are able to have
access to the message mi. That is, for every j ∈ [1, N ] and every user Ui, only
if ωi |= τj , the message mj can be available, on request, to Ui. Meanwhile,
the server should not get to know any information about each user’s identity,
attributes or message choices.

In the following, we will give a solution to fulfill the functionality of CAC-OT.
It includes these participants: n users U1,U2, . . . ,Un, a server S and an issuer I.
The protocol works as follows.

– IssueSetup(1κ)
The issuer I generates his key pair (pkI , skI) for generating credentials for

users, and publishes pkI as the system-wide parameter.
– DB-Initialization(Ω, pkI , m1, ..., mN , τ1, ..., τN )

For a database containing messages m1, ..., mN , the algorithm outputs a
key pair (pkDB, skDB) and encrypted messages C1, ..., CN under the access
control policies τ1, ..., τN . The server keeps the key skDB secret, and publishes
(C1, . . . , CN , pkDB) to make it available to all users.

– ObtainCred(Ω, skI ; ωi)
Each user interacts with the issuer to obtain the credentials for his attributes
that he is entitled to access. Assuming each user Ui’s attribute set is ωi ⊆ Ω,
at the end of the algorithm, Ui will obtain the credentials credωi for all
attributes of ωi from the issuer.

– Transfer(skDB ; ωi, credωi)
It is an interactive algorithm between the server S and users. The input for
S is his private key skDB. The inputs for each user Ui includes his entitled
attributes ωi and the corresponding credentials. At the end of the protocol,
Ui can decrypt out a message subset φi ⊆ {m1, . . . , mN}, where the policies
for the messages in φi are all satisfied by ωi.

During the protocol, when users request credentials from the issuer, the issuer
will know users’ identities. However, when users interact with the server, the
server will know neither their identities nor their attributes. That is, the com-
munication links between the users and the issuer are authenticated and the
links between the users and the server are anonymous.

3.2 Security

We first discuss the security properties the CAC-OT should satisfy:

– User privacy: After each user executes the protocol with the server, the
server does not learn the user’s identity or attributes, nor does it learn which
messages the user obtains. Even if the server colludes with the issuer, they
cannot tell the identity or attributes of the user.
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– Server security: After the protocol, any collection of possibly cheating users
cannot obtain the messages which none of them would have been able to
obtain individually according to the access control policies.

In the following, we will formally define the security of the oblivious transfer
with access control policies. We first define an ideal functionality FCAC−OT for
the protocol.

Functionality FCAC−OT

Parameterized with (N, n, l), and running with a serverS, n users {U1, . . . ,Un}
and an issuer I, FCAC−OT works as follows:
FCAC−OT maintains an initially empty set Atti for each user Ui.

– On input a message (init, Ω, m1, τ1, . . . , mN , τN ) from S, it stores
(Ω, m1, τ1, . . . , mN , τN ) and sends (init, τ1, . . . , τN ) to all users.

– On input a message (issue, idi, a) from Ui, it sends (issue, idi, a) to I, and
receives a bit b from I. If b = 1 then I adds a to Atti and sends b to Ui,
otherwise it simply sends b to Ui.

– On input a message (transfer, idi, ωi) from Ui, where ωi ⊆ Ω, it sends
transfer to S and receives a bit b′. For all j ∈ {1, . . . , N}, if (b′ = 1)∧(ωi ⊆
Atti) ∧ (ωi |= τj), then it sends mj to Ui.

In the real experiment, a server, n users and an issuer works as defined in
section 3.1, and in the ideal experiment, FCAC−OT works as defined above, with
a server, n users and an issuer. Assume that the outputs of the real and ideal
experiment are RealA(κ) and IdealA′(κ) respectively, where κ is a security pa-
rameter. In terms of the experiments, the formal security is defined as follows:

Server-Security: We say that CAC-OT is server-secure if for every PPT real-
world adversary A who corrupts a collection of users {Û1, . . . , Ût}, there exists
a PPT ideal-world adversary A′ who corrupts the the same participants, such
that for κ (which is a security parameter), and every PPT distinguisher D:

| Pr[RealA(κ) = 1]− Pr[IdealA′(κ) = 1] |
is negligible in κ.

User-Security: We say that CAC-OT is user-secure if for every PPT real-world
adversaryA who corrupts Ŝ, Î and a collection of users {Û1, . . . , Ût}, there exists
a PPT ideal-world adversary A′ who corrupts the the same participants, such
that for κ (which is a security parameter), and every PPT distinguisher D:

| Pr[RealA(κ) = 1]− Pr[IdealA′(κ) = 1] |
is negligible in κ.
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4 A Generic Construction for CAC-OT

In this part, we will present a generic construction for our CAC-OT built from the
blind (ciphertext policy) attribute-based encryption which is introduced below.
The construction can be proved secure in the security model described in section
3. In the following, we first present the definition and security notions of the blind
attribute-based encryption, and next using the encryption as a building block,
give a generic construction for CAC-OT.

4.1 Blind Attribute-Based Encryption

To make the blind attribute-based encryption more expressive, we first briefly
introduce the traditional ABE scheme and its security definition. A CP-ABE
scheme [8] consists of four algorithms Setup, KeyGen, Encrypt and Decrypt. There
is a private key generation center (KGC) who is responsible for the generation
of private keys for users’ attributes.

– Setup(1κ) The algorithm takes no input other than the implicit security
parameter κ. It outputs the public parameters pk and a mater key sk.

– KeyGen(KGC(pk, sk),U(pk, ω))→ (ω, skω) An honest user U with an at-
tributes set ω makes requests to KGC and obtains the corresponding secret
key skω from KGC.

– Encrypt(pk,τ ,m) The algorithm returns a ciphertext cτ to a message m
corresponding to the access control structure τ , such that only users who
have the secret key generated from the attributes that satisfy τ will be able
to decrypt the message m.

– Decrypt(cτ ,skω) The algorithm outputs a message m on input a ciphertext
cτ , a secret key skω associated with ω.

ABE can be seen as a generalized identity-based encryption (IBE). In this work,
the blind ABE we present is analogously a generalized blind IBE proposed in
[20]. In the blind ABE, after each user extracts the secret key corresponding to
his attribute set from the KGC, KGC will not obtain anything about the user’s
attribute set.

The blind ABE includes four algorithms Setup, BlindKeyGen, Encrypt and
Decrypt. The Setup, Encrypt and Decrypt algorithms are the same as those in
traditional CP-ABE, and the BlindKeyGen algorithm is described as follows.

– BlindKeyGen(KGC(pk, sk),U (pk, ω))→ (nothing, skω) An honest user U
with an attribute set ω makes request to KGC and obtains the corresponding
secret key skω from KGC. It includes three sub-algorithms (Blind, BKeyGen
and Unblind): the user first runs Blind(pk, ω) algorithm to blind his attribute
set ω to ω′ and sends ω′ to KGC; then KGC performs BKeyGen(sk, ω′) to
generate the private key skω′ for ω′; and finally the user obtains the private
key skω for the attribute set ω by executing Unblind(skω′) algorithm. At the
end, the BlindKeyGen algorithm outputs the private key skω for ω for the
user and nothing for the KGC.
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In [20], the IND-sID-CPA security of blind IBE was defined. Similarly, we give
the security definitions for blind ABE as follows.

Definition 4. (Secure Blind ABE) A blind ABE Π=(Setup, BlindKeyGen, En-
crypt, Decrypt) is called IND-sAtt-CPA-secure (resp. IND-Att-CPA) if and only
if: (1) the CP-ABE Π ′ =(Setup, KeyGen, Encrypt, Decrypt) is IND-sAtt-CPA se-
cure (resp. IND-Att-CPA), and (2) BlindKeyGen is leak free and selective-failure
blind.

Next, we will give the definition of IND-sAtt-CPA security for CP-ABE, and
leak freeness and selective-failure blindness for BlindKeyGen protocol.

Definition 5. (Selective-Attribute Secure CP-ABE (IND-sAtt-CPA))[15] An
CP-ABE Π ′ =(Setup, KeyGen, Encrypt, Decrypt) is called IND-sAtt-CPA-secure
if every PPT adversary A has only an advantage negligible in κ (which is a se-
curity parameter) for the following game carried out between the adversary A
and a challenger C:

– Initialization A chooses a target access tree τ∗ and gives it to C.
– Setup C runs Setup(1κ) algorithm to obtain (pk, sk), and give pk to A.
– Phase 1 A may query private keys for attribute sets ω1, . . . , ωql

, where each
attribute set ωi does not satisfy τ∗.

– Challenge A outputs two messages m0, m1, where the length of them is the
same. C Selects a random bit b and encrypts mb to τ∗. The resulting cipher-
text c∗ is given to A.

– Phase 2 A may continue to query private keys for attribute sets ωql+1 , . . . , ωq

as in Phase 1.
– Guess A outputs b′ ∈ {0, 1}.

We define A’s advantage in the above game as | Pr[b′ = b]− 1
2 |.

A secure BlindKeyGen protocol should satisfy two properties:

– Leak-freeness A possibly cheating user cannot learn anything by executing
the BlindKeyGen protocol with an honest KGC except for the necessarily
known knowledge.

– Selective-failure blindness A possibly cheating KGC cannot learn anything
about the user’s attributes during the BlindKeyGen protocol. Moreover, the
KGC cannot cause the BlindKeyGen protocol to fail selectively depending on
the user’s attributes.

The formal definitions for leak-freeness and selective-failure blindness of Blind-
KeyGen protocol associated with an ABE scheme are described in Appendix
B.

4.2 The Generic Construction for CAC-OT

In this part, a generic construction for CAC-OT from a blind ABE and a cre-
dential signature scheme will be presented and it is proved to be secure in the
standard model.
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Construction Overview. We import a credential issuer external to the pro-
tocol who is responsible to issuing credentials for each user’s attributes into the
protocol. A server maintains a database DB = {m1, . . . , mN}, and associates an
attribute-based access control structure τi with each message mi. Each user Ui

is entitled to an attribute subset ωi ⊆ Ω and an identity idi.
The server first generates the parameters for a blind ABE. Then he initializes

the database by encrypting each message mi under τi such that the message can
only be decrypted by the users who can obtain the private keys corresponding
to an attribute subset satisfying τi. The encrypted database is published to
all users. In the transfer phase, each user makes queries for the private keys
corresponding to his entitled attributes by running BlindKeyGen algorithm with
the server. Simultaneously, the user must make a proof of knowledge that he
possesses a valid credential signature for the requested attributes issued by the
issuer. If the user is verified, he will obtain the private keys for the requested
attributes from the server. Then he can use the keys to arbitrarily decrypt the
messages available to him according to the policies. We assume that at the end
of the protocol, each user will output a message subset that includes all the
messages available to them.

The above gives the basic construction idea for CAC-OT. After each user ob-
tains the private keys for the requested attributes, he can check the correctness of
the keys. So the protocol is resistant against the possibly cheating server who may
cause the selective-failure attacks. However, a problem during the simulation of a
cheating user comes along with this property. The simulator of a collection of pos-
sibly cheating users works as a server in the real word. It must encrypt N random
values in the DB-Initialization phase since it does not know the correct messages,
and in the Transfer phase open some of these values to the corresponding correct
messages received from the trusted party during simulation. To solve the prob-
lem, we can use a commitment scheme or programming a random oracle here. In
addition, a zero-knowledge proof PoK{(skDB) : (pkDB, skDB) ∈ Setup(1κ, pkI)}
is also needed in the simulation of a cheating server.

The Construction. Next, we will describe the solution similar to [20], by using
a secure commitment scheme such as Pedersen’s scheme [28] COM =(CSetup,
Commit, Decommit) and present a secure generic construction for CAC-OT as
follows. In the commitment scheme, CSetup is the system parameters generation
algorithm which generates public parameters ρ. Taking a message m as input,
Commit(m, ρ) algorithm outputs (C,D). The Decommit algorithm outputs 1 if
D decommits C to m, or 0 otherwise. Moreover, for the commitment scheme,
we require that the knowledge of a decommitment D can be proved efficiently
with respect to (ρ, m, C). In the following, we assume that the credential signa-
ture scheme used is CS=(ISetup, IssueCred, VerifyCred, ProveCred) and the blind
ABE used is BABE=(Setup, BlindKeyGen, Encrypt, Decrypt), where BlindKeyGen
algorithm consists of three sub-algorithms Blind, BKeyGen and Unblind. The pa-
rameters for the commitment scheme and a collision-resistant hash function H
can be generated by a trusted party.



380 L. Xu and F. Zhang

– IssueSetup(1κ)
1. I does as follows:

(a) generates (pkI , skI)← ISetup(1κ);
(b) publishes pkI as the system-wide parameters.

The credential issuer generates the parameters for the credential signature
scheme, and makes his public key pkI as the system-wide parameters.

– DB-Initialization:
1. S:

(a) generates (pkDB , skDB)← Setup(1k, pkI);
(b) computes Cj ← Encrypt(pkDB , mj, τj), j = 1, . . . , N ;
(c) computes (C,D)← Commit(H(C1, . . . , CN ));
(d) publishes (pkDB , C) to all users, and simultaneously executes a proof

of knowledge

PoK1{(skDB) : (pkDB , skDB) ∈ Setup(1k, pkI)};
The server S first generates the parameters for the blind ABE scheme. Then
he encrypts each message in the database by running Encrypt(pkDB , mj, τj)
to Cj and commits to the ciphertexts (C1, . . . , CN ) by using the commit-
ment scheme. Finally he publishes the commitment and public key pkDB to
all users, and simultaneously conducts a proof of knowledge of skDB . More-
over, this proof will enable to decrypt the messages of the database in the
security proof.

– ObtainCred(Ω, skI ; ωi, idi)
1. Ui: authenticates his identity and attributes (ωi, id) to I;
2. I:
(a) for each attribute aj ∈ ωi, computes crediaj

← IssueCred(skI , (idi, aj));
(b) sends credωi = {crediaj

}aj∈ωi to Ui;
3. Ui: verifies each credential by running VerifyCred(pkI , (idi, aj), crediaj

)
algorithm.

For each attribute aj ∈ ωi, the issuer runs IssueCred(skI , (idi, aj)) to output
crediaj

as the credential of aj for Ui. Alternatively, the issuer can issue the cre-
dentials forUi’s all attributesatoncebyrunning IssueCred(skI, (idi, {aj}aj∈ωi))
algorithm.By linkingeachattributeaj withtheuser’s identity idi in thecreden-
tial, theprotocol canbe resistantagainstmultipleusers’ collusionattacks.Since
in the Transfer phase below, when each user requests messages, he must make a
proof that the credentials for the requested attributes are valid and linked with
one identity. So if two or more users collude by pooling their credentials, due to
the soundness of knowledge proof they cannot conduct such a knowledge proof
which can convince the server that the credentials are linked with one identity.
Note that idi only appears in the user’s credentials, and is not involved in the
blind ABE scheme as a new attribute.
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– Transfer(skDB ; ωi)
1. Ui: verifies the PoK1 and aborts if the verification fails;
2. Ui: for each aj ∈ ωi, computes a′

j ← Blind(pkDB, aj), sends a′
j to S, and

simultaneously conducts a proof of knowledge

PoK2{(ωi, id, credi) : a′
j ∈ Blind(pkDB, aj)∧credij ∈ IssueCred(skI , (id, aj)),∀aj ∈ ωi};

3. S:
(a) verifies the PoK2, and aborts if the verification fails;
(b) computes sk′

ωi
← BKeyGen(skDB , {a′

j}aj∈ωi);
(c) sends (sk′

ωi
, C1, . . . , CN ) to Ui and conducts a proof of knowledge

PoK3{(D) : Decommit(H(C1, . . . , CN ), C,D)=1};

4. Ui:
(a) verifies the PoK3 and aborts if the verification fails;
(b) computes skωi ← Unblind(sk′

ωi
) as the private keys for ωi and verifies

the correctness of the keys. If they do not verify, aborts;
(c) if for all τj , ωi does not satisfy τj , returns “⊥”, otherwise for each

message mj that satisfies ωi |= τj , runs Decrypt(Cj , skωi) to decrypt
out mj . At the end outputs a message subset φi ⊆ {m1, . . . , mN},
where the access control structure for each message in φi is satisfied
by ωi.

