

Lecture Notes in Computer Science 6702
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Oege de Moor Georg Gottlob Tim Furche
Andrew Sellers (Eds.)

Datalog Reloaded
First International Workshop, Datalog 2010
Oxford, UK, March 16-19, 2010
Revised Selected Papers

13

Volume Editors

Oege de Moor
Oxford University, Department of Computer Science, Wolfson Building
Parks Road, Oxford OX1 3QD, UK
E-mail: oege@cs.ox.ac.uk

Georg Gottlob
Oxford University, Department of Computer Science, Wolfson Building
Parks Road, Oxford OX1 3QD, UK
E-mail: georg.gottlob@cs.ox.ac.uk

Tim Furche
Oxford University, Department of Computer Science, Wolfson Building
Parks Road, Oxford OX1 3QD, UK
E-mail: tim@furche.net

Andrew Sellers
Oxford University, Department of Computer Science, Wolfson Building
Parks Road, Oxford OX1 3QD, UK
E-mail: andrew.sellers@cs.ox.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24205-2 e-ISBN 978-3-642-24206-9
DOI 10.1007/978-3-642-24206-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937827

CR Subject Classification (1998): H.2.4, H.4, I.2.4, C.2, H.3, H.5, D.1.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of Datalog 2.0, a workshop celebrating
the reemergence of datalog in academia and industry. Datalog 2.0 was held in
2010 during March 16–19 in Magdalen College, Oxford. We are proud to have
contributions from many of the top researchers in deductive databases for this
publication.

These proceedings consist of selected papers from the workshop, additionally
refereed for this volume. They showcase the state of the art in theory and systems
for datalog, divided into three sections: properties, applications, and extensions
of datalog. Many exciting developments in datalog have occurred since the first
datalog workshop in 1977 organized by Herve Gallaire and Jack Minker. By
Datalog 2.0, datalog has surpassed its beginnings as an area of strictly academic
interest and matured into a powerful tool for industrial use and scientific re-
search. One need look no further than the papers in this volume for proof of this
assertion. At the event itself, the Enterprise CIO of BestBuy, Neville Roberts,
gave a talk on “Challenges of Enterprise IT,” making the case for datalog-based
systems.

We would like to thank all the members of the Program Committee and the
external reviewers for their excellent reviews. Further, we would like to express
our appreciation to Magdalen College, Oxford, and the Oxford University Com-
puting Laboratory for their gracious support of the workshop. In particular, we
would like to thank Wendy Adams and Julie Sheppard for their hard work in
organizing the workshop. We would also like to thank Springer for facilitating
the publication of these proceedings as an LNCS volume. Finally, neither the
workshop nor this volume would have been possible without the support from
LogicBlox Inc., Semmle Ltd., and the DIADEM project (funded from the Eu-
ropean Research Council under the European Community’s Seventh Framework
Programme (FP7/2007–2013) / ERC grant agreement no. 246858).

April 2011 Oege de Moor
Georg Gottlob

Tim Furche
Andrew Sellers

Organization

Program Committee

François Bry University of Munich, Germany
Thomas Eiter Vienna University of Technology, Austria
Ömer Farukhan Günéş Oxford University, UK
Tim Furche Oxford University, UK
Georg Gottlob Oxford University, UK
Giovanni Grasso University of Calabria, Italy
Giovambattista Ianni University of Calabria, Italy
Jakub Kotowski University of Munich, Germany
Clemens Ley Oxford University, UK
Jan Maluszynski Linköping University, Sweden
Marco Manna University of Calabria, Italy
Giorgio Orsi Politecnico di Milano, Italy
Simona Perri University of Calabria, Italy
Reinhard Pichler Vienna University of Technology, Austria
Andreas Pieris Oxford University, UK
Christian Schallhart Oxford University, UK
Andrew Sellers Oxford University, UK
Mantas Simkus Vienna University of Technology, Austria
Letizia Tanca Politecnico di Milano, Italy
Giorgio Terracina University of Calabria, Italy
Antonius Weinzierl Vienna University of Technology, Austria

Sponsors

DIADEM domain-centric intelligent automated
data extraction methodology

Table of Contents

Section 1: Theoretical Aspects of Datalog

Datalog-Based Program Analysis with BES and RWL 1
Maŕıa Alpuente, Marco Antonio Feliú, Christophe Joubert, and
Alicia Villanueva

Datalog for Security, Privacy and Trust . 21
Piero A. Bonatti

Answer Set Modules for Logical Agents . 37
Stefania Costantini

First-Order Encodings for Modular Nonmonotonic Datalog Programs . . . 59
Minh Dao-Tran, Thomas Eiter, Michael Fink, and
Thomas Krennwallner

Datalog Programs and Their Stable Models . 78
Vladimir Lifschitz

Exploiting Bounded Treewidth with Datalog (A Survey) 88
Reinhard Pichler

Equivalence between Extended Datalog Programs — A Brief Survey 106
Stefan Woltran

Section 2: Applications of Datalog

Cluster Computing, Recursion and Datalog . 120
Foto N. Afrati, Vinayak Borkar, Michael Carey,
Neoklis Polyzotis, and Jeffrey D. Ullman

Datalog-Related Aspects in Lixto Visual Developer 145
Robert Baumgartner

Informing Datalog through Language Intelligence – A Personal
Perspective . 161

Veronica Dahl

Dyna: Extending Datalog for Modern AI . 181
Jason Eisner and Nathaniel W. Filardo

Datalog for the Web 2.0: The Case of Social Network Data
Management . 221

Matteo Magnani and Danilo Montesi

VIII Table of Contents

Context Modelling and Context-Aware Querying (Can Datalog Be of
Help?) . 225

Giorgio Orsi and Letizia Tanca

Using Datalog for Fast and Easy Program Analysis 245
Yannis Smaragdakis and Martin Bravenboer

Section 3: New Languages Extending Datalog

Distributed Datalog Revisited . 252
Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and
Marie-Christine Rousset

Dedalus: Datalog in Time and Space . 262
Peter Alvaro, William R. Marczak, Neil Conway,
Joseph M. Hellerstein, David Maier, and Russell Sears

The Disjunctive Datalog System DLV . 282
Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri,
Gerald Pfeifer, and Giorgio Terracina

Datalog as a Query Language for Data Exchange Systems 302
Marcelo Arenas, Pablo Barceló, and Juan L. Reutter

Datalog Relaunched: Simulation Unification and Value Invention 321
François Bry, Tim Furche, Clemens Ley, Bruno Marnette,
Benedikt Linse, and Sebastian Schaffert

Datalog+/-: A Family of Languages for Ontology Querying 351
Andrea Cal̀ı, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris

Knowledge Representation Language P-Log – A Short Introduction 369
Michael Gelfond

Living with Inconsistency and Taming Nonmonotonicity 384
Jan Ma�luszyński and Andrzej Sza�las

Author Index . 399

Datalog-Based Program Analysis

with BES and RWL�

Maŕıa Alpuente, Marco Antonio Feliú,
Christophe Joubert, and Alicia Villanueva

Universidad Politécnica de Valencia, DSIC / ELP
Camino de Vera s/n, 46022 Valencia, Spain

{alpuente,mfeliu,joubert,villanue}@dsic.upv.es

Abstract. This paper describes two techniques for Datalog query evalu-
ation and their application to object-oriented program analysis. The first
technique transforms Datalog programs into an implicit Boolean Equa-
tion System (Bes) that can then be solved by using linear-time complex-
ity algorithms that are available in existing, general purpose verification
toolboxes such as Cadp. In order to improve scalability and to enable
analyses involving advanced meta-programming features, we develop a
second methodology that transforms Datalog programs into rewriting
logic (Rwl) theories. This method takes advantage of the preeminent
features and facilities that are available within the high-performance sys-
tem Maude, which provides a very efficient implementation of Rwl. We
provide evidence of the practicality of both approaches by reporting on
some experiments with a number of real-world Datalog-based analyses.

1 Introduction

Datalog [31] is a simple relational query language that allows complex interpro-
cedural program analyses involving dynamically created objects to be described
in an intuitive way. The main advantage of formulating data-flow analyses in
Datalog is that analyses that traditionally take hundreds of lines of code can be
expressed in a few lines [34]. In real-world problems, the Datalog clauses that en-
code a particular analysis must generally be solved under the huge set of Datalog
facts that are automatically extracted from the analyzed program.

We propose two different Datalog query answering techniques that are
specially-tailored to object-oriented program analysis. Our techniques essentially
consist of transforming the original Datalog program into a suitable set of rules
which are then executed under an optimized top-down strategy that caches and
reuses “rewrites” in the target language. We use two different formalisms for
transforming any given set of definite Datalog clauses into an efficient imple-
mentation, namely Boolean Equation Systems (Bes) [5] and Rewriting Logic
� This work has been partially supported by the eu (feder), the Spanish mec/micinn

under grants tin 2007-68093-C02 and tin 2010-21062-C02-02, and the Generalitat
Valenciana under grant Emergentes gv/2009/024. M. A. Feliú was partially sup-
ported by the Spanish mec fpu grant AP2008-00608.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 M. Alpuente et al.

(Rwl) [25], a very general logical and semantical framework that is efficiently
implemented in the high-level executable specification language Maude [9]. This
paper provides a comprehensive overview of both techniques, which are fully
automatable. For a detailed description of the methods, see [3,4].

In the Bes-based program analysis methodology, the Datalog clauses that
encode a particular analysis, together with a set of Datalog facts that are au-
tomatically extracted from program source code, are dynamically transformed
into a Bes whose local resolution corresponds to the demand-driven evaluation
of the program analysis. This approach allows us to reuse existing general pur-
pose analysis and verification toolboxes such as Cadp, which provides local Bes

resolution with linear-time complexity. Similarly to the Query/Subquery tech-
nique [32], computation proceeds with a set of tuples at a time. This can be a
great advantage for large datasets since it makes disk access more efficient.

Our motivation for developing our second, Rwl-based query answering tech-
nique for Datalog was to provide purely declarative yet efficient program analy-
ses that overcome the difficulty of handling meta-programming features such as
reflection in traditional analysis frameworks [21]. Tracking reflective method in-
vocations requires not just tracking object references through variables but actu-
ally tracking method values and method name strings. The interaction of static
analysis with meta-programming frameworks is non-trivial, and analysis tools risk
losing correctness and completeness, particularly when reflective calls are improp-
erly interpreted during the computation. By transforming Datalog programs into
Maude programs, we take advantage of the flexibility and versatility of Maude in
order to achieve meta-programming capabilities, and we make significant progress
towards scalability without losing the declarative nature of specifying complex
program analyses in Datalog. The current version of Maude can do more than 3
million rewritings per second on standard PCs, so it can be used as an implemen-
tation language [29]. Also, as a means to scale up towards handling real programs,
we wanted to determine to what extent Maude is able to process a sizable number
of constraints that arise in real-life problems, like the static analysis of Java pro-
grams. After exploring the impact of different implementation choices (equations
vs rules, unraveling vs conditional term rewriting systems, explicit vs implicit con-
sistency check, etc.) in our working scenario (i.e., sets of hundreds of facts and a
few clauses that encode the analysis), we elaborate on an equation-based trans-
formation that leads to efficient transformed Maude-programs.

Datalog-Based Program Analysis

The Datalog approach to static program analysis [34] can be summarized as
follows. Each program element, namely variables, types, and code locations are
grouped in their respective domains. Thus, each argument of a predicate symbol
is typed by a domain of values. Each program statement is decomposed into basic
program operations such as load, store, and assignment operations. Each kind of
basic operation is described by a relation in a Datalog program. By considering
only finite program domains, and applying standard loop-checking techniques,
Datalog program execution is ensured to terminate.

Datalog-Based Program Analysis with BES and RWL 3

public A foo { ... p = new Object(); /* o1 */

q = new Object(); /* o2 */

p.f = q;

r = p.f; ... }

vP0(p,o1).

vP0(q,o2).

store(p,f,q).

load(p,f,r).

vP(V1,H1) :- vP0(V1,H1).

vP(V1,H1) :- assign(V1,V2), vP(V2,H1).

hP(H1,F,H2) :- store(V1,F,V2), vP(V1,H1), vP(V2,H2).

vP(V1,H1) :- load(V2,F,V1), vP(V2,H2), hP(H2,F,H1).

Fig. 1. Datalog specification of a context-insensitive points-to analysis

In order to describe the general transformations from Datalog programs into
Bes (resp. Maude programs), let us introduce our running example: a context-
insensitive points-to analysis borrowed from [34].

Example 1. The upper left side of Fig. 1 shows a simple Java program where
o1 and o2 are heap allocations (extracted by a Java compiler from correspond-
ing bytecode). The Datalog pointer analysis approach consists in first extracting
Datalog facts (relations at the upper right side of the figure) from the program.
For instance, the relation vP0 represents the direct points-to information of a
program, i.e., vP0(v,h) holds if there exists a direct assignment of heap object
reference h to program variable v. Other Datalog relations such as store, load
and assign relations are inferred similarly from the code. Using these extracted
facts, the analysis deduces further pointer-related information, like points-to re-
lations from local variables and method parameters to heap objects (vP(V1,H1)
in Fig. 1) as well as points-to relations between heap objects through field iden-
tifiers (hP(H1,F,H2) in Fig. 1).

A Datalog query consists of a goal over the relations defined in the Datalog
program, e.g., :- vP(X,Y). This goal aims at computing the complete set of
program variables in the domain of X that may point to any heap object Y during
program execution. In the example above, the query computes the following
answers: {X/p,Y/o1}, {X/q,Y/o2}, and {X/r,Y/o2}.

In the related literature, the solution for a Datalog query is classically con-
structed following a bottom-up approach; therefore, the information in the query
is not exploited until the model has been built [18]. In contrast, the typical top-
down, logic programming interpreter would produce the output by reasoning
backwards from the query. Between these two extremes, there is a whole spec-
trum of evaluation strategies [6,7,32]. In this work, we essentially consider the
top-down approach for developing our techniques since it is closer to Bes local
resolution as well as to Maude’s evaluation principle, which is based on (non-
deterministic) rewriting.

4 M. Alpuente et al.

Related Work. The description of data-flow analyses as a database query was
pioneered by Ullman [31] and Reps [28], who applied Datalog’s bottom-up magic-
set implementation to automatically derive a local implementation.

Recently, Bess with typed parameters [23], called Pbes, have been success-
fully used to encode several hard verification problems such as the first-order
value-based modal μ-calculus model-checking problem [24], and the equivalence
checking of various bisimulations [8] on (possibly infinite) labeled transition sys-
tems. However, Pbess were not used to compute complex interprocedural pro-
gram analyses involving dynamically created objects until our work in [3]. The
work that is most closely related to the Bes-based analysis approach of ours is
[19], where Dependency Graphs (Dgs) are used to represent satisfaction prob-
lems, including propositional Horn Clauses satisfaction and Bes resolution. A
linear time algorithm for propositional Horn Clause satisfiability is described
in terms of the least solution of a Dg equation system. This corresponds to
an alternation-free Bes, which can only deal with propositional logic problems.
The extension of Liu and Smolka’s work [19] to Datalog query evaluation is not
straightforward. This is testified by the encoding of data-based temporal logics
in equation systems with parameters in [24], where each boolean variable may
depend on multiple data terms. Dgs are not sufficiently expressive to represent
such data dependencies on each vertex. Hence, it is necessary to work at a higher
level, on the Pbes representation.

The idea of using a tabled implementation of Prolog for the purpose of pro-
gram analysis is a recurring theme in the logic programming community [15].
Oege de Moor et al. [15] have developed fast Datalog evaluators that are imple-
mented via optimizing compilation to Sql which performs a specialized version
of the well-known ‘magic sets’ transformation. The system, named CodeQuest is
specifically suited for source code querying. CodeQuest consists of two parts: an
implementation of Datalog on top of a relational database management system
(Rdbms), and an Eclipse (www.eclipse.org) plugin for querying Java code via
the Datalog implementation. Datalog queries are compiled in Sql and evaluated
by the database system. The database is updated incrementally as the source
code changes. Typical queries in CodeQuest refer to the enforcement of general
rules such as the correct usage of Apis and coding style rules (e.g., declara-
tions and naming conventions), or framework-specific rules (e.g., identify which
classes have a method with a given name). Other queries aim to program un-
derstanding (e.g., analyse which methods implement a given abstract method
or are never called transitively from the main method). The use of a database
system as the backend, together with its powerful Rdbms optimizations, makes
the evaluation mechanism of CodeQuest very scalable. A commercial version
has been implemented on top of this work by Semmle [11]. It offers a complete
code analysis environment, that stores Java projects as relational databases,
and provides an object-oriented query language, called .Ql, to allow Sql-like
queries on the databases. .Ql is first translated into a pure Datalog intermediate
representation, that is then optimised and translated to Sql. Finally, the Sql

program can be executed on a number of databases such as Microsoft Sql Server,

Datalog-Based Program Analysis with BES and RWL 5

PostgreSQL and H2. Apart from the completely different evaluation mech-
anisms and implementation technology, the main differences of our tools,
Datalog Solve and Datalaude, with respect to CodeQuest is in their fo-
cus. While CodeQuest focuses on source code queries during the development
process, we are more interested in performing dataflow analysis (particularly
points-to analysis), that require deeper semantic analysis.

A very efficient Datalog program analysis technique based on binary decision
diagrams (Bdds) is available in the Bddbddb system [34], which scales to large
programs and is competitive w.r.t. the traditional (imperative) approach. The
computation is achieved by a fixpoint computation starting from the everywhere
false predicate (or some initial approximation based on Datalog facts). Datalog
rules are then applied in a bottom-up manner until saturation is reached so
that all the solutions that satisfy each relation of a Datalog program are ex-
haustively computed. These sets of solutions are then used to answer complex
formulas. In contrast, our approach focuses on demand-driven techniques to solve
the considered query with no a priori computation of the derivable atoms. In
the context of program analysis, note that all program updates, like pointer up-
dates, might potentially be inter-related, leading to an exhaustive computation
of all results. Therefore, improvements to top-down evaluation are particularly
important for program analysis applications. Recently, Zheng and Rugina [35]
showed that demand-driven Cfl-reachability with worklist algorithm compares
favorably with an exhaustive solution. Our technique to solve Datalog programs
based on local Bes resolution goes in the same direction and provides a novel
approach to demand-driven program analyses almost for free.

As for the Rwl-based approach, it essentially consists of a suitable trans-
formation from Datalog into Maude. Since the operational principles of logic
programming (resolution) and functional programming (term rewriting) share
some similarities [16], many proposals exist for transforming logic programs into
term rewriting systems [22,27,30]. These transformations aim at reusing the term
rewriting infrastructure to run the (transformed) logic program while preserving
the intended observable behavior (e.g., termination, success set, computed an-
swers, etc.) Traditionally, translations of logic programs into functional programs
are based on imposing an input/output relation (mode) on the parameters of the
original program [27]. However, one distinguished feature of Datalog programs
that burdens the transformation is that predicate arguments are not moded,
meaning that they can be used both as input or output parameters. One recent
transformation that does not impose modes on parameters was presented in [30].
The authors defined a transformation from definite logic programs into (infini-
tary) term rewriting for the termination analysis of logic programs. Contrary to
our approach, the transformation of [30] is not concerned with preserving the
computed answers, but only the termination behavior. Moreover, [30] does not
tackle the problem of efficiently encoding logic (Datalog) programs containing a
huge amount of facts in a rewriting-based infrastructure such as Maude.

Plan of the Paper. The rest of the paper is organized as follows: Section 2 de-
scribes the application of Datalog and Bes to program analysis and reports on

6 M. Alpuente et al.

experimental results for a context-insensitive pointer analysis of realistic Java
programs. Section 3 describes the Rwl-based analysis technique and the anal-
ysis infrastructure that we deployed to effectively deal with reflection. Finally,
Section 4 concludes and discusses some lines for future work.

2 The BES-Based Datalog Evaluation Approach

This section summarizes how Datalog queries can be solved by means of Boolean
Equation System [5] (Bes) resolution. The key idea of our approach is to trans-
late the Datalog specification representing a specific analysis into an implicit
Bes, whose resolution corresponds to the execution of the analysis [3]. We im-
plemented this technique in the Datalog solver Datalog Solve that is based on
the well-established verification toolbox Cadp, which provides a generic library
for local Bes resolution.

A Boolean Equation System is a set of equations defining boolean variables that
can be resolved with linear-time complexity. ParameterisedBoolean Equation Sys-
tem [23] (Pbes) are defined as Bes with typed parameters. Since Pbes are a more
compact representation than Bess for a system, we first present an elegant and
natural intermediate representation of a Datalog program as a Pbes. In [3], we es-
tablished a precise correspondence between Datalog query evaluation and Pbes

resolution, which is formalized as a linear-time transformation from Datalog to
Pbes, and vice-versa. As in [34], we assume that Datalog programs have stratified
negation (no recursion through negation) and totally-ordered finite domains.

2.1 From Datalog to BES

In the following, we illustrate how a Pbes can be obtained from a Datalog
program in an automatic way. In Fig. 2 we introduce a simplified version of the
analysis given in Fig. 1 that contains four facts and the first two clauses that
define the predicate vP:

Given the query :- vP(V,o2)., our transformation constructs the Pbes

shown below, which defines the boolean variable x0 and three parameterised
boolean variables (xvP0 , xassign and xvP), one for each Datalog relation in the
analysis. Parameters of these boolean variables are defined on a specific do-
main and may be either variables or constants. The domains in the example
are the heap domain (Dh = {o1, o2}) and the source program variable domain
(Dv = {p, q, r, w}).

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

Fig. 2. Datalog partial context-insensitive points-to analysis

Datalog-Based Program Analysis with BES and RWL 7

Pbes are evaluated by a least fixpoint computation (μ) that sets the boolean
variable x0 to true if there exists a value for V that makes the parameterised
boolean variable xvP (V, o2) true. Logical connectives are interpreted as usual.

x0
μ
= ∃V ∈ Dv . xvP (V, o2)

xvP0(p, o1)
μ
= true

xvP0(q, o2)
μ
= true

xassign(r , q)
μ
= true

xassign(w , r)
μ
= true

xvP (V : Dv, H : Dh)
μ
= xvP0(V, H) ∨ ∃V 2 ∈ Dv.(xassign(V, V 2) ∧ xvP (V 2, H))

Intuitively, the Datalog query is transformed into the relevant boolean variable
x0, i.e., the boolean variable that will guide the Pbes resolution. Each Datalog
fact is transformed into an instantiated parameterised boolean variable (no vari-
ables appear in the parameters), whereas each predicate symbol defined by
Datalog clauses (different from facts) is transformed into a parameterised boolean
variable (in the example xvP (V : Dv, H : Dh)). This parameterised boolean vari-
able is defined by the disjunction of the corresponding Datalog clauses’ bodies,
in terms of boolean variables and variable quantifications. Variables that do not
appear in the parameters of the boolean variable are existentially quantified on
the specific domain (in the example ∃V ∈ Dv and ∃V 2 ∈ Dv).

From Pbes to Bes. Among the different known techniques for solving a Pbes

(see [10] and the references therein), we consider the resolution method based on
transforming the Pbes into an alternation-free parameterless boolean equation
system (Bes) that can be solved by linear time and memory algorithms when
data domains are finite [23].

The first step towards the resolution of the analysis is to write the Pbes in a
simpler format, where, by using new auxiliary boolean variables, each formula at
the right-hand side of a boolean equation contains at most one operator. Hence,
boolean formulae are restricted to pure disjunctive or conjunctive formulae.

Thereafter, by applying the instantiation algorithm of Mateescu [23], we ob-
tain a parameterless Bes where all possible values of each typed data term are
enumerated over their corresponding finite data domains. Actually, we do not
explicitly construct the parameterless Bes. Instead, an implicit representation of
the instantiated Bes is defined. The interested reader will find the implicit repre-
sentation in [3]. This implicit representation is then used by the Cadp toolbox to
generate the explicit parameterless Bes on-the-fly. Intuitively, the construction
of the Bes can be seen as the resolution of the analysis.

However, the idea of näıvely instantiating all the boolean variable parameters
in the parameterised Bes results in an inefficient implementation since a huge
number of possible instantiations are enumerated at each computation step. In
order to avoid this, we derive and subsequently optimize a version that instan-
tiates only the parameters necessary to resume the computation. Similarly to
Query/Subquery [32], we consider the binding of variables occurring in different

8 M. Alpuente et al.

atoms when transforming a clause: boolean equations only instantiate parame-
ters to the values of variable arguments that appear more than once in the body
of the corresponding Datalog clause; otherwise, arguments are kept unbound. In
this way, instantiation takes place only when values are needed. Moreover, if the
corresponding predicate symbol is extensively defined by a set of facts, the only
possible values of its variable arguments in the instantiation are those in the
defining facts.

To illustrate the idea behind this optimized version of the generated Bes,
in Fig. 3 we show (a part of) the Bes that results from our running example.
Boolean variables, whose name starts with x (shown in bold in the figure) are
those that correspond to the goal and subgoals of the original program. Boolean
variables starting with r or g are auxiliary boolean variables that are defined
during unfolding and instantiation of (sub)goals. The first fragment of the Bes

(four equations) shows the definition process for the initial query, represented by
the boolean variable x0. The query is unfolded and partially instantiated. In our
example, there is only one query (:- vP(V,o2).) with one single subgoal. Since
no variables are shared, V is kept unchanged. Then, the partially instantiated
(sub)query is solved by means of its associated boolean variable (xvP(V,o2)).
Finally, xvP(V,o2) is defined as the disjunction of the boolean variables that
correspond to querying the facts (xf) and querying the clauses (xc).

A query to the clauses of a predicate is defined as the disjunction of the
boolean variables that represent the body of the Datalog clauses. In the case
of the query vP(V, H) defined by two clauses, the corresponding boolean
variable xc

vP(V,H) is defined in terms of two boolean variables rvP0 (V,H) and

x0
μ
= gvP(V,o2)

gvp(V,o2)
μ
= gpi

vP(V,o2)

gpi
vP(V,o2)

μ
= xvP(V,o2)

xvP(V,o2)
μ
= xf

vP(V,o2) ∨ xc
vP(V,o2)

...

� unfolding and partial instantiation (pi)

� partially instantiated query

� querying the facts (f) and the clauses (c)

xc
vP(V,H)

μ
= rvP0(V,H) ∨ rassign(V,V2),vP(V2 ,H)

rvP0(V,H)
μ
= rpi

vP0(V,H)

...

rassign(V,V2),vP(V2 ,H)
μ
= rpi

assign(V,q),vP(q,H) ∨ rpi
assign(V,r),vP(r,H)

rpi
assign(V,q),vP(q,H)

μ
= xassign(V,q) ∧ xvP(q,H)

xassign(V,q)
μ
= xf

assign(V,q) ∨ xc
assign(V,q)

xf
assign(V,q)

μ
= xi

assign(r,q)

xi
assign(r,q)

μ
= true

...

clause 1
�

clause 2

�
� �

instantiation

� �
instantiation

� partially instantiated query

� querying the facts and the clauses

Fig. 3. An excerpt of the generated Bes

Datalog-Based Program Analysis with BES and RWL 9

rassign(V,V2),vP(V2 ,H). The r boolean variable is defined as the disjunction of the
different possible instantiations of the query on the shared variables. These par-
tial instantiations are represented by rpi boolean variables. For instance, we can
observed that rassign(V,V2),vP(V2 ,H) can be instantiated with the two possible
values for V 2, the only shared variable. The rpi boolean variables are defined
as the conjunction of the (partially instantiated) subqueries, which are repre-
sented by x boolean variables. As before, boolean variables x are defined as the
disjunction of the boolean variables that correspond to querying the facts (xf)
and querying the clauses (xc), as shown in the equation for xassign(V,q). Finally,
facts are instantiated to final values and are represented as boolean variables xi,
set to true.

As stated above, when the rpi boolean variables are generated, only variables
that are shared by two or more subgoals in the body of the Datalog program
are instantiated, and only values that appear in the corresponding parameters of
the program facts are used. In other words, we do not generate spurious boolean
variables, such as rpi

assign(V,w),vP(w,H), which can never be true.

Solution extraction. By considering the optimized parameterless Bes de-
fined above, the query satisfiability problem is reduced to the local resolution of
boolean variable x0. The value (true or false) computed for x0 indicates whether
or not there exists at least one satisfiable goal. In order to compute all the dif-
ferent solutions of a Datalog query, it is sensible to use a breadth-first search
strategy (Bfs) for the resolution of the Bes. Such a strategy forces the res-
olution of all boolean variables in the Bfs queue that are potential solutions
to the query. Query solutions are extracted from all the boolean variables that
are reachable from boolean variable x0 following a path of true-valued boolean
variables.

2.2 The Prototype Datalog Solve

We implemented the Datalog transformation to Bes in a fully automated Datalog
solver tool, called Datalog Solve

1, which was developed within the Cadp

verification toolbox [14]. Of course, other source languages and problems can be
specified in Datalog and solved by our tool as well.

Datalog Solve takes as input the Datalog facts that are automatically ex-
tracted by the Joeq compiler [33] and a Datalog query that consists of the initial
goal and the specification for the analysis.

The Datalog Solve architecture (120 lines of Lex, 380 lines of Bison and
3 500 lines of C code) consists of two components, as illustrated in Fig. 4. The
front-end of Datalog Solve constructs the (implicit) optimized Bes represen-
tation from the considered Datalog analysis. The back-end of our tool carries out
the interpretation of the Bes that is generated and solved on-the-fly by means
of the generic Cæsar Solve library of Cadp.

1 http://www.dsic.upv.es/users/elp/datalog_solve/

http://www.dsic.upv.es/users/elp/datalog_solve/

10 M. Alpuente et al.

implicit BES

resolution

Y/N (query satisfiability)

Query answers

: input/output
: provides Datalog Solve

(.class)

Java program Joeq compiler
analysis

specification
(datalog clauses)

vP0
load
store
assign

Cæsar Solve

(Cadp)

library

Fig. 4. Java program analysis using the Datalog Solve tool

This architecture clearly separates the implementation of Datalog-based static
analyses from the resolution engine, which can be extended and optimized
independently.

2.3 Experimental Results

In order to test the scalability and applicability of the transformation, the
Datalog Solve tool was applied to a number of Java programs by computing
the context-insensitive pointer analysis described in Fig. 1. We have compared
our prototype against Bddbddb on four of the most popular 100% Java stan-
dalone applications hosted on Sourceforge used as benchmarks for the Bddbddb

tool [34]. All experiments were conducted on a Intel Core 2 duo E4500 2.2 GHz
(only one core used), with 2048 KB cache, 4 GB of RAM, and running Linux
Ubuntu 10.04. Bddbddb is executed with the best variable ordering that we
have found for the points-to analysis example, namely: V V H H F. Execution
times (in seconds) are presented in Table 1: “Time” column refers to the analysis
computed by our prototype; “Bddbddb” column shows the execution time of
the Bddbddb solver; and “Opt.Time” column shows some preliminary results
of an ongoing optimization of our prototype, that makes use of an auxiliary
data structure (tries) to improve efficiency. This “optimized” approach is still
under development [12,13] and is not fully automated; however, the results are
very promising. The results show that our approach works on large amounts
of facts as can be encountered in the analysis of real programs. Even with the
best encountered boolean variable ordering, the Bdd-based approach appears to
be penalized by the poor regularity of the points-to analysis domains and poor
redundancy of the analysis relations with respect to our approach based on an
explicit encoding.

Table 1. Description of the Java projects used as benchmarks

Name Classes Methods Vars Allocs Time Bddbddb Opt.Time

freetts (1.2.1) 215 723 8K 3K 10 3.8 0.02
nfcchat (1.1.0) 283 993 11K 3K 8 3.86 0.01
jetty (6.1.10) 309 1160 12K 3K 73 6.41 0.04
joone (2.0.0) 375 1531 17K 4K 4 3.45 0.01

Datalog-Based Program Analysis with BES and RWL 11

3 The RWL-Based Datalog Evaluation Approach

With the aim to achieve higher expressiveness for static-analysis specification,
we translate Datalog into a powerful and highly extensible framework, namely,
rewriting logic. Due to the high level of expressiveness of Rwl, many ways for
translating Datalog into Rwl can be considered. Because efficiency does matter
in the context of Datalog-based program analysis, our proposed transformation
is the result of an iterative process that is aimed at optimizing the running time
of the transformed program. The basic idea of the translation is to automatically
compile Datalog clauses into deterministic equations. Queries and answers are
consistently represented as terms so that the query is evaluated by reducing its
term representation into a constraint set that represents the answers.

3.1 From Datalog to Maude

Membership equational logic [26] is the subset of Rwl that we use for represent-
ing the translated Datalog programs. A membership equational theory consists
of a signature and a set of equations and membership axioms. Its operational
semantics is based on term rewriting modulo algebraic axioms, where equations
are considered as left-to-right rewriting rules, while membership axioms are as-
sertions of membership to a given sort.

The translated programs have been expressed in Maude [9], which provides
many powerful features, like Aci-matching2, efficient set-representation, meta-
programming capabilities (e.g., reflection), and memoization. In this subsection,
we first summarize the key ideas of the transformation and its Maude repre-
sentation, and then we describe how we deal with points-to analyses involving
reflection in our framework. The complete transformation is given in [4], and the
proof of its correctness and completeness can be found in [2].

Answer representation. Datalog answers are expressed as equational con-
straints that relate the variables of the queries to values. Values are represented
as ground terms of sort Constant that are constructed by means of Maude Quoted
Identifiers (Qids). Since logical variables cannot be represented with rewriting
rule variables because of their dual input-output nature, we give a representa-
tion for them as ground terms of sort Variable by means of the overloaded
vrbl constructor. A Term is either a Constant or a Variable. These elements
are represented in Maude as follows:

sorts Variable Constant Term .

subsort Variable Constant < Term .

subsort Qid < Constant .

op vrbl : Term -> Variable [ctor] .

In our formulation, answers are recorded within the term that represents the on-
going partial computation of the Maude program. Thus, we represent a (partial)

2 Matching modulo Associativity, Commutativity, and Identity.

12 M. Alpuente et al.

answer for the original Datalog query as a set of equational constraints (called
answer constraints) that represent the substitution of (logical) variables by (log-
ical) constants that are incrementally computed during the program execution.
We define the sort Constraint as the composition of answer equations. Elements
of sort Constraint represent single answers for a Datalog query as follows:

sort Constraint .

op = : Term Constant -> Constraint .

op T : -> Constraint .

op F : -> Constraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

eq F, C:Constraint = F . --- Zero element

Constraints are constructed3 by the conjunction (,) of solved equations of
the form T:Term= C:Constant, the false constraint F, or the true constraint
T. Note that the conjunction operator , obeys the laws4 of associativity and
commutativity. T is defined as the identity of (,), and F is used as the zero
element.

Unification of expressions is performed by combining the corresponding an-
swer constraints and checking the satisfiability of the compound. Simplification
equations are introduced in order to simplify trivial constraints by reducing them
to T, or to detect inconsistencies (unification failure) so that the whole conjunc-
tion can be drastically replaced by F, as shown in the following code excerpt:

var Cst Cst1 Cst2 : Constant . var V : Variable .

eq (V = Cst) , (V = Cst) = (V = Cst) , T . --- Idempotence

eq (V = Cst1) , (V = Cst2) = F [owise] . --- Unsatisfiability

In our setting, a failing computation occurs when a query is reduced to F. If a
query is reduced to T, then the original (ground) query is proven to be satisfiable.
On the contrary, if the query is reduced to a set of solved equations, then the
computed answer is given by a substitution {x1/t1, . . . , xn/tn} that is expressed
by the computed normal form x1 = t1 , ... , xn = tn.

Since equations in Maude are run deterministically, all the non-determinism of
the original Datalog program has to be embedded into the term under reduction.
This means that we need to carry all the possible (partial) answers at a given
execution point. To this end, we introduce the notion of set of answer constraints,
and we define a new sort called ConstraintSet as follows:

sorts ConstraintSet .

subsort Constraint < ConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

3 The actual transformation defines a more complex hierarchy of sorts in order to
obtain simpler equations and improve performance.

4 Associativity, commutativity, and identity are easily expressed by using Aci at-
tributes in Maude, thus simplifying the equational specification and also achieving a
more efficient implementation.

Datalog-Based Program Analysis with BES and RWL 13

The set of constraints is constructed as the (possibly empty) disjunction ; of
accumulated constraints. The disjunction operator ; obeys the laws of asso-
ciativity and commutativity and is also given the identity element F.

Transformed predicates are naturally expressed as functions (with the same
arity) whose codomain is the ConstraintSet sort. They will be reduced to
the set of constraints that represent the satisfiable instantiations of the original
query. The transformed predicates of our running example are represented in
Maude as follows:

op vP vP0 assign : Term Term -> ConstraintSet .

In order to incrementally add new constraints throughout the program execution,
we define the composition operator x for constraint sets as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

The composition operator x allows us to combine (partial) solutions of the sub-
goals in a clause body.

A glimpse of the transformation. Let us describe the transformation by eval-
uating queries in our running example. For instance, by executing the Datalog
query :- vP0(p,Y) on the program in Fig. 2, we obtain the solution {Y/o1}.
Here, vP0 is a predicate defined only by facts, so the answers to the query rep-
resent the variable instantiations as given by the existing facts. Thus, we would
expect the query’s Rwl representation vP0(’p, vrbl(’Y)) to be reduced to
the ConstraintSet (with just one constraint) vrbl(’Y) = ’o1. This is accom-
plished by representing facts according to the following equation pattern:

var T0 T1 : Term .

eq vP0(T0,T1) = (T0 = ’p , T1 = ’o1) ; (T0 = ’q , T1 = ’o2) .

eq assign(T0,T1) = (T0 = ’r , T1 = ’q) ; (T0 = ’w , T1 = ’r) .

The right-hand side of the Rwl equation that is used to represent the facts that
define a given predicate (in the example vP0 and assign) consists of the set of
constraints that express the satisfiable instantiations of the original predicate.
As can be observed, arguments are propagated to the constraints, thus allowing
the already mentioned equational simplification process on the constraints. For
this particular case, the reduction proceeds as follows:

vP0(’p,vrbl(’Y))

→ (’p = ’p , vrbl(’Y) = ’o1) ; (’p = ’q , vrbl(’Y) = ’o2)
∗→ (T , vrbl(’Y) = ’o1) ; (F , vrbl(’Y) = ’o2)
∗→ vrbl(’Y) = ’o1 ; F

→ vrbl(’Y) = ’o1

Another example of Datalog query is :- vP(V,o2), whose execution for the
leading example delivers the solutions {{V/q},{V/r},{V/w}}. Thus, we expect
vP(vrbl(’V),’o2) to be reduced to the set of constraints (vrbl(’V) = ’q) ;
(vrbl(’V) = ’r) ; (vrbl(’V) = ’w). In this case, vP is a predicate defined by

14 M. Alpuente et al.

clauses, so the answers to the query are the disjunction of the answers provided
by all the clauses defining it. This is represented in Rwl by introducing auxiliary
functions to separately compute the answers for each clause, and the equation
to join them is as follows:

op vP-clause-1 vP-clause-2 : Term Term -> ConstraintSet .

var X Y : Term .

eq vP(X,Y) = vP-clause-1(X , Y) ; vP-clause-2(X , Y) .

In order to compute the answers delivered by a clause, we search for the sat-
isfiable instantiations of its body’s subgoals. In our translation, we explore the
possible instantiations from the leftmost subgoal to the rightmost one. In order to
impose this left-to-right exploration, we create a different (auxiliary) unraveling
function for each subgoal. Each of these auxiliary functions computes the partial
answer depending on the corresponding and previous subgoals and propagates it
to the subsequent unraveling function5. Additionally, existential variables that
occur only in the body of original Datalog clauses, e.g., Z, are introduced by
using a ground representation that is parameterised with the corresponding call
pattern in order to generate fresh variables (in the example below vrblZ(X,Y)).

As shown in the following code excerpt, in our example, the first Datalog
clause can be transformed without using unraveling functions. For the second
Datalog clause (with two subgoals) only one unraveling function is needed in
order to force the early reduction of the first subgoal.

op vrblZ : Term Term -> Variable .

op unrav : ConstraintSet TermList -> ConstraintSet .

eq vP-clause-1(X,Y) = vP0(X,Y) .

eq vP-clause-2(X,Y) = unrav(assign(X, vrblZ(X,Y)) , X Y) .

The unrav function has two arguments: a ConstraintSet, which is the first
(reduced) subgoal (the original subgoal assign(X,Z) in this case); and the X Y
call pattern. This function is defined as follows:

var Cnt : Constant . var TS : TermList .

var C : Constraint . var CS : ConstraintSet .

eq unrav(((vrblZ(X,Y) = Cnt , C) ; CS) , X Y) =

(vP(Cnt,Y) x (vrblZ(X,Y) = Cnt , C)) ; unrav(CS , X Y) .

eq unrav(F , TS) = F .

The unraveling function (in the example unrav) takes a set of partial answers
as its first argument. It requires the partial answers to be in solved equation
form by pattern matching, thus ensuring the left-to-right execution of the goals.
The second argument is the call pattern of the translated clause and serves to
reference the introduced existential variables. The propagated call pattern is
represented as a TermList, that is, a juxtaposition (operator) of Terms. The
two unrav equations (recursively) combine each (partial) answer obtained from
5 Conditional equations could also be used to impose left-to-right evaluation, but in

practice they suffer from poor performance as our experiments revealed.

Datalog-Based Program Analysis with BES and RWL 15

the first subgoal with every (partial) answer computed from the (instantiated)
subsequent subgoal (vP(Cnt,Y) in the example).

Consider again the Datalog query :- vP(V,o2). We undertake all possible
query reduction by using the equations above. Given the size of the execution
trace, we will use the following abbreviations: V stands for vrbl(’V), vPci for
vP-clause-i, and Z-T0-T1 for vrblZ(T0,T1).

vP(V,’o2)

→ vPc1(V,’o2) ; vPc2(V,’o2)
∗→ vP0(V,’o2) ; unrav(assign(V,Z-V-o2) , V ’o2)
∗→ ((V = ’p , ’o2 = ’o1) ; (V = ’q , ’o2 = ’o2))

; unrav(((V = ’r , Z-V-o2 = ’q) ; (V = ’w , Z-V-o2 = ’r)) , V ’o2)
∗→ (F ; (V = ’q , T)) ; (vP(’q,’o2) x (V = ’r , Z-V-o2 = ’q))

; unrav((V = ’w , Z-V-o2 = ’r) , V ’o2)
∗→ (V = ’q) ; ((vPc1(’q,’o2) ; vPc2(’q,’o2)) x (V = ’r , Z-V-o2 = ’q))

; (vP(’r,’o2) x (V = ’w , Z-V-o2 = ’r)) ; unrav(F , V ’o2)

...

∗→ (V = ’q) ; (V = ’r) ; (V = ’w)

Reflection. Reflection in Java is a powerful technique that is used when a pro-
gram needs to examine or modify the runtime behavior of applications running
on the Java virtual machine. For example, by using reflection, it is possible to
write to object fields and invoke methods that are not known at compile time.

The main difficulty of reflective analysis is that we do not have all the basic
information for the points-to analysis at the beginning of the computation. This
is because Java methods that handle reflection may generate new basic points-to
information. A sound approach for handling Java reflection in Datalog analyses
is proposed in [21]. We transform Datalog clauses that specify the reflection
analysis into Maude conditional rules in a natural way. Then, the Maude reflection
capability is used during the analysis to automatically generate the rules that
represent the deduced points-to information and adds them to the program. This
is in contrast to [21], which resorts to an external artifact with ad-hoc notation
and operational principle.

We have implemented a small prototype which essentially consists of a mod-
ule at the Maude meta-level that implements a generic infrastructure to deal with
reflection. Fig. 5 shows the structure of a typical reflection analysis as it is run
in our tool. The static analysis is specified in two object-level modules, a basic
module and a reflective module. These modules can be written in either Maude or
Datalog since Datalog analyses are automatically compiled into Maude code. The
basic program analysis module contains the rules for the classical analysis (which
neglects reflection), whereas the reflective program analysis module contains the
part of the analysis that deals with the reflective components of the Java program.
At the meta-level, the solver module consists of a generic fixpoint algorithm that
feeds the reflective module with the points-to information inferred by the basic
analysis. Then, rules that encode the new inferred information are built by the

16 M. Alpuente et al.

Fig. 5. The structure of the reflective analysis

reflective analysis and added to the basic module in order to infer new informa-
tion, until a fixpoint is reached. A detailed description can be found in [2].

3.2 The Prototype Datalaude

We implemented the Datalog to Rwl transformation in Datalaude
6 (700 lines

of Haskell code and 50 lines of Maude code). The prototype transforms the set
of Datalog rules and facts into a Maude membership equational theory. Then,
the generated theory is used to reduce each query into its answer constraint set
representation in Maude.

Experimental results. We report on the performance of Datalaude by com-
paring it to a previous rule-based Datalog-to-Rwl transformation that consisted
of a one-to-one mapping from Datalog rules into Maude conditional rules. We
briefly present the results obtained by using the rule-based approach and the
enhanced equational-based Datalaude approach with and without the opti-
mization of using the memoization capability of Maude.

Table 2 shows the resolution times of the three selected versions for different
sets of initial Datalog facts (assign/2 and vP0/2), which were extracted by the
Joeq compiler [33] from a Java program (with 374 lines of code) that implements
a tree visitor algorithm. All experiments were conducted on a Intel Core 2 duo
E4500 2.2 GHz (only one core used), with 2048 KB cache, 4 GB of RAM, and
running Linux Ubuntu 10.04. The evaluated query is ?- vP(Var,Heap). Note
that the results obtained are progressively better, which emphasizes the fact that
by favoring determinism and unconditional equations the computation time can
be greatly reduced. On the largest set of initial facts (last line of the table), when
memoization is used, 1 293 984 rewritings are realized in 0.87 seconds to compute
all solutions of the analysis. Memoization is a table-based mechanism that stores
the canonical form (equational simplification) of subterms having operators, at
the top, tagged with the memo attribute. Whenever such subterm is encountered
during the computation, its canonical form is searched in the table and used
instead. Since subcomputations involving the vP operator will be repeated many
times in the points-to analysis, the overall computation is substantially sped up
when the operator vP is given the memo attribute.
6 http://www.dsic.upv.es/users/elp/datalaude

http://www.dsic.upv.es/users/elp/datalaude

Datalog-Based Program Analysis with BES and RWL 17

Table 2. Number of initial facts (assign/2 and vP0/2) and computed answers (vP/2),
and resolution time (in seconds) for the three implementations

assign/2 vP0/2 vP/2 rule-based equational equational+memo

100 100 144 1.32 0.24 0.01
150 150 222 4.86 0.76 0.01
200 200 297 12.47 1.76 0.02
403 399 602 117.94 15.42 0.10
807 1669 2042 1540.55 277.09 0.87

These results confirm that the current Datalaude implementation is the one
that best fits our program analysis purposes. More details of this experiment and
a comparison with other implementations can be found in [4].

4 Conclusion and Future Work

This article overviews two novel complementary approaches for solving Datalog
queries. Both approaches are fully automatable and applicable to a large class of
Datalog programs. In this article, we illustrated them on a popular application
domain, namely Datalog-based pointer analysis.

– We used boolean equation systems (Bes) to efficiently compute fixpoints in
Datalog evaluations. Bes resolutions achieve the robustness of bottom-up
evaluation, satisfactorily coping with redundant infinite computations. Our
transformation also achieves the effectiveness of demand-driven techniques
by propagating values and constraints that are part of the query’s subgoals
in order to speed up the computation.

– We defined, formalized, and proved the correctness of another novel transfor-
mation from Datalog programs into Maude programs. By taking advantage of
the cogent Rwl reflection capabilities, we also demonstrated the adequacy of
Maude to support declarative, accurate, and sound complex pointer analyses
that include meta-programming features such as reflection in Java programs.

Two new Datalog solvers, called Datalog Solve and Datalaude, respectively,
were designed, implemented, and successfully used for the evaluation of the
Datalog-based program analysis over several realistic Java programs. The Bes-
approach is really fast and can analysis in few milliseconds a context-insensitive
points-to analysis on a real Java project. Such an approach would perfectly fit in
Integrated Development Environments (Ides) to provide rapid feedback to a de-
veloper during the development of its code. However, this evaluation technique is
not so appropriate to define, compose and experiment new analyses as it would
be with a purely declarative approach based on rewriting logic. Rwl offers a
sound framework to design complex program analyses in just a few lines.

As ongoing work, we recently endowed Datalog Solve with new, optimized
strategies for local Bes resolution, where Datalog rules are first decomposed in or-
der to allow goal-directed bottom-up evaluation with complexity guarantees [20].

18 M. Alpuente et al.

As future work, we plan to explore such sophisticated Datalog optimizations in
a purely declarative framework like Maude. Inversely, we could also benefit from
the regular structure of our Bes encoding by distributing the Bes resolution
over a network of workstations with balanced partitioning while still preserving
locality, similarly to [17]. A promising alternative approach to explore would dis-
tribute the workload directly at the Datalog level by using Map-Reduce-based
algorithms such as [1].

Acknowledgements. We are grateful to Fernando Taŕın and Adam Kepa for
their valuable contributions to the experiments shown in this paper.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:
Manolescu, I., Spaccapietra, S., Teubner, J., Kitsuregawa, M., Léger, A., Nau-
mann, F., Ailamaki, A., Özcan, F. (eds.) EDBT. ACM International Conference
Proceeding Series, vol. 426, pp. 99–110. ACM, New York (2010)

2. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Defining Datalog in Rewriting
Logic. Technical Report DSIC-II/07/09, DSIC, Universidad Politécnica de Valencia
(2009)

3. Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Using Datalog and Boolean
Equation Systems for Program Analysis. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 215–231. Springer, Heidelberg (2009)

4. Alpuente, M., Feliú, M.A., Joubert, C., Villanueva, A.: Defining datalog in rewrit-
ing logic. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 188–204.
Springer, Heidelberg (2010)

5. Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Sci-
ence 126(1), 3–30 (1994)

6. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: Proc. 5th ACM SIGACT-SIGMOD Symp.
on Principles of Database Systems, PODS 1986, pp. 1–15. ACM Press, New York
(1986)

7. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

8. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence Checking for
Infinite Systems Using Parameterized Boolean Equation Systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer,
Heidelberg (2007)

9. Clavel, M., Durán, F., Ejer, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

10. Dam, A., Ploeger, B., Willemse, T.: Instantiation for Parameterised Boolean Equa-
tion Systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 440–454. Springer, Heidelberg (2008)

11. de Moor, O., Sereni, D., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T.,
Ongkingco, N., Tibble, J.: QL: Object-oriented queries made easy. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2008. LNCS, vol. 5235, pp. 78–133. Springer,
Heidelberg (2008)

Datalog-Based Program Analysis with BES and RWL 19

12. Feliú, M., Joubert, C., Taŕın, F.: Efficient BES-based Bottom-Up Evaluation of
Datalog Programs. In: Guĺıas, V., Silva, J., Villanueva, A. (eds.) Proc. X Jornadas
sobre Programación y Lenguajes (PROLE 2010), Garceta, pp. 165–176 (2010)

13. Feliú, M., Joubert, C., Taŕın, F.: Evaluation strategies for datalog-based points-
to analysis. In: Bendisposto, J., Leuschel, M., Roggenbach, M. (eds.) Proc. 10th
Workshop on Automated Verification of Critical Systems (AVoCS 2010), pp. 88–
103. Technical Report of Düsseldorf University (2010)

14. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

15. Hajiyev, E., Verbaere, M., de Moor, O.: CodeQuest: Scalable Source Code Queries
with Datalog. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27. Springer,
Heidelberg (2006)

16. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal on Logic Programming 19 & 20, 583–628 (1994)

17. Joubert, C., Mateescu, R.: Distributed On-the-Fly Model Checking and Test Case
Generation. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 126–145.
Springer, Heidelberg (2006)

18. Leeuwen, J. (ed.): Formal Models and Semantics, vol. B. Elsevier, The MIT Press
(1990)

19. Liu, X., Smolka, S.A.: Simple Linear-Time Algorithms for Minimal Fixed Points.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998)

20. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and
space guarantees. ACM Trans. Program. Lang. Syst. 31(6) (2009)

21. Livshits, B., Whaley, J., Lam, M.: Reflection Analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

22. Marchiori, M.: Logic Programs as Term Rewriting Systems. In: Rodŕıguez-Artalejo,
M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 223–241. Springer, Heidelberg
(1994)

23. Mateescu, R.: Local Model-Checking of an Alternation-Free Value-Based Modal
Mu-Calculus. In: Proc. 2nd Int’l Workshop on Verication, Model Checking and
Abstract Interpretation, VMCAI 1998 (1998)

24. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
148–164. Springer, Heidelberg (2008)

25. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96(1), 73–155 (1992)

26. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

27. Reddy, U.: Transformation of Logic Programs into Functional Programs. In: Proc.
Symposium on Logic Programming (SLP 1984), pp. 187–197. IEEE Computer
Society Press, Los Alamitos (1984)

28. Reps, T.W.: Solving Demand Versions of Interprocedural Analysis Problems. In:
Adsul, B. (ed.) CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg (1994)

29. Rosu, G., Havelund, K.: Rewriting-Based Techniques for Runtime Verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

30. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termina-
tion Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)

20 M. Alpuente et al.

31. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume I and
II, The New Technologies. Computer Science Press, Rockville (1989)

32. Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Ap-
proach. In: Proc. 1st Int’l Conf. on Expert Database Systems, EDS 1986, pp.
253–267 (1986)

33. Whaley, J.: Joeq: a Virtual Machine and Compiler Infrastructure. In: Proc. Work-
shop on Interpreters, Virtual Machines and Emulators, IVME 2003, pp. 58–66.
ACM Press, New York (2003)

34. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with Binary Decision
Diagrams for Program Analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780,
pp. 97–118. Springer, Heidelberg (2005)

35. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proc. 35th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL 2008,
pp. 197–208. ACM Press, New York (2008)

Datalog for Security, Privacy and Trust

Piero A. Bonatti

Università di Napoli “Federico II”, Italy

Abstract. Logic-based policy languages are appreciated because of their clean
semantics and expressiveness. Datalog has been used for a long time as a founda-
tion of many security models and policy languages. Recently, Description Logics
(DLs for short) have been adopted as policy languages, too. In this paper we carry
out a comparison of Datalog and Description Logics as policy languages, based
both on expressiveness analysis and on an assessment of the current maturity of
the two fields, expressly related to the representation and reasoning tasks involved
in policy authoring, enforcement, and management. We shall argue that Datalog-
based approaches are currently more powerful and mature than those based on
pure DLs, although the ongoing research on the latter might change the picture in
a near future. The potential of hybrid approaches will be briefly discussed.

1 Introduction

Logic-based languages have been regarded as appealing policy languages for a long
time, since the seminal work by Woo and Lam [91]. The computer security community
appreciates the independent, clean, and unambiguous semantics of logic languages (that
constitutes an ideal implementation-independent specification for policy languages) and
the expressiveness of logic-based specifications, that is becoming more and more im-
portant in modern open application contexts characterized by unprecedented needs for
flexibility [75,73,53]. The first approaches in the literature are essentially rule-based
[91] and founded on Datalog and extensions thereof [56,62,45,12,22]. Recently, the ad-
vent of the semantic web fostered the adoption of Description Logics (DLs) as policy
languages [85,44,92,61]. This is a natural choice, given that policies frequently express
decisions based on the information and metadata they are meant to protect; when such
policy inputs are organized and/or formulated by means of DLs, a policy language
based on the same formalism has obvious potential advantages in terms of uniformity
and integration.

Such a wide landscape of alternative policy languages calls for criteria and tools
for comparing and assessing different approaches. This paper carries out a comparison
of Datalog and Description Logics as policy languages, based both on expressiveness
analysis and on an assessment of the current maturity of the two fields, expressly related
to the representation and reasoning tasks involved in policy authoring, enforcement,
and management. We shall argue that Datalog-based approaches are currently more
powerful and mature than those based on pure DLs, although the ongoing research
on the latter might change the picture in a near future. The potential advantages and
disadvantages of hybrid approaches will be briefly mentioned.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 21–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

22 P.A. Bonatti

The paper is organized as follows. In Section 2 we recall the main policy languages
based on Datalog and DLs. In Section 3 the expressiveness of these languages is an-
alyzed using descriptive complexity—a technique developed in the area of database
theory—and the tree-model property of Description Logics. Section 4 outlines the main
reasoning tasks related to policy enforcement and management, and for each task com-
pares the maturity level of the methods and technologies based on Datalog and DLs.
Although hybrid approaches that combine rules and DLs are not yet popular in the area
of policy languages, they have an interesting potential. Hybrid approaches are briefly
discussed in Section 5. The paper is concluded by a final discussion. Throughout the
paper we will point to interesting directions for future work.

We assume the reader to be familiar with Logic Programming, Description Logics,
and Logic-based policies. For background on these topics we refer to [3,7,25].

2 Logic-Based Policy Languages

2.1 Datalog-Based Approaches

Nonmonotonic semantics is fundamental for policy languages, that need to encode de-
fault policies such as open and closed policies (where authorizations are granted or
denied—respectively—unless stated otherwise), authorization inheritance with excep-
tions (which is helpful to formulate policies incrementally, by iterative refinements,
and supports exception handling, such as user blacklisting for crisis management), and
prioritized conflict resolution. The initial approach by Woo and Lam [91], based on
general default logic, has been later refined into a framework called Flexible Authoriza-
tion Framework (FAF) [56], based on stratified Datalog with negation. Stratification has
three important roles. First, it reduces data complexity from NP to P. Second, it removes
the potential ambiguities arising in the general case, where a policy may have multiple
stable models. Third, the layers induced by stratification may be regarded as the steps
of a methodology for constructing policies in a principled way, starting with explicit au-
thorizations, then adding derived authorizations (e.g. by inheritance along hierarchies
of subjects, objects, and roles), and finally filling in policy gaps with default authoriza-
tions and resolving conflicts. In FAF, the policy evaluation context (defining entities
such as users, resources, and roles, the corresponding hierarchies, as well as histories
and other pieces of information relevant to policy evaluation) is defined by means of
ground facts. Policy rules define and propagate authorizations. A distinguished predi-
cate do(Subject� Object� Operation) expresses authorizations: the subject is allowed to
perform the specified operation on the object iff do(Subject� Object� Operation) belongs
to the unique stable model of P � C, where P is the set of policy rules and C the evalu-
ation context.

Rei [58] integrates RDF documents and logic programming rules. In Rei default
policies and conflict resolution must be managed with meta-rules. Rei is not Datalog;
function symbols are extensively used.

A conspicuous amount of recent work has been devoted to trust negotiation (TN)
[90], where peers progressively exchange digital credentials to reach a level of mutual
agreement sufficient to complete a transaction. Logic-based policies tell which creden-
tials must be disclosed to access a web resource, as well as which credentials should be

Datalog for Security, Privacy and Trust 23

received by a peer before a local credential—possibly encoding sensitive information—
can be disclosed. This process, based on requests and counter-requests, gives rise to
credential negotiations. Credentials are represented in the policies by means of dis-
tinguished predicates; when a peer receives a credential, the policy engine verifies it
and—in case of success—asserts the corresponding ground fact in the current context
(called negotiation state in the TN jargon). Roughly speaking, the credential selection
process consists in searching a portfolio of credentials D for a set of credentials D� � D
that together with the policy P implies the desired authorization formula.

The RT family [62] has an ad-hoc rule language for manipulating credentials that
encode roles and permissions. RT’s semantics, however, is specified by a translation
into Datalog.

Cassandra [12] is a TN framework based on Datalog with constraints. In Cassandra,
atoms are labelled with a location where the atom holds, and with an issuer that digitally
signs the atom (thereby certifying that inference).

PeerTrust [45] is a Datalog dialect with atom annotations expressing locations and
signatures analogous to Cassandra’s. Locations are used for distributed policy evalua-
tion: subgoals are sent over the Internet and a proof tree supporting an authorization
typically consists of rules and facts gathered across the network.

Protune [22,13] is a TN framework based on Datalog with stratified negation. It sup-
ports an object oriented syntax for manipulating semi-structured objects such as X509
digital credentials. The object-oriented extension is only syntactic sugar; the internal
form is standard Datalog with negation.

Clear requirements have been formulated for the policy languages of TN frameworks
[80]. One of them states that policies should be monotonic w.r.t. credentials, because it
is technically impossible to check whether a peer does not have a specific credential.
Negation, however, can be applied to any predicate that does not depend on credentials.
Detailed comparisons of these and other policy languages can be found in [16,36,13].

As for applications, SecPAL [10], a decentralized authorization language developed
at Microsoft Research, has been applied to the management of electronic health records.
For further details, see the project’s web site at http://research.microsoft.
com/en-us/projects/securitypolicy/.

Moreover, the standard policy framework XACML [61] is considered a rule-based
language, with nonmonotonic features such as rule priorities and majority decisions.
XACML’s syntax can be regarded as a factorized representation of Datalog rule sets,
supporting bounded forms of recursion. XACML can be translated into Datalog with
a mapping similar to the translation from the policy composition algebra into Datalog
illustrated in [17].

2.2 DL-Based Approaches

The use of Description Logics as policy languages is more recent. One of the
major projects is KAoS [85], that focusses on several distributed access control sce-
narios, ranging from computational grids to military applications [57].1 Description
logics have been used to provide an alternative logical account of the standard policy

1 Demonstration videos are available on http://www.ihmc.us/coopsmovs/

http://research.microsoft.com/en-us/projects/securitypolicy/
http://research.microsoft.com/en-us/projects/securitypolicy/
http://www.ihmc.us/coopsmovs/

24 P.A. Bonatti

language XACML [61]. Moreover, in [44] and [92], respectively, DLs have been ap-
plied to encode role-based access control (RBAC) and a variant thereof.

There are two main approaches to policy encoding in the literature. In the first ap-
proach (which is adopted by KAoS and [61]), policy evaluation contexts are reified, that
is, represented as individuals. A context c typically has several attributes (called roles
in DL jargon), some of which encode the current access request, e.g., by means of roles
subject, object, operation. A policy P is encoded by a TBox defining concepts such
as Permit-P and Deny-P, for example, that define for each possible policy output the
class of contexts that yield that output according to P. With this approach, authorization
checking can be carried out by encoding the context c with an ABox (a set of ground
assertions) and then checking whether the resulting knowledge base (TBox+ABox) en-
tails the assertion Permit-P(c).

The second approach (adopted by [92]) associates each privilege to a role (i.e. a
binary predicate, in the sense of DLs) and encodes authorization triples by means of
role assertions. For example, given an ABox that describes the properties of a subject
s and a resource r, s is authorized to perform op on r iff the resulting knowledge base
entails the assertion op(s� r).

3 Expressiveness Analysis

In order to analyze the expressiveness of policy languages formally, it is convenient to
adopt an abstract, language-independent notion of policy. Most policies are mappings
from contexts (comprising sets of users and roles along with their properties, resources
and their metadata, current time and location, etc.) to decisions (such as access control
decisions). In their simplest form, contexts are finite structures (say, encoded within
relational databases and XML documents) and decisions may range over permit, deny,
and error, like in XACML, or be encoded as a set of valid authorizations (i.e., an access
control matrix), which yields the following mapping type:

Policy : Contexts � Subjects � Objects � Privileges �

More general classes of policies will be discussed later. Under the above “simple” ab-
stract perspective, policies are nothing but mappings over finite relational structures,
that is, queries, as understood in database theory.

Database theory provides us with an excellent notion of expressiveness for query
languages: descriptive complexity [54,55]. The same idea can be profitably applied to
policy languages: the expressiveness of a policy language is the class of policy map-
pings that can be expressed with the language. Such classes frequently correspond to
complexity classes.

In this setting, policies (queries) are expressed as logical theories, and contexts (in-
stances) are sets of ground facts. Policy outputs (query answers) are encoded as autho-
rization formulas like do(Subject� Object� Operation), Permit-P(c), or op(s� r) (see the
previous section). Given a policy P, and a context C, the policy returns the decision
encoded by a formula A iff P � C ��x A, where ��x is a suitable consequence relation
(stable model reasoning in the case of stratified Datalog, or classical inference in the
case of DLs).

Datalog for Security, Privacy and Trust 25

3.1 Expressiveness of Datalog Policy Languages

It is well-known that Datalog can express exactly the queries in P, provided that input
instances are equipped with a total ordering of their domain, consisting of two unary
predicates first and last, satisfied by the first and last elements, respectively, and a binary
predicate succ associating each domain element with its successor [72,33]. Datalog with
negation can autonomously produce such total ordering using non-stratified negation
[33]. Stratified Datalog is not able to encode such ordering, as witnessed by the fact
that it cannot encode some queries in P [60]. This is relevant to our paper because the
main approaches to Datalog policies adopt stratified negation [25] (see also Sec. 2.1).
In this setting, it is possible to capture all the policies in P by analogy with the case of
(monotonic) Datalog queries, that is, assuming that contexts are equipped with a binary
relation succ that totally orders the individuals occurring in the context (represented as
a set of ground facts). The unary predicates first and last can be defined with stratified
negation by extending any given policy as follows:

– Introduce a fresh predicate dom, and for each n-ary predicate p occurring in the
context and all nonnegative indexes i � n, add a rule

dom(Xi) � p(X1� � � � � Xi� � � � � Xn) �

– Add the rules

first(X) � dom(X)��succ(Y� X) �

last(X) � dom(X)��succ(X� Y) �

Now the results reported in [33] can be easily adapted to prove that:

Proposition 1. Stratified Datalog with negation can express exactly all the polynomial-
time computable policies over the class of contexts that embody a total order succ over
their domain.

Note that the assumption on succ is really mild—essentially equivalent to having a
built-in term comparison predicate like @< of standard Prolog.

3.2 Expressiveness of Description Logics

To the best of our knowledge, the descriptive complexity of description logics has not
been studied so far. However, it is not difficult to see that the expressiveness of DLs has
“holes”; in particular there exist simple policies in P that cannot be expressed by means
of DLs. The reason of such weakness lies in the tree model property of DLs without
nominals—such as 	
�, 	
��, and ���—and in its counterpart for nominals,
the quasi-forest model property [79]. The tree model property states that if a theory
� has a model , then � has also a tree-shaped model � ; in other words, � is not
able to distinguish cyclic contexts from acyclic contexts. Since cycle detection can be
performed in polynomial time, it turns out that there are polynomial-time computable
policies that cannot be expressed with	
�,	
��, ���, or any other description
logic enjoying the tree model property. To make this general argument more concrete,
let us consider a few policies that typically arise in modern application scenarios and
involve the recognition of cyclic patterns in the given context.

26 P.A. Bonatti

Fig. 1. The cyclic pattern of the medical record access policy

Accessing medical records. In normal conditions, access to a medical record r referring
to a patient p should be allowed only to the doctors d that are explicitly in charge of cur-
ing p. Suppose that the context’s schema consists of two binary relations: refers to(r� p)
and cures(d� p). A first obstacle to be overcome is that DLs can only express unary or bi-
nary relations, while the above policy is essentally based on a ternary relation between
records, patients, and doctors. The classical solution to this problem is reification: n-
tuples can be represented as individuals with n attributes (cf. the logic �
� [27] for a
general approach). In our example, one could represent the context as an individual c
with two attributes: subject (the doctor requesting the access) and object (the medical
record requested). The policy should check whether the following facts hold:

subject(c� doc)� object(c� rec)� refers to(rec� p)� cures(doc� p) �

This pattern is cyclic (cf. Fig. 1), therefore no policy P written in 	
� or any other
DL with the tree model property can uniformly check it: if the above context is a model
of P then P has also tree-shaped models where the composed roles subject Æ cures and
object Æ refer to do not commute. Note that this medical record example is a classical
motivation for role templates, an extension of the RBAC model that attracted quite some
interest in the computer security community [47,64,32,8]. The above discussion shows
the limitations of DLs in modelling role templates.

Picture sharing. Consider a social network where users can share their pictures with
their friends and forbid access from non-friends. Technically, this example is similar
to the medical record example: the policy should allow access only in the presence of
cyclic patterns like:

subject(c� s)� object(c� p)� owner(p� o)� friend(s� o) �

where c represent the context, s is the user trying to get the picture, p is the picture, and
o is the picture’s owner. This pattern is cyclic, as in the previous example, and hence it
cannot be encoded with standard DLs.

Payment with identification. This is a popular example in the world of trust negoti-
ation. Access is granted if the subject pays for the resource by exhibiting a credit card
and an ID with the same name on top [22]. This example is analogous to the previous
two examples, as it involves the recognition of cyclic patterns like:

credit card(c� cc)� ID(c� id)� owner(cc� s)� owner(id� s) �

where c represent the context, s is the user, cc and id are the two digital credentials.

Datalog for Security, Privacy and Trust 27

The same limitations apply to DLs with nominals (i.e., singleton concepts, denoted
by �a�, that re-introduce in DLs the expressiveness of individual constants). Such DLs
can express some cyclic patterns by using nominals themselves. For example, given a
specific individual s, one can force different role chains to converge to s by defining
contexts like

� credit card�� owner��s� � � ID�� owner��s� �

However, this formulation depends on the specific constant s and cannot be generalized
to arbitrary individuals. The quasi-forest model property states that every consistent the-
ory has a model such that if all the binary relations involving a nominal are removed,
then the model becomes a forest. In other words, nominals allow to express cyclic pat-
terns only if such patterns involve explicitly the nominals themselves.

The KAoS team run into a similar expressiveness problem, trying to model pol-
icy rules within DLs [68] and tackled it by extending 	
� with role-value maps [7,
Chap. 5], that can force roles chains to converge to a same individual, as required by the
above examples. An example of the syntax of the role-value maps like those adopted by
KAoS is:

credit card�owner � ID�owner �

Unfortunately, extending 	
� or even much weaker languages like �
� with role-
value maps over role chains makes reasoning undecidable [7, Chap. 5]. This problem
has not been discussed in [68] nor any other KAoS paper that we know of.

An interesting direction for extending the expressiveness of DL-based policy lan-
guages consists in extending the theory on concrete feature agreements. In many cases,
the attributes of credentials are functional and their value belongs to a primitive data
type such as strings or numbers. Such attributes are called concrete features. It has been
proved that in some cases concrete features may be forced to commute with a construct
called feature agreement without affecting decidability, see for example [65]. Currently,
the limitation of these results is that they do not apply to the combinations of concrete
features and normal roles that naturally arise in the above examples. For example, while
roles like owner in the picture sharing scenario are naturally functional, other roles
like friend are not. Mixed chains of normal roles and concrete features can be compared
only under some restrictions: one of the two chains must be of the form R� f where R is
a normal role and f a concrete feature, while the second chain must consist of a single
concrete feature f � [65]. This is not sufficient to model our examples, but we conjecture
that these restrictions can be relaxed to some extent without affecting decidability. This
is an interesting motivation for further foundational work on DLs.

4 Reasoning: Foundations and Technology

There are several reasoning tasks relevant to policies. The obvious one is entailment,
which is at the core of authorization checking: given a context C (represented as a
set of ground facts) a policy P and an authorization A, decide whether A is granted
in C by checking whether P � C ��n A, where ��n is a suitable consequence relation.
As we pointed out in Sec. 2.1, ��n in general cannot be simply the standard entailment

28 P.A. Bonatti

relation of classical logic; it should rather be a nonmonotonic relation capable of en-
coding default policies and authorization inheritance.

The second policy reasoning task is abduction: given a server policy P, a context C,
and a portfolio of digital credentials D (modelled as a set of ground atoms), find a set
of credentials that grant a desired authorization A. In symbols, find a set D� � D such
that P �C � D� ��n A. This is the reasoning task underlying credential selection at each
step of a trust negotiation process; the set D� is a candidate for disclosure.2 Abduction
has been applied to credential selection in several works, including [24,13,11].

Another form of policy processing relevant to trust negotiation is filtering. In PSPL
[24] and Protune [13], peers disclose their policies and part of their local context to let
the other peers select a set of credentials to be disclosed. Policies and contexts must
be filtered before disclosure for efficiency and confidentiality reasons. This process is
essentially based on partial evaluation techniques, that remove irrelevant details and
hide sensitive facts and formulas.

The fourth major reasoning task is policy comparison, namely, given two policies P1

and P2 check whether for all contexts C and all authorizations A, P1 � C ��n A implies
P2 � C ��n A. If this condition holds, then we say that P1 is contained in P2. This task
needs to be solved to check whether a server policy P1 complies with a user’s privacy
preferences, encoded as a policy P2. For example, a similar task is one of the main
intended uses of P3P policies [87].

Further reasoning tasks are related to explanations and automated documentation,
that is, automated explanation facilities for explaining a policy or a policy-based deci-
sion in nontechnical terms, accessible to end users. There is no single, widely adopted
explanation technique; the existing approaches manipulate policies by representing
proofs, premises, and conclusions in various ways [84,9,63,67,30,52].

4.1 Maturity

Entailment techniques are highly mature in both areas. Logic programming has very
efficient and stable engines based on tabling, such as XSB [78] (widely used in logic-
based security). The stable model semantics has very well-engineered and scalable im-
plementations such as SMODELS [70] and DLV [39]. The Answer Set Programming
community has continuosly promoted the improvement of these and other engines over
the years, by means of systematic benchmarking initiatives. Classical DL reasoning
is equally well-developed; it exploits advanced tableaux optimization techniques [7,
Cap. 9] and specialized implementations for restricted languages of practical interest
such as �
 [5,6]. However, nonmonotonic reasoning is still far from being supported
in DLs. In general, the complexity of nonmonotonic DL reasoning is very high [35,20]
and so far the attempts at reducing complexity through language restrictions have not

2 In [59], abduction is erroneously considered an unsound procedure because the philosophical
notion of abduction is confused with the specific technical notion adopted in logic program-
ming and AI. Obviously, if ��n is classical entailment then, by the implication theorem, abduc-
tion is equivalent to proving that

�
D� � A is a classical consequence of P � C. When ��n is

nonmonotonic, the restriction that policies must be monotonic w.r.t. credentials (cf. Sec. 2.1)
allows to prove an implication theorem for the stable semantics, and abduction is equivalent to
proving that

�
D� � A holds in the unique stable model of P �C.

Datalog for Security, Privacy and Trust 29

pushed complexity below the second level of the polynomial hierarchy [19]. The major
DL reasoning engines do not support nonmonotonic reasoning. Said so, we have to re-
mark that there is an intense ongoing research activity on nonmonotonic DL reasoning
that may soon change the picture [19,46,49,29].

The situation is similar for abduction. Most works on abduction have been carried out
in the logic programming area, starting with the seminal work by Eshghi [43]. Many
systems have been deployed, such as CIFF [66], SCIFF [2], ProLogICA [76], some
ASP-based implementation [37], etc. In the DL area, the study of abduction has a much
shorter history. It has been introduced in [71], and one year later a tableaux algorithm
has been provided [31]. More general forms of abduction have been introduced in [42].
Currently, the main DL engines give no direct support to abduction. In TN, credential
selection should minimize the sensitivity of disclosed credentials. In general, this is
not possible, unless policies are entirely public. The report [14] studies the complexity
of the weighted abduction problem corresponding to minimizing the sensitivity of dis-
closed credentials. This problem is FNP//log-complete for any fixed Datalog policy (the
equivalent of data complexity), that is, a solution can be nondeterministically computed
in polynomial time given an oracle for an optimization problem in NP. The complexity
of the same problem for DL policies is currently unknown.

Trust negotiation is usually not tackled with DLs, probably in relation to the afore-
mentioned lack of support to abduction (and hence to credential selection). Accordingly,
policy filtering is not addressed, either. Datalog approaches could benefit of very well-
understood partial evaluation techniques that have been developed many years ago, for
program optimization. An articulated discussion of such techniques can be found, for
example, in the excellent book by Sterling and Shapiro [83].

Policy comparison is essentially a query containment problem (P1 and P2 correspond
to queries, C to database instances, and A to answers) [21]. In DLs, policy comparison
can be a very natural task; within the encoding approach based on Permit-P and Deny-P,
policy comparison boils down to checking subsumptions like Permit-P1 � Permit-P2 .
It is not clear how to compare policies in the second encoding approach, based on role
assertions (cf. Sec. 2.2). Policy comparison is definitely difficult for Datalog policies,
because of recursion. It is well-known that Datalog query containment is in general
undecidable [81]. Several decidable cases have been identified by restricting recursion
[28,15] but complexity may be high. Recently, a specialized approach focussed on the
most common forms of recursion used in security and trust negotiation (e.g., certificate
chains and authorization inheritance) has been published in [21]. The experimental re-
sults, based on a prototype implementation, are encouraging. In general, this restricted
version of the problem is NP-complete; if rule length is bounded by a constant, then
policy comparison is quadratic in the cardinality of the two policies.

Explanation facilities have first been designed for rule-based expert systems, that are
closer to Datalog than DLs. Research on explanation facilities has eventually produced
recommendations for building so-called second generation explanation facilities [89],
that emphasize usability in several ways, for example by means of navigational aids,
heuristics for removing irrelevant details, and heuristics for replacing internal identi-
fiers (that are meaningless to the user) with key attributes. Most approaches to Datalog
and DL policy explanation and documentation, on the contrary, are limited to printing

30 P.A. Bonatti

out comments and dumping proof trees on the user [82,59]. To the best of our knowl-
edge, the only exception is ProtuneX [23,13], the second-generation explanation facility
of Protune. It is innovative also with respect to previous second-generation facilities, as
the peculiarities of policy frameworks are exploited to give an automated solution to
problems (such as removing details and identifying key attributes) that in other settings
are solved manually by knowledge engineers. Another innovative feature is the hy-
pertext structure of the explanations that permits to navigate smoothly across different
proof attemtps, including both successful and failed proofs. The ability of explaining
failures is one of the characteristic features of ProtuneX.

5 Hybrid Approaches

Recently, a significant amount of effort has been devoted to integrating rule-based and
DL-based approaches to the Semantic Web. The interested reader is referred to the
survey in [38]. From a policy language point of view, such hybrid approaches are po-
tentially interesting because they support the DL-based knowledge representation lan-
guages at the core of the semantic web, and at the same time they overcome the lack
of expressiveness of DLs illustrated in the previous sections. However, integrating the
two families of logics is a challenging problem, as witnessed by the large number of ap-
proaches to hybrid frameworks. A major problem is that the naive approach—consisting
in extending DLs with Datalog rules under classical first-order semantics—makes rea-
soning undecidable. Further difficulties arise from the need of integrating a classical
open-world formalisms such as DLs with logic programming languages that are non-
monotonic and adopt a closed-world semantics. Solutions range from “loosely coupled”
formalisms such as [40,88] (where the rule-based and DL parts of the knowledge base
are treated like separate components that interact by querying each other) to fully inte-
grated approaches (where the vocabulary and semantics are homogeneous) [69,34,50].

So far, the application and the appropriateness of the above integrated approaches
to the design of policy languages has not been studied. Expressiveness is not the only
issue, as hybrid formalisms usually have high computational complexity. Since access
control comes into play for each and every transaction, complexity issues may eventu-
ally prevent certain languages to be effectively adopted.

Some hybrid approaches, such as the OWL2RL profile, simply consist in identify-
ing a common fragment of Horn rules and DLs. Of course such formalisms inherit the
expressiveness limitations of DLs by definition and hence do not address the expres-
siveness needs of policy languages.

Given the analogies between policies and queries, another potentially relevant area
is DL querying (see for example the recent works [74,48,41,4]). Not surprisingly, re-
cursive Datalog query evaluation is undecidable when combined with DLs, therefore
the works in this area usually focus on conjunctive queries that are not recursive. This
restriction, however, prevents several simple queries in P from being computed, e.g.,
transitive closures. From a policy perspective, this means that credential chains and au-
thorization inheritance along hierarchies of subjects and objects cannot be expressed
(just to name a few).

Datalog for Security, Privacy and Trust 31

6 Conclusions

As of today, the policy frameworks based on Datalog are significantly more mature
than those based on DLs, both from a foundational perspective and from a technologi-
cal perspective. Expressiveness results show that Datalog is well-suited to expressing all
the policy mappings of practical interest. On the contrary, DL-based policies currently
suffer from serious expressiveness limitations, and lack the flexibility for tackling sev-
eral important access control scenarios that naturally arise in modern applications. This
problem can only be overcome with more foundational work, e.g. aimed at generalizing
the decidability results for concrete feature agreement.

As far as reasoning is concerned, on the Datalog side the need is felt for more general,
efficient techniques for policy comparison. DL-based policies, instead, need more work
on crucial reasoning tasks like abduction, nonmonotonic reasoning, and user-friendly
explanations. In particular, stable and efficient implementations need to be deployed.

Hybrid solutions are appealing because they integrate the expressiveness of Datalog
languages with widely adopted formats for knowledge representation on the semantic
web. However, hybrid approaches inherit several drawbacks from pure approaches. For
example, policy containment has not been studied in this area, and in general is unde-
cidable, because hybrid formalisms generalize recursive Datalog. Furthermore, techno-
logical maturity is probably not yet sufficient. Since access control places an overhead
on every transaction, a lightweight implementation of hybrid frameworks—and perhaps
a clever use of knowledge compilation—are of paramount importance in this context.

A major unsolved problem is usability. Recent studies [77] show that users write poor
policies, even if the policy language is very simple and intuitive. Explanations and doc-
umentation only partially address this issue. Logic-based policy languages potentially
enable the development of new intelligent policy authoring tools aimed at improving
the quality of user policies and supporting their management; this is an appealing area
for further work.

Last but not least, it should be mentioned that modern application scenarios increas-
ingly need more and more general notions of policies, that hardly fit the query-like view
adopted by standard policy frameworks (and by this paper as well). A first novel issue
arises from the incomplete and generally unreliable nature of semantic web knowledge:
a correct and complete representation of the current state of the world, that is, the con-
text, is generally not available (not even its restriction to the aspects relevant to policy
decisions). If we change the domain of policy mappings by replacing complete con-
texts with an incomplete representation thereof, then the classical theoretical expressive-
ness results are affected. For example, if contexts are represented by means of positive
clauses, then nonmonotonic query languages—that have the same expressiveness over
complete contexts—exhibit different capabilities in the generalized framework [18]. In
such a framework, it is generally difficult to capture all the mappings in P.

Another aspect that may conflict with the query-like view arises from usage control
policies, that may specify actions, obligations, and time constraints over them. In the
simplest cases, actions must be executed (and obligations fulfilled) immediately, and
the query-like approach can be adapted simply by modifying policy range, e.g.:

Policy : Contexts � Subjects � Objects � Privileges � Obligations �

32 P.A. Bonatti

However, some policy languages can express very complex dynamic behaviors by
means of dynamic logics [51]. In this case it is not clear how to generalize the abstract,
language independent notion of policy mapping.

References

1. Agrawal, D., Al-Shaer, E., Kagal, L., Lobo, J. (eds.): 9th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2008), June 2-4. IEEE Computer
Society, Palisades (2008)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: The SCIFF framework. ACM Trans. Comput.
Log. 9(4) (2008)

3. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science. Formal
Models and Semantics (B), vol. B, pp. 493–574 (1990)

4. Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI), vol. 5195.
Springer, Heidelberg (2008)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 364–369. Professional
Book Center (2005)

6. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL - a polynomial-time reasoner for life science
ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
287–291. Springer, Heidelberg (2006)

7. Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic Hand-
book: Theory, implementation and applications. Cambridge University Press, Cambridge
(2003)

8. Bacon, J., Moody, K., Yao, W.: A model of OASIS role-based access control and its support
for active security. ACM Trans. Inf. Syst. Secur. 5(4), 492–540 (2002)

9. Barzilay, R., McCullough, D., Rambow, O., DeChristofaro, J., Korelsky, T., Lavoie, B.: A
new approach to expert system explanations. In: 9thInternational Workshop on Natural Lan-
guage Generation, pp. 78–87 (1998)

10. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of a decentralized
authorization language. Journal of Computer Security 18(4), 619–665 (2010)

11. Becker, M.Y., Nanz, S.: The role of abduction in declarative authorization policies. In: Hu-
dak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 84–99. Springer, Heidelberg
(2008)

12. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tunable expres-
siveness. In: POLICY 2004, pp. 159–168. IEEE Computer Society, Los Alamitos (2004)

13. Bonatti, P., Coi, J.D., Olmedilla, D., Sauro, L.: A rule-based trust negotiation system. IEEE
Transactions on Knowledge and Data Engineering 99(PrePrints) (2010)

14. Bonatti, P., Eiter, T., Faella, M.: Automated negotiation mechanisms. Technical Re-
port I2-D6, REWERSE (April 2006), http://rewerse.net/deliverables/m24/
i2-d6.pdf

15. Bonatti, P.A.: On the decidability of containment of recursive datalog queries - preliminary
report. In: Deutsch, A. (ed.) PODS, pp. 297–306. ACM, New York (2004)

16. Bonatti, P.A., Coi, J.L.D., Olmedilla, D., Sauro, L.: Rule-based policy representations and
reasoning. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web. LNCS,
vol. 5500, pp. 201–232. Springer, Heidelberg (2009)

17. Bonatti, P.A., di Vimercati, S.D.C., Samarati, P.: An algebra for composing access control
policies. ACM Trans. Inf. Syst. Secur. 5(1), 1–35 (2002)

http://rewerse.net/deliverables/m24/i2-d6.pdf
http://rewerse.net/deliverables/m24/i2-d6.pdf

Datalog for Security, Privacy and Trust 33

18. Bonatti, P.A., Eiter, T.: Querying disjunctive databases through nonmonotonic logics. Theor.
Comput. Sci. 160(1&2), 321–363 (1996)

19. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs: Prelimi-
nary notes. In: Boutilier (ed.) [26], pp. 696–701

20. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of the
Tenth International Conference on Principles of Knowledge Representation and Reasoning,
KR 2006, pp. 400–410. AAAI Press, Menlo Park (2006)

21. Bonatti, P.A., Mogavero, F.: Comparing rule-based policies. In: Agrawal, et al. (eds.) [1], pp.
11–18

22. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation with
metapolicies. In: 6th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY 2005), pp. 14–23. IEEE Computer Society, Los Alamitos (2005)

23. Bonatti, P.A., Olmedilla, D., Peer, J.: Advanced policy explanations on the web. In: 17th
European Conference on Artificial Intelligence (ECAI 2006), pp. 200–204. IOS Press, Riva
del Garda (2006)

24. Bonatti, P.A., Samarati, P.: A uniform framework for regulating service access and informa-
tion release on the web. Journal of Computer Security 10(3), 241–272 (2002)

25. Bonatti, P.A., Samarati, P.: Logics for authorization and security. In: Chomicki, J., van der
Meyden, R., Saake, G. (eds.) Logics for Emerging Applications of Databases, pp. 277–323.
Springer, Heidelberg (2003)

26. Boutilier, C. (ed.): Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence, IJCAI 2009, Pasadena, California, USA, July 11-17 (2009)

27. Calvanese, D., Giacomo, G.D., Lenzerini, M.: On the decidability of query containment un-
der constraints. In: PODS, pp. 149–158. ACM Press, New York (1998)

28. Calvanese, D., Giacomo, G.D., Vardi, M.Y.: Decidable containment of recursive queries.
Theor. Comput. Sci. 336(1), 33–56 (2005)

29. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer, Heidelberg (2010)

30. Chalupsky, H., Russ, T.A.: Whynot: debugging failed queries in large knowledge bases. In:
14th National Conference on Artificial Intelligence, pp. 870–877 (2002)

31. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A uniform tableaux-
based method for concept abduction and contraction in description logics. In: de Mántaras,
R.L., Saitta, L. (eds.) ECAI, pp. 975–976. IOS Press, Amsterdam (2004)

32. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.: Securing
context-aware applications using environment roles. In: SACMAT 2001: Proceedings of the
Sixth ACM Symposium on Access Control Models and Technologies, pp. 10–20. ACM, New
York (2001)

33. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Comput. Surv. 33(3), 374–425 (2001)

34. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: Embedding non-ground logic programs into
autoepistemic logic for knowledge-base combination. In: Veloso (ed.) [86], pp. 304–309

35. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

36. Duma, C., Herzog, A., Shahmehri, N.: Privacy in the semantic web: What policy languages
have to offer. In: POLICY 2007, pp. 109–118. IEEE Computer Society, Los Alamitos (2007)

37. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the DLV system. AI
Commun. 12(1-2), 99–111 (1999)

38. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the semantic
web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert,
S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008)

34 P.A. Bonatti

39. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 364–375. Springer, Heidelberg (1997)

40. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming
with description logics for the semantic web. In: Dubois, D., Welty, C.A., Williams, M.-A.
(eds.) KR, pp. 141–151. AAAI Press, Menlo Park (2004)

41. Eiter, T., Lutz, C., Ortiz, M., Simkus, M.: Query answering in description logics with transi-
tive roles. In: Boutilier (ed.) [26], pp. 759–764

42. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In:
Grau, B.C., Hitzler, P., Shankey, C., Wallace, E. (eds.) OWLED. CEUR Workshop Proceed-
ings, vol. 216. CEUR-WS.org (2006)

43. Eshghi, K.: Abductive planning with event calculus. In: ICLP/SLP, pp. 562–579 (1988)
44. Finin, T.W., Joshi, A., Kagal, L., Niu, J., Sandhu, R.S., Winsborough, W.H., Thuraisingham,

B.M.: ROWLBAC: representing role based access control in OWL. In: Ray, I., Li, N. (eds.)
SACMAT, pp. 73–82. ACM, New York (2008)

45. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K.E., Winslett, M.: No registration
needed: How to use declarative policies and negotiation to access sensitive resources on the
semantic web. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS,
vol. 3053, pp. 342–356. Springer, Heidelberg (2004)

46. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Reasoning about typicality in preferen-
tial description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)

47. Giuri, L., Iglio, P.: Role templates for content-based access control. In: RBAC 1997: Pro-
ceedings of the Second ACM Workshop on Role-based Access Control, pp. 153–159. ACM,
New York (1997)

48. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the descrip-
tion logic shiq. J. Artif. Intell. Res. (JAIR) 31, 157–204 (2008)

49. Grimm, S., Hitzler, P.: A preferential tableaux calculus for circumscriptive ALCO. In:
Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 40–54. Springer, Heidelberg
(2009)

50. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming for the se-
mantic web. J. Applied Logic 5(1), 144–169 (2007)

51. Hilty, M., Pretschner, A., Basin, D.A., Schaefer, C., Walter, T.: A policy language for dis-
tributed usage control. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp.
531–546. Springer, Heidelberg (2007)

52. Huang, X.: Reconstructing proofs at the assertion level. In: Bundy, A. (ed.) CADE 1994.
LNCS, vol. 814, pp. 738–752. Springer, Heidelberg (1994)

53. Iannella, R., Guth, S. (eds.): Proceedings of the First International Workshop on the Open
Digital Rights Language (ODRL), Vienna, Austria, April 22-23 (2004)

54. Immerman, N.: Relational queries computable in polynomial time. Information and Con-
trol 68(1-3), 86–104 (1986)

55. Immerman, N.: Descriptive and computational complexity. In: Csirik, J., Demetrovics, J.,
Gécseg, F. (eds.) FCT 1989. LNCS, vol. 380, pp. 244–245. Springer, Heidelberg (1989)

56. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for multiple
access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

57. Johnson, M., Intlekofer, K., Jung, H., Bradshaw, J.M., Allen, J., Suri, N., Carvalho, M.:
Coordinated operations in mixed teams of humans and robots. In: First IEEE Conference on
Distributed Human-Machine Systems, DHMS 2008 (2008) (in press)

58. Kagal, L., Finin, T.W., Joshi, A.: A policy language for a pervasive computing environ-
ment. In: 4th IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY), p. 63. IEEE Computer Society, Lake Como (2003)

Datalog for Security, Privacy and Trust 35

59. Kagal, L., Hanson, C., Weitzner, D.J.: Using dependency tracking to provide explanations
for policy management. In: Agrawal, et al. (eds.) [1], pp. 54–61

60. Kolaitis, P.G.: The expressive power of stratified programs. Inf. Comput. 90(1), 50–66 (1991)
61. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:

Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 677–
686. ACM, New York (2007)

62. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: IEEE Symposium on Security and Privacy, pp. 114–130 (2002)

63. Lowe, H., Cumming, A., Smyth, M.: Lessons from experience: Making theorem provers
more co-operative. In: 2nd Workshop on User Interfaces for Theorem Provers (July 1996)

64. Lupu, E., Sloman, M.: Reconciling role based management and role based access control.
In: ACM Workshop on Role-Based Access Control, pp. 135–141 (1997)

65. Lutz, C.: Adding numbers to the ���� description logic—First results. In: Proceedings of
the Eighth International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2002), pp. 191–202. Morgan Kaufmann, San Francisco (2002)

66. Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF proof procedure for
abductive logic programming with constraints: Theory, implementation and experiments.
TPLP 9(6), 691–750 (2009)

67. McGuinness, D.L., da Silva, P.P.: Explaining answers from the semantic web: The Inference
Web approach. Journal of Web Semantics 1(4), 397–413 (2004)

68. Moreau, L., Bradshaw, J.M., Breedy, M.R., Bunch, L., Hayes, P.J., Johnson, M., Kulkarni,
S., Lott, J., Suri, N., Uszok, A.: Behavioural specification of grid services with the KAoS
policy language. In: CCGRID, pp. 816–823. IEEE Computer Society, Los Alamitos (2005)

69. Motik, B., Rosati, R.: A faithful integration of description logics with logic programming.
In: Veloso (ed.) [86], pp. 477–482

70. Niemelä, I., Simons, P.: Smodels — an implementation of the stable model and well-founded
semantics for normal lp. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 421–430. Springer, Heidelberg (1997)

71. Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Abductive matchmaking using de-
scription logics. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 337–342. Morgan Kaufmann,
San Francisco (2003)

72. Papadimitriou, C.H.: A note the expressive power of Prolog. Bulletin of the EATCS 26, 21–
22 (1985)

73. Park, J., Sandhu, R.S.: The UCONABC usage control model. ACM Trans. Inf. Syst. Se-
cur. 7(1), 128–174 (2004)

74. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under
description logic constraints. J. Applied Logic 8(2), 186–209 (2010)

75. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Commun. ACM 49(9), 39–44
(2006)

76. Ray, O., Kakas, A.: ProLogICA: a practical system for abductive logic programming. In:
Proceedings of the 11th International Workshop on Non-monotonic Reasoning, pp. 304–312
(2006)

77. Sadeh, N.M., Hong, J.I., Cranor, L.F., Fette, I., Kelley, P.G., Prabaker, M.K., Rao, J.: Under-
standing and capturing people’s privacy policies in a mobile social networking application.
Personal and Ubiquitous Computing 13(6), 401–412 (2009)

78. Sagonas, K., Swift, T., Warren, D.: XSB as an efficient deductive database engine. In: Pro-
ceedings of the 1994 ACM SIGMOD International Conference on Management of Data, pp.
442–453. ACM Press, Minneapolis (1994)

79. Sattler, U., Vardi, M.Y.: The hybrid �-calculus. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.)
IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 76–91. Springer, Heidelberg (2001)

36 P.A. Bonatti

80. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H., Yu, L.:
Requirements for policy languages for trust negotiation. In: 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY), pp. 68–79. IEEE Computer Soci-
ety, Monterey (2002)

81. Shmueli, O.: Equivalence of DATALOG queries is undecidable. J. Log. Program 15(3), 231–
241 (1993)

82. Shvaiko, P., Giunchiglia, F., da Silva, P.P., McGuinness, D.L.: Web explanations for seman-
tic heterogeneity discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 303–317. Springer, Heidelberg (2005)

83. Sterling, L., Shapiro, E.Y.: The Art of Prolog - Advanced Programming Techniques, 2nd edn.
MIT Press, Cambridge (1994)

84. Tanner, M.C., Keuneke, A.M.: Explanations in knowledge systems: The roles of the task
structure and domain functional models. IEEE Expert: Intelligent Systems and Their Appli-
cations 6(3), 50–57 (1991)

85. Uszok, A., Bradshaw, J.M., Jeffers, R., Suri, N., Hayes, P.J., Breedy, M.R., Bunch, L., John-
son, M., Kulkarni, S., Lott, J.: KAoS policy and domain services: Towards a description-logic
approach to policy representation, deconfliction, and enforcement. In: 4th IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY), pp. 93–96. IEEE
Computer Society, Lake Como (2003)

86. Veloso, M.M. (ed.): Proceedings of the 20th International Joint Conference on Artificial In-
telligence, IJCAI 2007, Hyderabad, India, January 6-12 (2007)

87. W3C. Platform for Privacy Preferences (P3P) Specification, http://www.w3.org/TR/
WD-P3P/Overview.html

88. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining description logic and defea-
sible logic for the semantic web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS,
vol. 3323, pp. 170–181. Springer, Heidelberg (2004)

89. Wick, M.R.: Second generation expert system explanation. In: David, J.-M., Krivine, J.-P.,
Simmons, R. (eds.) Second Generation Expert Systems, pp. 614–640. Springer, Heidelberg
(1993)

90. Winsborough, W., Seamons, K., Jones, V.: Automated trust negotiation. In: Proceedings of
DARPA Information Survivability Conference and Exposition, DISCEX 2000, pp. 88–102.
IEEE Computer Society, Los Alamitos (2000)

91. Woo, T.Y.C., Lam, S.S.: Authorizations in distributed systems: A new approach. Journal of
Computer Security 2(2-3), 107–136 (1993)

92. Zhang, R., Artale, A., Giunchiglia, F., Crispo, B.: Using description logics in relation based
access control. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Description Logics.
CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009)

http://www.w3.org/TR/WD-P3P/Overview.html
http://www.w3.org/TR/WD-P3P/Overview.html

Answer Set Modules for Logical Agents

Stefania Costantini

Università degli Studi di L’Aquila,
Dipartimento di Informatica,

Via Vetoio, Loc. Coppito, I-67010 L’Aquila, Italy
Stefania.Costantini@univaq.it

Abstract. Various approaches exist to the application of Answer Set Program-
ming (ASP) in the agent realm. Nonetheless, a controversial point is how to
combine answer set modules with the other modules an agent is composed of,
considering that an agent can be seen as a set of “capabilities” that in suitable
combination produce the overall agent behavior as an emergent behavior. In this
paper, we outline a possible fruitful integration of ASP into many agent architec-
tures, by introducing two kinds of modules: one that allows for complex reaction,
the other one that allows for reasoning about necessity and possibility.

1 Introduction

Logic programming under the answer set semantics (Answer Set Programming, for
short ASP) is nowadays a well-established programming paradigm, with applications in
many areas, including problem solving, configuration, information integration, security
analysis, agent systems, semantic web, and planning (see among many [1,2,3,4,5] and
the references therein).

The application of ASP in agents has been advocated since long, with ASP mainly
taking the form of Action Description Languages. These kind of ASP-based languages
were first introduced in [6] and [7] and have been since then extended and refined in
many subsequent papers by several authors. Action Description Languages are formal
models used to describe dynamic domains, by focusing on the representation of effects
of actions. In particular, an action specification represents the direct effects of each
action on the state of the world, while the semantics of the language takes care of all
the other aspects concerning the evolution of the world (e.g., the ramification problem).

The first approaches have been extended in many ways, recently also in order to
cope with, interpret, and recover from, exogenous events and unexpected observations,
on the line of [8]. In this direction we mention [7], [9], and the recent work presented
in [10]. In this work, an architecture (called AAA) is described where both the descrip-
tion of the domain’s behavior and the reasoning components are written in Answer Set
Programming, selected because of its ability to represent various forms of knowledge
including defaults, causal relations, statements referring to incompleteness of knowl-
edge, etc. An AAA agent executes a main cycle according to the Observe-Think-Act
model proposed in the seminal paper [11]. Unexpected observations are coped with by
hypothesizing the undetected occurrence of exogenous actions. In [12], this notion of
an agent is extended to enable communication between agents through the introduction
of special named sets of fluents known as “requests”.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 37–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

38 S. Costantini

In other directions, we mention a different line of work, focusing upon modeling
agent decisions in an extended ASP by means of game theory [13]. In [14,15] and
other papers by the same group, ASP is exploited to model dynamic updates of an
agent’s knowledge base. We are also aware of ongoing work about modeling properties
of multi-agent systems in ASP, e.g., [16].

Despite this corpus of work is technically and conceptually very well-developed, the
view of an agent based upon having an ASP program as its “core” does not appear to be
fully convincing. One reason is that the basic feature of ASP, which is that a program
may have several answer sets that correspond to alternative coherent views of the world,
is in our opinion not fully suitable for the agent main cycle, while it can be very useful
for many of the agent reasoning activities. Another reason is that the architecture out-
lined above appears to be too rigid with respect to the other approaches to defining agent
architectures in computational logic, among which one has to mention at least MetateM,
3APL, AgentSpeak, Impact, KGP and DALI [17,18,19,20,21,22,23,24,25] (for a recent
survey the reader may refer to [26]). All these architectures, and their operational mod-
els, are in practice or at least in principle more dynamic and flexible. If we consider
for instance the KGP [24,25] architecture, we find many modules (“capabilities”) and
many knowledge bases, integrated by control theories that can be interchanged accord-
ing to the agent’s present context and tasks. In KGP, capabilities are supposed to be
based upon abductive logic programming [27] but the architecture might in principle
accommodate modules defined in different ways.

We believe that an “ideal” agent architecture should exploit the potential of inte-
grating several modules/components representing different behaviors/forms of reason-
ing, with these modules possibly based upon different formalisms. The “overall agent”
should emerge from dynamic, non-deterministic combination of these behaviors that
should occur also in consequence of the evolution of the agent’s environment. There-
fore, in our view an important present and future direction of ASP is that of being
able to encapsulate ASP programs into modules suitable to be integrated into an over-
all agent program, the latter expressed in whatever languages/formalisms. There is a
growing corpus of literature about modules in ASP (see Section 3). However, the ex-
isting approaches mainly refer to traditional programming techniques and to software
engineering methodologies. To the best of our knowledge, except for the approach of
[28] in the context of action theories, there is no existing approach to modules which is
tailored for the agent realm.

Building upon our long-termed experience in logical agents, involving the definition
and implementation of the DALI agent-oriented logic language [22,23,29,30], in this
paper we propose two kinds of ASP modules to be possibly integrated into a variety
of agent architectures. A first perspective is that of “Reactive ASP modules”, aimed
at defining complex reaction strategies to cope with external events and establish what
could be done. An ASP module will determine the different possibilities, among which
the agent will choose according either to preferences or to an overall planning strat-
egy. A second particularly relevant perspective is that of “Modal ASP modules”, that
exploit the multi-model nature of answer set semantics to allow for reasoning about
possibility and necessity in agents, at a comparatively low complexity. The proposed
approach allows for interesting forms of reasoning suitable for real applications. From

Answer Set Modules for Logical Agents 39

the implementation point of view, we implemented and we have been experimenting
ASP modules within the DALI multi-agent system [31].

The paper is structured as follows. In Section 2 we briefly introduce answer set pro-
gramming to the non-expert reader. In Sections 3 and 4 we review the existing re-
search about modules in ASP and we quickly discuss logical agents. In Sections 5 and
6 we introduce Reactive and Modal ASP modules respectively, of which we propose
a possible operative usage and some examples of application. Finally, we conclude in
Section 7.

2 Answer Set Programming in a Nutshell, and Some Terminology

“Answer set programming” (ASP) is the well-established logic programming paradigm
adopting logic programs with default negation under the answer set semantics, shortly
summarized below. For the applications of ASP, the reader can refer for instance to
[1,2,3,4,5]. Several well-developed answer set solvers [32] that compute the answer
sets of a given program can be freely downloaded by potential users [32].

In the rest of the paper, whenever it is clear from the context, by “a (logic) program
Π” we mean a datalog program Π (for datalog the reader may refer for instance to
[33]), and we will implicitly refer to the “ground” version of Π . The ground version of
Π is obtained by replacing in all possible ways the variables occurring in Π with the
constants occurring in Π itself, and is thus composed of ground atoms, i.e., atoms which
contain no variables. The Herbrand base BΠ of a ground ASP program Π is composed
of all ground atoms that can be constructed out of the set of predicate symbols and the
set of constant symbols occurring in Π . We indicate with BΠ the restriction of BΠ to
the atoms actually occurring in the ground version of Π . This assumption is due to the
fact that ASP solvers produce the grounding of the given program as a first step. In fact,
they are presently able to find the answer sets of ground programs only (though work is
under way to overcome at least partially this limitation, cf.,e.g., [34,35]).

Let V be a set of variables. To the purposes of this paper, we will call abstract atom
(referring to program Π) any non-ground atom built out of a ground atom A ∈ BΠ by
substituting some of the constants occurring in it by variables in V . We will call Ba

Π

the set of all the abstract atoms obtained from BΠ . Vice versa, a proper instantiation
(w.r.t. program Π) of an abstract atom B ∈ Ba

Π is an instantiation (ground instance) A
of B such that A ∈ BΠ . If S is a set of abstract atoms, we let Ground(S) be the set
of its proper instantiations. Instantiations and proper instantiations of a conjunction of
abstract atoms have the obvious definition.

A normal program (or, for short, just “program”) Π is a collection of rules of the
form

H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n.

where H is an atom, m � 0 and n � 0, and each Li is an atom. An atom Li and
its negative counterpart not Li are called literals. In the examples, ← will often be
indicated with :−, which is the symbol adopted in practical programming systems. In
the version of Π defined by a programmer, all atoms will be in general abstract atoms. In
the ground version of Π they become ground atoms, as each original rule is substituted
by all its ground instantiations. Various extensions to the basic paradigm exist, that we

40 S. Costantini

do not consider here as they are not essential in the present context. The left-hand side
and the right-hand side of the clause are called head and body, respectively. A rule with
empty body is called a fact. A rule with empty head is a constraint, where a constraint
of the form

← L1, ..., Ln.

states that literals L1, . . . , Ln cannot be simultaneously true in any answer set.
The answer sets semantics [36,37] is a view of logic programs as sets of inference

rules (more precisely, default inference rules). Alternatively, one can see a program as
a set of constraints on the solution of a problem, where each answer set represents a
solution compatible with the constraints expressed by the program. Consider the simple
program {q ← not p. p ← not q.}. For instance, the first rule is read as “assuming
that p is false, we can conclude that q is true.” This program has two answer sets. In
the first one, q is true while p is false; in the second one, p is true while q is false.
The programming paradigm based upon logic programs under the answer set seman-
tics is called “Answer Set Programming” (ASP), and programs are called “answer set
programs” (ASP programs).

A subset M of BΠ is an answer set of Π if M coincides with the least model of
the reduct PM of P with respect to M . This reduct is obtained by deleting from Π
all rules containing a condition not a, for some a in M , and by deleting all negative
conditions from the other rules. Answer sets are minimal supported models, and form
an anti-chain. Referring to the original terminology of [36], answer sets are sometimes
called stable models. Unlike other semantics, a program may have several answer sets,
or may have no answer set, because conclusions are included in an answer set only if
they can be justified. The following program has no answer set:
{a ← not b. b ← not c. c ← not a.}

The reason is that in every minimal model of this program there is a true atom that
depends (in the program) on the negation of another true atom, which is strictly for-
bidden in this semantics, where every answer set can be considered as a self-consistent
and self-supporting set of consequences of a given program. Whenever a program has
no answer sets, we will say that the program is inconsistent. Correspondingly, checking
for consistency (or stability) means checking for the existence of answer sets.

By some abuse of notation, given program Π and a set of facts and rules I , by Π ∪ I
we indicate the new program obtained by adding the atoms and rules occurring in I to
Π . Also, if a consistent program Π has a number k of answer sets, we will assume
an arbitrary enumeration M1, . . . , Mk of these answer sets, and we will refer to Mh

(h ≤ k) as the h − th answer set. Given answer set program Π which is inconsistent,
we call a set of atoms R ⊆ BΠ a trigger for Π whenever Π ∪ R is consistent.

As it is well known (cf., e.g., [38]), an ASP program is inconsistent whenever there
is some odd cycle, like for instance the above one
{a ← not b. b ← not c. c ← not a.}

For obtaining a potentially consistent program from one including such a cycle, the
cycle should constrained by adding, in the terminology of [38], some handle for the
cycle. A handle for the above cycle can consist of, e.g., rule {a ← d.}. Or, it can
consist of an additional literal, e.g., not r, added to any of the rules of the cycle, say
for instance the second one. If at least one handle of an odd cycle is active, then the

Answer Set Modules for Logical Agents 41

program fragment including the odd cycle and the handles is consistent. The former
handle is active if d occurs somewhere in the overall program. Thus, the head a of
the rule becomes true. The latter handle is active if r occurs somewhere in the overall
program. Thus, not r is false and then the head b of the rule where this literal occurs
becomes true. In both cases, the circularity is broken, i.e., if there are active handles the
cycle becomes (again in the terminology of [38]) actually constrained. For the overall
program to be consistent, every odd cycle must be actually constrained. This requires
that, if there are several odd cycles, they admit handles which are compatible, i.e., that
do not expect opposite truth values for the same atom.

An inconsistent program Π necessarily involves some “problematic” odd cycle
which is not actually constrained. Therefore, a trigger R for Π includes a set of atoms
that make all the odd cycles in Π actually constrained. I.e., a trigger includes atoms that
make at least one handle for each problematic odd cycle active, where these handles are
compatible among themselves and with those already present in Π .

In the following sections, triggers will be exploited as a “control” device to manage
modules consisting of an ASP program. Such a module will be supposed to provide
some kind of answer to an agent which “invokes” it by providing suitable input. We
will assume the ASP program defining a module to be inconsistent on purpose, and
to be designed so that a trigger must include the significant input the module needs in
order to provide meaningful answers. Then, providing a trigger will be the way for an
agent to invoke a module and get answers.

As mentioned before, ASP has the peculiarity that an ASP program may have none,
one or several answer sets. These answer sets can be interpreted in various possible
ways. If the program formalizes a search problem, e.g., a colorability problem or a path
finding problem for graphs, then the answer sets represents the possible solutions to
the problem, namely, in the examples, the possible colorings or the existing paths for
given graph. In knowledge representation, an ASP program may represent a formal def-
inition of the known features of a situation/world of interest. In this case, the answer
sets represent the possible consistent states of this world, that can be several whenever
the formalization involves some kind of uncertainty. Also, and ASP program can be
seen as the formalization of the knowledge and beliefs of a rational agent about a sit-
uation/world, and the answer sets represent the possible belief states of such an agent,
that can be several if either uncertainty or alternative possible choices are involved in
the description. Such an agent can exploit an ASP module for several purposes, such
as answering questions, building plans, explaining observations, making choices, etc.
Some potential uses of ASP modules in agents will be proposed and discussed in the
rest of the paper.

3 Related Work on ASP Modules

There are several approaches to modularization of ASP programs with software en-
gineering purposes, i.e., to govern the complexity of programs and their development
process. For a review of the state of the art in this field the reader may refer for instance
to [39] and to the references therein.

In the approach of [40,39], in conformance with programming-in-the-large princi-
ples, a suitable input-output interface for ASP modules is defined, in order to compute

42 S. Costantini

the combination of compatible answer sets of joinable modules. By providing a notion
of equivalence for modules, the approach tackles the issue of the replacement of a mod-
ule with another one without altering the semantics of the program when seen as an
overall entity.

This proposal is related to that of [41], then evolved into [42], as each one can be
rephrased in terms of the other. However, in the latter proposal the point of view is dif-
ferent, as modules are seen as “procedures” that can invoke each other, even recursively,
by providing input parameters. An overall program is composed of several modules
where a “main” module without input can be identified. Providing the semantics of a
program requires to identify, via a call graph, the relevant modules, i.e., those that are
actually invoked. Complexity ranges from exponential to double exponential, due to the
complex module interaction that the approach admits.

In [43], modules import answer sets from other modules in order to compute the
overall solution, where no cycles are admitted among modules. [44] provides mod-
ules specification with information hiding, where modules exchange information with
a global state.

Some approaches exist [45,46] that, in order to encourage code reusability, define
modules in terms of macros or “templates” that factorize predefined definitions, again
with no cycle allowed among these entities.

In [47], a technique is proposed that allows an answer set program to access the brave
or cautious consequences of another answer set program. The technique is based upon
joining the two programs into a single one and then performing a suitable rewriting with
the addition of weak constraints.

In the following sections we will propose Reactive ASP Modules, where complex
forms of reaction can be specified in an agent program, in contrast to the simple
“condition-action rules” that are often adopted. Namely, an ASP module will describe
how an agent might behave upon the occurrence of certain events, also depending upon
particular circumstances and/or the agent’s past experiences (e.g., when and why lend
or not lend a certain resource upon request). When provided with information about the
present context, the answer sets of such a module will encode the possible courses of
action that the agent might undertake. We will also propose Modal ASP Modules, where
an agent will be enabled to reason about possibility and necessity. I.e., such a module
will describe what an agent knows or believes about some situation, and the agent will
be enable to inspect its answer sets so as to “bring to consciousness” its own mental
states and understand what is possible in that situation (because it occurs in some an-
swer set) and/or what is mandatory (because it occurs in every answer set). In previous
example, lending some resource to a certain requester might be possible given some
conditions, or even mandatory if for instance the agent has previously contracted an
obligation. This will imply encoding in an ASP module a fragment of the domain of in-
terest of the agent and examining the answer sets of the module. In the present proposal,
ASP modules do not interact with each other. For future extensions in the direction of
interacting modules, the techniques presented in [47] might be of use for a principled
implementation.

The first idea of exploiting possibility and necessity in ASP is due to Michael Gel-
fond and presented in [48]. In this proposal, possibility and necessity operators can

Answer Set Modules for Logical Agents 43

occur in ASP programs, thus called “epistemic logic programs”, in the body of rules.
Therefore, concluding or not the head of these rules will depend upon the contents of
a program’s own answer sets. A suitable extension of the answer set semantics is in-
troduced to cope with the enhanced expressivity. The work presented in [49,50] inves-
tigates computational complexity of this approach by redefining its semantics as world
view semantics. On the one hand it is concluded that the consistency check problem un-
der this semantics is PSPACE-complete. On the other hand however, non-trivial classes
of programs where the complexity is ΣP

2 -complete or even NP-complete are identi-
fied. In [16], the authors adopt a different perspective and employ meta-programming
techniques to model in an ASP program multi-agent systems involving agents with
knowledge about other agent’s knowledge.

Related to the present work is ASP-PROLOG [51], that proposes an integration be-
tween prolog and ASP where prolog programs are enabled to invoke ASP modules and
examine the answers sets. These modules can be customized by adding and removing
rules prior to invocation. The similarity with the approach presented in this paper lays
in the fact the the prolog program invoking ASP modules can be seen as analogous to
a logical agent program exploiting ASP modules, though the kind of application and
the envisaged use of modules is different. ASP-PROLOG is procedural in nature and
extends the standard prolog notation. It might be a good implementation tool for many
kinds of ASP modules, included those presented here.

In Section 6.1 we will show how to exploit possibility and necessity to perform inter-
esting forms of meta-reasoning. An approach to meta-reasoning within ASP programs
is that of [52], which proposes “template” rules with variables in place of predicates
(to be suitable instantiated to actual predicate symbols occurring in the program), in the
style of Reflective Prolog [53,54]. The work presented in [55] interprets ASP programs
as agents and allows for various forms of reasoning by introducing deontic operators
(such as for instance Obligation) in such programs.

4 Logical Agents in Short

Recently, the computing landscape has changed from a focus on standalone computer
systems to a situation characterized by distributed, open and dynamic heterogeneous
systems that must interact, and must operate effectively within rapidly changing circum-
stances and with increasing quantities of available information. In this context, agents
constitute a suitable design metaphor, that provides designers and developers with a way
of structuring an application around autonomous, communicative and flexible elements
[56].

Agents should be intelligent so as to face changing situations by modifying their be-
havior, or their goals, or the way to achieve their goals. This requires agents to be able
to perform, interleave and combine various forms of commonsense reasoning, possibly
based upon different kinds of representation. Several agent-oriented languages and ar-
chitecture exist and in particular several computational logic-based agent architectures
and models. A common feature is the aim at building agents that are able to adapt or
change their behavior when they encounter a new or different situation.

A logical agent is based upon an “agent program” which consists of a knowledge
base and of a set of rules aimed at providing the entity with the needed capabilities.

44 S. Costantini

Rules may include object-level rules and meta-(meta-. . .)rules that determine the agent
behavior. The knowledge base may itself include rules, which either define knowledge
(and meta-knowledge) in an abstract way or constitute part of the agent knowledge.
The knowledge base constitutes in fact the agent “memory” while rules define the agent
behavior. An underlying inference engine, or more generally a control mechanism, puts
an agent at work. Agents in general evolve in time as a result of both their interac-
tion with the environment and their own self-modifications. Despite the differences, all
logical agent-oriented architectures and languages, or “agent models”, exhibit at least
the following basic features (for a general discussion about logical agent models the
reader may see, e.g., [57] and [58], and for a general logical semantics for evolving
agents [29]):

– A logical “core”, that for instance in both KGP and DALI is a resolution-based
logic program (prolog-like for DALI and abductive for KGP).

– Reactivity, i.e., the capability of managing external stimuli.
– Proactivity, i.e., the capability of managing internal “initiatives”.
– The capability of performing actions.
– The capability of recording what has happened and has been done in the past.
– The capability of managing communication with other agents.
– A basic cycle that interleaves the application of formerly specified capabilities.

E.g., in DALI the basic cycle is integrated within the logical core into an extended
resolution, while in KGP the basic cycle has a meta-level definition and thus can be
varied.

Taking for instance KGP and DALI, which are two well-known and fully implemented
agent models based upon logic programming, we can identify the following more spe-
cific features.

KGP agents are equipped with the following components.
(1) A set of beliefs, equipped with a set of reasoning capabilities, for reasoning

with the information available in the agent state. These capabilities include Planning,
Temporal Reasoning, Reactivity, Goal Decision, and Temporal Constraint Satisfiability.
Beliefs include a records of the information sensed from the environment, as well as a
history of executed actions.

(2) A set of goals and plans to which the agent is committed.
(3) A sensing capability, allowing agents to observe their environment and actions

(including utterances) by other agents.
(3) An actuating capability, allowing agents to affect their environment (including

by performing utterances).
(4) Control information, including a set of transition rules, changing the agent’s state

and a set of selection functions to select inputs to transitions.
(5) A control component, for deciding which enabled transition should be next [59].
The DALI agent model includes:
(i) A set of beliefs, including reactive rules, support for proactivity and reason-

ing, planning, constraint satisfiability. Beliefs also include past events that record what
has happened in the past: events perceived and reacted to, proactive initiatives, goals
reached, etc. Past events can be organized into histories on which properties can be
verified by means of constraints.

Answer Set Modules for Logical Agents 45

(ii) A sensing capability, allowing agents to observe their environment and actions
by other agents.

(iii) A set of constraints for verifying that the agent’s course of actions respects some
properties and does not present anomalies.

(iv) A learning component for recording past events and building histories; a belief
revision component for removing old information based on conditions and for either
incorporating or dropping knowledge acquired from other agents.

(v) Control information that may influence proactive behavior and the recording of
past events.

Both KGP and DALI are by their very natural modular architectures, as agents are
composed of various modules. ASP modules may be exploited in these architectures to
implement various capabilities, for instance planning. In subsequent sections, we will
propose however some kinds of ASP modules that may actually under some respects
empower these agent models.

5 Reactive ASP Modules

Since [60], it is universally recognized that reactivity is an essential feature in logical
agents, in the sense of an agent being able to respond in a timely and appropriate way
to the reception of stimuli coming from an external environment which is in general
subject to change and that can generate events in an unforeseeable sequence. Reactions
are often expressed in condition-action rules, say e.g. of the form

IF 〈Conditions〉 DO 〈Actions〉
which are also present in ASP-based action languages, where however they are not
meant to be triggered by the conditions, but are rather processed contextually to the rest
of the program. The problem was tackled in [28] where reactive control modules com-
posed of condition-action rules were introduced and the problem of their correctness
w.r.t. the overall program (action theory) was discussed.

Here, we intend to introduce modules that allow for “complex” reactivity, where
some kind of reasoning has to be performed in order to devise suitable reactions. These
modules are intended to “sleep” in the background and enter into play when activated
by the occurrence of external events. In order to choose among the different actions
that is possible to perform, corresponding to different answer sets of a reactive module,
we build upon previous work [61], where we introduced priorities among (conditional)
actions in logic agent-oriented languages.

In the rest of this section, we propose a formulation, a possible operational behav-
ior and some examples of use of reactive ASP modules. Technically, we will specify
reactive ASP modules by exploiting a distinguished, ASP feature, i.e., the constraints.
We also make the reactive behavior parametric w.r.t. context conditions that may be
different in different module invocations.

The basic idea is that of constructing a reactive ASP module around an inconsistent
ASP program, where inconsistency is due to one or more constraints of the form

:−not A1, . . . , not An

where the Ai’s are atoms, which represent the events that must happen in order to
activate the module. In fact, if no event has happened, all the Ai’s are false which

46 S. Costantini

implies that the constraint is violated (as all the not Ai’s are true) and therefore the
module is inconsistent. A module will stay “asleep” until one or more events happen:
events which have occurred will be asserted as facts, thus acting as triggers that make
the module consistent. The module will now have answer sets which encompass the
possible reactions to these events. The proposed formulation of reactive ASP modules
is aimed at their introduction in the basic cycle of the agent architecture at hand. In
this basic cycle, there will be at some stage a check of reactive modules that, whenever
active, will generate possible reactions one of which will be chosen and put into play
either nondeterministically or based on preferences.

A reactive ASP module will have an input/output interface. The input interface spec-
ifies the events that may trigger the module. The output interface specifies the actions
that the module answer sets (if any) can possibly encompass. However, at the invoca-
tion the module will return not only the actions, but also the conditions (if any) for their
being actually performed. For instance, if the module performs some form of default
reasoning [62], the output may include the normality/abnormality assumptions.

We introduce below the definition that specifies an ASP reactive module after giving
some guidelines about the logic program which constitutes its “core”.

Definition 1. A completed logic program Π is obtained from an inconsistent logic pro-
gram Πgiven containing at least one constraint of the form :−not A1, . . . , not An by
adding, for each atom A that in Πgiven does not occur in a constraint and does not
occur as the head of a rule, the even cycle (composed of two rules): A :−not noA,
noA :−not A where noA is a fresh atom.

A will be called an assumption (w.r.t. program Π) and the set of all the assumptions
will be called AΠ . The purpose of assumptions will be illustrated below in relation to
an example.

Definition 2. A reactive ASP module M is a triple 〈In, Π, Out〉 where Π is a com-
pleted logic program and In, Out ⊆ Ba

Π are sets of abstract atoms, called the abstract
inputs and abstract outputs respectively, where AΠ ⊆ Ground(Out).

A reactive ASP module can be invoked by providing an input including the proper
instantiations of (some of) the atoms in In (i.e., it is not mandatory to provide all the
specified inputs). Symmetrically, it may be the case that only part of the outputs is
returned. However, the input may also include facts and rules that represent additional
contextual knowledge useful for the evaluation of the reaction. These facts and rules are
here required to be ground.

Given actual input I , an invocation implies to determine the answer sets of Π ∪ I
and to extract proper instantiations for the outputs. If Π ∪ I is consistent, there may
be different results corresponding to the different answer sets. Otherwise, no result will
be returned. We may notice that the assumptions which belong to each answer set are
returned in the output by definition, unless they have been provided as input. In fact, no
input atom is returned as output.

