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Preface

The International Hiding Conference was founded 15 years ago, with the first
conference held in Cambridge, UK, in 1996. Since then, the conference locations
have alternated between Europe and North America. In 2011, during May 18–20,
we had the pleasure of hosting the 13th Information Hiding Conference in
Prague, Czech Republic. The 60 attendees had the opportunity to enjoy Prague
in springtime as well as inspiring presentations and fruitfull discussions with
colleagues.

The International Hiding Conference has a tradition in attracting researchers
from many closely related fields including digital watermarking, steganography
and steganalysis, anonymity and privacy, covert and subliminal channels, finger-
printing and embedding codes, multimedia forensics and counter-forensics, as
well as theoretical aspects of information hiding and detection. In 2011, the Pro-
gram Committee reviewed 69 papers, using a double-blind system with at least
3 reviewers per paper. Then, each paper was carefully discussed until consensus
was reached, leading to 23 accepted papers (33% acceptance rate), all published
in these proceedings.

The invited speaker was Bernhard Schölkopf, who presented his thoughts on
why kernel methods (and support vector machines in particular) are so popular
and where they are heading. He also discussed some recent developments in two-
sample and independence testing as well as applications in different domains.

At this point, we would like to thank everyone, who helped to organize
the conference, namely, Jakub Havránek from the Mediaform agency and Bára
Jeńıková from CVUT in Prague. We also wish to thank the following companies
and agencies for their contribution to the success of this conference: European
Office of Aerospace Research and Development, Air Force Office of Scientific
Research, United States Air Force Research Laboratory (www.london.af.mil),
the Office of Naval Research Global (www.onr.navy.mil), Digimarc Corporation
(www.digimarc.com), Technicolor (www.technicolor.com), and organizers of IH
2008 in santa Barbara, CA, USA. Without their generous financial support, the
organization would have been very difficult.

July 2011 Tomáš Filler
Tomáš Pevný
Scott Craver
Andrew Ker
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Gwenaël Doërr Technicolor, France
Jessica Fridrich SUNY Binghamton, USA
Teddy Furon INRIA, France
Neil F. Johnson Booz Allen Hamilton and JJTC, USA
Stefan Katzenbeisser TU Darmstadt, Germany
Darko Kirovski Microsoft Research, USA
John McHugh University of North Carolina, USA and

RedJack, LLC.
Ira S. Moskowitz Naval Research Laboratory, USA
Ahmad-Reza Sadeghi Ruhr-Universität Bochum, Germany
Rei Safavi-Naini University of Calgary, Canada
Phil Sallee Booz Allen Hamilton, USA
Berry Schoenmakers TU Eindhoven, The Netherlands
Kaushal Solanki Mayachitra Inc., USA
Kenneth Sullivan Mayachitra Inc., USA
Paul Syverson Naval Research Laboratory, USA



VIII Organization

Local Organization
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Steganalysis of Content-Adaptive Steganography in Spatial Domain . . . . 102
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Data Hiding in Unusual Content

Stegobot: A Covert Social Network Botnet . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Shishir Nagaraja, Amir Houmansadr, Pratch Piyawongwisal,
Vijit Singh, Pragya Agarwal, and Nikita Borisov



Table of Contents XI

CoCo: Coding-Based Covert Timing Channels for Network Flows . . . . . . 314
Amir Houmansadr and Nikita Borisov

LinL: Lost in n-best List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Peng Meng, Yun-Qing Shi, Liusheng Huang, Zhili Chen,
Wei Yang, and Abdelrahman Desoky

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



Asymptotic Fingerprinting Capacity

for Non-binary Alphabets

Dion Boesten and Boris Škorić

Eindhoven University of Technology

Abstract. We compute the channel capacity of non-binary fingerprint-
ing under the Marking Assumption, in the limit of large coalition size c.
The solution for the binary case was found by Huang and Moulin. They
showed that asymptotically, the capacity is 1/(c22 ln 2), the interleav-
ing attack is optimal and the arcsine distribution is the optimal bias
distribution.

In this paper we prove that the asymptotic capacity for general al-
phabet size q is (q − 1)/(c22 ln q). Our proof technique does not reveal
the optimal attack or bias distribution. The fact that the capacity is
an increasing function of q shows that there is a real gain in going to
non-binary alphabets.

1 Introduction

1.1 Collusion Resistant Watermarking

Watermarking provides a means for tracing the origin and distribution of digital
data. Before distribution of digital content, the content is modified by applying
an imperceptible watermark (WM), embedded using a watermarking algorithm.
Once an unauthorized copy of the content is found, it is possible to trace those
users who participated in its creation. This process is known as ‘forensic wa-
termarking’. Reliable tracing requires resilience against attacks that aim to re-
move the WM. Collusion attacks, where several users cooperate, are a particular
threat: differences between their versions of the content tell them where the WM
is located. Coding theory has produced a number of collusion-resistant codes.
The resulting system has two layers: The coding layer determines which message
to embed and protects against collusion attacks. The underlying watermarking
layer hides symbols of the code in segments1 of the content. The interface be-
tween the layers is usually specified in terms of the Marking Assumption, which
states that the colluders are able to perform modifications only in those seg-
ments where they received different WMs. These segments are called detectable
positions.

Many collusion resistant codes have been proposed in the literature. Most
notable is the Tardos code [13], which achieves the asymptotically optimal pro-
portionality m ∝ c2, with m the code length. Tardos introduced a two-step
1 The ‘segments’ are defined in a very broad sense. They may be coefficients in any

representation of the content (codec).

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 1–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 D. Boesten and B. Škorić

stochastic procedure for generating binary codewords: (i) For each segment a
bias is randomly drawn from some distribution F . (ii) For each user indepen-
dently, a 0 or 1 is randomly drawn for each segment using the bias for that
segment. This construction was generalized to larger alphabets in [14].

1.2 Related Work: Channel Capacity

In the original Tardos scheme [13] and many later improvements and generali-
sations (e.g. [16,14,3,10,9,4,15,17]), users are found to be innocent or guilty via
an ‘accusation sum’, a sum of weighted per-segment contributions, computed
for each user separately. The discussion of achievable performance was greatly
helped by the onset of an information-theoretic treatment of anti-collusion codes.
The whole class of bias-based codes can be treated as a maximin game between
the watermarker and the colluders [2,8,7], independently played for each seg-
ment, where the payoff function is the mutual information between the symbols
x1, . . . , xc handed to the colluders and the symbol y produced by them. In each
segment (i.e. for each bias) the colluders try to minimize the payoff function
using an attack strategy that depends on the (frequencies of the) received sym-
bols x1, . . . , xc. The watermarker tries to maximize the average payoff over the
segments by setting the bias distribution F .

It was conjectured [7] that the binary capacity is asymptotically given by
1/(c22 ln 2). The conjecture was proved in [1,6]. Amiri and Tardos [1] developed
an accusation scheme (for the binary case) where candidate coalitions get a score
related to the mutual information between their symbols and y. This scheme
achieves capacity but is computationally very expensive. Huang and Moulin [6]
proved for the large-c limit (in the binary case) that the interleaving attack and
Tardos’s arcsine distribution are optimal.

1.3 Contributions and Outline

We prove for alphabet size q that the asymptotic fingerprinting capacity is q−1
c22 ln q .

Our proof makes use of the fact that the value of the maximin game can be
found by considering the minimax game instead (i.e. in the reverse order). This
proof does not reveal the asymptotically optimal collusion strategy and bias
distribution of the maximin game.

In Section 2 we introduce notation, discuss the information-theoretic payoff
game and present lemmas that will be used later. In Section 3 we analyze the
properties of the payoff function in the large-c limit. We solve the minimax game
in Section 4. In Section 5 we discuss the benefits of larger alphabets.

2 Preliminaries

2.1 Notation

We use capital letters to represent random variables, and lowercase letters to
their realizations. Vectors are denoted in boldface and the components of a
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vector x are written as xi. The expectation over a random variable X is denoted
as EX . The mutual information between X and Y is denoted by I(X ; Y ), and
the mutual information conditioned on a third variable Z by I(X ; Y |Z). The
base-q logarithm is written as logq and the natural logarithm as ln. If p and σ
are two vectors of length n then by pσ we denote

∏n
i=1 pσi

i . If c is a positive
integer and σ is a vector of length n of nonnegative integers with sum equal to c
then

(
c
σ

)
denotes the multinomial coefficient c!

σ1!σ2!...σn! . The standard Euclidean
norm of a vector x is denoted by ‖x‖. The Kronecker delta of two variables α
and β is denoted by δαβ . A sum over all possible outcomes of a random variable
X is denoted by

∑
x. In order not to clutter up the notation we will often omit

the set to which x belongs when it is clear from the context.

2.2 Fingerprinting with Per-Segment Symbol Biases

Tardos [13] introduced the first fingerprinting scheme that achieves optimality in
the sense of having the asymptotic behavior m ∝ c2. He introduced a two-step
stochastic procedure for generating the codeword matrix X . Here we show the
generalization to non-binary alphabets [14]. A Tardos code of length m for a
number of users n over the alphabet Q of size q is a set of n length-m sequences
of symbols from Q arranged in an n×m matrix X . The codeword for a user i ∈
{1, . . . , n} is the i-th row in X . The symbols in each column j ∈ {1, . . . , m} are
generated in the following way. First an auxiliary bias vector P (j) ∈ [0, 1]q with∑
α

P
(j)
α = 1 is generated independently for each column j, from a distribution F .

(The P (j) are sometimes referred to as ‘time sharing’ variables.) The result p(j)

is used to generate each entry Xij of column j independently: P [Xij = α] = p
(j)
α .

The code generation has independence of all columns and rows.

2.3 The Collusion Attack

Let the random variable Σ
(j)
α ∈ {0, 1, . . . , c} denote the number of colluders who

receive the symbol α in segment j. It holds that
∑

α σ
(j)
α = c for all j. From now

on we will drop the segment index j, since all segments are independent. For
given p, the vector Σ is multinomial-distributed,

Λσ|p � Prob[Σ = σ|P = p] =
(

c

σ

)
pσ. (1)

The colluders’ goal is to produce a symbol Y that does not incriminate them.
It has been shown that it is sufficient to consider a probabilistic per-segment
(column) attack which does not distinguish between the different colluders. Such
an attack then only depends on Σ, and the strategy can be completely described
by a set of probabilities θy|σ ∈ [0, 1], which are defined as:

θy|σ � Prob[Y = y | Σ = σ]. (2)

For all σ, conservation of probability gives
∑

y θy|σ = 1. Due to the Marking
Assumption, σα = 0 implies θα|σ = 0 and σα = c implies θα|σ = 1. The so called
interleaving attack is defined as θα|σ = σα/c.
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2.4 Collusion Channel and Fingerprinting Capacity

The attack can be interpreted as a noisy channel with input Σ and output Y .
A capacity for this channel can then be defined, which gives an upper bound
on the achievable code rate of a reliable fingerprinting scheme. The first step of
the code generation, drawing the biases p, is not considered to be a part of the
channel. The fingerprinting capacity Cc(q) for a coalition of size c and alphabet
size q is equal to the optimal value of the following two-player game:

Cc(q) = max
F

min
θ

1
c
I(Y ; Σ | P ) = max

F
min

θ

1
c

∫
F (p)I(Y ; Σ | P = p)dqp. (3)

Here the information is measured in q-ary symbols. Our aim is to compute the
fingerprinting capacity Cc(q) in the limit (n → ∞, c → ∞).

2.5 Alternative Mutual Information Game

The payoff function of the game (3) is the mutual information I(Y ; Σ | P ). It is
convex in θ (see e.g. [5]) and linear in F . This allows us to apply Sion’s minimax
theorem (Lemma 1), yielding

max
F

min
θ

I(Y ; Σ | P ) = min
θ

max
F

I(Y ; Σ | P ) (4)

= min
θ

max
p

I(Y ; Σ | P = p) (5)

where the last equality follows from the fact that the maximization over F in (4)
results in a delta distribution located at the maximum of the payoff function.
The game (3) is what happens in reality, but by solving the alternative game (5)
we will obtain the asymptotic fingerprinting capacity.

2.6 Useful Lemmas

The following lemmas will prove useful for our analysis of the asymptotic finger-
printing game.

Lemma 1 (Sion’s minimax theorem [12]). Let X be a compact convex sub-
set of a linear topological space and Y a convex subset of a linear topological
space. Let f : X × Y → R be a function with

– f(x, ·) upper semicontinuous and quasiconcave on Y, ∀x ∈ X
– f(·, y) lower semicontinuous and quasi-convex on X , ∀y ∈ Y

then minx∈X maxy∈Y f(x, y) = maxy∈Y minx∈X f(x, y).

Lemma 2. Let M be a real n × n matrix. Then MT M is a symmetric matrix
with nonnegative eigenvalues. Being symmetric, MT M has mutually orthogonal
eigenvectors. Furthermore, for any two eigenvectors v1 ⊥ v2 of MT M we have
Mv1 ⊥ Mv2.
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Proof: MT M is symmetric because we have (MT M)T = MT (MT )T = MT M .
For an eigenvector v of MT M , corresponding to eigenvalue λ, the expression
vT MT Mv can on the one hand be evaluated to vT λv = λ‖v‖2, and on the
other hand to ‖Mv‖2 ≥ 0. This proves that λ ≥ 0. Finally, any symmetric
matrix has an orthogonal eigensystem. For two different eigenvectors v1, v2

of MT M , with v1 ⊥ v2, the expression vT
1 MT Mv2 can on the one hand be

evaluated to vT
1 λ2v2 = 0, and on the other hand to (Mv1)T (Mv2). This proves

Mv1 ⊥ Mv2. �

Lemma 3. Let V be a set that is homeomorphic to a (higher-dimenional) ball.
Let ∂V be the boundary of V. Let f : V → V be a differentiable function such
that ∂V is surjectively mapped to ∂V. Then f is surjective.

Proof sketch: A differentiable function that surjectively maps the edge ∂V to
itself can deform existing holes in V but cannot create new holes. Since V does
not contain any holes, neither does f(V). �

Lemma 4 (Arithmetic Mean - Geometric Mean (AM-GM) inequal-
ity). For any n ∈ N and any list x1, x2, . . . , xn of nonnegative real numbers it
holds that 1

n

∑n
i=1 xi ≥ n

√
x1x2 . . . xn.

3 Analysis of the Asymptotic Fingerprinting Game

3.1 Continuum Limit of the Attack Strategy

As in [6] we assume that the attack strategy satisfies the following condition in
the limit c → ∞. There exists a set of bounded and twice differentiable functions
gy : [0, 1]q → [0, 1], with y ∈ Q, such that

1. gα(σ/c) = θα|σ for all α, σ
2. xα = 0 implies gα(x) = 0
3.
∑

α xα = 1 implies
∑

α gα(x) = 1.

3.2 Mutual Information

We introduce the notation τy|p � Prob[Y = y|P = p] =
∑

σ θy|σΛσ|p =
EΣ|P=p

[
θy|Σ

]
. The mutual information can then be expressed as:

I(Y ; Σ | P ) =
∑

y

∑
σ

θy|σΛσ|p logq

(
θy|σ
τy|p

)
(6)

where we take the base-q logarithm because we measure information in q-ary
symbols. Using the continuum assumption on the strategy we can write

I(Y ; Σ | P = p) =
∑

y

∑
σ

Λσ|pgy(
σ

c
) logq

(
gy(σ/c)

EΣ|P=p [gy(Σ/c)]

)
. (7)
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3.3 Taylor Approximation and the Asymptotic Fingerprinting
Game

For large c, the multinomial-distributed variable Σ tends towards its mean cp
with shrinking relative variance. Therefore we do a Taylor expansion2 of g around
the point σ

c = p:

gy

(σ

c

)
= gy(p)+

1
c

∑
α

∂gy(p)
∂pα

(σα−cpα)+
1

2c2

∑
αβ

(σα−cpα)(σβ−cpβ)
∂2gy(p)
∂pα∂pβ

+. . .

(8)
We introduce the notation K for the (scaled) covariance matrix of the
multinomial-distributed Σ,

Kαβ � 1
c
Cov (Σα, Σβ) = δαβpα − pαpβ . (9)

For τy|p we then get

τy|p = EΣ|p

[
gy

(
Σ

c

)]
= gy(p) +

1
2c

∑
αβ

Kαβ
∂2gy(p)
∂pα∂pβ

+ O
(

1
c
√

c

)
. (10)

The term containing the 1st derivative disappears because EΣ|p [Σ − cp] = 0.
The O(1/c

√
c) comes from the fact that (Σ − cp)n with n ≥ 2 yields a result of

order cn/2 when the expectation over Σ is taken. Now we have all the ingredients
to do an expansion of I(Y ; Σ | P = p) in terms of powers of 1

c . The details are
given in Appendix 5.

I(Y ; Σ | P = p) =
T (p)
2c ln q

+ O
(

1
c
√

c

)
(11)

T (p) �
∑

y

1
gy(p)

∑
αβ

Kαβ
∂gy(p)
∂pα

∂gy(p)
∂pβ

. (12)

Note that T (p) can be related to Fisher Information.3 The asymptotic finger-
printing game for c → ∞ can now be stated as

Cc(q) =
1

2c2 ln q
max

F
min

g

∫
F (p)T (p)dqp. (13)

2 Some care must be taken in using partial derivatives ∂/∂pβ of g. The use of g as a
continuum limit of θ is introduced on the hyperplane

∑
α pα = 1, but writing down

a derivative forces us to define g(p) outside the hyperplane as well. We have a lot of
freedom to do so, which we will exploit in Section 3.5.

3 We can write T (p) = Tr[K(p)I(p)], with I the Fisher information of Y conditioned

on the p vector, Iαβ(p) �
∑
y

gy(p)
(

∂ ln gy(p)

∂pα

) (
∂ ln gy(p)

∂pβ

)
.
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3.4 Change of Variables

Substitution of K (9) into (12) gives

T (p) =
∑

y

1
gy(p)

⎧⎨⎩∑
α

pα

(
∂gy(p)
∂pα

)2

−
(∑

α

pα
∂gy(p)
∂pα

)2
⎫⎬⎭ . (14)

Now we make a change of variables pα = u2
α and gα(p) = γ2

α(u), with uα ∈ [0, 1],
γα(u) ∈ [0, 1]. The hyperplane

∑
α pα = 1 becomes the hypersphere

∑
α u2

α = 1.
For u on the hypersphere we must have

∑
α γ2

α(u) = 1. Due to the Marking
Assumption, uα = 0 implies γα(u) = 0. The change of variables induces the
probability distribution Φ(u) on the variable u,

Φ(u) � F (p(u))
∏
α

(2uα). (15)

In terms of the new variables we have a much simplified expression,

T (u) =
∑

y

{
‖∇γy‖2 − (u · ∇γy)2

}
. (16)

where ∇ stands for the gradient ∂/∂u.

3.5 Choosing γ Outside the Hypersphere

The function g(p) was introduced on the hyperplane
∑

α pα = 1, but taking
derivatives ∂/∂pα forces us to define g elsewhere too. In the new variables this
means we have to define γ(u) not only on the hypersphere ‘surface’ ‖u‖ = 1 but
also just outside of this surface. Any choice will do, as long as it is sufficiently
smooth. A very useful choice is to make γ independent of ‖u‖, i.e. dependent
only on the ‘angular’ coordinates in the surface. Then we have the nice property
u · ∇γy = 0 for all y ∈ Q, so that (16) simplifies to

T (u) =
∑
α

‖∇γα‖2 (17)

and the asymptotic fingerprinting game to

Cc(q) =
1

2c2 ln q
max

Φ
min

γ

∫
Φ(u)T (u)dqu. (18)

3.6 Huang and Moulin’s Next Step

At this point [6] proceeds by applying the Cauchy-Schwartz inequality in a very
clever way. In our notation this gives

max
Φ

min
γ

∫
Φ(u)T (u)dqu ≥ max

Φ

1∫
1

Φ(u)d
qu

min
γ

[
∫ √

T (u)dqu]2, (19)
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with equality when T is proportional to 1/Φ2. For the binary alphabet (q =
2), the integral

∫ √
T (u)dqu becomes a known constant independent of the

strategy γ. That causes the minimization over γ to disappear: The equality in
(19) can then be achieved and the entire game can be solved, yielding the arcsine
bias distribution and interleaving attack as the optimum. For q ≥ 3, however,
the integral becomes dependent on the strategy γ, and the steps of [6] cannot
be applied.

4 Asymptotic Solution of the Alternative Game

Our aim is to solve the alternative game to (18), see Section 2.5.

Cc(q) =
1

2c2 ln q
min

γ
max

u
T (u). (20)

First we prove a lower bound on maxu T (u) for any strategy γ. Then we show
the existence of a strategy which attains this lower bound. The first part of the
proof is stated in the following theorem.

Theorem 1. For any strategy γ satisfying the Marking Assumption (uα =0 =⇒
γα(u)=0) and conservation of probability (‖u‖ = 1 =⇒ ‖γ(u)‖ = 1) the fol-
lowing inequality holds:

max
u: u≥0,‖u‖=1

T (u) ≥ q − 1. (21)

Proof: We start with the definition of the Jacobian matrix J(u):

Jαβ(u) � ∂γα(u)
∂uβ

. (22)

In this way we can write:

T (u) = Tr(JT J). (23)

The matrix J has rank at most q − 1, because of our choice u · ∇γy = 0 which
can be rewritten as Ju = 0. That implies that the rank of JT J is also at most
q − 1. Let λ1(u), λ2(u), . . . , λq−1(u) be the nonzero eigenvalues of JT J . Then

T (u) =
q−1∑
i=1

λi(u). (24)

Let v1, v2, . . . , vq−1 be the unit-length eigenvectors of JT J and let du(1), du(2),
. . ., du(q−1) be infinitesimal displacements in the directions of these eigenvectors,
i.e. du(i) ∝ vi. According to Lemma 2 the eigenvectors are mutually orthogo-
nal. Thus we can write the (q − 1)-dimensional ‘surface’ element dSu of the
hypersphere in terms of these displacements:

dSu =
q−1∏
i=1

‖du(i)‖. (25)
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Any change du results in a change dγ = Jdu. Hence we have dγ(i) = Jdu(i). By
Lemma 2, the displacements dγ(1), dγ(2), . . . , dγ(q−1) are mutually orthogonal
and we can express the (q − 1)-dimensional ‘surface’ element dSγ as

dSγ =
q−1∏
i=1

‖dγ(i)‖ =
q−1∏
i=1

√
‖Jdu(i)‖2 (26)

=
q−1∏
i=1

√
duT

(i)J
T Jdu(i) =

q−1∏
i=1

‖du(i)‖
√

λi (27)

= dSu

q−1∏
i=1

√
λi. (28)

We define the spatial average over u as Avu[f(u)] �
∫

f(u) dSu/
∫
dSu. We then

have

Avu[
√

λ1λ2 . . . λq−1] =

∫
dSu

√
λ1λ2 . . . λq−1∫
dSu

=
∫

dSγ∫
dSu

≥ 1 (29)

where the inequality follows from Lemma 3 applied to the mapping γ(u). (The
hypersphere orthant ‖u‖ = 1, u ≥ 0 is closed and contains no holes; the γ was
defined as being twice differentiable; the edge of the hypersphere orthant is given
by the pieces where ui = 0 for some i; these pieces are mapped to themselves
due to the Marking Assumption. The edges of the edges are obtained by setting
further components of u to zero, etc. Each of these sub-edges is also mapped to
itself due to the Marking Assumption. In the one-dimensional sub-sub-edge we
apply the intermediate value theorem, which proves surjectivity. From there we
recursively apply Lemma 3 to increasing dimensions, finally reaching dimension
q − 1).

Since the spatial average is greater than or equal to 1 there must exist a point
u∗ where

√
λ1(u∗)λ2(u∗) . . . λq−1(u∗) ≥ 1. Now we apply Lemma 4,

T (u∗) =
q−1∑
i=1

λi(u∗) ≥ (q − 1) q−1

√
λ1(u∗)λ2(u∗) . . . λq−1(u∗) ≥ q − 1. (30)

The last inequality holds since
√

x ≥ 1 implies q−1
√

x ≥ 1. Finally maxu T (u) ≥
T (u∗) ≥ q − 1. �
Next we show the existence of a strategy which attains this lower bound.

Theorem 2. Let the interleaving attack γ be extended beyond the hypersphere
‖u‖ = 1 as γy(u) = uy

‖u‖ , satisfying u · ∇γy = 0 for all y. For the interleaving
attack we then have T (u) = q − 1 for all u ≥ 0, ‖u‖ = 1.
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Proof:

∂γy(u)
∂uα

=
δyα

‖u‖ − uyuα

‖u‖3
. (31)

T (u) =
∑

y

‖∇γy(u)‖2 =
∑

y

∑
α

(
δyα

‖u‖ − uyuα

‖u‖3

)2

=
∑

y

{
1

‖u‖2
− u2

y

‖u4‖

}
=

q − 1
‖u‖2

(32)

where we used the property δ2
yα = δyα. For ‖u‖ = 1 it follows that T (u)

= q − 1. �
These two theorems together give the solution of the min-max game (20). The
main result of this paper is stated in the following theorem:

Theorem 3. The asymptotic fingerprinting capacity C∞
c (q) in the limit c → ∞

for an alphabet of size q is given by

C∞
c (q) =

q − 1
2c2 ln q

. (33)

Proof: For any strategy γ, Theorem 1 shows that maxu T (u) ≥ q − 1. As shown
in Theorem 2, the interleaving attack has T (u) = q − 1 independent of u,
demonstrating that the equality in Theorem 1 can be satisfied. Hence

min
γ

max
u

T (u) = q − 1 (34)

is the solution of the min-max game. By Sion’s theorem this is also the pay-off
solution to the max-min game, as shown in Section 2.5. Substitution into (20)
yields the final result. �
Remark: When the attack strategy is interleaving, all distribution functions Φ(u)
are equivalent in the expression

∫
Φ(u)T (u)dqu, since T (u) then is constant,

yielding
∫

Φ(u)(q−1)dqu = q−1. We emphasize again that the min-max solution
gives no information about the optimal γ and Φ in the max-min game.

5 Discussion

We have proven that the asymptotic channel capacity is C∞
c (q) = q−1

c22 ln q . This
is an increasing function of q; hence there is an advantage in choosing a large
alphabet whenever the details of the watermarking system allow it.

The capacity is an upper bound on the achievable rate of (reliable) codes,
where the rate measures which fraction of the occupied ‘space’ confers actual
information. The higher the fraction, the better, independent of the nature of
the symbols. Thus the rate (and channel capacity) provides a fair comparison
between codes that have different q.
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The obvious next question is how to construct a q-ary scheme that achieves
capacity. We expect that a straightforward generalization of the Amiri-Tardos
scheme [1] will do it. Constructions with more practical accusation algorithms,
like [14], do not achieve capacity but have already shown that non-binary codes
achieve higher rates than their binary counterparts.

When it comes to increasing q, one has to be cautious for various reasons.

• The actually achievable value of q is determined by the watermark embed-
ding technique and the attack mechanism at the signal processing level.
Consider for instance a q = 8 code implemented in such a way that a q-ary
symbol is embedded in the form of three parts (bits) that can be attacked in-
dependently. Then the Marking Assumption will no longer hold in the q = 8
context, and the ‘real’ alphabet size is in fact 2.

• A large q can cause problems for accusation schemes that use an accusation
sum as defined in [14] or similar. As long as the probability distributions
of the accusation sums are approximately Gaussian, the accusation works
well. It was shown in [11] that increasing q causes the tails of the probability
distribution to slowly become less Gaussian, which is bad for the code rate.
On the other hand, the tails become more Gaussian with increasing c. This
leads us to believe that for this type of accusation there is an optimal q as a
function of c.

The proof technique used in this paper does not reveal the asymptotically op-
timal bias distribution and attack strategy. This is left as a subject for future
work. We expect that the interleaving attack is optimal in the max-min game
as well.
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15. Škorić, B., Katzenbeisser, S., Schaathun, H.G., Celik, M.U.: Tardos fingerprinting
codes in the Combined Digit Model. In: IEEE Workshop on Information Forensics
and Security (WIFS) 2009, pp. 41–45 (2009)
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Appendix: Taylor Expansion of I(Y ; Σ | P = p)

We compute the leading order term of I(Y ; Σ | P = p) from (7) with re-
spect to powers of 1

c . We write logq gy = ln gy/ ln q and, using (8), ln gy(σ/c) =
ln[gy(p)+ εy] = ln gy(p)+ ln(1+ εy/gy(p)), where we have introduced the short-
hand notation

εy � 1
c

∑
α

∂gy(p)
∂pα

(Σα− cpα)+
1

2c2

∑
αβ

(Σα − cpα)(Σβ − cpβ)
∂2gy(p)
∂pα∂pβ

+ . . . (35)

Higher derivative terms are omitted since they contain higher powers of 1/c
(even after the expectation over Σ is taken). Next we apply the Taylor expansion
ln(1 + x) = x − x2

2 + · · · , resulting in

ln gy(
Σ

c
) = ln gy(p) +

εy

gy(p)
− ε2y

2g2
y(p)

+ . . . (36)

http://arxiv.org/abs/0801.3837v2
http://eprint.iacr.org/2010/472
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where we stop after the second order term since that is already of order 1
c when

we take the expectation over Σ. Using (10) we get

ln τy|p = ln gy(p) +
ζy

gy(p)
+ . . . , (37)

ζy � 1
2c

∑
αβ

Kαβ
∂2gy(p)
∂pα∂pβ

+ O
(

1
c
√

c

)
(38)

Now we combine all the ingredients,

gy

(
Σ

c

)
ln

(
gy

(
Σ
c

)
τy|p

)
= (gy(p) + εy + . . .)

(
εy − ζy

gy(p)
− ε2y

2g2
y(p)

+ . . .

)
(39)

where in the first factor we stop at εy because when the expectation over Σ is
applied, ε2y gives at least a factor of 1

c and the terms in the second factor give at
least a factor of 1√

c
.

Now EΣ|P=p [εy − ζy] = 0 because EΣ|P=p [Σ − cp] = 0 and ζy was defined
as the expectation over Σ of the second term in (35). The expectation of the
product EΣ|P=p [εyζy] is of order 1

c2 and so we drop it as well. The only remaining

part of order 1
c in (39) is

ε2y
2gy(p) and hence we end up with:

I(Y ; Σ | P = p)

=
1

2 ln q

∑
y

1
gy(p)

EΣ|P=p

[
ε2y
]
+ O

(
1

c
√

c

)
(40)

=
1

2c2 ln q

∑
y

1
gy(p)

EΣ|P=p

⎡⎣(∑
α

∂gy(p)
∂pα

(Σα − cpα)

)2
⎤⎦+ O

(
1

c
√

c

)
(41)

=
1

2c ln q

∑
y

1
gy(p)

∑
αβ

Kαβ
∂gy(p)
∂pα

∂gy(p)
∂pβ

+ O
(

1
c
√

c

)
(42)

where in the second step we expanded ε2y and took the square of only the first
term in (35) because the other combination of terms give rise to higher powers
of 1

c .
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Attack on Non-binary Tardos Codes
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Abstract. We use a method recently introduced by us to study accusa-
tion probabilities for non-binary Tardos fingerprinting codes. We gener-
alize the pre-computation steps in this approach to include a broad class
of collusion attack strategies. We analytically derive properties of a spe-
cial attack that asymptotically maximizes false accusation probabilities.
We present numerical results on sufficient code lengths for this attack,
and explain the abrupt transitions that occur in these results.

1 Introduction

1.1 Collusion Attacks against Forensic Watermarking

Watermarking provides a means for tracing the origin and distribution of digital
data. Before distribution of digital content, the content is modified by applying
an imperceptible watermark (WM), embedded using a watermarking algorithm.
Once an unauthorized copy of the content is found, it is possible to trace those
users who participated in its creation. This process is known as ‘forensic water-
marking’. Reliable tracing requires resilience against attacks that aim to remove
the WM. Collusion attacks, where a group of pirates cooperate, are a partic-
ular threat: differences between their versions of the content tell them where
the WM is located. Coding theory has produced a number of collusion-resistant
codes. The resulting system has two layers [5,9]: The coding layer determines
which message to embed and protects against collusion attacks. The underlying
watermarking layer hides symbols of the code in segments of the content. The
interface between the layers is usually specified in terms of the Marking Assump-
tion plus additional assumptions that are referred to as a ‘model’. The Marking
Assumption states that the colluders are able to perform modifications only in
those segments where they received different WMs. These segments are called
detectable positions. The ‘model’ specifies the kind of symbol manipulations that
the attackers are able to perform in detectable positions. In the Restricted Digit
Model (RDM) the attackers must choose one of the symbols that they have re-
ceived. The unreadable digit model also allows for erasures. In the arbitrary digit
model the attackers can choose arbitrary symbols, while the general digit model
additionally allows erasures.

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 14–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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1.2 Tardos Codes

Many collusion resistant codes have been proposed in the literature. Most notable
are the Boneh-Shaw construction [3] and the by now famous Tardos code [12].
The former uses a concatenation of an inner code with a random outer code, while
the latter one is a fully randomized binary code. In Tardos’ original paper [12] a
binary code was given achieving length m = 100c2

0ln 1
ε1
�, along with a proof that

m ∝ c2
0 is asympotically optimal for large coalitions, for all alphabet sizes. Here

c0 denotes the number of colluders to be resisted, and ε1 is the maximum allowed
probability of accusing a fixed innocent user. Tardos’ original construction had
two unfortunate design choices which caused the high proportionality constant
100. (i) The false negative probability ε2 (not accusing any attacker) was set
as ε2 = ε

c0/4
1 , even though ε2 � ε1 is highly unusual in the context of content

distribution; a deterring effect is achieved already at ε2 ≈ 1
2 , while ε1 needs to be

very small. In the subsequent literature (e.g. [15,2]) the ε2 was decoupled from
ε1, substantially reducing m. (ii) The symbols 0 and 1 were not treated equally.
Only segments where the attackers produce a 1 were taken into account. This
ignores 50% of all information. A fully symbol-symmetric version of the scheme
was given in [13], leading to a further improvement of m by a factor 4. A further
improvement was achieved in [8]. The code construction contains a step where a
bias parameter is randomly set for each segment. In Tardos’ original construction
the probability density function (pdf) for the bias is a continuous function. In
[8] a class of discrete distributions was given that performs better than the
original pdf against finite coalition sizes. In [16,14] the Marking Assumption
was relaxed, and the accusation algorithm of the nonbinary Tardos code was
modified to effectively cope with signal processing attacks such as averaging and
addition of noise.

All the above mentioned work followed the so-called ‘simple decoder’ ap-
proach, i.e. an accusation score is computed for each user, and if it exceeds
a certain threshold, he is considered suspicious. One can also use a ‘joint de-
coder’ which computes scores for sets of users. Amiri and Tardos [1] have given
a capacity-achieving joint decoder construction for the binary code. (Capacity
refers to the information-theoretic treatment [11,7,6] of the attack as a chan-
nel.) However, the construction is rather impractical, requiring computations
for many candidate coalitions. In [13] the binary construction was generalized
to q-ary alphabets, in the simple decoder approach. In the RDM, the transition
to a larger alphabet size has benefits beyond the mere fact that a q-ary symbol
carries log2 q bits of information.

1.3 The Gaussian Approximation

The Gaussian approximation, introduced in [15], is a useful tool in the analysis
of Tardos codes. The assumption is that the accusations are normal-distributed.
The analysis is then drastically simplified; in the RDM the scheme’s performance
is almost completely determined by a single parameter, the average accusation
μ̃ of the coalition (per segment). The sufficient code length against a coalition
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of size c is m = (2/μ̃2)c2 ln(1/ε1). The Gaussian assumption is motivated by the
Central Limit Theorem (CLT): An accusation score consists of a sum of i.i.d.
per-segment contributions. When many of these get added, the result is close to
normal-distributed: the pdf is close to Gaussian in a region around the average,
and deviates from Gaussian in the tails. The larger m is, the wider this central
region. In [15,13] it was argued that in many practical cases the central region is
sufficiently wide to allow for application of the Gaussian approximation. In [10]
a semi-analytical method was developed for determining the exact shape of the
pdf of innocent users’ accusations, without simulations. This is especially useful
in the case of very low accusation probabilities, where simulations would be very
time-consuming. The false accusation probabilities were studied for two attacks:
majority voting and interleaving.

1.4 Contributions

We discuss the simple decoder in the RDM, choosing ε2 ≈ 1
2 . We follow the

approach of [10] for computing false accusation probabilities. Our contribution
is threefold:

1. We prove a number of theorems (Theorems 1–3) that allow efficient com-
putation of pdfs for more general attacks than the ones treated in [10].

2. We identify which attack minimizes the all-important1 parameter μ̃. It was
shown in [10] that the majority voting attack achieves this for certain parameter
settings, but we consider more general parameter values. We derive some basic
properties of the attack.

3. We present numerical results for the μ̃-minimizing attack. When the coali-
tion is small the graphs contain sharp transitions; we explain these transitions as
an effect of the abrupt changes in pdf shape when the attack turns from majority
voting into minority voting.

2 Notation and Preliminaries

We briefly describe the q-ary version of the Tardos code as introduced in [13]
and the method of [10] to compute innocent accusation probabilities.

2.1 The q-ary Tardos Code

The number of symbols in a codeword is m. The number of users is n. The
alphabet is Q, with size q. Xji ∈ Q stands for the i’th symbol in the codeword
of user j. The whole matrix of codewords is denoted as X .

Two-step code generation. m vectors p(i) ∈ [0, 1]q are independently drawn ac-
cording to a distribution F , with

F (p) = δ(1 −
∑
β∈Q

pβ) · 1
B(κ1q)

∏
α∈Q

p−1+κ
α . (1)

1 Asymptotically for large m, the μ̃-minimizing attack is the ‘worst case’ attack in the
RDM in the sense that the false accusation probability is maximized.
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Here 1q stands for the vector (1, · · · , 1) of length q, δ(·) is the Dirac delta
function, and B is the generalized Beta function. κ is a positive constant. For
v1, · · · , vn > 0 the Beta function is defined as2

B(v) =
∫ 1

0

dxn δ(1 −
n∑

a=1

xa)
n∏

b=1

x−1+vb

b =
∏n

a=1 Γ (va)
Γ (
∑n

b=1 vb)
. (2)

All elements Xji are drawn independently according to Pr[Xji = α|p(i)] = p
(i)
α .

Attack. The coalition is C, with size c. The i’th segment of the pirated content
contains a symbol yi ∈ Q. We define vectors σ(i) ∈ N

q as

σ(i)
α � |{j ∈ C : Xji = α}| (3)

satisfying
∑

α∈Q σ
(i)
α = c. In words: σ

(i)
α counts how many colluders have received

symbol α in segment i. The attack strategy may be probabilistic. As usual,
it is assumed that this strategy is column-symmetric, symbol-symmetric and
attacker-symmetric. It is expressed as probabilities θy|σ that apply independently
for each segment. Omitting the column index,

Pr[y|σ] = θy|σ. (4)

Accusation. The watermark detector sees the symbols yi. For each user j, the
accusation sum Sj is computed,

Sj =
m∑

i=1

S
(i)
j where S

(i)
j = g[Xji==yi](p

(i)
yi

), (5)

where the expression [Xji == yi] evaluates to 1 if Xji = yi and to 0 otherwise,
and the functions g0 and g1 are defined as

g1(p) �
√

1 − p

p
; g0(p) � −

√
p

1 − p
. (6)

The total accusation of the coalition is S :=
∑

j∈C Sj . The choice (6) is the
unique choice that satisfies

pg1(p) + (1 − p)g0(p) = 0 ; p[g1(p)]2 + (1 − p)[g0(p)]2 = 1. (7)

This has been shown to have optimal properties for q = 2 [4,15]. Its unique
properties (7) also hold for q ≥ 3; that is the main motivation for using (6). A
user is ‘accused’ if his accusation sum exceeds a threshold Z, i.e. Sj > Z.

The parameter μ̃ is defined as 1
mE[S], where E stands for the expectation

value over all random variables. The μ̃ depends on q, κ, the collusion strategy,
and weakly on c. In the limit of large c it converges to a finite value, and the
code length scales as c2/μ̃2.
2 This is also known as a Dirichlet integral. The ordinary Beta function (n = 2) is

B(x, y) = Γ (x)Γ (y)/Γ (x + y).
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2.2 Marginal Distributions and Strategy Parametrization

Because of the independence between segments, the segment index will be
dropped from this point onward. For given p, the vector σ is multinomial-
distributed, P(σ|p) =

(
c
σ

)∏
α pσα

α . Averaged over p, the σ has distribution
P(σ) =

(
c
σ

)B(κ1q+σ)
B(κ1q) . Two important marginals were given in [10]. First, the

marginal probability P1(b) � Pr[σα = b] for one arbitrary component α,

P1(b) =
(

c

b

)
B(κ + b, κ[q − 1] + c − b)

B(κ, κ[q − 1])
. (8)

Second, given that σα = b, the probability that the remaining q− 1 components
of the vector σ are given by x,

Pq−1(x|b) =
(

c − b

x

)
B(κ1q−1 + x)

B(κ1q−1)
. (9)

It is always implicit that
∑

β∈Q\{α} xβ = c − b.
An alternative parametrization was introduced for the collusion strategy,

which exploits the fact that (i) θα|σ is invariant under permutation of the sym-
bols �= α; (ii) θα|σ depends on α only through the value of σα.