To retrieve the private keys to an attribute subset, each user and the server
engage in the BlindKeyGen protocol for the requested attribute subset. Simulta-
neously, the user must prove to the server by PoK2 that he possesses the valid
credentials for the requested attributes and the credentials are linked with one
identity. If the BlindKeyGen protocol and anonymous credential scheme are both
secure, and the proof is zero-knowledge, then the server will not learn any in-
formation about the requested attributes or the user’s identity. Finally, the user
will obtain the private keys requested from the server, and decrypt arbitrarily
the messages allowed for him by using the private keys.

Security Analysis. If the based blind ABE is IND-sAtt-CPA secure, then any
colluding users cannot combine their private keys to decrypt out a message that
none of them would have been able to obtain individually. Therefore, from the
construction of the CAC-OT, we can say that the CAC-OT can also be resistant
against this type of colluding users.

In the following, we will show that the generic construction for CAC-OT is
server-secure and user-secure under the security model presented in section 3.

Theorem 1. If the based blind ABE is IND-sAtt-CPA secure, the commitment
scheme is secure, and the knowledge proof PoK2 and PoK3 is zero-knowledge,
then the generic construction for CAC-OT is server-secure.

We give a proof of theorem 1 in Appendix A.
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Theorem 2. If the based blind ABE is IND-sAtt-CPA secure and the knowledge
proof PoK1 is zero-knowledge, then the generic construction for CAC-OT is
user-secure.

We give a proof of theorem 2 in Appendix A.
Note that, we only describe a secure generic construction for CAC-OT secure

in the standard model by using a commitment scheme. In fact, we can also apply
a random oracle to achieve a secure construction for CAC-OT in the random
oracle model. The technique is similar to that in [20].

5 A Concrete Scheme for CAC-OT

In section 5, we combine the blind ABE with the credential signature scheme
to present a construction for CAC-OT. To give a concrete scheme, we have to
construct a blind ABE and combine the blind ABE with a credential signature
scheme to achieve this point: when each user extracts the private keys for his
attributes, he must make a proof of knowledge to convince the server that he has
the credentials for the requested attributes. However, it seems that presenting a
blind ABE based on the existing ABE schemes such as [8,27,21,31,15] and finding
a credential scheme to make such a knowledge proof as above are infeasible. This
is in part due to the fact that either the indexes of attributes are hashed into an
element or a secret value for each attribute is selected unknown to the user in
the existing ABE schemes. The fact makes the BlindKeyGen protocol not to be
realized and makes the proof of knowledge techniques unwieldy.

In the following, we first present a new ABE based on the IBE scheme [3], and
then a blind ABE using the similar technique to that in [20]. Then we combine
the blind ABE with the credential signature [2] to give a concrete CAC-OT
protocol.

5.1 A Concrete Blind ABE

Blind ABE We first present the basic ABE scheme, and next give the Blind-
KeyGen protocol. The technique in encryption phase is similar to that in [23].

We give a description of the access control structure τi used in our protocol.
The access control structure is a n-ary tree, in which leaves are attributes and
inner nodes are “and(∧)” and “or(∨)” boolean operations.

– Setup(1k)

1. Select a generator g of G, where |G| = p, a random α, and set g1 = gα.
Then pick a random element g2 ∈ G.

2. Generate the attribute set Ω = {a1, a2, . . . , al} ⊆ Z∗
p , for some integer l,

and the random elements h1, h2, . . . , hl ∈ G.
The public key is pk = (g, g1, g2, h1, . . . , hl), and the master key is sk = gα

2 .
– KeyGen(sk, ω)

1. Select a random value r ∈ Z∗
p , and compute d0 = gr;
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2. Compute dj = gα
2 Fj(aj)r, for each aj ∈ ω, where Fj(aj) = g

aj

1 hj ;
3. Return the secret key skω = (d0, ∀aj ∈ ω : dj).

– Encrypt(m, τ, pk) To encrypt a message m ∈ GT , the algorithm proceeds as
follows.
1. First select a random element s ∈ Z∗

p , and compute C0 = e(g1, g2)s ·m.
2. Set the value of the root node of τ to be s, mark all child nodes as

un-assigned, and mark the root node assigned.
(a) If the symbol is “ ∧ ” and its child nodes are marked un-assigned,

for each child node except the last one, we assign a random value si

where 1 ≤ si ≤ p − 1, and to the last child node assign the value
st = (s−Σsi) mod p. Mark this node assigned.

(b) If the symbol is “∨”, set the values of each child node to be s. Mark
this node assigned.

3. For each leaf attribute aj,i ∈ τ , compute Cj,i = (C1
j,i, C

2
j,i), where C1

j,i =
gsi , C2

j,i = Fj(aj)−si , where i denotes the index of the attribute in the
access tree τ .

4. Return the ciphertext Cτ = (τ, C0, (C1
j,i, C

2
j,i) : aj,i ∈ τ).

s

Cj,2 Cj,3 Cj,4

ss

S3=sS2=s-S1S1 S4=s

Cj,1

Fig. 1.

– Decrypt(Cτ , skω) The algorithm chooses the smallest set ω′ ⊆ ω (we assume
that this can be computed efficiently by the decryptor) that satisfies τ and
performs as follows.
1. For every attribute aj ∈ ω′, compute∏

aj∈ω′
e(d0, C

2
j,i)e(dj , C

1
j,i)

=
∏

aj∈ω′
e(gr, Fj(aj)−si)e(gα

2 Fj(aj)r, gsi)

=
∏

aj∈ω′
e(gr, Fj(aj)−si)e(gα

2 , gsi)e(Fj(aj)r, gsi)

=
∏

aj∈ω′
e(gα

2 , gsi)

= e(g1, g2)s

2. Compute m′ = C0
e(g1,g2)s .
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Next, we will present the BlindKeyGen protocol. In [20], a blind IBE was pre-
sented based on the IBE [3]. Since the ABE we give above is an extension of the
IBE [3], the BlindKeyGen protocol can also be seemed as a simple extension of
the BlindExtract protocol in [20]. Without loss of generality, we assume that the
user is entitled to an attribute set ω = {a1, . . . , at}. The BlindKeyGen proceeds
as follows.

– Blind(ω, pk)

1. U picks a random r1, . . . , rt ∈ Zp;
2. computes h′

j = g
aj

1 hjg
rj , j = 1, . . . , t;

3. conducts PoK{(r1, . . . , rt, a1, . . . , at) :
∧t

j=1 h′
j = g

aj

1 hjg
rj}.

– BKeyGen(sk, h′
j , j = 1, . . . , t)

1. KGC verifies the proof. If the proof fails, abort;
2. chooses a random r ∈ Zp;
3. computes d′0 ← gr, d′j ← h′r

j gα
2 , j = 1, . . . , l;

4. sends sk′
ω = (d′0, d

′
1, . . . , d

′
t) to U .

– Unblind(sk′
ω)

1. U checks that e(g1, g2)e(d′0, h′
j) = e(d′j , g), for j = 1, . . . , t;

2. If the check passes, chooses a random z ∈ Zp, otherwise, outputs “ ⊥ ”
and aborts;

3. computes d0 ← d′0gz, dj ← (d′j/d
′rj

0 )Fj(aj)z, j = 1, . . . , t;
4. outputs skω = (d0, d1, . . . , dt).

Security. We will show that the blind ABE above is IND-sAtt-CPA secure by
the following theorems.

Theorem 3. The blind ABE above is both leak-free and selective-failure blind.

We sketch a proof of theorem 3 in Appendix B.

Theorem 4. The basic ABE scheme above is IND-sAtt-CPA secure based on
DBDH assumption.

We give a proof of theorem 4 in Appendix B.

5.2 A Concrete Construction for CAC-OT

We will combine the credential signature scheme in [2] with the above blind
ABE to present a concrete CAC-OT scheme. The Pedersen commitment [28]
is also used. The scheme operates on the same group as the blind attribute-
based encryption that we present and the credential signature scheme [2], the
knowledge of the value D can be proved using schnorr’s technique [30], and
hence Pedersen commitment scheme is well-suited for the concrete scheme for our
CAC-OT. In the protocol below, the parameters (H, h) used for the commitment
scheme can be generated by a trusted party.
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Assume that the attributes set is Ω = {a1, a2, . . . , al}, where each aj ∈ Zp.
Without loss of generality, we assume that the user Ui has identity idi and at-
tributes ωi = {a1, . . . , am}, where m ≤ l. In the protocol, the number of each
user’s attributes may be different. Then during the Transfer phase, if the server
colludes with the issuer, then they may guess out some users’ identities from
the numbers of these users’ attributes. So the number of each user’s attributes
should be protected against the server and issuer. We give a solution to this prob-
lem as follows: in the Transfer phase, for the user Ui, we model his attributes
subset ωi as a tuple of l attributes ω∗

i = {a∗
1, a

∗
2, . . . , a

∗
m, a∗

m+1, . . . , a
∗
l︸ ︷︷ ︸} ←

(a1, a2, . . . , am, a1, . . . , a1︸ ︷︷ ︸). Thus in the Transfer phase, Ui can make queries to

the server and prove that he has the credentials for the requested attributes
without revealing the number of the attributes. And meanwhile, the user can
only obtain the private keys for his entitled attributes.

– IssueSetup(1κ)

1. I:
(a) generates the keys (G, GT , p, e, g0, yl, y2, y3, yI ; xI)← ISetup(1κ);

pkI ← (G, GT , p, e, g0, y1, y2, y3, yI); skI ← xI ; yI ← gxI
0 ;

(b) publishes pkI as the system-wide parameters.
– DB-Initialization(Ω, m1, . . . , mN , τ1, . . . , τN )

1. S:
(a) generates (g, g1, g2, h1, . . . , hl, α)← Setup(1κ, pkI);

pkDB ← (g, g1, g2, h1, . . . , hl); skDB ← α;
(b) for each mj ∈ GT , computes Cj ← Encrypt(pkDB , mj , τj), j =

1, . . . , N , chooses a random value z ∈ Zp and computes C ←
gH(C1,...,CN)hz;

(c) publishes (C, pkDB) to all users, and does a proof of knowledge

PoK1{(α) : g1 = gα};

– ObtainCred(Ω, xI , ω)

1. Ui: verifies the PoK1, and aborts if the verification fails;
2. Ui: authenticates his identity and attributes (idi, ωi) to I;
3. I: generates the credentials for ωi as follows:

(a) for each attribute aj ∈ ωi, chooses raj , saj ∈ Zp at random, and
computes σaj ← (g0y

aj

1 yidi
2 y

raj

3 )1/(xI+saj
);

(b) sends {(σaj , raj , saj )}aj∈ωi to Ui as the credential for ωi;
4. Ui: checks whether e(σaj , g

saj

0 yI) = e(g0y
aj

1 yidi
2 y

raj

3 , g0) holds.
– Transfer

1. Ui:
(a) models his attribute subset as a tuple ω∗

i = {a∗
1, a

∗
2, . . . , a

∗
m, a∗

m+1, . . . , a
∗
l };

chooses values r1, . . . , rl ∈ Zp at random, and for j = 1, . . . , l, computes

h′
j ← g

a∗
j

1 grj ;
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(b) for each a∗
j , chooses values vj , wj ∈ Zp and Aj , Bj ∈ G at random, computes

Ãj ← σa∗
j
A

vj

j , B̃j ← B
vj

j A
wj

j ;

(c) executes the following proof of knowledge
PoK2{(rj , αj , βj , sa∗

j
, vj , wj , a

∗
1, ..., a

∗
l , idi, ra∗

j
)j=1,...,l :∧l

j=1

(
h′

j = g
a∗

j

1 grj
∧

B̃j = B
vj

j A
wj

j

∧
1 = B̃j

−sa∗
j B

αj

j A
βj

j

)
∧ l

j=1

(
e(Ãj ,yI )
e(g0,g0) = e(Ãj , g0)

−sa∗
j e(Aj , yI)vj e(Aj , g0)

αj e(y3, g0)
ra∗

j e(y2, g0)idie(y1, g0)
a∗

j )

)
},

where αj = sa∗
j
vj and βj = sa∗

j
wj ;

2. S:
(a) verifies the PoK2, and aborts if the verification fails;
(b) otherwise chooses a random r ∈ Zp, and computes

d′0 ← gr;
d′j ← gα

2 (h′
jhj)r, for j = 1, . . . , l;

sk′
ω∗

i
← (d′0, d

′
1, . . . , d

′
l);

(c) sends (sk′
ω∗

i
, C1, . . . , CN ) to Ui and conducts a proof of knowledge

PoK3{(z) : C = gH(C1,...,CN)hz};

3. Ui:
(a) verifies the PoK3, and aborts if the verification fails;
(b) parses skω∗

i
as (d′0, d′1, . . . , d′l), and for each j, checks whether

e(g1, g2)e(d′0, h
′
jhj) = e(d′j , g) holds, and if the check does not pass, out-

puts “ ⊥ ” and aborts;
(c) otherwise chooses a random z ∈ Zp, computes d0 ← d′0g

z, dj ←
(d′j/(d′0)rj )Fj(aj)z , j = 1, . . . , l, and lets skωi ← (d0, d1, . . . , dl);

(d) if for all τj , ωi does not satisfy τj , returns “⊥”, otherwise for each message
mj that satisfies ωi |= τj , runs Decrypt(Cj , skωi) to decrypt out mj . At
the end outputs a message subset φi ⊆ {m1, . . . , mN}, where the access
tree for each message in φi is satisfied by ωi.

Theorem 5. The concrete CAC-OT scheme satisfies server security and user
security.

Proof. Since the blind ABE, the credential signature and Pedersen commitment
scheme are all proved to be secure, and the associated proofs of knowledge are
zero-knowledge, we can conclude that the CAC-OT scheme satisfies server secu-
rity and user security.

6 Analysis and Extensions

AC-OT [10] can just directly achieve “and” access control. For “or” condition,
the message in the database has to be duplicated with a second access control
structure. For a database in which complicated “or” and “and” access control
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policies like (c11 ∧c12 ∧ . . . c1n1
)∨(c21 ∧c22 ∧ . . . c2n2

)∨ . . .∨(ct1 ∧ct2 ∧ . . . ctnt
) are

enforced to each message, AC-OT does not work efficiently. Since the message
must be duplicated for t times, each with a policy (ci1 ∧ ci2 ∧ . . . cini

). Moreover,
when the server initializes the database, he must encrypt the message for t times
under different “and” policies, and the initialized database will also increase
greatly. However, our CAC-OT directly achieves flexible “or” and “and” access
control policies such that it can be efficiently applied in the databases that
request complex access control permissions.

Since in the transfer phase of our construction, to obtain the private keys for
his certificates, the user needs to interact with the server for just one round.
Therefore, if we let k be the number of messages that a user can access in a
database according to the access control policies, then the communication cost
of our construction is O(N + l). However, in Camenisch et al. ’s AC-OT [10],
each time the user requests a message, the communication cost is O(N +l). Then
to obtain all the k allowed messages, the user has to interact with the server for
k times and correspondingly the communication cost is O(N + kl). So in the
case that k is a large number, our protocol works efficiently in communications.

In the protocol, we combine the blind ABE with credential signature scheme
to present the CAC-OT. Under our construction, the CAC-OT achieves the same
access control policies as the blind ABE. However, in the concrete blind ABE
scheme we presented, the ciphertext size increases linearly with the number of
“or” policies, and the access policies are just “and” and “or”. As we know, there
have been some efficient ABE schemes which have achieved more complicated
access control structures such as [32]. In the scheme [32], access control is ex-
pressed by a Linear Secret Sharing Scheme(LSSS) matrix over the attributes in
the system. Presenting a more efficient blind ABE with more complicated access
control policies, and applying it to our construction for CAC-OT is our future
work.