Answer Set Modules for Logical Agents 47

Definition 3. An invocation result of a reactive ASP module M = 〈In, Π, Out〉 is a
triple 〈I, Π, O〉, where: I , called the actual input, is a set of ground facts and rules1,
including proper instantiations of (some of the) atoms in In; O ⊆ BΠ , called the actual
output, includes proper instantiations of (some of the) atoms in Out , where either Π∪I
is inconsistent and O = ∅ or O ⊆ (M \ I) where M is an answer set of Π ∪ I and O
is composed of all the proper instantiations of atoms in Out which occur in M , except
those given in the input.

It is easy to see that, given input I , there are as many invocation results as the answer
sets of Π ∪ I (among which the actual course of action must be somehow selected by
the agent), and that O = ∅ only if I includes a trigger R for Π .

Operationally, invocation of ASP modules can explicitly occur in an agent program,
where the precise way to invoke a module will depend upon the agent language at hand.
In DALI for instance, the simple reactive rules of the language can be used to directly
resort to a reactive module whenever the relevant events occur together (where DALI
provides a way of specifying what does it mean to happen together for a given set of
events, e.g., in the same day, same second, etc.). Other methods for invocation are also
possible: e.g., the inputs related to an invocation can be written on a blackboard which
is examined from time to time by an underlying control component which performs the
invocation, and puts the results on the blackboard.

The ASP modules so defined are suitable for specifying the reaction to external
stimuli, where, in an invocation, the inputs include the external stimuli and the out-
puts include a set of actions to be executed in response to the stimuli according to the
assumptions. In our view in fact, reactive ASP modules should be used to describe
knowledge and beliefs concerning how an agent would cope with some events in a
given situation. The answer sets of a reactive module are meant to represent the pos-
sible courses of action that the agent might undertake whenever these events actually
occur, given the present context. They will in general contain plans that the agent might
execute to cope with the events together with the assumptions these plans are based
upon. In simple cases, like in the examples below, a plan may plainly consist of few
actions whose order does not matter. The module “core” is a completed program so that
whatever is not known and is not provided as input can possibly be assumed. An agent
invokes an ASP module by providing an actual input including a trigger for the module
and all the relevant information which is available. Among the resulting answer sets,
the agent will have to choose according to some criteria and put the selected course of
action into operation.

Below we propose an example of an ASP module. For the sake of clarity, here and
in the rest of the paper we adopt the DALI syntax, and thus we assume to indicate
predicates denoting actions with suffix ’A’ and those denoting external stimuli with
suffix ’E’. The external stimulus to be coped with is bell ringsE . Program Π is the
following. It is a completed program, where good weather is an assumption, i.e., if not
provided as input, the agent may assume that the weather is good or not. The agent
will open the door if the bell rings whenever the situation does not look dangerous (i.e.,

1 Facts and rules composed of ground atoms. Notice, here and in what follows, that they are not
required to be composed only of atoms in BΠ , i.e., fresh predicate and constant symbols are
allowed to occur.

48 S. Costantini

we are not at night with strangers around). It opens the window whenever the weather
good, or, precisely, whenever either it is known to be good (because this information
has been received in input) or it has been assumed to be good. Notice that the former
action is generated by means of a very simple form of proactivity, i.e., on the agent’s
own initiative. In fact, it is not a reaction to an external event and it is not necessarily
a consequence of what is known (the weather being good can arbitrarily be assumed if
not known). Proactivity is commonly assumed to be a main feature of agents.

:- not bell_ringsE.
openA(door) :- bell_ringsE.
:- openA(door), at_night, strangers_around.
openA(window):- good_weather.
good_weather :- not nogood_weather.
nogood_weather :- not good_weather.

The trigger that makes Π consistent is the external event bell ringsE and the result-
ing program Π ∪ bell ringsE has a number of answer sets which depends upon whether
both at night and strangers around are given, and whether good weather is either
given or assumed. If we do not either have as input or assume good weather we can
possibly conclude openA(door) but not openA(window), which has good weather
as a condition. If we have both at night and strangers around , we cannot con-
clude openA(door) but, if we assume good weather , then we can possibly conclude
openA(window).

A reactive ASP module associated to Π can be for instance:
〈{bell ringsE , at night , strangers around}, Π, {openA(X)}〉

Among the possible invocation results, each one corresponding to an answer set of
Π ∪ I , we have the following :

〈{bell ringsE}, Π, {openA(door)}〉
〈{bell ringsE , good weather}, Π, {openA(door), openA(window)}〉
〈{bell ringsE}, Π, {good weather , openA(door), openA(window)}〉
〈{bell ringsE , at night , strangers around}, Π, ∅〉
〈{bell ringsE , at night}, Π, {good weather , openA(window)}〉

As another example, program Π below states that the agent may or may not lend money
to somebody, however: (s)he never lends money to unreliable persons; (s)he normally
lends money to friends, unless this friend is an unreliable person. Notice that lending/not
lending money is chosen arbitrarily, unless conditions occur (stated in the constraints)
to force an agent to make a certain choice. Going back to the definition of completed
program (Definition 1), it may be noticed that every item of information occurring in
the program can be assumed if not provided in input, except the conditions occurring
in the constraints. For instance, in the module below the agent will force itself to lend
the money if the request comes from a friend, but the requester being a friend must be
explicitly specified in input (of course, if at the invocation the agent believes that this is
the case).

Answer Set Modules for Logical Agents 49

:- not requestE.
lend_moneyA :- not no_land, requestE.
no_land :- not lend_moneyA.
:- lend_moneyA, unreliable_person.
:- not lend_moneyA, requestE, friend.

A reactive ASP module associated to Π can be for instance:
〈{requestE , friend , unreliable person}, Π, {lend moneyA}〉

We may have for instance the following invocation results, where notice that, if the
requester is stated to be unreliable, the output is empty (thus no action is prescribed) as
the module is inconsistent.

〈{requestE , friend}, Π, {lend moneyA}〉
〈{requestE , friend , unreliable person}, Π, ∅〉
〈{requestE}, Π, ∅}〉 and 〈{requestE}, Π, {lend moneyA}〉

With input requestE , one of the two possible outcomes must be chosen as the actual
course of action.

6 Reasoning on Possibility and Necessity: Modal ASP Modules

In this section, we propose another kind of ASP module, defined so as to allow forms
of reasoning to be expressed on possibility and necessity analogous to those of modal
logic. As it is well-known, in classical modal logic (see [63]) a proposition is said to
be possible if and only if it is not necessarily false (regardless of whether it is actually
true or actually false), and to be necessary if and only if it is not possibly false. The
meaning of these terms refers to the existence of multiple “possible worlds”: something
“necessary” is true in all possible worlds, something “possible” is true in at least one
possible world. These “possible world semantics” are formalized with Kripke seman-
tics. Either the notion of possibility or that of necessity may be taken to be basic, where
the other one is defined in terms of it. Possibility and necessity are related to credulous
and skeptical (or brave and cautious) reasoning in non-monotonic reasoning, where in
the credulous (brave) approach a proposition is believed if it is possible, while in the
skeptical (cautious) approach it is believed only if it is necessary.

In our setting, the “possible worlds” that we consider refer to an ASP program Π
and are its answer sets. Therefore, given A ∈ BΠ , we will say that A is possible if it
belongs to some answer set, and that A is necessary if it belongs to the intersection of
all the answer sets.

A comment is in order about why we do not choose to refer to the well-founded
model (wfm) [64]. In fact, as it is well-known every answer set M of a given program
Π is a superset of the wfm of the program. This means that, given WFM = 〈T ; F 〉
where atoms in T are considered to be true, atoms in F are considered to be false and
all the other atoms are considered to be undefined (i.e., the WFM is a three-valued
semantics) we have T ⊆ M . However, T is in general smaller than the intersection of
all the answer sets, as it includes only the consequences derivable from the acyclic part

50 S. Costantini

of the program. Therefore, T does not include consequences deriving from assumptions,
even when these assumptions lead to the same conclusion in all the answer sets2.

6.1 Definition, Use and Applications of Modal ASP Modules

We introduce below an operator of possibility, that we indicate with P (instead of the
traditional �, or M), and an operator of necessity, that we indicate with N (instead of
the classical �, or L). We change the terminology as we re-define the operators w.r.t. the
answer sets of a program considered as a theory. In this specific setting, properties of the
operators can be proved rather than defined axiomatically. These operators define Modal
ASP Expressions that can be either possibility expressions or necessity expressions.

Definition 4. Given answer set program Π with answer sets enumerated as
M1, . . . , Mk, and an atom A, the possibility expression P (wi, A) is deemed to hold
(w.r.t. Π) whenever A ∈ Mwi , wi ∈ {1, . . . , k}. The possibility operator P (A) is
deemed to hold whenever ∃M ∈ {M1, . . . , Mk} such that A ∈ M .

Definition 5. Given answer set program Π with answer sets M1, . . . , Mk, and an atom
A, the necessity expression N(A) is deemed to hold (w.r.t. Π) whenever A ∈ (M1 ∩
. . . ∩ Mk).

We are now able to define the negation of possibility and necessity operators.

Definition 6. Given answer set program Π with answer sets enumerated as
M1, . . . , Mk, and an atom A: the possibility expression ¬P (wi, A) is deemed to hold
(w.r.t. Π) whenever A ∈ Mwi , wi ∈ {1, . . . , k}; the expression ¬P (A) is deemed to
hold whenever ¬∃M ∈ {M1, . . . , Mk} such that A ∈ M ; the necessity expression
¬N(A) is deemed to hold (w.r.t. Π) whenever A ∈ (M1 ∩ . . .Mk).

It is easy to see that, given answer set program Π :

Proposition 1. N(A) implies P (A) and implies that ∃wi such that P (wi, A).

Proposition 2. ¬P (A) implies ¬N(A).

The extension of the above operators to conjunctions is straightforward, where a con-
junction is deemed to be possible in a certain answer set wi (resp. possible in general)
whenever all conjuncts belong to wi (resp. to the same answer set) and a conjunction is
deemed to be necessary whenever all conjuncts belong to the intersection of the answer
sets.

We now extend the definition of modal ASP expressions to include a context for their
evaluation

Definition 7. Let E(Args) be either a possibility or a necessity expression. The cor-
responding contextual expression has the form E(Args) : Context where Context
is a set of ground facts and rules. E(Args) : Context is deemed to hold whenever
E(Args) holds w.r.t. Π ∪ Context .

2 For the interested reader, in previous work [38] we have discussed the role of cycles and of
connections between cycles for the consistency of the program.

Answer Set Modules for Logical Agents 51

The abstract counterparts of modal ASP expressions are expressions of the form
P (I, X), P (X) and N(X) (resp. P (I, X) : C, P (X) : C and N(X) : C for their
contextual version) where: I is a variable ranging over natural numbers; X can be ei-
ther an abstract atom or a conjunction of abstract atoms or also a metavariable intended
to denote either an abstract atom or a conjunction of abstract atoms; C can be either a
set of abstract atoms or a metavariable intended to denote a set of abstract atoms.

Possibility and necessity expressions are evaluated w.r.t. an underlying modal ASP
module of the following form.

Definition 8. A modal ASP module M is a tuple
〈Module name, AbstrQuery, AbstrContext, Π, AbstrPos , AbstrNec〉 where:

– Module name is the name of the module;
– Π is a logic program;
– AbstrQuery is either an abstract atom or a conjunction of abstract atoms (that can

be intended as a set), i.e., AbstrQuery ⊆ Ba
Π and AbstrQuery = ∅;

– AbstrContext is a metavariable denoting a set of ground facts and rules;
– AbstrPos is a metavariable denoting a set of abstract possibility expressions of the

form P (I, AbstrQuery);
– Nec is a metavariable denoting either a necessity expressions of the form

N(AbstrQuery) or the empty set.

A modal ASP module is invoked whenever a modal ASP expression has to be evaluated,
by providing a proper instantiation of the abstract query and of the context by means of
the arguments of the modal ASP expression at hand.

Definition 9. An invocation result of a modal ASP module M is a tuple
〈Module name, Query, Context , Π, Pos , Nec〉 where:

– Query ⊆ BΠ , Query = ∅, is composed of proper instantiations of (some of) the
abstract atoms in AbstrQuery;

– Context is a set of ground facts and rules;
– Pos is the set of the expressions P (wi, Query) that hold w.r.t. Π ∪Context , or the

expression ¬P (Query) if no possibility has been found to hold;
– Nec is either N(Query) or ¬N(Query) depending upon which of the two holds

w.r.t. Π ∪ Context .

Notice that, from the practical point of view, once the module has been invoked on some
input, its invocation result can be stored for subsequent use.

For the case where there are several modal ASP modules, the straightforward
extension of the above-defined modal ASP expressions can be E(T, Args) (resp.
E(T, Args) : Context for the contextual form) where the given expression is meant to
be evaluated w.r.t. module (theory) T (precisely, w.r.t. program Π included in T).

The Kripke structure that we propose is simple, but yet it allows significant forms of
reasoning to be performed. For instance, one is able to define meta-axioms, like, e.g.,
the following, which states that a proposition is plausible w.r.t. theory T if, say, it is
possible in at least two different worlds:

plausible(T, Q) :−P (T, I, Q), P (T, J, Q), I = J.

52 S. Costantini

We can also formulate the contextual counterpart of the above:

plausible(T, Q, C) :−P (T, I, Q) : C, P (T, J, Q) : C, I = J.

As we were mentioning before, to evaluate an instance of the meta-axioms above one
has to invoke module T on query Q just once.

Among the relevant realms of possible application of modal ASP expressions are
in our view normative reasoning and negotiation. Consider for instance the famous
example proposed in the seminal work about meta-interpreters [65]:

guilty(X) :−demo(Facts , guilty(X))

meaning that one can be considered to be guilty only if (s)he is provably guilty within
theory Facts representing both the laws/regulations and the evidence. We can gener-
alize this kind of reasoning by allowing Facts to be an answer set program, i.e., by
allowing non-monotonic reasoning and multiple possible solutions. In our setting, we
might rephrase this example as follows:

guilty(X) :−N (Facts , guilty(X))

We might also allow evidence that one proposes to her/his excuse, e.g.,

innocent(X) :−¬P(Facts , guilty(X)) : Evidence

Here, we have used a contextual expression where we say that one has to be considered
innocent if it is impossible that (s)he is not, assuming to accept the Evidence (s)he
proposes as excuse.

6.2 Extension to Multi-agent Setting

It can be interesting to extend our setting so as to allow an agent to reason not only
about what is possible or necessary for herself/himself, but also about what is possible
or necessary for other agents.

In this discussion, we assume that there are several agents, which are able to
communicate with each other. We will however abstract from the details of the com-
munication mechanism, assuming the existence of two primitives: tell(Ag, Prop), to
signify that the agent in which it occurs communicates proposition Prop to agent Ag;
told(Ag, Prop), to signify that the agent in which it occurs receives proposition Prop
from agent Ag .

As a first simple example, let us assume for instance that agent Mary includes a
modal ASP module where she decides whether to spend the evening going out (e.g,
to cinema) or not. Let us also assume that there exists another agent, say John, who
would like to invite Mary to cinema. In our approach, John can reason about Mary’s
possibilities, e.g., by means of a condition-action rule that might look like the following:

told(mary, P(go to cinema)) OR
told(mary, P(go to cinema) : lend money)

DO tell(mary, lend money if needed , invite to cinema)

Answer Set Modules for Logical Agents 53

stating that if John is told by Mary that she would possibly go to cinema, either at her
own expenses or upon the condition she can borrow some money, he offers to lend the
money and invites her to go.

The next example refers to negotiation between agents. In the example, a benevolent
agent accepts the justification of a partner agent for a contract violation if the part-
ner is known to be reliable and offers a justification which is plausible w.r.t. a theory
describing the negotiation domain, given a context (that presumably includes common
knowledge about what has been going on). We refer to the above definition of plausible .

excused(Ag, V iol, Context facts) :−
N(Reputation theory, reliable(Ag)), told(Ag, Justification),
plausible(Domain theory, Justification, Context facts)

6.3 Complexity

As it is well-known, deciding the existence of an answer set has been proved NP-
complete and the same for deciding whether an atom is a member of some answer
set, while the problem whether a given atom is in the intersection of all stable models
is co-NP-complete (see [66] and [67])3.

It is useful to remark that complexity of epistemic logic programs [48] recalled in
Section 3 is not related to the complexity of the approach presented here. In fact, in
epistemic logic programs necessity and possibility operators may occur within a theory,
while here we reason about an inner theory which is a plain ASP program.

We state here the complexity of reasoning about possibility and necessity with the
above-mentioned operators, that is in accordance with the above results. In fact, we may
notice that there is no real difference between computing the answer sets and enumer-
ating them. Therefore, deciding whether an atom is a member of the i-th answer set has
the same complexity of deciding whether an atom is a member of some answer set. We
can then easily state the following.

Proposition 3. Given atom A, the problem of deciding whether P (wi, A) holds w.r.t.
program Π is NP-complete.

Proposition 4. Given atom A, the problem of deciding whether N(A) holds w.r.t. pro-
gram Π is co-NP-complete.

Notice however that the above complexity results refers to the ground version of
the logic program included in an ASP module: in fact, this is always the case when one
adopts ASP. Therefore, either one bases a module upon ground programs as we have
assumed up to now, or it is necessary to be careful about possible exponential blowup
of program size (e.g., by stating constraints on the program structure or by avoiding to
introduce too many new constants in the input). In the present setting, the input and the
context of modal ASP expressions are provided by the overall agent (logic) program,
and we have seen in the examples that several modal expressions may occur in the same
rule. However, we assume (cf. Definition 9) that every modal ASP expression can be

3 These results hold for normal ASP programs as defined in Section 2. If one considers addi-
tional constructs such as for instance disjunction, the complexity increases.

54 S. Costantini

evaluated whenever all its arguments are ground. Then, no interaction is possible due
to conjunctions of modal atoms. Relaxing at least to some extent this limitation, i.e.,
allowing modal ASP expressions to return results rather than simply evaluate to true or
false will be a subject of future work.

Notice also that the increase of complexity that one can find, e.g., in the approach
of [42] due to the interaction between modules that invoke each other even recursively
cannot be found here. This because in the present setting modules cannot be nested
and do not interact: in fact, an agent uses the possibility and necessity operator without
nesting in its main agent program. Thus, there is no possible interaction among different
invocations of such operators. The topic of allowing the use of possibility and necessity
operators within modal ASP modules, where a module is allowed to refer to another one
(presumably in an acyclic fashion) and the topic of nesting of possibility and necessity
will be interesting subjects of future work, but have not been tackled here.

Whenever a logical agent uses only possibility in the body of its rules, the resulting
system fits into the framework of [68]. In fact, rules with the possibility operator in
the body can easily be seen in their terminology as “bridge rules”. The agent program
under, e.g., the semantics defined in [29] and the invoked modules under the answer
set semantics form, again in their terminology, a set of logics. Finally, the belief state
composed of the semantics of the agent program and the answer sets of the invoked
modules and selected by the possibility operator constitutes what they call an “equilib-
rium”. However, the complexity is lower that the more general case that they consider,
because bridge rules can be used in the agent program only.

7 Concluding Remarks

We have proposed a framework for integrating ASP modules into virtually any agent
architecture so as to allow for complex reactivity, and for hypothetical reasoning based
upon possibility and necessity. From the implementation point of view, the integration
of such modules into logic-based architectures is straightforward. In fact, we have im-
plemented the approach within the DALI interpreter. The implementation is described
in detail in [69], and uses the DLV answer set solver [70].

Our approach is different from previous ones under several respects. To the best of
our knowledge in fact, except for the approach of [28] in the context of action theo-
ries, there is no existing approach which is comparable with the proposed one. On the
first place, ASP modules are adopted for empowering reasoning capabilities of logical
intelligent agents. Then, they are exploited to introduce forms of complex reactivity.
Finally, we allow an agent to reason about what is possible given the corpus of agent’s
knowledge. The forms of hypothetical reasoning which are allowed are interesting, and
may be used to design real applications at a comparatively low complexity.

References

1. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press, Cambridge (2003)

2. Anger, C., Schaub, T., Truszczyński, M.: ASPARAGUS – the Dagstuhl Initiative. ALP
Newsletter 17(3) (2004), http://asparagus.cs.uni-potsdam.de

http://asparagus.cs.uni-potsdam.de

Answer Set Modules for Logical Agents 55

3. Leone, N.: Logic programming and nonmonotonic reasoning: From theory to systems and
applications. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, p. 1. Springer, Heidelberg (2007)

4. Truszczyński, M.: Logic programming for knowledge representation. In: Dahl, V., Niemelä,
I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 76–88. Springer, Heidelberg (2007)

5. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, ch. 7. Elsevier, Am-
sterdam (2007)

6. Gelfond, M., Lifschitz, V.: Action languages. ETAI, Electronic Transactions on Artificial
Intelligence (6) (1998)

7. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.) Work-
shop on Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers,
Dordrecht (2001)

8. Baral, C., McIlraith, S., Son, T.C.: Formulating diagnostic problem solving using an action
language with narratives and sensing. In: Proc. of the Int. Conference on the Principles of
Knowledge Representation and Reasoning (KRR 2000), pp. 311–322 (2000)

9. Balduccini, M.: Answer Set Based Design of Highly Autonomous, Rational Agents. PhD
thesis (2005)

10. Balduccini, M., Gelfond, M.: The AAA architecture: An overview. In: AAAI Spring Sym-
posium 2008 on Architectures for Intelligent Theory-Based Agents, AITA 2008 (2008)

11. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems. Annals of
Mathematics and Artificial Intelligence 25(3-4), 391–419 (1999)

12. Gelfond, G., Watson, R.: Modeling cooperative multi-agent systems. In: Costantini, S., Wat-
son, R. (eds.) Proc. of ASP 2007, 4th International Workshop on Answer Set Programming
at ICLP 2007 (2007)

13. De Vos, M., Vermeir, D.: Extending answer sets for logic programming agents. Annals of
Mathematics and Artifical Intelligence, Special Issue on Computational Logic in Multi-
Agent Systems 42(1-3), 103–139 (2004)

14. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61.
Springer, Heidelberg (2002)

15. Alferes, J.J., Dell’Acqua, P., Pereira, L.M.: A compilation of updates plus preferences. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
62–74. Springer, Heidelberg (2002)

16. Baral, C., Gelfond, G., Son, T.C., Pontelli, E.: Using answer set programming to model
multi-agent scenarios involving agents’ knowledge about other’s knowledge. In: Proc. of
the 9th Int. Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
Copyright 2010 by the International Foundation for Autonomous Agents and Multiagent
Systems, IFAAMAS (2010)

17. Rao, A.S., Georgeff, M.: Modeling rational agents within a bdi-architecture. In: Proc. of the
Second Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR 1991),
pp. 473–484. Morgan Kaufmann, San Francisco (1991)

18. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038. Springer, Heidelberg
(1996)

19. Hindriks, K.V., de Boer, F., van der Hoek, W., Meyer, J.C.: Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4) (1999)

20. Fisher, M.: Metatem: The story so far. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 3–22. Springer,
Heidelberg (2006)

21. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heteroge-
neous Agent Systems. MIT Press/AAAI Press, Cambridge, MA, USA (2000)

56 S. Costantini

22. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424,
p. 1. Springer, Heidelberg (2002)

23. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688. Springer,
Heidelberg (2004)

24. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proc. ECAI 2004 (2004)

25. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS (LNAI), vol. 3267, pp.
340–367. Springer, Heidelberg (2005)

26. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road
map of current technologies and future trends. Computational Intelligence Journal 23(1),
61–91 (2007)

27. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Gab-
bay, D., Hogger, C., Robinson, A. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

28. Baral, C., Son, T.: Relating theories of actions and reactive control. ETAI (Electronic Trans-
actions of AI) 2(3-4), 211–271 (1998)

29. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages.
In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI),
vol. 3904, pp. 106–123. Springer, Heidelberg (2006)

30. Costantini, S., Tocchio, A.: DALI: An architecture for intelligent logical agents. In: Proc. of
the Int. Workshop on Architectures for Intelligent Theory-Based Agents (AITA 2008). AAAI
Spring Symposium Series. AAAI Press, Stanford (2008)

31. Costantini, S., D’Alessandro, S., Lanti, D., Tocchio, A.: Dali web site, download of the inter-
preter (2010); With the contribution of many undergraduate and graduate students of Com-
puter Science, L’Aquila

32. implementations, A.: Web references for some ASP solvers, ASSAT:
http://assat.cs.ust.hk; Ccalc:
http://www.cs.utexas.edu/users/tag/ccalc; Clasp:
http://www.cs.uni-potsdam.de/clasp; Cmodels:
http://www.cs.utexas.edu/users/tag/cmodels; DeReS and aspps:
http://www.cs.uky.edu/ai/; DLV:
http://www.dbai.tuwien.ac.at/proj/dlv; Smodels:
http://www.tcs.hut.fi/Software/smodels

33. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166 (1989)

34. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer set programming with constraints
using lazy grounding. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp.
115–129. Springer, Heidelberg (2009)

35. Lefèvre, C., Nicolas, P.: A first order forward chaining approach for answer set computing.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 196–208.
Springer, Heidelberg (2009)

36. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R., Bowen, K. (eds.) Proc. of the 5th Intl. Conference and Symposium on Logic Program-
ming, pp. 1070–1080. The MIT Press, Cambridge (1988)

37. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

http://assat.cs.ust.hk
http://www.cs.utexas.edu/users/tag/ccalc
http://www.cs.uni-potsdam.de/clasp
http://www.cs.utexas.edu/users/tag/cmodels
http://www.cs.uky.edu/ai/
http://www.dbai.tuwien.ac.at/proj/dlv
http://www.tcs.hut.fi/Software/smodels

Answer Set Modules for Logical Agents 57

38. Costantini, S.: On the existence of stable models of non-stratified logic programs. J. on The-
ory and Practice of Logic Programming 6(1-2) (2006)

39. Oikarinen, E.: Modularity in Answer Set Programs. Doctoral dissertation, TKK Dissertations
in Information and Computer Science TKK-ICS-D7, Helsinki University of Technology, Fac-
ulty of Information and Natural Sciences, Department of Information and Computer Science,
Espoo, Finland (2008) ISBN 978-951-22-9581-4

40. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive
stable models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 175–187. Springer, Heidelberg (2007)

41. Veith, H., Eiter, T., Eiter, T., Gottlob, G.: Modular logic programming and generalized quan-
tifiers. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp.
290–309. Springer, Heidelberg (1997)

42. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–159.
Springer, Heidelberg (2009)

43. Tari, L., Baral, C., Anwar, S.: A language for modular answer set programming: Application
to acc tournament scheduling. In: Proc. of the Int. Workshop on Answer Set Programming,
ASP 2005. CEUR Workshop Proceedings, vol. 142, pp. 277–292 (2005)

44. Balduccini, M.: Modules and signature declarations for a-prolog: Progress report. In: Proc.
of the Software Engineering for Answer Set Programming Workshop, SEA 2007 (2007)

45. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular
answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 376–390. Springer, Heidelberg (2006)

46. Calimeri, F., Ianni, G.: Template programs for disjunctive logic programming: An operational
semantics. AI Communications 19

47. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 115–128. Springer, Heidelberg
(2009)

48. Gelfond, M.: Logic programming and reasoning with incomplete information. Annals of
Mathematics and Artificial Intelligence 12 (1994)

49. Zhang, Y.: Computational properties of epistemic logic programs. In: Principles of Knowl-
edge Representation and Reasoning: Proc. of the 10th Int. Conference (KR 2006), pp. 308–
317. AAAI Press, Menlo Park (2006)

50. Zhang, Y.: Epistemic reasoning in logic programs. In: Proc. of the 20th International Joint
Conference on Artificial Intelligence, IJCAI 2007, pp. 647–652 (2007)

51. El-Khatib, O., Pontelli, E., Son, T.C.: Asp-prolog: a system for reasoning about answer set
programs in prolog. In: Proc. of the 10th International Workshop on Non-Monotonic Rea-
soning, NMR 2004, pp. 155–163 (2004)

52. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proc. of the 19th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 90–96 (2005)

53. Costantini, S., Lanzarone, G.A.: A metalogic programming language, pp. 218–233. The MIT
Press, Cambridge (1989)

54. Barklund, J., Dell’Acqua, P., Costantini, S., Lanzarone, G.A.: Reflection principles in com-
putational logic. J. of Logic and Computation 10(6), 743–786 (2000)

55. Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous active agents, i: Semantics. Artificial
Intelligence 108(1-2), 179–255 (1999)

56. Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology: Towards next genera-
tion computing. Autonomous Agents and Multi-Agent Sytems 9, 203–252 (2004)

58 S. Costantini

57. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road
map of current technologies and future trends. Computational Intelligence Journal 23(1),
61–91 (2007)

58. Costantini, S., Tocchio, A., Toni, F., Tsintza, P.: A multi-layered general agent model.
In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 121–132.
Springer, Heidelberg (2007)

59. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Declarative agent control. In:
Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 96–110. Springer,
Heidelberg (2005)

60. Kowalski, R., Sadri, F.: Towards a unified agent architecture that combines rationality with
reactivity. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 135–149.
Springer, Heidelberg (1996)

61. Costantini, S., Dell’Acqua, P., Tocchio, A.: Expressing preferences declaratively in logic-
based agent languages. In: McCarthy, J. (ed.) Proc. of Commonsense 2007, the 8th Interna-
tional Symposium on Logical Formalizations of Commonsense Reasoning. AAAI Spring
Symposium Series, AAAI Press (2007) a Special Event in Honor, Stanford University
(March 2007)

62. Gabbay, D.M., Smets, P.: Handbook of Defeasible Reasoning and Uncertainty Management
Systems. Kluwer Academic Publishers, Dordrecht (2000); edited collection

63. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam
(2006); collection of contributions

64. Van Gelder, A., Ross, K.A., Schlipf, J.: The well-founded semantics for general logic pro-
grams. Journal of the ACM (3) (1990)

65. Bowen, K.A., Kowalski, R.A.: Amalgamating language and metalanguage in logic program-
ming. In: Clark, K.L., Tärnlund, S.Å. (eds.) Logic Programming, pp. 153–172. Academic
Press, London (1982)

66. Marek, V.W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3), 587–618
(1991)

67. Marek, V.W., Truszczyński, M.: Computing intersection of autoepistemic expansions. In:
Proceedings of the First International Workshop on Logic Programming and Non Monotonic
Reasoning, pp. 35–70. The MIT Press, Cambridge (1991)

68. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. of the 22nd Conference on Artificial Intelligence, AAAI 2007, pp. 385–390 (2007)

69. Nisar, M.A.: Integration of answer set programming modules with logical agents. Master’s
thesis, University of the Punjab, Lahore, Pakistan (2010); Supervisor Prof. Stefania Costan-
tini, University of L’Aquila, Italy

70. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the DLV sys-
tem, pp. 79–103. Kluwer Academic Publishers, USA (2000)

First-Order Encodings for
Modular Nonmonotonic Datalog Programs�

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9–11, 1040 Vienna, Austria

{dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Recently Modular Nonmonotonic Logic Programs (MLP) have been
introduced which incorporate a call-by-value mechanism and allow for unre-
stricted calls between modules, including mutual and self recursion, as an ap-
proach to provide module constructs akin to those in conventional programming
in Nonmonotonic Logic Programming under Answer Set Semantics. This pa-
per considers MLPs in a Datalog setting and provides characterizations of their
answers sets in terms of classical (Herbrand) models of a first-order formula,
extending a line of research for ordinary logic programs. To this end, we lift
the well-known loop formulas method to MLPs, and we also consider the recent
ordered completion approach that avoids explicit construction of loop formulas
using auxiliary predicates. Independent of computational perspectives, the novel
characterizations widen our understanding of MLPs and they may prove useful
for semantic investigations.

1 Introduction

Since the early days of Datalog, modularity aspects have been recognized as an impor-
tant issue, and already the seminal notion of stratification [1] builds on an evaluation of
subprograms in an ordered way. This has been later largely elaborated to notions like
modular stratification [20] and XY-stratification incorporated in the LDL++ system [2],
and has been generalized to a syntactic notions of modularity for disjunctive Datalog
programs [7,9] that, in the context of non-monotonic logic programming, has been in-
dependently found as Splitting Sets [18]. More recently, research on modularity where
in contrast subprograms may mutually depend on each other has been intensified, with
DLP-functions [15] being the most prominent example to provide a Gaifman-Shapiro-
style module architecture [13].

However the above concepts do not cater a module concept as familiar in conven-
tional imperative and object-oriented languages, where procedures come with parame-
ters that are passed on during the evaluation. To provide support for this, [8] developed
modular logic programs, based on an extension of logic programs with genuine gener-
alized quantifiers, where modules can receive input that is passed on in a call-by-value
mode, in addition to the usual call-by-reference access to atoms in other modules. Lim-
itations of this seminal approach have been recently overcome with an generalized and

� This research has been supported by the Austrian Science Fund (FWF) project P20841 and the
Vienna Science and Technology Fund (WWTF) project ICT-08 20.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 59–77, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 M. Dao-Tran et al.

semantically refined notion of Modular Nonmonotonic Logic Programs (MLPs) in [6]
under the answer set semantics [14].

Roughly, an MLP is a system P = (m1, . . . , mn), of modules, where each module
mi = (Pi[qi], Ri) has a module name Pi with an associated list qi of formal input
atoms, and an associated set of rules Ri (the “implementation”). A module mi can
access another module mj using module atoms (in the body of a rule in Ri) of the form
Pj [p].o. Intuitively, the module atom evaluates to true if, on input of the atoms in p to
the module Pj , the atom o will be true in Pj . Such programs allow unrestricted cyclic
calls between modules; they can be seen as a generalization of DLP-functions from
propositional to Datalog programs that allow for positive cyclic calls between modules
(including recursion), and provide a call-by-value mechanism.

For example, the following MLP P = (m1, m2, m3) recursively checks whether the
number of facts over predicate q in the main module m1, which has no input (q1 is
empty) and implementation R1 = {q(a). q(b). ok ← P2[q].even .}, is even. Intu-
itively, m1 calls m2 with a rule for the check, and assigns the result to ok . The module
m2 is mutual recursive with module m3. They have the formal inputs q2 = q2 and
q3 = q3, respectively, and the implementations

R2 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q′2(X) ← q2(X), q2(Y),
not q′2(Y), X �= Y.

skip2 ← q2(X), not q′2(X).

even ← not skip2.

even ← skip2, P3[q′2].odd .

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, R3 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q′3(X) ← q3(X), q3(Y),
not q′3(Y), X �= Y.

skip3 ← q3(X), not q′3(X).

odd ← skip3, P2[q′3].even .

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

A call to m2 ‘returns’ even , if either the input q2 to m2 is empty (as then skip2 is
false), or the call of m3 with q′2 resulting from q2 by randomly removing one element
(then skip2 is true) returns odd . Module m3 returns odd for input q3, if a call to m2

with q′3 analogously constructed from q3 returns even . In any answer set of P, ok
is true.

In this paper, we further the work on MLPs and turn to characterizing of answer
sets in terms of classical models, in line with recent research in Answer Set Program-
ming. To this end, we first explore the notion of loop formulas to MLPs. Lin and Zhao
[19] first used loop formulas to characterize the answer sets of normal, i.e., disjunction-
free, propositional logic programs by the models of a propositional formula built of
the Clark completion [5] and of additional formulas for each positive loop in the de-
pendency graph of the program. They built on this result developing the ASP solver
ASSAT, which uses a SAT solver for answer sets computation [19]. The loop formula
characterization has subsequently been extended to disjunctive logic programs [16], and
to general propositional theories under a generalized notion of answer set [12]. In the
latter work, the notion of a loop has been adapted to include trivial loops (singletons)
in order to recast Clark’s completion as loop formulas. Besides their impact on ASP
solver development, loop formulas are a viable means for the study of semantic proper-
ties of ASP programs, as they allow to resort to classical logic for characterization. For
instance, in the realm of modular logic programming, loop formulas have recently been
fruitfully extended to DLP-functions [15], simplifying some major proofs.

The expedient properties of MLPs, however, render a generalization of loop formulas
more involved. Due to the module input mechanism, it is necessary to keep track of

First-Order Encodings for Modular Nonmonotonic Datalog Programs 61

different module instantiations. Furthermore, because of unlimited recursion in addition
to loops that occur inside a module, loops across module boundaries, i.e., when modules
refer to each other by module atoms, have to be captured properly. To cope with this
requirements,

– we adapt Clark’s completion for module atoms w.r.t. different module instantia-
tions;

– we provide a refined version of the positive dependency graph for an MLP, the mod-
ular dependency graph, and cyclic instantiation signature: the combination then
relates module instantiations with the atoms of a module;

– based on it, we define modular loops and their external support formulas; and
– eventually, we define modular loop formulas, and show that the conjunction of

all modular loop formulas for an MLP characterizes the answer sets of P in its
(Herbrand) models.

Furthermore, the definition of the MLP semantics in terms of the FLP-reduct [11] and
the underlying principal idea of loop formulas requires us to restrict module atoms
under negation to be monotonic. This is often not a limitation, since negated module
atoms may be easily replaced by unnegated ones using a simple rewriting technique
(e.g., for stratified program parts). Intuitively, the restriction seems to be the trade off
for the benign property that under the FLP-reduct, answer sets of a MLP – even with
nonmonotonic module atoms – are always minimal models of the program. The latter
would not be the case if they were defined under the traditional GL-reduct [14], for
which loop formulas have been developed.

Second, we explore the recent approach of [3] to modify the Clark completion in
order to characterize answer set semantics of non-monotonic logic programs with finite
Herbrand universes but without using loop formulas explicitly. The idea is to introduce
predicates of the form Tqp(y,x) which intuitively holds when q(y) is used to derive
p(x), and to respect a derivation order; the completion is allowed to take effect only if
no positive loop is present, which is ensured by adding Tqp(y,x) ∧ ¬Tpq(x,y) in the
completion of rules with head p(x) and q(y) in the positive body; for this to work, it
must be ensured that Tqp respects transitive derivations, i.e., the composition of Tqr and
Trp must be contained in Tqp. The resulting translation is called ordered completion.

An advantage of this approach is that, at the cost of fresh (existential) predicates,
constructing the (possible exponentially) many loop formulas can be avoided, while an-
swer sets may be extracted from the (Herbrand) models of a first-order sentence, which
may be fed into a suitable theorem prover. This similarly applies to MLPs, where unre-
stricted call-by-value however leads to an unavoidable blowup, which may be avoided
by resorting to higher-order logic. Independent of computational perspectives, the novel
characterizations widen our understanding of MLPs and they may prove, similarly as
those in [15], useful for semantic investigations.

2 Preliminaries

We first recall syntax and semantics of modular nonmonotonic logic programs [6].

Syntax. Let V be a vocabulary C, P , X , and M of mutually disjoint sets whose el-
ements are called of constants, predicate, variable, and module names, respectively,

62 M. Dao-Tran et al.

where each p ∈ P has a fixed associated arity n ≥ 0, and each module name in M has
a fixed associated list q = q1, . . . , qk (k ≥ 0) of predicate names qi ∈ P (the formal
input parameters). Unless stated otherwise, elements from X (resp., C ∪P) are denoted
with first letter in upper case (resp., lower case).

Elements from C ∪X are called terms. An ordinary atom (simply atom) has the form
p(t1, . . . , tn), where p ∈ P and t1, . . . , tn are terms; n ≥ 0 is its arity. A module
atom has the form P [p1, . . . , pk].o(t1, . . . , tn), where P ∈ M is a module name with
associated q, p1, . . . , pk is a list of predicate names pi ∈ P , called module input list,
such that pi has the arity of qi in q, and o ∈ P is a predicate name with arity n such that
for the list of terms t1, . . . , tn, o(t1, . . . , tn) is an ordinary atom. Intuitively, a module
atom provides a way for deciding the truth value of a ground atom o(c) in a program P
depending on the truth of a set of input atoms.

A normal rule r (or rule for short) is of the form

α ← β1, . . . , βm, not βm+1, . . . , not βn (m, n ≥ 0), (1)

where α is an atom and each βj is an ordinary or a module atom. We define H(r) =
{α} and B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βm} and B−(r) =
{βm+1, . . . , βn}. For � ∈ {+,−} we let B�

m(r) and B�
o(r) be the set of module and

ordinary atoms that appear in B�(r), respectively. If B(r) = ∅ and H(r) = ∅, then r is
a fact; r is ordinary, if it does not contain module atoms.

We now formally define the syntax of modules and normal MLPs. A module is a
pair m = (P [q], R), where P ∈ M with associated input q, and R is a finite set
of normal rules. It is either a main module (then |q| = 0) or a library module, and
is ordinary iff all rules in R are ordinary. We omit empty [] from (main) modules if
unambiguous.

A normal modular logic program (MLP) is a tuple P = (m1, . . . , mn), n ≥ 1, where
all mi are modules and at least one is a main module, where M = {P1, . . . , Pn}.

Example 1. Let m1 = (P1[], R1) with R1 = {p ← P2[p].r} and m2 = (P2[q], R2)
with R2 = {r ← q}. Then P = (m1, m2) is a normal MLP with the main module m1.

Example 2. Let m1 = (P1[], R1) with R1 = {p1 ← P2.p2} and m2 = (P2[], R2)
with R2 = {p2 ← P1.p1}. Putting both modules together, we get the MLP P =
(m1, m2) with the main modules m1, m2.

W.l.o.g, in the rest of this paper, we assume that for all i = j, the atoms in mi and mj

are distinct; thus, P =
⋃n

i=1 Pi where all Pi are disjoint.

Semantics. The semantics of MLPs is defined in terms of Herbrand interpretations and
grounding as customary in traditional logic programming and ASP. The Herbrand base
w.r.t. vocabulary V , HBV , is the set of all ground ordinary and module atoms that can
be built using C, P and M; if V is implicit from an MLP P, it is the Herbrand base
of P and denoted by HBP. The grounding of a rule r is the set gr(r) of all ground
instances of r w.r.t. C; the grounding of rule set R is gr(R) =

⋃
r∈R gr(r), and the one

of a module m, gr(m), is defined by replacing the rules in R(m) by gr(R(m)); the
grounding of an MLP P is gr(P), which is formed by grounding each module mi of
P. The semantics of an arbitrary MLP P is given in terms of gr(P).

First-Order Encodings for Modular Nonmonotonic Datalog Programs 63

Let S ⊆ HBP be any set of atoms. For any list of predicates p = p1, . . . , pk and q =
q1, . . . , qk, we use the notation S|p = {pi(c) ∈ S | 1 ≤ i ≤ k} and S|qp = {qi(c) |
pi(c) ∈ S, 1 ≤ i ≤ k}.

For a module name P ∈ M with associated formal input q and S ⊆ HBP|q, we say
that P [S] is a value call with input S; we denote by VC (P) the set of all such P [S]
for P. Intuitively, VC (P) names all instances of modules in P, which we thus also use
as an index set. A rule base is an (indexed) tuple R = (RP [S] | P [S] ∈ VC (P)) of
sets RP [S] of rules. For a module mi = (Pi[qi], Ri) from P, its instantiation with S ⊆
HBP|qi

, is IP(Pi[S]) = Ri∪S. For an MLP P, its instantiation is the rule base I(P) =
(IP(Pi[S]) | Pi[S] ∈ VC (P)).

We next define (Herbrand) interpretations and models of MLPs.

Definition 1 (model). An interpretation M of an MLP P is an (indexed) tuple (MPi[S] |
Pi[S] ∈ VC (P)), where all MPi[S] ⊆ HBP contain only ordinary atoms. To ease
notation, we also write Mi/S for MPi[S]. We say that M is a model of

– an atom α at Pi[S], denoted M, Pi[S] |= α, iff (i) α ∈ Mi/S when α is ordinary,
and (ii) o(c) ∈ Mk/((Mi/S)|qk

p), when α = Pk[p].o(c) is a module atom;

– a rule r at Pi[S] (M, Pi[S] |= r), iff M, Pi[S] |= H(r) or M, Pi[S] |= B(r), where
(i) M, Pi[S] |= H(r), iff M, Pi[S] |= α for H(r) = {α}, and (ii) M, Pi[S] |=
B(r), iff M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] |= α for all α ∈ B−(r);

– a set of rules R at Pi[S] (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R;

– a rule base R (M |= R) iff M, Pi[S] |= RPi[S] for all Pi[S] ∈ VC (P).
Finally, M is a model of P, denoted M |= P, iff M |= I(P) in case P is ground resp.
M |= gr(P), if P is nonground. An MLP P is satisfiable, iff it has a model.

For any interpretations M and M′ of P, we define M ≤ M′, iff Mi/S ⊆ M ′
i/S for

every Pi[S] ∈ VC (P), and M < M′, iff M = M′ and M ≤ M′. A model M of P
(resp., a rule base R) is minimal, if P (resp., R) has no model M′ such that M′ < M.

We next recall answer sets for MLPs. To focus on relevant modules, we use a call
graph, which intuitively captures the relationship between module instances and poten-
tial module calls. The nodes correspond to module instances and edges to presumptive
calls from one instance to others; edge labels distinguish different syntactical calls.
Given an interpretation M, one can determine the actual calls, starting from the main
modules, following the edges whose labels match with the atoms in M. This leads then
to the relevant call graph with respect to M.

Definition 2 (call graph). The call graph of an MLP P is a labeled digraph CGP =
(V, E, l) with vertex set V = VC (P) and an edge e from Pi[S] to Pk[T] in E iff
Pk[p].o(t) occurs in Ri, and e has the input list p in its label, i.e., p ∈ l(e). Given an
interpretation M of P, the relevant call graph CGP(M) = (V ′, E′) of P w.r.t. M is the
smallest subgraph of CGP such that E′ contains all edges from Pi[S] to Pk[T] of CGP

where (Mi/S)|qk

l(e) = T and V ′ contains all Pi[S] that are main module instantiations
or induced by E′; any such Pi[S] is called relevant w.r.t. M.

For instance, the call graphs of the MLPs in Example 1 and 2 are shown in Fig. 1a
and 1b, respectively.

64 M. Dao-Tran et al.

P1[∅]P2[∅] P2[{q}]
p

p

(a) Example 1

P1[∅] P2[∅]

()

()

(b) Example 2

Fig. 1. Call graphs

For answer sets of an MLP P, we use a reduct of the instantiated program as cus-
tomary in ASP; for reasons discussed in [6], we use the FLP reduct [11] rather than
the traditional Gelfond-Lifschitz reduct [14]. As P might have inconsistent module in-
stantiations, which compromises the existence of an answer set of P, we contextualize
reducts and answer sets. Let V (G) and E(G) denote the vertex and edge set of a graph
G, respectively.

Definition 3 (context-based reduct). A context for an interpretation M of an MLP P
is any set C ⊆ VC (P) such that V (CGP(M)) ⊆ C. The reduct of P at P [S] w.r.t. M
and C, denoted f P(P [S])M,C , is the rule set Igr(P)(P [S]) from which, if P [S] ∈ C,
all rules r such that M, P [S] |= B(r) are removed. The reduct of P w.r.t. M and C
is f PM,C = (f P(P [S])M,C | P [S] ∈ VC (P)).

That is, outside C the module instantiations of P remain untouched, while inside C the
FLP-reduct [11] is applied.

Definition 4 (answer set). Let M be an interpretation of a ground MLP P. Then M is
an answer set of P w.r.t. a context C for M, iff M is a minimal model of f PM,C .

In particular, if P = (m1) consists of a single module m1 with no calls to itself, the
answer sets of P coincide with the answer sets of R1.

Note that C is a parameter that allows to select a degree of overall-stability for answer
sets of P. The minimal context C = V (CGP(M)) is the relevant call graph of P. For
the rest of this paper, we assume that C = VC (P), i.e., all module instances have
answer sets (see Section 7 for further discussion).

Example 3. The program in Example 1 has the single answer set (M1/∅ := ∅, M2/∅ :=
∅, M2/{q} := {r, q}) while the program in Example 2 has the single answer set
(M1/∅ := ∅, M2/∅ := ∅).

A module atom β = Pk[p].o(c) that appears in a rule in mi = (Pi[qi], Ri) in an MLP
P is monotonic, if for all interpretations M,N of P such that M ≤ N and M = N,
and all Pi[S] ∈ VC (P), we have that M, Pi[S] |= β implies N, Pi[S] |= β.

In the sequel, we will characterize the answer sets of MLPs via loop formulas and
program completion where all module atoms under negation are monotonic. Such char-
acterizations consist of two parts: (1) the completion, which singles out classical mod-
els, which is studied in Section 3; (2) the loop formulas, which take care of minimality
(foundedness) aspects; this will be considered in Section 4. Alternatively, the comple-
tion can be made ordered, which we do in Section 5.

First-Order Encodings for Modular Nonmonotonic Datalog Programs 65

3 Program Completion for MLPs

We start with adapting the classical Clark completion [5] with module atoms. The intu-
ition behind this adaption is to replace every module atom β = Pk[p].o(c) in mi by a
formula μ(mi, β, S) which selects, based on the value of the input atoms p in the value
call Pi[S], the “right” instance Pk[T] of Pk and retrieves the value of o(c) in it.

Given a set S ⊆ HBP of ordinary atoms, we assume that S is enumerated, i.e.,
S = {a1, . . . , an} where n = |S|. We identify subsets B of S with their characteristic
function χB : S → {0, 1} such that χB(a) = 1 iff a ∈ B.

For any ordinary atom a ∈ HBP and any set of ordinary atoms A, let aA denote a
fresh atom, and for any set B ⊆ HBP of ordinary atoms, let BA = {aA | a ∈ B}. Next,
we define support rules. Intuitively, support rules are used to define the completion of
an atom. The support rules of a set of rules R w.r.t. an ordinary atom α ∈ HBP is

SR(α, R) = {r ∈ R | H(r) = {α}} .

Let ¬.A = {¬a | a ∈ A} and, as usual,
∨

F =
∨

f∈F f and
∧

F =
∧

f∈F f (note
that

∨ ∅ = ⊥ and
∧ ∅ = �).

Then, for every module atom β = Pk[p].o(c) ∈ HBP from some module mi =
(Pi[qi], Ri) (where Pk has formal input qk = qk,1, . . . , qk,nk

) and S ⊆ HBP|qi
, let

βmi,S,T =
∧

χT (qk,j(c))=1

pS
j (c) ∧

∧

χT (qk,j(c))=0

¬pS
j (c)

and

μ(mi, β, S) =
∨

T⊆HBP|qk

(
βmi,S,T ∧ oT (c)

)
,

μ̄(mi, β, S) =
∨

T⊆HBP|qk

(
βmi,S,T ∧ ¬oT (c)

)
.

We can now define the modular completion, which relates instantiations of the rules in
modules to propositional formulas.

Definition 5 (Modular Completion). Let r be a rule from module mi = (Pi[qi], Ri),
and let S ⊆ HBP|qi

. Then

γ(mi, r, S) =
∧

B+
o (r)S ∧

∧

β∈B+
m(r)

μ(mi, β, S) ∧ (2)

∧
¬.B−

o (r)S ∧
∧

β∈B−
m(r)

μ̄(mi, β, S) ⊃ H(r)S ,

and

σ(mi, r, S) =
∧

B+
o (r)S ∧

∧

β∈B+
m(r)

μ(mi, β, S) ∧ (3)

∧
¬.B−

o (r)S ∧
∧

β∈B−
m(r)

μ̄(mi, β, S) ,

66 M. Dao-Tran et al.

For a set of rules R, we let σ(mi, R, S) =
∨

r∈R σ(mi, r, S) and γ(mi, R, S) =∧
r∈R γ(mi, r, S).
For any value call Pi[S] of module mi = (Pi[qi], Ri), qi = qi,1, . . . , qi,ni , in P, let

γ(P, Pi[S]) = γ(mi, Ri, S) ∧
∧

χS(qi,j(c))=1

qS
i,j(c) , (4)

σ(P, Pi[S]) =
∧

r∈Ri,a∈H(r)

aS ⊃ σ(mi, SR(a, Ri), S) (5)

and

γ(P) =
∧

Pi[S]∈VC (P)

γ(P, Pi[S]) ,

σ(P) =
∧

Pi[S]∈VC (P)

σ(P, Pi[S]) .

Example 4. Continuing with P of Example 1, we get the following formulas (here,
S1 = ∅, S0

2 = ∅ and S1
2 = {q}):

– γ(P, P1[∅]) = (¬pS1 ∧ rS0
2) ∨ (pS1 ∧ rS1

2) ⊃ pS1 ,
– γ(P, P2[∅]) = qS0

2 ⊃ rS0
2 ,

– γ(P, P2[{q}]) =
(
qS1

2 ⊃ rS1
2

)
∧ qS1

2 ,

– σ(P, P1[∅]) = pS1 ⊃ (¬pS1 ∧ rS0
2) ∨ (pS1 ∧ rS1

2),
– σ(P, P2[∅]) = rS0

2 ⊃ qS0
2 ,

– σ(P, P2[{q}]) = rS1
2 ⊃ qS1

2 .
The conjunction of the first three formulas yields γ(P), and the last three give us σ(P).

Example 5. For the MLP P in Example 2, we get the following formulas (S = ∅):
– γ(P) = pS

2 ⊃ pS
1 ∧ pS

1 ⊃ pS
2

– σ(P) = pS
1 ⊃ pS

2 ∧ pS
2 ⊃ pS

1

The formula γ(P) now captures the (classical) models of P.

Lemma 1. The models of γ(P) correspond 1-1 to the models of P. That is, (i) if M |=
γ(P), then M |= P, where Mi/S = {p(c) ∈ HBP | pS(c) ∈ M ∧ p ∈ Pi}, for all
Pi[S], and (ii) if M |= P, then M |= γ(P), where M =

⋃
Pi[S](Mi/S)S.

Proof (sketch). (i) Suppose M |= γ(P), and let M as described. We need to show
that M, Pi[S] |= r for each r ∈ IP(Pi[S]) = Ri ∪ S and Pi[S] ∈ VC (P). If r is a
fact qj(c) for a formal input parameter qj of Pi[q], then qj(c) ∈ S and, by formula (4),
M |= qS

j (c); hence, qj(c) ∈ Mi/S, and thus M, Pi[S] |= r. Otherwise, r ∈ Ri.
As M |= γ(mi, Ri, S), we have that M satisfies the formula (2). By construction,
for each ordinary atom β in r, we have M |= βS iff M, Pi[S] |= β; furthermore,
M |= μ(mi, β, S) for Pk[p].o(c) iff M |= oT (c), where T ⊆ HBP|qk

is the unique set
T such that M |= ∧

j(pS
j (c) ≡ qT

i,j(c)). That is, M |= μ(mi, β, S) iff M, Pi[S] |= β.
Hence, it follows that M, Pi[S] |= r.

First-Order Encodings for Modular Nonmonotonic Datalog Programs 67

(ii) Suppose M |= P, and let M =
⋃

Pi[S](Mi/S)S . To show that M |= γ(P), we
must show that M |= γ(P, Pi[S]) for all Pi[S]. As S ⊆ IP(Pi[S]) and M, Pi[S] |=
IP(Pi[S]), all conjuncts qS

j (representing the formal input) in γ(P, Pi[S]) are satis-
fied by M ; thus it remains to show M |= γ(mi, Ri, S), i.e., M |= γ(mi, r, S) for
each r ∈ Ri. For each ordinary atom β in r, we have by construction of M that
M |= βS iff M, Pi[S] |= β; furthermore, for each module atom β = Pk[p].o(c) in
r, we have that M |= μ(mi, β, S) iff M |= oT (c), i.e., o(c) ∈ Mk/T , where T ⊆
HBP|qk

contains qk,j(c) iff M |= pS
j (c), i.e., pj(c) ∈ Mi/S. Thus, M |= μ(mi, β, S)

iff o(c) ∈ Mk/(Mi/S)|qk
p ; in other words, iff M, Pi[S] |= o(c). As M, Pi[S] |= r, it

follows that M |= γ(mi, r, S).

Call a model M of P supported, if for every atom α ∈ Mi/S, Pi[S] ∈ VC (P), there is
some rule r ∈ SR(α, IP(Pi[S])) such that M, Pi[S] |= B(r). Then, based on Lemma 1
the following can be shown.

Lemma 2. The models of γ(P) ∧ σ(P) correspond 1-1 to the supported models of P.

In particular, if P is acyclic (no atom depends recursively on itself), then it has a single
supported model, which gives rise to an answer set of P.

Example 6. Continuing with Example 4, we get for γ(P) the classical models M1 =
{rS1

2 , qS1
2}, M2 = {pS1, rS0

2 , rS1
2 , qS1

2}, M3 = {pS1, rS1
2 , qS1

2}, and M4 = {pS1 , rS0
2 ,

rS1
2 , qS0

2 , qS1
2}. They correspond to the classical models M1 = (M1/∅ := ∅, M2/∅ :=

∅, M2/{q} := {r, q}), M2 = (M1/∅ := {p}, M2/∅ := {r}, M2/{q} := {r, q}),
M3 = (M1/∅ := {p}, M2/∅ := ∅, M2/{q} := {r, q}), and M4 = (M1/∅ :=
{p}, M2/∅ := {r, q}, M2/{q} := {r, q}) of P. The formula γ(P) ∧ σ(P) has only
the classical models M1,M3, and M4, which will give us the supported models M1,
M2, and M4 of P.

Example 7. In Example 5, the models of γ(P) are M1 = ∅ and M2 = {pS
1 , pS

2 }, which
are also the models of γ(P)∧σ(P). Both of them correspond to the classical as well as
supported models of P, namely M1 = (M1/∅ := ∅, M2/∅ := ∅) and M2 = (M1/∅ :=
{p1}, M2/∅ := {p2}).

4 Loop Formulas for MLPs

In this section, we develop modular loop formulas that instantiate each program module
with possible input to create the classical theory of the program, and then add loop for-
mulas similar as in [16]. However, we have to respect loops not only inside a module,
but also across modules due to module atoms. The latter will be captured by a modular
dependency graph, which records positive dependencies that relates module instantia-
tions with the atoms in a module. The instantiation of the modules makes it necessary to
create fresh propositional atoms very similar to grounding of logic programs; complex-
ity results in [6] suggest that there is no way to circumvent this: with arbitrary input,
already propositional Horn MLPs are EXP-complete and normal propositional MLPs
are NEXP-complete (considering brave inference of a ground atom, i.e., membership
in some answer set). In the non-ground case, Horn MLPs are 2EXP-complete, while

68 M. Dao-Tran et al.

p P2[p].r

r q

(a) Example 1

p1 P2.p2

p2 P1.p1

(b) Example 2

Fig. 2. Module dependency graphs

normal non-ground MLPs are 2NEXP-complete. In the rest of this section, we assume
that all negated module atoms in a MLP are monotonic and that P is ground.

We define now the modular dependency graph to keep track of dependencies between
modules and rules. It is a ground dependency graph with two additional types of edges.

Definition 6 (Modular Dependency Graph). Let P = (m1, . . . , mn) be an MLP. The
dependency graph of P is the digraph MGP = (V, E) with vertex set V = HBP and
edge set E containing the following edges:

– p(c1) → q(c2), for each r ∈ Ri with H(r) = {p(c1)} and q(c2) ∈ B+(r).
– a → b, if one of (i)–(ii) holds, where α is of the form Pj [p].o(c) in Ri and Pj has

the associated input list qj:
(i) a = α and b = o(c) ∈ HBP;

(ii) a = q�(c) ∈ HBP|qj
and b = p�(c) ∈ HBP|p for 1 ≤
 ≤ |qj|.

Intuitively, the module graph is “uninstantiated”, i.e., all module atoms are purely syn-
tactic. This also means that loops that show up in the module graph must be “instanti-
ated” in the formulas.

Example 8. The module dependency graphs of the programs in Examples 1 and 2 are
shown in Fig. 2a and 2b, resp. In both figures, the two upper nodes are from m2, while
the nodes below stem from m1. Note that the dashed edges stem from condition (i)
in Definition 6, while dotted edges are from condition (ii). Straight edges are standard
head-body dependencies.

We define now modular loops based on the modular dependency graph.

Definition 7 (Modular Loops). A set of atoms L ⊆ V (MGP) is called a modular loop
for P iff the subgraph of MGP induced by L is strongly connected.

Note that L may contain module atoms, and single-atom loops are allowed.
Modular loop formulas have then the same shape as standard loop formulas [19,16],

with the important distinction that external support formulas may take the input S from
the value call Pi[S]. For that, we define first the external support rules of rule set R
w.r.t. a set L ⊆ HBP as

ER(L, R) = {r ∈ R | H(r) ∩ L = ∅, B+(r) ∩ L = ∅} .

Note that L may contain module atoms.

First-Order Encodings for Modular Nonmonotonic Datalog Programs 69

Modular loops may go through the atoms of multiple modules, but do not take care
of “instantiated loops” that stem from the input. Given a modular loop, the instanti-
ated loop may be exponentially longer in the propositional case, whereas it could have
double-exponential length in the non-ground case. To keep record of these loops, we
next define cyclic instantiation signatures that are used to instantiate modular loops.

Definition 8 (Cyclic instantiation signature). Let L be a modular loop for P =
(m1, . . . , mn). A cyclic instantiation signature for L is a tuple S = (S1, . . . ,Sn) such
that for all i ∈ {1, . . . , n}, (i) Si ⊆ 2HBP|qi with Si = ∅ and all S ∈ Si have S∩L = ∅,
if L has some ground atoms with predicates from Pi, and (ii) Si = ∅ otherwise.

Intuitively, we use a modular loop as template to create loops that go over instantiations.

Example 9. The MLP P in Example 1 has the loop L = {p, P2[p].r, r, q} for which we
get one cyclic instantiation signatureS1 = ({∅}, {∅}); ({∅}, {{q}}) and ({∅}, {∅, {q}})
are not cyclic instantiation signatures as they share atoms with L, thus always get sup-
port from input S. Intuitively, this captures those module instantiations that cycle over
module input, but have no support from the formal input, viz., P1[∅] ↔ P2[∅].

Example 10. In Example 2, we have a loop L = {p1, P2.p2, p2, P1.p1}. We get one
cyclic instantiation signatures: S1 = ({∅}, {∅}). Here, S1 builds a cycle over module
instantiations from the mutual calls in m1 and m2.

Definition 9 (Modular Loop Formulas). Let S = (S1, . . . ,Sn) be an instantiation
signature for the modular loop L in MLP P. The loop formula for L w.r.t. S in P is

λ(S,L,P) =
n∨

i=1

∨

T∈Si

(∨
(L|Pi)

T
)

⊃
n∨

i=1

∨

S∈Si

σ(mi, ER(L, Ri), S) .

Given P, the loop formula for a modular loop L in P is the conjunction λ(L,P) =∧
S λ(S,L,P) for all cyclic instantiation signatures S of L, and the loop formula for P

is the conjunction λ(P) =
∧

L λ(L,P) for all modular loops L in P.

Intuitively, the formal input in a value call Pi[S] always adds external support for the in-
put atoms in S as we add S to the instantiation IP(Pi[S]). Since we obtain all supported
models with γ(P) ∧ σ(P), thus also have S there, we can restrict to those instantiation
signaturesS for a modular loop L that have no support from formal input. Putting things
together, let us define

Λ(P) = γ(P) ∧ σ(P) ∧ λ(P) .

Example 11. Continuing with Example 4, we get the following modular loop formulas
based on the loop L and instantiation signature S1 for L shown in Example 9 (here,
S1 = ∅, S0

2 = ∅): λ(S1,L,P) = (pS1 ∨ rS0
2 ∨ qS0

2) ⊃ ⊥. This formula and γ(P) ∧
σ(P) yields Λ(P), whose model is M1 = {rS1

2 , qS1
2}, which coincides with the answer

set M1 = (∅, ∅, {r, q}) of P.

70 M. Dao-Tran et al.

Example 12. Based on Example 5 and 10 we get the following modular loop formulas
using the loop L and instantiation signature S1 (S = ∅): λ(S1,L,P) = pS

1 ∨ pS
2 ⊃

⊥ ∨ ⊥. The classical model of the conjunction of γ(P) ∧ σ(P) and above formula
(= Λ(P)) is thus M1 = ∅, which coincides with the answer set M1 = (∅, ∅) of P.

We have the following result.

Theorem 1. Given an MLP P in which all negated module atoms are monotonic, the
answer sets of P and the classical models of Λ(P) correspond, such that (i) if M |=
Λ(P), then there is some answer set M of P such that Mi/S = {p(c) ∈ HBP |
pS(c) ∈ M ∧p ∈ Pi} for all Pi[S] ∈ VC (P), and (ii) if M is an answer set of P, then
M |= Λ(P), where M =

⋃
Pi[S](Mi/S)S .

5 Ordered Completion for MLPs

In this section, we follow the idea in [3] to provide an ordered completion for non-
ground MLPs. We consider MLPs in the Datalog setting, i.e., an MLP P can be viewed
as a modular nonmonotonic Datalog program which has an infinite set of constants
C and is independent from the domains (this is ensured by forcing safety conditions
to rules in P). Grounding of P is done with respect to a finite relational structure M
(extended to MLPs), having a finite universe UM accessible by constants; it is the active
domain we are restricted to. We also need to adapt the notion of answer set for this
setting. Like above, we assume that all negated module atoms in a MLP are monotonic.
Moreover, we assume that MLPs do not contain facts, i.e., rules of form (1) have non-
empty body.1

Finite Structures for MLPs. Given an MLP P, we call a predicate in P intensional if it
occurs in the head of a rule in P or in the formal input parameters qi of a module mi =
(Pi[qi], Ri), and extensional otherwise. Intuitively, intensional predicates are defined
by the rules in P and the input given to a module instantiation, whereas extensional
predicates stem from the extension given by a relational structure. The signature of
an MLP P contains all intensional predicates, extensional predicates, and constants
occurring in P. The set of intensional (resp., extensional) predicates in a module m is
denoted by Int(m) (resp., Ext(m)).

A finite (Herbrand) relational structure for P (H-structure) can be defined as a
pair M = (UM, ·M), where the finite universe UM consists of constants in P and
·M is a mapping associating (i) each constant in P with itself, i.e., cM = c, (ii) each
extensional predicate q in P with a relation qM over M, where qM has the same arity
as q, (iii) each intensional predicate p in a module mi = (Pi[qi], Ri), together with
each input S from the value calls Pi[S] ∈ VC (P), with a relation pM,S whose arity
is the same as p. The grounding process is gradually defined as follows. The ground-
ing of a rule r under M is the set gr(r, M) of all ground instances of r by replacing
all variables in the rules by some domain objects in M. The grounding of a rule set R
w.r.t. M is gr(R, M) =

⋃
r∈R gr(r, M) ∪ {q(c) | q ∈ Ext(R) ∧ c ∈ qM}; intuitively,

1 This is w.l.o.g., since we can remove facts from an MLP and map them to extensional relations
in a finite relational structure.

First-Order Encodings for Modular Nonmonotonic Datalog Programs 71

it means that rules are grounded wrt. M and facts are taken from the finite structure as
a database. The grounding of a module m wrt. M, denoted by gr(m, M), is defined by
replacing the rules in R(m) by gr(R(m), M). Finally, the grounding of P wrt. M is
gr(P, M), which is formed by grounding each module mi of P wrt. M.

We say that M is an answer set of P iff the interpretation M = (Mi/S | Pi[S] ∈
VC (P)), where

Mi/S = {q(c) | q ∈ Ext(mi) ∧ c ∈ qM} ∪ {p(c) | p ∈ Int(mi) ∧ c ∈ pM,S} ,

is an answer set of gr(P, M) according to Definition 4.

Ordered Completion. Given an MLP P, our goal now is to give a translation of P to
a first-order formula such that the models of the latter correspond to the answer sets of
the former.

Suppose that we are in a value call Pi[S] of the module mi = (Pi[qi], Ri) and
consider a module atom β = Pj [p].o(y) from a module mj = (Pj [qj], Rj). For-
mula βmi,S,T , as defined in Section 3, can then match the interpretation of p to an
input T of β.

Once this is done, we can “guess” the right T by ranging over all possible subsets
of the restricted Herbrand base HBP|qj

of the called module mj with formal input
parameters qj. For each guess, we translate the module atom β to its output predicate
labeled with the corresponding input T . Depending on whether β appears in the positive
(resp. negative) part of the body of a rule, one uses the translation μ′ (resp., μ′):

μ′(mi, β, S) =
∨

T⊆HBP|qj

βmi,S,T ∧ oT (y)

μ′(mi, β, S) =
∨

T⊆HBP|qj

βmi,S,T ∧ ¬oT (y) .

Compared to μ and μ, the primed version here deals with non-ground output of β.
Now we can build the left direction of the completion, which intuitively says that

if there is some ground body which holds, then the respective head is concluded. We
assume that rules are standardized apart, i.e., a predicate a appearing in the head of
a rule always has the form a(x). Suppose that free variables in the body of a rule r
are y1, . . . ,yn, the left hand side of the completion γ′(mi, a(x), S) is a lifted version
of γ(mi, r, S) to the non-ground case which merges all supporting rules for a(x). We
define

γ′(mi, a(x), S) =

∀x
⎡
⎣ ∨

r∈SR(a(x),Ri)

∃y1, . . . ,yn

⎛
⎝ ∧

pl(yl)∈B+
o (r)

pS
l (yl) ∧

∧

pl(yl)∈B−
o (r)

¬pS
l (yl)∧

∧

β∈B+
m(r)

μ′(mi, β, S) ∧
∧

β∈B−
m(r)

μ′(mi, β, S)

⎞
⎠ ⊃ aS(x)

⎤
⎦ .

72 M. Dao-Tran et al.

Example 13. Take P from Example 1 and the labels S1, S0
2 , and S1

2 from Example 11.
We have γ′(m1, p, ∅) = (¬pS1 ∧ rS0

2) ∨ (pS1 ∧ rS1
2) ⊃ pS1 .

We next turn to build the right hand side of the completion, with a modification concern-
ing the order between predicates. Similar to [3], we use a predicate D to keep track of
the derivation/dependency ordering between labeled predicates. Basically, D is labeled
with subscripts describing the two related predicates (the former is used in deriving the
latter, in a transitive way), and superscripts referring to the respective inputs. For exam-
ple, DTS

oa (y,x) means that o(y) in a value call Pj [T] is used to derive a(x) in Pi[S];
hence, DTS

oa (y,x) ∧ ¬DST
ao (x,y) means that there is no loop between the two. Using

this, the ordinary predicates in a rule r can be ordered as follows:

δ(mi, r, S) =
∧

a(x)∈H(r)

∧

b∈Int(mi)

∧

b(z)∈B+
o (r)

DSS
ba (z,x) ∧ ¬DSS

ab (x, z) .

Concerning module atoms, we upgrade the translation for module atoms μ′ to μ�

with atom a(x) as an additional argument. This new translation not only takes care of
matching labels but also prevents loops between the output atom of β and a(x), as well
as loops between input predicates and formal arguments of the respective module call.
In the following formula, pk and qj,k come correspondingly from the input predicate
list p of β and the formal arguments qj of module mj :

μ�(mi, β, S, a(x)) =
∨

T⊆HBP|qj

βmi,S,T ∧ oT (y) ∧ DTS
oa (y,x) ∧ ¬DST

ao (x,y)∧

∀z
(∧

DST
pkqj,k

(z, z) ∧ ¬DTS
qj,kpk

(z, z)

)
.

The right hand side of the completion applies to every intensional predicate. Intuitively,
this formula makes sure that whenever a head is true, then there must be some rule
with the body satisfied, plus there is no loop involving the head and any atom in the
body (both ordinary and module atoms), or between the input predicates and the cor-
responding formal input parameters of the called module; this is encoded in δ and μ�,
respectively:

ρ(mi, a(x), S) =

∀x
⎡
⎣aS(x) ⊃

∨

r∈SR(a(x),Ri)

∃y1, . . . ,yn

⎛
⎝ ∧

pl(yl)∈B+
o (r)

pS
l (yl) ∧

∧

pl(yl)∈B−
o (r)

¬pS
l (yl) ∧

δ(mi, r, S) ∧
∧

β∈B+
m(r)

μ�(mi, β, S, a(x)) ∧
∧

β∈B−
m(r)

μ′(mi, β, S)

⎞
⎠
⎤
⎦ .

Example 14. Continuing with Example 13, we get

ρ(m1, p, ∅) = pS1 ⊃ (¬pS1 ∧ rS0
2 ∧ D

S0
2S1

rp ∧ ¬D
S1S0

2
pr ∧ D

S1S0
2

pq ∧ ¬D
S0

2S1
qp)

∨ (pS1 ∧ rS1
2 ∧ D

S1
2S1

rp ∧ ¬D
S1S1

2
pr ∧ D

S1S1
2

pq ∧ ¬D
S1

2S1
qp).

First-Order Encodings for Modular Nonmonotonic Datalog Programs 73

Then, the ordered completion for an intensional predicate a is simply the conjunction
of γ′ and ρ:

ψ(mi, a(x), S) = γ′(mi, a(x), S) ∧ ρ(mi, a(x), S).

The ordered completion for a value call Pi[S] is the collection of ordered comple-
tions of all intensional predicates and the realization of the input via predicates in qi,
all labeled with S:

ψ(P, Pi[S]) =
∧

a∈Int(mi)

ψ(mi, a(x), S) ∧
∧

χS(qi,j(c))=1

qS
i,j(c) .

The only thing left is to capture the closure condition of the dependencies DST
qp , not

only inside but also across module instances. In the formula below, we consider triples
of value calls Pi[S], Pj [T], and Pk[U] (not necessarily distinct) coming from the call
graph VC (P). Then,

τ(Pi[S], Pj [T], Pk[U]) =
∧

p∈Int(mi)

∧

q∈Int(mj)

∧

r∈Int(mk)

∀xyz(DST
pq (x,y) ∧ DTU

qr (y, z) ⊃ DSU
pr (x, z)).

Finally, the ordered completion of the whole MLP P is given by collecting the com-
pletions for all value calls in the call graph VC (P) and the closure axiom of the depen-
dency ordering between labeled predicates,

τ(P) =
∧

Pi[S],Pj[T],Pk[U]∈VC (P)

τ(Pi[S], Pj [T], Pk[U]) ,

i.e.,

Ω(P) = τ(P) ∧
∧

Pi[S]∈VC(P)

ψ(P, Pi[S]) ,

Example 15. The formulas in Examples 13 and 14 give us the encoding ψ(P, P1[]) =
γ′(m1, p, ∅) ∧ ρ(m1, p, ∅) for module m1 of the MLP P in Example 1. For m2, we
have:

– ψ(P, P2[∅]) = (qS0
2 ⊃ rS0

2) ∧ (rS0
2 ⊃ qS0

2 ∧ D
S0

2S0
2

qr ∧ ¬D
S0

2S0
2

rq),

– ψ(P, P2[{q}]) = qS1
2 ∧ (qS1

2 ⊃ rS1
2) ∧ (rS1

2 ⊃ qS1
2 ∧ D

S1
2S1

2
qr ∧ ¬D

S1
2S1

2
rq),

– τ(P) =
∧

DT1T2
p1p2

∧ DT2T3
p2p3

⊃ DT1T3
p1p3

, where pi ∈ {p, q, r}; Ti = S1 if pi = p and
Ti ∈ {S0

2 , S1
2} otherwise.

The ordered completion Ω(P) = τ(P)∧ψ(P, P1[])∧ψ(P, P2[∅])∧ψ(P, P2[{q}]) has
a single model whose projection to labeled atoms is {rS1

2 , qS1
2}. This model corresponds

to the answer set mentioned in Example 1.

74 M. Dao-Tran et al.

The following theorem shows the correctness of our translation. For this, given an
MLP P and an H-structure M, we define the derivation ordering of P wrt. M as the
set DM(P) of all facts DTS

qp (c2, c1) such that (i) there exists a path from p(c1) to q(c2)
in the modular dependency graph MGP, (ii) c1 ∈ pM,S as p is an intensional predicate,
and (iii) c2 ∈ qM,T if q is an intensional predicate or c2 ∈ qM if q is an extensional
predicate, where T ∈ VC (P).

Theorem 2. Let P = (m1, . . . , mn) be an MLP in which all negated module atoms
are monotonic. Then, (i) if an H-structure M for P is an answer set of gr(P, M), then
M ∪ D(P) is a model of Ω(P), where

M =
⋃

Pi[S]∈VC (P)

{qS(c) | q ∈ Ext(mi)∧c ∈ qM}∪{pS(c) | p ∈ Int(mi)∧c ∈ pM,S};

(ii) if M is a finite model of Ω(P), then the H-structure M for P where (a) for each
extensional predicate q, qM = {c | Pi[S] ∈ VC (P) ∧ qS(c) ∈ M}, and (b) for each
intensional predicate p in module mi with input S, pM,S = {c | Pi[S] ∈ VC (P) ∧
pS(c) ∈ M}, is an answer set of gr(P, M).

6 Discussion

The translations Λ(P) and Ω(P) from above allow us to express the existence of an-
swer sets of an MLP P as a satisfiability problem in propositional respectively predicate
logic that is decidable; however, for arbitrary call-by-value, the resulting formulas are
huge in general, given that there are double exponential many value calls Pi[S] for an
input q in general. Furthermore, loops can be very long; in the general case, they can
have double exponential length. However, the intrinsic complexity of MLPs already
mentioned in Section 4 suggests that even in the propositional case (where the number
of different inputs S is at most exponential) we can not expect a polynomially com-
putable transformation of brave inference P |= a into a propositional SAT instance, as
the problem is EXP-complete for propositional Horn MLPs and NEXP-complete for
propositional normal MLPs.

The ordered completion formula Ω(P), which can be seen as a Σ1
1 formula over a

finite structure and is thus evaluable in nondeterministic exponential time. Here, in the
propositional case the input values S and T may be encoded using (polynomially many)
predicate arguments (e.g., oT (y) becomes o(x,y) where x = x1, . . . , xk encodes T)
and disjunction/conjunction over S and T expressed by (first-order) quantification. In
this way, it is possible to obtain a Σ1

1 formula of polynomial size over a finite structure,
such that this modified transformation is worst-case optimal with respect to the com-
plexity of propositional normal MLPs. Similar encoding techniques can be applied for
non-ground MLPs if the predicate arities of formal input predicates are bounded by a
constant.

In the general non-ground case, such polynomial encoding techniques are not ev-
ident; already in the Horn case deciding P |= a is 2EXP-complete, and for normal
MLPs brave inference is 2NEXP-complete. One may resort to predicate variables for
encoding S and T , and naturally arrive at a formula in higher-order logic (e.g., oT (y)

First-Order Encodings for Modular Nonmonotonic Datalog Programs 75

becomes o(T,y) where T = T1, . . . , Tk is a list of predicate variables for the formal in-
put predicates q = q1, . . . , qk). It remains to be seen, however, whether the structure of
the resulting (polynomial-size) formula would readily permit worst-case optimal eval-
uation with respect to the complexity of MLPs.

Noticeably, however, we do not get a blowup if no call-by-value is made, i.e., if all
inputs lists are empty (which means all S and T have the single value ∅). This setting
is still useful for structured programming, and amounts in the propositional case to the
DLP-functions of [15] (but in contrast permits unlimited recursion through modules, in
particular positive recursion). Our results thus also provide ordered completion formu-
las for DLP-functions over normal programs.

7 Conclusion

In this paper, we have studied encodings of answer sets of Modular Nonmonotonic
Logic Programs (MLPs) into first-order formulas, in the line of recent work in Answer
Set Programming.

As for future work, refinement of the results and exploitation of the results for answer
sets computation using SAT and QBF solvers, as well as theorem provers remains to be
investigated; here, fragments of MLPs that allow for reasonable encodings might be
considered, and the suitability of higher-order theorem provers evaluated.

For this paper, we have considered as context C the set VC (P) of all value calls,
which thus can be omitted. Intuitively, a given context C may be incorporated by ensur-
ing that loop formulas are built only for relevant instantiation signatures (S1, . . . ,Sn);
for modular loops, which are those that contain some value call Si inside C; further-
more, either none or all value calls Si must be in C. Relative to an interpretation M, the
minimal context C = V (CGP(M)) may be defined using suitable predicates respec-
tive propositions. The technical elaboration of these ideas is beyond this paper.

Another assumption that we have made was that module atoms under negation are
monotonic, in order to readily apply loop formula techniques despite the semantics of
MLPs based on the FLP-reduct. It would be interesting to look into the full case of
MLPs with arbitrary module atoms. Recently, unfounded sets for logic programs with
arbitrary aggregates have been defined in [10]. Given that for ordinary logic programs
unfounded sets are a semantic counterpart of loop formulas, this may inspire a similar
notion of unfounded set for MLPs and help developing a syntactic counterpart in terms
of loop formulas. The papers [17,21], which inspect the FLP-semantics on a more prin-
cipled level, may also be useful in this respect. Different from answer semantics under
the GL-reduct, not only positive atoms need to be considered for derivability, but also
negated non-montonic module atoms.

A further issue are encodings for disjunctive MLPs, i.e., MLPs where the head of
a rule may be a disjunction α1 ∨ · · · ∨ αk of atoms. Loop formulas for ordinary dis-
junctive logic programs have been developed in [16], and for general propositional the-
ories under Answer Set Semantics in [12]. There is no principal obstacle to extend the
loop formula encoding of this paper to disjunctive MLPs, and doing this is routine. In
contrast, ordered completion formulas for disjunctive MLPs and already ordinary LPs
needs further work; they may require a blowup given that ordinary disjunctive Datalog
programs have NEXPNP complexity.

76 M. Dao-Tran et al.

Finally, relationships to other semantics of logic programming is an interesting issue.
Chen et al. [4] showed that loops with at most one external support rule in the program
have a close connection to (disjunctive) well-founded semantics. Studying MLPs under
similar restrictions could provide similar results, yet well-founded semantics for MLPs
remains to be formalized.

References

1. Apt, K., Blair, H., Walker, A.: Towards a Theory of Declarative Knowledge. In: Founda-
tions of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San
Francisco (1988)

2. Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The deductive database system LDL++.
Theor. Pract. Log. Prog. 3(1), 61–94 (2003)

3. Asuncion, V., Lin, F., Zhang, Y., Zhou, Y.: Ordered completion for first-order logic programs
on finite structures. In: AAAI 2010, pp. 249–254. AAAI Press, Menlo Park (2010)

4. Chen, X., Ji, J., Lin, F.: Computing loops with at most one external support rule for disjunc-
tive logic programs. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp.
130–144. Springer, Heidelberg (2009)

5. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322 (1978)
6. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Program-

ming Revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–
159. Springer, Heidelberg (2009)

7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM T. Database Syst. 22(3), 364–
417 (1997)

8. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.
In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309.
Springer, Heidelberg (1997)

9. Eiter, T., Leone, N., Saccà, D.: On the Partial Semantics for Disjunctive Deductive Databases.
Ann. Math. Artif. Intell. 19(1/2), 59–96 (1997)

10. Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates. In: Baral,
C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
40–52. Springer, Heidelberg (2005)

11. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

12. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math.
Artif. Intell. 47(1-2), 79–101 (2006)

13. Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. In:
POPL 1989, pp. 134–142. ACM, New York (1989)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generat. Comput. 9(3-4), 365–385 (1991)

15. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive
Stable Models. J. Artif. Intell. Res. 35, 813–857 (2009)

16. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.)
ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

17. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 182–195. Springer,
Heidelberg (2009)

18. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP 1994, pp. 23–38. MIT-Press,
Cambridge (1994)

First-Order Encodings for Modular Nonmonotonic Datalog Programs 77

19. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif.
Intell. 157(1-2), 115–137 (2004)

20. Ross, K.: Modular Stratification and Magic Sets for Datalog Programs with Negation. J.
ACM 41(6), 1216–1267 (1994)

21. Truszczyński, M.: Reducts of propositional theories, satisfiability relations, and generaliza-
tions of semantics of logic programs. Artif. Intell. 174(16-17), 1285–1306 (2010)

Datalog Programs and Their Stable Models

Vladimir Lifschitz

Department of Computer Science
University of Texas at Austin, USA

Abstract. This paper is about the functionality of software systems
used in answer set programming (ASP). ASP languages are viewed here,
in the spirit of Datalog, as mechanisms for characterizing intensional
(output) predicates in terms of extensional (input) predicates. Our
approach to the semantics of ASP programs is based on the concept of a
stable model defined in terms of a modification of parallel
circumscription.

1 Introduction

This paper is about the functionality of software systems used in answer set
programming (ASP) [11,14,1,7]. ASP languages are viewed here, in the spirit
of Datalog, as mechanisms for characterizing intensional (output) predicates in
terms of extensional (input) predicates.

Example 1. The ASP program

q(X,Y) :- p(X,Y).
q(X,Z) :- q(X,Y), q(Y,Z).

can be viewed as a definition of the output predicate q in terms of the input
predicate p; it tells us that q is the transitive closure of p. To illustrate this
assertion, consider what happens when we extend the program above by a set
of ground atoms defining p, such as

p(a,b). p(b,c).

Given the file consisting of these three lines, an ASP system such as clingo
1 or

dlv
2 returns the transitive closure of p:3

{q(a,b), q(a,c), q(b,c)}.

Example 2. Take the disjunctive ASP program consisting of one rule

q(X) ; r(X) :- p(X).

1 http://potassco.sourceforge.net
2 http://www.dlvsystem.com
3 To be precise, the set of atoms generated by these systems includes also the atoms

defining p.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 78–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://potassco.sourceforge.net
http://www.dlvsystem.com

Datalog Programs and Their Stable Models 79

It can be thought of as a description of all possible ways to partition an input p
into disjoint4 (and possibly empty) subsets q, r. Consider, for instance, what
happens when we combine this rule with a set of ground atoms defining p, such
as

p(a). p(b). p(c).

Given this file, dlv returns the list of 8 partitions:

{r(a), r(b), r(c)},
{q(a), r(b), r(c)},
{r(a), q(b), r(c)},
{q(a), q(b), r(c)},
{r(a), r(b), q(c)},
{q(a), r(b), q(c)},
{r(a), q(b), q(c)},
{q(a), q(b), q(c)}.

Example 3. The choice rule

{q(X)} :- p(X).

describes all possible ways to choose a subset q of a given set p. Given this one-
rule program and the same input as in Example 2, clingo generates all subsets
of {a, b, c}:

{ },
{q(a)},
{q(b)},
{q(b), q(a)},
{q(c)},
{q(c), q(a)},
{q(c), q(b)},
{q(c), q(b), q(a)}.

We describe here a declarative semantics for a class of ASP programs that in-
cludes many examples of this kind. Our approach is based on the concept of a
stable model [5] generalized as proposed in [3]. We will see, for instance, that the
stable models of the program from Example 1 are arbitrary interpretations (in
the sense of first-order logic) of the language with binary predicate constants p, q
in which q is the transitive closure of p. The stable models of the program from
Example 3 are arbitrary interpretations of the language with unary predicate
constants p, q in which q is a subset of p.

4 Disjunction in the head of an ASP rule often behaves as exclusive disjunction, but
there are exceptions. See Remark 1 in Section 4.

80 V. Lifschitz

2 A Few More Examples

We will now extend the program from Example 2 by adding a “constraint”—a
rule with the empty head. The effect of adding a constraint to an ASP program
is to weed out the solutions satisfying the body of the constraint.

Example 4. The program

q(X) ; r(X) :- p(X).
:- q(a).

describes the partitions of the input p into subsets q, r such that a is not in q.
Given this program and the same input as in Example 2, dlv returns

{r(a), r(b), r(c)},
{r(a), q(b), r(c)},
{r(a), r(b), q(c)},
{r(a), q(b), q(c)}.

Example 5. If p is the set of vertices of a directed graph, and q is the set of its
edges, then the program

r(X) :- q(X,Y).
s(X) :- p(X), not r(X).

describes the set s of terminal vertices. It uses the auxiliary symbol r, represent-
ing the complement of s. The combination not r(X) in the body of the second
rule employs “negation as failure” to express that the rules of the program do
not allow us to establish r(X). (In Section 5 we will see how the stable model
semantics makes this idea precise.) Given this program and the input

p(a). p(b). q(a,b).

both clingo and dlv return

{r(a), s(b)}.

Example 6. For p and q as in the previous example, the program below defines
the sets of vertices of out-degrees 0, 1, and 2:

r0(X) :- p(X), #count{Y:q(X,Y)}=0.
r1(X) :- p(X), #count{Y:q(X,Y)}=1.
r2(X) :- p(X), #count{Y:q(X,Y)}=2.

In particular, r0 has the same meaning as s from Example 5. The “aggregate”
symbol #count used in these rules represents the cardinality of a set. Given this
program and the input

p(a). p(b). p(c). q(a,b). q(a,c).

dlv returns

{r0(b), r0(c), r2(a)}.

Datalog Programs and Their Stable Models 81

Logic programming notation First-order formula

1 q(X,Y) :- p(X,Y). ∀xy(p(x, y) → q(x, y))
2 q(X,Z) :- q(X,Y), q(Y,Z). ∀xyz(q(x, y) ∧ q(y, z) → q(x, z))
3 q(X) ; r(X) :- p(X). ∀x(p(x) → q(x) ∨ r(x))
4 {q(X)} :- p(X). ∀x(p(x) → q(x) ∨ ¬q(x))
5 :- q(a). q(a) → ⊥
6 r(X) :- q(X,Y). ∀xy(q(x, y) → r(x))
7 s(X) :- p(X), not r(X). ∀x(p(x) ∧ ¬r(x) → s(x))
8 r0(X) :- p(X), #count{Y:q(X,Y)}=0. ∀x(p(x) ∧ ¬(∃y)q(x, y) → r0(x))
9 r1(X) :- p(X), #count{Y:q(X,Y)}=1. ∀x(p(x) ∧ (∃y)q(x, y) ∧ ¬(∃2y)q(x, y) → r1(x))

10 r2(X) :- p(X), #count{Y:q(X,Y)}=2. ∀x(p(x) ∧ (∃2y)q(x, y) ∧ ¬(∃3y)q(x, y) → r2(x))

Fig. 1. Rules as formulas

3 Rules and Programs

In first-order formulas, we take the symbols ¬, ∧, ∨, →, ∀, ∃ to be primitives,
along with the 0-place connectives � (truth) and ⊥ (falsity).

A first-order sentence is a rule if it has the form

∀̃(B → H) (1)

and has no occurrences of → other than the one explicitly shown.5 Formula B
is the body of rule (1), and H is its head. The expressions that were called rules
in Examples 1–6 can be viewed as rules in the sense of this definition written in
“logic programming notation,” as shown in Figure 1.

In the last two lines, we use the abbreviation ∃nxF (x) for

∃x1 · · ·xn

⎛
⎝ ∧

1≤i≤n

F (xi) ∧
∧

1≤i<j≤n

xi = xj

⎞
⎠ .

Note that ¬r(x) in line 7 of the table corresponds to not r(X) in logic pro-
gramming notation. When we write a rule as a formula, the negation symbol ¬
corresponds to negation as failure, and not to “classical” (or “strong”) negation
in the sense of [6]. (To represent rules containing strong negation as first-order
formulas, we would have to eliminate strong negation from them in favor of
additional predicate constants.)

In this paper, a (Datalog) program is a pair (F,p), where F is a conjunction
of rules, and p is a tuple of distinct predicate constants.6 The members of p are
called the intensional predicates of the program. The other predicate constants
occurring in F are its extensional predicates. In many cases, including Exam-
ples 1–6, p is the list of all predicate constants occurring in the heads of the
rules of F .
5 ∀̃F stands for the universal closure of F .
6 In this paper, equality is not considered a predicate constant, so that it is not allowed

to be a member of p.

82 V. Lifschitz

We will define the semantics of Datalog programs by specifying which models
of F are considered “stable models” of (F,p). The definition of a stable model is
based on a syntactic transformation that turns any Datalog program (F,p) into
a second-order sentence, denoted by SMp[F]. We will define the stable models
of (F,p) as the models of SMp[F] in the sense of second-order logic.7

4 Positive Programs

Consider first the simpler case of rules and programs that do not contain inten-
sional predicates in the scope of negation. We will call them positive. In Figure 1,
the only rules that are not positive are those in lines 4 and 7. In the special case
of positive programs, SMp is the well-known parallel circumscription operator
[12], [2, Section 6.4.2].

The definition of parallel circumscription uses the following notation. If p
and q are predicate constants of the same arity then p ≤ q stands for the formula
∀x(p(x) → q(x)), where x is a tuple of distinct object variables. If p and q are
tuples p1, . . . , pn and q1, . . . , qn of predicate constants then p ≤ q stands for the
conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn).

Furthermore, p < q stands for (p ≤ q) ∧¬(q ≤ p). This formula expresses that
each pi is a subset of the corresponding qi, and at least one of these subsets is
proper. In second-order logic, we apply the same notation to tuples of predicate
variables.

For any positive Datalog program (F,p), we define SMp[F] as the sentence

F ∧ ¬∃u((u < p) ∧ F (u)), (2)

where u is a list of distinct predicate variables of the same length as p, and
F (u) is the formula obtained from F by substituting the variables u for the
constants p.

The second conjunctive term of (2) expresses the minimality of the extents
of the predicates p (with respect to set inclusion) subject to constraint F . Thus
the stable models of a positive program (F,p) are the models of F in which p
cannot be made smaller without making F false.

Example 1, continued. Let F be the conjunction of the first-order formulas
in lines 1 and 2 of Figure 1. These formulas express that q is a superset of p, and
that q is a transitive relation. The formula SMq[F] says in addition that q cannot
be made smaller without violating property F . Consequently the stable models
of the program from Example 1 can be characterized as the interpretations in
which q is the transitive closure of p.

Example 2, continued. Let F be the first-order formula in line 3 of Figure 1.
It expresses that the union of q and r covers p. The formula SMqr [F] says

7 The semantics of second-order formulas is described, for instance, in [8, Section 1.2.3].

Datalog Programs and Their Stable Models 83

in addition that this property will be lost if we change the interpretation by
replacing q and r with their subsets. It is clear that this condition is equivalent
to the first-order formula

∀x(p(x) ↔ q(x) ∨ r(x)) ∧ ¬∃x(q(x) ∧ r(x)).

The stable models of the program from Example 2 represent arbitrary partitions
of p into disjoint subsets q, r.

Remark 1. Consider the result of addings the facts

p(a). q(a). r(a).

to the program from Example 2. The corresponding first-order formula is

∀x(p(x) → q(x) ∨ r(x)) ∧ (� → p(a)) ∧ (� → q(a)) ∧ (� → r(a)),

and the result of applying SMqr to this formula is equivalent to

∀x(p(x) ↔ q(x) ∨ r(x)) ∧ ∀x(q(x) ∧ r(x) ↔ x = a).

In the presence of the additional facts shown above, minimizing q and r does
not make these sets disjoint, and it does not make the disjunction exclusive.

Example 4, continued. Let F be the conjunction of the first-order formulas
in lines 3 and 5 of Figure 1. These formulas express that the union of q and r
covers p, and that a does not belong to q. The formula SMqr [F] says in addition
that the extents of q and r cannot be made smaller without violating property F .
This condition is equivalent to

∀x(p(x) → q(x) ∨ r(x)) ∧ ¬q(a) ∧ ¬∃x(q(x) ∧ r(x)).

The stable models of the program from Example 4 represent arbitrary partitions
of p into disjoint subsets q, r such that a is not in q.

Example 6, continued. Let F be the conjunction of the first-order formulas
in lines 8–10 of Figure 1. These formulas express that r0 contains all terminal
vertices, that r1 contains all vertices of out-degree 1, and that r2 contains all
vertices of out-degree 2. The result of applying the operator SMr0r1r2 to this
formula expresses that the sets ri are minimal subject to these conditions. In
the stable models of the program from Example 6, r0 is the set of terminal
vertices, r1 is the set of vertices of out-degree 1, and r2 is the set of vertices of
out-degree 2.

5 General Definition of a Stable Model

Sentence (2) can be formed even if the Datalog program (F,p) is not positive.
But for a nonpositive program the models of that sentence usually match neither
the intended meaning of the program nor the behavior of ASP solvers.

84 V. Lifschitz

This discrepancy can be resolved by modifying (2) as follows. Let p1, . . . , pn be
the members of the list p, and let u1, . . . , un be the corresponding members of u.
By F �(u) we denote the formula obtained from F by replacing each part pi(t)
that does not belong to the scope of any negation with ui(t); here t is an arbitrary
tuple of terms. For any Datalog program (F,p), SMp[F] stands for the sentence

F ∧ ¬∃u((u < p) ∧ F �(u)). (3)

It is clear that if (F,p) is positive then F �(u) is identical to the result F (u)
of substituting u for p in F . Consequently the new definition of SMp is a gen-
eralization of the definition from Section 4.

Example 3, continued. Let F be the first-order formula in line 4 of Figure 1.
Then SMq[F] is

∀x(p(x) → q(x) ∨ ¬q(x)) ∧ ¬∃u((u < q) ∧ ∀x(p(x) → u(x) ∨ ¬q(x))). (4)

Note the disjunction u(x)∨¬q(x) at the end of the formula; the occurrence of q
in the second disjunctive term is not replaced with u because it is in the scope
of a negation. The first conjuctive term of (4) is logically valid, so that it can be
dropped. The second term says that the intersection of p and q is not contained
in any proper subset of q. This is equivalent to saying that this intersection is
itself not a proper subset of q, that is, to the formula q ≤ p. In the stable models
of the program from Example 3, q is an arbitrary subset of p.

Example 5, continued. Let F be the conjunction of the first-order formulas
in lines 6 and 7 of Figure 1. Then SMrs[F] is

∀xy(q(x, y) → r(x)) ∧ ∀x(p(x) ∧ ¬r(x) → s(x))
∧¬∃uv(((u, v) < (r, s)) ∧ ∀xy(q(x, y) → u(x)) ∧ ∀x(p(x) ∧ ¬r(x) → v(x))).

(5)
Note that r(x) in the second line did not become u(x): it is in the scope of a
negation. Since the subformula ∀xy(q(x, y) → u(x)) does not contain v, and the
subformula ∀x(p(x)∧¬r(x) → v(x)) does not contain u, (5) can be rewritten as

∀xy(q(x, y) → r(x)) ∧ ∀x(p(x) ∧ ¬r(x) → s(x))
∧¬∃u((u < r) ∧ ∀xy(q(x, y) → u(x)))
∧¬∃v((v < s) ∧ ∀x(p(x) ∧ ¬r(x) → v(x))).

This formula expresses, first, that each nonterminal vertex belongs to r, and
that r is the smallest set with this property; second, that s contains the comple-
ment of r, and that s is the smallest set with this property. In the stable models
of the program from Example 5, r is the set of nonterminal vertices, and s is its
complement—the set of terminal vertices.

Remark 2. The definition of a stable model above looks very different from the
definition proposed in [5], which involves grounding, constructing the reduct,
and checking a fixpoint condition. But it is actually a generalization of the 1988
definition (limited to finite programs); see [3, Corollary 1]. The 1988 definition
corresponds to the special case when

Datalog Programs and Their Stable Models 85

– the head of each rule is an atom,
– the body of each rule is a conjunction of literals,
– all predicate constants are intensional,
– we are interested in Herbrand interpretations only.

Remark 3. The definition above differs from the definition of a stable model
from [3] in two ways. It is limited to “Datalog programs”—conjuctions of rules;
the definition from [3] is applicable to arbitrary first-order sentences. On the
other hand, it uses the transformation F �→ F �(u) instead of the more complex
transformation F �→ F ∗(u) from that paper. (This complexity is the price that
one has to pay for the additional generality—for allowing arbitrary first-order
sentences as arguments of SMp.) In application to Datalog programs, the two
definitions are equivalent.

6 Equivalent Transformations of Datalog Programs

Recall that the definition of SMp[F] for positive F given in Section 4 uses the
notation F (u) for the formula obtained from F by substituting the predicate
variables u for the predicate constants p. It is clear that if formulas F1 and F2

are equivalent to each other then the formulas F1(u) and F2(u) are equivalent
to each other as well. It follows that for any positive and equivalent F1, F2,
the formula SMp[F1] is equivalent to SMp[F2]. More generally, if F1 and F2

are equivalent to each other and positive then SMp[F1 ∧ G] is equivalent to
SMp[F2 ∧ G] for any conjunction G of rules. In other words, replacing a group
of positive rules within a Datalog program with an equivalent group of positive
rules does not affect the class of stable models of the program.

But without the assumption that the rules involved in the replacement are
positive this assertion would be incorrect. For instance, replacing the fact

p(a).

where p is an intensional predicate with the constraint

:- not p(a).

can change the stable models of the program, even though these rules, written
as first-order formulas

� → p(a), ¬p(a) → ⊥, (6)

are equivalent to each other. The reason is that the transformation F �→ F �(u),
applied to two equivalent formulas, may produce non-equivalent formulas. For in-
stance, in application to formulas (6) this transformation gives the non-equivalent
formulas

� → u(a), ¬p(a) → ⊥.

The results of [15,9,10,3] show, on the other hand, that replacing a group
of rules within a Datalog program with another group of rules does not affect
the class of stable models whenever the two sets of rules are intuitionistically

86 V. Lifschitz

equivalent.8 (Formulas (6) are equivalent to each other classically, but not intu-
itionistically.)

We can say even more: Datalog programs (F1,p) and (F2,p) have the same
stable models if F1 ↔ F2 is intuitionistically entailed by the sentences

∀̃(F ∨ ¬F) (7)

for formulas F that do not contain members of the list p.9

Compare, for instance, the rule

q(X) ; r(X) :- p(X).

from Example 2 and the rule

q(X) :- p(X), not r(X).

The corresponding formulas

∀x(p(x) → q(x) ∨ r(x)), ∀x(p(x) ∧ ¬r(x) → q(x)) (8)

are not intuitionistically equivalent to each other; it is not surprising then that re-
placing one rule by the other within a Datalog program usually changes the class
of stable models. But the rules above are interchangeable if r is an extensional
predicate, because the equivalence between formulas (8) is intuitionistically en-
tailed by

∀x(r(x) ∨ ¬r(x)).

7 Discussion

The definition of a stable model based on a modification of the circumscription
operator provides a declarative semantics for several constructs used in answer
set programming, including choice and negation as failure.

Two classes of constructs are conspicuously absent, however, from the ex-
amples studied in this paper. One is built-in functions and predicates, such as
operations on integers. The other includes aggregates other than #count, such
as #sum (the sum of a set of integers). It appears that such “difficult” aggregates
can be handled by extending the operator SM to expressions more general than
first-order formulas [4].

Acknowledgements. Thanks to Paolo Ferraris, Joohyung Lee, Yuliya Lierler,
Fangkai Yang, and the anonymous referee for useful comments. This work was
partially supported by the National Science Foundation under grant IIS-0712113.

8 See [13] for an introduction to intuitionistic logic.
9 This assertion will remain true if we allow F in (7) to have occurrences of intensional

predicates as long as each of them is in the scope of a negation or in the antecedent
of an implication.

Datalog Programs and Their Stable Models 87

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Brewka, G., Niemelä, I., Truszczyński, M.: Nonmonotonic reasoning. In: van
Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representa-
tion. Elsevier, Amsterdam (2008)

3. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175, 236–263 (2011)

4. Ferraris, P., Lifschitz, V.: The stable model semantics for first-order formulas with
aggregates10 . In: Proceedings of International Workshop on Nonmonotonic Rea-
soning, NMR (2010)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

7. Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 1594–1597. MIT Press, Cambridge (2008)

8. Lifschitz, V., Morgenstern, L., Plaisted, D.: Knowledge representation and classical
logic. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge
Representation, pp. 3–88. Elsevier, Amsterdam (2008)

9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541 (2001)

10. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–
398. Springer, Heidelberg (1999)

12. McCarthy, J.: Applications of circumscription to formalizing common sense knowl-
edge. Artificial Intelligence 26(3), 89–116 (1986)

13. Moschovakis, J.: Intuitionistic logic. In: Zalta, E.N. (ed.) The Stanford En-
cyclopedia of Philosophy. Fall 2008 edn. (2008), http://plato.stanford.edu/
archives/fall2008/entries/logic-intuitionistic

14. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

15. Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix,
J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997)

10 http://userweb.cs.utexas.edu/users/vl/papers/smaf.pdf

http://userweb.cs.utexas.edu/users/vl/papers/smaf.pdf

Exploiting Bounded Treewidth with Datalog
(A Survey)�

Reinhard Pichler

Technische Universität Wien, Austria
pichler@dbai.tuwien.ac.at

Abstract. Many intractable problems have been shown to become tractable if
the treewidth of the underlying structure is bounded by a constant. An important
tool for deriving such results is Courcelle’s Theorem, which states that all prop-
erties definable by Monadic Second Order (MSO) sentences are fixed-parameter
tractable with respect to the treewidth. In principle, algorithms can be generated
automatically from the MSO definition of a problem by exploiting the correspon-
dence between MSO and finite tree automata (FTA). However, this approach has
turned out to be problematic, since even relatively simple MSO formulae may
lead to a ”state explosion” of the FTA.

Recently, monadic datalog (i.e., datalog where all intensional predicate sym-
bols are unary) has been proposed as an alternative method to tackle this class
of fixed-parameter tractable problems. On the one hand, if some property of fi-
nite structures is expressible in MSO then this property can also be expressed by
means of a monadic datalog program. Moreover, the resulting fragment of dat-
alog can be evaluated in linear time (both with respect to the program size and
with respect to the data size). In this survey, we present the main ideas of this
approach and its extension to counting and enumeration problems.

1 Introduction

The high inherent complexity of many interesting problems is a common obstacle to
the design of efficient algorithms in many areas of computer science. There are several
strategies to deal with such situations, like heuristics, approximations, or probabilis-
tic methods. Over the past decade, parameterized complexity and the study of fixed-
parameter algorithms have emerged as another important line of research in response to
intractability (see [1,2,3]). In particular, it has been shown that many hard problems be-
come tractable if some problem parameter is fixed or bounded by a constant. For graphs
and, more generally, for finite structures, the treewidth is one such parameter which has
served as the key to many fixed-parameter tractability (FPT) results. The most promi-
nent method for establishing the FPT in case of bounded treewidth is via Courcelle’s
Theorem [4,5]: any property of finite structures which is expressible by a Monadic
Second Order (MSO) sentence, can be decided in linear time (data complexity) if the
treewidth of the structures is bounded by a fixed constant.

In principle, Courcelle’s Theorem can be applied directly to construct concrete algo-
rithms by transforming the MSO evaluation problem into a tree language recognition

� This work was supported by the Austrian Science Fund (FWF), project P20704-N18.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 88–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Exploiting Bounded Treewidth with Datalog 89

problem (see [6,7]). The latter can then be solved via a finite tree automaton (FTA) (see
[8,9]). However, this approach has turned out to be problematic, since even relatively
simple MSO formulae may lead to a “state explosion” of the FTA see [10,11]. Conse-
quently, it was already stated in [12] (and similarly in [3]) that the algorithms derived
via Courcelle’s Theorem are “useless for practical applications”. The main benefit of
Courcelle’s Theorem is that it provides “a simple way to recognize a property as being
linear time computable”. In other words, proving the FPT of some problem by showing
that it is MSO expressible is the starting point (rather than the end point) of the search
for an efficient algorithm.

Recently [13], monadic datalog (i.e., datalog where all intensional predicate symbols
are unary) has been proposed as a practical tool for devising efficient algorithms in
situations where the FPT has been shown via Courcelle’s Theorem. Above all, it was
proved that if some property of finite structures is expressible in MSO then this property
can also be expressed by means of a monadic datalog program over the structure plus
the tree decomposition. Hence, in the first place, this is an expressivity result rather than
a mere complexity result. However, it was also shown that the resulting fragment of
datalog can be evaluated in linear time both w.r.t. the program size and w.r.t. the data
size. Hence, the corresponding complexity result (i.e., Courcelle’s Theorem) is obtained
as a corollary of this MSO-to-datalog transformation.

This monadic datalog approach has been applied to several problems in the area of
database design as well as knowledge representation and reasoning [13,14]. Moreover,
it has also been extended to counting and enumeration problems [15,16]. In this survey,
we present the main ideas of the monadic datalog approach and its extension to count-
ing and enumeration problems. Moreover, we illustrate the concrete realization of this
approach by discussing its application to the SAT problem (i.e., does a given proposi-
tional formula have at least one satisfying assignment) and the #SAT problem (i.e., how
many satisfying assignments does a given propositional formula have).

Organization. The remainder of this paper is organized as follows. In Section 2, we
recall some basic notions and results concerning treewidth and MSO. The main re-
sults of the monadic datalog approach (in particular, comparing the expressive power
of monadic datalog and MSO over structures of bounded treewidth) are presented in
Section 3. In Section 4, this approach is applied to the SAT problem. The extension to
counting and enumeration problems is discussed in Section 5. In Section 6, we conclude
with a brief summary and an outlook to future work.

2 Basic Definitions and Results

Finite Structures and Treewidth. Let τ = {R1, . . . , RK} be a set of predicate sym-
bols. A finite structure A over τ (a τ -structure, for short) is given by a finite domain
A = dom(A) and relations RA

i ⊆ Aαi , where αi ≥ 0 denotes the arity of Ri ∈ τ .
It is convenient to represent a finite structure as a set of ground atoms. All structures
and trees considered in this work are assumed to be finite. Hence, in the sequel, the
finiteness will usually not be explicitly mentioned.

A tree decomposition T of a τ -structure A is defined as a pair 〈T, (At)t∈T 〉 where
T is a rooted tree and each At is a subset of A with the following properties: (1) every

90 R. Pichler

a ∈ A is contained in some At; (2) for every Ri ∈ τ and every tuple (a1, . . . , aαi) ∈
RA

i , there exists some node t ∈ T with {a1, . . . , aαi} ⊆ At; (3) for every a ∈ A, the
set {t | a ∈ At} induces a subtree of T .

The set At with t ∈ T is called the bag at node t. The width of a tree decomposition
〈T, (At)t∈T 〉 is defined as max{|At| : t ∈ T }−1. The treewidth tw(A) ofA is defined
as the minimal width of all tree decompositions of A. For a fixed w ≥ 1, it can be
decided in linear time w.r.t. the size of A if tw(A) ≤ w. Moreover, in case of a posi-
tive answer, a tree decomposition of width w can also be computed in linear time [17].
Unfortunately, it has been shown that this linear time algorithm is mainly of theoreti-
cal interest and its practical usefulness is limited [18]. Recently, considerable progress
has been made in developing heuristic-based tree decomposition algorithms which can
handle graphs with moderate size of several hundreds of vertices [18,19,20,21].

For our purposes a normal form of tree decompositions is convenient. In [22], so-
called nice tree decompositions were introduced, whose definition is recalled below. It
is possible to transform any tree decomposition in linear time into a nice tree decompo-
sition of the same width.

Definition 1. A tree decomposition 〈T, (At)t∈T 〉 is called “nice” if (a) each node in T
has at most two children; (b) for each node t with two children t1, t2, we have At =
At1 = At2 ; (c) for each node t with one child t′, the bags of t and t′ differ in at most
one element, i.e., |At ΔAt′ | ≤ 1, where Δ denotes symmetric set difference.

In this paper, we shall use the SAT problem to illustrate some of the main ideas. Note
that a propositional formula F in CNF (or, equivalently, a clause set F) can be repre-
sented as a structureA over the alphabet τ = {cl(.), var (.), pos(. , .), neg(. , .)} where
cl(z) (resp. var(z)) means that z is a clause (resp. a variable) in F and pos(x, c) (resp.
neg(x, c)) means that x occurs unnegated (resp. negated) in the clause c. We define the
treewidth of F as the treewidth of this structure A, i.e., tw(F) = tw(A). Note that
the predicate symbols cl(.) and var(.) are contained in τ for convenience only. They
could also be omitted since the information on the variables and clauses in a formula is
implicitly given by the predicates pos(. , .) and neg(. , .).

Example 1. The propositional formula F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ ¬x5) ∧
(x2 ∨ ¬x4 ∨ x6) in CNF can be represented by the structure A consisting of the fol-
lowing ground atoms: A = {var(x1), var (x2), var (x3), var(x4), var (x5), var (x6),
cl(c1), cl(c2), cl(c3), pos(x1, c1), pos(x3, c1), pos(x4, c2), pos(x2, c3), pos(x6, c3),
neg(x2, c1), neg(x1, c2), neg(x5, c2), neg(x4, c3)}.
Two tree decompositions T1 and T2 of this structure are given in Figure 1. Note that T2

is “nice” while T1 is not. The width of both T1 and T2 is 2 since the maximal size of the
bags in T1 and in T2 is 3. Actually, the treewidth of A cannot be smaller than 2, which
can be seen as follows: when considering the binary predicates pos and neg as edges
of a graph, then A gives rise to a cyclic graph. But only cycle-free graphs may have
treewidth = 1. Hence, the tree decompositions in Figure 1 are of minimal width and we
have tw(F) = tw(A) = 2. �

Monadic Second Order Logic (MSO). Monadic Second Order logic (MSO) extends
First Order logic (FO) by the use of set variables (usually denoted by upper case letters),

Exploiting Bounded Treewidth with Datalog 91

x1, x2, x4

x1, x2, c1 x1, x2, x4

x3, c1 x1, x4, c2 x2, x4, c3

x5, c2 x6, c3

x1, x2, x4

x1, x4

x1, x2, x4

x1, x2, x4 x1, x2, x4 x1, x2, x4

x1, x2

x1, x2, c1

x1, c1

x1, x3, c1

x3, c1

x1, x4, c2

x1, c2

x1, x5, c2

x5, c2

x2, x4

x2, x4, c3

x2, c3

x2, x6, c3

x6, c3

(a) tree decomposition T1 (b) tree decomposition T2

Fig. 1. Tree decompositions of formula F of Example 1

which range over sets of domain elements. In contrast, the individual variables (which
are usually denoted by lower case letters) range over single domain elements. Atomic
formulae in an MSO-formula ϕ over a τ -structure have one of the following forms:
(1) atoms with some predicate symbol from τ , (2) atoms whose predicate symbol is
a monadic second order variable (i.e., a set variable), or (3) equality atoms. An MSO
formula ϕ(x) with exactly one free individual variable is called a unary query. It is
convenient to use set operators such as⊆,⊂, ∩, ∪, ∈, and 	∈ with the obvious meaning.
For instance, X ⊆ Y is short for (∀u)X(u)→ Y (u). Likewise, X = Y ∩Z is short for
(∀u)(X(u)↔ (Y (u) ∧ Z(u)). Moreover, we use u ∈ X and X(u) interchangeably.

MSO is a useful query language due to its high expressive power. It allows one to
express many relevant problems in reasoning, artificial intelligence, graph theory, op-
erations research, etc. For instance, the SAT problem, propositional abduction, closed-
world reasoning, answer-set programming, but also database design problems such as
primality, BCNF, 3NF, etc. can be nicely expressed by MSO sentences [13,14,23].

Example 2. Truth assignments in propositional logic can be represented as sets of vari-
ables (namely those variables which are set to true). The following MSO-formula ex-
presses that the assignment X (represented as a set of variables) is a model of some for-
mula F given as a finite structure over signature τ = {cl(.), var (.), pos(. , .), neg(. , .)}:
model(X, F) := (∀c)cl (c)→ (∃z)[(pos(z, c) ∧ z ∈ X) ∨ (neg(z, c) ∧ z 	∈ X)].
The SAT problem can thus be expressed by the MSO-sentence (∃X)model(X, F). �

The importance of MSO formulae in the context of parameterized complexity comes
from the following result – referred to as Courcelle’s Theorem [4,5]:

Theorem 1. Let ϕ be an MSO-sentence over some signature τ and let A be a τ -
structure of treewidth w. Evaluating the sentence ϕ over the structureA can be done in
timeO(f(|ϕ|, w) ∗ |A|) for some function f which only depends on ϕ and w but not on
the structure A.

Courcelle’s Theorem means that the evaluation of an MSO sentence over structures of
bounded treewidth only requires linear time w.r.t. the size of the structure. For instance,

92 R. Pichler

the SAT problem is solvable in linear time over propositional formulae of bounded
treewidth due to the MSO-encoding of SAT given in Example 2. However, the expres-
sion f(|ϕ|, w) in the above theorem can be multiple-exponential in the size of ϕ and w.
Hence, the search for a feasible algorithm is a non-trivial task even if in theory the lin-
ear time upper bound over structures of bounded treewidth can be easily established via
Courcelle’s Theorem. As far as the SAT problem is concerned, the datalog algorithm
presented in Section 4 works in single-exponential time w.r.t. the treewidth.

3 Expressive Power of Monadic Datalog

We assume some familiarity with datalog, see e.g. [24,25]. Monadic datalog refers to
the special case where all intensional predicates (i.e., those occurring in the head of
some rule) are unary.

Let A be a τ -structure with domain A and relations RA
1 , . . . , RA

K with RA
i ⊆ Aαi ,

where αi ≥ 0 denotes the arity of Ri ∈ τ . In order to evaluate a datalog program P
over a structure A, we consider the atoms in A as additional facts of the program. The
result of this evaluation is the set of those (ground) facts which are logically implied
by the formula P ∧ A. The semantics thus obtained is the minimal model semantics.
Alternatively, datalog has an operational semantics defined in terms of the immediate
consequence operator by viewing the rules of a program as inference rules.

In order to apply datalog programs to finite structures of some treewidth w ≥ 1,
we have to extend the finite structure so as to represent also a tree decomposition
〈T, (At)t∈T 〉. W.l.o.g., we may assume that T is a binary tree since one can always
transform an arbitrary tree decomposition in linear time into a “nice” one according to
Definition 1 [22]. We thus define the following extended signature τtd.

τtd = τ ∪ {root , leaf , child1, child2, bag}
where the unary predicates root , and leaf as well as the binary predicates child1 and
child2 are used to represent the tree T in the obvious way. For instance, we write
child1(t1, t) to denote that t1 is either the first child or the only child of t. Finally, bag
has arity w + 2, where bag(t, a0, . . . , aw) means that the bag at node t is (a0, . . . , aw).
For a given structureA with tree decomposition T , we writeAtd to denote the structure
consisting of A plus appropriate atoms with predicates root , leaf , child1, child 2, and
bag to represent T . The domain of Atd consists of the “original” domain elements ai

of A plus the nodes t of the tree decomposition.
The combined complexity (i.e., the complexity w.r.t. the size of the program P and

the size of the data A) of datalog is EXPTIME-complete (implicit in [26]). However,
there are some fragments which can be evaluated much more efficiently. For instance,
monadic datalog (i.e., all intensional predicates are unary) is NP-complete (combined
complexity) [27]. Propositional datalog (i.e., all rules are ground) can be evaluated in
linear time (combined complexity) [28,29]. The guarded fragment of datalog (i.e., every
rule r contains an extensional atom B in the body, s.t. all variables occurring in r also
occur in B) can be evaluated in time O(|P| ∗ |A|) [30]. This upper bound on the time
complexity follows easily from the observation that the “guard” B in a rule r admits at
most |A| possible instantiations that are contained in the extensional databaseA. Since

Exploiting Bounded Treewidth with Datalog 93

all variables in r occur in B, also the number of possible ground instantiations (whose
body does not contain an extensional atom outside A) of every rule is bounded by
|A|. For the correspondence between MSO and monadic datalog over finite structures
of bounded treewidth, a slight relaxation of guarded datalog (namely “quasi-guarded”
datalog) is needed, which is defined as follows:

Definition 2. Let τtd be the extension of a signature τ and let P be a datalog program
over τtd. Moreover, let r be a rule in P and let x, y be variables in r. We say that
y is functionally dependent on x in one step, if the body of r contains an atom of
one of the following forms: child1(x, y), child 1(y, x), child2(x, y), child 2(y, x), or
bag(x, a0, . . . , ak) with y = ai for some i ∈ {1, . . . , k}.

We say that y is functionally dependent on x if there exists some n ≥ 1 and variables
z0, . . . , zn in r with z0 = x, zn = y and, for every i ∈ {1, . . . , n}, zi is functionally
dependent on zi−1 in one step.

Furthermore, we call a datalog program P over τtd quasi-guarded if every rule r in
P contains an extensional atom B, s.t. every variable occurring in r either occurs in
B or is functionally dependent on some variable in B. If this is the case, we call B a
quasi-guard of r.

It can be easily verified that, a quasi-guarded program P can be evaluated over a struc-
tureA in timeO(|P|∗|A|). Analogously to guarded datalog programs, this is due to the
fact that also in quasi-guarded programs, every rule r has at most |A| possible ground
instantiations s.t. the extensional atoms of r are instantiated to atoms in A.

The main result from [13] on the correspondence between MSO and monadic datalog
is as follows:

Theorem 2. Let the signature τ and the integer w ≥ 1 be arbitrary but fixed. Every
MSO-definable unary query over τ -structures of treewidth w is also computable by a
quasi-guarded monadic datalog program over τtd.

Before giving a rough proof sketch, we recall some basic notion and result from finite
model theory [31,32]. The quantifier depth of an MSO-formula ϕ is defined as the max-
imum degree of nesting of quantifiers (both for individual variables and set variables)
in ϕ. Let ϕ(x) with x = (x0, . . . , xw) for some w ≥ 0 be an MSO formula with free
individual variables x. Furthermore, let A be a τ -structure and a = (a0, . . . , aw) be
distinguished domain elements. We write (A, a) |= ϕ(x) to denote that ϕ(a) eval-
uates to true in A. We call two structures (A, a) and (B, b) k-equivalent and write
(A, a) ≡MSO

k (B, b) if and only if for every MSO-formula ϕ of quantifier depth at
most k, the equivalence (A, a) |= ϕ ⇔ (B, b) |= ϕ holds. By definition, ≡MSO

k is an
equivalence relation. For any k, the relation ≡MSO

k has only finitely many equivalence
classes. These equivalence classes are referred to as k-types or simply as types. The
≡MSO

k -equivalence between two structures can be effectively decided [31,32].

Proof Sketch of Theorem 2. The proof proceeds in three steps:

(1) Modification of the normal form of tree decompositions. Recall from Definition 1
the concept of nice tree decompositions. For the proof of Theorem 2 it is convenient
to slightly modify nice tree decompositions to a normal form where all bags have size

94 R. Pichler

w+1 (with w denoting the width). Moreover, the bags are considered as (w+1)-tuples
of elements (rather than sets). To this end, condition (c) in Definition 1 is modified as
follows: for each node t with one child t′, the bag of t is obtained from the bag of t′

either by permuting the arguments or by some replacement of the first argument. The
advantage of this normal form is that we indeed have w + 2 arguments of the bag-
predicate in τtd and do not need to fill in positions with some dummy argument. Any
tree decomposition can be normalized in linear time without increasing the width.

Since we are considering bags as tuples of elements, we shall use the notation at

synonymously for At if we want to stress that the elements in the bag At are ordered.

(2) Types of certain induced substructures. In the construction of the datalog program
sketched in step (3) below, we have to deal with those parts of a tree decomposition
which have already been visited along a bottom-up or top-down traversal of a tree de-
composition. We only discuss the bottom-up case here. Let T = 〈T, (As)s∈T 〉 be a tree
decomposition of a structure and let t denote a node of T . We write Tt to denote the part
of T which has been visited along the bottom-up traversal when t is the current node.
Formally, we write Tt to denote the subtree rooted at t and we set Tt = 〈Tt, (As)s∈Tt〉.
Now let A be a finite structure with tree decomposition T and let t be a node in T .
Moreover, we write At to denote the substructure of A induced by (the elements in the
bags of) Tt. It can be shown that the k-type (for arbitrary but fixed k) of (At, at) is
fully determined by (i) the k-type of the substructure induced by the subtree rooted at
the child node(s) of t and (ii) the relations between elements in the bag at node t.