Ψb(x) � θα|σ given that σα = b and x = the other components of σ. (10)

Thus, Ψb(x) is the probability that the pirates choose a symbol that they have
seen b times, given that the other symbols’ occurences are x. Strategy-dependent
parameters Kb were introduced as follows,

Kb � Ex|bΨb(x) =
∑

x

Pq−1(x|b)Ψb(x). (11)

Due to the marking assumption K0 = 0 and Kc = 1. The Kb obey the sum rule
q
∑c

b=0 KbP1(b) = 1. Efficient pre-computation of the Kb parameters can speed
up the computation of a number of quantities of interest, among which the μ̃
parameter. It was shown that μ̃ can be expressed as

μ̃ =
∑
σ

P(σ)
∑
α∈Q

θα|σT (σα) = q

c∑
b=0

KbP1(b)T (b), (12)

where

T (b) �
{

1
2 − κ +

b

c
(κq − 1)

}
c
Γ (b + κ − 1

2 )
Γ (b + κ)

Γ (c − b + κ[q − 1] − 1
2 )

Γ (c − b + κ[q − 1])
. (13)

2.3 Method for Computing False Accusation Probabilities

The method of [10] is based on the convolution rule for generating functions
(Fourier transforms): Let A1 ∼ f1 and A2 ∼ f2 be continuous random variables,
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and let f̃1, f̃2 be the Fourier transforms of the respective pdfs. Let A = A1 +A2.
Then the easiest way to compute the pdf of A (say Φ) is to use the fact that
Φ̃(k) = f̃1(k)f̃2(k). If m i.i.d. variables Ai ∼ ϕ are added, A =

∑
i Ai, then the

pdf of A is found using Φ̃(k) = [ϕ̃(k)]m. In [10] the pdf ϕ was derived for an
innocent user’s one-segment accusation S

(i)
j . The Fourier transform was found

to be

ϕ̃(k) =
2q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
Kb ·

[
Λ(db, vb; k) + Λ(vb − 1, db + 1;−k)

]
, (14)

with
db � b + κ ; vb � c − b + κ[q − 1] + 1

Λ(d, v; k) = (−ik)2vΓ (−2v) 1F2(v+d; v+ 1
2 , v+1;

k2

4
)+ 1

2

∞∑
j=0

(ik)j

j!
B(d+

j

2
, v− j

2
).

Using this result for ϕ̃ it is then possible to cast the expression ϕ̃m in the following
special form, [

ϕ̃(
k√
m

)
]m

= e−
1
2k2

[
1 +

∞∑
t=0

ωt(m)(i sgn k)αt |k|νt

]
, (15)

where αt are real numbers; the coefficients ωt(m) are real; the powers νt satisfy
ν0 > 2, νt+1 > νt. In general the νt are not all integer. The ωt decrease with in-
creasing m as m−νt/6 or faster. Computing all the αt, ωt, νt up to a certain cutoff
t = tmax is straightforward but laborious, and leads to huge expressions if done
analytically; it is best done numerically, e.g. using series operations in Mathe-
matica. Once all these coefficients are known, the false accusation probability is
computed as follows. Let Rm be a function defined as Rm(Z̃) := Pr[Sj > Z̃

√
m]

(for innocent j). Let Ω be the corresponding function in case the pdf of Sj is
Gaussian, Ω(Z̃) = 1

2Erfc(Z̃/
√

2). The Rm(Z̃) is computed by first doing a re-
verse Fourier transform on [ϕ̃(k/

√
m)]m expressed as (15) to find the pdf of the

total accusation, and then integrating over all accusation values that exceed the
threshold Z. After some algebra [10] the result is

Rm(Z̃) = Ω(Z̃) +
1
π

∞∑
t=0

ωt(m)Γ (νt)2νt/2Im
[
i−αtH−νt(iZ̃/

√
2)
]
. (16)

Here H is the Hermite function. It holds that limm→∞ Rm(Z̃) = Ω(Z̃). For a
good numerical approximation it suffices to take terms up to some cutoff tmax.
The required tmax is a decreasing function of m.

3 Our Results

3.1 Computing Kb for Several Classes of Colluder Strategy

Our first contribution is a prescription for efficiently computing the Kb parame-
ters for more general colluder strategies than those studied in [10]. We consider
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the strategy parametrization Ψb(x) with b �= 0. The vector x ∈ N
q−1 can contain

several entries equal to b. The number of such entries will be denoted as �. (The
dependence of � on b and x is suppressed in the notation for the sake of brevity.)
The number of remaining entries is r � q − 1 − �. These entries will be denoted
as z = (z1, · · · , zr), with zj �= b by definition. Any strategy possessing the sym-
metries mentioned in Section 2 can be parametrized as a function Ψb(x) which
in turn can be expressed as a function of b, � and z; it is invariant under per-
mutation of the entries in z. We will concentrate on the following ‘factorizable’
classes of attack, each one a sub-class of the previous one.

Class 1: Ψb(x) is of the form w(b, �)
∏r

k=1 W (b, �, zk)
Class 2: Ψb(x) is of the form w(b)


+1

∏r
k=1 W (b, zk)

Class 3: Ψb(x) is of the form 1

+1

∏r
k=1 W (b, zk), with W (b, zk) ∈ {0, 1} and

W (b, zk) + W (zk, b) = 1. By definition W (b, 0) = 1.

Class 1 merely restricts the dependence on z to a form factorizable in the com-
ponents zk. This is a very broad class, and contains e.g. the interleaving attack
(θα|σ = σα

c , Ψb(x) = b
c ) which has no dependence on z.

Class 2 puts a further restriction on the �-dependence. The factor 1/(� +
1) implies that symbols with equal occurrence have equal probability of being
selected by the colluders. (There are � + 1 symbols that occur b times.)

Class 3 restricts the function W to a binary ‘comparison’ of its two arguments:
Ψb(x) is nonzero only if for the attackers b is ‘better’ than zk for all k, i.e.
W (b, zk) = 1. An example of such a strategy is majority voting, where Ψb(x) = 0
if there exists a k such that zk > b, and Ψb(x) = 1


+1 if zk < b for all k. Class 3 also
contains minority voting, and in fact any strategy which uses a strict ordering or
‘ranking’ of the occurrence counters b, zk. (Here a zero always counts as ‘worse’
than nonzero.)

Our motivation for introducing classes 1 and 2 is mainly technical, since they
affect to which extent the Kb parameters can be computed analytically. In the
next section we will see that class 3 captures not only majority/minority voting
but also the μ̃-reducing attack.

Theorem 1. Let Nb ∈ N satisfy Nb > max{c − b, |c − bq|, (c − b)(q − 2)}. Let
τb � ei2π/Nb , and let

Gba
 �
∑

z∈{0,...,c−b}\{b}

Γ (κ + z)W (b, �, z)
τaz
b z!

, vba � Γ (κ + b)
τab
b b!

. (17)

Then for strategies in class 1 it holds that

Kb =
(c − b)!

NbΓ (c − b + κ[q − 1])B(κ1q−1)

Nb−1∑
a=0

τ
a(c−b)
b

q−1∑

=0

(
q − 1

�

)
Gq−1−


ba
 w(b, �)v

ba.

Theorem 2. For strategies in class 2 the quantity Gba
 as defined in (17) does
not depend on � and can be denoted as Gba (with W (b, �, z) replaced by W (b, z)).
It then holds that
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Kb =
b!(c − b)! w(b)

qNbΓ (κ + b)Γ (c − b + κ[q − 1])B(κ1q−1)

Nb−1∑
a=0

τac
b [(Gba + vba)q − Gq

ba] .

Theorem 3. For strategies in class 3, Theorem 2 holds, where w(b) = 1 and
Gba can be expressed as

Gba =
∑

z∈{0,...,c−b}\{b}
W (b,z)=1

Γ (κ + z)
τaz
b z!

. (18)

The proofs of Theorems 1–3 are given in the Appendix. Without these theorems,
straightforward computation of Kb following (11) would require a full sum over
x, which for large c comprises O(cq−2/(q − 1)!) different terms. (q − 1 variables
≤ c − b, with one constraint, and with permutation symmetry. We neglect the
dependence on b.) Theorem 1 reduces the number of terms to O(q2c2) at worst;
a factor c from computing Gba, a factor q from

∑

 and a factor Nb from

∑
a,

with Nb < qc. In Theorem 2 the �-sum is eliminated, resulting in O(qc2) terms.
We conclude that, for q ≥ 5 and large c, Theorems 1 and 2 can significantly

reduce the time required to compute the Kb parameters.3 A further reduction
occurs in Class 3 if the W (b, z) function is zero for many z.

3.2 The μ̃-Minimizing Attack

Asymptotically for large code lengths the colluder strategy has negligible impact
on the Gaussian shape of the innocent (and guilty) accusation pdf. For q ≥ 3
the main impact of their strategy is on the value of the statistical parameter μ̃.
(For the binary symmetric scheme with κ = 1

2 , the μ̃ is fixed at 2
π ; the attackers

cannot change it. Then the strategy’s impact on the pdf shape is not negligible.)
Hence for q ≥ 3 the strategy that minimizes μ̃ is asymptotically a ‘worst-case’

attack in the sense of maximizing the false positive probability. This was already
argued in [13], and it was shown how the attackers can minimize μ̃. From the
first expression in (12) it is evident that, for a given σ, the attackers must choose
the symbol y such that T (σy) is minimal, i.e. y = arg minα T (σα). In case of a
tie it does not matter which of the best symbols is chosen, and without loss
of generality we impose symbol symmetry, i.e. if the minimum T (σα) is shared
by N different symbols, then each of these symbols will have probability 1/N
of being elected. Note that this strategy fits in class 3. The function W (b, zk)
evaluates to 1 if T (b) < T (zk) and to 0 otherwise.4

Let us introduce the notation x = b/c, x ∈ (0, 1). Then for large c we have
[10]

T (cx) ≈
1
2 − κ + x(κq − 1)√

x(1 − x)
. (19)

3 To get some feeling for the orders of magnitude: The crossover point where qc2 =
cq−2/(q − 1)! lies at c = 120, 27, 18, 15, 13, for q =5, 6, 7, 8, 9 respectively.

4 For x, y ∈ N, with x �= y, it does not occur in general that T (x) = T (y). The only
way to make this happen is to choose κ in a very special way as a function of q and c.
W.l.o.g. we assume that κ is not such a pathological case.



22 A. Simone and B. Škorić
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Fig. 1. The function T (b) for q = 3, c = 20 and two values κ outside ( 1
2[q−1]

, 1
2
)

From (19) we deduce some elementary properties of the function T .

– If κ < 1
2(q−1) then T is monotonically decreasing, and T (b) may become

negative at large b.
– If κ > 1

2 , then T is monotonically increasing, and T (b) may become negative
at small b.

– For κ in between those values, T (b) is nonnegative and has a minimum at
b
c ≈ 1

q−2 ( 1
2κ − 1).

We expect that the existence of negative T (b) values has a very bad impact on μ̃
(from the accuser’s point of view), and hence that κ is best chosen in the interval
( 1
2(q−1) ,

1
2 ).

Fig. 1 shows the function T (b) for two values of κ outside this ‘safe’ interval.
For κ = 0.2 it is indeed the case that T (b) < 0 at large b, and for κ = 0.9 at
small b. Note that T (c) is always positive due to the Marking Assumption. For
small κ, the T (b)-ranking of the points is clearly such that majority voting is
the best strategy; similarly, for large κ minority voting is best. For intermediate
values of κ a more complicated ranking will occur.

3.3 Numerical Results for the μ̃-Minimizing Attack

In [10] the μ̃-minimizing attack was studied for a restricted parameter range,
κ ≈ 1/q. For such a choice of κ the strategy reduces to majority voting. We study
a broader range, applying the full μ̃-minimizing attack. We use Theorem 3 to
precompute the Kb and then (14), (15) and (16) to compute the false accusation
probability Rm as a function of the accusation threshold. We found that keeping
terms in the expansion with νt ≤ 37 gave stable results.

For a comparison with [10], we set ε1 = 10−10, and search for the smallest
codelength m∗ for which it holds that Rm(μ̃

√
m/c) ≤ ε1. The special choice Z̃ =

μ̃
√

m/c puts the threshold at the expectation value of a colluder’s accusation.
As a result the probability of a false negative error is ≈ 1

2 . Our results for m∗
are consistent with the numbers given in [10].
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Fig. 2. Numerical results for the μ̃-minimizing attack. ε1 = 10−10. Left: The Gaussian-
limit code length constant 2

μ̃2 as a function of κ, for various q and c. Right: The

sufficient code length m∗, scaled by the factor c2 ln(1/ε1) for easy comparison to the
Gaussian limit.
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In Fig. 2 we present graphs of 2/μ̃2 as a function of κ for various q, c.5

If the accusation pdf is Gaussian, then the quantity 2/μ̃2 is very close to the
proportionality constant in the equation m ∝ c2 ln(1/ε1). We also plot m∗

c2 ln(1/ε1)

as a function of κ for various q, c. Any discrepancy between the μ̃ and m∗ plots
is caused by non-Gaussian tail shapes.

In the plots on the left we see that the attack becomes very powerful (very
large 2/μ̃2) around κ = 1

2 , especially for large coalitions. This can be understood
from the fact that the T (b) values are decreasing, and some even becoming
negative for κ > 1

2 , as discussed in Section 3.2. This effect becomes weaker
when q increases. The plots also show a strong deterioration of the scheme’s
performance when κ approaches 1

2(q−1) , as expected.
For small and large κ, the left and right graphs show roughly the same be-

haviour. In the middle of the κ-range, however, the m∗ is very irregular. We
think that this is caused by rapid changes in the ‘ranking’ of b values induced
by the function T (b); there is a transition from majority voting (at small κ) to
minority voting (at large κ). It was shown in [10] that (i) majority voting causes
a more Gaussian tail shape than minority voting; (ii) increasing κ makes the
tail more Gaussian. These two effects together explain the m∗ graphs in Fig. 2:
first, the transition for majority voting to minority voting makes the tail less

Log10 prob.

q � 3

c � 7

Z
�

m � 2449

Κ � 0.335

m � 8081

Κ � 0.35

Gaussian Tail

2 4 6 8 10 12

�15

�10

�5

Fig. 3. Accusation probability for a fixed innocent user as a function of the (scaled)
accusation threshold Z̃ = Z/

√
m. The attack is the μ̃-minimizing attack. The graph

shows the Gaussian limit, and two parameter settings which correspond to ‘before’ and
‘after’ a sharp transition.

5 The μ̃ can become negative. These points are not plotted, as they represent a situ-
ation where the accusation scheme totally fails, and there exists no sufficient code
length m∗.
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Gaussian (hence increasing m∗), and then increasing κ gradually makes the tail
more Gaussian again (reducing m∗).

In Fig. 3 we show the shape of the false accusation pdf of both sides of the
transition in the q = 3, c = 7 plot. For the smaller κ the curve is better than
Gaussian up to false accusation probabilities of better than 10−17. For the larger
κ the curve becomes worse than Gaussian around 10−8, which lies significantly
above the desired 10−10. The transition from majority to minority voting is
cleanest for q = 2, and was already shown in [13] to lie precisely at κ = 1

2 for all
c. For q ≥ 3 it depends on c and is less easy to pinpoint.

4 Discussion

We have tested the pdf computation method of [10] for a large range of parameter
values and for the various ‘rankings’ that are part of the μ̃-minimizing attack.
The method has performed well under all these conditions.

Our results reveal the subtle interplay between the average colluder accusation
μ̃ and the shape of the pdf of an innocent user’s accusation sum. The sharp
transitions that occur in Fig. 2 show that there is a κ-range (to the left of the
transition) where the μ̃-reducing attack is not optimal for small coalitions. It is
not yet clear what the optimal attack would be there, but certainly it has to be
an attack that concentrates more on the pdf shape than on μ̃, e.g. the minority
voting or the interleaving attack.

For large coalitions the pdfs are very close to Gaussian. From the optimum
points m∗ as a function of κ we see that it can be advantageous to use an
alphabet size q > 2 (even if a non-binary symbol occupies log2 q times more
‘space’ in the content than a binary symbol).

The results in this paper specifically pertain to the ‘simple decoder’ accusation
algorithm introduced in [13]. We do not expect that the asymptotically optimal
attack on μ̃ is also optimal against information-theoretic accusations like [1];
there we expect the interleaving attack θα|σ = σα/c to be optimal.
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Appendix: Proofs

Proof of Theorem 1
We start from (11), with Pq−1 defined in (9), and reorganize the x-sum to take
the multiplicity � into account:

∑
x

[· · · ] →

max∑

=0

(
q − 1

�

) ∑
z∈({0,...,c−b}\{b})r

δ0,c−b(
+1)−∑r
k=1 zk

[· · · ]

=

max∑

=0

(
q − 1

�

) ∑
z1∈{0,...,c−b}\{b}

· · ·
∑

zr∈{0,...,c−b}\{b}
δ0,c−b(
+1)−∑r

k=1 zk
[· · · ]

where δ is the Kronecker delta, and �max = min{q − 1, � c−b
b �}. The factor

(
q−1




)
pops up because the summand in (11) is fully symmetric under permutations
of x. The Kronecker delta takes care of the constraint that the components of z
add up to c − b − �b.

If �max = � c−b
b � and the sum over � is extended beyond �max, then all the

additional terms are zero, because the Kronecker delta condition cannot be sat-
isfied. (The

∑
k zk would have to become negative.) Hence we are free to replace

http://eprint.iacr.org/2010/472
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the upper summation bound �max by q − 1 without changing the result of the
sum.

Next we use a sum representation of the Kronecker δ as follows,

δ0,s =
1

Nb

Nb−1∑
a=0

(ei2π/Nb)as, (20)

with s = c− b(l+1)−∑k zk. This is a correct representation only if Nb is larger
than the maximum |s| that can occur. The most positive possible value of s is
attained at (� = 0, z = 0), namely s = c − b. The most negative value (sneg) is
attained when zk = c − b for all k. Since there are r = q − 1 − � components in
z, we have sneg = min
[c − b(� + 1) − (q − 1 − �)(c − b)]. The function is linear
in �, so there are only two candidates: the extreme values � = 0 and � = q − 1,
which yield |sneg| = (q − 2)(c − b) and |sneg| = |c − bq| respectively. Hence Nb

has to be larger than max{c − b, (q − 2)(c − b), |c − bq|}.
Our expression for Kb now contains sums over �, zk and a. We shift the a-sum

completely to the left. Next we write

B(κ1q−1 + x) =
[Γ (κ + b)]


∏q−1−

k=1 Γ (κ + zk)

Γ (c − b + κ[q − 1])
, (21)

(
c − b

x

)
=

(c − b)!

[b!]

∏q−1−


k=1 zk!
. (22)

All the expressions depending on the zk variables are fully factorized; the part
of the summand that contains the zk is given by

q−1−
∏
k=1

⎡⎣ ∑
zk∈{0,...,c−b}\{b}

W (b, �, zk)Γ (κ + zk)
zk! τazk

b

⎤⎦ = (Gba
)q−1−
. (23)

Theorem 1 follows after some elementary rewriting. �
Proof of Theorem 2
We start from Kb as given by Theorem 1. The Gba
 becomes Gba, so the factor
Gq−1

ba can be moved out of the �-sum. The w(b, �) becomes w(b)/(� + 1) and
w(b) can also be moved out of the �-sum. The remaining sum is

∑q−1

=0

(
q−1




)
1


+1

(vba/Gba)
 which evaluates to [(Gba+vba)q−Gq
ba]G1−q

ba /(qvba). Theorem 2 follows
after substituting the definition of vba and some rewriting. �
Proof of Theorem 3
In (17) the W (b, �, z) becomes W (b, z). The definition of class 3 specifies that
W (b, z) is either 1 or 0. The result (18) trivially follows. �
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Abstract. ‘Don Quixote’ is a new accusation process for Tardos traitor
tracing codes which is, as far as we know, the first practical implementa-
tion of joint decoding. The first key idea is to iteratively prune the list of
potential colluders to keep the computational effort tractable while going
from single, to pair,. . . to t-subset joint decoding. At the same time, we
include users accused in previous iterations as side-information to build
a more discriminative test. The second idea, coming from the field of
mismatched decoders and compound channels, is to use a linear decoder
based on the worst case perceived collusion channel. The decoder is tested
under two accusation policies: to catch one colluder, or to catch as many
colluders as possible. The probability of false positive is controlled thanks
to a rare event estimator. We describe a fast implementation supporting
millions of users and compare our results with two recent fingerprinting
codes.

Keywords: traitor tracing, fingerprinting, transactional watermarking,
joint decoder.

1 Introduction

Traitor tracing or active fingerprinting has witnessed a flurry of research efforts
since the invention of the now well-celebrated Tardos codes [13]. The codes of
G. Tardos are optimal in the sense that the code length m necessary to fulfill the
following requirements (n users, c colluders, probability of accusing an innocent
below Pfp) has the minimum scaling in O(c2 log nP−1

fp ). The accusation process
(more precisely its symmetric version proposed by B. Skoric et al. [12]) is based
on a scoring per user, so-called accusation sum, whose statistics only depend on
the collusion size c, but not on the collusion attack (e.g. minority vote, majority
vote, interleaving, etc). The alternative accusation strategy has also been tested:
the accusation process estimates the collusion attack in order to resort to a
matched scoring which is more discriminative [10].

However, these two previous strategies pertain to the same family: the single
decoders, i.e. processes computing a score per user independently of the other
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codewords and finally accusing users whose score is above a given threshold. An-
other family is that of the joint decoders, i.e. processes computing a score per
subset of t users. As far as we know, K. Nuida was the first to propose and exper-
iment some sort of a joint decoder [7]. The accusation algorithm only works for
very limited collusion size and it doesn’t scale well when the number of users n is
more than some hundreds. Indeed, so far joint decoders are of particular interest
only in theoretical analysis of fingerprinting. P. Moulin [6], and, independently,
E. Amiri and G. Tardos [2] show that the capacity of fingerprinting is given by
a maxmin game whose pay-off is the mutual information I(Y ; Xc|P ) · c−1 where
Y is a r.v. representing the symbol decoded from the pirated copy, P is the r.v.
denoting the secret of the code, and Xc = {Xj1 , . . . , Xjc} is the set of the c
symbols assigned to the colluders.

Both papers proposed a joint decoder based on the empirical mutual infor-
mation computed on the joint type of the observations (y, ϕ,p) where ϕ =∑t

k=1 xjk
(termed accumulated codeword in the sequel) for the t-subset of users

{j1, . . . , jt}, t ≤ c. Note that these papers are theoretical studies and that they
do not contain any experiment. A practical implementation is hampered by two
drawbacks: this is not a linear decoder [1, Def. 1] and the complexity is propor-
tional to

(
n
t

)
, the number of t-subsets, i.e. in O(nt). In the quest of practical

implementations of this theoretical decoder, ‘Don Quixote’ is a milestone based
on two key ideas: (i) there is no need to compute a score for all t-subsets if we
can invent a mechanism preselecting a small number of suspects who are the
most likely guilty users; (ii) a linear decoder allowing a fast implementation of
the scoring function.

These ideas are indeed not easily translated into practical algorithms. In real
life scenarios such as Video-on-Demand portals, m bits are in copies of a movie,
which are afterwards distributed to n clients (the parameters (m, n) vary from
one Work to another). The collusion size c is neither known at the code con-
struction nor at the accusation side. Therefore, one never knows how the rate
m−1 log n compares to the theoretical capacity which depends on c. However,
for (i), we need to identify suspects whenever it is possible (i.e. when the rate
is below capacity) while guaranteeing a probability of false alarm Pfp. Efficient
linear decoders pertaining to (ii) are based on likelihood ratio, which can’t be
computed in practice since we do not know the collusion strategy. Fortunately,
information theorist have recently come up with a very elegant solution pro-
viding universal linear decoders performing well (i.e. capacity achieving) over a
family of channels while ignoring the active channel [1]. This theory of compound
channel fits very well with the traitor tracing framework.

2 Structure of the Don Quixote Algorithm

Before detailing the structure of the proposed decoder, let us briefly remind
the construction of a Tardos code. Let (m, n) be the length and the size of the
code. First, draw randomly m variables p = (p(1), . . . , p(m))T s.t. p

i.i.d.∼ f(p).
Then draw randomly and independently the elements of the j-th codeword
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Fig. 1. Overview of the iterative, side-informed joint Tardos fingerprint decoder

xj = (xj(1), . . . , xj(m)) s.t. P(xj(i) = 1) = p(i). We chose the pdf f(p) rec-
ommended by G. Tardos.

The iterative architecture of our joint decoder is sketched in Figure 1. For
sake of clarity, we postpone details about the computation of scores and the
thresholding (shaded blocks of Fig. 1) to the next sections. The decoder can be
employed in catch-one and catch-many traitor tracing scenarios [14]. In the first
case, our iterative decoder simply stops after the first accusation; in the later
case, the decoder stops when cmax accusations have been made or when no further
accusations can safely be made using the tmax-subset decoder (2 ≤ tmax ≤ cmax).

2.1 Iterative, Joint Decoding

The theoretical papers [2,6] tell us that scores computed from subsets of t users
are more discriminative as t increases, provided that t ≤ c, c being the real
collusion size. Discriminative means that scores of subsets of innocent users are
statistically more separated from scores for guilty users – the Kullback-Leibler
distance between their pdf is significantly higher. Our point is that, indeed,
hybrid subsets containing κ colluders and t − κ innocents have also greater
scores in expectation as κ increases. Therefore, by pruning out users involved in
subsets of small score, we are likely maintaining a list of suspects with a good
number of colluders.

At the beginning, X is the set of n codewords or users. The t-th iteration of our
algorithm takes a set of codewords X (t) ⊆ X and computes the scores for each
subset of t codewords from X (t). Denote n(t) = |X (t)|, there are then

(
n(t)

t

)
=

O((n(t))t) scores to be computed. For instance, in the first iteration, X (1) = X
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Table 1. Maximal number p(t) of suspected users input to the joint t-subset decoder
versus total number of subsets without pruning out users for n = 106

Subset size (t) 2 3 4 5 6 7 8

Users suspected (p(t)) 3 000 300 103 58 41 33 29

Computed subsets
(

p(t)

t

)
4 498 500 4 455 100 4 421 275 4 582 116 4 496 388 4 272 048 4 292 145

Total subsets
(

n
t

) ∼ 1011 ∼ 1017 ∼ 1022 ∼ 1027 ∼ 1033 ∼ 1038 ∼ 1043

and the scores are just the n(1) = n outputs of a single decoder. We assume
to have the computation power scaling as O(n) such that this first iteration is
feasible. The key idea is to gradually reduce n(t) such that the computation of
scores remains tractable. For instance, if n(t) = O(n1/t) then the t-th iteration
relies on a O(n) scores computation just like the first iteration.

During each iteration, some users might be deemed guilty (cf. Section 2.4)
and added to the side information (cf. Section 3.1).

The main operation is to construct the subset X (t+1) of suspects to be passed
to the following iteration. Suspects are users so far neither accused nor declared
as innocent. The users get ranked (with guilty users most likely placed in top
positions) and the first n(t+1) users compose the set X (t+1) while the others
are discarded (i.e. considered as innocents). The (t + 1)-th iteration starts by
computing scores for subset of size t + 1 from X (t+1), see Section 3.3 for details.
For t > 1, the size n(t+1) ≤ p(t+1) where p(t+1) is the upper size and runtime
limit that our computer can handle. Table 1 gives values s.t. the number of
subsets is kept approximately constant at about 4 500 000. The choices for p(t)

are presumably not optimal – other values may allow a better distribution of
resources – but a necessaary trade-off between the computational effort and the
decoding performance.

2.2 Pruning Out

First Iteration. The first iteration computes a score per user: the bigger the
score, the more likely the user is a colluder. If some conditions are met, users with
the highest scores might be accused (cf. Section 2.4). Users are ranked according
to their score in decreasing order. The first n(2) ≤ p(2) users are included in the
set X (2).
t-th Iteration, t > 1. Once the scores for all t-subsets are computed, they
are ranked in decreasing order. Again, if accusations can be safely made, some
users from the first-ranked subset are deemed guilty. The others are included in
set X (t+1). The algorithm browses down the sorted list of subsets and includes
their users in X (t+1) if they have not been already included and if they have not
been accused. This stops when n(t+1) = p(t+1) (the users are listed in arbitrary
order in a t-subset, therefore for the last subset under suspicion, the last users
might be relaxed while the first are suspected) or when the last subset of the
sorted list has been analyzed.
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Fig. 2. Examples of the iterative decoding and pruning process for c = 4

Figure 2 illustrates the iterative decoding and pruning process where the posi-
tions of the colluders are marked with different symbols in three examples. The
first stage denoted single decoder represents the list of suspects/users ranked
according to their accusation scores after single decoding. Since no user’s score
is above the accusation threshold, the process continues in the following itera-
tion. Only suspects ranked within the first 3 000 positions are passed to the pair
decoder and the illustration shows the suspect list ranked after computing the
scores of user pairs. Users within a pair are ordered according to the criterion
defined in Section 2.4. After pruning – now the list is limited to 300 positions –
the remaining suspects are fed to the triple decoder. Note that the positions of
the colluders generally move towards the top of the list (the bottom of the illus-
tration) with each iteration as shown in the examples. This observation allows
us to reduce the suspect list at each iteration while likely retaining the collud-
ers. On the other hand, colluders may be discarded, as visualized in Examples 2
& 3. Pruning is the necessary trade-off to reduce the computational burden of
the decoder. The users of the subset whose score is the highest and above the
threshold are framed in the illustration. Their top-ranked user is accused and
added to the side information.

2.3 Enumerating all t-Subsets

The joint t-subset decoder has to enumerate all
(
n(t)

t

)
subsets and compute the

corresponding scores. One way to implement the generation of all t-subsets of
X (t) is the revolving door algorithm1 [9] which changes exactly one element of
the subset at each enumeration step.

In particular, the score of the k-th t-subset tk only depends on the accumu-
lated codewords ϕk =

∑
j�∈tk

xj�
. The revolving door is initialized with the first

1 Termed algorithm R by Knuth [5, Chap. 7.2.1.3].
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Fig. 3. Illustration of the revolving door algorithm for t = 4

subset t1 = {j1, . . . , jt} whose accumulated codeword is ϕ1. At each step, the
algorithm replaces one user j† ∈ tk with a new user j� and computes the updated
code sequence relating to the combination tk+1 as ϕk+1 = ϕk −xj† +xj� . Fig. 3
provides an illustration. The benefit of the resolving door is that the computa-
tional effort to generate a t-subset and its associated accumulated codeword is
independent of size t.

2.4 Accusation

Let t
 denote the subset with the highest score. We accuse one user of the t-
subset t
, only if its score is greater than a threshold: st� > τ . The computation
of threshold τ is explained hereafter in Section 3.4. The thresholding operation
ensures that subsets with score above τ contain at least one colluder with a very
high probability. Assume now that this condition is met. Obviously, for the first
iteration, t = 1 and the single user in subset t
 is accused. For t > 1, we propose
the following method. In order to identify and accuse the most probable traitor
in t
, we record for each user j ∈ X (t) the subset leading to that user’s highest
score:

t
j = arg max
t

{st | j ∈ t} . (1)

Next, we count how often each user jk ∈ t
 appears in the recorded subsets
{t
j}j∈X (t) and denote this value ajk

. Finally, we accuse the user j
 appearing
most often:

j
 = arg max
j∈t�

aj . (2)

3 Technical Details

This section describes four remaining operations: side-information, inferences
about the collusion model, scoring, and the thresholding.
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3.1 Side Information

The knowledge of the identity of some colluders is beneficial in two operations:
derivation of better inferences about the collusion channel, and derivation of
more discriminative scores. It is well known in estimation and detection theory
that conditioning (i.e. to side-inform with prior knowledge) is always helpful
on average. Denote by XSI the set of accused users (subscript SI denotes Side
Information). At the beginning, XSI = ∅. If a user is accused as described in
Section 2.4, then he is removed from X (t) and included into XSI. If nobody is
accused, then iteration (t + 1) starts with X (t+1). If someone is accused, then
iteration t is not over. Since new side information is available, we can benefit from
it right away. A new inference process is run with the new XSI, and the scores
for t-subsets are computed again with the new inference, the new conditioning
XSI and over the new set X (t). The t-th iteration breaks this loop whenever no
additional colluder is identified.

3.2 Inferences about the Collusion Model

A long tradition in Tardos traitor tracing codes is to model the attack led
by c colluders by a vector θ(c) = (θ(c)

0 , θ
(c)
1 , . . . , θ

(c)
c ) where θ

(c)
σ = P(yi =

1|∑c
k=1 xjk

(i) = σ) [10]. In words, when the colluders have σ symbols ‘1’ over c,
they flip a coin of bias θ

(c)
σ to decide whether they put symbol ‘1’ or a ‘0’ in the

pirated sequence. The marking assumption holds if θ
(c)
0 = 1−θ

(c)
c = 0. The main

difficulty is that θ(c) cannot be estimated from the observations (y,p) since, for
any integer c′ > c there exists θ(c′) s.t. P(y = 1|p, θ(c′)) = P(y = 1|p, θ(c)), ∀p ∈
(0, 1). We call θ(c′) the equivalent attack of θ(c) of size c′. The parameter of the
model cannot be identified except if we were knowing the collusion size c. We
chose the maximum log-likelihood estimator (MLE) for a given ĉ:

θ̂
(ĉ)

= argmax
θ∈[0,1]ĉ+1 s.t. θ(0)(ĉ)=0,θ(ĉ)(ĉ)=1

log P(y|p,XSI, θ), (3)

with P(y|p, θ) =
∏m

i=1 P(y(i)|p(i),XSI, θ). Section 3.3 details the computation of
this likelihood. However, due to the lack of identifiability, this approach cannot

estimate c, but only θ̂
(ĉ)

for a given ĉ. For a long enough code, the MLE accu-
rately finds θ(c) if ĉ = c, or its equivalent attack of size ĉ if ĉ > c; yet there is no
way to distinguish the two cases.

We have experimentally noticed that scores based on θ̂
(ĉ)

are only slightly
less powerful than the optimal ones (based on the real θ(c)) provided that ĉ is
bigger than the real c. Therefore, we assume that c < cmax and set ĉ = cmax. We
estimate not the real collusion parameter but its equivalent attack of size cmax

(this is why we rather speak of collusion inference than collusion estimation).
The theory of compound channel justifies this approach. Suppose c < cmax and

consider the family of collusions {θ(c′)}cmax

c′=c gathering the real collusion θ(c) and
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its equivalent attacks of size from c+1 to cmax. It can be shown2 that this family
is a one-sided compound channel [1, Def. 3, Eq.(8)]. Therefore by [1, Lemma 5],
we know that a good (i.e. information theorists say capacity achieving) linear
decoder is the maximum likelihood decoder tuned on the worst element of the
family, which is in our case the collusion θ(cmax).

3.3 Score Computation

The score is just the log-likelihood ratio tuned on the inference θ̂
(cmax)

. We give
its most generic expression for a subset t of t users and side information XSI

containing nSI codewords of already accused users. Denote by ρ and ϕ the ac-
cumulated codewords of XSI and t: ρ =

∑
j∈XSI

xj and ϕ =
∑

j∈t xj . We have
∀i ∈ [m], 0 ≤ ρ(i) ≤ nSI and 0 ≤ ϕ(i) ≤ t.

Denote H0 the hypothesis where subset t is composed of innocent users. Then
y is statistically independent from its codewords which in turn only depend on
p: H0 : P(y, {xj}j∈t|p, θ̂

(cmax)
,XSI) = P(y|p, θ,XSI)P({xj}j∈t|p) (4)

Denote H1 the alternative where subset t is composed of colluders. Then y is
statistically dependent of its codewords:

H1 : P(y, {xj}j∈t|p, θ̂
(cmax)

,XSI) = P(y|{xj}j∈t,p, θ̂
(cmax)

,XSI)P({xj}j∈t|p)
(5)

All these sequences are composed of independent r.v. thanks to the code con-
struction and the memoryless nature of the collusion. Moreover, the collusion
only depends on the number of symbol ‘1’ present in the codewords of a sub-
set, i.e. the accumulated codeword. Therefore, the score of subset t is just the
log-ratio of the two previous probability expressions which simplifies to:

s =
∑

y(i)=1

log
α(i)
β(i)

+
∑

y(i)=0

log
1 − α(i)
1 − β(i)

, (6)

with the following expressions:

α(i) = P(y = 1|(ϕ(i), t), (ρ(i), nSI), p(i), θ̂
(cmax)

) = P (ϕ(i) + ρ(i), t + nSI, p(i), θ̂
(cmax)

)

β(i) = P(y = 1|(ρ(i), nSI), p(i), θ̂
(cmax)

) = P (ρ(i), nSI, p(i), θ̂
(cmax)

)

and function P (·) is defined by:

P (u, v, p, θ̂
(cmax)

) =
cmax−v+u∑

σ=u

θ̂(σ)(cmax)

(
cmax − v

σ − u

)
pσ−u(1 − p)cmax−v−σ+u (7)

This expression is compact, involved, but very generic. In words, it gives the
probability that y = 1 knowing that the symbol ‘1’ has been distributed to users

2 The journal version of this paper contains the proof.
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with probability p, the collusion model θ̂
(cmax)

, and the identity of v colluders
who have u symbol ‘1’ and v − u symbol ‘0’ at this index.

The inference on the collusion model searches for a θ(cmax) maximizing the
following likelihood:

log P(y|p, θ,XSI) =
∑

y(i)=1

log βi +
∑

y(i)=0

log 1 − βi. (8)

In the first iteration, a single decoder is used: t = 1 and ϕ = xj for user j. If nobody
has been deemed guilty so far, then ρ(i) = nSI = 0, ∀i ∈ [m]. The t-th iteration
works on subsets of size t. However, our scoring is only defined if t + nSI ≤ cmax.
Therefore, for a given size of side-information, we cannot conceive score for subset
of size bigger than tmax = cmax − nSI. This implies that in the catch-all scenario,
the maximal number of iterations depends on how fast XSI grows.

3.4 Thresholding

The issue here is the translation of the scores into probabilities. At a given itera-
tion and a given state of the side information, all the subset scores are computed
in the same deterministic way. The idea is to generate subsets composed of new
codewords and to compute their scores. We are then sure to observe scores of
subset of innocents since these codewords have not been used to forge y. With
a Monte Carlo simulation, we can estimate the probability that the score of an
innocent subset is bigger than threshold τ , or the other way around, the thresh-
old τ such that this probability is below ε. This approach works whatever the
way scores are computed.

In the first iteration, the subset is just a singleton, the codeword of one user,
and that user is either innocent either guilty. Therefore, users whose scores are
above the threshold are accused and included in XSI. Denote Pfp the total proba-
bility of false positive, i.e. accusing at least one innocent, and ε the probability of
wrongly accusing a given innocent user. Since the codewords are i.i.d. and c � n,
we have Pfp = 1 − (1 − ε)n−c ≈ nε. Pfp is stipulated in the requirements and
we fix ε = Pfp/n. In the t-th iteration (t > 1), the same Monte Carlo simulation
over subsets of size t is run. It estimates the threshold s.t. the score of a subset
of innocents is greater than τ only with a probability ε. In other words, scores
above τ indicate subset with at least one colluder. A further analysis identifies
and accuses the most likely one among the t users (cf. Section 2.4). Again, ε
should be set as low as Pfp/(n

t) to control the total probability of false alarm.
The only problem is that a large n implies a very low probability ε for both

cases (t = 1 and t > 1), and a Monte Carlo simulation is then bad at estimating
accurately threshold τ . This is the reason why we implemented an numerical
estimator based on rare event analysis [3].

4 Experimental Results

The Tardos decoder is implemented in C++ and compiled using GNU g++
version 4.4.5 on a x86 Ubuntu/Linux 10.10 system with -O3 -march=native
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-fomit-frame-pointer -mfpmath=sse. The estimation of θ uses approximate
vectorized single-precision floating point arithmetic and Shigeo Mitsunari’s fast
approximative log() function3; the remaining components are implemented with
double-precision. Pseudo-random numbers are generated with the SIMD-oriented
Fast Mersenne Twister (dSFMT)4 [11].

All runtime results are reported for a single core of a x86 Intel Core2 CPU
(E6700) clocked at 2.6 GHz with 2 GB of memory running Ubuntu/Linux 10.10.

The joint decoder receives lists of suspects whose length are upper bounded
by values of Table 1.

4.1 Catch-One Scenario

Here the aim is to catch the most like colluder – this is the tracing scenario most
commonly considered in the literature. We compare our single and joint decoder
performance against the results provided by Nuida et al. [8]. These authors
assumed that c is known for the code construction and the decoding. For a fair
comparison, our decoder uses this assumption: cmax = c.

The experimental setup considers n = 1 000 000 users and c ∈ {2, 3, 4, 6, 8}
colluders performing worst-case attack [4]. In Fig. 4, we plot the empirical prob-
ability of error Pe = Pfp + Pfn obtained by running at least 10 000 experiments
for each setting versus the code length m. The false-positive error is controlled
by thresholding based on rare-event simulation, Pfp = 10−3. For shorter code
length, almost exclusively false-negative errors occur. As expected, we observe
a huge decoding performance improvement for the joint decoder over the sin-
gle decoder. The advantage is much more pronounced when a larger number of
colluders collaborates.

Table 2 compares the code length to obtain an error rate of Pe = Pfp + Pfn =
10−3 for our proposed Tardos decoders with the results reported by Nuida et al. [8]
under marking assumption. While the joint decoder only marginally improves the
decoding performance for two colluders, it almost halves the code length for four
colluders.

The column hypothetical of Table 2 reports simulation results of a joint de-
coder that knows the identity of the colluders and just computes scoring and
thresholding for the colluders. The simulation allows to judge the performance
gap between the proposed joint decoder operating on a pruned list of suspects
(potentially discarding colluders) and the unconstrained joint decoder.