7 Conclusion

In this paper we presented the oblivious transfer with complex access control
policies which directly achieves “and” and “or” policies. To realize the protocol,
we first presented a primitive called blind ABE using the similar technique to
that in the blind IBE [20], and then gave a generic construction combining the
blind ABE with a credential signature scheme. Moreover, a new blind ABE
scheme was proposed in which the access control structure is provided by access
trees, and based on it, a concrete CAC-OT protocol is presented.
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A Security Proofs for OT with Attribute-Based Access
Control

A.1 Proof of Theorem 1

In the proof of server security, we do not consider the case that the issuer and a
collection of users collude. Since if the issuer colludes with any user, then the user
may obtain the private keys for all attributes in Ω to decrypt out all messages
in the database. So we assume that the issuer will not collude with any user. In
the following, we will only consider a collection of possibly cheating users.

For any real world adversary A who corrupts a collection of cheating users
{Û1, . . . , Ût}, we can construct an ideal world adversaryA′ who corrupts the same
participants {Û ′

1, . . . , Û ′
t} such that for any PPT distinguisherD, | Pr[RealA(κ) =

1]− Pr[IdealA′(κ) = 1] | is negligible in κ.
We construct the adversary A′ as follows. A′ plays simultaneously roles of

{Û1, . . . , Ût}, and performs an honest server S in the real world.A′ first generates
(pkDB, skDB) by running Setup(1κ, pkI). It generates a random commitment in
DB-Initialization phase. In the Transfer phase, if the PoK does not verify, then
A′ aborts, otherwise uses an extractor of knowledge proof to extract (id, ωi)
of Ûi, and sends (id, ωi) to T . If T outputs “ ⊥ ”, then A′ causes Transfer to



390 L. Xu and F. Zhang

fail. Otherwise, A′ obtains a message set φi from T . For j = 1, . . . , N , A′ sets
C′

j ← Encrypt(pkDB , τj , mj) for mj ∈ φi, and remains other ciphertexts to be
encryptions of random messages. At last A′ sends (C′

1, . . . , C
′
N ) to Ûi along with

a simulated proof of decommitment.
We consider a sequence of distributions Game-0,. . ., Game-3 to prove the in-

distinguishability between the real and ideal worlds. Let Game i be the output
of the Game-i.

Game-0: The adversary A interacts with the honest server S exactly as in the
real world. Clearly

Pr[Game 0 = 1] = Pr[RealA(κ) = 1].

Game-1: The extractor for the PoK2 is used to extract (id′, ω′
i). If the extractor

fails or different identities are extracted, then output “ ⊥ ”. (If different identities
are extracted, there must be cheating users that collude with each other and try
to combine their credentials to retrieve the messages they have not access to.)
The difference between the two output distributions is given by the knowledge
error of the PoK2,

| Pr[Game 1 = 1]− Pr[Game 0 = 1] |≤ O(2−κ).

Game-2: If in the extracted ω′
i, there is at least one attribute a ∈ ω′

i which is not
an element of Ω (i.e. a /∈ Ω), then output “ ⊥ ”. The difference between Game-1
and Game-2 is given by the probability of forging a valid credential signature,

| Pr[Game 2 = 1]− Pr[Game 1 = 1] |≤ O(2−κ).

Game-3: We replace the commitment C with a commitment to a random value,
and replace the final proof of knowledge of decommitment with a simulated
proof. For a secure commitment scheme and zero-knowledge proof, the difference
between this game and Game-1 is given by D’s negligible advantage in correctly
distinguishing C from a valid commitment to H(C1, . . . , CN ), and the simulated
proof from a valid proof,

| Pr[Game 3 = 1]− Pr[Game 2 = 1] |≤ O(2−κ).

Game-4: We denote the set φi as the set of the messages whose access trees are
all satisfied by ωi, and denotes Iωi as the index of these messages. We alter the
ciphertext vector (C1, . . . , CN ) to produce a new vector (C′

1, . . . , C
′
N ) as follows:

if j /∈ Iωi , set C′
j ← Encrypt(pkDB , τj , m

′), where m′ is selected randomly in the
message space, and otherwise C′

j ← Cj . Then we have

| Pr[Game 4 = 1]− Pr[Game 3 = 1] |≤ O(2−κ).

From the construction of the adversary A′, we have that

Pr[Game 4 = 1] = Pr[IdealA′(κ) = 1].
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Summing the differences between the above games, we can conclude that

| Pr[RealA(κ) = 1]− Pr[IdealA′(κ) = 1] |≤ O(2−κ).

Lemma 1. | Pr[Game 2 = 1] − Pr[Game 1 = 1] |≤ O(2−κ) holds based on
l-SDH assumption.

Proof. If Game 1 and Game 2 are distinguishable, then we can construct a forger
A who can break the existential unforgeability under chosen-message attack of
the credential signature scheme [2].

The challenger of the credential signature scheme first generates the system
parameters and sends the public parameters to A. Then A can make signature
queries to the challenger. Here we letAmake queries for the messages in Ω where
|Ω| = l. Simultaneously A runs a server and plays the Game 2 with the user.
In the transfer phase, A extracts the (id′, ω′

i, cred
′
i) from the zero-knowledge

proof conducted with the user. If Game 1 and Game 2 are distinguishable, then
it means that A can extract at least one credential (a, creda) where a ∈ ω′

i

but a /∈ Ω. Finally A outputs (a, creda) to the challenger as a forgery. Since the
credential signature scheme has been proved to be existentially unforgeable under
chosen-message attack under the l-SDH assumption, we have the conclusion in
the lemma 1.

Lemma 2. (Indistinguishability of Ciphertexts) | Pr[Game 4=1]−Pr[Game 3=
1] |≤ O(2−κ) if the based blind ABE is IND-sAtt-CPA secure and leak-free and
the PoK1 of skDB is zero-knowledge.

Proof. If a PPT distinguisher D can distinguish Game 3 and Game 4 with a
non-negligible probability, then we can construct an adversary A that wins the
IND-sAtt-CPA game against the blind ABE with the same probability. We use
a hybrid proof as follows.

We define a series of hybrids such that Hybrid0=Game 3 and HybridN=Game
4. Hybridj−1 and Hybridj only differ in the distribution of jth ciphertext vector,
where (1 ≤ j ≤ N). If Game 3 and Game 4 can be distinguished by D, then there
must exist a j such that D can distinguish Hybridj−1 and Hybridj . We construct
A as follows. A outputs τ∗ = τj . It runs D and conducts the protocol with R̂
as in Game 3. Then A selects a random message m∗ from the message space,
outputs (mj , m

∗) to the challenger and obtains a challenge ciphertext C∗. Then
it constructs a ciphertext vector (C′

1, . . . , C
′
N ) as in Game 3 expect that at the

jth position, sets C′
j ← C∗.

When the distinguisher D returns a bit b, the adversary A returns b to the
challenger as its answer.

In addition, since the PoK of skDB is zero-knowledge and the blind AEB
scheme is leak-free, the distinguisher clearly cannot distinguish the two games.

A.2 Proof of Theorem 2

For any real world adversary A who corrupts the issuer Î, the server Ŝ and a
collection of cheating users {Û1, . . . , Ût}, we can construct an ideal world adver-
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sary A′ who corrupts the same participants such that for any PPT distinguisher
D | Pr[RealA(κ) = 1]− Pr[IdealA′(κ) = 1] | is negligible in κ.

We construct an adversary A′ as follows. A′ plays simultaneously roles of
the issuer Î ′, Ŝ′ and a collection of cheating users {Û ′

1, . . . , Û ′
t}, and performs a

collection of honest users { ˆUt+1, . . . , Ûn} in the real world. A′ runs A to obtain
Î’s public key pkI and Commit(H(C1, . . . , CN )) from Ŝ. After receiving (U ′

i , ωi)
from T in the ideal world, it executes ObtainCred with A on (U ′, ω) in the real
world. If the resulting credentials are all valid, A′ works as the issuer in the ideal
world to return b=1 to T , otherwise return b=0. A′ extracts skDB from A in
the proof of knowledge in the DB-Initialization phase, and in the Transfer phase,
simulates honest users by requesting for ω′ for which it has the credentials. Upon
receiving the ciphertexts (C1, . . . , CN ), A′ decrypts the messages (m1, . . . , mN),
and then sends {(mi, τi)}i=1,...,N to T . If the transfer succeeds, A′ then sends
b′=1 to T , otherwise sends b′=0.

We consider a sequence of distributions Game-0,. . ., Game-3 to prove the in-
distinguishability between the real and ideal worlds. Let Game i be the output
of the Game-i.

Game-0: In this game, A interacts with the honest users exactly in the real
world. Clearly

Pr[Game 0 = 1] = Pr[RealA(κ) = 1].

Game-1: The extractor for PoK1 of skDB is used to extract skDB. If extractor
fails or outputs invalid skDB, outputs “ ⊥ ”. Since the knowledge proof PoK1 is
zero-knowledge, the extractor fails with probability negligible in κ, and there is

| Pr[Game 1 = 1]− Pr[Game 0 = 1] |≤ O(2−κ).

Game-2: In the Transfer phase, let the user algorithm request an attribute set ω
for which it has the credentials. If the requests succeed, set a bit b′=1, otherwise
b′=0. Since we assume that the blind ABE is selective-failure blind and the
knowledge proof PoK2 is zero-knowledge, then we have

| Pr[Game 2 = 1]− Pr[Game 1 = 1] |≤ O(2−κ).

From the construction of the adversary A′, we have that

Pr[Game 2 = 1] = Pr[IdealA′(κ) = 1].

Summing the differences between the above games, we can conclude that

| Pr[RealA(κ) = 1]− Pr[IdealA′(κ) = 1] |≤ O(2−κ).

Lemma 3. | Pr[Game 2 = 1] − Pr[Game 1 = 1] |≤ O(2−κ) if the based blind
ABE is selective-failure blind.

Proof. If there exists a distinguisher D who can distinguish Game 1 and Game 2,
then we can construct an adversaryA who can win the selective-failure blindness
game. We use a hybrid proof as follows.
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Note that the Game 1 and Game 2 differ only in the distribution of extracted
attribute set. We define a series of hybrids such that Hybrid0=Game 1 and
Hybridl=Game 2, where l = |ω| and ω ⊆ Ω is an attribute set. Hybridj−1 and
Hybridj only differ in the jth attribute. If D can distinguish Game 1 and Game
2, then there must exist a j ∈ {1, . . . , l}, such that D can distinguish Hybridj−1

and Hybridj . Then we can construct A as follows.
A runs D and conducts the protocol with the real world server Ŝ as in Game 1

except that A chooses a “real” attribute aj (or a random a′
j ∈ Ω) for Hybridj−1.

Then A outputs (params, aj , a
′
j) and sends the outputs of the first oracle Ub

to Ŝ. After the BlindKeyGen protocol ends, A returns Ŝ in the selective-failure
blindness game. When D finally outputs a bit b′, A outputs b′ as its guess. We
assume that the probability that D outputs 1 when presented with Hybridj−1

is a, and the probability when presented with Hybridj is b, then the probability
that A wins the selective-failure blindness game is |b−a|

2 .

B Security Proofs for Blind ABE

B.1 Definition of Leak-Freeness and Selective-Failure Blindness

Similarly to [20], we present the definition of leak-freeness for BlindKeyGen algo-
rithm associated with an ABE.

Definition 6. (Leak-Freeness) A protocol BlindKeyGen associated with an ABE
scheme (Setup, KeyGen, Encrypt, Decrypt) is leak-free if for any efficient ad-
versary A, there exists an efficient simulator Sim such that for any efficient
distinguisher D, the probability to distinguish real game and ideal game is negli-
gible:

– Real game: A chooses an attributes set ω and interacts with KGC by running
BlindKeyGen on ω. As many times as D wants, A repeats the actions above.
Then A outputs a list of attributes set and the corresponding private keys
extracted.

– Ideal game: Sim chooses an attributes set ω and sends it to a trusted party
T to obtain the output of KeyGen on ω. As many times as D wants, A
repeats the actions above. Then Sim outputs a list of attributes set and the
corresponding private keys extracted.

Next, we present the definition of selective-failure blindness similarly to [16,20].

Definition 7. (Selective-Failure Blindness) A protocol P (A(·),U(·, ·)) is said to
be selective-failure blind if for every PPT adversary A has a negligible advantage
in the following game: First, A outputs params and two attributes set ω0, ω1 ∈
Ω. A random bit b ∈ {0, 1} is chosen. A is given black-box access to two oracles
U(params, ωb) and U(params, ω1−b). U algorithms produce local output skb and
sk1−b respectively. If skb �= 1 and sk1−b �= 1 then A receives (sk0, sk1). If skb =⊥
and sk1−b �=⊥ then A receives (⊥, ε). If skb �=⊥ and sk1−b =⊥ then A receives
(ε,⊥). If skb =⊥ and sk1−b =⊥ then A receives (⊥,⊥). Finally, A outputs its
guess b′. We define A’s advantage in the above game as | Pr[b′ = b]− 1

2 |.
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B.2 Proof of Theorem 3

We give a proof sketch of theorem 3 as follows.

Leak-Freeness. For any adversary A who is interacting with KGC running the
BlindKeyGen protocol in the real game, we can construct a simulator Sim who
interacts with a trusted party executing the ideal KeyGen protocol, such that no
efficient distinguisher can distinguish the real game and idea game.
Sim plays the role of KGC in the real game, interacting withA, and simultane-

ously interacts with T in the ideal game. Each time A engages Sim in a BlindKey-
Gen protocol, Sim behaves as follows. A sends (h′

1, . . . , h
′
t) to Sim, and conducts

a proof of knowledge PoK{(r1, . . . , rt, a1, . . . , at) :
∧t

j=1 h′
j = g

aj

1 hjg
rj}. If the

PoK does not verify, Sim aborts. Otherwise, Sim extracts (r1, . . . , rt, ω) and
submits ω to T . Then T returns the private keys skω = (d0, d1, . . . , dt) to Sim,
where d0 ← gr, dj ← Fj(aj)rgα

2 , j = 1, . . . , l for some random r ∈ Zq. Finally,
Sim computs skω′ = (d′0, d′1, . . . , d′t), where d′0 ← d0g

z, d′j ← djFj(aj)zd
rj

0 ,
j = 1, . . . , l for some random z ∈ Zq.

We can see that sk′
ω is correctly formed and has the same distribution as that

of KGC. Hence any efficient distinguisher cannot distinguish the real game and
ideal game.

Selective-Failure Blindness. The adversary A plays the game defined in def-
inition 4. A first outputs params and two attributes set ω0 and ω1. A random
bit b is chosen. A is given black-box access to two oracles U(params, ωb) and
U(params, ω1−b). Then U algorithms conduct BlindKeyGen protocol with A who
is playing the role of KGC. Finally A receives the outputs of U algorithms (The
outputs may be one of the four forms defined in definition 4). A then returns a
bit b′ as its answer. Since in the BlindKeyGen protocol, the blinded attributes are
h′

1, . . . , h
′
t, where h′

j = g
aj

1 hjg
rj , j = 1, . . . , t. Clearly, h′

j is uniformly distributed
in G. Moreover, the PoK of (r1, . . . , rt, a1, . . . , at) is zero-knowledge, so A can-
not determine which attributes the user requests, and A cannot cause failure
depending on the user’s attributes. Furthermore, since there is a random value z
in the unblinded private keys, we can finally conclude that A cannot distinguish
between U(params, ωb) and U(params, ω1−b) with non-negligible probability.