(3) Construction of the datalog program. We construct a quasi-guarded datalog program
P over τtd as follows: suppose that the given MSO formula has quantifier-depth k. Thus
the intensional predicates of P correspond to k-types of three kinds of structures: (a)
we generate all possible k-types of structures obtained by a bottom-up construction of
the tree decomposition; (b) we generate all possible k-types of structures obtained by
a top-down construction of the tree decomposition; and (c) we consider all structures
obtained by identifying the root of one tree decomposition with the leaf of another
tree decomposition. We only discuss case (a) here, namely the bottom-up construction:
depending on whether the root node of the resulting tree decomposition has one or two
child nodes, we distinguish two cases:

Case 1. (the root has one child node). We start off with some structure A plus tree
decomposition T whose root is t and we extend A and T in all possible ways to A′

and T ′ with root t′, s.t. T = T ′
t . By the above considerations, we know that the k-type

ϑ′ of (A′, at′) is fully determined by the k-type ϑ of (A, at) and the relations between
elements in the bag at node t′. This correspondence can be expressed by a datalog rule
with head atom ϑ′(t′) and with an atom ϑ(t) occurring in the body. The remaining
atoms in the body express the relations which hold between the elements in the bag at
node t and information on the relevant part of the tree decomposition like child 1(t, t′).

Case 2. (the root has two child nodes). Now we start off with two structuresA1 andA2

plus tree decompositions T1 T2 whose roots are t1 and t2, respectively. We identify the
elements in the bag at t1 with the elements in the bag of t2 and consider the set of all
remaining elements in T1 and the set of all remaining elements in T2 as disjoint.A1 and

Exploiting Bounded Treewidth with Datalog 95

A2 must have been chosen in such a way that the relations which hold in A1 between
the elements in the bag of t1 and the relations which hold in A2 between the elements
in the bag of t2 are exactly the same. We construct A′ and T ′ with root t′ such that
T1 = T ′

t1 and T2 = T ′
t2 . By the above considerations, we know that the k-type ϑ′ of

(A′, at′) is fully determined by the k-type ϑ1 of (A1, at1), the k-type ϑ2 of (A2, at2),
and the relations between elements in the bag at node t′. Again, this correspondence
can be expressed by an appropriate datalog rule with head atom ϑ′(t′).

We conclude this proof by giving an example of what the resulting datalog rules look
like. In case of a root node with two child nodes, we get rules of the following form:1

ϑ(v) ← child1(v1, v), ϑ1(v1), child2(v2, v), ϑ2(v2). �

Above all, Theorem 2 is an expressivity result. However, by exploiting the low com-
plexity of evaluating quasi-guarded datalog programs, one can immediately derive a
complexity result. We thus get a slightly extended version of Courcelle’s Theorem as a
corollary (which is in turn a special case of Theorem 4.12 in [7]).

Corollary 1. The evaluation problem of unary MSO-queries ϕ(x) over τ -structuresA
of treewidth w can be solved in time O(f(|ϕ(x)|, w) ∗ |A|) for some function f which
only depends on ϕ(x) and w but not on the structure A.

4 Putting Monadic Datalog to Work

We now illustrate the monadic datalog approach at work by applying it to the SAT
problem. Suppose that a clause set C together with a tree decomposition T of width
w is represented by a τtd-structure Atd with τtd = {cl , var , pos , neg , root , leaf ,
child1, child2, bag}. W.l.o.g., we may assume that T fulfills the properties of “nice”
tree decompositions [22] recalled in Definition 1. Note that elements in the bags of T
correspond to variables or clauses in C. Hence, if a node t has a single child node t′, then
the one element by which At differs from At′ is either a variable or a clause. In total,
we thus distinguish 5 kinds of internal nodes in T : a node t is a variable removal node
resp. clause removal node, if the bag At is obtained from At′ by removing a variable
resp. a clause; t is a variable introduction node resp. a clause introduction node, if At

is obtained from At′ by introducing a new variable resp. clause; finally, if a node t has
two children, then t is referred to as a branch node. The SAT program in Figure 2 has
appropriate rules for leaf nodes and exactly these 5 kinds of internal nodes (cf. [14]).

The program adopts the following notational conventions: lower case letters v, c, and
x (possibly with subscripts) are used as datalog variables for a single node in T , for a
single clause, or for a single propositional variable, respectively. In contrast, upper case
letters are used as datalog variables denoting sets of variables (in the case of X, P, N)
or sets of clauses (in the case of C). Note that the sets are not sets in the general sense,
since their cardinality is restricted by the maximal size w + 1 of the bags, where w is
a fixed constant. The SAT program in Figure 2 can therefore be seen as a shorthand

1 In the program construction in [13], additional atoms referring to the bags at the nodes v,v1,
and v2 are contained in the body of the rule. It can be easily checked that they are not needed.

96 R. Pichler

Program SAT

/* leaf node. */
solve(v, P, N, C1) ← leaf (v), bag(v, X, C), P ∪ N = X, P ∩ N = ∅,

true(P, N, C1, C).

/* variable removal node. */
solve(v, P, N, C1) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),

solve(v1, P � {x}, N, C1).

solve(v, P, N, C1) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),
solve(v1, P, N � {x}, C1).

/* clause removal node. */
solve(v, P, N, C1) ← bag(v, X, C), child1(v1, v), bag(v1, X, C � {c}),

solve(v1, P, N, C1 � {c}).

/* variable introduction node. */
solve(v, P � {x}, N, C1 ∪ C2) ← bag(v, X � {x}, C), child1(v1, v),

bag(v1, X, C), solve(v1, P, N, C1), true({x}, ∅, C2, C).

solve(v, P, N � {x}, C1 ∪ C2) ← bag(v, X � {x}, C), child1(v1, v),
bag(v1, X, C), solve(v1, P, N, C1), true(∅, {x}, C2, C).

/* clause introduction node. */
solve(v, P, N, C1 ∪ C2) ← bag(v, X, C � {c}), child1(v1, v), bag(v1, X, C),

solve(v1, P, N, C1), true(P, N, C2, {c}).

/* branch node. */
solve(v, P, N, C1 ∪ C2) ← child1(v1, v), solve(v1, P, N, C1), child2(v2, v),

solve(v2, P, N, C2).

/* result (at the root node). */
success ← root(v), bag(v, X, C), solve(v, P, N, C).

Fig. 2. SAT decision procedure

for a monadic program, since all but one variable in the head atoms have bounded
instantiations. For instance, in the atom solve(v, P, N, C), the sets P, N, C are subsets
of the bag of v. Hence, each combination P, N, C could be represented by 3 subsets
r1, r2, r3 of {0, . . . , w} referring to indices of elements in the bag of v. Since w is
considered as a fixed constant, solve(v, P, N, C) is simply a succinct representation of
constantly many monadic predicates of the form solve〈r1,r2,r3〉(v).

For the sake of readability, we are using non-datalog expressions involving the set
operators � (disjoint union), ∪, and ∩. Of course, they could be easily replaced by
“proper” datalog expressions, e.g., P ∪N = X could be replaced by union(P, N, X).
In order to facilitate the discussion, we introduce the following notation. Let C denote
the input clause set with variables in V and tree decomposition T . For any node v in
T , we write Tv to denote the subtree of T rooted at v. By Cl(v) we denote the set of
clauses in the bag of v while Cl (Tv) denotes the set of clauses that occur in any bag in
Tv . Analogously, we write Var(v) and Var(Tv) as a shorthand for the set of variables
occurring in the bag of v respectively in any bag in Tv . Finally, the restriction of a clause
c to the variables in some set U ⊆ V will be denoted by c|U .

Exploiting Bounded Treewidth with Datalog 97

The SAT program contains three intensional predicates solve , true, and success. The
crucial predicate is solve(v, P, N, C) with the following intended meaning: v denotes
a node in T . P and N form a partition of Var(v) representing a truth value assignment
on Var(v), s.t. all variables in P take the value true and all variables in N take the
value false. C denotes a subset of Cl(v). For all values of v, P, N, C, the ground fact
solve(v, P, N, C) shall be true in the minimal model of the program plus the structure
if and only if the following condition holds:

Property A. There exists an assignment J on the variables in Var(Tv), s.t.

(a) On Var(v), the assignment represented by (P, N) coincides with J ,
(b) (Cl(Tv) \ Cl(v)) ∪ C is true in J , and
(c) for every clause c ∈ Cl(v) \ C, the restriction c|Var(Tv) is false in J .

The main task of the SAT program is the computation of all facts solve(v, P, N, C) by
means of a bottom-up traversal of the tree decomposition. The other predicates have the
following meaning: true(P, N, C1, C) means that C1 contains precisely those clauses
from C which are true in the (partial) assignment given by (P, N). We do not specify
the implementation of this predicate here. It can be easily achieved via the extensional
predicates pos and neg . The 0-ary predicate success indicates if the input structure is
the encoding of a satisfiable clause set. In [14], a detailed proof of the correctness and of
a precise upper bound (which is linear in the size of the formula and single-exponential
in the tree-width) on the time complexity of the SAT program is given. The correctness
of the SAT program easily follows from the following lemma [14]:

Lemma 1. The solve-predicate has the intended meaning described above, i.e., for all
values v, P, N , and C, the ground fact solve(v, P, N, C) is true in the minimal model
of the program plus the structure if and only if Property A holds.

Proof Sketch. The lemma is shown by structural induction on T . The induction step
goes via a case distinction over all possible types of nodes. The proof is lengthy but
straightforward. We restrict ourselves here to a brief discussion of the rules in Figure 2
for the various types of nodes. The rule for a leaf node v determines all possible assign-
ments (P, N) on Var(v) and checks for each assignment and each clause c ∈ Cl (v) if
c|Var(v) is true. For a variable removal node v, we distinguish two cases depending on
whether the removed variable x had the truth value true or false in the considered truth
assignment at the child node v1. In case of a clause removal node v, we have to check
that the removed clause c had the truth value true in the considered truth assignment. In
other words, solve-facts at node v1 which fail to satisfy the clause c do not give rise to
any solve-facts at the node v. Indeed, by conditions (2) and (3) of the definition of tree
decompositions (see Section 2), there is no way to extend such a truth assignment to the
variables occurring “above” v to a model of c. At a variable introduction node v, we
can extend the truth assignments (P, N) at node v1 in two ways to a truth assignment
on Var(v), namely we can set x to true or to false. Consequently, there are two rules
for this node type. At a clause introduction node v, we just have to determine the truth
value of c|Var(v) for the truth assignment (P, N). At a branch node, we combine those
assignments on Var(Tv1) and Var(Tv2) which coincide on Var(v). �

98 R. Pichler

We conclude this section with a brief comparison of the SAT program with the pro-
gram P in the proof of Theorem 2. The definition of a monadic datalog program P
from some MSO-formula ϕ in the proof of Theorem 2 is “constructive” in theory. Of
course, it would also be applicable to the MSO encoding of the SAT problem. However,
we would thus end up with a monadic datalog program P that is multiple-exponential
w.r.t. to the treewidth, where the tower of exponentials essentially corresponds to the
quantifier depth of the MSO sentence. In contrast, the SAT program in Figure 2 can
be executed in single-exponential time w.r.t. the treewidth. The SAT program follows
the intuition of the generic program P but incorporates several shortcuts: above all, as
the Property A of the solve-predicate suggests, we only propagate those “types” (rep-
resented by the solve-facts) which can possibly be extended in bottom-up direction to
a solution (i.e., a truth assignment that satisfies all clauses). Moreover, the solve-facts
do not exactly correspond to the types in Theorem 2 but only describe the properties of
each type which are crucial for the concrete target formula ϕ. Finally, as has already
been explained above, we are using datalog extended by sets of bounded cardinality as
a succinct representation of a much bigger monadic datalog program.

5 Counting and Enumeration

The predominant class of problems studied in algorithms and complexity theory is the
class of decision problems, which normally ask if at least one solution to a given prob-
lem instance exists, e.g., a satisfying truth assignment of a given formula. However, in
many areas such as databases it would be more interesting to know all solutions, e.g.,
all variable bindings which make a given query over a given database true. If the num-
ber of solutions is very big, then it may be sufficient to output just a few solutions plus
information as to how many solutions exist in total. Problems which ask for the com-
putation of all solutions are referred to as enumeration problems. Problems which ask
for the total number of solutions are referred to as counting problems.

As far as the complexity is concerned, counting and enumeration problems are clearly
at least as hard as the corresponding decision problems. Hence, the intractability of a
decision problem carries over to the corresponding counting and enumeration version.
In this section, we show how the monadic datalog approach can be extended to counting
and enumeration problems so as to devise also for these problems efficient algorithms
(based on datalog) in case of bounded treewidth [15,16].

MSO counting and enumeration problems. First of all, we have to recall how count-
ing and enumeration problems can be defined by an MSO formula. Let ϕ(X1, . . . , Xm)
be an MSO formula over some signature τ , s.t. m ≥ 1 and X1, . . . , Xm denote the free
variables of this formula. W.l.o.g., we may assume that all variables X1, . . . , Xm are
set variables (since we can always replace individual variables by set variables which
may only be instantiated to singletons).

The counting problem defined by ϕ(X1, . . . , Xm) is the following problem: given
a τ -structure A with domain dom(A), what is the number |{(A1, . . . , Am) | Ai ⊆
dom(A) for every i and A |= ϕ(A1, . . . , Am)}|?

Exploiting Bounded Treewidth with Datalog 99

The enumeration problem defined by ϕ(X1, . . . , Xm) is the following problem:
given a τ -structure A with domain dom(A), compute the set {(A1, . . . , Am) | Ai ⊆
dom(A) for every i and A |= ϕ(A1, . . . , Am)}.
Solving MSO counting problems. In order to extend the monadic datalog approach
to counting problems, we have to extend datalog in two ways, i.e., we need counter
variables and a SUM-operator: intensional predicates are allowed to contain a counter
variable as an additional argument. A predicate p having n arguments plus a counter is
denoted by p(t1, . . . , tn, j). For a rule r, a constant c and counter variables j, j1 and j2
occurring in predicates of r, the relations j = c, j = j1+j2, and j = j1∗j2 are allowed
in r. We require that, for every value t̂1, . . . , t̂n of t1, . . . , tn, at most one value ĵ of j
exists, s.t. the fact p(t̂1, . . . , t̂n, ĵ) is derivable from the datalog program and a given
structure A. Furthermore, we allow the expression SUM(j) in place of a counter vari-
able in the head of a rule. Its semantics is like the SUM aggregate function in ordinary
SQL, where we first apply a GROUP BY over all remaining head variables to the result
of evaluating the conjunctive query in the body of the rule. For a formal definition of
the semantics of SUM, see [33]. Analogously to Definition 2, we say that a program is
in quasi-guarded extended datalog if every rule r contains an extensional atom B, s.t.
each non-counter variable in r either occurs in B or is functionally dependent on some
variable in B. In [16], Theorem 2 was extended to MSO counting problems as follows.

Theorem 3. Let the signature τ , the integer w ≥ 1, and the MSO-formula ϕ(X1, . . . ,
Xm) over τ with m ≥ 1 be arbitrary but fixed. The counting problem defined by
ϕ(X1, . . . , Xm) over τ -structures of treewidth w can be solved by a quasi-guarded
extended datalog program over τtd.

Proof Sketch. Similarly to the proof of Theorem 2 we proceed in three steps.

(1) We again modify the normal form of tree decompositions by considering the bags
as tuples rather than sets.

(2) We have to establish the relationship between the k-types of certain substructures
induced by the elements occurring in some subtrees of a tree decomposition. In the
proof of Theorem 2 we considered the k-type of structures of the form (At, at) where
At is such an induced substructure and at denotes the bag at some node t. For counting
problems, we have to handle MSO formulae ϕ(X1, . . . , Xm) with free set variables
X1, . . . , Xm. Hence, we now have to deal with the k-type of structures of the form
(At, at, Bt), where Bt = (Bt1, . . . , Btm) is an m-tuple of sets of domain elements.

(3) Finally, we construct an extended datalog program by again using intensional pred-
icates ϑ corresponding to certain k-types. In contrast to the proof of Theorem 2, these
atoms now take the form ϑ(t, j), where the second argument is a counter variable indi-
cating in how many ways the type ϑ can be generated at node t by the bottom-up con-
struction in the proof of Theorem 2. Thus for the rules defining the predicates ϑ(t, j), it
no longer suffices to establish how type ϑ at node t can be obtained from possible types
at the child node(s) of t. In addition, we also have to keep track in how many ways type
ϑ at node t can be obtained from possible types at the child node(s) of t. To this end, we
have to introduce an auxiliary, intensional predicate which is used to collect all possible

100 R. Pichler

ways of generating a certain type at node t. The value of j in ϑ(t, j) is then obtained
as the sum over all possible ways of obtaining type ϑ. For instance, in case of a branch
node, we thus get the following two kinds of rules:

aux(v, ϑ, ϑ1, ϑ2, j1 ∗ j2) ← child 1(v1, v), child2(v2, v), ϑ1(v1, j1), ϑ2(v2, j2).

ϑ(v, SUM(j)) ← aux (v, ϑ, , , j).

By slight abuse of notation, we use the symbols ϑ, ϑ1, ϑ2 as constant symbols (occur-
ring as arguments of the aux -predicate) and as predicate symbols. Of course, this could
be easily avoided by inventing a constant symbol cϑ for every type ϑ. The multiplica-
tion j1∗j2 in the head of the first rule reflects the fact that all possible ways of obtaining
type ϑ1 at node t1 can be combined with all possible ways of obtaining type ϑ2 at node
t2 to get type ϑ at node t. The rule with head ϑ(v, SUM(j)) sums up the counter for all
derivable facts of the form aux (v, ϑ, , , j). �

For the complexity of solving MSO definable counting problems, we get a similar
upper bound as in Corollary 1. More specifically, let us assume unit cost for arithmetic
operations. It was shown in [16] that then a quasi-guarded, extended datalog program
P can be evaluated over a structureA in timeO(|P|∗ |A|). Hence, for structures whose
treewidth is bounded by w, we can solve the counting problem defined by an MSO
formula ϕ(X) in time O(f(|ϕ(X)|, w) ∗ |A|) for some function f which depends on
the MSO formula ϕ(X) and the treewidth w but not on the input structureA.

The #SAT problem. In [15], the datalog program presented in Figure 2, was extended
to a program for the #SAT problem (i.e., the problem of counting the number of satis-
fying truth assignments of a given propositional formula), see Figure 3. The structure
of this program is very similar to the decision procedure in Figure 2. We only point out
two important differences between the two programs, namely the handling of counter
variables and the need for additional datalog rules:

In the counting procedure, the solve-predicate has a counter variable as an additional
argument. The program evaluation again corresponds to a bottom-up traversal of the tree
decomposition. At the root node, we now have to sum up all the counter variables for
all derivable solve-facts (rather than just asking if at least one such solve-fact exists for
the root).

For some of the node types, the counting procedure has more rules than the deci-
sion procedure. For instance, for variable removal nodes, we now have 3 rather than 2
rules. Let d1, d2 denote the two rules in case of the decision procedure and c1, c2, c3

denote the three rules in case of the counting procedure. Intuitively, we need three
rules c1, c2, c3 in the counting procedure in order to distinguish the three possible cases
how a new fact solve(v, P, N, Cu) may be derived by the decision procedure, namely:
solve(v, P, N, Cu) may be derived via a fact solve(v1, P � {x}, N, Cu) (i.e., by fir-
ing rule d1) or via a fact solve(v1, P, N � {x}, Cu, j2) (i.e., by firing rule d2) or via
both (i.e., by firing rules d1 and d2). Of course, in case of the decision procedure, it
only matters if a fact solve(v, P, N, Cu) can be derived. In contrast, for counting, we
need to keep track in how many ways it can be derived. So rule c1 (resp. c2 resp. c3)
corresponds to the case that both d1 and d2 (resp. d1 only resp. d2 only) fire.

As mentioned at the end of Section 4, the solve-facts in the SAT program (and
also in the #SAT program) essentially represent the k-types in the generic construction

Exploiting Bounded Treewidth with Datalog 101

Program #SAT

/* leaf node. */
solve(v, P, N, Cu, 1) ← leaf (v), bag(v, X, C), P ∪ N = X, P ∩ N = ∅,

true(P, N, C1, C).

/* variable removal node. */
solve(v, P, N, Cu, j1 + j2) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),

solve(v1, P � {x}, N, Cu, j1), solve(v1, P, N � {x}, Cu, j2).
solve(v, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),

solve(v1, P � {x}, N, Cu, j), not solve(v1, P, N � {x}, Cu,).
solve(v, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),

solve(v1, P, N � {x}, Cu, j), not solve(v1, P � {x}, N, Cu,).

/* clause removal node. */
solve(v, P, N, Cu, j) ← bag(v, X, C), child1(v1, v), bag(v1, X, C � {c}),

solve(v1, P, N, Cu � {c}, j).

/* variable introduction node. */
solve(v, P � {x}, N, Cu, SUM(j)) ← bag(v, X � {x}, C), child1(v1, v), bag(v1, X, C),

solve(v1, P, N, C1, j), true({x}, ∅, C2, C), C1 ∪ C2 = Cu.
solve(v, P, N � {x}, Cu, SUM(j)) ← bag(v, X � {x}, C), child1(v1, v), bag(v1, X, C),

solve(v1, P, N, C1, j), true(∅, {x}, C2, C), C1 ∪ C2 = Cu.

/* clause introduction node. */
solve(v, P, N, Cu, j) ← bag(v, X, C � {c}), child1(v1, v), bag(v1, X, C),

solve(v1, P, N, C1, j), true(P, N, C2, {c}), C1 ∪ C2 = Cu.

/* branch node. */
solve(v, P, N, Cu, SUM(j)) ← child1(v1, v), solve(v1, P, N, C1, j1), child2(v2, v),

solve(v2, P, N, C2, j2), C1 ∪ C2 = Cu, j1 ∗ j2 = j.

/* result (at the root node). */
count(SUM(j)) ← root(v), bag(v, X, C), solve(v, P, N, C, j).

Fig. 3. #SAT counting procedure

according to Theorem 2 (and likewise Theorem 3). However, the SAT- and #SAT pro-
gram do this in a succinct way by exploiting “domain knowledge” on the SAT-problem,
so to speak. By the same token, the #SAT program in Figure 3 does not require aux-
iliary, intensional predicates as in the proof sketch of Theorem 3. Instead, the rules in
Figure 3 compute the required sums directly in the rules with head-predicate solve .

Solving MSO enumeration problems. In order to solve enumeration problems by dat-
alog programs, we would have to extend datalog by set variables which may be instan-
tiated to sets of arbitrary cardinality. In order to better control the delay (i.e, the time
needed for computing the first respectively next solution), an enumeration method based
on post-processing after the execution of the counting-program was proposed in [16].
This enumeration method works as follows. Let an enumeration problem be defined by
the MSO formula ϕ(X) with X = (X1, . . . , Xm). Recall from the proof sketch of
Theorem 3 that our extended datalog program keeps track of k-types ϑ of structures
(At, at, Bt), where Bt = (Bt1, . . . , Btm) is an m-tuple of sets of domain elements.
The relationship between such k-types for some node t and its child node t′ resp. its

102 R. Pichler

child nodes t1, t2 is represented by facts aux(t, ϑ, ϑ′, j) resp. aux(t, ϑ, ϑ1, ϑ2, j). The
enumeration of all solutions of ϕ(X) proceeds by iterated top-down traversals of the
tree decomposition T = 〈T, (At)t∈T 〉 – one traversal for each solution. The starting
points (at the root node r) of these traversals are facts aux(r, ϑ, . . .), s.t. ϑ is the type
of a structure (Ar, ar, Br) with Ar |= ϕ(Br). Note that the aux -facts at each node
contain the information how each type at a node t can be obtained from type(s) at the
child node(s) of t. Thus each solution of ϕ(X) corresponds to the selection of exactly
one type ϑt at each node t ∈ T , s.t. for every t ∈ T , a fact of the form aux(t, ϑt, . . .)
has been derived and the following conditions are fulfilled. (1) If t is a node with a sin-
gle child t′, then some fact of the form aux(t, ϑt, ϑt′ , . . .) has been derived. (2) If t is a
node with two child nodes t1 and t2, then some fact of the form aux(t, ϑt, ϑt1 , ϑt2 , . . .)
has been derived. Let us refer to such a selection of one type ϑt at each node t ∈ T as
a derivation tree since, intuitively, it reflects the derivation of the type ϑr at the root
node r. Let {(At, at, Bt) | t ∈ T } be the set of substructures corresponding to the
types {ϑt | t ∈ T } of such a derivation tree. Then we obtain a solution B of ϕ(X)
by computing the pointwise union of these vectors Bt of sets, i.e., B = (B1, . . . , Bm)
with Bi =

⋃
t∈T Bti. Given a derivation tree, the corresponding solution B can thus

be easily obtained. Moreover, in [16], appropriate pointer structures were introduced
which allow one to compute all derivation trees of a type ϑr with linear delay.

In total, we thus get an enumeration procedure which, for structures A of treewidth
≤ w, computes all solutions of the enumeration problem defined by the MSO formula
ϕ(X) with delay O(f(|ϕ(X)|, w) ∗ |A|) for some function f which depends on the
MSO formula ϕ(X) and the treewidth w but not on the input structureA.

6 Conclusion

In this paper, we have recalled the main ideas of the monadic datalog approach from
[13], which was originally designed for the evaluation of unary MSO queries over struc-
tures with bounded treewidth. Note that decision problems correspond to the special
case where the MSO query is 0-ary. We have also looked at the application of this ap-
proach to the SAT problem and at the extension to counting and enumeration problems.
In [15], experimental results were reported for the #SAT program recalled here. The im-
plementation was built on top of the datalog engine DLV [34]. In summary, the datalog
approach scales reasonably well for instances of medium size. Therefore, (extended)
datalog programs as the ones presented here can be employed for rapid prototyping and
to verify specifications which are possibly planned to be realized in another language.
Nevertheless, there is still plenty of work left for further improving the performance of
the implementation of such programs.

Two kinds of directions for such improvements were identified in [15]: one has to
do with the elimination of extensions to the datalog language used in these programs:
recall that we used set-variables and arithmetic on sets whose size is bounded by the
treewidth of the input structure. As was discussed in [15], the way how these programs
are (automatically) converted into proper DLV-syntax has a huge impact on the per-
formance. The ideal method has to be found yet. The other direction for performance
improvement has to do with the datalog engine itself. Integrating some of the exten-
sions used in the programs presented here into the datalog system itself would clearly

Exploiting Bounded Treewidth with Datalog 103

help to improve the performance. In fact, the direct support of sets and set-arithmetic
(as is the case in the extension of DLV called DLV-Complex, see http://www.mat.
unical.it/dlv-complex) can be seen as a step in this direction.

Other directions of future work are concerned with the identification of appropriate
extensions of datalog so as to handle further extensions of Courcelle’s Theorem. We
have already seen the extension to counting and enumeration problems. In [6], also
the extension of MSO with the sum-, minimum-, and maximum-operator were studied
over structures of bounded treewidth. It would be interesting to integrate also these
extensions into the datalog approach.

Finally, it should be stressed that the datalog approach discussed here is only one line
of research in the quest for turning theoretical tractability results due to Courcelle’s The-
orem into efficient algorithms. There are also other approaches. In particular, dynamic
programming algorithms are a natural candidate for this kind of problems. For instance,
[35] gives a dynamic programming algorithm for the #SAT problem. A completely dif-
ferent approach is proposed in [36]: we have already mentioned that the MSO-to-FTA
approach usually fails because of the state explosion in the FTA-construction. This state
explosion may occur on two levels: either in the form of big intermediate automata
(even though the final automaton is not that big) or in the form of a big final automaton.
In [36], the authors propose solutions to both problems by a direct construction of the
final automaton (to address the first problem) or by representing the transition function
of the FTA as a functional program (rather than explicitly computing all transitions).
Further research efforts for the construction of efficient algorithms of MSO-definable
problems are clearly needed.

Acknowledgments. The work reported here is the result of joint research with my col-
leagues Georg Gottlob, Michael Jakl, Stefan Rümmele, Fang Wei, and Stefan Woltran.
I am very grateful to them for the enjoyable and fruitful collaboration.

References

1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
2. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-

ence. Springer, Heidelberg (2006)
3. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford

(2006)
4. Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: Handbook of The-

oretical Computer Science, vol. B, pp. 193–242. Elsevier Science Publishers, Amsterdam
(1990)

5. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput. 85, 12–75 (1990)

6. Arnborg, S., Lagergren, J., Seese, D.: Easy Problems for Tree-Decomposable Graphs. J.
Algorithms 12, 308–340 (1991)

7. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49, 716–
752 (2002)

8. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4, 406–451
(1970)

http://www.mat.unical.it/dlv-complex
http://www.mat.unical.it/dlv-complex

104 R. Pichler

9. Thatcher, J.W., Wright, J.B.: Generalized Finite Automata Theory with an Application to a
Decision Problem of Second-Order Logic. Mathematical Systems Theory 2, 57–81 (1968)

10. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-
ited. Ann. Pure Appl. Logic 130, 3–31 (2004)

11. Maryns, H.: On the Implementation of Tree Automata: Limitations of the Naive Approach.
In: Proc. TLT 2006: 5th Int. Treebanks and Linguistic Theories Conference, pp. 235–246
(2006)

12. Grohe, M.: Descriptive and Parameterized Complexity. In: Flum, J., Rodrı́guez-Artalejo, M.
(eds.) CSL 1999. LNCS, vol. 1683, pp. 14–31. Springer, Heidelberg (1999)

13. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures with bounded
treewidth. In: Proc. PODS 2007, pp. 165–174. ACM, New York (2007); Full version to ap-
pear in ACM Trans. Comput. Log.

14. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge
representation and reasoning. Artif. Intell. 174, 105–132 (2010)

15. Jakl, M., Pichler, R., Rümmele, S., Woltran, S.: Fast counting with bounded treewidth. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 436–
450. Springer, Heidelberg (2008)

16. Pichler, R., Rümmele, S., Woltran, S.: Counting and enumeration problems with bounded
treewidth. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 387–
404. Springer, Heidelberg (2010) (to appear)

17. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

18. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experi-
ments. Electronic Notes in Discrete Mathematics 8, 54–57 (2001)

19. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Mathemat-
ics 306, 337–350 (2006)

20. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51, 255–269 (2008)

21. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted
treewidth. Algorithmica 47, 139–158 (2007)

22. Kloks, T.: Treewidth: Computations and Approximations. Springer, Berlin (1994)
23. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enu-

meration problems definable in monadic second-order logic. Discrete Applied Mathemat-
ics 108, 23–52 (2001)

24. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading
(1995)

25. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg
(1990)

26. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc.
STOC 1982, pp. 137–146. ACM, New York (1982)

27. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for Web
information extraction. J. ACM 51, 74–113 (2004)

28. Dowling, W.F., Gallier, J.H.: Linear-Time Algorithms for Testing the Satisfiability of Propo-
sitional Horn Formulae. J. Log. Program. 1, 267–284 (1984)

29. Minoux, M.: LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formu-
lae and Computer Implementation. Inf. Process. Lett. 29, 1–12 (1988)

30. Gottlob, G., Grädel, E., Veith, H.: Datalog lite: a deductive query language with linear time
model checking. ACM Trans. Comput. Log. 3, 42–79 (2002)

31. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer Monographs in Mathe-
matics. Springer, Heidelberg (1999)

Exploiting Bounded Treewidth with Datalog 105

32. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Science.
Springer, Heidelberg (2004)

33. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: Proc. ISLP, pp.
387–401 (1991)

34. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 499–562
(2006)

35. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algo-
rithms 8, 50–64 (2010)

36. Courcelle, B., Durand, I.A.: Verifying monadic second order graph properties with tree au-
tomata. In: European LISP Symposium, pp. 7–21 (2010)

Equivalence between Extended Datalog Programs —
A Brief Survey

Stefan Woltran

Technische Universität Wien, Institute of Information Systems 184/2
Favoritenstrasse 9-11, 1040 Vienna, Austria

woltran@dbai.tuwien.ac.at

Abstract. This paper gives a brief overview about the research field on equiva-
lences in Answer-Set Programming. More precisely, we are concerned here with
disjunctive logic programs under the stable-model semantics. Such programs can
be understood as extended datalog queries (i.e., datalog augmented by default
negation and disjunction). In particular, we shall report on characterizations and
complexity results for the notions of strong and respectively uniform equivalence.
Most notably, uniform equivalence becomes undecidable in the presence of de-
fault negation, while strong equivalence remains decidable for full disjunctive
datalog. We also consider a restricted setting where the arity of predicates is
bounded by a fixed constant.

1 Introduction

Answer Set Programming (ASP) [23,31,38,40], also known as A-Prolog [1,22], has
emerged as a declarative programming paradigm which has its roots in logic program-
ming and non-monotonic reasoning and is nowadays a well-acknowledged method for
solving intractable problems. Many successful applications of ASP, in particular in the
areas of Artificial Intelligence (AI) and Knowledge Representation (KR) have been pre-
sented over the past decade. As most prominent application, one has to mention the use
of ASP techniques in a decision support system for the space shuttle [41].

The ASP core language of logic programs, which goes back to the seminal paper
by Gelfond and Lifschitz [24], can be seen as datalog enhanced by default negation
and has later been extended to rules with disjunctive heads [25,39]. Consequently, this
formalism was also studied under the term disjunctive datalog (see, e.g. [14]). How-
ever, in contrast to standard datalog these extensions lead to the fact that a query does
not necessarily provide a unique answer, but yields several so-called answer sets or
stable models. This resulted in a shift of paradigm where programs are understood as
declarative problem descriptions, such that the query results represent all solutions of
the given problem. For instance, a program representing the 3-colorability problem for
graphs should return as answers all possible 3-colorings for the graph which is provided
as the input database. Although the introduction of concepts as negation or disjunction
to datalog also comes with the price of an increased complexity, dedicated disjunctive
datalog systems as DLV [29], which was first released in 1996, were developed and
boosted the success of ASP.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 106–119, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 107

The higher complexity of disjunctive datalog compared to standard datalog is also
mirrored in the typical architecture of ASP systems. In fact, such systems usually con-
sist of two parts (often these are even separate systems): (i) the grounding which instan-
tiates the variables of the given program resulting in a set of ground (i.e. propositional)
rules; (ii) the solving itself then evaluates the ground program and computes its set of
stable models which are also the answers to the original non-ground program. Reports
on the latest ASP system evaluations [4,21] provide a good overview about the differ-
ent grounders and solvers which are now available and give respective pointers to the
literature.

For programs without negation or disjunction (i.e. standard datalog queries), the
grounding process directly provides the query answer. For general ASP programs the
performance of the second step, i.e. solving the ground program, turns out to be crucial,
since the grounded programs tend to get very large (in general they are of exponential
size w.r.t. the original program). Thus, these solvers often rely on techniques stemming
from SAT or CSP, although the rule-based language of logic programs requires further
dedicated methodologies (see, e.g. [47] for a short discussion on that topic). Another
difference when talking about ASP on the one hand and disjunctive datalog on the other
hand is the fact that ASP (similar as in prolog convention) not necessarily separates the
database from the query, while in the datalog world this separation is tacitly assumed.1

Due to this focus on ground programs, theoretical research on ASP often was ad-
dressed only for the propositional case. In fact, also the research on equivalence was
carried out first for propositional programs. The earliest notion of equivalence studied
in the ASP literature dates back to 2001 and was not on query equivalence (which one
might expect from the datalog point of view) but on equivalence for (sub-)program re-
placement, which was named strong equivalence [32]. To be a bit more formal, strong
equivalence between programs P and Q holds, if for any further program R, P ∪ R
and Q∪R possess the same stable models. In their seminal paper, Lifschitz, Pearce and
Valverde [32] showed that strong equivalence can be decided by checking whether P
and Q are equivalent in the logic of here-and-there (also known as Gödel’s three-valued
logic). A different yet equivalent (for logic programs) characterization in terms of pro-
gram reducts was given by Turner [50], nowadays known as SE-models. Strong equiv-
alence was then deeply investigated for the propositional case (see e.g. [3,35,44,55])
and also further notions of equivalence (see, e.g. [6,12,28,43,45]) have been thoroughly
studied for the propositional case with uniform equivalence being the most prominent
one. Hereby, the task is to decide whether P ∪ F and Q ∪ F are equivalent for any set
F of facts (rather than rules). Lin [34] was the first to discuss the non-ground variant
of strong equivalence and gave a translation into first-order logic as a decision proce-
dure. The model-theoretic characterization in terms of SE-models was finally lifted to
the non-ground case in [10]. In that paper also first complexity and undecidability re-
sults were presented which were then complemented in [11]. Using first-order variants
of the aforementioned logic of here-and-there to decide strong equivalence was later
discussed in [33].

1 As a convention for this survey, we use the word program, for a set of rules which already
contains the database as facts, while by a query we understand a set of rules considered to be
conjoined with some input database.

108 S. Woltran

In the standard datalog setting the research line was rather different. Starting with
the undecidability result by Shmueli [48] on query equivalence from 1987, research
focused on the one hand on identifying the exact frontier between decidable and unde-
cidable language fragments, and on the other hand, on sound approximations to query
equivalence. Uniform equivalence was introduced by Sagiv [46] as one such approach.
Equivalence of program segments (which is the pendant to strong equivalence intro-
duced above) was introduced by Maher [37] but coincides with uniform equivalence
for datalog queries. As we will see later, the presence of negation makes uniform and
strong equivalence different concepts.

In this survey, we review the main results for strong and uniform equivalence for
disjunctive datalog and several syntactical subclasses thereof. The results are mainly
collected from the work by Eiter et al. [5,10,11]. The organization of the paper is as
follows. In the next section, we provide some formal preliminaries to define the dis-
cussed problems in sufficient accuracy. Section 3 contains the overview on the results:
we exactly define the notions of strong and uniform equivalence for disjunctive datalog
and provide model-theoretic characterizations. Then, we present the central complexity
results for the problems in question for full disjunctive datalog as well as for subclasses
where negation or disjunction is omitted. We also consider the setting of programs
where the arities of the (intensional) predicates are bounded [5]. Finally, we discuss
some further results which deal with stratified negation, relativized notions of equiva-
lences, and program rewritings. We conclude the paper with a brief summary and a list
of important issues which still remain open.

2 Background

We recall the basic formal concepts for disjunctive logic programming [25] under the
stable semantics and give a brief review on the main complexity results for reasoning
tasks [2]. For further details, the reader is referred to [14,29].

Logic programs are formulated in a language containing a set A of predicate sym-
bols, a set V of variables, and a set U of constants. Unless stated otherwise, we assume
these sets to be infinite. Each predicate symbol has an associated arity n ≥ 0; the set U
is also referred to as the domain. An atom is an expression of form p(t1, . . .,tn), where
p ∈ A is a predicate of arity n and ti ∈ U ∪ V , for 1 ≤ i ≤ n. An atom is ground
if no variable occurs in it. For a set A ⊆ A of predicate symbols and a set C ⊆ U of
constants, we write BA,C to denote the set of all ground atoms constructed from the
predicate symbols from A and the constants from C.

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm, (1)

where a1, . . . , an, b1, . . . , bm are atoms, with n ≥ 0, m ≥ k ≥ 0, and n + m > 0, and
“not ” is default negation. The head of r is the set H(r) = {a1, . . . , an}, and the body
of r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, we define B+(r)
= {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule of form (1) is called (i) a fact, if
m = 0 and n = 1 (in which case the symbol← is usually omitted), (ii) a constraint, if
n = 0, (iii) normal, if n ≤ 1, (iv) positive, if k = m, and (v) Horn, if k = m and n ≤ 1.

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 109

A rule r is safe if each variable occurring in H(r) ∪ B−(r) also occurs in B+(r); r is
ground, if all atoms occurring in r are ground.

By a program we understand a set of rules. The set of variables (resp., constants,
predicate symbols) occurring in an expression e (atom, rule, program, etc.) is denoted
by Ve, (resp., Ue, Ae). If no constant appears in a program P , then UP = {c}, for
an arbitrary constant c. Moreover, BP = BAP ,UP is the Herbrand base of P . Given
a rule r and C ⊆ U , we define Gr(r, C) as the set of all rules obtained from r by
all possible substitutions of elements of C for the variables in r. Moreover, we define
Gr(P, C) =

⋃
r∈P Gr(r, C). In particular, Gr(P,UP) is referred to as the grounding

of P , written Gr(P). A predicate p ∈ AP is called extensional (in P) iff there is no
r ∈ P with p ∈ H(r), otherwise it is intensional (in P).

Programs are normal (resp., positive, Horn, ground, safe) if all of their rules enjoy
this property. Thus a Horn program amounts to a standard datalog query. Unless stated
otherwise, we assume that programs are finite and safe. A normal program P is called
stratified iff there is a function f : A → N such that, for each r ∈ P with H(r) = {h}
being nonempty, (i) f(Ab) < f(Ah), for each b ∈ B−(r), and (ii) f(Ab) ≤ f(Ah),
for each b ∈ B+(r).

By an interpretation we understand a set of ground atoms. A ground rule r is satisfied
by an interpretation I iff H(r) ∩ I 	= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I
satisfies a ground program P iff each r ∈ P is satisfied by I (I is then also called a
model of P). The Gelfond-Lifschitz reduct [25] of a ground program P (with respect to
an interpretation I) is given by the positive program

P I = {H(r) ← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

A set I of ground atoms is an answer set (or stable model) of P iff I is a subset-minimal
set satisfying Gr(P)I . The set of all answer sets of P is denoted by AS(P). Note that
for each I ∈ AS(P), I ⊆ BP holds by minimality. As is well known, a program P
might possess multiple or no answer set, while every stratified program (and thus every
Horn program) has at most one answer sets.

We finally review a few complexity results compiled from the surveys [2,14]; see
the references therein for further pointers to the original results. In fact, we give the
results for both combined and data complexity [51]; recall that for data complexity the
query is assumed fixed and only the database is part of the input. Moreover, we consider
the typical two reasoning modes which arise from the fact that programs may possess
multiple answer sets: for a program P and a ground atom a, we define

– P |=c a if a ∈ I for at least one I ∈ AS(P) (credulous reasoning);
– P |=s a if a ∈ I for all I ∈ AS(P) (skeptical reasoning).

For programs which have a unique answer set, |=c and |=s thus coincide.

Proposition 1. Combined and data complexity for reasoning in disjunctive datalog
(and fragments thereof) is given as in Table 1 (all entries in the table are complete-
ness results).

We will later compare these results with the complexity for equivalence checking.

110 S. Woltran

Table 1. Combined/data complexity for disjunctive datalog

Horn programs normal programs positive programs general case

|=c EXPTIME / P NEXPTIME / NP NEXPTIMENP/ ΣP
2 NEXPTIMENP / ΣP

2

|=s EXPTIME / P co-NEXPTIME / coNP NEXPTIME/ coNP co-NEXPTIMENP / ΠP
2

3 Results for Strong and Uniform Equivalence

We consider the following notions of equivalence between two programs P and Q:

– ordinary equivalence, P ≡o Q: AS(P) = AS(Q);
– uniform equivalence, P ≡u Q: for each finite set F of facts,AS(P∪F) = AS(Q∪

F); and
– strong equivalence, P ≡s Q: for each program R, AS(P ∪R) = AS(Q ∪R).

By definition, we have that P ≡s Q implies P ≡u Q and that P ≡u Q implies P ≡o Q.
Moreover, all three notions are different concepts.

Example 1. For queries P = {p ← q} and Q = {p ← r}, we have AS(P) =
AS(Q) = {∅} and thus P ≡o Q. However, P 	≡u Q is derived by adding fact q,
where we get AS(P ∪ {q}) = {{p, q}} 	= {{q}} = AS(Q ∪ {q}). ♦

Let us next recall canonical examples which show that uniform and strong equivalence
do not coincide as soon as negation comes into play.

Example 2. Consider

P = {p ∨ q ←}; Q = {p← not q; q ← not p}.

Both, P and Q have the same answer sets, {p} and {q}. Moreover, for any set F of facts
such that F ∩{p, q} = ∅,AS(P ∪F) = AS(Q∪F) = {F ∪{p}, F ∪{q}}. Moreover,
for any set G of facts such that G ∩ {p, q} 	= ∅, AS(P ∪ G) = AS(Q ∪ G) = {G}.
Thus, P ≡u Q. On the other hand, for R = {p ← q; q ← p}, we get that P ∪ R has
a unique answer set, {p, q} (the minimal interpretation satisfying the positive program
P ∪ R), while Q ∪ R has no answer set; in particular, I = {p, q} is not an answer set
of Q ∪R, since I is not minimal in satisfying (Q ∪R)I = R. Thus, P 	≡s Q. ♦

Example 3. Another such example but without disjunction involved is

P = {p← q; p ← not q}; Q = {p← r; p ← not r};

where P ≡u Q holds, but P and Q are not strongly equivalent (take R = {q ← p} as
a counter example). ♦

Note that in the last example P and Q are both stratified programs; however conjoining
P with the counter example R (which itself is stratified) leads to an unstratified pro-
gram P ∪R. Thus, the correct definition of strong equivalence for the case of stratified

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 111

programs is not so clear (see [11] for a discussion on this issue). However, as shown
in [10], strong and uniform equivalence coincide not only for Horn programs (as was
already observed by Maher [37]) but also for positive disjunctive programs; we will
give a proof sketch for this result in the next section.

We remark that the difficulty to deal with uniform or strong equivalence (in contrast
to ordinary equivalence) in the non-ground case has its origin in the extended programs
P ∪ R and Q ∪ R which naturally enlarge the active domains UP , resp. UQ. Thus the
original Herbrand bases of the compared programs P and Q are not useful anymore.

3.1 Characterizations

Several characterizations to decide strong and uniform equivalence between ground
(i.e. propositional) programs have been presented in the literature. We use here the
characterization by Turner [50] which simplifies the original result from [32] by using
the notion of the reduct instead of a full logic.2 Within our language, the result by
Turner can be formulated as follows: Let an SE-model of a ground program P be any
pair (X, Y) such that X ⊆ Y ⊆ BA,U , Y satisfies P , and X satisfies PY .

Proposition 2. Two propositional programs are strongly equivalent, i.e. P ≡s Q, if
and only if P and Q possess the same SE-models.

Given two ground programs P and Q it is sufficient to restrict this test to pairs (X, Y)
where X and Y are subsets of the ground atoms occurring in P or Q. Let us illustrate
the basic idea using the programs from Example 2.

Example 4. Consider

P = {p ∨ q ←}; Q = {p← not q; q ← not p}.

It is sufficient to compute SE-models over atoms {p, q}. Since P is positive we just
have to form all pairs (X, Y) such that X ⊆ Y and where X and Y are models of P .
This yields3

(p, p), (q, q), (p, pq), (q, pq), (pq, pq).

On the other hand, observe that the reduct of Q with respect to interpretation {p, q}
yields the empty program, thus in particular also the pair (∅, pq) is SE-model of Q. In
fact, the SE-models of Q are given by

(p, p), (q, q), (∅, pq), (p, pq), (q, pq), (pq, pq)

and thus differ from the SE-models of P . By Proposition 2, we thus get P 	≡s Q
directly (we already have seen before that adding R = {p ← q q ← p} yields a
counter example). ♦

2 Undoubtedly, using a pure logical characterization has numerous advantages and the result
from [32] moreover goes beyond the notion of logic programs. However, for the sake of the
survey we use the simpler notion of SE-models which circumvents the introduction of further
formal machinery.

3 We omit parentheses “{”,“}” within SE-models for better readability.

112 S. Woltran

For uniform equivalence (being a weaker concept than strong equivalence), character-
izations first aimed to select subsets of SE-models in order to decide uniform equiv-
alence. The concept of UE-models, introduced in [6], is defined as follows: an SE-
model (X, Y) of a program P is also an UE-model of P iff there is no X ′ of the form
X ⊂ X ′ ⊂ Y , such that (X ′, Y) is also SE-model of P .

Proposition 3. Two propositional programs are uniformly equivalent, i.e. P ≡u Q, if
and only if P and Q possess the same UE-models.

Example 5. Recall programs P and Q and their SE-models from Example 4. By defi-
nition of UE-models, each SE-model of P is also UE-model P , while all SE-models of
Q except (∅, pq) are also UE-models of Q. Thus P and Q possess the same UE-models.
We conclude that P ≡u Q holds. ♦

One more remark is in order about uniform equivalence: in case of infinite programs,
UE-models do not yield a suitable characterization. Recent work by Fink [18] discusses
this issue in detail.

For the case of non-ground programs which we are interested here, these character-
izations can be lifted in a straight forward way to compare the SE-models, resp. UE-
models, for all possible groundings of the compared programs. More formally, P ≡s Q
holds iff Gr (P, C) ≡s Gr(Q, C), for all C ⊆ U , and likewise, P ≡u Q holds iff
Gr(P, C) ≡u Gr(Q, C), for all C ⊆ U . However, as shown in [10], there exists a
certain short-cut for strong equivalence.

Proposition 4. Let U+
P,Q = UP ∪UQ∪U where U = {c1, . . . , cm} is a set of m distinct

constants disjoint from UP ∪ UQ and m is the maximal number of variables occurring
in a rule of P ∪Q. Then, P ≡s Q iff Gr(P,U+

P,Q) ≡s Gr(Q,U+
P,Q).

Proof. (Sketch) The only-if direction follows from the already mentioned relation that
P ≡s Q holds iff Gr(P, C) ≡s Gr(Q, C), for all C ⊆ U . For the other direction
one can reason as follows: Suppose Gr(P, C) 	≡s Gr (Q, C) for some C ⊆ U . Then,
there is a pair (X, Y) ∈ BA,U which is SE-model of exactly one out of Gr(P, C)
and Gr (Q, C). Assume (X, Y) is not SE-model of Gr (P, C), i.e. there is a ground
rule r ∈ Gr(P, C) such (X, Y) is not SE-model of {r}. Let D be the set of constants
occurring in r. Then D ⊆ C and w.l.o.g. we can assume that D ⊆ U+

P,Q. Since (X, Y)
is not SE-model of {r}, (X, Y) is not SE-model of Gr(P, D). On the other, (X, Y)
being SE-model of Gr(Q, C) implies that (X, Y) is SE-model of Gr(Q, D), since
D ⊆ C. From these observations, Gr(P,U+

P,Q) ≡s Gr(Q,U+
P,Q) then follows. �

Example 6. As a simple example consider queries

P = {q(X)← e(X, Y)}; Q = {q(X)← e(X, X)}.
It is obvious that P and Q are not strongly equivalent, since adding a fact like e(a, b)
already yields AS(P ∪ {e(a, b)}) = {{q(a), e(a, b)}} 	= {{e(a, b)}} = AS(Q ∪
{e(a, b)}). To recognize this difference by just inspecting P and Q, it is rather straight
forward to see that one has to compare groundings Gr(P, C) and Gr(Q, C) where
C contains at least two elements from U . Note that U+

P,Q contains exactly two such
elements. ♦

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 113

Table 2. Complexity results for equivalence checking (general case/bounded arity)

Horn programs normal programs positive programs general case

SE EXPTIME/coNP co-NEXPTIME/ΠP
2 co-NEXPTIME/ΠP

2 co-NEXPTIME/ΠP
2

UE EXPTIME/coNP undec./ ? co-NEXPTIME/ΠP
2 undec./undec.

OE EXPTIME/coNP co-NEXPTIME/ΠP
2 co-NEXPTIMENP/ΠP

3 co-NEXPTIMENP/ΠP
3

In other words, strong equivalence between non-ground programs can be decided by
a single test for strong equivalence between two ground programs. For the latter test
we can make use of the concept of SE-models introduced above. For uniform equiva-
lence, no such short-cut is possible due to the undecidability results we will present in
the following subsection. For positive programs, decidability for uniform equivalence
however holds.

Proposition 5. For positive programs P , Q, strong and uniform equivalence coincide,
i.e. we have P ≡s Q iff P ≡u Q.

Proof. (Sketch) The only-if direction is by definition. The if-direction follows from
the observation that for any program R, any C ⊆ U and any interpretation I , it holds
that (Gr(R, C)I) = Gr(R, C). Thus any non-total SE-model (X, Y) of a grounding
of positive program Gr(R, C) is reflected by a total SE-model (X, X) of the same
program. Since each total SE-model is also an UE-model, the claim then follows quite
easily. �

Let us finally mention that the characterizations we have introduced here, slightly refor-
mulate the corresponding results from [10]. In fact, [10] explictly defined SE-models
(resp. UE-models) for non-ground programs, while we only made use of SE-models
(resp. UE-models) for groundings of the compared programs.

3.2 Complexity

We now present the main results for deciding strong equivalence (SE), uniform equiv-
alence (UE), and ordinary equivalence (OE). Besides the general case, we also provide
the results for programs having the arities of their (intensional) predicates bounded [5]
(bounding the arity has also been studied in the datalog world, see e.g. [27]). Similar
results can be obtained by bounding the number of variables in rules (see also [52]).

Proposition 6. Complexity for deciding strong, uniform and ordinary equivalence in
disjunctive datalog (and fragments thereof) is given as in Table 2 (where “undec.” refers
to undecidable problems, “?” marks an open problem, while all remaining entries in
the table refer to completeness results for the given complexity class).

The results for uniform and respectively strong equivalence in the disjunctive, positive,
and normal case are compiled from [10,11]. The case of ordinary equivalence as well
as the results for Horn programs (i.e. the standard datalog case) have been established
earlier (again, we refer to the survey [2] for the respective pointers to the literature).

114 S. Woltran

We now give a few hints how the results for strong and uniform equivalence have
been established. Let us start with strong equivalence. Indeed, decidability for strong
equivalence is based on Proposition 4, which showed that a single check for strong

equivalence between finite ground programs is sufficient. The co-NEXPTIMENP

hardness for strong equivalence can be shown via a reduction from a certain class of
second-order formulas [13]; this holds also for the other hardness results in Table 2.
We emphasize that for full disjunctive datalog, deciding strong equivalence is easier
than deciding ordinary equivalence. To put it in other words, for the problem of strong
equivalence, disjunction does not increase the complexity (as it is the case for other
reasoning problems). Also recall that for programs without negation, strong and uni-
form equivalence coincide (cf. Proposition 5). Thus for positive programs, the results
for uniform equivalence come for free.

As soon as negation is involved, uniform equivalence becomes undecidable. In [10],
this result was shown for disjunctive programs by making use of the undecidability
result due to Shmueli [48]. We briefly sketch the idea of the reduction: In fact, [10]
reduces the notion of program equivalence (which is easily shown to be undecidable by
a reduction from query equivalence, see e.g. [10]) between Horn programs to uniform
equivalence between disjunctive programs (programs P and Q are program equivalent,
if for any finite set F of ground atoms over extensional predicates4, AS(P ∪ F) =
AS(Q∪F) holds). Basically, the idea is to rewrite the programs in such a way that SE-
models (X, Y) of the groundings carry the counter models of the original programs.
More precisely, given a program P and a set C ⊆ U , we want to define a program
P→, such that (X, Y) ∈ SE (Gr (P→, C)), X 	= Y , if and only if X does not satisfy
Gr(P, C). Then, minimal models of Gr(P, C) correlate to certain maximal SE-models
of Gr (P→, C), and thus to the UE-models of Gr(P→, C). Since P and Q are Horn, it
can be shown that P and Q are program equivalent iff P→ ≡u Q→. P→ (likewise, Q→)
can be defined by “reversing” the rules of P and to allow only certain saturated models
to satisfy P→. The “reversing” of rules requires disjunctions in the head, while for the
restriction to saturated models a single negative constraint is sufficient. Moreover, the
construction of P→ shows that undecidability holds already for programs where all
predicates have bounded arity (this follows from the reduction of the original result by
Shmueli [48] which requires predicates having their arities bounded by 3).

In [11], the undecidability result for uniform equivalence in disjunctive datalog was
strengthened by using a similar idea but starting from a different undecidability result
for datalog query equivalence, namely due to Feder and Saraiya [17]. They showed
that query equivalence remains undecidable for linear programs (programs with at most
one intensional predicate in the rule bodies). This allows to adapt the construction of
the reversed programs P→ in such a way that no disjunction is required. However,
applying this alternative reduction does not directly lead to a result which takes bounded
predicate arity into account. Indeed, it is an open question whether undecidability of
uniform equivalence for normal programs still holds in case the predicate arities are
bounded. We also remark that the problem of uniform equivalence becomes decidable
if only one of the compared programs contains negation.

4 One can assume here w.l.o.g. that P and Q share the same extensional predicates.

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 115

We finally comment on the decrease of complexity for the decidable problems in
case we consider the arities bounded (for the decrease it is sufficient to have this restric-
tion only on the intensional predicates). Basically, the reason why these problems then
become easier is that we now are able to guess a counter-example (for instance a pair
(X, Y) which is SE-model of either Gr(P,U+

P∪Q) or Gr(Q,U+
P∪Q)) in polynomial

space. Hardness results are shown by suitable reductions from QSAT problems, see [5].

3.3 Further Issues

Stratification. In Table 1, the reported complexity results for Horn programs also carry
over the stratified programs, but the same does not hold for equivalence checking. In
fact, not all problems are solved for stratified programs yet. While strong equivalence
can be shown to be co-NEXPTIME complete [11], it is, to the best of our knowledge,
still an open question whether uniform equivalence between stratified programs is, in
general, decidable (decidability holds for monadic programs (follows from [26]) and
in case the compared programs possess a joint stratification [30]). Interestingly, for the
ground case, it was shown in [11] that deciding strong or uniform equivalence becomes
intractable for stratified programs (and thus becomes harder as the corresponding prob-
lems for Horn programs).

Finite Domains. In the previous section, the undecidability results are clearly due to the
fact that the domain of constants was considered to be infinite; in case of a finite domain
U , all discussed problems become obviously decidable; exact complexity bounds range

from EXPTIME to co-NEXPTIMENP, see [10] for the details.

Rewritings. Based on the different equivalence notions, several papers studied rewrit-
ing rules in order to faithfully simplify a program. In particular, known results from the
ground case [9] were lifted to the non-ground case in [7]. Most notably, deciding the
applicability of such rewritings (i.e., whether a rule is subsumed by another rule) is in-
tractable and even higher complexity is involved in the case of finite domains, see [19].
A slightly different approach is to re-cast programs. Hereby the question is for a given
program P , whether there exists a program Q from a different class such that P and
Q are equivalent under a certain equivalence notion. Results for such re-casts in the
propositional case can be found, for instance, in [8,9].

Relativized Notions of Equivalence. There is a huge gap between the notions of strong
equivalence (equivalence for substitution) and ordinary equivalence (the compared pro-
grams only have to possess the same stable models; no addition of programs is consid-
ered). Uniform equivalence can be seen as one notion in between strong and ordinary
equivalence by restricting the syntactic structure of the possibly added programs (i.e.,
restricting them to facts); in fact, it was shown that rule-wise restrictions of the syn-
tax either results in strong, uniform or ordinary equivalence [45]. Another option is
to bound the language of the the added programs. The latter approach has been intro-
duced as relativized strong equivalence and has been investigated for ground programs
in [12,28,53]. Similarly, a notion of relativized uniform equivalence was investigated in
these papers.

116 S. Woltran

Later, a more fine-grained parameterized notion of equivalence was investigated
where the rules which might be added can be specified in terms of two alphabets, one
for their heads and one for their bodies [54]. This concept, also termed hyperequiva-
lence [49], allows for a common characterization of strong and uniform equivalence
and thus to understand the difference between these notions on a model-theoretical side
(recall the conceptual difference between SE- and UE-models sketched in Section 3.1).
Another line of research considered equivalence notions where the comparison only
takes place over projected answer sets, see e.g. [15]. Recently, all these notions have
been introduced to non-ground programs [42] as well.

4 Conclusion

In this paper, we summarized the current state of research about deciding equivalence
(with an emphasis on strong and respectively uniform equivalence) between queries for-
mulated in an extended datalog language. In particular, we considered here disjunctive
datalog which allows queries to contain negation in rule bodies and disjunction in rule
heads. Nowadays such programs are usually referred to when talking about the answer-
set programming (ASP) paradigm. We have seen that the notion of strong equivalence
remains decidable for this language, while negation causes uniform equivalence to be-
come an undecidable problem (which is in strong contrast to the classical datalog world,
where uniform equivalence was introduced as a decidable and sound approximation for
query equivalence).

The exact frontier between decidable and undecidable problems is not fully explored
yet (for standard datalog a huge body of such results can be found, e.g. in [26]). In
particular, the case of stratified negation still leaves some open questions. Similarly, for
the undecidable problems presented here, decidable fragments still have to be explored.
As well, the complexity of deciding whether a program falls into a decidable fragment
has not been investigated for disjunctive datalog (see e.g., [20,27] for such work in the
standard datalog area).

Another open issue concerns the question how further language extensions like ag-
gregates (see e.g., [16]) effect decision procedures for strong or uniform equivalence; in
the propositional setting, preliminary work in this direction has been already conducted,
for instance, in [36]. Finally, on the practical side, it turned out that the theoretical re-
sults on equivalence have not found their way to ASP systems in order to optimize the
grounders or solvers. A closer collaboration between theoreticians and system develop-
ers is necessary to put the whole body of theoretical work to practice, and moreover, to
guide future directions of research in the area of equivalence for ASP programs.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2002)

2. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

3. de Jongh, D., Hendriks, L.: Characterizations of Strongly Equivalent Logic Programs in In-
termediate Logics. Theory and Practice of Logic Programming 3(3), 259–270 (2003)

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 117

4. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The Second An-
swer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

5. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity Results for Answer Set Programming
with Bounded Predicate Arities and Implications. Annals of Mathematics and Artificial In-
telligence 51(2-4), 123–165 (2007)

6. Eiter, T., Fink, M.: Uniform Equivalence of Logic Programs under the Stable Model Se-
mantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer,
Heidelberg (2003)

7. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in Non-Ground
Answer-Set Programming. In: Proc. KR 2006, pp. 340–351. AAAI Press, Menlo Park (2006)

8. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On Eliminating Disjunctions in Stable Logic
Programming. In: Proc. KR 2004, pp. 447–458. AAAI Press, Menlo Park (2004)

9. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying Logic Programs Under Uniform
and Strong Equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI),
vol. 2923, pp. 87–99. Springer, Heidelberg (2003)

10. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and Uniform Equivalence in Answer-Set
Programming: Characterizations and Complexity Results for the Non-Ground Case. In: Proc.
AAAI 2005, pp. 695–700. AAAI Press, Menlo Park (2005)

11. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Complexity Results for Checking Equivalence
of Stratified Logic Programs. In: Proc. IJCAI 2007, pp. 330–335. AAAI Press, Menlo Park
(2007)

12. Eiter, T., Fink, M., Woltran, S.: Semantical Characterizations and Complexity of Equiva-
lences in Answer Set Programming. ACM Transactions on Computational Logic 8(3), pages
53 (2007)

13. Eiter, T., Gottlob, G., Gurevich, Y.: Normal Forms for Second-Order Logic over Finite
Structures, and Classification of NP Optimization Problems. Annals of Pure and Applied
Logic 78(1-3), 111–125 (1996)

14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3), 364–418 (1997)

15. Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer Set Program-
ming. In: Proc. IJCAI 2005, pp. 97–102. Professional Book Center (2005)

16. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and Implementation of
Aggregate Functions in the DLV System. Theory and Practice of Logic Programming 8(5-
6), 545–580 (2008)

17. Feder, T., Saraiya, Y.: Decidability and Undecidability of Equivalence for Linear Datalog
with Applications to Normal-Form Optimizations. In: Hull, R., Biskup, J. (eds.) ICDT 1992.
LNCS, vol. 646, pp. 297–311. Springer, Heidelberg (1992)

18. Fink, M.: A General Framework for Equivalences in Answer-Set Programming by Counter-
models in the Logic of Here-and-There. CoRR, abs/1006.3021 (2010) (to appear); Theory
and Practice of Logic Programming

19. Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of Rule Redundancy in Non-
Ground Answer-Set Programming over Finite Domains. In: Baral, C., Brewka, G., Schlipf,
J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 123–135. Springer, Heidelberg (2007)

20. Gaifman, H., Mairson, H., Sagiv, Y., Vardi, M.: Undecidable Optimization Problems for
Database Logic Programs. Journal of the ACM 40(3), 683–713 (1993)

21. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski, M.: The
First Answer Set Programming System Competition. In: Baral, C., Brewka, G., Schlipf, J.
(eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

118 S. Woltran

22. Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Com-
putational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451.
Springer, Heidelberg (2002)

23. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation - The A-Prolog
Perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

24. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Proc.
ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

25. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

26. Halevy, A., Mumick, I., Sagiv, Y., Shmueli, O.: Static Analysis in Datalog Extensions. Jour-
nal of the ACM 48(5), 971–1012 (2001)

27. Hillebrand, G., Kanellakis, P., Mairson, H., Vardi, M.: Tools for Datalog Boundedness. In:
Proc. PODS 1991, pp. 1–12. ACM Press, New York (1991)

28. Inoue, K., Sakama, C.: Equivalence of Logic Programs Under Updates. In: Alferes, J.J.,
Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174–186. Springer, Heidelberg
(2004)

29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

30. Levy, A., Sagiv, Y.: Queries Independent of Updates. In: Proc. VLDB 1993, pp. 171–181.
Morgan Kaufmann, San Francisco (1993)

31. Lifschitz, V.: Answer Set Programming and Plan Generation. Artificial Intelligence 138, 39–
54 (2002)

32. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

33. Lifschitz, V., Pearce, D., Valverde, A.: A Characterization of Strong Equivalence for Logic
Programs with Variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

34. Lin, F.: Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. In: Proc. KR 2002, pp. 170–176. Morgan Kaufmann, San Francisco (2002)

35. Lin, F., Chen, Y.: Discovering Classes of Strongly Equivalent Logic Programs. Journal of
Artificial Intelligence Research 28, 431–451 (2007)

36. Liu, L., Truszczynski, M.: Properties and Applications of Programs with Monotone and Con-
vex Constraints. Journal of Artificial Intelligence Research 27, 299–334 (2006)

37. Maher, M.: Equivalences of Logic Programs. In: Minker, J. (ed.) Foundations of Deductive
Databases and Logic Programming, pp. 627–658. Morgan Kaufmann, San Francisco (1988)

38. Marek, V., Truszczyński, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm – A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

39. Minker, J.: Overview of Disjunctive Logic Programming. Annals of Mathematics and Artifi-
cial Intelligence 12, 1–24 (1994)

40. Niemelä, I.: Logic Programming with Stable Model Semantics as Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

41. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision
Support System for the Space Shuttle. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551,
pp. 169–183. Springer, Heidelberg (1999)

42. Oetsch, J., Tompits, H.: Program Correspondence under the Answer-Set Semantics: The
Non-ground Case. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 591–605. Springer, Heidelberg (2008)

43. Oikarinen, E., Janhunen, T.: Modular Equivalence for Normal Logic Programs. In: Proc.
ECAI 2006, pp. 412–416. IOS Press, Amsterdam (2006)

Deciding Equivalence between Extended Datalog Programs – A Brief Survey 119

44. Pearce, D., Tompits, H., Woltran, S.: Characterising Equilibrium Logic and Nested Logic
Programs: Reductions and Complexity. Theory and Practice of Logic Programming 9(5),
565–616 (2009)

45. Pearce, D., Valverde, A.: Uniform Equivalence for Equilibrium Logic and Logic Programs.
In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 194–206.
Springer, Heidelberg (2003)

46. Sagiv, Y.: Optimising DATALOG Programs. In: Minker, J. (ed.) Foundations of Deductive
Databases and Logic Programming, pp. 659–698. Morgan Kaufmann, San Francisco (1988)

47. Schaub, T.: Making Your Hands Dirty Inspires Your Brain! Or How to Switch ASP into
Production Mode. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI),
vol. 5753, pp. 631–633. Springer, Heidelberg (2009)

48. Shmueli, O.: Decidability and Expressiveness Aspects of Logic Queries. In: Proc. PODS
1987, pp. 237–249. ACM Press, New York (1987)

49. Truszczynski, M., Woltran, S.: Relativized Hyperequivalence of Logic Programs for Modular
Programming. Theory and Practice of Logic Programming 9(6), 781–819 (2009)

50. Turner, H.: Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.
Theory and Practice of Logic Programming 3(4-5), 602–622 (2003)

51. Vardi, M.: The Complexity of Relational Query Languages (Extended Abstract). In: Proc.
STOC 1982, pp. 137–146. ACM, New York (1982)

52. Vardi, M.: On the Complexity of Bounded-Variable Queries. In: Proc. PODS 1995,
pp. 266–276. ACM Press, New York (1995)

53. Woltran, S.: Characterizations for Relativized Notions of Equivalence in Answer Set
Programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 161–173. Springer, Heidelberg (2004)

54. Woltran, S.: A common view on Strong, Uniform, and other Notions of Equivalence in
Answer-Set Programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)

55. Wong, K.-S.: Sound and Complete Inference Rules for SE-Consequence. Journal of Artificial
Intelligence Research 31, 205–216 (2008)

Cluster Computing, Recursion and Datalog

Foto N. Afrati1, Vinayak Borkar2, Michael Carey2,
Neoklis Polyzotis3, and Jeffrey D. Ullman4

1 National Technical University of Athens
2 UC Irvine

3 UC Santa Cruz
4 Stanford University

Abstract. The cluster-computing environment typified by Hadoop, the
open-source implementation of map-reduce, is receiving serious attention
as the way to execute queries and other operations on very large-scale
data. Datalog execution presents several unusual issues for this enviro-
ment. We discuss the best way to execute a round of seminaive evaluation
on a computing cluster using the map-reduce. Using transitive closure as
an example, we examine the cost of executing recursions in several differ-
ent ways. Recursive processes such as evaluation of a recursive Datalog
program do not fit the key map-reduce assumption that tasks deliver
output only when they are completed. As a result, the resilience under
compute-node failure that is a key element of the map-reduce framework
is not supported for recursive programs. We discuss extensions to this
framework that are suitable for executing recursive Datalog programs on
very large-scale data in a way that allows progress to continue after node
failures, without restarting the entire job.

1 Background

There has been a surprising resurgence of interest in Datalog for large-scale
data-processing applications, including networking [14], analysis of very large
programs [19], and distributed (social) networking [23]. The subject of this paper
is implementing Datalog in a cloud-computing environment, where there is a
cluster of compute-nodes, and parallel computation is performed using Hadoop
or a similar tool. We assume the reader has exposure to this technology, and
we give only a summary of references for cluster computing systems and for
Datalog.

1.1 Datalog Concepts and Seminaive Evaluation

We assume the reader is familiar with Datalog and the notation found in [24],
which we use here. Important issues include the distinction between IDB rela-
tions/predicates (those defined by rules) and EDB relations/predicates (those
stored in the database).

We also assume familiarity with seminaive evaluation, where recursive rules
are evaluated incrementally. At each round, for each recursive predicate p, a

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 120–144, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cluster Computing, Recursion and Datalog 121

delta-relation, denoted p′ is computed, consisting of all those p-tuples that are
discovered for the first time at that round. Each round is computed in a restricted
way, where only evaluations of the body in which at least one tuple comes from
the delta relation of the previous round are allowed.

Example 1. If the rule is

p(X,Y) :- q(X,Z) & r(Z,W) & s(W,Y)

then we compute

πX,Y

(
q′(X, Z) �	 r(Z, W) �	 s(W, Y) ∪

q(X, Z) �	 r′(Z, W) �	 s(W, Y) ∪
q(X, Z) �	 r(Z, W) �	 s′(W, Y)

)

The tuples of this relation that were not placed in p prior to the previous round
are added to p and are also in the delta-relation p′ for this round only.

Seminaive evaluation often computes tuples more than once. In this paper, we
shall several times argue that the work done in a parallel evaluation of Datalog
is no greater than what we would need for any implementation of seminaive
evaluation. A derivation of a tuple t is a substitution of values for variables
in some rule that makes all the subgoals true and makes the head be t. Thus,
there are as many derivations as there are such substitutions. The number of
derivations of tuples is a measure of the performance of seminaive evaluation on
a given Datalog program.

Example 2. Consider the Datalog rule

p(X,Y) :- e(X,Z) & p(Z,Y)

Think of this rule as the right-linear method for computing paths in a graph
from its arcs. A path tuple p(x, y) has many different derivations. In particular,
whenever there is a node z such that e(x, z) is a given arc and path p(z, y) is
discovered during the recursive evaluation of this rule, there is a derivation of
p(x, y) using the set of facts {e(x, z), p(z, y)}. Thus, whenever there is an arc
e(x, z) and at least one path from z to y there is one derivation of fact p(x, y).
Note that because we are using seminaive, even if there are more than one paths
from z to y going through z, the number of derivations of p(x, y) due to z is
not more than one. However, z may contribute to the creation of derivations for
other tuples p(x′, y′) as long as there is an arc e(x′, z) and a path (z, y′).

Thus each z causes a number of derivations, say dz , which is equal to the
number of nodes that z can reach times the in-degree of z. Hence, the total
number of derivations ever created by applying seminaive is the sum over all
nodes z of dz. Were we to rewrite the rule in its left-linear form

p(X,Y) :- p(X,Z) & e(Z,Y)

we get a somewhat different computation for the number of derivations: the sum
over all nodes z of d′z , where d′z is equal to the number of nodes that can reach
z times the out-degree of z. And if we use the nonlinear formulation

122 F.N. Afrati et al.

p(X,Y) :- p(X,Z) & p(Z,Y)

we get a larger number of derivations: the sum over all nodes z of d′′z , where d′′z
is the the product of the number of nodes z reaches times the number of nodes
that reach z.

The following theorem states that seminaive evaluation performs each deriva-
tion exactly once. Thus the number of duplicates produced during seminaive
evaluation depends only on the number of derivations and not on the number of
iterations.

Theorem 1. The number of times a tuple t is produced during seminaive eval-
uation is equal to the number of derivations of t.

Proof. Consider a derivation of t. We need to prove two things:

a) That this derivation will be fired at least once during seminaive evaluation
and

b) That this derivation will not be fired more than once.

To prove (a): let Sd be the set of tuples used in some derivation of t. Let i be
the earliest round where all the facts in Sd are available. Since it is the earliest,
one of the facts in Sd will be in the delta-relation at this iteration. Thus, this
derivation will be fired.

To prove (b): in subsequent iterations after round i none of the facts in Sd

will be in the delta-relation. Thus this derivation will not be fired again. Also in
previous rounds, the derivation could not have been fired since at least one of
the facts in Sd was not available.

1.2 Cluster Computing

We assume the reader is familiar with the concept of a map-reduce algorithm.
The original Google implementation is in [10], and the concept has been popu-
larized through the open-source Hadoop implementation [4]. Both are built on
top of a distributed file system [13], which manages huge files in chunks typi-
cally 64MB in size, replicating each chunk about three times (typically) at three
separate nodes of a computing cluster. A synopsis of the technology behind map-
reduce, including implementation of the core relational-algebra operations, such
as join, in map-reduce can be found in [22].

Computing by map-reduce involves the interaction of two functions, called
Map and Reduce, each of which is typically implemented by spawning many
tasks that execute one of these functions on a portion of the data. Typically, Map
tasks are each given a chunk of the input file, from which they produce “key-
value pairs.” The keys are hashed, and each bucket of keys is assigned to one of
the Reduce tasks. We may think of map-reduce as a simple workflow, in which
one function, Map, feeds a second function, Reduce, and each is implemented by
many tasks. This idea naturally generalizes to any acyclic graph as a workflow.
Some recent research systems that make this leap are:

Cluster Computing, Recursion and Datalog 123

1. Dryad [16] and its extension DryadLINQ [26] from Microsoft,
2. Clustera [11] from the University of Wisconsin,
3. Hyracks [6] from the U. C. Irvine,
4. Boom [3] from the U.C. Berkeley, and
5. Nephele/PACT [5] from T. U. Berlin.

1.3 Dealing with Node Failures

There is a critical property of the functions supported by systems such as Hadoop
or its extensions mentioned above: all tasks read their input at the beginning and
write their output at the end. The reason this property is essential is that these
systems not only implement parallelism; they do so in a way that allows failure
of a task without the need to restart the entire computation. In systems such
as these, when a task fails, a master controller detects the failure and starts
the same task at a different compute-node. The input to the task is available,
either through the distributed file system or through an ad-hoc replication of
files during the execution of the program.

If a task T produced output that other tasks consumed, and T later failed, we
could not simply restart T and let it produce its output again. If we did, some
tasks would receive duplicate data and might produce an incorrect result. It is
therefore unfortunate that recursion, as found in Datalog programs, solutions to
differential equations, and many other problem domains, do not allow tasks to
obey the critical constraint that all output occurs at the end of a task. In this
paper, we concentrate on Datalog recursion. A typical task has the responsibility
for applying a logical rule, say

p(X,Y) :- q(X,Z) & r(Z,Y)

to a subset of the tuples that are known for each relation mentioned in its body,
q and r in this example. However if q is a recursive predicate the tuples that
belong to this predicate and are supposed to be hashed in this task may not be
available right in the beginning but are expected to be in the output of some
other task and will be shipped in the former task after some computation is
done. If all tasks refrain from shipping their output to some other task until
they have done all their work, then this task may not produce any tuples ever.
The reason is that it cannot be sure some other task will not produce q or r
tuples later (assuming these are recursive IDB predicates). Thus, nothing ever
gets done if a task is not allowed to produce some tuples and then receive some
additional inputs and work on those inputs, possibly producing more p-tuples
later. For example, in Section 4.3, there are join tasks that are responsible for
joining certain tuples (according to the hashing function) and some of those
tuples will be available from some other tasks after they have worked through a
part of their input.

1.4 Join Implemented by Map-Reduce

We shall discuss briefly how a join is implemented in map-reduce. The join
R(A, B) �	 S(B, C) will serve to explain how any equijoin could be executed.

124 F.N. Afrati et al.

The idea is essentially a distributed hash join. Map tasks each take a chunk
of the file in which R is stored or the file in which S is stored. If there are k
Reduce tasks, then tuples of R or S are hashed to one of k buckets, with the
hash function depending only on the B-value, and a bit is attached to them
indicating whether the tuple came from R or S. Each Reduce task is responsible
for one of the buckets. Any pair of tuples that join are surely sent to the same
Reduce task, since their B-values are identical and therefore hash to the same
bucket. The Reduce tasks thus execute any join algorithm locally and produce
the result of that local join. The union of the results of all the Reduce tasks is
the output of the entire join algorithm.

A different approach to the joining of several relations was proposed in [1].
Instead of a cascade of two-way joins, each tuple of the relations that participate
in the join can be distributed by the Map tasks to several of the Reduce tasks.
As for the two-way join described above, the result of the join algorithm is the
union of the tuples produced by each Reduce task.

Example 3. Consider the three-way chain join R(A, B) �	 S(B, C) �	 T (C, D). If
we have k Reduce tasks, we can use two hash functions h(B) and g(C), that map
B-values and C-values, respectively, to

√
k buckets each. Then, a Reduce task

corresponds to a pair of buckets, one for h and the other for g. A tuple of S can
be sent by its Map task to one Reduce task, since we know both its B- and C-
values. However, a tuple of R must be sent to

√
k Reduce tasks, since although

we know its B-value, we know nothing about the bucket g(C) would choose.
That is, the tuple r(a, b) must be sent to all the Reduce tasks corresponding to
the bucket pair

(
h(b), x

)
for any of the

√
k possible values of x. Similarly, every

tuple of T must be sent to
√

k Reduce tasks, since we know the bucket g(C) but
not the bucket for h. Depending on the sizes of R and T , it may not be optimal
to use the same number of buckets for h and g, but this optimization will have
to wait until we discuss cost measures in Section 2.1.

2 The Computation Model

There are two issues that we need to address.

1. The cost of executing a program on a computing cluster depends on many
factors. When the operations performed by the tasks are relatively simple,
such as the operations of relational algebra that we shall discuss in connection
with Datalog execution, communication tends to dominate. We shall thus
introduce cost measures based on communication.

2. We must model the cost of failures. In particular, while it is desired that
when a failure occurs, the computation is able to proceed without restart,
all systems under discussion have single points of failure. We must evaluate
different approaches to recovery by their expected running time, including
both task restart and restart of the entire job.

Cluster Computing, Recursion and Datalog 125

2.1 Communication Cost

We shall assume that the computation performed at a node is relatively effi-
cient and typically will be performed in main memory. An example would be a
hash join of two 64MB chunks from two relations. Given that communication is
typically performed over gigabit Ethernet, it is reasonable to suppose that the
bottleneck is in getting the data to the node. Even if the data is stored locally
at the node, it must still be read from disk, and that often takes more time that
simple main-memory processing of the data.

Thus, we shall measure the cost of a task by the amount of data in its input.
The cost of a job is the sum of the costs of all the tasks involved in performing
the job. Since this cost measures the time it takes to make the input available
for computation, we refer to it as communication cost.

Example 4. In Example 3 we discussed the join R(A, B) �	 S(B, C) �	 T (C, D).
There, we observed that if we used k Reduce tasks, and we hashed both B and
C to

√
k buckets, we could ship each tuple of R and T to

√
k nodes and ship

each tuple of S to only one node. If we use r, s, and t to represent the sizes of R,
S, and T , respectively, then the communication cost of this join is s+

√
k(r + t).

However, if r 	= t, we can use less communication. In [1] it is shown that by
hashing B to

√
kt/r buckets and hashing C to

√
kr/t buckets, we can obtain

the optimum communication cost1 This communication is equal to s+ t
√

kr/t+
r
√

kt/r = s + 2
√

krt. This figure may or may not be better than the communi-
cation cost of taking the join of R and S first and then joining the result with T
(or similarly starting with the join of S and T). However, it beats the cascade
of two-way joins in two important cases:

1. When R, S, and T have a high fan-out, e.g., when they are each the “friends”
relation of a social-networking site or they are each the link relation of the
Web. In these cases, communicating the intermediate result is more expen-
sive than communicating tuples of R and S several times.

2. When S is a fact table and R and T are much smaller dimension tables of a
star join.

The technique for finding the correct number of buckets to hash each variable
was solved in its generality in [1]; it is not restricted to chain joins. Of course
the optimum numbers of buckets often comes out nonintegral, in which case
rounding must be applied, and the value of k (the number of Reduce tasks)
must be adjusted up or down accordingly.

One might be concerned that counting only input size for tasks, and not out-
put size, gives a false reading of the true cost of communication. However, each
output is either input to at least one other task, in which case the cost of com-
munication will be counted at the receiving task, or it is output of the entire
1 Intuitively, the larger relation R is, the fewer the number of buckets its tuples should

be hashed to for the communication to be minimized. The same holds for relation
T .

126 F.N. Afrati et al.

job. In practice, outputs that are query results, as would be the case for Datalog
programs, are not too large, because an immense output file cannot be used by
a human observer; it would have to be input to yet another process, and its cost
could be accounted for there. For example, star joins [12] produce huge output,
but in the typical analytic query the join result is aggregated and thus reduced
significantly in size — far below the size of the typical fact table. We thus neglect
the cost of storing the output of a job.

2.2 Cost of Restarts

When a large job is executed on a computing cluster, it is common for there
to be failures during the computation. If there are thousands of compute-nodes
working for hours on a job, it is not uncommon for one or more to fail; e.g.,
a disk at one of the nodes could crash. It is also conceivable that part of the
communication network will fail, perhaps taking a whole rack of nodes out of
the computation. Curiously, there are situations where the greatest probability
of failure comes from a software problem. For example, a task could be written
in the latest version of Java, while some nodes have an earlier version of Java
installed, and the task fails when run at one of these nodes.

Our computing model must distinguish between catastrophic failures, where
there is no solution but to restart the entire job, and local failures, where a task
cannot complete, but all or most other tasks can continue. For example, Hadoop
has a master controller that runs at a single node and is responsible for managing
all the tasks of a job. If the node with the master fails, the job must be redone.
While the probability of something going wrong during the execution of a large
job is high, the probability of a particular failure, such a hardware fault at the
node executing the master controller is small, even for the largest jobs being run
today.

If the probability of a catastrophic failure is p, then a job that would take
time t were there no failures will finish in an expected time t/(1− p). As long as
p is small, say 1%, we can tolerate these failures. More importantly, if modifying
the code in order to convert catastrophic failures into local failures increases
the running time of tasks by a factor greater than 1/(1− p), then it is unclear
why we should perform the modification. However, as there are failure modes
in practice that have too great a probability of occurrence, we typically need to
manage tasks and their input/output so that restart of only the failed task(s) is
feasible.

3 Evaluation of Single Datalog Rules

The multiway join algorithm mentioned in Example 4 for the case of a chain-
join of three subgoals can be used regardless of the number of subgoals in a
rule (provided it is at least three subgoals, since with two subgoals we have no
intermediate relations to care about, and the multiway join reduces to a two-way
join). There are circumstances, such as when the Datalog rule is computing a
star join on a fact table, where the multiway join would be preferable to using

Cluster Computing, Recursion and Datalog 127

supplementary relations and evaluating the rule by a cascade of two-way joins.
However, the point where the evaluation of a rule is most impacted by the
cluster-computing model is when we use seminaive evaluation to compute the
result of a recursive Datalog program.

3.1 Seminaive Evaluation on a Cluster

To see the elements of the problem, suppose we are evaluating a rule whose body
involves the join R(A, B) �	 S(B, C) �	 T (C, D), as in Example 4. To evaluate
the join incrementally, we use relations R, S, and T , representing the values of
these relations prior to the most recent rounds, and we use R′, S′, and T ′ for
the delta-relations — the new tuples discovered for these three relations at the
previous round. To get the new tuples for the current round, we compute the
union of seven terms, where we choose one of R and R′, one of S and S′, and one
of T and T ′, in all combinations except the one where none of the delta-relations
are chosen. That is, we must compute

RST ′ + RS′T + R′ST + RS′T ′ + R′ST ′ + R′S′T + R′S′T ′ (1)

where we use concatenation for join and + for union, to simplify the notation.
To make the calculation of communication cost simple, we shall assume that

the size of each delta-relation is the same fraction a of the size of its corre-
sponding relation. That is, we shall use r, s, and t for the sizes of R, S, and
T , respectively, and we shall assume that the sizes of R′, S′, and T ′ are ar, as,
and at, respectively. Note that a may vary from round to round. It would be
common for a to be large in early rounds and small in later rounds.

Suppose we have k Reducers and we want to evaluate Equation (1). The
obvious approach is to treat R + R′ as one relation of size (1 + a)× r, S + S′ as
one relation of size (1+a)×s, and T +T ′ as one relation of size (1+a)× t. If we
do, the formula of Example 4 says the optimum way to distribute these relations
will have communication cost (1 + a) × s + 2

√
k × (1 + a)× r × (1 + a)× t, or

(1 + a)(s + 2
√

krt).2 However, there are other ways we could use k reducers to
evaluate Equation (1).

Example 5. We could divide the seven terms into three groups of k1, k2, and
k3 reducers, respectively, where k1 + k2 + k3 = k. We could use the first group
to compute (S + S′)(R + R′)T ′, the second to compute (S + S′)R′T , and the
third to compute S′RT . The first group requires us to distribute five of the six
relations — all but T . Using the formula from Example 4 again, the minimum
communication for this distribution would be

(1 + a)× s + 2
√

k1 × (1 + a)× r × a× t

2 Note that in this approach, we hash attributes B and C for each of the six relations,
and choose the number of buckets for each hash according to the formula of Exam-
ple (4). Doing so makes sure that whatever term of Equation 1 we compute, all sets
of three tuples that join will appear together at one reducer.

128 F.N. Afrati et al.

For the second group, we need to distribute S, S′, R′, and T . The same formula
tells us the minimum communication cost is

(1 + a)× s + 2
√

k2 × a× r × 1× t

Finally, for the third group, where we distribute S′, R, and T , the minimum cost
is

a× s + 2
√

k3 × 1× r × 1× t

We still have the option to adjust k1, k2, and k3 in Example 5, subject to
the constraint that their sum is k. More generally, we can have any number of
groups, and each group will be assigned ki compute-nodes, again subject to the
constraint that

∑
i ki = k. Note that the cost of distributing s will be at least

s(1 + a), and therefore can only increase as the number of groups increases.
Moreover, for large k, we can neglect the cost of distributing s, so we shall say
no more about its cost.

In order to minimize the finishing time, we must choose the ki’s proportional
to the work for each group. Recall that we take the measure of work to be the
communication cost for that group, and by Example 4 the cost of distributing
R, R′, T , and T ′ to a group, as necessary, is 2

√
kiriti, where:

1. ri is the cost of distributing R and/or R′, that is, one of r, ar, or (1 + a)r,
depending on whether R, R′, or both are needed by the group.

2. ti is likewise related to T and T ′.

If 2
√

kiriti/ki is a constant independent of i, it follows that for some constant α,
ki = αriti. Further, if

∑
i ki = k, then α = k/

∑
i riti. Now the communication

cost for all the groups (neglecting S, as before) is
∑

i 2
√

kiriti. Substitute αriti
for ki, giving us a cost of 2

√
α
∑

i riti. Finally, substitute k/
∑

i riti for α, giving
the formula for communication cost:

2
√

k

√∑

i

riti

Some group, say group i, covers the term RS′T , and in this group we have the
term rt in riti. Another group (possibly the same), say group j, covers R′ST ,
and for this group there is a term art in rjtj . Likewise, the group that covers
RST ′ has a term art, and the group that covers R′ST ′ has a term a2rt. When
we sum

∑
i riti we therefore get at least (1 + a)2rt. Thus, a lower bound on the

cost 2
√

k
√∑

i riti is 2(1 + a)
√

krt, which is the same as the term not involving
s in the cost of the single-group method: (1 + a)(s + 2

√
krt). Since S and S′

must each appear in at least one group, the cost of distributing S will be at
least (1+a)s. Thus, for this particular example of seminaive evaluation, we have
proved that the single-group method has the least communication cost.

Conjecture: The above generalizes to the seminaive evaluation of any join
of any number of terms. That is, one can never both finish faster and use less

Cluster Computing, Recursion and Datalog 129

communication than by considering all the necessary terms to be in one group
and hashing each relation and its corresponding delta-relation in the same way.

It is important to note that if we do not require that communication cost be
minimized under the constraint that the groups finish at the same time, then
an extreme distribution of the work can technically minimize communication.
For example, we could put only R′ST ′ in one group, and use k1 = k − 1 for
this group, while putting the other six terms into a second group, with k2 = 1.
That group, which does almost all the work, has minimal communication cost
(1 + a)(r + s + t), while the first group has cost s + 2a2

√
(k − 1)rt. The sum of

these costs is much less than (1 + a)(s + 2
√

krt) under many situations: as long
as s is not too much larger than r and t, and a < 1.

4 Recursive Datalog

Our general strategy for evaluating recursive Datalog programs is to distribute
the responsibility for each rule among some number of tasks, with the division
based on hashing the values corresponding to one or more of the variables in the
body of the rule. The evaluation of a rule body is essentially a join of relations,
so we shall use the strategy of [1] to decide which variables to use as part of
the hash key and how many values to use when hashing each variable. However,
for a single join, we assume it is possible to know or estimate the size of the
relations being joined. When a join participant is actually an IDB relation, we
don’t know its size when we plan the evaluation strategy, so the estimate of its
size must necessarily be something of a conjecture. It is possible, as we evaluate
the recursive relations, that we shall get a better estimate of size. That would
motivate us to recalculate the numbers of buckets for each variable, but we shall
not consider this issue here.

In this section, we shall consider the matter of algorithms for implementing
recursive Datalog as a collection of recursive tasks running on a cluster. Section 5
will address the equally important issue of what can be done to recover from
node failures without restarting all the tasks. Our goal is to use an amount of
communication that is at most proportional to the number of derivations in a
seminaive evaluation of the same program, as given by Theorem 1. However, we
shall begin with a simple example where the communication is much less than
the number of derivations.

4.1 Linear Transitive Closure

Consider the right-linear recursion for paths in a graph:

p(X,Y) :- e(X,Y)
p(X,Y) :- e(X,Z) & p(Z,Y)

Here, e is an EDB predicate representing the arcs in a graph, and p is the
corresponding path predicate for that graph. Suppose that the relation e is small
enough that we are willing to distribute it to every compute-node. Perhaps it

130 F.N. Afrati et al.

for (each tuple p(a,b))

for (each tuple e(x,a))

if (p(x,b) was not previously generated)

add (p(x,b) to the set of generated tuples;

Fig. 1. Evaluation of right-linear transitive closure

fits in main memory, or perhaps it requires disk but we are willing to store it at
each node and retrieve parts of it as needed.

Suppose we use k tasks to compute p, and we determine responsibility for a
tuple p(X, Y) by hashing the value of Y into k buckets, using some hash function
h. Initially, the task numbered i is given all tuples of e, and those tuples p(a, b)
such that e(a, b) is an EDB tuple and h(b) = i. Task i then does the steps outlined
in Fig. 1. Notice that each generated p(x, b) will hash to the task that generated
it, since the B-values are the same. We thus have the pleasant situation that,
after replicating e at each compute-node, there is no further communication. The
answer is the union of the p-facts generated at each of the k compute-nodes.

For this method of computation, we have communication cost k|e|, that is,
k times the size of the relation e. The number of derivations in a seminaive
evaluation can be much larger; it is the sum over all nodes z of the number of
the number dz that was computed in Example 2. In some cases, the number
of derivations can be less than k|e|. For instance, suppose the graph consists of
disconnected edges, so the number of derivations is 0. However, if k is not too
large, and the graph is complex, we expect the communication cost to be much
less than the number of derivations.

Example 6. Based on the study of [7], suppose the graph is the Web. A typical
page can reach about half the Web and has an in-degree of 10. On that basis, a
Web graph with n nodes would have |e| = 10n and a number of derivations 5n2.
Thus, as long as k � n/2, this approach uses much less communication than the
number of derivations.

Of course the derivations that occur in a seminaive evaluation still occur at the
various nodes, so the computation time at the nodes will be proportional to
the number of derivations. That observation suggests that communication cost
may not be the best measure of running time for this example. While that is
undoubtedly true when the number of derivations is huge, we can do a lot of
main-memory calculation in the time it takes to communicate e over a gigabit
line, so in at least some cases, the true cost will still be primarily the cost needed
to replicate e.

Whether or not the number of derivations dominates the running time of the
recursion, we should verify that the total execution time of the compute-nodes
is at most proportional to this quantity. The argument is simple and depends
on two observations:

1. A tuple p(a, b) can only be derived by the task h(b).
2. A tuple p(a, b) is considered only once for matching e-tuples.

Cluster Computing, Recursion and Datalog 131

Thus, an assignment (x, a, b) to the variables (X, Z, Y) of the recursive rule is
made only once in Fig. 1: at the task h(b) when p(a, b) is considered and matched
with e(x, a).

4.2 Nonlinear Transitive Closure

The nonlinear version of transitive closure:

p(X,Y) :- e(X,Y)
p(X,Y) :- p(X,Z) & p(Z,Y)

does not allow us to avoid communication among the tasks that apply the recur-
sive rule. We can, however, use communication that is on the order of the num-
ber of derivations in a seminaive evaluation of this program. We shall give two
different approaches, depending on whether we use separate tasks for duplicate-
elimination or combine the join and duplicate-elimination steps.

To begin, recall from Example 2 that the number of derivations for the non-
linear transitive closure is the sum over all nodes z in the graph of the number
d′′z . Recall that d′′z is the product of the number of predecessors (nodes that can
reach z by a path of length one or more) times the number of successors (nodes
that z reaches by paths of length one or more). In comparison, the right-linear
version of Section 4.1 has a number of derivations equal to the sum over nodes
z of the in-degree of z times the number of successors of z. For the left-linear
version, where the body of the recursive rule is p(X,Z) & e(Z,Y), the number of
derivations is the sum over nodes z of the number of predecessors of z times the
out-degree of z. Thus, the numbers of derivations of the left- and right- linear
versions are incomparable, but each is less than the number of derivations for
the nonlinear rules.

Nevertheless, there is some reason why we might want to use the nonlinear
version. The number of iterations for the linear versions is equal to the length
of the longest path in the graph, while for the nonlinear version it is the log of
that length. There is overhead involved in iteration, as we must pass many files
among the tasks at each iteration. The overhead becomes a severe problem when
there are a few long paths in the graph, and later iterations discover few new
path facts, resulting in short files that must be passed among tasks. We shall
discuss ways to minimize overhead of data distribution in Section 4.9. Moreover,
there is a simple rewriting of the nonlinear transitive closure that maintains
the logarithmic number of iterations, yet significantly reduces the number of
derivations. We shall discuss this improvement in Section 4.7.

4.3 Using Join Tasks to Compute the Transitive Closure

Our first method uses k tasks, which we call join tasks to compute the nonlinear
transitive closure Datalog program from Section 4.2. We use a hash function
h that maps values of the variable Z to k buckets. We begin by applying the
basis rule. Each EDB tuple e(a, b) is sent to two tasks, those corresponding to
buckets h(a) and h(b), as the p-tuple p(a, b). Each task stores all the p-tuples it

132 F.N. Afrati et al.

p(a,b)
tuples

"old"

Output for bucket 0

Output for bucket 1

Output for bucket k−1

Input queue

p(a,b), where
h(a) = i

p(a,b), where
h(b) = i

Task for
bucket

i
.
.
,

Fig. 2. A join task

receives, so it can tell whether what it receives is a duplicate and therefore can
be ignored. The structure of a join task is suggested by Fig. 2.

When p(a, b) is received by a task for the first time, the task:

1. If this task is h(b), it searches for previously received tuples p(b, x) for any
x. For each such tuple, it sends p(a, x) to two tasks: h(a) and h(x).

2. If this task is h(a), it searches for previously received tuples p(y, a) for any
y. For each such tuple, it sends p(y, b) to the tasks h(y) and h(b).

3. The tuple p(a, b) is stored locally as an already seen tuple.

Note that in the rare case that h(a) = h(b), both (1) and (2) are performed,
but there is no need for this task to send the discovered tuple to itself. It will,
however, treat the discovered tuples as if they were input arrived from another
task.

Theorem 2. The number of tuples communicated by the tasks described above
is at most twice the number of derivations of the nonlinear transitive-closure
program.

Proof. First, consider the derivations in the basis rule p(X,Y) :- e(X,Y). Each
derivation consists of instantiating X and Y to constants x and y such that
e(x, y) is a given tuple. The initial step sends p(x, y) to at most two tasks, h(x)
and h(y), and this rule is never again used.

For the recursive rule, consider an instantiation (x, z, y) for variables X , Z,
and Y . This instantiation can only take place at the task h(z), because only
that task considers joining tuples p(x, z) with p(z, y). Moreover, this join only
occurs when the second of p(x, z) and p(z, y) is processed from the input of
that task. After that time, both tuples are considered “old,” and if they appear
on the input a second time, they will not be considered for a join. Thus, this
derivation occurs only once among all the tasks, and it results in at most two
communications of the resulting tuple.

Cluster Computing, Recursion and Datalog 133

4.4 File Management for the Nonlinear Recursion

From the discussion of Section 4.3, you might imagine that tuples are passed
among tasks as soon as they are generated. However, passing single tuples incurs
severe overhead. Roughly, it is only economical to send tuples in packages of
thousands. We assume that each task has an input queue of tuples, which from
time to time is passed new input tuples by other tasks, or (rarely) by itself. Each
task maintains one output file for each of the other tasks, into which it places
discovered tuples destined for that task. There are some options regarding when
these files are transmitted.

1. Operation in Rounds. We can wait until each task has exhausted its input.
At that time, all tasks transmit all their files to the proper destination task.
This approach treats the recursion as an iteration. It is commonly used in
map-reduce implementations. For example, we can see the common Page-
Rank calculation, which is technically a recursion, as an iteration in which
each step is carried out by a separate map-reduce job, with distribution of
data interspersed. It is also the approach used by [21], called supersteps,
for implementing recursive graph algorithms. The disadvantage is that some
tasks may finish early and must idle while other tasks finish.

2. Tasks Choose to Send Data. An alternative is to allow each task to decide
when it is ready to send a file. It might send a file as soon as it has reached
a certain size, or send all its files after the total amount of output it has
generated has reached a limit. There are two advantages of this approach.
First, it makes it more likely that each task will have some input available
at all times. Second, it keeps the communication network busy most of the
time, instead of letting it idle between rounds.

3. A Global Decision. We can allow the controller for the tasks (the master in
the parlance of Hadoop or similar systems) to decide when to pass data. It
could call for data to be sent at regular time intervals, or it could monitor
the total amount of data generated and call for transmission when the total
amount of data reaches a set limit.

Regardless of the method used, there is a problem that must be solved in some
manner: at the end of the recursion, where files are small, it is possible that
no task will have generated enough output to be worth sending. We discuss
management of the “endgame” in Section 4.9.

4.5 Join/Duplicate-Elimination Method for Nonlinear TC

A somewhat different approach to the nonlinear transitive-closure recursion is
to use two sets of tasks:

1. Join tasks, which perform the join of tuples as in Section 4.3. Join tasks
correspond to a bucket of a hash function h that is used to hash Z-values in
the recursive rule. As before, a join task receives all tuples p(a, b) such that
either h(a) or h(b) is its bucket number. Received tuples are joined with all

134 F.N. Afrati et al.

previously received tuples, but there is no need to check whether the received
tuple itself is a duplicate.

2. Dup-elim tasks, whose job is to catch duplicate p-tuples before they can
propagate. These tasks correspond to buckets of a hash function g that
hashes pairs consisting of an X-value and a Y -value in the recursive rule.
That is, tuple p(a, b) is the responsibility of dup-elim task g(a, b), which
stores all such tuples that it has seen.

Initially, each EDB tuple e(a, b) is sent to the join tasks h(a) and h(b) as a
p-tuple, as in the previously described method, and it is also sent to the dup-
elim task g(a, b) to be recorded as a previously seen p-tuple. When a join task
produces a tuple p(a, b), it sends it to dup-elim task g(a, b). If that task has seen
this tuple before, it does nothing. If p(a, b) has not been seen before, it stores it
locally and sends a copy to the two join tasks h(a) and h(b). As we shall see, this
method has a small advantage over the method of Section 4.3 in communication
cost, and it also supports failure recovery in a way that the latter does not (see
Section 5.2). Figure 3 suggests the two-rank structure of tasks when duplicate
elimination is separated from the join operation.

Join
node

0

Join
node

1

Join
node

i

node
0

Dup−elim

node
1

Dup−elim

node
j

Dup−elim

.

.

.

.

.

.

.

.

.

.

.

.

p(a,b) if
h(a) = i or
h(b) = i

p(c,d) if
g(c,d) = j

p(c,d) if never
seen before

To join node h(d)

To join node h(c)

Fig. 3. Relationship between join and dup-elim tasks

Cluster Computing, Recursion and Datalog 135

Theorem 3. The method described above for combining join and duplicate-
elimination tasks communicates a number of tuples that is at most the sum of:

1. The number of derivations plus
2. Twice the number of distinct IDB tuples derived plus
3. Three times the number of EDB tuples.

Proof. The initial distribution of the EDB tuples, each to three tasks (one dup-
elim task and two join tasks) accounts for term (3) in the statement of the
theorem. As in Theorem 2, the join tasks can only use a derivation once, since
after that, both joined tuples are “old,” and therefore will not be considered as a
joining pair again. However, unlike in the previous theorem, here each derivation
causes only one copy of its result to be communicated; this copy goes to a single
dup-elim task. This observation accounts for term (1).

Each dup-elim node communicates a tuple only once, as it remembers it has
been seen if it appears again on its input. That tuple is communicated to two
different join tasks. It is easy to see that no two dup-elim tasks can communicate
the same tuple, since they can communicate only tuples in their own bucket.

4.6 Generalization to All Recursive Datalog

The two strategies we outlined for nonlinear transitive closure can be used for any
recursive Datalog program. First, consider the simpler method in Section 4.3. In
analogy to the join tasks, we can have one set of tasks for the body of each rule.
Note that a single predicate with several recursive rules will have more than one
group of tasks, one group for each rule. When a task from any group produces
a tuple for the head of its rule, it must be delivered to all groups that use the
head predicate. Which task in a group receives the new tuple depends on the
hashing scheme used for that group.

The job of the tasks for a rule is to take the join of all the subgoals in the
body. If a body consists of two subgoals, the tuples from these subgoals are
hashed on the common variables to determine to which task they must be sent
when generated. Each task stores previously received tuples, so it can avoid
repeating work, and thus will communicate no more tuples than the number of
derivations performed at that task (i.e., the communication cost is proportional
to the number of derivations).

If there is a body with more than two subgoals, we have two choices:

1. Split the bodies of rules, so there are only two subgoals per rule.
2. Use a multiway join, as in [1].

Splitting makes sense unless the intermediate relations created by the splitting
are much larger than the relations of the original predicates. The multiway join
requires replication of tuples to many join tasks, and will always have a com-
munication cost above the bound given in Theorem 1. However, it avoids the
creation of large intermediates, and is sometimes preferable.

136 F.N. Afrati et al.

The second approach to nonlinear TC, from Section 4.5, also generalizes to any
recursive Datalog program. The difference is that the responsibility for detecting
duplicates is given to a separate set of tasks associated with each recursive
predicate. Note there is only one set of dup-elim tasks per predicate, regardless
of how many rules that predicate has. Also note that the join tasks for a rule
still need to store the received tuples, in order to join them later with newly
received tuples. However, when a tuple is received at a join task, it can be stored
without checking whether it is a duplicate.

4.7 Nonlinear TC via Recursive Doubling

We shall now take up a method for implementing the nonlinear transitive closure
that typically makes fewer deductions than the direct implementations described
previously. The algorithm that we shall discuss has been called Smart Transitive
Closure. It appears originally in [25] and [15]. In [17] it was shown to be highly
efficient as a serial algorithm.

The key idea is to find pairs of nodes (x, y) such that the shortest path from
x to y has a length that is a power of 2. Since any path from x to y can be
broken into a path of length 2i from x to some node z, followed by a path
of length at most 2i from z to y, we can allow one of the p predicates in the
nonlinear recursion to be restricted to powers of 2, and still converge in a number
of rounds that is logarithmic in the length of the longest path. To simplify the
algorithm, we shall assume that the graph is first made acyclic by collapsing
strong components into single nodes, as was suggested in the analysis of TC
algorithms [9].

The smart TC algorithm is best described as an iteration, where in round
i ≥ 0 we compute:

1. pi(X, Y) = the set of pairs of nodes (x, y) such that there is a path from x
to y of length between 0 and 2i − 1.

2. qi(X, Y) = the set of pairs of nodes (x, y) such that the shortest path from
x to y is of length exactly 2i.

Smart TC is sketched in Fig. 4. Note that we use :- to represent nonrecur-
sive Datalog rule evaluation, contrasted with :=, which represents conventional
assignment.

The basis is lines (1) through (3). Line (1) initializes q0 to be the edges of the
graph, i.e., those pairs of nodes whose shortest path is of length 20 = 1. Note
that we assume the graph is acyclic, and thus has no loops. If not, we would
have to remove q0(x, x) where there a loop from x to itself. Line (2) initializes
p0 to be the paths of length 0, that is, all tuples p0(x, x). Finally, line (3) sets i,
the iteration counter, to 0.

Lines (4) through (10) are a loop that iterates until at some stage we discover
no more q-tuples have been uncovered. After incrementing i at line (5), we com-
pute pi at lines (6) and (7). Line (6) joins qi−1 and pi−1, thereby discovering
all paths of length between 2i−1 and 2i − 1. Line (7) then adds in the p-facts
discovered on previous rounds, i.e., those paths of length less than 2i−1. Line (8)

Cluster Computing, Recursion and Datalog 137

1) q0(X,Y) :- e(X,Y);

2) p0(X,X) :- ;

3) i := 0;

4) repeat {
5) i := i + 1;

6) pi(X,Y) :- qi−1(X,Z) & pi−1(Z,Y);

7) pi(X,Y) := pi(X,Y) ∪ pi−1(X,Y);

8) qi(X,Y) :- qi−1(X,Z) & qi−1(Z,Y);

9) qi(X,Y) := qi(X,Y) − pi(X,Y);

}
10) until (qi == ∅)

Fig. 4. Transitive closure by recursive doubling

Join
for p

Dup−elim

Task j

Join
for q
Task j

for q
Task j

Dup−elim
for p

Task j

h(a) = j

p(a,b) if p(c,d) if
g(c,d) = j

p(c,d) and
q(c,d) if

q(a,b) if
h(a) = j or
h(b) = j

New p(c,d)

p(c,d)’s

p(a,b)
if h(a) = j

q(a,b)

h(b) = j
or

if h(a) = j

g(c,d) = j

q(a,b) if
h(b) = j

New q(c,d)

Fig. 5. Computing the transitive closure by recursive doubling

computes qi to be the join of qi−1 with itself. That will surely discover all paths
of length 2i. However, it also will include some pairs that have a path of length
2i but also have a shorter path. These pairs are eliminated by line (9).

To implement this algorithm, we shall use join and dup-elim tasks, as in
Section 4.5. The responsibility for tuples is divided among these tasks using hash
functions h and g, also as described in that section. The tasks must operate in
rounds; i.e., we assume the first of the approaches discussed in Section 4.4. There
are two groups of join tasks and two groups of dup-elim tasks, as suggested by
Fig. 5.

The network of tasks that implement Fig. 5 consists of four groups of tasks.
In the figure, each group is represented by a single task, referred to as “task j”
for that group. The four groups, from the left, implement steps (6), through (9),
respectively. To begin the ith round, the first group of tasks, the join tasks for
p, will have received all tuples p(a, b) generated on round i−1, with the jth task
of the group receiving those p(a, b) such that a hashes to j. p-tuples generated
on previous rounds will have been received and stored at those rounds, so they
too are available for the join. In addition, this task j will just have received

138 F.N. Afrati et al.

all q(a, b) tuples such that b hashes to j. These are exactly the tuples in qi−1.
They are joined with all the received and stored p-tuples, and all resulting tuples
are shipped to the appropriate task in the second group, the dup-elim tasks for
p. The appropriate dup-elim task for p(c, d) is determined by hashing the c-d
combination.

The second task shown in Fig. 5 represents the group of tasks that do duplicate
elimination for p. These tasks store all p tuples received, and pass on only the
new tuples. Such a tuple p(c, d) is passed to two other tasks:

1. The appropriate join task for p. This task is determined by hashing c.
2. The dup-elim task for q with the same index. This tuple will be used in

step (9) to eliminate a q-tuple if that tuple is found to have a path shorter
than 2i.

The third group of tasks are join tasks for q. These tasks receive all tuples q(a, b)
in qi−1 from the previous round. The task numbered j receives q(a, b) if either a
or b hashes to j. The result of these tasks are candidate tuples for qi, so q(c, d) is
passed to one of the fourth group of tasks: the dup-elim task for q whose index
is the result of hashing the c-d combination.

The fourth group of tasks store all the q- and p-tuples that have been generated
on rounds up to i− 1, and on the ith round they receive the newly generated p-
tuples. Thus, they are prepared to eliminate those tuples q(c, d) such that there
is a path of length less than 2i from c to d. Tuples that are not eliminated are
fed back to the first and third group, the join tasks for q and p, for use in round
i+ 1. Notice that each such tuple goes to two tasks of group three, but only one
task of group one.

4.8 Communication Cost of TC Using Recursive Doubling

Recall that we considered nonlinear TC not because it yielded less communi-
cation than the linear methods, but because it reduced the number of rounds
and therefore might reduce the overhead inherent in large numbers of rounds.
It is nevertheless important that the recursive-doubling approach to nonlinear
TC reduces the communication cost significantly below that of the conventional
nonlinear TC. In this section we provide an upper bound on the communication
cost for implementing the algorithm of Fig. 4. Line (1) has cost at most equal
to the number of EDB facts. Line (2) is implemented with no communication;
each join task for p implicitly generates all (x, x) such that h(x) is the index of
that task.

The joining and generation of tuples that may or may not be duplicates occurs
at lines (6) and (8). At line (6), the number of tuples generated by a Z-value z at
the i-th round is the number of predecessors that z has at distance exactly 2i−1

times the number of successors of z at distance less than 2i−1. At line (8), the
number of tuples generated by z at the i-th round is the number of predecessors
that z has at distance exactly 2i−1 times the number of successors of z at distance
exactly 2i−1. Thus, between the two of these join operations, the number of

Cluster Computing, Recursion and Datalog 139

tuples generated by z at the i-th round is the number of predecessors that z has
at distance exactly 2i−1 times the number of successors of z at distance up to
and including 2i−1. The total number of tuples communicated out of the two
groups of join tasks is the sum of this quantity over all nodes and all i. It is
hard to give a more succinct statement of the amount of communication, but it
is easy to observe that this quantity is surely less than that of Theorem 3 for
the straightforward implementation of nonlinear TC.

There is also communication out of the dup-elim tasks, but this cost can be
neglected. That is, each p fact can leave only one task in the second group, and
it is sent to exactly two tasks — one in group one and one in group four. Each
q fact likewise leaves only one task in group four, and it is communicated three
times — once to group one and twice to group three.

4.9 The Endgame: Dealing with Small Files

In later rounds of a recursion, it is possible that the number of new facts derived
at a round drops considerably. Recall that there is significant overhead involved
in transmitting files, so it is desired that each of the recursive tasks have thou-
sands of tuples for each of the other tasks whenever we distribute data among
the tasks. However, the large number of tasks suitable for early rounds of the
recursion may lead to very small files at later rounds. Thus, in at least some in-
stances, there will be need for an “endgame” strategy, where as the sizes of files
shrink, the algorithm used to implement the recursion changes. Two possibilities
are:

1. Reduce the number of compute-nodes used for the tasks and therefore cause
many tasks to execute at the same node. Collect all the tuples at a compute-
node that are destined for tasks at a single other compute-node into a single
file. Ship that file to the destination and have that node sort the input into
separate files for each of the tasks at that node.

2. Create one or more additional hub tasks whose only job is to receive files from
the join and dup-elim tasks and consolidate them into files destined for each
task. As in the first strategy, each task can bundle the tuples destined for
each other task (labeling the tuples by destination, of course) into a single
file and ship them as one file to a hub task.

5 Recovery from Node Failures

To this point, we have assumed that computations proceed to completion with no
failures. In reality, several kinds of failures can occur. These include single-node
failures (e.g., a disk crash), failures of the communication network belonging
to a rack of nodes, and software failures due to missing or out-of-date system
components at a node. In this section, we shall discuss some options for modifying
the execution strategies we have discussed in order to allow computation to
proceed in the face of most node failures.

140 F.N. Afrati et al.

5.1 Existing Recursive Systems

Recall that if a task fails, it is important that it has not delivered any output
to other tasks. That way, the failed task can be restarted as in Hadoop or its
generalizations, without affecting any other task. But when a task is recursive,
we cannot wait until it completes to deliver its output. There are two recent
systems that implement recursive tasks and deal with this problem in their own
way.

1. HaLoop [8] implements recursion as an iteration of map-reduce jobs, trying
hard to make sure that tasks for one round are located at the node where
its input was created by the previous round. Since all tasks exist for only
a single iteration, they are not really recursive, and no problem of dealing
with failure arises.

2. Pregel [20] implements true recursion, but checkpoints all tasks at intervals.
If any task fails, all tasks are rolled back to the previous checkpoint.

5.2 Use of Idempotence

Pure Datalog, unlike most forms of recursion, has an idempotence property due
to its reliance on the set model of data. That is, generating a tuple a second
time has no effect on the eventual outcome of the recursion. Thus, if a node
fails, we can restart its task(s) at a different node without affecting the global
computation. There are, however, some mechanisms necessary to allow a task
to run from the beginning, without forcing the tasks that supplied its input to
repeat those inputs. Here are the options:

1. When each task produces output files, they can be stored in the supporting
distributed file system, replicated several times. For each task, the DFS must
maintain one file containing all its inputs generated by any task, including
itself. If a task needs to restart, it gets previously generated tuples that were
sent to the failed version of the same task from the DFS.

2. The master controller for the job can store each file that a task generates at
another node or at several nodes. This approach may be better than storing
files in the DFS, because each of the files is (comparatively) short, and there
are many files. If a task needs to restart, we hope that there is a surviving
node holding all its previous inputs.

3. If we use the two-stage approach typified by the join/dup-elim tasks of Sec-
tion 4.5, we have an additional option. Suppose we keep the join tasks on
different racks from the dup-elim tasks. Each task of one kind is capable of
supplying all the inputs to a task of the other kind, if it stores locally the
output files it generates at each round. This structure can survive any single
failure, even a rack failure. Only if a join task and a dup-elim task fail at
(roughly) the same time, will the entire job have to be restarted. Thus, the
probability of having to restart is the probability of two independent failures
at the same time.

Cluster Computing, Recursion and Datalog 141

5.3 When Idempotence Cannot Be Used

Many recursions involve nonidempotent operations. For example, we may want
to compute relations recursively, using the normal bag-model semantics of SQL.
Or we may have an aggregation involved in a Datalog recursion, such as counting
the number of paths in a graph or the number of nodes reachable from each node
in a graph. If so, we not only need to reconstruct the inputs to a restarted task.
We need to know which output files from the corresponding failed task were
delivered to their destination, so we do not send the same data again. There are
again several approaches worth consideration.

1. The master controller must record each file ever shipped from one task to
another. The file itself can be stored in a number of ways, such as in the DFS
or in a replication system managed by the master. A restarted task is told
by the master which files the original task received as input. There must be
a way to reproduce the timing of the generation of output files; for example,
if output files are generated in rounds, the restarted task can produce the
same output files as the original version of the task, since it is given the
same input files in the same sequence. The restarted task must execute the
same steps as the original, in order to develop the same internal state as
the original. However, when it generates an output file that was previously
received from the original version of the restarted task, the master does not
deliver it; this file is “thrown away.”

2. Instead of giving the master the responsibility for throwing away repeated
output files, the recipient can be given that responsibility. Each task records
all the files it ever receives. It may not be necessary to record the file contents,
but certainly it must record enough information to know if it receives an
identical file: an identifier of the task and the round at which that file was
sent. More specifically:
(a) A task identifier must be the same for an original task and a restarted

task. For example, in the nonlinear TC implementation of Section 4.3, it
would be appropriate to identify a join task by the hash value to which
it corresponds.

(b) The “round” at which a file was sent makes sense even if there aren’t
strict rounds. For instance, if we use approach (2) mentioned in Sec-
tion 4.4 (deliver files when a size limit is reached), files from one task
to another are still delivered in the same order and will have the same
contents. A simple serial number for the file will serve to identify the
“round.”

5.4 Checkpointing

A different approach to task restart involves checkpointing — storing the state of
all tasks periodically, so they can be restarted from the previous checkpoint. This
approach has been studied for parallel/distributed computation by many: [21],
[2], [18], and is the strategy used by Pregel mentioned in Section 5.1. However,

142 F.N. Afrati et al.

our goal is to be able to use checkpoint information to restart a task from the
last checkpoint without affecting other tasks (unlike Pregel, which does affect
other tasks). In order to allow restart of a single task from its prior checkpointed
state, there are several conditions that must be met:

1. As discussed in Section 1.3, simple restart depends on the failed task hav-
ing made no output that has been consumed elsewhere. In the context of
checkpointing, that means a task must be checkpointed any time it delivers
output files. More precisely:
(a) The task must tell the master it is ready to deliver output (or vice-

versa — the master tells the task to deliver output).
(b) The master delivers the output to its destination(s), but does not tell

the recipients they can use the files as input.
(c) The checkpoint is made.
(d) The master tells the recipients they can use the input.
Note that with regard to step 1d, we assume that the master does not fail,
or else the whole job fails. In addition, we assume the files delivered by the
master are replicated sufficiently that they will not be lost once they are
delivered at step 1a.

2. A checkpoint includes the entire internal state of the task, including all the
data that has been stored by the task. For example, a join task in the TC
algorithm of Section 4.3 would need to have all the tuples it has received
and stored be part of the checkpoint. It may make sense to include output
files in the checkpoint, as it would assure replication if needed. This strategy
would negate the risk of losing a delivered file discussed just above.

3. In general, tasks are instantiations of a prototype function. If we are to
allow restart from a checkpoint, each such function must be written to take
a checkpointed state and re-establish this state locally. In the vast majority
of cases, where a task is not a restart but is running ab-initio, the empty
state must be provided as a dummy “checkpoint,” and the code must work
correctly from that state.

6 Summary

Implementing Datalog on a computing cluster presents a number of interesting
challenges. Some of these are:

– The cost of transporting data to the compute-node(s) that need it is an
important factor for the evaluation of algorithms. When communication cost
is considered, multiway joins sometimes make sense as a way to implement
Datalog rules. We also conjecture that seminaive evaluation is best computed
by distributing the previous and incremental parts of a given relation in the
same way.

– Because of the overhead of transporting files in a cluster environment, we
must manage files carefully, especially in later rounds of a recursion, where
few new facts are being discovered in one round. We have suggested several
ways that small files can be combined into larger ones in later rounds.

Cluster Computing, Recursion and Datalog 143

– Another response to the problem of unproductive later rounds is to replace
linear recursions by nonlinear recursions. We have examined transitive clo-
sure in particular. While the communication cost of a nonlinear TC is typ-
ically much greater than that of the linear versions of TC, a variant of
nonlinear TC developed a generation ago can make the communication cost
much closer to that of the linear versions.

– Map-reduce manages failures at run-time by using tasks that have an im-
portant property: their output is not delivered until they have completed
successfully. Recursive tasks cannot have that property. We have suggested
several strategies for allowing recursive tasks to be restarted correctly, even
though they have delivered some of their output, and that output has been
consumed by other tasks.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:
EDBT (2010)

2. Al-Kiswany, S., Ripeanu, M., Vazhkudai, S.S., Gharaibeh, A.: stdchk: A checkpoint
storage system for desktop grid computing. In: ICDCS, pp. 613–624 (2008)

3. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom analytics: exploring data-centric, declarative programming for the cloud. In:
EuroSys, pp. 223–236 (2010)

4. Apache. Hadoop (2006), http://hadoop.apache.org/
5. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/pacts:

a programming model and execution framework for web-scale analytical processing.
In: SoCC 2010: Proceedings of the 1st ACM Symposium on Cloud Computing, pp.
119–130. ACM, New York (2010)

6. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: A flexible and
extensible foundation for data-intensive computing. In: Proceedings of the IEEE
International Conference on Data Engineering (to appear, 2011)

7. Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.L.: Graph structure in the web. Computer Networks 33(1-
6), 309–320 (2000)

8. Bu, Y., Howe, B., Balazinska, M., Ernst, M.: Haloop: efficient iterative data pro-
cessing on large clusters. In: VLDB Conference (2010)

9. Dar, S., Ramakrishnan, R.: A performance study of transitive closure algorithms.
In: SIGMOD Conference, pp. 454–465 (1994)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J.F., Royalty, J., Shankar, S.,
Krioukov, A.: Clustera: an integrated computation and data management system.
PVLDB 1(1), 28–41 (2008)

12. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The complete
book (2009)

13. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: 19th ACM
Symposium on Operating Systems Principles (2003)

14. Hellerstein, J.M.: The declarative imperative: experiences and conjectures in dis-
tributed logic. SIGMOD Rec. 39, 1, 5–19 (2010)

http://hadoop.apache.org/

144 F.N. Afrati et al.

15. Ioannidis, Y.E.: On the computation of the transitive closure of relational oper-
ators. In: Proceedings of the 12th International Conference on Very Large Data
Bases, VLDB 1986, pp. 403–411. Morgan Kaufmann Publishers Inc., San Francisco
(1986)

16. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: EuroSys 2007 (2007)

17. Kabler, R., Ioannidis, Y.E., Carey, M.J.: Performance evaluation of algorithms for
transitive closure. Inf. Syst. 17(5), 415–441 (1992)

18. Kontogiannis, S.C., Pantziou, G.E., Spirakis, P.G., Yung, M.: Robust parallel com-
putations through randomization. Theory Comput. Syst. 33(5/6), 427–464 (2000)

19. Lam, M., et al.: Bdd-based deductive database. bddbddb.sourceforge.net (2008)
20. Malewicz, G., Austern, M., Bik, A., Dehnert, J., Horn, I., Leiser, N., Czajkowski,

G.: Pregel: A system for large-scale graph processing. In: SIGMOD Conference
(2010)

21. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010:
Proceedings of the 2010 International Conference on Management of Data, pp.
135–146. ACM, New York (2010)

22. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets (2010)
23. Seong, S.-W., Nasielski, M., Seo, J., Sengupta, D., Hangal, S., Teh, S.K., Chu, R.,

Dodson, B., Lam, M.S.: The architecture and implementation of a decentralized so-
cial networking platform (2009), http://prpl.stanford.edu/papers/prpl09.pdf

24. Ullman, J.D.: Principles of Database and Knowledge-Base Systems (1989)
25. Valduriez, P., Boral, H.: Evaluation of recursive queries using join indices. In:

Expert Database Conf., pp. 271–293 (1986)
26. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, L., Gunda, P.K., Currey,

J.: Dryadlinq: A system for general-purpose distributed data-parallel computing
using a high-level language. In: Draves, R., van Renesse, R. (eds.) OSDI, pp. 1–14.
USENIX Association (2008)

http://prpl.stanford.edu/papers/prpl09.pdf

Datalog-Related Aspects in Lixto Visual

Developer

Robert Baumgartner

Lixto Software GmbH,
Favoritenstr. 16, Vienna, Austria

Abstract. Lixto Visual Developer is an integrated development en-
vironment specifically geared towards the visual development of Web
data extraction programs, supporting complex navigation and extraction
tasks on highly dynamic Web applications. Internally, created extraction
rules are reflected in a declarative extraction language called Elog, which
relies on a datalog syntax and semantics. It is ideally suited for repre-
senting and successively incrementing the knowledge about patterns de-
scribed by application designers. In this paper, we illustrate aspects of
the Visual Developer and the Elog language exploiting some examples.