Figure 5 (a) shows in which iteration the first out of c = 4 colluders is success-
fully identified for varying code length, Pfp = 10−3. The benefit of joint decoding
is best seen for intermediate code lengths between m = 352 and m = 864. For
longer codes the single decoder is sufficient to make the first accusation. Fig-
ure 5 (b) illustrates the average runtime in seconds for score computation and

3 Available from http://homepage1.nifty.com/herumi/soft/fmath.html, version of
February 16, 2010.

4 Available from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/, ver-
sion 2.1

http://homepage1.nifty.com/herumi/soft/fmath.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
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Table 2. Code length comparison for n = 106, worst-case attack, Pe = 10−3

Colluders (c) Nuida et al. [8]
Proposed Decoder

Hypothetical
Single Joint

2 253 ∼ 344 ∼ 232 ∼ 232

3 877 ∼ 752 ∼ 512 ∼ 400

4 1454 ∼ 1120 ∼ 784 ∼ 720

6 3640 ∼ 2304 ∼ 1568 ∼ 1440

8 6815 ∼ 3712 ∼ 2688 ∼ 2432

thresholding for the single and joint decoders in that scenario. For short code
length all decoding stages (up to t = 4) have to be run – often unsuccessfully.
A significant amount of the execution time is spent in thresholding relative to
scoring for the number of computed subsets,

(
p(t)

t

) ∼ 4 500 000.
In Fig. 6 we plot the probability of correctly identifying one colluder and the

iteration number leading to this accusation. This time, we vary the number of
score computations performed in each iteration from 105 to 109 by controlling the
suspect list sizes {p(t)}. The rightmost results relate to the hypothetical joint de-
coder which does not have to enumerate all combinations but just computes the
accusation scores for the colluders. Surprisingly, a significant difference in accu-
sation performance can only be observed at the last iteration (i.e. the quadruple
decoder). An equal weighting of the computation resources over the iterations
is certainly not optimal. This experiment seems to conclude that the empha-
sis should be put on the last iterations. Yet, it is not clear what the optimal
resources distribution is.
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4.2 Catch-Many Scenario

We now consider the more realistic case where the code length m is fixed. The
only assumption at the decoder side is that c ≤ cmax. The aim is to identify
as many colluders as possible. Figure 7 shows the average number of identified
colluders by the symmetric Tardos single decoder, our non-iterated single, the
iterative side-informed single and our iterative side-informed joint decoders. The
experimental setup considers n = 1 000 000 users, code length m = 2048, and
worst-case collusion attack carried out by between two and eight colluders. The
global probability of false positive is fixed to Pfp = 10−3. The performance
advantage of the more sophisticated decoders is evident. The joint decoder has
a good chance to catch most of the colluders even when c = 8.
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In Fig. 8 (a) we analyse the average number of accusations made per iteration
(same setup as above). Figure 8 (b) shows the average runtime in seconds ac-
counted for score computation and thresholding of the iterative single and joint
decoders. The longest runtimes are observed for c = 2 and c = 8. In the first case,
both colluders are caught by the single decoder, yet the remaining iterations up
to the 6-subset decoder have to be run since cmax = 8.

4.3 Runtime Performance Analysis

Table 3 provides average runtime results in seconds split up per decoder compo-
nent for two traitor tracing scenarios with n = 10 000 and n = 1 000 000 users.
The runtime for the collusion model estimation and refinement is negligible and
independent of the number of users, O(c · m).
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Table 3. Average runtime in seconds per decoder component; the number of joint
accusation score computations is fixed to approximately 4.5 million

Avg. Runtime (sec) /
Decoder Component

n = 10 000 n = 1 000 000

m = 320 m = 640 m = 320 m = 640

Collusion Model (θ̂
(4)

) 0.00 0.01 0.00 0.01

Single Decoder (sj) 0.01 0.01 0.17 0.23

Thresholding 0.48 0.90 0.51 0.98

Pair Decoder 2.34 4.46 2.38 4.53

Thresholding 1.48 2.69 1.68 3.07

Triple Decoder 2.26 4.41 2.29 4.45

Thresholding 2.32 4.18 2.79 5.00

Quadruple Decoder 2.19 4.43 2.20 4.42

Thresholding 3.17 5.76 4.02 6.96

Total 14.34 26.85 16.04 29.65

Single decoding can be efficiently implemented to compute more than ten
million scores for a code of length m = 320 per second. The complexity is
O(n ·m+n · logn). The second term relates to sorting the results which consumes
a substantial parts of the runtime for small m. The runtime contribution of
the joint decoding stage clearly depends on the size of pruned list of suspects,
O(m · p) and is independent of the subset size t thanks to the revolving door
enumeration method. Our implementation performs almost two million joint
score computations per second.

Thresholding accounts for more than half of the runtime in the experimental
setups investigated in this work. However, this is not a serious issue for appli-
cations with a large user base or when p becomes large. Thresholding depends
on the subset size t because a large number of random codeword combinations
must be generated and because we seek lower probability level in O(Pfp/nt).
Therefore, the complexity is in O(m · t2 · log(n/Pfp)).

Note that all runtime results have been obtained with single CPU core al-
though a parallel implementation can be easily achieved. The score computation
(Eq. 6) has been implemented using pre-computed weights which reduce the
computation effort to a single table lookup for each codeword symbol and the
accumulation of the values.

5 Conclusion

‘Don Quixote’ is built on three main pillars. Joint decoding is made affordable
by an iterative algorithm pruning out users that are likely not guilty. The theory
of compound channel gives fast linear and discriminative scores. The rare event
simulation guarantees the reliability of the accusation by controlling the prob-
ability of false positive. The collusion size and process are nuisance parameters
that are neither needed for the construction of the code, nor at the accusation
side. The decoding performance is at the forefront of the state of the art.
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Abstract. Asymmetric fingerprinting protocols are designed to prevent
an untrustworthy Provider incriminating an innocent Buyer. These pro-
tocols enable the Buyer to generate their own fingerprint by themself,
and ensure that the Provider never has access to the Buyer’s copy of
the Work. Until recently, such protocols were not practical because the
collusion-resistant codes they rely on were too long. However, the advent
of Tardos codes means that the probabilistic collusion-resistant codes
are now sufficiently short that asymmetric fingerprint codes should, in
theory, be practical.

Unfortunately, previous asymmetric fingerprinting protocols cannot
be directly applied to Tardos codes, because generation of the Tardos
codes depends on a secret vector that is only known to the Provider.
This knowledge allows an untrustworthy Provider to attack traditional
asymmetric fingerprinting protocols. We describe this attack, and then
propose a new asymmetric fingerprinting protocol, specifically designed
for Tardos codes.

1 Introduction

This paper considers a problem arising in the fingerprinting of digital content.
In this context, a fingerprint is a binary code that is inserted into a Work for
the purpose of protecting it from unauthorized use, or, more precisely, for the
purpose of identifying individuals responsible for its unauthorized use. In such a
scenario, it is assumed that two or more users may collude in order to try to hide
their identities. Under the marking assumption [2], colluders cannot alter those
bits of the code that are identical for all colluders. However, where bits differ
across colluders, these bits may be assigned arbitrary values. A key problem
is resistance to collusion, i.e. if c users create a pirated copy of the Work, its
tampered fingerprint (i) should not implicate innocent users, and (ii) should
identify at least one of the colluders.

This problem has received considerable attention since Boneh and Shaw [2]
discussed it. They introduced the concept of a c-secure code such that the prob-
ability of framing an innocent user is lower than ε. Unfortunately, the length of
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their codes, O(c4 log(n
ε ) log(1

ε )) where n is the number of users, was too long
to be practical. Following Boneh and Shaw’s paper, there has been considerable
effort to design shorter codes. In 2003, Tardos [19] proposed an efficient code
construction that, for the first time, reduced the code length to the theoretical
lower bound, O(c2 log(n

ε )), thereby making such codes practical. Tardos codes
are currently the state-of-the-art for collusion-resistant fingerprinting.

Contemporaneously, some papers considered the scenario where the Provider
is untrustworthy. Given knowledge of a Buyer’s fingerprint, the Provider creates
a pirated copy of a Work, implicating the innocent Buyer. To prevent this, Pfitz-
man and Schunter [16] first introduced the concept of asymmetric fingerprinting
in which the Provider does not need to know the Buyer’s fingerprint. The Buyer
first commits to a secret (the fingerprint) that only he/she knows. The Buyer
and Provider then follow a protocol which results in the Buyer receiving a copy
of the Work with his/her secret fingerprint (and some additional information
coming from the Provider) embedded within it. The Provider does not learn the
Buyer’s secret, and cannot therefore create a forgery. Unfortunately, the early
implementations of this concept were not practical due to the very long length
of the collusion resistant codes. The advent of Tardos codes has reduced the
length of the collusion resistant codes to a practical size. However, generation of
these codes depends on a probability distribution based on a secret vector that
is only known to the Provider. This knowledge is sufficient for the Provider to
circumvent traditional asymmetric fingerprinting protocols.

In the next Section, we briefly summarize the design of Tardos codes. We
then describe how an untrustworthy Provider, with knowledge of the secret vec-
tor needed to generate the Tardos codes, can false accuse an innocent Buyer.
Section 3 then describes a new asymmetric fingerprinting protocol specific to the
use of Tardos codes, that prevents both the Buyer and the Provider from cheat-
ing. Practical aspects of the fingerprints embedding and accusation are discussed
in Section 4, while security and efficiency of the whole scheme are discussed in
Section 6.

2 Untrustworthy Provider with the Tardos Code

For readers unfamiliar with Tardos codes, we now provide a brief introduction.
Further details can be found in [18].

2.1 Introduction to Tardos Codes

Let n denote the number of buyers, and m the length of the collusion-resistant
codes. The fingerprints can then be arranged as a binary n × m matrix X,
where Buyer j’s binary fingerprint is the jth row of the matrix, i.e. Xj =
(Xj1, Xj2, . . . , Xjm).

To generate this matrix, m real numbers pi ∈ [t, 1 − t] are generated, each
of them being randomly and independently drawn according to the probabil-
ity density function f : [t, 1 − t] → R

+ with f(z) = κ(t)(z(1 − z))−1/2 and
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κ(t)−1 =
∫ 1−t

t
(z(1− z))−1/2dz. The parameter t � 1 is referred to as the cutoff

whose value is around 1/300c. The resulting vector, p = (p1, . . . , pm) is a secret
only known by the Provider. Each element of the matrix X is then independently
randomly drawn, such that the probability that the element Xji is set to symbol
‘1’ is P(Xji = 1) = pi. The collusion-resistant fingerprint, Xj , is then embedded
into Buyer j’s copy of the Work. This embedding can be accomplished by a
variety of watermarking techniques.

When an unauthorized copy is found, a binary sequence, Y, is extracted from
the copy thanks to the watermark decoder. Due to collusion and possible distor-
tions such as transcoding, this binary sequence is unlikely to exactly match one
of the fingerprints in the matrix X. To determine if Buyer j is involved in the
creation of the unauthorized copy, a score, referred to as an accusation score, Sj

is computed. If this score is greater than a given threshold Z, then Buyer j is
considered to have colluded. The value of the threshold Z theoretically guaran-
tees that the probability of accusing an innocent person is below a significance
level, ε.

The scores are computed according to an accusation function g, reflecting the
impact of the correlation between the fingerprint Xj , associated with Buyer j,
and the decoded sequence Y:

Sj = G(Y,Xj ,p) =
m∑

i=1

g(Yi, Xji, pi). (1)

In the usual symmetric codes [18], the function g is constrained (for example,
for an innocent person, the expectation of the score is zero and its variance is
m), giving g(1, 1, p) = g(0, 0, 1 − p) = −g(0, 1, p) = −g(1, 0, 1 − p) =

√
1−p

p .

2.2 Untrustworthy Content Provider

We now consider the case where the Provider is no longer trusted, and wishes
to frame Buyer j. There are a number of scenarios, depending on the knowl-
edge available to the Provider. We briefly outline these and discuss our specific
scenario in detail.

The Provider Knows the Buyer’s Fingerprint and How to Embed
the Corresponding Watermark. This scenario provides no protection to
the Buyer. The Provider can simply watermark a Work with the fingerprint of
Buyer j, place the Work in an incriminating location and then accuse Buyer j.

The Provider Knows the Buyer’s Fingerprint. In this scenario the Provider
does not have the ability to watermark a Work. Instead, upon a Provider’s re-
quest, a trusted Technology Provider embeds the fingerprint into a Work and
sends the fingerprinted Work to the Buyer. We emphasize that the Technology
Provider is trusted, and as such, the Provider cannot embed the same fingerprint
into a Work and have it delivered to two different users, one of which is colluding
with the Provider to frame the other user. If the Technology Provider were not
trusted, we would be back to the previous scenario.
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All the Provider needs is fingerprinted copies from c ≥ 3 fake users or collud-
ers. There is nothing special about the particular fingerprints. For a given Buyer
j, whom the Provider wishes to frame, the Provider knows where the elements
of the Buyer’s fingerprint Xji = 1. This happens with probability pi. At least
one of the accomplices has the same symbol as the Buyer with a probability of
1 − (1 − pi)c. Therefore, given that the Provider knows the Buyer’s fingerprint,
Xj , the accomplices can forge a sequence very similar to the fingerprint of Buyer
j. More specifically, if Yi = Xji whenever the marking assumption allows it, then
the forgery is such that, in expectation, the score of Buyer j becomes:

Sj = m

∫ 1−t

t

f(p) [p(1 − (1 − p)c)g(1, 1, p) + (1 − p)(1 − pc)g(0, 0, p)

+ p(1 − p)cg(0, 1, p) + (1 − p)pcg(1, 0, p)]dp

= 2mκ(t)
(

(1 − 2t) − 2
(1 − t)c+1 − tc+1

c + 1

)
≈ 2mκ(t)(1 − 2

c + 1
) (2)

In comparison, the colluders have scores equalling 2mκ(t)c−1 in expectation.
This means that with only c = 3 accomplices, the score of Buyer j is bigger than
the ones of the colluders, which are bigger than Z if the code is long enough
to face a collusion of size 3 (depending on the parameters (n, ε)). The Provider
sends (Xj ,Y,p, Z) to the Judge as an evidence to accuse Buyer j. This attack
is just an example, there certainly exists a better way to frame an innocent.

The Provider Knows the Bias Vector p. The previous two scenarios demon-
strate that the Provider must not know the fingerprints of the Buyers, if the
Buyers are to be protected. This is well known in the literature of asymmetric
fingerprinting. However, another threat occurs when dealing with Tardos codes.
In this scenario, the Provider has no knowledge of the Buyer’s fingerprint, nor
the underlying watermark method. We therefore assume that the Provider can-
not forge an unauthorized copy, either on his/her own or with accomplices. On
receipt of a pirated copy, the sequence is extracted by the trusted Technology
Provider. Given the extracted sequence Y, the scores of all Buyers are computed
using Equation (1). It is here that the Provider can lie, since the probabilities
in p are only known by the Provider.

Specifically, an untrustworthy Provider can create a fake vector of probabilities
p̂ that implicates Buyer j. However, the distribution f(p) is publicly known, so
the question becomes how to generate a p̂ that (i) implicates Buyer j, and (ii)
has an arbitrarily high probability of been drawn from the distribution f(p)?

The following method shows that it is simple to do so. However, we do not
claim that this attack is unique or optimal. Let us focus on a column where
pi = p and Yi = Xj,i. The true summand in Equation (1) is g(1, 1, p) or g(0, 0, p)
(with equal probability). Suppose that the content provider replaces the secret
value p by a fake secret p̂ which is drawn independently according to f . On
average, this summand takes the new value:

Δ(t) =
∫ 1−t

t

f(p̂)
g(1, 1, p̂) + g(0, 0, p̂)

2
dp̂ = κ(t) ln

1 − t

t
.
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For a cutoff t = 1/900 (recommended by G. Tardos to fight against 3 colluders),
κ(t) ≈ π−1 and the numerical value is surprisingly high: Δ(1/900) ≈ 2.16.
Suppose now that the content provider applies the same strategy on an index
i where Yi �= Xj,i. Then the expectation is the opposite. However, in a Tardos
code, even for an innocent Buyer j, the proportion α of indices where symbols Yi

and Xj,i agree is above 1/2 for common collusion strategies. For instance, with
an interleaving collusion attack [18], α = 3/4 whatever the collusion size c.

Based on this fact, we propose the following attack. The Provider computes
the score for all Buyers, which on average equals 0 for innocent Buyers and
2mκ(t)c−1 for the colluders [18]. The Provider initializes p̂ = p. Then, he/she
randomly selects a column i and randomly draws a fake secret p̂i ∼ f . He/She
re-computes the score of Buyer j with this fake secret and iterates selecting a dif-
ferent column until Sj is above the threshold Z. On average, m(cκ(t)−1Δ(t)(α−
1/2))−1 secret values pi need to be changed in this way, e.g. only 20% of the
code length if the copy has been made using an interleaving attack.

Figure 1 illustrates this attack for the case where the code length is m =
1000 and the number of colluders is c = 3. The solid coloured lines depict the
accusation scores of 10 randomly selected innocent buyers. We observe that after
20 to 30% of the elements of p have been altered, the accusation scores of the
innocent Buyers exceed the original scores of the colluders. In fact, the colluders’
accusation scores also increase. However, we are not concerned by the highest
score, but rather by the fact that the Provider is able to exhibit a couple (p̂,Xj)
such that Sj > Z. Thus, it is sufficient to raise the score of the innocent Buyer,
even if this raises all other Buyers’ scores as well.

Randomly selecting some pi’s (independently from Xj and Y) and re-drawing
them according to the same law ensures that p̂i ∼ f , ∀i. Therefore, the Judge
observing p̂ cannot distinguish the forgery. For this reason, the Judge might
request to see the matrix X to statistically test whether the elements of X
are drawn from the distribution p̂. In this case, the Provider can give a fake
matrix X̂ where the columns whose pi have been modified are re-drawn such
that P(Xki = 1) = p̂i, ∀k �= j. The only way to prevent this deception would be
for the Judge to randomly asked an innocent Buyer k �= j for his copy in order
to verify the authenticity of X̂. This latter step seems somewhat odd. We arrive
at the strange situation where the Judge has to contact innocent buyers when
Buyer j is accused.

3 An Asymmetric Tardos Code Construction

The previous section underlines the difficulty of constructing an asymmetric
fingerprinting protocol using Tardos codes. The constraints are:

– The Provider should not know the fingerprints.
– The Provider should not change the secret p used for the code construction

during the accusation score computation.
– The Buyer should know neither the secret p nor the fingerprint of any other

user.
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Fig. 1. Accusation score as a function of the number of changed elements of the
vector p for the case where m = 1000 and c = 3. The solid coloured lines show how
the accusation scores of 10 randomly selected innocent buyers increases. The dotted
horizontal lines show the original scores for the colluders before the modification.

– His fingerprint must be drawn according to the statistical distribution in-
duced by p.

– The Buyer should not be able to modify his fingerprint.

These constraints prevent the application of previous asymmetric fingerprinting
schemes to a Tardos code. This section proposes a solution to this problem,
which consists of two phases: the generation of the fingerprint and the disclosure
of a halfword. Both phases rely on a primitive which we present first.

3.1 Pick a Card, Any Card!

What we need is a scheme that enables a receiver R to pick k elements at random
in a list of N elements provided by a sender S, in such a way that:

1. R gets elements that belong to the list;
2. R does not get any information on the elements he did not pick;
3. S does not know which elements have been picked.

Functionally speaking, this is precisely what is called Oblivious Transfer by
cryptographers. A k-out-of-N Oblivious Transfer protocol is denoted by OT N

k .
In the literature we can find OT 2

1 , OT N
1 and OT N

k protocols. When k ≥ 1, if the
k elements are picked one-by-one adaptively, we speak of adaptive OT protocols,
denoted by OT N

k×1; if they are picked simultaneously, we speak of non-adaptive
OT protocols, simply denoted OT N

k .
Technically speaking, the oblivious transfer problem has been independently

tackled by two communities. First, Cryptographers have been working on it since
1981. We will refer to this quite long and mature framework as “traditional”
OT. Second, in 2001 other researchers proposed a different approach based on
Commutative Encryption and Two-lock Cryptosystems. Both are considered and
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discussed in Sec. 4, according to their respective advantages. We provide more
details on the use of OT protocols based on Commutative Encryption or Two-
lock crypto-systems, as they are less known but particularly interesting in our
case.

3.2 Phase 1: Generation of the Fingerprint

Fingerprint generation consists of two steps. During Step 1, the Provider gener-
ates lists from the secret p, and commits them in order to avoid any a posteriori
cheating. During Step 2, the Buyer picks elements in the lists to generate his
own fingerprint. This step is addressed by oblivious transfer protocols.

Step 1. We use the commutative encryption protocol m times to generate the
fingerprint of the j-th Buyer Xj = (Xj,1, . . . , Xj,m). S is the Provider, and R is
Buyer j. The Provider generates a secret vector p for a Tardos code. Each pi is
quantized such that pi = Li/N with Li ∈ [N − 1].

For a given index i, the objects are the concatenation of a binary symbol and
a text string. There are only two versions of an object in list Ci. For Li objects,
Ok,i = (1‖ref1,i), and Ok,i = (0‖ref0,i) for the N − Li remaining ones. The
use of the text strings {refX,i} depends on the content distribution mode as
detailed in Sec. 4.3. The object Ok,i is committed with key Kk,i and stored in
the list Ci = {Ck,i}N

k=1. There are thus as many different lists Ci as the length m
of the fingerprint. These lists are the same for all buyers, and are published in
a public Write Once Read Many (WORM) directory [?] whose access is granted
to all users. As the name, nobody can modify or erase what is initially written
in a WORM directory, but anyone can read from it.

p1
Quantize−→ (0‖ref0,1, 1‖ref1,1, . . . , 1‖ref1,1)

Commit−→ C1 = (C1,1, . . . , CN,1)
p2 −→ (0‖ref0,2, 0‖ref0,2, . . . , 0‖ref0,2) −→ C2 = (C1,2, . . . , CN,2)

...
pm −→ (1‖ref1,m, 0‖ref0,m, . . . , 1‖ref1,m) −→ Cm = (C1,m, . . . , CN,m)

Fig. 2. The lists Ci = {Ck,i}N
k=1 are stored in a WORM

Step 2. If we use a traditional Oblivious Transfer protocol, the Buyer and
Provider run it to get the corresponding key Kind(j,i),i: the Provider proposes
the list of the keys {πj(k)‖Kπj(k),i} and the Buyer picks one with an OT N

1 . This
key allows him to open one of the commitments Cπj(k),i. Provider and Buyer
will have to keep in a log file some elements of the exchange in order to run the
Phase 2. It is specific to the OT protocol and we have not studied this problem
in detail.

Let us now describe how to solve the problem with a Commutative Encryption
scheme. Contrary to the C-lists, the D-lists are made specific to a given Buyer
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j. The Provider picks a secret key Sj and a permutation πj(.) over [N ]. The
Buyer is given a list Dj,i = {Dj,i,k = CE(Sj , (πj(k)‖Kπj(k),i))}N

k=1. Therefore,
the lists {Ci}m

i=1 are common for all users, whereas the lists {Dj,i}m
i=1 are specific

to Buyer j. We have introduced here a slight change with respect to protocol 4.1,
i.e. the permutation πj whose role is explained below. Buyer j chooses one object
in the list, say the k(j, i)-th object. He/she sends the corresponding ciphertext
Uk(j,i),i = CE(Rj,i, Dj,i,k(j,i)) decrypted by the provider with Sj and sent back
to the Buyer who, at the end, gets the index ind(j, i) = πj(k(j, i)) and the key
Kind(j,i),i, which grants him/her the access to the object Oind(j,i),i, stored in
encrypted form in the WORM. It contains the symbol bind(j,i),i. This becomes
the value of the i-th bit of his/her fingerprint, Xj,i = bind(i,j),i, which equals ‘1’
with probability pi. The provider keeps in a log file the values of Sj and Uk(j,i),i,
and the user keeps Rj,i in his/her records.

P B
1. Commit Cπj(k),i = Com(Kπj(k),i, Oπj (k),i)

Only one time for all users and all bits

2. Dj,i,k = CE(Sj , (πj(k)‖Kπj(k),i))

3. ←− Uk(j,i),i = CE(Rj,i, Dj,i,k(j,i))
4. V = CE−1(Sj , Uk(j,i),i) −→
5. πj(k)‖Kπj (k),i = CE−1(Rj,i, V )

6. Oπj (k),i = E−1(Kπj(k),i, Cπj(k),i)

Fig. 3. Generation of a fingerprint bit using the Commutative Encryption Scheme

3.3 Phase 2: Disclosure of the Halfword

The accusation process detailed in Sec. 4.4 allows the Provider to list a set of
suspected users to be forwarded to the judge for verification. After phase 1 is
completed, the Provider orders Buyer j to reveal mh < m bits of his fingerprint.
These disclosed symbols compose the so-called halfword [16]. The following facts
must be enforced: Buyer j does not know which bits of his/her fingerprint are
disclosed even if the Provider asks for the same bit indices to all the users. The
Provider discloses mh bits of the fingerprints without revealing any knowledge
about the others. Of course, Buyer j refuses to follow the protocol for more than
mh objects.

Commutative Encryption. Again, we propose to use the double-blind random
selection protocol of Sec. 3.1. Now, Buyer j plays the role of S, and the Provider
the role of R, N = m, and object Oi = (Ri,j‖aleai,j). These items are the
m secret keys selected by Buyer j during phase 1 (Sec. 3.2) concatenated with
random strings aleai,j to be created by Buyer j. This alea finds its use during
the personalization of the content (see Sec. 4.3). Following the protocol, the
Provider selects mh such object. The decryption of message Uk(i,j),j received
during phase 1 thanks to the disclosure of the key Ri,j yields Di,j,k(i,j) which
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in turn is decrypted with key Sj , provides the index of the selected object,
otherwise the protocol stops. This prevents a colluder from denying the symbol
of his fingerprint and from copying the symbol of an accomplice. At the end, the
Provider learns which item was picked by Buyer j at index i. Therefore, he/she
ends up with mh couples (Xj,i, aleak(i,j),i) associated to a given Buyer j.

Generic Oblivious Transfer protocols. At phase 2, any OT N
k×1 can be used to

allow the Provider to get mh objects from the list of the Oi = (Ri,j‖aleai,j)
owned by the Buyer. The problem is if another OT scheme was used at the
precedent step, there is no such things as the Ri,j values. In order to prevent
the Buyer from denying the symbol of his fingerprint, the Ri,j values have to be
replaced by a number which was part of the exchange during the generation of
the fingerprint. This element is specific to the OT protocol.

4 Implementation Details

The previous section has detailed the core of our scheme which is the construction
of the codewords based on oblivious transfer. This section deals with the details
of this primitive and the remaining elements, namely the watermarking of video
content, the distribution and the accusation process.

4.1 Details of the Oblivious Transfer Protocol

This protocol can be implemented by two approaches, ‘classical’ Oblivious trans-
fer and Commutative encryption, which have been studied with different security
models. Both are interesting for us, and we will now summarize them and discuss
their usefulness

Traditional Oblivious Transfer protocols. Oblivious Transfer Protocols have been
introduced by cryptographers in [17] and led to a huge number of papers in the
cryptographic community, e.g. [13,5,10]. These protocols are studied in the same
framework as multi-party computation. Their security is studied under different
models below, listed from the weakest to the strongest: honest-but-curious model
(where no one cheats during the protocol execution), half simulation (introduced
by [14], cheating sender or cheating receiver studied separately; local security
study), full simulation (introduced in [3], studying cheating sender and receiver
globally; global security study). In addition, the UC (Universally Composable)
model has been introduced in [4] to study the behavior and security of protocols
that are based on concurrent and composable cryptographic primitives.

Oblivious Transfer based on Commutative Encryption. An encryption primitive
CE is said to be a Commutative Encryption if for any two keys kR and kS and
any plaintext m, we have (usual definition in the literature)

CE(kR,CE(kS , m)) = CE(kS ,CE(kR, m)). (3)

Based on such a primitive, a Commutative Encryption Scheme (CES) can be
defined as follows [1].
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1. Let m1, m2, . . . ,mN be the N inputs of the Sender S. S chooses N secret
keys K1, K2, . . . , KN for a symmetric cryptosystem E (e.g. AES, DES) and
a key kS for the commutative encryption primitive CE. S provides

C1 = E(K1, m1) , D1 = CE(kS , K1)
C2 = E(K2, m2) , D2 = CE(kS , K2)

. . . . . .

CN = E(KN , mN ) , DN = CE(kS , KN )

Note that the couples 〈Cj , Dj〉 can be publicly accessed.

2. Now, let us assume that the receiver R wants to pick the i-th element of the
list. R loads 〈Ci, Di〉 and chooses a secret key kR for CE. He encrypts Di

with it and sends the result U = CE(kR, Di) to S.
3. S decrypts U with S and sends W = CE−1(kS , U) to R. R computes Ki,

and can get to mi = E−1(Ki, Ci).

A Two-lock Cryptosystem is a variant that uses two different primitives CE1
and CE2 instead of CE:

CE1(kR,CE2(kS , m)) = CE2(kS ,CE1(kR, m)). (4)

Both approaches are interesting for us, as we will discuss now. First of all, the
security of Oblivious Transfer Protocols has been much stronger studied than
the one of the Commutative Encryption Schemes. Hence, we will use them each
time it is possible, leaning on well known protocols.

But, at some steps of the protocol we prefer to use Commutative Encryption
Schemes, as its structure fits really well to our purpose. It is for example the case
during fingerprint generation, as we also want the Provider to commit on the
lists elements, which correspond to the secret vector Tardos accusation will rely
on. This ensures that the same secret vector will be used during the accusation
process. Such commitments are easily included in a Commutative Encryption
Scheme, it is more difficult in a traditional Oblivious Transfer protocol. In addi-
tion, we use some elements exchanged during the course of the protocol in phase
1 (Sec. 3.2) to ensure the correct conduct of the Phase 2 (Sec. 3.3).

Designing the right Commutative Encryption Scheme is not so easy, as the
literature does not provide us a scheme that fulfill our requirements. First of all,
notice that using a symmetric or asymmetric encryption primitive as CE, or in
the variant scheme CE1 and CE2, does not matter here, functionally speaking,
as encryption and decryption will be performed by the same person. Hence, only
security and eventually efficiency may guide our choice. Of course, we would like
to use the most secure encryption primitives. The highest security level, uncon-
ditional security is only reached by the One-Time Pad, and cannot be achieved
here because it would require to use a different key for each encryption whereas
here the same key kS is used to encrypt all the keys Ki. Hence, semantic security
is the best security class we might achieve [9,20,7]. Moreover, semantic security
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is necessary in our case, because we have to encrypt binary symbols and do not
want the Receiver to be able to distinguish encrypted 0’s from encrypted 1’s dur-
ing both the fingerprint generation or the halfword disclosure steps. This implies
the use of a probabilistic encryption scheme. Unfortunately, semantic security
has not yet been tackled in the Commutative Encryption literature [1,11,21].
Nevertheless, semantic security should be achieved in a near future, making this
kind of OT particularly interesting for us.

Concerning the variant called Two-lock Cryptosystem, a few implementations
have been proposed: a first one based on the Knapsack problem [21], which has
been broken [22], a second one based on the discrete logarithm problem [21], and
a third one based on RSA [11]. None of them achieve semantic security at the
moment.

4.2 Watermarking

A nowadays trend is the application of fingerprinting to premium video contents.
Premium means movies in very high quality available for home cinema shortly
after their release in theaters. Personalization of the copies are usually done as
follows: Before distribution, the content is divided into sequential blocks (e.g.
Group of Pictures of few seconds of a video). Offline, a robust watermarking
technique creates two versions of some blocks embedding the symbol ‘0’ and
respectively ‘1’. This is done by the Technology Provider. Quality is very impor-
tant for premium movies and watermarking under that constraint involves a lot
of processing. This motivates this offline preprocessing.

In some scenarios (screeners for jurys, marketing, blu-ray discs, premium
downloads), the physical medium storage or bandwitth is so large that both
versions of the blocks are encrypted and transmitted to the software client or
the device of the Buyers. This latter is trusted and the strings {refX,i} it got
from phase 1 are parameters needed to get access to the i-th block watermarked
with symbol X .

4.3 Content Personalization at the Server Side

As for Video On Demand where the client is not trusted, personalization of the
content is usually made at the server side, which raises an issue since the Provider
doesn’t know user fingerprints. There exist Buyer-Seller protocols for embedding
a sequence Xj into a content co without disclosing Xj to the Seller and co to
the Buyer. They are based on homomorphic encryption scheme and work with
some specific implementations of spread spectrum [12] or Quantization Index
Modulation watermarking [6]. In other words, not any watermarking technique
can be used, and this is not the route we have chosen so far. Due to space
limitations, a brief sketch of the adaptation of [6] is presented hereafter.

Let c(0)
i = (c(0)

i,1 , . . . , c
(0)
i,Q) be the Q quantized components (like pixels, DCT

coefficients, portion of streams etc) of the i-th content block watermarked with
symbol ‘0’ (resp. c(1)

i with symbol ‘1’). Denote di = c(1)
i − c(0)

i . Assume as in
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[6, Sect. 5], an additive homomorphic and probabilistic encryption E[.] such as
the Pallier cryptosystem. Buyer j has a pair of public/private keys (pkj , skj)
and sends (Epkj [Xj,1], . . . , Epkj [Xj,m]). The provider sends him/her the ciphers

Epkj [c
(0)
i,
 ].Epkj [Xj,i]di,� , ∀(i, �) ∈ [m] × [Q]. (5)

Thanks to the homomorphism, Buyer j decrypts this with skj into c
(0)
i,
 if Xj,i =

0, c
(1)
i,
 if Xj,i = 1. Since Xj,i is constant for the Q components of the i-th block,

a lot of bandwidth and computer power will be saved with a composite signal
representation as detailed in [6, Sect. 3.2.2].

A crucial step in this kind of Buyer-Seller protocols is to prove to the Provider
that what is sent by the Buyer is indeed the encryption of bits, and moreover
bits of the Buyer’s fingerprint. This usually involves complex zero-knowledge
subprotocols [12,6]. Here, we avoid this complexity by taking advantage of the
fact that the Provider already knows some bits of the fingerprint Xj , i.e. those
belonging to the halfword (see Sec. 3.3), and the Buyers do not know the indices
of these bits. Therefore, in mv < mh random indices of the halfword, the Provider
asks Buyer j to open his/her commitment. For one such index iv, Buyer j reveals
the random value riv of the probabilistic Pallier encryption (with the notation
of [6]). The Provider computes gXj,iv hriv mod N and verifies it equals the iv-th
cipher, which Buyer j pretended to be Epkj [Xj,i].

One drawback of this simple verification scheme is that the Buyer discovers
mv indices of the halfword. This may give rise to more elaborated collusion
attacks. For example, Buyer j, as a colluder, could try to enforce Yiv �= Xj,iv

when attempting to forge a pirated copy. Further discussion of this is beyond
the scope of this paper.

This approach may also introduce a threat to the Buyer. An untrustworthy
Provider can ask to open the commitments of non-halfword bits in order to dis-
close bits he/she is not supposed to know. For this reason, the Provider needs to
send aleak(iv ,j),iv

as defined in Sec. 3.3 to show Buyer j that his/her verification
duly occurs on a halfword bit.

4.4 The Accusation Procedure

The accusation is straightforward and similar to other fingerprinting protocols.
A Scouting Agency is in charge of catching a forgery. The Technology Provider
decodes the watermark and extracts sequence Y from the pirated content. The
Provider computes the halfscores by applying Eq. (1) only on the halfwords. This
produces a list of suspects, e.g. those users whose score is above a threshold, or
those users with the highest scores.

Of course, this list cannot be trusted, since the Provider may be untrustwor-
thy. The list is therefore sent to a third party, referred to as the Judge, who
first verifies the computation of the halfscores. If different values are found, the
Provider is black-listed. Otherwise, the Judge computes the scores of the full
fingerprint.
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To do so, the Judge needs the secret p: he/she asks the Provider for the
keys {Kk,i}, ∀(k, i) ∈ [N ] × [m] and thereby obtains from the WORM all the
objects {Ok,i}, and the true values of (p1, . . . , pm). The Judge must also request
suspected Buyer j for the keys Rj,i in order to decrypt the messages Uk(j,i),i

in Di,j,k(i,j) which reveal which object Buyer j picked during the i-th round of
Sec. 3.2 and whence Xj,i. Finally, the Judge accuses the user whose score over
the full length fingerprint is above a given threshold (related to a probability of
false alarm).

5 Discussion

5.1 Security

Suppose first that the Provider is honest and denote by c the collusion size.
A reliable tracing capability on the halfwords is needed to avoid false alarms.
Therefore, as proven by G. Tardos, mh = O(c2 log nε−1), where ε is the prob-
ability of suspecting some innocent Buyers. Moreover, successful collusions are
avoided if there are secret values such that pi < c−1 or pi > 1 − c−1(see [8]).
Therefore, N should be sufficiently big, around a hundred, to resist against col-
lusion of size of some tens. During the generation of the fingerprint in Sec. 3.2,
permutation πj(.) makes sure that Buyer j randomly picks up a bit ‘1’ with
probability pi = Li/N as needed in the Tardos code. In particular, a colluder
cannot benefit from the discoveries made by his accomplices.

We now analyze why colluders would cheat during the watermarking of their
version of the Work described in Sec. 4.3. By comparing their fingerprints, they
see indices where they all have the same symbols, be it ‘0’ or ‘1’. As explained in
the introduction, they won’t be able to alter those bits in the tampered finger-
print except if they cheat during the watermarking: If their fingerprint bits at
index i all equal ‘1’, one of them must pretend he/she has a ‘0’ in this position.
If they succeed to do so for all these positions, they will able to forge a pirated
copy with a null fingerprint for instance.

How many times do the colluders need to cheat? With probability pc
i (resp.

(1 − pi)c), they all have bit ‘1’ (resp. ‘0’) at index i. Thus, there are on average
mc(c) = m

∫ 1−t

t
(pc + (1 − p)c)f(p)dp such indices. The Provider asks for a bit

verification with probability mv/mh. The probability of a successful attack for
a collusion of size c is therefore (1 − mv/mh)mc(c). Our numerical simulations
(see figure 4 (a)) show that mv shouldn’t be more than 50 bits for typical code
length and collusion size below a hundred. Thus, mv is well below mh.

Suppose now that the Provider is dishonest. The fact that the m lists Ci, ∀i ∈
[m] are public and not modifiable prevents the Provider from altering them for a
specific Buyer in order to frame him/her afterwards. Moreover, it will raise the
Judge’s suspicion if the empirical distribution of the pi is not close to the pdf f .
Yet, biases can be introduced on the probabilities for the symbols of the collud-
ers’ fingerprint only if there is a coalition between them and the untrustworthy
Provider. For instance, the Provider can choose a permutation such that by se-
lecting the first item (resp. the last one) in the list Dj,i an accomplice colluder
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Fig. 4. (a) mv goes from 10 to 50 by 5, m = 3000 and mh = 1500. (b) N goes from
10 to 100 and m = 1500. The gray curve with crosses is for the unquantified Tardos
code.

is sure to pick up a symbol ‘1’ (resp. ‘0’). This ruins the tracing property of
the code, but this does not allow the Provider to frame an innocent. First, it is
guaranteed that p used in Eq. (1) is the one which generated the code. Second,
the Provider and his accomplices colluders must ignore a significant part of the
fingerprints of innocent Buyers. To this end, m − mh must also be in order of
O(c2 log nε−1). If this holds, the Judge is able to take a reliable decision while
discarding the halfword part of the fingerprint. Consequently, m ≈ 2mh, our
protocol has doubled the typical code length, which is still in O(c2 log nε−1).

5.2 Efficiency

Parameters. The parameters of the Tardos code are chosen according to the
formulas linking length, number of colluders, and number of users. We have
found out that the value mv doesn’t need to be more than 50, see Sec. 4. We
consider the value N , the quantization parameter, with the interleaving collusion
attack. In the figure 4 (b), we can see that up to a small value of N (around
20), there is no gain of efficiency. The red line shows that the results with the
unquantized Tardos parameters remain better.

Complexity. The cost of phase 1 is m×N commitments for the lists that will
be stored in the Worm file, and mn× (N +4) exponentiations for the OT phase.
Regarding the use of a non specific OT , still m×N commitments, plus the cost
of mn 1-out-of-N Oblivious Transfers. This cost depends of course of the chosen
protocol, it is in O(N) for a lot of protocols. For Phase 2, the cost is that of
an mh-out-of-m Oblivious transfer. If this OT is performed with the use of a
Commutative Encryption, the cost is 2m+4mh for the communication, and 4mh

rounds, for another OT scheme, the communication is in O(m) and the number
of rounds depends of the protocol, it is usually in O(mh).
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6 Conclusion

Tardos codes are currently the state-of-the-art in collusion-resistant fingerprint-
ing. However, the previous asymmetric fingerprint protocols cannot be applied to
this particular construction. There are mainly two difficulties. First, the Buyer
has to generate his/her secret fingerprint but according to vector p, which is
kept secret by the Provider. Second, the secret p used in the accusation process
must be the same as the one which generated the fingerprints.

We have proposed the first asymmetric fingerprinting protocol dedicated to
Tardos codes. The construction of the fingerprints and their embedding within
pieces of Work do not need a trusted third party. Note, however, that during
the accusation stage, a trusted third party is necessary like in any asymmetric
fingerprinting scheme we are aware of. Further work is needed to determine if
such a third party can be eliminated. In particular, we anticipate that some form
of secure multi-party computation can be applied.

We considered two forms of oblivious transfer protocols, the first based on
traditional cryptographic techniques and the second based on less well known
Commutative Encryption or Two-Lock crypto-systems. These latter techniques
are less mature than traditional Oblivious Transfer protocols in terms of security,
but offers interesting properties that are convenient to our application. Further
work is needed to improve their semantic security, so that their advantages do
not come at the cost of decreased security.
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Abstract. This paper summarizes the first international challenge on
steganalysis called BOSS (an acronym for Break Our Steganographic Sys-
tem). We explain the motivations behind the organization of the contest,
its rules together with reasons for them, and the steganographic algo-
rithm developed for the contest. Since the image databases created for
the contest significantly influenced the development of the contest, they
are described in a great detail. Paper also presents detailed analysis of
results submitted to the challenge. One of the main difficulty the partici-
pants had to deal with was the discrepancy between training and testing
source of images – the so-called cover-source mismatch, which forced
the participants to design steganalyzers robust w.r.t. a specific source
of images. We also point to other practical issues related to designing
steganographic systems and give several suggestions for future contests
in steganalysis.