B.3 Proof of Theorem 4

Suppose A has advantage ε in attacking the ABE system. We show how to use
the adversary A to build an algorithm B that solves the DBDH problem with
advantage ε/2. Algorithm B is given as input a random tuple (g, ga, gb, gc, Z),
where Z = e(g, g)abc or is sampled from GT . Algorithm B works by interacting
with A in a IND-sAtt-CPA game as follows:

– Initialization A chooses the challenge access tree τ∗ and sends it to B.
– Setup B selects random α1, . . . , αl, t ∈ Zp. If aj ∈ τ∗, B sets tj ← aj ,

otherwise tj ← (aj − t), ∀aj ∈ Ω. Let hj ← g
tj

1 gαj , then
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Fj(aj) = g
aj

1 hj =
{

gαj , aj ∈ τ∗, (1a)
gt
1g

αj , aj /∈ τ∗, . (1b)

– Phase 1 A makes secret key requests for any set of attributes ω = {aj | aj ∈
Ω} with the restriction that ω � τ∗. On each request B chooses a random
r ∈ Zp, and computes

d0 = g
(−1/t)
2 gr = gr−(b/t),

dj = g
(−αj/t)
2 Fj(aj)r = g

(−αj/t)
2 (gt

1g
αj )r = ga

2Fj(aj)r−(b/t), ∀aj ∈ ω.

Let r̃ = r − (b/t), then d0 = gr̃, dj = gα
2 Fj(aj)r̃, ∀aj ∈ ω.

– Challenge A outputs two messages m0, m1 ∈ GT . B picks a random bit
b ∈ {0, 1}, and returns the encryption of mb. The encryption is generated as
follows.
1. Let C0 = mb · Z.
2. Set the value of the root node of τ∗ to be gc, mark all child nodes as

un-assigned, and mark the root node assigned.
• If the symbol is “ ∧ ” and its child nodes are marked un-assigned,

for each child aj,i except the last one B chooses random values si ∈ Z∗
p ,

and assigns C1
j,i = gsi , C2

j,i = (g−si)αj to them, and to the last child it
assigns C1

j,i = gsv = gc/(
∏v−1

i=1 gsi), C2
j,i = (gsv )−αj = Fj(aj)−sv .

Since Fj(aj) = gαj when aj ∈ τ∗, the equality above holds.
• If the symbol is “∨”, set the values of each child node to be gc. Mark

this node assigned.
Hence, if Z = e(g, g)abc = e(g1, g2)c, then C = (C0, ∀aj,i ∈ τ∗ : C1

j,i, C
2
j,i)

is a valid encryption of mb.
– Phase 2 A continues secret key requests with the same restriction as in

Phase 1.
– Guess Finally, A outputs a guess b′ ∈ {0, 1}. B outputs a bit u ∈ {0, 1} as

the response to the DBDH problem.
If b = b′, B lets u = 1 meaning Z = e(g, g)abc, otherwise lets u = 0 meaning
Z �= e(g, g)abc.
Then the overall advantage of B to solve DBDH problem is:

1
2
Pr[u = 1 | Z = e(g, g)abc] +

1
2

[u = 0 | Z �= e(g, g)abc]− 1
2

=
1
2
Pr[b = b′ | Z = e(g, g)abc] +

1
2
Pr[b �= b′ | Z �= e(g, g)abc]− 1

2

=
ε

2
.
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Abstract. Security-aware embedded devices which are likely to operate
in hostile environments need protection against physical attacks. For the
RSA public-key algorithm, protected versions of the Montgomery pow-
ering ladder have gained popularity as countermeasures for such attacks.

In this paper, we present a general fault attack against RSA imple-
mentations which use the Montgomery powering ladder. In a first step,
we discuss under which realistic fault assumptions our observation can
be used to attack basic implementations. In a second step, we extend our
attack to a scenario, where the message is blinded at the beginning of
the exponentiation algorithm. To the best of our knowledge this is the
first fault attack on a blinded Montgomery powering ladder.

Keywords: Montgomery Powering Ladder, Fault Attack, Blinded Ex-
ponentiation, Quadratic Residue.

1 Introduction

In order to judge the security of the practical realization of a cryptographic al-
gorithm, the way it is implemented is as important as the theoretical security
of the algorithm itself. This is because an adversary can try to manipulate the
computation and reveal secrets from the erroneous output of the device. These
so-called fault attacks were first described against public-key schemes by Boneh,
DeMillo and Lipton [1]. They showed for example how to recover an RSA secret
exponent by disturbing one of the two exponentiations of a CRT-RSA compu-
tation. In the following years, further fault attacks on the RSA algorithm were
published [2,3]. In particular, those two works target the square-and-multiply ex-
ponentiation algorithm. They iteratively disturb and skip respectively the square
operation in order to recover the secret key bit-by-bit.

In practice, a straightforward implementation of the square-and-multiply al-
gorithm is also weak against other side-channel attacks like timing attacks [4]
and Simple Power Analysis [5]. Therefore, the square-and-multiply algorithm is
often replaced by more regular algorithms like the Montgomery powering lad-
der. This replacement does not only thwart some side-channel attacks but also

K.-H. Rhee and D. Nyang (Eds.): ICISC 2010, LNCS 6829, pp. 396–406, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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hardens an adversary’s life for fault attacks. For instance, in [6] it is stated that
higher-order faults (several faults per algorithm invocation) are needed to apply
their attack to the Montgomery ladder.

An attack that combines side-channel analysis and fault attacks was presented
by Park et at. [7]. In their work, they induce single faults either during the
multiplication or during the squaring and check which future intermediate results
are affected by looking at the device’s power consumption.

Our Contribution: In this paper, we present a general fault attack against
the Montgomery powering ladder. We show that various fault models can be
used to put the attack into practice, such as tampering with the intermediate
variables or with the program flow. Moreover, we show how our approach can
be extended to blinded implementations. In particular, our attack can defeat
the blinded implementation of the Montgomery ladder proposed by Fumaroli
and Vigilant [8]. To the best of our knowledge this is the first fault attack on a
blinded Montgomery powering ladder.

The remaining paper is organized as follows: Section 2 gives a brief introduc-
tion into RSA and the Montgomery powering ladder. The general attack method
is detailed in Section 3. Afterwards, Sections 4 and 5 show how to launch the
attack in a realistic scenario. Finally, we extend the attack to work on blinded
implementations in Section 6. The complexity of the attacks is discussed in Sec-
tion 7. Conclusion is drawn in Section 8.

2 Preliminaries

In this section, we first discuss the RSA public-key algorithm. Afterwards, we
look at the Montgomery powering ladder and its protected version as proposed
by Fumaroli and Vigilant [8]. Finally, we revisit the Jacobi symbol.

The security of RSA is based on the hardness of factoring the product of
two large primes. Let p and q be such primes, n = pq their product, and ϕ(·)
denote Euler’s totient function. All computations of the RSA take place in the
ring Zn. The public exponent e is an element of Z∗

ϕ(n), its corresponding secret
exponent is d = e−1 mod ϕ(n). Due to this construction, m = (me)d mod n
holds for any m ∈ Zn. The owner of the secret key can sign messages by com-
puting s = md mod n or decrypt ciphertexts by calculating m = cd mod n. By
giving away the public key (N, e), he enables everybody else to either verify
signatures (m = se mod n) or to encrypt messages (c = me mod n). In order
to omit side-channel attacks on the exponentiation, it is recommended to use
regular exponentiation algorithms, which leak as little information as possible
about the secret exponent. As mentioned before, one such regular algorithm to
compute a modular exponentiation is the Montgomery powering ladder [9]. It is
depicted in Algorithm 1.

In each iteration of the ladder, one intermediate is assigned the product of
both, the other one is squared. If the current bit is one, R0 is set to R0 · R1

and R1 is squared, and vice versa if the bit is zero. Let d = (dt−1, . . . , d0)2 =
[dL, di, dT ]. Here, di denotes the bit which is currently processed and dL the
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Algorithm 1. Montgomery ladder [9]
Require: n, d = (dt−1, . . . , d0)2, m ∈ Zn

Ensure: md mod n

R0 = 1
R1 = m
for i = t− 1 downto 0 do

Rd̄i
= R0 · R1 mod n

Rdi = R2
di

mod n

end for
return R0

Algorithm 2. Protected ladder [8]
Require: d = (dt−1, . . . , d0)2, m ∈ Zn

Ensure: md mod n
r = rand() ∈ Z∗

n; R2 = r−1 mod n
R0 = r
R1 = r ·m mod n
for i = t− 1 downto 0 do

Rd̄i
= R0 · R1 mod n

Rdi = R2
di

mod n
R2 = R2

2 mod n
end for
return R0 · R2 mod n

already processed (Leading) bits. The remaining (Trailing) bits are denoted by
dT . The intermediates after processing the bit di are

(R0, R1) =

⎧⎨⎩ (m2·dL mod n, m2·dL+1 mod n) for di = 0

(m2·dL+1 mod n, m2·dL+2 mod n) for di = 1.

A basic property of the Montgomery ladder is that the quotient R1
R0

is constant.
This property is important for our attack. In a correct execution of the RSA
algorithm this quotient equals m.

In order to achieve further side-channel resistance, Fumaroli and Vigilant sug-
gested a blinded version [8]. Their proposal is depicted in Algorithm 2. It includes
a random mask r, which is a factor of both intermediates, R0 and R1. Hence, r is
squared in each step in both variables. As a consequence, the result includes the
factor r2t

. By squaring the inverse of r in every iteration we get r−2t

at the end
of the algorithm. Thus the result can be unblinded by calculating R0 ·R2 mod n.

To counteract fault attacks, they suggested to include a checksum which is
updated at the end of every iteration. If one or more iterations (key bits) are
skipped due to a fault attack, the checksum is invalid at the end of the algorithm.
This prevents an adversary from tampering with the loop counter. However, this
checksum cannot detect our attack. Therefore, it is not included in Algorithm 2.

Finally, we use the Jacobi symbol for the attack on the blinded Montgomery
ladder. The Jacobi symbol is a generalization of the Legendre symbol for com-
posite moduli and is defined as(

c

k

)
=

(
c

p1

)α1 ( c

p2

)α2

· · ·
(

c

pk

)αk

where k = pα1
1 pα2

2 · · · pαk

k

with
(

c
p

)
denoting the Legendre symbol for primes p

(
c

p

)
=

⎧⎪⎨⎪⎩
0 if c = 0 (mod p)

+1 if c �= 0 (mod p) and ∃x s.t. x2 = c (mod p)
−1 otherwise.
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The Jacobi symbol can be efficiently computed using the law of quadratic reci-
procity (see e.g. [10]), even if the factorization of the modulus is not known.
Note that the Jacobi symbol only gives a guarantee for quadratic non-residues
by evaluating to −1, but a result of 1 does not imply that c is a quadratic residue
modulo k.

3 General Attack Method

As already mentioned, the aim of a fault attack is to deduce information on
secrets involved in the internal computation of the device. In most cases, this is
done by manipulating the device and analyzing its erroneous output1. Normally,
an adversary is assumed to have access to the attacked device and can manipulate
it. Hence, the inputs of the device are chosen by the adversary.

In order to successfully attack a device, it is important to know the algorithm
that is computed internally. Furthermore, it is necessary to make assumptions
about the faults that occur and to set up relations between the intermediates
processed inside the device and the erroneous output.

In this paper, we discuss such relations for the Montgomery powering ladder.
A fault attack on its implementation can exploit a general observation: For two
arbitrary values in R0 and R1 the algorithm behaves as in Table 1. For a = 1

Table 1. The Montgomery powering ladder starting with R0 and R1 set to arbitrary
values. (·)d denotes the application of the ladder with the exponent d of length t.

Step R0 R1

a b

= a a · b
a

(·)d a2t · ( b
a

)d a2t · ( b
a

)d+1

= a2t−d · bd a2t−d · bd · b
a

and b = m this evaluates directly to md. In a fault attack an adversary would
set one of the two intermediates to a random (or partially random) value during
the exponentiation. As before, let d = (dt−1, . . . , d0)2 = [dL, di, dT ]. After the
computation of dL, one intermediate is modified to contain a random value z. As
a consequence, the intermediate values develop as depicted in Table 2. This basic
property can be exploited to retrieve the secret exponent. Therefore, the fault
must be injected in a way it is predictable. What is left is to reduce the number
of unknown bits of the exponent in the equation by exploiting the property of
RSA that d = e−1 (mod ϕ(n)). In the following, we are considering different

1 Note that for some fault attacks the behavior of the device itself, after a fault is
injected, is sufficient [11].
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Table 2. Fault injection during Montgomery ladder computation

Fault in R0 Fault in R1

Step R0 R1 R0 R1

1 m 1 m

(·)dL mdL mdL+1 mdL mdL+1

Fault z mdL+1 mdL z

Output m(2i·di+dT )·(dL+1) · z2i−(2i·di+dT ) m(2i−(2i·di+dT ))·dL · z(2i·di+dT )

fault models that are suitable for an attack and show how to proceed in these
cases. Furthermore, we discuss how to mount an attack on blinded versions of
the algorithm.

4 Fault Model: A Guessable Fault

In the first model, we assume that an intermediate variable of an RSA imple-
mentation using the Montgomery powering ladder is modified by a fault at a
known point in time. Furthermore, this fault influences the variable in a way
that the result is within a limited range that can be searched exhaustively.

In order to inject such a fault, an adversary can use a focused laser beam to
flip/set some bits in a register [12]. Another method to cause a fault is to inter-
rupt the loading of a word into a register, e.g. by injecting glitches or spikes [13].
Hence, the size of the fault depends on the word size of the microcontroller. Both
methods can control the point in time when the fault is injected very precisely.

In particular, if fault w is injected into R0 after processing the exponent bits of
dL (a fault in R1 leads to similar equations), the intermediate variables (R0, R1)
contain (mdL ⊕ w, mdL+1). As a consequence, the final (erroneous) signature is

S̃ = m(2i·di+dT )·(dL+1) · (mdL ⊕ w)2
i+1−(2i·di+dT ) (mod n).

Since we assume that the fault is injected at the beginning of the computation,
dL is small and hence guessable, while dT is not. However, we can substitute
dT + 2i · di = d− 2i+1 · dL:

S̃ = m(d−2i+1·dL)·(dL+1) · (mdL ⊕ w)2
i+1−(d−2i+1·dL) (mod n).

From this we can eliminate d because we know e and we further know that
ed = 1 (mod ϕ(n)). Raising S̃ to the power of e delivers an expression in which
only w and dL remain unknown:

S̃e = m(1−2i+1·e·dL)·(dL+1) · (mdL ⊕ w)2
i+1i·e+2i+1·dL·e−1 (mod n). (1)

Now we can test hypotheses for w and dL. For correctly guessed values equation
(1) must hold.
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The observations above allow an iterative attack: Inject an appropriate fault
while the first bits of d are processed. Using the public exponent, the result can
be transferred into a value that depends on the message and a few unknown
bits. Now the hypotheses for the fault and dL can be tested against this value.
A correct hypothesis increases the knowledge about d. The attack is repeated
until the whole exponent is known.

Note that the same attack is possible injecting a fault into R1 by substituting
R1 by R1 ⊕ w in Table 2. If a register that stores either R0 or R1 is attacked,
both possibilities have to be checked simultaneously.

5 Fault Model: Skipping an Instruction

Another possible fault model is based on a modification of the program flow.
Instead of manipulating the data directly by flipping bits, an instruction is not
executed. This reduces the overhead generated by guessing the flipped bits, since
only the position of the skipped instruction is required, which depends on the
point in time the fault is injected2. Using the public exponent e the same way
as in the previous attack delivers a value which contains only a small part of the
unknown secret exponent. In this way, the whole exponent can be determined
iteratively.