Keywords: Datalog, Data Extraction, Tree Structures, Web, Wrapper
Generation.

1 Introduction

The World Wide Web comprises a vast amount of data and can be considered
as the “largest database” of the world. Unfortunately, it is not straightforward
to query and access the desired information due to the heterogeneous nature of
the Web. Languages for accessing, extracting, transforming, and syndicating the
desired information are required. On the top, user-friendly tools based on expres-
sive languages for extracting and integrating information from various different
Web sources, or in general, various heterogeneous sources are essential to create,
execute and monitor Web extraction scenarios. In case of semi-structured data,
understanding the tree structure and the visual presentation on the one hand,
and understanding the application logic of Web 2.0 applications and deep Web
navigations on the other hand, are the key to collect ample sets of data from
deep Web databases and from state-of-the-art web sites with rich user interfaces.

As defined in [5], a web data extraction system is a “software system that
automatically and repeatedly extracts data from Web pages with changing content
and delivers the extracted data to a database or some other application”. Over the
time, a number of approaches, academic, commercial and open-source systems
have been proposed (refer to [9,15,16,17]).

The task of web data extraction performed by such a system is usually divided
into a number of functions, comprising deep Web interaction and data extrac-
tion, as well as scheduling, data transformation and system connectivity. In this
paper, we focus especially on the task of data extraction from tree structures

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 145–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

146 R. Baumgartner

and describe the Lixto Visual Developer, a tool for visually and interactively
creating data extraction programs (also referred to as wrappers). In particular,
we elaborate the foundations of its internal extraction language, which adheres
to the logical approach to Web data extraction.

As described in [5], the logical approach consists of the specification of a fi-
nite number of monadic predicates, i.e., predicates, that define sets of parse-tree
nodes and that evaluate to true or false on each node of a tree-structured doc-
ument. The predicates can be defined either by logical formulas, or by logic
programs such as monadic datalog, which was shown to be equivalent in expres-
sive power to monadic second-order logic (MSO) ([12], rf. to Section 4.6).

In this spirit, four desiderata to a Web wrapping language have been postu-
lated in [13]:

1. The language has a solid and well understood theoretical foundation;
2. it provides a good trade-of between complexity and the number of practical

wrappers that can be expressed;
3. it is easy to use as a wrapper programming language, and
4. it is suitable for being incorporated into visual tools, since ideally all con-

structs of a wrapping language can be realized through corresponding visual
primitives.

As we describe here, the data extraction language Elog satisfies all criteria.
Considering data extraction from a functional point of view, a wrapper can

be considered as a function from the DOM (W3C Document Object Model) tree
to the set of all subtrees; in particular, the leaves of the subtrees are among
the leaves of the original tree. In practice, this is a limitation in the sense that
merely tree nodes are extracted, and other objects such as strings or CSS boxes
are neglected. However, please note that this restriction is useful for theoretical
considerations on the complexity and expressiveness of wrapper languages over
particular structures (as done with datalog over trees in [12]). In practice, Lixto
Visual Developer can also extract other kind of objects, and one can define a
wrapper to be a mapping to a different set of objects as well.

Please note that usually a wrapper is not responsible for re-formating or re-
structuring Web documents, but for extracting/labelling selected information.
This restriction gives considerable advantages regarding complexity. One is in-
terested in maximizing the expressiveness (while at the same time keeping the
complexity low), e.g. being able to pose all kind of tree queries (like to extract
all nodes that have an even number of descendants), and understanding the ex-
pressiveness of such a fragment of a wrapper language. In practice, tools such
as the Visual Developer allow also the re-structuring of information to a certain
amount (e.g. if a date is given once on the page, but valid for all items, the date
should be given in the context of each item in the output).

One goal is to visually define extraction functions and we will illustrate how
this is done in the Visual Developer, and how nicely the declarative and/or
semantics of datalog matches the narrowing and broadening steps of the pattern
generation process.

Datalog-Related Aspects in Lixto Visual Developer 147

This paper in particular summarizes datalog-related aspects of the Visual
Developer that have been introduced in the recent ten years by several authors
and implemented in the Lixto solution. The rest of the paper is structured as
follows. In Section 2, we give a brief overview of the Lixto architecture and
components. In Section 3 we survey the processes of visually creating a wrapper.
In Section 4 we describe the logical fundaments of the data extraction language
Elog used in Lixto. Finally, some brief concluding remarks, application scenarios
and research directions are given in Section 5.

2 Lixto Overview and Architecture

Lixto (http://www.lixto.com), is a company based in Vienna offering data ex-
traction tools and services. Lixto provides solutions for Price Intelligence, Web
Process Integration, SOA Enablement, Vertical Search, and Web Application
Testing. Lixto was first presented to the academical community in 2001 [3].
Lixto’s Web data extraction technology has been designed to access, augment
and deliver content and data from web applications that utilize client-side pro-
cessing techniques such as JavaScript, AJAX and dynamic HTML.

In its Price Intelligence Solution, Lixto uses enterprise-class reporting infras-
tructure to provide all necessary reports and analytics based on extracted price
and market data. Important market events are highlighted and reports cus-
tomized to show exactly the data items that are of most interest to individual
users, e.g. product prices compared to competitor offers. Lixto uses Cloud Com-
puting to dynamically scale its extractions on demand [6]. A second different use
case is covered by Lixto’s Web Process Integration Solutions: Lixto integrates
Web applications seamlessly into a corporate infrastructure or service oriented
landscape [4] by generating Web services from given Web sites. This “front-
end integration” integrates cooperative and non-cooperative sources without the
need for information providers to change their backend.

Lixto TS

Application
Designer

Web Applications

Visual Developer

Application
Logic

Wrapper
Creation

Eclipse IDEMozilla

Data Model Wrapper

Wrapper

Runtime
Parameters

Extraction Server

VD
Runtime

VD
Runtime

VD
Runtime

Fig. 1. Visual Developer Architecture

http://www.lixto.com

148 R. Baumgartner

With the Lixto Visual Developer (VD), wrappers are created in an entirely
visual and interactive fashion. Figure 1 sketches the architecture of VD and its
runtime components. The VD is an Eclipse-based visual integrated development
environment (IDE). It embeds the Firefox browser and interacts with it on
various levels, e.g. for highlighting web objects, interpreting mouse clicks or
interacting with the document object model (DOM). Usually, the application
designer creates or imports a data model as a first step. The data model is an
XML schema-based representation of the application domain. For instance, in
a retail scenario, this comprises product name, price, EAN (European Article
Number) and product attributes. The data model is a shared entity throughout
a project. Robustness algorithms partly rely on properties of the data model.

Visual Developer supports recording of deep Web macros on the user inter-
face level, supports dynamically changing Web 2.0 pages, understands complex
application flows including to follow “detail” and “next” pages, handles pop-up
windows, authentications, is robust to structural changes on the Web page, and
features the expressive declarative logic-based extraction language Elog.

Figure 2 shows a screenshot of the GUI of the Visual Developer. On the
left-hand side, the project overview and the outline view of the currently ac-
tive wrapper are illustrated. In the center, the embedded browser is shown. At
the bottom, in the Property View, navigation and extraction actions can be
inspected and configured. In this screenshot, a before condition is created.

During wrapper creation, the application designer visually creates deep web
navigations (e.g. form filling), logical elements (e.g. click if exists), and extrac-
tion rules. The system supports this process with automatic recording, imme-
diate feedback mechanisms, generalization heuristics, domain-independent and
retail-specific templates. The application designer creates the wrapper based on

Fig. 2. Visual Developer GUI

Datalog-Related Aspects in Lixto Visual Developer 149

samples, both in the case of navigation steps (e.g. use a particular product cat-
egory) and in the case of extraction steps.

The language Elog [2,11], the web object detections based on XPath2, token
grammars and regular expressions are part of the application logic. In addition,
this comprises deep Web navigation and workflow elements for understanding
Web processes, as well as technical aspects such as dialogue handling.

For sake of completeness, though not relevant for aspects of the Elog lan-
guage described next, further components of the Lixto architecture are shortly
summarized here (these are not depicted in Figure 1, however, are described
in detail e.g. in [6]): Lixto wrappers are executed on a scalable server environ-
ment. Lixto Server products are clustered Glassfish (an open source application
server project led by Sun Microsystems for the Java EE platform) applications.
In the Lixto Transformation Server [14], large extraction scenarios are managed,
scheduled and executed, and an extraction plan in case of larger scenarios with
time and resource constraints is generated. The Lixto Load Balancer acts as ser-
vice that distributes extraction requests to the most adequate Extraction Server
and automatically starts and manages additional server instances from Cloud
in times of high peak load. Each Extraction Server (Figure 1) manages a num-
ber of parallel Visual Developer runtime processes. The Lixto Price Intelligence
Panel [6] is geared towards the consumer who defines tailor-made queries and
inspects the status of running extraction jobs, and is the entry point to viewing
the reports that have been created based on the extracted Web data.

3 Visual Wrapper Generation with Visual Developer

3.1 Page Class Concept and Pattern Structure

In Visual Developer, a wrapper comprises a list of page classes as depicted in
Figure 3. A page class is a template that contains a procedure of actions and
default responses (referred to as navigation sequence). Two primitive actions are
Mouse Actions and Key Actions. Mouse actions include mouse move and mouse
click elements, whereas key actions enter textual data in fields. The navigation
and process flow language of the VD was first described in [1]. Examples of
further supported actions include the DropDown and TextBox action. The latter

PageClass start

Actions
 Parameter (int count, count=0)
 URL (Load)
 TextBox (SetValue)
 DropDown (Select) [pricerange]
 DropDown (Select) [cpurange]
 Button (Submit)
 Call (bestfit overview|details)
Dialog Defaults
 AlertReply(Ok)

Used Parameters
 pricerange (string)
 cpurange (string)
 count (int)

PageClass overview

Actions
 Mouse (ClickIfExists)
 Data Extractor (retailmodel)
 root

record
 detaillink (Click, details)
 nextlink (Click, overview)

PageClass details

Actions
 Parameter (c+1)
 if (c==100)
 exit
 else
 Data Extractor (retailmodel)
 root

manufacturer
option (Do nothing, options)

Used Parameters
count (int)

1

n

1

PageClass options

Actions
 DropDown (Select) [current_option]
 Data Extractor (retailmodel)
 root

details [current_option]
price
cpu
memory

Used Parameters
current_option (int) (from pc details)

Used Parameters
count (int)

n

Input Model:

pricerange (string)
cpurange (string)

Output Model (retailmodel):

record{+} sequence
manufacturer{1,1} string
option{+} sequence

details{1,1} string
price{1,1} europrice
cpu{1,1} string
memory{1,1} string

Fig. 3. Page Class Concept and Input/Output Model

150 R. Baumgartner

Fig. 4. Pattern and Filter Structure

for instance supports the following operations: Click, Click if exists, Submit,
SetValue, AppendValue, and GetValue.

A data extractor is a special action applied during the navigation flow. It
freezes the DOM tree, and applies rules for extracting a nested data struc-
ture. Each wrapper comprises a hierarchical structure of patterns. Each pattern
matches one kind of information on a Web page (e.g. prices). Patterns are usually
constructed and structured hierarchically, and usually the extraction is created
top-down. The application designer can decide to create patterns on the fly, or
refer to existing model patterns; the latter is especially useful in case many wrap-
pers have to map to the same data structure. On the right-hand side of Figure
3, an output model and its constraints are specified; in the data extractors of
Figure 3 model patterns are underlined; by default only model pattern instances
are reflected in the output.

A page class can be considered as a declarative template that comprises

– a procedural and imperative navigation action sequence (e.g. form fillout).
These actions are either recorded or manually generated in the GUI.

– a declarative extraction program that extracts and labels objects from the
page (depicted in blue colour in Figure 3). Its example-based step-by-step
creation process creates a declarative program (the data extractor action).
The extraction program is capable of triggering events on extracted nodes,
and hence can either branch to other page classes, or call itself in case of
“Next” links to pages with a similar structure.

3.2 Visual Pattern and Filter Generation

Each pattern comprises a set of filters. Application designers create filters in a
visual and example-based way. Usually, first one example is selected directly in
the browser, and generalized by the system. In the next step a wrapper designer
can decide to impose further conditions, e.g. that particular attributes need to
be present and match a regular expression, something is directly before, or an
image is contained. Adding a filter to a pattern extends the set of extracted
targets (“OR”), whereas imposing a condition to a filter restricts (“AND”) the
set of targets (Figure 4). Alternately imposing conditions and adding new filters
can perfectly characterize the desired information. The iterative refining process
of how to characterize pattern instances with filters and conditions is given
in Figure 5. It is ideally suited for representing and successively incrementing

Datalog-Related Aspects in Lixto Visual Developer 151

Select parent pattern and

choose pattern name

Add Filter
(rf. to left Figure)

instances correct?

System highlights all

matched pattern instances
KB

Assert Pattern and EXIT

YES

NO

Some
intended
instances
are not
covered

System highlights an instance of parent pattern

User marks characteristic element therein

instances correct?

System highlights all matched instances of filter

KB

Assert Filter and EXIT

NO

YES

One or more undesired
elements were displayed

System identifies corresponding path

System generalizes to a robust path

Add Condition

Fig. 5. Pattern and Filter Generation Process

the knowledge about patterns described by application designers. During this
interactive process, the system also generalizes the identification of elements to
robust criteria. In particular, such criteria are different if the application designer
intends to match a single item or multiple items in one selection.

3.3 Pattern Graph

Usually, patterns are hierarchically structured and hence can be considered as
tree. However, in some cases, an extraction program can only be described with
a pattern graph. A filter extracts instances in relation to a particular parent
pattern (e.g. extract a price within a hotel record). Hence, each filter refers
to at least one pattern. The extracted instances are labelled with the pattern
name from the pattern to which the filter belongs. However, in a pattern that
comprises more than one filter, each filter might point to a different parent, and
as a consequence, the pattern points to two patterns. Also, there can be cycles
in the pattern structure (like: in a document a next link is extracted, and from
a next link a further document is extracted), even in case of single filters per
pattern. In case the pattern structure forms a tree it is classified as homogeneous,
if it is a graph as heterogeneous.

Figure 6 illustrates a sample pattern graph. Each node is either a pattern
or a page class. The one with rounded edges contain filters extracting tree in-
stances, the trapezoid ones extract textual data, and the angle ones reflect page
classes. Dotted lines indicate temporary patterns, whereas continuous lines indi-
cate model patterns. Integrity constraints of the data model are given above the
nodes. The “overview” node resembles a page class, whose data extractor pattern
is called “root”. It receives the initial input from a navigation sequence. Instances
of “next” links, which are children of the root pattern instance, are traversed
producing new instances of the “overview” page class. This kind of recursion can
be visually specified and can be nicely captured by a datalog program. In Visual
Developer, visualization of pattern structures are always serialized as trees. In
Section 4, we show the corresponding Elog program to the pattern graph and we
illustrate that this serialization is the ground program (and this one is stratified,

152 R. Baumgartner

Fig. 6. A sample pattern graph

i.e. recursion-free). Please note that the Elog program itself is invisible to the
wrapper designer (who can inspect it though, if desired).

3.4 Object Model

Patterns extract objects from Web pages. In most cases, such objects are nodes
from a labeled unranked tree (in our case, a DOM tree). However, the extraction
language is capable of considering different objects as well; these comprise:

– Lists of nodes;
– Attribute values;
– Text fragments;
– Transformed text values (such as checksums);
– Binary objects (such as images);
– CSS Boxes;
– Visual fragments based on the rendition of a page.

In case of visual fragments and CSS boxes, spatial relations are exploited (such
as “is left”) [10]. In case of tree structures (and flat strings), conditions are based
on relations such as “after”, “before”, “contains”, and “n-th child”. These re-
lations can be derived from primitive relations “next-sibling” and “first-child”
predicates. In this regional algebra further relations can be created such as “im-
mediatelybefore” or “overlaps”. Comparison is a partial order, as some elements
can not be compared to each other.

It is important to specify upon which objects an extraction language works.
The objects form the Herbrand Universe on which the Elog program operates.
In the next section we describe the theoretical fundaments of Elog over tree
structures. In practice, VD has a defined semantics on other kind of objects as
well; however, the Visual Developer limits interaction between different types of
objects (e.g. if a text fragment is extracted, one can not go back to the node
level in child patterns).

Datalog-Related Aspects in Lixto Visual Developer 153

4 The Elog Data Extraction Language

4.1 Motivation and Example

The idea of Elog is to create an expressive rule language to extract factual data
from the Web that at the same time can be created in a visual and intuitive way.
Elog was introduced at VLDB 2001 [3] and further elaborated in [2]. Complexity
and expressiveness results have been proven by Gottlob and Koch in [11].

Figure 7 illustrates a set of Elog rules that correspond to parts of the pattern
graph given in Figure 6. Each rule head contains an intensional database (IDB)
predicate with two variables as arguments. The instances of the variable X0 are
the parent pattern instances, whereas the instances of the variable X1 are the
instances extracted by the rule. The body contains predicates that evaluate to
true in case particular objects of the Herbrand universe are in relation with each
other (e.g. before, contains). If all body atoms of an assignment to all variables
evaluate to true for a given rule, the head predicate evaluates to true. Hence, an
instance of X1 is extracted and labelled with the predicate name.

The triple dots in Figure 7 merely indicate that the full path expression in
the program has be shortened for the sake of readability. The function “nearest”
is an extension to avoid the usage of the costly “//” for descendant traversal
and is at the same time quite useful for hierarchical data extraction: “nearest”
returns the closest node with particular properties in each branch.

Fig. 7. Elog Example Program in Visual Developer

154 R. Baumgartner

4.2 Elog Rules

The pattern and filter terminology used from the wrapper designer’s perspective
maps to logic program constructs as follows:

– Wrapper: Elog Program
– Pattern: IDB-Predicate
– Filter : Rule
– Condition: Atom of rule body, EDB-predicate
– Parent Pattern: Special body atom
– Object Identification (such as XPath): Special body atom

The declarative and/or semantics of datalog nicely matches the narrowing and
broadening steps of the pattern generation process. Datalog (and Elog) has a
nice operational semantics, giving not only means to describe the problem, but
also showing up how to solve it (unlike other mechanisms like MSO which lack
this kind of operational semantics). Elog differs from datalog in some aspects
described below, however, can be mapped to datalog syntax and semantics.

A standard extraction rule looks as follows:

New(S, X)← Parent(, S), Extract(S, X), Constraints(S, X, . . .).[a, b]

where S is the parent instance variable, X is the pattern instance variable,
Extract(S, X) is an extraction definition predicate, and the optional predicates
Constraints(S, X, . . .) are further imposed conditions. A tree (string) extraction
rule uses a tree (string) extraction definition atom and possibly some tree (string)
conditions and general conditions. The numbers a and b are optional and serve as
range parameters restricting which instances are extracted. New and Parent are
pattern predicates referring to the parent pattern and defining the new pattern,
respectively. This standard rule reflects the principle of aggregation. Other types
of rules such as specialization rules have been introduced in [2].

The semantics of a rule is given as the set of matched targets x: A substitution
s, x for S and X evaluates New(s, x) to true iff all atoms of the body are true
for this substitution. Only those targets are extracted for which the head of the
rule resolves to true. For evaluation, one creates a graph of predicates, computes
dependencies and which predicates have to be evaluated first.

Moreover, if a pattern contains multiple filters, only minimal instances are
matched (i.e. instances that do not contain any other instances) – real-life use
cases created this requirement. Range condition are a speciality of Elog rules (and
have been introduced since they are very helpful in the creation of a wrapper).
Note that range conditions are well-defined only in the case of no reference
recursion (cf. to Section 4.5 for details). Maintenance in Elog Wrappers is local
to the changed criteria and hence simple – usually, in case something changes
on a Web page, only a single rule or a single predicate have to be modified.

4.3 Built-in Predicates

Elog features a rich set of built-In predicates, each with a particular binding
schema. Some predicates are given below:

Datalog-Related Aspects in Lixto Visual Developer 155

– subelem(S, path, X): subelem(s,path,x) evaluates to true iff s is a node, path
is a relative XPath and x is a node contained in s where x matches path.

– On textual level: subtext, subatt
– On document level: getDocument(X, Y) (where instances of X are URLs),

getDocumentbyClick(X, Y), . . .
– Contextual: before(S, X, path, d1, d2, Y, D) (where d1 and d2 are minimum

and maximum distance, and the variable D stores the actual difference),
after, notbefore, notafter

– Internal: contains, nthchild, . . .
– Concepts: isDate(X, Y), isNumber(X), isCity, . . .
– Comparisons: <, >, . . . (e.g. compare distances or dates)
– Pattern References: refer to any IDB predicate (e.g.: before something there

is an instance of price)

4.4 Elog Programs

An Elog pattern p is a set of Elog rules with the same head predicate symbol. It
is forbidden to combine tree, string or document filters with each other within
one pattern. The head predicate is visually defined with Lixto and named by the
wrapper designer. This name is also used as XML tag in the output.

Let us consider another small example program:

document(S, X) ← getDocument($1, X).
table(S, X) ← document(, S), subelem(S, nearest(table), X).
table(S, X) ← table(, S), subelem(S, nearest(table), X).

It extracts all nested tables within one page, starting with the outermost, and
stores them in this hierarchical order in the pattern instance base. The second
rule of <table> is iteratively called, until no further table can be extracted.

Based on the definition of homogeneous and heterogeneous pattern graphs
above, an Elog program is considered to be homogeneous iff all Filters that define
the same IDB predicate refer to the same parent pattern and the relationship
is strictly hierarchical. In case of a homogeneous pattern, the notion of “parent
pattern” can be associated with a pattern rather than with its filters. An Elog
program is heterogeneous if at least two filters that define the same IDB predicate
refer to different parent patterns or if the pattern structure is cyclic. However, the
ground instantiation of a heterogenous Elog program does not contain any cycles,
i.e. a heterogeneous Elog program is locally stratified – at least if particular
limitations are obeyed (such as not mixing range and pattern references, see
below). A formal semantics of Elog programs is defined below by mapping Elog
programs to datalog programs.

Please note that we distinguish two sources of recursions in Elog programs:

– The first one is the one that results in cyclic pattern graphs (e.g. next page
recursions), like a typical transitive closure. A standard operational seman-
tics using a fixpoint computation can be applied: evaluate all rules again and
again considering the new facts until no more instances can be derived. The
ground program is not recursive.

156 R. Baumgartner

– A second kind of recursion can result due to pattern references. I.e., addi-
tional references that are not only pointing to parents, but to other extracted
instances; e.g. extract something if before there is an instance of something.
Mixing this with range conditions can result in a non-monotonic program,
since range, as will be seen below, introduces negation when mapping to
Datalog. It is necessary to check for stratification and generate the strata for
evaluation (in practice, we introduce certain limitations that force a program
to be locally stratified).

In case of homogeneous programs the evaluation can be further simplified to a
hierarchical top-down evaluation.

4.5 Datalog Representation

We describe the semantics of Elog by mapping Elog rules to Datalog rules and
applying the standard Datalog semantics. Elog rules exhibit some specialities
compared to datalog. Without pattern references, range conditions and mini-
mization of rule results the semantics is straightforward. However, to express
range conditions and minimization in Datalog and apply the standard seman-
tics, one needs to transform Elog rules containing range conditions and rules
that return objects contained within other objects, into datalog rules.

Constants : To formally use datalog over tree structures, we need to be conform
to the standard signature of datalog over unranked ordered trees (using the child
and nextsibling relations). Labels are reflected as indices on a predicate, and new
predicates that describe that two objects are in relation based on a particular
path are iteratively derived. One example is given below:

subelemε(X, Y) ← X = Y

subelem path(X, Y) ← child(X, Z), subelempath(Z, Y).
subelema.path(X, Y) ← child(X, Z), labela(Z), subelempath(Z, Y).

Please note: For object identification, in practice, full XPath2 is supported
in Visual Developer as a commitment to state-of-the-art technologies (these are
evaluated by calling an XPath processor during evaluation). Moreover, rules can
operate over different object structures (e.g. plain strings) as well. Please note
that the favorable complexity results described below only hold if working with
tree structures only, and for path expressions that can be rewritten using the
firstchild and nextsibling relations as described in Section 4.6.

Pattern minimization can be expressed in Datalog extended with stratified
negation and a suitable built-in predicate contained in(X,Y) expressing offset-
wise containment of X in Y . In particular, a set of filters of p(S, X) defining the
pattern p is rewritten in the following way. Consider the initial pattern definition
(where Ex is the main extraction atom and Co a set of conditional atoms):

p(S, X) ← par1(, S), Ex1(S, X), Co1(S, X, . . .).
p(S, X) ← · · ·
p(S, X) ← parn(, S), Exn(S, X), Con(S, X, . . .).

Datalog-Related Aspects in Lixto Visual Developer 157

The pattern name is renamed to p′ and additional rules are added:

p′(S, X) ← par1(, S), Ex1(S, X), Co1(S, X, . . .).
p′(S, X) ← · · ·
p′(S, X) ← parn(, S), Exn(S, X), Con(S, X, . . .).
p′′(S, X) ← p′(S, X), p′(S, X1), contained in(X1, X)
p(S, X) ← p′(S, X), not p′′(S, X).

The final two rules require that instances of X and X1 are both from the same
parent pattern instance (otherwise, if they stem from different parent-pattern
instances, minimization is usually undesired). In the rewriting, p′ is the pattern
predicate initially being built by different filters. Each instance p(s, x), which is
non-minimal, i.e. for which there exists a smaller valid p′′(s, x), is not derived.
Only minimal instances are derived.

Ranges. The semantics of range criteria [a, b] of a filter rule NewPat(S, X)←
filterbody[a, b] can also be expressed by a suitable rewriting of the rule. A range
condition assumes that an order relation is defined among pattern instances
extracted by the same parent pattern instance, thus in the rewriting, we assume
the presence of a successor predicate (using character offsets for comparison).
The first step of rewriting consists of adding a new predicate NewPat that is
defined by a unique filter NewPat′(S, X)← filterbody.

NewPat(S, X) ← NewPat′(S, X), Solposition(S, X, P), a ≤ P ≤ b.
Solposition(S, X, 1) ← NewPat′(S, X), not succ(S, X′, X).
Solposition(S, X, P) ← Solposition(S, X′, P′), NewPat′(S, X), succ(S, X′, X), P = P′ + 1.

Due to this, NewPat depends on negation of predicates in its body. In case no
pattern references are involved, this negation is stratified.

Pattern Reference Recursion and Ranges. Using ranges together with pattern
references might introduce unstratified negation. Using pattern references can
introduce reference recursion. Still, without ranges, a unique model is returned.
However, additionally allowing range conditions to occur in such recursive rules
requires to use a semantics akin to the stable model semantics (returning mul-
tiple models) or well-founded semantics (returning a minimal model) as this
introduces unstratified negation into the program (considering the above rewrit-
ing). For the following example (possibly containing additional filters for p and
q), a nonmonotonic semantics is required. In practice we limit pattern references
to rules without ranges.

p(S, X) ← par(, S), subelem(S, epd, X), before(S, X, . . . , Y), q(S, Y).[a, b]
q(S, X) ← par(, S), subelem(S, epd, X), before(S, X, . . . , Y), p(S, Y).[c, d]

4.6 Expressiveness and Complexity

Gottlob and Koch [11,12] studied the expressiveness and complexity of a core
fragment of Elog. Elog−2 focusses on extraction from unranked ordered labelled
trees (and ignores some features of Elog, such as extraction on textual structures
and distances). It operates on a DOM Tree and uses the firstchild, nextsibling and

158 R. Baumgartner

lastsibling relations. All built-in predicates of Elog can be derived as illustrated
in Section 4.5. The Elog− fragment furthermore makes all IDB predicates unary
by rewriting rules. This is no problem, since the rational of having this binary
in Elog is just to build a child relation for an output XML graph. Elog− and
Elog−2 characterize the same tree language.

Unary queries in MSO over trees serve as expressiveness yardstick for infor-
mation extraction functions. However, MSO is hard to use as wrapping language
due to the lack of an operational semantics. Additionally, monadic Datalog over
trees has very low computational complexity, and programs have a simple nor-
mal form, so rules never have to be very long. The following theorems are proven
in [11]:

Theorem 1. (Gottlob and Koch) Monadic Datalog over unranked ordered trees
has combined complexity: O(|dom| ∗ |program|).
Theorem 2. (Gottlob and Koch) Over unranked ordered trees, Monadic Datalog
= MSO.

As a consequence, a unary query is definable in MSO iff it is definable via a
monadic datalog program. Since Elog− expresses monadic datalog plus child
relation, and all of Elog− is graphically programmable via Lixto, the following
corollary can be derived. This formally verifies that Elog and Lixto satisfy the
four desiderata of Section 1.

Corollary 1. (Gottlob and Koch) Lixto expresses all MSO wrapping tasks.

Comparing the expressiveness of Elog to other wrapper languages is problematic,
as most wrapper generation frameworks lack or do not make available a formal
definition of their extraction language. Moreover, in real-life data extraction
scenarios other aspects such as extraction from visual rendition play a role in
addition to tree structures. In [5], a high-level description of some state-of-the-art
wrapper generation tools is given; in [11], Elog is compared to selected wrapping
languages such as HEL.

5 Conclusion

Application areas of Web data extraction are manifold. Today they include
mashup enablement, Web process integration, vertical search, Web application
testing, and Web accessibility. One of the most important application areas is
Competitive Intelligence. Nowadays, a lot of basic information about competi-
tors can be retrieved from public sources on the Web, such as annual reports,
press releases or public data bases. There is a growing economic need to effi-
ciently integrate external data, such as market and competitor information, into
internal BI systems as well. Key factors in this application area include scalable
environments to extract and schedule processing of very large data sets effi-
ciently, capabilities to pick representative data samples, cleaning extracted data

Datalog-Related Aspects in Lixto Visual Developer 159

to make it comparable, and connectivity to data warehouses. The Lixto Online
Market Intelligence solution addresses this scenario and is described in [6].

Current research directions include declarative data extraction from PDF and
visual structures. Whereas Web wrappers today dominantly focus on either the
flat HTML code or the DOM tree representation of Web pages, recent approaches
aim at extracting data from the CSS box model and the visual representation
of Web pages [10]. This method can be particularly useful in recent times where
the DOM tree does not accurately reflect how the user perceives a Web page
and will be supported in future versions of the Lixto Visual Developer.

In the ongoing ABBA project [8] an abstract model of a Web page is gener-
ated. A Web page is transformed into a formal multi-axial semantic model; the
different axes offer means to reason on and serialize the document by topolog-
ical, layout, functional, content, genre and saliency properties. One usecase is
that a blind person can navigate along and jump between these axes to skip to
the relevant parts of a page. E.g., the presentational axis contains transformed
visual cues, allowing the user to list information in the order of visual saliency.
Internally, SPARQL is used to define extraction queries.

Key factors in the area of mashup scenarios include efficient real-time ex-
traction capabilities for a large number of concurrent queries and detailed un-
derstanding of how to map queries to particular Web forms. Other challenges
include to use focused spidering techniques for crawling into the application logic
of Web 2.0 applications, and product matching and record linkage techniques.

One other important challenge is automatic and generic Web wrapping. On
the one hand, this includes to evolve from site-specific wrappers to domain-
specific wrappers by using semantic knowledge in addition to the structural and
presentational information available. On the other hand, however, it is essential
that wrappers still are sufficiently robust to provide meaningful data. Hence,
techniques for making wrappers more robust and automatically adapt wrappers
to new situations will contribute to this challenge. The fully automatic generation
of wrappers for restricted domains such as real estate is a challenge tackled by
the DIADEM at Oxford University. The DIADEM project uses Datalog± [7] as
extraction language. Datalog± uses existential quantification in rule heads. This
allows the creation of new objects concatenated of other simple objects during
data extraction. Datalog± furthermore imposes some restrictions to maintain
the good data complexity of plain Datalog.

References

1. Baumgartner, R., Ceresna, M., Ledermüller, G.: Deep web navigation in web data
extraction. In: Proc. of IAWTIC (2005)

2. Baumgartner, R., Flesca, S., Gottlob, G.: Declarative Information Extraction,
Web Crawling and Recursive Wrapping with Lixto. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 21. Springer,
Heidelberg (2001)

3. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proc. of VLDB (2001)

160 R. Baumgartner

4. Baumgartner, R., Campi, A., Gottlob, G., Herzog, M.: Web data extraction for
service creation. In: SeCO Workshop, pp. 94–113 (2009)

5. Baumgartner, R., Gatterbauer, W., Gottlob, G.: Web Data Extraction System.
In: Encyclopedia of Database Systems. Springer-Verlag New York, Inc., New York
(2009)

6. Baumgartner, R., Gottlob, G., Herzog, M.: Scalable web data extraction for online
market intelligence. PVLDB 2(2), 1512–1523 (2009)

7. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: ICDT, pp. 14–30 (2009)

8. Fayzrakhmanov, R., Goebel, M., Holzinger, W., Kruepl, B., Mager, A., Baum-
gartner, R.: Modelling web navigation with the user in mind. In: Proc. of the 7th
International Cross-Disciplinary Conference on Web Accessibility (2010)

9. Flesca, S., Manco, G., Masciari, E., Rende, E., Tagarelli, A.: Web wrapper induc-
tion: a brief survey. AI Communications 17(2) (2004)

10. Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: Proc. of WWW, May 8-12
(2007)

11. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
Web Information Extraction. In: Proc. of PODS (2002)

12. Gottlob, G., Koch, C.: Monadic Datalog and the Expressive Power of Web Infor-
mation Extraction Languages. Journal of the ACM 51(1) (2004)

13. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data
extraction project - back and forth between theory and practice. In: PODS, pp.
1–12 (2004)

14. Herzog, M., Gottlob, G.: InfoPipes: A flexible framework for M-Commerce appli-
cations. In: Proc. of TES Workshop at VLDB (2001)

15. Kuhlins, S., Tredwell, R.: Toolkits for generating wrappers. In: Net.ObjectDays
(2002)

16. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. Sigmod Record 31(2) (2002)

17. Liu, B.: Web Content Mining. In: Proc. of WWW, Tutorial (2005)

Informing Datalog through Language

Intelligence – A Personal Perspective

Veronica Dahl1,2

1 GRLMC-Research Group on Mathematical Linguistics
Rovira i Virgili University
43002 Tarragona, Spain

2 Department of Computer Science and Logic and Functional Programming Group
Simon Fraser University
Burnaby, B.C., Canada
veronica@cs.sfu.ca

Abstract. Despite AI’s paramount aim of developing convincing simi-
les of true natural language ”understanding”, crucial knowledge that is
increasingly becoming available to computers in text form on web repos-
itories remains in fact decipherable only by humans. In this position
paper, we present our views on the reasons for this failure, and we ar-
gue that for bringing computers closer to becoming true extensions of
the human brain, we need to endow them with a cognitively-informed
web by integrating new methodologies in the inter-disciplines involved,
around the pivot of Logic Programming and Datalog.

Keywords: Datalog, logic programming, logic grammars, web search,
semantic web, knowledge extraction, computational linguistics, cognitive
sciences.

1 Introduction

AI, despite impressive specialized accomplishments, still falls quite short of its
original aim of endowing computers with human-like reasoning skills, including
the ability to make useful sense of human languages.

Glaringly lacking is a generally useful manner for computers to decode text
in human languages. In general, we cannot even reliably ask a computer simple
questions that require little or no inference, such as ”Who won the Formula 1
race last year”: whether with key-word based or linguistically informed systems
(Hakia, Powerset), the best answer we can hope for is a deluge of documents
that the user must wade through, and which may or may not contain the answer.

Thus, crucial knowledge that is increasingly becoming available to computers
in text form on web repositories, remains in fact decipherable only by humans,
while the world’s need for computers to correctly interpret, and to draw spe-
cialized inferences from, text sources, has never been greater. Natural language
techniques for information retrieval and for some kind of language understand-
ing have long been explored, and have led to even spectacular but always partial

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 161–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 V. Dahl

successes, made possible through severely delimiting a specific domain of appli-
cation and corresponding language coverage.

In this article we analyse the reasons for AI’s failure to deliver where language
intelligence is concerned, and we argue that a fuller integration between logic,
natural language understanding and knowledge-based systems is needed, around
the axis of intelligent web mining. We examine relevant and still underexploited
possible connections between the disciplines in play , which could be exploited
around the pivot of Logic Programming, to help develop an executable theory
of Language Intelligence (LI). This theory will give computers the ability to
decode text into knowledge bases, and even to form new concepts and ideas,
along explicit guidelines and principles, from those extracted through analyzing
text from heterogeneous sources. In the long run, we expect it to evolve into
an executable theory of machine-informed human cognition which can bring
computers closer to becoming true human brain extensions- and thus, humanistic
agents of change-, by informing us along accurate, principled-relevant lines of
thought.

2 Background - What Is Lacking

In our view, the reasons why we don’t yet have true language intelligence at our
computers’ disposal can be summarized as lack or under-utilization of flexible
enough, sophisticated methodologies, and perhaps more importantly, as lack
of integration between the various disciplines involved, namely: a) web-based
knowledge acquisition techniques, since the information deluge is pouring mostly
as web documents; b) natural language understanding (NLU) skills, since much
of the information to be processed is in human language text form, and; c) higher
level inference mechanisms both to help interpret language correctly and to draw
reliable inferences as needed from the knowledge it expresses.

While two-way integrations between these needed elements are actively being
pursued, what has never been attempted is the simultaneous integration of all
of them. As a result, for instance, web-mining agents that include sophisticated
parsers in order to admit English queries exhibit, surprisingly, similar elementary
logic flaws as those documented in [36] for plain, keyword-based Google (e.g.,
incorrect answers to questions containing conjunctions and disjunctions). The
parsing ability they incorporate has not been integrated with elementary logic
ability, despite the fact that logical inference, being crucial for natural language
understanding (NLU), should be flexibly available for computing answers as
well as for parsing purposes. As another example, evaluation metrics that were
adequate for parser development within linguistics are no longer enough when
applied to web mining for bioinformatics (documented e.g. in [41] for the case
of protein-protein interaction).

We next look at the status quo in each of the areas involved, before proposing
our own perspective of how they could be fruitfully integrated towards providing
true language intelligence.

Informing Datalog through Language Intelligence 163

2.1 Web Search Engines

The state-of-the-art in web search engines, despite recent prodigious expendi-
tures of talent, time, and money meant to bring it up to human-acceptable
standards, remains by-and-large keyword based, with little more coming to its
aid than document ranking through links. As any user of search engines knows,
the result is often frustrating in terms of silence (the document queried for exists
but is not found) and noise (the user is drowned in ”results” that are irrelevant
to the query).

Much effort is being poured into trying to remediate this situation through
the Semantic Web , an ambitious undertaking for encoding some of the seman-
tics of resources in a machine-processable form. It consists of design principles,
collaborative working groups, and a variety of enabling technologies such as
Resource Description Framework (RDF), the RDF query language SPARQL,
Rule Interchange Format (RIF) and the Web Ontology family of languages for
representing ontologies. It focusses on informing documents beyond their literal
expression through semantic annotations, so that they can be associated with
concepts, terms and relationships useful when searching them. The Web On-
tology language family is based on Description Logics, and in its most recent
incarnation, OWL 2, it provides classes, properties, individuals, and data values
which are stored as Semantic Web documents (http://www.w3.org/TR/owl2-
overview/). OWL 2 ontologies can be used along with information written in
RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF doc-
uments, while the RIF component, originally thought out as a ”rules layer” for
the semantic web, provides the means to exchange rules between rule-based lan-
guages in existence. SPARQL as a query language comes perhaps the closest to
our aims among Semantic Web technologies, but is still quite distant from hu-
man language processing, being based on simple patterns such as triples. While
a helpful extension of the idea of simple markup languages, this line of research
is still based on marking codes- albeit more complex than HTML, and often
includes serious tradeoffs in design that result in a proliferation of dialects (for
instance the RIF dialects Core, BLD, PRD, each of which is a standard rule
language).

There are two main ways in which this research is proceeding: the majority
of the work tries to develop new forms of search for making sense of the new
representation formalisms of the Semantic Web. A less explored but very inter-
esting approach, followed in [35], is to mine (using existing search engines) the
data and knowledge already present in the Semantic Web in order to add some
semantics that can better guide the Web search. This extra information assists
in retrieving documents that can answer the user’s query, stated in terms of a
tractable extension of Datalog. Such queries are transformed by a specialized
search engine into subqueries that can be independently submitted to a stan-
dard Web search engine, such as Google. The results of these subqueries are then
combined to produce an answer in many cases more accurate than was possi-
ble with previous methods. For instance, it correctly answers queries containing
conjunctions and disjunctions which other systems- including, surprisingly, some

164 V. Dahl

that incorporate language processing skills, such as Powerset- fail to understand.
If it also incorporated natural language understanding- albeit in deeper forms
than the existing counterparts such as Powerset- the range of useful results could
be expanded even more. This very promising approach could be complemented
with a language interface capable of transforming human language queries into
the complex query form required by the subset of Datalog concerned, and of
enhancing their very retrieval tasks whenever possible, through the language
analyser informing the retrieval methods.

All these efforts aim at ultimately bridging the gap between the intended
meaning of a user’s query (which in many cases is just a plea for the answer to
a question), and the ”meaning” contemporary systems give it, namely, a flood
of documents which may or may not contain the answer.

2.2 Natural Language Understanding

While natural Language Understanding traditionally tackles punctual applica-
tions within well-delimited domains, endowing computers with a true simile of
language intelligence would amount to giving humans the power to indirectly
program a query with human language words, and to receive sensible answers in
the same language.

The advent of Semantic Web languages, with their focus on meaning, which
is also crucial to natural language, seemed to propitiate a better integration
between web consultation and human languages, yet most of their efforts are
very technical and thus not too friendly to users with no background on for-
mal methods. Recently, controlled English has been argued as a panacea in this
area [15]. Controlled languages are subsets of language obtained by restricting
the grammar and vocabulary to computer-manageable scope, while maintaining
naturalness and correctness (as opposed to telegraphic or pidgin languages). The
ACE subset of English is used in [15] to exemplify translatability into various
logic based languages, including Semantic Web ones, and to conclude that con-
trolled natural languages can make the Semantic Web more understandable and
usable. While this is true, this approach relies on texts having been semantically
annotated as per Semantic Web requirements, and thus cannot provide true lan-
guage intelligence where fairly arbitrary texts- which is what the Web is most
prolific at- are concerned.

Query answering is a well studied topic within Knowledge Based systems, but
these expect the information to be presented in even more formal ways than
semantically annotated web documents can. Natural Language Understanding
techniques can help bridge the gap, but even in language processing based sys-
tems for web search, they are not exploited to their full potential, e.g. because
of logical flaws in interpreting the coordinating elements (i.e., in interpreting
the logically corresponding conjunctive and disjunctive connectors). In [16] it is
rightly mentioned that the use of ontological conjunctive queries in a convenient
extension of Datalog can pave the way for accepting natural language, but in
practice they are only used to provide easier ways of querying, while logic based
NLU techniques combined with ontologies have been for many years now used to

Informing Datalog through Language Intelligence 165

nail down useful meaning representations of NL sentences for question-answering
purposes.

It is our view that Semantic Web cross-fertilizations with the various disci-
plines involved, utilizing the full extent of their state-of-the-art, and in particu-
lar that of the language processing field, stands to provide the most substantial
breakthroughs where reliable search is concerned.

2.3 Computational Logic

Within computational logic, logic programming has become quite ubiquituous
during the past decade due to the re-discovery or re-elaboration of some of its
concepts within the database and the semantic web communities: a) the database
community re-elaborated in a sense logic programming by developing Datalog
as a subset of Prolog, in which query evaluation is sound and complete. Efforts
to extend Datalog while preserving good computational features have been un-
derway since [29] and several interesting subsets have been thoroughly studied
recently from the complexity point of view [16]; b) the Semantic Web scene, in
particular, is approaching logic programming in many respects through Descrip-
tion Logics having become its cornerstone for the design of ontologies [6,47].
Description Logic programs have been introduced [14] to combine description
logics and logic programs, as part of the attempt to combine rules and ontolo-
gies for the Semantic Web, and consist roughly of a normal logic program plus
a description logic knowledge base. Their computational complexity is however
greater (although not dramatically so) than that of normal logic programs [7].
Of particular interest is a recent extension of Datalog which embeds Description
Logics, thus bridging the apparent gap between the latter and database query
languages; and which extends Description Logics with some ontological reason-
ing [16]. This approach represents ontological axioms in the form of integrity
constraints in terms of which both the DL-Lite and the F-logic Lite families of
Description Logics can be expressed. It is derived from Datalog by allowing ex-
istentially quantified variables in rule heads, and enforcing suitable properties in
rule bodies, to ensure decidable and efficient query answering. If complemented
with tailored modern inference and NLU techniques, this extension could become
the missing link towards endowing web knowledge mining with unprecedented
accuracy and discriminative power given that Datalog queries are already suf-
ficiently close to natural language to promote conversion from one to the other
and that Description Logics underlie ontology languages, key players in seman-
tic web research; c) Another important recent breakthrough in computational
logic has been the executable formalization of non-classical inference. Of partic-
ular interest to this article, are hypothetical reasoning and constraint-based rea-
soning, important both for NLU and knowledge extraction, and argumentation
theory, crucial for obtaining and justifying good quality answers. Hypothetical
reasoning involves a logic system in which a set of facts and a set of possible
hypotheses whose instances can be assumed if they are consistent with the facts.
Both abduction (the unsound but useful inference of p as a possible explana-
tion for q given that p implies q) and assumptions (resources that are globally

166 V. Dahl

available as from their inception while being backtrackable) fall into that gen-
eral category. Their formalization within Abductive Logic Programming [9] and
Assumptive Logic Programming [8], respectively, refines this general notion by,
for instance, requiring in the first case consistency with a special type of facts:
integrity constraints. Both allow us to move beyond the limits of classical logic
to explore possible cause and what-if scenarios. They have proved useful for
diagnosis, recognition, sophisticated human language processing problems, and
many other applications. However in practice, abduction in particular, has not
been used to its full potential in mainstream research owing to implementation
indirections which have only recently been solved [10]. Constraint-based reason-
ing is less explored because the efficient handling of linguistic constraints in LP
is a very new phenomenon. Constraints can now be described in terms of CHR,
an extension of logic programming which can also stand alone or extend other
paradigms [11] and has quickly become a leading technology for automating and
optimizing resource based tasks among other things. It rejoins Datalog in that
it operates bottom-up while interacting with top-down program fragments as
needed, within Prolog. Argumentation theory, or the study of how humans can
reach conclusions through logical reasoning has spawned a recent surge of com-
putational argumentation systems surveyed in [12]. An important component
of argumentation is defeasible reasoning, useful to derive plausible conclusions
from partial and sometimes conflicting information. It plays a major role within
constructivist decision theories, and has moreover, been maturing within logic
programming in recent years.

The computational logic community, the database and semantic web com-
munities are recognizing their commonality of interests and joining forces more
consciously than ever- e.g. a special issue of the journal Theory and Practice of
Logic Programming has appeared this year on the theme: Logic Programming
in Databases: from Datalog to Semantic-Web Rules.

An interesting new development is the application of these methods to bioin-
formatics and molecular biology. As well, methodologies that pertain to the
NLU field of AI are now being exploited to analyze biological sequences, which
is uncovering similarities between the languages of molecular biology and human
languages. Such similarities might help explain the curious fact discussed in [44],
that many techniques used in bioinformatics, even if developed independently,
may be seen to be grounded in linguistics. Some are even starting to be explicitly
adapted to provide in turn fresh insights into linguistic theory ([26]) and into
NLU [22].

3 LI vs. NLU

Natural Language Understanding studies techniques by which written text can
be translated into various representations, including what the field calls meaning
representations. Such ”meanings” however, have been criticized as constituting
in fact ”the other syntax”, i.e., formalized paraphrases of natural language con-
structs that might come in handy for processing by computers but whose claim

Informing Datalog through Language Intelligence 167

to constituting any ”meaning” is rather weak [42]. In our view, ”other syntax”
approaches work reasonably well for for tailored questioning within specific do-
mains, but do not work so well for translating text. We believe that the full
power of knowledge bases, which can represent inference executably, is needed
to represent the meaning of textual passages. Another difference is that written
text subjected to NLU techniques is most often restricted, whereas our focus on
Web texts, where their very processing is moreover also Web based, entails the
need for arbitrary text to be treated.

So by Language Intelligence, or LI, we mean the art of endowing computers
with the ability to decode human text from non-predefined sources, into either
knowledge bases or commands as may be required, perhaps forming new concepts
as needed, and incorporating the web itself as a useful extension. In our opinion,
this involves developing the cutting-edge theories and methods needed to inte-
grate the now established disciplines of computational logic and computational
linguistics with the emerging disciplines of web-based knowledge acquisition, for
endowing computers with the ability to decode text in human languages. One
promising avenue would be to integrate state-of-the-art, ontology-enriched, se-
mantic web mining methods with novel logic grammar methods that can process
even incomplete input and blend linguistic and meaning representation capabili-
ties within the same process, so that their interaction can fine-tune the resulting
knowledge bases in ways warranted by the linguistic information, thus going
beyond the state of the art capabilities in text mining.

We believe that each community involved in achieving LI has something the
other does not have, or not as completely, and should be shared for mutual
benefit:

– The semantic web community has contributed a square but nevertheless
useful wheel for gleaning info from web sources

– The database community has contributed efficiency and theoretical property
gains from experimenting with variants of logic programming

– The computational logic community has provided the scientific results on
which semantic web research could have been based all along.

We shall next discuss concrete under-exploited connections between this disci-
plines which stand to provide, in our view, great gains by being shared and
developed multi-disciplinarily.

4 Ontological Parsing

Text and knowledge can simultaneously inform each other, for mutual benefit.
We can use semantic types present in specialized lexicons for completing queries
with information such as set membership and roles as a result of parsing.

E.g., the automated analysis of Who works for Oxford University and is author
of ”Semantic Web Search”? using an ontological grammar lexicon (which marks
terms with their expected types in an embedded ontology) can yield the type-
annotated query:

168 V. Dahl

q(Xscientist&human):-works_for(X-scientist&human,
Oxford University-university&academic_institution),
author_of(Semantic Web Search-thesis&publication,
X-scientist&human).

This expresses more than the ontological Datalog query one would come up with
by hand, namely:

Q(X):- (Scientist(X) & worksFor(X,Oxford University) &
isAuthorOf(X,Semantic Web Search))

Established methods exist for encoding semantic types in such a way that type
inclusion relationships can be computed on the fly largely via unification [34].
As an example, use of such types for the problem of de-identification of medical
texts has recently been proposed [33], based on a rigorous logical system for
incomplete types which we present below in the Appendix, including in particular
a definition of incomplete types and examples of their use. Other than allowing
for many implicit parts of the query to become explicit, they induce drastic
reductions of the search space and may even serve for deriving relevant novel
hypotheses in certain restricted fields (reported e.g. in [40]).

5 Logic Grammars

The parsing model needed for Language Intelligence as we understand it must
satisfy three main requirements: ability to decode text into knowledge bases,
flexibility to accommodate the imperfections and imprecision typical of sponta-
neous human language use, while exploiting its rich expressive power to good
advantage, and good potential to blend in, and cooperate with, the semantic web
technologies chosen. Since the latter are built around logic programming, which
is also my proposed axis because inference is key to our objectives, logic gram-
mars [AD89] stand out as natural candidates to be considered. In particular,
adapting the new family of Abductive Grammars [21,28] holds great promise,
because of their built-in ability to construct knowledge bases from language sen-
tences. As well, a constraint-based rendition of Property Grammars [24]) holds
great promise because of their focus on yielding useful results even for imperfect
input. The types of imperfection to be addressed will involve noise, incorrect
input, and incomplete input.

In this section we informally describe the most common types of logic gram-
mars [1] for completeness, and also newer types which could be blended with
each other as well as with Datalog, in view of combining the features of ef-
ficiency, termination, robust parsing, parsing despite incomplete or erroneous
input, and flexible, high level inference mechanisms which can also be exploited
in view of logically correct text interpretations.

5.1 DCGs

The most popular logic grammars are MG, or Metamorphosis Grammars ([18],
popularized by Warren and Pereira as DCG (Definite Clause grammars, [46])

Informing Datalog through Language Intelligence 169

and currently included in every modern Prolog version. Informally, DCGs have
a context-free rule format, except that symbols can be logic terms (noted as
in Prolog) rather than simple identifiers, and Prolog calls (noted between curly
brackets) are allowed. They become executable for either analysis or synthesis
of sentences in the language they describe, by re-expression into Prolog; for
instance:

s - -> noun (N1), verb (N2), {agree(N1,N2}.

noun(plural) - -> [lions].
verb(plural) - -> [sleep].

compiles into Prolog usually by adding two variables to each symbol: one that
carries the string to be analysed, and a second one which returns the substring
left over after the front of the string has been analyzed (by the rule’s successful
application). Calls to Prolog compile to themselves. Thus, the above grammar
can translate into Prolog as:

s(P1,P2):- noun(N1,P1,P), verb(N2,P,P2), agree(N1,N2).

noun(plural,[lions|X],X).
verb(plural,[sleep|X],X]).

5.2 Logic Grammars and Datalog

Interestingly, one can simply note input sentences as assertions rather than lists,
as first proposed in [39], and restrict terms as in Datalog by allowing no func-
tional symbols, and presto, we inherit all the good computational properties
and processing methodologies of Datalog. The resulting formalism was proposed
in [30], where it was named Datalog Grammars. They relate to Chain Datalog
grammars, independently proposed one year later by Dong and Ginsburg [31].
Tableaux based implementations have been extensively studied around David
Scott Warren’s very efficient XSB system [49].

The new notation (which can of course be easily obtained by compilation from
the list notation) would describe an input sentence ”lions sleep” as

connects(lions,1,2).
connects(sleep,2,3).

Non-lexical grammar rules need not be touched, e.g.

s(P1,P):- np(P1,P2), vp(P2,P).

is simply reinterpreted: the Pis are now word boundary points rather than lists
of words, e.g. the following rule instance would be used for parsing ”lions sleep”:

170 V. Dahl

s(1,3):- np(1,2), vp(2,3).

Datalog Grammars’ main advantages, inherited from Datalog, are efficiency,
termination, and incremental techniques allowing the grammar to guess par-
tially unknown input. They have been shown appropriate for sophisticated ap-
plications, e.g. for treating natural language sentence coordination [32] and for
syntactic error diagnosis and repair [4].

It is also interesting that the Prolog implementation of DCGs can be adapted
to Datalog grammars quite readily, by replacing the usual list-based connec-
tion predicate present in most DCG compilers by the assertional equivalent:
connects(Word,N1,N2):- N2 is N1+1.

Connections with Semantic Web and Datalog have been studied in the Se-
mantic Web community with interesting results, e.g. extensions of Datalog rules
to accommodate ontologies have been developed and formally studied that pro-
pitiate interaction with standard ontology languages such as RDFs and OWL.
A survey of efforts in this direction, with a classification of different approaches,
can be found in [7], which concludes with an analysis of the reasons why despite
the great need for such integrations, none has significantly materialized so far:
none of the existing approaches is regarded as completely satisfactory, includ-
ing where efficiency is concerned; there is a lack of extended case studies and
large scale examples; there is need to combine knowledge sources beyond rules
and ontologies; and -most importantly from our point of view- there is a need
for complex data structures beyond the Datalog fragment, such as can be mod-
eled by logic programs using function symbols. Alternative efforts for modeling
complex data structures, such as the hybrid well-founded semantics [13] work
in theory, but in the current solvers for stable model and answer set seman-
tics, function symbols are largely banned. Despite decades of trying to purge
logic programming from complex structures in order to maintain good compu-
tational properties, it seems that function symbols are making a comeback, with
recent systems being proposed to provide function symbols in decidable settings
(e.g. [19]).

5.3 Contemporary Logic Grammars

For an informal idea of the expressive power of the logic grammars we can
build on, we show in this section a sample Constraint Handling Rule grammar
[17] (based on CHR [20]) and consultation for detecting tandem repeats in DNA
strings, where results show the boundaries, e.g. ACCGT repeats within positions
0 and 10; next we show our Property Grammar analysis [24] of an incorrect noun
phrase in French, where the last list output shows what property was violated
(unicity of determiner between word boundaries 0 and 3); and finally, a sample
member of the Abductive Logic Grammar family ([21,28], capable of abducing
semantic types for named entities. We then discuss how these formalisms can
aid our final aim of language intelligence.

Informing Datalog through Language Intelligence 171

A CHRG Grammar for Detecting Tandem Repeats, and a Consulta-
tion Session Example

[X], string(Y) ::> string([X|Y]).
[X] ::>string([X]).

string(X),string(X)::> tandem_repeat(X).

?- parse([a,c,c,g,t,a,c,c,g,t]).

tandem_repeat(0,10, [a,c,c,g,t]);
tandem_repeat(1,3,[c]).
tandem_repeat(6,8,[c]).

A Property Grammar’s Output for a Mistyped Noun Phrase with
Repeated Determiner. For the input string ” le le livre”, we obtain the
following output:

cat(0,3,sn,[sing,masc],np(det(le),det(le),n(livre)),
[prec(1,det,2,n,3),dep(1,det,2,n,3),unicity(det,1,3),
exige(n,det,1,3),prec(0,det,1,n,3),dep(0,det,1,n,3),
exige(n,det,0,3)],[unicity(det,0,3)]) ?

yes

A noun phrase (sn)is recognized between word boundaries 0 and 3, singular and
masculine, with parse tree (det(le),det(le),n(livre)), satisfying properties such
as precedence (prec) and dependency (dep) between determiner and noun, and
violating the unicity of determiner property.

A sample Abductive Logic Grammar with Fixed Knowledge-Base

G1 = <<N1, T1, R1,d>, C1>, where
N1 = {d/0,s/0, np/1,vp/2}
T1 = {thinks, stands, curie, marie, pierre, the, sofa,...}
R1 = {d ->s| s d
s -> np(X) vp(X,Knowledge)

{Knowledge},
np(Marie_curie) -> marie curie,
np(sofa7) -> the sofa,
vp(X, thinks(X)) -> thinks,
vp(X, stands(X)) -> stands}

C1 =<A1, Kbg1>, where A1 = {human/1,thing/1}
Kbg1= {thinks(X) <->human(X),

stands(X) <->human(X) or
thing(X)),not(human(X) and thing(X))}}

172 V. Dahl

Informally: N1, T1, R1,d are as in traditional grammars (non terminals, ter-
minals, productions, start symbol d, for discourse); C1 is a constraint sys-
tem for abduction where A1 are the abducibles, Kbg1 the background knowl-
edge base. From Marie Curie thinks, {human(marie curie)} is abduced by
the grammar; the sentence Marie Curie stands has two minimal explanations,
{human(marie curie)} and {thing(marie curie)}; the discourse containing both
sentences has exactly {human(marie curie)} as its minimal substantiated ex-
planation.

N.B. Dynamic abductive grammars (not shown here) go further by allow-
ing for explicit knowledge update terms within grammar rules to modify the
knowledge base upon rule application, maintaining its consistency.

5.4 Discussion: Possible Cross-Fertilizations

In the Property Grammar approach, as exemplified above, grammars are de-
scribed through properties between constituents plus conditions under which
some can be relaxed. Faced with incomplete or incorrect input, the parser still
delivers results rather than failing and indicates the reasons of anomaly through
a list of satisfied and a list of violated properties. Hypothetical and abductive
reasoning capabilities can complete some of the missing parts by intelligently
gleaning relevant information from the web (e.g. on semantic roles and ontolo-
gies), both for parsing and for inferential purposes. Since Abductive Grammars
already include such capabilities, an obvious first choice is to extend them with
property checking mechanisms allowing us to parse imperfect input a la Property
Grammars. As well, they can be extended with semantic role labeling techniques
gleaned through ontologies, such as found in OWL and OWL2 repositories [47]
or through NLU techniques (surveyed in [48]) for quick disambiguation and se-
mantic role compatibility checkups, as well as search-reduction side effect. It is
possible also to extend our Property Grammar parsing techniques [24] into a
model of Concept Formation [25]. This model has been applied to mining lin-
guistics and molecular biology texts [2], to diagnosing lung cancer [5], and to
knowledge extraction from biomedical text [27], leading to a Concept Formation
model for Molecular Biology [23].

Abductive logic grammars [21] evolve from [28] and relate to abductive
logic programming [38] by implementing knowledge-base extraction through
constraint-based abduction- a paradigm used, e.g., for abducing molecular acid
strings from RNA secondary structure [3]- with the novel feature that they allow
abducibles to appear in heads of clauses through the notion of substantiated an-
swers. Secondly, they relate to knowledge extraction from texts with the novelty
that they allow us to blend linguistic and meaning representation capabilities
within the same process, so that their interaction can fine-tune the resulting
knowledge bases in ways warranted by the linguistic information, thus going
beyond the state of the art capabilities in text mining. A precedent exists of
work which couples a syntactico-semantic grammar and a knowledge base im-
plemented in Description Logic which is consulted by the grammar to ensure that
only semantically acceptable parses are built [45]. While the knowledge base can

Informing Datalog through Language Intelligence 173

also learn new information from the parser’s calls (i.e. from a new sentence being
analysed), this information focusses mostly on lexical semantics given that this
approach’s main aim is semantic correctness. In contrast, Abductive Logic Gram-
mars can infer full knowledge bases from their description in human language
with semantic correctness being only one of its possible applications. Another
related approach [37] uses abduction for obtaining a minimal explanation of why
the text could be true, but results in combinatorial explosion needing various
techniques to control it. Constraints, present in all of the above described for-
malisms, constitute an obvious axis for cross-fertilization, since they are crucial
both for implementing robust parsing around properties between constituents
[25,27] and for constructing knowledge from text. These types of grammars can
provide good starting points, particularly in view of integrations with Web min-
ing. There are also interesting possible cross-fertilizations with ontological query
answering, in that an interaction with semantic role labeling techniques and
ontologies, such as found in OWL repositories [47] would allow for quick disam-
biguation and semantic role compatibility checkups (along the lines exemplified
in the Appendix); for uncovering implicit parts of sentences; and for a two way
interaction: a) gleaning semantic types from outside sources, and b) contribut-
ing to them any missing info gleaned from text analysis. As well, an abductive
grammar’s use of ontological lexicons can inform the web search methods enough
to not need annotating each and every document to be used, before a query is
attempted; and semantic role and type inference at the parsing stage may help
Datalog’s negated queries by converting them into safe ones if they are not safe
to begin with, as they may not be if produced from certain natural language
phrasings, or by a careless Datalog expert. A most interesting possible cross-
fertilization in this respect would be to complement the approach of [35] with
new NLU and unconventional inference techniques suitably adapted, to make
it language informed. Its arquitecture is shown in Figure 1, complemented as
here proposed, by adding in particular a language interface capable of trans-
forming human language queries into the complex query form required by the
subset of Datalog concerned. The cost associated with [35] ’s present approach
of completing with annotations each and every document to be used, before a
query is attempted, can be decreased in two ways. Their approach is quite costly
even if done as a preprocessing stage, since accessing a web source is very costly
in terms of response time. Instead, we can 1) use the NL interfaces ontological
lexicons not only to parse but also to inform the web search methods, and 2)
use an abductive logic grammar component (the Knowledge Abducer) to glean
knowledge bases by examining not the entire documents returned, but just the
answers proposed by existing engines.

For a proof-of-concept within a specific domain, bioinformatics and molecular
biology hold the most promise as candidate domains due to their great cross-
fertilization potential with linguistic theories and methods. Quick results can be
obtained through partial analyses for punctual tasks such as gleaning punctual
knowledge of interest, e.g. determining from context whether an expression such
as binding site refers to a protein domain or a DNA domain, or whether two

174 V. Dahl

NL Interface
Query

Evaluator

Interface
Engine

Search
Engine Annotations

Web

Ontology

Knowledge
Abducer

Fig. 1. System Architecture

entities of interest interact. In a second stage, further connections can be at-
tempted, always in interaction between parsing and knowledge-based web min-
ing methodologies. Recently proposed models of biological concept formation [8]
can aid in such attempts. This domain as a specific pivot of study is fascinat-
ing because it implies including among the study of human languages those not
conventionally regarded as such in the field, namely the languages of molecular
biology. This choice is not only for the altruistic goal of providing molecular
biologists with the ground-breaking tools they desperately need (since e.g. nu-
cleic acid sequences of crucial interest are being produced much faster than
they can be analyzed by traditional methods), but also importantly, because it
is becoming apparent that many fascinating cross-fertilizations can ensue from
this expanded view of linguistics which have enormous potential for inducing a
qualitative leap in linguistics sciences themselves [26]. To develop an executable
theory of Language Intelligence that incorporates the Web as a useful exten-
sion, however, we need to move into searching for answers within unrestricted
web documents (not just Semantic Web documents), and into more arbitrary
domains. This is admittedly higher risk, but if such scaling-up proves unfeasible,
a good alternative approach would be to explore which minimal machinery (e.g.
perhaps using only semantic role labeling, or that plus generalized ontologies)
might capture enough nuanced meaning from arbitrary web documents to cor-
rectly answer queries. Else we can at least delimit a few sub-domains in which
we can reign through dividing.

6 Conclusion: LP, Datalog as the Connective Tissue, the
Universal Glue

True Language Intelligence stands to elicit a major shift in the way science, tech-
nology, scholarly work and even societal transactions are conducted, by providing

Informing Datalog through Language Intelligence 175

instantaneous intelligent access, without the mediation of a computer expert, to
the wealth of permanently updated information available through the worlds
computers. E.g. biologists will be able to command computers directly through
their own human language such as English, for tasks such as extracting genetic
information of their interest which is encoded in DNA strings, or gleaning rela-
tionships between biological entities of interest mentioned in a large number of
written documents, or simply to retrieve the answer to a question. This will free
them from having to rely, with no real proof that their trust is justified, on com-
puter specialists interpretations of their stated problems- a situation which Dr.
A. Levesque, in his invited speech at UNESCOs Biodiversity meeting in Paris
(January 2010, personal communication), equated with that of an airplane being
conducted with no map and no navigation system, by an inexperienced pilot. In
our opinion, in order to achieve it we might as well admit we are using LP already
in various guises, and integrate it more consciously into various paradigms that
have been evolving into forms that are close to LP and to Datalog, while tak-
ing inspiration as well from logic programming techniques for natural language.
This uniformity of methodology will cut down on interfaces and indirections,
getting us closer to giving humans the power to program with words, i.e., to
command computers directly through their own language, and at the same time
giving computers the ability to decode text into knowledge bases, and even to
form new concepts and ideas, along explicit guidelines and principles, from those
extracted through analyzing text from heterogeneous sources.

Acknowledgement. Support from the European Commission in the form of
V. Dahl’s Marie Curie Chair of Excellence, and from both universities as well as
from the Canadian National Sciences Research Council, is gratefully acknowl-
edged. We also thank the anonymous referees for very useful comments on this
article’s first draft.

References

1. Abramson, H., Dahl, V.: Logic Grammars. Springer, Berlin (1989)
2. Bel Enguix, G., Jimenez-Lopez, M.D., Dahl, V.: DNA and Natural Languages:

Text Mining. In: IC3K 2009, pp. 140–145. INSTICC, Madeira (2009)
3. Bavarian, M., Dahl, V.: Constraint-Based Methods for Biological Sequence Anal-

ysis. Journal of Universal Computing Science 12, 1500–1520 (2006)
4. Balsa, J., Dahl, V., Pereira Lopes, J.G.: Datalog Grammars for Abductive Syn-

tactic Error Diagnosis and Repair. In: Natural Language Understanding and Logic
Programming Workshop, Lisbon (1995)

5. Barranco-Mendoza, A., Persaoud, D.R., Dahl, V.: A Property-Based Model for
Lung Cancer Diagnosis. In: RECOMB 2004, San Diego, Poster (2004)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
Reasoning and Efficient Query Answering in Description Logics: the DL-Lite Fam-
ily. JAR 39, 385–429 (2007)

7. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Maluszynski,
J.: Hybrid Reasoning with Rules and Ontologies. In: Bry, F., Ma�luszyński, J. (eds.)
Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg
(2009)

176 V. Dahl

8. Dahl, V., Tarau, P.: Assumptive Logic Programming. In: Proc. ASAI 2004, Cor-
doba (2004)

9. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF Proof Pro-
cedure for Abductive Logic Programming with Constraints. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 31–43. Springer, Heidelberg
(2004)

10. Christiansen, H., Dahl, V.: HYPROLOG: a New Logic Programming Language
with Assumptions and Abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 159–173. Springer, Heidelberg (2005)

11. Fruhwirth, T.W.: Theory and Practice of Constraint Handling Rules. Journal of
Logic Programming 37(1-3), 95–138 (1998)

12. Rahwan, Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer,
Heidelberg (2009)

13. Drabent, W.T., Maluszynski, J.: Well-Founded Semantics for Hybrid Rules. In:
Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp.
1–15. Springer, Heidelberg (2007)

14. Eiter, T., Lukasiewicz, S.R., Tompits, H.: Combining Answer-Set Programming
with Description Logics for the Semantic Web. In: Dubois, D., Welty, C., Williams,
M.A. (eds.) Ninth International Conference on Principles of Knowledge Represen-
tation and Reasoning, B.C., Canada, pp. 141–151 (2004)

15. De Coi, J.L., Fuchs, N.E., Kaljurand, K., Kuhn, T.: Controlled English for Reason-
ing on the Semantic Web. In: Bry, F., Ma�luszyński, J. (eds.) Semantic Techniques
for the Web. LNCS, vol. 5500, pp. 276–308. Springer, Heidelberg (2009)

16. Cali, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-based Framework for
Tractable Query Answering over Ontologies. In: 28th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, Providence (2009)

17. Christiansen, H.: CHR Grammars. Journal on Theory and Practice of Logic Pro-
gramming 5, 467–501 (2005)

18. Colmerauer, A.: Metamorphosis Grammars. In: Bolc, L. (ed.) Natural Language
Communication with Computers. LNCS, vol. 63, pp. 133–189. Springer, Heidelberg
(1978)

19. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory
and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

20. Fruhwirth, T.: Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37, 95–138 (1998);
Stuckey, P., Marriot, K. (eds.)

21. Christiansen, H., Dahl, V.: Abductive Logic Grammars. In: Ono, H., Kanazawa,
M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 170–181. Springer,
Heidelberg (2009)

22. Dahl, V.: Decoding Nucleic Acid Strings through Human Language. In: Bel-Enguix,
G., Jiménez-López, M.D. (eds.) Language as a Complex System: Interdisciplinary
Approaches, Cambridge Scholars Publishing (2010)

23. Dahl, V., Barahona, P., Bel-Enguix, G., Kriphal, L.: Biological Concept Forma-
tion Grammars- A Flexible, Multiagent Linguistic Tool for Biological Processes.
LAMAS (2010)

24. Dahl, V., Blache, P.: Directly Executable Constraint Based Grammars. In: Journées
Francophones de Programmation en Logique avec Contraintes, Angers, France
(2004)

Informing Datalog through Language Intelligence 177

25. Dahl, V., Voll, K.: Concept Formation Rules: An Executable Cognitive Model
of Knowledge Construction. In: 1st International Workshop on Natural Language
Understanding and Cognitive Sciences, Porto, Portugal (2004)

26. Dahl, V., Maharshak, E.: DNA Replication as a Model for Computational Linguis-
tics. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.)
IWINAC 2009. LNCS, vol. 5601, pp. 346–355. Springer, Heidelberg (2009)

27. Dahl, V., Gu, B.: Semantic Property Grammars for Knowledge Extraction from
Biomedical Text. In: 22nd International Conference on Logic Programming (2006)

28. Dahl, V.: From Speech to Knowledge. In: Pazienza, M.T. (ed.) SCIE 1999. LNCS
(LNAI), vol. 1714, pp. 49–75. Springer, Heidelberg (1999)

29. Dahl. V., Tarau, P., Andrews, J.: Extending Datalog Grammars. In: NLDB 1995,
Paris (1995)

30. Dahl, V., Tarau, P., Huang, Y.N.: Datalog Grammars. In: 1994 Joint Conference
on Declarative Programming, Peniscola, Spain, pp. 268–282 (1994)

31. Dong, G., Ginsburg, S.: On decompositions of chain datalog programs into P (left)-
linear 1-rule components. Journal of Logic Programming (JLP) 23(3), 203–236
(1995)

32. Dahl. V., Tarau, P., Moreno, L., Palomar, M.: Treating Coordination with Dat-
alog Grammars. In: The Joint COMPULOGNET/ELSNET/EAGLES Workshop
on Computational Logic For Natural Language Processing, Edinburgh (1995)

33. Dahl, V., Saghaei, S., Schulte, O.: Parsing Medical Text into De-identified
Databases. In: 1st International Workshop on AI Methods for Interdisciplinary
Research in Language and Biology, Rome (2011) (in press)

34. Fall, A.: The Foundations of Taxonomic Encoding. Computational Intelligence 14,
598–642 (1998)

35. Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic Web Search
Based on Ontological Conjunctive Queries. In: Link, S., Prade, H. (eds.) FoIKS
2010. LNCS, vol. 5956, pp. 153–172. Springer, Heidelberg (2010)

36. Gottlob, G.: Computer Science as the Continuation of Logic by other Means. In:
Keynote Address, European Computer Science Summit 2009, Paris (2009)

37. Hobbs, J.: Abduction in Natural Language Understanding. In: Horn, L., Ward, G.
(eds.) Handbook of Pragmatics, pp. 724–741. Blackwell, Malden (2004)

38. Kakas, A., Kowalski, R., Toni, F.: The Role of Abduction in Logic Programming.
In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook in Logic in AI
and LP, vol. 5. Oxford University Press, Oxford (1998)

39. Kowalski, R.A.K.: Logic for Problem Solving. Elsevier, Amsterdam (1998)

40. Li, G., Huang, C., Zhang, X., Xu, X., Hu, X.: A New Method for Mining Biomed-
ical Knowledge Using Biomedical Ontology. Wuhan University Journal of Natural
Sciences 14(2), 134–136 (2009)

41. Miyao, Y., Sagae, K., Saetre, R., Matsuzaki, T., Tsujii, J.: Evaluating Contribu-
tions of NL Parsers to Protein-Protein Interaction Extraction. Bioinformatics 25,
394–400 (2009)

42. Penn, G., Richter, F.: The Other Syntax: Approaching Natural Language Seman-
tics through Logical Form Composition. In: Christiansen, H., Skadhauge, P.R.,
Villadsen, J. (eds.) CSLP 2005. LNCS (LNAI), vol. 3438, pp. 48–73. Springer,
Heidelberg (2005)

43. Roussel, P.: Prolog, Manuel de Reference et d’Utilisation. Groupe Intelligence Arti-
ficielle, Faculte des Sciences de Luminy, Universite Aix-Marseille II, France (1975)

44. Searls, D.: The Language of Genes. Nature 420, 211–217 (2002)

178 V. Dahl

45. Sargot, B., Ghali, A.E.: Coupling Grammar and Knowledge Base: Range Concate-
nation Grammars and Description Logics. In: Sojka, P., Kopeček, I., Pala, K. (eds.)
TSD 2004. LNCS (LNAI), vol. 3206, pp. 195–202. Springer, Heidelberg (2004)

46. Warren, D.H.D., Pereira, F.: Definite Clause Grammars for Language Analysis - A
Survey of the Formalism and a Comparison with Augmented Transition Networks.
Artificial Intelligence Journal 13(3), 231–278 (1980)

47. OWL Web Ontology Language Guide- W3C Recommendation (2004)
48. Wu, W.: A Study on the Fundamentals of Semantic Role Labeling. Masters Thesis

Report. Simon Fraser University (2009)
49. Warren, D.S.: Programming in tabled Prolog (in preparation),

http://www.cs.sunysb.edu/~warren/xsbbook/book.html

Appendix: An Example of Semantic Types as Incomplete
Types

Formal definition of an incomplete-type system for de-identification
in medical texts

We define as follows:

— Let K be a finite set of symbols called proper names.
— Let T be a finite set of symbols called types.
— Let R be a finite set of symbols called relational symbols.
— Let X be a set of first-order variables.
— Let IdK, IdT , IdR and IdX be subsets of, respectively, K (called identifying

proper names), T (called identifying types), R (called identifying relational
symbols) and X (called identifying variables).

— To each symbol k ∈ K corresponds a symbol t = type(k), with t ∈ T .
— To each variable x ∈ X corresponds a symbol t = type(x), with t ∈ T .
— To each symbol r ∈ R we associate:

• a positive integer n = degree(r).
• a list [t1, . . . , tn] = domain(r), where ti ∈ T .

— Let E(t) represent the set of proper names whose type is t.
— Let L = {E(t) | t ∈ T }.
— Let U =

⋃

t∈T

E(t).

Then a lattice is defined by L, the partial ordering relation of set inclusion (⊂),
and the binary operators of set union (∪) and intersection (∩). It is bounded by
the top U and the bottom { }.

Definition. A de-identification database g is an application which associates,
to each relational symbol r ∈ R of degree n and domain [t1, . . . , tn], an n-ary
relation ρ = g(r), which maps E(t1)× · · · ×E(tn)→ {true, false}.

Definition. A tuple in a relation is an identifying tuple if its relational symbol
belongs to IdR, or if it contains any identifying proper names, types, or variables.

Corollary. All tuples in an identifying relation are identifying tuples.
Notation. All identifying tuples r(t1, ..., tn) will be noted +r(t1, ..., tn).

http://www.cs.sunysb.edu/~warren/xsbbook/book.html

Informing Datalog through Language Intelligence 179

In logic programming terms, a de-identification database g is a logic program
in which some tuples (intuitively, those that contain identifying elements which
de-identification needs to disguise) are hypothesized rather than taken as factual;
in which variables and constants are typed e.g. A ∈ patient; and in which the set
inclusion relationships between these types have been declared through clauses
of the form1

ti ⊂ tj k ∈i

where ti, tj ∈ T and k ∈ K.
Definition. An incomplete type for t, noted h(t), is a term of the form:

[t1, . . . , tn−1, t | V], where the ti ∈ T , V is a variable ranging over incomplete
types, t ⊂ tn−1 ⊂ · · · ⊂ t1 and there exists no t0 ∈ T such that t1 ⊂ t0. | is a
binary operator in infix notation that separates the head from the rest of a list.

Property. Let s, t ∈ T . Then s ⊂ t ⇔ ∃h(t), h(s) and a substitution Θ such
that h(s) = h(t)Θ.

Remark. As a practical consequence of this property a type s can be proven
to be a subtype of t simply by unifying h(s) and h(t), and checking that t ’s tail
variable has become instantiated.

Uses for disambiguation
By using a grammar where each term is marked by its semantic type with re-
spect to a given hierarchy, we can perform a quick semantic compatibility check
which ensures disambiguation on the fly. For instance in an application for de-
identification of records of admission to a hospital-, given that “enter” is a syn-
onym for “admitted”, there will be at least two lexical entries for that verb,
e.g.

enter(patient-X,hospital-Y)

enter(patient-X,state-Y)

(as in ‘‘entered into a comma")

resulting for instance in the following analyses for the sentences shown below:

1. Huntington entered the hospital on April 16, 2010.
2. Smith should be tested for Huntington.

1. entered(patient-huntington,hospital-X,date-16-04-2010).
2. must(test-for(patient-smith,disease-huntington))

Notice as well that disambiguation and anaphora resolution can cooperate with
each other, as the following discourse and corresponding initial representations
exemplify.

Huntington entered the hospital on April 16, 2010. This patient should be
tested for Huntington.

1 In practice, the symbols ⊂, ∈ are replaced by available keyboard symbols, such as <
and :. These are declared as binary operators in infix notation.

180 V. Dahl

+entered(patient-id(huntington),

hospital-id(universalcures),

date-id(16-04-2010)).

must-test-for(patient-P,disease-huntington).

Our parser’s anaphora resolution system will instantiate P into id(huntington)
and correspondingly mark the tuple for “must-test-for” as an assumption. Note
that the explicit mention of a type (“patient”) in the subject of the second
sentence serves as a corroboration to the anaphora resolution system that we
are referring indeed to the Huntington typed as a patient by the first sentence’s
analysis (or the two types would not match). However if the second sentence
had been “He should be tested for Huntington”, the type gleaned from the first
sentence for this individual would simply carry over, together with his name,
into the term representing it.

Of course, even for humans there will be cases in which even context leaves us
clueless, as in “Huntington won”. We are content if our proposed methodology
allows us to deal with ambiguity with at least as much success as humans can.

Dyna: Extending Datalog for Modern AI�

Jason Eisner and Nathaniel W. Filardo

Johns Hopkins University
Computer Science Department

3400 N. Charles Ave.
Baltimore, MD 21218, USA

http://www.cs.jhu.edu/~{jason,nwf}/
{jason,nwf}@cs.jhu.edu

Abstract. Modern statistical AI systems are quite large and complex;
this interferes with research, development, and education. We point out
that most of the computation involves database-like queries and updates
on complex views of the data. Specifically, recursive queries look up and
aggregate relevant or potentially relevant values. If the results of these
queries are memoized for reuse, the memos may need to be updated
through change propagation. We propose a declarative language, which
generalizes Datalog, to support this work in a generic way. Through ex-
amples, we show that a broad spectrum of AI algorithms can be concisely
captured by writing down systems of equations in our notation. Many
strategies could be used to actually solve those systems. Our examples
motivate certain extensions to Datalog, which are connected to functional
and object-oriented programming paradigms.

1 Why a New Data-Oriented Language for AI?

Modern AI systems are frustratingly big, making them time-consuming to en-
gineer and difficult to modify. In this chapter, we describe our work toward a
declarative language that was motivated originally by various use cases in AI.
Our goal is to make it easier to specify a wide range of new systems that are
more or less in the mold of existing AI systems. Our declarative language should
simplify inferential computation in the same way that the declarative language
of regular expressions has simplified string pattern matching and transduction.

All areas of AI have become data-intensive, owing to the flood of data and the
pervasiveness of statistical modeling and machine learning. A system’s exten-
sional data (inputs) include not only current sensory input but also background

� This chapter has been condensed for publication; the full version is available as [22].
This material is based on work supported by the National Science Foundation under
Grants No. 0347822 and 0964681 to the first author, and by a graduate fellowship
to the second author from the Human Language Technology Center of Excellence,
Johns Hopkins University. We thank Wren N. G. Thornton and John Blatz for many
stimulating discussions. We also thank Yanif Ahmad, Adam Teichert, Jason Smith,
Nicholas Andrews, and Veselin Stoyanov for timely comments on the writing.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 181–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 J. Eisner and N.W. Filardo

knowledge, large collections of training examples, and parameters trained from
past experience. The intensional data (intermediate results and outputs) in-
clude combinatorially many possible analyses and conclusions derived from the
inputs.

Each AI system usually builds and maintains its own custom data structures,
so that it can efficiently query and update the current state of the system.
Although many conceptual ideas are reused across AI, each implemented system
tends to include its own specialized code for storage and inference, specialized to
the data and computations used by that system. This turns a small mathematical
abstraction into a large optimized implementation. It is difficult to change either
the abstract computation or the storage and execution strategy because they
are intertwined throughout the codebase. This also means that reusable general
strategies have to be instantiated anew for each implemented system, and cannot
even be easily described in an abstract way.

As an alternative, we are working to develop an appealing declarative lan-
guage, Dyna, for concise specification of algorithms, with a compiler that turns
such specifications into efficient code for storage and inference. Our goal is to
produce a language that practitioners will actually use.

The heart of this long paper is the collection of suggestive Dyna code examples
in §3.1. Readers are thus encouraged to browse at their leisure through Figures 1–
12, which are relatively self-contained. Readers are also welcome to concentrate
on the main flow of the paper, skipping over details that have been relegated for
this reason to footnotes and figures.

1.1 AI and Databases Today

Is a new language necessary? That is, why don’t AI researchers already use
database systems to manage their data [8]? After all, any procedural AI program
is free to store its data in an external database. It could use Datalog or SQL to
express queries against the current state of a database, perform some procedural
computation on the results, and then store the results back to the database.

Unfortunately, there is rather little in most AI systems that looks like typical
database queries:

– Queries in a standard language like Datalog or SQL are not expressive enough
for any one query to capture the entire AI computation. The restrictions are
intended to guarantee that each query terminates in polynomial time and
has a single well-defined answer. Yet the overall AI algorithm may not be
able to make those guarantees anyway—so the effect of the restrictions is
only to partition the algorithm artificially into many smaller queries. This
limits the opportunities for the database system itself to plan, rearrange,
and parallelize computations.

– It may be inefficient to implement the algorithm in terms of database queries.
AI systems typically work with lots of smaller, in-memory, ephemeral, write-
heavy data sets often accessed at the level of individual records. For example,
upon creating a promising hypothesis, the AI system might try to score it or

Dyna: Extending Datalog for Modern AI 183

extend it or compute its consequences, which involves looking up and stor-
ing individual records related to that specific hypothesis. Channeling these
record-at-a-time queries and updates through a standard database would
have considerable overhead.

– Standard database languages do not support features for programming-in-
the-large, such as modules, structured objects, or inheritance.

In this setting, switching from a data structure library to a relational database
is likely to hurt performance without significantly easing implementation.

1.2 A Declarative Alternative

Our approach instead eliminates most of the procedural program, instead spec-
ifying its computations declaratively. We build on Datalog to propose a con-
venient, elegantly concise notation for specifying the systems of equations that
relate intensional and extensional data. This is the focus of §2, beginning with
a review of ordinary Datalog in §2.1.

A program in our Dyna language specifies what we call a dynabase. Recall
that a deductive database [11,56] contains not only extensional relations but
also rules (usually Datalog rules or some other variant on Horn clauses) that
define additional intensional relations, similar to views. Our term “dynabase”
emphasizes that our deductive databases are dynamic: they can be declaratively
extended into new dynabases that have modified extensional data, with conse-
quent differences in the intensional data.

Because a Dyna program merely specifies a dynabase, it has no serial I/O
or side effects. How, then, are dynabases used in a procedural environment? A
running process, written in one’s favorite procedural language, which does have
I/O and side effects, can create a dynabase and update it serially by adding
extensional data. At any time, the process can query the dynabase to retrieve
either the current extensional data, or intensional data that are defined in terms
of the extensional data. As the process updates the extensional data, the inten-
sional data that depend on it (possibly in other dynabases) are automatically
maintained, as in a spreadsheet. Carrying out the query and update operations
requires the “heavy computational lifting” needed in AI for search, deduction,
abduction, message passing, etc. However, the needed computations are speci-
fied only declaratively and at a high level of abstraction. They are carried out
by the Dyna execution engine (eagerly or lazily) as needed to serve the process.

Essentially, a Dyna program is a set of equational schemata, which are similar
to Datalog rules with (non-stratified) negation and aggregation. These schemata
together with the extensional data define a possibly infinite system of equations,
and the queriable “contents” of the dynabase come from a solution to this system.
We give a gentle introduction in §2.3, and sketch a provisional semantics in an
appendix to the full version [22].

Dyna does extend Datalog in several ways, in part by relaxing restrictions
(§2.4). It is Turing-complete, so that the full computation needed by an AI
system can be triggered by a single query against a dynabase. Thus it is not

184 J. Eisner and N.W. Filardo

necessary to specify which data to look up when, or whether or where to store
the results. The resulting Turing-completeness gives greater freedom to both the
Dyna programmer and the execution model, along with greater responsibility.
Dyna also includes programming language features that improve its usability,
such as typing, function evaluation, encapsulation, inheritance, and reflection.

Finally, Dyna’s syntax for aggregation is very concise (even compared to other
logic notations, let alone explicit loops) because its provable items have arbitrary
values, not just truth values. Evaluating items in place makes it possible to write
equations quite directly, with arithmetic and nested function evaluation.

We show and justify some of our extensions by way of various examples from
AI in §3. As Figures 1–12 illustrate, Dyna programs are startlingly short relative
to more traditional, procedural versions. They naturally support record-at-a-
time execution strategies (§2.6), as well as automatic differentiation (§3.1) and
change propagation (§4.3), which are practically very important. Dynabases are
modular and can be easily integrated with one another into larger programs
(§2.7). Finally, they do not specify any particular storage or execution strategies,
leaving opportunities for both automatic and user-directed optimizations that
preserve correctness.

1.3 Storage and Execution Strategies

In this paper, we focus on the expressivity and uses of the Dyna language, as a
user of Dyna would. From this point of view, the underlying computation order,
indexing, and storage are distractions from a Dyna program’s fundamentally
declarative specification, and are relegated to an execution model—just as or-
dinary Datalog or SQL is a declarative language that leaves query optimization
up to the database engine.

Actually computing and updating intensional data under a Dyna program
may involve recursive internal queries and other work. However, this happens in
some implementation-dependent order that can be tuned manually or automat-
ically without affecting correctness.

The natural next questions concern this query and update planning, as well
as physical design. How do we systematize the space of execution strategies and
optimizations? Given a particular Dyna program and workload, can a generic
Dyna engine discover the algorithms and data structures that an expert would
choose by hand?

By showing in this paper that Dyna is capable of describing a wide range of
computations, we mean to argue that finding efficient execution strategies for
Dyna constitutes a substantial general program of research on algorithms for AI
and logic programming.1 After all, one would like a declarative solution of a given
problem to exploit the relevant tricks used by the state-of-the-art procedural so-
lutions. But then it is necessary to generalize these tricks into strategies that can
be incorporated more generally into the Dyna runtime engine or encapsulated
1 More restricted declarative formalisms have developed substantial communities that

work on efficient execution: propositional satisfiability, integer linear programming,
queries and physical design in relational databases, etc.

Dyna: Extending Datalog for Modern AI 185

as general Dyna-to-Dyna program transformations [21,13]. These strategies may
then be applied in new contexts. Building a wide range of tricks and strategies
into the Dyna environment also raises the issue of how to manually specify and
automatically tune strategies that work well on a particular workload.

Algorithms and pseudocode for a fragment of Dyna—the Dyna 1 prototype—
appeared in [23]. We are now considering a much larger space of execution strate-
gies, supported by type and mode systems (cf. [53]). Again, the present paper
has a different focus; but a high-level discussion of some of the many interesting
issues can be found in the final sections of the full version [22].

2 Basic Features of the Language

Our goal in this section is to sketch just enough of Dyna that readers will be able
to follow our AI examples in the next section. After quickly reviewing Datalog,
we explain how Dyna augments Datalog by proving that terms have particular
values, rather than merely proving that they are true; by relaxing certain re-
strictions; and by introducing useful notions of encapsulation and inheritance.
(Formal semantics are outlined in an appendix to the full version [22].)

2.1 Background: Datalog

Datalog [10] is a language—a concrete syntax—for defining named, flat rela-
tions. The (slightly incorrect) statement “Two people are siblings if they share
a parent” can be precisely captured by a rule such as

sibling(A,B) :- parent(C,A), parent(C,B). (1)

which may be read as “A is a sibling of B if, for some C, C is a parent of A
and C is a parent of B.” Formally, capitalized identifiers such as A,B,C denote
universally quantified variables,2 and the above rule is really a schema that
defines infinitely many propositional implications such as

sibling(alice,bob) :- parent(charlie,alice),
parent(charlie,bob).

(2)

where alice, bob, and charlie are constants. (Thus, (2) is one of many possible
implications that could be used to prove sibling(alice,bob).) Rules can also
mention constants directly, as in

parent(charlie,alice).
parent(charlie,bob).

(3)

Since the rules (3) also happen to have no conditions (no “:- . . . ” part), they
are simply facts that directly specify part of the binary relation parent, which

2 A, B, C can have any value. The full version of this paper [22] (both at this point and
in §2.4) discusses optional type declarations that can aid correctness and efficiency.

186 J. Eisner and N.W. Filardo

may be regarded as a two-column table in a relational database. The rule (1)
defines another two-column table, sibling, by joining parent to itself on its
first column and projecting that column out of the result.

Informally, we may regard parent (3) as extensional and sibling (1) as in-
tensional, but Datalog as a language does not have to distinguish these cases.
Datalog also does not specify whether the sibling relation should be material-
ized or whether its individual records should merely be computed as needed.

As this example suggests, it is simple in Datalog to construct new relations
from old ones. Just as (1) describes a join, Datalog rules can easily describe other
relational algebra operations such as project and select. They also permit recur-
sive definitions. Datalog imposes the following syntactic restrictions to ensure
that the defined relations are finite [10]:

– Flatness: Terms in a rule must include exactly one level of parentheses.
This prevents recursive structure-building rules like

is_integer(zero).
is_integer(oneplus(X)) :- is_integer(X).

(4)

which would define an infinite number of facts such as
is_integer(oneplus(oneplus(oneplus(zero)))).

– Range restriction: Any variables that occur in a rule’s head (to the left
of :-) must also appear in its body (to the right of :-). This prevents rules
like

equal(X,X). (5)

which would define an infinite number of facts such as equal(31,31).

Pure Datalog also disallows built-in infinite relations, such as < on the integers.
We will drop all these restrictions below.

2.2 Background: Datalog with Stratified Aggregation

Relations may range over numbers: for example, the variable S in
salary(alice,S) has numeric type. Some Datalog dialects (e.g., [55,70]) sup-
port numeric aggregation, which combines numbers across multiple proofs of
the same statement. As an example, if wparent(charlie, alice) = 0.75 means
that charlie is 75% likely to be a parent of alice, we might wish to define a
soft measure of siblinghood by summing over possible parents:3

wsibling(A, B) =
∑

C

wparent(C, A) · wparent(C, B). (6)

The sum over C is a kind of aggregation. The syntax for writing this in Datalog
varies by dialect; as an example, [14] would write the above fact and rule (6) as
3 This sum cannot necessarily be interpreted as the probability of siblinghood (for

that, see related work in §2.5). We use definition (6) only to illustrate aggregation.

Dyna: Extending Datalog for Modern AI 187

parent(charlie,alice;0.75).
sibling(A,B;sum(Ma*Mb)) :- parent(C,A;Ma),

parent(C,B;Mb).

(7)

Datalog dialects with aggregation (or negation) often impose a further require-
ment to ensure that the relations are well-defined [4,49]:

– Stratification: A relation that is defined using aggregation (or negation)
must not be defined in terms of itself. This prevents cyclic systems of equa-
tions that have no consistent solution (e.g., a :- not a) or multiple consis-
tent solutions (e.g., a :- not b and b :- not a).

We omit details here, as we will drop this restriction below.

2.3 Dyna

Our language, Dyna, aims to readily capture equational relationships with a
minimum of fuss. In place of (7) for (6), we write more simply

parent(charlie,alice) = 0.75.
sibling(A,B) += parent(C,A) * parent(C,B).

(8)

The += carries out summation over variables in the body which are not in the
head, in this case C. For each A and B, the value of sibling(A,B) is being defined
via a sum over values of the other variables in the rule, namely C.

The key point is that a Datalog program proves items, such as
sibling(alice,bob), but a Dyna program also proves a value for each prov-
able item (cf. [38]). Thus, a Dyna program defines a partial function from items
to values. Values are numeric in this example, but in general may be arbitrary
ground terms.4

Non-provable items have no value and are said to be null. In general, null
items do not contribute to proofs of other items, nor are they retrieved by
queries.5

Importantly, only ground terms (variable-free terms) can be items (or val-
ues), so sibling(A,B) is not itself an item and cannot have values. Rather, the
+= rule above is a schema that defines infinitely many grounded rules such as

sibling(alice,bob) += parent(charlie,alice)
* parent(charlie,bob).

(9)

which contributes a summand to sibling(alice,bob) iff parent(charlie,bob)
and parent(charlie,alice) are both provable (i.e., have values).

The Dyna program may include additional rules beyond (8) that contribute
additional summands to sibling(alice,bob). All rules for the same item must
4 Abstractly, the value could be regarded as an additional argument with a functional

dependency; see the full version of this paper [22] for more discussion.
5 Dyna’s support for non-monotonic reasoning (e.g., Figure 5) does enable rules to

determine whether an item is null, or to look up such items. This is rarely necessary.

188 J. Eisner and N.W. Filardo

specify the same aggregation operator (or aggregator for short). In this case
that operator is += (summation), so sibling(alice,bob) is defined by sum-
ming the value of γ over all grounded rules of the form sibling(alice,bob)
+= γ such that γ is provable (non-null). If there are no such rules, then
sibling(alice,bob) is null (note that it is not 0).6

In the first line of (8), the aggregation operator is =, which simply returns its
single aggregand, if any (or gives an error if there are multiple aggregands). It
should be used for clarity and safety if only one aggregand is expected. Another
special aggregator we will see is :=, which chooses its latest aggregand; so the
value of a := item is determined by the last rule (in program order) to contribute
an aggregand to it (it is an error for that rule to contribute multiple aggregands).

However, most aggregators are like +=, in that they do not care about the
order of aggregands or whether there is more than one, but simply reduce the
multiset of aggregands with some associative and commutative binary operator
(e.g, +).7

Ordinary Datalog as in (1) can be regarded as the simple case where all prov-
able items have value true, the comma operator denotes boolean conjunction
(over the subgoals of a proof), and the aggregator :- denotes boolean disjunc-
tion (over possible proofs). Thus, true and null effectively form a 2-valued logic.
Semiring-weighted Datalog programs [30,23,31] correspond to rules like (8) where
+ and * denote the operations of a semiring.

2.4 Restoring Expressivity

Although our motivation comes from deductive databases, Dyna relaxes the
restrictions that Datalog usually imposes, making it less like Datalog and more
like the pure declarative fragment of Datalog’s ancestor Prolog (cf. Mercury
[46]).8 As we will see in §3.1, relaxing these restrictions is important to support
our AI use cases.

– Flatness: We drop this requirement so that Dyna can work with lists and
other nested terms and perform unbounded computations.9 However, this
makes it Turing-complete, so we cannot guarantee that Dyna programs will
terminate. That is the programmer’s responsibility.

– Range restriction: We drop this requirement primarily so that Dyna can
do default and non-monotonic reasoning, to support general function

6 This language design choice naturally extends completion semantics [12]. One can
still force a default 0 by adding the explicit rule sibling(A,B) += 0 to (8). See the
full version of this paper [22] for further discussion.

7 See the full version of this paper [22] for more discussion of aggregation operators.
8 Of course, Dyna goes beyond pure Prolog, most importantly by augmenting items

with values and by adding declarative mechanisms for situations that Prolog would
handle non-declaratively with the cut operator. We also consider a wider space of
execution strategies than Prolog’s SLD resolution.

9 For example, in computational linguistics, a parser’s hypotheses may be represented
by arbitrarily deep terms that are subject to unification. See the full version of this
paper [22] for discussion and references.

Dyna: Extending Datalog for Modern AI 189

definitions, and to simplify certain source-to-source program transformations
[21]. However, this complicates Dyna’s execution model.

– Stratification: We drop this requirement because Dyna’s core uses include
many non-stratified design patterns such as recurrent neural networks, mes-
sage passing, iterative optimization, and dynamic programming. Indeed, the
examples in §3.1 are mainly non-stratified. These domains inherently rely on
cyclic systems of equations. However, as a result, some Dyna programs may
not converge to a unique solution (partial map from items to values) or even
to any solution.

The difficulties mentioned above are inevitable given our use cases. For example,
an iterative learning or optimization procedure in AI10 will often get stuck in
a local optimum, or fail to converge. The procedure makes no attempt to find
the global optimum, which may be intractable. Translating it to Dyna, we get a
non-stratified Dyna program with multiple supported models11 that correspond
to the local optima. Our goal for the Dyna engine is merely to mimic the original
AI method; hence we are willing to return any supported model, accepting that
the particular one we find (if any) will be sensitive to initial conditions and
procedural choices, as before. This is quite different from usual practice in the
logic programming community (see [54] for a review and synthesis), which when
it permits non-stratified programs at all, typically identifies their semantics with
one [29] or more [44] “stable models” or the intersection thereof [63,37], although
in general the stable models are computationally intractable to find.

A simple example of a non-stratified program (with at most one supported
model [58]) is single-source shortest paths,12 which defines the total cost from
the start vertex to each vertex V:

cost_to(start) min= 0.
cost_to(V) min= cost_to(U) + edge_cost(U,V).

(10)

The aggregator here is min= (analogous to += earlier) and the second rule ag-
gregates over values of U, for each V. The weighted directed graph is specified by
the edge_cost items. These are to be provided as extensional input or defined
by additional rules (which could specify a very large or infinite graph).

Evaluation. The above example (10) also illustrates evaluation. The start
item refers to the start vertex and is evaluated in place, i.e., replaced by its value,

10 Such as expectation-maximization, gradient descent, mean-field inference, or loopy
belief propagation (see Figure 7).

11 A model (or interpretation) of a logic program P is a partial map �·� from items
to values. A supported model [4] is a fixpoint of the “immediate consequence”
operator TP associated with that program [62]. In our setting, this means that for
each item α, the value �α� (according to the model) equals the value that would be
computed for α (given the program rules defining α from other items and the values
of those items according to the model).

12 See the full version of this paper [22] for why it is hard to stratify this program.

190 J. Eisner and N.W. Filardo

as in a functional language.13 The items in the body of line 2 are also evaluated
in place: e.g., cost_to("bal") evaluates to 20, edge_cost("bal","nyc") eval-
uates to 100, and finally 20+100 evaluates to 120 (the evaluation mechanism is
explained in the full version of this paper [22]). This notational convention is
not deep, but to our knowledge, it has not been used before in logic program-
ming languages.14 We find the ability to write in a style close to traditional
mathematics quite compelling.

2.5 Related Work

Several recent AI projects have developed attractive probabilistic programming
languages (for space reasons, references are in the full version of this paper [22]).

By contrast, Dyna is not specifically probabilistic. Why? Our full paper [22]
lists a wide variety of other numeric and non-numeric objects that are commonly
manipulated by AI programs. Of course, Dyna items may take probabilities (or
approximate probabilities) as their values, and the rules of the program may
enforce a probabilistic semantics. However, the value of a Dyna item can be any
term (including another dynabase). We will see examples in §3.1.

There are other logic programming formalisms in which provable terms are
annotated by general values that need not be probabilities (some styles are ex-
emplified by [38,30,26]). However, to our knowledge, all of these formalisms are
too restrictive for our purposes.

In general, AI languages or toolkits have usually been designed to enforce
the semantics of some particular modeling or algorithmic paradigm within AI.15

Dyna, by contrast, is a more relaxed and general-purpose language that aims
to accommodate all these paradigms. It is essentially a general infrastructure
layer: specific systems or toolkits could be written in Dyna, or more focused
languages could be compiled to Dyna. Dyna focuses on defining relationships
among data items and supporting efficient storage, queries, and updates given
these relationships. We believe that this work is actually responsible for the bulk
of the implementation and optimization effort in today’s AI systems.
13 Notice that items and their values occupy the same universe of terms—they are not

segregated as in §2.2. Thus, the value of one item can be another item (a kind of
pointer) or a subterm of another item. For example, the value of start is used as a
subterm of cost_to(. . .). As another example, extending (10) to actually extract a
shortest path, we define best_path(V) to have as its value a list of vertices:

best_path(V) ?= [U | best_path(U)]

whenever cost_to(V) == cost_to(U)

+ edge_cost(U,V).

(Here the construction [First | Rest] prepends an element to a list, as in Prolog.
The “free-choice” aggregator ?= allows the system to arbitrarily select any one of
the aggregands, hence arbitrarily breaks ties among equally short paths.)

14 With the exception of the hybrid functional-logic language Curry [17]. Curry is closer
to functional programming than to Datalog. Its logical features focus on nondeter-
minism in lazy evaluation, and it does not have aggregation.

15 Again, see the full paper for references.

Dyna: Extending Datalog for Modern AI 191

2.6 A First Execution Strategy

Before we turn to our AI examples, some readers may be wondering how pro-
grams might be executed. Consider the shortest-path program in (10). We wish
to find a fixed point of the system of equations that is given by those rules
(grounding their variables in all possible ways) plus the extensional data.

Here we can employ a simple forward chaining strategy (see [23] for details
and pseudocode). The basic idea is to propagate updates from rule bodies to
rule heads, until the values of all items converge.16 We refer to items in a rule’s
body as antecedents and to the item in the rule’s head as the consequent.

At all times, we maintain a chart that maps the items proved so far to their
current values, and an agenda (or worklist) of updates that have not yet been
applied to the chart. Any changes to the extensional data are initially placed on
the agenda: in particular, the initial definitions of start and edge_cost items.

A step of the algorithm consists of popping an update from the agenda, ap-
plying it to the chart, and computing the effect that will have on other items.
For example, finding a new, shorter path to Baltimore may cause us to discover
a new, shorter path to other cities such as New York City.

Concretely, when updating cost_to("bal") to 20, we see that this item
pattern-matches one of the antecedents in the rule

cost_to(V) min= cost_to(U) + edge_cost(U,V). (11)

with the binding U="bal", and must therefore drive an update through this
rule. However, since the rule has two antecedents, the driver of the update,
cost_to("bal"), needs a passenger of the form edge_cost("bal",V) to com-
plete the update. We query the chart to find all such passengers. Suppose one re-
sult of our query edge_cost("bal",V) is edge_cost("bal","nyc")=100, which
binds V="nyc". We conclude that one of the aggregands of the consequent,
cost_to("nyc"), has been updated to 120. If that changes the consequent’s
value, we place an update to the consequent on the agenda.

This simple update propagation method will be helpful to keep in mind when
studying the examples in Figures 1–12. We note, however, that there is a rich
space of execution strategies, as alluded to in §1.3.

2.7 Multiple Interacting Dynabases

So far we have considered only one dynabase at a time. However, using multiple
interacting dynabases is useful for encapsulation, inheritance, and “what if”
analysis where one queries a dynabase under changes to its input items.

Readers interested mainly in AI will want to skip the artificial example in this
section and move ahead to §3, returning here if needed when multiple dynabases
come into play partway through §3.1 (in Figures 7, 11 and 12).

All code fragments in this section are part of the definition of a dynabase that
we call δ. We begin by defining some ordinary items of δ:
16 This is a record-at-a-time variant of semi-naive bottom-up evaluation.

192 J. Eisner and N.W. Filardo

three = 3.
e = { pigs += 100. % we have 100 adult pigs

pigs += piglets. % and any piglets we have are also pigs
}.

(12)

In δ, the value of three is 3 and the value of e is a particular dynabase ε. Just
as 3 is a numeric literal in the program that specifies a number, the string
{. . . } is an dynabase literal that specifies a literal dynabase ε.17

Since ε does not declare its items pigs and piglets to be private, our rules
in δ can refer to them as e.pigs and e.piglets, which evaluate to 100 and null.
(More precisely, e evaluates to ε within the expression e.pigs, and the resulting
expression ε.pigs looks up the value of item pigs in dynabase ε.)

Storing related items like pigs and piglets in their own dynabase ε can
be a convenient way to organize them. Dynabases are first-class terms of the
language, so one may use them in item names and values. For example, this
definition of matrix transposition

transpose(Matrix) = { element(I,J) = Matrix.element(J,I). }. (13)

defines for each dynabase μ an item transpose(μ) whose value is also a dyn-
abase. Each of these dynabases is an encapsulated collection of many elements.
Notice that transpose resembles an object-oriented function that takes an ob-
ject as an argument and returns an object.

However, the real power of dynabases comes from the ability to extend them.
Remember that a dynabase is a dynamic deductive database: ε.pigs is defined
in terms of ε.piglets and should increase when ε.piglets does. However,
ε.piglets cannot actually change because ε in our example is an immutable
constant. So where does the dynamism come in? How can a procedural program,
or another dynabase, supply new input to ε once it has defined or loaded it?

A procedural program can create a new extension of ε: a modifiable copy ε′.
As the owner of ε′, the program can freely specify new aggregands to its write-
able items. That serves to increment ε′.pigs and replace ε′.piglets (assuming
that their aggregators are respectively += and :=; see §2.3). These updates affect
only ε′ and so are not visible to other users of ε.18 The procedural program can
interleave updates to ε′ with queries against the updated versions (see §1).

A Dyna program with access to ε can similarly extend ε with new aggregands;
here too, changes to piglets will feed into pigs. Continuing our definition of δ:

f = new e. % f is a new pigpen ϕ that inherits all rules of ε
f.pigs += 20. % but has 20 extra adult pigs
f.piglets := three. % and exactly three piglets

(14)

17 One could equivalently define e = $load("pigpen"), where the file pigpen.dyna

consists of “pigs += 100. pigs += piglets.” or a compiled equivalent. Then
$load("pigpen") will evaluate to ε (until the file changes). (Note: Reserved-word
functors such as $load start with $, to avoid interference with user names of items.)

18 The converse is not true: any updates to ε would be inherited by its extension ε′.

Dyna: Extending Datalog for Modern AI 193

These rules are written as part of the definition of δ (the owner19 of the new
dynabase ϕ) and supply new aggregands 20 and 3 to ϕ’s versions of pigs and
piglets.

The parent dynabase ε remains unchanged, but its extension ϕ has items
pigs and piglets with values 123 and 3, just as if it had been defined in the
first place by combining (12) and (14) into20

f = { pigs += 100.
pigs += piglets.
pigs += 20.
piglets := $owner.three. } % where $owner refers to δ

(15)

The important point is that setting f.piglets to have the same value as three
also affected f.pigs, since ε defined pigs in terms of piglets and this relation-
ship remains operative in any extension of ε, such as f’s value ϕ.

Interactions among dynabases can be quite flexible. Some readers may wish
to see a final example. Let us complete the definition of δ with additional rules

g = new e.
offspring = g.pigs / three. % all pigs have babies
g.piglets := offspring. % who are piglets

(16)

This creates a loop by feeding 1
3 of g’s “output item” pigs back into g’s “input

item” piglets, via an intermediate item offspring that is not part of g at all.
The result is that g.pigs and g.piglets converge to 150 and 50 (e.g., via the
forward chaining algorithm of §2.6). This is a correct solution to the system of
equations specified by (12) and (16), which state that there are 100 more pigs
than piglets and 1

3 as many piglets as pigs:

δ.three = 3 δ.offspring = γ.pigs/δ.three (17)
γ.pigs = 100 + γ.piglets γ.piglets = δ.offspring

Dynabases are connected to object-oriented programming. We will see practical
uses of multiple dynabases for encapsulation (Figure 7), modularity (Figure 11),
and backtracking search (Figure 12). More formal discussion of the overall lan-
guage semantics, with particular attention to dynabase extension, can be found
in an appendix to the full version [22].

3 Design Patterns in AI

Given the above sketch, we return to the main argument of the paper, namely
that Dyna is an elegant declarative notation for capturing the logical structure
of computations in modern statistical AI.

19 Because δ invoked the new operator that created ϕ, δ is said to own ϕ. This is why
δ is permitted to have rules that extend ϕ with additional aggregands as shown in
(14). See the full version of this paper [22] for further discussion of ownership.

20 Fine points and formal semantics are covered in the full version of this paper [22].

194 J. Eisner and N.W. Filardo

Modern AI systems can generally be thought of as observing some input and
recovering some (hidden) structure of interest:

– We observe an image and recover some description of the scene.
– We observe a sentence of English and recover a syntax tree, a meaning rep-

resentation, a translation into Chinese, etc.
– We are given a goal or reward function and recover a plan to earn rewards.
– We observe some facts expressed in a knowledge representation language

and recover some other facts that can be logically deduced or statistically
guessed from them.

– We observe a dataset and recover the parameters of the probability distri-
bution that generated it.

Typically, one defines a discrete or continuous space of possible structures, and
learns a scoring function or probability distribution over that space. Given a par-
tially observed structure, one either tries to recover the best-scoring completion
of that structure, or else queries the probability distribution over all possible
completions. Either way, the general problem is sometimes called structured
prediction or simply inference.

3.1 Brief AI Examples in Dyna

We will show how to implement several AI patterns in Dyna. All the examples in
this section are brief enough that they are primarily pedagogical—they could be
used to teach and experiment with these basic versions of well-known methods.

Real systems correspond to considerably larger Dyna programs that modify
and combine such techniques. Real systems must also obtain their input by
transforming raw datasets (using additional Dyna rules).

Each of the code examples below is in a self-contained figure, with details in
the captions. Typically the program defines a dynabase in which all items are
still null, as it merely defines intensional items in terms of extensional items that
have not been supplied yet. One may however extend this dynabase (see §2.7),
adding observed structure (the input) and the parameters of the scoring function
(the model) as extensional data. Results now appear in the extended dynabase
as intensional data defined by the rules, and one may read them out.

Arithmetic Circuits. One simple kind of system is an arithmetic circuit. A
classic AI example is a neural net (Figure 1). In the Dyna implementation (Fig-
ure 2), the network topology is specified by defining values for the weight items.

As in the shortest-path program (10), the items that specify the topology
may be either provided directly at runtime (as extensional data), or defined by
additional Dyna rules (as intensional data: Figure 3 gives an attractive example).

Notice that line 3 of Figure 2 is a matrix-vector product. It is sparse because
the neural-network topology is typically a sparse graph (Figure 1). Sparse prod-
ucts are very common in AI. For example, sparse dot products are used both
in computing similarity and in linear or log-linear models [15]. A dot product
like score(Structure) += weight(Feature)*strength(Feature,Structure)

Dyna: Extending Datalog for Modern AI 195

Fig. 1. A small acyclic neural network. The activation xn at
each node n is a nonlinear function f , such as a sigmoid or
threshold function, of a weighted sum of activations at n’s

parent nodes: xn
def
= f

(∑
(n′,n)∈E xn′wn′,n

)
. The three lay-

ers shown here are the traditional input, hidden, and output
nodes, with wn′,n values represented by arrow thickness.

i1

i2 h1 o1

i3 h2 o2

i4

sigmoid(X) = 1 / (1 + exp(-X)).

output(Node) = sigmoid(input(Node)).

input(Node) += output(Child) * weight(Child,Node).

error += (output(Node) - target(Node))**2.

Fig. 2. A general neural network in Dyna. Line 1 defines the sigmoid function over all
real numbers X. In Line 2, that function is applied to the value of input(Node), which
is evaluated in place. Line 3 sums over all incoming edges to Node. Those edges are
simply the (Child,Node) pairs for which weight(Child,Node) is defined. Additional
summands to some of the input(Node) items may be supplied to this dynabase at
runtime; this is how i1, i2, i3, i4 in Figure 1 would get their outside input. Finally, Line
4 evaluates error by summing over just those nodes for which target(Node) has been
defined (i.e., is non-null), presumably the output nodes oj .

weight(pixel(X+I,Y+J), hidden(X,Y)) = shared_weight(I,J).

Fig. 3. One layer of a neural network topology for vision, to be used with Figure 2.
Each hidden node hidden(X,Y) is connected to a 5 × 5 rectangle of input nodes
pixel(X+I,Y+J) for I, J ∈ {−2,−1, 0, 1, 2}, using a collection of 25 weights that are
reused across spatial positions (X,Y). The shared_weight(I,J) items should be defined
(non-null) only for I, J ∈ {−2,−1, 0, 1, 2}. This rule then connects nodes with related
names, such as such as hidden(75,95) and pixel(74,97).

This rule exploits the fact that the node names are structured objects.21By using
structured names, we have managed to specify an infinite network in a single line (plus
25 weight definitions). Only a finite portion of this network will actually be used by
Figure 2, assuming that the image (the collection of pixel items) is finite.

21 These names are not items but appear in the rule as unevaluated terms. However,
the expressions X+I and Y+J are evaluated in place, so that the rule is equivalent to

weight(pixel(X2,Y2), hidden(X,Y)) = shared_weight(I,J)

whenever X2 is X+I, Y2 is Y+I.

where in general, the condition γ is α has value true if γ is the value of item α,
and is null otherwise. For example, 97 is 95+2 has value true.

196 J. Eisner and N.W. Filardo

count(X,Y) += 0 whenever is_event(X), is_event(Y). % default
count(X) += count(X,Y).

count += count(X).

% Maximum likelihood estimates
mle_prob(X) = count(X) / count.

mle_prob(X,Y) = count(X,Y) / count(Y).

% Good-Turing smoothed estimates [50]
gt_prob(X) = total_mle_prob(count(X)+1) / n(count(X)).

gt_prob(X,Y) = total_mle_prob(count(X)+1,Y) / n(count(X),Y).

% Used by Good-Turing: How many events X occurred R times, or
% cooccurred R times with Y, and what is their total probability?
n(R) += 0. n(R) += 1 whenever R==count(X).

n(R,Y) += 0. n(R,Y) += 1 whenever R==count(X,Y).

total_mle_prob(R) += mle_prob(X) whenever R==count(X).

total_mle_prob(R,Y) += mle_prob(X,Y) whenever R==count(X,Y).

Fig. 4. Estimating conditional probabilities p(x) and p(x | y), based on counts of x
with y. The user can simply increment count(x,y) whenever x is observed together
with y, and the probability estimates will update (see §4.3). See the full version of this
paper [22] for more detailed discussion of this code.

resembles line 3, and can benefit from using complex feature names, just as
Figure 3 used complex node names.

A rather different example of arithmetic computation is shown in Figure 4,
a dynabase that maintains probability estimates based on the counts of events.
Some other commonly used arithmetic formulas in AI include distances, kernel
functions, and probability densities.

Training of Arithmetic Circuits. To train a neural network or log-linear
model, one must adjust the weight parameters to reduce error. Common opti-
mization methods need to consult more than just the current error: they need
to query the gradient of error with respect to the parameters. How can they
obtain the gradient? Automatic differentiation can be written very naturally
as a source-to-source transformation on Dyna programs, automatically augment-
ing Figure 2 with rules that compute the gradient by back-propagation [23]. The
gradient can then be used by other Dyna rules or queried by a procedural opti-
mizer. Alternatively, the execution engine of our prototype Dyna implementation
natively supports [23] computing gradients, via tape-based automatic differenti-
ation in the reverse mode [32]. It is designed to produce exact gradients even of
incomplete computations.

An optimizer written in a conventional procedural language can iteratively
update the weight items in the dynabase of Figure 2, observing at each step
how the output, error, and gradient change in response. Or the optimizer could
be written in Dyna itself, via rules that define the weights at time step T+1 in

Dyna: Extending Datalog for Modern AI 197

fly(X) := false.

fly(X) := true if bird(X).

fly(X) := false if penguin(X).

fly(bigbird) := false.

Fig. 5. An example of non-monotonic reasoning: all birds fly, other than Sesame
Street’s Big Bird, until such time as they are proved or asserted to be penguins. Recall
from §2.3 that the := aggregator is sensitive to rule ordering, so that where the later
rules apply at all, they override the earlier rules. The first rule is a “default rule” that is
not range-restricted (see §2.1): it proves infinitely many items that unify with a pattern
(here the very simple pattern X).

terms of items (e.g., gradient) computed at time step T. This requires adding an
explicit time argument T to all terms (another source-to-source transformation).

Theorem Proving. Of course, logic and logic programming have a long history
in symbolic AI. Traditional systems for knowledge representation and reasoning
(KRR) are all automated theorem provers (see the full version of this paper [22]
for some references). They compute the entailments of a set of axioms obtained
from human input or derived by other theorem provers (e.g., OWL web services).

Logical languages like Dyna support these patterns naturally. The extensional
items are axioms, the intensional ones are theorems, and the inference rules are
the rules of the program. A simple example appears in our full paper.

Dyna also naturally handles some forms of default and non-monotonic rea-
soning [6], via := rules like those in Figure 5. A related important use of default
patterns in AI is “lifted inference” [61] in probabilistic settings like Markov Logic
Networks [57], where additional (non-default) computation is necessary only for
individuals about whom additional (non-default) facts are known. Yet another
use in AI is default arcs of various kinds in deterministic finite-state automata
over large or unbounded alphabets [3,52].22

Some emerging KRR systems embrace statistics and draw probabilistic infer-
ences rather than certain ones (again, see our full paper for references). Their
computations can typically be described in Dyna by using real-valued items.

Message Passing. Many AI algorithms come down to solving (or approxi-
mately solving) a system of simultaneous equations, often by iterating to conver-
gence. In fact, the neural network program of Figure 2 already requires iteration
to convergence in the case of a cyclic (“recurrent”) network topology [64].

Such iterative algorithms are often known as “message passing” algorithms.
They can be regarded as negotiating a stable configuration of the items’ values.
Updates to one item trigger updates to related items—easily handled in Dyna
since update propagation is exactly what a basic forward-chaining algorithm does

22 Dyna rules illustrating this are given in the full version of this paper [22].

198 J. Eisner and N.W. Filardo

(§2.6). When the updates can flow around cycles, the system is not stratified
and sometimes has no guarantee of a unique fixed point, as warned in §2.4.

Message passing algorithms seek possible, likely, or optimal values of random
variables under a complex set of hard or soft constraints. Figure 6 and Figure 7
show two interesting examples in Dyna: arc consistency (with boolean values)
and loopy belief propagation (with unnormalized probabilities as the values).23

Other important examples include alternating optimization algorithms such as
expectation-maximization and mean-field. Markov chain Monte Carlo (MCMC)
and simulated annealing algorithms can also be regarded as message passing
algorithms, although in this case the updates are randomized; Dyna code for a
simple random walk appears in the full version of this paper [22].

Dynamic Programming. Dyna began [23] as a language for dynamic pro-
gramming (hence the name). The connection of dynamic programming to logic
programming has been noted before (e.g., [33]). Fundamentally, dynamic pro-
gramming is about solving subproblems and reusing stored copies of those solu-
tions to solve various larger subproblems. In Dyna, the subproblems are typically
named by items, whose values are their solutions. An efficient implementation
of Dyna will typically store these solutions for reuse,24 whether by backward
chaining that lazily memoizes values in a table (as in XSB [65] and other tabled
Prologs), or by forward chaining that eagerly accumulates values into a chart
(as in §2.6 and the Dyna prototype [23]).

A traditional dynamic programming algorithm can be written directly in Dyna
as a set of recurrence equations. A standard first example is the Fibonacci se-
quence, whose runtime goes from exponential to linear in N if one stores enough
of the intermediate values:

fib(N) := fib(N-1) + fib(N-2). % general rule
fib(0) := 1. % exceptions for base cases
fib(1) := 1.