1 BOSS: Break Our Steganographic System

During the years 2005 and 2007, the data-hiding community supported by the
European Network of Excellence in Cryptology (ECRYPT) launched two water-
marking challenges, BOWS [13] and BOWS-2 [1] (abbreviations of Break Our
Watermarking System). The purpose of participants of both challenges was to
break watermarking systems under different scenarios. The purpose of organizers
was not only to assess the robustness and the security of different watermarking
schemes in the environment similar to real application, but to increase the in-
terest in watermarking and to boost the research progress within the field. Both
watermarking contests showed to be popular (BOWS/BOWS2 played more than
300/150 domains and 10/15 participants respectively were ranked), and novel
approaches towards breaking watermarking systems were derived during them.
This, combined with a thrill associated with organization and participation, in-
spired us to organize the BOSS (Break Our Steganographic System) challenge.

The most important motivation for the contest was to investigate whether
content-adaptive steganography improves steganographic security for empirical

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 59–70, 2011.
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covers. For the purpose of this contest, a new spatial-domain content-adaptive
algorithm called HUGO (Highly Undetectable steGO) was invented [12]. The fact
that in adaptive steganography the selection channel (placement of embedding
changes) is publicly known, albeit in a probabilistic form, could in theory be
exploited by an attacker. Adaptive schemes introduce more embedding changes
than non-adaptive schemes because some pixels are almost forbidden from being
modified, which causes an adaptive scheme to embed with a larger change rate
than a non-adaptive one. On the other hand, the changes are driven to hard-
to-model regions, because the change rate is not an appropriate measure of
statistical detectability as it puts the same weight to all pixels. As compared
by the state-of-the-art available in mid 2010, HUGO was largely resistant to
steganalysis up to 0.4 bits per pixel in 512× 512 grayscale images.

The other incentive for organizing the challenge was a hope to encourage the
development of new approaches toward steganalysis, pointing to important dead-
locks in steganalysis and hopefully finding solutions to them, finding weaknesses
of the proposed steganographic system, and finally raising interest in steganaly-
sis and steganography. While running the contest, we became aware of a similar
contest organized within the computer vision community [7].

This paper serves as an introduction to a series of papers [4,5,6] describing
the attacks on HUGO. Here, we describe the contest, image databases, and the
HUGO algorithm to give the papers uniform notation and background.

1.1 Requirements and Rules

In order for BOSS challenge to be attractive and fruitful for the community, we
have obeyed the following conditions and limitations.

– All participants were ranked by a scalar criterion, the accuracy of detection
on a database of 1, 000 512× 512 grayscale images called BOSSRank. Each
image in the BOSSRank database was chosen to contain secret message of
size 104, 857 bits (0.4 bits per pixel) with probability 50% (naturally the list
of stego and cover images was kept secret).

– In order to ensure that all participants start with the same degree of knowl-
edge about the steganographic system used in the contest, we started the
contest with a warm-up phase on June 28, 2010. The very same day the
steganographic algorithm HUGO was presented at the International Hid-
ing Conference 2010. For the warm-up phase, we also released the source
code of the embedding algorithm. To simplify the steganalysis, a training
database of 7, 518 512× 512 grayscale images (the BOSSBase) was released
along with an implementation of the state-of-the-art feature set (the Cross
Domain Features (CDF) [10]) for blind steganalysis. The motivation leading
to supply this material, especially the description and implementation of the
embedding algorithm, came from the Kerckhoffs’ principle.

– We wanted all participants to have an easy access to the score of their pre-
dictions, yet prevent them to perform an oracle attack1 on the evaluation

1 A method to reach 100% accuracy by learning the true classification of BOSSRank
from a very large number of carefully constructed predictions.
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Table 1. Camera models and number of images in BOSSBase v0.92 and BOSSRank

Camera model # of images # of images
in BOSSBase in BOSSRank

Leica M9 2267 847
Canon EOS DIGITAL REBEL XSi 1607 0

PENTAX K20D 1398 0
Canon EOS 400D DIGITAL 1354 0

Canon EOS 7D 1354 0
NIKON D70 1033 0

Canon EOS 40D 61 0
Panasonic Lumix DMC-FZ50 0 153

system. To achieve both requirements, the hosting server http://www.
agents.cz/boss allowed to upload a prediction on BOSSRank once every
three days for every IP address. Moreover, the provided score was computed
from a subset of 900 randomly selected images. If the detection accuracy was
above 65%, the participants could enter the the Hall of Fame.

– To impose a deadline for the participants, the challenge was divided into
two phases. The warm-up phase started on June 28, 2010 and ended on
September 9, 2010 by publishing the BOSSRank image database used to
evaluate the participants. This was immediately followed by a four-month-
long period, during which the challenge took its place. The challenge was
originally scheduled to end on December 15, 2010, but it was later extended
to January 10, 2011.

1.2 Source of Cover Images for BOSS

The BOSS webpage offered two databases of images, the BOSSBase and the
BOSSRank.

BOSSBase was composed of 9, 074 never-compressed cover images coming
from 7 different cameras.2 This database was provided as the source of cover
images used for the development of steganalyzers. All images were created from
full-resolution color images in RAW format (CR2 or DNG). The images were
first resized so that the smaller side was 512 pixels long, then they were cropped
to 512 × 512 pixels, and finally converted to grayscale. The whole process was
published in a script along with the original images in RAW format and their
EXIF headers. Table 1 shows the actual number of images for each camera.

The BOSSRank database was composed of 1, 000 512× 512 grayscale images
obtained by the same processing script. 482 of them were randomly chosen to
carry the secret payload of approximately 0.4 bpp while keeping the rest without
2 The BOSSBase was released in three phases. On June 28, 2010, the version 0.90

containing 7518 images was released. When the challenged moved to its second phase,
the version 0.92 was released with 9074 images. Finally, the version 1.0 containing
10000 images was released in May 2011.
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any payload. Participants did not know that 847 images were obtained by Leica
M9 in RAW format and 153 images came from Panasonic Lumix DMC-FZ50
captured directly in JPEG3 format.

The fact that images in both databases came from slightly different sources
lead to interesting consequences on steganalyzers trained purely on the BOSS-
Base. Although created unintentionally, this cover source mismatch forced the
participants to deal with the situation, where the exact source of cover images
is not fully known, a problem which surely happens in practice when detecting
steganographic communication. Designing steganalyzers which are robust to the
cover-source mismatch was one of the main challenges which the participants
very quickly realized.

2 HUGO, The Embedding Algorithm for BOSS

The HUGO (Highly Undetectable steGO) algorithm used in the contest hides
messages into least significant bits of grayscale images represented in the spatial
domain. It was designed to follow the minimum-embedding-impact principle,
where we embed a given message while minimizing a distortion calculated be-
tween cover and stego images. This strategy allows to decompose its design into
two parts: the design of image model and the coder. The role of the image model
is to generate a space in which the distance between points leads to a good dis-
tortion function. This function is subsequently used by the coder to determine
the exact cover elements that need to be changed in order to communicate the
message. In addition, the optimal coder minimizes the average distortion calcu-
lated over different messages of the same length. The relationship between the
size of the payload (embedding rate) and the average distortion is often called
the rate–distortion bound. Due to recent development in coding techniques [2,3],
we believe that larger gains (in secure payload for example) can be achieved by
designing distortion functions more adaptively to the image content instead of
by changing the coder. From this reason, when designing HUGO we have focused
on the image model.

The image model was largely inspired by the Subtractive Pixel Adjacency
Matrix (SPAM) steganalytic features [11], but steps have been taken to avoid
over-fitting to a particular feature set [9]. The original publication [12] describes
and analyzes several different versions of the algorithm. Here, the most powerful
version used in the BOSS competition is described.

2.1 HUGO’s Image Model

For the purpose of embedding, each image X = (xi,j) ∈ X � {0, . . . , 255}n1×n2 of
size n1×n2 pixels is represented by a feature vector computed from eight three-
dimensional co-occurrence matrices obtained from differences of horizontally,
3 Initially we wanted to use images only from one of the camera in BOSSBase, but

because of the lack of time we had to use another camera that was not in the training
database.
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vertically, and diagonally neighboring pairs of pixels. The (d1, d2, d3)th entry of
the empirical horizontal co-occurrence matrix calculated from X is defined as

CX,→
d1,d2,d3

= 1
n1(n2 − 2)

∣∣{(i, j)|D→i,j = d1 ∧D→i,j+1 = d2 ∧D→i,j+2 = d3}
∣∣ , (1)

where d1, d2, d3 ∈ [−T,−T + 1, . . . , T ], D→i,j = xi,j −xi,j+1 when |xi,j −xi,j+1| ≤
T. Differences greater that T, |xi,j−xi,j+1| > T, are not considered in the model.
Co-occurrence matrices for other directions, k ∈ {←, ↑, ↓,↘,↖,↙,↗} are de-
fined analogically. The feature vector defining the image model is (FX,GX) ∈
R

2(2T+1)3 with

FX
d1,d2,d3 =

∑
k∈{→,←,↑,↓}

CX,k
d1,d2,d3

, GX
d1,d2,d3 =

∑
k∈{↘,↖,↙,↗}

CX,k
d1,d2,d3

. (2)

The embedding distortion between cover X and stego image Y, D(X,Y), is a
weighted L1-norm between their feature vectors:

D(X,Y) =
T∑

d1,d2,d3=−T

[
w(d1, d2, d3)

∣∣FX
d1,d2,d3 − FY

d1,d2,d3

∣∣+

+ w(d1, d2, d3)
∣∣GX
d1,d2,d3 −GY

d1,d2,d3

∣∣], (3)

where the weights w(d1, d2, d3) quantify the detectability of an embedding change
in the (d1, d2, d3)th element of F and G. The weights were heuristically chosen as

w(d1, d2, d3) =
(√
d21 + d22 + d23 + σ

)−γ
, (4)

where σ and γ are scalar parameters. For the BOSS challenge, the parameters
were set to σ = 1, γ = 1, and T = 90.

2.2 Embedding

The practical implementation of HUGO embeds the message in pixel’s LSBs
by using Syndrome-Trellis Code (STC), which were shown [3] to achieve near
optimal rate–distortion performance. For the purpose of the challenge, only a
simulator of HUGO with the STC coder replaced by a simulated optimal coder
operating at the rate–distortion bound was released. This coder modifies ith
pixel xi to yi = arg minz∈{xi−1,xi+1}D(X, zX∼i) with probability

pi = Pr(Yi = yi) = 1
Z
e−λD(X,yiX∼i), (5)

where Z is a normalization factor and yiX∼i denotes the cover image whose ith
pixel has been modified to Yi = yi and all other pixels were kept unchanged.
The constant λ ≥ 0 is determined by the condition

m = −
∑
i

pi log2 pi + (1 − pi) log2(1 − pi), (6)

which quantifies the desire the communicate m bit long message.
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During embedding, whenever a pixel’s LSB needs to be changed, the sender
has a freedom to choose between a change by +1 or −1 (with the exception of
boundaries of the dynamic range). The sender first chooses the direction that
leads to a smaller distortion (3), embeds the message and then perform the
embedding changes. Moreover, in strategy S2 (the most secure version of the
algorithm), the embedding changes are performed sequentially and the sender
recomputes the distortion at each pixel that is to be modified because some of the
neighboring pixels might have already been changed. This step does not change
the communicated message and enables HUGO to consider mutual interaction
of embedding changes and thus further minimize the statistical detectability.

To illustrate the adaptivity of the algorithm, Figure 1 shows the average
probability of changing each pixel in the Lena image4 estimated by embedding
500 different messages of the same length using the simulated coding algorithm.

0

0.25

0.5 

(a) 0.25 bpp (b) 0.5 bpp

Fig. 1. Probabilities of pixel being changed during embedding in the Lena image.
Probabilities were estimated by embedding 500 different pseudo-random messages with
sizes 0.25/0.5 bits per pixel (bpp).

3 Final Results and Analysis of the Submissions

From a large number of received submissions, only 3 participant teams have
entered the Hall of Fame, namely A. Westfeld, the team of J. Fridrich called
Hugobreakers and finaly the team of G. Gül & F. Kurugollu. Final competition
results and scores: (1) Hugobreakers 80.3%, (2) Gül & Kurugollu 76.8%, and (3)
A. Westfeld 67%. As can be seen from the number of unique IP addresses from
which the BOSSRank image database was downloaded, many other researchers
tried to play BOSS. Figure 2 shows the distribution of 142 unique IP addresses
among different countries.

4 Obtained from http://en.wikipedia.org/wiki/File:Lenna.png

http://en.wikipedia.org/wiki/File:Lenna.png
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Fig. 2. Number of unique IP addresses from which the BOSSRank image database was
downloaded during the contest. Total 142 IP addresses were recorded.

3.1 Cover-Source Mismatch

The cover-source-mismatch problem refers to a scenario, where images used for
training the steganalyzer do not come from the same source as images w.r.t.
which the steganalyzer is tested. If the source of images is very different and
the steganalyzer is not robust with respect to this discrepancy, this can lead to
decrease of the detection accuracy. By accident, the addition of pictures coming
from a camera which was not used in BOSSBase has caused the cover-source
mismatch problem.. Figure 3 shows the accuracy of submissions entered to the
hall of fame according to the camera model. It can clearly be seen that all
submissions are more accurate on images coming from the Leica M9 than on
images captured by the Panasonic DMC-FZ50. The cover-source mismatch can
be used to partly explain this phenomenon, the other reason might be that
images coming from the DMC-FZ50 are more difficult the classify because of
their contents.

The loss of accuracy is higher for steganalyzers developed by Hugobreakers
than by other groups. It is also interesting to observe that on the beginning of
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Fig. 3. Scores for each cameras for the different submissions in the Hall of Fame
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the challenge, the accuracy of the first submission of Hugobreakers was nearly
random on images coming from the Panasonic camera. From this analysis, it
also appears that Gül & Kurugollu’s steganalyzers were more immune to the
problem of model mismatch than the classifier proposed by Hugobreakers.

To learn from this analysis more, it would be interesting to know the design
of Hugobreakers’ steganalyzers which scored at 71% and 75%, because between
these two submissions, the cover-source mismatch was significantly reduced. Did
this improvement come from training on a more diverse set of images, or it is
due to different features or machine learning algorithm? Moreover, it should be
also investigated, why steganalyzers of A. Westfeld and Gül & Kurugollu were
more robust. Answers to these questions are important for building more robust
and thus practically usable steganalyzers.

3.2 False Positives, False Negatives

We now extend the analysis from the previous subsection to false positive and
false negative rates defined here as probability of cover image classified as stego
and stego image classified as cover, respectively. Figure 4 shows these rates on
BOSSRank together with rates on each camera separately for two best submis-
sions of Hugobreakers and Gül & Kurugollu. We have noticed that Hugobreakers’
steganalyzer suffered from very high false positive rate on images captured by
the Panasonic camera. Their best submission had an almost 47% false positive
rate, but only 8% false negative rate. Surprisingly, the final steganalyzer of Gül
& Kurugollu did not exhibit such an imbalance between the false positive and
false negative rates. Although the score used during the challenge evaluated
overall accuracy of the steganalyzers, for the practical application, it is very

False positive rate False negative rate

77 Final 79 Final
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40%

50%

E
rr
o
r

Gül & Kurugollu Hugobreakers

All cameras Leica M9 Panasonic DMZ-FZ50

Fig. 4. False positive and false negative rates according to the camera for the four best
submissions
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Fig. 5. MDS plot of submissions entered to Hall of fame. Legend: A — Andreas West-
feld, G — Gül & Kurugollu, and H — Hugobreakers. Each submission is labeled by the
score as calculated on 900 random images measured at the time of submission. Final
solutions are labeled by the score calculated w.r.t. the whole BOSSRank database.

important to limit the false positive rate. According to the results, the cover-
source mismatch can make these errors even worse.

3.3 Clustering Analysis

Clustering analysis provides an interesting insight, how diverse were partici-
pants’ submissions and how they evolved in time. Figure 5 shows an MDS plot
of Hamming distances between submission vectors from the Hall of fame [8]5.
The MDS plot reveals that the initial detector of Hugobreakers (H 68%) was
similar to the detector of A. Westfeld. Later, as the challenge progressed, Hugo-
breakers improved their detector and departed from the initial solution. Towards
the end of the contest, Hugobreakers were merely tuning their detector, but no
5 Multi-Dimensional Scaling (MDS) plot tries to map points from high-dimensional

space to low-dimensional space such that distances between individual points are
preserved.
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Fig. 6. Comparisons between the results of the collusion and the winner of the challenge

significant change has been introduced. This can be recognized by many sub-
missions forming a tiny cluster. On the other hand, the detector developed by
Gül & Kurugollu was from the very beginning different from detectors of other
participants, as their submissions form a small compact cluster within the space.

It is interesting to see that Hugobreakers and Gül & Kurugollu have developed
detectors with similar accuracy but independent errors. This is supported by the
fact that only two images out of 1000 were always incorrectly classified (both
images, image no. 174 and image no. 353, were false positives). In other words
for 99.8% of the images there has been at least one submission in which the
image was classified correctly. These suggest that the accuracy can be improved
by fusing the classifiers developed in the contest as is shown in the next section.

4 Mixing Strategies

From the informed analysis done in the previous section, we noticed that the
submission h = (h1, . . . , h1000) ∈ {0, 1}10006 of Hugobreakers scoring 79% is
more immune to cover-source mismatch and false positive errors than their final
submission h′ = (h′1, . . . , h′1000) ∈ {0, 1}1000 scoring 80.3%. In order to decrease
the false positive errors of the final solution we fuse the two submissions and
define new vector c = (c1, . . . , c1000) ∈ {0, 1}1000 as:

ci =

{
1 if hi = 1 and h′i = 1 (both submissions call ith image stego)
0 otherwise.

Figure 6 compares the performances of the collusion vector c with the best
submissions of BOSS. This vector c achieves 81.3%, which is 1% more than the
6 Element 0 (1) in the of the submission vector corresponds to cover (stego) prediction.
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final score of Hugobreakers. The fused vector is also less sensitive to false positive
errors and cover-source mismatch. Note however that this is an a posteriori
submission using results from the test set and consequently it should be evaluated
on other test sets in order to consider the comparison fair.

5 Conclusion and Perspectives

As can be seen from [4,5,6], BOSS challenge has stimulated research and forced
the participants to deal with many challenging problems in steganalysis. The
accuracy of detection of the HUGO algorithm, developed for the challenge, has
increased from 65% to 81% for an embedding capacity of 0.4bpp and further
improvement is to be expected. Moreover, according to the clustering analysis
presented in this report, at least two different steganalyzers with similar perfor-
mance have been developed which can lead to better results after the players
exchange their ideas.

In possible extensions of HUGO, authors should consider avoiding the payload-
limited sender regime, where the same amount of payload is embedded in every
image. Instead, the stegosystem should try to embed different amount of pay-
load based on the image content and possibly spread the payload among multiple
cover objects, i.e., use batch steganography.

Besides that, BOSS challenge pointed out that cover-source mismatch is a
significant problem for practical applications of steganalyzers based on a com-
bination of steganalytic features and machine learning algorithms. We believe
that the future research should focus to mitigate the cover source mismatch to-
gether with a problem of excessively high false positive rates. These findings also
underline the need to develop a methodology to compare steganalyzers in a fair
manner.

One of the incentives to organize BOSS was to investigate if steganalysis can
exploit the knowledge of probability of pixel changes. For adaptive schemes,
which represent current state-of-the-art in steganography, this probability is not
uniform and can be well estimated from the stego image. Whether this fact
presents any weakness has not been proved yet, but according to our knowledge,
none of the successful participants of BOSS contest was able to utilize such
information.
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Abstract. This paper presents a new methodology for the steganalysis
of digital images. In principle, the proposed method is applicable to any
kind of steganography at any domain. Special interest is put on the ste-
ganalysis of Highly Undetectable Steganography (HUGO). The proposed
method first extracts features via applying a function to the image, con-
structing the k variate probability density function (PDF) estimates, and
downsampling it by a suitable downsampling algorithm. The extracted
feature vectors are then further optimized in order to increase the de-
tection performance and reduce the computational time. Finally using
a supervised classification algorithm such as SVM, steganalysis is per-
formed. The proposed method is capable of detecting BOSSRank image
set with an accuracy of 85%.

1 Introduction

A perfectly secure steganography is a long quest for information hiding. The
aim of steganography can be described using the prisoners’ problem in which
two prisoners try to devise an escape plan by means of an open communication
channel monitored by a warden. In this sense this secret communication which
uses innocuous digital media should be undetectable by the warden [1]. The
earliest attempt on steganographic data hiding is based on LSB substitution
which assumes the LSBs of the cover image correspond to the natural noise in the
imaging process and hide the embedding from the warden. However this scheme
is easily detected by histogram based targeted steganalysis methods because of
the unbalanced embedding leaving footprints in the image histogram. One way
to alleviate this problem is to increment or to decrement the LSBs according to
the message rather than the simple substitution scheme. Although this LSB±
method provides a balanced embedding which is difficult to detect by using only
the image histogram it disturbs the underlying statistical information resulting
from the strong correlation between the image pixels [1]. Therefore using this
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fact LSB± is also not a secure steganographic method and can be detected1

[2], [3], [4], [5], [6].
The information theoretic bound for secure steganography was established by

Cachin [7]. The main idea is that a perfect steganography should preserve the
distribution of the cover images. In this context, a distance based on Kullback-
Leibler divergence between the stego and the cover distributions was proposed
to determine the security of the steganography method. If this distance is zero
this means that the warden cannot differentiate the stego images from the cover
onces since both distributions for stego and cover objects are identical. However
it is not practical to design such stegonagraphic system under this strict bound
because it is not a trivial task to determine the distribution of the cover images.
Even the image set used in the system is confined to a known source, such as a
single camera, it is nearly impossible to determine the cover distribution [1].

Because of this difficulty the steganography methods concentrate on some
marginal models rather than exact ones used to model the whole cover set and
they try to provide a secure steganographic system under this simplified model.
In this context, secure steganographic data hiding is a game between the pris-
oner and the warden. While the prisoner tries to hide data by preserving some
statistics the warden strives to detect the hidden message by deploying better
models which are not preserved by the embedding. Based on this fact, one prac-
tical way to design a secure steganography method for the prisoner is to take
into account the most successful steganalysis method and try to overcome it by
means of the model which is not encompassed by this steganalyser.

One of the recent attempts, which uses this paradigm to design a very secure
steganography system, is Highly Undetectable steGO (HUGO) method [8]. Its
impact relies on using high dimensional image models which is not employed in
steganography yet. For this purpose, HUGO takes into account SPAM features
which have been recently proposed and are very successful on spatial domain
LSB± embedding [6]. SPAM uses Markov transition probabilities calculated over
difference images obtained by using neighboring pixels in 8 directions. First and
second order transitions are taken into consideration by averaging horizontal and
vertical directions yielding to one feature set and diagonal directions resulting
to another one. Without any restriction on the dynamic range of the considered
feature domain, this approach results in a very high dimensional embedding
model. Using such high dimensional data in classification based steganalysis is
problematic because of curse of dimensionality and related overfitting problems
in the context of pattern recognition. Moreover a practical implementation is not
a trivial task as well with this high dimensionality. To alleviate these problems
SPAM calculates the probabilities in a restricted range [-T T]. By choosing T as
4 and 3 for 1st and 2nd order transitions respectively, SPAM has totally 162 and
686 features in both orders. HUGO employs this drawback to deploy embedding
based on high dimensional models which is not a problem for steganography.
For this aim, HUGO determines a distortion measure for each pixel individually.

1 This work has been done while the first author was a visiting researcher at Queens
University, Belfast.



A New Methodology in Steganalysis 73

This measure is actually a weighted sum of differences between the features
used in SPAM derived from the cover and stego images. The significant point in
the calculation is that the range for feature values are stretched to [-90 90]. The
rationale behind this selection is that steganalysis should operate on a very large
range such as [-90 90] to encompass the changes effectively. Then the model has
more than 107 features which cannot be handled practically. The detectability of
HUGO was tested against 1st and 2nd order SPAM, Wavelet Absolute Moments
(WAM) and Cross Domain (CDF) based steganalytic features. The tests also
showed that HUGO can embed 7 times longer messages than LSB± method in
the same security level. The details of the method can be found in [8].

Generally, embedding in any steganography method is carried out in a single
domain by preserving some statistics. However, preserving these statistics in one
domain does not mean preserving other statistics in another domain as long as
some model correction is not carried out in both domains. For example, HUGO
preserves the model only derived from the domain in which SPAM features are
extracted successfully. It is vulnerable against steganalysis using other models
elicited from different domains.

In this paper, we propose a general approach for image steganalysis which
uses different domains with different modalities to combat against steganalysis
aware steganography like HUGO. Therefore steganography will find it difficult
to stretch all domains. This work was carried out under Break Our Stegano-
graphic System (BOSS) contest which aims to evaluate the security of HUGO.
The contest provided all information about the HUGO including the embed-
ding algorithm and two image databases corresponding to training (BOSSBase)
and testing (BOSSRank). The BOSSBase contains 9074 cover as well as 0.4
rate embedded stego images captured by using seven different digital cameras.
BOSSRank image set, on the other hand, provides 1000 images (518 cover and
482 stego) for the testing which were taken by (an)unknown camera(s). The best
detection rate obtained with CDF, 65%, was the minimum accuracy required to
enter to the hall of fame.

The rest of the paper is organized as follows. In the next section the proposed
method is presented and it is described how it can be used to break HUGO.
Section 3 elaborates the training and feature set optimization by taking into
account the cover-source mismatch problem as well as the computational feasi-
bility of feature selection. The results are presented in section 4 while section 5
concludes the paper.

2 Steganalytic System Description

2.1 Proposed Methodology

In this section, we define a steganalytic system which can be applied to any kind
of steganography although our particular interest was on the HUGO algorithm.
The main idea is as follows: "If HUGO is capable of preserving the higher order
statistics on the difference image domain, can we find some other domains as
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well as some functions which are applied to these domains so that after an op-
timization process, high performance detection is possible". We tested the whole
methodology on the HUGO algorithm as explained in the following sections.

2.2 Steganalysis against HUGO

For the proposed methodology, one has to find only the free parameters of the
system. Let’s assume that a real function f : R

m → R
n is applied to the image I.

Then, there can be three different conditions namely, m > n, m < n and m = n.
The function f on the other hand can be linear or non-linear. In this work,
we addressed all conditions considering the proposed methodology. Denoting
ds(·) as a downsampling function and pdfk as the k-variate PDF estimate, then
basically we are trying to find

Vk,i = ds (pdfk (fi (I))) , (1)

for i different functions where Vk,i is the (k, i)th feature vector. A downsampling
function ds(·) is especially necessary in order to get rid of the dimensionality
problem as well as to prevent from the sparseness problem of high variate PDF
estimates when we combine the features with a classifier. As a result, we can
reduce the steganalysis problem to find a suitable downsampling function ds(·)
(as well as its parameters), and an f function which is applied to the image I
and the k, defining the dimensionality of the PDF function. For a given train-
ing set of a steganography algorithm, and for a chosen f there is always a k
and some parameters of a downsampling function which optimizes the detection
performance. As default, we consider two types of downsampling functions. The
first downsampling function sums the two neighboring PDF values and thus re-
duces the dimensionality by two at each iteration. The second downsampling
function takes the average of the pixel values which are symmetrically situated
in a PDF2. For larger PDF estimates, the symmetry-downsampling function gets
complicated. However we were able to use it for k=1, 2, ...5.

Once we define a suitable f function, then it is becoming easy to optimize the
ds(·) and the k. In our first tests we explored that

f = sort (M ∗ I) , (2)

is a good way to start with a matrix M where ∗ corresponds to the convolution.
The sort operation sorts the resulting data such that after the pdfk and ds(·)
operations, the detection is maximized over the training set. Well-known sorting
functions considered in this work are horizonal, vertical, diagonal and minor
diagonal scannings. However a sort function is not restricted to those four as it
covers any permutations in general. It is important that a sorting function sorts
the data in a form that it is as much correlated as possible for the neighboring
pixels. Because the embedding noise destroys the correlations in an image and
2 The symmetry mentioned in the text is the central symmetry, e.g., {0 0 1}, {0 1 0}

and {1 0 0} indexes are summed up and divided by 3.



A New Methodology in Steganalysis 75

Table 1. Non-linear Filtering Matrices

Mnl1 α2 + α7 − 2α0, α4 + α5 − 2α0, min{α0 − α1, α0 − α3, α0 − α6, α0 − α8}
min{α0 − α2, α0 − α4, α0 − α5, α0 − α7}

Mnl2 min{α1 + α2 + α3 + α5 + α8 − 5α0, α1 + α4 + α6 + α7 + α8 − 5α0,
α1 + α2 + α3 + α4 + α6 − 5α0, α3 + α5 + α6 + α7 + α8 − 5α0},

min{α2 + α4 − 2α0, α2 + α5 − 2α0, α5 + α7 − 2α0, α4 + α7 − 2α0}
min{α2 + α4 + α7 − 3α0, α2 + α5 + α7 − 3α0,

α2 + α4 + α5 − 3α0, α4 + α5 + α7 − 3α0}
min{α0 − α1, α0 − α3, α0 − α8, α0 − α6, α0 − α2, α0 − α4, α0 − α5, α0 − α7}

such a modeling helps us to detect the existence of the embedding noise. For the
steganalysis of HUGO, we observed that the following M matrices are able to
provide some detection,

M1 = [1 − 2 1] , M2 = M0 ∗ M1 = [−1 3 − 3 1] , (3)

which are actually the convolutions of M0 = [1 − 1]. Due to the range problem
M0 is inevitably used for steganalysis, please cf. [6]. The dynamic range of the
filtered data is cut to [-T T] to reduce the dimensionality of the PDF estimates
as well as to prevent from the poor statistics coming from the complex image
regions. Keeping in mind that dimensionalities above 1000 are difficult to classify
in a considerable time slot with some sophisticated classifiers, we considered T =
3, 4, 5 and 6, the PDF dimensions k = 1, 2, ...6, and the downsampling methods
ds(·) (as well as their parameters) and the f functions defined above (along with
the transposes of Mi, for i = 1, 2). We observed that the highest detection was
possible for k = 4, T = 5 and for a regular downsampling which is iterated for
4 times. The dimensionality of features for any T, k, r thus becomes,

D =
⌊

(2T + 1)k

2r

⌋
, (4)

which is 915 for k = 4. In order to take into account the correlations from one
column to the next one at each matrix of a 4-variate PDF estimate, we scan
the odd indexed columns in the reverse order to get a one-row matrix for the
downsampling.

In addition to the linear functions, we also explored the potential of non-linear
ones. For the sake of clarity, we only give the main idea and the considered feature
vectors. The non-linear functions in general provide diversity and increase the
performance of the steganalyser. Figure 1 shows a 3 × 3 image block which we
used in the optimization, however the block size might also be chosen differently.
Per block, we need to derive 4 different values which are used to construct the
4-variate pdf estimates. Table 1 gives the corresponding M functions. Note that
for linear f functions, we obtain only one value per convolution instead of four
for non-linear Ms. The PDF estimates are also calculated in a similar fashion.
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α0

α1 α2 α3

α4 α5

α6 α7 α8

Fig. 1. A 3 × 3 block of an image I

So far, we obtained 8 feature vectors from the linear and 2 from the non-linear
f functions. These feature vectors are further optimized due to the dimension-
ality problem. In order to obtain a feature vector which provides a detection
performance which is better then each single feature vector, we have an opti-
mization problem,

V4 =γ1V
ver
4,M1

+ γ2V
hor
4,M1

+ γ3V
ver
4,M2

+ γ4V
hor
4,M2

+ γ5V
ver
4,MT

1

+γ6V
hor
4,MT

1
+ γ7V

ver
4,MT

2
+ γ8V

hor
4,MT

2
+ γ9V4,Mnl1

+ γ10V4,Mnl2
(5)

with the free parameters γi for i = 1, 2..., 10 so that the detection performance
is maximized over a training set. There are several alternatives for the solution
of this problem. It is important to know which classifier we use to optimize
the parameters and how many iterations for the training and the test we need
to obtain reliable detection results. For an optimum solution, we can launch
an exhaustive search with a predetermined step size. The lowest resolution is
for a step size equals to 1 (γi = 0 or γi = 1) and we already know that each
feature vector in V4 might be able to increase the detection performance. For
a smaller step size and a higher precision search, the search space is very huge
especially when we consider that we need at least an average of a couple of
random tests with a simple classifier and we have only a limited computational
power. Therefore, we developed an iterative solution for the above mentioned
problem. We call it as extended Fisher Linear Discriminator (FLD) algorithm
since its detection performance is lower bounded by FLD and its complexity is
still of order O(n2).

For a linear classifier, we have a set of linear equations as many as the number
of images in the training set. By convention, half of the images are chosen as
cover and the other half as stego. For the decision labels li ∈ [−1 1], i = 1, 2, ..., N
where N is the total number of images in the training set, we have the equations
α1f1,i +α2f2,i + ... + αρfρ,i ∈ [−1 1], for the jth feature from the ith image fj,i,
where α = {α1, α2, ..., αρ} are the regression coefficients. For the problem in (5)
we have, however, two set of variables, namely γ and α. This means, the overall
linear equations have the following form:
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γ1

ρ∑
j=1

αjfj,i + γ2

2ρ∑
j=ρ+1

αjfj,i + ... + γκ

κρ∑
j= κρ

2 +1

αjfj,i ∈ [−1 1] (6)

which is κρ regression coefficients for the linear system of equations. The detec-
tion performance is reduced considerably because N/ρ, the ratio of the number
of images in the training set to the total number of features, is divided by a
factor of κ. Our approach was to use the same α coefficients for each feature
vector (i.e., for each V

(·)
4,(·) in (5)). We have then,

ρ∑
k=1

αk

κ∑
j=1

γjf(j−1)ρ+k,i ∈ [−1 1], (7)

which might be very fast solved iteratively. The main idea is that, in the first
step we keep γ constant and solve the equations for α. In the next step, we keep
α constant and determine γ according to linear least squares rule (N > ρ). For
the initialization, γj = 1∀j might be considered. This algorithm converges fast
and is able to increase the detection performance, especially in case some feature
vectors decrease the performance. We believe that two main factors restrict the
performance of this algorithm: first, its high dependence on the initial conditions
and second κ << ρ in (7). Assume that our problem is a simple two class clas-
sification problem with two feature vectors, then the proposed algorithm can be
used with a source separation algorithm. Each single feature vector is separated
into several/many feature vectors with a dimensionality at least as much as that
of the original feature vector. Then these feature vectors are weighted with γ
and accordingly (7) is solved using the proposed iterative approach.

FLD classifier is a rather poor classifier in terms of detection performance
when compared with more state of the art classifiers such as SVM. We use
FLD especially for searching purposes due to its low computational complex-
ity permitting a comprehensive search in a considerable time. The problem is
that the chosen feature vectors with FLD are not always the best ones when
we use them with an SVM classifier. We justified this with experiments and
restricted ourselves to choose the best result among lower precision search with
SVM and higher precision search with FLD. Due to limitations in the computa-
tional complexity, we used a very simple search algorithm. This algorithm first
selects one feature vector, e.g., V ver

4,M1
, for γ1 = 1. Then, the increase in the de-

tection performance is evaluated for all the remaining feature vectors when γi

is varied in the interval [0 1] with a certain precision. The feature vector which
increases the detection performance most along with its multiplicative term γi is
selected and removed from the set of candidate feature vectors. This process is
repeated as long as the detection performance no more increases. We were able
to choose the step size as 0.1 for a linear classifier and 0.2 for an SVM classifier
with an RBF kernel. The training and testing was carried out in a random fash-
ion for 5 times when SVM is used whereas it was 20 when linear classifier was
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Table 2. Selected set of parameters for (5)

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

1 0 0.8 0.8 0 0.8 0.6 0.4 1 0.8

considered3. The final detection performance was better for a low resolution
search with SVM classifier. This is perhaps because we both search and evalu-
ate the feature vectors using an SVM classifier. The corresponding γ is given in
Table 2.

We performed the similar designs for k=3, 5 and 6 (both linear and non-
linear functions are considered). However when they were used together with
4D features we have not seen any performance improvement. Then we used only
non-linear functions when k = 3. There was a slight performance improvement
(around 1-2%) with a linear classifier but when SVM is used the performance
was degraded.

In the next step we considered k = 2. Again for T = 5 and for the function
defined in (2),

M3 =

⎡⎣ 1 −2 1
−2 4 −2
1 −2 1

⎤⎦
is the filtering function. The optimized sorting functions were the diagonal and
the minor diagonal scanning. After the scanning we used symmetry-downsampling
for both PDF estimates. The final feature vector for k = 2 was the summation
of both single feature vectors,

V2 = V diag
2,M3

+ V mdiag
2,M3

(8)

which has a dimensionality of 66.
In addition to the features from k = 2 and k = 4, we also extracted features

for k = 1. Especially, we tried to cover a wider range, [-128 127], which is not
symmetric as for k = 2 and k = 4. The PDFs are extracted after the filtering
with the following 4 linear filters M0, MT

0 ,

M4 =
[

0 1
−1 0

]
and M5 =

[
1 0
0 −1

]
.

Note that for k = 1 there is no need for a sorting function. Consequently, we
obtained altogether 256 features for k = 1 by,

V1 = V1,M0 + V1,MT
0

+ V1,M4 + V1,M5 . (9)

3 Training and Feature Set Optimization

In this section it is explained how the training set as well as the features can be
optimized to increase the detection rate of the steganalyser.
3 From the BOSSBase set V.92, randomly chosen 4500 images are used for training

and 1000 for testing.
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3.1 Construction of the Training Set and Cover-Source Mismatch
Problem

In order to achieve higher detection performances in steganalysis, one of the
challenging problems is to select a suitable training set. Especially, training set
construction is not testing set independent. It has to be carefully collected keep-
ing in mind some special characteristics of the images in the testing set. For
example one can group the images according to image content. This will defi-
nitely be helpful for the steganalysis. One other idea might be dividing images
according to their complexity by a metric such as entropy. Then instead of build-
ing one classifier, K classifiers can be built and used for the K groups in the
testing set. Furthermore, one can build one classifier per image under test. How-
ever this needs a lot of effort. It is also clear that the best way to build the
training set is to use the same camera which is used in capturing images in the
testing set. If it is unavailable, one might try to determine the source of the cam-
era from the EXIF files extracted from the image. If EXIF file is not available or
maliciously deleted, we can still try to determine the source using some image
forensic tools [9]. In case we have neither the original camera nor a camera from
the same brand, then we might expect severe performance degradation when
we run our steganalyser on the testing set. This is called cover-source mismatch
problem and we need to indicate that it is really a challenging one.

The easiest solution for the cover-source mismatch problem comes inherently
with our design, namely the quantity of the features put a default gap to the de-
tection performance. The higher the variety of features, the higher the detection
performance, and the lower the effect of the cover-source mismatch problem. In
this way the features also gain a universal meaning. Apart from the features
themselves, we propose to use the testing set images in the training set. In the
BOSS contest we were given 1000 test images, however, of course it is question-
able what had happened if we would have had only a few images in the testing
set. Probably, there would not be enough information to use as a feedback to
the steganalyser. The increase of the number of images in the testing set allows
us to deduce more and more information about the camera characteristics and
to use it more efficiently in the steganalysis.

We have two basic designs here: one is based on the singular value decompo-
sition (SVD) which is called as controlled denoising and the other is based on
the discrete cosine transform (DCT) which is named as uncontrolled denoising.
The main idea behind the proposed approach is to inform the steganalyser with
the type of the testing images. Since the testing set is composed both of the
cover and stego images, the best way to alleviate this problem is to apply some
denoising algorithms to estimate the cover image. The estimated image is then
considered as a cover image and embedded with the same embedding rate used
to create the test images (which is known in advance and equals to 0.4).

For the controlled denoising, we determine the SVD of the image and set the
singular values to zero starting from the lowest one to the largest one as soon as
we reach to a certain mean squared error (MSE) between the decomposed image
and the original image. We selected this value as 0.1 which roughly equals to the



80 G. Gul and F. Kurugollu

MSE of the embedding noise. Then the denoised image is obtained by an inverse
SVD transform and rounding-clipping operation. For the uncontrolled denois-
ing, DCT transform is applied to the raw image and the resulting coefficients
are rounded. Then, the inverse transform with rounding-clipping in the spatial
domain is utilized to obtain the denoised image.

A more difficult yet powerful design for the cover-source mismatch problem
exists in case we are able to determine the source of the camera. In this case,
the deviations from the camera which we will use to build the training set and
the camera which is used to obtain the test images are due to different sensor
noise, lens types, etc. Given the test images such as BOSSRank, this deviation
can be modeled using camera fingerprints and this might lead to obtain training
images much closer to the ones obtained by the original camera.

3.2 Feature Selection

After having obtained the raw features, further optimization is possible with a
suitable feature selection algorithm. In this process, we aim to reduce the dimen-
sionality of the features as well as to increase the overall detection performance.
If a feature selection algorithm does not increase the performance, then either
we might use another feature selection algorithm or we stick to the raw features.
The exact solution of this problem is an exhaustive search and often impractical
in a reasonable time span. Another alternatives, more pronounced in the liter-
ature, are Sequential Floating Forward Search (SFFS) and Sequential Floating
Backward Search (SFBS) algorithms [10]. For each selected feature, excluding
further additions and subtractions from the set, it is necessary to make at least
ρ searches. Repeating this for s selected features gives at least O(ρs) complexity.
Along with this complexity, the structure of one by one feature selection is not
suitable for the features around 1000. The grouping of the features might be
desirable, which can reduce the complexity of SFFS or SFBS to a reasonable
time. Although we expect that correlated features should be grouped together
the problems such as the number of features in a group and/or the algorithm to
use for grouping are still open questions. We do still not know if such a design
would finally improve the performance. Therefore, we restricted ourselves to the
simplest feature selection algorithms. An attractive and simple feature selection
algorithm sorts the features according to their reliability by the use of a metric.