Let m be a message to be signed using the exponent d = [dL, di, dT ] with
di the bit that is processed as the squaring is skipped. The resulting equation
depends on di, because if it is zero, a squaring of R0 is skipped, while for a one
the squaring of R1 is left out.
First, assume di = 0. By skipping the squaring, R0 stays unchanged and R1

contains the value m2·dL+1. This can be seen as skipping di and changing the
quotient to dL + 1. Together with the last line of Table 2 and d = 2i+1 · dL + dT

this results in:

S̃ = m(2i−dT )·dL+(2dL+1)·dT (mod n)

= m2i·dL+d−2i+1·dL+dL·(d−2i+1·dL) (mod n)

⇒ S̃e = m1+dL−e·2i·dL·(1+2·dL) (mod n).

Table 3 details the content of the intermediate variables and the quotient for a
skipped squaring of di = 0. After the quotient between R0 and R1 is changed by
the fault, it stays constant for the rest of the computation. For di = 1, R1 stays
constant and R0 changes to 2 · dL + 1. Together with d = 2i+1 · dL + 2i + dT , we
get:

S̃ = mdT ·(dL+1)+(2i−dT )·(2dL+1) (mod n)

= m2i·(1+dL·(3+2·dL))−dL·d (mod n)

⇒ S̃e = me·2i·(1+dL·(3+2·dL))−dL (mod n).

2 In this model, we allow the fault injection to be imprecise, since it is possible to
check whether the fault is exploitable for our attack.
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Table 3. Intermediates of a Montgomery Powering ladder with a skipped squaring
instruction while di = 0 was processed

Step R0 R1 Quotient

after dL mdL mdL+1 m

after di mdL m2·dL+1 mdL+1

next bit
di+1 = 0 (mdL)2 m3·dL+1 mdL+1

di+1 = 1 m3·dL+1 m4·dL+2 mdL+1

Erroneous Output m(2i−dT )·dL+(2dL+1)·dT

The same equations can be set up for a skipped multiplication:

S̃e =

⎧⎨⎩m1−dl·(1−2i+1·dl·e) (mod n) for di = 0

m(2+dL)·(1−2i+1·e·(1+dL)) (mod n) for di = 1.

Hence, a Montgomery powering ladder can be attacked by iteratively skipping
either squarings or multiplications and calculating the expected values. If they
do not match, the fault was not injected in the intended way.

Note that the attack works analogously starting from the least-significant bits
of the exponent. Furthermore, the attack can be applied to algorithms that are
based on ECC. Moreover, for an ECDSA implementation, guessing a block of
several bits for each ephemeral key and building a lattice is also possible, like it
is done in [6] for a double-and-add algorithm.

6 Attack on a Blinded Implementation

In order to provide a side-channel secure implementation, Fumaroli and Vigilant
proposed a blinded version of the Montgomery ladder [8]. Their suggestion also
includes a signature for preventing an adversary from tampering with the loop
counter. In this section, we assume the same fault model as in the previous
one. The only difference is that a precise fault injection is required. On the one
hand, each fault that is injected into only one operation i.e. the squaring or
the multiplication is not detected by the checksum. On the other hand, such
a fault produces an unpredictable output, since a part of the random mask is
still included in the return value. This makes a direct guessing of bit chunks
as in the previous attacks impossible. But there is still one bit of exploitable
information left in the output, namely if the result is a quadratic residue. More
precisely, we can compute the Jacobi symbol of the result, which indicates a
quadratic non-residue if it is negative3. A schematic view of the attack on a
blinded implementation is given in Algorithm 3.
3 Note that a positive result does not imply a quadratic residue.
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Algorithm 3. Schematic of the Attack
Require: A device that can be manipulated and uses the blinded Montgomery ladder

to produce faulty signatures S̃.
Ensure: The exponent d = (dt−1, . . . , d0)2 that is used by the device.

Set dt−1 = 1 (leading zeros are neglected)
for i = t− 2 downto 0 do

Choose m ∈ Zn with
(m

n

)
= −1

Calculate S̃ with the ith squaring operation skipped

if

(
S̃

n

)
= −1 then

di = di+1

else
di = 1⊕ di+1

end if
end for
return d

Taking a closer look at the result shows that if a squaring is skipped during
the processing of Algorithm 2, the result S̃ is

S̃ = R
(2t)
2 · r2t−1+2i−1·u ·md̃ with

u =

⎧⎨⎩dT for di = 0

2i − dT for di = 1 and

d̃ · e =

⎧⎨⎩1 + dL − e · 2i · dL · (1 + 2 · dL) (mod ϕ(n)) for di = 0

e · 2i · (1 + dL · (3 + 2 · dL))− dL (mod ϕ(n)) for di = 1.

Hence, the result can be split up into an unknown part, which includes the
random mask and another one that depends on the input message, on the ex-
ponent, and of the position of the fault. Raising the resulting S̃ to the power e
cancels the unknown bits of dT out. If the fault is chosen in a way that only di is
unknown and dL is known, the whole message-dependent part of the signature
depends on the one bit di. Furthermore, it follows that it directly depends on
this bit, whether the result is a quadratic residue assuming that m is a quadratic
non-residue. This is because the remaining part of the random mask is always a
quadratic residue due to its exponent, which is a multiple of two. In detail, if m

is chosen with a Jacobi symbol
(m

n

)
= −1, S̃ is a quadratic non-residue with(

S̃

n

)
= −1, iff d̃ is odd. Moreover, whether d̃ is even or not depends on the last

bit of dL and di. Since dL is known, the knowledge of the Jacobi symbol of S̃
determines di. This is because ϕ(n) is always even and d is always odd in the
case of RSA. Thus, computing the Jacobi symbol leads to an attack similar to
the one presented by Boreale on square-and-multiply [2]. In contrast, our result
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is not probabilistic, if m can be chosen with a negative Jacobi symbol. Since the
loop itself is not manipulated, a checksum cannot prevent this attack.

6.1 Practical Considerations

The possibility of influencing the program flow by means of spike attacks was
demonstrated in [3]. In their work, the authors used the resulting fault model
for an attack on a square-and-multiply implementation. It turned out that in
a practical attack the probability of a successfully injected fault is smaller one.
Thus, a method to check whether the output of the device is the intended result
or not is favorable if not mandatory. For the unblinded version of the Mont-
gomery ladder, this can be easily done by checking if the output corresponds
to one of the desired (precalculated) results. For the blinded version, this is not
possible because a multiple of the random mask is still a part of the result.
Thus, an adversary cannot tell from the result whether computing the Jacobi
symbol delivers information about one bit of the exponent or not. Fortunately,
there is another kind of information that makes it possible to recognize a suc-
cessful fault injection. By measuring the time a computation takes, an adversary
can judge whether a whole multiplication was skipped. Thus, the adversary can
sweep through the algorithm and identify the positions where multiplications
are invoked. Additionally, there is a way of telling the three different multiplica-
tions of one loop iteration of the ladder apart: A skipped multiplication and the
skipped consecutive squaring respectively yield the same Jacobi symbol. For a
skipped squaring of the mask, the result has always a negative Jacobi symbol,
since d is odd. This leaves the adversary with the necessary tools for a successful
attack.

7 Complexity of the Attacks

Table 4 overviews the efforts the different attacks require. The first two attacks
allow to determine the exponent in chunks of several bits. This reduces the num-
ber of fault injections but increases the computational effort of the attack. This
is because an exponentiation is required for each possible value of such a chunk
to determine the corresponding exponent bits. Hence, it is possible to trade fault

Table 4. Required effort for the attacks with t denoting the bit-length of the secret
exponent and c the bit-size of the chunks the exponent is recovered in

Attack Method (presented in Section) Fault Injections Exponentiations

Fault of Bit-Size v (4) t/c t/c · 2(c+v)

Skipping an Instruction (5) t/c t/c · 2c

Attack on Blinded Implementation (6) t -
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injections for computational effort. In particular, if we assume a chunk of bit-size
c and an exponent of bit-size t, t/c fault injections are required. For each faulty
computation 2c values have to be guessed and tested with the corresponding
formulas, which requires an exponentiation each. In the first attack, the maxi-
mum possible bit-size v of the injected fault also needs to be considered. Each
unknown bit doubles the number of required tests.

The attack on a blinded implementation of the algorithm recovers the expo-
nent bit-by-bit. Thus, the number of injected faults equals the bit length of the
exponent. Since the test involves only the computation of the Jacobi symbol, it
does not require extra exponentiations.

8 Conclusion

In this paper, we presented new fault attacks on the Montgomery powering lad-
der. We demonstrated that our attacks are feasible for two realistic fault models:
(1) for random register faults that can be guessed and (2) for a manipulation
of the program flow. For both models, we discussed how to determine the se-
cret exponent of an unprotected implementation in bit-chunks. In addition, it is
possible to recognize a successful fault injection by the output of the device.

For the latter fault model, we also showed how to mount an attack on a
blinded implementation. In this attack, the exponent was recovered bit-wise by
measuring the execution time and checking the Jacobi symbol of the output. To
the best of our knowledge, this is the first fault attack on a blinded Montgomery
ladder.

The presented results show that fault attacks on the blinded Montgomery
ladder are possible. All attacks require the adversary to know the plaintext. For
the attack on the blinded version, knowing the Jacobi symbol of the plaintext is
sufficient.

We conclude that blinding in combination with a loop-checksum does not pre-
vent all fault attacks on the Montgomery powering ladder. Therefore, additional
protection by exponent blinding or by a check whether the quotient between the
two intermediate variables is correct should be implemented.
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Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Heidelberg (2003)

13. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Cryptology ePrint Archive Report 2004/100
(2004), http://eprint.iacr.org/

http://www.cacr.math.uwaterloo.ca/hac/
http://eprint.iacr.org/


First Principal Components Analysis:

A New Side Channel Distinguisher

Youssef Souissi1, Maxime Nassar1,2, Sylvain Guilley1,
Jean-Luc Danger1, and Florent Flament1

1 TELECOM ParisTech, CNRS LTCI (UMR 5141),
46 rue Barrault

75 634 Paris Cedex, France
2 BULL TrustWay

Rue Jean Jaurès, B.P. 68
78 340 Les Clayes-sous-Bois, France

Abstract. Side Channel Analysis (SCA) are of great concern since they
have shown their efficiency in retrieving sensitive information from secure
devices. In this paper we introduce First Principal Components Analy-
sis (FPCA) which consists in evaluating the relevance of a partitioning
using the projection on the first principal directions as a distinguisher.
Indeed, FPCA is a novel application of the Principal Component Anal-
ysis (PCA). In SCA like Template attacks, PCA has been previously
used as a pre-processing tool. The originality of FPCA is to use PCA
no more as a preprocessing tool but as a distinguisher. We conducted all
our experiments in real life context, using a recently introduced practice-
oriented SCA evaluation framework. We show that FPCA is more per-
formant than first-order SCA (DoM, DPA, CPA) when performed on
unprotected DES architecture. Moreover, we outline that FPCA is still
efficient on masked DES implementation, and show how it outperforms
Variance Power Analysis (VPA) which is a known successful attack on
such countermeasures.

Keywords: Principal Component Analysis (PCA), Data Encryption
Standard (DES), Side Channel Attacks (DoM, DPA, CPA, VPA), Mask-
ing countermeasures.

1 Introduction

Different forms of technologies, which require an adequate level of security, are
extensively manipulated around the world. Any violation of such systems could
lead to the loss of sensitive and personal information. In this context, Side Chan-
nel Analysis (SCA) pose a real threat to these technologies since they are non
intrusive, low cost and easily mounted in practice [16]. Actually, SCA exploit
the information leaked from cryptographic devices during the encryption or de-
cryption process to extract the secret information referred to as secret key. This
information is retrieved by analysing the power consumption or the electromag-
netic (EM) radiations of the device under attack. SCA are based on statistical
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computations to exhibit the secret. Indeed, the leaked information can be sta-
tistically modeled by a continuous random variable following an unknown or
uncertain probability law Plaw.

The main challenge of SCA is to make a sound estimation of Plaw relevant
features without loss of information. The more accurate this estimation is, the
greater the efficiency of SCA is. Basically, random variables are measured and
analyzed in term of their statistical and probabilistic features [7]. In the case of
SCA, calculations based on the first and second order statistics seem to be good
ways to quantify the secret information. For instance, Differential Power Analysis
(DPA) is mainly based on computations related to the first-order statistic, the
“mean”. Moreover, Variance Power Analysis (VPA) [30, 18] which is based on
the variance, has shown its efficiency on masked implementations.

Recently, a new powerful variant of SCA so-called MIA [8] has been presented
to the cryptographic community. This attack is based on mutual information
theory which requires a reliable estimation of the probability density function of
Plaw. Basically, an accurate probabilistic measure, such as the entropy, describes
better one random variable than other statistics [24]. However, the optimal ac-
curacy is hardly achieved specially when the probability law is unknown. As a
matter of fact, the probability density of an unknown law is quite difficult to
properly estimate when the available data to be studied is limited [7]. Statisti-
cians are used to calculate quantities easier to estimate. These quantities are the
moments of a probability distribution like the mean, the variance or the kurtosis.
By analogy to the cryptographic domain, statisticians are identified to attackers
and the available data to power or EM consumption signals. Indeed, the attacker
is often required to conduct its attack under certain constraints. Actually, ac-
cording to the security levels as defined by Abraham et al. [2], secure devices
could be classified into seven levels of security. According to each level, the at-
tacker behaves in different manners. In the real life, the attacker has to perform
the attack by considering the external environment of the device under attack
which depends on the factory and the type of the circuit (FPGA, ASIC, . . . ).
For instance, some security measures could be employed to limit the acquisition
of power consumption signals (traces). Thus, the attacker would not be free to
acquire as much traces as he wants. In addition to that, we believe that any
cryptographic design could be attacked by exploiting its sensitivity against one
chosen statistic, denoted by CS, that could be the mean, the variance or any
other statistic describing one Plaw. The higher the sensitivity is, the greater is
the vulnerability of the implementation against attacks based on the considered
CS. This is true since an ideal cryptographic implementation could not really
exist, in accordance with the fact that real life application could not fit exactly
the theory.

In this paper, we outline the way how Principal Component Analysis (PCA [12])
could be used to extract the value of the secret key. PCA is a multivariate data
analytic technique [24, 26] that has found application in fields such as computer
vision [28, 15], robotics [34], sociology and economics [27]. It is a way of identify-
ing patterns in multidimensional data set, and visualising these data into a lower
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dimensional space, in order to highlight their similarities and differences. In the
SCA techniques portfolio, PCA has already revealed its efficiency on Template
attacks [23]. Basically, Template attacks are considered very powerful since they
can break cryptographic implementations which security is dependent on the as-
sumption that an attacker cannot obtain more than one or a limited number of
side channel traces. Moreover, these attacks require that an attacker has access to
a clone device on which he can perform trials to get trained. As described in [23],
PCA improves the class of Template attacks by pre-processing the leakage traces
before performing the attack on the real cryptographic device. Indeed, in the pre-
processing phase the attacker builds templates in order to profile the clone device.
Then, those templates are used to mount an attack on the real device. Our attack
uses PCA no more as pre-processing tool but as a distinguisher. Moreover, it fol-
lows the usual steps of differential power analysis (DoM [20], DPA [5] or CPA [6])
that consists of only one phase and does not require a clone device for profiling,
which makes the task of the attacker easier.

The rest of the paper is organized as follows. First, Section 2 attempts to
give some elementary background that is required to understand the process of
PCA. Second, this background knowledge is taken advantage of in section 3 to
outline the way how PCA could be exploited to mount an efficient attack. This
section goes through the different steps needed to perform the FPCA. Section 4
is devoted to experiments on unprotected and protected DES implementations.
This section highlights the efficiency of FPCA by making a comparative analysis
with existing attacks (DoM, DPA, CPA, VPA). The conclusions and perspectives
are in section 5.