(18)

As a basic AI example, consider context-free parsing with a CKY-style al-
gorithm [67]. The Dyna program in Figure 8 consists of 3 rules that directly
and intuitively express how a parse tree is recursively built up by combining
adjacent phrases into larger phrases, under the guidance of a grammar. The
forward-chaining algorithm of §2.6 here yields “agenda-based parsing” [60]: when
a recently built or updated phrase pops off the agenda into the chart, it tries to
combine with adjacent phrases in the chart.

23 Twists on these programs give rise to other popular local consistency algorithms
(bounds consistency, i-consistency) and propagation algorithms (generalized belief
propagation, survey propagation).

24 This support for reuse is already evident in our earlier examples, even though they
would not traditionally be regarded as dynamic programming. The activation of node
h1 in Figure 1 (represented by some output item in Figure 2) takes some work to
compute, but once computed, it is reused in computing each node oj . Similarly, each
count n(R) or n(R,Y) in Figure 4 is reused to compute many smoothed probabilities.

Dyna: Extending Datalog for Modern AI 199

% For Var:Val to be possible, Val must be in-domain, and
% also supported by each Var2 that is co-constrained with Var.
% The conjunctive aggregator &= is like universal quantification over Var2.
possible(Var:Val) &= in_domain(Var:Val).

possible(Var:Val) &= supported(Var:Val, Var2).

p

% Var:Val is supported by Var2 only if it is still possible
% for Var2 to take some value that is compatible with Val.
% The disjunctive aggregator |= is like existential quantification over Val2.
supported(Var:Val, Var2)

|= compatible(Var:Val, Var2:Val2) & possible(Var2:Val2).

% If consistent ever becomes false, we have detected unsatisfiability:
% some variable has no possible value.
non_empty(Var) |= false. % default (if there are no possible values)
non_empty(Var) |= possible(Var:Val). % Var has a possible value
consistent &= non_empty(Var) whenever is_var(Var).

% each Var in the system has a possible value

Fig. 6. Arc consistency for constraint programming [19]. The goal is to rule out some
impossible values for some variables, using a collection of unary constraints (in_domain)
and binary constraints (compatible) that are given by the problem and/or tested dur-
ing backtracking search (see Figure 12). The “natural” forward-chaining execution
strategy for this Dyna program corresponds to the classical, asymptotically optimal
AC-4 algorithm [48].

Variables and constraints can be named by arbitrary terms. Var:Val is syn-
tactic sugar for an ordered pair, similar to pair(Var,Val) (the : has been declared
as an infix functor). The program determines whether possible(Var:Val). The user
should define is_var(Var) as true for each variable, and in_domain(Var:Val) as true
for each value Val that Var should consider. To express a binary constraint between
the variables Var and Var2, the user should define compatible(Var:Val, Var2:Val2)

to be true or false for each value pair Val and Val2, according to whether the
constraint lets these variables simultaneously take these values. This ensures that
supported(Var:Val,Var2) will be true or false (not null) and so will contribute
a conjunct to line 2.

We will return to this example in §3.2. Meanwhile, the reader is encouraged
to figure out why it is not a stratified program (§2.2), despite being based on the
stratified CKY algorithm.25 Replacing the += aggregator with max= (compare
(10)) would make it find the probability of the single best parse, instead of the
total probability of all parses [30].

This example also serves as a starting point for more complicated algorithms in
syntactic natural-language parsing and syntax-directed translation.26 The uses

25 See the full version of this paper [22] for a detailed answer.
26 The connection of these areas to deductive inference and logic programming has been

well explored. See the full version of this paper [22] for discussion and references.

200 J. Eisner and N.W. Filardo

% Belief at each variable based on the messages it receives from constraints.
belief(Var:Val) *= message(Con, Var:Val).

% Belief at each constraint based on the messages it receives from variables
% and the preferences of the constraint itself.
belief(Con:Asst) = messages_to(Con:Asst) * constraint(Con:Asst).

% To evaluate a possible assignment Asst to several variables, look at messages
% to see how well each variable Var likes its assigned value Asst.Var.
messages_to(Con:Asst) *= message(Var:(Asst.Var), Con).

% Message from a variable Var to a constraint Con. Var says that it plausibly
% has value Val if Var independently believes in that value (thanks to other
% constraints, with Con’s own influence removed via division).
message(Var:Val, Con) := 1. % initial value, will be overridden
message(Var:Val, Con) := belief(Var:Val) / message(Con, Var:Val).

% Messages from a constraint Con to a variable Var.
% Con says that Var plausibly has value Val if Con independently
% believes in one or more assignments Asst in which this is the case.
message(Con, Var:Val) += belief(Con:Asst) / message(Var:Val, Con)

whenever Asst.Var == Val.

Fig. 7. Loopy belief propagation on a factor graph [66]. The constraints together define
a Markov Random Field joint probability distribution over the variables. We seek to
approximate the marginals of that distribution: at each variable Var we will deduce a
belief about its value, in the form of relative probabilities of the possible values Val.
Similarly, at each constraint Con over a set of variables, we will deduce a belief about
the correct joint assignment of values to just those variables, in the form of relative
probabilities of the possible assignments Asst.

Assignments are slightly complicated because we allow a single constraint to refer
to arbitrarily many variables (in contrast to Figure 6, which assumed binary con-
straints). A specific assignment is a map from variable names (terms such as color,
size) to their values (e.g., red, 3). It is convenient to represent this map as a small
sub-dynabase, Asst, whose elements are accessed by the . operator: for example,
Asst.color == red and Asst.size == 3.

As input, the user must define constraint so that each constraint (“factor” or
“potential function”) gives a non-negative value to each assignment, giving larger values
to its preferred assignments. Each variable should be subject to at least one constraint,
to specify its domain (analogous to in_domain in Figure 6).

A message to or from a variable specifies a relative probability for each value of
that variable. Since messages are proved circularly from one another, we need to ini-
tialize some messages to 1 in order to start propagation; but these initial values are
overridden thanks to the := aggregator, which selects its “latest” aggregand and hence
prefers the aggregand from line 5 (once defined) to the initial aggregand from line 4.
Note: For simplicity, this version of the program glosses over minor issues of message
normalization and division by 0.

Dyna: Extending Datalog for Modern AI 201

% A single word is a phrase (given an appropriate grammar rule).
phrase(X,I,J) += rewrite(X,W) * word(W,I,J).

% Two adjacent phrases make a wider phrase (given an appropriate rule).
phrase(X,I,J) += rewrite(X,Y,Z) * phrase(Y,I,Mid) * phrase(Z,Mid,J).

% An phrase of the appropriate type covering the whole sentence is a parse.
goal += phrase(start_nonterminal,0,length).

Fig. 8. Probabilistic context-free parsing in Dyna (the “inside algorithm”).
phrase(X,I,J) is provable if there might be a constituent of type X from position I to
position J of the input sentence. More specifically, the value of phrase(X,I,J) is the
probability that nonterminal symbol X would expand into the substring that stretches
from I to J. It is defined using += to sum over all ways of generating that substring
(considering choices of Y, Z, Mid). Thus, goal is the probability of generating the input
sentence, summing over all parses.

The extensional input consists of a sentence and a grammar.
word("spring",5,6)=1 means that "spring" is the sixth word of the sentence;
while length=30 specifies the number of words. rewrite("S","NP","VP")=0.9 means
that any copy of nonterminal S has a priori probability 0.9 of expanding via the
binary grammar production S → NP VP; while start_nonterminal="S" specifies the
start symbol of the grammar.

of the Dyna prototype (listed in a section of [22]) have been mainly in this
domain; see [21,23] for code examples. In natural language processing, active
areas of research that make heavy use of parsing-like dynamic programs include
machine translation, information extraction, and question answering.27 There is
a tremendous amount of experimentation with models and algorithms in these
areas and in parsing itself. The machine vision community has also begun to
explore recursive parsing of images [69,27]. Dyna is potentially helpful on all of
these fronts.

Other dynamic programming algorithms are also straightforward in Dyna,
such as the optimal strategy in a game tree or a Markov Decision Process (Fig-
ure 9), variations from bioinformatics on weighted edit distance (Figure 10) and
multiple sequence alignment, or the intersection or composition of two finite-
state automata (see [13] for Dyna code).

Processing Pipelines. It is common for several algorithms and models to work
together in a larger AI system. Connecting them is easy in Dyna: one algorithm’s
input items can be defined by the output of another algorithm or model, rather
than as extensional input. The various code and data resources can be provided
in separate dynabases (§2.7), which facilitates sharing, distribution, and reuse.

For example, Figure 11a gives a version of Figure 8’s parser that conveniently
accepts its grammar and input in the form of other dynabases. Figure 11b illus-
trates how this setup allows painless scripting.

Figure 11c shows how the provided grammar may be an interesting component
in its own right if it does not merely list weighted productions but computes
27 Again, see our full paper [22] for references.

202 J. Eisner and N.W. Filardo

% The optimal value function V .
value(State) max= value(State,Action).

% The optimal action-value function Q.
% Note: The value of p(s, a, s′) is a conditional transition probability, P (s′ | s, a).
value(State,Action) += reward(State,Action).

value(State,Action) += γ * p(State,Action,NewState) * value(NewState).

% The optimal policy function π. The free-choice aggregator ?= is used
% merely to break ties as in footnote 13.
best_action(State) ?= Action if value(State) == value(State,Action).

Fig. 9. Finding the optimal policy in an infinite-horizon Markov decision process, using
value iteration. The reward and transition probability functions can be sensitive to
properties of the states, or to their structured names as in Figure 3. The optimal value
of a State is the expected total reward that an agent will earn if it follows the optimal
policy from that State (where the reward at t steps in the future is discounted by a
factor of γt). The optimal value of a (State,Action) pair is the expected total reward
that the agent will earn by first taking the given Action—thereby earning a specified
reward and stochastically transitioning to a new state—and thereafter following the
optimal policy to earn further reward.

The mutual recurrence between V and Q interleaves two different aggregators:
max= treats optimization by the agent, while += computes an expectation to treat
randomness in the environment. This “expectimax” strategy is appropriate for acting
in a random environment, in contrast to the “minimax” strategy using max= and min=

that is appropriate when acting against an adversarial opponent. The final line with
?= merely extracts the optimal policy once its value is known.

them using additional Dyna rules (analogous to the neural network example
in Figure 3). The particular example in Figure 11c constructs a context-free
grammar from weights. It is equally easy to write Dyna rules that construct a
grammar’s productions by transforming another grammar,28 or that specify an
infinitely large grammar.29

Not only grammar but also input may be defined using rules. For example,
the input sequence of words may be derived from raw text or speech signal using
a structured prediction system—a tokenizer, morphological analyzer, or auto-
matic speech recognizer. A generalization is that such a system, instead of just
producing a single “best guess” word sequence, can often be made to produce a
probability distribution over possible word sequences, which is more informative.

28 E.g., one can transform a weighted context-free grammar into Chomsky Normal
Form for use with Figure 11a, or coarsen a grammar for use as an A* heuristic [39].

29 E.g., the non-range-restricted rule rewrite(X/Z,X/Y,Y/Z). encodes the infinitely
many “composition” rules of combinatory categorial grammar [60], in which a com-
plex nonterminal such as s/(pp/np) denotes an incomplete sentence (s) missing an
incomplete prepositional phrase (pp) that is in turn missing a noun phrase (np).

Dyna: Extending Datalog for Modern AI 203

% Base case: distance between two empty strings.
dist([],[]) = 0.

% Recursive cases.
dist([X|Xs], Ys) min= delete_cost(X) + dist(Xs,Ys).

dist(Xs, [Y|Ys]) min= insert_cost(Y) + dist(Xs,Ys).

dist([X|Xs],[Y|Ys]) min= subst_cost(X,Y) + dist(Xs,Ys).

% Part of the cost function.
substcost(L,L) = 0. % cost of 0 to align any letter to itself

Fig. 10. Weighted edit distance between two strings. This example illustrates items
whose names are arbitrarily deep terms: each dist name encodes two strings, each
being an list of letters. As in Prolog, the syntactic sugar [X|Xs] denotes a list of length
> 0 that is composed of a first element X and a remainder list Xs.

We pay some cost for aligning the first 0 or 1 letters from one string with the first
0 or 1 letters from the other string, and then recurse to find the total cost of aligning
what is left of the two strings. The choice of how many initial letters to align is at
lines 2–4: the program tries all three choices and picks the one with the minimum cost.
Reuse of recursive subproblems keeps the runtime quadratic. For example, if all costs
not shown are 1, then dist([a,b,c,d], [s,b,c,t,d]) has value 2. This is obtained
by optimally choosing the line with subst_cost(a,s) at the first recursive step, then
subst_cost(b,b), subst_cost(c,c), insert_cost(t), subst_cost(d,d), for a total
cost of 1+0+0+1+0.

This distribution is usually represented as a “hypothesis lattice”—a probabilis-
tic finite-state automaton that may generate exponentially or infinitely many
possible sequences, assigning some probability to each sequence. The parser of
Figure 11a can handle this kind of nondeterministic input without modification.
The only effect on the parser is that I, J, and Mid in Figure 11a now range over
states in an automaton instead of positions in a sentence.30

At the other end of the parsing process, the parse output can be passed down-
stream to subsequent modules such as information extraction. Again, it is not
necessary to use only the single most likely output (parse tree). The downstream
customer can analyze all the phrase items in the dynabase of Figure 11a to ex-
ploit high-probability patterns in the distribution over parse trees [59,68].

As discussed in the caption for Figure 11c, the training of system parameters
can be made to feed back through this processing pipeline of dynabases [20].
Thus, in summary, hypotheses can be propagated forward through a pipeline
(joint prediction) and gradients can be propagated backward (joint training).
Although this is generally understood in the natural language processing commu-
nity [28], it is surprisingly rare for papers to actually implement joint prediction
or joint training, because of the extra design and engineering effort, particularly

30 See the full version of this paper [22] for details.

204 J. Eisner and N.W. Filardo

phrase(X,I,J) += grammar.rewrite(X,W) * input.word(W,I,J).

phrase(X,I,J) += grammar.rewrite(X,Y,Z) * phrase(Y,I,Mid)

* phrase(Z,Mid,J).

goal += phrase(grammar.start_nonterminal,0,input.length).

(a) A parser like that of Figure 8, except that its input items are two dynabases
(denoted by grammar and input) rather than many separate numbers (denoted by
rewrite(. . .), word(. . .), etc.).

% Specialize (a) into an English-specific parser.
english_parser = new $load("parser"). % parser.dyna is given in (a)
english_parser.grammar = $load("english_grammar"). % given in (c)

% Parse a collection of English sentences by providing different inputs.
doc = $load("document").
parse(K) = new english_parser. % extend the abstract parser . . .
parse(K).input = doc.sentence(K). % . . . with some actual input

% The total log-probability of the document, ignoring sentences for which
% no parse was found.
logprob += log(parse(K).goal).

(b) An illustration of how to use the above parser. This declarative “script” does not
specify the serial or parallel order in which to parse the sentences, whether to retain
or discard the parses, etc. All dynabases parse(K) share the same grammar, so the
rule probabilities do not have to be recomputed for each sentence. A good grammar
will obtain a comparatively high logprob; thus, the logprob measure can be used
for evaluation or training. (Alternative measures that consider the correct parses, if
known, are almost as easy to compute in Dyna.)

% Define the unnormalized probability of the grammar production X → Y Z

% as a product of feature weights.
urewrite(X,Y,Z) *= left_child_weight(X,Y).

urewrite(X,Y,Z) *= right_child_weight(X,Z).

urewrite(X,Y,Z) *= sibling_weight(Y,Z).

urewrite(X,Y,Y) *= twin_weight. % when the two siblings are identical
urewrite(X,Y,Z) *= 1. % default in case no features are defined

% Normalize into probabilities that can be used in PCFG parsing:
% many productions can rewrite X but their probabilities should sum to 1.
urewrite(X) += urewrite(X,Y,Z)

whenever nonterminal(Y), nonterminal(Z).

rewrite(X,Y,Z) = urewrite(X,Y,Z) / urewrite(X).

(c) Constructing a dense grammar for use by the above programs, with probabilities
given by a conditional log-linear model. With k grammar nonterminals, this scheme
specifies k3 rule probabilities with only O(k2) feature weights to be learned from limited
data [5]. Just as for neural nets, these weights may be trained on observed data. For
example, maximum likelihood estimation would try to maximize the resulting logprob

in 11b.

Fig. 11. A modular implementation of parsing

Dyna: Extending Datalog for Modern AI 205

when integrating non-trivial modules by different authors. Under Dyna, doing
so should be rather straightforward.

Another advantage to integrating the phases of a processing pipeline is that
integration can speed up search. The phases can interactively negotiate an ex-
act or approximate solution to the joint prediction problem—various techniques
include alternating optimization (hill-climbing), Gibbs sampling, coarse-to-fine
inference, and dual decomposition. However, these techniques require system-
atic modifications to the programs that specify each phase, and are currently
underused because of the extra implementation effort.

Backtracking Search. Many combinatorial search situations require
backtracking exploration of a tree or DAG. Some variants include beam search,
game-tree analysis, the DPLL algorithm for propositional satisfiability, and
branch-and-bound search in settings such as Integer Linear Programming.

It is possible to construct a search tree declaratively in Dyna. Since a node
in a search tree shares most properties with its children, a powerful approach is
to represent each node as a dynabase, and each of its child nodes as a modified
extension of that dynabase (see §2.7).

We illustrate this in Figure 12 with an elegant DPLL-style program for solv-
ing NP-hard satisfiability problems. Each node of the search tree runs the arc-
consistency program of Figure 6 to eliminate some impossible values for some
variables, using a message-passing local consistency checker. It “then” probes a
variable nextvar, by constructing for each of its remaining possible values Val a
child dynabase in which nextvar is constrained to have value Val. The child dyn-
abase copies the parent, but thanks to the added constraint, the arc-consistency
algorithm can pick up where it left off and make even more progress (eliminate
even more values). That reduces the number of grandchildren the child needs to
probe. The recursion terminates when all variables are constrained.

One good execution strategy for this Dyna program would resemble the actual
DPLL method [18], with

– a reasonable variable ordering strategy to select nextvar;
– each child dynabase created by a temporary modification of the parent, which

is subsequently undone;
– running arc consistency at a node to completion before constructing any

children, since quickly eliminating values or proving unsatisfiability can rule
out the need to examine some or all children;

– skipping a node’s remaining children once consistent has been proved
false (by arc consistency) or true (by finding a consistent child).

However, the program itself is purely declarative and admits other strategies,
such as parallel ones.

206 J. Eisner and N.W. Filardo

% Freely choose an unassigned variable nextvar, if any exists.
% For each of its values Val that is still possible after arc consistency,
% create a clone of the current dynabase, called child(Val).
nextvar ?= Var whenever unassigned(Var). % free choice of nextvar
child(Val) = new $self if possible(nextvar:Val). % create several extensions

% Further constrain each child(Val) via additional extensional input,
% so that it will only permit value Val for nextvar,
% and so that it will choose a new unassigned variable to assign next.
child(Val).possible(nextvar:Val2) &= (Val==Val2)

whenever possible(nextvar:Val).

child(Val).unassigned(nextvar) &= false. % nextvar has been assigned

% We are satisfiable if Figure 6 has not already proved consistent to be false,
% and also at least one of our children (if we have any) is satisfiable.
consistent &= some_child_consistent.

some_child_consistent |= child(Val).consistent.

% usually is true or false, but is null at a leaf (since nextvar is null)

Fig. 12. Determining the satisfiability of a set of constraints, using backtracking search
interleaved with arc consistency. These rules extend the program of Figure 6—which
rules out some impossible values for some variables, and which sometimes detects
unsatisfiability by proving that consistent is false. Here, we strengthen consistent

with additional conjuncts so that it fully checks for satisfiability. Lines 1–2 choose
a single variable nextvar (using the “free-choice” aggregator ?=) and guess different
values for it in child dynabases. We place constraints into the child at lines 3–4 and
read back the result (whether that child is satisfiable) at line 6.

A simple modification to the program will allow it to solve MAX-SAT-style
problems using branch-and-bound.31 In this case, a more breadth-first variant

31 The goal is to find a maximum-scoring joint assignment to the variables, subject to
the constraints. The score of a given assignment is found by summing the subscore

values (as specified by the user) of the several Var:Val pairs in the assignment.
In Figure 6 and Figure 12, replace consistent (a boolean item aggregated by &=)

by score (a real-valued item aggregated by min=). In Figure 6, just as consistent

computes a boolean upper bound on satisfiability, score computes a numeric upper
bound on the best achievable score:

subscore(Var) max= −∞.

subscore(Var) max= subscore(Var:Val) whenever possible(Var:Val).

upper_bound += subscore(Var) whenever is_var(Var).

score min= upper_bound.

Then in Figure 12, score is reduced to the best score actually achieved by any child:

score min= best_child_score.

best_child_score max= child(nextvar:Val).score.

Dyna: Extending Datalog for Modern AI 207

such as A* or iterative deepening will often outperform the pure depth-first
DPLL strategy. All these strategies can be proved correct from the form of the
Dyna program, so a Dyna query engine is free to adopt them.32

Local Search and Sampling. While the search tree constructed above was ex-
haustive, a similar approach can be used for heuristic sequential search strategies:
greedy local search, stochastic local search, particle filtering, genetic algorithms,
beam search, and survey-inspired decimation. Each configuration considered at
time T can be described by a dynabase that extends a configuration from time
T-1 with some modifications. As with our arc consistency example, rules in the
dynabase will automatically compute any consequences of these modifications.
Thus, they helpfully update any intensional data, including the score of the
configuration and the set of available next moves.

The same remarks apply to Monte Carlo sampling methods such as Gibbs
sampling and Metropolis-Hastings, which are popular for Bayesian learning and
inference. Modifications at time T are now randomly sampled from a move distri-
bution computed at time T-1. Again, the consequences are automatically com-
puted; this updates the move distribution and any aggregate sample statistics.

3.2 Proofs and Proof Forests

It is useful to connect Dyna, whose items have weights or values, to the tradi-
tional notion of proofs in unweighted logic programming.

Datalog can be regarded as defining proof trees. Figures 13a–13b show a
collection of simple inference rules (i.e., a program) and two proof trees that
can be constructed from them. As a more meaningful example, Figures 14–15
show inference rules for context-free CKY parsing (unweighted versions of the
rules in Figure 8) and two proof trees that can be constructed using them.33

These proof trees are isomorphic to the parse trees in Figure 16. In other words,
a parser is really trying to prove that the input string can be generated by the
grammar. By exploring the proof trees, we can see the useful hidden derivational
structures that record how the string could have been generated, i.e., the possible
parses.34

A Datalog program may specify a great many proof trees, but thanks to shared
substructure, the entire collection may be represented as a packed forest. The
32 For example, it is easy to see that upper_bound at each node n (once it has converged)

is indeed an upper bound on the score of the node (so can be used as an admissible
heuristic for A*). It can further be proved that as long as this bound is smaller than
the current value of best_child_score at an ancestor of n whose score was queried,
then exploring the children of n further cannot affect the query result.

33 To obtain the CKY proof trees, we must add facts that specify the words and
grammar rules. That is, we extend the CKY program with the extensional input.

34 The mapping from proof trees (derivation trees) to syntactic parse trees (derived
trees) is generally deterministic but is not always as transparent as shown here.
For example, a semantics-preserving transformation of the Dyna program [47,21,36]
would change the derivation trees but not the derived trees.

208 J. Eisner and N.W. Filardo

hypergraph in Figure 13c shows the packed forest of all proofs licensed by the
program in Figure 13a. Some vertices here have multiple incoming hyperedges,
indicating that some items can be proved in multiple ways. The number of proofs
therefore explodes combinatorially with the in-degree of the vertices.35 In fact,
the forest in Figure 13c, being cyclic, contains infinitely many proof trees for b.
Even an acylic forest may contain a number of proof trees that is exponential in
the size of the hypergraph.

Indeed, a Datalog program can be regarded simply as a finite specification of
a proof forest. If the rules in the program do not contain variables, then the pro-
gram is actually isomorphic to the proof forest, with the items corresponding to
nodes and the rules corresponding to hyperedges. Rules with variables, however,
give rise to infinitely many nodes (not merely infinitely many proofs).

3.3 From Logical Proofs to Generalized Circuits

To get a view of what Dyna is doing, we now augment our proof forests to allow
items (vertices) to have values (Figure 13e). This yields what we will call gener-
alized circuits. Like an arithmetic (or boolean) circuit, a generalized circuit is
a directed graph in which the value at each node α is a specified function of the
values at the 0 or more nodes that point to α. Finding a consistent solution to
these equations (or enough of one to answer particular value queries) is challeng-
ing and not always possible, since Dyna makes it possible to define circuits that
are cyclic and/or infinite, including infinite fan-in or fan-out from some nodes.
(Arithmetic circuits as traditionally defined must be finite and acyclic.)

We emphasize that our generalized circuits are different from weighted proof
forests, which attach weights to the individual proof trees of an item and then
combine those to get the item’s weight. In particular, the common setup of
semiring-weighted deduction is a special case of weighted proof forests that
is strictly less general than our circuits. In semiring-weighted deduction [30],
the weight of each proof tree is a product of weights of the individual rules
or facts in the tree. The weight of an item is the sum of the weights of all
its proofs. It is required that the chosen product operation ⊗ distributes over
the chosen sum operation ⊕, so that the weights form a semiring under these
operations. This distributive property is what makes it possible to sum over the
exponentially many proofs using a compact generalized circuit like Figure 8 (the
inside algorithm) that is isomorphic to the proof forest and computes the weight
of all items at once.

Our original prototype of Dyna was in fact limited to semiring-weighted de-
duction (which is indeed quite useful in parsing and related applications). Each
program chose a single semiring (⊕,⊗); each rule in the program had to multiply
its antecedent values with ⊗ and aggregate these products using ⊕=.

However, notice that most of our useful AI examples in §3.1 actually fall
outside this form. They mix several aggregation operators within a program,

35 Although a has only one incoming edge, it has two proof trees, one in which p is
proved from y and the other (shown in Figure 13b) in which p is proved from z.

Dyna: Extending Datalog for Modern AI 209

x p
a

p

b
b f

b

y
p

z
p f

x y z

a :- x, p.

b :- p.

b :- b, f.

p :- y.

p :- z.

f.

x.

y.

z.

(a) A set of inference rules, and their encoding
in Datalog. Axioms are written as inference
rules with no antecedents.

a b

• •

x p f b

z

•

p

•

y

•

(b) Two proof trees using these
rules. When an item is proved
by an inference rule from 0 or
more antecedent items, its ver-
tex has an incoming hyperedge
from its antecedents’ vertices.
Hyperedges with 0 antecedents
(to f, x, y, z) are not drawn.

a b

• •

x p

•

f

y

•

z

•

(c) The proof forest
containing all possible
proofs. In contrast,
each hypergraph in 13b
shows only a single
proof from this forest,
with each copy of an
item selecting only a
single incoming hyper-
edge from the forest,
and cycles from the
forest unrolled to a
finite depth.

a += x + p.

b += p.

b += b / f.

p *= y.

p *= z.

f = 4.

x = 1.

y = 2.

z = 3.

(d) A set of numeric
recurrence relations
that are analogous to
the unweighted infer-
ence rule in Figure 13a.
We use Dyna’s syntax
here.

a = 7 b =
+

8

• = 7 • = 2

x = 1 p =
∗

6

•

f = 4

y = 2 z = 3

•

(e) A generalized arithmetic circuit
with the same shape as the proof
forest in Figure 13c. The weight
labellings are consistent with 13d.
Each node (including the • nodes) is
computed from its predecessors.

Fig. 13. Some examples of proof trees and proof forests, using hypergraphs (equiv-
alently, AND-OR graphs). Named nodes in the graphs represent items, and • nodes
represent intermediate expressions.

210 J. Eisner and N.W. Filardo

iwj X → w

iXj

iYj jZk X → Y Z

iXk

Fig. 14. The two proof rules necessary to support context-free grammars with unary
productions and binary rewrites. w denotes a word from the input sentence and X a
symbol of the grammar. Subscripts denote the object’s span (which part of the sentence
they cover).

N → Time 0Time1

0N1

V → flies 1flies2

1V2

.

.

.

2P3

.

.

.

3NP5 PP → P NP

2PP5 VP → V PP

1VP5 S → N VP

0S5

N → Time 0Time1

0N1

N → flies 1flies2

1N2 NP → N N

0NP2

.

.

.

2V3

.

.

.

3NP4 VP → V NP

2VP5 S → NP VP

0S5

Fig. 15. Two example proofs that “Time flies like an arrow.” is an English sentence,
using the rules in Figure 14. This is traditional notation, but the hypergraphs of Fig-
ure 13 are more flexible because they would be able to show reuse of subgoals within
a single proof, as well as making it possible to show packed forests of multiple proofs
with shared substructure, as in Figure 13c.

S

N

Time

VP

V

flies

PP

P

like

NP

Det

an

N

arrow

S

NP

N

Time

N

flies

VP

V

like

NP

Det

an

N

arrow

Fig. 16. Two example parse trees of the sentence “Time flies like an arrow” [40]. These
are isomorphic to the proofs in Figure 15 (upside down) and correspond to different
meanings of the sentence. The first conveys information about how time passes; the
second tree says that flies of a certain species (“time flies”) are fond of an arrow.

sometimes including non-commutative aggregators like :=, and it is sometimes
important that they define the aggregation of 0 items to be null, rather than
requiring the aggregator to have an identity element and using that element.
They also use additional non-linear operations like division and exponentiation.

Dyna: Extending Datalog for Modern AI 211

As a result, it is not possible to regard each of our AI examples as simply an
efficient way to sum over exponentially many proofs of each output item. For
example, because of the sigmoid function in Figure 2, the distributive property
from semiring-weighted programs like Figure 8 does not apply there. One cannot
regard the activation value of an output node in a neural network as a sum over
the values of many individual proofs of that output node.36 That is, a generalized
circuit does not necessarily fall apart into disjoint trees the way that a weighted
forest does. Rather, the computations are tangled together. In the neural network
example, computing intermediate sums at the hidden nodes is important not only
for dynamic programming efficiency (as it is in the semiring-weighted program
of Figure 8) but also for correctness. The sigmoid function at each node really
does need to apply to the sum, not to each summand individually.

We remark that even generalized circuits are not a convenient representation
for all Dyna programs. The rule f(0) += g(1) generates a single edge in a
generalized circuit. However, the rule f(start) += g(end), where start and
end are evaluated, would generate edges to f(x) (for every x that is a possible
value of start) from start, end, and g(y) (for every y that is a possible value of
end). Typically this leads to infinitely many edges, only one of which is actually
“active” in a given solution to the program.

Despite all this freedom, Dyna circuits remain circuits, and do not seem to
present the difficulties of arbitrary systems of equations. A Dyna program cannot
impose fiendish constraints such as x3 + y3 = z3. (Recall that Fermat’s Last
Theorem says that there are no postive integer solutions.) Rather, each equation
in a Dyna system constrains a single item to equal some function of the items in
the program. (This arises from Dyna’s use of single-headed rules, similar to Horn
clauses.) Furthermore, every item has exactly one “defining constraint” of this
sort (obtained by aggregating across multiple rules).37 So one cannot formulate
x3 + y3 = z3 by writing u = x3 + y3 and u = z3 (which would give two defining
constraints). Nor can one formulate it by writing s = s + (x3 + y3 − z3), a legal
Dyna program that might appear to imply x3 + y3 − z3 = 0, but whose unique
solution is actually that x, y, z, s are all null, since each of x, y, z (having no
defining rules) has a defining constraint that it is the aggregation of 0 aggregands.

4 Practical AI and Logic Programming

Given an applied AI problem, one would like to experiment with a broad range of
models, exact or approximate inference algorithms, decision procedures, training
procedures for the model parameters and system heuristics, and storage and ex-
ecution plans. One must also experiment when developing new general methods.

Dyna supports the common computational core for all this—mechanisms for
maintaining a possibly infinite and possibly cyclic network of related items that
36 Each proof of o1 in Figure 1 would be a separate path of length 2, from some input

node through some hidden node to o1.
37 As mentioned earlier, this generalizes the completion semantics of [12], which treats

a logic program as defining each boolean item with an “if and only if” constraint.

212 J. Eisner and N.W. Filardo

are named by structured terms. Its job is to store and index an item’s value, to
query for related items and aggregate their values (including planning of complex
queries), to maintain the item’s value and propagate changes to related items,
and to back-propagate gradient information.

In this section, we expand on our argument from §1 that a fast and scalable
implementation of Dyna would be of practical use to the AI community. The full
version of this paper [22] gives a more detailed argument, with many citations
as well an informal survey of current code and data size.

4.1 What’s Wrong with Current AI Practices

Current AI practices, especially in our target area of natural-language process-
ing and machine learning, suffer from a large distance between specification
and implementation. Typical specifications are a handful of recurrence relations
(though not as short as the examples in this paper). Creative graduate students
can easily dream up innovative systems at the specification level. Implementa-
tions, however, are typically imperative and by necessity include storage and
inference code.

Large Extensional Data. Modern statistical methods mine large corpora of
data and produce sizable models. It is not atypical to process billions of words
and extract models with millions of constants and hundreds of millions of rela-
tions between those constants.

Knowledge bases and information integration pose additional problems of
scale. As statistical methods gain popularity in other computational fields, the
large-data problem spreads. Storage and indexing structures are becoming ex-
tremely relevant, as are approximation and streaming techniques.

Large Intensional Effort. As we have seen, even when extensional data is
small, modern AI systems often have large computations over intermediate quan-
tities. For many algorithms, the (weighted) proof forests may be exponentially or
unboundedly large. Here, efficient inference algorithms, prioritization, and query
planning become critical for managing execution time.

Modern AI academic research systems consist of large bodies of imperative
code (20,000–100,000 lines), specialized for the purpose at hand. Regardless of
programmer intent, there is little cross-system code reuse. Some researchers have
aimed to develop reusable code libraries (known as toolkits) to support common
development patterns. However, even the best and most flexible of these toolkits
are themselves large, and invariably are not general enough for all purposes.38

Uncaught Bugs. The size of these coding efforts is not only a barrier to entry,
to learning, and to progress, but also likely affects correctness. The potential
for uncaught bugs was recognized early in statistical AI. Statistical AI systems
have many moving parts, and tend to produce some kind of quantitative result
that is used to evaluate the method. The results are not expected to be perfect,
38 See the full version of this paper [22] for discussion of an example, and for the code

sizes of some AI systems and toolkits.

Dyna: Extending Datalog for Modern AI 213

since the problems are inherently hard and the statistical models usually cannot
achieve human-level performance even at their best. This makes it very diffi-
cult to detect errors. Methods that appear to be producing “reasonable” results
sometimes turn out to work even better (and occasionally worse) when bugs in
the implementation are later noticed and fixed.

Diverse Data Resources. The AI community is distributed over many ge-
ographic locations, and many AI researchers produce data for others to share.
The difficulty in using this vast sea of resources is that they tend to be provided
in idiosyncratic formats. Trying out a new dataset often requires understanding
a new encoding scheme, parsing a new file format, and building one’s own data
structures for random access.

Diverse Code Resources. Many AI resources are in the form of code rather
than data. It can be very valuable to build on the systems of others, and there
are principled ways to do so. At present, however, software engineering consid-
erations strongly discourage any deep integration of systems that were built in
different labs. One would like pipelines (of the kind discussed in §3.1) to agree
on a common high-quality output and common parameters, but this requires
the ability for components to query one another or pass messages to one another
[28]. Similarly, one may wish to combine the strengths of diverse AI systems
that are attempting the same task [35]. A recently emerging theme, therefore,
is the development of principled methods for coordinating the work of multiple
combinatorial algorithms. See references in the full version of this paper [22].

Ad Hoc Experimental Management. AI researchers spend considerable
time managing computational experiments. It is usual to compare multiple sys-
tems, compare variants of a system, tune system parameters, graph performance
across different types and amounts of data, and so forth. Common practice is
to run programs at the Unix command line and to store results in files, per-
haps writing scripts to manage the process. Sometimes one keeps intermediate
results in files for reuse or manual analysis. It can be difficult to keep all the files
organized, up to date, and track their provenance [7].

4.2 Declarative Programming to the Rescue

The above problems are intensifying as AI research grows in size, scope, and
sophistication. They have motivated our attempt to design a unified declarative
solution that hides some of the complexity. We would like it to be easy again to
simply try out good ideas!

Promising declarative languages based on Datalog have recently been built
for domains such as sensor networks [43] and business data analytics [41,42].

Why does a declarative approach fit for AI as well? We believe the business of
AI is deriving hypotheses and conclusions from data (as discussed in a section of
the full version of this paper [22]). These are fundamentally declarative problems:
what to conclude can be specified without any commitment to how to conclude it,
e.g., the order of computation. The Dyna approach has something to contribute
toward solving each of the challenges of the previous section:

214 J. Eisner and N.W. Filardo

Large Extensional Data. We expect that most access by AI programs to large
extensional data stores could be supported by traditional on-disk database tech-
nology, such as B-trees, index structures, and standard query planning methods.
AI programs can automatically exploit this technology if they are written in a
Datalog-derived language with an appropriate implementation.

Large Intensional Effort. The computational load of AI programs such as those
in §3.1 consists mainly of database queries and updates. Dyna provides an ex-
ecutable language for specifying these algorithms, making them concise enough
to publish within a paper.

Our hope is that the details left unspecified in these concise programs—the
storage and inference policies—can be efficiently handled in a modular, reusable
way across problems, eventually with automatic optimization and performance
tuning. Even basic strategies like those in §2.6 sometimes correspond closely
to current practice, and are often asymptotically optimal [45]. We are deeply
interested in systematizing existing tricks of the trade and making them reusable
across problems,39 as well as pushing in new directions (§1.3).

Quality Control. Smaller programs should have fewer bugs. We also expect that
Dyna will allow some attractive paradigms for inspecting and debugging what a
system is doing, as discussed in a section of the full version of this paper [22].

Diverse Data Resources. We hope that dynabases can provide a kind of natu-
ral interchange format for data resources. They allow flexible representation of
typed, structured data, and Dyna offers an attractive query language that can
be integrated directly into arbitrary computations. It is conceptually straight-
forward to convert existing data resources into collections of Dyna facts that can
be stored and queried as in Datalog.

Diverse Code Resources. Dynabases are a useful format for code resources as
well. We do not claim that wrapping Java code (for example) in a dynabase in-
terface will improve its API. However, computational resources that are natively
written in the Dyna language do have advantages as components of larger AI
systems. First, they can more easily expose their internal hypotheses to be flex-
ibly queried and influenced by another component. Second, query optimization
can take place across the dynabase boundary, as can automatic differentiation.
Third, we suspect that Dyna programs are simply easier for third parties to
understand and modify manually when necessary. They can also be manipu-
lated and combined by program transformation; for example, [13] shows how to
combine two Dyna programs into a product-of-experts model.

Ad Hoc Experimental Management. Dyna suggests an elegant solution to run-
ning collections of experiments. Figure 11b gives a hint of how one could create a
parametric family of dynabases that vary input data, training data, experimental
parameters, and even the models and algorithms. The dynabases are named by

39 See additional discussion in the full version of this paper [22].

Dyna: Extending Datalog for Modern AI 215

structured terms. Each dynabase holds the results of some experiment, including
all intermediate computations, and can track the provenance of all computations
(by making the hyperedges of proof forests visible as items). Some computations
would be automatically shared across related dynabases.

Using dynabases to store experimental results is quite flexible, since dynabases
can be structured and nested, and since the Dyna language can be used to query,
aggregate, analyze, and otherwise explore their contents.

In principle, this collection of dynabases may be infinite, representing an in-
finite variety of parameter settings. However, the contents of a dynabase would
be materialized only when queried. Which materialized intermediate and final
results are stored for later use, versus being discarded and recreated on de-
mand, would depend on the dynabase’s chaining and memoization policies,40as
declared by the user or chosen by the system to balance storage, latency, and
total runtime.

4.3 Uses of Change Propagation in AI

Recall that dynabases implement dynamic algorithms: their intensional items
update automatically in response to changes in their extensional input. This
corresponds to “view maintenance” in databases [34], and to “self-adjusting com-
putation” [1] in functional languages.

We observe that this kind of change propagation is widely useful in AI
algorithms. Internally, many algorithms simply propagate changes until conver-
gence (see the discussion of message passing in §3.1). In addition, AI systems
frequently experiment with slight variants of their parameters or inputs for train-
ing, validation, or search.

Optimization of Continuous or Discrete Parameters. Training a data-
driven system typically runs the system on a fixed set of training examples. It
explores different parameter settings in order to maximize an objective measure
of system performance. A change to an individual parameter may affect rela-
tively few of the training examples. Similarly, adding or removing parameters
(“feature selection”) may require only incremental changes to feature extractors,
automata, or grammars. The ability to quickly recompute the objective function
in response to such small changes can significantly speed up training [51].

k-Fold Cross Validation. The dual situation occurs when the parameters are
held fixed and the training data are varied. Systems often use cross-validation to
tune some high-level parameters of a model. For example, a language model is a
probability distribution over the strings of a language, and is usually trained on
as much data as possible. “Smoothing parameters” that affect how much prob-
ability mass is reserved for events that have not been seen in the training data
(cf. Figure 4). To evaluate a particular choice of smoothing parameters, cross-
validation partitions the available training data into k “folds,” and evaluates the
method’s performance on each fold when the language model is trained on the
other k−1 folds. This requires training k different language models. However, it
40 Additional details may be found in a section of the full version of this paper [22].

216 J. Eisner and N.W. Filardo

should not be necessary to build each model from scratch. Rather, one can train
a master model on the full dataset, and then create variants by removing each
fold in turn. This removal should not require recomputing all counts and proba-
bilities of the model, particularly when k is large. For example, “leave-one-out”
training takes each sentence to be a separate fold.

Search and Sampling. §3.1 already described how change propagation was
useful in backtracking search, local search, and sampling. In all of these cases,
some tiny change is made to the configuration of the system, and all the con-
sequences must be computed. For example, in the DPLL backtracking search
of Figure 12, constraining a single additional variable may have either small or
large effects on reducing the possibilities for other variables, thanks to the arc
consistency rules.

Control and Streaming-Data Systems. Systems that process real-world
data have obvious reasons for their inputs to change: time passes and more data is
fed in. Monitoring the results is why commercial database engines such as Oracle
have begun to support continuous queries, where the caller is continually notified
of any changes to the query result. The Dyna version of continuous queries is
discussed in a section of the full version of this paper [22]. Applications include
business intelligence (e.g., LogicBlox [41]); stream processing for algorithmic
equities trading (e.g., DBToaster [2]); user interfaces (e.g., Dynasty [24] and
Fruit [16]); declarative animation (e.g., Fran [25]); query planners and optimizers
(see the discussion in the full paper); and even (incremental) compilers [9].

In an AI system—for example, medical decision support—sensors may conti-
nously gather information from the world, users may state new facts or needs,
and information integration may keep track of many large, evolving datasets at
other locations. We would like a system to absorb such changes and draw con-
clusions about the state of the world. Furthermore, it should draw conclusions
about desirable actions—actions such as notifying a human user of significant
changes, controlling physical actuators, seeking more information, or carrying
out more intensive computation. A running process can monitor these recom-
mended actions and carry them out.

5 Conclusion

We have described our work towards a general-purpose weighted logic program-
ming language that is powerful enough to address the needs of statistical AI.
Our claim is that modern AI systems can be cleanly specified using such a lan-
guage, and that much of the implementation burden can be handled by general
mechanisms related to logical deduction, database queries, and change propaga-
tion. In our own research in natural language processing, we have found a simple
prototype of the language [23] to be very useful, enabling us to try out a range
of ideas that we otherwise would have rejected as too time-consuming. The new
version aims to support a greater variety of execution strategies across a broader
range of programs, including the example programs we have illustrated here.

Dyna: Extending Datalog for Modern AI 217

Note: Throughout this book chapter, we have referred to additional material in
the full version [22]. The full version also includes sections that sketch execution
strategies; how dynabases interact with the world (the form of queries/result-
s/updates, the dynabase API, mode checking, foreign dynabases, debugging);
and formal semantics.

References

1. Acar, U.A., Ley-Wild, R.: Self-adjusting computation with Delta ML. In: Koop-
man, P.W.M., Plasmeijer, R., Swierstra, S.D. (eds.) AFP 2008. LNCS, vol. 5832,
pp. 1–38. Springer, Heidelberg (2009)

2. Ahmad, Y., Koch, C.: DBToaster: A SQL compiler for high-performance delta
processing in main-memory databases. In: Proc. of VLDB, pp. 1566–1569 (2009)

3. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFST: A general
and efficient weighted finite-state transducer library. In: Holub, J., Žďárek, J. (eds.)
CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007)

4. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, ch.
2. Morgan Kaufmann, San Francisco (1988)

5. Berg-Kirkpatrick, T., Bouchard-Côté, A., DeNero, J., Klein, D.: Painless unsuper-
vised learning with features. In: Proc. of NAACL, pp. 582–590. ACL (2010)

6. Bidoit, N., Hull, R.: Minimalism, justification and non-monotonicity in deductive
databases. Journal of Computer and System Sciences 38(2), 290–325 (1989)

7. Breck, E.: zymake: A computational workflow system for machine learning and nat-
ural language processing. In: Software Engineering, Testing, and Quality Assurance
for Natural Language Processing, SETQA-NLP 2008, pp. 5–13. ACL (2008)

8. Brodie, M.L.: Future Intelligent Information Systems: AI and Database Technolo-
gies Working Together. Morgan Kaufmann, San Francisco (1988)

9. Burstall, R.M., Collins, J.S., Popplestone, R.J.: Programming in POP-2. Edinburgh
University Press, Edinburgh (1971)

10. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineer-
ing 1, 146–166 (1989)

11. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

12. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum, New York (1978)

13. Cohen, S.B., Simmons, R.J., Smith, N.A.: Products of weighted logic programs.
Theory and Practice of Logic Programming (2010)

14. Cohen, S., Nutt, W., Serebrenik, A.: Algorithms for rewriting aggregate queries
using views. In: Masunaga, Y., Thalheim, B., Štuller, J., Pokorný, J. (eds.) ADBIS
2000 and DASFAA 2000. LNCS, vol. 1884, pp. 65–78. Springer, Heidelberg (2000)

15. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

16. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: 2001 Haskell
Workshop (2001)

17. The functional logic language Curry, http://www.informatik.uni-kiel.de/

~curry/

http://www.informatik.uni-kiel.de/~curry/
http://www.informatik.uni-kiel.de/~curry/

218 J. Eisner and N.W. Filardo

18. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

19. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
20. Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proc.

of ACL, pp. 1–8 (2002)
21. Eisner, J., Blatz, J.: Program transformations for optimization of parsing algo-

rithms and other weighted logic programs. In: Wintner, S. (ed.) Proc. of FG 2006:
The 11th Conference on Formal Grammar, pp. 45–85. CSLI Publications, Stanford
(2007)

22. Eisner, J., Filardo, N.W.: Dyna: Extending Datalog for modern AI (full version).
Tech. rep., Johns Hopkins University (2011); Extended version of the present paper,
http://dyna.org/Publications

23. Eisner, J., Goldlust, E., Smith, N.A.: Compiling comp ling: Weighted dynamic
programming and the Dyna language. In: Proc. of HLT-EMNLP, pp. 281–290.
Association for Computational Linguistics (2005)

24. Eisner, J., Kornbluh, M., Woodhull, G., Buse, R., Huang, S., Michael, C., Shafer,
G.: Visual navigation through large directed graphs and hypergraphs. In: Proc. of
IEEE InfoVis, Poster/Demo Session, pp. 116–117 (2006)

25. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming (1997)

26. Felzenszwalb, P.F., McAllester, D.: The generalized A* architecture. J. Artif. Int.
Res. 29(1), 153–190 (2007)

27. Fidler, S., Boben, M., Leonardis, A.: Learning hierarchical compositional represen-
tations of object structure. In: Dickinson, S., Leonardis, A., Schiele, B., Tarr, M.J.
(eds.) Object Categorization: Computer and Human Vision Perspectives, Cam-
bridge University Press, Cambridge (2009)

28. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proc. of ACL, pp. 363–370.
ACL (2005)

29. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th International Conference and Symposium Logic Programming, pp.
1070–1080 (1988)

30. Goodman, J.: Semiring parsing. Computational Linguistics 25(4), 573–605 (1999)
31. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. of

PODS, pp. 31–40 (2007)
32. Griewank, A., Corliss, G. (eds.): Automatic Differentiation of Algorithms. SIAM,

Philadelphia (1991)
33. Guo, H.-F., Gupta, G.: Simplifying dynamic programming via tabling. In: Jayara-

man, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 163–177. Springer, Heidelberg
(2004)

34. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques,
and applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995)

35. Hinton, G.: Products of experts. In: Proc. of ICANN, vol. 1, pp. 1–6 (1999)
36. Johnson, M.: Transforming projective bilexical dependency grammars into

efficiently-parsable CFGs with unfold-fold. In: Proc. of ACL, pp. 168–175 (2007)
37. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: Proc.

of the International Logic Programming Symposium, pp. 338–401 (1991)
38. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming

and its applications. Journal of Logic Programming 12(4), 335–368 (1992)
39. Klein, D., Manning, C.D.: A∗ parsing: Fast exact Viterbi parse selection. In: Proc.

of HLT-NAACL (2003)

http://dyna.org/Publications

Dyna: Extending Datalog for Modern AI 219

40. Kline, M.: Mathematics in the modern world; readings from Scientific American.
With introductions by Morris Kline. W.H. Freeman, San Francisco (1968)

41. LogicBlox: Datalog for enterprise applications: from industrial applica-
tions to research (2010), http://www.logicblox.com/research/presentations/
arefdatalog20.pdf, presented by Molham Aref at Datalog 2.0 Workshop

42. LogicBlox: Modular and reusable Datalog (2010), http://www.logicblox.

com/research/presentations/morebloxdatalog20.pdf, presented by Shan Shan
Huang at Datalog 2.0 Workshop

43. Loo, B.T., Condie, T., Garofalakis, M.N., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commun.
ACM 52(11), 87–95 (2009)

44. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K., Marek, V., Truszczyński, M., Warren, D. (eds.) The Logic
Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer, Heidelberg
(1999)

45. McAllester, D.A.: On the complexity analysis of static analyses. J. ACM 49(4),
512–537 (2002)

46. The Mercury Project, http://www.cs.mu.oz.au/research/mercury/index.html
47. Minnen, G.: Magic for filter optimization in dynamic bottom-up processing. In:

ACL, pp. 247–254 (1996)
48. Mohr, R., Henderson, T.: Arc and path consistency revised. Artificial Intelli-

gence 28, 225–233 (1986)
49. Mumick, I.S., Pirahesh, H., Ramakrishnan, R.: The magic of duplicates and aggre-

gates. In: Proc. of VLDB, pp. 264–277 (1990)
50. Nádas, A.: On Turing’s formula for word probabilities. IEEE Transactions on

Acoustics, Speech, and Signal Processing ASSP-33(6), 1414–1416 (1985)
51. Ngai, G., Florian, R.: Transformation-based learning in the fast lane. In: Proc. of

NAACL-HLT (2001)
52. van Noord, G., Gerdemann, D.: Finite state transducers with predicates and iden-

tities. Grammars 4(3) (2001)
53. Overton, D.: Precise and Expressive Mode Systems for Typed Logic Programming

Languages. Ph.D. thesis, University of Melbourne (2003)
54. Pelov, N.: Semantics of Logic Programs With Aggregates. Ph.D. thesis, Katholieke

Universiteit Leuven (2004)
55. Ramakrishnan, R., Srivastava, D., Sudarshan, S., Seshadri, P.: The coral deductive

system. The VLDB Journal 3(2), 161–210 (1994); Special Issue on Prototypes of
Deductive Database Systems

56. Ramamohanarao, K.: Special issue on prototypes of deductive database systems.
VLDB 3(2) (1994)

57. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

58. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. In: Proc. of
PODS, pp. 114–126 (1992)

59. Schmid, H., Rooth, M.: Parse forest computation of expected governors. In: Proc.
of ACL (2001)

60. Shieber, S.M., Schabes, Y., Pereira, F.: Principles and implementation of deductive
parsing. Journal of Logic Programming 24(1-2), 3–36 (1995)

61. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proc. of AAAI,
pp. 1094–1099. AAAI Press, Menlo Park (2008)

62. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. JACM 23(4), 733–742 (1976)

http://www.logicblox.com/research/presentations/arefdatalog20.pdf
http://www.logicblox.com/research/presentations/arefdatalog20.pdf
http://www.logicblox.com/research/presentations/morebloxdatalog20.pdf
http://www.logicblox.com/research/presentations/morebloxdatalog20.pdf
http://www.cs.mu.oz.au/research/mercury/index.html

220 J. Eisner and N.W. Filardo

63. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620–650 (1991)

64. Williams, R., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Computation 1(2), 270–280 (1989)

65. XSB, http://xsb.sourceforge.net/
66. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its

generalizations. In: Exploring Artificial Intelligence in the New Millennium, ch. 8.
Science & Technology Books (2003)

67. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-
formation and Control 10(2), 189–208 (1967)

68. Zhang, M., Zhang, H., Li, H.: Convolution kernel over packed parse forest. In: Proc.
of ACL, pp. 875–885 (2010)

69. Zhu, S.C., Mumford, D.: A stochastic grammar of images. Foundations and Trends
in Computer Graphics and Vision 2(4), 259–362 (2006)

70. Zukowski, U., Freitag, B.: The deductive database system LOLA. In: Fuhrbach,
U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 375–386.
Springer, Heidelberg (1997)

http://xsb.sourceforge.net/

Datalog for the Web 2.0: The Case of Social

Network Data Management�

Matteo Magnani1 and Danilo Montesi2

1 Dept. of Computer Science,
University of Bologna
magnanim@cs.unibo.it

2 Dept. of Computer Science,
University of Bologna
montesi@cs.unibo.it

Abstract. The clean representation of recursive queries enabled by Dat-
alog makes it a strong candidate to be used as the reference query lan-
guage for social network data management. In this extended abstract we
try to identify the capabilities that should be provided by a language for
the manipulation of social data.

1 Introduction

Social Network Sites are among the most relevant places where information is
created, exchanged and transformed, as witnessed by more than 500.000.000
users on FaceBook (July 2010), more than 350.000.000 on QQ1 (January 2009),
an increasing number of users on Twitter and by their activity during events
and campaigns like the terror attack in Mumbai in 2008 or the so-called Twitter
revolution in Iran in 2009 [1,2].

Social data are usually stored into relational databases — MySQL, in the case
of FaceBook, containing large amounts of information with relevant potential ap-
plications: from practical areas like politics and marketing to more theoretical
fields like social sciences and psychology. The clean representation of recursive
queries enabled by Datalog makes it a strong candidate to be used as the refer-
ence query language for these applications. However, social data present many
complex features and social query languages should satisfy all the corresponding
requirements.

In this extended abstract we try to identify the capabilities that should be
provided by a language for the manipulation of modern social data (that we call
SocQL), and discuss which features are already provided by Datalog and which
extensions are required. It is in fact fundamental for a database query language
to be motivated by applications, to move from academia to real applications,
and the Web 2.0 within the specific context of social databases seems to be a
� This work has been partially funded by Telecom Italia.
1 The largest Social Network Site in China now reaching more than 100.000.000 users

simultaneously on-line.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 221–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

222 M. Magnani and D. Montesi

potential candidate to test the applicability of a recursive language to a real and
complex scenario.

To this aim, we have extracted a Large Social Database (LSD) from a pop-
ular Social Network Site and studied its features to identify query capabilities
required by this complex kind of data that should be provided by a Datalog-
based system in order to be practically usable in this context.

The social data has been extracted from Friendfeed, a well known SNS recently
acquired by FaceBook, which offers features that can be associated both to
Twitter (i.e. providing status updates) and FaceBook (i.e., creating complex
conversations). In the literature the definition of social query languages has been
addressed also with regard to non-conversational social sites [3,4], and Friendfeed
has already been the subject of several studies about information diffusion and
retrieval [5,6,7,8]. A first example of Datalog-based social query language is
described in [9].

2 Data Anatomy

The analysis presented in this extended abstract is based on the study of a real
LSD extracted by monitoring the Friendfeed SNS. This database is downloadable
at the project website (http://larica.uniurb.it/sigsna).

Despite its apparent relational structure, the dataset under analysis contains
a mixture of structured, semi-structured and unstructured data, requir-
ing a complex data model. In particular, several data graphs can be identified.
If we consider the relationships between users, they induce a directed, labeled,
weighted graph where nodes represent users, labels the kind of interaction (sub-
scription/like/comment), weights the strength of the interaction, e.g., the num-
ber of comments, with additional text annotations. Considering different labels,
we can extract sub-graphs about active relationships between users (comments
and likes), passive relationships (subscriptions) and even implicit relationships
not directly expressed in the data. For example, when Annie subscribes to John,
who subscribed to Susan, Annie may see part of the content of Susan through
John’s feed, without having a direct subscription to her. Finally, part of the data
constitutes conversation graphs not directly involving users, but their posting
activity (entries and comments), and also in this case we can have implicit arcs2.

In this last case, nodes of the graph represent short pieces of text (posts).
Therefore, in addition to semi-structured data, social databases contain a large
amount of unstructured content (text and other media) attached to different
entities (users and posts).

Part of the data consists of the personal data associated to each user. From our
sample it appears that although users are asked to insert much personal infor-
mation at registration time this is rarely accessible because of privacy settings.
Therefore, depending on the required analysis it may be necessary to obtain
some derived data not directly present in the database.
2 For instance, the @ symbol followed by a user nickname is used inside text comments

to indicate the recipient of the message.

Datalog for the Web 2.0: The Case of Social Network Data Management 223

A first way to obtain this data is to perform a joint analysis of all public on-
line identities of each user. Finding these identities may be simplified by looking
at aggregators, like Friendfeed, where users register their services (other internet
social accounts) from which data should be imported. In addition, some relevant
data may be obtained through information extraction activities. In this case,
though, data is associated to a degree of uncertainty, which may make data
analysis complicated. As an example, consider two relevant attributes that are
not present in the original database. Age can be imported from other accounts
(which may create inconsistencies) and automatically extracted from the De-
scription attribute, and language can be guessed from the analysis of the user’s
posts. For a more detailed application of a language identification system to SNS
analysis see [5].

As a consequence of the complexity of the data model, querying the Social
Data Set under examination requires recursive graph traversal operators,
text extraction, with Information Retrieval capabilities to evaluate the rel-
evance of single text items or groups of inter-connected items, counting and
other aggregate operators, both on nodes and on the amount and strength
of arcs. In addition, due to the size and the complexity of the data, it seems to
be important for the query language to support data analysis. In fact, typical
operations on social data require the extraction of groups of entities without ex-
act a priori knowledge of their features, e.g., clusters of users who posted similar
comments or with similar descriptions. In our opinion it is essential that this
kind of queries involving data mining algorithms are integrated in a system and
query language for complex social data. In the next section we discuss in more
detail these requirements with regard to Datalog.

3 Requirements for a Social Datalog

In our example social data consist of 106−7 records per week. Therefore, it will be
probably necessary to build social extensions of Datalog over existing relational
systems, providing an efficient architecture to deal with large volumes of data.
The structured portion of the data that can be stored using the relational model
is already supported by Datalog, and the relevance of graph data can be one of
the key motivations behind the adoption of Datalog as a social query language.
However, it is necessary to be able to manipulate weights, e.g., indicating the
strength of a friendship relationship, according to some model to be defined.
Similarly, as we have seen in our example data graph, different arcs should be
treated differently depending on their labels. Labels may indicate an arc type,
but also contain unstructured text.

With regard to the operations we would like to perform on social data, re-
cursive traversal is easily supported by Datalog and could constitute one of
its strengths. In addition, dealing with weighted graphs we may need to com-
pute summary metrics of sub-graphs involving the aggregation of floating point
numbers. Moreover, it is important to be able to evaluate aggregate metrics con-
cerning labels: for example, counting all arcs of a given type. Data graphs also

224 M. Magnani and D. Montesi

contain a lot of unstructured text, therefore queries should necessarily provide
Information Retrieval capabilities and should also take the structure of the graph
under consideration. All these features should be included in a Datalog-based
system.

Finally, being very complex, a social data model contains a lot of information
not directly exposed using its data structures but hidden inside them. Therefore,
to be able to extract the required information it is often necessary to execute
exploratory queries, based on data analysis functions such as graph clustering or
sub-graph matching.

References

1. Schectman, J.: Iran’s twitter revolution? maybe not yet. Business Week (2009)
2. Boyd, D.: Taken Out of Context: American Teen Sociality in Networked Publics.

PhD thesis, University of California-Berkeley, School of Information (2008)
3. Amer-Yahia, S., Lakshmanan, L.V.S., Yu, C.: Socialscope: Enabling information

discovery on social content sites. In: CIDR (2009)
4. Amer-Yahia, S., Huang, J., Yu, C.: Jelly: A language for building community-centric

information exploration applications. In: ICDE, pp. 1588–1594. IEEE, Los Alamitos
(2009)

5. Celli, F., Di Lascio, F.M.L., Magnani, M., Pacelli, B., Rossi, L.: Social network
data and practices: the case of friendfeed. In: SBP Conference. LNCS, pp. 346–353.
Springer, Berlin (2010)

6. Magnani, M., Montesi, D., Rossi, L.: Information propagation analysis in a social
network site. In: ASONAM Conference, pp. 296–300. IEEE Computer Society, Los
Alamitos (2010)

7. Magnani, M., Montesi, D., Rossi, L.: Friendfeed breaking news: Death of a public
figure. In: IEEE SocialCom, pp. 528–533. IEEE Computer Society, Los Alamitos
(2010)

8. Magnani, M., Montesi, D.: Toward conversation retrieval. In: Agosti, M., Esposito,
F., Thanos, C. (eds.) Italian Research Conference on Digital Libraries - Revised
Selected Papers. CCIS, vol. 91. Springer, Heidelberg (2010)

9. Ronen, R., Shmueli, O.: Evaluating very large datalog queries on social networks.
In: EDBT Conference, pp. 577–587. ACM, New York (2009)

Context Modelling and Context-Aware Querying�

(Can Datalog Be of Help?)

Giorgio Orsi and Letizia Tanca

Dipartimento di Elettronica e Informazione,
Politecnico di Milano,

Piazza Leonardo da Vinci, 32—20133 Milano, Italy
{orsi,tanca}@elet.polimi.it

Abstract. Many interpretations of the notion of context have emerged in vari-
ous fields and context-aware systems are pervading everyday life, becoming an
expanding research field. Context has often a significant impact on the way hu-
mans (or machines) act, and on how they interpret things; furthermore, a change
in context causes a transformation in the experience that is going to be lived. Ac-
cordingly, while the computer science community has initially perceived the con-
text simply as a matter of user time and location, in the last few years this notion
has been considered not simply as a state, but as part of a process in which users
are involved; thus, sophisticated and general context models and systems have
been proposed to support context-aware applications. In this paper we propose
a foundational framework for the life-cycle of context-aware system, in which
the system design and management activities consider context as an orthogonal,
first-class citizen. In doing so, we present a Datalog-based formulation for the
definition of context-aware databases.

1 Introduction

In a modern information system the content is available at different sources and with
different formats. Users are integral parts of numerous applications interacting with
service and product providers, governmental organisations, friends and colleagues, as
well as sensing and actuation devices [1]. Such extensive information constitutes an
unprecedented opportunity for users, but at the same time risks to overwhelm them.
In the Workshop on Using Knowledge in its Context [2] co-located with IJCAI ’93,
it was already recognised that “knowledge has a contextual component”, and that this
component may be of use to “extract and present the relevant chunks of knowledge”,
thus allowing for information filtering, focusing and reduction.

Accordingly, context can contribute to the meaning that must be inferred from the
adjacent world, ranging from the references intended for indefinite indications such as
“take that” to the shared reference frame of ideas and objects that are suggested by a
situation. Context has often a significant impact on the way humans (or machines) act,
and on how they interpret things; furthermore, a change in context causes a transforma-
tion in the experience that is going to be lived. Thus, context goes beyond immediate

� This research has been partially funded by the European Commission, Programme IDEAS-
ERC, Project 227977-SMScom.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 225–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

226 G. Orsi and L. Tanca

binding of variables to the establishment of a framework for knowledge fruition and
communication, possibly based on shared experience.

Many interpretations of the notion of context have emerged in various fields of re-
search like psychology, philosophy, and computer science [3,4,5,6,7]. During the IJCAI
’93 workshop it was observed that the contextual component is however seldom dealt
with explicitly: rather, it is often hard-coded in the application and in the representation
of information, and not sufficiently exploited in knowledge processing [2]. At that time,
one of the reasons for this state of affairs was obviously in the requirement for context-
aware systems of sufficient computational and communication capabilities. However,
while the power of computing and communication technology has now improved dra-
matically even for mobile devices, not much has been done to exploit the notion of
context explicitly. According to the same source, not recognising – and thus not seizing
the opportunity to exploit – the orthogonality of context modelling w.r.t. modelling the
application space (the object knowledge) provokes “a gap between what is known and
what is done”.

Contributions: Our research aims at defining a foundational, disciplined framework for
the life-cycle of context-aware systems, in which the system design and management
activities consider context as a first-class citizen. In this paper, starting from the con-
sideration that the Datalog language is conveniently used to formalise both knowledge
and its processing, we attempt a Datalog-based, uniform but orthogonal formulation
both of context and of the object knowledge. By means of this framework we perform
context-aware information access personalisation, considered as a set of actions that
can appropriately tailor the available information (or more in general, knowledge) to
each particular user in each particular situation.

Organisation: The paper is organised as follows: the next section contains a brief anal-
ysis of the work on context-aware systems, presenting the different perspectives context
is viewed from in the context-related literature in computer science, and some examples
thereof. In Section 3 we introduce our methodological point of view on context-aware
system design, followed by a quick overview of the CDT [8], the conceptual context-
model we rely upon. Then, in Section 4 we show how it is possible to model context
meta-data using Datalog and its extensions while its exploitation for data tailoring and
query processing is described in Section 5. Finally Section 6 draws some concluding
remarks.

Running Example: Assume we want to design the data structures for a mobile applica-
tion (in the style of mOX1) that offers a personalised information service about courses
and seminars held at Oxford University. Assume the needed information is stored inside
a standard relational database whose conceptual (E/R) and logical (relational) schemata
are represented in Figure 1. The database stores basic information about students and
their enrolments in courses along with basic information about the professors that
serve as lecturers for some course or as speakers in some event such as meetings and
seminars.

1 http://m.ox.ac.uk

Context Modelling and Context-Aware Querying 227

STUDENT COURSE

PROFESSOREVENT

(0:n) (0:m)

enrollment

(1:1) (0:n)

(1:1)

(1:n)

speaker

lecturer

sIDcollege

name

surname

level

name

surname

college

pID position department

cID title

term

location

area

title date

location

type

(a) E/R Schema

STUDENT(sID, name, surname, level, college)
COURSE(cID, title, location, term, lecturer)
PROFESSOR(pID, name, surname, position, department, college)
EVENT(title, date, area, type, location, speaker)
ENROLMENT(sID,cID)

(b) Relational Schema

Fig. 1. Conceptual and Relational Schemata for the mOX Application

We aim at exploiting Datalog to model the contextual meta-data and to enable
context-aware query processing in order to provide the users of the mobile application
with personalised information depending on their actual situations.

2 Context-Aware Systems’ Overview

While, according to the cognitive-science view, “context is used to model interactions
and situations in a world of infinite breadth, and human behaviour is key in extracting a
model” [2], in the subsumed and less ambitious engineering view “context is useful for
representing and reasoning about a restricted state space within which a problem can be
solved”. In this work we focus on the latter interpretation.

The computer science community has initially perceived the context simply as a
matter of user time and location, thus most context-aware applications offer a notion of
context limited to time and location information, which is based on the internal clock of
a mobile device and on cellular-network/GPS positioning. Fortunately, in the last few
years context is considered not simply as a state, but as part of a process in which users
are involved; accordingly, sophisticated and general context-aware applications [9, 10,
11, 12, 13] have been designed. Such applications adopt a context-aware perspective in
order to manage:

– Communication:
• capability to adapt content presentation to different channels or to different

devices (system communication with the users). CC/PP (Composite Capa-
bilities/Preference Profiles) is a W3C recommendation where a profile is a

228 G. Orsi and L. Tanca

description of device capabilities and user preferences. Following the CC/PP
recommendation, CSCP [14] is a Mobility Portal combining application-
spanning media conversion and transcoding with application- specific infor-
mation filtering. MAIS2 (Multi Channel Adaptive Information System) has the
objective of configuring the software on board of the mobile device, based on
presentation, device characteristics and available channel.

• agreement and shared reasoning among peers (communication among users or
systems). For example, in CoBra [15] an intelligent context broker maintains
and manages a shared contextual model on behalf of a community of agents,
while [16] provides Web information filtering on a P2P basis.

• building smart environments (the system supports the users’ communication
with the environment). Again, in CoBra an agent-based architecture supports
context-aware computing in intelligent spaces, i.e. physical spaces (e.g., living
rooms, vehicles, corporate offices and meeting rooms) populated with intelli-
gent systems.

– Situation-awareness:
• modelling location and environment aspects (physical situation). In Co-

daMos [17] every device will contain its own context specification with a full
description of its provided services, plus pointers to relevant information on
the device in its environment.

• modelling what the user is currently doing (personal situation). In [18] Activity
Theory is used to represent concepts such as roles, rules and tools, which have
important impacts on users activities. Activity Theory also maps the relation-
ships amongst the elements that it identifies as having an influence on human
activity.

• making the user interaction implicit (adapting the information to the user’s
needs). For instance, QUALEG [19] proposes a unique combination of a global
ontology with a dynamic context, for dynamically adapting eGovernment IT
tools to a multi-lingual and multi-cultural setting.

– Managing knowledge chunks:
• determining the set of application/situation relevant information (the informa-

tion management perspective). In [20, 21] information users specify their own
current context when requesting data, in order to denote the part that is relevant
to their specific situation. The work extends the relational model to deal with
context: e.g. an attribute may not exist under some contexts or have different
facets under different contexts. The approach provides a set of basic opera-
tions which extend relational algebra. In [8, 22] context is used as a viewpoint
mechanism that takes into account implicit background knowledge to semi-
automatically tailor context-aware views over a database.

• determining the set of application/situation relevant services. [23] proposes ef-
ficient context-aware service discovery in pervasive environments. In [24], per-
ceptual processes provide a means to detect and track compositions of entities
and to verify relations between them. The design problem is then to determine
the appropriate entities (resp. relations) that must be determined (resp. verified)
with respect to a task or service to be provided, in a potentially infinite set.

2 http://www.mais-project.it/

Context Modelling and Context-Aware Querying 229

• determining the set of application/situation relevant behaviours. In [25, 26] an
information base is decomposed into (possibly overlapping) subsets, referred to
as contexts, which could be recursively contained in other contexts. Each con-
text is assigned one or more owners, authorised to perform any operation or
transaction on their context. The framework supports context-specific naming
and representation of conceptual entities, relativised transaction execution, op-
erations for context construction and manipulation, authorisation mechanisms
and change propagation.

As a matter of fact, the lack of a uniform approach for modelling context-related infor-
mation makes it difficult to clearly understand the requirements that have to be consid-
ered when proposing or adopting a context model on the basis of its focus. While [10]
presents a survey of literature on the context modelling problem, and introduces a
framework useful for analysing context models and to select the most suitable one for a
given application, the central issue of this paper is to propose a disciplined framework
for the life-cycle of a context-aware system, in which context is explicitly considered
and studied as an independent component. Although, with respect to the classification
above, our approach is mostly oriented to the management of knowledge chunks, we be-
lieve that the general view on context-aware system design proposed in the next section
can be adopted in each of the broad classes we have described.

3 A General Framework for the Design of Context-Aware Systems

The short review above emphasizes, from one viewpoint, the use of the concept of con-
text in a considerably varied set of applications; on the other hand, and just because
the applications are so different, it prompts the need for focusing on context modelling
independently of the specific application. How context is represented and how the in-
formation derived from the context is exploited is fundamental to understand the design
issues that must be solved during a specific design task.

Context is, thus, the key meta-knowledge which must be formally defined and whose
role becomes essential within the process of application design, which must target two
different realms: the reality of interest, captured by the application domain model e.g.,
by an Entity-Relationship (E/R), and the context meta-knowledge, which is used to
reshape the available information (or behaviours) on the particular needs that the desti-
nation user is experiencing in each situation.

Note that the above two tracks of context-aware design may be totally independent
since no feedback is needed between them until the final phase of the design process,
when the contexts are associated with the domain aspects relevant to them.

Our proposal of a very general framework for context-aware system design envisages
the intervention of context in the two traditional software life-cycle loops: the design-
time loop and the run-time loop. The former is developed over three stages:

1. Context modelling, when the dimensions of context that are relevant to the specific
scenario are understood and modelled, giving birth to the modelling of the possible
situations the system may incur in.

230 G. Orsi and L. Tanca

2. Application domain modelling, where the traditional modelling of the system data
and functions takes place.

3. Design of the relationship between the context model and the application domain:
here, the designer establishes the relationships between the contexts envisaged in
the first step and the data and behaviours that have to be raised when each context
becomes active.

In Step 1, any appropriate context model may be adopted; throughout this work we will
adopt the Context Dimension Tree (CDT), a general context model that we already used
for context-aware view definition [8]. Step 2 can be performed adopting any software
design methodology, while Step 3 is a very delicate phase, in which the relationships
between the context meta-knowledge and the domain knowledge are established. In
this paper we concentrate on the description of Steps 1 and 3, using Datalog and its
extensions.

Consider now a context-aware system at run-time, when the elements of context must
be involved in the system’s behaviour to modify it. We envisage four main stages:

1. Context sensing, when sensors gather physical measurements from the environ-
ment. For instance, the system clock gives us time, the GPS gives us the location,
or a thermometer measures a room’s temperature.

2. Context recognition, when the numerical values gathered in the previous phase are
transformed into contextual (symbolic) information. Just to give an example, the
GPS reading can be transformed into “Magdalene College”, which is the symbolic
value associated to the area the GPS has sensed. Also take into account the fact
that not necessarily the symbolic contextual information comes from sensors; for
instance, the recognition, on the part of the system, of a user, might be performed
autonomously by the system by means of an RFID tag, but also be input by the user
him/herself.

3. Context validation and binding, when the discovered context (in terms of symbolic
values attached to parameters) is first of all validated, to recognise whether this
combination of values makes sense in the current state, and then adopted as the
next valid context.

4. Context exploitation, when the system enacts a context-aware behaviour.

In the next subsection we illustrate the context model we propose for Step 1 of the
design-time loop.

3.1 A Conceptual Context Model

In a common-sense interpretation, the context is perceived as a set of variables (context
dimensions) whose values may be of interest for an agent (human or artificial). For
instance, with reference to the running example of Section 1, the following attribute-
value pairs:

〈 role=’professor’, term=’hilary’, topic=’seminar’ 〉
may be used to characterise the context of a professor interested in seminars during
the Hilary term. Note also that, given an application, not all the combinations of value
assignments are necessarily meaningful, e.g., the following pairs:

Context Modelling and Context-Aware Querying 231

〈 role=’student’, term=’trinity’, topic=’meeting’ 〉
characterise the situation of a student accessing the information about meetings that is
typically a task done by professors.

Generally speaking, the precise definition of the valid combinations is usually ob-
tained by means of a context model [10], also allowing the application designer to spec-
ify the constraints that determine all the possible (meaningful) contexts related to the
application situation. Moreover, a context model should also be able to model the as-
sociation between each context and the subset of the data which is relevant for that
context.

Fig. 2. A CDT for the mOX Application

A CDT is a tree-based context model able to represent multi-dimensional and hier-
archical contexts. Figure 2 shows a CDT compatible with the domain and the contexts
envisaged by our running example. In a CDT, black nodes represent dimensions (and
possibly sub-dimensions) while white nodes represent values. An edge (b,w), where b
is a black node and w is a white node, represents an association between a value and
its dimension (i.e., the context-model allows the association of the value w to the di-
mension b), while an edge (w,b) represents the specification of a sub-dimension, i.e.,
whenever a dimension assumes the value w, it is possible to further specify the context
by assigning values to the sub-dimension b. Moreover, every time we want to explicitly
parametrise the values that a dimension might assume (e.g., the identifier of an agent),
we resort to parameters, represented in Figure 2 as nodes with a double border. Pa-
rameters may also be associated to dimensions (i.e., black nodes) especially in those
situations where we have a large (or infinite) number of values for a given dimension
(e.g., all the locations in Oxford or all the integer numbers) and we do not want (or it is
impossible) to elicit all of them.

In a CDT, whenever we specify a set of values for the dimensions, we implicitly
identify a point in the multidimensional space (see Figure 3) representing the possi-
ble contexts i.e., we instantiate a context. As already said, not all the combinations of
dimension-value assignments are necessarily meaningful or even coherent. In order to
prevent certain combinations of values from being present at the same time in a context,
the CDT provides constraints of the form not(w1, . . . ,wn), whose semantics is to forbid
the contemporary presence of the values w1, . . .wn in a context.

232 G. Orsi and L. Tanca

Fig. 3. A multi-dimensional representation for contexts

In the CDT model a valid context (i.e., compatible with the context-model) is a
combination C of the dimension-values such that:

1. for each black node at most one of its white (direct) children belongs to C,
2. C does not contain two values w,w′ such that not(w,w′) is in the CDT,
3. if a white node belongs to C, then also all its white ancestors in the CDT do.

Condition (1) ensures that all the assignments dimension-value are unambiguous. Con-
dition (2) ensures that all the forbidden combinations of values do not appear in the
same context while the last condition (3) states that whenever we assign a value to a
sub-dimension, the values for the corresponding super-dimensions are deterministically
assigned according to the structure of the context model.

4 Datalog for Context Modelling and Reasoning

Datalog is a database query language based on the logic programming paradigm. A
Datalog program consists of facts and rules. Both facts and rules are Horn clauses of
the form L0 ← L1, . . . ,Ln where each Li is a literal of the form pi(t1, . . . ,tm) such that
each pi is a first-order predicate and each t j is a term i.e., either a constant, a null or a
variable. The left-hand-side of a clause is called the head while the right-hand-side is
called the body. Facts are clauses with an empty body and only constants and nulls as
terms (i.e., ground facts), while Datalog rules are clauses with at least one atom in the
body. A Datalog rule is safe if all the variables appearing in the head appear also in the
body, it is called unsafe otherwise.

Linear Datalog± is a variant of Datalog introduced in [27] whose rules are: (i) linear
(i.e., single literal in the body) and possibly unsafe Datalog rules (better known as tuple-
generating dependencies (TGDs)), (ii) equality-generating dependencies (EGDs) and
negative constraints (NCs).

Context Modelling and Context-Aware Querying 233

An equality-generating dependency (EGD) is a clause of the form Xi = Xj ←
L1, . . . ,Ln where Xi,Xj are variables of some Li. A negative constraint (NC) is a clause
of the form ⊥← L1, . . . ,Ln, where ⊥ denotes the truth constant false. In other words,
a negative constraint specifies that certain formulae must be false in every model of a
given theory. NCs have been proven useful for modelling various forms of ontological
structures [27] as well as conceptual schemas such as Entity-Relationship (E/R) dia-
grams [28]. When a set of EGDs is considered together with a set of TGDs, the problem
of query answering is undecidable in the general case since EGDs generalise the well-
known class of functional dependencies in databases. For this reason Linear Datalog±
adopts restrictions to ensure a controlled interaction between EGDs and TGDs that re-
tains decidability [27].

We adopt Datalog± for its capability to model ontological constraints that allow
tractable query answering. It is also known that Datalog± captures well-known ontology
languages such as DL-Lite (through linear Datalog±) and F-LogicLite (through weakly-
guarded Datalog±) [27].

We now show that CDTs can be represented by means of Linear Datalog± programs
enabling context reasoning tasks, while it is possible to exploit safe Datalog to repre-
sent the associations between a context and the corresponding subset of the available
information.

In order to represent the CDT in terms of Linear Datalog± programs we introduce
the following structures:

– the context-vocabulary program defines the application-independent vocabulary
(i.e., the meta-model) used to build a context model. The context-vocabulary is
constituted by a set of Linear Datalog± rules expressing the high-level constraints
common to all the CDTs; we call this program PVoc.

– the context-model program uses the predicates of the context-vocabulary to de-
fine the specific context model for a given application. In particular, this program
specifies the (possibly hierarchical) context dimensions for the specific application,
along with their possible values. The context-model is represented as a set of Linear
Datalog± rules PMod but, differently from PVoc, we associate to it also a set of EDB
predicates to ensure the existence of certain objects such as the dimensions and the
values of the specific context model we are representing. This is the output of the
(Context Modelling) Step 1 in the design-time loop of Section 3.

– the context instances correspond to all possible (logical) models for the
context-vocabulary and the context-model and represent valid (i.e., consistent with
the context model) contexts for a particular application. In Datalog terms, the con-
text instances are the Herbrand models H such that H |= PVoc ∪PMod . These in-
stances are the only ones that are legally acceptable during Step 3 of the run-time
loop of Section 3, i.e. at context validation and binding time.

In the following we discuss in deeper detail the structures introduced above and provide
also the Linear Datalog± implementation of the CDT of Figure 2 compatible with our
running example.

234 G. Orsi and L. Tanca

4.1 Context Vocabulary

The context-vocabulary provides the building-block predicates for modelling contexts,
their dimensions and their values (e.g., role=’student’, term=’trinity’). It also
provides the vocabulary for defining parameters and their values (e.g., $cID=’C004’,
$pID=’P006’) while the dimension and value hierarchies and the constraints are mod-
elled by means of Linear Datalog± formulae. In other words, the vocabulary provides
the means for representing the structure and the semantics of the context-model. The
full specification of the context-vocabulary is given in Table 1.

Table 1. The context-vocabulary

TGDs
context(X) → ∃Y hasDimension(X,Y), d-ass(Y).
d-ass(X) → ∃Y∃Z d-dimension(X,Y), dimension(Y),

d-value(X,Z), value(Z).
p-ass(X) → ∃Y∃Z∃W p-parameter(X,Y), parameter(Y),

p-value(X,Z), XSDAny(Z),
hasParameter(W,X), value(W).

EGDs
Y=Z ← hasDimension(Y,X), hasDimension(Z,X).
Y=Z ← hasParameter(Y,X), hasParameter(Z,X).
Y=Z ← d-value(X,Y), d-value(X,Z).
Y=Z ← p-value(X,Y), p-value(X,Z).
Y=Z ← p-parameter(X,Y), p-parameter(X,Z).
Y=Z ← d-dimension(X,Y), d-dimension(X,Z).

The context vocabulary contains three concepts that act as types for the first-class
entities of the context model namely dimension, parameter along with value and
XSDAny representing the dimension and parameter values respectively. As a conse-
quence, each dimension, value and parameter will be represented as a constant in the
corresponding predicate. Moreover, since the parameter values usually belong to con-
crete data-types (e.g., strings, integers, etc.), the vocabulary provides a special predicate
XSDAny representing the XSD (XML Schema Definition 3) type xsd:AnyType that en-
compasses all the simple and derived data-types definable in an XML document. The
assignments of values to parameters and dimensions are represented as first-class cit-
izens in the context-model; to this aim, the vocabulary provides the predicates named
d-ass and p-ass respectively; the predicate d-dimension (p-parameter) associates
the dimensions (parameters) assignments to the corresponding formal entities while the
predicate d-value (p-value) associates the assignments to the corresponding values.
In addition, since a parameter must be assigned to a (single) dimension value, the vo-
cabulary forces every p-ass to be associated with a value of a dimension through the
predicate hasParameter. A context is then associated to a set of assignments for the di-
mensions, modelled through the hasDimension predicate. The EGDs in Table 1 force

3 http://www.w3.org/TR/xmlschema-0/

Context Modelling and Context-Aware Querying 235

functional constraints for the parameter and dimension values and inverse-functional
constraints for hasParameter and hasDimension since a parameter can be associated
to at most one dimension value and each dimension value can be associated to at most
one dimension.

4.2 The Context Model

The context-model program uses the resources defined in the context-vocabulary to
build an application-dependent context model.

Table 2 shows the Linear Datalog± program TMod representing the CDT of Figure 2,
built using the entities of the context-vocabulary of Table 1 where the numbers (1, 2, . . .)
denote groups of rules having the same modelling aim. Dimensions, values and param-
eters (corresponding to black, white and double-circled nodes in the CDT) are modelled
as constants. With reference to group (1), EDB predicates of the form dimension(·)
enumerate the dimensions of the context model of our running example, namely: the
role, the term, the location and the topic; in the same way, we model the param-
eters by EDB predicates of the form parameter(·) (see group (2)). The predicates in
group (3) define the values of each dimension (e.g., professor is a value for the role
dimension); all the concepts defining a set of values for a dimension must specialise
the concept value of the context-vocabulary as established by the rules in group (4). In
the same way, the rules in group (5) state that the assignments of a value to a particular
dimension are specialisations of the vocabulary predicate d-value.

Statements of the groups (6) and (7) show how assignments of values to dimensions
and parameters are defined. Each dd-ass(·) represents an assignment of a formal di-
mension d to a (unique) value v; dually, a pv-ass(·) represents the association between
a formal parameter p and a (unique) concrete value of a given XSD type. In addition,
each hasParameter(·) specifies which value v it is associated with. As an example, the
axiom (7b) states that sID is a parameter of the value student of the dimension role
and that it can assume values in the domain of strings. With Linear Datalog± it is also
possible to enforce a hierarchical structure among the dimensions. As an example, ax-
iom (6e) states that type is actually a sub-dimension of topic, since every assignment
for type implies also an assignment for role.

Given such a set of rules, for a given application domain, a context is defined as a
set of dimension and parameter assignments, possibly specifying which dimensions are
mandatory as in assertion (8).

Finally, Datalog± provides constraint-rules that can further constrain the structure
of the valid contexts. This is useful when we want to prevent certain combinations of
dimension-value pairs to appear in the same context (9a) and (9b). Such constraints are
defined using Datalog± negative constraints preventing, for example, the role student
to appear in a context where the topic meeting is also present (see the corresponding
constraint in Figure 2). The EGDs of the form of (9c) enforce uniqueness constraints
for the assignments since in a valid context only one assignment for each dimension is
allowed.

The valid contexts will be then represented as an EDB that is a model for the program
constituted by TVoc and TMod .

236 G. Orsi and L. Tanca

Table 2. A Linear Datalog± context model TMod

(1a) dimension(role). (3a) role(professor).
(1b) dimension(term). (3b) role(student).
(1c) dimension(location). (3c) term(michaelmas).
(1d) dimension(topic). (3d) term(hilary).
(1e) dimension(type). (3e) term(trinity).

(3f) location(X)→ XSDString(X).
(2a) parameter(pID). (3g) topic(event).
(2b) parameter(sID). (3h) topic(course).
(2c) parameter(cID). (3i) type(seminar).

(3j) type(meeting).

(4a) role(X)→value(X). (5a) drole-value(X,Y)→d-value(X,Y).
(4b) term(X)→value(X). (5b) dterm-value(X,Y)→d-value(X,Y).
(4c) location(X)→value(X). (5c) dlocation-value(X,Y)→d-value(X,Y).
(4d) topic(X)→value(X). (5d) dtopic-value(X,Y)→d-value(X,Y).
(4e) type(X)→value(X). (5e) dtype-value(X,Y)→d-value(X,Y).

(6a) drole-ass(X)→ ∃Y d-ass(X),
drole-value(X,Y),role(Y),d-dimension(X,role).

(6b) dterm-ass(X)→ ∃Y d-ass(X),
dterm-value(X,Y),term(Y),d-dimension(X,term).

(6c) dlocation-ass(X)→ ∃Y d-ass(X),
dlocation-value(X,Y),location(Y),d-dimension(X,Y).

(6d) dtopic-ass(X)→ ∃Y d-ass(X),
dtopic-value(X,Y),topic(Y),d-dimension(X,topic).

(6e) dtype-ass(X)→ ∃Y∃Z d-ass(X),
dtype-value(X,Y),type(Y),d-dimension(X,type),
hasDimension(Z,X),dtopic-ass(Z),dtopic-value(Z,event).

(7a) ppro f essor-ass(X)→ ∃Y∃Z p-ass(X),p-value(X,Y),XSDString(Y),
p-parameter(X,pID),hasParameter(professor,X).

(7b) pstudent-ass(X)→ ∃Y∃Z p-ass(X),p-value(X,Y),XSDString(Y),
p-parameter(X,sID),hasParameter(student,X).

(7c) pcourse-ass(X)→ ∃Y∃Z p-ass(X),p-value(X,Y),XSDString(Y),
p-parameter(X,cID),hasParameter(course,X).

(8) contextmOX (X)→ ∃Y∃Z context(X),
hasDimension(X,Y), drole-ass(Y),
hasDimension(X,Z),dtopic-ass(Z).

(9a) hasDimension(X,Y),d-value(Y,professor),hasDimension(X,Z),d-value(Z,course)→ ⊥.
(9b) hasDimension(X,Y),d-value(Y,student),hasDimension(X,Z),d-value(Z,meeting)→⊥.
(9c) hasDimension(X,Y),d-dimension(Y,role),hasDimension(X,Z),d-dimension(Z,role)→Y=Z.
. . .

Context Modelling and Context-Aware Querying 237

4.3 The Contexts

It is now clear that the context-model supports the representation of a (potentially in-
finite, due to parameters on dimension nodes) number of valid contexts which corre-
spond to different EDBs context instances consistent with the context-model and the
context-vocabulary. Examples of contexts consistent with the context model of Ta-
ble 2 and the running example are shown in Table 3. We define the two contexts c1
and c2 such that c1 models the situation of a professor interested in seminars held
at Oxford University during the Hilary term, while c2 models the situation of a stu-
dent interested in the courses offered by the Computing Laboratory during Michaelmas
term.

Table 3. c1 and c2 context instances

hasDimension(c1, c1 role) drole-ass(c1 role)
hasDimension(c1, c1 term) dterm-ass(c1 term)
hasDimension(c1, c1 type) dtype-ass(c1 type)

d-value(c1 role, professor) d-dimension(c1 role, role)
d-value(c1 term, hilary) d-dimension(c1 term, term)
d-value(c1 term, seminar) d-dimension(c1 situation, type)

contextmOX (c1)
hasDimension(c2, c2 role) drole-ass(c2 role)
hasDimension(c2, c2 term) dterm-ass(c2 term)
hasDimension(c2, c2 location) dlocation-ass(c2 location)
hasDimension(c2, c2 topic) dtopic-ass(c2 topic)

d-value(c2 role, student) d-dimension(c2 position, role)
d-value(c2 term, michaelmas) d-dimension(c2 term, term)
d-value(c2 location, COMLAB) d-dimension(c2 location, location)
d-value(c2 topic, course) d-dimension(c2 topic, topic)

contextmOX (c2)

Notice that in c1 it is not necessary to specify a value for the topic dimension, since the
instance of Table 3 and the context model together imply topic=’event’. In addition,
we do not specify any value for the location dimension; in our model, the missing
specification of a value for a dimension acts as a don’t-care assignment i.e., all the
regions are taken into consideration.

A good modelling practice is to keep the contexts separated from the context-model
since, once the configurations have been computed, the application could (in principle)
disregard the context model from which they have been generated.

238 G. Orsi and L. Tanca

4.4 Context Reasoning

An important aspect in a context model is the possibility to reason over the context
data in order to (i) make implicit information explicit or (ii) detect meaningless or
forbidden combinations of values. The need for reasoning in context-aware systems
originates from the intrinsic uncertainty that comes with context data [29], especially
when context-data are produced by sensors or acquired from external sources that can
be intermittently connected to the network. Also the data coming directly from the user
can be equally noisy since users can input erroneous values. In these situations, reason-
ing over the context instances using the constraints imposed by the context model can
detect possible inconsistent contexts or infer missing context data during the phase of
run-time context validation and binding (see Section 3).

Another important aspect regards the efficiency of context-reasoning. Context-aware
systems often require fast, on-the-fly reasoning procedures that can be implemented
and executed using limited computational resources. This is extremely useful in mo-
bile applications especially in wireless-sensor networks. Luckily, reasoning in Linear
Datalog± is FO-reducible and this allows to efficiently perform reasoning over a large
number of context-instances through query reformulation.

Consider, as an example, the context model of Table 2 and the context instances
of Table 3. In context c1 we do not specify the value for the topic dimension but
we specify that the value for the type dimension is seminar. Using this information
it is possible to infer that the value for topic is event using rules (5a) and (6d) of
Table 2 i.e., by using the knowledge coming from the context-model that type is a
sub-dimension of topic related to the value event.

5 Data Tailoring with Datalog

As seen in Section 3 – Step 3 of the design-time loop – once the context model has been
defined, it is necessary to link it to the representation of the domain of interest (in our
case the database schema) in order for the system to provide, at run-time, the relevant
fragment of the database that must be used to answer the queries. We now propose a
procedure for generating this association, and show how it is possible to enable context-
aware query-answering based on contextual views.

The procedure consists of three phases; the first two implement the Step 3 of design-
time and the last one implements the context-exploitation step (Step 4) at run-time. In
the first phase, each value of each dimension of the context model is manually associ-
ated with a set of views over the relations of the database schema R . Each view asso-
ciated with a value of a dimension is called value-based relevant area, since each view
represents the part of each entity in the schema which is “relevant” for that dimension’s
value. In a second phase, these areas are combined in order to obtain the context-based
relevant areas, which are composed starting from the value-based relevant areas and
represent, for each context, the part of each relation that is relevant in a given context.
At run-time, each query over R is handed over to a substitution process that, given
an active context, replaces the atoms mentioned in the query with the corresponding
context-based relevant areas. A rewriting process will then express the queries in terms

Context Modelling and Context-Aware Querying 239

of the value-based relevant areas and, from here, in terms of the relations in R . We now
go into the details of each step.

Definition 1 ((Value-Based Relevant Area)).
Let v be a value for a dimension in the context model and r be a relation of R . A value-
based relevant area for v and r is an expression of the form rv(X) ← r(X),φ(X,Y)
where φ is an conjunction of atoms over R .

The value-based relevant areas can be seen as conjunctive queries over R that “restricts”
a given relation and are defined for each combination of dimension’s values vi and
relations r j, producing a set of view definitions. Consider the value-based relevant areas
of Table 4.

Note that the parameters used in the context model are mentioned in the area defini-
tions, to be actually instantiated at run-time with the corresponding value.

Table 4. Value-based relevant areas (excerpt)

COURSEstudent(cID,X1,X2,X3,X4) ← COURSE(cID,X1,X2,X3,X4), ENROLMENT(sID,X1).
COURSEcourse(cID,X1,X2,X3,X4) ← COURSE(cID,X1,X2,X3,X4).
COURSEmichaelmas(cID,X1,X2,X3,X4) ← COURSE(cID,X1,X2,X3,X4), X3=’Michaelmas’.
COURSElID(cID,X1,X2,X3,X4) ← COURSE(cID,X1,lID,X3,X4).

PROFESSORpro f essor(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5).
PROFESSORstudent (pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), COURSE(cID,X6,X7,X8,pID),

ENROLMENT(sID,cID).
PROFESSORcourse(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), COURSE(cID,X6,X7,X8,pID).
PROFESSORseminar(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), EVENT(X6,X7,X8,X9,X10,pID),

X9=’seminar’.
PROFESSORmichaelmas(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), EVENT(X6,X7,X8,X9,X10,pID),

dateToTerm(X7)=’Michaelmas’.
PROFESSORmichaelmas(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), COURSE(cID,X6,X7,X8,pID),

X8=’Michaelmas’.
PROFESSORhilary(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), EVENT(X6,X7,X8,X9,X10,pID),

dateToTerm(X7)=’Hilary’.
PROFESSORhilary(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), COURSE(cID,X6,X7,X8,pID),

X8=’Hilary’.
PROFESSORlID(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,lID,X5).
PROFESSORlID(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), EVENT(X6,X7,X8,X9,lID,pID).
PROFESSORlID(pID,X1,X2,X3,X4,X5) ← PROFESSOR(pID,X1,X2,X3,X4,X5), COURSE(cID,X6,lID,X8,pID).

EVENTpro f essor(X1,X2,X3,X4,X5,X6) ← EVENT(X1,X2,X3,X4,X5,X6).
EVENTseminar(X1,X2,X3,X4,X5,X6) ← EVENT(X1,X2,X3,X4,X5,X6), X4=’seminar’.
EVENThilary(X1,X2,X3,X4,X5,X6) ← EVENT(X1,X2,X3,X4,X5,X6), dateToTerm(X2)=’Hilary’.

The value-based relevant areas can be combined in order to produce a relevant area
for each given context. We recall that a context can be seen as a set of assignments of
values to dimensions, thus a context-based relevant area can be constructed by combin-
ing the value-based relevant areas corresponding to the values of a context.

For modelling reasons we restrict the form of the combinations to unions and
intersections of value-based relevant areas:

240 G. Orsi and L. Tanca

Definition 2 ((Context-Based Relevant Area)).
Let c be a context and Vc = {v1, . . . ,vn} be the set of values for the dimensions of c.
Given a table r ∈ R , a context-based relevant area for r under c is either a formula
r∧c (X) ← ∧n

i=1 rvi(X) (conjunctive relevant area) or a formula r∨c (X) ← ∨n
i=1 rvi(X)

(disjunctive relevant area) for each vi in Vc.

Both ways of producing the context-based relevant areas are important from a mod-
elling point of view. A conjunctive relevant area of the form r∧c is strictly adherent to
the considered context and includes only the data that are strictly relevant to a context.
This form of combination should be used when the main target of the contextualisation
is data-reduction e.g., for storing the data on a mobile device. On the contrary, a dis-
junctive relevant area of the form r∨c produces a larger area that consists of all the data
that can be related to a given context. This second way of combining the value-based
relevant areas excludes only the data that are certainly unrelated to a given context
and should be used when the designer’s target is data-focusing i.e., increasing the fo-
cus on certain information without excluding potentially interesting data. Note that the
combination of value-based relevant areas producing a conjunctive relevant-area is still
a conjunctive query while their combination in a disjunctive relevant-area is a union
of conjunctive queries. Four possible context-based relevant areas compliant with our
running example are shown in Table 5. These context-based areas are constructed by
means of conjunctive views over the value-based areas that will tailor the data to support
queries in the context c1.

Table 5. Context-based relevant areas

PROFESSOR∧c1(pID,X1,X2,X3,X4,X5) ← PROFESSORpro f essor(pID,X1,X2,X3,X4,X5),
PROFESSORseminar(pID,X1,X2,X3,X4,X5),
PROFESSORhilary(pID,X1,X2,X3,X4,X5).

EVENT∧c1(X1,X2,X3,X4,X5,X6) ← EVENTpro f essor(X1,X2,X3,X4,X5,X6),
EVENTseminar(X1,X2,X3,X4,X5,X6),
EVENThilary(X1,X2,X3,X4,X5,X6).

PROFESSOR∧c2(pID,X1,X2,X3,X4,X5) ← PROFESSORstudent(pID,X1,X2,X3,X4,X5),
PROFESSORcourse(pID,X1,X2,X3,X4,X5),
PROFESSORmichaelmas(pID,X1,X2,X3,X4,X5).
PROFESSORlID(pID,X1,X2,X3,X4,X5).

COURSE∧c2(cID,X1,X2,X3,X4) ← COURSEstudent(cID,X1,X2,X3,X4),
COURSEcourse(cID,X1,X2,X3,X4),
COURSEmichaelmas(cID,X1,X2,X3,X4),
COURSElID(cID,X1,X2,X3,X4).

Once the context-based relevant areas have been produced, it is possible to use them
at run-time to contextualise the queries. The run-time phase of context exploitation (see
Section 3, Step 4) is thus reduced to reformulating the query using the context-aware
views defined by the context-based relevant areas. Given a query q over a schema R , a
contextualised query qc is obtained by replacing the predicates mentioned in the body

Context Modelling and Context-Aware Querying 241

of the query with the corresponding context-based relevant areas. Since each context-
based relevant area is created on a table-base i.e., by properly restricting each table
depending on the context, each contextualised table is actually a subset of the corre-
sponding relation in R . As an example consider the following query asking for title and
date of all the events in which “Letizia Tanca” is a speaker:

q(X1,X2)← EVENT(X1,X2,X3,X4,X5,X6),
PROFESSOR(X5,’Letizia’,’Tanca’,X7,X8,X9).

Since it holds that any relevant area is actually a sub-relation of the the corresponding
relation in the original database, we can produce the contextualised query for c1 as:

qc1(X1,X2)← EVENTc1(X1,X2,X3,X4,X5,X6),
PROFESSORc1(X5,’Letizia’,’Tanca’,X7,X8,X9).

By applying the context-based relevant area definitions we will consequently obtain
the following query:

qc1(X1,X2)← EVENTpro f essor(X1,X2,X3,X4,X5,X6),
EVENTseminar(X1,X2,X3,X4,X5,X6),
EVENThilary(X1,X2,X3,X4,X5,X6),
PROFESSORpro f essor(X6,’Letizia’,’Tanca’,X7,X8,X9),
PROFESSORseminar(X6,’Letizia’,’Tanca’,X7,X8,X9),
PROFESSORhilary(X6,’Letizia’,’Tanca’,X7,X8,X9).

that corresponds to the following UCQ over R :

q1
c1(X1,X2)← EVENT(X1,X2,X3,X4,X5,X6),

EVENT(X1,X2,X3,’seminar’,X5,X6),
EVENT(X1,X2,X3,X4,X5,X6),
dateToTerm(X2)=’Hilary’,
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
EVENT(X10,X11,X12,’seminar’,X13,X6),
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9).

q2
c1(X1,X2)← EVENT(X1,X2,X3,X4,X5,X6),

EVENT(X1,X2,X3,’seminar’,X5,X6),
EVENT(X1,X2,X3,X4,X5,X6),
dateToTerm(X2)=’Hilary’,
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
COURSE(X10,X11,X12,’Hilary’,X6),
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9).

After optimisation, the above UCQ is equivalent to the following conjunctive query
since q2

c1 ⊆ q1
c1.

242 G. Orsi and L. Tanca

q3
c1(X1,X2)← EVENT(X1,X2,X3,’seminar’,X5,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
dateToTerm(X2)=’Hilary’.

In order to see how disjunctive context-based relevant areas differ from the previous
ones, assume that the designer had specified disjunctive areas of Table 6 for c1 instead
of conjunctive ones.

Table 6. Disjunctive, context-based relevant areas for c1

PROFESSOR∨c1(pID,X1,X2,X3,X4,X5) ← PROFESSORpro f essor (pID,X1,X2,X3,X4,X5).
PROFESSOR∨c1(pID,X1,X2,X3,X4,X5) ← PROFESSORseminar(pID,X1,X2,X3,X4,X5).
PROFESSOR∨c1(pID,X1,X2,X3,X4,X5) ← PROFESSORhilary(pID,X1,X2,X3,X4,X5).

EVENT∨c1(X1,X2,X3,X4,X5,X6) ← EVENTpro f essor(X1,X2,X3,X4,X5,X6),
EVENT∨c1(X1,X2,X3,X4,X5,X6) ← EVENTseminar(X1,X2,X3,X4,X5,X6),
EVENT∨c1(X1,X2,X3,X4,X5,X6) ← EVENThilary(X1,X2,X3,X4,X5,X6).

In this case the contextualisation of the query q w.r.t. c1 would have been resulted in
the following UCQ, where all the combinations of the value-based relevant areas have
been produced:

q1
c1(X1,X2)← EVENT(X1,X2,X3,X4,X5,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9).
q2

c1(X1,X2)← EVENT(X1,X2,X3,X4,’Seminar’,X6),
PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9).

q3
c1(X1,X2)← EVENT(X1,X2,X3,X4,X5,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
dateToTerm(X2)=’Hilary’.

q3
c1(X1,X2)← EVENT(X1,X2,X3,X4,X5,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
COURSE(X10,X11,X12,’Hilary’,X6).

q4
c1(X1,X2)← EVENT(X1,X2,X3,X4,’Seminar’,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
COURSE(X10,X11,X12,’Hilary’,X6).

q5
c1(X1,X2)← EVENT(X1,X2,X3,X4,’Seminar’,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
dateToTerm(X2)=’Hilary’.

q6
c1(X1,X2)← EVENT(X1,X2,X3,X4,’Seminar’,X6),

PROFESSOR(X6,’Letizia’,’Tanca’,X7,X8,X9),
COURSE(X10,X11,X12,’Hilary’,X6),
dateToTerm(X2)=’Hilary’.

Note that, in this case, after checking containment for all the queries, the above UCQ
is equivalent to the query q1

c1 that, in turn, is equivalent to the original query q. The
effect of disjunctive relevant areas w.r.t. the conjunctive ones is thus that of broadening
the subset of the available information that is used to answer the queries under the
constraints imposed by the current context.

Context Modelling and Context-Aware Querying 243

6 Conclusions

This paper has made a case for the explicit representation of context as an autonomous
component during context-aware system design. It is our firm opinion that the same
general design framework can be adopted for any context-aware system, provided that
the software modelling phase, and the run-time behaviours of the system, be appropri-
ately adapted to the specific application. In particular, we have shown the use of the
framework for the design and exploitation of context in the formulation and usage of
context-aware database views, using the Datalog language.

References

1. Chui, M., Löffler, M., Roberts, R.: The internet of things. McKinsey Quarterly (2), 1–9
(2010)

2. Brézillon, P., Abu-Hakima, S.: Using knowledge in its context. AI Magazine 16(1), 87–91
(1995)

3. Wang, X., Zhang, D., Gu, T., Pung, H.: Ontology based context modeling and reasoning
using OWL. In: Proc. of 1st Intl. Workshop on Context Modelling and Reasoning, pp. 18–22
(2004)

4. Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M., Steggles, P.: Towards a better un-
derstanding of context and context-awareness. In: Proc. of 1st Intl. Symp. on Handheld and
Ubiquitous Computing, pp. 304–307 (1999)

5. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-
ing=locality+compatibility. Artificial Intellicence 127(2), 221–259 (2001)

6. Benerecetti, M., Bouquet, P., Ghidini, C.: On the dimensions of context dependence: Par-
tiality, approximation, and perspective. In: Proc. of 3rd Intl. and Interdisciplinary Conf. on
Modeling and Using Context, pp. 59–72 (2001)

7. Bazier, M., Brézillon, P.: Understanding context before using it. In: Proc. of 5th Intl. and
Interdisciplinary Conf. on Modeling and Using Context, pp. 29–40 (2005)

8. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F., Tanca, L.: Context information for
knowledge reshaping. Intl. Journal of Web Engineering and Technology 5(1), 88–103 (2009)

9. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Proc. of 1st Intl. Workshop
on Advanced Context Modelling, Reasoning and Management (2004)

10. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F., Tanca, L.: A data-oriented survey
of context models. SIGMOD Record 36(4), 19–26 (2007)

11. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Intl. Journal of
Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

12. Raptis, D., Tselios, N., Avouris, N.: Context-based design of mobile applications for mu-
seums: a survey of existing practices. In: Proc. of the 7th Intl. Conf. on human-computer
Interaction with Mobile Devices & Services, pp. 153–160 (2005)

13. Petrelli, D., Not, E., Strapparava, C., Stock, O., Zancanaro, M.: Modeling context is like tak-
ing pictures. In: Proc. of the What, Who, Where, When, Why and How of Context-Awareness
Workshop (2000)

14. Buchholz, S., Hamann, T., Hübsch, G.: Comprehensive structured context profiles (CSCP):
Design and experiences. In: Proc. of 1st Intl. Work. on Context Modelling and Reasoning,
pp. 43–47 (2004)

15. Chen, H., Finin, T., Joshi, A.: An intelligent broker for context-aware systems. In: Proc. of
Intl. Conf. on Ubiquitous Computing - Poster Session, pp. 183–184 (2003)

244 G. Orsi and L. Tanca

16. Ouksel, A.M.: In-context peer-to-peer information filtering on the web. SIGMOD
Record 32(3), 65–70 (2003)

17. Preuveneers, D., van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T.,
Berbers, E., Coninx, K., de Bosschere, K.: Towards an extensible context ontology for ambi-
ent intelligence. In: Proc. of the 2nd European Symp. on Ambient Intelligence, pp. 148–159
(2004)

18. Kaenampornpan, M., O’Neill, E.: An intergrated context model: Bringing activity to context.
In: Proc. of Work. on Advanced Context Modelling, Reasoning and Management (2004)

19. Segev, A., Gal, A.: Putting things in context: a topological approach to mapping contexts to
ontologies. Journal on Data Semantics IX, 113–140 (2007)

20. Roussos, Y., Stavrakas, Y., Pavlaki, V.: Towards a context-aware relational model. In: Proc.
of 1st Intl. Context Representation and Reasoning Work, pp. 7.1–7.12 (2005)

21. Roussos, Y., Sellis, T.: A model for context aware relational databases. Technical Report
TR-2008-6, National Technical University of Athens (2008)

22. Tanca, L.: Context-based data tailoring for mobile users. In: Proc. of Datenbanksysteme in
Business, Technologie und Web Work, pp. 282–295 (2007)

23. Raverdy, P.G., Riva, O., de La Chapelle, A., Chibout, R., Issarny, V.: Efficient context-aware
service discovery in multi-protocol pervasive environments. In: Proc of 7th Intl. Conf. on
Mobile Data Management, pp. 3–11 (2006)

24. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-aware
services. Journal of Network and Computer Applications 28(1), 1–18 (2005)

25. Motschnig-Pitrik, R., Mylopoulos, J.: Semantics, features, and applications of the viewpoint
abstraction. In: Proc. Intl. Conf. Advances Information System Engineering, pp. 514–539
(1996)

26. Theodorakis, M., Analyti, A., Constantopoulos, P., Spyratos, N.: A theory of contexts in
information bases. Information Systems 27(3), 151–191 (2002)

27. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. In: Proc. of the 28th Symp. on Principles of Database Systems,
pp. 77–86 (2009)

28. Calı̀, A., Gottlob, G., Pieris, A.: Tractable query answering over conceptual schemata. In:
Proc. of the 28th Intl. Conf. on Conceptual Modeling, pp. 175–190 (2009)

29. Henricksen, K., Indulska, J.: Modelling and using imperfect context information. In: Proc.
of Intl. Conf. on Pervasive Computing, pp. 33–37 (2004)

Using Datalog for Fast and Easy Program Analysis

Yannis Smaragdakis1�2 and Martin Bravenboer3

1 University of Massachusetts, Amherst, MA 01003, USA
����������	
������	

2 University of Athens, Athens 15784, Greece
�
��������	����

3 LogicBlox Inc., Two Midtown Plaza, Atlanta, GA 30309, USA

����������������
���

Abstract. Our recent work introduced the D��� framework for points-to analysis
of Java programs. Although Datalog has been used for points-to analyses before,
D��� is the first implementation to express full end-to-end context-sensitive anal-
yses in Datalog. This includes key elements such as call-graph construction as
well as the logic dealing with various semantic complexities of the Java language
(native methods, reflection, threading, etc.).

The findings from the D��� research e�ort have been surprising. We set out
to create a framework that would be highly complete and elegant without sacri-
ficing performance “too much”. By the time D��� reached maturity, it was a full
order-of-magnitude faster than Lhoták and Hendren’s P�����—the state-of-the-
art framework for context-sensitive points-to analyses. For the exact same logical
points-to definitions (and, consequently, identical precision) D��� is more than
15x faster than P����� for a 1-call-site sensitive analysis, with lower but still sub-
stantial speedups for other important analyses. Additionally, D��� scales to very
precise analyses that are impossible with prior frameworks, directly addressing
open problems in past literature. Finally, our implementation is modular and can
be easily configured to analyses with a wide range of characteristics, largely due
to its declarativeness.

Although this performance di�erence is largely attributable to architectural
choices (e.g., the use of an explicit representation vs. BDDs), we believe that our
ability to eÆciently optimize our implementation was largely due to the declar-
ative specifications of analyses. Working at the Datalog level eliminated much
of the artificial complexity of a points-to analysis implementation, allowing us
to concentrate on indexing optimizations and on the algorithmic essence of each
analysis.

1 Introduction

Points-to analysis is one of the most fundamental static program analyses. It consists of
computing a static approximation of all the data that a pointer variable or expression can
reference during program run-time. The analysis forms the basis for practically every
other program analysis and is closely inter-related with mechanisms such as call-graph
construction, since the values of a pointer determine the target of dynamically resolved
calls, such as object-oriented dynamically dispatched method calls or functional lambda
applications.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 245–251, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

246 Y. Smaragdakis and M. Bravenboer

In recent work [2, 1], we presented D���: a versatile points-to analysis framework
for Java programs. D��� is crucially based on the use of Datalog for specifying the pro-
gram analyses, and on the aggressive optimization at the Datalog level, by programmer-
assisted indexing of relations so that highly recursive Datalog programs evaluate near-
optimally. The optimization approach accounts for several orders of magnitude of
performance improvement: unoptimized analyses typically run over 1000 times more
slowly. The result is quite surprising: compared to the prior best-comparable system
D��� often achieves speedups of an order-of-magnitude (10x or more) for several im-
portant analyses, while yielding identical results. This performance improvement is not
caused by any major algorithmic innovation: we discuss in Section 3 how performance
is largely a consequence of the optimization opportunities a�orded by using a higher-
level programming language (Datalog). Declarative specifications admit automatic op-
timizations and at the same time enable the user to identify and apply straightforward
manual optimizations.

An important aspect of D��� is that it is full-featured and “all Datalog”. That is,
D��� is a rich framework, containing context insensitive, call-site sensitive, and object-
sensitive analyses for di�erent context depths, all specified modularly as variations
on a common code base. Additionally, D��� achieves high levels of completeness, as
it handles complex Java language features (e.g., native code, finalization, and privi-
leged actions). As a result, D��� emulates and often exceeds the rich feature set of the
P����� framework [7], which is the state-of-the-art in terms of completeness for com-
plex, context-sensitive analyses. All these features are implemented entirely in Datalog,
i.e., declaratively. Past points-to analysis frameworks (including those using Datalog)
typically combined imperative computation and some declarative handling of the core
analysis logic. For instance, the bddbddb system [11,10] expresses the core of a points-
to analysis in Datalog, while important parts (such as normalization and call-graph
computation—except for simple, context-insensitive, analyses) are done in Java code.
It was a surprise to researchers even that a system of such complexity can be usefully
implemented declaratively. Lhoták [6] writes: “[E]ncoding all the details of a com-
plicated program analysis problem (such as the interrelated analyses [on-the-fly call
graph construction, handling of Java features]) purely in terms of subset constraints
[i.e., Datalog] may be diÆcult or impossible.”

The more technical aspects of D��� (including the analysis algorithms and fea-
tures, as well as our optimization methodology) are well-documented in prior publi-
cations [2, 1, 9]. Here we only intend to give a brief introduction to the framework and
to extrapolate on our lessons learned from the D��� work.

2 Background: Points-To Analysis in Datalog

D���’s primary defining feature is the use of Datalog for its analyses. Architecturally,
however, an important factor in D���’s performance discussion is that it employs an
explicit representation of relations (i.e., all tuples of a relation are represented as an
explicit table, as in a database), instead of using Binary Decision Diagrams (BDDs),
which have often been considered necessary for scalable points-to analysis [11,10,7,6].

Using Datalog for Fast and Easy Program Analysis 247

We use a commercial Datalog engine, developed by LogicBlox Inc. This version of
Datalog allows “stratified negation”, i.e., negated clauses, as long as the negation is not
part of a recursive cycle. It also allows specifying that some relations are functions, i.e.,
the variable space is partitioned into domain and range variables, and there is only one
range value for each unique combination of values in domain variables.

Datalog is a great fit for the domain of program analysis and, as a consequence,
has been extensively used both for low-level [8, 5, 11] and for high-level [3, 4] anal-
yses. The essence of Datalog is its ability to define recursive relations. Mutual re-
cursion is the source of all complexity in program analysis. For a standard exam-
ple, the logic for computing a callgraph depends on having points-to information for
pointer expressions, which, in turn, requires a callgraph. We can easily see such re-
cursive definitions in points-to analysis alone. Consider, for instance, two relations,
��������������������������� ���� and ����������� ���
�. (We follow the D���

convention of capitalizing the first letter of relation names, while writing variable names
in lower case and prefixing them with a question-mark.) The former relation represents
all occurrences in the Java program of an instruction “� � ��� ����” where a heap ob-
ject is allocated and assigned to a variable. That is, a pre-processing step takes a Java
program (in D��� this is in intermediate, bytecode, form) as input and produces the re-
lation contents. A static abstraction of the heap object is captured in variable �����—it
can be concretely represented as, e.g., a fully qualified class name and the allocation’s
bytecode instruction index. Similarly, relation ������ contains an entry for each assign-
ment between two Java program (reference) variables.

The mapping between the input Java program and the input relations is straightfor-
ward and purely syntactic. After this step, a simple pointer analysis can be expressed
entirely in Datalog as a transitive closure computation:

VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).1

VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).2

The Datalog program consists of a series of rules that are used to establish facts about
derived relations (such as �!�����"�, which is the points-to relation, i.e., it links every
program variable, ���, with every heap object abstraction, �����, it can point to) from
a conjunction of previously established facts. In our syntax, the left arrow symbol (#$)
separates the inferred fact (the head) from the previously established facts (the body).

The key for a precise points-to analysis is context-sensitivity, which consists of
qualifying program variables (and possibly object abstractions—in which case the
context-sensitive analysis is said to also have a context-sensitive heap), with context in-
formation: the analysis collapses information (e.g., “what objects this method argument
can point to”) over all possible executions that result in the same context, while separat-
ing all information for di�erent contexts. Object-sensitivity and call-site-sensitivity are
the main flavors of context sensitivity in modern points-to analyses. They di�er in the
contexts of a context, as well as in when contexts are created and updated. Here we will
not concern ourselves with such di�erences—it suÆces to know that a context-sensitive
analysis qualifies its computed facts with extra information.

Context-sensitive analysis in D��� is, to a large extent, similar to the above context-
insensitive logic. The main changes are due to the introduction of Datalog variables

248 Y. Smaragdakis and M. Bravenboer

representing contexts for variables (and, in the case of a context-sensitive heap, also
objects) in the analyzed program. For an illustrative example, the following two rules
handle method calls as implicit assignments from the actual parameters of a method to
the formal parameters, in a 1-context-sensitive analysis with a context-insensitive heap.
(This code is the same for both object-sensitivity and call-site-sensitivity.)

Assign(?calleeCtx, ?formal, ?callerCtx, ?actual) <-1

CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?method),2

FormalParam[?index, ?method] = ?formal,3

ActualParam[?index, ?invocation] = ?actual.4

5

VarPointsTo(?heap, ?toCtx, ?to) <-6

Assign(?toCtx, ?to, ?fromCtx, ?from),7

VarPointsTo(?heap, ?fromCtx, ?from).8

(Note that some of the above relations are functions, and the functional nota-
tion “%�������&���
�����' � ����” is used instead of the relational notation,
“%�����������
������ �����”. Semantically the two are equivalent, only the exe-
cution engine enforces the functional constraint and produces an error if a computation
causes a function to have multiple range values for the same domain value.)

The example shows how a derived ������ relation (unlike the input relation ������

in the earlier basic example) is computed, based on the call-graph information, and then
used in deriving a context-sensitive �!�����"� relation.

For deeper contexts, one needs to add extra variables, since pure Datalog does not
allow constructors and therefore cannot support value combination. We have introduced
in D��� a macro system to hide the number of context elements so that such variations
do not pollute the analysis logic.

Generally, the declarative nature of D��� often allows for very concise specifications
of analyses. We show in an earlier publication [2] the striking example of the logic for
the Java cast checking—i.e., the answer to the question “can type A be cast to type B?”
The Datalog rules are almost an exact transcription of the Java Language Specification.
A small excerpt, with the Java Language Specification text included in comments, can
be seen in Figure 1.

3 Discussion: D��� and Large-Scale Development in Datalog

Perhaps the main lesson learned from our experience with D��� and its definition in
Datalog is quite simple: Datalog is not an abstract logic and does not magically yield
automatic programming capabilities, but it is still much higher-level than current main-
stream programming languages.

Recent Datalog research has often concentrated on generalizing the language (to full
first-order logic and higher-order logics), and on applying automated reasoning tech-
niques. Although this is certainly a valuable direction, we believe that one should not
lose sight of the fact that Datalog is already a very high-level language when compared
to mainstream general purpose languages, such as Java, C��, or C#. It is, therefore,
perhaps more interesting to examine Datalog not as a proxy for a logic but as an ap-
plication programming language. Many of the benefits that we obtained with D��� are

Using Datalog for Fast and Easy Program Analysis 249

(()� * �� �� ������ �������� ������ ����+

((�)� " �� � ����� ����� ���� *
	�� �� ���

((��
� ����� �� "� � � �	������ �� "�

,���-,������� ��� #$,����"��������

,���-,������� ��� #$ *	���������� ����

���

((�)� " �� �� ��� ���� ",&'� ���� ��� �� ��� �� ��
�������

((�� ���� ",� ���� ��� �� ��� ���������
	�� �� �	�+

((. ", ��� *, �� ��� ��
� ��
����� ����

,���-,������� ��� #$

���"�������� ���"��������

,�
������"������� ����� ,�
������"������� ����� !�
�����"���������

((. ", ��� *, �� ������� ����� �/�0�1�� ��� ���� *, ��� ��

((���� �� ", �� ��	���� ����������� �� ����� 	����

,���-,������� ��� #$

,�
������"������� ����� ,�
������"������� �����

%�������"��������� %�������"��������� ,���-,�������� �����

Fig. 1. Excerpt of Datalog code for Java cast checking, together with Java Language Specification
text in comments. The rules are quite faithful to the specification.

directly due to such an approach. Of course, this raises the question of whether plain
Datalog is expressive enough for general application programming. As we saw, even
for the domain of points-to analysis, researchers were highly skeptical of the feasibility
of expressing all elements (including those consisting mostly of tedious engineering)
of a complex analysis in Datalog. We believe that this is precisely what is missing at
this point in the evolution of Datalog. The language needs to be developed as a real
programming language, with appropriate library support (for, e.g., graphics, communi-
cation, etc., APIs), tool support, a mature engine (for advanced automatic optimization
of rule evaluation and eÆcient representation of relations), and possibly expressive-
ness enhancements (e.g., macros, exponential-search, or other high-order capabilities).
A final element, which we are still debating whether it is essential or an intermedi-
ate state, is the ability to manually optimize a Datalog program, by exposition of an
easy-to-understand cost model and appropriate interfacing with the engine.

Such arguments are easy to see in the context of D���. The use of Datalog in D���

is certainly not as a logic. D��� is not written as an abstract specification that a clever
runtime system automatically optimizes and executes eÆciently. We needed to develop
an optimization methodology for highly recursive programs and to introduce indexes
manually, in order to attain optimal performance. The di�erence in performance be-
tween optimized and unoptimized D��� rules is enormous. At the same time, D��� is
expressed at a much higher level than a similar implementation of a points-to analysis
in Java or C��. The declarativeness of Datalog and the suitability of the LogicBlox
Datalog platform for application development were crucial for D��� in more than one
way:

250 Y. Smaragdakis and M. Bravenboer

� We relied on query optimization (i.e., intra-rule, as opposed to inter-rule, optimiza-
tion) being performed automatically. This was crucial for performance and, although
a straightforward optimization in the context of database relations, results in far more
automation than programming in a mainstream high-level language.