We consider two metrics here, which are p values of the ANOVA statistical
tests [11] and the co-variance between a feature and the embedding rate, respec-
tively. Similar to our previous experiences, when we determine the p values and
take the first K best features accordingly, we have not seen any performance im-
provement. It might be because of the correlation between the selected features,
i.e., a powerful classifier requires diverse information which is usually difficult to
be provided by correlated features. On the other hand, we were able to increase
the detection performance using co-variance as a metric. To calculate the co-
variance between a feature and the embedding rate informs us if the feature is
useful for the classification. We expect that good features should be correlated
to the embedding changes. To find out which features were useful, we selected
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Table 3. Detection Performances of the Single Feature Vectors With a Linear Classifier
on the BOSSBase Image set

# of features1 # of selected features2 Detection1 Detection2

k=1 256 121 70.0% 70.3%
k=2 66 × 61.5% ×
k=4 915 × 76.4% ×

k = 2&4 981 957 77.2% 77.3%
All 1237 1078 84.1% 84.4%

an image containing both complex and smooth regions. This image is embed-
ded with a random message by varying the embedding rates. Then, from each
embeeded image, we extracted the combined features (V2+V4, altogether 981
features). Next, the co-variance between the features and the embedding rate is
calculated and the features are sorted corresponding to their co-variances (in the
decreasing order). In the final step we determined the detection performances
with the best K features by adding them to the classification process one by
one. Using an SVM classifier the best performance is attained by 957 features.

4 Experimental Results

4.1 Image Set and Parameter Selection

We consider the BOSSBase training image set (V.92) with 9074 images and the
denoised image sets which are derived from the BOSSRank testing set [12] as
explained in the previous section. We choose the first 5500 images from BOSS-
Base and use this subset to find the optimum parameters of the SVM classi-
fier [13]. We consider a large space for the grid search algorithm, C&γ ∈ {2i|i ∈
{−20, ..., 20}}.4 The training and testing sets never overlap for any of the exper-
iments and iterated randomly for 5 times to get reliable parameters. Determined
parameters were C = 220 and γ = 2−1.

4.2 Simulation Results

In the first simulation, we obtained the detection performances of the feature
vectors per k both with and without feature selection using a linear classifier.
Randomly chosen 8074 images are used for training and the non-overlapping
1000 for the testing. Table 3 shows the corresponding average detection perfor-
mances of single classifiers over 100 random training and testing. In Table 3,
we can see that the feature selection improves the performance poorly. Actually
the performance improvement is more significant with an SVM classifier. How-
ever we give the results for a linear classifier because of the high computational
complexity of SVM (one single training and testing with an SVM takes more
4 The notations C and γ in this sub-section are taken from [13].
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Table 4. Detection Performances of the Designed Steganalyser on the BOSSRank
Testing Set When Trained With Various Training Sets

BOSSBase BOSSBase+BOSSRanksvd BOSSBase+BOSSRankdct All
84.0% 82.3% 85.0% 84.9%
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Fig. 2. ROC of the designed steganalyser for BOSSRank testing set

than half a day). It can be seen that when we consider feature selection and/or
all the features for the classification performance is improved significantly. In
the next experiment, we used SVM with the selected parameters (C = 220 and
γ = 2−1) and with the selected features (1078 features) for 20 random training
and testing. The average detection performance that we obtained was 85,8%.

In our last experiment, we considered both the BOSSBase and the denoised
2000 images obtained from the BOSSRank testing set. Accordingly we wanted
to see the effect of cover-source mismatch problem for the designed steganalyser
especially when some information is transferred from the testing set to the train-
ing set via denoising. Table 4 shows the detection performance of the designed
steganalyser for the BOSSRank image set. We need to note that there was never
a feedback from the testing set to the designed classifier after the ground truth
was revealed in the BOSS website. In Table 4, we can see that DCT based de-
noised 1000 images increased the detection performance of the classifier about 1%
whereas the SVD based denoised images, however, decreased the performance.
The reason is that SVD introduces always controlled same power of distortion
in the denoising process (with a MSE equals to 0.1) and DCT introduces un-
controlled power of distortion which is on average lower than that of SVD (on
average MSE about 0.08). We find the final results quite impressive because we
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loose no more than 1% due to the cover-source mismatch problem which was
around 3% when we considered the features only for k = 2&45. In Figure 2, the
ROC curve for the BOSSRank set is given. The null hypothesis H0 assumes that
a given image contains no data embedding. The Area Under the Curve (AUC)
is calculated as 93% whereas the false positive and false negative rates were
19,8% and 10.2% respectively.

5 Conclusions and Outlook

In this paper a novel steganalysis methodology is presented. It applies a func-
tion to the image under test, obtains the k variate PDF estimates and finally
uses a suitable downsampling function. Having obtained the feature vectors, our
methodology serves an extensive optimization process. We optimize the proposed
model especially for the HUGO algorithm during the BOSS contest. Our obser-
vation is that HUGO leaves telltale effects on the filtered domain when filtering
is especially highpass. This also removes most of the image content therefore
it will be interesting to evaluate why HUGO is detectable for the second order
derivatives in a pure theoretical work. In this work we considered both linear and
non-linear filtering as a function applied to the image. Our main constraint was
the dimensionality problem for a powerful classification therefore much effort is
served in this area. Another problem which we dealt with was the cover-source
mismatch problem. For the solution of this problem we proposed to use the de-
noised test images in the training process. This solution was able to increase the
detection performance by 1%. Further performance improvement was obtained
by a suitable, yet fast feature selection algortihm. After all efforts we were able
to determine the BOSSRank with 85% accuracy which is only 0.8% less than the
overall score which we obtained for the BOSSBase training image set. Finally
we would like to mention that there are some following future works having very
high potential to further increase the detection performance.

– (5) is not optimized with a powerful search algorithm such as an exhaustive
search

– For k = 2, we have not used non-linear filtering and we have not considered
a wider or a narrower range (only T=5 is considered)

– for k = 1, we have not used non-linear filtering, no optimization for linear
combination parameters such as the one done in (5), and no range optimiza-
tion

– No detailed denoising algorithms have been performed for the cover-source
mismatch problem.

– No steganalytic attacks have been performed only on the saturated image
regions

5 There is no formal way of calculating the cover-source mismatch gap. In this work
we consider the deviation of the BOSSRank score from the average score that we
obtained from the BOSSBase image set.
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Abstract. This paper describes our experience with the BOSS compe-
tition in chronological order. The intention is to reveal all details of our
effort focused on breaking HUGO – one of the most advanced stegano-
graphic systems ever published. We believe that researchers working in
steganalysis of digital media and related fields will find it interesting,
inspiring, and perhaps even entertaining to read about the details of our
journey, including the dead ends, false hopes, surprises, obstacles, and
lessons learned. This information is usually not found in technical papers
that only show the final polished approach. This work accompanies our
other paper in this volume [9].

1 Introduction

Competitions, such as BOSS (Break Our Steganographic System) [5] or BOWS
(Break Our Watermarking System) [2] help focus the attention of the research
community to a specific problem and thus advance the field by a large margin
within a rather short time span. This is because challenges and competitive
environment have always appealed to humans and also due to the fact that the
participants do not need to formulate the problem (a task that is sometimes
more important than the solution). Moreover, the competition guarantees that
the results of different teams are comparable. For BOSS, the performance is
evaluated using a single scalar value – the BOSSrank score.

According to our understanding, the original intention behind BOSS was to
investigate whether content-adaptive steganography improves steganographic se-
curity for empirical covers in the form of raster, never-compressed images. The
fact that in adaptive steganography the selection channel (placement of embed-
ding changes) is publicly known, albeit in a probabilistic form, could in theory
be exploited by an attacker. Adaptive schemes also introduce more embedding
changes than non-adaptive schemes because some pixels are almost forbidden
from being modified. Thus, an adaptive scheme will embed with a larger change
rate than a non-adaptive one. On the other hand, the changes are constrained to
those regions of images that are hard to model and thus the change rate is not
an appropriate measure of statistical detectability as it puts the same weight
to all pixels. The organizers of BOSS proposed a different distortion measure
and argued that it better corresponds to detectability of embedding. To further
substantiate their claim, the measure was incorporated in the steganographic al-
gorithm HUGO (Highly Undetectable SteGO) [16] and the stego community was

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 85–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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challenged to attack it. Preliminary tests with existing steganalyzers indeed in-
dicated that HUGO is significantly more resistant to steganalysis than previous
algorithms.

The BOSS competition, including the rules and the materials made available
to the competitors, is described in a different paper in this volume [1]. Our team
entered the competition at the end of August. This paper reveals the details of
our investigation in chronological order. This technical narrative will hopefully
be inspiring and maybe even amusing to those who tried to break HUGO and,
in general, to all interested in steganalysis of digital media. Portraying our effort
including the final results as well as our false beliefs and dead ends will convey
those aspects of research work that is typically not found in technical papers.
Our understanding of the field has evolved much over the last few months. We
were forced to abandon established paradigms and reevaluate existing empirical
truths. As a result, we learned quite a bit and we certainly hope that the reader of
this paper will as well. This paper accompanies another paper [9] in this volume,
which contains additional technical details of our final approach together with
an extensive experimental section.

Everywhere in this article, lower-case boldface symbols are used for vectors
and capital-case boldface symbols for matrices or higher-dimensional arrays. The
symbols X = (xij) ∈ X = {0, . . . , 255}n1×n2 and Y = (yij) ∈ X will always rep-
resent pixel values of grayscale cover and stego images with n = n1n2 pixels.
When the two-dimensional character of the pixel arrays is not important, for
convenience, and hopefully without introducing any confusion, we index pixels
with a single symbol instead of a pair. We will use E[X ] and V ar[X ] for the
expected value and variance of random variable X . For any x ∈ R, the largest
integer smaller than or equal to x is floor(x). The detection accuracy of stegana-
lyzers will always be evaluated on a test set never seen by the steganalyzer using
a scalar score defined as

ρ � 1−min
PFA

1
2

(PFA + PMD(PFA)), (1)

where PFA and PMD are the probabilities of false alarm and missed detection.
When the score is computed from BOSSrank images, it will always be referred
to as the “BOSSrank score.”

2 Early Ideas – Is the Public Selection Channel a
Problem?

The very first idea that naturally lends itself is whether it is possible to somehow
utilize the fact that the attacker can approximately determine the probabilities
with which each pixel was changed during embedding. According to the folklore,
revealing where embedding changes are made and where they are not may be a
weakness of adaptive embedding that may be exploited.

HUGO modifies pixel xi by ±1 with probability pXi that can be determined
from the cover image X and the payload.1 Since the source code of HUGO
1 For details, see [1] in this volume.
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is public, one can easily extract the algorithm that computes the probabili-
ties. However, when the image inspected by the attacker is a stego image, the
probabilities computed from the stego image will in general be slightly different
pYi = pXi . Fig. 1 shows pYi versus pXi , i = 1, . . . , n, for BOSSbase image no. 50.
Overall, pXi ≈ pYi with the largest relative errors for small pXi . In particular,
|pYi − pXi | ≤ 0.05 for 99.4% of pixels, |pYi − pXi | ≤ 0.01 for 85.2% pixels, and
|pYi − pXi | ≤ 0.001 for 40.4% of pixels.

Fig. 1. Left: Probability of embedding change computed from the stego image, pY
i ,

vs. pX
i (for image no. 50 from BOSSbase). Right: LSB plane of the upper-right corner

of image no. 235 from BOSSrank. The embedding changes are visible as black dots
around the image boundary.

Because the payload is known and because pXi ≈ pYi , one could in theory
derive (at least in expectation) the values of cover-image statistics, such as his-
tograms or co-occurrence matrices. However, even if we succeeded in accurately
estimating the cover-image statistics, using these estimates for steganalysis may
still be problematic because HUGO does not introduce any easily detectable
changes and we may not have any way of telling whether we are inspecting a
cover or a stego image.

Having abandoned this direction, it is rather amusing that HUGO’s embed-
ding changes can be detected visually in seven images from BOSSrank – images
no. 62, 195, 235, 396, 438, 948, and 983.2 All seven images contain a region
of pixels saturated either at 255 or at 0 while the rest of the image lacks any
complex texture. Since HUGO was forced to embed 0.4 bpp in every image and
since the probability of embedding in saturated areas is not completely zero,
the embedding leaves suspicious salt-and-pepper noise in the least significant
bit plane. An example is shown in Fig. 1 right. Notice that most of the visible
2 These images were all classified correctly using our feature-based approach described

below in this paper, thus the visual attack did not help us increase our BOSSrank
score.
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embedding changes are concentrated around the image boundary – most likely
a consequence of how the embedding probabilities are computed at boundary
pixels.

2.1 Detection by Correlation?

If we were able to estimate from the stego image whether a given pixel was mod-
ified by 1 or −1 with probability better than random guessing, we could detect
HUGO (and ±1) embedding using a correlation just like a spread-spectrum wa-
termark. This idea is essentially identical to the Weighted Stego steganalysis [8].
Using yi = xi+ si, si ∈ {−1, 0, 1}, we have 1/n

∑
i s

2
i = β, the change rate. (For

HUGO with payload 0.4 bpp, β ≈ 0.1, depending on the content.) Furthermore,
let x̂i = xi+Ξi be an estimate of xi from Y (e.g., x̂ij = (yi,j−1 +yi,j+1)/2), with
Ξi being the estimation error. Assuming that the embedding change ŝi can be
estimated from Y with Pr(ŝi = si) = b > 1/2, we now analyze the correlation
for a cover and a stego image:

c =
∑
i

(yi − xi)ŝi =
∑
i

(si −Ξi)ŝi =
∑
i

siŝi −
∑
i

Ξiŝi. (2)

When Y is a stego image and ifΞ and ŝ are uncorrelated,E[c] = β(2b−1)n while
for a cover image X, E[c] ≈ 0. Also, V ar[c] ∝ n in both cases. This opens the
possibility to detect embedding by thresholding c. This idea, however, hinges
upon two assumptions – that we can estimate the direction of an embedding
change with probability better than random guessing and the assumption of
Ξ and ŝ being uncorrelated. While it is, indeed, possible to estimate ŝi with
probability b > 1/2, for example by testing if a change of yij by 1 or −1 decreases
the sum

∑
0<|a|+|b|≤2 |yij − yi+a,j+b|, Ξ and ŝ are unfortunately correlated. The

reason is the content-adaptive character of embedding. As a result, even though
E[c(Y)] > E[c(X)], it is not possible to find a threshold for c as it varies greatly
across images. For some images, we observed the increase in correlation up to
60% but the average increase (over BOSSbase) was only 1.74%, which is by
several orders of magnitude smaller than the variations of c across images.

3 Pixel Domain Is Not Useful, Right?

HUGO preserves complex statistics in a 107-dimensional feature space built from
joint statistics of pixel differences on 7 × 7 neighborhoods. Thus, it may seem
that features computed from differences between neighboring pixels will lead
to weak detection simply because the embedding algorithm was designed to
preserve statistics in this domain. One argument supporting this point of view
is the experimental result reported in the original publication [16]: While the
performance of the second-order SPAM feature set [15] (dimensionality 686) on
HUGO is quite weak (ρ = 58%), after augmenting SPAM with the DCT-based
Cartesian-calibrated Pevný set [13] (dimensionality 548), the score improved to
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ρ = 65%.3 This line of reasoning initially motivated us to compute features in
an alternative domain, such as the wavelet domain. To this end, we decided to
modify the WAM feature vector originally introduced in [10].

The WAM features are computed by first transforming the image to the
wavelet domain using the Daubechis D8 wavelet, (H,V,D,L) = W (X). When
an undecimated transform is used, the first-level wavelet transform produces
four subbands, H,V,D,L, of the same size as the original image. The three
high-frequency subbands, H = (hij),V,D, are denoised using the Wiener filter
with variance σ2

W:

ĥi = σ̂2
i

σ̂2
i + σ2

W
hi, (3)

where σ̂2
i is the local variance at wavelet coefficient i estimated from its neighbor-

hood. Finally, the WAM features, μh
m, μ

v
m, μ

m
m ∈ R

9, are formed as nine central
moments of their corresponding high-frequency subband noise residuals:

μh
m = 1
n

n∑
i=1

∣∣ĥi − hi − (Ĥ−H)
∣∣m, m ∈ {1, . . . , 9}, (4)

which gives a feature vector of dimension 27.
Our initial tests were done on BOSSbase 0.9 containing 2 × 7, 518 images.

The database was randomly divided into two equal-size subsets, one used for
training and the other for testing. A Gaussian Support Vector Machine (G-
SVM) was trained using standard five-fold crossvalidation on a multiplicative
grid. The original WAM classifier with default σ2

w = 1/2 gave the score of ρ =
55.85%. To improve this rather weak performance, we decided to extend WAM
by adding 27 moments (4) computed directly from the subbands H,V,D to
inform the steganalyzer about the image content. This, indeed, makes sense to
do for spatially-adaptive steganography. This content-informed WAM feature
(WAMC) of dimensionality 54 reached the score of ρ = 57.40%.

Exploring a different extension of WAM features, we augmented them with
the same feature computed from an image re-embedded with the same payload of
0.4 bpp. This 54-dimensional vector (WAMre) produced a respectable ρ = 59%.

The final and most significant improvement of WAM involved replacing the
Wiener filter (3) with its adaptive version in which the fixed noise variance σ2

w
was replaced with the variance of the stego noise si at pixel i, σ2

w,i = pYi . The
best performance was achieved by merging the original 27 WAM features, 27
content features, and 27 WAM features obtained using the adaptive filter and
adding to it the same set of 81 features from a re-embedded image (total of 162
features WAMCPre). The final performance is summarized in Table 1.

As part of our investigation of alternative embedding domains, we also tested
the Cross-Domain Features (CDF) [13], which is a merger of the second-order
SPAM with Cartesian-calibrated Pevný set (total dimensionality 1234). A G-
SVM produced a prediction file with BOSSrank score of 68%, which is higher
than the score of 65% obtained using the same feature set reported by the Czech
3 This result was reported on the BOWS2 database [2].
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Table 1. Performance of the WAM steganalyzer and its various extensions

Feature Dimension Score ρ [%]
WAM 27 55.85

WAMC 54 57.40
WAMre 54 59.00

WAMCPre 162 62.97

University Team. This difference is most likely caused by a different training set.
While we trained on all images from BOSSbase 0.91, the Czech University Team
trained on one half of this database.

4 Going Back to Pixel Domain

Even though alternative domains may be useful in steganalysis, the best detec-
tion is usually achieved by forming features directly in the embedding domain. This
is where the embedding changes are localized and thus most pronounced. This
strategy, originally coined in 2004 [6], was later confirmed in [6,10,17,15,18,4]. Be-
cause HUGO’s embedding domain is known, after the early failures described in
the previous two sections, we revisited the pixel domain and achieved a major
breakthrough on September 23, 2010.

HUGO approximately preserves the joint distribution of first-order differences
r

(1)
ij = xi,j+1−xij between four neighboring pixels – the co-occurrence of triples

(r(1)
ij , r

(1)
i,j+1, r

(1)
i,j+2) truncated4 to a finite dynamic range, rij ← truncT (rij),

where truncT (x) = x when x ∈ [−T, T ] and truncT (x) = T sign(x) otherwise.
Thus, to detect traces of embedding, a fourth-order co-occurrence (r(1)

ij , r
(1)
i,j+1,

r
(1)
i,j+2, r

(1)
i,j+3) is needed. However, with increasing order of the co-occurrence its

elements will be rather sparse when computed from small images and thus too
noisy for steganalysis. The key idea and a major breakthrough in our effort to
break HUGO was the realization that another way to form a statistic that spans
more than four pixels is to use higher-order pixel differences (residuals).

Because the second-order residuals, r(2)
ij = xi,j−1−2xij +xi,j+1, involve three

pixels, one needs to consider the joint statistic of only three adjacent differences
(r(2)
ij , r

(2)
i,j+1, r

(2)
i,j+2). This keeps the co-occurrence matrix well-populated and thus

useful for detection. The second-order residuals better remove content that is
locally linear – while r(1)

ij may get out of the dynamic range [−T, T ] in locally
linear regions, r(2)

ij may be mapped back inside the interval [−T, T ]. One can
also interpret r(2)

ij = 2(x̂ij − xij), where x̂ij − xij is the noise residual at pixel ij
obtained using a simple denoising filter that predicts the value of the central pixel
as an arithmetic average of its two closest neighbors: x̂ij = 1

2 (xi,j−1 +xi,j+1). It
is very important that the denoised value does not depend on the central pixel
4 The truncation is an established way to keep the dimensionality low prior to forming

joint statistics.
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in any way, otherwise x̂ij would be affected by the stego signal sij , which would
thus be undesirably suppressed in r(2)

ij .
Before describing the first successful feature set that gave us BOSSrank over

70%, we introduce four types of operators that can be applied to any two-
dimensional array A = (aij). The horizontal co-occurrence is a matrix Ch(A)
whose (d1, d2, d3)th element, d1, d2, d3 ∈ [−T, T ], is

Ch
d1d2d3 (A) = |{(i, j)|(ai,j , ai,j+1, ai,j+2) = (d1, d2, d3)}|. (5)

The operators Cv, Cd, and Cm are defined analogically.
After many initial experiments, we arrived at the following two feature vectors

that allowed us to improve our BOSSrank score by a rather large margin. First,
compute four second-order residuals at each pixel along the horizontal, vertical,
diagonal, and minor diagonal direction:

rhij = xi,j−1 − 2xij + xi,j+1, rvij = xi−1,j − 2xij + xi+1,j ,

rdij = xi−1,j−1 − 2xij + xi+1,j+1, r
m
ij = xi−1,j+1 − 2xij + xi+1,j−1. (6)

and then form the MIN and MAX residuals:

rMIN
ij = truncT (min{rhij , rvij , rdij , rmij}) rMAX

ij = truncT (max{rhij , rvij , rdij , rmij}).
(7)

The MINMAX feature vector is defined as

FMINMAX = (Ch(RMIN) + Cv(RMIN), Ch(RMAX) + Cv(RMAX)). (8)

Since each cooccurrence matrix has (2T + 1)3 elements, FMINMAX has dimen-
sionality of 2(2T + 1)3.

By training the MINMAX feature vector with T = 4 using Fisher Linear
Discriminant (FLD) on 9,074 cover and stego images from BOSSbase 0.91, we
achieved a BOSSrank score of 71% on October 3, 2010.

The next discovery we made can be interpreted as a clever marginalization of
the MINMAX vector for T = 8. Before forming rMIN

ij and rMAX
ij , the differences

are quantized using a scalar quantizer Qq(x) = floor(x/q) with q a positive
integer:

FQUANT,q =(
Ch(Qq(RMIN)) + Cv(Qq(RMIN)), Ch(Qq(RMAX)) + Cv(Qq(RMAX))

)
. (9)

For q = 2, this QUANT feature can “see” twice as far as MINMAX but in
a quantized manner to keep the dimensionality of the feature unchanged. By
training a G-SVM on BOSSbase 0.91 on the 2,916-dimensional feature vector
(FMINMAX,FQUANT,2), with T = 4, we obtained a BOSSrank score of 73% on
October 4, 2010.

On October 11, the organizers announced that the first 7,518 stego images
from BOSSbase 0.9 and 0.91 were created with a different set of parameters
(σ = 10, γ = 4, see [16] or [1] for details of the embedding algorithm) than
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all BOSSrank stego images and the rest of the stego images in BOSSbase 0.91
(which were created with σ = 1, γ = 1). This change in parameters caused a
mismatch between the training and testing stego sources. After recomputing the
MINMAX and QUANT features on the correct stego images, on October 12 we
achieved the score of 75% by merging the MINMAX and QUANT into a 2,916-
dimensional feature set. Thus, the drop of performance due to this stego-source
mismatch was 2%. To us, it was a HUGE difference even though the BOSS Team
claimed on their blog on October 11 that HUGO behaves “similarly” for both
choices of the parameters.

At this point, our team became confident that the 80% milestone was within
reach by the end of October. We could not have been more wrong! Not only
have we become hopelessly stuck at 75% for more than a month, but it would
take us two and half months of very hard work to reach 80%. And we did so on
December 23 with a feature vector of dimensionality 22, 307 trained on 2×24, 184
images. To be able to train a classifier at this scale, we had to abandon SVMs
and reinvent the entire machine learning approach. But before we get to that,
in the next section we describe the Warden’s nightmare.

5 The Dreaded Cover-Source Mismatch

The next logical step in our attack was to fine-tune our feature set by finding
the optimal value of the threshold T , adding other versions of the features, and
perhaps by training on a larger number of images. We also moved to a four-
dimensional co-occurrence operator for the QUANT feature set, obtaining thus
a 4,802-dimensional feature vector (2× (2×3 + 1)4 = 4802). To our big surprise,
while we steadily improved detection accuracy on BOSSbase by adding more
features, the BOSSrank score was moving in the opposite direction. We began
facing the dreaded cover-source mismatch issue5 – our classifier was trained on
a different source of cover images (BOSSbase) than the source of BOSSrank
images. Thus, as we optimized our detector on the training set, the performance
on the testing set was steadily worsening. Our detector lacked what is recognized
in detection theory as robustness.

Google search on “robust machine learning” returned publications that con-
cerned only the case of training on noisy data or on data containing outliers.
Our problem seemed different – we trained on one distribution and tested on
another.

Perhaps using classifiers with less complicated decision boundary than the one
produced by a G-SVM might help. The performance of a linear SVM (L-SVM),
however, was consistently subpar to G-SVM and disturbingly comparable to the
much simpler FLD classifier (see Table 2).

Another way to increase robustness, or so we thought, was to train on a larger
set of images. We added to BOSSbase 0.91 another set of 6,500 images taken
in raw format by 22 different cameras converted using the same script that was
5 Cover source mismatch differs from overtraining as the latter refers to the lack of

ability of the detector to generalize to unseen examples from the same source.
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Table 2. BOSSrank score of the first successful feature sets, MINMAX and QUANT,
for three different machine learning approaches

Feature Dimensionality Training set G-SVM L-SVM FLD
MINMAX 1458 BOSSbase 0.92 73 70 71
QUANT 1458 BOSSbase 0.92 73 72 71

MINMAX+QUANT 2916 BOSSbase 0.92 75 72 71
MINMAX+QUANT 2916 BOSSbase+CAMERAS 71 70 -

used for creating the BOSSbase. Training on more images, however, seemed to
make the BOSSrank score only worse (see the last row in Table 2).

The cover-source mismatch has been recognized by the research community
as a serious issue that may complicate deployment of steganalysis in real life.
The authors of [10] reported that the performance of the WAM steganalyzer
on images could be vastly improved if the steganalyzer was trained on images
from the exact same camera or, to a slightly lesser degree, on images from a
camera of the same model. However, training WAM on a mixture of images from
CAMERAS, the performance was significantly worse. The cover-source mismatch
problem was also mentioned in the more recent publication [3], where the authors
tested various steganalyzers on multiple sources for the ±1 embedding. Thus,
as the next logical step in our quest we decided to find out as much as possible
about the source of covers for BOSSrank. We saw this as the only way to further
improve our BOSSrank score.

5.1 Forensic Analysis of BOSSrank

On October 14, we extracted the sensor fingerprint [7] for each camera from
BOSSbase (we did so from the resized grayscale 512 × 512 images). Then, we
tested all BOSSrank images for the presence of the fingerprints. Only one camera
tested positive – the Leica M9. Its fingerprint was found in approximately 490
images. We knew the source of one half of the database.

Visual inspection of BOSSrank images revealed that at least some portion
of images was taken in the Pacific Northwest because many pictures contained
license plates from the State of Oregon and Washington. One image (see Fig. 2
upper left) contained an address, which, after plugging it in GoogleMaps, re-
turned the exact location – Portland, Oregon. And after the photographer was
identified in a window pane reflection in image no. 558 (see Fig. 2 right), we
knew what the camera was – Panasonic Lumix DMC-FZ50 – and it belonged to
Tomáš Filler, a BOSS Team member.6 However, we could not use this finding in
competition because we relied on information other competitors did not have ac-
cess to. Therefore, we closed our forensic investigation knowing that roughly one
half (and potentially more) BOSSrank images were from Leica M9. The source
6 The camera was confirmed by identifying its fingerprint in about 90 BOSSrank

images. Here, we extracted the fingerprint from other images taken by Tomáš Filler
during our previous trips to the SPIE conference.



94 J. Fridrich et al.

of the remaining images in BOSSrank was declared unknown. All we needed to
do now was to obtain more images from Leica.

Since stealing the camera from Patrick Bas seemed too dangerous and buy-
ing it too expensive ($7,000), we rented it from http://www.lensrentals.com/
for a week (October 23–30). The camera was rented with the standard 50mm
lens.7After a grueling work with a heavy and boxy camera with no auto focus,
we managed to take a total of 7,301 images in their original resolution of 18
megapixels. All images were processed using the BOSS conversion script and
subsequently embedded with payload 0.4 bpp. After the MINMAX+QUANT
features were extracted from them, we built two detectors – one G-SVM trained
on all BOSSbase images that would be used for detection of all non-Leica images
from BOSSrank, and the second G-SVM specifically trained on the union of our
7,301 Leica images and the 2,267 Leica images from BOSSbase. The decisions
would then be merged into one prediction file. The result was quite disheartening
– a measly 74% (BOSSrank score). We ran a couple of more experiments, such as
training a G-SVM on a union of BOSSbase and 7,301 Leica images and testing
the entire BOSSrank with it, but none of these experiments would produce a
BOSSrank score higher than 74%.

This rather time-consuming exercise was an important lesson for us because
we realized what makes a cover source and how hard it is to duplicate it. First,
we took images with a different lens (50mm) than the BOSSbase images (35mm).
The lens may have a significant impact on steganalysis because a longer focal
length means lower depth of field, which implies less content in focus and more
content slightly out of focus. Of course, an out-of-focus content is easier for the
steganalyst.

The content of images has obviously a major influence on content-adaptive
steganalysis. The cover source is a very complex entity that is affected by the
lens, the environment in which pictures are taken and even the photographer’s
habits – stopping the lens more leads to a higher depth of field but also darker
images with potentially more motion blur, while opening the lens leads to shorter
exposures and less dark current but lower depth of field. Our images were all
taken in the Fall in a little town of Binghamton in upstate New York. On the
contrary, a large number of the Leica images in BOSSrank showed scenes with
an ocean, ships, beaches, etc. As one of us sighed: “Binghamton in the Fall is
a poor replacement for French Riviera.” Consequently, it was rather foolish to
think that we could duplicate the cover source.

6 Diversity Is Important

One important lesson we learned by now is that one should not be afraid of
high feature dimensionality. After all, we successfully trained a 2,916-dimensional
feature vector on 2×9, 074 images and obtained a high BOSSrank score. However,
scaling up the dimensionality simply by increasing the threshold T or the order of
7 Only later it was pointed out to us that the lens information is in the EXIF headers

of BOSSbase images. And the lens used for BOSSbase had a focal length of 35mm.
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Fig. 2. Identifying the source of BOSSrank

the co-occurrence matrix did not lead to better results because the added features
were increasingly sparsely populated. Thus, we refocused our effort to creating
a more diverse feature set while keeping the dimensionality around 3,000, what
seemed as a sweet spot for the given training set (BOSSbase). To this end, we
used a lower threshold T = 3 and incorporated higher-order differences among
neighboring pixels. One can easily extend the MINMAX and QUANT feature
vectors (8) and (9) to higher-order residuals:

r
(3)
ij = xi,j−1 − 3xij + 3xi,j+1 − xi,j+2 (10)

r
(4)
ij = −xi,j−2 + 4xi,j−1 − 6xij + 4xi,j+1 − xi,j+2. (11)

We also built features using fourth-order co-occurrence operators. To limit the
growth of feature dimensionality, we used T = 2 for all fourth-order co-
occurrences. This reasoning gave birth to the following 3,872-dimensional feature
set SUM3 consisting of four different subsets (see Table 3).

Table 3. A merger of four feature sets, SUM3, computed from second- and third-order
differences among pixels forming co-occurrence matrices of order 3 and 4. The feature
dimensionality is 3,872.

Difference order q Cooc. order T Dimensionality
2nd 2 3 3 686
3rd 2 3 3 686
2nd 2 4 2 1,250
3rd 2 4 2 1,250
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The strategy of increasing feature diversity was successful. By training a G-
SVM on images from BOSSbase and with the feature set shown in Table 3 we ob-
tained a BOSSrank score of 76% on November 13. The direction that was opening
for us was clear – instead of blindly increasing the threshold and co-occurrence
order, increase the feature diversity! For example, one could form higher-order
residuals (differences) using two-dimensional kernels instead of one-dimensional
or extract the residuals along edges to improve detection for textured images.
The complexity of training a G-SVM, however, was beginning to limit the speed
of development, while the performance of the much faster L-SVMs was sub-
par compared to G-SVMs. We needed an alternative machine learning tool that
would enable faster development and testing of many ideas and combinations of
features. Fortunately, our other research direction that we were simultaneously
pursuing independently of the BOSS competition gave us just what we needed
– an inexpensive, fast, and scalable machine learning approach.

7 Ensemble Classifiers – A Great Alternative to SVMs

In this section, we only provide a rather brief description, referring to [14] and our
other paper in this volume [9] for a more detailed exposition of this methodology,
experimental evaluation and comparison to SVMs as well as a discussion on the
relationship of our approach to prior art in machine learning.

Starting with a feature set of full dimensionality d, we build a simple classifier
(base learner), such as an FLD, on a randomly selected subset of dred � d
features while using all training images. The classifier is a mapping F : R

d →
{0, 1}, where 0 and 1 stand for cover and stego classes. This is repeated L
times with a different random subset of the features. Consequently, we obtain L
classifiers (FLDs) F1, . . . , FL. Given a feature vector b ∈ R

d from the testing set,
the ensemble classifier makes a decision by fusing the individual decisions of all
L FLDs, F1(b), . . . , FL(b). Although many fusion rules can certainly be used,
we used simple voting as it gave us the same performance as more complicated
rules.

To give the reader an idea about the savings, the ensemble classifier can be
trained on 2× 9, 074 images with a 10, 000-dimensional feature set with L = 31
and dred = 1600 and at the same time make decisions about the entire BOSSrank
in about 7 minutes. This was achieved on a DELL Precision T1500 machine
with 8GB of RAM and 8 Intel Cores i7 running at 2.93GHz. The same task
when approached using a G-SVM takes substantially longer. Just obtaining the
performance for a single grid point in cross-validation took between 2–17 hours,
depending on the SVM parameters. Most importantly, however, the speed and
simplicity of ensemble classifiers does not seem to compromise their performance.
When comparing our BOSSrank scores obtained using the ensemble classifier
and G-SVMs, the values were comparable and often in favor of the ensemble
classifier. We view this approach to steganalysis as a viable fully-functional and
scalable alternative to SVMs.
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8 The Behemoths and the Final Attack – When 1%
Seems Like Infinity

The scalability and low-complexity of the ensemble classifier enabled us to im-
prove our BOSSrank score simply by gradually scaling up our features and train-
ing sets. On November 15, we reached the milestone of 77% with a set consisting
of 5,330 features trained with L = 31 and dred = 1600 on the entire BOSSbase.
The set was obtained by adding the 1, 458-dimensional MINMAX vector with
T = 4 to SUM3 (see Table 3).

On November 29, we added more features to our 5,330-dimensional set to form
a feature vector with 9,288 elements. The added features were: 1) the QUANT
feature vector (9) with q = 2 constructed from fourth-order residuals and a
4D co-occurrence (dimensionality 2 × 625) formed from horizontal and vertical
samples as in (9) and 2) an equivalent of the QUANT feature (9) with q = 2
constructed from second-order residuals and a 4D co-occurrence of residuals
arranged into a 2×2 square (2×625), and 3) a vector constructed from residuals
computed using a translationally-invariant Ker–Böhme kernel [12]

⎛
⎝
−1 2 −1

2 −4 2
−1 2 −1

⎞
⎠ , (12)

and a 3D co-occurrenceCh(R)+Cv(R) (729 features) and the same co-occurrence
after quantizing the residual with q = 2 (another 729 features). All together, the
new set had 5330 + 2500 + 1458 = 9288 features. When trained on BOSSbase,
this set produced a score of 76%. However, after enlarging the training set by
adding images from CAMERAS to 2 × (9074 + 6500) = 2 × 15, 574 images, we
obtained another Hall-of-Fame entry of 78% (again with L = 31 and d = 1600
as these parameters were becoming our “sweet spot”). This submission was an
eye-opener. We learned that to maximize the BOSSrank score, we had to keep a
certain balance between the feature dimensionality, d, and the number of images
in the training set. Given 2N images for training, the best results were obtained
when N was by 20–50% larger than d. Training on too few images or too many
would make the BOSSrank score worse. And we observed this peculiar behavior
until the end of the competition. We do not have a good explanation for this
oddity but hypothesize that it is one of the strange consequences of the cover-
source mismatch. This rule of thumb does NOT hold when the cover-source
mismatch is absent. Without the mismatch, the detection accuracy simply keeps
on improving with increased feature dimensionality (see our other paper [9] in
this volume).

The rest of our record submissions are displayed in Fig. 3. The last three were
achieved with L = 51, 51, 71 and dred = 2400. The winning 24,993-dimensional
feature set B is described in the Appendix. Our strategy was simple – keep on
adding various types of features computed from different types of residuals and
their quantized versions and scale the training set accordingly. We observed that
the detection performance on BOSSrank was rather flat w.r.t. the parameters
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of the ensemble classifiers L and dred. With increasing feature dimensionality,
we had to increase dred from 1600 to 2400 or 2800, while the number of base
learners, L, did not affect the performance as much and we kept it in the range
31–81. The individual predictions converged rather fast with increased L – for
the winning submission, the prediction files for BOSSrank differed in only 37
images (for L = 31 and 51) and in 18 images for L = 51 and 81.

We have also tried increasing the dimensionality up to 37,859 and the training
set to 2 × 44, 138 images but we started observing a drop in BOSSrank. This
may mean that we saturated our approach but a more likely explanation is
that our saturation in performance was another consequence of the cover-source
mismatch.

The winning submission we selected for the final ranking reached the score
of 80.3%. After the ground truth was revealed, we found out that our best
prediction file had a score of 80.5%.
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78   9388     16375
79   17933   24184
80   22307   24184
81   24933   34719

Fig. 3. Chronological development of our BOSSrank score. The table shows the feature
dimensionality and the number of cover images on which the classifier was trained.
Scores 77% and larger were obtained using ensemble classifiers.

9 What Have We Learned?

Quite a bit. First, there is no reason why steganalysts should frown at high-
dimensional feature sets. To the contrary, we believe that high-dimensional fea-
tures are a necessity to attack advanced steganography. The dimensionality could
probably be reduced by clever marginalization, however, automatized design us-
ing ensemble classifiers is preferable to hand-crafting the features. The ensemble
classifiers offer a scalable and quite simple classification with very similar per-
formance to that of the much more complex SVMs.

The second important lesson is the existence of the Warden’s nightmare – the
cover-source mismatch that manifests when a detector optimized on one source
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when applied on another experiences a loss of accuracy. Solving this problem ap-
pears to be extremely difficult because the mismatch can have too many forms.
Just like robust statistics and robust versions of the likelihood-ratio test were
developed to address the problems with robustness of optimal detectors and
estimators, machine learning needs the same. Unfortunately, to the best knowl-
edge of the authors very little appears to have been published on this important
topic. If the BOSS oragizers had strictly adhered to the Kerckhoffs’ principle,
the cover source mismatch would never manifest and the competition would be
more about breaking HUGO, which was perhaps the original motivation behind
BOSS.

The steganalyst can improve the detection by training on a source with prop-
erties as close to the one from which the test images came. We tried to alleviate
the negative impact of the cover-source mismatch by adding to BOSSbase all
BOSSrank images after denoising (and pronouncing them as “covers”) and all
images after embedding in them payload of 0.4 bpp with HUGO (and pronounc-
ing them as “stego”). The feature vectors of these 2 × 1000 images added to
the training database should be rather close to the feature vectors of BOSSrank
images, which might improve robustness to the cover source. We called this idea
“training on a contaminated database” but were unable to improve our results
with it. We plan to explore this rather interesting idea as part of our future
effort.
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Appendix – The Final 24,993-Dimensional Behemoth

For compactness, we use the following convention. Each feature set type is de-
scribed using four parameters (s, q,m, T ): s – the span of the difference used to
compute the residual (s = 3, 4, 5, . . . for second-order residuals, third-order, etc.),
q is the quantization step, m the order of the co-occurrence matrix, and T the
truncation threshold. When a parameter is a set, the features are to be formed
using all values from the set. The KB set was formed using (12) as described
in Section 8. The SQUARE set is obtained from the MINMAX residual with
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Table 4. The BOSS winner – the behemoth B of dimensionality 24,993

Feature type Feature parameters (s, q,m, T ) Dimensionality
MINMAX (3, {1, 2}, 3, 3), (4, {2, 3}, 3, 3), (5, 6, 3, 3) 5× 686

(3, {1, 2}, {5, 6}, 1) 2× 486 + 2× 1458
(3, 2, 4, 2), (4, {2, 3}, 4, 2), (5, {1, 6}, 4, 2) 5× 1250
(2, {1, 2}, 4, 2) 2× 1250

MARKOV (3, {1, 2}, 3, 3) 2× 686
KB (9, {1, 2, 4}, 3, 4) 3× 729
SQUARE (3, 2, 4, 2) 1250
CALI (3, 2, 3, 3), (4, {2, 3}, 3, 3) 3× 686
EDGE (6, {1, 2, 4}, 3, 3) 3× 686

co-occurrence elements formed by putting together residuals from 2× 2 squares
instead of straight lines. In the CALI set, prior to computing the features from
the MINMAX residual, the image was convolved with an averaging 2× 2 kernel
to “erase” the embedding changes in a manner similar to calibration as proposed
by Ker [11]. The residuals, REDGEMIN and REDGEMAX, for EDGE were formed
by taking MIN and MAX from residuals obtained using four directional kernels
meant to follow edges in the image. An example of a kernel oriented along the
minor-diagonal direction is:

⎛
⎝
−1 2 −1

2 −1 0
−1 0 0

⎞
⎠ . (13)

The final feature set for EDGE is formed as Ch(REDGEMIN) +Cv(REDGEMIN),
Ch(REDGEMAX) + Cv(REDGEMAX).
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Abstract. Content-adaptive steganography constrains its embedding
changes to those parts of covers that are difficult to model, such as tex-
tured or noisy regions. When combined with advanced coding techniques,
adaptive steganographic methods can embed rather large payloads with
low statistical detectability at least when measured using feature-based
steganalyzers trained on a given cover source. The recently proposed
steganographic algorithm HUGO is an example of this approach. The
goal of this paper is to subject this newly proposed algorithm to analy-
sis, identify features capable of detecting payload embedded using such
schemes and obtain a better picture regarding the benefit of adaptive
steganography with public selection channels. This work describes the
technical details of our attack on HUGO as part of the BOSS challenge.