2 Principal Component Analysis: Background Knowledge

Let a data set of M quantitative variables describing N samples, arranged respec-
tively in rows and columns. The goal of PCA is to ensure a better representation
of the N samples by describing the data set with a smaller number M’ of new
variables. Technically speaking, PCA proposes to seek a new representation of
the N samples in a subspace of the initial space by defining M’ new variables
which are linear combinations of the M original variables, and that are called
principal components. Generally speaking, reducing the number of variables used
to describe data will lead to some loss of information. PCA operates in a way
that makes this loss minimal. For PCA to work properly, the data set should
be centred. PCA starts by computing the covariance matrix of the data set in
order to find the eigenvectors and eigenvalues which permit the capture of the
existing dispersion in variables. In other words, it makes a change of orthogonal
reference frame, the new variables being replaced by the Principal Components
which are totally characterized by the associations of the eigenvectors and eigen-
values. But, more importantly, these associations reveal the hidden dynamics of
the data set. Determining this fact allows the attacker to discern which dynam-
ics are important and which are just redundant. The first component can be
expected to account for a fairly large amount of the total variance. Each suc-
ceeding component will account for progressively smaller amounts of variance. In
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practice, the attacker sorts eigenvectors by their eigenvalues, from the highest to
the lowest. This gives the components in order of significance. Most of the time,
only few M’ components account for meaningful amount of variance. Thus, only
these first M’ components will be retained. The decision on the number of the
M’ best components could be achieved by performing some deciding tests such
as the Kaiser criterion, the scree test or the cumulative variance criteria [13].

3 FPCA: The Attack Process

In the SCA field, PCA has often been used as pre-processing tool to minimize
the coding complexity by reducing the dimensionality of recorded traces [3, 29].
By contrast, our approach is different in the sense that PCA is used as an attack
tool to retrieve the secret information. Indeed, FPCA uses the projection on the
first principal components to tell good secret key candidates from incorrect ones.
FPCA shares some key points with first-order SCA, differential and correlation
power analysis (DPA and CPA). As stated before, FPCA does not require a
detailed knowledge about the cryptographic device to be performed. It exploits
data dependency of the power consumption of the device under attack. The main
difference with first-order SCAs resides in the way to distinguish the behaviour
of the good key hypothesis. In fact, we remind that each attack has its own
statistical test, referred to as distinguisher [30, 9], which allows the attacker to
detect the value of the secret key. In this context, FPCA comes with a new
distinguisher for side channel analysis. In the rest of this section, we detail the
different steps needed to perform a FPCA, while introducing our notations at
the same time. One schematic description of FPCA attack is depicted in Fig. 1.

3.1 Preliminary Preparation Phase

This phase is common with differential and correlation power attacks. Suppose
that T power consumption traces are recorded while a cryptographic device
is performing an encryption or a decryption operation. Collected traces are L-
dimensional time vectors. The attacker chooses an intermediate result of the
cryptographic algorithm that is processed by the cryptographic implementation.
The intermediate value denoted by f(d,k) is a function that takes two parameters.
The first parameter denoted by d is a known data value that can be either
the plain text or the cipher text. The number of data values is equal to T,
the number of recorded traces. These known data values are represented by a
vector Dvect = (d1, d2, . . . , dD) of size D. The second parameter, denoted by
k, is secret, hence unknown. Indeed, k is a small part of the cryptographic key
and can take K possible values referred to as key hypotheses that we write as a
vector Kvect = (k1, k2, . . . , kK).

Thus, the trace can be written as a matrix of size D×L. Given vectors Dvect

and Kvect, the attacker is able to compute, without difficulties, the hypothet-
ical intermediate value f(d,k) for all K key hypotheses and for all T executed
cryptographic operation. Then the attacker builds a matrix V of size K × T :
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Vi,j = f(di, kj) with 1 ≤ i ≤ T and 1 ≤ j ≤ K. For each value Vi,j , the at-
tacker computes a hypothetical power consumption value hi,j based on a power
consumption model. The most commonly used power models are the Hamming
distance (HD) and the Hamming weight (HW) [6]. R being the number of possi-
ble values that the power consumption model could take, the traces are arranged
in X (X ≤ R) different partitions for each key hypothesis kj . We denote these
partitions as a vector Pkj = (Pkj ,1, Pkj ,2, . . . , Pkj ,X) with 1 ≤ j ≤ K. For in-
stance, suppose that our power consumption model is the HD and that it can
take integral values from 0 to 4: HD = {0, 1, 2, 3, 4} = {HDi}5i=1. The trivial
partitioning is to associate each HDi value to one partition. Thus X = R = 5.
One other possibility is to build only X =3 partitions in this way : First partition
for HD > 2, second for HD = 2 and third for HD < 2. Intuitively, the more
accurate the used power model is, the better our description of the secret in-
formation will be. Many papers are dealing with the investigation of new power
models and techniques for traces classification [1,21]. The optimal choice of the
power consumption model, including the partitioning process, is out of the scope
of this paper. In what follows, our study will focus on the Hamming distance
model as it is one of the most commonly used, and often one of the most efficient.

3.2 References Computation

Once traces are arranged in X partitions for each key hypothesis kj , we propose
to compute for each partition a statistical trace based on one CS and referred
to as reference. For instance, if CS is the ”mean” then the reference would be
the average of all traces that belong to the considered partition. Actually, the X
references of one key hypothesis kj will be used by PCA as criterions to highlight
differences between the X partitions. For references computation, we notice that
the same CS (the mean, the variance . . . ) is used for all partitions and for all
key hypotheses kj . One reference is an L-dimensional time vector. Thus we have
one dataset of X references, for each kj . We denote this set by Vrefkj

. In what
follows, our study will focus on analysing each dataset Vrefkj

corresponding to
each key hypothesis kj . This analysis will allow the attacker to discriminate the
behavior of the secret key with regards to all other key hypotheses. Moreover, it
will reduce the computational complexity of the PCA step.

3.3 FPCA Distinguisher

For one key hypothesis kj , the dependencies between references are made more
eligible by PCA, when the references are projected to the new axes system
composed by the principal components. The PCA is used to analyze these de-
pendencies by measuring the dispersion of the references in the new coordinate
space. Indeed, the larger the eigenvalue, denoted by λ, corresponding to one
eigenvector is, the greater is the dispersion of the references on this eigenvector.
As stated by equation (1), the total variance of one Vrefkj

is equal to the sum
of all eigenvalues corresponding to all principal components:
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Vtot =
L∑

j=1

λj . (1)

Given a valid power consumption model and one CS, there are two cases to
be discussed regarding the fluctuation of the total variance when increasing the
number of recorded traces. The first case is the one for which the cryptographic
implementation is not sensitive to the considered CS. In this case, PCA could
not discriminate references of the secret key as well for the other key hypotheses.

The second case happens when the implementation is sensitive to the chosen
CS. In this case, Vtot related to Vrefksecret key

is getting high by increasing the
number of recorded traces. This can be explained by the fact that the secret key
partitioning is the one for which the references are the most different. Intuitively,
for an infinity of traces, Vtot converges towards the leakage value. By contrast,
Vtot corresponding to one false key approaches the zero value when increasing
the number of traces. This is due to the fact that PCA is not able to discriminate
the references.

In order to highlight the dispersion of the references related to the secret key
with regards to false keys, we carried out an experiment on DES [19] power
consumption traces that are made freely available on line, in the context of the
first version of DPA Contest competition [33]. The DES algorithm that has
been selected for the competition is unprotected and easily breakable by first-
order SCA. More details about this implementation could be found in [11]. For
this purpose, we fixed the ”mean” as CS and the Hamming distance as power
consumption model. Fig. 2 shows the dispersion of references related to the
secret key and one false key, when projected to the first and the second principal
components. These principal components are the most significant given that they
cover a high rate of the total variance so-called explained variance (EV ). For
the m-th principal component PCm, this rate is defined by the following ratio:

EV (PCm) = λm/Vtot ,

where λm is the eigenvalue corresponding to PCm. For m′ principal components,
we introduce the cumulative explained variance (CEV ) that is defined by:

CEV (PC1, . . . , PCm′) = (
m′∑
i=1

λi)/Vtot .

In practice, last principal components are usually considered to be related to the
noise contribution and only few m′ components are retained for analysis.

The main idea behind using PCA is to reduce the dimensionality of power
consumption traces in order to take account of the secret information for different
time samples and thus to properly exploit the leakage. For this purpose we
used the cumulative variance criteria to extract the significant components. For
instance, we keep only the m′ first components which explain more than 95% of
the total variance, for each key hypothesis kj .
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Selection of m′ first PC

Fig. 1. FPCA description

Then, we propose to compute an indicator Fkj that is defined as follows:

FCS
kj

=
m′∑

m=1

(λm ·
∣∣∣ h(W, Cm)

∣∣∣) =
m′∑

m=1

(λm ·
∣∣∣ X∑
i=1

(wi · cm
i )

∣∣∣) , (2)

where m′ is the number of retained principal components, λm is the eigenvalue
corresponding to PCm, h is a linear combination function with Cm = {cm

i }Xi=1

is the centred coordinate vector of references when projected to PCm and W =
{wi}Xi=1 is the associated weight vector. Actually, this indicator takes two factors
into consideration: the dispersion and the position of references in the new system
coordinate which is composed by the principal components. The dispersion is
quantified by the value of the eigenvalues λm and the position by the vector of
weights W . The best key guess corresponds to the highest value of Fkj regarding
all key hypotheses (argmax(Fkj )).

One other alternative is to consider only the factor of dispersion. This is useful
in the case that the position factor is unknown. In fact, the dispersion factor
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Fig. 2. References dispersion for different number of traces: (1.a) 100 traces,(1.b) 1000
traces, (1.c) 10000 traces, (1.d) 81000 traces

represents a global description of the leakage without the need of more detailed
knowledge about the encryption process. The idea is that, if the key guess is
correct, PCA applied to the different partitions should be able to explain a big
proportion of the variance with only a few components. On the opposite, if the
key guess is wrong, the power traces are sorted randomly, and PCA will need
more components to explain the same proportion of variance. Thus, a reduced
form of the indicator Fkj is deduced from equation (2) and defined as follows:

Red FCS
kj

=
m′∑

m=1

(λm) .

This indicator can be used for Dual rail Precharge Logic (DPL) architectures,
like WDDL [10], which aim at making the activity of the cryptographic process
constant independently from the manipulated data. Statistically, the idea behind
DPL is to force all references to have the same statistic and probabilistic fea-
tures, for all made partitions. However, in the real life application, an ideal DPL
implementation could not exist. In that sense, the reduced indicator Red FCS

kj

can exploit the leaked information without the knowledge of the position factor.
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4 FPCA on DES Implementations

All our experiments were conducted on real power consumption traces recorded
from three different hardware implementations of DES coprocessor. The first ar-
chitecture is the unprotected DES of DPA Contest. The second and the third
ones deal with two masking styles: USM and Masked-ROM [18] DES implemen-
tation which are configured in an Altera Stratix II FPGA on the SASEBO-B
evaluation board provided by the RCIS [25]. Moreover, we note that the length of
acquired side channel traces covers only the first two rounds for all investigated
DES implementations.

Following the recent advances concerning the comparison of univariate side-
channel distinguishers [30], Standaert et al. proposed two evaluation metrics [31]
to assess the performance of different attacks. On one hand, the first-order suc-
cess rate expresses the probability that, given a pool of traces, the attack’s best
guess is the correct key. On the other hand, the guessing entropy measures the
position of the correct key in a list of key hypotheses ranked by a distinguisher.

In this paper, we deal with DoM, DPA, CPA, and VPA attacks. These attacks
have shown their efficiency to break cryptographic implementations. Moreover,
they are the basis of new derived distinguishers like the Spearman’s rank correla-
tion [4]; the correlation concept of Kendall is also of potential interest. Recently,
Gierlichs et al. have presented an article dealing with the comparison of many
existing distinguishers related to the aforementioned attacks [9]. For the reason
that we aim at making a reliable evaluation for our attack (FPCA), the rest of
the paper deals with experiments on unprotected and masked implementations
which have been the target of the mentioned attacks.

4.1 FPCA on Unprotected DES

In order to mount a successful FPCA on unprotected DES we fixed the “mean”
as CS, as it is shown that such implementation is very vulnerable against dif-
ferential attacks which are generally based on the “mean” in their calculations.
In fact, the leakage related to the mean is linearly correlated to the power con-
sumption model HD = {0, 1, 2, 3, 4}. For this purpose, the weight vector W
can be defined as follows: W = {−2,−1, 0, +1, +2}. One other alternative is to
consider the probability that one trace belongs to one partition according to
one power consumption model. Hence W = {−0.25,−1, 0, +1, +0.25}. Results
regarding attacks on unprotected DES implementation are depicted in Fig. 3
and Fig. 4. Indeed, the first-order success rate shows a superior performance of
FPCA attack. This can be explained by the fact that DoM, CPA, and DPA are
implicitly taking into account only the position factor relatively to our proposed
attack. According to Fig. 4, FPCA needs around 160 traces to perform a suc-
cessful attack. Unsurprisingly, the guessing entropy metric depicted in Fig. 3 is
in accordance with the first success rate results. One note is that FPCA is able
to distinguish the secret key at an early stage. In fact, only 30 traces are required
to get the secret key in the top ten of the key hypotheses rank list.
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4.2 FPCA on Masked DES

Basically, masking technique is considered to be a powerful countermeasure
against SCA. Indeed, it aims at masking the intermediate values that occur
during encryption and decryption process. Many masking schemes have been
proposed to the cryptographic community for symmetric encryption algorithms
(DES, AES, . . . ) [32, 14, 22]. Basically, they differ in term of hardware design
complexity. But, they all aim at fulfilling the same goal by ensuring the resis-
tance against first-order SCA like DPA and CPA. Statistically, an ideal masking
implementation is one for which all references, for all made partitions, are the
same when using the mean as CS. However, it has been proved that masking
technique is still susceptible to first-order SCA as long as glitches problem re-
mains not completely resolved [32]. For instance, authors in [18], have shown
that one masked structure so-called “Universal Substitution boxes with Mask-
ing” (USM) is vulnerable against DPA. Moreover, masked implementations are
not resistant against new variants of SCA like V PA which is mainly based on
the variance analysis. It is also shown that a full-fledged masked DES imple-
mentation using a ROM (Masked-ROM) is breakable by V PA attack, in spite of
its high resistance against first-order attacks. In what follows, we use the same
power consumption model as described in [18] to perform the FPCA on USM
and Masked-ROM DES implementations.

Fig. 3. Unprotected DES guessing en-
tropy metric

Fig. 4. Unprotected DES 1st-order suc-
cess rate metric

First, in order to make a fair evaluation for our attack on USM DES structure
we kept the “mean” as CS and we classified traces into five partitions for each
key hypothesis kj . For reasons of clarity, comparison is made between FPCA
and DPA for which we realised the best performance with regards to DoM and
CPA. Results are deduced from Fig. 5 and Fig. 6. Obviously, according to the
first-order success rate metric shown in Fig. 6, FPCA is more efficient than DPA.
Indeed, 15000 traces are needed for DPA to achieve a rate of 0.8. Whereas, for
the same rate, FPCA attack requires only 10000 traces. The guessing entropy
metric, is quite equivalent for both attacks. Second, we targeted a Masked-ROM
DES implementation. For this purpose, we chose the variance as CS, as it has
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Fig. 5. USM DES guessing entropy met-
ric

Fig. 6. USM DES 1st-order success rate
metric

Fig. 7. Masked-ROM guessing entropy
metric

Fig. 8. Masked-ROM 1st-order success
rate metric

shown that such implementation is sensitive to VPA, which is based on variance
analysis [18,17]. Fig. 7 shows that the guessing entropy curve, related to FPCA,
approaches the best rank (the zero rank) more rapidly than VPA. Moreover, the
success rate metric depicted in Fig. 8 reveals noticeable differences between both
attacks.