� The declarativeness and modularity of D��� specifications contributed directly to per-
formance. The surprisingly high performance of D��� compared to past frameworks
is due to combining two factors: simple algorithmic enhancements, and an explicit
representation instead of BDDs. Eliminating either of these factors results in com-
plete lack of scalability in D���. For instance, an explicit representation alone makes
many standard analyses infeasible in D���: even a 1H-object-sensitive analysis (i.e.,
1-object-sensitive with a context-sensitive heap) would be completely infeasible for
realistic programs. Nevertheless, we observed that this lack of scalability was due to
very high redundancy (i.e., large sizes of some relations without an increase in anal-
ysis precision) in the data that the analysis was computing. The redundancy was easy
to eliminate with two simple algorithmic enhancements: 1) we perform exception
analysis on-the-fly [1], computing contexts that are reachable because of exceptional
control flow while performing the points-to analysis itself. The on-the-fly exception
analysis significantly improves both precision and performance; 2) we treat static class
initializers context-insensitively (since points-to results are equivalent for all contexts
of static class initializers), thus improving performance while keeping identical pre-
cision. These enhancements (especially the former, which results in highly recursive
definitions of core relations) would be quite hard to consider in a non-declarative con-
text. In D���, such enhancements could be added with minor changes to the rules or
with just the addition of extra rules. Once redundancy is eliminated via our algorith-
mic enhancements, an explicit representation (with the help of our index optimiza-
tions) becomes much faster than using BDDs.

Based on our experience, we believe that Datalog can have a bright future for applica-
tion development. In a programming setting that has a dire need for higher-level pro-
gramming abstractions, Datalog holds a great promise. The elements missing in order
to fulfill this promise are not in the direction of greater declarativeness and automated
reasoning abilities. Pursuing more complete-logic-like variants of Datalog may turn out
to be an unreachable goal and is certainly not what is missing in practice: Datalog is
already much more declarative than the mainstream languages currently used for ap-
plication programming. Instead, it is practical elements that are missing and that can
propel actual Datalog implementations to the mainstream. An interesting question is
whether it is necessary for a programmer to treat a Datalog program as a program and
not as a specification, i.e., whether the programmer should have the ability to understand
and manually influence the program’s execution cost.

In summary, the D��� framework has raised the bar in the domain of points-to anal-
ysis by introducing fast, modular, and scalable implementations of precise points-to
analysis algorithms, while yielding important lessons about the architecture of such im-
plementations. At the same time, however, we hope that D��� will be representative of
future successes for Datalog application development as a whole.

Using Datalog for Fast and Easy Program Analysis 251

Acknowledgments. This work was funded by the NSF (CCF-0917774, CCF-0934631)
and by LogicBlox Inc.

References

1. Bravenboer, M., Smaragdakis, Y.: Exception analysis and points-to analysis: Better together.
In: Dillon, L. (ed.) ISSTA 2009: Proceedings of the 2009 International Symposium on Soft-
ware Testing and Analysis, New York, NY, USA (July 2009)

2. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated points-to
analyses. In: OOPSLA 2009: 24th Annual ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, ACM, New York (2009)

3. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous checking of
structural program dependencies. In: ICSE 2008: Proc. of the 30th Int. Conf. on Software
Engineering, pp. 391–400. ACM, New York (2008)

4. Hajiyev, E., Verbaere, M., de Moor, O.: Codequest: Scalable source code queries with Data-
log. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27. Springer, Heidelberg (2006)

5. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel, C.:
Context-sensitive program analysis as database queries. In: PODS 2005: Proc. of the Twenty-
fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 1–12. ACM, New York (2005)

6. Lhoták, O.: Program Analysis using Binary Decision Diagrams. PhD thesis, McGill Univer-
sity (January 2006)

7. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using
a BDD-based implementation. ACM Trans. Softw. Eng. Methodol. 18(1), 1–53 (2008)

8. Reps, T.: Demand interprocedural program analysis using logic databases. In: Ramakrish-
nan, R. (ed.) Applications of Logic Databases, pp. 163–196. Kluwer Academic Publishers,
Dordrecht (1994)

9. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Understanding object-
sensitivity (the making of a precise and scalable pointer analysis). In: POPL 2011: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. ACM, New York (2011)

10. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision diagrams
for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer,
Heidelberg (2005)

11. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: PLDI 2004: Proc. of the ACM SIGPLAN 2004 Conf. on Programming
Language Design and Implementation, pp. 131–144. ACM, New York (2004)

Distributed Datalog Revisited�

Serge Abiteboul1, Meghyn Bienvenu2,
Alban Galland1, and Marie-Christine Rousset3

1 INRIA Saclay & ENS Cachan, France
firstname.lastname@inria.fr

2 CNRS & Univ. Paris-Sud, France
meghyn@lri.fr

3 Univ. Grenoble, France
Marie-Christine.Rousset@imag.fr

1 Introduction

The emergence of Web 2.0 and social network applications has enabled more
and more users to share sensitive information over the Web. The information
they manipulate has many facets: personal data (e.g., pictures, movies, music,
contacts, emails), social data (e.g., annotations, recommendations, contacts),
localization information (e.g., bookmarks), access information (e.g., login, keys),
web services (e.g., legacy data, search engines), access rights, ontologies, beliefs,
time and provenance information, etc. The tasks they perform are very diverse:
search, query, update, authentication, data extraction, etc. We believe that all
this should be viewed in the holistic context of the management of a distributed
knowledge base. Furthermore, we believe that datalog (and its extensions) forms
the sound formal basis for representing such information and supporting these
tasks. In this paper, we revisit datalog with this goal in mind. The focus of the
presentation is on the formal extension of the model of distributed datalog and
does not consider the implementation or the evaluation of the corresponding
system [8].

We use logical (datalog) statements to capture these different facets of infor-
mation that are typically considered in isolation. Knowledge can be communi-
cated, replicated, queried, updated, and monitored. The use of a formal model
allows information to be obtained by performing complex reasoning. Our model
encompasses a rich variety of scenarios ranging from information in centralized
servers to massively distributed, from fully trusted to untrusted, and possibly
encrypted information, thereby capturing the reality of today’s Web. It also pro-
vides the possibility of formally proving or disproving desirable properties such
as soundness (data is only acquired legally) and completeness (one can acquire
all data that one can legally claim).

After some preliminaries in Section 2, we introduce the model in Section 3.
We briefly mention extensions in Section 4. The last section is a conclusion.
� This work has been partially funded by the European Research Council under the

European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant Webdam, agreement 226513. http://webdam.inria.fr/

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 252–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Distributed Datalog Revisited 253

2 Preliminaries

In this section, we first consider the alphabets we use, then the kind of knowledge
we manipulate. Finally, we briefly recall distributed datalog.

Alphabets. A central notion is that of a principal that corresponds to a partic-
ipant in the system. Our terminology is motivated by the notion of “principal”
in the domain of security, i.e., an entity that can be identified and verified via
authentication. In the same spirit, a principal is determined in our context by a
URI (and possibly authentication keys). Some principals, the peers, have a phys-
ical address with storage and processing capabilities, e.g., Facebook or Alice’s
iPhone. Others may represent a user, e.g., Alice, or a community such as Alice’s
friends or the rock climbing group.

The information of a principal p is organized in relations. The identification
of a relation is of the form r@p where r is the relation name and p the principal.
For instance, one might have the relation pictures@alice-iPhone (the pictures
album stored on Alice’s iPhone) or the relation expert@rockClimbing (the experts
known in this group).

One can query a peer since it has a URI that corresponds to a real system.
For instance, one can obtain the relation pictures@alice-iPhone by accessing the
iPhone (assuming one has access to it). On the contrary, one cannot query a
non-peer principal. For instance, one cannot ask rockClimbing (a virtual entity)
for the list of experts. To obtain such information, one needs rules that tell us
how to get information, e.g. for the rockClimbing experts, typically by querying
“real” relations (extensional or intentional) at some peers.

More formally, the model uses the following alphabets:

– A set P ′ of principal IDs, that includes a set P of peer IDs. The system
provides a unique IDs for each different principal, in the spirit of the standard
notion of URIs.

– A set R of relation IDs. An actual relation name is a pair r@p where r is a
relation ID and p is a principal ID.

– A set D of constants. It is the disjoint union of the set of principal IDs,
relation IDs and a set of data constants. A data constant is some sequence
of bits: e.g., a string, a file (picture, music), an XML document. Principal and
relation IDs are also constants so that we can reason about them. Constants
are typed, e.g., principal, relation, string, integer, dates, etc.

– A set of variables. Similarly to constants, variables are typed. We use words
starting with small letters for constants and with capitals for variables.

Knowledge. The architecture is illustrated in Figure 1. Consider for instance
Peer 2. It has data and rules defining personal relations r1, r2, r3. It also has
data and rules about relation s of principal q2 (shared with Peer 1) and about
r@q1 (shared with Peer 3). Observe the distinction for each peer, between its
local schema (e.g., ri for Peer 2) and its participation in the global schema (e.g.,
r@q1, s@q2 for Peer 2).

254 S. Abiteboul et al.

export

r1 r2 r3 w1 w2

r@q1

export

s@q2

t@q3

t@q3
Peer 1

Peer 2 Peer 3
export

r@q1s@q2

Fig. 1. Distributed datalog framework

Basic knowledge is expressed using facts of the form r@p(a1, ..., an). Note that
peers and relations are reified1. It is therefore possible to have a fact r@p(r′, p′)
that speaks of a relation r′ and a peer p′. Furthermore, we can use peer and rela-
tion variables, e.g., r@p(R, P) with R a relation variable and P a peer variable.
From a formal viewpoint, we can see each fact r@p(a, b) in a binary relation r@p
as a fact univ4(r, p, a, b) in a 4-ary relation. Indeed, we can even logically see it
as a fact univ(r, p, a, b,−, ...,−) in a unique relation, wide enough to accommo-
date all the tuples that are considered. Even if we introduced a more readable
notation for our model, the reader should keep in mind that our model can then
be fully described in terms of standard datalog.

In a distributed context, a peer p is naturally led to possess data about other
participants, for instance a principal who uses p as server for his data, or another
peer that replicates its data on p to offer better performance or availability. For
instance, consider the fact album@alice(a). This fact may be known, e.g., by
two peers, Picasa and Alice’s iPhone. The knowledge of this fact by these peers,
respectively, can be stated as:

picasa exports album@alice(a)
alice-iPhone exports album@alice(a)

The use of the exports word is motivated by the fact that one can now query
Picasa or Alice’s iPhone, to obtain such data, i.e., this data is exported by these
two peers. Indeed, the primary goal of such a modality is to capture the essence of
communications between peers. For instance, we can ask such data from Picasa
using (informally) the query: picasa exports album@alice(X).
1 Reification is a process through which a computable/addressable object acts as a

proxy for a non computable/addressable object.

Distributed Datalog Revisited 255

More formally, we model such knowledge using a particular relation called
export . The fact that some peer p exports r@q(a1, ..., an) is stated as:

export@p(r, q, a1, ..., an).

Note that the use of special relations such as export (or univ above) complicates
typing. Suppose for instance that we store in relation export@p tuples in r@q1

and r@q2 and that the first contains pairs of peers and the second data elements.
Then the “type” of a tuple in export@p is: 〈r, q1, peer, peer〉 or 〈r, q2, data〉.
The use of these untyped relations may be seen as syntactic sugaring for some
relations of distinct types.

As already mentioned, the relation export captures communications (inter-
actions) between the peers. It therefore plays an essential role in the model.
Particular applications may use other specific relations with particular associ-
ated semantics. For instance, one could consider:

– Localization: e.g., where@q(r, p). Such a fact in the q principal indicates that
relation r@q can be obtained from peer p.

– Access rights: access@p(read, q). This fact states that q has read access to
principal p.

Classical distributed datalog. We briefly present distributed datalog which is a
rather straightforward variation of standard datalog. We refer to, e.g., [4], for
technical details on datalog. To our knowledge, the first attempts to distribute
datalog on different peers are [16] and [19]. Since then, many works have fol-
lowed. For instance, one of the authors of this article adapted query-sub-query
optimization to a distributed setting in [1]. Distributed versions of datalog have
also recently been used to implement Web routers [18], DHT [17] and Map-
Reduce [7] very efficiently. These works only consider peer principals, since the
focus is on the exchange of data between machines.

We present here a standard version of Distributed Datalog inspired by [1]. To
illustrate, the following program defines the album of Alice’s iPhone to include
all the photos stored in her iPhone (a local relation) and on Picasa (a relation
on another peer):

album@alice-iPhone(X) ← photos@alice-iPhone(X)
album@alice-iPhone(X) ← aliceAlbum@picasa(X)

Precisely, a DDL (for distributed datalog) schema is a triple (Π, Rel, σ) where
Π is a finite set of peer IDs, for each p ∈ Π , Rel(p) is a finite set of relation IDs,
and for each p, r, σ(r@p) specifies the type of relation r@p, i.e., its arity and the
types of its columns.

A DDL instance I of (Π, ρ, σ) maps each p to a finite set I(p) of “safe” datalog
rules defining relations in p.

We will formalize the notion of safety when we describe distributed datalog
revisited. Rules with an empty body, e.g., r@p(5) ←, are called facts. Observe
that, by definition, a rule of p cannot have in its head a relation at peer p′. We
will relax this restriction in Remark 3.

256 S. Abiteboul et al.

Let I be an instance. The semantics close(I) is defined as the smallest set of
facts over ∪pRel(p) that satisfies ∪pI(p).

Remark 1. Observe that a rule at peer p may use in its body a relation at peer p′.
This may be realized in practice by posing a query to p′. The query is continuous
in the sense that p′ keeps sending matching tuples to p as long as it derives them.
We will ignore here the issue of detecting termination, which may be performed
using some classical techniques.

We assume here to simplify that each peer knows how to query other peers and
that it has access to all the data in other peers. This assumption may be relaxed
in some contexts and in particular, when considering access rights.

Note that such specifications are very static, in particular with respect to
localization. Also there is the assumption that each principal corresponds to a
physical machine and is available all the time. The work presented here removes
such limitations.

3 Distributed Datalog Revisited

In this section, we extend datalog, in order to capture the kind of knowledge one
needs to handle in distributed information systems. We introduce two extensions,
one based on the reification of relations and peers, and the second on the notion
of principal.

Reifying relations and peers. The first extension we consider is based on reifying
relations and peers. (We still ignore for now non-peer principals.) To illustrate,
suppose that Alice is storing her album on some machine and Bob does not know
where. Suppose also that their group of friends decided upon a global localization
service, say directory@server. Then Bob may use the following rule:

alice-album@bob-iPhone(X) ← directory@server(album,alice,P),
export@P(album,alice,X)

Here P, R are respectively peer and relation variables. The service direc-
tory@server provides bindings for P (the name of the system) and R (the name
of the relation on this system) where Alice’s album can be found. Observe that
similar use of localization services are standard in distributed contexts, e.g.,
DHT or Ldap.

Non-peer Principals. We extend the notion of schema, instance, and their se-
mantics to now include non-peer principals. To illustrate, assume that Alice, Bob
and others created a principal rockClimbing. They may want to use a relation
album in this shared principal. Bob may for instance use the rules:

album@rockClimbing(X) ← album@bob-iPhone(X)
album@rockClimbing(X) ← friends@bob-iPhone(Q),

directory@server(album,Q,P),
export@P(album,Q,X)

Distributed Datalog Revisited 257

Now observe that album@rockClimbing is a “global” relation and that many
peers may “publish” data in it and many peers may know how to retrieve data
from it. The second rule highlights three main ways of obtaining information:

– friends@bob-iPhone(Q) matches some facts in a (local) relation of this par-
ticular peer;

– directory@server(album, Q, P) matches some facts in a relation of another
peer;

– export@P (Q, album, X) matches some facts exported by another peer.

The difference between the second and third kind of atoms is that the sec-
ond one is a form of syntactic sugaring which hides the explicit communi-
cation step. Indeed, from a communication point of view, the evaluation of
directory@server(album, Q, P) results in a query to server, namely:

export@server(directory, server, album, Q, P)

There is yet a fourth kind of atom of the form t@q(V̄) that matches the peer’s
knowledge of some non-peer principal relation t@q.

The example illustrates a key usage of our model for maintaining “external
knowledge”. Suppose that Alice is a friend of Bob (Q is bound to Alice). In-
tuitively, we would like to get the album of Alice. What we query instead is a
machine say Picasa (P is bound to Picasa) where Alice stores her pictures.

Formal model A term is a constant or a variable. In particular, a relation term,
a peer term and a principal term are terms of type relation, peer and principal
respectively.

A DDLR (for distributed datalog revisited) rule is an expression of the form:

α0@β0(V0)← α1@β1(V1), ..., αn@βn(Vn)

where

– αi, βi are relation and principal terms respectively.
– Vi are tuples of terms.
– The rule is safe in that (i) in the body, a principal or relation variable must

be bound before appearing as αi or βi, and (ii) a variable occurring in the
head must be bound in the body.

Note the ordering of atoms in the previous definition. This can be relaxed by
imposing that for some ordering of the atoms, (i) and (ii) hold.

A DDLR schema is a quadruple (Π ′, Π, Rel, σ) where Π is a set of peer IDs,
Π ′ ⊇ Π a set of principals, Rel assigns relation IDs to principals, and σ gives
their arities.

A DDLR instance I of (Π ′, Π, Rel, σ) maps each p ∈ Π (each peer) to a finite
set I(p) of safe DDLR rules such that:

(head) The relation in the head is (+) either R@p(V̄) for some relation term R;
or (++) R@Q(V̄) for some relation term R and non-peer principal term Q.

258 S. Abiteboul et al.

(body) Each relation in the body is either of the form R@Q(V̄) for some rela-
tion term R and Q=p or Q is some non-peer principal term or of the form
export@P (V̄) for some peer term P .

(typing) Each rule respects the typing specified by the schema.

The constraint (body) can be relaxed to any kind of relation R@Q(V̄). In this
case, if Q 	= p is a peer, it is interpreted as export@Q(R, Q, V̄). Henceforth,
unless otherwise specified, datalog means DDLR.

Semantics. There are subtleties in the inference of facts. First, note that the
classical least-model semantics, i.e. close(∪pI(p)) is in general not attainable.
For instance, suppose peer p has no rule defining non-peer principal q and has
a rule r@p(x) ← s@q(x). Then p cannot call q so this rule is useless, even if q is
defined on another peer.

Observe another subtlety: (+) uses typing to prevent the derivation of infor-
mation in other peer relations. We will show how to relax (+) in Remark 3.

For a set K of facts, a relation r and a principal q, K(r@q) is the sets of facts
in K about r@q.

Definition 1. (Distributed least-model semantics) Let I be an instance. The
dclosure is a function (i) that maps each peer p, to a set dclose(I, p) of facts
over ∪qRel(q) (facts over peers and non-peer principals) and (ii) that satisfies:

1. for each pair of peers p, p′, dclose(I, p)(export@p) = dclose(I, p′)(export@p).
2. for each peer p, dclose(I, p) satisfies I(p).
3. ∪pdclose(I, p) is minimum.

Observe that all peers have the same view of the peer relations. Suppose peer p
does not even know of peer p′, i.e., p′ does not occur in its local knowledge. By
the previous definition, dclose(I, p)(export@p′) = dclose(I, p′)(export@p′). This
may seem unnatural. However, suppose someone asks the query← export@p′(x1,
..., xn) to p. Then p discovers the existence of p′, can get data from p′ and can
answer the query. This motivates (1) in the previous definition.

Note that, in general, the different views the peers have of the principal rela-
tions may be incomplete. It is easy to see that in general, for a peer p0:

dclose(I, p0) ⊆ ∪pdclose(I, p) ⊆ close(∪pI(p))

and that the inclusions are possibly strict. Note that this leads to complex rea-
soning about knowledge in the style of [13]. One may want to check whether a
given set of rules guarantees completeness. Unfortunately, verifying such prop-
erties comes down to comparing datalog programs, which is undecidable [11].

We conclude this section with two remarks: one on open vs. closed world
assumptions, and one on relaxing (+) by allowing rules with other peer relations
in the head.

Remark 2 (Open vs. closed world). It should be observed that such definitions
of “global principal relations” typically rely on an open-world assumption since

Distributed Datalog Revisited 259

anyone (with proper access right) can participate in the definition of that relation
and perhaps no one has the complete picture. This is in the spirit of Local-as-
View mediator systems [14]. On the other hand, consider a peer relation. The
value of that relation at the peer can be seen as its complete instance, so it is
more in the spirit of the closed world assumption and Global-as-View. Clearly,
both kinds of relations may be combined freely. For instance, a definition of a
peer relation may use a non-peer principal relation.

Remark 3 (Relaxing (+)). Consider a peer p1 with the rule r@p2(x) ← s@p1(x).
An issue is that when asked the query ← r@p2(X), peer p2 may not be aware of
the rule at p1. We could allow such a rule if (intuitively), p1 notifies p2 that he
wishes to participate in the definition of r@p2 and p2 reacts by installing locally
the rule:

r@p2(X)← export@p1(r, p2, X)

that may be interpreted by “p1 also has facts for r@p2”.

4 Extensions in Brief

A holistic knowledge-base model would also need to rely on a number of exten-
sions of datalog that have so far been studied in isolation. We mention them
next. Datalog has to be extended in the following ways:

Nonmonotonicity. One can first consider negation in rules with different se-
mantics, e.g., stratified negation or well-founded negation, see [4]. Problems
of nonmonotonicity also arise when one considers updates (which are neces-
sary to capture real applications). One could also consider negation in heads
of rules. So for instance, someone may state that Bill is not an expert in rock
climbing. This may contradict the statement of someone else who states that
he is. Clearly, such inconsistencies are frequent on the Web and a compre-
hensive model for Web data management should take this into account.

Ontologies and incomplete information. Ontologies can be used to struc-
ture a participant’s vocabulary and to translate knowledge between the vo-
cabularies of different participants in a distributed environment, cf. e.g., [6].
Some simply ontology statements, like predicate inclusions (e.g. Photo !
Document), can be straightforwardly handled by our proposed framework.
However, other important ontological constructs, like existential restrictions
(Parent ! ∃hasChild) which may introduce incomplete information, are
not supported. Extensions of datalog in this direction have been considered,
see [10].

Intentional data. We assumed in this paper that we answer queries with facts.
It may be appropriate to answer with “rules”. For instance, if one asks
a machine for a relation, say R, in the rockClimbing principal, it may be
preferable to obtain as answer, some rule for computing R, e.g., stating that
one should first obtain some data from Bob and combine it with data from
Alice. This presents the advantage of allowing learning about new relations,

260 S. Abiteboul et al.

a feature typically needed on the Web. Extensions of datalog in this direction
have been considered under the generic term of Active XML [2,5].

Trees. The data exchange format of the Web is XML, i.e. trees instead of rela-
tions. Active XML also extends datalog to trees.

Time. When we consider evolving data, time becomes an issue since a relation
at time t may be different than at time t′. Extensions of datalog with time
have been studied, e.g. in [15]. The idea is to distinguish between relations
r@t and r@t′, just as we distinguished between knowledge of rockClimbing
at two sites s1 and s2.

Access rights. Access rights have been considered in this setting in the Web-
damExchange system [3]. For instance, we can augment the export relation
with an extra column for the identity of the caller. Then to query a peer p,
we use this extra column, e.g.,

exports@picasa(album,lulu,X ,alice).

Alice uses this query (properly authenticated with her signature) for request-
ing pictures in Lulu’s album from Picasa. Based on the access rights of Alice,
Picasa chooses which data to return. Due to space limitations, this will not
be detailed here.

Beliefs. Peers or principals may want to state information they believe in but
are not sure. This may be captured, for instance, by extending the export
relation with yet one more column. The fact

export@server(where, album, alice, bobIPhone, 72%)

states that the server believes that the album of Alice can be found on Bob’s
iPhone with a strong probability (72%).

5 Conclusion

There has recently been renewed interest in datalog; see [12]. We presented a
knowledge model for the management of distributed (Web) information based
on datalog. We already discussed a number of extensions in Section 4, so possi-
ble directions for future works. Some of the authors are currently developing a
system based on distributed datalog revisited, namely WebdamExchange, with
a strong emphasis on access control [3].

The work presented here raises a number of issues. In particular, we need to
investigate the reasoning needed to find information of interest or disseminate
such information. A main issue is the efficient support of queries in systems based
on distributed datalog. Optimization techniques such as QSQ [20] and Magic
Set [9] have been adapted to similar setting, e.g., [19,16,1]. Also, it would be
interesting to study properties of the resulting systems such as completeness, i.e.,
any available data can be obtained. In the context of access rights, completeness
takes a new flavor: “any data one is entitled to see can be obtained”. Also, this
raises the issue of soundness : “only data one is entitled to see can be obtained”.

Distributed Datalog Revisited 261

References

1. Abiteboul, S., Abrams, Z., Haar, S., Milo, T.: Diagnosis of asynchronous discrete
event systems: datalog to the rescue! In: PODS, pp. 358–367 (2005)

2. Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: an overview. The
VLDB Journal 17, 1019–1040 (2008)

3. Abiteboul, S., Galland, A., Marian, A., Polyzotis, A.: A model for web information
management with access control (2010) (in preparation)

4. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

5. Abiteboul, S., Segoufin, L., Vianu, V.: Static analysis of Active XML systems. In:
PODS, pp. 221–230 (2008)

6. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed
reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif. Intell.
Res. (JAIR) 25, 269–314 (2006)

7. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom analytics: exploring data-centric, declarative programming for the cloud. In:
EuroSys, pp. 223–236 (2010)

8. Antoine, E., Galland, A., Lyngbaek, K., Marian, A., Polyzotis, N.: Social network-
ing on top of the WebdamExchange system. In: ICDE (to appear, 2011)

9. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange
ways to implement logic programs. In: PODS, pp. 1–15 (1986)

10. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: ICDT, pp. 14–30 (2009)

11. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable optimiza-
tion problems for database logic programs (preliminary report). In: STOC, pp.
477–490 (1988)

12. Datalog 2.0. Oxford Univ. (2010), http://www.datalog20.org/
13. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The

MIT Press, Cambridge (2003)
14. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10,

270–294 (2001)
15. Hellerstein, J.: The declarative imperative: Experiences and conjectures in dis-

tributed logic. SIGMOD Rec. 39, 5–19 (2010)
16. Hulin, G.: Parallel processing of recursive queries in distributed architectures. In:

VLDB, pp. 87–96 (1989)
17. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Im-

plementing declarative overlays. In: SOSP, pp. 75–90 (2005)
18. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing:

extensible routing with declarative queries. In: SIGCOMM, pp. 289–300 (2005)
19. Nejdl, W., Ceri, S., Wiederhold, G.: Evaluating recursive queries in distributed

databases. IEEE Trans. Knowl. Data Eng. 5, 104–121 (1993)
20. Vieille, L.: Recursive axioms in deductive databases: The query/subquery ap-

proach. In: Expert Database Conf., pp. 253–267 (1986)

http://www.datalog20.org/

Dedalus: Datalog in Time and Space

Peter Alvaro1, William R. Marczak1, Neil Conway1,
Joseph M. Hellerstein1, David Maier2, and Russell Sears3

1 University of California, Berkeley
{palvaro,wrm,nrc,hellerstein}@cs.berkeley.edu

2 Portland State University
maier@cs.pdx.edu

3 Yahoo! Research
sears@yahoo-inc.com

Abstract. Recent research has explored using Datalog-based languages to ex-
press a distributed system as a set of logical invariants. Two properties of dis-
tributed systems proved difficult to model in Datalog. First, the state of any such
system evolves with its execution. Second, deductions in these systems may be
arbitrarily delayed, dropped, or reordered by the unreliable network links they
must traverse. Previous efforts addressed the former by extending Datalog to in-
clude updates, key constraints, persistence and events, and the latter by assuming
ordered and reliable delivery while ignoring delay. These details have a semantics
outside Datalog, which increases the complexity of the language and its interpre-
tation, and forces programmers to think operationally. We argue that the missing
component from these previous languages is a notion of time.

In this paper we present Dedalus, a foundation language for programming and
reasoning about distributed systems. Dedalus reduces to a subset of Datalog with
negation, aggregate functions, successor and choice, and adds an explicit notion
of logical time to the language. We show that Dedalus provides a declarative
foundation for the two signature features of distributed systems: mutable state,
and asynchronous processing and communication. Given these two features, we
address two important properties of programs in a domain-specific manner: a no-
tion of safety appropriate to non-terminating computations, and stratified mono-
tonic reasoning with negation over time. We also provide conservative syntactic
checks for our temporal notions of safety and stratification. Our experience im-
plementing full-featured systems in variants of Datalog suggests that Dedalus
is well-suited to the specification of rich distributed services and protocols, and
provides both cleaner semantics and richer tests of correctness.

Keywords: Datalog, distributed systems, logic programming, temporal logic.

1 Introduction

In recent years, there has been a resurgence of interest in Datalog as the foundation
for applied, domain-specific languages in a wide variety of areas, including network-
ing [20], distributed systems [2,5,8], natural language processing [11], robotics [4],
compiler analysis [15], security [14,18,32] and computer games [31]. The resulting

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 262–281, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Dedalus: Datalog in Time and Space 263

languages have been promoted for their compact and natural representations of tasks
in their respective domains, in many cases leading to code that is orders of magni-
tude shorter than equivalent imperative programs. Another stated advantage of these
languages is their ability to directly capture intuitive specifications of protocols and
programs as executable code.

While most of these efforts were intended to be “declarative” languages, many chose
to extend Datalog with operational features natural to their application domain. These
operational aspects limit the ability of the language designers to leverage the rich liter-
ature on Datalog: program checks such as safety and stratifiability, and optimizations
such as magic sets and incremental maintenance of materialized views. In addition, in
many of these languages the blend of operational and declarative constructs leads to
semantic ambiguities. These aspects are of particular interest to us in the context of
networking and other distributed systems, both because we have considerable practical
experience with these languages [2,20], and because others have examined the semantic
ambiguities of these languages in some depth [23,26].

In this paper we reconsider declarative programming for distributed systems from
a model-theoretic perspective. We introduce a declarative language called Dedalus1

that enables the specification of rich distributed systems concepts without recourse to
operational constructs. Dedalus is a subset of a language with well-studied features:
Datalog enhanced with negation, aggregate functions, choice, and a successor relation.
Dedalus provides a model-theoretic foundation for the two key features of distributed
systems: mutable state, and asynchronous processing and communication. We show
how these features are captured in Dedalus via the incorporation of time as an attribute
of Datalog predicates.

Given the ability to express programs with these two features, we address two impor-
tant properties of Dedalus programs: a temporal notion of safety appropriate to long-
running services and protocols, and stratified monotonic reasoning with negation over
time. We also provide conservative syntactic checks for our temporal notions of safety
and stratification.

We begin by defining Dedalus0, a restricted sublanguage of Datalog (Section 2).
We show how Dedalus0 supports state update in Section 3, and prove temporal safety
and stratifiability properties of Dedalus0 in Section 4. Finally, we introduce Dedalus
by adding support for asynchrony to Dedalus0 in Section 5. Throughout, we demon-
strate the expressivity and practical utility of our work with specific examples, includ-
ing a number of building-block routines from classical distributed computing, such as
sequences, queues, distributed clocks, and reliable broadcast. We also discuss the corre-
spondence between Dedalus and our prior work implementing full-featured distributed
services in more operational Datalog variants [2,20].

1 Dedalus is intended as a precursor language for Bloom, a high-level language for program-
ming distributed systems that will replace Overlog in the BOOM project [2]. As such, it is
derived from the character Stephen Dedalus in James Joyce’s Ulysses, whose dense and pre-
cise chapters precede those of the novel’s hero, Leopold Bloom. The character Dedalus, in turn,
was partly derived from Daedalus, the greatest of the Greek engineers and father of Icarus. Un-
like Overlog, which flew too close to the sun, Dedalus remains firmly grounded.

264 P. Alvaro et al.

2 Dedalus0

We take as our foundation the language Datalog¬ [30]: Datalog enhanced with negated
subgoals. We will be interested in the classes of syntactically stratifiable and locally
stratifiable programs [27], which we revisit below. For conciseness, when we refer to
“Datalog” below our intent is to admit negation—i.e., Datalog¬.

As a matter of notation, we refer to a countably infinite universe of constants C—in
which C1,C2, . . . are representations of individual constants—and a countably infinite
universe of variable symbolsA = A1, A2, We will capture time in Dedalus0 via an
infinite relation successor isomorphic to the successor relation on the integers; for con-
venience we will in fact refer to the domain Z when discussing time, though no specific
interpretation of the symbols in Z is intended beyond the fact that successor(x,y) is
true exactly when y = x + 1.

2.1 Syntactic Restrictions

Dedalus0 is a restricted sublanguage of Datalog. Specifically, we restrict the admissible
schemata and the form of rules with the four constraints that follow.

Schema: We require that the final attribute of every Dedalus0 predicate range over the
domain Z. In a typical interpretation, Dedalus0 programs will use this final attribute to
connote a “timestamp,” so we refer to this attribute as the time suffix of the correspond-
ing predicate.

Time Suffix: In a well-formed Dedalus0 rule, every subgoal must use the same exis-
tential variable T as its time suffix. A well-formed Dedalus0 rule must also have a time
suffix S as its rightmost head attribute, which must be constrained in exactly one of the
following two ways:

1. The rule is deductive if S is bound to the value T ; that is, the body contains the
subgoal S = T .

2. The rule is inductive ifS is the successor ofT ; that is, the body contains the subgoal
successor(T, S).

In Section 5, we will define Dedalus as a superset of Dedalus0 and introduce a third
kind of rule to capture asynchrony.

Example 1. The following are examples of well-formed deductive and inductive rules,
respectively.

deductive: p(A, B, S) ← e(A, B, T), S = T;

inductive: q(A, B, S) ← e(A, B, T), successor(T, S);

Positive and Negative Predicates: For every extensional predicate r in a Dedalus0
program P, we add to P two distinguished predicates r pos and r neg with the same
schema as r. We define r pos using the following rule:
r pos(A1, A2,[...],An,S)←
r(A1, A2,[...],An,T), S=T ;

Dedalus: Datalog in Time and Space 265

That is, for every extensional predicate r there is an intensional predicate r pos that
contains at least the contents of r. Intuitively, this rule allows extensional facts to serve
as ground for r pos, while enabling other rules to derive additional r pos facts.

The predicate r pos may be referenced in the body or head of any Dedalus0 rule.
We will make use of the predicate r neg later to capture the notion of mutable state; we
return to it in Section 3.2. Like r pos, the use of r neg in the heads and bodies of rules
is unrestricted.

Guarded EDB: No well-formed Dedalus0 rule may involve any extensional predicate,
except for a rule of the form above.

2.2 Abbreviated Syntax and Temporal Interpretation

We have been careful to define Dedalus0 as a subset of Datalog; this inclusion allows
us to take advantage of Datalog’s well-known semantics and the rich literature on the
language.

Dedalus0 programs are intended to capture temporal semantics. For example, a fact,
p(C1 . . .Cn, Cn+1), with some constant Cn+1 in its time suffix can be thought of as a
fact that is true “at time Cn+1.” Deductive rules can be seen as instantaneous statements:
their deductions hold for predicates agreeing in the time suffix and describe what is true
“for an instant” given what is known at that instant. Inductive rules are temporal—their
consequents are defined to be true “at a different time” than their antecedents.

To simplify Dedalus0 notation for this typical interpretation, we introduce some syn-
tactic “sugar” as follows:

– Implicit time-suffixes in body predicates: Since each body predicate of a well-formed
rule has an existential variable T in its time suffix, we optionally omit the time suf-
fix from each body predicate and treat it as implicit.

– Temporal head annotation: Since the time suffix in a head predicate may be either
equal to T or equal to T ’s successor, we omit the time suffix from the head—and
its relevant constraints from the body—and instead attach an identifier to the head
predicate of each temporal rule, to indicate the change in time suffix. A temporal
head predicate is of the form:
r(A1,A2,[...],An)@next

The identifier @next stands in for successor(T,S) in the body.
– Timestamped facts: For notational consistency, we write the time suffix of facts

(which must be given as a constant) outside the predicate. For example:
r(A1,A2,[...],An)@C

Example 2. The following are “sugared” versions of deductive and inductive rules from
Example 1, and a temporal fact:

deductive: p(A, B) ← e(A, B);

inductive: q(A, B)@next ← e(A, B);

fact: e(1, 2)@10;

266 P. Alvaro et al.

3 State in Logic

Time is a device that was invented to keep everything from happening at once.2

Given our definition of Dedalus0, we now address the persistence and mutability of
data across time—one of the two signature features of distributed systems for which we
provide a model-theoretic foundation.

The intuition behind Dedalus0’s successor relation is that it models the passage of
(logical) time. In our discussion, we will say that ground atoms with lower time suffixes
occur “before” atoms with higher ones. The constraints we imposed on Dedalus0 rules
restrict how deductions may be made with respect to time. First, rules may only refer
to a single time suffix variable in their body, and hence subgoals cannot join across dif-
ferent “timesteps.” Second, rules may specify deductions that occur concurrently with
their ground facts or in the next timestep—in Dedalus0, we rule out induction “back-
wards” in time or “skipping” into the future.

This notion of time allows us to consider the contents of the EDB—and hence a
perfect model of the IDB—with respect to an “instant in time”: we simply bind the time
suffixes (T) of all body predicates to a constant. Because this produces a sequence of
models (one per timestep), it gives us an intuitive and unambiguous way to declaratively
express persistence and state changes across time. In this section, we give examples
of language constructs that capture state-oriented motifs such as persistent relations,
deletion and update, sequences, and queues.

3.1 Simple Persistence

A fact in predicate p at time T may provide ground for deductive rules at time T , as
well as ground for deductive rules in timesteps greater than T , provided there exists a
simple persistence rule of the form:
p pos(A1,A2,[...],An)@next ← p pos(A1,A2,[...],An);

A simple persistence rule of this form ensures that a p fact true at time i will be true
∀ j ∈ Z : j ≥ i.

3.2 Mutable State

To model deletions and updates of a fact, it is necessary to break the induction in a
simple persistence rule. Adding a p neg subgoal to the body of a simple persistence rule
accomplishes this:
p pos(A1, A2, [...], An)@next←
p pos(A1, A2, [...], An),
¬ p neg(A1, A2, [...], An);

If, at any time k, we have a fact p neg(C1,C2,[...],Cn)@k, then we do not
deduce a p pos(C1,C2,[...],Cn)@k+1 fact. Furthermore, we do not deduce a
p pos(C1,C2,[...],Cn)@j fact for any j > k, unless this p pos fact is re-derived at
some timestep j > k by another rule. This behavior corresponds to the intuition that a
persistent fact, once stated, remains true until it is retracted.

2 Graffiti on a wall at Cambridge University [1].

Dedalus: Datalog in Time and Space 267

Example 3. Consider the following Dedalus0 program and ground facts:

p pos(A, B) ← p(A, B);
p pos(A, B)@next ← p pos(A, B), ¬p neg(A, B);

p(1,2)@101;
p(1,3)@102;
p neg(1,2)@300;

The following facts are true: p(1,2)@200, p(1,3)@200, p(1,3)@300. However, p(1,2)
@301 is false because p(1,2) was “deleted” at timestep 300.

Since mutable persistence occurs frequently in practice, we provide the persist macro,
which takes three arguments: a predicate name, the name of another predicate to hold
“deleted” facts, and the (matching) arity of the two predicates. The macro expands to
the corresponding mutable persistence rule. For example, the above p pos persistence
rule may be equivalently specified as persist[p pos, p neg, 2].

Mutable persistence rules enable updates. For some time T , an update is any pair of
facts:
p neg(C1,C2, [...],Cn)@T ;
p pos(D1,D2, [...],Dn)@T + 1;

Intuitively, an update represents deleting an old value of a tuple and inserting a new
value. Every update is atomic across timesteps, meaning that the old value ceases to
exist at the same timestep in which the new value is derived—timestep T + 1 in the
above definition.

3.3 Sequences

One may represent a database sequence—an object that retains and monotonically in-
creases a counter value—with a pair of inductive rules. One rule increments the current
counter value when some condition is true, while the other persists the value of the se-
quence when the condition is false. We can capture the increase of the sequence value
without using arithmetic, because the infinite series of successor has the monotonicity
property we require:

seq(B)@next ← seq(A), successor(A,B), event(_);
seq(A)@next ← seq(A), ¬event(_);
seq(0);

Note that these three rules produce only a single value of seq at each timestep, but they
do so in a manner slightly different than our standard persistence template.

3.4 Queues

While sequences are useful for imposing an ordering on tuples, programs will in some
cases require that tuples are processed in a particular (partial) order associated with
specific timesteps. To this end, we introduce a queue template, which employs inductive
persistence and aggregate functions in rule heads to process tuples according to a data-
dependent order, rather than as a set.

268 P. Alvaro et al.

Aggregate functions simplify our discussion of queues. Mumick and Shmueli ob-
serve correspondences in the expressivity of Datalog with stratified negation and strati-
fied aggregation functions [25]. Adding aggregation to our language does not affect its
expressive power, but is useful for writing natural constructs for distributed computing
including queues and ordering.

In Dedalus0 we allow aggregate functions to appear in the heads of deductive rules
in the form:

p(A1, . . . , An, ρ1(An+1), . . . , ρm(An+m))

In such a rule (whose body must bind A1, . . . , An+m), the predicate p contains one row
for each satisfying assignment of A1, . . . , An—akin to the distinct “groups” of SQL’s
“GROUP BY” notation.

Consider a predicate priority queue that represents a series of tasks to be performed
in some predefined order. Its attributes are a string representing a user, a job, and an
integer indicating the priority of the job in the queue:

priority queue(‘bob’, ‘bash’, 200)@123;
priority queue(‘eve’, ‘ls’, 1)@123;
priority queue(‘alice’, ‘ssh’, 204)@123;
priority queue(‘bob’, ‘ssh’, 205)@123;

Observe that all the time suffixes are the same. Given this schema, we note that a
program would likely want to process priority queue events individually in a data-
dependent order, in spite of their coincidence in logical time.

In the program below, we define a tablem priority queue that serves as a queue to feed
priority queue. The queue must persist across timesteps because it may take multiple
timesteps to drain it. At each timestep, for each value of A, a single tuple is projected
into priority queue and deleted (atomic with the projection) from m priority queue,
changing the value of the aggregate calculated at the subsequent step:

persist[m priority queue pos, m priority queue neg, 3]

omin(A, min<C>) ←
m priority queue(A, _, C);

priority_queue(A, B, C)@next ←
m priority queue(A, B, C),
omin(A, C);

m priority queue neg(A, B, C) ←
m priority queue(A, B, C),
omin(A, C);

Under such a queueing discipline, deductive rules that depend on priority queue are
constrained to consider only min-priority tuples at each timestep per value of the vari-
able A, thus implementing a per-user FIFO discipline. To enforce a global FIFO order-
ing over priority queue, we may redefine omin and any dependent rules to exclude the
A attribute.

A queue establishes a mapping between Dedalus0’s timesteps and the priority-ordering
attribute of the input relation. By doing so, we take advantage of the monotonic property
of timestamps to enforce an ordering property over our input that is otherwise difficult
to express in a logic language. We return to this idea in our discussion of temporal “en-
tanglement” in Section 5.5.

Dedalus: Datalog in Time and Space 269

4 Stratification and Safety

In the previous section we demonstrated that Dedalus0 can capture intuitive notions
of persistence and mutability of state via a stylized use of Datalog. However, the alert
reader will note that even simple Dedalus0 programs make for unusual Datalog: among
other concerns, persistence rules produce derivations for an infinite number of values
of the time suffix. Traditional Datalog interpreters, which work against static databases,
would attempt to enumerate these values, making this approach impractical.

However, in the context of distributed systems and networks, the need for non-
terminating “services” or “protocols” is very common. In this section we show that
expressing distributed systems properties such as persistence and mutable state in logic
does not require dispensing with familiar notions of safety and stratification: we take tra-
ditional notions of acceptable Datalog programs, and extend them in a way that admits
sensible non-terminating programs.

4.1 Stratification in Dedalus0

We first turn our attention to the semantics of programs with negation. As we will see,
the inclusion of time enables a syntactic stratification condition for programs, and the
existence of a unique model that corresponds to intuition [27].

Lemma 1. A Dedalus0 program without negation has a unique minimal model.

Proof. A Dedalus0 program without negation is a pure Datalog program. Every pure
Datalog program has a unique minimal model.

We define syntactic stratification of a Dedalus0 program the same way it is defined for
a Datalog program:

Definition 1. A Dedalus0 program is syntactically stratifiable if there exists no cycle
with a negative edge in the program’s predicate dependency graph.

We may evaluate such a program in stratum order as described in the Datalog liter-
ature [30]. It is easy to see that any syntactically stratified Dedalus0 instance has a
unique perfect model [27] because it is a syntactically stratified Datalog program.

However, many programs we are interested in expressing are not syntactically strat-
ifiable. Fortunately, we are able to define a syntactically checkable notion of temporal
stratifiability of Dedalus0 programs that maps to a subset of locally stratifiable Datalog
programs.

Definition 2. The deductive reduction of a Dedalus0 program P is the subset of P con-
sisting of exactly the deductive rules in P.

Definition 3. A Dedalus0 program is temporally stratifiable if its deductive reduction
is syntactically stratifiable.

Lemma 2. Any temporally stratifiable Dedalus0 instance P has a unique perfect model.

270 P. Alvaro et al.

Proof. Every temporally stratifiable Dedalus0 instance is locally stratifiable [27], and
thus has a unique perfect model.

Example 4. A simple temporally stratifiable Dedalus0 program that is not syntactically
stratifiable.
persist[p pos, p neg, 3]

p_pos(A, B, T) ←
insert p(A, B, T);

p_neg(A, B, T) ←
p_pos(A, B, T),
delete p(T);

In the Dedalus0 program above, insert p and delete p are captured in EDB relations.
This reasonable program is unstratifiable because p pos � p neg∧ p neg � p pos. But
because the successor relation is constrained such that ∀A, B, successor(A, B)→ B > A,
any such program is locally stratified on time suffixes. Therefore, we have p posn �

+

p negn �
+ p posn+1; informally, earlier values do not depend on later values.

4.2 Temporal Safety

Next we consider the issue of infinite results raised in the introduction to this section. In
traditional Datalog, this concern is well studied. A Datalog program is considered safe
if it has a finite minimal model, and hence has a finite execution. Safety in Datalog is
traditionally ensured through the following syntactic constraints:

1. No functions are allowed.
2. Variables are range restricted: all attributes of the head goal appear in a non-negated

body subgoal.
3. The EDB is finite.

These constraints ensure that the Herbrand Universe is finite: any atom that may be
deduced by a safe program may only take its attributes from the set of all constant
symbols appearing in the program and EDB. In fact, the set of all possible assignments
of these constants to predicate attributes, representing every possible interpretation, is
itself finite.

Since our definition of successor violates these rules, and indeed leads to an infinite
set of facts, Dedalus0 programs violate this definition of safety. However, successor
models time, not computation; later sections explain how Dedalus implementations
avoid enumerating the contents of successor at runtime. This section introduces a no-
tion of termination that allows us to reason about the safety of Dedalus0 programs.

A Dedalus0 program containing only deductive rules is informally equivalent to a
Datalog program in which all predicates have no time suffix. If all the rules in such a
program meet the conditions above, then clearly we would like them to meet Dedalus0’s
definition of safety.

Definition 4. A rule is instantaneously safe if it is deductive, function-free and range-
restricted. A Dedalus0 program is instantaneously safe if its deductive reduction is in-
stantaneously safe.

Dedalus: Datalog in Time and Space 271

The successor relation complicates the discussion of safety, as it introduces the
countably infinite set Z to our universe of constants.

Consider the following Dedalus0 program, which derives a single, persistent fact:

Example 5. An unsafe Dedalus0 instance?
persist[p pos, p neg, 2]
p(1, 2)@123;

The single ground fact will cause one deduction for each tuple in successor. Since
successor is infinite, the corresponding Datalog program is unsafe.

However, observe that each of these deductions produces a tuple that changes only in
its time suffix. We find it useful to distinguish between unsafe programs and programs
that, given a finite EDB, eventually derive only tuples that are equivalent except in their
time suffixes.

Definition 5. Two sets of ground atoms Γ and Γ′ are equivalent modulo time if each
atom γ ∈ Γ has a corresponding atom γ′ ∈ Γ′ such that γ and γ′ have the same
predicate symbol, and the same assignment of constants to attributes for all attributes
except the time suffix.

Definition 6. We say a Dedalus0 instance is quiescent at time T if the set of all atoms
with time suffix T is equivalent modulo time to the set of all atoms with time suffix T −1.

Lemma 3. A Dedalus0 instance that is quiescent at time T will be quiescent until times-
tamp of the next EDB fact V, i.e. for all U ∈ Z : V > U ≥ T. If no EDB fact has a
timestamp greater than T , then the instance will be henceforth quiescent.

Proof. A Dedalus0 program admits only deductive and inductive rules, which derive
new tuples at the same time as their ground tuples or in the immediate next timestep.
Thus, the set of tuples true at time T is completely determined by any tuples true at time
T − 1, and any EDB facts true at time T . Observe that the integer value of the timestep
does not influence the derivation.

If the instance is quiescent at T , then given A, the set of atoms with timestamp T − 1,
and the EDB at T , the program entails A at timestamp T . Thus in the absence of EDB
facts at T + 1, it entails A at T + 1.

Definition 7. A Dedalus0 instance with finite EDB is temporally safe if it is henceforth
quiescent after some time T .

Definition 8. Given the depends-on relation � and its transitive closure �∗, an inten-
sional predicate e in a program P is called an instantaneous predicate if for every pred-
icate p for which e �∗ p (ie, e depends transitively on p), either p appears in the head
of no inductive rules, or the body of each inductive rule with head p contains at least
one positive instantaneous predicate.

We propose the following conservative test for temporal safety. A program is guaranteed
to be temporally safe if every rule is either:

272 P. Alvaro et al.

1. An instantaneously safe rule, or
2. An inductive rule in which the head predicate occurs also in the body with the same

variable bindings for all attributes save the time suffix, or
3. An inductive rule that has at least one instantaneous predicate as a positive subgoal

in the body.

While a temporally safe program is henceforth quiescent after some time T , a tempo-
rally unsafe program changes infinitely. Note that the Dedalus0 program in Example 5
is temporally safe because the basic persistence macro creates a rule that satisfies the
second condition above.

Lemma 4. A temporally stratifiable Dedalus0 instance is temporally safe if it has a
finite EDB and every rule is one of the kinds 1-3 above.

Proof. Assume the program is temporally unsafe. That is, there exists no time T such
that ∀U ≥ T , the set of all atoms with timestamp U is equivalent modulo time to the set
of all atoms with timestamp T − 1. Let E be the maximum timestamp of any fact in the
EDB.

Observe that every rule r of kind 3 may only entail a finite number of facts—as the
EDB is finite—and thus may entail no facts at a timestamp greater than some maximum
timestamp Vr ≤ E + 1 ∈ Z. Since a Dedalus0 program has a finite set of rules we know
∃V ∈ Z : ∀r : V ≥ Vr, and thus V ≤ E + 1.

We now consider times T such that T > E + 1. By the argument above, no rules of
kind 3 entail any facts with a timestamp greater than E + 1. Recall that no EDB atoms
are true at any timestamp greater than E. Thus, any facts with timestamp greater than
E + 1 must be entailed by rules of kind 1 or 2.

Consider the set of equivalence classes modulo time of all possible atoms, A, given
the Herbrand Universe. We know A is finite, as the Herbrand Universe is finite. There-
fore, if the program is temporally unsafe, then B, the set of atoms entailed by the pro-
gram, both contains and excludes infinitely many members of at least one equivalence
class in A (i.e., something “infinitely oscillates in time” between being true and false).
Since the program has finitely many rules, at least one rule must entail infinitely many
atoms (from at least one of the equivalence classes from A). Thus, it is easy to see that
there must be a cycle that contains some predicate P and ¬P.

We show there exists such a cycle containing only rules of kind 1, which implies
that the program is temporally unstratifiable. In order for such a cycle to exist, P must
transitively depend on ¬P, and ¬P must transitively depend on P. Thus, the program
contains a rule J1 with ¬P in its body, and some predicate R in its head, as well as a
rule J2 that is transitively dependent on R, with P in its head.

Case 1: P � R. In this case, J1 must be of kind 1, as for any Q � P, a rule of kind 2
with P in the head may not directly entail Q given P. J2 must also be of kind 1—if it
is of kind 2, then it necessarily contains P in its body, so it cannot entail P unless P is
entailed by some other rule. If J2 contains R in its body, then the program is syntactically
unstratifiable. But if J2 does not contain R in its body, then it contains some predicate
S transitively entailed by R; without loss of generality, the body contains R. Thus, the
program is syntactically unstratifiable.

Dedalus: Datalog in Time and Space 273

Case 2: P = R. In this case, J1 and J2 are the same rule: P← ¬P. Thus, the program is
syntactically unstratifiable.

Thus, the program is temporally unstratifiable, which contradicts our assumption.

Example 6. A Dedalus0 instance with a temporally unsafe deductive rule.

p(A, B) ← q(A);

The program above has a temporally unsafe deductive rule that corresponds to an unsafe
rule in Datalog: it is not range-restricted. The head variable B could range over an
infinite set of constants.

Example 7. A Dedalus0 instance that is temporally unsafe due to infinite oscillation.

flip flop(B, A)@next ← flip flop(A, B);
flip flop(0, 1)@1;

The above program exemplifies temporally unsafe induction. Even though it contains
no function symbols and all variables are range-restricted, it entails infinite oscillation
of the flip flop predicate.

We can imagine interesting examples of temporally unsafe programs, and do not
forbid them in Dedalus0.

5 Asynchrony

In this section we introduce Dedalus, a superset of Dedalus0 that also admits the choice
construct [13] to bind time suffixes. Choice allows us to model the inherent nondeter-
minism in communication over unreliable networks that may delay, lose or reorder the
results of logical deductions. We then describe a syntactic convention for rules that
model communication between agents, and show how Dedalus can be used to imple-
ment common distributed computing idioms like Lamport clocks and reliable broadcast.

5.1 Choice

An important property of distributed systems is that individual computers cannot control
or observe the temporal interleaving of their computations with other computers. One
aspect of this uncertainty is captured in network delays: the arrival “time” of messages
cannot be directly controlled by either sender or receiver. In this section, we enhance
our language with a traditional model of nondeterminism from the literature to capture
these issues: the choice construct as defined by Greco and Zaniolo [13].

The subgoal choose((X1), (X2)) may appear in the body of a rule, where X1 and
X2 are vectors whose constituent variables occur elsewhere in the body. Such a subgoal
enforces the functional dependency X1 → X2, “choosing” a single assignment of values
to the variables in X2 for each variable in X1.

The choice construct is nondeterministic. In a model-theoretic interpretation of logic
programming, a nondeterministic program must have a multiplicity of stable models—
that is, it must be unstratifiable. Greco and Zaniolo define choice in precisely this fash-
ion: the choice construct is expanded into an unstratifiable strongly-connected compo-
nent of rules, and each possible choice is associated with a different model. Each such

274 P. Alvaro et al.

model has a unique, non-deterministic assignment that respects the given functional
dependencies. In our discussion, it may be helpful to think of one such model chosen
non-deterministically—a non-deterministic “assignment of timestamps to tuples.”

5.2 Distribution Model

The choice construct captures the non-determinism of communicating agents in a dis-
tributed system, but we want to use it in a stylized way to model typical notions of
distribution. To this end, Dedalus adopts the “horizontal partitioning” convention intro-
duced by Loo et al. [21]. To represent a distributed system, we consider some number
of agents, each running a copy of the same program against a disjoint subset (horizontal
partition) of each predicate’s contents. We require one attribute in each predicate to be
used to identify the partitioning for tuples in that predicate. We call such an attribute a
location specifier, and prefix it with a # symbol in Dedalus.

Finally, we constrain Dedalus rules in such a way that the location specifier variable
in each body predicate is the same—i.e., the body contains tuples from exactly one
partition of the database, logically colocated (on a single “machine”). If the head of
the rule has the same location specifier variable as the body, we call the rule “local,”
since its results can remain on the machine where they are computed. If the head has
a different variable in its location specifier, we call the rule a communication rule. We
now proceed to our model of the asynchrony of this communication, which is captured
in a syntactic constraint on the heads of communication rules.

5.3 Asynchronous Rules

In order to represent the nondeterminism introduced by distribution, we admit a third
type of rule, called an asynchronous rule. A rule is asynchronous if the relationship
between the head time suffix S and the body time suffix T is unknown. Furthermore,
S (but not T) may take on the special value which means “never.” Derivation at
indicates that the deduction is “lost,” as time suffixes in rule bodies do not range over
.

We model network nondeterminism using the choice construct to choose from a
value in the special time predicate, which is defined using the following Datalog rules:

time();
time(S) ← successor(S, _);

Each asynchronous rule with head predicate p(A1, . . . , An) has the following additional
subgoals in its body:
time(S), choose((A1, . . . , An,T), (S)),

where S is the timestamp of the rule head. Note that our use of choose incorporates
all variables of each head predicate tuple, which allows a unique choice of S for each
head tuple. We further require that communication rules include the location specifier
appearing in the rule body among the functionally-determining attributes of the choose
predicate, even if it does not occur in the head.

Example 8. A well-formed asynchronous Dedalus rule:

Dedalus: Datalog in Time and Space 275

r(A, B, S) ←
e(A, B, T),
time(S),
choose((A, B, T), (S));

We admit a new temporal head annotation to sugar the rule above. The identifier async
implies that the rule is asynchronous, and stands in for the additional body predicates.
The example above expressed using async is:

Example 9. A sugared asynchronous Dedalus rule:

r(A, B)@async ← e(A, B);

5.4 Asynchrony and Distribution in Dedalus

As noted above, communication rules must be asynchronous. This restricts our model
of communication between agents in two important ways. First, by restricting bodies to
a single agent, the only communication modeled in Dedalus occurs via communication
rules. Second, because all communication rules are asynchronous, agents may only
learn about time values at another agent by receiving messages (with unbounded delay)
from that agent. Note that this model says nothing about the relationship between the
agents’ clocks; they could be non-monotonically increasing, or they could respect a
global order.

5.5 Temporal Monotonicity

Nothing in our definition of asynchronous rules prevents tuples in the head of a rule
from having a timestamp that precedes the timestamp in the rule’s body. This is a sig-
nificant departure from Dedalus0, since it violates the monotonicity assumptions upon
which we based our proof of temporal stratification. On an intuitive level, it may also
trouble us that rules can derive head tuples that exist “before” the body tuples on which
they are grounded; this situation violates intuitive notions of causality and admits the
possibility of temporal paradoxes.

We have avoided restricting Dedalus to rule out such issues, as doing so would re-
duce its expressiveness. Recall that simple monotonic Datalog (without negation) is
insensitive to the values in any particular attribute. Hence Dedalus programs without
negation are also well-defined regardless of any “temporal ordering” of deductions: in
monotonic programs, even if tuples with timestamps “in the future” are used to derive
tuples “from the past,” there is an unambiguous least minimal model. In Section 4.1
we showed that the monotonicity of time suffixes achieved by inductive rules ensures a
unique perfect model even for non-monotonic Dedalus0 programs.

Practical Implications. Given this discussion, in practice we are interested in three
asynchronous scenarios: (a) monotonic programs (even with non-monotonicity in time),
(b) non-monotonic programs whose semantics guarantee monotonicity of time suffixes
and (c) non-monotonic programs where we have domain knowledge guaranteeing mono-
tonicity of time suffixes. Each represents practical scenarios of interest.

276 P. Alvaro et al.

The first category captures the spirit of many simple distributed implementations
that are built atop unreliable asynchronous substrates. For example, in some Internet
publishing applications (weblogs, online fora), it is possible due to caching or failure
that a “thread” of discussion arrives out of order, with responses appearing before the
comments they reference. In many cases a monotonic “bag semantics” for the comment
program is considered a reasonable interface for readers, and the ability to tolerate tem-
poral anomalies simplifies the challenge of scaling a system through distribution.

The second scenario is achieved in Dedalus0 via the use of successor for the time
suffix. The asynchronous rules of Dedalus require additional program logic to guaran-
tee monotonic increases in time for predicates with dependencies. In the literature of
distributed computing, this constraint is known as a causal ordering and is enforced
by distributed clock protocols. We review one classic protocol in the Dedalus con-
text in Section 5.6; including this protocol into Dedalus programs ensures temporal
monotonicity.

Finally, certain computational substrates guarantee monotonicity in both timestamps
and message ordering—for example, some multiprocessor cache coherency protocols
provide this property. When temporal monotonicity is given, the proof of temporal strat-
ification applies.

Entanglement. Consider the asynchronous rule below:

p(A, B, N)@async ← q(A, B)@N;

Due to the async keyword in the rule head, each p tuple will take some unspecified
time suffix value. Note however that the time suffix N of the rule body appears also
in an attribute of p other than the time suffix, recording a binding of both the time
value of the deduction and the time value of its consequence. We call such a binding an
entanglement. Note that in order to write the rule it was necessary to not sugar away the
time suffix in the rule body.

Entanglement is a powerful construct. It allows a rule to reference the logical clock
time of the deduction that produced one (or more) of its subgoals; this capability sup-
ports protocols that reason about partial ordering of time across machines. More gen-
erally, it exposes the infinite successor relation to attributes other than the time suffix,
allowing us to express concepts such as infinite sequences.

5.6 Lamport Clocks

Recall that Dedalus allows program executions to order message timestamps arbitrar-
ily, violating intuitive notions of causality by allowing deductions to “affect the past.”
This section explains how to implement Lamport clocks [16] atop Dedalus, which al-
lows programs to ensure temporal monotonicity by reestablishing a causal order despite
derivations that flow backwards through time.

Consider a rule p(A,B)@async ← q(A,B). By rewriting it to:

persist[p pos, p neg, 2]
p wait(A, B, N)@async ← q(A, B)@N;
p wait(A, B, N)@next ← p wait(A, B, N)@M, N ≥ M;
p(A, B)@next ← p wait(A, B, N)@M, N < M;

Dedalus: Datalog in Time and Space 277

we place the derived tuple in a new relation p wait that stores any tuples that were “sent
from the future” with their sending time “entangled”; these tuples stay in the p wait
predicate until the point in time at which they were derived. Conceptually, this causes
the system to evaluate a potentially large number of timesteps (if N is significantly less
than the timestamp of the system when the tuple arrives). However, if the runtime is
able to efficiently evaluate timesteps when the database is quiescent, then instead of
“waiting” by evaluating timesteps, it will simply increase its logical clock to match that
of the sender. In contrast, if the tuple is “sent into the future,” then it is processed using
the timestep that receives it.

This manipulation of timesteps and clock values is equivalent to conventional de-
scriptions of Lamport clocks, except that our Lamport clock implementation effectively
“advances the clock” by preventing derivations until the clock is sufficiently advanced,
by temporarily storing incoming tuples in the p wait relation.

5.7 Reliable Broadcast

Distributed systems cope with unreliable networks by using mechanisms such as broad-
cast and consensus protocols, timeouts and retries, and often hide the nondeterminism
behind these abstractions. Dedalus supports these notions, achieving encapsulation of
nondeterminism while dealing explicitly with the uncertainty in the model. Consider
the simple broadcast protocol below:

sbcast(#Member, Sender, Message)@async ←
smessage(#Agent, Sender, Message),
members(#Agent, Member);

sdeliver(#Member, Sender, Message) ←
sbcast(#Member, Sender, Message);

Assume that members is a persistent relation that contains the broadcast membership list.
The protocol is straightforward: if a tuple appears in smessage (an EDB predicate), then
it will be sent to all members (a multicast). The interpretation of the non-deterministic
choice implied by the @async rule indicates that messaging order and delivery (i.e.,
finite delay) are not guaranteed.

The program shown below makes use of the multicast primitive provided by the
previous program and uses it to implement a basic reliable broadcast using a textbook
mechanism [24] that assumes any node that fails to receive a message sent to it has
failed. When the broadcast completes, all nodes that have not failed have received the
message.

Our simple two-rule broadcast program is augmented with the following rules, so
that if a node receives a message, it also multicasts it to every member before delivering
the message locally:

smessage(Agent, Sender, Message) ←
rmessage(Agent, Sender, Message);

buf_bcast(Sender, Me, Message) ←
sdeliver(Me, Sender, Message);

278 P. Alvaro et al.

smessage(Me, Sender, Message) ←
buf_bcast(Sender, Me, Message);

rdeliver(Me, Sender, Message)@next ←
buf_bcast(Sender, Me, Message);

Note that all network communication is initiated by the @async rule from the original
simple broadcast. The @next is required in the rdeliver definition in order to prevent
nodes from taking actions based upon the broadcast before it is guaranteed to meet the
reliability guarantee.

Implementing other disciplines like FIFO and atomic broadcast and consensus are
similar exercises, requiring the use of ordered queueing and sequences.

6 Related Work

6.1 Deductive Databases and Updateable State

Many deductive database systems, including LDL [7] and Glue-Nail [10], admit pro-
cedural semantics to deal with updates using an assignment primitive. In contrast, lan-
guages proposed by Cleary and Liu [9,19,22] retain a purely logical interpretation by
admitting temporal extensions into their syntax and interpreting assignment or update
as a composite operation across timesteps [19] rather than as a primitive. We follow
the approach of Datalog/UT [19] in that we use explicit time suffixes to enforce a strat-
ification condition, but differ in several significant ways. First, we model persistence
explicitly in our language, so that like updates, it is specified as a composite operation
across timesteps. Partly as a result of this, we are able to enforce stricter constraints on
the allowable time suffixes in rules: a program may only specify what deductions are
visible in the current timestep, the immediate next timestep, and some future timestep,
as opposed to the free use of intervals allowed in rules in Liu et al.

U-Datalog [6] addresses updates using syntax annotations that establish different in-
terpretations for the set of updated relations and the IDB, interpreting update atoms
as constraints and using constraint logic programming techniques to test for inconsis-
tent derivations. Similarly, Timed Concurrent Constraint Programming (TCCP) [28,29]
handles nonmonotonic constructs in a CLP framework by outputting a new (possibly
diminished) store and constraint program at each timestep.

Our temporal approach to representing state change most closely resembles the
Statelog language [12]. By contrast, our motivation is the logical specification and im-
plementation of distributed systems, and our principal contribution is the use of time to
model both local state change and communication over unreliable networks.

Lamport’s TLA+ [17] is a language for specifying concurrent systems in terms of
constraints over valuations of state and temporal logic that describes admissible transi-
tions. Two distinguishing features of Dedalus with respect to TLA+ are our minimalist
use of temporal constructs (next and async), and our unified treatment of temporal
and other attributes of facts; this enables the full literature of Datalog to be applied to
both temporal and instantaneous properties of programs.

Dedalus: Datalog in Time and Space 279

6.2 Distributed Systems

Significant recent work ([2,5,8,20], etc.) has focused on applying deductive database
languages to the problem of specifying and implementing network protocols and dis-
tributed systems. Implementing distributed systems entails a data store that changes
over time, so any useful implementation of such a language addresses the updateable
state issue in some manner. Existing distributed deductive languages such as NDlog and
Overlog adopt a chain of fixpoints interpretation. Evaluation proceeds in three phases:

1. Input from the external world, including network messages, clock interrupts and
host language calls, is collected.

2. Time is frozen, the union of the local store and the batch of events is taken as EDB,
and the program is run to fixpoint.

3. The deductions that cause side effects (e.g., deletions, updates, network messages
and host language callbacks) are dealt with.

Unfortunately, the language descriptions give no careful specification of how and when
deletions and updates should be made visible, so the third step is a “black box.” Loo
et al. [20] proved that classes of programs with certain monotonicity properties (i.e.,
programs without negation or fact deletion) are equivalent (specifically, eventually con-
sistent) when evaluated globally (via a single fixpoint computation) or in a distributed
setting in which the chain of fixpoints interpretation is applied at each participating node,
and no messages are lost. Navarro et al. [26] proposed an alternate syntax that addressed
key ambiguities in Overlog, including the event creation vs. effect ambiguity. Their so-
lution solves the problem by introducing procedural semantics to the interpretation of
the augmented Overlog programs. A similar analysis was offered by Mao [23].

7 Conclusion

Datalog has inspired a variety of recent applied work, which touts the benefits of declar-
ative specifications for practical implementations. We have developed substantial expe-
rience building distributed systems [2,3,8,20] using hybrid declarative/imperative lan-
guages such as Overlog [20]. While our experience with those languages was largely
positive, the combination of Datalog and imperative constructs often clouded our un-
derstanding of the “correct” execution of single-node programs that performed state
updates. This work developed in large part as a reaction to the semantic difficulties
presented by these distributed logic languages.

Through its reification of time as data, Dedalus allowed us to achieve the goal of a
purely declarative language, without sacrificing the ability to express two critical fea-
tures of practical distributed systems: mutable state and asynchronous communication.
We believe that Dedalus is as expressive as Overlog, but formalizing this intuition is dif-
ficult because the semantics of Overlog are not well specified. Instead, we are currently
validating the practicality of our work by “porting” many of our Overlog programs to
Dedalus.

In Dedalus, state update and communication differ from logical deduction only in
terms of timing. In the local case, this allows us to express state update without giving

280 P. Alvaro et al.

up the clean semantics of Datalog; unlike Datalog extensions that use imperative con-
structs to provide such functionality, each Dedalus rule expresses a logical invariant that
will hold over all program executions. However, interactions with external processes
and asynchronous communication introduce nondeterminism which Dedalus models
with choose. Our hope is that modeling external processes and events with a single
primitive will simplify efforts to formally verify the correctness of distributed systems
implemented using Dedalus. Two natural directions in this vein are to determine for
a given Dedalus program whether Church-Rosser confluence holds for all models pro-
duced by choice, or to capture finer-grained notions like serializability of such models
with respect to transaction identifiers embedded in EDB facts.

Acknowledgments. Ras Bodı́k and Tyson Condie were intimately involved in discus-
sions surrounding the development of Dedalus. We are also indebted to Mark Utting
and Erik Meijer for conversation and inspiration from their Starlog and LINQ expe-
riences respectively, and to Phil Bernstein for suggestions on future work. Thanks to
Kuang Chen and Jesse Trutna for comments on the paper. This work was supported
by NSF grants 0917349, 0803690, 0722077, 0713661 and 0435496, Air Force Office
of Scientific Research award 22178970-41070-F, the Natural Sciences and Engineer-
ing Research Council of Canada, and gifts from Yahoo Research, IBM Research and
Microsoft Research.

References

1. Abelson, H., Sussman, G.J. (eds.): Structure and Interpretation of Computer Programs, 2nd
edn. McGraw Hill, New York (1996)

2. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.C.: BOOM An-
alytics: Exploring Data-centric, Declarative Programming for the Cloud. In: EuroSys (2010)

3. Alvaro, P., Condie, T., Conway, N., Hellerstein, J.M., Sears, R.: I Do Declare: Consensus in
a logic language. In: NetDB (2009)

4. Ashley-Rollman, M.P., et al.: Declarative programming for modular robots. In: Workshop on
Self-Reconfigurable Robots/Systems and Applications (2007)

5. Belaramani, N., Zheng, J., Nayate, A., Soulé, R., Dahlin, M., Grimm, R.: PADS: A policy
architecture for distributed storage systems. In: NSDI (2009)

6. Bertino, E., Catania, B., Gori, R.: Enhancing the Expressive Power of the U-Datalog Lan-
guage. Theory and Practice of Logic Programming 1(1), 105–122 (2001)

7. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S., Zaniolo, C.: The LDL
System Prototype. IEEE Trans. on Knowl. and Data Eng. 2(1), 76–90 (1990)

8. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The
design and implementation of a declarative sensor network system. In: 5th ACM Conference
on Embedded Networked Sensor Systems, SenSys (2007)

9. Cleary, J.G., Utting, M., Clayton, R.: Data Structures Considered Harmful. In: Australasian
Workshop on Computational Logic (2000)

10. Derr, M.A., Morishita, S., Phipps, G.: The Glue-Nail Deductive Database System: Design,
Implementation, and Evaluation. The VLDB Journal 3, 123–160 (1994)

11. Eisner, J., Goldlust, E., Smith, N.A.: Dyna: a declarative language for implementing dynamic
programs. In: Proc. ACL (2004)

Dedalus: Datalog in Time and Space 281

12. Georg Lausen, W.M., Ludäscher, B.: On active deductive databases: The statelog approach.
In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Seminar 1997, DYNAM-
ICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, pp. 69–106. Springer, Heidelberg (1998)

13. Greco, S., Zaniolo, C.: Greedy Algorithms in Datalog with Choice and Negation. In: Pro-
ceedings of the Joint International Conference and Symposium on Logic Programming, pp.
294–309 (1998)

14. Jim, T.: Sd3: A trust management system with certified evaluation. In: IEEE Symposium on
Security and Privacy, pp. 106–115 (2001)

15. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel, C.:
Context-sensitive program analysis as database queries. In: PODS (2005)

16. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communi-
cations of the ACM 21(7), 558–565 (1978)

17. Lamport, L.: The temporal logic of actions. ACM Toplas 16(3), 872–923 (1994)
18. Li, N., Mitchell, J.: Datalog with constraints: A foundation for trust-management languages.

In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 58–73. Springer, Heidelberg (2002)
19. Liu, M., Cleary, J.: Declarative Updates in Deductive Databases. Journal of Computing and

Information 1, 1435–1446 (1994)
20. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrish-

nan, R., Roscoe, T., Stoica, I.: Declarative Networking. Communications of the ACM 52(11),
87–95 (2009)

21. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing: Extensible
routing with declarative queries. In: SIGCOMM (2005)

22. Lu, L., Cleary, J.G.: An Operational Semantics of Starlog. In: Nadathur, G. (ed.) PPDP 1999.
LNCS, vol. 1702, pp. 131–162. Springer, Heidelberg (1999)

23. Mao, Y.: On the declarativity of declarative networking. In: NetDB (2009)
24. Mullender, S. (ed.): Distributed Systems, 2nd edn. Addison-Wesley, Reading (1993)
25. Mumick, I.S., Shmueli, O.: How expressive is stratified aggregation? Annals of Mathematics

and Artificial Intelligence 15(3-4), 407–435 (1995)
26. Navarro, J.A., Rybalchenko, A.: Operational Semantics for Declarative Networking. In: Gill,

A., Swift, T. (eds.) PADL 2009. LNCS, vol. 5418, pp. 76–90. Springer, Heidelberg (2008)
27. Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and Logic Pro-

grams. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
193–216. Morgan Kaufmann, Los Altos (1988)

28. Saraswat, V., Jagadeesan, R., Gupta, V.: Timed Default Concurrent Constraint Programming.
Journal of Symbolic Computation 22(5-6), 475–520 (1996)

29. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of Timed Concurrent Constraint Pro-
gramming. In: LICS, pp. 71–80 (1994)

30. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. The New Technologies,
vol. II. W. H. Freeman & Co., New York (1990)

31. White, W., et al.: Scaling games to epic proportions. In: SIGMOD (2007)
32. Zhou, W., Mao, Y., Loo, B.T., Abadi, M.: Unified declarative platform for secure netwoked

information systems. In: ICDE, pp. 150–161 (2009)

The Disjunctive Datalog System DLV�

Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri,
Gerald Pfeifer, and Giorgio Terracina

Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
{alviano,faber,leone,perri,terracina}@mat.unical.it, gerald@pfeifer.com

Abstract. DLV is one of the most successful and widely used answer
set programming (ASP) systems. It supports a powerful language ex-
tending Disjunctive Datalog with many expressive constructs, including
aggregates, strong and weak constraints, functions, lists, and sets. The
system provides database connectivity offering a simple way for power-
ful reasoning on top of relational databases. In this paper, we provide
an ample overview of the DLV system. We illustrate its input language
and give indications on how to use it for representing knowledge. We
also provide a panorama on the system architecture and the main opti-
mizations it incorporates. We then focus on DLVDB, an extension of the
basic system which allows for tight coupling with traditional database
systems. Finally, we report on a number industrial applications which
rely on DLV.

1 Introduction

In this paper, we provide an overview of the disjunctive datalog system DLV

[26]. The DLV project has been active for more than fourteen years, and has
led to the development and continuous enhancement of the DLV system. DLV

is widely used by researchers all over the world, and has stimulated quite some
interest also in industry (see Section 6).

The key reasons for the success of DLV can be summarized as follows:
Advanced knowledge modeling capabilities. DLV provides support for
declarative problem solving in several respects:

– High expressiveness of its knowledge representation language, extending dis-
junctive datalog with many expressive constructs, including aggregates [17],
weak constraints [4], functions, lists, and sets [7]. These constructs not only
increase the expressiveness of the language; they also improve its knowledge
modeling power, enhancing DLV’s usability in real-world contexts.

– Full declarativeness: ordering of rules and subgoals is immaterial, the com-
putation is sound and complete, and its termination is guaranteed.

– Front-ends for dealing with specific applications.
� This research has been partly supported by Regione Calabria and EU under POR

Calabria FESR 2007-2013 within the PIA project of DLVSYSTEM s.r.l., and by
MIUR under the PRIN project LoDeN.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 282–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Disjunctive Datalog System DLV 283

Solid Implementation. Much effort has been spent on sophisticated algo-
rithms and techniques for improving the performance (see Sections 4.1 and 5),
including

– Database optimization techniques: magic sets [10,1], indexing and join or-
dering methods [25].

– Search optimization techniques: heuristics [18,28], backjumping techniques
[34,31], pruning operators [8,16].

– Parallel evaluation [9,30].
– Evaluation in mass-memory [40].

Interoperability. A number of mechanisms have been implemented to allow
DLV to interact with external systems:

– Interoperability with relational DBMSs: ODBC interface and DLVDB [40].
– Interoperability with Semantic Web reasoners: DLVHEX [14].
– Calling external (C++) functions from DLV programs: DLVEX [6].
– Calling DLV from Java programs: Java Wrapper [33].

In the following, we introduce the language constructs of DLV by examples,
provide some use-cases of how knowledge can be represented in the DLV lan-
guage. Subsequently, we provide an overview of the architecture and techniques
of DLV, and we then focus on DLV

DB – DLV version working (mostly) in
mass-memory. Finally, we provide information on industrial products that rely
on DLV.

2 The Language of DLV

In this section, we describe the language of the DLV system by examples, pro-
viding the intuitive meaning of the main constructs. For further details and the
formal definition, we refer to [26,7,17]. We first introduce the basic language,
which is based on the founding work by Gelfond and Lifschitz [20] and then we
illustrate a number of extensions including aggregates [17], weak constraints [4],
complex terms [7], queries and database interoperability constructs [40].

Basic Language. The main construct in the DLV language is a rule, an expres-
sion of the form Head :-Body., where Body is a conjunction of literals and Head
is a disjunction of atoms. Informally, a rule can be read as follows: “if Body is
true then Head is true”. A rule without a body is called a fact, since it models
an unconditional truth (for simplicity :- is omitted); whereas a rule with an
empty head, called strong constraint, is used to model a condition that must be
false in any possible solution. A set of rules is called program. The semantics of
a program is given by its answer sets [20]. A program can be used to model a
problem to be solved: the problem’s solutions correspond to the answer sets of
the program (which are computed by DLV). Therefore, a program may have no
answer set (if the problem has no solution), one (if the problem has a unique
solution) or several (if the problem has more than one possible solutions).

284 M. Alviano et al.

As an example consider the problem of automatically creating an assessment
test from a given database of questions where each question is identified by
a unique string, covers a particular topic, and requires an estimated time to
be answered. The input data about questions can be represented by means
of a set of facts of type question(q, topic, time); in addition, facts of the form
relatedTopic(topic) specify the topics related to the subject of the test.

For instance, consider the case in which only four questions are given, repre-
sented by facts: question(q1, computerscience, 8), question(q2, computerscience, 15),
question(q3, mathematics, 15), and question(q4, mathematics,25). Moreover, sup-
pose that computer science is the only topic to be covered by the test, therefore
relatedTopic(computerscience) is also part of the input facts. The program con-
sisting only of these facts has one answer set A1 containing exactly the five
facts.

Assessment creation amounts to selecting a set of questions from the database,
according to a given specification. To single out questions related to the subject
of the test, one can write the rule:

relatedQuestion(Q) :- question(Q, Topic, T ime), relatedTopic(Topic).

that can be read: “Q is a question related to the test if Q has a topic related
to some of the subjects that have to be assessed”. Adding this rule to the in-
put facts reported earlier yields one answer set A2 = A1∪{relatedQuestion(q1),

relatedQuestion(q2)}.
For determining all the possible subsets of related questions the following

disjunctive rule can be used:

inTest(Q) v discard(Q) :- relatedQuestion(Q).

Intuitively, this rule can be read as: “if Q identifies a related question, then either
Q is taken in the test or Q is discarded.” This rule has the effect of associating
each possible choice of related questions with an answer set of the program.
Indeed, the answer sets of the program P consisting of the above two rules and
the input facts are:

A3 = A2 ∪ {discard(q1), discard(q2)}, A4 = A2 ∪ {inTest(q1), discard(q2)},
A5 = A2 ∪ {discard(q1), inTest(q2)}, A5 = A2 ∪ {inTest(q1), inTest(q2)}

corresponding to the four possible choices of questions {}, {q1}, {q2}, {q1, q2}.
Note that the answer sets are minimal with respect to subset inclusion. In-
deed, for each question Q there is no answer set in which both inTest(Q) and
discard(Q) appear.

At this point, some strong constraints can be used to single out some solutions
respecting a number of specification requirements. For instance, suppose we are
interested in tests containing only questions requiring less than 10 minutes to
be answered. The following constraint models this requirement:

:- inTest(Q), question(Q,Topic, T ime), T ime >= 10.

The program obtained by adding this constraint to P has only two answer sets
A3 and A4.

The Disjunctive Datalog System DLV 285

Aggregate Functions. More involved properties requiring operations on sets of
values can be expressed by aggregates, a DLV construct similar to aggregation
in the SQL language. DLV supports five aggregate functions, namely #sum,
#count, #times, #max, #min.

In our running example we might want to restrict the included questions to
be solvable in an estimated time of less than 60 minutes. This can be achieved
by the following strong constraint:

:-not#sum{T ime,Q : inTest(Q), question(Q, Topic, T ime)} < 60.

The aggregate sums up the estimated solution times of all questions in the test,
and the constraint will eliminate all scenarios in which this sum is not less than
60.

Optimization Constructs. The DLV language also allows for specifying opti-
mization problems (i.e. problems where some goal function must be minimized
or maximized). This can be achieved by using weak constraints. From a syntac-
tic point of view, a weak constraint is like a strong one where the implication
symbol :- is replaced by :∼. Contrary to strong constraints, weak constraints
allow for expressing conditions that should be satisfied, but not necessarily have
to be.

The informal meaning of a weak constraint :∼ B is “try to falsify B”, or
“B should preferably be false”. Additionally, a weight and a priority level for
the weak constraint may be specified enclosed in square brackets (by means of
positive integers or variables). The answer sets minimize the sum of weights
of the violated (unsatisfied) weak constraints in the highest priority level and,
among them, those which minimize the sum of weights of the violated weak
constraints in the next lower level, and so on.

As an example, if we want to prefer quick-to-answer questions in tests, the
following weak constraint represent this desideratum.

:∼ inTest(Q), question(Q, Topic, T ime). [T ime : 1]

Intuitively, each question in the test increases the total weight of the solution
by its estimated solution time. Thus solutions where the total weight is minimal
are preferred.

Complex Terms. The DLV language allows for the use of complex terms. In
particular, it supports function symbols, lists, and sets. Prolog-like syntax is
allowed for both function symbols and lists, while sets are explicitly represented
by listing the elements in brackets.

As an example, we enrich the question database for allowing two types of
questions, open and multiple choice. Input questions are now represented by
facts like the following

question(q1, math, open(text),10).
question(q2, physics, multiplechoice(text, {c1, c2, c3}, {w1, w2, w3}), 3).

where function symbols open and multiplechoice are used for representing the
two different types of questions. In particular, open is a unary function whose

286 M. Alviano et al.

only parameter represents the text of the question, while multiplechoice has three
parameters, the text of the question, a set containing correct answers and another
set of wrong answers.

The use of sets allows for modeling multi-valued attributes, while function
symbols can be used for modeling “semi-structured” information.

Handling complex terms is facilitated by a number of built-in predicates.
For instance, the following rule uses the #member built-in for selecting correct
answers given by a student in the test.

correctAnswer(Student,QID,Ans) :- inTest(QID), answer(Student,QID, Ans),
question(QID, To, multiplechoice(Tx,Cs, Ws), T i), #member(Ans,Cs).

Queries. The DLV language offers the possibility to express conjunctive queries.
From a syntactic point of view, a query in DLV is a conjunction of literals fol-
lowed by a question mark. Since a DLV program may have more than one answer
set, there are two different reasoning modes, brave and cautious, to compute a
query answer. In the brave (resp. cautious) mode, a query answer is true if the
corresponding conjunction is true in some (resp. all) answer sets.

For instance, the answers to the following simple query are the questions
having as topic computerscience that are contained in some (resp. all) answer
sets of the program when brave (resp.cautious) reasoning is used.

inTest(Q), question(Q, computerscience, T)?

Database Interoperability. The DLV system supports interoperability with
databases by means of #import/#export commands for importing and exporting
relations from/to a DBMS. The #import command reads tuples from a specified
table of a relational database and stores them as facts with a predicate name
provided by the user.

In our example, questions can be retrieved from a database by specifying in
the program the following directive.

#import(questionDB, “user”, “passwd”, “SELECT ∗ FROM question”, question).

where questionDB is the name of the database, “user” and “passwd” are the data
for the user authentication, “SELECT ∗FROM question” is an SQL query that
constructs the table that will be imported and question is the predicate name
which will be used for constructing the new facts.

In a similar way the #export command allows for exporting the extension of
a predicate in an answer set to a database.

3 Knowledge Representation

In this section, we illustrate the usage of DLV as a tool for knowledge representa-
tion and reasoning. We consider a number of problems, from classical deductive
database applications to search and optimization problems, and show how the
language of DLV can be used to encode them in a highly declarative fashion.

The Disjunctive Datalog System DLV 287

3.1 Deductive Databases

We next present two problems motivated by classical deductive database appli-
cations, namely Same Generation and Simple Paths. For the first one, we provide
an encoding consisting of positive datalog rules, while we encode the second one
by using complex terms (lists).

Same Generation. Given a parent-child relationship (an acyclic directed graph),
we want to find all pairs of persons belonging to the same generation. Two
persons are of the same generation, if either (i) they are siblings, or (ii) they are
children of two persons of the same generation.

Suppose that the input is provided by facts like parent(thomas, joseph) stating
that thomas is a parent of joseph. Then, this problem can be encoded by the
following program, which computes a relation samegeneration(X,Y) containing
all facts such that X is of the same generation as Y :

samegeneration(X,Y) :- parent(P,X), parent(P,Y).

samegeneration(X,Y) :- parent(P1,X), parent(P2, Y),
samegeneration(P1, P2).

Simple Paths. Given a directed graph, a simple path is a sequence of nodes, each
one appearing exactly once, such that from each one (but the last) there is an
edge to the next in the sequence.

The following program exploits complex terms for deriving all simple paths
for a directed graph, starting from a given edge relation:

path([X,Y]) :- edge(X,Y).
path([X|[Y |W]]) :- edge(X,Y), path([Y |W]), not #member(X, [Y |W]).

The first rule builds a simple path as a list of two nodes directly connected by
an edge. The second rule constructs a new path adding an element to the list
representing an existing path. The new element will be added only if there is an
edge connecting it to the head of an already existing path. The built-in predicate
#member allows to avoid the insertion of an element that is already included
in the list; without this check, the construction would never terminate in the
presence of circular paths (note that, by default, DLV disallow programs which
might not terminate [7]).

3.2 Search Problems

Here we illustrate two different usages of the DLV language for solving search
problems. On the one hand we consider the Seating problem for showing how
a search problem can be encoded in a DLV program whose answer sets corre-
spond to the problem solutions. On the other hand, we consider a problem of
number and graph theory, namely Ramsey Numbers, for showing how to build
a DLV program whose answer sets witness that a property does not hold, i.e.,
the property at hand holds if and only if the DLV program has no answer set.

288 M. Alviano et al.

Seating. Consider the problem of generating a seating arrangement for k guests,
with m tables and n chairs per table. Guests who like each other should sit at
the same table; guests who dislike each other should sit at different tables.

Suppose that the number of chairs per table is specified by nChairs(X) and
that person(P) and table(T) represent the guests and the available tables, re-
spectively. Then, we can generate a seating arrangement by the following pro-
gram:

at(P, T) vnot at(P, T) :- person(P), table(T).
:- table(T), nChairs(C), not #count{P : at(P, T)} ≤ C.
:- person(P),not #count{T : at(P, T)} = 1.
:- like(P1, P2), at(P1, T), not at(P2, T).
:- dislike(P1, P2), at(P1, T), at(P2, T).

The disjunctive rule guesses whether person P sits at table T or not, thus gen-
erating all possible assignments of persons to tables (even those where a person
is not assigned to any table or it is assigned to more than one). The strong
constraints discard assignments that do not respect the problem specification.
In particular the first constraint, for each table T , counts the number of persons
assigned to T and ensures that it does not exceed the number of chairs per ta-
ble, whereas the second one, imposes that each person is seated at precisely one
table. Finally, the last two constraints ensure that persons who like each other
are seated at the same table and persons who dislike each other are not.

Ramsey Numbers. The Ramsey number R(k, m) is the least integer n such that,
no matter how we color the arcs of the complete undirected graph (clique) with
n nodes using two colors, say red and blue, there is a red clique with k nodes (a
red k-clique) or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [32]. We next
show a program P that allows for deciding whether a given integer n is not
the Ramsey Number R(3, 4). By varying the input number n, we can determine
R(3, 4), as described below. Let F be the collection of facts for input predicate
arc encoding a complete graph with n nodes. P is the following program:

blue(X, Y) v red(X, Y) :- arc(X, Y).

:- red(X,Y), red(X, Z), red(Y,Z).

:- blue(X, Y), blue(X, Z), blue(Y, Z),
blue(X, W), blue(Y,W), blue(Z, W).

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint
eliminates the colorings containing a red clique (i.e., a complete graph) with
3 nodes, and the second constraint eliminates the colorings containing a blue
clique with 4 nodes. The program P ∪ F has an answer set if and only if there
is a coloring of the edges of the complete graph on n nodes containing no red
clique of size 3 and no blue clique of size 4. Thus, if there is an answer set for
a particular n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand, if
P ∪ F has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no
answer set is found is the Ramsey number R(3, 4).

The Disjunctive Datalog System DLV 289

3.3 Optimization Problems

In this section, we present two optimization problems, the first one is a classical
graph theory problem, while the second one concerns exam scheduling.

Maximal Cut. Given a graph G = (V, E) we want to compute the maximal cuts
of the graph, i.e. a partition of V in two sets V1 and V2 such that the number of
edges of G having one endpoint in V1 and one endpoint in V2 is maximal.

Suppose that the graph G is specified by facts over predicates node and edge.
Then, the following program compute the maximal cuts of G:

v1(X) v v2(X) :-node(X).
:∼ v1(X), v2(Y), notedge(X,Y). [1 : 1]
:∼ v2(X), v1(Y), notedge(X,Y). [1 : 1]

Here the disjunctive rule guesses whether node(X) is in the subset V1 or V2, thus
generating all the possible partitions of nodes into subsets. Then, the two weak
constraints allow for preferring partitions where the number of edges with both
nodes assigned to the same subset is minimum.

Exam Scheduling. Here we have to schedule the exams for several university
courses in three time slots t1, t2, and t3 at the end of the semester. In other
words, each course should be assigned exactly to one of these three time slots.
Specific instances I of this problem are provided by sets FI of facts specifying
the exams to be scheduled. An example fact is exam(cs1, lee, cs, 1) specifying the
exam identified as cs1, taken by lee, of the first year of the curriculum cs.

Several exams can be assigned to the same time slot (the number of avail-
able rooms is sufficiently high), but the scheduling has to respect the following
specifications:

S1 Two exams given by the same professor cannot run in parallel, i.e., in the
same time slot.

S2 Exams of the same curriculum should be assigned to different time slots, if
possible. If S2 is unsatisfiable for a curriculum C, one should:

(S21) first of all, minimize the overlap between exams of the same year of C,
(S22) then, minimize the overlap between exams of different years of C.

This problem can be encoded in the DLV language by the following program P :

at(Id, t1) v at(Id, t2) v at(Id, t3) :- exam(Id,P, C, Y).
:- at(Id, T), at(Id′, T), Id <> Id′, exam(Id,P, C, Y), exam(Id′, P, C′, Y ′).
:∼ at(Id,T), at(Id′, T), exam(Id,P, C, Y), exam(Id′, P ′, C, Y), Id <> Id′. [1 : 2]
:∼ at(Id,T), at(Id′, T), exam(Id,P, C, Y), exam(Id′, P ′, C, Y ′), Y <> Y ′. [1 : 1]

The disjunctive rule generates the possible assignments of exams to time slots
and the strong constraint discards the assignments of the same time slot to two
exams of the same professor, as required by the specification S1. Finally, the
two weak constraints state that exams of the same curriculum should possibly

290 M. Alviano et al.

not be assigned to the same time slot. However, the first one, which has higher
priority (level 2), states this desire for the exams of the curriculum of the same
year, while the second one, which has lower priority (level 1) states it for the
exams of the curriculum of different years.

4 DLV Implementation

A main strength of DLV is its implementation which is based on solid theo-
retical foundations, and relies on sophisticated data structures and advanced
optimization techniques. In this section we first outline the main aspects of the
DLV computation, then we give an overview of the main techniques which were
employed in the implementation. Finally, we describe the general architecture of
the system.

The computation of the answer sets in DLV is characterized by two phases,
namely program instantiation (grounding) and answer set search. The former
transforms the input program into a semantically equivalent one with no vari-
ables (ground) and the latter applies propositional algorithms on the instantiated
program to generate answer sets.

Grounding in DLV is more than a simple replacement of variables by all
possible ground terms: It partially evaluates relevant program fragments, and
efficiently produces a ground program which has precisely the same answer sets.
The size of the instantiation is a critical aspect for the efficiency of the system:
On the one hand, instantiated programs can require exponential space, on the
other hand, the answer set search can take exponential time in the size of the
grounded program. Therefore even a small reduction in the size of the generated
instantiation can yield significant performance gains.

Answer set search is then performed by the Model Generator (MG) and the
Model Checker (MC) on the program produced by the grounding. Roughly, the
MG produces “candidate” answer sets, the stability of which is subsequently
verified by the MC. MG is the non-deterministic core of the system, and it is
implemented as a backtracking search similar to the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [13] for SAT solving. Basically, starting from the
empty (partial) interpretation, the Model Generator repeatedly assumes truth-
values for atoms (branching step), subsequently computing their deterministic
consequences (propagation step). This is done until either an answer set candi-
date is found or an inconsistency is detected. Candidate answer sets are then
checked by the Model Checker module; whereas, if an inconsistency is detected,
chosen literals have to be undone. For disjunctive programs, model checking is
as hard as the problem solved by the Model Generator, while it is trivial for
non-disjunctive programs.

4.1 Main Optimization Techniques

Many optimization techniques have been incorporated into the DLV engine,
including database techniques for efficient instantiation, advanced pruning oper-
ators, look-ahead and look-back techniques for model generation, and innovative

The Disjunctive Datalog System DLV 291

techniques for answer-set checking. In the following, we recall the most relevant
ones which have been adopted in the main phases of the evaluation.

Instantiation Phase. DLV implements several relevant optimization techniques
for the instantiation, mainly descending from the databases field, aimed at reduc-
ing both the size of the instantiation and the time needed for generating it. For
instance, the DLV instantiator implements a Program Rewriting [15] strategy
descending from query optimization techniques in relational algebra which allows
for reducing in many cases the size of the program instantiation. According to
this technique, program rules are automatically rewritten by pushing projections
and selections down the execution tree as much as possible. Another rewriting-
based optimization technique used in DLV are Dynamic Magic Sets [10,1], an
extension of the Magic Sets technique originally defined for standard Datalog
for optimizing query answering over logic programs. The Magic Sets technique
rewrites the input program for identifying a subset of the program instantiation
which is sufficient for answering the query. The restriction of the instantiation is
obtained by means of additional “magic” predicates, whose extensions represent
relevant atoms w.r.t. the query. Dynamic Magic Sets, specifically conceived for
disjunctive programs, inherit the benefits provided by standard magic sets and
additionally allow for exploiting the information provided by the magic predi-
cates also during the non-deterministic answer set search.

Another group of techniques concerns the instantiation process of each rule of
the program. In particular, since computing all the possible instantiations of a
rule is, basically, analogous to computing all the answers of a conjunctive query
joining the extensions of literals of the rule body, DLV uses a Join Ordering [25]
strategy for determining an efficient evaluation order of the literals in the rule
and a main-memory On-demand Indexing technique, where a generic argument
can be indexed (established according to a heuristic), indices are computed on
demand during the evaluation. In addition, the rule instantiation procedure of
DLV implements a BackJumping algorithm [31] which exploits both seman-
tic and structural information about the rule for computing efficiently only a
relevant subset of its ground instances, avoiding the generation of “useless” in-
stances, while fully preserving the semantics of the program.

In the last few years, in order to make use of modern multi-core/multi-
processor computers, a parallel version of the DLV instantiator has been realized
based on a number of strategies [9,30] which allow for three levels of parallelism
during the instantiation process, namely, components, rules and single rule level.

Model Generation Phase. One of the main optimizations used in the model
generation phase concerns the propagation step, where an advanced pruning
operator [8,16] is applied that allows to prune the search space by combining an
extension of the well-founded operator for disjunctive programs.

The efficiency of the whole model generation process depends also on two cru-
cial features: a good heuristic (branching rule) to choose the branching literal
(i.e., the criterion determining the literal to be assumed true at a given stage
of the computation); and a smart recovery procedure for undoing the choices

292 M. Alviano et al.

causing inconsistencies. To this end, both look-ahead [18] and look-back [34,28]
techniques and heuristics have been implemented in DLV. In a lookahead heuris-
tic [18] each possible choice literal is tentatively assumed, its consequences are
computed, and some characteristic values on the result are recorded. The look-
ahead heuristics of [18] “layers” several criteria based on peculiar properties
of DLV programs, and basically drives the search towards “supported” inter-
pretations (since answer sets are supported interpretations – cf. [27,29,3]). In
look-back heuristics choices are usually made in such a way that the atoms most
involved in conflicts are chosen first. Look-back heuristics are mainly employed
in conjunction with backjumping, where the set of chosen literals that are rele-
vant for an inconsistency are detected, and the system goes back in the search
until at least one choice that caused the inconsistency is undone. The back-
jumping technique of DLV makes use of a reason calculus [34] that allows for
determining the relevance for an inconsistency; in particular, the information
about the choices (“reasons”) whose truth-values have caused truth-values of
other deterministically derived atoms is collected and used for backjumping.

Model Checking Phase. A crucial step in the computation of the answer sets
is model checking. There are two main reason for the importance of the model
checking step: the exponential number of possible models (model candidates),
and the hardness of stable model checking. Note that, when disjunction is allowed
in the head, deciding whether a given model is a stable model of a propositional
ASP program is co-NP complete in general [12]. For this phase DLV adopts a
technique based on a transformation T , which reduces stable model checking to
UNSAT, i.e., to deciding whether a given CNF formula is unsatisfiable. Thus, the
stability of a candidate answer set M for a program P is verified by calling a SAT
solver on the CNF formula obtained by applying T to P . The transformation
consumes logarithmic space and no new symbols are added.

4.2 DLV Architecture

The system architecture of DLV is shown in Figure 1. Upon startup, the input
specified by the user is parsed and transformed into the internal data structures
of the system. The input can be read from text files, but, as already mentioned,
DLV also provides an interface to relational databases via ODBC. The Intelligent
Grounder (IG) module efficiently generates a ground instantiation Ground(P)
of the input, using techniques described in Section 4.1. Note that for stratified
programs the IG module already computes the single answer set and does not
produce any instantiation. The subsequent computations, which constitute the
non-deterministic part of the DLV system, are then performed on Ground(P)
by the Model Generator and the Model Checker as outlined in Section 4.1.

Once an answer set has been found, the Model Generator may resume in
order to look for further answer sets. This process is continued until either no
more answer sets exist or an explicitly specified number of answer sets has been
computed.

The Disjunctive Datalog System DLV 293

Fig. 1. General architecture of the DLV system

Note that, in presence of weak constraints, after the instantiation of the pro-
gram, the computation is governed by the WCH module and consists of two
phases: (i) the first phase determines the cost of an optimal answer set together
with one “witnessing” optimal answer set and, (ii) the second phase computes
all answer sets having that optimal cost. It is worthwhile noting that both the
IG and the MG also have built-in support for weak constraints, which is acti-
vated (and therefore incurs higher computational cost) only if weak constraints
are present in the input. The MC, instead, does not need to provide any support
for weak constraints, since these do not affect answer-set checking at all.

5 Reasoning on Top of Databases: DLVDB

In real world applications, reasoning is often done on existing data sources;
in these contexts, current deductive database systems show some limitations,
namely: (i) the amount of data that can be handled is limited since most of
them work in main memory; (ii) the interaction with external (and autonomous)
sources of data, like databases, is not trivial and, in several cases, not allowed at
all; (iii) the efficiency of existing solutions is still not sufficient for their utilization
in complex reasoning tasks involving massive amount of data.

DLVDB comes as a database oriented extension of DLV aiming to overcome
these drawbacks. As it will be clear in the following, this extension is signifi-
cantly more complex than the simple #import/#export commands introduced
previously. In this section we provide a brief description of its main characteris-
tics, inspiring ideas, and possible applications.

5.1 Main Features

The language supported by DLVDB consists of disjunctive and unstratified pro-
grams, with aggregates and strong constraints; moreover, it provides the possibil-
ity to introduce DBMS-stored function calls directly in the programs as external
built-ins. Weak constraints and complex terms are not supported yet.

The basic idea underlying DLVDB is the translation of the input DLV program
into a query plan composed of standard SQL queries. The evaluation strategy
adopted by the system puts its basis on the sharp distinction existing between the

294 M. Alviano et al.

grounding and the model generation phases. Two distinct strategies are adopted
in case the input program is non-disjunctive and stratified or not.

If a program is non-disjunctive and stratified, it has a unique stable model
corresponding exactly to its ground instantiation. The evaluation of these pro-
grams can be done by translating each rule into a corresponding SQL statement,
and in the composition of a suitable query plan on the DBMS; the evaluation of
recursive rules is carried out with an improved semi-näıve approach.

In presence of disjunctive rules or unstratified negation in a program, its
ground instantiation is no more sufficient to compute its stable models. Then,
grounding and model generation phases must both take place. The evaluation
strategy, in this case, moves most of the grounding into the database, by the ex-
ecution of suitable SQL queries. This phase generates two kinds of data: ground
atoms (facts) valid in every stable model (and thus not requiring further elab-
oration in the model generation phase) and ground rules, summarizing possible
values for a predicate and the conditions under which these can be inferred.

Facts compose the so called solved part of the program, whereas ground rules
form the residual program. One of the main challenges in DLVDB is to keep the
smallest amount of information as possible in main memory; consequently, the
residual program generated by the system is as small as possible.

The minimal residual program is then loaded into the main memory, and the
model generation is carried out with the standard DLV techniques, described
previously.

DLVDB also ports DLV built-in predicates to databases, and extends this func-
tionality to any stored function defined in the database (in the following, we call
them external built-ins). The evaluation of such external built-ins is completely
carried out during the grounding (this is true even for disjunctive or unstrati-
fied programs). As a consequence, their handling can be carried out completely
within the SQL statements generated for the query plan. By convention, given
an external built-in #f(X1, . . . , Xn, O) only the last variable O can be consid-
ered as an output parameter, whereas all the other variables must be intended as
input for f and, thus, they must be safely bound to some other variables in the
rule body. This corresponds to the database function call f(X1, . . . , Xn) = O.
For example, consider the rule:

mergedNames(ID,Name) :- person(ID,F irstName,LastName),
#concat(FirstName,LastName,Name).

This rule is translated into:

INSERT INTO mergedNames (SELECT person.ID,
concat(person.FirstName,person.LastName) FROM person);

In order to allow for a strict coupling between DLV and DBMSs, a set of auxiliary
directives has been designed so as to instruct DLVDB on how to map intended
input/output data onto DLV predicates; details on this aspect are given in the
next section.

As for current and future work, we plan to add the following features to the
system: (i) support for complex terms, (ii) introduction of techniques for the

The Disjunctive Datalog System DLV 295

Fig. 2. Architecture of DLVDB

distribution of the evaluation on multiple databases, and (iii) introduction of
techniques for improving query answering like unfolding and static filtering.

5.2 DLV DB Architecture

Figure 2 illustrates the architecture of DLVDB. In the figure, the boxes marked
with DLV have already been developed in the DLV system. An input program P
is first analyzed by the Parser which encodes the rules in the intensional database
(IDB) and stores in the working database facts specified directly in the input
program (if any). Then the Optimizer applies basic syntactic rewritings and the
Dependency Graph Builder computes the dependency graph of the program, its
connected components and a topological ordering of these components. Finally,
the DB Instantiator module, the core of the system, is activated.

The DB Instantiator module receives the Dependency Graph (DG) generated
by the Dependency Graph Builder and some auxiliary directives. Communication
with databases is performed via ODBC. This allows DLVDB both to be inde-
pendent from a particular DBMS and to handle databases distributed over the
Internet. Only strictly necessary information is transferred from the databases
to the system in order to limit the inherent inefficiency of these operations.

If the input program is non-disjunctive and stratified, the result of the in-
stantiation step is directly fetched to the filtering module; otherwise the Ground
Rule Generator module produces the residual program. This is transferred in
main memory to the standard DLV Model Generator for the identification of
the stable models. Note that all the data derived to be true in every stable
model by the DB Instantiator are kept inside the database.

As previously pointed out, DLVDB can be coupled with external databases
through some auxiliary directives. Intuitively, the user must specify the working
database and can specify a set of table definitions; each specified table must
be mapped onto one of the program predicates. Facts can reside on separate

296 M. Alviano et al.

databases or they can be obtained as views on different tables. A USE or CREATE
directive can be used to specify input or output data, respectively. Finally, the
user can choose to copy the entire output of the evaluation or parts thereof in a
database different from the working one.

5.3 Using DLV DB for Data Integration

Data integration systems provide a transparent access to different and possibly
distributed sources. The user is provided with a uniform view of available infor-
mation by the so-called global schema, which queries can be posed upon. The
integration system is then in charge of accessing the single sources separately
and merging data relevant for the query, guided by mapping rules that specify
relationships holding between the sources and the global schema [2,23].

The global schema may contain integrity constraints (such as key dependen-
cies, inclusion dependencies, etc.). The main issues in data integration arise when
original sources independently satisfy the integrity constraints but, when they
are merged through the mappings, they become inconsistent. As an example,
consider students of two universities; each student has an unique ID in his uni-
versity, but two different students in different universities may share the same
ID. Clearly, when they are combined in a global database, the key constraint on
student IDs of the global schema will be violated.

Most of the solutions to these problems are based on database repair ap-
proaches. Basically, a repair is a new database satisfying constraints of the global
schema with minimal differences from the source data. Note that multiple re-
pairs can exist for the same database. Then, answering queries over globally
inconsistent sources consists in computing those answers that are true in every
possible repair; these are called consistent answers in the literature.

Answer Set Programming is a powerful tool in this context, as demonstrated
for example by the approaches formalized in [2,5,24]. In fact, if mappings and
constraints on the global schema are expressed as disjunctive datalog programs,
and the query Q as a union of conjunctions on the global schema, the database
repairs correspond to the stable models of the program, and the consistent an-
swers to Q correspond to the answers of Q under cautious reasoning.

In this context, DLVDB provides: (i) the needed expressiveness to build multi-
ple repairs and to perform cautious reasoning on them (not provided by standard
SQL), (ii) the capability to deal with the massive amounts of data typical of real
world data integration scenarios (not provided by available deductive systems),
and (iii) an easy way to interact with autonomous and distributed databases, a
frequent setting in data integration processes.

Example 1. To have an intuition on the simplicity to use DLVDB as a data inte-
gration engine, consider two student relations s1(SID, Name) and s2(SID, Name)

of two different universities, and assume that the global schema is designed so
as to merge these lists, but keeping SID as a key for the global database.

The Disjunctive Datalog System DLV 297

A program defining the mappings for the global relation sG and handling the
possible repairs for key constraint violations over student IDs is:

sR(ID,N) :- s1(ID, N). sR(ID,N) :- s2(ID, N).
sC(ID, N1) v sC(ID, N2) :- sR(ID,N1), sR(ID,N2), N1 �= N2.
sG(ID, N) :- sR(ID,N), not sC(ID, N).

Here the first two rules load all possible data from the sources, whereas the
third one avoids to put conflicting tuples in the global relation sG. Note that
the disjunctive rule allows the generation of the minimal repairs by singling out
conflicting tuples only.

Now, assume that s1 contains {s1(1234, John), s1(2345, Andrew)} and s2 con-
tains {s2(1234, David)}. There is globally a conflict between John and David
because they have the same ID. Then, there are two repairs for sG, namely
{sG(1234, John), sG(2345, Andrew)} and {sG(1234, David), sG(2345, Andrew)}.

If the user poses the query q1(N) :- sG(ID, N), the only consistent answer is:
Andrew, but if the user asks for q2(ID) :- sG(ID, N), the consistent answers are:
{1234, 2345}.

Finally, if the actual content of s1 and s2 is stored in two database tables
s1r on database DB1 and s2r on database DB2, in order to perform the query
evaluation on a database named workdb, the following auxiliary directives are
sufficient:
USEDB workdb:myname:mypasswd.

USE s1r MAPTO s1 FROM DB1:u1:pw1. USE s2r MAPTO s2 FROM DB2:u2:pw2.

6 Spin-Off and Applications

DLV is widely used by researchers all over the world, and, importantly, it has
stimulated quite some interest also in industry. Indeed, even if the industrial
exploitation of DLV has started fairly recently, it already has a history of ap-
plications on the industrial level.

The industrial application of DLV is mostly managed by two spin-off com-
panies of the University of Calabria, EXEURA s.r.l. and DLVSYSTEM s.r.l. .
EXEURA develops products and applications in the area of knowledge man-
agement based on DLV; while DLVSYSTEM maintains the DLV system and
provides consulting on its use.

In this section we present some of the industrial applications of DLV. In
particular, we first mention some industrial products of EXEURA incorporating
DLV as computational core. Then, we recall a number of industrial applications
based on DLV or on DLV-based products.

DLV-based Industrial Products. OntoDLV [35,36], OLEX [11,39], HıLεX [38,37],
are three Knowledge Management products of EXEURA based on DLV.

OntoDLV [35,36] is a system for ontology specification and reasoning. The lan-
guage of OntoDLV, called OntoDLP, is an extension of (disjunctive) ASP with
all the main ontology constructs including classes, inheritance, relations, and

298 M. Alviano et al.

axioms. Importantly, OntoDLV supports a powerful interoperability mechanism
with OWL, allowing the user to retrieve information from external OWL On-
tologies and to exploit this data in OntoDLP ontologies and queries. OntoDLV
facilitates the development of complex applications in a user-friendly visual envi-
ronment; it features a rich Application Programming Interface (API) [19], and it
is endowed with a robust persistency-layer for saving information transparently
on a DBMS, and it seamlessly integrates DLV [26].

OLEX [11,39] (OntoLog Enterprise Categorizer System) is a corporate clas-
sification system supporting the entire content classification life-cycle, including
document storage and organization, ontology construction, pre-processing and
classification. OLEX employs a reasoning-based approach to text classification
which combines: (i) ontologies for the formal representation of the domain knowl-
edge; (ii) pre-processing technologies for a symbolic representation of texts and
(iii) ASP as categorization rule language and DLV as ASP engine. Logic rules,
indeed, provides a natural and powerful way to encode how document contents
may relate to ontology concepts.

HıLεX [38,37] is an advanced system for ontology-based information extraction
from semi-structured and unstructured documents. HıLεX implements a semantic
approach to the information extraction problem able to deal with different doc-
ument formats (html, pdf, doc, ...). HıLεX is based on OntoDLP for describing
ontologies, and supports a language that is founded on the concept of ontol-
ogy descriptor. A “descriptor” looks like a production rule in a formal attribute
grammar, where syntactic items are replaced by ontology elements. The obtained
specification is rewritten in ASP and evaluated by means of the DLV system.

Industrial Applications. Commercial applications based on DLV include:

Team Building in the Gioia-Tauro Seaport. A system based on DLV has been
developed to automatically produce an optimal allocation of the available per-
sonnel of the international seaport of Gioia Tauro [21]. The system currently
employed by the transshipment company ICO BLG can build new teams satis-
fying a number of constraints or complete the allocation automatically when the
roles of some key employees are fixed manually.
E-Tourism. IDUM [22] is an intelligent e-tourism system. IDUM system helps
both employees and customers of a travel agency in finding the best possible
travel solution in a short time. In IDUM an ontology modeling the tourism sce-
nario was developed by using OntoDLV, and is automatically filled by processing
the offers received by a travel agent with HıLεX. IDUM mimics the behavior of
the typical employee of a travel agency by running a set of specifically devised
logic programs that reason on the information contained in the tourism ontology.
Automatic Itinerary Search. In this application, a Web portal has been conceived
for making the public transportation system of the Italian region Calabria more
accessible, including both public and private companies. The system specifies
locations and time tabling of start/transfers/arrival, as well as other information
on the trip, like walking directions, duration, etc. A set of specifically devised
ASP programs are used to build the required itineraries.

The Disjunctive Datalog System DLV 299

e-Government. An application of the OLEX system has been developed which
classifies legal acts and decrees issued by public authorities. The system was
validated with the help of the employees of the Calabrian Region administration,
and it performed very well by obtaining a mean precision of 96% on real-world
documents.
e-Medicine. OLEX has been used to develop a system capable of automatically
classifying case histories and documents containing clinical diagnoses. The sys-
tem was commissioned with the goal of conducting epidemiological analyses, by
the ULSS n.8 (which is, a local authority for health services) of the area of Asolo,
in the Italian region Veneto. The system has been deployed and is currently used
by the personnel of the ULSS of Asolo.

References

1. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog
programs. Tech. Rep. 09/2009, Dipartimento di Matematica, Università della Cal-
abria, Italy (2009), http://www.wfaber.com/research/papers/TRMAT092009.pdf

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Specifying and Querying Database Re-
pairs using Logic Programs with Exceptions. In: Larsen, H.L., Kacprzyk, J.,
Zadrozny, S., Andreasen, T., Christiansen, H. (eds.) Proceedings of the Fourth
International Conference on Flexible Query Answering Systems, FQAS 2000 (2000)

3. Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. Jour-
nal of Logic Programming 19/20, 73–148 (1994)

4. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints.
IEEE Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)

5. Cal̀ı, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in
data integration systems. In: Int. Joint Conference on Artificial Intelligence (IJCAI
2003), pp. 16–21 (2003)

6. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value inven-
tion in logic programming. Annals of Mathematics and Artificial Intelligence 50(3-
4), 333–361 (2007)

7. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory
and Implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

8. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Disjunctive
Logic Programming Systems. Fundamenta Informaticae 71(2-3), 183–214 (2006)

9. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instan-
tiation of ASP Programs. Journal of Algorithms in Cognition, Informatics and
Logics 63(1-3), 34–54 (2008)

10. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the magic-set method
for disjunctive datalog programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004.
LNCS, vol. 3132, pp. 371–385. Springer, Heidelberg (2004)

11. Cumbo, C., Iiritano, S., Rullo, P.: OLEX – A Reasoning-Based Text Classifier. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 722–725.
Springer, Heidelberg (2004)

12. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power
of Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)

http://www.wfaber.com/research/papers/TRMAT092009.pdf

300 M. Alviano et al.

13. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Commun. ACM 5, 394–397 (1962)

14. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer Set Programming. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI) 2005, Edinburgh, UK,
pp. 90–96 (August 2005)

15. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Tech-
niques for Nonmonotonic Reasoning. In: INAP Organizing Committee (ed.) Pro-
ceedings of the 7th International Workshop on Deductive Databases and Logic
Programming (DDLP 1999), pp. 135–139. Prolog Association, Japan (1999)

16. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computa-
tions. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI),
vol. 1730, pp. 177–191. Springer, Heidelberg (1999)

17. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence (2010) (accepted for publication)

18. Faber, W., Leone, N., Pfeifer, G., Ricca, F.: On look-ahead heuristics in disjunctive
logic programming. Annals of Mathematics and Artificial Intelligence 51(2-4), 229–
266 (2007)

19. Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for
an ASP-based Ontology Language. In: Vos, M.D., Schaub, T. (eds.) Proceedings of
the Workshop on Software Engineering for Answer Set Programming (SEA 2007),
pp. 56–70 (2007)

20. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

21. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An asp-based
system for team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.)
PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010)

22. Ielpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-Based System for e-Tourism.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 368–
381. Springer, Heidelberg (2009)

23. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS 2002,
pp. 233–246 (2002)

24. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., Ka�lka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data. In: Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005), pp. 915–917. ACM Press,
Baltimore (2005)

25. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-Ordering
Methods. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS
(LNAI), vol. 2173, pp. 280–294. Springer, Heidelberg (2001)

26. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3), 499–562 (2006)

27. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets,
Fixpoint Semantics and Computation. Information and Computation 135(2), 69–
112 (1997)

28. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuris-
tics in dlv: Implementation, evaluation and comparison to qbf solvers. Journal of
Algorithms in Cognition, Informatics and Logics 63(1-3), 70–89 (2008)

The Disjunctive Datalog System DLV 301

29. Marek, V.W., Subrahmanian, V.: The Relationship between Logic Program Se-
mantics and Non-Monotonic Reasoning. In: Proceedings of the 6th International
Conference on Logic Programming – ICLP 1989, pp. 600–617. MIT Press, Cam-
bridge (1989)

30. Perri, S., Ricca, F., Sirianni, M.: A parallel asp instantiator based on dlv. In:
Proceedings of the POPL 2010 Workshop on Declarative Aspects of Multicore
Programming, DAMP 2010, Madrid, Spain, January 19, pp. 73–82. ACM, New
York (2010)

31. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by
backjumping techniques. Annals of Mathematics and Artificial Intelligence 51(2-4),
195–228 (2007)

32. Radziszowski, S.P.: Small Ramsey Numbers. The Electronic Journal of Combina-
torics 1 (1994) (revision 9: July 15, 2002)

33. Ricca, F.: The DLV Java Wrapper. In: de Vos, M., Provetti, A. (eds.) Proceedings
ASP 2003 - Answer Set Programming: Advances in Theory and Implementation,
Messina, Italy, pp. 305–316 (September 2003), http://CEUR-WS.org/Vol-78/

34. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic
Programming. AI Communications – The European Journal on Artificial Intelli-
gence 19(2), 155–172 (2006)

35. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: an ASP-based system for enterprise ontologies. Journal of Logic and Com-
putation (2009)

36. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The
DLV+ System. Journal of Applied Logics 5(3), 545–573 (2007)

37. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for
Semantic Information Extraction. In: de Vos, M., Provetti, A. (eds.) Proceedings
ASP 2005 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK, pp. 248–262 (July 2005)

38. Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extrac-
tion from Web Documents. In: Manolopoulos, Y., Filipe, J., Constantopoulos, P.,
Cordeiro, J. (eds.) ICEIS (Selected Papers). LNBIP, vol. 3, pp. 194–209 (2008)

39. Rullo, P., Cumbo, C., Policicchio, V.L.: Learning rules with negation for text cat-
egorization. In: Cho, Y., Wainwright, R.L., Haddad, H., Shin, S.Y., Koo, Y.W.
(eds.) Proceedings of the 2007 ACM Symposium on Applied Computing (SAC),
Seoul, Korea, March 11-15, pp. 409–416. ACM, New York (2007)

40. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. Theory and Practice of Logic Pro-
gramming 8, 129–165 (2008)

http://CEUR-WS.org/Vol-78/

Datalog as a Query Language for
Data Exchange Systems

Marcelo Arenas1, Pablo Barceló2, and Juan L. Reutter3

1 Dept. of Computer Science, Pontificia Universidad Católica de Chile
2 Dept. of Computer Science, University of Chile
3 School of Informatics, University of Edinburgh

Abstract. The class of unions of conjunctive queries (UCQ) has been shown to
be particularly well-behaved for data exchange; its certain answers can be com-
puted in polynomial time (in terms of data complexity). However, this is not the
only class with this property; the certain answers to any DATALOG program can
also can be computed in polynomial time. The problem is that both UCQ and
DATALOG do not allow for negated atoms, while most database query languages
are equipped with negation. Unfortunately, adding an unrestricted form of nega-
tion to these languages yields to intractability of the problem of computing certain
answers.

In order to face this challenge, we have recently proposed a language, called
DATALOGC(�=) [5], that extends DATALOG with a restricted form of negation
while keeping the good properties of DATALOG, and UCQ, for data exchange. In
this article, we provide evidence in favor of the use of DATALOGC(�=) as a query
language for data exchange systems. More precisely, we introduce the syntax
and semantics of DATALOGC(�=), we present some of the fundamental results
about this language shown in [5], and we extend those results to the case of data
exchange settings that allow for constraints in the target schema. All of these
results provide justification for the use of DATALOGC(�=) in practice.

1 Introduction

Data exchange is the problem of computing an instance of a target schema, given an
instance of a source schema and a specification of the relationship between source and
target data. Although data exchange is considered to be an old database problem, its the-
oretical foundations have only been laid out very recently by the seminal work of Fagin,
Kolaitis, Miller and Popa [10]. Both the study of data exchange and schema mappings
have become an active area of research during the last few years in the database com-
munity (see e.g. [10,11,4,9,17,13,18,12]).

In its simplest form, a data exchange setting is a tripleM = (S, T, Σst), where S is
a source schema, T is a target schema, and Σst is a mapping defined as a set of source-
to-target dependencies of the form ∀x̄∀ȳ (φS(x̄, ȳ) → ∃z̄ ψT(x̄, z̄)), where φS and ψT

are conjunctions of relational atoms over S and T, respectively. Given a source instance
I , the goal in data exchange is to materialize a target instance J that is a solution for I ,
that is, J together with I satisfies each dependency in Σst.

An important issue in data exchange is that the existing specification languages usu-
ally do not completely determine the relationship between source and target data and,

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 302–320, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Datalog as a Query Language for Data Exchange Systems 303

thus, each source instance has an infinite number of solutions. This immediately raises
the question of which solution should be materialized. Initial work on data exchange
[10] has identified a class of “good” solutions, called universal solutions. In formal
terms, a solution is universal if it can be homomorphically embedded into every other
solution. It was proved in [10] that for the class of data exchange settings defined above,
a particular universal solution – called the canonical universal solution – can be com-
puted in polynomial time.

A second important issue in data exchange is query answering. Queries in the data
exchange context are posed over the target schema, and –given that there may be many
solutions for a source instance– there is a general agreement in the literature that their
semantics should be defined in terms of certain answers [14,1,15,10]. More formally,
given a data exchange settingM = (S,T, Σst) and a query Q over T, a tuple t̄ is said
to be a certain answer to Q over I under M, if t̄ belongs to the evaluation of Q over
every possible solution J for I underM.