1 Introduction

Steganalysis is a signal detection problem – the task is to discover the presence
of secretly embedded messages in objects, such as digital images or audio files.
Since the dimensionality of digital media is typically very large, the detection is
always preceded by dimensionality reduction – the objects are represented using
a feature vector of a lower dimensionality. Steganalyzers are built in the feature
space by training a classifier on a large database of cover and stego objects.

The main goal of this paper is to improve detection of adaptive steganography
that makes embedding changes in hard-to-model regions of covers. A recent ex-
ample of this type of steganography is HUGO [14]. Although this algorithm was
designed for images in raster formats, the ideas can be applied to other domains
and other media types. What distinguishes HUGO from other algorithms is
that it approximately preserves a very high-dimensional feature vector and thus
takes into consideration a large number of complex dependencies among neigh-
boring pixels. With the help of advanced syndrome-coding techniques, HUGO
embedding was reported undetectable using state-of-the-art steganalyzers even
at rather large payloads [14].

It appears that as steganographers turn to feature spaces of very high di-
mension, steganalysts need to do the same to capture more subtle relationships
among individual pixels. This brings about two major problems – how to form
good high-dimensional feature sets and how to train classifiers in high dimensions
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with a limited number of training examples. To detect content-adaptive embed-
ding, we need better models of local content, which could be achieved simply
by adding more features. However, the dimensionality should be increased with
care and one needs to make sure the features are diverse and well populated even
in complex/textured regions. We propose to form the features as co-occurrences
of image noise residuals obtained from higher-order local models of images.

The second problem presents a formidable challenge because training classi-
fiers in high-dimensions requires a large number of examples to properly gen-
eralize to unknown images. However, it is not always easy or even possible for
the Warden to obtain a sufficiently large number of examples from a given cover
source. Additionally, training Support Vector Machines (SVMs) on a large num-
ber of examples in high-dimensional spaces can quickly become computationally
prohibitive. To address these issues, we propose ensemble classifiers obtained
by fusing decisions of base learners trained on random subspaces of the feature
space. This machine learning approach is scalable and achieves accuracy com-
parable to SVMs. Its low complexity and scalability is especially convenient for
rapid design and development – an attribute we view as vital for construction
of practical steganalyzers as well as for winning steganography competitions.

The HUGO algorithm is described in [14] and a brief description also appears
in [1] in this volume. In the next section, we introduce HOLMES – a strategy for
constructing a large number of diverse features capable of detecting embedding
changes in more complex parts of images. The ensemble classifier is detailed in
Section 3, while all experiments are described in Section 4. We experimentally
establish HUGO’s detectability, compare its security with its non-adaptive ±1
version, and contrast the performance of HOLMES to previous art. The paper
is summarized in Section 5, where we also discuss the implications of our attack
on design of future steganographic schemes.

Everywhere in this article, boldface symbols are used for vectors and capital-
case boldface symbols for matrices or higher-dimensional arrays. The symbols
X = (xij) ∈ X = {0, . . . , 255}n1×n2 and Y = (yij) ∈ X will always represent
pixel values of 8-bit grayscale cover and stego images with n = n1n2 pixels.

2 The HOLMES Feature Set

Spatially-adaptive steganography makes embedding changes in those regions of
the cover image that are hard to model, which makes the detection more difficult.
On the other hand, the public selection channel could also be a weakness because
the Warden can estimate the probability with which each pixel is modified. The
authors of this paper were unable to utilize this information to improve their
attack.

HUGO approximately preserves the joint statistic of differences between up to
four neighboring pixels in four different directions. Thus, a better model is needed
that can “see” farther than four pixels. We achieve this by working with higher-
order noise residuals obtained by modeling the local content using polynomials.
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2.1 Residuals

A popular way to design steganalysis methods is to extract the features not
directly from the stego image Y but from a signal with a more favorable SNR –
the image noise residual R = (rij):

rij = yij − Pred(N (Y, i, j)), (1)

where Pred(N (Y, i, j)) is an estimate of the cover image pixel xij from its neigh-
borhood N (Y, i, j).

A tempting option is to implement Pred(.) as a denoising filter. In fact, some
previously proposed steganalysis features were designed exactly in this manner.
In WAM [7], the predictor is the Wiener filter applied to wavelet coefficients.
In [4], a shift-invariant linear predictor was used for an entire subband in a de-
composition obtained using quadrature mirror filters. The problem with using
denoising filters and linear filters, however, is that they place substantial weight
on the central pixel being denoised / predicted. Consequently, the predicted
value is generally a biased estimate of the cover pixel and the stego signal be-
comes suppressed in the residual (1). What is really needed for steganalysis is an
unbiased estimate of the central pixel obtained from the neighboring pixels, ex-
cluding the pixel being estimated. The recently proposed SPAM feature set [13],
as well as the earlier work [2,15], use the value of the neighboring pixel as the
prediction:

Pred(N (Y, i, j)) = yi,j+1. (2)
While the noise residual R is confined to a narrower dynamic range when
compared to Y, it remains high-dimensional and cannot be used directly as
a feature in machine learning. To reduce its dimensionality, features are usu-
ally constructed as some integral quantities. Considering the noise residual as
a Markov chain, one can take its sample transition probability matrix [2,13,15]
or the sample joint probability matrix (the co-occurrence matrix) as a feature.
To capture higher-order dependencies among pixels, higher-order co-occurrence
matrices are usually formed. However, the number of elements in 2D and 3D ma-
trices rapidly increases and the bins become sparsely populated, making them
less useful for steganalysis. This problem is usually resolved by marginalization
before forming the co-occurrences – the residual is truncated, rij ← truncT (rij),
where truncT (x) = x when x ∈ [−T,−T + 1, . . . , T ], and truncT (x) = T sign(x)
otherwise. The truncation, however, introduces an undesirable information loss.
Consider a locally linear part of an image, such as sky with a gradient of blue.
The differences between neighboring pixels may be quite large due to the color
gradient and thus end up being truncated despite the fact that this portion of
an image is well modellable. Similar situation may occur around edges. Even
though the content around the edge pixels may be quite complex, the values
of pixels that follow the edge appear predictable using polynomial models (see
Fig. 1).

These considerations motivated us to propose Higher-Order Local Model Es-
timators of Steganographic changes (HOLMES). Instead of the simplistic esti-
mator (2), we compute the residuals using a family of local linear estimators.
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Fig. 1. Close-up of a horizontal edge. Note that the grayscales in the horizontal direc-
tion are quite smooth and thus can be well approximated using polynomial models.

Table 1. Horizontal residuals from higher-order local models and their span s

Residual type s Horizontal residual Rh = (rhij)
First order 2 yi,j+1 − yij
Second order 3 yi,j−1 − 2yij + yi,j+1
Third order 4 yi,j−1 − 3yij + 3yi,j+1 − yi,j+2
Fourth order 5 −yi,j−2 + 4yi,j−1 − 6yij + 4yi,j+1 − yi,j+2
Fifth order 6 −yi,j−2 + 5yi,j−1 − 10yij + 10yi,j+1 − 5yi,j+2 + yi,j+3
Sixth order 7 yi,j−3 − 6yi,j−2 + 15yi,j−1 − 20yij + 15yi,j+1 − 6yi,j+2 + yi,j+3

The residuals in Table 1 are intentionally shown in their integer versions to avoid
the need for rounding.

For example, the third and fourth order residuals can be derived from a lo-
cally quadratic model spanning three and four neighbors of the central pixel,
respectively. They can also be interpreted as higher-order differences among
neighboring pixels or discrete derivatives. The set of pixels involved in comput-
ing the residual is called a clique and its cardinality will be called span and
always denoted s.

The residuals listed in Table 1 are all computed over horizontal cliques. The
reader will readily supply the corresponding formulas for the vertical, diagonal,
and minor-diagonal directions, Rv, Rd, Rm. There are numerous other possibil-
ities how to define the residuals, each providing a different type of information.
One particular case that turned out to be quite effective for attacking HUGO
are the so-called MINMAX residuals:

rMIN
ij = min{rhij , rvij , rdij , rmij}, rMAX

ij = max{rhij , rvij , rdij , rmij}. (3)

For pixel ij close to an edge, one of the MINMAX residuals will be large (in
the direction perpendicular to the edge), while the other will likely be computed
along the edge. Features built from these MINMAX residuals thus better adapt
to textures and improve detection of adaptive embedding.

Of course, one can think of a myriad of other local predictors, such as the
non-directional Ker–Böhme kernel [9] defined on 3× 3 cliques:

rKB
ij = 2yi−1,j + 2yi+1,j + 2yi,j−1 + 2yi,j+1

− yi−1,j−1 − yi−1,j+1 − yi+1,j−1 − yi+1,j+1 − 4yij (4)
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or directional kernels designed to model local image content around an edge (the
model for a diagonal edge is shown in (5)) defined on cliques of span 6:

rEDGE
ij = 2yi−1,j + 2yi,j+1 − yi−1,j−1 − yi−1,j+1 − yi+1,j+1 − yij . (5)

Higher-order models better adjust to the local content and thus produce residuals
with a more favorable SNR. Moreover, involving a clique of neighboring pixels in
the linear combination “averages out” the embedding changes from the predicted
value and thus further improves the prediction. According to our experience, even
residuals of order as high as 5 or 6 provide useful information for steganalysis.

The reader will immediately notice that the higher-order predictors from Ta-
ble 1 will have a larger dynamic range, which calls for a larger threshold T for
their marginalization. To prevent rapid growth of feature dimensionality, the
authors introduced quantized versions of the residuals:

Qq(rij) = floor
(
rij
q

)
, (6)

where q is a quantization step and floor(x) is the largest integer smaller than
or equal to x. For small T , such as T = 3 or 4, the best detection is obtained
by quantizing rij with the coefficient at the predicted pixel (see Section 4.1). In
other words, for residuals of span 3–7, one should choose q = 2, 3, 6, 10, 20 (see
Table 1).

The second-order quantized residual with q = 2 can be interpreted in another
manner. Consider decreasing the dynamic range of the image by 50% by remov-
ing the LSB of each grayscale. The dynamic range of the resulting image is twice
smaller and we also lost approximately 50% of all embedding changes – those
that were LSB flips. However, the remaining changes are easier to detect due to
the decreased dynamic range of the transformed image.

2.2 Features

Our features will be co-occurrence matrices formed from neighboring residual
samples. To keep the notation compact, we introduce several different types
of co-occurrence operators that can be applied to any two-dimensional array
(residual) to produce a co-occurrence matrix or dimensionality (2T +1)m, where
m is the order of the co-occurrence. For example, the horizontal co-occurrence
matrix of order m is

Ch
d1...dm(R) = Pr(rij = d1 ∧ . . . ∧ ri,j+m−1 = dm), d1, . . . , dm ∈ [−T, . . . , T ].

(7)
The operators Cv

d1...dm
, Cd
d1...dm

, and Cm
d1...dm

for the vertical (v), diagonal (d),
and minor diagonal (m) directions are defined analogically. Note that forming
the co-occurrence matrices makes sense even when rij is non-stationary. In fact,
for natural images rij is a mixture – residuals in smooth regions fill out the
neighborhood of (d1, . . . , dm) = (0, . . . , 0), while residuals around vertical edges
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will concentrate at the boundary of the matrix. Thus, different textures will
likely occupy different parts of the co-occurrence matrix.

We will also make use of the fourth-order co-occurrence from residuals forming
2× 2 squares:

Cs
d1...d4(R) = Pr(rij = d1 ∧ ri+1,j = d2 ∧ ri,j+1 = d3 ∧ ri+1,j+1 = d4). (8)

There are many possibilities how to combine the residual and the co-occurrence
operator to obtain features. And all combinations capture different relationships
among pixels and are thus potentially useful for steganalysis. Certain combina-
tions, however, provide little information. Since HUGO approximately preserves
the joint probability distributions of differences between four neighboring pixels
along all four directions, the matrices whose elements are computed from neigh-
boring residuals whose union of cliques spans more than four pixels are more
effective for steganalysis of HUGO. Thus, we require s+m > 5, where s is the
span of the residual and m the co-occurrence order. For example, when working
with first-order residuals (s = 2), we recommend to take co-occurrences of at
least the fourth order, while for second-order residuals (s = 3) the third order
may be sufficient.

Another pair of parameters that needs to be adjusted jointly is T andm. With
larger m, one should correspondingly decrease T otherwise the co-occurrence
matrix becomes too sparse and its elements become too noisy to provide useful
detection statistic. It is worth mentioning that the marginals in the co-occurrence
matrix may be as important (or even more important than) the inside of the
matrix. According to our experience, even co-occurrences with T = 1 and m ∈
{5, 6} still provide quite useful information for detection.

Based on a large number of experiments, we identified several combinations
of residuals and co-occurrences that provided the best results. They are listed
in Table 2. Each row corresponds to a feature type (a combination of a residual
and a co-occurrence operator). All feature types between highlighted lines of the
table are to be combined with all parameter sets in the second column. When a
parameter is a set, e.g., (3, {1, 2}, 3, 4)), it means that the features are computed
with both (3, 1, 3, 4) and (3, 2, 3, 4).

Table 2. Features formed by co-occurrence matrices and their parameters

Feature Parameters (s, q,m, T )
Ch(RMIN) +Cv(RMIN) (3, {1, 2}, 3, 4),(3, {1, 2}, 4, 2)
Cd(RMIN) +Cm(RMIN) (4, {2, 3}, 3, 4), (4, {2, 3}, 4, 2)
Ch(RMAX) +Cv(RMAX) (5, {2, 3, 6}, 3, 4),(5, {2, 3, 6}, 4, 2)
Cd(RMAX) +Cm(RMAX) (6, {5, 10}, 3, 4),(7, {10, 20}, 3, 4)
Ch(Rh) + Cv(Rv) (2, {1, 2}, 4, 2),(3, 2, 5, 1),(3, 2, 6, 1)
Cd(Rd) +Cm(Rm)
Ch(RKB) +Cv(RKB) (9, {1, 2, 4}, 3, 3)
Cs(RMIN),Cs(RMAX) (3, 2, 4, 2)
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The first four feature types in the table are computed from the MINMAX
residuals. The matrices for the horizontal and vertical directions (and diagonal
and minor diagonal directions) are added together to decrease dimensionality
and provide a more stable statistic. The following two feature types can be
thought of as sums of joint distributions of consecutive residuals modeled as
Markov chains in each direction (they are similar in spirit to the SPAM feature
set [13]), while the next one is computed from the Ker–Böhme residual (4).

This list should be taken as an example rather than a hard recommendation.
The reader will easily come up with other forms of residuals and co-occurrence
operators that may also lead to accurate detection of embedding. The steganalyst
should select the individual sets so that they are diverse and complement each
other as highly correlated features are undesirable. In practice, the size of the
final feature set will be limited by the ability of the steganalyst to train a high-
dimensional feature vector. If the dimensionality needs to be reduced, one can
apply feature selection techniques or marginalize the set in some other way, for
example by forming linear combinations of individual features.

The direction we adopted in this paper is to avoid hand design as much as
possible and, instead, leave this job to the machine learning algorithm. We form
a large feature set preferably consisting of a union of many diverse feature sets.
Rather than mindlessly increasing the threshold T , we keep the threshold small
and add more diverse feature sets by combining different types of residuals and
co-occurrence operators. The emphasis here is on diversity and the ability of
the features to “calibrate themselves” – to provide useful baseline information
about each other [10]. For example, it makes sense to pair the parameter set
(s, q,m, T ) = (3, 1, 3, 4) with (3, 2, 3, 4) as the former provides more detailed
information around the origin (d1 = d2 = d3 = 0) while the same feature
computed from the quantized residual “can see” twice as far before marginalizing
the residuals.

Overall, our strategy for attacking HUGO is to assemble the feature set by
merging multiple diverse subsets and let each subset contribute to the overall
detection. In the next section, we supply the missing piece – a scalable machine-
learning tool that can handle high-dimensional features and a large number of
training examples with low complexity and good performance.

3 Ensemble Classifier

High feature dimensionality may negatively influence the complexity of training
and classification as well as the ability of a classifier to generalize to previously
unseen examples from the same source. Overcoming these problems becomes
difficult especially when the class distinguishability is small and the number of
examples from the cover source limited. Today, the machine learning tool of
choice by steganalysts are kernelized SVMs, which are quite resistant to the
curse of dimensionality. However, their complexity does not scale well and one
can rather quickly run into memory and processing bottlenecks. The complexity
is smaller for efficient implementations of linear SVMs but can become too large
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as well if one desires to use linear SVMs as a development tool when many ideas
need to be tested in a short period of time.

To lower the complexity, we decided to use ensemble classifiers based on fus-
ing decisions of weak base learners trained on random subsets of the feature
space. In order to make the supervised ensemble strategy work, the individual
base learners have to be sufficiently diverse in the sense that they should make
different errors on unseen data. The diversity is often more important than the
accuracy of the individual classifiers, provided their performance is better than
random guessing. From this point of view, overtrained base learners are not a
big issue. In fact, ensemble classification is often applied to relatively weak and
unstable classifiers since these yield higher diversity. It was shown that even fully
overtrained base learners, when combined through a classification ensemble, may
produce accuracy comparable to state-of-the-art techniques [3].

What makes ensemble classifiers especially attractive is that they scale well
with dimensionality and the number of training examples and, according to our
experience, their performance is comparable to that of Gaussian SVMs. Detailed
description of ensemble classifiers, their analysis, and relationship to previous art
appears in [11]. Here, we only provide a brief description. Starting with the full
feature set of dimensionality d, the steganalyst first randomly selects dred � d
features and trains a classifier (base learner) on them. The classifier is a mapping
F : R

d → {0, 1}, where 0 stands for cover and 1 for stego.1 This process is
repeated L times, each time with a different random subset. As a result, L base
learners, F1, . . . , FL, are obtained. Given a feature b ∈ R

d from the testing set,
the final decision is obtained by fusing the decisions of all L individual base
learners:

Fens(b) = �(F1(b), . . . , FL(b)) ∈ {0, 1}, (9)

where � is some fusion rule.
Note that all classifiers in the algorithm are trained on feature spaces of a

fixed dimension dred that can be chosen to be significantly smaller than the
full dimensionality d. Our base learners were the low-complexity Fisher Linear
Discriminants (FLDs) and we used a simple voting for the fusion rule

�(F1(b), . . . , FL(b)) =

{
1 when

∑L
i=1 Fi(b) > L/2

0 otherwise.
(10)

The voting could be replaced by other aggregation rules. For example, when
the decision boundary is a hyperplane, one can use the sum of projections on
the normal vector of each classifier or the sum of likelihoods of each projection
after fitting models to the projections of cover and stego images. Because in
our experiments all three fusion strategies gave essentially identical results, we
recommend using voting due to its simplicity. The individual classifiers should
be adjusted to meet a desired performance criterion. In this paper, the decision
threshold was always set to produce minimum overall average classification error

1 F is really a map from R
dred → {0, 1} as each learner works with a subset of features.
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PE = minPFA (PFA + PMD(PFA))/2 on the training data, which is the quantity
that we also use to report the accuracy of detection in this paper.

4 Experiments

The main bulk of our experiments was carried out on BOSSbase 0.92 [5,1] con-
taining 9,074 grayscale images originally acquired by seven digital cameras in
the RAW format (CR2 or DNG) and subsequently processed by resizing and
cropping to the size of 512 × 512 pixels. All tests were done by randomly di-
viding the BOSSbase into a training set of 8,074 images and a testing set of
1000 images. This split was repeated and the median value of PE and its Mean
Absolute Deviation (MAD) are what we report in graphs and tables. We remark
that the selection of random feature subsets in our ensemble classifier was also
different in each run.

4.1 Initial Tests

In our first set of experiments, we test the performance of selected individual
feature sets listed in Table 3 to show the influence of the parameters (s, q,m, T )
on the detection performance. The first set (MARKOV) is a direct equivalent of
the second-order SPAM [13] with two differences – the first-order differences were
replaced with second-order differences and the transitional probability matrix
with the joint matrix (co-occurrence). It is rather interesting that by changing
a single line of code SPAM turns into a significantly more powerful feature set
– PE has dropped from 42% [14] to 28.6%.2 The second row of the table informs
us that the detection is even better with the MINMAX residual, while the its
quantized version shaves another 1% from PE. The next two rows are mergers
of five sets of total dimensionality 7,290 and 6,250 for co-occurrence matrices of
order m = 3 and 4 with T = 4 and T = 2, respectively. Adding features steadily
leads to better performance.

The feature sets in the last two rows were quantized with q equal to the
coefficient at xij in the higher-order residual (inspect Table 1) as this choice of
q gave us the best performance. This is confirmed in Table 4 with the MINMAX
residual with s = 5 (fourth-order residual) by showing PE as a function of q
while fixing all other parameters and variables (L = 31, dred = 1000).

According to our experiments on BOSSbase, adding more features generally
leads to better detection. However, adding uninformative or dependent features
will obviously decrease the detection accuracy. Clever marginalizations may also
improve detection while keeping the dimensionality low. For example, we added
all five co-occurrence matrices of third order listed in row 4 in Table 3 to form
one 1458-dimensional vector. Then, we did the same with the features from row
5 to form a 1250-dimensional vector. Putting these two matrices together gave us
2 This comparison is not really fair as the results were obtained on two different

databases – BOWS2 vs. BOSSbase – while the latter appears somewhat easier to
steganalyze.
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Table 3. Performance of individual feature sets on BOSSbase 0.92. The acronyms
MARKOV and MINMAX stand for co-occurrences Ch(Rh) + Cv(Rv), Cd(Rd) +
Cm(Rm), and Ch(RMIN) + Cv(RMIN), Ch(RMAX) + Cv(RMAX), respectively. The
quantization step in the last two sets was set to the coefficient at xij in the higher-
order residual (c = 2, 3, 6, 10, 20 for s = 3, 4, 5, 6, 7).

Feature set (s, q,m, T ) d PE Best Worst L dred
MARKOV (3, 1, 3, 4) 1458 28.6±0.9 25.5 31.0 31 1000
MINMAX (3, 1, 3, 4) 1458 27.3±0.8 25.1 31.3 31 1000
MINMAX (3, 2, 3, 4) 1458 26.2±1.2 23.2 28.4 31 1000
MINMAX ({3, 4, 5, 6, 7}, c, 3, 4) 7290 20.0±0.8 17.8 22.6 81 1600
MINMAX ({3, 4, 5, 6, 7}, c, 4, 2) 6250 20.9±0.4 19.0 23.5 81 1600

Table 4. Detection error PE for the MINMAX feature set with parameters (5, q, 3, 4)
as a function of q ∈ {2, 4, 6, 8, 10, 12}. The best performance is achieved when q is equal
to 6 – the coefficient at xij in the higher-order residual.

q 2 4 6 8 10 12
PE 30.50 26.75 26.05 26.75 27.70 28.20

a 1458 + 1250 = 2708-dimensional vector with PE = 22% under the same testing
conditions (with L = 81 and dred = 1600). Obviously, adding feature sets is by
no means the optimal operation and we prefer to leave the marginalization to
an automated procedure instead of hand-tweaking. For experiments in the next
section, we prepared a feature set by merging various combinations of residuals
and co-occurrence matrices (the set is described in the Appendix).

4.2 Performance on BOSSbase

The purpose of experiments in this section is three-fold: to evaluate the de-
tectability of HUGO, compare the HOLMES features and our ensemble classifier
with the current state of the art – the CDF set [12], and to compare HUGO with
non-adaptive ±1 embedding. Unless stated otherwise, all detectors were imple-
mented using ensemble classifiers with FLDs as described in Section 3. We used
a 33,963-dimensional feature set H implemented with L = 81 and dred = 2800
(see the Appendix). The CDF classifier used L = 51 and dred = 500. The values
of dred were determined by hand based on our experience.

All results are displayed in the self-explanatory Fig. 2. The CDF set has higher
detection accuracy when implemented using a Gaussian SVM (G-SVM) instead
of our ensemble classifier. However, unlike G-SVM, the ensemble classifier is
capable of handling the high-dimensional HOLMES features which resulted in a
consistently lower detection error PE than the error for the CDF trained with a
G-SVM. HUGO is confirmed to be more secure than non-adaptive±1 embedding
but the difference is less pronounced than what was reported in [14]. It is also
interesting to compare the increase in detection accuracy for both algorithms and
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α HUGO ±1 embedding
bpp H CDF G-SVM H CDF G-SVM

0.1 41.4 47.6 46.1 21.0 31.8 28.1
0.2 30.9 43.2 39.6 14.7 23.7 19.8
0.3 22.2 38.0 33.9 11.6 19.1 14.9
0.4 16.1 32.7 28.3 9.1 15.8 12.3
0.5 12.0 28.4 24.1 7.3 13.4 9.7

Fig. 2. Detection error PE for HUGO and ±1 embedding for five relative payloads for
the CDF and HOLMES classifiers. The error bars are MAD over 100 database splits
8074/1000. The CDF set was implemented with both our ensemble classifier and as a
G-SVM (only 10 splits 8074/1000 were performed using G-SVM due to computational
complexity).

feature sets. While the improvement for HUGO is about 5–12%, the detectability
of ±1 embedding improved only by 2–7%.

Since BOSSbase images were resized to quite a small size, the correlations
among neighboring pixels weaken significantly in textured regions, such as grass,
sand, or foliage. Visual inspection confirmed that such textures start resembling
random noise on the pixel level, which makes their steganalysis very difficult if
possible at all since HUGO avoids regions where the content can be accurately
modeled. To identify the type of images on which our classifier makes consistently
correct and wrong decisions, we carried out the following experiment. Using the
same setup with the HOLMES feature setH, we repeated the random 8,074/1000
split of BOSSbase 1000 times (with L = 81 and dred = 2400) and counted how
many times a given cover image was classified as stego and vice versa. Each image
i ∈ {1, . . . , 9074} appeared in the testing set Ni times, where Ni is a binomial
r.v. with mean 110 and standard deviation 9.9. Fig. 3 shows the probability
pi = δi/Ni of correctly detecting cover image i as cover (cover i was correctly
classified δi times). In the figure, the BOSSbase is ordered by cameras. First,
note that the detection heavily depends on the camera model. While cover images
from Pentax can be classified with average accuracy of about 95%, images from
Canon Rebel are significantly harder to classify (66%). This difference is most
likely a combined effect of varying depth of field across both cameras (which
is influenced by the lens), in-camera processing (some cameras denoise their
images), the resizing script, and the environment in which the images were taken.
All this forms the cover source and gives it unique properties that have a major
effect on statistical detectability of embedding changes.

Second, notice that some cover images are persistently classified as stego (FAs)
– the steganalyzer errs on them with probability 1. In fact, we identified 743
cover images that were always detected as stego and 674 stego images always
detected as cover (MDs). Most of these images were highly textured and/or
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Fig. 3. Probability with which each cover image i ∈ {1, . . . , 9074} from BOSSbase was
correctly classified as cover over 1000 random splits (8074/1000). The images are sorted
by cameras. The average detection for each camera is displayed with a horizontal line.

with a large contrast, and many contained complex content, such as shots in
a forest with many fine branches. The high dimensionality of the feature set
and the relatively low number of training examples mean that some images
will be located in sparsely populated regions of the feature space. The classifier
generalizes to them but, due to lack of similar features in their neighborhood,
the decision boundary is not likely to be well placed. As a result, some images
are consistently misclassified.

Also, 6627 cover images were always correctly detected as cover and 6647
stego images were always detected as stego. The intersection of these two sets
contains 4836 BEST images that were always detected correctly both in their
cover and stego forms. These easiest-to-classify images did not contain many
edges or textures, some were out-of-focus shots or shots with low depth of field
and images with a small dynamic range of pixel values. Table 5 displays the
average grayscale, average number of pixels saturated at 255, and average texture
defined as t = c·∑ij |xij−xi,j−1|, with c being a scaling constant. Overall, images
with a high number of saturated pixels and bright / textured images are harder
to classify. Lower average grayscale is connected to a lower dynamic range, which
indeed will make detection of embedding changes easier. The effect of saturated
pixels, however, is more mysterious.

Table 5. Average grayscale, number of pixels saturated at 255, and texture for BEST,
FAs, and MDs from BOSSbase

Images Avg. gray Avg. saturation Texture
BEST 74.1 2046 1.73
FAs 101.3 4415 4.66
MDs 102.0 5952 3.95
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4.3 Performance on BOSSrank

This section briefly discusses our performance on the BOSSrank set used for
the BOSS competition [1]. It consists of 847 images taken by Leica M9 and
153 images from Panasonic Lumix DMC-FZ50. Total of 518 images were covers,
while the remaining 482 were stego images embedded with relative payload 0.4
bpp.

The best score we achieved on BOSSrank was 1−PE = 80.3% or PE = 19.6%.3
It was obtained for a submission generated from a 25,993-dimensional feature
set trained on 34, 719 images4 with L = 31 and dred = 2400. More details about
this feature set and our experience with BOSS appear in our other paper in this
volume [6]. The drop in performance w.r.t. our results on BOSSbase is caused by
the cover-source mismatch and the lack of robustness of our ensemble classifier.5
While our detector was trained on BOSSbase, BOSSrank images are coming
from a different source. The Panasonic Lumix images are not in BOSSbase at
all and they were taken in JPEG instead of the RAW format. While the Leica
M9 is in BOSSbase, it forms only about 25% of the database (2267 images). The
cover source mismatch is a serious issue for practical steganography as it lowers
the detection accuracy and complicates controlling the error rates of practical
detectors. The cover-source mismatch is also the reason why our detector that
used the higher-dimensional set H performed worse on BOSSrank even though
we observed the opposite for BOSSbase.

5 Conclusion

Modern steganographic algorithms, such as HUGO, hide messages by approx-
imately preserving a high-dimensional representation of covers that captures
many complex dependencies among individual cover elements. The embedding
is thus naturally adaptive and confines the modifications to hard-to-model re-
gions of covers. This is the reason why steganalyzers that work in feature spaces
of low dimension do not detect this type of embedding well. A possible way to
improve the detection is to work with high-dimensional features as well. The
two key open problems are the formation of such feature spaces and machine
learning whose complexity scales favorably with dimension.

In particular, it is not sufficient to blindly increase the feature dimension-
ality for example by increasing the order of co-occurrence matrices or their
range (threshold). This way, we would be adding sparsely-populated (noisy)
features with low detectability. In this paper, we propose a methodology called
HOLMES for forming a diverse high-dimensional feature vector. It consists of
two steps – computing several types of higher-order residuals and then form-
ing co-occurrence matrices from their neighboring values in a standard fashion.
3 Our error on Leica was 17.7% and 30.0% on Panasonic.
4 All training images were obtained from RAW images using the same BOSS script.
5 Other classifiers, including linear SVMs, Gaussian SVMs, and the FLD were equally

susceptible to the cover-source mismatch.
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The residuals should be computed in the embedding domain and using pixel
predictors that only depend on the neighboring pixels but not the central pixel
being predicted. We also discovered that good residuals for content-adaptive ste-
ganalysis may be obtained using non-linear processing as minimal and maximal
values of residuals computed from several different directions – the MINMAX
residual. The emphasis should be on high diversity of the features rather than
dimensionality so that combining features improves detection.

Having formed a high-dimensional feature vector, we coin the use of ensemble
classifiers obtained by fusing decisions of simple detectors implemented using the
Fisher linear discriminant. They were a crucial element in our participation in
BOSS as their low complexity, simplicity, and speed enabled rapid development
and optimization of the feature set to maximize the performance.

To summarize our attack, we were unable to use the fact that for HUGO
the probability of embedding changes at individual pixels can be approximately
estimated. It does not appear that giving the Warden probabilistic information
about the selection channel is a weakness. Another lesson learned is that, as the
level of sophistication of steganographic schemes increases, steganalysis needs to
use high-dimensional feature sets and scalable machine learning.

Our attack on HUGO also reveals quite useful information about steganogra-
phy design. While the authors of HUGO did strive to preserve a high-dimensional
feature vector, they scaled the dimensionality simply by increasing the thresh-
old T . Most features in this high-dimensional feature vector are, however, quite
uninformative and trying to preserve them eventually weakens the algorithm.
Instead, the dimensionality needs to be increased by adding more diverse fea-
tures. We expect the future versions of HUGO working with more diverse feature
spaces, such as the set H, to be significantly more secure to attacks.

Acknowledgements. The work on this paper was supported by Air Force
Office of Scientific Research under the research grant number FA9550-08-1-0084.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation there on. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or
implied of AFOSR or the U.S. Government. The authors would like to thank to
the Soukal’s Family, Tice Lerner, Jim Pittaresi, Thomas Gloe, Peggy Goldsberry,
and Jonathan Cohen for providing their images for research purposes and to the
BOSS Team for setting up the BOSS competition.



116 J. Fridrich et al.

Appendix – The Final Feature Set

Table 6. The final HOLMES feature set H of dimensionality 33,963

Feature type (s, q,m, T ) Dimensionality
MINMAX (3, 1, 3, 4), (3, 2, 3, 3), (4, {2, 3}, 3, 3) 1458 + 7× 686 + 10× 162

(5, {2, 6}, 3, 3), (6, 10, 3, 3), (7, 20, 3, 3)
MARKOV (3, {1, 2}, 4, 1), (4, {2, 3}, 4, 1), (5, {2, 6}, 4, 1) 1458 + 7× 686 + 10× 162

(6, {5, 10}, 4, 1), (7, {10, 20}, 4, 1)
MINMAX (3, 2, 5, 1) 2× 243
MINMAX (2, {1, 2}, 4, 2) 2× 1250
KB (9, {1, 2, 4}, 3, 4) 3× 729
SQUARE (3, 2, 4, 1) 2× 162
CALI (3, 2, 3, 4), (4, 2, 3, 4) 2× 1458
EDGE (6, {1, 2, 4}, 3, 4) 3× 1458
MINMAX ({3, 4, 5, 6, 7}, c, 3, 4) summed 1458 + 1250
MARKOV ({3, 4, 5, 6, 7}, c, 4, 2) summed 1458 + 1250

All feature types in a block between two highlighted lines are to be combined
with all parameter sets. The KB set was formed by Ch(RKB)+Cv(RKB), where
RKB is the residual (4). The SQUARE set is obtained from the MINMAX resid-
ual with co-occurrence operator (8). In the CALI set, prior to computing the
features from the MINMAX residual, the image was convolved with an averaging
2× 2 kernel [1 1; 1 1] in an attempt to calibrate the features as in [8]. The resid-
ual for EDGE was formed using (5) as the minimum and maximum values along
edges in four different directions (residual REDGEMIN and REDGEMAX) and then
applying Ch(REDGEMIN)+Cv(REDGEMIN), Ch(REDGEMAX)+Cv(REDGEMAX).
The last four sets were obtained as sums of all five sets whose parameters appear
in the second column.
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Abstract. This paper presents a new privacy-preserving smart metering system.
Our scheme is private under the differential privacy model and therefore provides
strong and provable guarantees. With our scheme, an (electricity) supplier can pe-
riodically collect data from smart meters and derive aggregated statistics without
learning anything about the activities of individual households. For example, a
supplier cannot tell from a user’s trace whether or when he watched TV or turned
on heating. Our scheme is simple, efficient and practical. Processing cost is very
limited: smart meters only have to add noise to their data and encrypt the results
with an efficient stream cipher.

1 Introduction

Several countries throughout the world are planning to deploy smart meters in house-
holds in the very near future. The main motivation, for governments and electricity
suppliers, is to be able to match consumption with generation. Traditional electrical
meters only measure total consumption on a given period of time (i.e., one month or
one year). As such, they do not provide accurate information of when the energy was
consumed. Smart meters, instead, monitor and report consumption in intervals of few
minutes. They allow the utility provider to monitor, almost in real-time, consumption
and possibly adjust generation and prices according to the demand. Billing customers
by how much is consumed and at what time of day will probably change consumption
habits to help matching consumption with generation. In the longer term, with the ad-
vent of smart appliances, it is expected that the smart grid will remotely control selected
appliances to reduce demand.

Problem statement: Although smart metering might help improving energy manage-
ment, it creates many new privacy problems [2]. Smart meters provide very accurate
consumption data to electricity providers. As the interval of data collected by smart
meters decreases, the ability to disaggregate low-resolution data increases. Analyzing
high-resolution consumption data, Nonintrusive Appliance Load Monitoring (NALM)
[11] can be used to identify a remarkable number of electric appliances (e.g., water
heaters, well pumps, furnace blowers, refrigerators, and air conditioners) employing
exhaustive appliance signature libraries. Researchers are now focusing on the myriad
of small electric devices around the home such as personal computers, laser printers,
and light bulbs [14]. Moreover, it has also been shown that even simple off-the-shelf
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statistical tools can be used to extract complex usage patterns from high-resolution con-
sumption data [15]. This extracted information can be used to profile and monitor users
for various purposes, creating serious privacy risks and concerns. As data recorded by
smart meters is lowering in resolution, and inductive algorithms are quickly improving,
it is urgent to develop privacy-preserving smart metering systems that provide strong
and provable guarantees.

Contributions: We propose a privacy-preserving smart metering scheme that guaran-
tees users’ privacy while still preserving the benefits and promises of smart metering.
Our contributions are many-fold and summarized as follows:

– We provide the first provably private and distributed solution for smart metering
that optimizes utility without relying on a trusted third party (i.e., an aggregator).
We were able to avoid the use of a trusted third party by proposing a new distributed
Laplacian Perturbation Algorithm (DLPA).

In our scheme, smart meters are grouped into clusters, where a cluster is a group
of hundreds or thousands of smart meters corresponding, for example, to a quarter
of a city. Each smart meter sends, at each sampling period, their measures to the
supplier. These measures are noised and encrypted such that the supplier can com-
pute the noised aggregated electricity consumption of the cluster, at each sampling
period, without getting access to individual values. The aggregate is noised just
enough to provide differential privacy to each participating user, while still provid-
ing high utility (i.e., low error). Our scheme is secure under the differential privacy
model and therefore provides strong and provable privacy guarantees. In particular,
we guarantee that the supplier can retrieve information about any user consumption
only up to a predefined threshold, no matter what auxiliary information it knows
about that user. Our scheme is simple, efficient and practical. It requires either one
or two rounds of message exchanges between a meter and the supplier. Further-
more, processing cost is very limited: smart meters only have to add noise to their
data and encrypt the results with an efficient stream cipher. Finally, our scheme is
robust against smart meter failures and malicious nodes. More specifically, it is se-
cure even if an α fraction of all nodes of a cluster collude with the supplier, where
α is a security parameter.

– We implemented a new electricity trace generation tool based on [19] which gener-
ates realistic, one-minute resolution synthetic consumption data of different house-
holds. We used this simulator to evaluate the performance and privacy of our
proposal.

Because of space constraint, the security analysis of our scheme is not included in this
paper. This analysis is however included in the longer version of this paper [1]. This
extended version also includes additional performance results.

2 Related Work

Several papers addressed the privacy problems of smart metering in the recent past
[8,15,2,16,3,4,18,10]. However, only a few of them have proposed technical solutions
to protect users’ privacy. In [2,3], the authors discuss the different security aspects of
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smart metering and the conflicting interests among stakeholders. The privacy of billing
is considered in [18,15]. Seemingly, the privacy of monitoring the sum consumption of
multiple users may be solved by simply anonymizing individual measurements like in
[8] or using some mixnet. However, these “ad-hoc” techniques are dangerous and do not
provide any real assurances of privacy. Several prominent examples in the history have
shown that ad-hoc methods do not work [12]. Moreover, these techniques require an
existing trusted third party who performs anonymization. The authors in [4] perturb the
released aggregate with random noise and use a different model from ours to analyze the
privacy of their scheme. However, they do not encrypt individual measurements which
means that the added noise must be large enough to guarantee reasonable privacy. As
individual noise shares sum up at the aggregation, the final noise makes the aggregate
useless. In contrast to this, [10] uses homomorphic encryption to guarantee privacy for
individual measurements. However, the aggregate is not perturbed which means that it
is not differential private.

Three closely related works to ours are [17,20,6]. [6] describes protocols for generat-
ing shares of random noise which is secure against malicious participants. However, it
requires communication between users and it uses expensive secret sharing techniques
resulting in high overhead in case of large number of users. In [17], the authors pro-
pose a scheme to differential privately aggregate sums over multiple slots when the
aggregator is untrusted. However, they use the threshold Paillier cryptosystem [9] for
homomorphic encryption which is much more expensive compared to [5] that we use.
They also use different noise distribution technique which requires several rounds of
message exchanges between the users and the aggregator. By contrast, our solution is
much more efficient and simple: it requires only a single message exchange if there are
no node failures, otherwise, we only need one extra round. In addition, our solution
does not rely on expensive public key cryptography during aggregation.

A recent paper [20] proposes another technique to privately aggregate time series
data. This work differs from ours as follows: (1) they use a Diffie-Hellman-based en-
cryption scheme, whereas our construction is based on a more efficient construction that
only use modular additions. This approach is better adapted to resource constrained de-
vices like smart meters. (2) Although [20] does not require the establishment (and stor-
age) of pairwise keys between nodes as opposed to our approach, it is unclear how [20]
can be extended to tolerate node and communication failures. By contrast, our scheme
is more robust, as the encryption key of non-responding nodes is known to other nodes
in the network that can help to recover the aggregate. (3) Finally, [20] uses a different
noise generation method from ours, but this technique only satisfies the relaxed (ε, δ)-
differential privacy definition. Indeed, in their scheme, each node adds noise probabilis-
tically which means that none of the nodes add noise with some positive probability δ.
Although δ can be arbitrarily small, this also decreases the utility. By contrast, in our
scheme, δ = 0 while ensuring nearly optimal utility.