5 Conclusion and Outlooks

In this work we proposed a new variant of SCA called FPCA, which is mainly
based on Principal Components Analysis (PCA), the powerful multivariate data
analytic tool. We have shown the efficiency of FPCA on unprotected and pro-
tected cryptographic implementations. Moreover, we have empirically shown its
superior performance with regards to existing attacks (DoM, DPA, CPA, VPA).
Our future work consists in investigating new ways to improve FPCA. Actually,
we are looking for new applications based on other multivariate data analytic
tools such as the Linear Discriminant Analysis (LDA), PCA based Spearman cor-
relation, Kernel PCA or Independent Component Analysis (ICA), which have
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been proposed as new alternatives to the basic PCA. One other possible key point
that could be investigated is the improvement of our distinguisher by combining
different CS (the mean, the variance, the entropy . . . ), in order to make more
eligible the description of the leakage related to the secret information.
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Abstract. This paper proposes differential fault analysis, which is a
well-known type of fault analysis, on a stream cipher MUGI, which uses
two kinds of update functions of an intermediate state. MUGI was pro-
posed by Hitachi, Ltd. in 2002 and it is specified as ISO/IEC 18033-4 for
keystream generation. Fault analysis is a side-channel attack that uses
the faulty output obtained by inducing faults into secure devices. To
the best knowledge of the authors, this is the first paper that proposes
applying fault analysis to MUGI. The proposed attack uses the relation
between two kinds of the update functions that are mutually dependent.
As a result, our attack can recover a 128-bit secret key using 12.54 pairs
of correct and faulty outputs on average within 1 sec.

Keywords: Fault analysis, Differential fault analysis (DFA), Stream ci-
pher, Side-channel analysis.

1 Introduction

Nowadays, side-channel attacks are considered to be serious attacks because the
secret keys embedded in a secure computing device such as smart cards and
RFID tags can be recovered within a feasible computational time. Fault analysis
is one type of side-channel attacks which deduces the secret key by deliberately
inducing faults into the secure device during its cryptographic computation.
Differential fault analysis (DFA) proposed by Biham et al. [1] is the most well-
known fault analysis. In their attack, the secret key of DES can be recovered by
comparing the correct and faulty output results after injecting faults into the
secure device. Previously, DFA on some symmetric ciphers was proposed with
some success in recovering secret keys [1,2,3,4,5,6,7,8]. Recently, fault analyses
against stream ciphers have been proposed in [9,10,11,12,13,14,15].

At FSE 2002, Hitachi, Ltd. proposed the pseudo-random number generator
(PRNG) MUGI [16]. MUGI uses a 128-bit secret key and a 128-bit initial vector.
It generates 64-bit random output and transforms the internal state [17]. MUGI
is specified as ISO/IEC 18033-4 for keystream generation. Its structure is based
on the Panama PRNG [18] the design for which targets suitability for both
software and hardware implementations, and the design principle is based on a
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block cipher. Therefore, the evaluation techniques for a block cipher are consid-
ered to be applicable to MUGI. Some cryptographic evaluations of MUGI have
been reported [19,20,21,22,23,24]; however, the success of side-channel analysis
such as fault analysis on MUGI has not yet been proposed. Hoch [22] considers
differential fault analysis on MUGI to be difficult because it is hard to obtain
sufficient information to achieve a successful attack using only the evaluation
techniques of the block ciphers.

In this paper, we propose DFA on MUGI. To the best knowledge of the au-
thors, this is the first paper that proposes DFA on a stream cipher MUGI and
the proposed attack uses the characteristics that two kinds of update functions
are mutually dependent, i.e., each update function operates using another in-
termediate state as a parameter. In the proposed attack, we employ a random
fault model in which the intermediate states are randomly corrupted and the at-
tacker does not need to know the values of the faults. We note that the random
fault model is more practical compared to the 1-bit flip fault injection frequently
used in the DFA on other stream ciphers [12,14,15]. The proposed attack requires
only 12.54 pairs of correct and faulty outputs on average to recover the complete
internal states and the 128-bit secret key.

The remainder of this paper is organized as follows. Notations are defined in
Sec. 2. We review the description of MUGI in Sec. 3. We describe the concept
behind the proposed attack in Sec. 4. We describe the proposed attack in Sec.
5 and the evaluation of the proposed attack in Sec. 6. Finally, we conclude the
paper in Sec. 7. Some additional calculations and evaluations are given in the
appendix.

2 Notations

In this section, we give some notations used in this paper.

a
(t)
i : An 8-byte state in round t where i = 0, · · · , 2

b
(t)
i : An 8-byte buffer in round t where i = 0, · · · , 15

X ||Y : Concatenation
X ⊕ Y : Bitwise exclusive-OR operation

≫n: Circular rotations of n bits to the right (in the 64-bit register)
≪n: Circular rotations of n bits to the left (in the 64-bit register)

3 Description of MUGI

In this section, we review the description of MUGI [17]. MUGI has two inputs as
parameters, 128-bit secret key K and 128-bit initial vector I, which is a public
parameter. It generates a 64-bit length random bit string for each round. The
structure of MUGI is shown in Fig.1(a). The data size of MUGI is 64 bits, which
is referred to as a unit. As shown in Fig.1(a), the internal state is divided into
two parts: state a and buffer b. State a consists of 3 units, a = a0||a1||a2, where
each element ai is 64 bits. Buffer b consists of 16 units, b0, . . . , b15 where each



422 J. Takahashi, T. Fukunaga, and K. Sakiyama

Buffer b State a

λ ρ

Internal state

Update function

Output

filter

)(t
out

(a) Structure of MUGI

( )

0

t

a

⊕ ⊕

⊕

( )t
b

( 1)t

b
+

( )

0

t

b
( )

15

t

b

( 1)

0

t

b
+ ( 1)

15

t

b
+

(b) λ-function

( )

0

t

a
( )

1

t

a
( )

2

t

a

( )

4

t

b

( )

10

t

b

F

F ⊕

⊕

64 6464
64

<<<
1764

1
C

2
C⊕

64
⊕

64

( 1)

0

t

a
+ ( 1)

1

t

a
+ ( 1)

2

t

a
+

(c) ρ-function

⊕
64

64

Buffer

S

S

S

S

S

S

S

S

8

8

8

8

8

8

8

8

M

M

F-function

64

8

8

8

8

8

8

8

8

(d) F-function

Fig. 1. Structure of MUGI , λ-function, ρ-function, and F-function

element bi is 64 bits. The update function is described as a combination of ρ
and λ functions and the update functions of state a and buffer b each of which
uses another internal state as a parameter. The update function Update, of the
entire internal state is expressed as

(a(t+1), b(t+1)) = Update(a(t), b(t)) = (ρ(a(t), b(t)), λ(a(t), b(t))).

Here, we call a step in which the update function is applied a round. In the
following, we review the structure of ρ and λ, initialization, and the output
filter.

λ Function. λ is the update function of buffer b and uses a part of state a as
a parameter. λ is a linear transformation of b as shown in Fig.1(b).

ρ Function. ρ is the update function of state a. It is a kind of generalized
Feistel structure with two F-functions and uses buffer b as a parameter. Figure
1(c) shows the structure of the ρ function where C1 and C2 are public constants.
The F-function of MUGI uses the same S-box table and linear function, M , as
those used in AES. Figure 1(d) shows the structure of the F-function in the ρ-
function where S and M denote the S-box table and a 4 × 4 matrix, respectively.
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Initialization and Output Filter. The initialization of MUGI comprises three
steps. In the first step, buffer b is initialized with secret key K. We set secret
key K to state a as

a0 = K0,

a1 = K1,

a2 = (K0 ≪ 7) ⊕ (K1 ≫ 7) ⊕ C0,

where C0 is a constant. Then, we iterate running only ρ and insert a part of each
a(t) into buffer b

b15−i = (ρ(i+1)(a, 0))0, (1)

where ρi denotes the i-th iteration and ρ(a, 0) denotes that the input from b is 0.
In the second step, mixed state a is set as

a(K, I)0 = a(K)0 ⊕ I0,

a(K, I)1 = a(K)1,
a(K, I)2 = a(K)2(K0 ≪ 7) ⊕ (K1 ≫ 7) ⊕ C0.

Then, state a is mixed again by 16-round iteration of ρ. So mixed state a is
represented as ρ16(a(K, I), 0).

The last step is a 16-round iteration of the entire update function, Update,
i.e.

a(1) = Update16(ρ16(a(K, I), 0), b(K)),

where b(K) represents buffer b initialized by secret key K.
After initialization, MUGI generates a 64-bit random number for each round

and transforms the internal state in all rounds. The output from round t is given
as

out(t) = a
(t)
2 .

In other words, MUGI outputs the lower 64 bits of state a at the beginning of
the round process.

4 Concept Behind Proposed Attack

In this section, we describe the concept behind the proposed attack. In order to
recover the 128-bit secret key, we need to recover three 8-byte states, a0, a1, and
a2, and sixteen 8-byte buffers, b0, · · · , b15, in any round. Once we recover them,
we can obtain the secret key by calculating the inverse of the ρ- and λ-functions
and the inverse of the initialization.

In [22], DFA techniques for a block-cipher were simply applied to the ρ-
function of MUGI. It was reported that only a1 ⊕ b10 ≪17 were obtained by
fault injections. This information is not sufficient to recover the secret key.

In order to obtain sufficient information to recover the secret key, we use the
relation between the ρ- and λ-functions, which mutually interact. We find that we
can recover a part of the state and buffer one-after-another by alternately using
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the algorithms for the ρ- and λ-functions. In the proposed attack, we recover a
part of the buffer used in the λ- function using the faults injected into the state
in the ρ-function. Then, we consider its propagation in the λ-function and we
try to obtain another part of the buffer in the ρ-function using the propagated
result. By iterating this process, we can recover all states and buffers to obtain
the secret key.

5 Proposed Attack

In this section, we describe the details of the proposed attack.

5.1 Attack Assumptions

We describe the attack assumptions.

– We consider a transient fault, i.e., the attacker can reset the cryptographic
device to its original state and then inject a fault into the same device during
each new execution.

– An intermediate state is randomly corrupted by the fault injection, i.e., the
attacker does not need to know the faulty value. The faulty value is uniformly
distributed.

– The attacker knows the initial vector and he obtains pairs of correct and
faulty keystreams calculated from the same key and the initial vector.

– The attacker can randomly modify any 8-byte value, b
(t)
8 , b

(t)
9 , . . . , b

(t)
13 , a

(t)
0

or a
(t)
2 during the keystream generation in any round, t. He has no control

of the timing of the fault injection.

5.2 Attack Procedure

We propose an attack procedure to recover the 128-bit secret key using 12.54
pairs of correct and faulty outputs on average. We note that we know an 8-
byte state, a2, in all rounds because MUGI outputs an 8-byte state, a2, at the
beginning of each round process.

Step 0: Obtain a Correct Keystream. The attacker randomly selects an
initial vector and obtains one correct keystream, (the correct keystream, a2, in
each round).

Step 1: Inject Fault into the ρ-Function and Obtain a Part of the
Intermediate States of the ρ- and λ-Functions. The attacker obtains
faulty keystreams by injecting faults during the generation of the keystreams.
As an example, we consider the case that 8 bytes of a

(n)
2 (n = t, . . . , t + 5)

are randomly corrupted by the fault injection as shown in Fig. 2 (a). Figure
2 (a) shows the fault propagation when 8 bytes of a

(t)
2 are corrupted and the

dotted lines indicate the fault propagation in this case. We note that the buffer
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Fig. 2. Fault propagation when 8 bytes of a
(t)
2 are randomly corrupted. The fault

propagation is shown as dotted lines.

is affected by a fault propagated to a
(t+2)
0 in round (t+2) shown in Fig.2 because

the λ-function uses a0 as a parameter. However, this fact is not a problem for
the attack.

The attacker can obtain the values of faults by calculating the difference
between correct output, a

(n)
2 , and faulty output, ã

(n)
2 (n = t, . . . , t+ 5). Here, we

define the difference between correct and faulty outputs in round n as Δ(n)(=
a
(n)
2 ⊕ ã

(n)
2 ) (n = t, . . . , t + 5).

When the fault is injected into a
(n)
2 , the equation for the difference of the

S-box table in round (n + 1) is expressed as

S[{a(n+1)
1 ⊕ (b(n+1)

10 ≪17)}l] ⊕ S[{a(n+1)
1 ⊕ (b(n+1)

10 ≪17)}l ⊕ Δ
(n)
l ] = yl (2)

y = (y0||y1||y2||y3||y4||y5||y6||y7)

= M−1(Δ
(n+1)
4 ||Δ(n+1)

5 ||Δ(n+1)
2 ||Δ(n+1)

3 ) ||M−1(Δ
(n+1)
0 ||Δ(n+1)

1 ||Δ(n+1)
6 ||Δ(n+1)

7 )
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Fig. 3. Known values are shown in the heavy line and the known states are indicated
as diagonal lines

In the above equation, yl (l = 0, . . . , 7) is the l-th byte of y and Δ
(n)
l (l = 0, . . . , 7)

is the l-th byte of Δ(n) (n = t, . . . , t + 5). S is the S-box table and M−1 is the
inverse of the matrix M .

Since Δ(n) and Δ(n+1) are known values, the attacker can solve the above
equation and obtain the candidates for a

(n+1)
1 ⊕ (b(n+1)

10 ≪17) (n = t, . . . , t + 5).
The number of the solutions to (2) is 2 at 99.2% probability and 4 at 0.8%
probability as shown in Appendix A.

In order to determine uniquely the solutions for (2), the attacker injects an-
other 8-byte fault into the same location, a

(n)
2 . Similarly, he obtains the can-

didates for {a(n+1)
1 ⊕ (b(n+1)

10 ≪17)}l (l = 0, . . . , 7, n = t, . . . , t + 5) by solving
the equation for the S-box. At this point, the attacker finds that one solution is
the same as the solutions for (2) with 98.8% probability as shown in Appendix
B, then, he finds {a(n+1)

1 ⊕ (b(n+1)
10 ≪17)}l (l = 0, . . . , 7, n = t, . . . , t + 5). From

Sec.6.4, the attacker can obtain 8 bytes of a
(n+1)
1 ⊕(b(n+1)

10 ≪17) (n = t, . . . , t+5)
using 2.09 pairs of correct and faulty outputs on average.

Since the attacker knows a
(n+1)
1 ⊕ (b(n+1)

10 ≪17) (n = t, . . . , t + 5), he also
knows a

(n)
1 (= a

(n+1)
0 ) (n = t, · · · , t + 5) by the characteristics of the ρ-function

shown in Fig.3 (a).
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4 2 2 2 2 2 1 2 2 2 25t + 1 1

5 5 5 5 5 4 2 2 2 2 3 2 2 2 2 26t + 1 4

5 5 5 5 5 4 2 2 2 3 3 2 2 2 27t + 4 5

5 5 5 5 5 4 2 2 3 3 3 2 2 28t + 5 5

5 5 5 5 5 4 2 3 3 3 3 2 29t + 5 5

5 5 5 5 5 4 3 3 3 3 3 210t + 5 5

Fig. 4. The obtained bytes of sixteen 8-byte buffers b at any round by executing each
attack step. Number i (i = 1, · · · , 5) represents the bytes obtained at Step i.

Since the attacker knows a
(n)
1 and a

(n)
1 ⊕ (b(n)

10 ≪17) (n = t + 1, . . . , t + 5), he
can calculate b

(n)
10 (n = t + 1, . . . , t + 5). By the characteristics of ρ-function, he

also obtains b
(n−1)
4 (n = t + 1, . . . , t + 5) shown in Fig.3 (b).