The definition of certain answers is highly non-effective, as it involves computing
the intersection of infinitely many sets. Thus, it becomes particularly important to un-
derstand for which classes of relevant queries, the certain answers can be computed
efficiently. In particular, it becomes relevant to understand whether it is possible to
compute the certain answers to any of these classes by using some materialized solu-
tion. Fagin, Kolaitis, Miller, and Popa [10] have shown that this is the case for the class
of union of conjunctive queries (UCQ); the certain answers to each union of conjunc-
tive queries Q over a source instance I can be computed in polynomial time by directly
posing Q over the canonical universal solution for I . It is important to notice that in this
result the complexity is measured only in terms of the size of the source instances (in
particular, the data exchange setting and the query are assumed to be fixed). Thus, the
previous result is stated in terms of data complexity [20].

The good properties of UCQ for data exchange can be completely explained by the
fact that unions of conjunctive queries are preserved under homomorphisms. But this is
not the only language that satisfies this condition, as queries definable in DATALOG,
the recursive extension of UCQ, are also preserved under homomorphisms. Thus,
DATALOG retains several of the good properties of UCQ for data exchange. In par-
ticular, the certain answers to a DATALOG program Π over a source instance I can be
computed efficiently by first materializing the canonical universal solution J for I , and
then evaluating Π over J (since DATALOG programs can be evaluated in polynomial
time in the size of the data).

Unfortunately, both UCQ and DATALOG keeps us in the realm of the positive, while
most database query languages are equipped with negation. However, adding an unre-
stricted form of negation to DATALOG (and even to the class of conjunctive queries)
leads to intractability of the problem of computing certain answers. Thus, extending
DATALOG with some form of negation that, on the one hand, allows to express inter-
esting data exchange queries, and, on the other hand, retains the good properties of
DATALOG for data exchange, is a nontrivial task that must be handled carefully.

In order to face this challenge, we have recently proposed a language, called
DATALOGC(
=) [5], that extends DATALOG with a restricted form of negation while
keeping the good properties of DATALOG, and UCQ, for data exchange. In this article,

304 M. Arenas, P. Barceló, and J.L. Reutter

we provide evidence in favor of the use of DATALOGC(
=) as a query language for data
exchange systems. More precisely, we start by introducing the syntax and semantics of
DATALOGC(
=). Then we continue by presenting some of the fundamental results about
this language shown in [5], which provide justification for the use of DATALOGC(
=) in
practice. In particular, we show that the certain answers to a DATALOGC(
=) program
can be computed in polynomial time, and that the language DATALOGC(
=) can be used
to express interesting queries in the data exchange context, as every union of conjunc-
tive queries with at most one inequality or negated relational atom per disjunct can be
efficiently expressed as a DATALOGC(
=) program in the context of data exchange. We
finish the paper by extending these results to the case of data exchange settings with
constraints in the target, as explained below.

In addition to the data exchange scenario we have seen so far, it is common in the
literature to assume that target schemas come with its own set of dependencies; i.e. each
data exchange settingM = (S,T, Σst) is extended with a set Σt of dependencies over
the schema T, which are called target constraints. In that case, a target instance J is
said to be a solution for the source instance I under the setting M = (S,T, Σst, Σt),
if not only the pair (I, J) satisfies each dependency in Σst, but also J satisfies each
dependency in Σt.

As it is to be expected, the addition of target dependencies makes the fundamental
data exchange tasks more difficult, starting from the fact that it is no longer true that
solutions exist for each source instance. Even worst, it follows from [13] that even for
simple data exchange settings with target dependencies, the problem of checking for
the existence of solutions may be undecidable. In order to solve this problem, the data
exchange literature has identified a relevant class of target dependencies – those that
consist of a set of equality-generating dependencies (that subsume keys) and a weakly-
acyclic set of tuple-generating dependencies – that have the following good properties
for data exchange [10]: Checking the existence of solutions is a tractable problem;
and for every source instance that has a solution, a canonical universal solution can
be computed in polynomial time. The latter implies that, for the class of data exchange
settings extended with a set of target dependencies that consists of a set of equality-
generating dependencies and a weakly-acyclic set of tuple-generating dependencies,
the certain answers to each union of conjunctive queries Q can still be computed in
polynomial time (by simply posing Q over the canonical universal solution J for a
given source instance I , in case such J exists).

In this paper, we investigate the feasibility of using DATALOGC(
=) as a query lan-
guage for data exchange settings extended with equality-generating target dependencies
and weakly-acyclic sets of tuple-generating target dependencies. In particular, we prove
that for this class of data exchange settings, the certain answers to each DATALOGC(
=)

program can be computed in polynomial time. Also, we study the expressiveness of
DATALOGC(
=) in this context, and show that every union of conjunctive queries with at
most one inequality or negated relational atom per disjunct can be efficiently expressed
as a DATALOGC(
=) program if only equality-generating target dependencies are consid-
ered. We also show that this result fails if, in addition, target constraints are allowed to
contain weakly-acyclic sets of tuple-generating target dependencies; indeed, we prove
in the paper that there exist a data exchange setting M = (S,T, Σst, Σt), where Σt

Datalog as a Query Language for Data Exchange Systems 305

is the union of a set of equality-generating dependencies and a weakly-acyclic set of
tuple-generating dependencies, and a conjunctive query Q over T with one negated
relational atom such that the problem of computing certain answers to Q under M is
undecidable.

Organization of the paper. In Section 2, we introduce the terminology used in the pa-
per. Then, in Section 3, we define the syntax and semantics of DATALOGC(
=) programs,
and show their good properties for data exchange. In Section 4 we study the expressive
power of DATALOGC(
=) programs. Concluding remarks are given in Section 5.

2 Background

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a
fixed arity ni > 0. Let D be a countably infinite domain. An instance I of R assigns to
each relation symbol Ri of R a finite ni-ary relation RI

i ⊆ Dni . The domain dom(I) of
instance I is the set of all elements that occur in any of the relations RI

i . We often define
instances by simply listing the tuples attached to the corresponding relation symbols.

We assume familiarity with first-order logic (FO) and DATALOG. In this paper, CQ is
the class of conjunctive queries and UCQ is the class of unions of conjunctive queries.
If we extend these classes by allowing inequalities or negation (of relational atoms),
then we use superscripts 	= and ¬, respectively. Thus, for example, CQ
= is the class of
conjunctive queries with inequalities, and UCQ¬ is the class of unions of conjunctive
queries with negation. As usual in the database literature, we assume that every query
Q in UCQ
=,¬ is safe: (1) if Q1 and Q2 are disjuncts of Q, then Q1 and Q2 have the
same free variables, (2) if Q1 is a disjunct of Q and x 	= y is a conjunct of Q1, then
x and y appear in some non-negated relational atoms of Q1, (3) if Q1 is a disjunct of
Q and ¬R(x̄) is a conjunct of Q1, then every variable in x̄ appears in a non-negated
relational atom of Q1.

2.1 Data Exchange Settings and Solutions

As is customary in the data exchange literature, we consider instances with two types of
values: constants and nulls [10,11]. More precisely, let C and N be infinite and disjoint
sets of constants and nulls, respectively, and assume that D = C ∪ N. If we refer
to a schema S as a source schema, then we will assume that for every instance I of
S, it holds that dom(I) ⊆ C. On the other hand, if we refer to a schema T as a target
schema, then for every instance J of T, it holds that dom(J) ⊆ C∪N. Slightly abusing
notation, we also use C to denote a built-in unary predicate such that C(a) holds if and
only if a is a constant, that is a ∈ C.

A data exchange setting is a tupleM = (S,T, Σst), where S is a source schema, T
is a target schema, S and T do not have predicate symbols in common and Σst is a set
of FO-dependencies over S∪T (in [10] and [11] a more general class of data exchange
settings is presented, that also includes target dependencies; we consider these settings
in Section 4.1). As usual in the data exchange literature (e.g., [10,11]), we restrict the
study to data exchange settings in which Σst consists of a set of source-to-target tuple-
generating dependencies. A source-to-target tuple-generating dependency (st-tgd) is an

306 M. Arenas, P. Barceló, and J.L. Reutter

FO-sentence of the form ∀x̄∀ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where φ(x̄, ȳ) is a conjunction
of relational atoms over S and ψ(x̄, z̄) is a conjunction of relational atoms over T.1 A
source (resp. target) instance K forM is an instance of S (resp. T). We usually denote
source instances by I, I ′, I1, . . . , and target instances by J, J ′, J1,

The class of data exchange settings considered in this paper is usually called GLAV

(global-&-local-as-view) in the database literature [15]. One of the restricted forms of
this class that has been extensively studied for data integration and exchange is the class
of LAV settings. Formally, a LAV setting (local-as-view) [15] is a data exchange setting
M = (S,T, Σst), in which every st-tgd in Σst is of the form ∀x̄ (S(x̄)→ ∃z̄ ψ(x̄, z̄)),
for some S ∈ S.

An instance J of T is said to be a solution for an instance I underM = (S,T, Σst),
if the instance K = (I, J) of S ∪ T satisfies Σst, where SK = SI for every S ∈ S
and T K = T J for every T ∈ T. IfM is clear from the context, we shall say that J is a
solution for I .

Example 1. Let M = (S,T, Σst) be a data exchange setting. Assume that S consists
of one binary relation symbol P , and T consists of two binary relation symbols Q and
R. Further, assume that Σst consists of st-tgds P (x, y) → Q(x, y) and P (x, y) →
∃zR(x, z). ThenM is also a LAV setting.

Let I = {P (a, b), P (a, c)} be a source instance. Then J1 = {Q(a, b), Q(a, c),
R(a, b)} and J2 = {Q(a, b), Q(a, c), R(a, n)}, where n ∈ N, are solutions for I . In
fact, I has infinitely many solutions. �

2.2 Universal Solutions and Canonical Universal Solution

It has been argued in [10] that the preferred solutions in data exchange are the universal
solutions. In order to define this notion, we first have to revise the concept of homo-
morphism in data exchange. Let K1 and K2 be instances of the same schema R. A
homomorphism h from K1 to K2 is a function h : dom(K1) → dom(K2) such that:
(1) h(c) = c for every c ∈ C ∩ dom(K1), and (2) for every R ∈ R and every tuple
ā = (a1, . . . , ak) ∈ RK1 , it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Notice that
this definition of homomorphism slightly differs from the usual one, as the additional
constraint that homomorphisms are the identity on the constants is imposed.

Let M be a data exchange setting, I a source instance and J a solution for I under
M. Then J is a universal solution for I under M, if for every solution J ′ for I under
M, there exists a homomorphism from J to J ′.

Example 2 (Example 1 continued). Solution J2 is a universal solution for I , while J1

is not since there is no homomorphism from J1 to J2. �

It follows from [10] that for the class of data exchange settings studied in this paper,
every source instance has universal solutions. In particular, one of these solutions -
called the canonical universal solution - can be constructed in polynomial time from
the given source instance (assuming the setting to be fixed), using the chase procedure
[6] (see e.g. [10]).

1 We usually omit universal quantification in front of st-tgds and express them simply as
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).

Datalog as a Query Language for Data Exchange Systems 307

Remark: Notice that each target instance J ′ that contains the canonical universal solu-
tion J of a source instance I , is also a solution for I . Thus, each source instance has
infinitely many solutions.

2.3 Certain Answers

Queries in a data exchange setting M = (S,T, Σst) are posed over the target schema
T. Given that there are infinitely many solutions for a given source instance I with
respect to M, the standard approach in the data exchange literature is to define the
semantics of the query based on the notion of certain answers [14,1,15,10].

Let I be a source instance. For a query Q of arity n ≥ 0, in any of our logical
formalisms, we denote by certainM(Q, I) the set of certain answers of Q over I under
M, that is, the set of n-tuples t̄ such that t̄ ∈ Q(J), for every J that is a solution
for I under M. If n = 0, then we say that Q is Boolean, and certainM(Q, I) =
true if and only if Q holds for every J that is a solution for I under M. We write
certainM(Q, I) = false if it is not the case that certainM(Q, I) = true.

Let M = (S,T, Σst) be a data exchange setting and Q a query over T. The main
problem studied in this paper is:

PROBLEM : CERTAIN-ANSWERS(M, Q).
INPUT : A source instance I and a tuple t̄ of constants from I .
QUESTION : Does t̄ ∈ certainM(Q, I)?

3 Extending Query Languages for Data Exchange: DATALOGC(�=)

Programs

The class of unions of conjunctive queries is particularly well-behaved for data ex-
change; the certain answers of each union of conjunctive queries Q can be computed by
directly posing Q over an arbitrary universal solution [10]. More formally, given a data
exchange setting M, a source instance I , a universal solution J for I under M, and
a tuple t̄ of constants, t̄ ∈ certainM(Q, I) if and only if t̄ ∈ Q(J). This implies that
for each data exchange setting M, the problem CERTAIN-ANSWERS(M, Q) can be
solved in polynomial time if Q is a union of conjunctive queries (because the canonical
universal solution for I can be computed in polynomial time and Q can be evaluated in
polynomial time in the size of the data).

The fact that the certain answers of a union of conjunctive queries Q can be com-
puted by posing Q over a universal solution, can be fully explained by the fact that Q is
preserved under homomorphisms, that is, for every pair of instances J, J ′, homomor-
phism h from J to J ′, and tuple ā of elements in J , if ā ∈ Q(J), then h(ā) ∈ Q(J ′).
But UCQ is not the only class of queries that is preserved under homomorphisms; also
DATALOG, the recursive extension of the class UCQ, has this property. Since each
DATALOG program can be evaluated in polynomial time in the size of the data, we
have that the certain answers to each DATALOG query Q can be obtained efficiently by
first computing a universal solution J , and then evaluating Q over J . Thus, DATALOG

preserves the good properties of UCQ for data exchange.

308 M. Arenas, P. Barceló, and J.L. Reutter

Unfortunately, both UCQ and DATALOG keep us in the realm of the positive (i.e.
negated atoms are not allowed in queries), while most database query languages are
equipped with negation. It seems then natural to extend UCQ (or DATALOG) in the
context of data exchange with some form of negation. Indeed, query languages with
different forms of negation have been considered in the data exchange context [3,8], as
they can be used to express interesting queries. Next, we show an example of this fact.

Example 3. Consider a data exchange setting with S = {E(·, ·), A(·), B(·)}, T =
{G(·, ·), P (·), R(·)} and

Σst = {E(x, y)→ G(x, y), A(x) → P (x), B(x) → R(x)}.
Notice that if I is a source instance, then the canonical universal solution CAN(I) for I
is such that EI = GCAN(I), AI = P CAN(I) and BI = RCAN(I).

Let Q(x) be the following UCQ¬ query over T:

∃x∃y (P (x) ∧R(y) ∧G(x, y)) ∨ ∃x∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

It is not hard to prove that for every source instance I , certainM(Q, I) = true if and
only if there exist elements a, b ∈ dom(CAN(I)) such that a belongs to P CAN(I), b
belongs to RCAN(I) and (a, b) belongs to the transitive closure of the relation GCAN(I).
That is, certainM(Q, I) = true if and only if there exist elements a, b ∈ dom(I) such
that a belongs to AI , b belongs to BI and (a, b) belongs to the transitive closure of the
relation EI . �

It is well-known (see e.g. [16]) that there is no union of conjunctive queries (indeed,
not even an FO-query) that defines the transitive closure of a graph. Thus, if Q and M
are as in the previous example, then there is no union of conjunctive queries Q′ such
that Q′(CAN(I)) = certainM(Q′, I) = certainM(Q, I), for every source instance I .
It immediately follows that negated relational atoms add expressive power to the class
UCQ in the context of data exchange (see also [4]). And not only that, it follows from
[10] that inequalities also add expressive power to UCQ in the context of data exchange.

Unfortunately, adding an unrestricted form of negation to DATALOG (or even to
CQ) not only destroys preservation under homomorphisms, but also easily leads to in-
tractability of the problem of computing certain answers [1,10]. More precisely, there is
a settingM and a query Q in CQ
= such that the problem CERTAIN-ANSWERS(M, Q)
cannot be solved in polynomial time (unless PTIME = NP). In particular, the set of
certain answers of Q cannot be computed by evaluating Q over a polynomial-time com-
putable universal solution.

3.1 DATALOGC(�=) Programs

We have recently proposed a language DATALOGC(
=) [5] that adds negation in a natural
way to DATALOG, while keeping the good properties of this language for data exchange.
We define this language below.

Definition 1 (DATALOGC(
=) programs). A constant-inequality Datalog rule is a rule
of the form:

S(x̄) ← S1(x̄1), . . . , S�(x̄�),C(y1), . . . ,C(ym), u1 	= v1, . . . , un 	= vn, (1)

Datalog as a Query Language for Data Exchange Systems 309

where

(a) S, S1, . . ., S� are (non necessarily distinct) predicate symbols,
(b) every variable in x̄ is mentioned in some tuple x̄i (i ∈ [1, �]),
(c) every variable yj (j ∈ [1, m]) is mentioned in some tuple x̄i (i ∈ [1, �]), and
(d) every variable uj (j ∈ [1, n]), and every variable vj , is equal to some variable yi

(i ∈ [1, m]).

Further, a constant-inequality Datalog program (DATALOGC(
=) program) Π is a finite
set of constant-inequality Datalog rules.

For example, the following is a constant-inequality Datalog program:

R(x, y) ← T (x, z), S(z, y),C(x),C(z), x 	= z

S(x) ← U(x, u, v, w),C(x),C(u),C(v),C(w), u 	= v, u 	= w

For a rule of the form (1), we say that S(x̄) is its head. The set of predicates of a
DATALOGC(
=) program Π , denoted by Pred(Π), is the set of predicate symbols men-
tioned in Π , while the set of intensional predicates of Π , denoted by IPred(Π), is the
set of predicates symbols R ∈ Pred(Π) such that R(x̄) appears as the head of some
rule of Π .

Assume that Π is a DATALOGC(
=) program and I is a database instance of the
relational schema Pred(Π). Then T (I) is an instance of Pred(Π) such that for every
R ∈ Pred(Π) and every tuple t̄, it holds that t̄ ∈ RT (I) if and only if there exists a rule
R(x̄) ← R1(x̄1), . . . , R�(x̄�),C(y1), . . . ,C(ym), u1 	= v1, . . . , un 	= vn in Π and a
variable assignment σ such that (a) σ(x̄) = t̄, (b) σ(x̄i) ∈ RI

i , for every i ∈ [1, �], (c)
σ(yi) is a constant, for every i ∈ [1, m], and (d) σ(ui) 	= σ(vi), for every i ∈ [1, n].
Operator T is used to define the semantics of constant-inequality Datalog programs.
More precisely, define T 0

Π(I) to be I and T n+1
Π (I) to be T (T n

Π (I))∪ T n
Π (I), for every

n ≥ 0. Then the evaluation of Π over I is defined as T ∞
Π (I) =

⋃
n≥0 T n

Π (I).
A constant-inequality Datalog program Π is said to be defined over a relational

schema R if R = Pred(Π) � IPred(Π) and ANSWER ∈ IPred(Π). Given an in-
stance I of R and a tuple t̄ in dom(I)n, where n is the arity of ANSWER, we say that
t̄ ∈ Π(I) if t̄ ∈ ANSWERT ∞

Π (I0), where I0 is an extension of I defined as: RI0 = RI

for R ∈ R and RI0 = ∅ for R ∈ IPred(Π).

3.2 Certain Answers for DATALOGC(�=) Programs

As we mentioned before, the homomorphisms in data exchange are not arbitrary; they
are the identity on the constants. Thus, given that inequalities are witnessed by con-
stants in DATALOGC(
=) programs, we have that these programs are preserved under
homomorphisms. From this we conclude that the certain answers to a DATALOGC(
=)

program Π can be computed by directly evaluating Π over a universal solution. Thus,
DATALOGC(
=) programs preserve the good properties of DATALOG, and UCQ, for data
exchange.

Proposition 1 ([5]). Let M = (S,T, Σst) be a data exchange setting, I a source
instance, J a universal solution for I underM, and Π a DATALOGC(
=) program over
T. Then for every tuple t̄ of constants, t̄ ∈ certainM(Π, I) iff t̄ ∈ Π(J).

310 M. Arenas, P. Barceló, and J.L. Reutter

Thus, the certain answers of a DATALOGC(
=) program Π over I can be computed by
directly posing Π over CAN(I) and discarding tuples that contain nulls. This implies
that for each data exchange setting M, the problem CERTAIN-ANSWERS(M, Π) can
be solved in polynomial time if Π is a DATALOGC(
=) program (since CAN(I) can be
computed in polynomial time and Π can be evaluated in polynomial time in the size of
the data).

Corollary 1. The problem CERTAIN-ANSWERS(M, Π) can be solved in polynomial
time, for every data exchange settingM and DATALOGC(
=) program Π .

4 On the Expressive Power of DATALOGC(�=) Programs

We have shown in [5] that DATALOGC(
=) programs are capable of expressing relevant
data exchange properties. In particular, these programs are expressive enough to capture
the class of unions of conjunctive queries with at most one negated atom per disjunct.
This class has proved to be relevant for data exchange, as its restriction with inequalities
(that is, the class of queries in UCQ
= with at most one inequality per disjunct) not only
can express relevant queries but also is one of the few known extensions of the class
UCQ for which the problem of computing certain answers is tractable [10].

Theorem 1 ([5]). Let Q be a UCQ
=,¬ query over a schema T, with at most one in-
equality or negated relational atom per disjunct. Then there exists a DATALOGC(
=)

program ΠQ over T such that for every data exchange setting M = (S,T, Σst) and
instance I of S, certainM(Q, I) = certainM(ΠQ, I). Moreover, ΠQ can be effectively
constructed from Q in polynomial time.

We sketch the proof of this theorem by means of an example, since we prove a stronger
result later (Theorem 4).

Example 4. Let M be a data exchange setting such that S = {E(·, ·), A(·)}, T =
{G(·, ·), P (·)} and

Σst = {E(x, y)→ ∃z(G(x, z) ∧G(z, y)), A(x) → P (x)}.
Also, let Q(x) be the following query in UCQ
=,¬:

(P (x) ∧G(x, x)) ∨ ∃y (G(x, y) ∧ x 	= y) ∨ ∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

We construct a DATALOGC(
=) program ΠQ such that certainM(Q, I) =
certainM(ΠQ, I). The set of intensional predicates of the DATALOGC(
=) program ΠQ

is {U1(·, ·, ·), U2(·, ·), DOM(·), EQUAL(·, ·, ·), ANSWER(·)}. The program ΠQ over T
is defined as follows.

First, the program collects in DOM(x) all the elements that belong to the active
domain of the instance of T where ΠQ is evaluated:

DOM(x) ← G(x, z) (2)

DOM(x) ← G(z, x) (3)

DOM(x) ← P (x) (4)

Datalog as a Query Language for Data Exchange Systems 311

Second, the program ΠQ includes the following rules that formalize the idea that
EQUAL(x, y, z) holds if x and y are the same elements:

EQUAL(x, x, z) ← DOM(x), DOM(z) (5)

EQUAL(x, y, z)← EQUAL(y, x, z) (6)

EQUAL(x, y, z)← EQUAL(x, w, z), EQUAL(w, y, z) (7)

Predicate EQUAL includes an extra argument that keeps track of the element z where the
query is being evaluated. Notice that we cannot simply use the rule EQUAL(x, x, z) ←
to say that EQUAL is reflexive, as DATALOGC(
=) programs are safe, i.e. every variable
that appears in the head of a rule also has to appear in its body.

Third, ΠQ includes the rules:

U1(x, y, z)← G(x, y), DOM(z) (8)

U2(x, z) ← P (x), DOM(z) (9)

U1(x, y, z)← U1(u, v, z), EQUAL(u, x, z), EQUAL(v, y, z) (10)

U2(x, z) ← U2(u, z), EQUAL(u, x, z) (11)

Intuitively, the first two rules create in U1 and U2 a copy of G and P , respectively,
but again with an extra argument for keeping track of the element where ΠQ is being
evaluated. The last two rules allow to replace equal elements in the interpretation of U1

and U2.
Fourth, ΠQ includes the following rule for the third disjunct of Q(x):

U1(x, y, x) ← U1(x, z, x), U1(z, y, x) (12)

Intuitively, this rule expresses that if a is an element that does not belong to the set of
certain answers to Q(x), then for every pair of elements b and c such that (a, b) and
(b, c) belong to the interpretation of G, it must be the case that (a, c) also belongs to it.

Fifth, ΠQ includes the following rule for the second disjunct of Q(x):

EQUAL(x, y, x) ← U1(x, y, x) (13)

Intuitively, this rule expresses that if a is an element that does not belong to the set of
certain answers to Q(x), then for every element b such that the pair (a, b) belongs to
the interpretation of G, it must be the case that a = b.

Finally, ΠQ includes two rules for collecting the certain answers to Q(x):

ANSWER(x) ← U2(x, x), U1(x, x, x),C(x) (14)

ANSWER(x) ← EQUAL(y, z, x),C(x),C(y),C(z), y 	= z (15)

Intuitively, rule (14) says that if a constant a belongs to the interpretation of P and
(a, a) belongs to the interpretation of G, then a belongs to the set of certain answers to
Q(x). Indeed, this means that if J is an arbitrary solution where the program is being
evaluated, then a belongs to the evaluation of the first disjunct of Q(x) over J .

Rule (15) says that if in the process of evaluating ΠQ with parameter a, two distinct
constants b and c are declared to be equal (EQUAL(b, c, a) holds), then a belongs to

312 M. Arenas, P. Barceló, and J.L. Reutter

the set of certain answers to Q(x). We show the application of this rule with an ex-
ample. Let I be a source instance, and assume that (a, n) and (n, b) belong to G in
the canonical universal solution for I , where n is a null value. By applying rule (2),
we have that DOM(a) holds in CAN(I). Thus, we conclude by applying rule (8) that
U1(a, n, a) and U1(n, b, a) hold in CAN(I) and, therefore, we obtain by using rule (13)
that EQUAL(a, n, a) holds in CAN(I). Notice that this rule is trying to prove that a
is not in the certain answers to Q(x) and, hence, it forces n to be equal to a. Now
by using rule (6), we obtain that EQUAL(n, a, a) holds in CAN(I). But we also have
that EQUAL(b, b, a) holds in CAN(I) (by applying rules (3) and (5)). Thus, by apply-
ing rule (10), we obtain that U1(a, b, a) holds in CAN(I). Therefore, by applying rule
(13) again, we obtain that EQUAL(a, b, a) holds in CAN(I). This time, rule (13) tries to
prove that a is not in the certain answers to Q(x) by forcing constants a and b to be the
same value. But this cannot be the case since a and b are distinct constants and, thus,
rule (15) is used to conclude that a is in the certain answers to Q(x). It is important to
notice that this conclusion is correct. If J is an arbitrary solution for I , then we have
that there exists a homomorphism h : CAN(I) → J . Given that a and b are distinct
constants, we have that a 	= h(n) or b 	= h(n). It follows that there is an element c in J
such that a 	= c and the pair (a, c) belongs to the interpretation of G. Thus, we conclude
that a belongs to the evaluation of the second disjunct of Q(x) over J .

It is now an easy exercise to show that the set of certain answers to Q(x) coincide
with the set of certain answers to ΠQ, for every source instance I . �

As an immediate corollary to Theorem 1 and Corollary 1 we obtain the following:

Corollary 2. The problem CERTAIN-ANSWERS(M, Q) can be solved in polynomial
time, for every data exchange settingM and every union of conjunctive queries Q with
at most one inequality or negated relational atom per disjunct.

We note that this slightly generalizes one of the polynomial time results in [10], which
is stated for the class of unions of conjunctive queries with at most one inequality per
disjunct. The proof of the result in [10] uses different techniques, based on the chase
procedure.

It is important to notice that Corollary 2 is, in a sense, optimal, as there is a LAV

data exchange setting M and a conjunctive query with two inequalities, such that
CERTAIN-ANSWERS(M, Q) is CONP-complete [19]. This shows that Theorem 1 can-
not be further extended to deal with arbitrary conjunctive queries with negated atoms.

A natural question at this point is whether the problem CERTAIN-ANSWERS(M, Q)
is PTIME-complete for some data exchange settingM and union of conjunctive queries
Q with at most one negated atom per disjunct. The following proposition shows that
this is indeed the case.

Proposition 2 ([5]). There exist a LAV data exchange setting M and a Boolean con-
junctive query Q with one inequality such that CERTAIN-ANSWERS(M, Q) is PTIME-
complete, under LOGSPACE reductions.

The previous result establishes a difference with the class of unions of conjunctive
queries (UCQ), for which the problem of computing certain answers under a setting
M can be solved in LOGSPACE.

Datalog as a Query Language for Data Exchange Systems 313

4.1 Adding Target Dependencies

In addition to the simple data exchange scenario we have seen so far, it is common in
the literature to assume that target schemas come with its own set of dependencies Σt.
Formally, data exchange settings with target dependencies (as presented, for instance,
in [10,11]) are tuples of the form M = (S,T, Σst, Σt), where S, T and Σst are as
before, and Σt is the union of (1) a set of tuple-generating dependencies (tgds), i.e.
dependencies of the form ∀x̄∀ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where φ(x̄, ȳ) and ψ(x̄, z̄) are
conjunctions of atomic formulas in T, and (2) a set of equality-generating dependencies
(egds), i.e. dependencies of the form ∀x̄ (φ(x̄) → xi = xj), where φ(x̄) is a conjunction
of atomic formulas in T, and xi, xj are variables among those in x̄.2

For settings with target dependencies, the solutions also have to satisfy the depen-
dencies in Σt. That is, if M = (S,T, Σst, Σt) is a data exchange setting and I is an
instance of S, then an instance J of T is a solution for I if not only the pair (I, J)
satisfies each dependency in Σst, but also J satisfies each dependency in Σt.

As it is to be expected, the addition of target dependencies makes the fundamental
data exchange tasks more difficult, starting from the fact that it is no longer true that
solutions exist for each source instance. Even worst, it follows from [13] that there
exists a data exchange settingM = (S,T, Σst, Σt) with target dependencies such that
the problem of checking for the existence of solutions underM is undecidable.

In order to overcome the aforementioned limitations, the data exchange community
has identified a relevant class of target dependencies that has good properties for data
exchange. To define this class, we need to introduce some terminology. Assume that Σ
is a set of tgds over a schema T. Then the dependency graph GΣ of Σ is defined as
follows:

(1) add a node (R, i) to GΣ for every relation R ∈ T and i ∈ {1, . . . , n}, where n is
the arity of R;

(2) add an edge (R, i) → (T, j) to GΣ if there exist a tgd φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) in Σ
and a variable x such that x is mentioned in x̄, x occurs in the i-th attribute of R in
φ and x occurs in the j-th attribute of T in ψ;

(3) add a special edge (R, i) →∗ (T, j) to GΣ if there exists a tgd φ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄) in Σ such that a variable x occurs in the i-th attribute of R in φ and
an existentially quantified variable z occurs in the j-th attribute of T in ψ.

Moreover, Σ is said to be weakly acyclic if the dependency graph GΣ of Σ does not
have a cycle going through an edge labeled ∗ [10]. Next theorem shows that the class
of settings with weakly acyclic sets of tgds has good properties for data exchange.

Theorem 2 ([10]). Let M = (S,T, Σst, Σt) be a data exchange setting, where Σt is
the union of a set of egds and a weakly-acyclic set of tgds. Then there is a polynomial
time algorithm such that for every source instance I , it first decides whether a solution
for I exists, and if that is the case, it computes a canonical universal solution for I in
polynomial time.

2 As usual, we omit universal quantifiers in front of tgds and egds.

314 M. Arenas, P. Barceló, and J.L. Reutter

The latter implies that for the class of data exchange settings whose target dependencies
consist of a set of equality-generating dependencies and a weakly-acyclic set of tuple-
generating dependencies, the certain answers to each union of conjunctive queries Q for
a source instance I , can be computed in polynomial time by simply posing Q over the
canonical universal solution J for I and then discarding the tuples that contain nulls (in
case such a solution J exists). Notice, however, that using exactly the same argument
one can prove the stronger result that certain answers to DATALOGC(
=) programs can be
computed in polynomial time under the class of settings specified in Theorem 2. This is
because DATALOGC(
=) programs are preserved under data exchange homomorphisms
and can be evaluated in polynomial time in the size of the data. Indeed,

Corollary 3. Let M = (S,T, Σst, Σt) be a data exchange setting, where Σt is the
union of a set of egds and a weakly acyclic set of tgds, and let Π be a DATALOGC(
=)

program over T. Then the problem CERTAIN-ANSWERS(M, Π) can be solved in poly-
nomial time.

Let us recall Corollary 2. It says that the certain answers to a union of conjunctive
queries with at most one negated atom per disjunct, can be computed in polynomial
time for settings without target dependencies. A natural question at this point is whether
this positive result continues to hold if target schemas are allowed to contain dependen-
cies of the form specified in Theorem 2. The following result shows that not only this
is not the case, but also that the problem of computing certain answers to unions of
conjunctive queries with at most one negated atom per disjunct is undecidable for this
class of settings

Theorem 3. There exists a data exchange setting M = (S,T, Σst, Σt), where Σt is
the union of a set of egds and a weakly-acyclic set of tgds, and a Boolean CQ¬ query
Q over T with a single negated relational atom such that CERTAIN-ANSWERS(M, Q)
is undecidable.

Proof. Let S� be a source schema consisting of a ternary relation P , T � a target schema
consisting of a ternary relation R andM� = (S�, T �, Σ�

st, Σ
�
t) a data exchange setting,

where Σ�
st consists of the following dependency:

P (x, y, x) → R(x, y, z),

and Σ�
t consists of the egd:

R(x, y, z) ∧R(x, y, w) → z = w,

and the following tgds:

R(x, y, u)∧ R(y, z, v) ∧R(u, z, w)→ R(x, v, w),
R(x, y, z)∧ R(x′, y′, z′)→ ∃w1∃w2∃w3∃w4∃w5∃w6∃w7∃w8∃w9 (R(x, x′, w1) ∧

R(x, y′, w2) ∧R(x, z′, w3) ∧R(y, x′, w4) ∧R(y, y′, w5) ∧
R(y, z′, w6) ∧R(z, x′, w7) ∧R(z, y′, w8) ∧R(z, z′, w9)).

Datalog as a Query Language for Data Exchange Systems 315

In [13], it was proved that the problem of verifying, given an instance I of S�, whether
there exists at least one solution for I under M� is undecidable. Next we show how
to reduce this problem to the complement of our problem. More precisely, we define a
data exchange settingM = (S,T, Σst, Σt), where S = S� and Σt is the union of a set
of egds and a weakly-acyclic set of tgds, and a Boolean CQ¬ query Q over T with a
single negated relational atom such that for every instance I of S�: There exists at least
one solution for I under M� if and only if certainM(Q, I) = false. From this, we
conclude that CERTAIN-ANSWERS(M, Q) is undecidable.

Let S = S�, T = T� ∪ {S}, where S is a ternary predicate, Σst = Σ�
st and Σt be a

set of target dependencies consisting of the egd:

R(x, y, z) ∧R(x, y, w) → z = w,

and the following tgds:

R(x, y, u)∧ R(y, z, v) ∧R(u, z, w)→ R(x, v, w),
R(x, y, z)∧ R(x′, y′, z′)→ ∃w1∃w2∃w3∃w4∃w5∃w6∃w7∃w8∃w9 (S(x, x′, w1) ∧

S(x, y′, w2) ∧ S(x, z′, w3) ∧ S(y, x′, w4) ∧ S(y, y′, w5) ∧
S(y, z′, w6) ∧ S(z, x′, w7) ∧ S(z, y′, w8) ∧ S(z, z′, w9)).

Moreover, let Q be the following Boolean query:

∃x∃y∃z (S(x, y, z) ∧ ¬R(x, y, z)).

It is important to notice that the set of tgds in Σ�
t is not weakly acyclic, while the set

of tgds in Σt is weakly acyclic. Next we show that for every instance I of S�, it holds
that there exists at least one solution for I under M� if and only if certainM(Q, I) =
false.

(⇒) Let I be an instance of S� and J� a solution for I under M�. Define J as the
following instance of T: RT = RT �

and ST = RT �

. Given that (I, J�) satisfies Σ�
st

and J� satisfies Σ�
t , we have that (I, J) satisfies Σst and J satisfies Σt and, therefore,

J is a solution for I underM. Thus, given that Q does not hold in J (since RT = ST),
we conclude that certainM(Q, I) = false.

(⇐) Assume that I is an instance of S� such that certainM(Q, I) = false. Then
let J be a solution of I underM such that Q does not hold in J , and J� an instance of
T� defined as RT �

= RT . Given that (I, J) satisfies Σst, we have that (I, J�) satisfies
Σ�

st. Furthermore, given that Q does not hold in J , we have that J satisfies dependency:

∀x∀y∀z (S(x, y, z)→ R(x, y, z)).

Thus, given that J satisfies Σt, we conclude that J� satisfies Σ�
t . Hence, we have that

J� is a solution for I under M�, from which we deduce that there exists at least one
solution for I underM�. This concludes the proof of the theorem. �

A natural way to ensure that the problem of computing certain answers to unions of
conjunctive queries with at most one negated atom per disjunct remains tractable, in

316 M. Arenas, P. Barceló, and J.L. Reutter

the presence of target dependencies, is by restricting the class of target dependencies
allowed. Indeed, we prove below that this is the case for the class of data exchange
settings that only allow egds in the target. The interesting part of this is not the result
itself – which is a slight extension of a result in [10] – but the fact that our proof relies
again on the translation of the problem of computing certain answers for this class
of queries, under the settings described above, into the problem of computing certain
answers to DATALOGC(
=) programs.

A naı̈ve approach to prove this result would be the following. Let M =
(S,T, Σst, Σt) be a data exchange setting, where Σt consists of a set of equality-
generating dependencies, and letM′ be the setting obtained fromM by removing Σt.
As we have mentioned above, for each union of conjunctive queries Q, with at most one
inequality or negated relational atom per disjunct, one can construct a DATALOGC(
=)

program ΠQ such that the certain answers to Q under M′ coincide with the certain
answers to ΠQ underM′. Then one could implement the following algorithm for com-
puting certain answers to Q underM: Given a source instance I , compute the canonical
universal solution J for I under M (in case such a solution exists); evaluate ΠQ over
J ; discard tuples that contain nulls.

Unfortunately, this simple algorithm is not correct for the following reason. Evaluat-
ing the program ΠQ over J may force some elements in J to be equal, which, in turn,
may imply some of the dependencies in Σt to be triggered in the process. This suggests
that if one wants to compute the certain answers to Q (underM) with a DATALOGC(
=)

program ΠQ, then ΠQ must take into consideration not only Q but also Σt. Indeed, we
show next that for each union of conjunctive queries, with at most one negated atom
per disjunct, it is possible to construct a DATALOGC(
=) program ΠQ,Σt such that the
certain answers to Q and to ΠQ,Σt (underM) coincide. Formally,

Theorem 4. Let Q be a UCQ
=,¬ k-ary query over a schema T (k ≥ 0), with at most
one inequality or negated relational atom per disjunct. Further, let Σt be a set of egds
over T. Then there exists a DATALOGC(
=) program ΠQ,Σt over T such that for every
data exchange settingM = (S,T, Σst, Σt), instance I of S and tuple ā ∈ dom(I)k:

ā ∈ certainM(Q, I) if and only if ā ∈ certainM(ΠQ,Σt , I).

Moreover, ΠQ,Σt can be effectively constructed from Q and Σt in polynomial time.

Proof. Assume that T = {T1, . . . , Tk}, where each Ti has arity ni > 0, that Q(x̄) =
Q1(x̄) ∨ · · · ∨Q�(x̄), where x̄ = (x1, . . . , xm) and each Qi(x̄) is a conjunctive query
with at most one inequality or negated relational atom, and that Σt = {α1, . . . , αq} is
a set of egds.

Then the set of intensional predicates of DATALOGC(
=) program ΠQ,Σt is

{U1, . . . , Uk, DOM, EQUAL, ANSWER},

where each Ui (i ∈ [1, k]) has arity ni + m, DOM has arity 1, EQUAL has arity 2 + m
and ANSWER has arity m. Moreover, the set of rules of ΠQ,Σt is defined as follows.

Datalog as a Query Language for Data Exchange Systems 317

– For every predicate Ti ∈ T, ΠQ,Σt includes the following k rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni)
DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni)

· · ·
DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x)

– ΠQ,Σt includes the following rules for predicate EQUAL:

EQUAL(x, x, z1, . . . , zm)← DOM(x), DOM(z1), . . . , DOM(zm)
EQUAL(x, y, z1, . . . , zm)← EQUAL(y, x, z1, . . . , zm)
EQUAL(x, y, z1, . . . , zm)← EQUAL(x, w, z1, . . . , zm), EQUAL(w, y, z1, . . . , zm)

– For every predicate Ui, ΠQ,Σt includes the following rules:

Ui(y1, . . . , yni , z1, . . . , zm)← Ti(y1, . . . , yni), DOM(z1), . . . , DOM(zm)
Ui(y1, . . . , yni , z1, . . . , zm)← Ui(w1, . . . , wni , z1, . . . , zm),

EQUAL(w1, y1, z1, . . . , zm), . . . ,
EQUAL(wni , yni , z1, . . . , zm)

– Let i ∈ [1, �]. First, assume that Qi(x̄) does not contain any negated atom. Then
Qi(x̄) is equal to ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)), where pj ∈ [1, k] and every variable
in ūj is mentioned in either ū or x̄, for every j ∈ [1, n]. In this case, program ΠQ,Σt

includes the following rule:

ANSWER(x̄)← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(x1), . . . ,C(xm) (16)

Notice that this rule is well defined since the set x̄ is the set of free variables of
∃ū (Tp1(ū1)∧ · · · ∧ Tpn(ūn)). Second, assume that Qi(x̄) contains a negated rela-
tional atom. Then Qi(x̄) is equal to ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)∧¬Tpn+1(ūn+1)),
where pj ∈ [1, k] and every variable in ūj is mentioned in either ū or x̄, for every
j ∈ [1, n + 1]. In this case, program ΠQ,Σt includes the following rule:

Upn+1(ūn+1, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄). (17)

This rule is well defined since ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)) is a
safe query. Finally, assume that Qi(x̄) contains an inequality. Then Qi(x̄) is equal
to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 	= v2), where pj ∈ [1, k] and every variable
in ūj is mentioned in either ū or x̄, for every j ∈ [1, n], and v1, v2 are mentioned
in ū or x̄. In this case, program ΠQ,Σt includes the following rule:

EQUAL(v1, v2, x̄) ← Up1(ū1, x̄), . . . , Upn(ūn, x̄) (18)

We note that the rule above is well defined since ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)∧v1 	=
v2) is a safe query.

318 M. Arenas, P. Barceló, and J.L. Reutter

– For each i ∈ [1, q], assume that dependency αi is of form (Tp1(x̄1) ∧ · · · ∧
Tpn(x̄n)→ u = v), where each pj ∈ [1, k] and variables u and v are mentioned in
x̄1, . . . , x̄n. Then the program ΠQ,Σt includes the following rule:

EQUAL(u, v, x̄) ← Up1(x̄1, x̄), . . . , Upn(x̄n, x̄) (19)

– Finally, if Q has at least one inequality, or if Σt is nonempty, program ΠQ,Σt

includes the rule:

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v), u 	= v,C(x1), . . . ,C(xm) (20)

Let ā be a tuple of elements from the domain of a source instance I . Each predicate Ui

in ΠQ,Σt is used as a copy of Ti but with m extra arguments that store tuple ā. These
predicates are used when testing whether ā is a certain answer for Q over I . More
specifically, the rules of ΠQ,Σt try to construct from the canonical universal solution
CAN(I) a solution J for I such that ā 	∈ Q(J). Thus, if in a solution J for I , it holds that
ā ∈ Q(J) because ā ∈ Qi(J), where Qi(x̄) is equal to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧
¬Tpn+1(ūn+1)), then ΠQ,Σt uses rule (17) to create a new solution where the negative
atom of Qi does not hold. In the same way, if in a solution J for I , it holds that ā ∈ Q(J)
because ā ∈ Qi(J), where Qi(x̄) is equal to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 	= v2),
then ΠQ,Σt uses rule (18) to create a new solution where the values assigned to v1

and v2 are equal (predicate EQUAL is used to store this fact). If v1 or v2 is assigned
a null value, then it is possible to create a solution where the values assigned to these
variables are the same. But this is not possible if both v1 and v2 are assigned different
constant values. In fact, it follows from [10] that this implies that it is not possible to
find a solution J ′ for I where ā 	∈ Q(J ′), and in this case rule (20) is used to indicate
that ā is a certain answer for Q over I . Notice, however, that every solution for I must
satisfy the dependencies in Σt. Thus, if for some Qi the program uses rules (17) or
(18) to create an instance J such that ā 	∈ Qi(J), but J does not satisfies a dependency
φ(x̄) → xi = xj in Σt, then rule (19) must be used to repair that instance, obtaining
a solution J ′ for I in which the values assigned to xi and xj are the same, but still
holds that ā 	∈ Qi(J). This will not be possible if both xi and xj are assigned different
constant values; in this case, it can be proved using results in [10] that it is not possible
to create a solution such that ā 	∈ Qi(J), and thus rule (20) is used to indicate that ā is
a certain answer for Q over I .

By using the above observations, it is not difficult to prove that the statement of the
theorem holds, which was to be shown. �

As a corollary of Theorem 4 and Corollary 1, we immediately obtain the following
desired result:

Corollary 4. Let Q be a UCQ
=,¬ query over a schema T, with at most one in-
equality or negated relational atom per disjunct, and let M = (S,T, Σst, Σt) be
a data exchange setting such that Σt consists of a set of egds. Then the problem
CERTAIN-ANSWERS(M, Q) can be solved in polynomial time.

Datalog as a Query Language for Data Exchange Systems 319

Another possible way to retain tractability of the problem CERTAIN-ANSWERS(M, Q),
where Q is a union of conjunctive queries with at most one negated atom per disjunct
and M is a setting with target dependencies, is by restricting the class of queries al-
lowed. Indeed, it has been proved in [10] that for the class of settings whose sets of
target dependencies consist of egds and weakly-acyclic sets of tgds, the certain answers
to a union of conjunctive queries with at most one inequality per disjunct can be com-
puted in polynomial time by using an algorithm based on the chase procedure. It is
an interesting open problem whether this result can also be proved with the help of
DATALOGC(
=) programs, in the style of Theorem 4 and Corollary 4.

5 Concluding Remarks

In this paper, we presented the language DATALOGC(
=) that extends DATALOG with a
restricted form of negation, and studied some of its fundamental properties. In particu-
lar, we showed that the certain answers to a DATALOGC(
=) program can be computed
in polynomial time, and we used this property to find tractable fragments of the class
of unions of conjunctive queries with inequalities (even in the presence of target depen-
dencies).

Both the problem of the existence of solutions and the computation of certain an-
swers are defined in the paper assuming settings to be fixed. That is, in terms of Vardi’s
taxonomy [20], we study the data complexity of these problems. This makes sense in
the database context, as usually specifications and queries are much smaller than source
instances. However, a more refined complexity analysis of these problems should not
consider any of their parameters to be fixed. This corresponds to the combined com-
plexity of the problems mentioned above. The combined complexity of the problem
of existence of solutions was studied in [13,7], while the combined complexity of the
problem of computing certain answers was studied in [5].

Many problems related to DATALOGC(
=) programs remain open. In particular, it
would be interesting to know if it is decidable whether the certain answers to a query
Q in UCQ
= can be computed as the certain answers to a DATALOGC(
=) program ΠQ,
and whether there exist a setting M and a query Q in UCQ
= such that the problem
CERTAIN-ANSWERS(M, Q) is in PTIME, but the certain answers to Q cannot be com-
puted as the certain answers to a DATALOGC(
=) program ΠQ.

Acknowledgments. We are very grateful to Jorge Pérez for many helpful discus-
sions. The authors were supported by: Arenas - FONDECYT grant 1090565; Barceló -
FONDECYT grant 11080011; Reutter - EPSRC grant G049165.

References

1. Abiteboul, S., Duschka, O.: Answering queries using materialized views. Gemo report 383
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading

(1995)
3. Afrati, F.N., Li, C., Pavlaki, V.: Data exchange in the presence of arithmetic comparisons. In:

EDBT, pp. 487–498 (2008)

320 M. Arenas, P. Barceló, and J.L. Reutter

4. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent transformations and query
answering in data exchange. In: PODS, pp. 229–240 (2004)

5. Arenas, M., Barceló, P., Reutter, J.: Query languages for data exchange: Beyond unions
of conjunctive queries. Accepted for publication in Theory of Computing Systems, ToCS
(2010); Preliminary version in Proceedings 12th International Conference on Database The-
ory (ICDT 2009), pp. 73–83 (2009)

6. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the ACM 31(4),
718–741 (1984)

7. Calı̀, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in datalog+/-. In:
Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 1–17. Springer, Heidelberg
(2010)

8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: PODS, pp. 149–158 (2008)
9. Fagin, R., Kolaitis, P., Popa, L., Tan, W.C.: Composing schema mappings: Second-order

dependencies to the rescue. In: PODS, pp. 83–94 (2004)
10. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-

ing. Theoretical Computer Science 336(1), 89–124 (2005)
11. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Transactions on

Database Systems 30(1), 174–210 (2005)
12. Kolaitis, P.: Schema mappings, data exchange, and metadata management. In: PODS, pp.

61–75 (2005)
13. Kolaitis, P., Panttaja, J., Tan, W.-C.: The complexity of data exchange. In: PODS, pp. 30–39

(2006)
14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. Journal of the

ACM 31, 761–791 (1984)
15. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)
16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
17. Libkin, L.: Data exchange and incomplete information. In: PODS, pp. 60–69 (2006)
18. Libkin, L., Sirangelo, C.: Data exchange and schema mappings in open and closed worlds.

In: PODS, pp. 139–148 (2008)
19. Ma̧dry, A.: Data exchange: On the complexity of answering queries with inequalities. Infor-

mation Processing Letters 94(6), 253–257 (2005)
20. Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137–146 (1982)

Datalog Relaunched:

Simulation Unification and Value Invention

François Bry1, Tim Furche2, Clemens Ley2,
Bruno Marnette2, Benedikt Linse3, and Sebastian Schaffert4

1 Institute for Informatics, Ludwig-Maximilians-Universität München,
Oettingenstr. 67, 80538 München, Germany

2 Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

3 Thomson Reuters, Landsberger Straße 191a, 80687 München, Germany
4 Knowledge and Media Technologies, Salzburg Research,

Jakob Haringer Str. 5/III, 5020 Salzburg, Austria

Abstract. For reasoning on the Web, Datalog is lacking data extraction
and value invention. This article proposes to overcome these limitations
with “simulation unification” and “RDFLog”.

Simulation unification is a non-standard unification inspired from reg-
ular path queries. Like standard unification, it yields bindings for vari-
ables in both terms to unify. Unlike standard unification, it does not try
to make the two terms identical but instead to embed the query into
the data. Simulation unification is decidable. Without variables, it has
polynomial complexity. With variables it is, like standard unification,
np-complete. We identify a number of interesting special cases of unifi-
cation, e.g., in presence or absence of term injectivity. In particular, we
show that simulation unification without term injectivity on tree data
is linear and in presence of injectivity it is still polynomial even on un-
ordered trees in contrast to the np-complete unordered tree inclusion
problem.

RDFLog is Datalog with arbitrary quantifier alternation: Blank nodes,
i.e., existentially quantified variables, in rule heads may be governed by
universally quantified variables, universally quantified variables by blank
nodes. RDFLog’s declarative semantics is defined in terms of RDF entail-
ment; its sound and complete operational semantics, in terms of Skolem-
ization, standard Datalog evaluation, and un-Skolemization. We show
that RDFLog limited to ∀∗∃∗ prefixes is (up to unique helper predicates)
equivalent to RDFLog with full quantifier alternation. A light-weight im-
plementation points to the efficiency of the approach.

Keywords: Datalog, Unification, Value Invention, Un-Skolemization,
Query Language, Regular Path Queries, Semi-Structured Data, HTML,
XML, XPath, RDF.

1 Introduction

Datalog is a fragment of the logic programming language Prolog [87] aiming at
combining rule-based reasoning with relational databases. Datalog is declarative,

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 321–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 F. Bry et al.

or “pure”, in the sense that it includes none of the procedural features of Prolog
such as a pre-defined evaluation order and language constructs such as the cut
for modifying this order. The integration of Prolog-style rule-based reasoning
and databases has been first advertised at the end of the 70es, beginning of the
80es of the 20th century in three workshops on ”Logic and Databases” [62] and
on ”Advances in Database Theories” [64,65] – cf. also [63]. The name Datalog,
a contraction of the then widespread expression ”Database Prolog”, has been
coined by David Maier and David S. Warren for lecture notes [91]. Datalog pro-
vides first-order queries that, up to the syntax, correspond to SQL queries with-
out negation. Datalog also provides definite rules that correspond to SQL views.
Methods have been developed for a set-oriented evaluation of Datalog queries
[40], i.e., an evaluation building upon relational algebra and therefore efficiently
accessing large amounts of data on secondary storage. Sophisticated methods
have been developed for implementing backward chaining relying on forward
chaining [112,8,14,117,110,31] (cf. [127,41,42,111] for overviews) thus ensuring a
terminating and set-oriented evaluation of recursive Datalog programs. Datalog
and the aforementioned evaluation methods have two salient traits:

1. They are restricted to “flat terms”,1 i.e., terms containing no function sym-
bols other than constants.

2. They are restricted to universal facts and rules, i.e., facts and rules where
all the variables of which are universally quantified.

Datalog’s restriction to flat terms is no stringent limitation if relational data are
accessed. Indeed, even though non-first-normal-form relational databases have
been considered in research, the focus of relational database technology is on
first-normal-form databases that correspond to “flat” logic terms, i.e., logic terms
containing no function symbols other than constants. If, however, instead of flat
relational data, data on the Web are accessed, then the two aforementioned
traits of Datalog must be overcome. Indeed, HTML and XML documents are
semi-structured [1], i.e., can be formalized as labelled unranked trees or nested
relations. Datalog’s restriction to universally quantified variables must be over-
come if Datalog is to be used for RDF querying and reasoning. Indeed, RDF
graphs might contain so-called blank node, i.e., existentially quantified variables.

This article describes two approaches to adapt Datalog to semi-structured
data (such as HTML and XML documents) and to RDF graphs respectively.

The first approach, called “simulation unification”, is a non-standard form
of unification tuned to data extraction from semi-structured data. Simulation
unification is inspired from regular path queries [2,3]. Like standard unification,
simulation unification determines bindings for variables in both terms to unify.
Unlike standard unification, simulation unification does not make the two terms
identical but instead searches for an embedding of the query into the data.
Simulation unification is decidable, sound and complete, and has polynomial
data complexity. Without variables and some incompleteness query constructs,

1 The article [117] is an exception: It describes an extension of the magic set method
[8,14] to a restricted type of rules with nested terms.

Datalog Relaunched: Simulation Unification and Value Invention 323

it has polynomial, on tree data even linear time complexity; with variables it
is, like standard unification, np-hard. Simulation unification is closely related to
the fragment of XPath [46] with only forward axes, a restriction that does not
affect the expressiveness of XPath [103].

The second approach, called RDFLog, is an extension of Datalog with arbi-
trary quantifier alternation. In RDFLog programs, blank nodes, i.e., existentially
quantified variables in rule heads, may occur in the scope of all, some, or none
of the universal variables of a rule. In other words, in RDFLog rules, existen-
tially quantified variables may be governed by universally quantified variables,
universally quantified variables by existentially quantified variables.

This articles is organized as follows. Section 2 discusses related work. Section
3 describes simulation unification. Section 4 is devoted to RDFLog. Section 5
suggest a notion of “rich unification” as a framework for adapting Datalog to
various data types and a direction for further research.

2 Related Work

2.1 Wrapping

Since the end of the 90es of the 20th century, the extraction of data from the Web
and from large Thesauri, i.e., from semi-structured documents such as HTML
documents, has been investigated from several angles. One commonly distin-
guishes between text extraction, or text wrapping, and structure extraction, or
structure wrapping. Text wrapping is the retrieval of portions of text regardless
of the documents’ structures. Text wrapping techniques returning so-called “bag
of words” is one of the core functions of current search engines and is therefore
well-mastered [88]. A more sophisticated form of text wrapping is targeted at
so-called “factoids”, or entities and relationships between entities, related to a
query and extracted from unstructured text [4,70,68,128,129]. Structure wrap-
ping, i.e., the retrieval of structured portions of text such as a section with its
sub-sections from a (structured) document is another from of wrapping. Cur-
rently, structure wrapping is deployed on the limited scale of Web query and
transformation languages such as XPath [46,17], XQuery [19] and XSLT [45].
XPath, which is part of both XQuery and XSLT, can be seen as the most used
structure wrapping language.

The approaches to structure wrapping considered so far can be understood
by formalizing semi-structured documents as node-labelled unranked trees, i.e.,
trees such that two nodes similarly labelled do not necessarily have the same
number of children.2 A structure-aware wrapper can be seen as a language for
selecting nodes, or equivalently the sub-trees rooted at these nodes, from labelled
unranked trees while possibly performing simple changes such as renaming labels
and removing some-subtrees. More sophisticated structure reorganizations – such
as transposing a table, adding sums to table rows or columns, or constructing
2 “Semi-structured” is used instead of “structured” for stressing this characteristic of

Web documents as well as the lack of schema [35,1].

324 F. Bry et al.

from a bibliography by years a bibliography by authors, and more generally most
forms of data aggregation – are not considered part of data extraction: They are
out of the range of structure-aware wrappers.

XPath [46,17], which appeared in 1999 and follows the regular path approach
introduced with [2], is the best-known and most used structure wrapper lan-
guage. It is, however, far from being the only one. Others approach to structure
wrapping are as follows: Regular path queries (with constraints) have been pro-
posed in [3]; regular tree languages and (regular tree automata for their evalua-
tion) have been proposed in [30] and further investigated amongst other in [102];
a Datalog-style language called WebOQL has been proposed in [5]; regular path
queries with nesting (or RPN) have been proposed in [66,67]; exploiting the fact
that regular tree languages coincide with tree languages expressible in monadic
second order logic or MSO,3 MSO is proposed in [66,67] as a reference language
for investigations of the expressive power of structure-aware wrapper languages;
monadic Datalog, the inspiration of Elog [12], the language of the commercial
wrapper Lixto [68], has been proposed in [13,66,67]. More on Web wrapping and
Web query languages can be found in the survey [7].

Common to the afore-mentioned proposals is that

1. they are designed for tree-shaped data,
2. the majority, in particular XPath, is designed for querying only for sets of

nodes,
3. their query paradigm is navigational.

Being designed for tree-shaped data, they can neither exploit the hypertext links
and references within an HTML or XML document, nor fully access structure
of RDF graphs. This restriction might not be that significant if standard docu-
ments and Web pages are queried. If instead Semantic Web documents such as
RDF graphs are queried, the restriction is more significant. Indeed, RDF graphs
are almost never tree-shaped. The majority is designed for querying for sets of
nodes, but not for sets of tuples of nodes. In logic terms, they are tuned to
monadic, i.e., single answer-variable, queries. A navigational query paradigm is
quite natural for monadic queries. [69,18,20] stress the drawbacks of navigational
queries. Arguably, navigational queries in languages like XPath [46,17] that of-
fer so called “reverse axes” compromise declarativity. Note that reverse axes do
not increase XPath’s expressive power [103], though it has been recently shown
[89] that this does not hold for more expressive path languages containing a
Kleene-star type construct (such as conditional XPath [92]).

The language UnQL [36] has introduced simulation as a means for query
answering. This has been further investigated with the language XMAS [10].
UnQL and simulation unification differ from each other as follows. First, a query
in UnQL can be processed by matching, or “half unification”, of a query pat-
tern containing variables with a data item containing no variables. In contrast,
simulation unification gives rise to unifying two query patterns both contain-
ing variables. Furthermore, variables in UnQL can only occur as leaves of query
3 This is a classical result mentioned amongst other in [102].

Datalog Relaunched: Simulation Unification and Value Invention 325

patterns while simulation unification gives rise to (constrained) variables at any
depth of a query term.

Simulation unification is not limited to querying tree-shaped data but can
instead accommodate graph-shaped queries against graph-shaped data, is not
limited to monadic queries but instead can accommodate querying for tuples
of nodes, and its paradigm is not navigational but instead, like logic queries,
pattern-oriented.

2.2 Rules Languages for the Semantic Web

The considerable literature on Web and Semantic Web rule languages falls gen-
erally into four groups:

1. markup for rule languages,
2. implementation of description logics or of RDF-based reasoning in Datalog,

in Logic Programming, or in Answer Set Programming,
3. Datalog or Logic Programming style rule languages for RDF,
4. “hybrid reasoning”, i.e., integrations of description logic primitives, or built-

ins, into Datalog or (Disjunctive) Logic Programming.

The prominent markup languages for rules are the Rule Markup Language
RuleML [28,21,22] and the languages, called “dialects”, of the Rule Interchange
Format RIF [26,24,23,106,25,49,47]. The focus here is on the interchange on the
Web relying on XML of rule programs of various kinds. Both have been de-
veloped to express various forms of reasoning, especially forward and backward
chaining, and, as far as RIF is concerned, production rules. SWRL [77,78,79,76],
a rule language integrating sublanguages of OWL [93,123,50,104,39,74,75,97] in
RuleML is both, a markup language, and an integration of a description logic in
Logic Programming.

The large number of implementations of description logics in Datalog or, more
generally, in Logic Programming or Disjunctive Logic Programming, amongst
others [15,99,71,11,80,81,82,97], reflects the diversity of description logics. An
implementations of RDF/S rule-based reasoning in Answer Set Programming is
described in [107].

RDF’s syntax makes it rather natural a candidate for Datalog or Logic Pro-
gramming rules. [85,27,33] are mostly devoted to syntax, markup and interoper-
ability issues of RDF rule languages, [121,130,96,72,124,105,120,34] investigate
various forms of rule-based reasoning with RDF/S data. See [61] for a survey on
RDF query and rule languages.

Various forms of hybrid reasoning, i.e., integration of description logics into
Datalog, Logic Programming, Disjunctive Logic Programming or Answer Set
Programming are described amongst others in [78,76,114,113,125,48,79,98,115,55]
[54,38,116,53,95,94,52,109,33].

Most of the rule languages considered in the afore-mentioned articles support
neither existential variables nor blank nodes in rule heads [121,122,96,58,105].

326 F. Bry et al.

Some support blank nodes in rule heads but only with limited quantifier alter-
nations [130,72,120]. To the best of the authors’ knowledge, existential variable
in rule heads with unrestricted quantifier alternation has been first proposed in
[34]. The second part of the present paper describes this approach.

3 Simulation Unification: Unification for Web Wrapping

Simulation unification has been developed as a technique for evaluating “query
patterns”, called in the following “query terms”, that are both, in the style
of logic queries and better adapted to Web querying. Like logic queries, the
query terms might include several variables. Variables in a query term are logic
variables, that is, all their occurrences must be consistently bound. In contrast
to logic queries, query terms are incomplete specification of the data to retrieve.
Query terms may contain constructs for expressing incompleteness in breadth,
in depth, with respect to order, and with respect to optional subterms:

– Incompleteness in breath: While the query term a[X, b] corresponds to a
logic query a(X, b), the query term a[[X]] retrieves a-labelled nodes with at
least one child (bound to the variable X).

– Incompleteness in depth: The query term a[desc b] retrieves a-labelled nodes
with a b-labelled descendant node.

– Incompleteness with respect to order: The order of the matches for b and
desc c is irrelevant in the queries a{b, desc c} and a{{b, desc c}}.

– Incompleteness with respect to optional subterms: The query a[b, optionalc[X]]
binds the variable X to some value only if in the data retrieved the a-labeled
node has a c-labelled child having itself a child node (bound to X).

Furthermore, references in query terms and in data are resolved during simu-
lation unification allowing graph-shaped queries graph-shaped data. Additional
constructs ease the expression of queries frequently needed on the Web. The
comparison [29] with the XQuery programs from the XQuery Use Cases [43]
demonstrates that these features, as well as a few others described in [119],
considerably ease the expression of practical queries.

Definition 1 (Data Terms). Data terms are expressions inductively defined
as follows that satisfy Conditions 1 and 2 below:

1. If l is a label, then l is a (atomic) data term.
2. If id is an identifier and t is a data term neither ofthe form id0: t0 nor ofthe

form ↑id0, then id: t is a data term.
3. If id is an identifier, then ↑id is a data term.
4. If l is a label and t1, . . . , tn are n ≥ 1 data terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are data terms.

Condition 1: For a given identifier id an identifier definition id: t0 occurs at
most once in a term.
Condition 2: For every identifier reference ↑id occurring in a term t an iden-
tifier definition id: t0 occurs in t.

Datalog Relaunched: Simulation Unification and Value Invention 327

Definition 2 (Query Terms). Query terms are expressions inductively defined
as follows and satisfying Conditions 1 and 2 of Definition 1:

1. If l is a label and L is a label variable, then l, L, l{{}}, and L{{}} are
(atomic) query terms.

2. A term variable is a query term.
3. If id is an identifier and t is a query term neither ofthe form id0: t0 nor

ofthe form ↑id0, then id: t is a query term.
4. If id is an identifier, then ↑id is a query term.
5. If X is a variable and t a query term, then X � t is a query term.
6. If X is a variable and t is a query term, then X � desc t is a query term.
7. If l is a label, L a label variable and t1, . . . , tn are n ≥ 1 query terms,

then l[t1, . . . , tn], L[t1, . . . , tn], l{t1, . . . , tn}, L{t1, . . . , tn}, l[[t1, . . . , tn]],
L[[t1, . . . , tn]], l{{t1, . . . , tn}}, and L{{t1, . . . , tn}} are query terms.

Query terms in which no variables occur are ground. Query terms that are not
of the form ↑id, are strict. The leftmost label of strict and ground query terms
of the form l, l{{}}, l{t1, . . . , tn}, and l[t1, . . . , tn] is l; the leftmost label of a
strict and ground query term of the form id : t is the leftmost label of t.

Note that desc never occurs in a ground query term (for it is always coupled
with a variable), data terms are (simple) query terms, in a query term, multiple
occurrences of a same variable are possible. Child subterms and subterms of query
terms are defined such that if t = f [a, g{Y � desc b{X}, h{a, X � k{c}}], then
a and g{Y � desc b{X}, h{a, X � k{c}} are the only child subterms of t and
e.g. a and X and Y � desc b{X} and h{a, X � k{c}} and X � k{c} and t
itself are subterms of t. Note that f is not a subterm of t.

We allow in the following a query term desc t without leading � as an abbre-
viation for X � desc where X is a fresh variable.

Definition 3 (Variable Well-Formed Query Terms). A term variable X
depends on a term variable Y in a query term t if X � t1 is a subterm of t and
Y is a subterm of t1. A query term t is variable well-formed if t contains no term
variables X0, . . . , Xn (n ≥ 1) such that 1. X0 = Xn and 2. for all i = 1, . . . , n,
Xi depends on Xi−1 in t.

Thus, f{X � g{X}} and f{X � g{Y }, Y � h{X}} are not variable well-
formed. Variable well-formedness precludes queries specifying infinite answers.
In the following, query terms are assumed to be variable well-formed.

The declarative semantics of simulation unification is based on graph simu-
lation. A simulation of a graph G1 in a graph G2 is a mapping of the nodes of
G1 in the nodes of G2 preserving the edges. The graphs considered are directed,
ordered and rooted and their nodes are labelled.

Definition 4 (Simulation). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. Let ∼ be an equivalence relation on V1 ∪ V2. A relation S ⊆ V1V2 is
a simulation with respect to ∼ of G1 in G2 if:

328 F. Bry et al.

1. If (v1, v2) ∈ S, then v1 ∼ v2.
2. If (v1, v2) ∈ S and (v1, v

′
1) ∈ E1, then there exists v′2 ∈ V2 such that (v′1, v

′
2) ∈

S and (v2, v
′
2) ∈ E2.

Let S be simulation S of G1 = (V1, E1) in G2 = (V2, E2). S is total, if for each
v1 ∈ V1 there exists at least one v2 ∈ V2 such that (v1, v2) ∈ S. If G1 has a
root r1, G2 has a root r2 and (r1, r2) ∈ S, then S is a rooted simulation. S is
minimal, if there are no simulations S′ ⊆ S of G1 in G2 such that S′ 	= S.

Note that every rooted simulation is total.

Definition 5 (Strict and Ground Query Term Simulation). & is the re-
lation on strict and ground query terms defined by t1 & t2 if there exists a
(minimal) rooted simulation with respect to label identity S of t1 in t2 such that:

1. if v1 = l{} occurs in t1 and (v1, v2) ∈ S, then v2 has no children in t2.
2. if v1 = l[[t11, . . . , t

1
n]] (n ≥ 1) occurs in t1, (v1, v2) ∈ S and (t1i , t

2
j) ∈ S

(1 ≤ j ≤ m ≤ n), then t21, . . . , t
2
m occur in this indexing order as children of

v2 in the graph induced by t2.
3. if v1 = l[t11, . . . , t

1
n] (n ≥ 1) occurs in t1, (v1, v2) ∈ S and if (t1i , t

2
j) ∈ S

(1 ≤ j ≤ m ≤ n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n), they

occur in this indexing order as children of v2 in the graph induced by t2 and
v2 has no other children than the t2j in t2.

4. if v1 = l{t11, . . . , t1n} occurs in t1, (v1, v2) ∈ S and (t1i , t
2
j) ∈ S (1 ≤ j ≤ m ≤

n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n) and v2 has no other

children than the t2j in t2.
5. if v1 = l{{t11, . . . , t1n}} occurs in t1, (v1, v2) ∈ S and (t1i , t

2
j) ∈ S (1 ≤ j ≤

m ≤ n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n).

f

b

d e d

b

a

f

d

e

da c

Fig. 1. A minimal simulation of the (graph induced by the) ground query term
tq = f{id1 : a, b[d{{}}, ↑ id1], desce} in the (graph induced by the) data term
tdb = f [b[d, id2 : a], ↑ id2, c, d{e}]

Datalog Relaunched: Simulation Unification and Value Invention 329

By Definition 4, & is reflexive and transitive, i.e. it is a preorder on the set of
data terms. & is not a partial order, for although t1 = f{{a}} & t2 = f{{a, a}}
and t2 = f{{a, a}} & t1 = f{{a}} (both a of t2 can be simulated by the same a
of t1), t1 = f{{a}} 	= t2 = f{{a, a}}.

Rooted simulation with respect to label equality is a first step towards a
formalisation of answers to query terms: If there exists a rooted simulation of
(the graph induced by) a data term t1, considered as a query term, in (the
graph induced by) a data term t2, then t2 is an answer to t1. Ground in-
stances of a query term (cf. Definition 6) gives rise to extend this notion of
answers to query terms. An answer in a database D to a query term tq is
characterized by bindings for the variables in tq such that the database term
t resulting from applying these bindings to tq is an element of D. Consider
e.g. the query tq = f{{ X � g{{b}}, X � g{{c}} }} against the database
D = {f{g{a, b, c}, g{a, b, c}, h}, f{g{b}, g{c}}}. The � constructs in tq yield
the constraint g{{b}} & X ∧ g{{c}} & X . Matching tq with the first data term
in D yields the constraint X & g{a, b, c}. Matching tq with the second data term
in D yields the constraint X & g{b} ∧X & g{c}. g{b} & X ∧ g{c} & X is not
compatible with X & g{b} ∧X & g{c}. Thus, the only possible value for X is
g{a, b, c}, i.e. the only possible answer to tq in D is f{g{a, b, c}, g{a, b, c}, h}.
Definition 6 (Ground Instances of Query Terms). A grounding substi-
tution is a function which assigns a label to each label variable and a database
term to each term variable of a finite set of (label or term) variables. Let tq be a
query term, V1, . . . , Vn be the (label or term) variables occurring in tq and σ be
a grounding substitution assigning vi to Vi. The ground instance tqσ of tq with
respect to σ is the ground query term that can be constructed from tq as follows:

1. Replace each subterm X � t by X.
2. Replace each occurrence of Vi by vi (1 ≤ i ≤ n).

Requiring in Definition 2 desc to occur to the right of � makes it possible
to characterize a ground instance of a query term by a grounding substitu-
tion. This is helpful for formalizing answers but not necessary for language
implementations.

Not all ground instances of a query term are acceptable answers, for some
instances might violate the conditions expressed by the � and desc constructs.

Definition 7 (Allowed Instances). The constraint induced by a query term
tq and a substitution σ is the conjunction of all inequalities tσ & Xσ such that
X � t is a subterm of tq not of the form desc t0, and of all expressions Xσ � tσ
(read “tσ subterm of Xσ”) such that X � desc t is a subterm of tq, if tq has
such subterms. If tq has no such subterms, the constraint induced tq and σ is the
formula true. Let σ be a grounding substitution and tqσ a ground instance of tq.
tqσ is allowed if:

1. Each inequality t1 & t2 in the constraint induced by tq and σ is satisfied.
2. For each t1 � t2 in the constraint induced by tq and σ, t2 is a subterm of t1.

330 F. Bry et al.

Table 1. Query terms and matching data (; separates different data terms)

Query term Data terms

T1 a{ } � a{ }; a[]
�� b{ }

T2 a[] � a[]
�� b{ }; a{ }

T3 a{ b } � a{ b }
�� a{ b, b }

T4 a{ b, b } � a{ b, b }
�� a{ b }; a{ b, b, b }

P1 a{{ b }} � a{ b }; a{ c, b, d }; a{ b, b }
�� a{ };

P2 a[[b, c]] � a[b, c]; a[d, b, e, c]
�� a[c, b]; a{ b, c }

D1 a{ desc b } � a[b]; a[c{ b, e }];
�� a{ d, c{ b } };

D2 a{ desc b, desc c } � a[b, e[c]];
�� a{ b, c, d }; a{ e[b, c] };

D3 a{{ desc b, desc c }} � a[b, e[c]]; a{ b, c, d };
�� a{ e[b, c] };

Definition 8 (Answers). Let tq be a query term and D a database. An answer
to tq in D is a database term tdb ∈ D such that there exists an allowed ground
instance t of tq satisfying t & tdb.

3.1 Examples of Simulation

Table 1 illustrates the simulation between (variable-free) query terms and data
terms. For space reasons, we omit in query terms empty double braces and in
data terms empty single braces, i.e., c reads c{{ }} in a query term and c{ } in
a data term.

The first examples T1–T4 illustrate matching of ordered and unordered total
query terms. Note, that unordered query terms match against ordered data terms
(since the use of the curly braces indicates only that we do not care about the
order). In total query terms both terms have exactly the same number of children
in all cases. This is what sets partial query terms (P1–P2, I1–I2) apart from total
query terms. Here, we may have additional query terms in the data that are
ignored. The remaining examples of Table 1 illustrate the effect of desc. It allows
matching at any depth (cf. D1–D3). Totality and injectivity are still enforced
between the children of a matching data term (observe the difference between
D2 and D3).

The effect of variables on term matching is illustrated in Table 2: Essentially, a
variable matches any single term (or label, or position, or node, if so placed), but

Datalog Relaunched: Simulation Unification and Value Invention 331

Table 2. Query terms containing variables and their bindings

Query term Data terms Bindings

V1 a{ var X } � a[b]; {X/b}
�� a{ }; a[b, c]

V2 a{{ var X }} � a[b, c]; {X/b, X/c}
�� a{ };

V3 a{{ var X, var X }} � a[b, b]; a{ c, b, b, d } {X/b1, X/b2}
�� a{ b, c }; a{ b }

V5 a{ var X{ var X } } � a[b{ ”b”}]; {X/"b"}
�� a{ b, c };

V6 a{ var X �c, var X } � a[c, c]; {X/b}
�� a{ b, b };

V7 a{ desc var X } � a[c{ b, e[f] }]; {X/c{...}, X/b,
X/e[...], X/f}

�� a{ d, c{ b } };

matches are recorded in the bindings of the query. If a variable occurs multiple
times (V3), the matched query terms must be structurally equivalent. A variable
may occur as a label (V5), in which case it is bound to the value of the label
and can only match with other labels or character data (as the ‘‘b’’ in V5).
A variable may occur in a term restriction before � (V6), in which case the
right hand query term restricts the matching bindings for X . Finally, it can be
combined with desc yielding the expected result (V7).

3.2 Simulation Unification

Simulation unification is a non-deterministic algorithm for solving in the data
term lattice (Tdb/ ≡,&) induced by the relation &. Inequations of the form
tq & tc, where tq is a query term, tc is a so-called “construct term”, i.e., a query
term without � and desc constructs.4 (possibly a data term), and tq and tc are
variable disjoint.5 Thus, simulation unification computes substitutions σ such
that tqσ and tcσ have instances tqστ and tcστ with tqστ and tcστ data terms
and tqστ & tcστ .

Simulation unification consists in repeated applications of Term Decomposi-
tion phases followed by a Consistency Verification phase to a formula C (for
constraint store) consisting in disjunctions of conjunctions of inequations of the
form tq & tc (with tq query term and tc construct term) and/or equations of
the form tc1 = tc2 (with tc1 and tc2 construct terms). At the beginning C consists

4 Simulation unification is in fact defined for more general construct terms in which
grouping and aggregation construts à la LDL [101,44] might occur.

5 Variable disjointness is achieved in deduction systems by the so-called “standardiza-
tion apart.”

332 F. Bry et al.

in a single inequation tq & tc. Both phases Term Decomposition and Consis-
tency Verification consist in stepwise changes of the constraint store C. These
changes are expressed in the following formalism inspired from [59]: A “simplifi-
cation” L ⇔ R replaces L by R. Trivially satisfied inequations or equations are
replaced by the atomic formula true. Inconsistent conjunctions of inequations or
equations are replaced by the atomic formula false. Memoing ensures that the
recursive traversal cyclic query terms terminates. For space reasons, memoing
is not discussed in the following, i.e., references in query terms are disregarded,
and only the decomposition rules for terms of the form a{} or {{}} are given.
See [118] for a full treatment.

Definition 9 (Term Decomposition Rules). Let l (with or without indices)
denote a label. Let t1 and t2 (with or without indices) denote query terms.

– Root Elimination:

(1) l & l{t21, . . . , t2m} ⇔ true if m ≥ 1
l & l{{}} ⇔ true

(2) l{t11, . . . , t1n} & l ⇔ false if n ≥ 1
l{t11, . . . , t1n} & l{{}} ⇔ false if n ≥ 1

(3) Let Π be the set of (total) functions {t11, . . . , t1n} → {t21, . . . , t2m}:
l{t11, . . . , t1n} & l{t21, . . . , t2m} ⇔

∨
π∈Π

∧
1≤i≤n t1i & π(t1i)

if n ≥ 1 and m ≥ 1

(4) l1{t11, . . . , t1n} & l2{t21, . . . , t2m} ⇔ false if l1 	= l2 and n ≥ 0 and m ≥ 0

– � Elimination:

X � t1 & t2 ⇔ t1 & t2 ∧ t1 & X ∧ X & t2

– Descendant Elimination:

desc t1 & l2{t21, . . . , t2m} ⇔ t1 & l2{t21, . . . , t2m} ∨
∨

1≤i≤m desc t1 & t2i
if m ≥ 0

Applying the � and descendant elimination rules to a constraint store C in
disjunctive normal form may yield a constraint store not in disjunctive normal
form. Thus, the method has to repeatedly restore the disjunctive normal form
of C.

In the following, mgcu(t1, . . . , tn) (with t1, . . . , tn query terms) returns a most
general commutative-unifier of t1, . . . , tn (in the sense of [6]) expressed as either
false, if t1 and t2 are not commutative-unifiable, or as true if t1 and t2 are
commutative-unifiable and do not contain variables, or else as a conjunction
of equations of the form X = t. Note that most general commutative-unifiers
are only computed for construct terms (i.e., query terms without � and desc
constructs). Recall that commutative unification is decidable.

Datalog Relaunched: Simulation Unification and Value Invention 333

In the definition below, simulation unification is initialized with X0 � tq & tc,
where X0 is a variable occurring neither in tq nor in tc, instead of simply tq &
tc. The additional variable X0 serves a complete specification of the answers
returned. This is useful in proving the correctness of simulation unification but
can sometimes be dispensed of in practice.

Definition 10 (Simulation Unification).

1. Initialization:
C := X0 � tq & tc

(with tq query term, tc construct term and tq, tc and X0 variable disjoint).
2. Term Decomposition:

Until C can no longer be modified, repeat performing one of:
– Apply a (applicable) Term Decomposition rule to C
– Put C in disjunctive normal form

end-until
3. Variable Binding:

Replace each X & t in C with X = t.
4. Consistency Verification:

For each disjunct D of C and for each variable X occurring in D do:
Replace in D the equations X = t1, . . . , X = tn by mgcu(t1, . . . , tn).

end-for

Note that the constraint store C returned at the end of the Term Decomposition
step is necessarily in disjunctive normal form. Indeed, if C is not in disjunctive
normal form, then the halting condition of the until loop (Step 2 of Definition
10) is not satisfied.

For efficiency reasons it is preferable to intertwine the Term Decomposition
and Consistency Verification phases instead of performing them one after an-
other. The sequential processing of both phases in Definition 10 simplifies the
proofs.

Proposition 1 (Correctness and Completeness). Let tq be a query term,
tc a construct term, i.e., a query term without � and desc constructs, and X0 a
variable such that tq, tc and X0 are variable disjoint. There exists a substitution τ
such that tqτ and tcτ are database terms and tqτ = tcτ if and only if a simulation
unification initialized with X0 � tq & tc returns a substitution σ such that

– For each variable X in tq, Xσ is a subterm of tqσ.
– tqτ is an instance of tqσ.
– tcτ is an instance of tcσ.

The proof is given in [118].

3.3 Complexity of Simulation Unification

The complexity of standard unification is famously linear. The complexity pic-
ture for simulation unification is considerably more “complex”: It is easy to see

334 F. Bry et al.

that full simulation unification is np-complete. It is in np, e.g., by translation
to first-order logic [60]. It is np-hard, e.g., by reduction from subgraph isomor-
phism [90] or 3SAT. In presence of incomplete term specifications and variables
this is not surprising and in line with similarly expressive XML query languages
such as XPath 2 (see [16]).

In this section, we thus introduce a family of restrictions to the query terms
defined in Definition 2 and briefly summarize the complexity of simulation uni-
fication for these languages.

We denote with SUtree;−bi,−di
−var,−inj,−u the simulation unification problem over query

terms without variables (−var), term injectivity (−inj), and unordered terms
(−u), where query terms may only be tree-shaped (i.e., no references) and may
be neither incomplete in depth (−di) nor breadth (−bi). Note, that all these
restrictions only apply to query terms, not to data terms. For −var, we can
also use −tvar to only disallow term variables, such that label variables can still
be used. For −u we can also use −o to disallow ordered terms. We can drop
any of these restrictions, e.g., SU−bi

−var denotes the simulation unification problem
over the sub-language of query terms without variables and with no breadth-
incomplete terms.

Table 3 summarizes the complexity results for simulation unification over the
most interesting classes of restricted query terms.

The first three lines recall np-complete fragments: (1) simulation unification
over unrestricted query terms is np-complete. (2) It remains so even if we allow
no variables, but query terms may be graph-shaped. (3) It also remains np-
complete if we allow only tree shaped query terms, but any form of variables
(including only label variables).

Table 3. Complexity of simulation unification. q size of query term; d size of data term
(number of nodes, see [60])

Fragment Complexity

1 SU np-complete
2 SU−var np-complete
3 SUtree

−tvar np-complete

4 SUtree
−var,−inj q · d2, q · d if data terms are trees or CIGs [60]

5 SUtree
−var q · d · (q+d)1.5·q·d

log(q+d)

6 SUtree
−var,−o q · d · (q+d)1.5·q·d

log(q+d)

7 SUtree
−var,−u q · d2

8 SUtree;−di
−var q1.5 · d

9 SUtree;−di
−var,−o q1.5 · d

10 SUtree;−di
−var,−u q · d

11 SUtree;−di,−bi
−var q + d

12 SUtree;−di,−bi
−var,−o q + d

13 SUtree;−di,−bi
−var,−u q + d

Datalog Relaunched: Simulation Unification and Value Invention 335

Proof (Sketch). It is easy to see that (1) (and thus (2) and (3)) is in np, cf. [60]
for a reduction to first-order logic.

np-hardness for (1) and (2) can be shown by reduction from subgraph iso-
morphism: Let P, G be arbitrary graphs. Then we can test if P is isomor-
phic to a subgraph in G by the following construction (let λ 	= mu be ar-
bitrary labels): For each node of P , we construct a breadth-incomplete query
term qi with label λ containing a reference to the query term of each adjacent
node. Let q = μ{{q1, q2, . . .}}. For each node of G, we construct a breadth-
complete data term di with label λ and references to each query term of adja-
cent nodes. Let d = μ{d1, d2, . . .}. Then, q simulates in d, if and only if P is
a subgraph of G. For instance, for the graph P1 with edges (1, 2), (2, 3), (1, 4)
and the graph G1 with edges (1, 2), (2, 3), (2, 4), (1, 4), (1, 5), (4, 5) the terms are
μ{{λ{{λ{{λ{{}} }}, λ{{}} }} and μ{λ{λ{}, ↑ 4}, 4@λ{↑ 5}, 5@λ{}}.

np-hardness for (3) is shown in [90] by reduction from Clique.

Fragment 4 of Table 3 highlights a major result of [60]: If we relax the injectivity
requirement, i.e., that the t21, . . . t

2
m must be pairwise distinct in Definition 5,

simulation unification becomes polynomial for query terms without of references
and variables. In fact, there is a large class of graph-shaped data terms, called
CIGs in [60], that includes all trees and forests on which simulation unification
has linear data complexity in this case.

Fragments 5-7 consider the effect of injectivity in case of tree shaped query
terms without variables. Fragment 5 is the general case, fragment 6 if we allow
no ordered query terms (no []), fragment 7 if we allow no unordered query terms
(no {}). The complexity of fragments 5 and 6 has been an open issue as stated in
[90] and is first shown here. It turns out that all three fragments have polynomial
complexity.

Proof. The polynomial complexity for Fragment 7 follows from equivalence of
this fragment to a fragment of navigational XPath, see [60], for whose complexity
see [16]. For instance, a[[desc b, c[desc e]]] is equivalent to

/a[./*[descendant-or-self::b]/following-sibling::c[./*[1]
[descendant-or-self::e][not(following-sibling::*)]]

The complexity for fragment 6 can be shown by reduction to maximum matching
for bipartite graphs (or a non-linear assignment problem): We consider bottom-
up each sub-term c in the given query q. For each c, Mc denotes the set of
nodes in the data term that match with c. We start with the leaf terms and
set Mc to the set of nodes with the appropriate label and arity (|Mc| ≤ d). For
inner query terms, if c is incomplete, let c = λ{{s1, . . . , sn}}. If c is complete let
c = λ{s1, . . . , sn}. For each node n in the data term d, that has the appropriate
label and arity for c, for consider all si and let Mn

si
be the restriction of Mc

to children of n. Thus the Mn
si

are the possible matches for each si under the
assumption that c matches with n. From the Mn

si
we construct a bipartite graph

in the following way: G = (P, C; E) where P is all the si, C = ∪iM
n
si

, and
E = {(si, c) : c ∈ Mn

si
}, i.e., there is an edge from si to a node in C, if that node

is a possible match for si.

336 F. Bry et al.

For this bipartite graph, we compute the maximum matching S. A subset M
of E is called a matching if every vertex of G coincides with at most one edge
from M . A matching is called maximal if it cannot be enlarged by any edge of
the graph. A matching is called maximum, if it has maximal cardinality among
all matchings for that graph.

If S has cardinality n, n is a match for c and is added to Mc. If Mq 	= after
all query terms have been processed, then q simulates in d.

Computing the maximum matching can be done in O((q+d)1.5·q·d
log(q+d)), cf.[37].

Thus, the whole algorithm takes q · d · (q+d)1.5·q·d
log(q+d) .

For fragment 5 finally, we can use the same algorithm as for 6, but if c is
ordered we walk over the si and the children of n at the same time and compare
matches in order, which can be done in q + n time. Thus, it has the same
complexity as fragment 6.

This result is indeed surprising, as unordered tree inclusion is np-complete [84].
The difference between our case and unordered tree inclusion is that simulation
unification does not consider a query term such as a{{desc b, desc c}} to sim-
ulate with a{d{b, c} } due to the injectivity requirement in Definition 5. For
unordered tree inclusion the graph with edges (a, b), (a, c) is included in the
graph (a, d), (d, b), (d, c), as unordered tree inclusion only preserves the ancestor
relationships.

Fragments 8-10 are the cases, where we also restrict the use of desc. All three
cases following immediately from the complexity of ordered, resp. unordered path
inclusion problems shown in [83].

Finally, fragments 11-13 are the cases, where we consider only complete terms
(without either desc, [[]] or {{}}). In this case, simulation unification is the same
problem as tree isomorphism for node-labeled trees, for which well-known linear
algorithms exist.

To summarize, there are two surprising results when considering simulation
unification over restricted fragments of the full query terms defined in
Definition 2:

– Even in presence of incomplete terms and for terms mixing unordered and
ordered specifications, simulation unification has linear data complexity on
tree and CIG data and quadratic data complexity on arbitrary graphs, if we
ignore the injectivity requirement.

– In presence of the injectivity requirement, simulation unification still remains
polynomial in contrast to closely related problems such as unordered tree
inclusion.

Though most of the results above have been proven in [60] and [90], the latter
case has been stated as an open issue even in [90]. In this paper, we close this re-
maining gap in the complexity picture for simulation unification with a positive
result: Simulation unification remains polynomial as long as we do not use (mul-
tiple occurrences of) variables or graph-shaped query terms, even in presence of
unordered terms. It is especially, interesting that thanks to the particular variant

Datalog Relaunched: Simulation Unification and Value Invention 337

of injectivity chosen for query terms, simulation unification remains polynomial,
as this requirement has been made for practical reasons: An intuition—so far
often confirmed, admittedly on unsystematic observations— is that injectivity
eases in practice the programming of queries.

4 RDFLog: Datalog with Value Invention

RDFLog extends Datalog to support two distinguishing features of RDF: blank
nodes and the logical core [100] of the RDFS vocabulary. In RDFLog, Blank
nodes can be specified by existentially quantified variables in rule heads. RD-
FLog allows unrestricted quantifier alternation between existential and universal
quantifiers in a rule. The following examples illustrate the benefit of unrestricted
quantifier alternation.

(1) “Someone knows each professor” can be represented in RDFLog as

∃stu∀prof ((prof , rdf:type, uni:professor)→ (stu, uni:knows, prof)) (1)

We call such rules ∃∀ rules. Some approaches such as [130] are limited to rules
of this form.
(2) “Each lecture must be “practiced” by another course (such as a tutorial or
practice lab) without knowing more about that course”. This statement can not
be expressed by ∃∀ rules. In RDFLog it can be represented as

∀lec∃crs
(
(lec, rdf:type, uni:lecture) → (crs , uni:practices, lec)

)
(2)

Such rules are referred to as ∀∃ rules. Recent proposals for rule extensions to
SPARQL are limited to this form, if they consider blank nodes in rule heads at all.
Indeed, with SPARQL’s CONSTRUCT patterns a fresh blank node is constructed
for each binding of the universal variables (cf. Section 10.2.1 in [108]).
(3) “For each lecture there is a course that “practices” that lecture and is at-
tended by all students attending the lecture”. This is represented in RDFLog
as

∀lec∃crs∀stu
(
(lec, rdf:type, uni:lecture) ∧ (stu, uni:attends, lec) →

(crs , uni:practices, lec) ∧ (stu, uni:attends, crs)
)

(3)

To the authors’ knowledge, RDFLog is the first RDF query language that sup-
ports rules of this third kind. RDFLog furthermore is a closed RDF query lan-
guage, i.e., the answer to an RDFLog program is again an RDF graph, and
RDFLog can express the logical core ρdf of the RDFS semantics [100].

In [86] it is suggested to extend Logic Programming—called Computational
Logic—with existential quantifications in rule’s heads, that is, with the very
extension RDFLog provides. However, in this book, no method is described for
the processing such rules.

The proofs of all results of this section on RDFLog and value invention can
be found in [32].

338 F. Bry et al.

4.1 Preliminaries

Definition 11 (RDF Graph [73]). An RDF vocabulary V consists of two
disjoint sets called URIs U and literals L. The blank nodes B is a set disjoint
from U and L. An RDF graph is a set of RDF triples where an RDF triple is
an element of (U ∪ B)× U× (U ∪ L ∪ B). If t = (s, p, o) is an RDF triple then s
is the subject, p is the predicate, and o is the object of t.

The set L of literals consists of three subsets, plain literals, typed literals and
literals with language tags. In this work we consider only plain literals (and thus
drop IL, the interpretation function for typed literals, see Section 1.3 in [73], in
the following definitions).

Definition 12 (RDF Interpretation [73]). An interpretation I of an RDF
vocabulary V = (U, L) is a tuple (IR, LV, IP, IEXT, IS) where IR is a non-empty set
of resources such that L ⊆ LV ⊆ IR, IP is a set of properties and IEXT : IP →
2IR×IR, and IS : U → IR ∪ IP are mappings.

IR and IP are not necessarily disjoint since a same URI can be used both as a
resource and as a property. RDF interpretations are used to assign a truth value
to an RDF graph. RDF assigns a special meaning to a predefined vocabulary,
called RDFS vocabulary. It is, e.g., required that IEXT(IP(rdfs : subPropertyOf))
is transitive and reflexive. The formulation of theses constraints on RDF inter-
pretation makes use of a notion of a class which is omitted in the definition
above for simplicity. The logical core of RDFS, denoted as ρdf , has been iden-
tified in [100]. An RDF interpretation I is a ρdf interpretation if I satisfied the
constraints specified in Definition 3 of [100].

The semantics of RDF is completed by the notion of entailment: An RDF
graph g RDF-entails (ρdf -entails) an RDF graph h if for all RDF (ρdf) inter-
pretations I, I(h) = true if I(g) = true [73].

The following uses formulas, terms, structures, Herbrand structures, satisfac-
tion |=, models, entailment |=, logic and Datalog programs, and the immediate
consequence operator TP of a logic program P . Infinite formulas 6 are also used:
if Φ is a recursively enumerable set of formulas, then

∧
(Φ) is a formula; if

x̄ = x1, x2, . . . is a recursively enumerable sequence of variables and if ϕ is a for-
mula, then ∃x̄(ϕ) is a formula. We write ϕ(x̄) to indicate that the free variables
of a formula ϕ are amongst x̄ = x1, . . . , xn.

We show that the semantics of RDF can be defined in terms of standard
logic. In particular, RDF graphs can be translated to formulas so that logical
entailment coincides with RDF entailment. For any RDF vocabulary V = (U, L)
we define the alphabet ΣV = U ∪ L ∪ {T } where U and L are constant symbols
and T is an arbitrary ternary relation symbol.

6 Of a limited form: infinite conjunctions all variables of which are existentially
quantified.

Datalog Relaunched: Simulation Unification and Value Invention 339

Definition 13 (Canonical Formula of an RDF Graph). Let g = {t1, . . . , tn}
be an RDF graph over V. The canonical formula of g is the formula ϕg :=
∃x̄ (ψ1(x̄) ∧ . . . ∧ ψn(x̄)) over ΣV and variables from B where ψi = T (s, p, o) if
ti = (s, p, o) and x̄ is the set of blank nodes occurring in g.

It is easy to see that ρdf [100] corresponds to a finite set of Datalog rules Φρdf .

Proposition 2. Let g, h be RDF graphs and ϕg, ϕh their canonical formulas.
Then g RDF-entails h iff ϕg |= ϕh and g ρdf -entails h iff ϕg ∧ Φρdf |= ϕh.

4.2 RDFLog Syntax

Definition 14 (Syntax of RDFLog Programs). Let V = (U, L) be an RDF
vocabulary and Var a set of variables. An RDFLog atom over V is an atom
T (t1, t2, t3) where t1, t2 ∈ (U ∪ Var) and t3 ∈ (U ∪ L ∪ Var). An RDFLog rule
over V is a formula

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn (body(x̄)→ head(x̄, ȳ))

over ΣV and Var where x̄ = x̄1, . . . , x̄n and ȳ = ȳ1, . . . , ȳn are finite sequences
from Var and body(x̄) and head(x̄, ȳ) are finite conjunctions of RDFLog atoms.
In addition we require that RDFLog rules are range restricted: if x ∈ Var(head)
is universal or there is an existential y ∈ Var(head) such that y is in the scope
of x, then x ∈ Var(body). An RDFLog program over V is a finite set of RDFLog
rules over V.

Any finite RDF graph g = {t1, . . . , tn} with blank nodes x̄ can be encoded
into the RDFLog rule ∃x̄ (true → t1 ∧ . . . ∧ tn) where true denotes the empty
conjunction. As it makes the notation simpler, we always assume that the input
RDF graph is encoded into such a rule in the RDFLog program. As there is only
one predicate symbol (T) in an RDFLog program, it can be omitted.

4.3 Declarative Semantics

The following RDFLog program shows that it is problematic to define the seman-
tics of an RDF query language in terms of models. Let the canonical structure Ag

of an RDF graph g be the structure over the domain of URIs, literals and blank
nodes where (t1, t2, t3) is true in Ag iff (t1, t2, t3) is an RDF triple in g. As (2) is a
fact in P and (1) is a rule in P , any canonical structure of an RDF graph that is
a model of P must contain the triple (’Logic’, uni:located in, :b) for some blank
node :b. Since this triple contains a literal in the subject position, it is not an
RDF triple. Thus, that P has no model which is the canonical structures of an
RDF graph. Even if, as with SPARQL, literals in subject position are allowed,
one can similarly argue with blank nodes in predicate position.

340 F. Bry et al.

P =
{∀sem∃rm∀stu

(
(stu, uni:attends, sem)

→ (sem,uni:located in, rm) ∧ (stu, uni:knows, rm)
)
, (1)

true → (uni:julie, uni:attends, ’Logic’) ∧ (uni:john, uni:attends, uni:RDF)
}

(2)

[[P]] � {(:b3, uni:located in, :b1), (uni:julie, uni:knows, :b1),

(uni:RDF, uni:located in, :b2), (uni:john, uni:knows, :b2),

(uni:julie, uni:attends, ‘Logic’), (uni:julie, uni:attends, :b3),

(uni:john, uni:attends, uni:RDF)
}

The difficulty is overcome by defining the semantics of RDFLog in terms of RDF
entailment. More precisely, the semantics of an RDFLog program P is defined
as the set of all RDF graphs g that entail exactly the same RDF graphs as P
(and satisfying in particular P |= g).

Definition 15 (Denotational Semantics of RDFLog). Let P be an RD-
FLog program and RDF the set of RDF graphs. The denotational semantics [[P]]
of P is the set [[P]] := {g ∈ RDF | ∀h ∈ RDF (P |= ϕh iff ϕg |= ϕh)} where ϕg

and ϕh are the canonical formulas of g and h respectively.

Observe that the semantics of an RDFLog program is an infinite set of possibly
infinite RDF graphs. As we formalized RDF graphs as formulas, we have to
consider the special kind of infinite formulas defined above. Nonetheless it is
immediate from the definition that the RDF graphs in [[P]] form an equivalence
class under RDF entailment. Therefore any element of [[P]] characterizes the
infinite set [[P]]. In the next section we show how such a representative can be
computed.

Observe that Φρdf encoded in RDFLog. Therefore it is up to the programmer
to enclose Φρdf into P if the semantics of P is supposed to be aware of the ρdf
vocabulary.

subsectionOperational Semantics
RDFLog operational semantics consists in (1) Skolemization, (2) standard

Datalog evaluation, (3) un-Skolemization, and (4) normalization. Normalisation
discards intermediary triples that may contain blank nodes in predicate position
(see [126] for cases where this is useful), the final answer of an RDFLog program
never contains such triples.

Definition 16 (Skolemisation). Let Σ and Γ be disjoint alphabets, ϕ = ∀x̄∃y
(ψ) a formula over Σ ∪ Γ and f ∈ Γ . A Γ -Skolemisation step sf maps ϕ to
sf (ϕ) := ∀x̄ψ{y � f(x̄)}. A Γ -Skolemisation s is a composition sf1 ◦ . . . ◦ sfn of
Γ -Skolemisation steps such that fi does not occur in sfi+1 ◦ . . .◦ sfn(ϕ) and s(ϕ)
contains no existential variables. The definition of a Skolemisation is extended
to sets in the usual way.

The Skolemised of an RDFLog program P is equivalent to a range restricted
logic program s(P). Any logic programming engine can compute the minimal
Herbrand model Ms(P) of s(P).

Datalog Relaunched: Simulation Unification and Value Invention 341

We define ϕMS(P) to be the conjunction of all ground atoms that are true in
Ms(P). However, ϕMS(P) might not be the canonical formula of an element of [[P]]
for two reasons. First, the example shows that ϕMS(P) might contain atoms with
skolem terms, such as (uni:RDF, uni:located in, srm(uni:RDF)), which are not en-
tailed by P . Second, ϕMS(P) can contain atoms that contain literals in subject
or predicate position and blank nodes in predicate position. In the example the
atom (‘Logic’, uni:located in, srm(‘Logic’)) contains the literal ‘Logic’ in subject
position.

The first problem is solved by “undoing” the Skolemisaton, i.e., replacing each
Skolem term in ϕMS(P) by a fresh, distinct blank node. We call this operation
UnSkolemisaton.

Definition 17 (Unskolemisation). Let Σ and Γ be disjoint alphabets and ϕ
a ground, possibly infinite, and quantifier free formula over Σ ∪ Γ . Let t̄ be the
sequence of all ground terms f(ū) where f is in Γ and ū is a sequence of terms
over Σ ∪ Γ . Then the Γ -Unskolemisation u maps ϕ to u(ϕ) := ∃x̄ (ϕ{t̄ � x̄}) .
where x̄ is a sequence of fresh variables.

To solve the second problem, we remove all triples with literals or blank nodes
in predicate position (no RDF graph may contain such a triple or any triple
entailed by it). In addition we remove each triple t that contains a literal l in
object position and add two triples t1 and t2 where t1 is obtained from t by
replacing an occurrence of a literal l in subject position by a fresh blank node bl

and t2 is obtained from t by replacing all occurrences of l by bl.
This is necessary to preserve information about the identity of domain ele-

ments that are denoted by blank nodes. For example observe that the RDF graph
{(uni:julie, uni:attends, :b), (:b, uni:located in, srm(‘Logic’))} follows from the
RDFLog program P above. To maintain this information we need to insert the
triple (uni:julie, uni:attends, :b3) into [[P]]. We formalise this step by defining the
normalisation operator.

Definition 18 (Normalisation Operator). Let ϕ be a formula of the form
∃x̄ (a1(x̄) ∧ . . . ∧ an(x̄)) where each ai(x̄) = T (t1, t2, t3) for some t1, t2, t3 ∈ (U∪
B ∪ L). Let L′ ⊆ L be the set of literals that occur in the first argument of an
atom in ϕ. We define μ : U ∪ B ∪ L → U ∪ B ∪ L to be the injection such that
μ(t) = b for some fresh blank node b (not in ϕ) if t ∈ L′ and μ(t) = t otherwise.
Then Π(ϕ) = {Π(a1(x̄)), . . . Π(an(x̄))} and

Π(T (t1, t2, t3)) =

{
� if t2 ∈ B ∪ L

(μ(t1), t2, t3) ∧ (μ(t1), t2, μ(t3)) otherwise

The normalisation operator ensures that, though intermediary triples may con-
tain blank nodes in predicate position (see [126] for examples where this is use-
ful), the final answer of an RDFLog program never contains such triples.

342 F. Bry et al.

Definition 19 (Operational Semantics of RDFLog). Let P be an RDFLog
program over Σ, s a Γ -Skolemisation for P , and u an Γ -Unskolemisation. Then
the operational semantics of P is [P] := Π

(
u(ϕMs(P))

)
where ϕMS(P) is as

defined above: the conjunction of all ground atoms that are true in the minimal
Herbrand model of s(P).

4.4 Properties and Experimental Evaluation

Even though we do not require that elements of the denotational semantics [[P]]
of an RDFLog program P are models of P it holds that u(ϕMs(P)) has a canonical
structure that is not only a model of P but even a universal model [56,57]. Thus
if we allow literals in subject position and blank nodes in subject or predicate
position, we can omit Π from the operational semantics and compute a model
of P .

To formulate this more precisely, we define an extended Herbrand structure A
over alphabet Σ and variables Var as a structure (D, Rel , Fun) where D is the set
of (possibly non-ground) terms over Σ and Var , and every function fA is defined
by fA(t1, . . . , tn) = f(t1, . . . , tn). We extend the definition of Unskolemisation
from formulas to extended Herbrand structures: if u is an Unskolemisation that
replaces t̄ by x̄ then u(M) is the extended Herbrand structure obtained from M
by renaming the domain elements t̄ by x̄.

Lemma 1. Let P be an RDFLog program, AP = u(Ms(P)) and ϕP = u
(
ϕMs(P)

)
.

Then AP |= P and P |= ϕP .

Intuitively, AP |= P means that ϕP captures all the information in P and
P |= ϕP means that it does not assert anything that is not asserted by P .
From these two key observations, we can prove that the operational semantics of
RDFLog is both sound and complete with respect to the denotational semantics.

Theorem 1. Let P be an RDFLog program. Then [P] ∈ [[P]].

The reduction of RDFLog to standard logic programs allows for a direct imple-
mentation of RDFLog on top of any logic programming or database engine that
supports value invention and recursion. In the following, we we compare exper-
imentally the performance of a very simple prototype based on that principle
with two of the more common SPARQL implementations. Our implementation
of RDFLog uses a combination of Perl pre- and post-filters for Skolemisation,
Unskolemisation, and normalisation of RDFLog programs and XSB Prolog to
evaluate the Skolemised programs.

We compare our implementation with the ARQ SPARQL processor of Jena
(Version 2.1) and the SPARQL engine provided by the Sesame RDF Framework.
For Sesame, we choose the main-memory store as it is “by far the fastest type
of repository that can be used” according to Sesame’s authors. With this store,
Sesame becomes a main-memory, ad-hoc query engine just like RDFLog and
ARQ. As common for ad-hoc queries we measure overall execution time including
both loading of the RDF data and execution of the SPARQL or RDFLog query.

Datalog Relaunched: Simulation Unification and Value Invention 343

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
ec

)

data size (triples)

RDFLog
SPARQL(ARQ)

SPARQL(Sesame)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
ec

)

data size (triples)

RDFLog
SPARQL (ARQ)

SPARQL (Sesame)

Fig. 2. Performance comparison on rule 1 (left) and on rule 2 (right)

In the experiments we evaluate three different queries against an RDF graph
consisting of Wikipedia data. The experiments have been carried out on a Intel
Pentium M Dual-Core with 1.86 GHz, 1 MB cache and 2 GB main memory.
For each setting, the running time is averaged over 25 runs. We compare the
following rules:

– Rule 1: ∀x∀y ((x, wiki:internalLink, y)→ (x, test:connected, y))
– Rule 2: ∀x∀y∃z ((x, wiki:internalLink, y)→ (x, test:connected, z))

Figure 2 compares the performance of RDFLog with that of ARQ and Sesame
for rule 1 and rule 2 (we omit rule 3 as it is not expressible in SPARQL). Despite
its light-weight, ad-hoc implementation, RDFLog outperforms ARQ and Sesame
in this setting. The figures show moreover that also for ARQ and Sesame, blank
node construction does not bear any significant additional computational effort.

5 Conclusion

Datalog has proven a useful vehicle for research and advanced database systems.
However, to remain such it must adapt to the ever more dominant Web. To that
end, we describe two approaches for addressing two of the most glaring defi-
ciencies of Datalog: simulation unification, for an easy access to semi-structured
Web data, and RDFLog, for arbitrary quantifier alternation in rule heads needed
for constructing RDF graphs. Both approaches pose new challenges to Data-
log evaluation and analysis, but we show that in both cases polynomial core
languages—at the cost of mild restrictions—can be identified.

Acknowledgements. The research leading to these results has received funding
from the European Commission and the Swiss Federal Office for Education and
Science within the 6th Framework Programme project REWERSE no. 506779
and the European Research Council under the European Communitys Seventh
Framework Programme (FP7/2007-2013)/ERC grant agreement no. 246858—
DIADEM.

344 F. Bry et al.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, San Francisco (1999)

2. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel Query
Language for Semistructured Data. Int. J. on Digital Libraries 1(1), 68–88 (1997)

3. Abiteboul, S., Vianu, V.: Regular Path Queries with Constraints. In: PODS, pp.
122–133 (1997)

4. Appelt, D.E.: Introduction to Information Extraction. AI Commun. 12(3), 161–
172 (1999)

5. Arocena, G.O., Mendelzon, A.O.: WebOQL: Restructuring Documents,
Databases, and Webs. In: ICDE, pp. 24–33. IEEE Computer Society, Los Alamitos
(1998)

6. Baader, F.: Unification in Commutative Theories. In: Unification, pp. 417–435.
Academic Press, London (1989)

7. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Lan-
guages: A Survey. In: Eisinger, N., Ma�luszyński, J. (eds.) Reasoning Web. LNCS,
vol. 3564, pp. 35–133. Springer, Heidelberg (2005)

8. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: PODS, pp. 1–15. ACM, New York (1986)

9. Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.): Reasoning Web
2006. LNCS, vol. 4126. Springer, Heidelberg (2006)

10. Baru, C., Ludäscher, B., Papakonstantinou, Y., Velikhov, P., Vianu, V.: Features
and Requirements for an XML View Definition Language: Lessons from XML
Information Mediation. In: QL 1998, W3C (1998)

11. Bassiliades, N., Vlahavas, I.P.: R-DEVICE: A Deductive RDF Rule Language.
In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 65–80.
Springer, Heidelberg (2004)

12. Baumgartner, R., Flesca, S., Gottlob, G.: The Elog Web Extraction Language.
In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250,
pp. 548–560. Springer, Heidelberg (2001)

13. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao,
K., Snodgrass, R.T. (eds.) VLDB, pp. 119–128. Morgan Kaufmann, San Francisco
(2001)

14. Beeri, C., Ramakrishnan, R.: On the Power of Magic. In: PODS, pp. 269–284.
ACM, New York (1987)

15. Belleghem, K.V., Denecker, M., Schreye, D.D.: A Strong Correspondence between
Description Logics and Open Logic Programming. In: ICLP, pp. 346–360 (1997)

16. Benedikt, M., Koch, C.: Xpath leashed (2007)
17. Berglund, A., Boag, S., Chamberlin, D., Fernàndez, M.F., Kay, M., Robie, J.,

Siméon, J. (eds.): XML Path Language (XPath) Version 2.0. Recommendation.
W3C (2007)

18. Berlea, A., Seidl, H.: fxt – A Transformation Language for XML Documents. J. of
Computing and Information Technology (CIT), Special Issue on Domain-Specific
Languages (2001)

19. Boag, S., Chamberlin, D., Fernaàndez, M.F., Robie, J., Siméon, J. (eds.): XQuery
1.0: An XML Query Language. Recommendation. W3C (2007)

20. Boley, H.: Relationships Between Logic Programming and XML. In: Proc. 14th
Workshop Logische Programmierung, Würzburg (January 2000)

Datalog Relaunched: Simulation Unification and Value Invention 345

21. Boley, H.: The RuleML Family of Web Rule Languages. In: Alferes, J.J., Bailey, J.,
May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 1–17. Springer,
Heidelberg (2006)

22. Boley, H.: Are Your Rules Online? Four Web Rule Essentials. In: Paschke, A.,
Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 7–24. Springer, Heidelberg
(2007)

23. Boley, H., Halmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.):
RIF Core Dialect. W3C Recommendation. World Wide Web Consortium, W3C
(2010)

24. Boley, H., Kifer, M. (eds.): RIF Basic Logic Dialect. W3C Recommendation.
World Wide Web Consortium, W3C (2010)

25. Boley, H., Kifer, M. (eds.): RIF Framework for Logic Dialects. W3C Recommen-
dation. World Wide Web Consortium, W3C (2010)

26. Boley, H., Kifer, M., Patranjan, P.-L., Polleres, A.: Rule Interchange on the Web.
In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-
L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 269–309. Springer,
Heidelberg (2007)

27. Boley, H., Mei, J., Sintek, M., Wagner, G.: RDF/RuleML Interoperability. In:
Rule Languages for Interoperability (2005)

28. Boley, H., Tabet, S., Wagner, G.: Design Rationale for RuleML: A Markup Lan-
guage for Semantic Web Rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuin-
ness, D.L. (eds.) SWWS, pp. 381–401 (2001)

29. Bolzer, O., Bry, F., Furche, T., Kraus, S., Schaffert, S.: Development of Use Cases,
Part I. Technical Report PMS-FB-2005-23, Institute for Informatics, University
of Munich (2005)

30. Brügemann-Klein, A., Wood, D.: Regular Tree Languages over Non-ranked Al-
phabets (1998) (unpublished manuscript)

31. Bry, F.: Query Evaluation in Deductive Databases: Bottom-Up and Top-Down
Reconciled. Data Knowledge Engineering 5, 289–312 (1990)

32. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like Datalog
for RDF. Technical Report PMS-FB-2008-1, Institute for Informatics, University
of Munich (2005)

33. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like Datalog
for RDF. In: Workshop on (Constraint) Logic Programming, WLP 2008 (2008)

34. Bry, F., Furche, T., Linse, B.: The perfect match: Rpl and rdf rule languages. In:
Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 227–241. Springer,
Heidelberg (2009)

35. Buneman, P.: Tutorial Semistructured Data. In: PODS, pp. 117–121 (1997)
36. Buneman, P., Fernandez, M.F., Suciu, D.: Unql: A query language and algebra for

semistructured data based on structural recursion. VLDB J. 9(1), 76–110 (2000)
37. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadel-

phia (2009)
38. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: View-Based Query An-

swering over Description Logic Ontologies. In: Brewka, G., Lang, J. (eds.) KR,
pp. 242–251. AAAI Press, Menlo Park (2008)

39. Carroll, J.J., Roo, J.D. (eds.): OWL Web Ontology Language Test Cases. W3C
Recommendation. World Wide Web Consortium, W3C (2004)

40. Ceri, S., Gottlob, G., Lavazza, L.: Translation and Optimization of Logic Queries:
The Algebraic Approach. In: Chu, W.W., Gardarin, G., Ohsuga, S., Kambayashi,
Y. (eds.) VLDB, pp. 395–402. Morgan Kaufmann, San Francisco (1986)

346 F. Bry et al.

41. Ceri, S., Gottlob, G., Tanca, L.: What you Always Wanted to Know About Dat-
alog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166
(1989)

42. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

43. Chamberlin, D., Fankhauser, P., Marchiori, M., Robie, J. (eds.): XML Query Use
Cases. W3C Working Group Note. World Wide Web Consortium, W3C (2007)

44. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S.A., Tsur, S., Zaniolo, C.:
The ldl system prototype. IEEE Trans. Knowl. Data Eng. 2(1), 76–90 (1990)

45. Clark, J. (ed.): XSL Transformations (XSLT) Version 1.0. Recommendation. W3C
(1999)

46. Clark, J., DeRose, S. (eds.): XML Path Language (XPath) Version 1.0. Recom-
mendation. W3C (1999)

47. de Bruijn, J. (ed.): RIF RDF and OWL Compatibility. W3C Recommendation.
World Wide Web Consortium, W3C (2010)

48. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On Representational Issues
About Combinations of Classical Theories with Nonmonotonic Rules. In: Lang,
J., Lin, F., Wang, J. (eds.) KSEM 2006. LNCS (LNAI), vol. 4092, pp. 1–22.
Springer, Heidelberg (2006)

49. de Sainte Marie, C., Halmark, G., Paschke, A. (eds.): RIF Production Rule Di-
alect. W3C Recommendation. World Wide Web Consortium, W3C (2010)

50. Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C
Recommendation. World Wide Web Consortium, W3C (2004)

51. Deutsch, A. (ed.): Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. ACM, New York (2004)

52. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Maluszynski,
J.: Hybrid Reasoning with Rules and Ontologies. In: Bry, F., Ma�luszyński, J.
(eds.) Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer,
Heidelberg (2009)

53. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for
the Semantic Web. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori,
M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53.
Springer, Heidelberg (2008)

54. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with
Rules and Ontologies. In: Barahona, et al. (eds.) [9], pp. 93–127

55. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., Wang, K.: Forgetting in Man-
aging Rules and Ontologies. In: Web Intelligence, pp. 411–419. IEEE Computer
Society, Los Alamitos (2006)

56. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT
2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)

57. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

58. Fensel, D., Sycara, K., Mylopoulos, J. (eds.): ISWC 2003. LNCS, vol. 2870.
Springer, Heidelberg (2003)

59. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3), 95–138
(1998)

60. Furche, T.: Implementation of Web Query Language Reconsidered: Beyond Tree
and Single-Language Algebras at (Almost) No Cost. Dissertation/doctoral thesis,
Ludwig-Maxmilians University Munich (2008)

Datalog Relaunched: Simulation Unification and Value Invention 347

61. Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: Rdf querying: Lan-
guage constructs and evaluation methods compared. In: Barahona, et al. (eds.)
[9], pp. 1–52

62. Gallaire, H., Minker, J. (eds.): Logic and Data Bases, Symposium on Logic and
Data Bases. Advances in Data Base Theory. Plenum Press, New York (1978)

63. Gallaire, H., Minker, J., Nicolas, J.-M.: Logic and Databases: A Deductive Ap-
proach. ACM Comput. Surv. 16(2), 153–185 (1984)

64. Gallaire, H., Nicolas, J.-M., Minker, J. (eds.): Advances in Data Base Theory, Cen-
tre d’Études et de Recherches de l’École Nationale Supérieure de l’Aéronautique
et de l’Espace de Toulouse (CERT), France, December 12-14, 1979. Based on the
Proceedings of the Workshop on Formal Bases for Data Bases, vol. 1. Plenum
Press, New York (1981)

65. Gallaire, H., Nicolas, J.-M., Minker, J. (eds.): Advances in Data Base Theory,
Centre d’études et de recherches de Toulouse, France, December 14-17, 1982.
Based on the Proceedings of the Workshop on Logical Data Bases, vol. 2. Plenum
Press, New York (1984)

66. Gottlob, G., Koch, C.: Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction. In: Popa, L. (ed.) PODS, pp. 17–28. ACM, New
York (2002)

67. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages
for Web information extraction. J. ACM 51(1), 74–113 (2004)

68. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto Data
Extraction Project - Back and Forth between Theory and Practice. In: Deutsch
(ed.) [51], pp. 1–12

69. Grahne, G., Lakshmanan, L.V.S.: On the Difference between Navigating Semi-
structured Data and Querying It. In: Workshop on Database Programming Lan-
guages, pp. 271–296 (1999)

70. Grishman, R.: Information Extraction. In: The Oxford Handbook of Computa-
tional Linguistics, pp. 545–559. Oxford University Press, Oxford (2003)

71. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW, pp. 48–57 (2003)

72. Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of semantic web
databases. In: Deutsch (ed.) [51], pp. 95–106

73. Hayes, P. (ed.): RDF Semantics. W3C Recommendation. World Wide Web Con-
sortium, W3C (2004)

74. Heflin, J. (ed.): OWL Web Ontology Language Use Cases and Requirements. W3C
Recommendation. World Wide Web Consortium, W3C (2004)

75. Hori, M., Euzenat, J., Patel-Schneider, P.F. (eds.): OWL Web Ontology Language
XML Presentation Syntax. W3C Recommendation. World Wide Web Consor-
tium, W3C (2004)

76. Horrocks, I.: OWL Rules, OK?. In: Rule Languages for Interoperability (2005)
77. Horrocks, I., Angele, J., Decker, S., Kifer, M., Grosof, B.N., Wagner, G.: Where

Are the Rules? IEEE Intelligent Systems 18(5), 76–83 (2003)
78. Horrocks, I., Patel-Schneider, P.F.: A proposal for an Owl rules language. In:

Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.) WWW, pp. 723–731.
ACM, New York (2004)

79. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A
proposal and prototype implementation. J. Web Sem. 3(1), 23–40 (2005)

80. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-Description Logic to Disjunc-
tive Datalog Programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) KR,
pp. 152–162. AAAI Press, Menlo Park (2004)

348 F. Bry et al.

81. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduc-
tion to Disjunctive Datalog. J. Autom. Reasoning 39(3), 351–384 (2007)

82. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A Rule System for Query-
ing Persistent RDFS Data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P.,
Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 857–862. Springer, Heidelberg (2009)

83. Kilpeläinen, P.: Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki, Faculty of Science, Department of
Computer Science (1992)

84. Kilpelainen, P., Mannila, H.: Ordered and Unordered Tree Inclusion. SIAM J.
Comput. 24(2), 340–356 (1995)

85. Klyne, G.: Representring Facts and Rules in RDF – Bridging Cconventional pred-
icate representation and RDF (2001),
http://www.ninebynine.org/RDFNotes/RDFFactsAndRules.html

86. Kowalski, R.: Computational logic and human life: How to be artificially intelli-
gent. Preprint, Department of Computing, Imperial College London (2010),
http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf to be published by
Cambridge University Press

87. Kowalski, R.A.: The Early Years of Logic Programming. Commun. ACM 31(1),
38–43 (1988)

88. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond – The Science of
Search Engine Ranking. Princetoon University Press (2006)

89. Ley, C., Benedikt, M.: How big must complete xml query languages be? In: ICDT
2009: Proceedings of the 12th International Conference on Database Theory, pp.
183–200. ACM, New York (2009)

90. Linse, B.: Data Integration on the (Semantic) Web with Rules and Rich Unifica-
tion. PhD thesis, Ludwig-Maximilians-Universität München (2010)

91. Maier, D.: Communication during the Workshop Datalog 2.0 (2010)

92. Marx, M.: Conditional xpath. ACM Trans. Database Syst. 30(4), 929–959 (2005)

93. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language
Overview. W3C Recommendation. World Wide Web Consortium, W3C (2004)

94. Meditskos, G., Bassiliades, N.: A Rule-Based Object-Oriented OWL Reasoner.
IEEE Trans. Knowl. Data Eng. 20(3), 397–410 (2008)

95. Meditskos, G., Bassiliades, N.: Combining a DL Reasoner and a Rule Engine for
Improving Entailment-Based OWL Reasoning. In: Sheth, A.P., Staab, S., Dean,
M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008.
LNCS, vol. 5318, pp. 277–292. Springer, Heidelberg (2008)

96. Miklós, Z., Neumann, G., Zdun, U., Sintek, M.: Querying semantic web resources
using triple views. In: Fensel, et al. (eds.) [58], pp. 517–532

97. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL
2 Web Ontology Language Profiles. W3C Recommendation. World Wide Web
Consortium, W3C (2009)

98. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming
Live Together Happily Ever After? In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 501–514. Springer, Heidelberg (2006)

99. Motik, B., Volz, R.: Optimizing Query Answering in Description Logics using
Disjunctive Deductive Databases. In: Bry, F., Lutz, C., Sattler, U., Schoop, M.
(eds.) KRDB. CEUR Workshop Proceedings, vol. 79. CEUR-WS.org (2003)

http://www.ninebynine.org/RDFNotes/RDFFactsAndRules.html
http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf

Datalog Relaunched: Simulation Unification and Value Invention 349

100. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67.
Springer, Heidelberg (2007)

101. Naqvi, S.A., Tsur, S.: A Logical Language for Data and Knowledge Bases. Com-
puter Science Press, Rockville (1989)

102. Neven, F., Schwentick, T.: Query automata over finite trees. Theoretical Com-
puter Science 275(1-2), 633–674 (2002)

103. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In:
Chaudhri, A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS,
vol. 2490, pp. 109–127. Springer, Heidelberg (2002)

104. Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWL Web Ontology Lan-
guage Semantics and Abstract Syntax. W3C Recommendation. World Wide Web
Consortium, W3C (2004)

105. Polleres, A.: From SPARQL to rules (and back). In: Williamson, C.L., Zurko,
M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 787–796. ACM, New
York (2007)

106. Polleres, A., Boley, H., Kifer, M. (eds.): RIF Datatypes and Built-Ins 1.0. W3C
Recommendation. World Wide Web Consortium, W3C (2010)

107. Polleres, A., Schindlauer, R.: DLVHEX-SPARQL: A SPARQL Compliant Query
Engine Based on DLVHEX. In: Polleres, A., Pearce, D., Heymans, S., Ruckhaus,
E. (eds.) ALPSWS. CEUR Workshop Proceedings, vol. 287. CEUR-WS.org (2007)

108. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF.
W3C Recommendation. World Wide Web Consortium, W3C (2008)

109. Pührer, J., Heymans, S., Eiter, T.: Dealing with Inconsistency When Combining
Ontologies and Rules Using DL-Programs. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC
2010. LNCS, vol. 6088, pp. 183–197. Springer, Heidelberg (2010)

110. Ramakrishnan, R.: Magic Templates: A Spellbinding Approach to Logic Pro-
grams. In: ICLP/SLP, pp. 140–159 (1988)

111. Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. J. Log.
Program. 23(2), 125–149 (1995)

112. Rohmer, J., Lescoeur, R., Kerisit, J.-M.: The Alexander Method - A Technique
for The Processing of Recursive Axioms in Deductive Databases. New Generation
Comput. 4(3), 273–285 (1986)

113. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. Web Sem. 3(1), 61–73 (2005)

114. Rosati, R.: Semantic and Computational Advantages of the Safe Integration of
Ontologies and Rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS,
vol. 3703, pp. 50–64. Springer, Heidelberg (2005)

115. Rosati, R.: Integrating Ontologies and Rules: Semantic and Computational Issues.
In: Barahona, et al. (eds.) [9], pp. 128–151

116. Rosati, R.: On Combining Description Logic Ontologies and Nonrecursive Datalog
Rules. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 13–27.
Springer, Heidelberg (2008)

117. Saccà, D., Zaniolo, C.: Implementation of recursive queries for a data language
based on pure horn logic. In: ICLP, pp. 104–135 (1987)

118. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the
Web. Dissertation. PhD Thesis, Institute for Informatics, University of Munich
(2004)

119. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. Extreme Markup Languages (2004)

350 F. Bry et al.

120. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the web. In: Huai, J., Chen,
R., Hon, H.-W., Liu, Y., Ma, W.-Y., Tomkins, A., Zhang, X. (eds.) WWW, pp.
585–594. ACM, New York (2008)

121. Sintek, M., Decker, S.: Triple - an rdf query, inference, and transformation lan-
guage. In: INAP, pp. 47–56 (2001)

122. Sintek, M., Decker, S.: Triple - a query, inference, and transformation language for
the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
pp. 364–378. Springer, Heidelberg (2002)

123. Smith, M.K., Welty, C., McGuinness, D.L. (eds.): OWL Web Ontology Language
Guide. W3C Recommendation. World Wide Web Consortium, W3C (2004)

124. Swift, T.: Deduction in ontologies via asp. In: Lifschitz, V., Niemelä, I. (eds.)
LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)

125. ter Horst, H.J.: Combining RDF and Part of OWL with Rules: Semantics, Decid-
ability, Complexity. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 668–684. Springer, Heidelberg (2005)

126. ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf
schema and a semantic extension involving the owl vocabulary. J. Web Sem. 3(2-
3), 79–115 (2005)

127. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Com-
puter Science Press, Rockville (1988)

128. Wilks, Y., Brewster, C.: Natural Language Processing as a Foundation of the
Semantic Web. Foundations and Trends in Web Science 1(3-4), 199–327 (2009)

129. Wilks, Y., Brewster, C.: Natural Language Processing as a Foundation of the
Semantic Web. Now Publishers Inc. (2009)

130. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements
on the semantic web. J. Data Semantics 1, 69–97 (2003)

Datalog+/-: A Family of Languages for

Ontology Querying

Andrea Cal̀ı3,2, Georg Gottlob1,2, Thomas Lukasiewicz1, and Andreas Pieris1

1 Computing Laboratory, University of Oxford, UK
2 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK

3 Department of Computer Science, University of London, Birkbeck College, UK
andrea@dcs.bbk.ac.uk,

{georg.gottlob,thomas.lukasiewicz,andreas.pieris}@comlab.ox.ac.uk

Abstract. In ontology-based data access, an extensional database is en-
hanced by an ontology that generates new intensional knowledge which
has to be considered when answering queries. In this setting, tractable
data complexity (i.e., complexity w.r.t. the data only) of query answer-
ing is crucial, given the need to deal with large data sets. This paper
summarizes results on a recently introduced family of Datalog-based
languages, called Datalog+/-, which is a new framework for tractable on-
tology querying. Plain Datalog is extended by allowing existential quan-
tifiers, the equality predicate, and the truth constant false to appear
in rule heads. At the same time, the resulting language is syntactically
restricted, so as to achieve decidability and even tractability.