3 The Model

3.1 Network Model

The network is composed of four major parts: the supplier/aggregator, the electricty
distribution network, the communication network, and the users (customers). Every user
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is equipped with an electricity smart meter, which measures the electricity consumption
of the user in every Tp long period, and, using the communication network, sends the
measurement to the aggregator at the end of every slot (in practice, Tp is around 1-
30 minutes). Note that the communication and distribution network can be the same
(e.g., when PLC technology is used to transfer data). The measurement of user i in
slot t is denoted by X i

t . The consumption profile of user i is described by the vector
(X i

1, X
i
2, . . .). Privacy directly correlates with Tp; finer-grained samples means more

accurate profile, but also entails weaker privacy. The supplier is interested in the sum of

all measurements in every slot (i.e.,
∑N

i=1 X i
t

def= Xt).
As in [4], we also assume that smart meters are trusted devices (i.e., tamper-resistant)

which can store key materials and perform crypto computations. This realistic assump-
tion has also been confirmed in [3]. We assume that each node is configured with a
private key and gets the corresponding certificate from a trusted third party. For ex-
ample, each country might have a third party that generates these certificate and can
additionally generate the “supplier” certificates to supplier companies [3]. As in [3],
we also assume that public key operations are employed only for initial key establish-
ment, probably when a meter is taken over by a new supplier. Messages exchanged
between the supplier and the meters are authenticated using pairwise MACs1. Smart
meters are assumed to have bidirectional communication channel (using some wireless
or PLC technology) with the aggregator, but the meters cannot communicate with each
other. We suppose that nodes may (randomly) fail, and in these cases, cannot send their
measurements to the aggregator. However, nodes are supposed to use some reliable
transport protocol to overcome the transient communication failures of the channel. Fi-
nally, we note that smart meters also allow the supplier to perform fine-grained billing
based on time-dependant variable tariffs. Here, we are not concerned with the privacy
and security problems of this service. Interested readers are referred to [18,15].

3.2 Adversary Model

In general, the objective of the adversary is to infer detailed information about house-
hold activity (e.g, how many people are in home and what they are doing at a given
time). In order to do that, it needs to extract complex usage patterns of appliances which
include the level of power consumption, periodicity, and duration.

In this paper we consider a dishonest-but-non-intrusive (DN) adversary. A DN ad-
versary may not follow the protocol correctly and is allowed to provide false infor-
mation to manipulate the collected data. He may also collude with some (malicious)
smart meters. However, he is not allowed to access or modify the distribution network
to mount attacks. In particular, he is not allowed to install wiretapping devices to eaves-
drop on the victim’s consumption.

3.3 Privacy Model

We use differential privacy [7] that models the adversary described above. In particular,
differential privacy guarantees that a user’s privacy should not be threatened substan-
tially more if he provides his measurement to the supplier.

1 Please refer to [16] for a more detailed discussion about key management issues in smart
metering systems.
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Definition 1 (ε-differential privacy). An algorithm A is ε-differential private, if for
all data sets D1 and D2, where D1 and D2 differ in at most a single user, and for all
subsets of possible answers S ⊆ Range(A),

P (A(D1) ∈ S) ≤ eε · P (A(D2) ∈ S)

Differential private algorithms produce indistinguishable outputs for similar inputs
(more precisely, differing by a single entry), and thus, the modification of any single
user’s data in the dataset (including its removal or addition) changes the probability of
any output only up to a multiplicative factor eε. The parameter ε allows us to control
the level of privacy. Lower values of ε implies stronger privacy, as they restrict further
the influence of a user’s data on the output. Note that this model guarantees privacy for
a user even if all other users’ data is known to the adversary (e.g., it knows all mea-
surements comprising the aggregate except the target user’s), like when N − 1 out of
N users are malicious and cooperate with the supplier. The definition of differential
privacy also maintains a composability property: the composition of differential pri-
vate algorithms remains differential private and their ε parameters are accumulated. In
particular, a protocol having t rounds, where each round is individually ε differential
private, is itself t · ε differential private.

3.4 Output Perturbation: Achieving Differential Privacy

Let’s say that we want to publish in a differentially private way the output of a function
f . The following theorem says that this goal can be achieved by perturbing the output
of f ; simply adding a random noise to the value of f , where the noise distribution is
carefully calibrated to the global sensitivity of f , results in ε-differential privacy. The
global sensitivity of a function is the maximum ”change” in the value of the function
when its input differs in a single entry. For instance, if f is the sum of all its inputs, the
sensitivity is the maximum value that an input can take.

Theorem 1 ([7]). For all f : D → R
r, the following mechanism A is ε-differential

private: A(D) = f(D) + L(S(f)/ε), where L(S(f)/ε) is an independently gener-
ated random variable following the Laplace distribution and S(f) denotes the global
sensitivity of f 2.

Example 1. To illustrate these definitions, consider a mini smart metering application, where
users U1, U2, and U3 need to send the sum of their measurements in two consecutive slots. The
measurements of U1, U2 and U3 are (X1

1 = 300, X1
2 = 300), (X2

1 = 100, X2
2 = 400), and

(X3
1 = 50, X3

2 = 150), resp. The nodes want differential privacy for the released sums with
at least a ε = 0.5. Based on Theorem 1, they need to add L(λ = maxi

∑
t Xi

t/0.5 = 1200)
noise to the released sum in each slot. This noise ensures ε =

∑
t X1

t /λ = 0.5 individual
indistinguishability for U1, ε = 0.42 for U2, and ε = 0.17 for U3. Hence, the global ε = 0.5
bound is guaranteed to all. Another interpretation is that U1 has ε1 = X1

1/λ = 0.25, ε2 =
X1

2/λ = 0.25 privacy in each individual slot, and ε = ε1 + ε2 = 0.5 considering all two slots
following from the composition property of differential privacy.

2 Formally, let f : D → R
r , then the global sensitivity of f is S(f) = max ||f(D1)−f(D2)||1,

where D1 and D2 differ in a single entry and || · ||1 denotes the L1 distance.
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3.5 Utility Definition

Let f : D → R. In order to measure the utility, we quantify the difference between
f(D) and its perturbed value (i.e., f̂(D) = f(D)+L(λ)) which is the error introduced
by LPA (Laplacian Perturbation Algorithm). A common scale-dependant error measure
is the Mean Absolute Error (MAE), which is E|f(D)− f̂(D)| in our case. However, the
error should be dependent on the non-perturbed value of f(D); if f(D) is greater, the
added noise becomes small compared to f(D) which intuitively results in better utility.
Hence, we rather use a slightly modified version of a scale-independent metric called
Mean Absolute Percentage Error (MAPE), which shows the proportion of the error to
the data, as follows.

Definition 2 (Error function). Let Dt ∈ D denote a dataset in time-slot t. Further-

more, let δt = |f(Dt)−f̂(Dt)|
f(Dt)+1 (i.e., the value of the error in slot t). The error function

is defined as μ(t) = E(δt). The expectation is taken on the randomness of f̂(Dt). The
standard deviation of the error is σ(t) =

√
Var(δt) in time t.

In the rest of this paper, the terms ”utility” and ”error” are used interchangeably.

4 Secure Aggregation without Aggregator: An Overview

Our scheme enables the supplier to calculate the sum of maximum N measurements
(i.e.,

∑N
i=1 X i

t = Xt in all t) coming from N different smart meters while ensuring
ε-differential privacy for each user. This is guaranteed if the supplier can only access
Xt + L(λ(t)), where L(λ(t))3 is the Laplacian noise calibrated to ε as it has been
described in Section 3.4.

Node 1 Node 2 . . . Node N

Supplier/Aggregator

Dec(
∑

i Enc(Xi
t + σi)) = Xt + L(λ)

Enc(X1
t + σ1) Enc(X2

t + σ2) Enc(XN
t + σN)

Fig. 1. Our approach: aggregation without trusted entity. If σi = G1(N, λ) + G2(N, λ), where
G1, G2 are i.i.d gamma noise, then

∑N
i=1 σi = L(λ).

A simple solution would be to rely on an aggregator that aggregates the N sam-
ples and adds Laplacian noise before forwarding the result to the supplier. Although
this scheme would be differential private, it only works if the aggregator is trusted. In
particular, the scheme will not be secure if the aggregator omits to add the noise.

3 We will use the notation λ instead of λ(t) if the dependency on time is obvious in the context.
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Our scheme, instead, does not rely on any centralized aggregator. The noise is added
by each smart meter on their individual data and encrypted in such a way that the ag-
gregator can only compute the (noisy) aggregate. Note that with our approach the ag-
gregator and the supplier do need to be separate entities. The supplier can even play the
role of the aggregator, as the encryption prevents it to access individual measurements,
and the distributed generation of the noise ensures that it cannot manipulate the noise.

Our proposal is composed of 2 main steps: distributed generation of the Laplacian
noise and encryption of individual measurements. These 2 steps are described in the
remainder of this section.

4.1 Distributed Noise Generation: A New Approach

In our proposal, the Laplacian noise is generated in a fully distributed way as is illus-
trated in Figure 4. We use the following lemma that states that the Laplace distribution is
divisible and be constructed as the sum of i.i.d. gamma distributions. As this divisibility
is infinite, it works for arbitrary number of users.

Lemma 1 (Divisibility of Laplace distribution [13]). Let L(λ) denote a random vari-

able which has a Laplace distribution with PDF f(x, λ) = 1
2λe

|x|
λ . Then the distri-

bution of L(λ) is infinitely divisible. Furthermore, for every integer n ≥ 1, L(λ) =∑n
i=1[G1(n, λ) − G2(n, λ)], where G1(n, λ) and G2(n, λ) are i.i.d. random variables

having gamma distribution with PDF g(x, n, λ) = (1/λ)1/n

Γ (1/n) x
1
n−1e−x/λ where x ≥ 0.

The lemma comes from the fact that L(λ) can be represented as the difference of two
i.i.d exponential random variables with rate parameter 1/λ. Moreover,

∑n
i=1 G1(n, λ)−∑n

i=1 G2(n, λ) = G1(1/
∑n

i=1
1
n , λ)−G2(1/

∑n
i=1

1
n , λ) = G1(1, λ)−G2(1, λ) due to

the summation property of the gamma distribution4. Here, G1(1, λ) and G2(1, λ) are i.i.d
exponential random variable with rate parameter 1/λ which completes the argument.

Our distributed sanitization algorithm is simple; user i calculates value X̂ i
t = X i

t +
G1(N, λ) − G2(N, λ) in slot t and sends it to the aggregator, where G1(N, λ) and
G2(N, λ) denote two random values independently drawn from the same gamma dis-
tribution. Now, if the aggregator sums up all values received from the N users of a
cluster, then

∑N
i=1 X̂ i

t =
∑N

i=1 X i
t +

∑N
i=1[G1(N, λ)−G2(N, λ)] = Xt +L(λ) based

on Lemma 1.
The utility of our distributed scheme is defined as μ(t) = 1

Xt+1E|Xt − Xt +∑n
i=1[G1(N, λ) − G2(N, λ)]| = E|L(λ)|

Xt+1 = λ
Xt+1 , and δ(t) = λ

Xt+1 .

4.2 Encryption

The previous step is not enough to guarantee privacy as only the sum of the measure-
ments (i.e., X̂t) is differential private but not the individual measurements. In particular,
the aggregator has access to X̂ i

t , and even if X̂ i
t is noisy, G1(N, λ) − G2(N, λ) is usu-

ally insufficient to provide reasonable privacy for individual users if N � 1. This is

4 The sum of i.i.d. gamma random variables follows gamma distribution (i.e.,
∑n

i=1 G(ki, λ) =
G(1/

∑n
i=1

1
ki

, λ)).
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Fig. 2. The original and noisy measurements of user i, where the added noise is G1(N, λ) −
G2(N, λ) (N = 100, Tp is 10 min).

illustrated in Figure 2, where an individual’s noisy and original measurements slightly
differ.

To address this problem, each contribution is encrypted using a modulo addition-
based encryption scheme, inspired by [5], such that the aggregator can only decrypt the
sum of the individual values, and cannot access any of them. In particular, let ki denote
a random key generated by user i inside a cluster such that

∑N
i=1 ki = 0, and ki is not

known to the aggregator. Furthermore, Enc() denotes a probabilistic encryption scheme
such that Enc(p, k, m) = p + k mod m, where p is the plaintext, k is the encryption
key, and m is a large integer. The adversary cannot decrypt any Enc(X̂ i

t , ki, m), since it
does not know ki, but it can easily retrieve the noisy sum by adding the encrypted noisy
measurements of all users;

∑N
i=1 Enc(X̂ i

t , ki, m) =
∑N

i=1 X̂ i
t +

∑N
i=1 ki =

∑N
i=1 X̂ i

t

mod m. If z = maxi,t(X̂ i
t) then m should be selected as m = 2�log2(z·N) [5]. The

generation of ki is described in Section 5.2.

5 Protocol Description

5.1 System Setup

In our scheme, nodes are grouped into clusters of size N , where N is a parameter. The
protocol requires the establishment of pairwise keys between each pair of nodes inside
a cluster that can be done by using traditional Diffie-Hellman key exchange as follows.
When a node vi is installed, it provides a self-signed DH component and its certificate
to the supplier. Once all the nodes of a cluster are installed, or a new node is deployed,
the supplier broadcasts the certificates and public DH components of all nodes. Finally,
each node vi of the cluster can compute a pairwise key Ki,j shared with any other node
vj in the networks.

5.2 Smart Meter Processing

Each node vi sends at time t its periodic measurement, X i
t , to the supplier as follows:

Phase 1 (Data sanitization): Node vi calculates value X̂ i
t = X i

t+G1(N, λ)−G2(N, λ),
where G1(N, λ) and G2(N, λ) denote two random values independently drawn
from the same gamma distribution and N is the cluster size.
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Phase 2 (Data encryption): Each noisy data X̂ i
t is then encrypted into Enc(X̂ i

t) using
the modulo addition-based encryption scheme detailed in Section 4.2. The follow-
ing extension is then applied to generate the encryption keys: Each node, vi, selects
� other nodes randomly, such that if vi selects vj , then vj also selects vi. After-
wards, both nodes generate a common dummy key k from their pairwise key Ki,j ;
vi adds k to Enc(X̂ i

t) and vj adds −k to Enc(X̂j
t ). As a result, the aggregator

cannot decrypt the individual ciphertexts (it does not know the dummy key k).
However, it adds all the ciphertexts of a given cluster, the dummy keys cancel out
and it retrieves the encrypted sum of the (noisy) contributions. The more formal
description is as follows:

1. node vi selects some nodes of the cluster randomly (we call them participating
nodes) using a secure pseudo random function (PRF) such that if vi selects vj ,
then vj also selects vi. In particular, vi selects vj if mapping PRF (Ki,j , r1) to
a value between 0 and 1 is less or equal than w

N−1 , where r1 is a public value
changing in each slot. We denote by � the number of selected participating
nodes, and indi[j] (for j = 1, . . . , �) denotes the index of the � nodes selected
by node vi. Note that, for the supplier, the probability that vi selects vj is w

N−1
as it does not know Ki,j . The expected value of � is w.

2. vi computes for each of its � participating nodes a dummy key. A dummy key
between vi and vj is defined as dkeyi,j = (i−j)/|i−j|·PRF(Ki,j , r2), where
Ki,j is the key shared by vi and vj , and r2 �= r1 is public value changing in
each slot. Note that dkeyi,j = −dkeyj,i.

3. vi then computes Enc(X̂ i
t ) = X̂ i

t +K ′
i +

∑

j=1 dkeyi,indi[j] (mod m), where

K ′
i is the keystream shared by vi and the aggregator which can be established

using the DH protocol as above, and m is a large integer (see [5]). Note that m
must be larger than the sum of all contributions (i.e., final aggregate) plus the
Laplacian noise.5

Note that X̂ i
t is encrypted multiple times: it is first encrypted with the keystream

K ′
i and then with several dummy keys. K ′

i is needed to ensure confidentiality
between a user and the aggregator. The dummy keys are needed to prevent the
aggregator (supplier) from retrieving X̂ i

t .
4. Enc(X̂ i

t) is sent to the aggregator (supplier).

5.3 Supplier Processing

Phase 1 (Data Aggregation): At each slot, the supplier aggregates the N measure-
ments received from the cluster smart meters by summing them, and obtains∑N

i=1 Enc(X i
t). In particular, Enc(X̂t) =

∑N
i=1(X̂

i
t + K ′

i) +
∑N

i=1

∑

j=1

dkeyi,indi[j] (mod m), where
∑N

i=1

∑

j=1 dkeyi,indi[j] = 0 because dkeyi,j =

−dkeyj,i. Hence, Enc(X̂t) =
∑N

i=1(X̂
i
t + K ′

i) =
∑N

i=1 Enc(X̂ i
t).

5 Note that the noise is a random value from an infinite domain and this sum might be larger
than m. However, choosing sufficiently large m, the probability that the sum exceeds m can
be made arbitrary small due to the exponential tail of the Laplace distribution.
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Phase 2 (Data decryption): The aggregator then decrypts the aggregated value by sub-
tracting the sum of the node’s keystream, and retrieves the sum of the noisy mea-
sures:

∑N
i=1 Enc(X̂ i

t ) − ∑N
i=1 K ′

i =
∑N

i=1 X̂ i
t (mod m) where

∑N
i=1 X̂ i

t =∑N
i=1 X i

t +
∑N

i=1 G1(N, λ)−∑N
i=1 G2(N, λ) =

∑N
i=1 X i

t +L(λ) based on Lemma
1.

The main idea of the scheme is that the aggregator is not able to decrypt the individual
encrypted values because it does not know the dummy keys. However, by adding the
different encrypted contributions, dummy keys cancel each other and the aggregator
can retrieve the sum of the plaintext. The resulting plaintext is then the perturbed sums
of the measurements, where the noise ensures the differential privacy of each user.

Complexity: Let b denote the size of the pairwise keys (i.e., Ki,j). Our scheme has
O(N · b) storage complexity, as each node needs to store � ≤ N pairwise keys. The
computational overhead is dominated by the encryption and the key generation com-
plexity. The encryption is composed of � ≤ N modular addition of log2 m bits long
integers, while the key generation needs the same number of PRF executions. This re-
sults in a complexity of O(N · (log2 m + c(b))), where c(b) is the complexity of the
applied PRF function.6

6 Adding Robustness

We have assumed so far that all the N nodes of a cluster participated in the protocol.
However, it might happen that, for several different reasons (e.g., node or communi-
cation failures) some nodes are not able to participate in each epoch. This would have
two effects: first, security will be reduced since the sum of the noise added by each
node will not be equivalent to L(λ). Hence, differential privacy may not be guaranteed.
Second, the aggregator will not be able to decrypt the aggregated value since the sum
of the dummy keys will not cancel out.

In this section, we extend our scheme to resist node failures. We propose a scheme
which resists the failure of up to M out of N nodes, where M is a configuration param-
eter. We will study later the impact of the value M on the scheme performance.

Sanitization Phase Extension. In order to resist the failure of M nodes, each node
should add the following noise to their individual measurement: G1(N − M, λ) −
G2(N −M, λ). Note that

∑N−M
i=1 [G1(N −M, λ)−G2(N −M, λ)] = L(λ). Therefore,

this sanitization algorithm remains differential private, if at least N −M nodes partici-
pate in the protocol. Note that in that case each node adds extra noise to the aggregate in
order to ensure differential privacy even if fewer than M nodes fail to send their noise
share to the aggregator.

6 For instance, if log2 m = 32 bits (which should be sufficient in our application), b = 128, and
N = 1000, a node needs to store 16 Kb of key data and perform maximum 1000 additions
along with 1000 subtractions (for modular reduction) on 32 bits long integers, and maximum
1000 PRF executions. This overhead should be negligible even on constrained embedded de-
vices.
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Encryption Phase Extension. The encryption phase consists of two rounds. In the first
round, each node adds a secret random value to its encrypted value before releasing it.
In the second round, every node reveals its random value along with the missing dummy
keys that it knows:

1. Each node vi sends Enc(X̂ i
t) = X̂ i

t + K ′
i +

∑

j=1 dkeyi,indi[j] + Ci (mod m)

where Ci is the secret random key of vi generated randomly in each round.
2. After receiving all measurements, the aggregator asks all nodes for their random

keys and the missing dummy keys through broadcasting the id of the non-responding
nodes.

3. Each node vi verifies whether any ids in this broadcast message are in its partici-
pating node list, where the set of the corresponding participating nodes is denoted
by S. Then, vi replies with

∑
j∈S dkeyi,indi[j] + Ci (mod m).

4. The aggregator subtracts all received values from
∑N

i=1 Enc(X̂ i
t) which results in∑N

i=1(X̂
i
t + K ′

i), as the random keys as well as the dummy keys cancel out.

The main idea of this scheme is that Ci prevents the supplier to recover X̂ i
t by combin-

ing the messages of nodes. Indeed, if vi did not add Ci to its messages in Step 1 and 3,
the supplier could easily get X̂ i

t by subtracting the responses of vi’s participating nodes
(and K ′

i that it knows), received in Step 3, from Enc(X̂ i
t), which is received in Step

1. However, since the supplier does not know the random keys, it cannot remove them
from any messages but only from the final aggregate; subtracting the response of each
node, received in Step 3, from the aggregate, all the dummy keys and secret random
keys cancel out and the supplier obtains X̂t. Although the supplier can still recover X̂ i

t

if it knows vi’s participating nodes (the supplier simply asks for all the dummy keys of
vi in Step 2 and subtracts vi’s response in Step 4 from Enc(X̂ i

t)), this probability can
be made practically small by adjusting w and N correctly (see [1] for details).

Utility Evaluation. If all N nodes participate in the protocol, the added noise will be
larger than L(λ) which is needed to ensure differential privacy. In particular,∑N

i=1[G1(N−M, λ)−G2(N−M, λ)] = L(λ)+
∑M

i=1[G1(N−M, λ)−G2(N−M, λ)],
where the last summand is the extra noise needed to tolerate the failure of maximum M
nodes. Clearly, this extra noise increases the error if all N nodes operate correctly and
add their noise shares faithfully. In what follows, we calculate the error and its standard
deviation if we add this extra noise to the aggregate.

Theorem 2. Let α = M/N and α < 1. Then, μ(t) ≤ 2
B(1/2, 1

1−α )
· λ(t)

Xt+1 and σ(t) ≤√(
2

1−α − 4
B(1/2, 1

1−α )2

)
· λ(t)

Xt+1 , where B(x, y) = Γ (x)Γ (y)
Γ (x+y) is the beta function.

The derivation can be found in the full version of this paper [1]. Based on Theorem 2,

σ(t) = μ(t) ·
(

2
B(1/2, 1

1−α )

)−1

·
√(

2
1−α − 4

B(1/2, 1
1−α )2

)
. It is easy to check that σ(t)

is always less or equal than μ(t). In particular, if α = 0 (there are no malicious nodes
and node failures), then σ(t) = μ(t). If α > 0 then σ(t) < μ(t) but σ(t) ≈ μ(t).
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7 Simulation Results

7.1 Electricity Trace Simulator

Due to the lack of high-resolution real world data, we implemented an electricity trace
simulator that can generate realistic one-minute resolution synthetic consumption traces.
It is an extended version of the simulator developed in [19]. The simulator includes 33
different appliances. A trace is associated to a household and generated as follows: (1)
A number of active persons is selected according to some distribution derived from real
statistics. This number may vary as some members can enter or leave the house. (2) A
set of appliances is then selected and activated at different time of the day according to
an other distribution, which was also derived from real statistics.

Using this simulator, we generated 3000 electricity traces corresponding to different
households, where the number of residents in each household was randomly selected
between 1 and 5. Each trace was then sanitized according to our scheme. The noise
added in each slot (i.e., λ(t)) was set to the maximum consumption in the slot (i.e.,
λ(t) = max1≤i≤N X i

t where the maximum is taken on all users in the cluster). This
amount of noise ensures ε = 1 indistinguishability for individual measurements in all
slots. Although one can increase λ(t) to get better privacy, the error will also increase.
Note that the error με′(t) for other ε′ �= ε values if με(t) is given is με′(t) = ε

ε′ ·με(t).
We assume that λ(t) = maxi X i

t is known a priori.

7.2 Performance Analysis: Error According to the Cluster Size

The error introduced by our scheme depends on the cluster size N . In this section, we
present how the error varies according to N . Table 1 shows the average error value and
its standard deviation, resp., depending on the size of the cluster in case of different
values of α. The average error of a given cluster size N is the average of meant(μ(t))
of all N -sized clusters7. Obviously, higher N causes smaller error. Furthermore, a high
α results in larger noise added by each meters, as described in Section 6, which also
implies larger error. Interestingly, increasing the sampling period (i.e., Tp) results in
slight error decrease8, hence, we only considered 10 min sampling period. Otherwise
noted explicitly, we assume 10 min sampling period in the sequel.

7.3 Privacy Evaluation

Privacy over Multiple Slots. So far, we have considered the privacy of individual slots,
i.e. added noise to guarantee ε = 1 privacy in each slot of size 10 minutes. However, a
trace is composed of several slots. For instance, if a user watches TV during multiple
slots, we have guaranteed that an adversary cannot tell if the TV is watched in any
particular slot (up to ε = 1). However, by analysing s consecutive slots corresponding

7 In fact, the average error is approximated in Table 1: we picked up 200 different clusters for
each N , and plotted the average of their meant(μ(t)). 200 is chosen according to experimental
analysis. Above 200, the average error does not change significantly.

8 This increase is less than 0.01 even if N is small when the sampling period is changed from 5
min to 15 min.
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Table 1. The error depending on N and α using random clustering. The sampling period is 10
min.

N
α = 0 α = 0.1 α = 0.3 α = 0.5

mean dev mean dev mean dev mean dev

100 0.118 0.021 0.135 0.023 0.150 0.026 0.177 0.032
300 0.047 0.004 0.050 0.005 0.054 0.006 0.070 0.007
500 0.029 0.002 0.031 0.002 0.036 0.002 0.044 0.003
800 0.019 0.001 0.020 0.001 0.023 0.001 0.028 0.001
1000 0.015 0.0008 0.016 0.0008 0.019 0.001 0.023 0.001

to a given period, it may be able to tell whether the TV was watched during that period
(the privacy bound of this is εs = ε · s due to the composition property of differential
privacy). Based on Theorem 1, we need to add noise λ(t) =

∑s
i=1 maxi X i

t to each
aggregate to guarantee εs = 1 bound in consecutive s slots, which, of course, results
in higher error than in the case of s = 1 that we have assumed so far. Obviously,
using the LPA technique, we cannot guarantee reasonably low error if s increases, as
the necessary noise λ(t) =

∑s
i=1 maxi X i

t can be large. In order to keep the error
λ(t)/

∑N
i=1 X i

t low while ensuring better privacy than εs = s · ε, one can increase the
number of users inside each cluster (i.e., N ).

Let’s say that we want to compute the privacy of a user i between 14:00 and 18:00.
If ε(t) = X i

t/λ(t) denotes the bound in a single slot t, then, based on the composition
property of differential privacy, the bound εs for the s = 24 slots between 14:00 (84th
slot) and 18:00 (108th slot) is

∑108
t=84 ε(t). In general, εs(t) =

∑t+s
i=t ε(i).

Table 2 shows what average privacy of a user, in our dataset, as a function of the
cluster size and value s. As the cluster size increases, the privacy bound decreases (i.e.
privacy increases). The reason is that when the cluster size increases, the maximum con-
sumption also increases with high probability. Since the noise is calibrated according
to the maximum consumption within the cluster, it will be larger. This results in better
privacy.

Table 2. εs of users considering all appliances depending on N and s. Tp is 10 min.

N
s = 3 (30 min) s = 24 (4 h) s = 48 (8 h) s = 144 (24 h)
mean dev mean dev mean dev mean dev

100 2.34 0.40 9.05 2.59 14.18 3.94 26.24 4.52
300 2.02 0.44 7.60 2.69 11.81 4.14 20.95 4.62
500 1.87 0.45 7.04 2.76 10.90 4.25 19.01 4.85
800 1.76 0.45 6.64 2.79 10.27 4.34 17.56 5.10
1000 1.67 0.47 6.35 2.87 9.83 4.47 16.55 5.40

Privacy of Appliances. In the previous section, we analysed how a user’s privacy varies
over time. In this section, we consider the privacy of the different
appliances. For example, we aim at answering the following question: what was my
privacy when I was watching TV last evening between 18:00 and 20:00? In order to
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compute the corresponding privacy (i.e. εs), we compute
∑120

t=108 ε(t), where ε(t) =
{TV’s consumption in t}/λ(t).

We summarized some of the appliance privacy9 in Table 3. Each value is computed
by averaging the privacy provided in our 3000 traces.

The appliances can be divided into two major groups: the usage of active appliances
indicate that the user is at home and uses the appliance (their consumption significantly
changes during their active usage such as iron, vacuum, kettle, etc.), whereas passive
appliances (like fridge, freezers, storage heater, etc.) have more or less identical con-
sumption regardless the user is at home or not.

Table 3. εs of different appliances in case of different s. N = 100 and Tp is 10 min. The name
of active devices are in bold.

s = 3 (30 min) s = 24 (4 h) s = 48 (8 h) s = 144 (24 h)
mean dev mean dev mean dev mean dev

Lighting 0.91 1.28 2.68 1.82 3.63 2.29 4.89 2.97
Cassette / CD Player 0.02 0.04 0.05 0.05 0.07 0.05 0.09 0.07

Vacuum 1.67 7.59 1.82 7.58 1.90 7.60 1.94 7.63
Personal computer 0.21 0.32 0.83 0.49 1.09 0.58 1.42 0.83

TV 0.15 0.47 0.37 0.52 0.45 0.58 0.50 0.63
Microwave 1.13 4.23 1.26 4.24 1.29 4.27 1.31 4.29

Kettle 0.55 2.71 0.72 2.73 0.83 2.76 1.02 2.79
Washing machine 1.23 1.43 1.96 1.63 2.55 1.76 3.07 2.07

DESWH 3.34 14.01 6.13 14.06 7.83 14.23 10.85 14.57
Storage heaters 3.22 0.32 20.20 1.99 30.45 4.23 30.45 4.23

Refrigerator 0.44 0.22 1.06 0.49 1.40 0.64 1.92 0.80

Previous tables show two different, and conflicting, results. Table 2 shows that it may
actually be difficult to hide the presence of activities in a household. In fact, computed
ε values are quite high, even for large clusters. However, results presented in Table 3
are more encouraging. They show that, although, it might be difficult to hide a user’s
presence, it is still possible to hide his actual activity. In fact, appliances privacy bounds
(ε values) are quite small, which indicates that an adversary will have difficulty telling
whether the user is, for example, using his computer or watching TV during a given
period of time. Furthermore, results show that it is even more difficult for an adversary
to tell when a given activity actually started. Finally, we recall that in order to keep
the error λ(t)/

∑N
i=1 X i

t low while ensuring better privacy one can always increase the
number of users inside each cluster. For instance, doubling N from 100 to 200 allows
to double the noise while keeping approximately the same error value (0.118 in Table
1 if α = 0). This results in much better privacy, since, on average, doubling the noise
halves the privacy parameter εs.

Although more work and research is needed, we believe this is a encouraging result
for privacy. Protecting users’ privacy against smart metering systems might not be a
dream after all!

9 Because of space constraint, we are only able to display a small sample of our results. A larger
table can be found in [1]
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Anonymity Attacks on Mix Systems: A Formal Analysis
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Abstract. Information theory turned out to be very useful in analyzing anonymity
attacks in general. The concept of channel information leak is a good indicator of
how successful an attack can be. While different information leak measures ex-
ist in the literature, the problem of representing anonymity systems using noisy
channels has not been well studied. The main goal of this paper is to show how
anonymity attacks on mix systems can be formally represented as noisy channels
in the information-theoretic sense. This formal representation provides a deeper
understanding of mix systems and prepares the field for a more rigorous and ac-
curate analysis of possible attacks. We performed empirical analysis using three
information leak measures (mutual information, KLSD, and Min-entropy) which
revealed interesting findings about some mix variants. This paper tries to bridge
the gap between theory and practice in the field of anonymous communication
systems.

1 Introduction

Cryptography alone is not enough to guarantee anonymity. Encrypting a message can
help protect its content from being revealed to an undesired observer but the identities of
the sender as well as the receiver remain generally known. Some anonymity techniques
should be used in order to confuse an observer and conceal the communication relation-
ship between the sender and the receiver. Since the first and most influential work on
anonymity systems where Chaum introduced the concept of mix [1], several systems
for anonymous communications have been proposed. These can be divided into two cat-
egories: high-latency and low-latency systems. High latency systems try to maximize
anonymity at the cost of relatively large delays. These systems are more appropriate
for anonymous remailers and include Mixmaster [2] and Mixminion [3]. Low latency
systems try to anonymize real-time network communications like web browsing, in-
stant chat, SSH communications, etc. Web MIXes [4] and Tor [5] fall in this category.
Attacks on anonymous systems aim to reduce anonymity of users by linking senders
to receivers, messages to senders and/or receivers, or messages with one another. They
can be divided into two categories passive and active attacks. In this paper we consider
only passive attacks. A passive attacker observes the outputs of the system and try to
make deductions from these outputs.

Nearly all anonymity systems use randomness to conceal the link between messages,
senders and receivers. While the use of randomness makes the task of the passive at-
tacker more difficult, it also make the analysis of such systems more challenging. In-
formation theory turns out to be very useful to analyze anonymity protocols [6,7,8,9].

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 133–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Typically, an anonymity protocol under a passive attack can be represented as a noisy
channel where the secret information represent the channel’s input and the attacker ob-
servations represent the channel’s output. The channel is represented as a matrix of
conditional probabilities of the form Pr(output|input). Since a passive attacker tries to
make deductions about the secret information (input) based on what he observes (out-
put), the concept of channel information leak is a good indicator of how successful the
attack can be. In order to compute the information leakage and hence the degree of
protection of the protocol, the corresponding channel’s matrix has to be defined (set of
secrets and set of observations) and computed (conditional probabilities). While sev-
eral information leakage measures exist (e.g. mutual information [8], min-entropy [10],
and KLSD [11]), the problem of how to compute the conditional probability matrix
has not been deeply studied in the literature. Only few works [12,13,14,15,8] provided
some details about computing the conditional probability matrix for a few number of
protocols, mainly Crowds [16].

This paper gives a detailed account on how the conditional probabilities matrix can
be generated for different types of mixes. We show how to define the set of secret infor-
mation as well as the set of attacker observations and most importantly how to compute
the channel’s conditional probabilities values. Then, for every mix type we carry out
empirical analysis to observe how the information leak behave as the parameters of the
mix change. Section 2 describes the analogy between an anonymity protocol under pas-
sive attack and a noisy channel. Section 3 presents the three information leak measures.
Then, Sections 4, 5, 6, and 7 detail the matrix generation an analysis for simple mixes,
pool mixes, binomial mixes, and Stop-And-Go mixes respectively. Section 8 concludes.

2 Anonymity Protocol Representation through Noisy Channel

An anonymity protocol can be represented as a memoryless noisy channel where the
input is the information to be kept secret and the output is the observed events. The
attacker’s challenge is then to guess the secret information based on the observed event.
The set of observations depends on the capabilities of the attacker. A channel is a tu-
ple (A,O, p(·|·)) where A is a random variable representing the inputs with n values
{a1, . . . ,an}, O is a random variable representing the outputs (observations) with m
values {o1, . . . ,om}, and p(o|a) is a conditional probability of observing o ∈ O given
that a ∈ A is the input. Intuitively, events in A represent the information to hide from
a potential attacker while events in O are the ones that the attacker actually observes.
The channel is noisy because an input might lead to different outputs with different
probabilities. The probability values p(o|a) for every input/output pair constitutes the
channel matrix. Typically, the inputs are arranged by rows and the outputs by columns.
The probability distribution p(·) over A is called the a priori distribution and is gener-
ally not known in advance. When an output o is observed, the probability that the input
is a certain a is given by the a posteriori probability of a given o (p(a|o)). The a priori
and the a posteriori probabilities are related by the Bayes theorem:

p(a|o) =
p(o|a) p(a)

p(o)
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3 Information Leakage Measures

A good anonymity protocol should make it hard to the attacker to guess the anonymous
event given the observable event. The extreme case is when the distributions A and O are
completely independent. This is called noninterference and achieving it, unfortunately,
is often not possible because in most of the cases the protocol needs to reveal informa-
tion about A. For example, in an election protocol, the individual votes should be secret
but ultimately, the result of the votes must be made public which reveals information
about individual votes. Hence the degree of anonymity of a protocol is tightly related
to the amount of information leaked about the anonymous event when an observation
is observed. In particular, more information leakage means less anonymity to the users
of the system and vice versa. In the remaining of this section, p(a) denotes the a priori
distribution on the secret information.

3.1 Mutual Information

In Shannon information theory, the information leaked by a noisy channel is given
by the notion of mutual information. Mutual Information of A and O, noted I(A;O),
represents the correlation of information between A and O and is defined as: I(A;O) =
H(A)−H(A|O) where H(A) is the Shannon entropy of A and H(A|O) is the conditional
entropy of A given O:

H(A) = − ∑
a∈A

p(a) log(p(a)) (1)

H(A|O) = ∑
a∈A

∑
o∈O

p(a,o) log(p(a|o)) (2)

So mutual information is the difference between the uncertainty of the a priori distribu-
tion and the uncertainty of the a posteriori distribution.

3.2 Min-entropy

As an alternative to Shannon entropy, one can use the concept of probability of error
of an adversary [15]. In an anonymity protocol, the attacker tries to guess the secret
information based on the information he observes. His goal is to use a decision function
so that to minimize the probability of error (probability of guessing wrong).

It is well known that the best decision function is based on the MAP rule [17] and the
corresponding probability of error is called Bayes risk: 1−∑o∈O maxa∈A(p(o|a) p(a)).

The probability of error is not a measure of information leakage. Instead, it can
be used to measure the attacker’s initial capability (based on the a priori distribution)
and also the attacker capability after observing the output (based on the a posteriori
distribution). A notion of “difference” between these probabilities of error can give
rise to an information leakage measure. Smith [10] introduced an information leakage
measure along this idea and used Rényi min-entropy:

Min-entropy = H∞(A)−H∞(A|O)

= log
1

maxa∈A p(a)
− log

1

∑o∈O maxa∈A p(o|a)p(a)
(3)
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Smith showed through an interesting example that when an adversary tries to guess the
value of the input in a single try, min-entropy information leak is more suitable than mu-
tual information. The example features two systems with the same mutual information,
the same a priori uncertainty, but with very different MAP probabilities of error.

3.3 KL Standard Deviation (KLSD)

Zhioua introduced a family of information leak measures based on how much the rows
of the channel’s matrix are different from each others [11]. Zhioua considers every row
of the matrix as a point in the m−dimensional space and he interprets the scattering of
these points as the degree of leakage of the channel. If the rows are different, then the
associated points will be very scattered in the space and if they are similar they will be
close to each others. The information leak notion formula is based on standard deviation
statistical dispersion measure and the Kullback-Leibler divergence between probability
distributions.

KLSD =
√

∑
a∈A

p(a) DKL(
−→
Ra || −−−−→Meanp)2 (4)

where DKL is the Kullback-Leibler divergence (a.k.a. relative entropy),
−→
Ra denotes the

matrix row associated to input a, and
−−−−→
Meanp is the mean distribution with respect to the

prior distribution p. Meanp(o) = ∑a p(a) p(o|a).

4 Simple Mix Systems

Since Chaum [1] introduced the concept of mixes, various mix designs have been pro-
posed. The simplest ones are threshold and timed mixes. Threshold mix waits until a
given number (threshold) of messages accumulates in the mix and then flushes them
all. Timed mix flushes all the messages it contains every fixed period of time regardless
of how many messages received since the last flushing. The operation of both mixes
can be divided into rounds. A round is defined as the period between two flushings.
In every round r, the mix receives a set of messages from a set of senders Sr ⊆ S
and forwards them (after mixing) to a set of receivers Rr ⊆ R where S and R are
the sets of all possible senders and receivers respectively. The primary role of a mix
is to hide the link between senders and receivers. The focus of an attacker is then on
unveiling sender-receiver linkability rather than the sender and/or receiver identity. As-
suming that in round r the mix receives messages from t senders and flushes them to
t receivers (|Sr| = |Rr| = t), the set of anonymous events can be the set of t-tuples of
pairs (si,r j) where si ∈ Sr and r j ∈ Rr ∀1 ≤ i, j ≤ t. The set of attacker observations
can very well be the set of possible couples (S,R) where S is a set of senders and R is
a set of receivers and such that |S| = |R| = t. Let senders(a) and receivers(a) be the
set of senders, respectively the set of receivers, in the anonymous event a. For exam-
ple, if a = {(s2,r3),(s1,r2),(s3,r1)}, then senders(a) = {s1,s2,s3}. Let senders(o) and
receivers(o) be the set of senders, respectively set of receivers, in observation o. The
conditional probability p(o|a) is defined as follows:

p(o|a) =

⎧⎨⎩
1 if senders(o) = senders(a) and

receivers(o) = receivers(a)
0 otherwise
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Fig. 1. (a) The probabilities matrix of a threshold mix with threshold 2, 3 possible senders and 3
possible receivers. (b) Measuring the anonymity of a threshold mix system (t = 2) while increas-
ing the number of senders/receivers from 2 to 10.