As a result, the attacker can obtain b
(n−1)
4 and b

(n)
10 (n = t + 1, . . . , t + 5)

with 12.54(= 2.09 × 6) pairs of correct and faulty outputs. Each byte of the
buffer obtained at each step is shown in Fig.4. Number i in Fig.4 means that
the attacker obtains its location in each round at step i and the locations of the
8 bytes of b4 and b10 are shown as heavy lines because the attacker only knows
these bytes from the ρ-function.

Step 2: Obtain Intermediate State from the Shift Operation in the
λ-Function. By the structure of the λ-function, the attacker obtains another
parts of the buffer shown in Fig.4 using buffers obtained in Step 1.

Step 3: Obtain Intermediate State from the XORed Operation in the
λ-Function. The attacker also obtains another byte of the buffer through the
feed-back of the XORed operation of the λ-function. As an example, when the
attacker knows b

(t)
4 and b

(t+2)
10 , he also knows b

(t+6)
10 shown in Fig.5. Using this

characteristic, he can obtain b10 also used in the ρ-function as a parameter by
only calculating the λ-function.

Step 4: Obtain Intermediate State from the ρ-Function Since the at-
tacker already knows b

(t+6)
10 by calculating the λ-function in Step 3, he immedi-

ately calculates a
(t+6)
1 from a

(t+6)
1 ⊕ (b(t+6)

10 ≪17) obtained in Step 1. Then, he
also obtains a

(t+6)
1 (= a

(t+7)
0 ) and b

(t+5)
4 .
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b4 b10

t

t+1

t+2

t+3

t+4

t+5

t+6

Round

a0

(t+5)

Fig. 5. The propagation in the λ-function

Step 5: Obtain Three 8 Bytes of State and Sixteen 8 Bytes of Buffer.
Since the attacker already knows b

(t+7)
10 in Step 3 and a

(t+7)
0 in Step 4, he also

knows a
(t+7)
1 (= a

(t+8)
0 ). Then, he obtains b

(t+6)
4 . Similarly, he can obtain b

(t+7)
4

from b
(t+8)
10 in Step 3, a

(t+8)
1 and a

(t+8)
0 .

Similarly, he can obtains b
(n)
4 (n = t + 8, . . . , t + 10) because he can also

calculate b
(n+6)
10 = b

(n)
4 ⊕ b

(n+2)
10 (n = t + 2, . . . , t + 4) by calculating the λ-

function. Then, he also obtains b
(t+6)
i (i = 0, . . . , 3) by calculating the inverse of

the λ-function.
The attacker can obtain three 8-byte states and sixteen 8-byte buffers in round

(t + 6). Once recovered, he can obtain the secret key by calculating the inverse
of the ρ- and λ-functions until the initial state of the initialization. Therefore,
The attacker obtains the secret key using a total of 12.54(= 2.09 × 6) pairs of
correct and faulty outputs.
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Fig. 6. Histogram of the numbers of pairs of correct and faulty outputs for a successful
attack of 1,000,000 samples
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5.3 Simulation Results

In order to verify the proposed attack and evaluate the number of correct and
faulty outputs needed to recover the secret key, we implement the attack in
C code and execute it on a PC with an Intel Core2duo 3.0 GHz CPU. In the
simulation, we use a randomly chosen secret key and initial vector, and we assume
that a random fault is injected into 8 bytes of a

(i)
2 (i = 0, · · · , 5). We execute the

attack simulations 1,000,000 times. Figure 6 shows the histogram of the numbers
of correct and faulty outputs for 1,000,000 samples. The simulation result shows
that we need 12 pairs of correct and faulty outputs in the best cases and 18
pairs of them in the worst cases for the proposed attack. The average number of
correct and faulty outputs is 12.55 pairs. This result agrees with the theoretical
result that 12.54 pairs of them are required. In the simulation, we can recover
all states and buffers and the 128-bit secret key within 1 sec.

6 Evaluation of Proposed Attack

In this section, we evaluate the proposed attack regarding aspects of the fault
injection area, the number of the faulty bytes needed for a successful attack,
the attacker’s ability to control the fault injection, and the number of pairs of
correct and faulty outputs needed for a successful attack.

6.1 Fault Injection Area

The proposed attack requires that 8 bytes of state a2 are corrupted by some
fault injections. Therefore, any fault injection that corrupts a2 and does not
affect intermediate values used in the attack can be used. We find that the fault
injection that corrupts either 8 bytes of state a0 or buffer bi(i = 8, · · · , 13) can
also be used for the attack.

For example, if 8 bytes of state a
(t)
0 are corrupted, the fault is only propagated

to 8 bytes of state a
(t+1)
2 in the next round. This is absolutely the same situation

as a fault injection that directly corrupts a
(t+1)
2 . Another example is if 8 bytes of

buffer b
(t)
13 are corrupted. The fault is propagated in the λ-function and corrupts

b
(t+1)
10 and b

(t+1)
14 . The corrupted b

(t+1)
10 corrupts a

(t+2)
2 and this situation is the

same as the attack assumption. In this case, another fault is propagated via
b
(t+1)
14 . The next round that this fault affects the ρ-function is round (t + 7) as

b
(t+7)
4 . Because of this timing delay, this fault propagation does not affect the

attack procedure. Therefore, this fault injection can also be used for the attack.

6.2 Number of Faulty Bytes

By analyzing the differences between correct and faulty outputs, we can know
the number of bytes affected by the fault injections. In the proposed attack, a
total of 8 bytes of state or buffer is needed to be corrupted because there is no
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solution for the byte of the S-box equation (2) into which a fault is not injected.
Then, in the case that a fault with fewer than 8 bytes is injected into each state,
we need to inject faults until all bytes are corrupted. However, in the case that
a fault with fewer than 8 bytes is injected into the buffer, we only need to inject
faults into at least 1 byte in the lower 4 bytes of the buffer and in the upper 4
bytes of the buffer because 1-byte fault diffuses into 4 bytes based on the matrix
M in the F-function.

6.3 Attacker’s Ability to Control Fault Injection

We find that the attacker can verify a fault is injected into the desired location
and timing from faulty outputs in the same way as other stream ciphers. There-
fore, the attacker does not need to control the fault injection area and timing
precisely. This fact makes the attack more practical.

Table 1 shows the number of rounds until the faulty output first appears due
to fault injection, and patterns of the differences between the correct and faulty
outputs when a fault is injected into each state or buffer. In the table, A and B
denote kinds of the faulty patterns that are represented by the differences be-
tween the correct and faulty outputs in each round. T denotes a output without
fault and F denotes that with fault. As an example, in the case that a fault is
injected into b

(t)
0 , the faulty output first appears after iterating the λ-function

four times and iterating the ρ-function twice because b
(t)
0 = b

(t+4)
4 and b

(t+4)
4 are

used in the ρ-function. Therefore, the number of rounds until the faulty output
first appears after the fault injection is 6(= 4 + 2). As another example, in the
case that a fault is injected into b

(t)
11 , the faulty output first appears after iterat-

ing the λ-function three times and iterating the ρ-function once because b
(t+4)
10

is affected by b
(t+2)
13 (= b

(t)
11 ) and b

(t+4)
10 used in the ρ-function. Therefore, the

number of rounds until the faulty output first appears after the fault injection is
4(= 3+1). For a successful attack, the attacker needs to inject a fault as pattern
A. Then, the attacker needs to inject a fault into a0, a2, b8, · · · , or b13 as shown
in Table 1. Therefore, the attacker can verify whether or not a fault is injected
into the desired location and timing from Table 1 and he can select the output
needed for a successful attack even if the attacker does not control the location
and the timing of fault injection.

Table 1. Number of Rounds Until Faulty Output First Appears From the Fault In-
jection and Output Patterns. T Denotes a Output Without a Fault and F Denotes a
Output With a Fault.

Fault location a0 a1 a2 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Number of rounds 1 1 0 6 5 4 3 2 4 3 2 3 2 1 4 3 2 8 7

Output patterns A B A B B B B B B B B A A A A A A B B

Output pattern A: T, · · · , T,F, T,F,F,F, · · ·
Output pattern B: T, · · · , T,F,F,F,F,F, · · ·
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We note that these characteristics are only shown in the stream cipher. In
most cases of block cipher, it is hard for the attacker to know the fault location
by analyzing the outputs when a fault is injected into the middle round because
a fault diffuses and the block cipher generates an output after many iterations of
rounds. Therefore, the attacker needs to execute the attack method and examine
whether or not he can obtain the secret key to verify the fault injected into the
desired area.

6.4 Number of Faulty Outputs

We investigate the number of pairs of correct and faulty outputs needed to
determine uniquely 8 bytes of the solution of the S-box equation (2) in Sec.5.2
and the total number of pairs needed for a successful attack.

The number of pairs of correct and faulty outputs to determine uniquely 8
bytes of the solution of the S-box equation (2) on average is calculated as

N = 2 × P 8 + 3 × (1 − P 8) × {1 − (1 − P )2}8 + · · · (3)

where P is the probability that the solution of the S-box equation (2) can be
uniquely determined using 2 pairs of correct and faulty outputs and the co-
efficient starts from 2 because we need at least 2 pairs of correct and faulty
outputs. As shown in Appendix B, P is calculated as 0.988. Ultimately, we cal-
culate N ≈ 2.09. In the attack, we need to obtain 6 rounds of 8 bytes of the
XORed between the state and buffer, then, 12.54(= 2.09 × 6) pairs of correct
and faulty outputs are required for a successful attack.

7 Conclusions

We proposed a DFA on a stream cipher MUGI. To the best knowledge of the
authors, this is the first paper that proposes a DFA on MUGI. We use the
relation between two kinds of update functions that are mutually dependent. As
a result, we can recover the secret key using 12.54 pairs of correct and faulty
outputs on average within 1 sec.

We consider the technique of the proposed attack can be used to other stream
ciphers that use two kinds of update functions that are mutually dependent such
as linear and non-linear shift registers.
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Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)

5. Chen, C.-N., Yen, S.-M.: Differential Fault Analysis on AES Key Schedule and
Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 118–129. Springer, Heidelberg (2003)

6. Chen, H., Wu, W., Feng, D.: Differential Fault Analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007)

7. Takahashi, J., Fukunaga, T.: Improved Differential Fault Analysis on CLEFIA. In:
FDTC 2008, pp. 25–39. IEEE-CS, Los Alamitos (2008)

8. Takahashi, J., Fukunaga, T.: Differential Fault Analysis on CLEFIA with 128, 192,
and 256-Bit Keys. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences E93-A(1), 136–143 (2010)

9. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

10. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

11. Debraize, B., Corbella, I.M.: Fault Analysis of the Stream Cipher Snow 3G. In:
FDTC 2009, pp. 103–110. IEEE-CS, Los Alamitos (2009)

12. Hojsik, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)

13. Berzati, A., Canovas, C., Castagnos, G., Debraize, B., Goubin, L., Gouget, A.,
Paillier, P., Salgado, S.: Fault Analysis of GRAIN-128. In: Proc. of the 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, pp. 7–14. IEEE-
CS, Los Alamitos (2009)

14. Kircanski, A., Youssef, A.M.: Differential Fault Analysis of Rabbit. In: Jacobson
Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp.
197–214. Springer, Heidelberg (2009)

15. Berzati, A., Canovas-Dumas, C., Goubin, L.: Fault Analysis of Rabbit: Toward a
Secret Key Leakage. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS,
vol. 5922, pp. 72–87. Springer, Heidelberg (2009)

16. Watanabe, D., Furuya, S., Yoshida, H., Takaragi, K., Preneel, B.: A New Keystream
Generator MUGI. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365,
pp. 179–194. Springer, Heidelberg (2002)

17. MUGI Pseudorandom Number Generator Specification Ver. 1.2, Hitachi, Ltd.
(2001), This document is available at,
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html

18. Daemen, J., Clapp, C.: Fast Hashing and Stream Encryption with PANAMA. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

19. MUGI Pseudorandom Number Generator Self-Evaluation Report Ver. 1.1, Hitachi,
Ltd. (2001), This document is available at
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html

20. Dawson, E., Carter, G., Gustafson, H., Henricksen, M., Millan, W., Simpson, L.:
Evaluation of the MUGI Psuedo-Random Number Generator, Technical report,
CRYPTREC, Information Technology Promotion Agency (IPA), Tokyo Japan
(2002)

http://www.iacr.org/
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html


Fault Analysis on Stream Cipher MUGI 433

21. Henricksen, M., Dawson, E.: Rekeying Issues in the MUGI Stream Cipher. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 175–188. Springer,
Heidelberg (2006)

22. Hoch, Y.: Fault Analysis of Stream Ciphers M.Sc. Thesis, Weizmann Institute of
Science, Israel
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Appendix A: Probability of the Number of Solutions for
the S-Box Equation in Sec.5.2

In order to obtain the probability that we obtain 2 or 4 solutions for the S-box
equation (2) in Sec. 5.2, we describe the characteristics of the equation for the
S-box used in MUGI. Let us consider the simple 1-byte S-box model shown in
Fig.7. When we know a pair of inputs, yi(8) and yj(8), and know the output
difference, δij(8), we can obtain a set of unknown candidates of x(8) by solving
the following equation.

S[yi(8) ⊕ x(8)] ⊕ S[yj(8) ⊕ x(8)] = δij(8) (4)

The number of key candidates depends on yi(8), yj(8), and δij(8), and the struc-
ture of the S-box. By solving (4), we examine the size of the candidates of the

Table 2. S-Box Statistics

|〈x(8)〉| NC P P|〈x(8)〉|�=0 E(|〈x(8)〉|)
0 8,486,400 0.506 - -
2 8,225,280 0.490 0.992 1.984
4 65,280 0.004 0.008 0.031

256 256 0.000 0.000 0.010

Total 16,777,216 1 1 2.024
(= 224) (= 21.02)

8

⊕ Sy

x

8

8
[ ]S x y⊕

Fig. 7. One-byte S-box model
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S-box for all combinations of yi(8), yj(8), and δij(8). The total number of combi-
nations of yi(8), yj(8), and δij(8) is 224(= 16, 777, 216).

The results are shown in Table 2. In the table, |〈x(8)〉| is the size of the
candidates, and NC is number of case that the size of the candidates is |〈x(8)〉|
in all combinations of (yi(8), yj(8), δij(8)). P is the probability that the number
of the candidates is |〈x(8)〉| when 2 inputs of the S-box, yi(8), and yj(8), and the
output difference, δij(8), are randomly set, which is defined as NC/224. P|〈x(8)〉|�=0

is probability except for |〈x(8)〉| �= 0, which is defined as NC|〈x(8)〉|�=0/(224 −
NC|〈x(8)〉|=0). E(|〈x(8)〉|) is the expected value of |〈x(8)〉| except for |〈x(8)〉| �= 0,
which is defined as |〈x(8)〉| · P|〈x(8)〉|�=0. Table 2 suggests that the number of
solutions for (2) is 2 with 99.2% probability and 4 with 0.8 % probability when
there is a candidate.

Appendix B: Probability That a Solution Can be Uniquely
Determined Using Two Pairs of Correct and Faulty
Outputs

In order to obtain the probability of a solution can be uniquely determined using
2 pairs of correct and faulty outputs, we examine the number of simultaneous
equations in (5) for all combinations of (yi, yj , yk, yl) when answer x is fixed.
The total number of all cases is 232 because δij(8), δkl(8) are calculated from all
combinations of (yi, yj , yk, yl), and the fixed x. The results have no relation to
the value of x.

S[x(8) ⊕ yi(8)] ⊕ S[x(8) ⊕ yj(8)] = δij(8)

S[x(8) ⊕ yk(8)] ⊕ S[x(8) ⊕ yl(8)] = δkl(8) (5)

Therefore, the probability that the number of solutions to the S-box equation
(2) in Sec.5.2 is calculated as 98.8%.

Table 3. Number of Solutions and Probability for All Input Cases

Number of solutions Number of cases Probability

1 4,243,730,400 0.9881
over 2 51,236,896 0.0119

Total 4,294,967,296 (= 232) 1
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