1 Introduction

This paper is a survey of recently introduced variants of Datalog. On the one
hand, Datalog is extended by allowing features such as existential quantifiers,
the equality predicate, and the truth constant false to appear in rule heads. On
the other hand, the resulting language is syntactically restricted, so as to achieve
decidability, and in some relevant cases even tractability. The family of all such
(existing and future) variants was dubbed Datalog± (also written Datalog+/-
whenever appropriate). Before delving into this new language family, let us very
briefly review the well-known Datalog language.

Datalog (see, e.g., [1]) has been used as a paradigmatic database programming
and query language for over three decades. While Datalog is rarely used directly
as a query language in corporate application contexts, the language has influ-
enced the development of popular query languages such as SQL, whose newer
versions allow one to express recursive queries. Moreover, Datalog has been used
as an inference engine for knowledge processing within several software tools,
and has recently gained popularity in the context of various applications, such
as web data extraction [7,29,8], source code querying and program analysis [31],
and modeling distributed systems [2].

A basic Datalog program consists of a set of universally quantified function-
free Horn clauses. When writing a Datalog program, as usual in logic program-
ming, we consider sets of rules to be conjunctions, use the comma for conjoining

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 351–368, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

352 A. Cal̀ı et al.

atoms, and assume all variables of a rule to be universally quantified, while
omitting the universal quantifiers. The predicate symbols appearing in such a
program either refer to extensional database (EDB) predicates, whose values are
given via an input database, or to intensional database (IDB) predicates, whose
values are computed by the program. In standard Datalog, EDB predicate sym-
bols may appear in rule bodies only.

Example 1. Consider a program that takes as input EDB a directed graph, given
by a binary edge relation e, plus a set of special vertices of this graph given by
a unary relation s. The recursive Datalog program

s(X)→ r(X),
r(X), e(X, Y) → r(Y)

computes the set r of all vertices in the graph reachable via a directed path of
nonnegative length from special vertices, while the recursive program

e(X, Y) → c(X, Y),
e(X, Y), c(Y, Z)→ c(X, Z)

computes the transitive closure c of the binary relation e.

A Boolean conjunctive query (BCQ) is an existentially quantified conjunction
of atoms. For example, the BCQ q of whether a directed triangle is reachable
in the graph e of Example 1 from the set s of special vertices can be written
as ∃X∃Y ∃Z r(X), r(Y), r(Z), e(X, Y), e(Y, Z), e(Z, X). Alternatively, q can be
represented as a Datalog rule with a head predicate of arity 0, i.e., a Boolean head
predicate: r(X), r(Y), r(Z), e(X, Y), e(Y, Z), e(Z, X) → triangle. A conjunctive
query (CQ) is defined similarly to a BCQ but has free variables defining the
output tuples (see Section 2).

Given an EDB D and a Datalog program Σ, let us denote by D∪Σ the logical
theory containing both the facts (i.e., ground atoms) of D and the rules of Σ.
It is well-known that D ∪ Σ has a unique least Herbrand model LHM (D ∪ Σ)
which consists of all ground atoms a such that D ∪ Σ |= a. This model can be
computed by a least fixpoint iteration starting from the EDB D and adding at
each iteration step all new facts generated by a single rule application. We say
that a BCQ q evaluates to true over D and Σ iff D ∪Σ |= q. This is equivalent
to the existence of a homomorphism from (the atoms of) q to LHM (D ∪Σ).

Note that the unique least Herbrand model of a Datalog program and a
database is always finite, and all values appearing in it are from the active
domain of the given EDB, i.e., all values that appear as arguments of EDB facts
or that are explicitly mentioned in the Datalog program. For ontology querying,
however, it would be desirable that a Datalog extension could be able to express
the existence of certain values that are not necessarily from the active domain
of the EDB. This can be achieved by allowing existentially quantified variables
in rule heads [36]. Let us give a brief example, and refer to Section 6, and to the
references therein, for more detailed treatment.

Datalog+/-: A Family of Languages for Ontology Querying 353

Description logics (DLs) [4] are used to formalize so-called ontological knowl-
edge about relationships between objects, entities, and classes in a certain appli-
cation domain. For example, we could express that every person has exactly one
father who, moreover, is himself a person, by the following DL clauses, where
person is a set of objects whose initial value is specified in the form of an EDB
relation, called concept, and father is a binary relation, a so-called role in DL
terminology: (i) person ! ∃father , (ii) ∃father− ! person , (iii) (funct father).
In an appropriate version of Datalog±, the same can be expressed as:

person(X) → ∃Y father (X, Y),
father (X, Y) → person(Y),

father (X, Y), father (X, Y ′) → Y = Y ′.

Note that here the relation person, which is supplied in the input with an ini-
tial value, is actually modified. Therefore, we no longer require (as in standard
Datalog) that EDB relation symbols cannot occur in rule heads.

DLs usually rely on classical first-order semantics, and so arbitrary (finite
or infinite) models are considered. In the above example, models with infinite
chains of ancestors are perfectly legal. Rather than “materializing” such models,
i.e., computing and storing them, we are interested in reasoning and query an-
swering. For example, whenever the initial value of person is nonempty, then the
BCQ ∃X∃Y ∃Z father (X, Y), father (Y, Z) will evaluate to true, while the query
∃X∃Y father (X, Y), father (Y, X) to false since it is false in some models.

In summary, as we have briefly tried to sketch, ontology querying (and pos-
sibly a number of other applications such as Data Exchange and Web Data
Extraction—for more details we refer the reader to [15]) could possibly profit
from appropriate forms of Datalog extended by the possibility of using rules with
existential quantifiers in their heads (such rules are known as tuple-generating de-
pendencies (TGDs), and they capture the well-known inclusion dependencies—
see, e.g., [1]), and by several additional features such as, for example, equality in
rule heads (such rules are known as equality-generating dependencies (EGDs),
and they capture the well-known functional dependencies—see, e.g., [1]).

Unfortunately, already for sets of TGDs alone, most basic reasoning and query
answering problems are undecidable. In particular, given a database D and a set
Σ of TGDs, checking whether D ∪Σ |= q for a ground fact q is undecidable [9].
Worse than that, undecidability holds even in case both q and Σ are fixed, and
only D is given as input [11]. It is thus important to identify large classes of
formalisms for rule sets Σ that (i) are based on Datalog, and thus enable a
modular rule-based style of knowledge representation, (ii) are syntactical frag-
ments of first-order logic so that answering a BCQ q under a database D and
Σ is equivalent to the classical entailment check D ∪Σ |= q, (iii) are expressive
enough for being useful in real applications, (iv) have decidable query answer-
ing, and finally (v) query answering is tractable in data complexity, that is, the
complexity calculated by considering only the data as part of the input, whereas
q and Σ are fixed; this type of complexity is an important measure, because we
can realistically assume that the EDB D is the only really large object in the
input. This paper reports on some recent languages that fulfill these criteria. We

354 A. Cal̀ı et al.

dubbed the family of such languages Datalog±, because, as already explained,
they add features to Datalog, and on the other hand make some syntactical
restrictions.

One of the main tools used for proving favorable results about a number of
Datalog± languages is the chase procedure [34,32]. The chase is an algorithm
that, roughly speaking, executes the rules of a Datalog± program Σ on input
D in a forward chaining manner by inferring new atoms, creating null values
(Skolem constants) whenever an existential quantifier needs to be satisfied, and
unifying such nulls with other nulls or with non-null values whenever required
by an equality atom in the head of a rule whose body has become satisfied. The
key property of the chase procedure is that, independently of the order in which
rules are processed, the result chase(D, Σ) is a universal model of D∪Σ, i.e., an
“initial” model which can be homomorphically embedded into every other model
(see, e.g., [28]). As a consequence, for each BCQ q, D∪Σ |= q iff chase(D, Σ) |= q
iff there is a homomorphism from (the atoms of) q to chase(D, Σ).

The chase procedure may terminate or not. The most notable syntactic re-
striction guaranteeing chase termination is weak acyclicity of TGDs, for which we
refer the reader to the landmark paper [26]. More general syntactic restrictions
were studied in [25,35]. However, this is not appropriate for ontology querying.
Fortunately, even in case the chase does not terminate and has an infinite re-
sult, it is a useful tool for studying query answering, since in relevant cases, it is
sufficient to execute the chase up to a certain finite level (or derivation depth)
for being able to answer a BCQ.

Section 3 reports on the class of guarded TGDs, where each rule body is
required to have an atom that covers all body variables of the rule. For instance,
the first Datalog program in Example 1 is guarded, while the second one is not.
Guarded TGDs ensure polynomial time data complexity of query answering,
even though the chase may be infinite. We then consider the even more restricted
class of linear TGDs, for which query answering is first-order rewritable which
means that q and Σ can be transformed into a first-order query qΣ such that
D |= qΣ iff D ∪Σ |= q. This property, introduced in [20] in the context of DLs,
is essential if D is a very large database. It means that query answering can be
deferred to a standard query language such as (basic, non-recursive) SQL.

Stickiness, a completely different paradigm for decidable and tractable query
answering is discussed in Section 4. Let us give a very informal explanation. First,
stickiness requires that every TGD σ that has a double occurrence of a variable
X in the rule body, has at least one occurrence of X in the rule head. Further,
whenever such a TGD fires and produces a new atom a that has a value v in
place of the variable X , then the value v is never lost by any derivation sequence
that uses chase steps (i.e., forward chaining) for producing new atoms, and that
involves a. In other words, every value that arises in a new atom a through a
join in a rule body must be present in all further atoms derived from a. We will
introduce stickiness by a syntactic criterion that is easily testable.

In Section 5, we first deal with negative constraints, i.e., rules whose head is
the truth constant false denoted by ⊥. It turns out that negative constraints

Datalog+/-: A Family of Languages for Ontology Querying 355

come for free, and can be used without any increase of complexity. The reason
is that checking whether a rule of the form φ(X) → ⊥ is satisfied by a database
D given a Datalog± program Σ is tantamount to showing that D ∪Σ 	|= φ(X),
i.e., to the evaluation of a BCQ. We then proceed by drawing our attention
to equality-generating dependencies (EGDs) that we would like to use together
with TGDs. Unfortunately, as well-known in database theory, query answering
becomes undecidable even when putting together some extremely week forms
of TGDs and EGDs such as inclusion dependencies and functional dependen-
cies [23]. In this paper, we therefore concentrate on a very simple, nevertheless
extremely useful class of EGDs, namely key dependencies (or simply keys). We
discuss semantic and syntactic conditions ensuring that keys are usable without
destroying decidability and tractability.

Section 6 briefly describes how highly relevant DLs such as DL-LiteF and
DL-LiteR can be modeled in the Datalog± framework. We conclude with a brief
outlook on further research.

2 Preliminaries

In this section we recall some basics on databases, (Boolean) conjunctive queries,
tuple-generating dependencies, and the TGD chase procedure.

General. We define the following pairwise disjoint (infinite) sets of symbols: a
set Γ of constants (constitute the “normal” domain of a database), and a set
ΓN of labeled nulls (used as placeholders for unknown values, and thus can be also
seen as variables). Different constants represent different values (unique name
assumption), while different nulls may represent the same value. A lexicographic
order is defined on Γ ∪ ΓN , such that every value in ΓN follows all those in Γ .
We denote by X sequences of variables X1, . . . , Xk, with k � 0.

A relational schema R (or simply schema) is a set of relational symbols (or
predicates), each with its associated arity. We write r/n to denote that the
predicate r has arity n. A position r[i] (in a schemaR) is identified by a predicate
r ∈ R and its i-th argument (or attribute). A term t is a constant, null, or
variable. An atomic formula (or simply atom) has the form r(t1, . . . , tn), where
r/n is a relation, and t1, . . . , tn are terms. For an atom a, we denote by dom(a)
the set of its terms. This notation naturally extends to sets and conjunctions of
atoms. Conjunctions of atoms are often identified with the sets of their atoms.

A substitution from one set of symbols S1 to another set of symbols S2 is a
function h : S1 → S2 defined as follows: (i) ∅ is a substitution (empty substi-
tution), (ii) if h is a substitution, then h ∪ {X → Y } is a substitution, where
X ∈ S1 and Y ∈ S2, and h does not already contain some X → Z with Y 	= Z.
If X → Y ∈ h, then we write h(X) = Y . A homomorphism from a set of
atoms A1 to a set of atoms A2, both over the same schema R, is a substitu-
tion h : dom(A1) → dom(A2) such that: (i) if t ∈ Γ , then h(t) = t, and (ii)
if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2. The
notion of homomorphism naturally extends to conjunctions of atoms.

356 A. Cal̀ı et al.

Databases and Queries. A database (instance) D for a schemaR is a (possibly
infinite) set of atoms of the form r(t) (a.k.a. facts), where r/n ∈ R and t ∈
(Γ ∪ΓN)n. We denote as r(D) the set {t | r(t) ∈ D}. A conjunctive query (CQ)
q of arity n over a schema R, written as q/n, has the form q(X) = ∃Yϕ(X,Y),
where ϕ(X,Y) is a conjunction of atoms over R, X and Y are sequences of
variables or constants in Γ , and the arity of q is n. ϕ(X,Y) is called the body
of q, denoted as body(q). A Boolean CQ (BCQ) is a CQ of zero arity. The
answer to a CQ q/n over an instance I, denoted as q(I), is the set of all n-tuples
t ∈ Γ n for which there exists a homomorphism h : X ∪Y → Γ ∪ ΓN such that
h(ϕ(X,Y)) ⊆ I and h(X) = t. A BCQ has only the empty tuple 〈〉 as possible
answer, in which case it is said that has positive answer. Formally, a BCQ has
positive answer over I, denoted as I |= q, iff 〈〉 ∈ q(I).
Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ
over a schema R is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where
ϕ(X,Y) and ψ(X,Z) are conjunctions of atoms over R, called the body and the
head of σ, denoted as body(σ) and head(σ), respectively. Henceforth, to avoid
notational clutter, we will omit the universal quantifiers in TGDs. Such σ is
satisfied by an instance I for R iff, whenever there exists a homomorphism h
such that h(ϕ(X,Y)) ⊆ I, there exists an extension h′ of h (i.e., h′ ⊇ h) such
that h′(ψ(X,Z)) ⊆ I.

We now define the notion of query answering under TGDs. Given a database
D for R, and a set Σ of TGDs over R, the models of D w.r.t. Σ, denoted as
mods(D, Σ), is the set of all instances I such that I |= D∪Σ, which means that
I ⊇ D and I satisfies Σ. The answer to a CQ q w.r.t. D and Σ, denoted as
ans(q, D, Σ), is the set {t | t ∈ q(I) for each I ∈ mods(D, Σ)}. The answer to a
BCQ q w.r.t. D and Σ is positive, denoted as D ∪ Σ |= q, iff ans(q, D, Σ) 	= ∅.
Note that query answering under general TGDs is undecidable [9], even when
the schema and the set of TGDs are fixed [11].

The combined complexity of query answering is the complexity of determining
whether a given tuple is among the answers to a query q w.r.t a database D and
a set Σ of TGDs, where q, D and Σ are part of the input. The data complexity
is the complexity of the same problem, where q and Σ are considered fixed, and
only D is part of the input. The latter complexity is the most important in the
context of data-oriented settings, where the data size is usually much larger than
the size of the constraints and of the query.

The two problems of CQ and BCQ evaluation under TGDs are logspace-
equivalent [22,32,27,25]. Henceforth, we thus focus only on the BCQ evaluation
problem. All complexity results carry over to the other problems. We also recall
that query answering under TGDs is equivalent to query answering under TGDs
with singleton atoms in the head [11]. This is shown by means of a transforma-
tion from general TGDs to TGDs with single-atom heads [11]. Moreover, the
transformation preserves the properties of the classes of TGDs that we consider
in this survey. Therefore, all results for TGDs with singleton atoms in the head
carry over to TGDs with multiple head-atoms. We thus always assume w.l.o.g.
(unless stated otherwise) that every TGD has a singleton atom in its head.

Datalog+/-: A Family of Languages for Ontology Querying 357

The TGD Chase. The chase procedure (or simply chase) is a fundamental
algorithmic tool introduced for checking implication of dependencies [34], and
later for checking query containment [32]. Informally, the chase is a process of
repairing a database w.r.t. a set of dependencies so that the resulted database
satisfies the dependencies. We shall use the term chase interchangeably for both
the procedure and its result. The chase works on an instance through the so-
called TGD chase rule. The TGD chase rule comes in two equivalent fashions:
oblivious and restricted [11], where the restricted one repairs TGDs only when
they are not satisfied. In the sequel, we focus on the oblivious one for technical
clarity. The TGD chase rule defined below is the building block of the chase.
TGD Chase Rule: Consider a database D for a schema R, and a TGD σ =
ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there exists a ho-
momorphism h such that h(ϕ(X,Y)) ⊆ D then: (i) define h′ ⊇ h such that
h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labeled null not in-
troduced before, and following lexicographically all those introduced so far, and
(ii) add to D the set of atoms in h′(ψ(X,Z)) if not already in D.

Given a database D and a set of TGDs Σ, the chase algorithm for D and Σ
consists of an exhaustive application of the TGD chase rule in a breadth-first
fashion, which leads as result to a (possibly infinite) chase for D and Σ, denoted
as chase(D, Σ). For the formal definition of the chase algorithm we refer the
reader to [12]. The (possibly infinite) chase for D and Σ is a universal model of
D w.r.t. Σ, i.e., for each instance I ∈ mods(D, Σ), there exists a homomorphism
from chase(D, Σ) to I [26,25]. Using this fact it can be shown that for a BCQ
q, D ∪Σ |= q iff chase(D, Σ) |= q.

3 Guarded and Linear Datalog±

Clearly, for ontology querying purposes, we do not want to limit our attention to
cases where the chase terminates, but consider cases where the chase produces
an infinite universal solution, and where, in general, no finite universal solution
exists. Unfortunately, as already mentioned, query answering is undecidable in
such cases, and we are looking for decidable subclasses. In this section we present
the languages guarded and linear Datalog±.

3.1 Guarded Datalog±

We first discuss the class of guarded TGDs, which forms the language guarded
Datalog±, as a special class of TGDs relative to which query answering is decid-
able, and even tractable in data complexity. Queries relative to such TGDs can
be evaluated on a finite part of the chase, which is of constant size when the
query and the TGDs are fixed.

A TGD σ is guarded iff it contains an atom in its body that contains all the
universally quantified variables of σ. The leftmost such atom is the guard atom
(or guard) of σ. The non-guard atoms in the body of σ are the side atoms of σ.
For example, the TGD r(X, Y), s(Y, X, Z)→ ∃Ws(Z, X, W) is guarded (via the

358 A. Cal̀ı et al.

guard s(Y, X, Z)), while the TGD r(X, Y), r(Y, Z) → r(X, Z) is not guarded.
Note that sets of guarded TGDs (with single-atom heads) are theories in the
guarded fragment of first-order logic [3].
Combined Complexity. The next theorem establishes combined complexity
results for conjunctive query evaluation under guarded Datalog±. The exptime

and 2exptime-completeness results hold even if the input database is fixed.

Theorem 1 ([11]). Let D be a database for a schema R, and Σ be a set of
guarded TGDs over R. Moreover, let w be the maximum arity over all predicates
of R, and let |R| denote the total number of predicate symbols. Then:

a) If q is an atomic query, then deciding whether D∪Σ |= q is ptime-complete
in case both w and |R| are bounded, and remains ptime-complete even
when Σ is fixed. This problem is exptime-complete if w is bounded; and
2exptime-complete in general, even when |R| is bounded.

b) If q is a general BCQ, deciding whether D ∪ Σ |= q is np-complete in case
both w and |R| are bounded, and thus also in case of a fixed Σ. Checking
whether D ∪ Σ |= q is exptime-complete if w is bounded; and 2exptime-
complete in general, even when |R| is bounded.

Data Complexity. The data complexity of evaluating BCQs relative to guarded
TGDs turns out to be polynomial in general, and linear in the case of atomic
queries. In the sequel, let R be a relational schema, D be a database for R,
and Σ be a set of guarded TGDs over R. The chase graph for D and Σ is the
directed graph with chase(D, Σ) be the set of nodes, and having an edge from a
to b iff b is obtained from a, and possibly other atoms, by a one-step application
of a TGD σ ∈ Σ. Here, we mark a as guard iff a is the guard of σ. The guarded
chase forest for D and Σ is the restriction of the chase graph for D and Σ to
all atoms marked as guards and their children. The guarded chase of level up to
k � 0 for D and Σ, denoted as g-chasek(D, Σ), is the set of all atoms in the
forest of depth at most k.

It can be shown that (homomorphic images of) the query atoms are contained
in a finite, initial part of the guarded chase forest, whose size is determined only
by the query andR. However, this does not yet assure that also the whole deriva-
tion of the query atoms are contained in such a portion of the guarded chase
forest. This slightly stronger property is captured by the following definition.

Definition 1. We say that Σ has the bounded guard-depth property (BGDP)
iff, for each database D for R and for each BCQ q, whenever there is a homo-
morphism μ that maps q into chase(D, Σ), then there is a homomorphism λ of
this kind such that all ancestors of λ(q) in the chase graph for D and Σ are
contained in g-chaseγg(D, Σ), where γg depends only on q and R.

It is possible to show that guarded TGDs have also this stronger bounded guard-
depth property. The proof is based on the observation that all side atoms that
are necessary in the derivation of the query atoms are contained in a finite, initial
portion of the guarded chase forest, whose size is determined only by the query

Datalog+/-: A Family of Languages for Ontology Querying 359

and R (which is slightly larger than the one for the query atoms only). By this
result, deciding BCQs in the guarded case is in ptime in the data complexity [11].
It is also hard for ptime, as can be proved by reduction from propositional logic
programming [13].

Theorem 2 ([11,13]). Let D be a database for a schema R, Σ be a set of
guarded TGDs over R, and q be a BCQ over R. Then, deciding whether D∪Σ |=
q is ptime-complete in data complexity. If q is atomic, then the same problem
is feasible in linear time in data complexity.

Extensions. It is important to say that guarded TGDs can be enriched by
stratified negation, where non-monotonic negations may be used in TGD bodies
and queries. A natural stratified negation for query answering over ontologies,
which is in general based on several strata of infinite models, is proposed in [13].
An expressive language, which forms a generalization of guarded Datalog±, is
weakly-guarded Datalog± introduced in [11]. Roughly speaking, a set Σ of TGDs
is weakly-guarded iff, for each σ ∈ Σ, there exists an atom in body(σ), called
a weak-guard, that contains only the universally quantified variables of σ that
occur at positions where a “fresh” null of ΓN can appear during the construction
of the chase (and not all the universally quantified variables).

3.2 Linear Datalog±

Linear Datalog± is a variant of guarded Datalog±, where query answering is even
first-order rewritable in data complexity. A TGD is linear iff it contains only a
singleton body-atom. Linear Datalog± is strictly more expressive than inclusion
dependencies; for example, the linear TGD supervises(X, X) → manager (X),
which asserts that everyone supervising her/himself is a manager, is not ex-
pressible with inclusion dependencies.
Combined Complexity. Query answering under linear Datalog± is pspace-
complete in combinedcomplexity.This result canbe seenby results in [32,39,21,30].

Theorem 3 ([32,39,21,30]). Let D be a database for a schema R, Σ be a
set of linear TGDs over R, and q be a BCQ over R. Then, deciding whether
D ∪Σ |= q is pspace-complete, even when q is fixed.

Data Complexity. Towards the data complexity, we start from some prelimi-
naries. A class C of TGDs is first-order rewritable (or FO-rewritable) iff for every
set of TGDs Σ in C, and for every BCQ q, there exists a first-order query qΣ

such that, for every database D, it holds D∪Σ |= q iff D |= qΣ . Since answering
first-order queries is in the class ac0 in data complexity [40], it immediately fol-
lows that for FO-rewritable TGDs, BCQ answering is in ac0 in data complexity.
The chase of level up to k � 0 for D and Σ, denoted as chasek(D, Σ), is the set
of all atoms of chase(D, Σ) of derivation level at most k.

We next define the bounded derivation-depth property, which is strictly
stronger than the bounded guard-depth property. Informally, this property says
that (homomorphic images of) the query atoms along with their derivations are

360 A. Cal̀ı et al.

contained in a finite, initial portion of the chase graph (rather than the guarded
chase forest), whose size is determined only by the query and R.

Definition 2. A set of TGDs Σ over a schema R has the bounded derivation-
depth property (BDDP) iff, for every database D for R, and for every BCQ q
over R, whenever D ∪ Σ |= q, then chaseγd(D, Σ) |= q, where γd depends only
on q and R.

Clearly, in the case of linear TGDs, for every a ∈ chase(D, Σ), the subtree of
a in the guarded chase forest is now determined only by a itself. Therefore, for
a single atom, its depth coincides with the number of applications of the TGD
chase rule that are necessary to generate it. That is, the guarded chase forest
coincides with the chase graph. By this observation, we obtain that linear TGDs
have the bounded derivation-depth property.

It is known that, given a class of TGDs C, if C has the BDDP, then it is
also FO-rewritable [13]. The main ideas behind the proof of this result are in-
formally as follows. Since the derivation depth and the number of body atoms
in TGDs is bounded, the number of all database ancestors of query atoms is
also bounded. Thus, the number of all non-isomorphic sets of potential database
ancestors with variables as arguments is also bounded. Take the existentially
quantified conjunction of every such ancestor set where the query q is answered
positively. Then, the FO-rewriting of q is the disjunction of all these formulas.
As an immediate consequence we get the following result.

Theorem 4 ([13]). BCQ answering under linear TGDs is in ac0 in data
complexity.

4 Sticky Datalog±

In this section, we present another language in the Datalog± family, which hinges
on a paradigm that is very different from guardedness, and that we call stickiness.
Stickiness, formally defined below by an efficiently testable condition involving
variable-marking, is a sufficient condition that ensures the so-called sticky prop-
erty of the chase, which is as follows. For every database D, assume that during
the chase of D under a set Σ of TGDs, we apply a TGD σ ∈ Σ that has a
variable V appearing more than once in its body; assume also that V maps (via
homomorphism) on the symbol z, and that by virtue of this application the atom
a is introduced. In this case, for each atom b ∈ body(σ), we say that a is derived
from b. Then, we have that z appears in a, and in all atoms resulting from some
chase derivation sequence starting from a, “sticking” to them (hence the name
“sticky TGDs”) [16]. We now come to the formal definition.

Definition 3. Consider a set Σ of TGDs. We mark the variables that occur
in the body of the TGDs of Σ according to the following procedure. First, for
each TGD σ ∈ Σ, and for each variable V in body(σ), if there exists an atom
a ∈ head(σ) such that V does not appear in a, then we mark each occurrence

Datalog+/-: A Family of Languages for Ontology Querying 361

of V in body(σ). Now, we apply exhaustively (i.e., until a fixpoint is reached)
the following: for each pair 〈σ, σ′〉 ∈ Σ × Σ (including the case σ = σ′), if
a universally quantified variable V occurs in head(σ) at positions π1, . . . , πm,
for m � 1, and there exists an atom a ∈ body(σ′) such that at each position
π1, . . . , πm a marked variable occurs, then we mark each occurrence of V in
body(σ). We say that Σ is sticky iff there is no TGD σ ∈ Σ such that a marked
variable occurs in body(σ) mote than once.

Example 2. Consider the following set Σ of TGDs:

p(X, Y) → ∃Z p(Y, Z)
p(X, Y) → q(X)

q(X), q(Y) → r(X, Y)
p(X, Y), p(Z, X)→ q(X).

Clearly, on an input database as simple as {p(a, a)}, the chase does not terminate.
Moreover, Σ is non-guarded. In fact, the third rule is a prime example of non-
guardedness. Also, Σ is not weakly-guarded, since at the positions q[1] and q[2]
it is possible to have a “fresh” null of ΓN during the construction of the chase,
and thus the third rule is not weakly-guarded w.r.t. Σ. However, Σ is sticky
since the only variable that occurs more than once in the body of a TGD, i.e.,
the variable X in the body of the last TGD, is non-marked.

Observe that in the chase for the database D = {p(a, a)}, and the sticky set Σ
of TGDs given in the above example, the extension of the relation r is an infi-
nite clique, and thus chase(D, Σ) has infinite treewidth. Interestingly, stickiness
is a sufficient property that ensures that the TGDs are a so-called finite unifi-
cation set, an abstract decidability paradigm defined in [5]. The next theorem
establishes combined complexity results for BCQ answering under sticky sets of
TGDs.

Theorem 5 ([16]). Let D be a database for a schema R, Σ be a sticky set of
TGDs over R, and q be a BCQ over R. Then, deciding whether D ∪ Σ |= q is
np-complete if Σ is fixed, and exptime-complete in general.

As shown in [16], the class of sticky sets of TGDs enjoys the BDDP (see Defini-
tion 2), and thus sticky sets of TGDs are FO-rewritable. The next result follows
immediately.

Theorem 6 ([16]). BCQ answering under sticky sets of TGDs is in ac0 in
data complexity.

Extensions. Several convincing arguments for the usefulness of sticky sets of
TGDs are given in [16]. However, they are not expressive enough for being able
to model simple cases such as the TGD r(X, Y, X) → ∃Z s(Y, Z); clearly, the
variable X is marked, and thus the stickiness condition is violated. Note that the
above rule falls in the FO-rewritable class of linear TGDs (see Subsection 3.2).
A language that captures both linear and sticky Datalog±, without losing the

362 A. Cal̀ı et al.

desirable property of FO-rewritability, is sticky-join Datalog± introduced in [17].
A more general class of TGDs, which is called weakly-sticky sets of TGDs, and
which constitute weakly-sticky Datalog±, is studied in [17]. Roughly, in a weakly-
sticky set of TGDs, the variables that occur more than once in the body of a
TGD are non-marked or occur at positions where a finite number of symbols
can appear during the construction of the chase.

5 Additional Features

In this section we discuss how Datalog± can be extended with negative con-
straints and key dependencies.
Negative Constraints. A negative constraint (or simply constraint) is a first-
order sentence of the form ∀Xφ(X) → ⊥, where φ(X) is a conjunction of atoms
(with no restrictions) and ⊥ is the constant false; the universal quantifier is
omitted for brevity. As we shall see in Section 6, constraints are vital when
representing ontologies.

Example 3. Suppose that the unary predicates c and c′ represent two classes. The
fact that these two classes have no common instances can be expressed by the
constraint c(X), c′(X)→ ⊥. Moreover, if the binary predicate r represents a re-
lationship, the fact that no instance of the class c participates to the relationship
r (as the first component) can be stated by the constraint c(X), r(X, Y)→ ⊥.

Checking whether a set of constraints is satisfied by a database given a set of
TGDs is tantamount to query answering [13]. In particular, given a set of TGDs
ΣT , a set of constraints Σ⊥, and a database D, for each constraint ν = φ(X) → ⊥
we evaluate the BCQ qν = ∃X φ(X) over D∪ΣT . If at least one of such queries
answers positively, then D ∪ΣT ∪Σ⊥ |= ⊥ (i.e., the theory is inconsistent), and
thus for every BCQ q it holds that D∪ΣT ∪Σ⊥ |= q; otherwise, given a BCQ q,
we have that D∪ΣT ∪Σ⊥ |= q iff D∪ΣT |= q, i.e., we can answer q by ignoring
the constraints.

Theorem 7 ([13]). Consider a database D for a schema R, a set ΣT of TGDs
over R, a set Σ⊥ of constraints over R, and a BCQ q over R. Then, D ∪ΣT ∪
Σ⊥ |= q iff (i) D ∪ΣT |= q or (ii) D ∪ΣT |= qν , for some constraint ν ∈ Σ⊥.

As an immediate consequence, constraints do not increase the complexity of
BCQ answering under TGDs alone [13].
Key Dependencies. The addition of keys is more problematic than that of
constraints, since the former easily makes query answering undecidable (see,
e.g., [18]). For this reason, we consider a restricted class of keys, namely, non-
conflicting KDs, which have a controlled interaction with TGDs, and thus decid-
ability of query answering is guaranteed. Nonetheless, as we shall see in Section 6,
this class is expressive enough for modeling ontologies.

A key dependency (KD) κ is an assertion of the form key(r) = A, where r
is a predicate symbol and A is a set of attributes of r. It is equivalent to the

Datalog+/-: A Family of Languages for Ontology Querying 363

set of EGDs {r(X, Y1, . . . , Ym), r(X, Y ′
1 , . . . , Y ′

m) → Yi = Y ′
i }1�i�m, where the

variables X = X1, . . . , Xn appear exactly at the attributes of A (w.l.o.g., the
first n of r). Such a KD κ is applicable to a set of atoms B iff there exist two
(distinct) tuples t1, t2 ∈ {t | r(t) ∈ B} such that t1[A] = t2[A], where t[A] is
the projection of tuple t over A. If there exists an attribute i 	∈ A of r such that
t1[i] and t2[i] are two (distinct) constants of Γ , then there is a hard violation
of κ, and the chase fails. Otherwise, the result of the application of κ to B is
the set of tuples obtained by either replacing each occurrence of t1[i] in B with
t2[i], if t1[i] follows lexicographically t2[i], or vice-versa otherwise.

The chase of a database D, in the presence of two sets ΣT and ΣK of TGDs
and KDs, respectively, is computed by iteratively applying: (i) a single TGD
once, and (ii) the KDs as long as they are applicable.

We continue by introducing the semantic notion of separability, which formu-
lates a controlled interaction of TGDs and KDs, so that the KDs do not increase
the complexity of BCQ answering.

Definition 4 ([18,13]). Let R be a relational schema. Consider a set Σ =
ΣT ∪ ΣK over R, where ΣT and ΣK are sets of TGDs and KDs, respectively.
Then, Σ is separable iff for every database D for R the following conditions
are satisfied: (i) if chase(D, Σ) fails, then there is a hard violation of some KD
κ ∈ ΣK , when κ is applied directly on D, and (ii) if there is no chase failure,
then for every BCQ q over R, chase(D, Σ) |= q iff chase(D, ΣT) |= q.

In the presence of separable sets of TGDs and KDs, the complexity of query
answering is the same as in the presence of the TGDs alone. This is proved
in [13], generalizing [18], by showing that in such a case we can first perform
a chase failure check, which has the same complexity as BCQ answering, and
then, if is negative, proceed with query answering under the TGDs alone.

We now give a sufficient syntactic condition for separability. The next defi-
nition generalizes the notion of non-key-conflicting IDs introduced in [18]. This
condition is crucial for using TGDs to capture ontology languages, as we will
show in Section 6. Notice that, in the following definition, TGDs are assumed to
have single-atom heads; this is, as stated in Section 2, without loss of generality.

Definition 5 ([13]). Let R be a relational schema. Consider a TGD σ =
ϕ(X,Y) → ∃Z r(X,Z) over R, and a set ΣK of KDs over R. We say that ΣK

is non-conflicting (NC) relative to σ if for each κ ∈ ΣK of the form key(r) = A,
the following conditions are satisfied: (i) the set of the attributes of r in head(σ)
where a universally quantified variable occurs is not a strict superset of A, and
(ii) each existentially quantified variable in σ occurs just once. We say that ΣK

is NC relative to a set ΣT of TGDs iff ΣK is NC relative to every σ ∈ ΣT .

Example 4. Consider the TGD σ of the form p(X, Y) → ∃Z r(X, Y, Z), and the
KDs κ1 : key(r) = {1, 2} and κ2 : key(r) = {1}. Clearly, the set of the ∀-
attributes of r in head(σ) is U = {1, 2}. Observe that {κ1} is NC relative to
σ; roughly, every atom generated during the chase by applying σ will have a
“fresh” null of ΓN in some key attribute of κ1, thus never firing this KD. On the
contrary, {κ2} is not NC relative to σ since U ⊃ {1}.

364 A. Cal̀ı et al.

6 Ontology Querying

We now briefly describe how the description logics (DLs) DL-LiteF and DL-
LiteR [20] can both be reduced to linear Datalog± with (negative) constraints
and NC keys, called Datalog±0 , and that the former are strictly less expressive
than the latter. Note that DL-LiteR is able to fully capture the (DL fragment
of) RDF Schema [10], the vocabulary description language for RDF; see [24] for
a translation. Note also that other DLs of the DL-Lite family can be similarly
translated to Datalog±0 ; for more details we refer the reader to [14].

Intuitively, DLs model a domain of interest in terms of concepts and roles,
which represent classes of individuals and binary relations on classes of individ-
uals, respectively. A DL knowledge base (or ontology) in DL-LiteF encodes in
particular subset relationships between concepts and between roles, the member-
ship of individuals to concepts and of pairs of individuals to roles, and functional
dependencies on roles. The following example illustrates some DL axioms in DL-
LiteF and their translation to Datalog±0 .

Example 5. The following are some concept inclusion axioms, which informally
express that (i) conference and journal papers are articles, (ii) conference papers
are not journal papers, (iii) every scientist has a publication, (iv) isAuthorOf
relates scientists and articles:

CPaper ! Article, JPaper ! Article,
CPaper !¬JPaper, Scientist ! ∃isAuthorOf,
∃isAuthorOf ! Scientist, ∃isAuthorOf − ! Article.

They are translated to the following TGDs and constraints (we identify atomic
concepts and roles with their predicates):

CPaper(X)→ Article(X),
JPaper(X)→ Article(X),
CPaper(X), JPaper(X)→ ⊥,
Scientist(X)→ ∃Z isAuthorOf(X, Z),
isAuthorOf(X, Y)→ Scientist(X),
isAuthorOf(Y, X)→ Article(X).

The following role inclusion and functionality axioms express that (v) isAutho-
rOf is the inverse of hasAuthor, and (vi) hasFirstAuthor is a functional binary
relationship:

isAuthorOf − ! hasAuthor,
hasAuthor− ! isAuthorOf,
(funct hasFirstAuthor).

They are translated to the following TGDs and KDs:

isAuthorOf(Y, X)→ hasAuthor(X, Y),
hasAuthor(Y, X)→ isAuthorOf(X, Y),
hasFirstAuthor(X, Y), hasFirstAuthor(X, Y ′) → Y = Y ′.

Datalog+/-: A Family of Languages for Ontology Querying 365

The following concept and role memberships express that the individual i1 is
a scientist who authors the article i2:

Scientist(i1), isAuthorOf(i1, i2), Article(i2).

They are translated to identical database atoms (where we also identify individ-
uals with their constants).

Formally, every knowledge base K in DL-LiteF or DL-LiteR is translated into
a database DK, a set of TGDs ΣK, and a set of queries QK representing a set
of KDs, which are in fact linear TGDs and NC keys, respectively. The next
result shows that BCQs from knowledge bases in DL-LiteF and DL-LiteR can
be reduced to BCQs in Datalog±0 .

Theorem 8 ([13]). Let K be a knowledge base in DL-LiteF or DL-LiteR, and
q be a BCQ for K. Then, q holds in K iff either (i) DK ∪ ΣK |= qc, for some
qc ∈ QK, or (ii) DK ∪ΣK |= q.

Consequently, the satisfiability of knowledge bases in DL-LiteF and DL-LiteR
can be reduced to BCQs in Datalog±0 .

Corollary 1 ([13]). Let K be a knowledge base in DL-LiteF or DL-LiteR. Then,
K is unsatisfiable iff DK ∪ΣK |= qc, for some qc ∈ QK.

The next result follows immediately from the fact that the simple linear TGD
r(X) → s(X, X) is not expressible neither in DL-LiteF nor in DL-LiteR [13].

Theorem 9 ([13]). Datalog±0 is strictly more expressive than both DL-LiteF
and DL-LiteR.

Note that the TGDs used in our translation are in fact inclusion dependencies.
Since a set of inclusion dependencies is trivially sticky, we have that also sticky
Datalog± (plus negative constraints and non-conflicting keys) is strictly more
general than both DL-LiteF and DL-LiteR.

7 Conclusion and Future Research

In this paper we reviewed a number of languages in the Datalog± family. These
languages can be considered specifically-engineered (syntactic) fragments of first-
order logic (possibly with non-monotonic negation) that are suited for ontological
query answering. We find these languages rather attractive: they are simple, easy
to understand, easy to analyze, decidable, and they have good complexity prop-
erties. Moreover, they are extremely versatile and expressive. In fact, we have
shown that languages as simple as linear Datalog± with negative constraints and
non-conflicting keys (both simple first-order features) can express very popular
DLs. But unlike these DLs, the Datalog± languages are not restricted to a bi-
nary signature, and can be augmented, without problems and without additional

366 A. Cal̀ı et al.

complexity, by non-monotonic stratified negation, a desirable expressive feature
not present in DLs.

Datalog± is still a young research topic, and there are many challenging re-
search problems to be tackled. Some of the issues that we want to address in the
near future follow.

– In general, we would like to extend our decidable fragments as much as
possible. As a first step, we plan to combine the two tractability paradigms
guardedness and stickiness in a smart way, so to obtain a formalism that
generalizes both in the best possible way.

– More expressive DLs allow for restricted forms of transitive closure or of
transitivity constraints. Transitive closure is easily expressible in Datalog
(see Example 1), but only through non-guarded rules, whose addition to
decidable sets of rules may easily lead to undecidability. We would like to
study under which conditions closure can be safely added to various versions
of Datalog±.

– Finite controllability was shown recently for the guarded fragment of first-
order logic [6], and thus holds for guarded TGDs (and it easily extends to
the class of weakly-guarded TGDs). We plan to study this property in the
context of sticky sets of TGDs.

– For non-finitely-controllable Datalog± languages, we would like to study the
complexity of query answering under finite models. Pioneering work on finite
model reasoning in the DL area was done in [37,38,33,19].

– For those logics where query answering is FO-rewritable, the resulting FO-
query is usually very large. We plan to study the optimization of such FO-
rewritings from both a theoretical and a practical point of view.

Acknowledgments. This work was supported by the European Research Coun-
cil under the European Community’s 7-th Framework Programme (FP7/2007-
2013)/ERC grant no. 246858 – DIADEM. The authors also acknowledge support
by the EPSRC project “Schema Mappings and Automated Services for Data In-
tegration and Exchange” (EP/E010865/1), and by the German Research Foun-
dation (DFG) under the Heisenberg Programme. Georg Gottlob’s work was also
supported by a Royal Society Wolfson Research Merit Award.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Alvaro, P., Marczak, W., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.C.:
Towards scalable architectures for clickstream data warehousing. Technical report,
EECS Department, University of California, Berkeley (2009)

3. Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments
of predicate logic. J. Philosophical Logic 27, 217–274 (1998)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

Datalog+/-: A Family of Languages for Ontology Querying 367

5. Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: Extending decidable cases for
rules with existential variables. In: Proc. of IJCAI, pp. 677–682 (2009)

6. Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. In: Proc. of
LICS, pp. 1–10 (2010)

7. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with
Lixto. In: Proc. of VLDB, pp. 119–128 (2001)

8. Baumgartner, R., Gatterbauer, W., Gottlob, G.: Monadic Datalog and the expres-
sive power of web information extraction languages. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 3465–3471. Springer-Verlag New York, Inc.,
New York (2009)

9. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Proc.
of ICALP, pp. 73–85 (1981)

10. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF Schema.
W3C Recommendation (2004),
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

11. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. In: Proc. of KR, pp. 70–80 (2008)

12. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: A unified approach to ontologies
and integrity constraints. In: Proc. of ICDT, pp. 14–30 (2009)

13. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. In: Proc. of PODS, pp. 77–86 (2009)

14. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. Technical Report RR-10-21, Computing
Laboratory, University of Oxford (2010)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A fam-
ily of logical knowledge representation and query languages for new applications.
In: Proc. of LICS, pp. 228–242 (2010)

16. Cal̀ı, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. Proc.
of VLDB 3(1), 554–565 (2010)

17. Cal̀ı, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
Datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp.
1–17. Springer, Heidelberg (2010)

18. Cal̀ı, A., Lembo, D., Rosati, R.: On the decidability and complexity of query an-
swering over inconsistent and incomplete databases. In: Proc. of PODS, pp. 260–
271 (2003)

19. Calvanese, D.: Finite model reasoning in description logics. In: Proc. of KR, pp.
292–303 (1996)

20. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

21. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. J. Comput. Syst. Sci. 28, 29–59 (1984)

22. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proc. of STOC, pp. 77–90 (1977)

23. Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion
dependencies. SIAM J. Comput. 14, 671–677 (1985)

24. de Bruijn, J., Heymans, S.: Logical foundations of (e)RDF(S): Complexity and
reasoning. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 86–99.
Springer, Heidelberg (2007)

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

368 A. Cal̀ı et al.

25. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisisted. In: Proc. of PODS, pp.
149–158 (2008)

26. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

27. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

28. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. 30(1), 174–210 (2005)

29. Gottlob, G., Koch, C.: Monadic Datalog and the expressive power of web informa-
tion extraction languages. J. ACM 51(1), 71–113 (2004)

30. Gottlob, G., Papadimitriou, C.H.: On the complexity of single-rule Datalog queries.
Inf. and Comput. 183(1), 104–122 (2003)

31. Hajiyev, E., Verbaere, M., de Moor, O.: codeQuest: scalable source code queries
with datalog. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27. Springer,
Heidelberg (2006)

32. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

33. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in
description logics. Inf. and Comput. 199(1-2), 132–171 (2005)

34. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

35. Marnette, B.: Generalized schema-mappings: From termination to tractability. In:
Proc. of PODS, pp. 13–22 (2009)

36. Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in
the semantic web. J. Web Semantics 5(4), 240–250 (2007)

37. Rosati, R.: Finite model reasoning in dl-lite. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 215–229.
Springer, Heidelberg (2008)

38. Rosati, R.: On the finite controllability of conjunctive query answering in databases
under open-world assumption. Journal of Computer and System Sciences (2010)
(to appear)

39. Vardi, M.Y.: Personal communication reported in [32] (1984)
40. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS,

pp. 266–276 (1995)

Knowledge Representation Language P-Log –

A Short Introduction

Michael Gelfond

Texas Tech University, USA
michael.gelfond@ttu.edu

Abstract. The paper gives a short informal introduction to the knowl-
edge representation language P-Log. The language allows natural and
elaboration tolerant representation of commonsense knowledge involving
logic and probabilities. The logical framework of P-Log is Answer Set
Prolog which can be viewed as a significant extension of Datalog. On the
probabilistic side, the authors adopt the view which understands proba-
bilistic reasoning as commonsense reasoning about degrees of belief of a
rational agent, and use causal Bayes nets as P-log probabilistic founda-
tion. Several examples are aimed at explaining the syntax and semantics
of the language and the methodology of its use.

1 Introduction

The purpose of this paper is to give a short introduction to the knowledge repre-
sentation (KR) language P-Log [4]. The goal of the P-Log designers was to create
a KR-language allowing natural and elaboration tolerant representation of com-
monsense knowledge involving logic and probabilities. The logical framework of
P-Log is Answer Set Prolog (ASP) — a language for knowledge representation
and reasoning based on the answer set semantics (aka stable model semantics)
of logic programs [8,9]. ASP has roots in declarative programing, the syntax
and semantics of standard Prolog and Datalog, and non-monotonic logic. The
semantics of ASP captures the notion of possible beliefs of a reasoner who ad-
heres to the rationality principle which says that “One shall not believe anything
one is not forced to believe”. The entailment relation of ASP is non-monotonic1,
which facilitates a high degree of elaboration tolerance in ASP theories. ASP
allows natural representation of defaults and their exceptions, causal relations
(including effects of actions), agents’ intentions and obligations, and other con-
structs of natural language. ASP has a number of efficient reasoning systems
including those in [10,6,11], a well developed mathematical theory, and a well
tested methodology of representing and using knowledge for computational tasks
(see, for instance, [2]). This, together with the fact that two of the designers of
P-Log came from the ASP community, made the choice of a logical foundation
1 Roughly speaking, a language L is monotonic if whenever Π1 and Π2 are collections

of statements of L with Π1 ⊂ Π2, and W is a model of Π2, then W is a model of
Π1. A language which is not monotonic is said to be non-monotonic.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 369–383, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

370 M. Gelfond

for P-Log comparatively easy. On the probabilistic side, the authors adopt the
view which understands probabilistic reasoning as commonsense reasoning about
degrees of belief of a rational agent. This matches well with the ASP-based logic
side of the language. The ASP part of a P-Log program can be used for describ-
ing possible beliefs, while the probabilistic part would allow knowledge engineers
to quantify the degrees of these beliefs. Another important influence on the de-
sign of P-Log is the separation between doing and observing and the notion of
Causal Bayesian Net (see [12]).

2 Syntax and Semantics

In this section we give an informal introduction to the syntax and semantics of
P-Log using a very simple example.

Example 1. [The jungle story]
Imagine yourself lost in a dense jungle. A group of natives has found you and
offered to help you survive, provided you can pass their test. They tell you they
have an Urn of Decision from which you must choose a stone at random. (The
urn is sufficiently wide for you to easily get access to every stone, but you are
blindfolded so you cannot cheat.) You are told that the urn contains nine white
stones and one black stone. Now you must choose a color. If the stone you draw
matches the color you chose, the tribe will help you; otherwise, you can take your
chances alone in the jungle. (The reasoning of the tribe is that they do not wish
to help the exceptionally stupid, or the exceptionally unlucky.)

It does not take knowledge of probability theory to realize that you will have a
much better chance of obtaining their help if you choose white for the color of the
stone. Our task is to automate the simple commonsense argument which led to
this conclusion. To do that we need a language which will allow us to represent
all the information relevant to the story, including the available choices. We will
show how this can be done in P-Log.

The syntax of P-Log is rather similar to that of ASP. But, unlike ASP, the
signature of a P-Log program is sorted, each function symbol comes with sorts
for its parameters and its range, and atoms are properly-typed expressions of
the form a(t) = y, where y is a constant from the range of a function symbol a.
In addition to the usual ASP rules formed from such atoms (and equalities2 and
inequalities of elements of a sort), the P-Log programmer may declare some of
the terms of the language (called attributes) to be random. These declarations
and rules are called the logical part of a P-Log program, Π . This part defines
sets of beliefs of a rational reasoner associated with Π , called possible worlds of
Π . In addition program Π may contain some information about the likelihood
of different random events. This information together with the principle of in-
difference which says that possible values of random attributes are assumed to be
equally probable if we have no reason to prefer one of them to any other, may be

2 Equality in P-Log is understood as identity.

Knowledge Representation Language P-Log – A Short Introduction 371

used to define a probability function PΠ on the sets of possible worlds of Π . We
will often refer to PΠ as the probability function induced by Π .

We will illustrate the language by using it to formalize the rules of the jungle
test from Example 1. Our formalization will not be the simplest possible. Instead
we aim for modeling enough features for a reasonably complete description of
P-Log syntax and semantics.

Example 2. [The jungle test rules in P-Log]
We start with defining sorts and functions of the program. For simplicity, we
number the stones by integers from one to ten and introduce a sort

stones = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
The sort colors and a function color from stones to colors will be declared in
P-Log as follows:

colors = {black, white}.
color : stones→ colors.

Without loss of generality we assume that the first stone is black — and hence
the others are white. This will be specified by the rules:

color(1) = black.
color(X) = white ← X 	= 1.

The test requires the traveler todo twoselections: selectionof the color (select color)
and selection of the stone (select stone). (Note that these selections can refer to a
mental experiment conducted by a reasoner or to an actual physical selection. No
distinction is necessary.)The traveler,whose reasoningwe are trying to model will,
hopefully, deliberate before making the first selection. The outcome of the second
selection can not, of course, be determined by deliberation. But, independently of
the strategydecideduponby theagent, both selections canbeperformed randomly,
so we will declare them as random. The corresponding declarations in P-Log will
look like this:

select color : colors.
random(select color).

select stone : stones.
random(select stone).

We will also need to declare

help : boolean.

The tribal laws will then be represented by the rules:

help ← select stone = X,
color(X) = C,
select color = C.

¬help← select stone = X,
color(X) = C1,
select color = C2,
C1 	= C2.

372 M. Gelfond

(Here help and ¬help are used as shorthands for help = true and help = false,
respectively.) Let us denote the resulting program by Πtest.

We will use this program to explain the P-Log definition of possible worlds and
probability function induced by a P-Log program. Due to space restrictions, we
will omit some technical details which can be found in [4] and aim instead at
conveying the general idea. The possible worlds of program Πtest will be defined
by simply translating it into the program τ(Πtest) of Answer Set Prolog as
follows.

For every attribute a(t) with range(a) = {y1, . . . , yn}, the mapping τ

1. Represents the sort information by the corresponding set of atoms; e.g.

s = {1, 2} is turned into facts s(1) and s(2).
2. Replaces every rule of the form

random(a(t)) ← body

by

a(t) = y1 or . . . or a(t) = yn ← body, not ab(a(t)).

where ab is a new predicate symbol.
3. Replaces every occurrence of an atom a(t) = y by a(t, y), and expands the

program by rules of the form

¬a(t, Y2) ← a(t, Y1), Y1 	= Y2.

4. Grounds the resulting program by replacing variables with elements of the
corresponding sorts.

The second item in the definition gives us an intuitive reading of randomness in
P-Log; random(a(t)) says that, under normal circumstances, during a construc-
tion of a possible set of beliefs, the reasoner associated with the program must
randomly select exactly one value of a(t) from a’s range.
Actually, P-Log allows more-general random selection rules which have the form:

random(a(t) : {X : p(X)})← body.

This limits the selection of the value of a(t) to elements of a’s range which satisfy
property p. For each such rule, τ creates an additional ASP rule:

← body, a(t, Y), not p(Y), not ab(a(t)).

Answer sets of τ(Π) are called possible worlds of Π . (The new term is used to
simply stay close to the traditional terminology of probability theory.)

It is easy to see that possible worlds of program Πtest from Example 3 are

W1 = {select color = white, select stone = 1,¬help}
Wi = {select color = white, select stone = i, help} for 1 < i ≤ 10.

Knowledge Representation Language P-Log – A Short Introduction 373

W11 = {select color = black, select stone = 1, help}
W10+i = {select color = black, select stone = i,¬help} for 1 < i ≤ 10.

We do not show random(select color) and random(select stone) which belong
to every possible world. (We are also omitting sorts, negative information, and
some inessential atoms.) Each possible world represents a possible set of beliefs
of the reasoner associated with Πtest.

Now we explain how to define a (normalized) probabilistic measure on possible
worlds of a P-Log program. This measure, a real number from the interval [0, 1],
represents the degree of a reasoner’s belief that a possible world W matches the
true state of the world. As usual the probability of a set of possible worlds is the
sum of measures of its elements, (and the probability of a proposition F is the
probability of the set of its models – possible worlds satisfying F).

We start with defining probability measure, say μ, for the possible worlds
of program Πtest from Example 3. First notice that every possible world W
of Πtest is determined by the reasoner’s choice of the values of its random at-
tributes select color and select stone. This means that to compute the measure
μ(W) assigned to a possible world W , we need to compute the probability of the
reasoner making the corresponding selections of values. The probability of the
reasoner selecting value y of a random attribute a in the process of construction
of W will be denoted by P (W, a = y). The computation of P for our program
Πtest will be based on the Principle of Indifference — a commonsense rule which
says that possible values of random attribute are assumed to be equally probable
if we have no reason to prefer one of them to any other. Consider a possible
world W1 and random attribute select color. The reasoner constructing W1 has
two possible choices for his selection, and has no reason to prefer one to an-
other. Hence, by the Principle of Indifference, P (W1, select color = white) =
1/2. Similarly, the reasoner has ten different choices for the value of select color
and hence P (W1, select stone = 1) = 1/10. To compute the probability measure
μ(W1), we need to compute the probability of the agent making both of these
selections. Since the selections are independent from each other, we simply mul-
tiply their probabilities: μ(W1) = 1/2 × 1/10 = 1/20. (In the general case, the
sum of measures of possible worlds may not sum up to 1; in that case it should
be normalized in the usual manner.) Clearly a similar argument works for other
possible worlds and hence, for every W , μ(W) = 1/20. Since the proposition
select color = white is true in 18 of these worlds we, as expected, have that

PΠtest(select color = white ∧ help) = 0.05× 9 = 0.45 and
PΠtest(select color = black ∧ help) = 0.05× 1 = 0.05.

The above construction is rather general. It forms the basis of the definition of
probabilistic measure for P-Log programs not containing any specific information
about probabilities of outcomes of the program selections. In such cases the
probabilistic measure is assigned according to the Indifference Principle. In some
cases, however, the reasoner has some additional information about plausibility
of various values of the random selection process. To show how the semantics of
a P-Log program can be expanded to this case, we consider a slight modification

374 M. Gelfond

of our program Πtest. Let us assume that the traveler from Example 1 came
from a culture in which the white color is associated with death. A statistical
study demonstrated that, given a choice between white and black, the people from
this culture select black 8 out of 10 times.

To incorporate this information into our program, we need a new syntactic con-
struct — causal probability atom, or pr-atom. A pr-atom takes the form3

pr(a(t) = y|c B) = v

where a(t) is a random attribute, B a conjunction of literals, v ∈ [0, 1], and y
is a possible value of a(t). The “causal stroke” ‘|c’ and the “rule body” B may
be omitted in case B is empty. The statement says that if the value of a(t) is
selected at random, and B holds, then the probability that the process of selection
causes a(t) = y is v.

We can use the new construct to add the knowledge of the statistics about the
color preference to Πtest. We simply add the statement

pr(select color = black) = 0.8

Clearly, the new program, Π ′
test, has the same possible worlds as Πtest. How-

ever, the probabilistic measure μ′ of the new program will be different. As
before, each possible world is determined by the corresponding random selec-
tions. Now the probability, P (W, select color = white), of the reasoner selecting
value white in the process of construction of possible world W will be equal to
0.2; P (W, select color = black) will be equal to 0.8. This means that for ev-
ery 1 ≤ i ≤ 10, μ′(Wi) = 0.2 × 0.1 = 0.02. Similarly, for every 10 ≤ i ≤ 20,
μ′(Wi) = 0.8× 0.1 = 0.08. Thus

PΠtest′ (select color = white ∧ help) = 0.02× 9 = 0.18, while
PΠtest′ (select color = black ∧ help) = 0.08× 1 = 0.08.

Even though the advantages of not doing a random selection are less obvious,
some deliberation may still substantially improve the traveler’s chances of sur-
vival.

To complete our description of syntax and semantics of P-Log, let us discuss
how the traveler could use his knowledge base to decide on the right choice of
color. The task, of course, is to find out what choice of color maximizes his
chances of getting help. We adopt a solution of this type of problem suggested
in [12]. The book introduces the notion of deliberate action, do(a(t) = y), which
stops normally random attribute a(t) from being random and sets its value to y.
It also uses specification of probability via graphical models to define probability,
P (G | do(a(t) = y)) of a goal G conditioned on the deliberate assignment of y to
a(t). (The definition involves surgery of the graph consisting of cutting some of
its causal links.) It is important to notice that P (G | do(a(t) = y)) may differ
3 The actual construct of P-Log is slightly more general. The definition given here

works for P-Log programs containing exactly one rule defining an attribute a as
random.

Knowledge Representation Language P-Log – A Short Introduction 375

substantially from a more traditional P (G | a(t) = y). The later conditions G on
the observation of the outcome of a random experiments. (In fact the difference
between doing and observing was one of the most important lessons learned by
the authors of P-Log from reading [12].)

To solve the problem of our traveler, the method from [12] suggests represent-
ing the tribal test as a causal Bayesian net or a set of structural equations defin-
ing a probability function P and computing P (help | do(select color = white)
and P (help | do(select color = black). Using do allows us to ask the question
“What will the probability of obtaining help be if the reasoner chooses white (or
black)?” Clearly the former will be a larger number and, hence, the traveler will
know that selecting white will increase his chances of getting help.

To model this type of reasoning in P-Log, we first need to expand its syntax by
allowing statements

do((a(t) = y))

and
obs(a(t) = y))

obs(a(t) 	= y))

The mapping τ defined above will also be expanded as follows: for every P-Log
program Π , ASP program τ(Π) will contain rules:

← obs(a(t) = y)), not a(t, y)

← obs(a(t) 	= y)), not ¬a(t, y)

a(t, y)← do(a(t) = y)

ab(a(t))← do(a(t) = y)

The first two rules guarantee that no possible world of the program fails to satisfy
observations. The third specifies that do(a(t) = y) indeed assigns the value y to
a(t). The fourth is used to stop a(t) from being random. The definition of possible
world does not change. We slightly refine the definition of measure; μ(W) is
defined as the product P (W, a(t) = y) for all a(t) = y such that random(a(t) =
y) ∈W . (The last condition was not explicitly mentioned before).

Now we can define the P-Log analogue of Pearl’s conditioning on actions. Given
a probability function PΠ induced by P-Log program Π :

PΠ(G | do(a(t) = y)) =def PΠ∪do(a(t)=y(G)

The usual conditional probability of G given literal l is expressed in P-Log terms
as

PΠ(G | obs(l)) =def PΠ∪obs(l)(G).

Here l is understood as an observation. (The definition can be easily expanded
to arbitrary formula F .)

376 M. Gelfond

Of course the definition of probability outlined in this section is only applicable
to programs which satisfy a number of natural conditions. There should be
possible worlds; i.e., the program τ(Π) should be consistent. In the process
of construction of a possible world a random attribute a(t) should be defined
by a unique random selection rule. There are a few others. It is not difficult to
show that if these conditions are satisfied, then the function PΠ defined on sets
of possible worlds satisfies the so called Kolmogorov axioms of probability.

This completes our introduction of syntax and semantics of P-Log. In the
next section we use several examples to demonstrate the use of P-Log for some
short but sophisticated problems whose solutions employ natural combination
of logical and probabilistic reasoning.

3 Reasoning in P-Log

We start with completing our jungle example.

Example 3. [Traveler is making a decision]
To make the decision, the traveler must compare PΠtest(help | do(select color =
white)) and PΠtest(help | do(select color = black)). In accordance with the
above definition, to compute the former one considers program Πwhite

test = Πtest∪
do(select color = white) and computes its possible worlds. They are

W1 = {random(select stone), select color = white, select stone = 1,¬help}
Wi = {random(select stone), select color = white, select stone = i, help} for
every 1 < i ≤ 10.

Note that, unlike the possible worlds of Πtest, the possible worlds of the new
program do not contain random(select color). This reflects the deliberate char-
acter of the traveler’s color selection. Consequently, for every 1 ≤ i ≤ 10,
μ(Wi) = P (Wi, select stone = i) = 0.1, and PΠwhite

test
(help) = 0.9. A similar

argument will show that PΠblack
test

(help) = 0.1. Clearly the traveler is better off
selecting white.

The jungle example addresses a rather simple probabilistic problem, which could
be easily solved without building a knowledge base of the corresponding domain.
In what follows we consider several examples where the use of P-Log allows
to substantially clarify the modeling process. The first example, Monty Hall
Problem, is a difficult puzzle which is frequently incorrectly solved even by people
with some knowledge of probability theory.

Example 4. [Monty Hall problem]
The Monty Hall Problem gets its name from the TV game show hosted by Monty
Hall. A player is given the opportunity to select one of three closed doors, behind
one of which there is a prize. Behind the other two doors are empty rooms. Once
the player has made a selection, Monty is obligated to open one of the remaining
closed doors which does not contain the prize, showing that the room behind it is
empty. He then asks the player if he would like to switch his selection to the other
unopened door, or stay with his original choice. Does it matter if he switches?

Knowledge Representation Language P-Log – A Short Introduction 377

The answer is YES. In fact switching doubles the player’s chance to win. This
problem is quite interesting, because the answer is felt by many people — even
some mathematicians — to be counter-intuitive. Often a person immediately
comes up with a (wrong) negative answer and is not easily persuaded that he
made a mistake. We believe that part of the reason for the difficulty is some dis-
connect between modeling probabilistic and non-probabilistic knowledge about
the problem. In P-Log this disconnect disappears which leads to a natural correct
solution. In other words, the standard probability formalisms lack the ability to
explicitly represent certain non-probabilistic knowledge that is needed in solving
this problem. In the absence of this knowledge, wrong conclusions are made. The
P-Log solution, adopted from [4], is meant to show how P-Log can be used to
avoid this problem by allowing us to specify relevant knowledge explicitly.

The game’s rules:

The domain contains the set of three doors and three 0-arity random attributes,
selected, open and prize. This will be represented by the following P-Log decla-
rations (the numbers are not part of the declaration; we number statements so
that we can refer back to them):

1. doors = {1, 2, 3}.
2. open, selected, prize : doors.

The regular part contains rules that state that Monty can open any door to a
room which is not selected and which does not contain the prize.

3. ¬can open(D)← selected = D.
4. ¬can open(D)← prize = D.
5. can open(D)← not ¬can open(D).

The first two rules are self-explanatory. The last rule, which uses both classi-
cal and default negations, is a typical ASP representation of the closed world
assumption — Monty can open any door except those which are explicitly pro-
hibited.

Assuming that both, Monty and the player, select a door at random, the proba-
bilistic information about the three attributes of doors can now be expressed as
follows:

6. random(prize).
7. random(selected).
8. random(open : {X : can open(X)}).
Notice that rule (8) guarantees that Monty selects only those doors which can be
opened according to rules (3)–(5). The knowledge expressed by these rules (which
can be extracted from the specification of the problem) is often not explicitly
represented in probabilistic formalisms leading reasoners (who usually do not
realize this) to insist that their wrong answer is actually correct.

The P-Log program Πmonty0 consisting of the logical rules (1)-(8) represents our
knowledge of the problem domain. It has the following 12 possible worlds:

378 M. Gelfond

W1 = {selected = 1, prize = 1, open = 2, ...}.
W2 = {selected = 1, prize = 1, open = 3, ...}.
W3 = {selected = 1, prize = 2, open = 3, ...}.
W4 = {selected = 1, prize = 3, open = 2, ...}.
W5 = {selected = 2, prize = 1, open = 3, ...}.
W6 = {selected = 2, prize = 2, open = 1, ...}.
W7 = {selected = 2, prize = 2, open = 3, ...}.
W8 = {selected = 2, prize = 3, open = 1, ...}.
W9 = {selected = 3, prize = 1, open = 2, ...}.
W10 = {selected = 3, prize = 2, open = 1, ...}.
W11 = {selected = 3, prize = 3, open = 1, ...}.
W12 = {selected = 3, prize = 3, open = 2, ...}.
According to our definitions they will be assigned various probability measures.
For instance, selected has three, equally plausible, possible values in each Wi.
Hence

P (Wi, selected = j) = 1/3

for each i and j. Similarly for prize

P (Wi, prize = j) = 1/3

Consider W1. Since can open(1) 	∈ W1 the atom open = 1 is not possible in
W1 and the corresponding probability P (W1, open = 1) is undefined. The only
possible values of open in W1 are 2 and 3. Hence

P (W1, open = 2) = 1/2

P (W1, open = 3) = 1/2

Now consider W4. W4 contains can open(2) and no other can open atoms. Hence
the only possible value of open in W4 is 2, and therefore

P (W4, open = 2) = 1

The computations of other values of P (Wi, open = j) are similar.

To proceed with the story, first let us eliminate an orthogonal problem of
modeling time by assuming that we observed that the player has already (ran-
domly) selected door 1, and Monty (randomly) opened door 2 revealing that it
did not contain the prize. This is expressed as:

obs(selected = 1). obs(open = 2). obs(prize 	= 2).

Let us refer to the above P-Log program as Πmonty1. Because of the observations
Πmonty1 has two possible worlds W1 and W4, the first containing prize = 1 and
the second containing prize = 3. It follows that the unnormalized measure of W1

is equal to P (W1, selected = 1)× P (W1, prize = 1)× P (W1, open = 2) = 1/18;
the unnormalized measure of W4 is 1/9. After normalization we have

μ(W1) = 1/3

μ(W4) = 2/3

Knowledge Representation Language P-Log – A Short Introduction 379

and hence

PΠmonty1 (prize = 1) = μ(W1) = 1/3

PΠmonty1 (prize = 3) = μ(W4) = 2/3

Changing the door doubles the player’s chance to win.

Now consider a situation when the player assumes (either consciously or without
consciously realizing it) that Monty could have opened any one of the unopened
doors (including one which contains the prize). Then the corresponding program
will have a new definition of can open. The rules (3–5) will be replaced by

¬can open(D)← selected = D.
can open(D) ← not ¬can open(D).

The resulting program Πmonty2 will also have two possible worlds containing
prize = 1 and prize = 3 respectively, each with unnormalized probability of
1/18, and therefore PΠmonty2 (prize = 1) = 1/2 and PΠmonty2 (prize = 3) = 1/2.
In that case changing the door will not increase the probability of getting the
prize.

Example 5. [Bayesian squirrel]
In this example we illustrate the use of P-Log for Bayesian learning. One com-
mon type of learning problem consists of selecting from a set of models for a
random phenomenon by observing repeated occurrences of that phenomenon.
The Bayesian approach to this problem is to begin with a “prior density” on
the set of candidate models and update it in light of our observations. As an
example, Hilborn and Mangel [14] describe the Bayesian squirrel. The squirrel
has hidden its acorns in one of two patches, say Patch 1 and Patch 2, but can’t
remember which. The squirrel is 80% certain the food is hidden in Patch 1. Also,
it knows there is a 20% chance of finding food per day when it is looking in the
right patch (and, of course, a 0% probability if it is looking in the wrong patch).

To represent this knowledge in P-Log program Π , we introduce sorts

patch = {p1, p2}.
day = {1 . . . n}.
(where n is some constant, say, 5)

and attributes

hidden in : patch.

found : patch ∗ day → boolean.

look : day → patch.

Attribute hidden in is always random. Hence we include

random (hidden in).

380 M. Gelfond

found is random only if the squirrel is looking for food in the right patch; i.e.
we have

random (found(P, D)) ← hidden in = P, look(D) = P .

The regular part of the program consists of the closed world assumption for
found:

¬found(P, D) ← not found(P, D).

Probabilistic information of the story is given by statements:

pr(hidden in = p1) = 0.8

pr(found(P, D)) = 0.2

This knowledge, in conjunction with a description of the squirrel’s activity, can
be used to compute probabilities of possible outcomes of the next search for
food.

Consider for instance program Π1 = Π ∪ {do(look(1) = p1)}. The program has
three possible worlds

W 1
1 = {look(1) = p1, hidden in = p1, found(p1, 1), . . .},

W 1
2 = {look(1) = p1, hidden in = p1,¬found(p1, 1), . . .},

W 1
3 = {look(1) = p1, hidden in = p2,¬found(p1, 1), . . .},

with probability measures μ(W1) = 0.16, μ(W2) = 0.64, μ(W3) = 0.2.

As expected

PΠ1(hidden in = p1) = 0.8, and

PΠ1(found(p1, 1)) = 0.16.

Suppose now that the squirrel failed to find its food during the first day, and
decided to continue its search in the first patch next morning.

The failure to find food on the first day should decrease the squirrel’s degree
of belief that the food is hidden in patch one, and consequently decreases its
degree of belief that it will find food by looking in the first patch again. This is
reflected in the following computation:

Let Π2 = Π1 ∪ {obs(¬found(p1, 1)), do(look(2) = p1)}.

The possible worlds of Π2 are

W 2
1 = W ∪ {hidden in = p1, look(2) = p1, found(p1, 2) . . .},

W 2
2 = W ∪ {hidden in = p1, look(2) = p1,¬found(p1, 2) . . .},

W 2
3 = W ∪ {hidden in = p2, look(2) = p1,¬found(p1, 2) . . .}.

where W = {look(1) = p1,¬found(p1, 1)}.

Knowledge Representation Language P-Log – A Short Introduction 381

Their (normalized) probability measures are

μ(W 2
1) = .128/.84 = .152, μ(W 2

2) = .512/.84 = .61, μ(W 2
3) = .2/.84 = .238.

Consequently,

PΠ2(hidden in = p1) = 0.762, and PΠ2(found(p1, 2)) = 0.152. ...

After a number of unsuccessful attempts to find food in the first patch the
squirrel can come to the conclusion that food is probably hidden in the second
patch and change her search strategy accordingly.

Notice that each new experiment changes the squirrel’s probabilistic model
in a non-monotonic way, i.e. the set of possible worlds resulting from each suc-
cessive experiment is not merely a subset of the possible worlds of the pre-
vious model. The program, however, is changed only by the addition of new
actions and observations. Distinctive features of P-Log such as the ability to
represent observations and actions, as well as conditional randomness, play an
important role in allowing the squirrel to learn new probabilistic models from
experience.

4 Conclusion

When P-Log designers started their work they had (at least) three common
goals. They wanted to have the language which would

– allow elegant and elaboration tolerant formalizations of non-trivial combi-
nations of logical and probabilistic reasoning,

– help the language designers (and hopefully others) to better understand the
meaning of probability and probabilistic reasoning,

– better understand how to design and implement knowledge-based software
systems.

P-Log is a comparatively new language4 so it may be too early to judge if the
authors achieved their goal. From the standpoint of the author of this paper, how-
ever, substantial steps have already being made in achieving the first two goals.
This is mainly due to several distinctive features of P-Log. Even though it can
be argued that some of them exist in other languages aimed at combining logic
and probability, we are not aware of any work combining all of these features.
First, P-Log probabilities are defined with respect to an explicitly stated knowl-
edge base, written in the language of ASP. This allows to explicitly specify the
background knowledge which is normally “hidden” in classical approaches. Mak-
ing the agent’s knowledge a part of the probabilistic model makes the “degree of
belief” interpretation of probability more concrete. As we attempted to demon-
strate with the Monty Hall example, this feature of P-Log proves to be very use-
ful for modeling probabilistic domains. In addition to logical non-monotonicity
4 The first publication on P-Log appeared in 2004 [3] but the reasonably comprehensive

journal paper [4] was published much later.

382 M. Gelfond

guaranteed by ASP, P-Log is probabilistically non-monotonic – addition of new
information can add new possible worlds and substantially change the original
probabilistic model. This feature was illustrated in the Bayesian squirrel exam-
ple. The reliance on an explicitly stated knowledge base also greatly facilitates
modeling various types of probabilistic update. In classical probability theory,
changes in probability caused by obtaining new knowledge are normally han-
dled by conditional probability. This limits the possible updates by knowledge
expressible by propositional formulas. This can be modeled in P-Log by simply
expanding the agent’s knowledge by observations. But the P-Log approach al-
lows other types of updates including defaults, rules introducing new terms, and
deliberate actions in the sense of Pearl. Interested readers can look for other
examples of P-Log modeling in [4,7,5]. The use of P-Log for the design and
implementation of knowledge intensive systems is still in its infancy. There are
some initial implementations and applications of P-log (see for instance [1] and
[13]) which show promise, but much work is needed to develop really efficient
algorithms and interesting applications.

References

1. Anh, H.T., Kencana Ramli, C.D.P., Damásio, C.V.: An implementation of extended
p-log using xasp. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 739–743. Springer, Heidelberg (2008)

2. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Baral, C., Gelfond, M., Rushton, N.: Probabilistic Reasoning with Answer Sets.
In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
21–33. Springer, Heidelberg (2003)

4. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Journal of Theory and Practice of Logic Programming (TPLP) 9(1), 57–144 (2009)

5. Baral, C., Hunsaker, M.: Using the probabilistic logic programming language p-log
for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings
of IJCAI 2007, pp. 243–249 (2007)

6. Gebser, M., Kaufman, B., Neumann, A., Schaub, T.: Conflict-deriven answer set
enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 136–148. Springer, Heidelberg (2007)

7. Gelfond, M., Rushton, N.: Causal and Probabilistic Reasoning in p-log. In: Dechter,
R., Geffner, H., Halpern, J. (eds.) Heuristics, Probabilities and Causality. A tribute
to Judea Pearl, pp. 337–359. College Publications (2010)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP 1988, pp. 1070–1080 (1988)

9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 499–562 (2006)

Knowledge Representation Language P-Log – A Short Introduction 383

11. Niemela, I., Simons, P., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

12. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)
13. Pereira, L.M., Anh, H.T.: Evolution prospection in decision making. Intelligent

Decision Technologies 3(3), 157–171 (2009)
14. Hilborn, R., Mangel, L.: The Ecological Detective. Princeton University Press,

Princeton (1997)

Living with Inconsistency and Taming
Nonmonotonicity�

Jan Małuszyński1 and Andrzej Szałas1,2

1 Department of Computer and Information Science, Linköping University,
S-581 83 Linköping, Sweden

2 Institute of Informatics, Warsaw University, 02-097 Warsaw, Poland
{jan.maluszynski,andrzej.szalas}@liu.se

Abstract. In this paper we consider rule-based query languages with negation
in bodies and heads of rules, traditionally denoted by DATALOG¬¬. Tractable
and at the same time intuitive semantics for DATALOG¬¬ has not been provided
even though the area of deductive databases is over 30 years old. In this paper
we identify sources of the problem and propose a query language, which we
call 4QL.

The 4QL language supports a modular and layered architecture and provides
a tractable framework for many forms of rule-based reasoning both monotonic
and nonmonotonic. As the underpinning principle we assume openness of the
world, which may lead to the lack of knowledge. Negation in rule heads may
lead to inconsistencies. To reduce the unknown/inconsistent zones we introduce
simple constructs which provide means for application-specific disambiguation
of inconsistent information, the use of Local Closed World Assumption (thus
also Closed World Assumption, if needed), as well as various forms of default
and defeasible reasoning.

1 Introduction

This paper introduces a rule-based query language 4QL with negation in bodies and
heads of rules, belonging to the family of DATALOG¬¬ languages. Tractable and at the
same time intuitive semantics for DATALOG¬¬ has not been provided even if the area of
deductive databases is over 30 years old. In this paper we identify sources of the prob-
lem and propose a solution based on a four-valued semantics with ‘true’, ‘false’, ‘in-
consistent’ and ‘unknown’ as truth values (further denoted by �, �, � and �, respectively).
An important feature of 4QL is that it permits to directly address problems related to
inconsistent information and the lack of knowledge. Such problems are crucial in many
applications and have been addressed in extensions of query languages, based on non-
monotonic logics initially derived from the Closed World Assumption (CWA), where
unknown facts are, by default, assigned the value �. In many applications, including Se-
mantic Web technologies and robotics systems, CWA is not necessarily applicable and
developments in these fields usually follow the Open World Assumption (OWA), where
facts not included in or inferred from the database are assigned the value �.

� Supported in part by grant N N206 399334 from Polish Ministry of Science and National
Education.

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 384–398, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Living with Inconsistency and Taming Nonmonotonicity 385

Inconsistent and unknown information is often addressed taking DATALOG with
negation as the starting point for paraconsistent extensions. Then inconsistency has
to be dealt with together with nonmonotonicity, making the proposals unsuitable for
many applications and technically quite complex. In this paper we present a novel,
lightweight approach, separating the issues of incomplete/inconsistent knowledge and
nonmonotonicity. Using the four-valued paraconsistent logic introduced in [32], we de-
fine a modular language 4QL with unrestricted negation and layered architecture. At the
base layers OWA is accepted. This is crucial in the proposed approach for dealing with
inconsistencies and the lack of knowledge in a monotonic way. Modules of higher lay-
ers may use additional simple yet powerful constructs allowing one to express various
mechanisms of nonmonotonic reasoning. In particular, these constructs provide means
for application-specific disambiguation of inconsistent information obtained at lower
layers, the use of Local CWA (thus also CWA, if needed), and various forms of default
reasoning. The resulting query language is still tractable as regards its data complexity.
Moreover, it captures PTIME queries on ordered domains (see [31]).

The paper is organized as follows. Section 2 gives a brief survey of related work on
paraconsistent logic programming and the four-valued logic of [32,42]. Sections 3 and
4 introduce 4QL and discuss its architecture. Section 5 discusses the constructs of 4QL,
allowing one to express various kinds of nonmonotonicity and illustrates their use on
examples. Conclusions are presented in Section 6.

2 Living with Inconsistency

2.1 Related Work

In the context of logic programming the problem of inconsistency was first addressed
by Blair and Subrahmanian [8]. The logic programs considered in this paper (called
Generally Horn logic programs) consist of clauses where each literal is annotated � or
�. The annotation � plays the role of negation. Programs are interpreted using Belnap’s
four-valued logic [6]. A fixpoint semantics defines the least model of each program, and
associates one of the four truth values with any element of the Herbrand base. In this
approach the negation, modeled by the annotations, is a four-valued logical negation
in contrast to the negation-as-failure used in logic programming. The work of Kifer
and Lozinski [28] extends the approach to theories which may include also this kind of
negation.

Several publications (see e.g. [2,4,13,40] and references therein) address reasoning
with inconsistencies in extended logic programs and disjunctive extended logic pro-
grams introduced by Gelfond and Lifschitz [25]. Such programs admit so called explicit
negation in addition to the negation-as-failure. Thus the issue of inconsistency has to
be considered together with the issue of nonmonotonic reasoning. These proposals usu-
ally extend the semantics of normal logic programs such as stable model semantics or
well-founded semantics.

It was observed by Fitting (see e.g. [23]) that bilattices [26] are convenient for treat-
ment of inconsistency. In many of the papers mentioned above the definition of the
paraconsistent semantics is based on bilattices. A commonly used four-valued logic is

386 J. Małuszyński and A. Szałas

�

�

�

�

�

� �

�

truth ordering (≤t)knowledge ordering (≤k) Belnap’s truth ordering

�

� �

�

Fig. 1. Truth and knowledge orderings

Belnap’s logic [6] where two orderings on truth values are considered, known as knowl-
edge ordering≤k and Belnap’s truth ordering (see Figure 1). As shown, e.g., in [19,42],
Belnap’s truth ordering is problematic in areas we focus on. A different truth ordering
≤t was used in [14] presenting a paraconsistent logic programming approach to query-
ing inconsistent databases and in [42].

The starting point for this paper are some results reported in [32,42,41], providing
a four-valued framework for reasoning with rough sets [37]. We adopt here the four-
valued logic defined therein as a basis for the semantics of 4QL. However, 4QL is
substantially different from the rule language discussed in [42] and in [41]. While the
work in [42,41] concentrates on approximate reasoning and knowledge fusion, here we
accept a different kind of disjunction and existential quantification which make 4QL
“back compatible” with DATALOG when restricting truth values to the two classical
ones and closing the world using CWA.

2.2 A Four-Valued Logic for Paraconsistent Reasoning

We adopt the four-valued logic introduced by Małuszyński, Szałas and Vitória in [32].
It results from a combination of truth ordering ≤t and knowledge ordering ≤k shown
in Figure 1. The truth tables for the connectives are shown in Table 1.

Let us emphasize that known facts about connectives in the classical two-valued logic
may not hold in the four-valued case. For instance, p → q in our logic is not equivalent
to ¬q → ¬p. Such deviations from the classical semantics are rather typical in many-
valued logics (see [9]). In the context of databases, DATALOG¬ with the well-founded
semantics uses a three-valued logic not preserving some classical laws (see [1]). How-
ever, when truth values are restricted to � and �, all considered connectives are classical
and preserve all laws known from classical propositional calculus.

Table 1. Truth tables for ∧, ∨, → and ¬

∧ � � � � ∨ � � � � → � � � � ¬
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

Living with Inconsistency and Taming Nonmonotonicity 387

The truth tables for conjunction∧ and disjunction ∨ are respectively defined as min-
imum and maximum w.r.t. truth ordering.

The implication → is a four-valued extension of the classical implication. It is used
to interpret clauses of 4QL. Whenever the body of a clause has the value � or �, we
make the clause �. Intuitively, this reflects our intention not to draw conclusions from
false or unknown information. Namely, a clause with unknown or false body is always
satisfied, so one does not have to update its head.

From inconsistent body we want to conclude that the head is also inconsistent:

– we do not want to derive conclusions as to truth or falsity of a fact on the basis of
inconsistent assumptions

– the unknown conclusion should not follow from inconsistency, namely having the
implication p → q with p inconsistent, we have a positive evidence both about p
and ¬p, so we also have a positive evidence indicating truth of q. Therefore q is not
totally unknown, as the assignment of � to q would indicate. As already argued, we
cannot assign � to q on the basis of inconsistent p, so q is to be assigned �.

The implication is � if the predecessor takes value � and the successor is � or �. The latter
case is needed to handle the situation when both head and its negation are to be derived
on the basis of true assumptions.

Definition 1. By an interpretation we mean any set of literals. By the truth value of
a literal � in interpretation I, denoted by I(�), we mean the value defined as follows:

I(�) def=

⎧
⎪⎪⎨
⎪⎪⎩

� if � ∈ I and (¬�) 	∈ I
� if � ∈ I and (¬�) ∈ I
� if � 	∈ I and (¬�) 	∈ I
� if � 	∈ I and (¬�) ∈ I.

The definition of interpretation is extended for formulas built from literals using ∨,∧,¬
and→ according to Table 1. �

3 4QL: The Monotonic Layer

3.1 Syntax

The alphabet of 4QL consists of predicate symbols, constants and variables. Atomic
formulas and literals are built in the usual way. For a negative literal � = ¬�′ the notation
¬� stands for its positive counterpart �′. We treat propositions as zero-argument relation
symbols.

Definition 2.

– By a rule we mean any expression of the form:

� :– (b11, . . . , b1i1) ∨ (b21, . . . , b2i2) ∨ . . . ∨ (bm1, . . . , bmim). (1)

where �, b11, . . . , b1i1 , b21, . . . , b2i2 , . . . , bm1, . . . , bmim are ground literals.

388 J. Małuszyński and A. Szałas

– If � is a rule of the form (1) then:
• rule(�) def= �

• head(�) def= �

• body(�) def= (b11, . . . , b1i1) ∨ (b21, . . . , b2i2) ∨ . . . ∨ (bm1, . . . , bmim)
• for 1 ≤ j ≤ m, βj(ρ) def= bj1, . . . , bjij .

– By a 4QL program we understand any finite set S of rules such that there are no
two rules ρ1, ρ2 ∈ S with head(ρ1) = head(ρ2). �

In the sequel, the empty body is denoted by the empty symbol or the symbol ∅.
Remark 1.

– We consider ground rules only in order to simplify the presentation. However, typ-
ical rules with variables are allowed, too. We assume that whenever there is a vari-
able appearing in the body of a rule but not in its head then it is assumed to be
existentially quantified in its body. The existential quantifier ∃xq(x) is then under-
stood as the disjunction q(a1) ∨ . . . ∨ q(ak), where a1, . . . , ak are all constants
appearing in the database.

– The intention behind the disjunction in (1) is that it gathers all ground bodies with
� as their head. This cannot be achieved by the use of many rules, as in the case of
DATALOG, since (p → q) ∧ (r → q) is not equivalent to (p ∨ r) → q. �

3.2 Declarative Semantics

The declarative semantics of 4QL is defined in terms of Herbrand models.

Definition 3. By a Herbrand base of a program we mean the set of all ground literals
constructed with predicate symbols and constants which occur in the program. �

Definition 4. A set of literals I is a model of a set of rules S iff for each rule � ∈ S we
have that I(body(�) → head(�)

)
= �, where it is assumed that the empty body takes

the value � in any interpretation. �

It should be noticed that the Herbrand base is a model of any set of rules. However,
our intuition is that the knowledge represented by a set of rules should be based on the
explicit knowledge represented by facts. Minimal models, if exist, may not fulfill this
requirement, as shown in the following example.

Example 1. Let S be the following set of rules:

wait :– overloaded ∨ rest time .
rest time :– wait .
¬ overloaded :– rest time .
overloaded .

A minimal model of S is {overloaded,¬overloaded, wait, rest time} but the only
fact of S (i.e., overloaded) has in this model value � so there are no facts supporting
the truth of wait and rest time in this model. The intuitively correct model for S is
{overloaded,¬overloaded, wait,¬wait, rest time,¬rest time}. �

Living with Inconsistency and Taming Nonmonotonicity 389

The following definitions reflect our intuitions. Note that intuitions closest to ours are
those behind well-supportedness of Fages [22].

Definition 5. Let I be an interpretation and≺ be a strict partial order on I. Given a set
of rules S, we say that a model I of S supports a rule � ∈ S w.r.t. ≺ provided that:

body(�) = ∅ or there is βj(�) such that I(βj(�)) = �

and for all literals ı ∈ βj(�) we have that ı ≺ head(�). �

Definition 6. A model I of a set of rules S is well-supported provided that there exists
a strict partial order≺ on I such that for every literal � ∈ I,

– if I(�) = � then I supports rule(�) w.r.t. ≺. (2)

– if I(�) = � then (at least) one of the following conditions hold: (3)

– I supports rule(�) w.r.t. ≺
– there is a rule � ∈ {rule(�), rule(¬�)} with I(body(�)) = �

for which there is βj(�) = � such that for all literals ı in βj(�),
ı ≺ head(�). �

Remark 2. In condition (3) one could also expect a clause concerning I(¬�) = �.
On the other hand, I(�) = � implies that also I(¬�) = � so the respective condi-
tion for I(¬�) = � is already included in Definition 6. For example, interpretation
{rest,¬rest, overloaded,¬overloaded} is a well-supported model for the set of rules:

¬ rest :– overloaded. (4)
rest. (5)
overloaded. (6)
¬ overloaded. (7)

as well as for the set of rules {[¬rest.], (5), (6), (7)}. �

The following theorem is proved in [31].

Theorem 1. For any set S of rules there is the unique well-supported model for S. �

3.3 Computing the Unique Well-Supported Model

Let us now present an algorithm for computing the unique well-supported model for
a given set of rules. Its correctness is proved in [31]. We need the following notation.

Definition 7. Let S be a set of rules.

– By L(S) we denote the set of relation symbols appearing in S.
– By a duplicate of a relation symbol � ∈ L(S) we understand a fresh relation sym-

bol, for simplicity denoted by �′.
– By L′(S) we understand the set of duplicates of relation symbols of L(S), i.e.,
L′(S) = {�′ | � ∈ L(S)}.

– By Pos(S) we understand the DATALOG program obtained from S by replacing
each negative literal ¬� of S by its duplicate �′. �

390 J. Małuszyński and A. Szałas

Input: a set of rules S
Output: the unique well-supported model IS for S

Phase 1 (finding basic inconsistencies):
(a) compute the least Herbrand model IS

0 of Pos(S)

(b) let IS
1

def
= {�,¬� | �, �′ ∈ IS

0 }
Phase 2 (finding potentially true literals):

(a) let S′ = {� | � ∈ S and IS
1

(
head(�)

) �= �}
(b) set IS

2 to be the least Herbrand model for Pos(S′)
with literals �′ substituted by ¬�

Phase 3 (reasoning with inconsistency):
(a) define the following transformation ΦS on interpretations:

ΦS(I)
def
= I ∪ {�,¬� | there is a rule [� :– β1 ∨ . . . ∨ βm]∈S (8)

such that ∃k ∈ {1, . . . , m}[I(βk) = �] (9)

and ¬∃n ∈ {1, . . . , m}[(IS
2 − I)(βn) = �]

}
. (10)

The transformation ΦS is monotonic (see [31]).
Denote by IS

3 the fixpoint of ΦS obtained by iterating ΦS on IS
1 , i.e.,

IS
3 =

⋃

i∈ω

(ΦS)i(IS
1)

(b) set IS = IS
2 ∪ IS

3 .

Fig. 2. The method of computing the well-supported model for the set of rules S

The algorithm is presented in Figure 2.

Example 2. To illustrate the algorithm, consider set of rules discussed in Example 1
together with rules:

good mood :– rested ∨ success .
¬rested :– ¬rest time .
rested .
success .

Phase 1 gives IS
1 = {overloaded,¬overloaded}.

The set S′ of Phase 2 is:

wait :– overloaded ∨ rest time .
rest time :– wait .
good mood :– rested ∨ success .
¬rested :– ¬rest time .
rested .
success .

Phase 2 returns IS
2 = {success, rested, good mood}.

Living with Inconsistency and Taming Nonmonotonicity 391

Phase 3 goes through the following iterations of ΦS :

{overloaded,¬overloaded}
{overloaded,¬overloaded, wait,¬wait}
{overloaded,¬overloaded, wait,¬wait, rest time,¬rest time}
{overloaded,¬overloaded, wait,¬wait, rest time,¬rest time,

rested,¬rested} − fixpoint.

Hence IS
3 = {overloaded,¬overloaded, wait,¬wait, rest time,¬rest time,

rested,¬rested}.
Finally IS = {success, good mood, overloaded,¬overloaded, wait,¬wait,

rest time,¬rest time, rested,¬rested}. �

The following theorem is proved in [31].

Theorem 2

– The interpretation IS is the well-supported model of S.
– Algorithm given in Figure 2 computes IS in time polynomial w.r.t. the size of the

domain. �

4 4QL: Modular Architecture

In this section we add constructs substantially extending expressiveness of the base 4QL
language described so far. The intended modular and layered architecture is shown in
Figure 3. Modules are allowed to read values of literals from modules of a lower layer.
This way we do not allow recursion through nonmonotonic operators. The idea is some-
how similar to that of stratified logic programs, where negation is the only nonmono-
tonic operator (for a more detailed discussion of this issue see [31]).

Definition 8

– An external literal is an expression of one of the forms:
A.R, ¬A.R, A.R IN T , ¬A.R IN T ,

where:
• A is a module name and R is a positive literal (A is called the reference module

of the external literal)1

• T ⊆ {�, �, �, �}.2
– An external literal may only appear in rule bodies of a module B, provided that its

reference module is in a strictly lower layer than B.
– We write � = υ to stand for � IN {υ}. The literal ¬A.R IN T is to be read as

“(¬A.R) IN T ” rather than “¬(A.R IN T)”. �

1 If R is not defined in the module A then the value of A.R is �.
2 The intended meaning of A.R IN T is that the truth value of A.R is in the set T .

392 J. Małuszyński and A. Szałas

P :– . . . Ai.Qi, . . . ,
P :– . . .¬Aj .Qj . . .

. . .
Qi :– . . .¬Ai.Qi = u,

Aj .Qj = i

Q1 :– . . .

module A

module A1

Q2 :– . . .

module A2

Qk :– . . .

module Ak

. . .

�� �
Layer i+ 1

Layer i

Fig. 3. The intended architecture

Semantics of modules and external literals can easily be defined by assuming that:

– formally, positive literal R (respectively, negative literal ¬R) occurring in module
A is an abbreviation for A.R (respectively, for ¬A.R), so that A.R is not the same
as B.R when B 	= A

– each module operates on its “local” literals, accessing “foreign” literals only via
dotted notation

– external literals, when used in a given module, are fully defined in modules in lower
layers

– truth values assigned to external literals, when used, cannot change.

Under these assumptions each external literal occurring in a module A has a fixed truth
value determined at lower levels. The semantics of A is now defined as the unique well-
supported model of the program A′ obtained from A by replacing each external literal
of A by the respective constant �, �, � or � corresponding to the truth value of this literal.

5 Taming Nonmonotonicity

The goal of this section is to show that very simple concepts of modules and external lit-
erals allow one to express many useful nonmonotonic rules. We do not intend to provide
a detailed analysis of the discussed techniques. Instead, we illustrate their usefulness by
examples.

Typical sources of nonmonotonicity are generally caused by attempts to fill gaps in
missing knowledge, e.g.,

– efficient representation of (negative) information (like CWA, LCWA)
– drawing rational conclusions from non-conclusive information (e.g., circumscrip-

tion, default logics)
– drawing rational conclusions from the lack of knowledge (e.g., autoepistemic rea-

soning)
– resolving inconsistencies (e.g., defeasible reasoning).

Living with Inconsistency and Taming Nonmonotonicity 393

Reasoning in traditional nonmonotonic logics is of heavyweight complex-
ity [5,11,12,20,27]. In the following subsections we provide examples indicating how to
represent lightweight forms of nonmonotonicity in 4QL. The term “lightweight” indi-
cates that we do not exactly mirror the semantics of nonmonotonic formalisms, but still
capture the underlying intuitions. Moreover, our shift in semantics results in tractable
nonmonotonic reasoning over databases.

5.1 Local Closed-World Assumption

Local Closed World Assumption (LCWA) generalizes the Closed World Assumption in-
troduced by Reiter [38]. It has been considered in many sources, including [21,18,15,16].
Intuitively, one often wants to contextually close part of the world, not necessarily all
relations in the database.

Example 3. The following rules in a module other than B locally close loc, where
loc(X, Y, T) means that object X has location Y at timepoint T :

loc(X, Y, T):– nextT ime(T, S), − T is the timepoint next to S
house(X), −X is a house
B.chLoc(X, S) IN {�, �}, − B reports change of location being � or �

C.loc(X, Y, S). − C reports that location of X at time S is Y
¬loc(X, Y, T):– nextT ime(T, S), − T is the timepoint next to S

movingCar(X), −X is a moving car
B.chLoc(X, S) IN {�, �}, − B reports change of location being � or �

C.loc(X, Y, S). − C reports that location of X at time S is Y

These rules state that houses do not change their location in contrast to moving cars, no
matter whether the B’s database contains information as to the change of location or
not. �

5.2 Lightweight Default Reasoning

Default reasoning has been introduced by Reiter [39] and intensively studied by numer-
ous authors (see, e.g., [7,10,30,33] and references there).

Default rules have the form:

prerequisite : justification * consequent, (11)

with the intuitive meaning

“deduce consequent whenever prerequisite is true
and justification is consistent with current beliefs”.

Assuming that consequent, justification are literals and prerequisite is a con-
junction of literals, rules of the form (11) can be translated into:

consequent :– prerequisite, justification ∈ {�, �}.

394 J. Małuszyński and A. Szałas

If consequent, justification, prerequisite are not in required form, one first has to
transform them into rules using standard techniques known from logic programming.3

The following example shows how to represent such rules in 4QL.

Example 4. Consider the following default rule:

car(X) ∧ speed(X, high) : onRoad(X) * onRoad(X)

stating that cars moving with high speed typically are on road. An 4QL rule capturing
similar intuitions can be:

onRoad(X) :– car(X), − X is a car
speed(X, high), − speed of X is high
B.onRoad(X) IN {�, �}. − B reports that onRoad(X) is � or �. �

In 4QL we can also consider defaults for resolving inconsistencies as shown in the
following example.

Example 5. Let module A contain, among others, the following rules:

stop :– red light.
¬stop :– policeman directs to go through.

A possible inconsistency may be resolved in a module in layer higher than A, using the
rule:

¬stop :– A.stop = �.

That is, when there is both red light and a policeman directing to go through then one
should not stop. �

5.3 Lightweight Autoepistemic Reasoning

Autoepistemic reasoning, introduced by Moore [35], concentrates around the reasoning
of the form:

“If you do not know R, conclude ¬R.” (12)

Assuming that R is a literal, formulas of the form (12) can be translated into 4QL rules
of the form:

¬R :– A.R = �

placed in a module of layer higher than A.

Example 6. Consider the rule stating that “if you do not know that you have a sister,
conclude that you do not have a sister”. It can be represented by the rule

¬have sister :– A.have sister = �.

Such a rule should be placed in a module in layer higher than A. �
3 This may cause an exponential blow up of formulas.

Living with Inconsistency and Taming Nonmonotonicity 395

5.4 Lightweight Circumscriptive Reasoning

Circumscription has been introduced by McCarthy [34] and then intensively studied
(see, e.g., [11,17,20,27,29,24]).

In general, replacing circumscription by rules is not doable. However, in 4QL one
can express typical abnormality theories, where formulas involving abnormalities have
the pattern, where ab is minimized and conclusion is varied:

(condition ∧ ¬abnormal)→ conclusion. (13)

In such cases one can:

– locally close abnormality
– make varied predicates heads of rules.4

In the case of formulas of the form (13), one can first provide the following rule neces-
sary to locally close ab, say in module A:

abnormal(X) :– condition ∧ ¬conclusion.

Then the following rules both locally close ab and provide (in a module of a higher
layer than A) the following rules expressing the required circumscriptive policy:

¬abnormal(X) :– A.abnormal(X) IN {�, �}. − local closure of abnormal
conclusion :– condition,¬abnormal. − representation of (13) .

Example 7. Consider the theory stating that ill persons normally consult their doctors:

∀X [(ill(X) ∧ ¬ab(X))→ consults doctor(X)]

and assume one minimizes the abnormality predicate ab varying consults doctor.
Let A be a module with (among others) the following rule:

ab(X) :– ill(X),¬consults doctor(X).

We define a module B in a layer higher than A, consisting of rules:

¬ab(X) :– A.ab(X) IN {�, �}.
consults doctor(X) :– ill(X),¬ab(X). �

5.5 Lightweight Defeasible Reasoning

A rule-based form of defeasible reasoning has been introduced by Nute [36]. It is used,
among others, in Semantic Web technologies [3]. Rules have the form similar to 4QL,
but the underlying semantics is two-valued. Possible inconsistencies are resolved by
placing priorities on rules. Such priorities can easily be modeled in 4QL, as the follow-
ing example shows.

4 This sometimes requires finding explicit definitions of varied predicates. Even if often can be
done automatically, e.g., using second-order quantifier elimination, this is not a lightweight
task [24].

396 J. Małuszyński and A. Szałas

Example 8. Consider the following defeasible rules reflecting buyer’s requirements as
to apartments:

r1 : size(X, large)⇒ acceptable(X)
r2 : ¬pets allowed(X)⇒ ¬acceptable(X)

with priorities r2 > r1.
Assume module B contains rules:

acceptable(X) :– size(X, large).
¬acceptable(X) :– ¬pets allowed(X).

The following rules in a module in higher layer resolves possible inconsistencies ac-
cording to required priority:

acceptable(X) :– B.acceptable(X) = �.
¬acceptable(X) :– B.acceptable(X) = �.

Note that in 4QL we can also address cases with �, not covered by defeasible rules. For
example, one can additionally express rules like:

¬acceptable(X) :– B.acceptable(X) = �.

not expressible by means of defeasible rules. �

6 Conclusions

The paper proposes a new DATALOG¬¬-like query language 4QL, which is shown pow-
erful but still lightweight and intuitive. It provides means for monotonic reasoning sup-
ported by facts together with a very simple mechanism for expressing nonmonotonic
rules.

The intended methodology is based on the assumption that conclusions monotoni-
cally derived from facts are well supported. This idea is reflected by the intended archi-
tecture, where:

– the lowest layer provides solid knowledge, supported by facts, e.g., reflecting per-
ception, expert knowledge, etc.

– higher layers allow one to derive conclusions still supported by facts or using vari-
ous forms of nonmonotonic reasoning, usually reflecting expert knowledge.

We have provided an algorithm for computing well-supported models. The algorithm
runs in deterministic polynomial time w.r.t. size of the databases.

As shown in [31], the layered 4QL language captures PTIME queries over ordered
domains.

Living with Inconsistency and Taming Nonmonotonicity 397

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub. Co.,
Reading (1996)

2. Alcântara, J., Damásio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent
logic programs. J. Applied Logic 3(1), 67–95 (2005)

3. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. The MIT Press, Cambridge (2004)
4. Arieli, O.: Paraconsistent declarative semantics for extended logic programs. Ann. Math.

Artif. Intell. 36(4), 381–417 (2002)
5. Baumgartner, R., Gottlob, G.: On the complexity of model checking for propositional default

logics: New results and tractable cases. In: IJCAI, pp. 64–69 (1999)
6. Belnap, N.D.: A useful four-valued logic. In: Eptein, G., Dunn, J.M. (eds.) Modern Uses of

Many Valued Logic, pp. 8–37. Reidel, Dordrechtz (1977)
7. Besnard, P.: An Introduction to Default Logic. Springer, Heidelberg (1989)
8. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput.

Sci. 68(2), 135–154 (1989)
9. Bolc, L., Borowik, P.: Many-Valued Logics, 1. Theoretical Foundations. Springer, Berlin

(1992)
10. Brewka, G.: Non-Monotonic Reasoning: Logical Foundations of Commonsense. Cambridge

University Press, Cambridge (1991)
11. Cadoli, M., Eiter, T., Gottlob, G.: Complexity of propositional nested circumscription and

nested abnormality theories. ACM Trans. Comput. Log. 6(2), 232–272 (2005)
12. Cadoli, M., Schaerf, M.: A survey on complexity results for non-monotonic logics. Journal

Logic Programming 17, 127–160 (1993)
13. Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In:

Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 241–320
(1998)

14. de Amo, S., Pais, M.S.: A paraconsistent logic approach for querying inconsistent databases.
International Journal of Approximate Reasoning 46, 366–386 (2007)

15. Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closed-
world reasoning in rough knowledge databases. In: Pal, S.K., Polkowski, L., Skowron, A.
(eds.) Rough-Neural Computing: Techniques for Computing with Words, Cognitive Tech-
nologies, pp. 219–250. Springer, Heidelberg (2004)

16. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge representation tech-
niques. A rough set approach. Studies in Fuzziness and Soft Computing, vol. 202. Springer,
Heidelberg (2006)

17. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of
Automated Reasoning 18(3), 297–336 (1997); See also 14th International Joint Conference
on AI (IJCAI 1995). Morgan Kaufmann Pub. Inc., San Francisco (1995)

18. Doherty, P., Łukaszewicz, W., Szałas, A.: Efficient reasoning using the local closed-world
assumption. In: Cerri, S.A., Dochev, D. (eds.) AIMSA 2000. LNCS (LNAI), vol. 1904, pp.
49–58. Springer, Heidelberg (2000)

19. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic Journal of the
IGPL 16(2), 195–216 (2008)

20. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are
ΠP

2 -complete. Theoretical Computer Science 114(2), 231–245 (1993)
21. Etzioni, O., Golden, K., Weld, D.S.: Sound and efficient closed-world reasoning for planning.

Artificial Intelligence 89, 113–148 (1997)
22. Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods of

Logic in Computer Science 1, 51–60 (1994)

398 J. Małuszyński and A. Szałas

23. Fitting, M.C.: Fixpoint semantics for logic programming. A survey. Theoretical Computer
Science 278(1-2), 25–51 (2002)

24. Gabbay, D.M., Schmidt, R., Szałas, A.: Second-Order Quantifier Elimination. Foundations,
Computational Aspects and Applications. Studies in Logic, vol. 12. College Publications
(2008)

25. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

26. Ginsberg, M.: Multi-valued logics. In: Proceedings of AAAI 1986, Fifth National Confer-
ence on Artificial Intelligence, pp. 243–247 (1986)

27. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computa-
tion 2(3), 397–425 (1992)

28. Kifer, M., Lozinski, E.L.: A logic for reasoning with inconsistency. J. Autom. Reason-
ing 9(2), 179–215 (1992)

29. Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Hand-
book of Artificial Intelligence and Logic Programming, vol. 3, pp. 297–352. Oxford Univer-
sity Press, Oxford (1991)

30. Łukaszewicz, W.: Non-Monotonic Reasoning - Formalization of Commonsense Reasoning.
Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, England (1990)

31. Małuszyński, J., Szałas, A.: Logical foundations and complexity of 4QL, a query language
with unrestricted negation (2010) (to appear); Journal of Applied Non-Classical Logics,
http://arxiv.org/abs/1011.5105

32. Małuszyński, J., Szałas, A., Vitória, A.: Paraconsistent logic programs with four-valued
rough sets. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS
(LNAI), vol. 5306, pp. 41–51. Springer, Heidelberg (2008)

33. Marek, V.W., Truszczyński, M.: Nonmonotonic Logic. Springer, Heidelberg (1993)
34. McCarthy, J.: Circumscription: A form of non-monotonic reasoning. Artificial Intelligence

Journal 13, 27–39 (1980)
35. Moore, R.C.: Possible-world semantics for autoepistemic logic. In: Proc. 1st Nonmonotonic

Reasoning Workshop, New Paltz, NY, pp. 344–354 (1984)
36. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Pro-

gramming, pp. 353–395 (1994)
37. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic

Publishers, Dordrecht (1991)
38. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data

Bases, pp. 55–76. Plenum Press, New York (1978)
39. Reiter, R.: A logic for default reasoning. Artificial Intelligence Journal 13, 81–132 (1980)
40. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J.

Log. Comput. 5(3), 265–285 (1995)
41. Vitória, A.: Reasoning with Rough Sets and Paraconsistent Rough Sets. University of

Linköping, Ph.D. Thesis (2010),
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60794

42. Vitória, A., Małuszyński, J., Szałas, A.: Modeling and reasoning with paraconsistent rough
sets. Fundamenta Informaticae 97(4), 405–438 (2009)

http://arxiv.org/abs/1011.5105
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60794

Author Index

Abiteboul, Serge 252
Afrati, Foto N. 120
Alpuente, Maŕıa 1
Alvaro, Peter 262
Alviano, Mario 282
Arenas, Marcelo 302

Barceló, Pablo 302
Baumgartner, Robert 145
Bienvenu, Meghyn 252
Bonatti, Piero A. 21
Borkar, Vinayak 120
Bravenboer, Martin 245
Bry, François 321

Cal̀ı, Andrea 351
Carey, Michael 120
Conway, Neil 262
Costantini, Stefania 37

Dahl, Veronica 161
Dao-Tran, Minh 59

Eisner, Jason 181
Eiter, Thomas 59

Faber, Wolfgang 282
Feliú, Marco Antonio 1
Filardo, Nathaniel W. 181
Fink, Michael 59
Furche, Tim 321

Galland, Alban 252
Gelfond, Michael 369
Gottlob, Georg 351

Hellerstein, Joseph M. 262

Joubert, Christophe 1

Krennwallner, Thomas 59

Leone, Nicola 282
Ley, Clemens 321
Lifschitz, Vladimir 78
Linse, Benedikt 321
Lukasiewicz, Thomas 351

Magnani, Matteo 221
Maier, David 262
Ma�luszyński, Jan 384
Marczak, William R. 262
Marnette, Bruno 321
Montesi, Danilo 221

Orsi, Giorgio 225

Perri, Simona 282
Pfeifer, Gerald 282
Pichler, Reinhard 88
Pieris, Andreas 351
Polyzotis, Neoklis 120

Reutter, Juan L. 302
Rousset, Marie-Christine 252

Schaffert, Sebastian 321
Sears, Russell 262
Smaragdakis, Yannis 245
Sza�las, Andrzej 384

Tanca, Letizia 225
Terracina, Giorgio 282

Ullman, Jeffrey D. 120

Villanueva, Alicia 1

Woltran, Stefan 106

	Title Page
	Preface
	Organization
	Table of Contents
	Section 1: Theoretical Aspects of Datalog
	Datalog-Based Program Analysis with BES and RWL
	Introduction
	The BES-Based Datalog Evaluation Approach
	From Datalog to BES
	The Prototype Datalog_Solve
	Experimental Results

	The RWL-Based Datalog Evaluation Approach
	From Datalog to Maude
	The Prototype Datalaude

	Conclusion and Future Work
	References

	Datalog for Security, Privacy and Trust
	Introduction
	Logic-Based Policy Languages
	Datalog-Based Approaches
	DL-Based Approaches

	Expressiveness Analysis
	Expressiveness of Datalog Policy Languages
	Expressiveness of Description Logics

	Reasoning: Foundations and Technology
	Maturity

	Hybrid Approaches
	Conclusions
	References

	Answer Set Modules for Logical Agents
	Introduction
	Answer Set Programming in a Nutshell, and Some Terminology
	Related Work on ASP Modules
	Logical Agents in Short
	Reactive ASP Modules
	Reasoning on Possibility and Necessity: Modal ASP Modules
	Definition, Use and Applications of Modal ASP Modules
	Extension to Multi-agent Setting
	Complexity

	Concluding Remarks
	References

	First-Order Encodings forModular Nonmonotonic Datalog Programs
	Introduction
	Preliminaries
	Program Completion for MLPs
	Loop Formulas for MLPs
	Ordered Completion for MLPs
	Discussion
	Conclusion
	References

	Datalog Programs and Their Stable Models
	Introduction
	A Few More Examples
	Rules and Programs
	Positive Programs
	General Definition of a Stable Model
	Equivalent Transformations of Datalog Programs
	Discussion
	References

	Exploiting Bounded Treewidth with Datalog (A Survey)
	Introduction
	Basic Definitions and Results
	Expressive Power of Monadic Datalog
	Putting Monadic Datalog to Work
	Counting and Enumeration
	Conclusion
	References

	Equivalence between Extended Datalog Programs — A Brief Survey
	Introduction
	Background
	Results for Strong and Uniform Equivalence
	Characterizations
	Complexity
	Further Issues

	Conclusion
	References

	Section 2: Applications of Datalog
	Cluster Computing, Recursion and Datalog
	Background
	Datalog Concepts and Seminaive Evaluation
	Cluster Computing
	Dealing with Node Failures
	Join Implemented by Map-Reduce

	The Computation Model
	Communication Cost
	Cost of Restarts

	Evaluation of Single Datalog Rules
	Seminaive Evaluation on a Cluster

	Recursive Datalog
	Linear Transitive Closure
	Nonlinear Transitive Closure
	Using Join Tasks to Compute the Transitive Closure
	File Management for the Nonlinear Recursion
	Join/Duplicate-Elimination Method for Nonlinear TC
	Generalization to All Recursive Datalog
	Nonlinear TC via Recursive Doubling
	Communication Cost of TC Using Recursive Doubling
	The Endgame: Dealing with Small Files

	Recovery from Node Failures
	Existing Recursive Systems
	Use of Idempotence
	When Idempotence Cannot Be Used
	Checkpointing

	Summary
	References

	Datalog-Related Aspects in Lixto Visual Developer
	Introduction
	Lixto Overview and Architecture
	Visual Wrapper Generation with Visual Developer
	Page Class Concept and Pattern Structure
	Visual Pattern and Filter Generation
	Pattern Graph
	Object Model

	The Elog Data Extraction Language
	Motivation and Example
	Elog Rules
	Built-in Predicates
	Elog Programs
	Datalog Representation
	Expressiveness and Complexity

	Conclusion
	References

	Informing Datalog through Language Intelligence – A Personal Perspective
	Introduction
	Background - What Is Lacking
	Web Search Engines
	Natural Language Understanding
	Computational Logic

	LI vs. NLU
	Ontological Parsing
	Logic Grammars
	DCGs
	Logic Grammars and Datalog
	Contemporary Logic Grammars
	Discussion: Possible Cross-Fertilizations

	Conclusion: LP, Datalog as the Connective Tissue, the Universal Glue
	References
	Appendix

	Dyna: Extending Datalog for Modern AI
	Why a New Data-Oriented Language for AI?
	AI and Databases Today
	A Declarative Alternative
	Storage and Execution Strategies

	Basic Features of the Language
	Background: Datalog
	Background: Datalog with Stratified Aggregation
	Dyna
	Restoring Expressivity
	Related Work
	A First Execution Strategy
	Multiple Interacting Dynabases

	Design Patterns in AI
	Brief AI Examples in Dyna
	Proofs and Proof Forests
	From Logical Proofs to Generalized Circuits

	Practical AI and Logic Programming
	What's Wrong with Current AI Practices
	Declarative Programming to the Rescue
	Uses of Change Propagation in AI

	Conclusion
	References

	Datalog for the Web 2.0: The Case of Social Network Data Management
	Introduction
	Data Anatomy
	Requirements for a Social Datalog
	References

	Context Modelling and Context-Aware Querying
	Introduction
	Context-Aware Systems' Overview
	A General Framework for the Design of Context-Aware Systems
	A Conceptual Context Model

	Datalog for Context Modelling and Reasoning
	Context Vocabulary
	The Context Model
	The Contexts
	Context Reasoning

	Data Tailoring with Datalog
	Conclusions
	References

	Using Datalog for Fast and Easy Program Analysis
	Introduction
	Background: Points-To Analysis in Datalog
	Discussion: Doop and Large-Scale Development in Datalog
	References

	Section 3: New Languages Extending Datalog
	Distributed Datalog Revisited
	Introduction
	Preliminaries
	Distributed Datalog Revisited
	Extensions in Brief
	Conclusion
	References

	Dedalus: Datalog in Time and Space
	Introduction
	Dedalus0
	Syntactic Restrictions
	Abbreviated Syntax and Temporal Interpretation

	State in Logic
	Simple Persistence
	Mutable State
	Sequences
	Queues

	Stratification and Safety
	Stratification in Dedalus0
	Temporal Safety

	Asynchrony
	Choice
	Distribution Model
	Asynchronous Rules
	Asynchrony and Distribution in Dedalus
	Temporal Monotonicity
	Lamport Clocks
	Reliable Broadcast

	Related Work
	Deductive Databases and Updateable State
	Distributed Systems

	Conclusion
	References

	The Disjunctive Datalog System DLV
	Introduction
	The Language of DLV
	Knowledge Representation
	Deductive Databases
	Search Problems
	Optimization Problems

	DLV Implementation
	Main Optimization Techniques
	DLV Architecture

	Reasoning on Top of Databases: DLVDB
	Main Features
	DLV DB Architecture
	Using DLVDB for Data Integration

	Spin-Off and Applications
	References

	Datalog as a Query Language for Data Exchange Systems
	Introduction
	Background
	Data Exchange Settings and Solutions
	Universal Solutions and Canonical Universal Solution
	Certain Answers

	Extending Query Languages for Data Exchange: DatalogC(=) Programs
	DatalogC(=) Programs
	Certain Answers for DatalogC(=) Programs

	On the Expressive Power of DatalogC(=) Programs
	Adding Target Dependencies

	Concluding Remarks
	References

	Datalog Relaunched: Simulation Unification and Value Invention
	Introduction
	Related Work
	Wrapping
	Rules Languages for the Semantic Web

	Simulation Unification: Unification for Web Wrapping
	Examples of Simulation
	Simulation Unification
	Complexity of Simulation Unification

	RDFLog: Datalog with Value Invention
	Preliminaries
	RDFLog Syntax
	Declarative Semantics
	Properties and Experimental Evaluation

	Conclusion
	References

	Datalog+/-: A Family of Languages for Ontology Querying
	Introduction
	Preliminaries
	Guarded and Linear Datalog
	Guarded Datalog
	Linear Datalog

	Sticky Datalog
	Additional Features
	Ontology Querying
	Conclusion and Future Research
	References

	Knowledge Representation Language P-Log –A Short Introduction
	Introduction
	Syntax and Semantics
	Reasoning in P-Log
	Conclusion
	References

	Living with Inconsistency and Taming Nonmonotonicity
	Introduction
	Living with Inconsistency
	Related Work
	A Four-Valued Logic for Paraconsistent Reasoning

	4QL: The Monotonic Layer
	Syntax
	Declarative Semantics
	Computing the Unique Well-Supported Model

	4QL: Modular Architecture
	Taming Nonmonotonicity
	Local Closed-World Assumption
	Lightweight Default Reasoning
	Lightweight Autoepistemic Reasoning
	Lightweight Circumscriptive Reasoning
	Lightweight Defeasible Reasoning

	Conclusions
	References

	Author Index