As example, Fig. 1(a) shows the conditional probabilities matrix of threshold mix with
3 senders and 3 receivers assuming the threshold t is 21. Having the matrix hand, it is
possible to apply the information leak measures of Section 3 to assess the anonymity
of this simple mix system. The experiment we carried out consists in measuring the
information leak of the system as we increase the number of senders/receivers. Intu-
itively, as the number of possible senders and receivers increases, the anonymity of the
system should be improved. Interestingly, Fig. 1(b), which shows graphically the result
of the experiment, reveals the contrary. By increasing the number of senders/receivers
from 2 to 10 the information leak, according to all three measures (mutual information,
SDKL and Min-entropy), increases as well. This means that the system gets less and
less anonymous. The explanation is that the attacker’s observation (the couple (S,R))
reveals more information about the secret events when the number of senders/receivers
is higher. Consider for instance the case where there are only two senders and two
receivers. Since the threshold t is 2, there is only one possible observation which is
({1,2},{1,2}). This observation will provide no clue to the attacker about the sender-
receiver mapping because all the possible combinations are equally likely. This corre-
sponds to a perfectly anonymous system with no information leak as depicted by the
far left point of Fig. 1(b). Adding one sender and one receiver coincides exactly with
the system in Fig. 1(a) with 9 possible observations and 18 possible secret events. By
observing the sets of senders and receivers in a particular round, the attacker will be
able to narrow down the set of potential secret events from 18 to only 2 which is con-
sidered as an important information leak. This is reflected by the three measures as the
information leak increases from 0 to 3 in Fig. 1(b).

1 A timed mix is represented in the same way. However, the number of messages t is not the
same from one round to the other.
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Finally, it is important to mention that this matrix representation is not compact be-
cause the number of secret events and observations grow exponentially as the number
of senders and receivers increase. If the total number of possible senders |S | is n and the
total number of possible receivers |R | is m, the number of secret events is |A|=Cn

t Pm
t =

n!
t!(n−t)!

m!
(m−t)! while the number of observations is |O| = Cn

t Cm
t = n!

t! (n−t)!
m!

t! (m−t)! .

5 Pool Mixes

Clearly, in threshold and timed mixes, every message will stay only one round in the
mix. Pool mixes are improved versions of the above simple mixes. In a pool mix, a mes-
sage can stay more than one round in the mix. A threshold pool mix has two parameters:
a size of the pool f min and a threshold N. When f min+N messages accumulate in the
mix, N randomly selected messages among them are flushed. The other f min messages
are retained in the mix. They constitute the pool. A timed pool mix flushes periodically
every t elapsed time units (generally seconds). If the number of messages is smaller
or equal than f min, no message is flushed. Otherwise, f min messages are retained in
the pool and the others are flushed. Threshold-or-Timed mix and Threshold-and-Timed
mix are two additional pool mixes obtained by combining the ideas of threshold and
timed mixes. The former flushes every t seconds or when N messages accumulated in
the mix while the latter flushes every t seconds but only when at least N messages have
accumulated in the mix. Hence, in all these mix systems, a message can stay more than
one round in the mix which improves the anonymity of the system but comes with a
cost which is message delay.

Fig. 2. The different pool mix types

The above pool mixes can be seen as constant pool mixes because the number of
messages that stays in the mix after a flushing is constant ( f min). Dynamic pool mixes
deviate from constant pool mixes in that the messages left after every flushing is not
constant. Timed dynamic pool mix, called also Cottrell mix, has been relatively popular
and was used in anonymity systems like Mixmaster [2] and Mixminion [3] protocols.
It has three parameters: a period t, a minimum size of the pool f min, and a fraction f .
The mix flushes every t time units. However, instead of sending out exactly mr − f min
messages, where mr is the total number of messages in the mix at round r, only a
fraction of that quantity: f ∗ (mr − f min) is sent. Fig. 2 lists the different pool mix types
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and indicates the number of messages entering, staying and leaving the mix in a given
round r. Note that ar refers to the number of messages entering the mix during the time
interval t of a timed mix whereas mr refers to the total number of messages accumulated
in the mix at round r before flushing.

It is easy to see that a message can stay several rounds in a pool mix without being
flushed. Hence, if the attacker tries to guess the sender-receiver linkability in a given
round r, the conditional probabilities matrix can be constructed in a similar way as for a
simple mix system (Section 4). However, the set of possible senders will not only con-
tain the senders of messages received in round r but the senders of messages received in
all previous rounds r− 1,r− 2, . . . ,2,1. Indeed, theoretically any of those senders can
be the originator of a message flushed in round r. This will make the conditional prob-
abilities matrix much bigger. However, it is possible to keep the same size as a simple
threshold or timed mix but the analysis will be less accurate.

In another scenario, assume that an attacker targets a message flushed by the mix in
round r and has an objective to guess the round in which that message entered the mix.
By doing so, the attacker will narrow down the identity of the sender of that message.
Recall that it is assumed that the attacker is a permanent global passive observer. He
can observe the number of messages that arrive to the mix in every round (noted ar)
and the number of messages sent by the mix in every round. In addition, he knows
the whole history and the parameters ( f min and f ) of the mix. The next paragraphs
illustrate how the matrix of conditional probabilities matrix can be constructed given
this particular scenario2. In this scenario, the set of secret events is the set of rounds from
1 to r: {1,2, . . . ,r}3. The set of observables is less obvious. From all the observations
on which the attacker has access, the numbers of messages entering the mix in each
round give some hint about the actual secret event. Therefore we choose the set of
observables to be the set of possible tuples of the form (a1,a2, . . . ,ar) where ai denotes
the number of messages arriving to the mix in round i. For example, an observation
might be: o = (15,6,36,29,10) which means 15 messages entered the mix in round 1, 6
messages in round 2, etc. To avoid confusion between different observations, we use the
following convention: o1 = (a1

1,a
1
2, . . . ,a

1
r ), o2 = (a2

1,a
2
2, . . . ,a

2
r ), etc. More generally,

o j = (a j
1,a

j
2, . . . ,a

j
r).

The next step is to compute the conditional probabilities of the channel matrix. The
computations are inspired by the work of Diaz and Preneel [18]. The matrix is com-
posed of conditional probabilities of the form p(o|i) where i refers to a round and
o = (a1,a2, . . . ,ar) refers to an observation. However, in this particular setting, it is
easier to compute first the a posteriori probabilities: p(i|o). Indeed, p(i|o) is the proba-
bility that the target message (flushed in round r) has entered the mix in round i given
the observation o. If the message arrived in round r, it is certain that it is in the mix at
flushing time. So,

p(r|o j) = a j
r ∗

1

m j
r

(5)

2 The illustration is generic and can apply to any pool mix type in Fig. 2.
3 In the rest of this section, we use i to denote some secret event.
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where m j
r is the total number of messages in the mix at round r given observation o j.

m j
r is the only unknown in Equation (5) and round r and it is equal to the number of

messages kept in the pool from the previous round plus the number of messages arrived
in round j, that is, a j

r . Consequently, it is defined recursively as follows:

m j
r =

{
a j

r + m j
r−1 − f lushed(r−1) if r > 1

a j
r if r = 1.

(6)

where f lushed(i) refers to the number of messages flushed in round i. More formally,

f lushed(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max(0,mi − f min) for a threshold pool mix
max(0,mi − f min) for a timed pool mix
max(0,mi − f min) for a threshold-or-timed pool mix
max(0,mi − f min) for a threshold-and-timed pool mix
max(0, f ∗ (mi − f min)) for a dynamic timed pool mix

If the target message arrived to the mix in round r−1, it might have already been flushed
by the mix in the same round r−1. The probability that the message stayed in the mix
in round r−1 is:

m j
r−1 − f lushed(r−1)

m j
r−1

.

Hence, the probability that the target message arrived in round r−1 given observation
o j is:

p(r−1|o j) = a j
r−1 ∗

m j
r−1 − f lushed(r−1)

m j
r−1

∗ 1

m j
r

More generally, the probability that the target message arrived in round i given obser-
vation o j is:

p(i|o j) = a j
i ∗

r−1

∏
k=i

m j
k − f lushed(k)

m j
k

∗ 1

m j
r

(7)

Bayes theorem is then used to turn the conditional a posteriori probabilities of Equa-
tion (7) into memoryless channel’s conditional probabilities p(o j|i):

p(o j|i) =
p(i|o j) p(o j)

p(i)

where we assume that all observations might happen with equal probabilities, that is,

p(o j) = p(ok) ∀ j,k

and hence,
p(i) = ∑

j
p(i|o j)p(o j).

As an example, the cottrell mix with parameters f = 0.8, f min = 15, and number of
rounds 3 yields the channel matrix4:

4 For simplicity of illustration, we assumed that the numbers of messages entering the mix in
every round is either 10 or 20. Obviously the analysis can be generalized to any number of
messages.
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o1 o2 o3 o4 o5 o6 o7 o8

1 0.146 0.105 0.101 0.074 0.187 0.138 0.140 0.105

2 0.130 0.094 0.182 0.134 0.105 0.077 0.157 0.118

3 0.108 0.156 0.100 0.148 0.100 0.148 0.094 0.141
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Fig. 3. Information leak of the five pool mix types as the number of rounds increases

For all pool mix types, the anonymity of the system depends on the number of rounds
realized. Intuitively, the more rounds are completed, the more difficult for the attacker
to guess the secret information (the round on which the message entered the mix).
Surprisingly, the analysis we performed showed the opposite. The experiment is simple
and consists in measuring the information leakage of all pool mix types for an increasing
number of rounds (from 2 to 8 rounds). Fig. 3 shows that according to all information
leakage measures (mutual information, SDKL, and Min-entropy), all pool mixes in our
setting leak more as the number of rounds (x-axis) increases. This means that, when
an attacker tries to guess the round a target message entered the mix and when the
same attacker knows the number of messages entering the mix in every round, then the
more rounds are performed the more chances he has to guess the correct round. The
only exception in Fig. 3 is the threshold pool mix which is constant at 0 as the number
of rounds grows. An information leak of 0 means the attacker has no clue about the
secret event given what he observed. Indeed, since the number of messages entering
the mix in every round is constant (N messages), there is only one observation the
attacker can observe which is a tuple of the form (N,N, . . . ,N). The same explanation
can help to understand the fact that threshold-or-timed and threshold-and-timed pool
mixes leak less information than timed and cottrell pool mixes in Fig. 3. In particular,
for threshold-or-timed and threshold-and-timed pool mixes, the number of messages
entering the mix in some rounds is exactly N. This limits the information the attacker
can utilize to guess the correct secret event. Note also that in the initial rounds (2 and
3) timed and Cottrell pool mixes have similar information leakage values. Then, as
more rounds are completed, Cottrell pool mix manifests less information leakage. It is
important to mention finally that the ”ranking” suggested by Fig. 3 holds only in the
described setting. That is, if the objective is to protect the anonymity system from an



142 S. Zhioua

attacker who can only track the number of messages entering the mix in every round,
then the best pool mix type would be a simple threshold pool mix. This holds for any
order of message entering. However, in presence of attackers with different capabilities
(e.g. n−1 attacks [19]), most probably the Cottrell pool mix will be the best option.

In the next experiment, we focused on the Cottrell mix. In particular, the goal of the
experiment is to analyze the impact of f and f min parameters on the information leak-
age of Cottrell mix. In this analysis, the number of rounds is fixed to 6 and the number
of messages entering the mix in every round is assumed to be 5, 10, 15, or 20. Fig. 4
shows a summary of this analysis. Every 3D diagram is obtained using every one of
the three information leak measures (mutual information, SDKL, and Min-Entropy).
In the x-axis, the threshold f min grows from 0 to 60. In the y-axis, the fraction f de-
creases from 1 to 0. According to all measures, information leakage is maximized when
f = 0.98 and f min = 0. Note that, with those values Cottrell mix is almost equivalent
to a simple timed mix where no messages are kept in the mix from round to round. So
the attacker knows with certainty that the target message flushed in round r arrived in
the same round r. On the other hand, Cottrell mix in the described setting preserves
best the identity of the target message’s sender when f = 0.78 and f min = 4 for mutual
information and SDKL and when f = 0.42 and f min = 8 for min-entropy. At a first
glance, the result looks counter intuitive. Indeed, one would expect the mix to be the
most anonymous when all the messages received by the mix stayed until round r. This
happens when f min is very large and the fraction f is 0. However, since the number of
messages arriving to the mix might be different from round to round, the attacker can
use this information to narrow down the identity of the round where the target message
arrived to the mix. For example, if 20 messages entered the mix in round 1, 5 in rounds
2, 3, 4, 5, and 6, and all the messages stayed in the mix until round 6, the attacker
having observed these numbers, will suspect round 1 with probability 4

9 , and every-
one of rounds 2, 3, 4, 5, and 6 with probability 1

9 . This is clearly not the most secure
situation. The best situation in that setting would be, for instance, to end-up with 10
messages lasting from every round. The attacker will suspect the six rounds with equal
probability 1

6 .

6 Binomial Mix

All mix types described so far fit into the generalized framework of Diaz and Serjan-
tov [20]. In that framework, a mix is characterized by a function P(m) from the number
of messages in the mix m to the fraction of messages to be flushed. For instance, simple
threshold and timed pool mixes can be represented by a function P(m) = 1 since all
messages are flushed in every round. For pool mixes, the function is simply:

P(mr) = f lushed(r)/mr

where mr is the number of messages in the mix at round r. This framework is more pre-
cisely called generalized deterministic mixes because the number of flushed messages
is exactly determined by the values of n and the function P(n). Generalized binomial
mixes [20], on the other hand, are expressed in terms of the same function P(n) but this
function is not considered as a fraction but as a probability. That is, for every message
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Fig. 4. Information leakage of Cottrell mix measured using mutual information, SDKL, and
Min-Entropy for different values of f (x-axis) and f min (y-axis)

in the mix, a biased coin is tossed and depending on the result, the message is kept in
the mix or flushed.

As in the previous section, assume that the attacker is a global passive observer that
tries to guess the round in which a message flushed in round r entered the mix. The
set of secret events is the same, that is, the number of rounds from 1 to r. Since the
number of messages flushed in every round is not deterministic, that number is use-
ful for the attacker to make a more accurate guess. Hence, the set of observables of
the attacker is the set of all possible r tuples of the form ((a1,s1),(a2,r2), . . . ,(ar,sr))
where ai and si refer to the number of messages received and flushed at round i re-
spectively. Similarly to the computation of the previous section, it is easier to compute
first the a posteriori probabilities: p(i|o) where i refers to a round (secret event) and
o = ((a1,s1),(a2,r2), . . . ,(ar,sr)) refers to an observation. If the message arrived in
round r, it is certain that it is in the mix at flushing time. So,

p(r|o) =
ar ∗P(mr)
mr ∗P(mr)

= ar ∗ 1
mr

(8)

where mr is the average number of messages in the mix at round r given sr messages
are flushed in that round. According to Diaz and Serjantov [20],

mr =
Mmax

∑
i=sr

i∗ p(i|sr) (9)

=
Mmax

∑
i=sr

i∗ p(sr|i)
∑Mmax

j=sr
p( j|i) (10)

=
Mmax

∑
i=sr

i∗
i!

sr! (i−sr)!
P(i)sr (1−P(i))i−sr

∑Mmax
j=sr

i!
j! (i− j)! P(i) j (1−P(i))i− j

(11)

where Mmax is the maximum capacity of the mix and P(i) is the probability of flushing
given i messages are in the mix.
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If the target message arrived to the mix in round r− 1, it might have already been
flushed by the mix in the same round r−1. The probability that the message stayed in
the mix in round r− 1 is simply 1−P(mr−1) and hence the probability that the target
message arrived in round r−1 given observation o is:

p(r−1|o) = ar−1 (1−P(mr−1))
1

P(mr−1)

Generalizing that probability to a previous round i gives:

p(i|o) = ai

r−1

∏
k=i

(1−P(mr−1))
1

mr
(12)

Finally, the conditional a posteriori probabilities are turned into memoryless channel’s
conditional probability using the bayes rule as in the previous section.

7 Stop-and-Go Mix

All mix systems described so far operate in rounds. Every round ends by the flushing of
a group of messages collectively. Stop-And-Go-Mix (SG-Mix) [21] on the other hand
processes every message individually. In particular, every message is delayed for a dif-
ferent amount of time while it passes through the mix. A sender of a message starts
by selecting a sequence of nodes through a network of SG-Mixes. For every node i of
the path the sender sets a waiting time ti sampled from an exponential distribution with
parameter µ. This information is embedded in the message and encrypted. At recep-
tion of the message, a node (SG-Mix) i extracts ti information and makes the message
wait ti units of time before forwarding it to the next node i + 1 and so on. In order to
protect the system from n− 1 attacks5, the sender determines for every node i a time
interval [T Smin,TSmax]i where the message is expected to arrive. If the arriving time of
the message to node i is outside the interval (earlier than T Smin or later than TSmin), the
message is discarded.

The functioning of an SG-Mix can be seen as an alternation of idle and busy peri-
ods. In an idle period, the SG-Mix is empty and no message arrives. With the arrival
of a message, the busy period starts and will last until the SG-Mix is empty again. In
the busy period, the SG-Mix receives a sequence of messages individually, delays them
according to a duration t sampled from the exponential distribution with rate µ and then
flushes every message as soon as its delay time elapses. As for simple mixes (Section 4),
a passive attacker tries to correlate input messages to output messages to unveil who is
communicating with whom. In this regard, the arrival-departure order of messages to
and from the SG-Mix is very helpful for the attacker to narrow down the sender-receiver
correlation. For instance, if the attacker observes the scenario (s2,s4,r1,s1,r4,s3,r3,r2)
where si refers to the arrival of a message from sender i and r j refers to the depar-
ture of a message to receiver j, then he can deduce that sender 1 is not communicating

5 n− 1 attack consists in shaping the traffic to isolate a target message. For instance, blocking
a target message until the mix is empty and then forwards it with a set of identifiable dummy
messages.
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with receiver 1, sender 3 is not communicating with receiver 4, etc. Assuming that in a
busy period, the SG-Mix receives in total n messages from n senders S = {s1,s2, . . . sn}
and forwards them to n receivers R = {r1,r2, . . . ,rn}, the set of secret events is de-
fined as the set of all possible n-tuples of pairs (si,r j) where si ∈ S and r j ∈ R for
1 ≤ i, j ≤ n. The set of observations is a subset of permutations6 of the set S∪R. Let
S and R be two sets of size n (|S| = |R| = n). A permutation of the elements of S∪R
is a bijection from {1,2, . . . ,2n} to S∪R. Let p be a permutation of S∪R and let Q
be a subset of {1,2, . . . ,2n}. p|Q refers to the restriction of p to Q. For instance, if
p = (s2,s4,r1,s1,r4,s3,r3,r2) then p|{1,2,...,5} = (s2,s4,r1,s1,r4). Let �S(p) and �R(p)
denote the number of elements of permutation p whose image is respectively in the
set S and R. More formally, �S(p) = |img(p)∩S| and �R(p) = |img(p)∩R|. The set of
observations is the set of permutations satisfying the following condition:{

p : {1, . . . ,2n} �→ S∪R | ∀i,1 ≤ i < 2n, �S(|p{1...i}) > �R(p|{1...i})
}

(13)

Intuitively, Equation 13 ensures that for a permutation to be a valid observation, at
any moment except for the last step (i = 2n), the number of flushed messages should
not equate or exceed the number of arrived messages. Indeed, the mix cannot flush
more messages than what arrived and equality means that the SG-Mix is empty and
consequently the busy period is over.

Let senders(a),receivers(a),senders(o), and receivers(o) defined as in Section 4.
Let position(o,s) be the position of sender s in observation o. For instance, if o =
(s2,s4,r1,s1,r4,s3,r3,r2) then position(o,s1) = 4. The conditional probability p(o|a) is
defined as:

p(o|a) =

⎧⎪⎪⎨⎪⎪⎩
1 if senders(o) = senders(a) and

receivers(o) = receivers(a) and
∀(s,r) ∈ a, position(o,s) < position(o,r)

0 otherwise

Using this formulation, the number of secret events is |A| = n! and the number of ob-

servations is |O| = (2n)!
2(n−1) .

The above formulation of SG-Mix uses the same set of secret events as the simple
mix formulation in Section 4. The sets of observations however are different. In particu-
lar, observations in the SG-Mix formulation are more informative than the observations
in the simple mix formulation. This gives an attacker of the SG-Mix more information
to guess the correct sender-receiver correlation. The common set of secret events in
the SG-Mix as well as the simple mix makes it possible to compare their information
leakage. Figure 5 shows the information leakage of simple threshold mix as well as
Stop-And-Go mix as the number of senders and receivers gets larger.

In the above formulations, the goal of the attacker is to guess the correlation between
senders and receivers. In this regard, Figure 5 shows that simple threshold mix and
SG-Mix have very similar information leak values. This means that if the goal of the
protocol is protect users from an passive attacker whose sole purpose is to correlate
senders to receivers, both mix systems are equivalent. However, if the attacker is able to

6 The order of elements is taken into consideration.
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Fig. 5. Comparison of the information leakage of simple threshold mix with Stop-And-Go mix
based on three measures

mount n−1 attacks, SG-Mix would be more secure because it can detect the blocking
of messages thanks to the time window associated with every message. On the other
hand, if messages delay time is an important element to consider, SG-Mix would again
be preferred to the simple threshold mix.

8 Conclusion

Anonymity protocols in presence of a passive attacker can very well be represented
using a noisy channel. This formal representation opens the way for a more rigorous
and more accurate analysis of anonymous communication systems in general. In this
paper, we applied this approach on several types of mixes. In particular, we illustrated
how to define the set of secret information as well as the set of attacker observations
and most importantly how to compute the channel’s conditional probabilities values.
Then, using three information leak measures (mutual information, min-entropy, and
KLSD) we analyzed the anonymity provided by these mixes. Note, however, that other
representations of mix systems are possible using noisy channels and these might lead
other insights and other findings. For instance, Newman et al. [13] represented timed
mix and focused on the sender anonymity of a target malicious sender. In [8], Zhu and
Bettati used MI to measure several mix systems.

Our plans for future work include the study of the scalability of this approach since
the channel matrix size for some anonymity systems might be very large. A possible
alternative could be to compute only an estimation of information leak measures and
provide tight guarantees on those values [9]. The long term objective of this research is
to bridge the gap between theoretical results in the field of anonymous communications
and deployed anonymity protocols. This paper prepares the field for the analysis of
deployed systems, in particular Tor.
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Abstract. A number of established and novel business models are based on
fine grained billing, including pay-per-view, mobile messaging, voice calls, pay-
as-you-drive insurance, smart metering for utility provision, private computing
clouds and hosted services. These models apply fine-grained tariffs dependent on
time-of-use or place of-use to readings to compute a bill.

We extend previously proposed billing protocols to strengthen their privacy in
two key ways. First, we study the monetary amount a customer should add to their
bill in order to provably hide their activities, within the differential privacy frame-
work. Second, we propose a cryptographic protocol for oblivious billing that en-
sures any additional expenditure, aimed at protecting privacy, can be tracked and
reclaimed in the future, thus minimising its cost. Our proposals can be used to-
gether or separately and are backed by provable guarantees of security.

1 Introduction

A number of business models are based on billing customers for fine grained use of a
system or resource: mobile network providers charge per call length and type, pay-per-
view TV providers charge for the actual requested content. Newer businesses rely heavily
on fine grained recordings of activity for billing. Pay-as-you-drive automotive insurance
bills drivers per mile depending on the type of road and time of travel. Electronic tolling
and congestion charging schemes have been proposed on similar lines. Smart-metering
for electricity and gas is being rolled out in the EU and the US in the next few years.
Finally, private cloud provision as well as hosted on-line service provision might rely on
fine-grained measurements of CPU time usage, memory allocation, disk storage, peak
bandwidth, or even the demand and network congestion at the time of day.

The downside of fine-grained metering and billing is the potential threat to pri-
vacy [1,2]. A common privacy-invasive architecture to support such billing consists
of providers collecting all usage information in order to apply the appropriate tariffs.
Privacy-friendly protocols have also been developed: it is possible to cryptographically
combine certified readings with a tariff policy to produce a certified bill that leaks no
additional information about the detailed readings [3,4,5]. Yet, even the final bill, which
is for instance aggregated over a period of usage, may leak information or be used to
leak specific readings.

This work makes two contributions to the field of privacy-friendly metering and
billing. First, we discuss how to eliminate incidental, accidental or deliberate leakages

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 148–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of information resulting from disclosing the final bill. We show that by adding some,
in the long run small, amount of noise it is possible to offer strong privacy guarantees
on what an adversary can infer from the final bill. This problem is similar to covert
channel minimization [6], and we use techniques from differential privacy that could be
more widely applicable. Second, we attempt to minimise the cost of privacy through a
cryptographic oblivious billing mechanism. The true cost of service provision is tracked
across billing periods, but not revealed to the service provider, which can only verify the
deposited funds cover costs. This allows customers to determine the levels of privacy
they require and even get a rebate for the additional funds they used to protect their
privacy.

Throughout this work we motivate our protocols through the example of a leased
private computation cloud. A service provider installs a cloud of 10000 CPUs in the
premisses of a large government intelligence agency. In our example, billing is per-
formed on the basis of the compute hours actually used at a fixed rate of $0.12 per
CPU instance / hour1. A more complex tariff scheme where each hour in the year is
costed differently is also supported. The government agency needs to settle the bill
each month, but is worried that the amount of computation on particular days is leaked
to its adversaries. We will show how our protocols can be used to reduce any leakage
below a desired level.

Discussion of the state-of-the-art. Deployed systems for fine grained billing usually
employ procedural access control mechanisms to protect privacy: usage data is gath-
ered, and often stored centrally for the purposes of billing. Access control allows only
designated parties and processes to access the data, and encryption technology might
be used to protect storage and communications. Despite those protections, the fact that
personal information is under the control of a service provider raises privacy concerns.
A pilot deployment of a pay-as-you-drive insurance scheme by Norwich Union failed,
stating privacy concerns as a leading reason for low uptake.2

Two types of privacy preserving metering and billing have been proposed in the liter-
ature. First, a meter can be entrusted with applying a fine grained tariff to the usage data
and only communicating to the service provider a final total fee. In this setting the meter
has to be trusted by the users and the service providers both for privacy and correctness.
This is usually achieved through trusted hardware and certification. In the automotive
setting, where meters record positions of cars for tolling, spot checks have also been
proposed to verify the correctness of the meter operation [3]. The second architecture
requires meters to cryptographically certify readings and securely hand them over to
a user device or service. Cryptographic operations can then be used to apply a tariff
scheme, and output a bill along with the necessary cryptographic proofs that certify its
correctness. Meters are simpler, and any device can be used to compute bills [5]. Both
architectures achieve the same goal: the bill and other necessary information are made
available to the service provider, but further information on detailed readings is hidden
from it and only available to the consumer.

1 The value of a standard compute instance / hour on Amazon EC2 and Microsoft Azure in
December 2010.

2 Insurer stops ‘pay as you drive’, BBC Radio 4’s Money Box
http://news.bbc.co.uk/2/hi/programmes/moneybox/7453546.stm

http://news.bbc.co.uk/2/hi/programmes/moneybox/7453546.stm
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In this work we are concerned with the remaining information leakage from privacy-
preserving billing systems. The value revealed by the protocols, namely the value of the
bill, could leak information or be used as a covert channel.

To illustrate the threat, consider a resource consumed in a number of imax distinct
time periods i, for i ∈ [0, imax ]. Some consumption takes place at each time period i
denoted by ci ∈ [0, cmax ], that should be billed at a tariff of pi per unit. Thus the final
bill for all periods should be B =

∑imax

i=0 ci · pi. Without making any assumptions on
the consumption patterns, as they are out of the system designer’s control, it is difficult
to estimate what information may be leaking from the final value B. For example an
adversary may know, through some side information, that the user consumed only in a
single time period T . In such a case the exact value of cT can be inferred straightfor-
wardly by computing cT = B/pT . This example threat illustrates that a solution to this
problem should make no assumptions about the consumption pattern, assume that arbi-
trary side-information is available to the adversary, and work for arbitrary (but known)
tariff schemes.

We will use a trivial solution as a benchmark to evaluate our own proposals: the user
could always pay an amount equivalent to the maximum possible consumption. In the
example used so far, this would be: maxB = cmax ·

∑imax

i=0 pi. While this is an adequate
solution from a privacy perspective, it nullifies the benefits of fine-grained billing as
users end up paying a fixed premium irrespective of their consumption. Furthermore it
is very wasteful, if the objective is to hide usage of the private cluster at the granularity
of an hour or a day.

Outline. Our techniques provide guarantees of privacy depending on the level of pro-
tection required by the customers, as well as a cryptographic scheme to amortise the
cost of such privacy provision. In Section 2 we study how much noise one needs to add
to a bill to ensure specific consumption windows are protected. In Section 3 we propose
a cryptographic rebate protocol that keeps a hidden track of the actual amounts due
accross multiple billing periods, allowing users to reclaim some of the extra payments
made. The rebate protocols also support deposits, anonymous payments using e-cash,
and negative bill noise, and prevent abuse by ensuring the funds paid cover the costs of
consumption.

2 Differential Privacy for Billing

We start from the premise that customers can add some “noise” to their bill in order
to hide their exact usage at specific times. Of course this billing noise represents real
money, so they wish to minimise it for a given level of protection required. The first
problem we tackle is to determine how much more a customer should pay to hide their
pattern of activity for a particular time frame.

Differential privacy was developed as a framework for hiding personal records within
databases [7]. A statistic extracted from a database is differentially private if it is nearly
as likely as if it was extracted from a database with an arbitrary record removed. This
definition encapsulates the intuition that a single individual’s record does not over-
whelmingly affect the statistic in a way that information about the record might leak.
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We have to modify this definition as well as its precise mathematical counterpart
to make it applicable to the billing setting. We consider as our database the set of all
readings from a meter. In the case of billing private cloud usage each record represents
the number of CPUs used for each hour of the billing period. The customer then has to
specify its privacy goal: for example they may wish to hide their activity at any arbitrary
hour or any arbitrary day of computing. Then they should determine the quality of
the protection provided, in terms of how much information the bill reveals about any
particular period. Using those parameters we can calculate the additional amount to bill
in order to achieve the desired privacy goals.

2.1 Privacy Definitions

For simplicity we consider fixed size databases corresponding to a fixed term billing pe-
riod. For our application this is sufficient, as we are primarily interested in the number of
CPU instances used during each hour of the pricing period. For this reason the domain
of all possible data sets is described as the Cartesian product: D = {0, . . . , cmax}imax .
For our private cloud scenario cmax is the number of instances in the private cloud, and
imax is the number of records per billing period. In our concrete example cmax = 10000
and imax is the number of hours in a month or a year.

First we define the “distance” between two sets of readings, and repeat some key
definitions and results from differential privacy [7], upon which we will be building.

Definition 1. The record distance RDist(D1, D2) between two data sets D1, D2 ∈ D
corresponds to the number of elements (records) in which D1 and D2 differ.

Definition 2. A randomized function K gives ε-differential privacy if for all data sets
D1, D2 ∈ D with RDist(D1, D2) ≤ 1, and all S ∈ ΣImage(K ),

3

Pr[K(D) ∈ S|D = D1] ≤ exp(ε) × Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness of K .

Intuitively, mechanisms fulfilling this definition address concerns that an individual
might have about filling in one record truthfully, rather than arbitrarily. Differential
privacy guarantees that no output (and thus consequences of outputs) becomes signif-
icantly more or less likely. In our case the randomized function K will be the billing
amount increased by some random value.

A further observation about hiding multiple records k from a database will also prove
useful:

Definition 3. A randomized function K gives (k, ε)-differential privacy if for all data
sets D1, D2 ∈ D with RDist(D1, D2) ≤ k, and all S ∈ ΣImage(K ),

Pr[K(D) ∈ S|D = D1] ≤ exp(ε · k) × Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness of K .

3 A σ-algebra over a set X is a set ΣX ⊂ 2X such that ∅ ∈ ΣX ; S ∈ ΣX ⇒ (X \ S) ∈ ΣX ;
and for any (Si)i∈N, Si ∈ ΣX ,

⋂
Si ∈ ΣX .
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Lemma 1. A ε-differentially private privacy mechanism K is also (k, ε)-differentially
private.

Lemma 1 follows from Definition 3, and shows that the same privacy mechanism K
can obstruct inferences on multiple records. In such cases it provides a lower amount of
privacy (i.e. ε′ = ε · k). Hence if a mechanism is to be used to protect multiple records
suitable security margins should be provided.

Differentially private mechanisms. The classical differential privacy mechanism by
Dwork [7] adds Laplacian noise to the outcome of a query, parametrised by the “sensi-
tivity” of the function f .

Definition 4. The sensitivity of a function f : D → Rn is the maximum distance be-
tween output values for which the domain differs in at most one record:

Δf = max
D1,D2∈D

RDist(D1,D2)≤1

‖f(D1) − f(D2)‖1

For n = 1 the sensitivity of f is the maximum difference |f(D1) − f(D2)| between
pairs of databases D1, D2 that differ in only one element. It is shown in [7] that if
f : D → R is a function with sensitivity Δf , then K(D) = Lap(f(D), Δf/ε) is
differentially private.
Our adaptations of the differential privacy definitions. Instead of bounding the ratio be-
tween output probabilities of actual vs. arbitrary information for a single hourly record,
we want to give customers the option of hiding an arbitrary period of time. For exam-
ple we may want to hide specifics of daily (chunks of 24 records) or weekly (chunks
of 168 records) consumption. We call the period length a user is concerned with the
privacy unit. Furthermore we need to achieve this for statistics in discrete domains (not
continuous function), that can only make the bills bigger, never smaller.

Definition 5. The u-distance Distu(D1, D2), e.g., u ∈ {hourly, dayly, weekly} be-
tween two data sets D1, D2 ∈ D corresponds to the number of u-units (collection
of records) in which D1 and D2 differ.

Our pricing scheme maps each D ∈ D, D = (c1, . . . , cimax ) to a discrete price:
price(D) =

∑imax

i=1 ci · pI , where imax is the number of records per billing period,
and pI is the price per hour per instance. Rather than having continuous positive and
negative noise as in the original Laplacian differential privacy mechanism, we want to
only add discrete positive noise.

If we consider only privacy mechanisms with discrete outputs, we can simplify the
differential privacy definition. For discrete distributions, ΣImage(K ) = 2Image(K ), and
Pr[K(D) ∈ S] =

∑
r∈S Pr[K(D) = r]. Definition 2 can thus be restated as the

following equation:
∑

r∈S Pr[K(D) = r|D = D1] ≤ exp(ε) ·∑r∈S Pr[K(D) =
r|D = D2]. From this we derive an alternative definition for differential privacy for
discrete distributions:

Definition 6. A randomized function K gives ε-differential u-privacy if for all data sets
D1, D2 ∈ D with Distu(D1, D2) ≤ 1, and all r ∈ Image(K ),

Pr[K(D) = r|D = D1] ≤ exp(ε) × Pr[K(D) = r|D = D2] .
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The probability is taken over the randomness of K .

Lemma 2. Definition 2, Definition 3, and Lemma 1 apply to u-privacy:
1. For discrete privacy mechanisms Definition 2 and Definition 6 for u = hourly are

equivalent.
2. Let nu be the number of records in a u-unit. If K is (nu, ε)-differential hourly-

private, then K is also (nu · ε)-differential u-private.

Dwork [8] notes that, because of the multiplicative nature of the definition, an output
whose probability is zero on a given database must also have probability zero on any
neighboring database, and therefore, by repeated application of the definition, on any
other database.

Handling privacy mechanisms that result in distributions for which the support of
K(D1) and K(D2) may differ requires extra care. Such a situation arises, e.g., when
K adds only positive noise. If for instance price(D1) < price(D2) to which K adds
positive noise. Let νmin be the minimum amount of noise that is added, then the value
r = price(D1) + νmin is in the support of K(D1) but has 0 probability for K(D2). It
follows that such a mechanism can never be differentially private.

To overcome this problem, we define partial differential privacy. A statistic offers
partially differential u-privacy if it is differentially private for all outputs in the overlap-
ping support of any two databases D1 and D2 with Distu(D1, D2) ≤ 1. Furthermore
we require the probability that the output of the statistic is not in the overlapping do-
mains to be bound by a small probability δ. This means that the function is differentially
private most of the time (or with probability at least 1 − δ).

Definition 7. A randomized function K gives δ-partially ε-differential u-privacy if the
following two properties hold:
1. For all D1, D2 ∈ D with Distu(D1, D2) ≤ 1, and all r ∈ Supp(K(D1)) ∩

Supp(K(D2)),

Pr[K(D1) = r] ≤ exp(ε) × Pr[K(D2) = r] .

2. For all data sets D1, D2 ∈ D with Distu(D1, D2) ≤ 1,

Pr[r ← K(D1) : r /∈ Supp(K(D2))] < δ .

For both properties, the probability is taken over the randomness of K .

As for the traditional differential privacy definitions, longer periods of privacy can be
guaranteed with lower security parameters:

Lemma 3. Let nu be the number of records in a u-unit. If K is δ-partially (nu, ε)-
differential hourly-private, then K is also (nu ·δ)-partially (nu ·ε)-differential u-private

Proof. Consider the joint distribution of K for all D1 and D2 with RDist(D1, D2)
≤ nu. The probability of drawing a value r not in the domain of at least one of K(Di)
is δ′ ≤ 1 − (1 − δ)nu ≤ nu · δ. This proves Property 2 for partial differential privacy.
If r is in the domain, Property 1 is proved as in Lemma 2. ��
Given the above definition for privacy we propose a concrete mechanism to obscure
readings. We simply add to the bill f(D) for consumption D an amount of noise drawn
from a Geometric distribution with parameter p = ε/Δf,u.4 The sensitivity Δf,u is the

4 Two-sided Geometric noise was also proposed in [9] as a differential privacy mechanism.
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maximum difference of a bill between two databases D1 and D2 differing in at most 1
u-unit (e.g. an hour, a day, or a week). Similarly, ε is a security parameter expressing
information leakage.

Theorem 1. Let f : D → R be a function with sensitivity Δf,u, then K(D) = f(D)+
Geo(ε/Δf,u) is (2 · ε)-partially ε-differentially u-private. (See [10] for the proof.)

As also noted by [11], the application of a public function on the outputs of a differ-
entially private statistic does not leak any additional information. We can modify the
billing function to only charge up to the maximum possible consumption: K ′(D) =
min(f(D) + Geo(ε/Δf,u), maxD′ f(D′)). Intuitively we use geometric noise, as this
adds the maximal uncertainty for a given mean. The variant of the geometric distribu-
tion with support for negative and positive integers defined as Pr[k] = 1

2 (1 − p)|k|p is
the discrete equivalent of the Laplace distribution, and would also provide differentially
private guarantees. We limit ourselves to the proposed noise distribution to ensure users
only add positive noise to their bills.

Interpretation of differential privacy in terms of inference. From the attackers perspec-
tive the goal of collecting statistics about the output of the privacy mechanism K is to
infer something about the underlying database. For instance, the attacker might want to
distinguish between two databases D1 and D2, in the sense of semantic security.

Differential privacy does not guarantee anything about the probability ratio (likeli-
hood ratio) between databases D1 and D2 with Distu(D1, D2) ≤ 1 given an observed
outcome of K; it merely says that this ratio will differ only by a small factor from the
ratio of the prior. Note that because D1 and D2 are interchangeable, the new ratio is
also bounded from below.

Lemma 4. Given an observed outcome of a differentially private K the probability
ratio (likelihood ratio) between databases D1 and D2 with Distu(D1, D2) ≤ 1 differs
by less than a factor exp(ε) from the ratio of the prior.

Pr[D = D1|K(D) = r]
Pr[D = D2|K(D) = r]

≤ exp (ε) × Pr[D = D1]
Pr[D = D2]

.

Proof. From Bayes theorem we can write:

Pr[D = Di|K(D) = r] =
Pr[K(D) = r|D = Di] × Pr[D = Di]

Pr[K(D) = r]

whence, since K is differentially private, we can write:

Pr[D = D1|K(D) = r]
Pr[D = D2|K(D) = r]

=
Pr[K(D) = r|D = D1]
Pr[K(D) = r|D = D2]

× Pr[D = D1]
Pr[D = D2]

≤ exp (ε) × Pr[D = D1]
Pr[D = D2]

.
��
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Table 1. Yearly average bill after the application of the privacy mechanism K′ compared with
the fixed rate privacy mechanism. Different values of the security parameter (ε), different privacy
units (hourly, daily and weekly) as well as the options of paying monthly or yearly are presented.
Amounts in parenthesis indicate that the expected cost is higher than paying for the maximum
consumption.

Privacy units Security (ε) Pay Monthly Pay Yearly Fixed Rate
Hourly 0.1 β + $144, 000 β + $12, 000 $10, 512, 000
(units = 1) 0.01 β + $1, 440, 000 β + $120, 000 $10, 512, 000
Daily 0.1 β + $3, 456, 000 β + $288, 000 $10, 512, 000
(units = 24) 0.01 ($10, 512, 000) β + $2, 880, 000 $10, 512, 000
Weekly 0.1 ($10, 512, 000) β + $2, 016, 000 $10, 512, 000
(units = 168) 0.01 ($10, 512, 000) ($10, 512, 000) $10, 512, 000

The cost of privacy. Obscuring bills by adding noise may lead to paying extra for a
service. Customers have incentives to minimise their costs for a desired level of privacy
protection. We provide a few illustrative examples of the average extra cost involved
in settling a bill for different privacy units of an hour, a day or a week. In our usual
example we consider a private cloud of 10K CPUs, billed as $0.12 a CPU / hour. We
denote as β = f(D) the actual service cost associated with the use of the service for a
year.

It is clear from Table 1 that providing a differentially private bill for more than a sin-
gle hourly period is an expensive business. The proposed mechanism allows for lower
overheads for yearly bills when customers wish to protect arbitrary hours or days in
the year. When it comes to protecting arbitrary weeks this protection is only offered
with a low security parameter (ε = 0.1). Why is the cost so high? It is because the
privacy guarantee offered is very strong: no matter what side information the adversary
has, including the detailed readings for other periods, they should not be able to infer
information about an arbitrary privacy unit. For example if the adversary knows the ex-
act consumption for the other 364 days they should still not learn more than permitted
about the last day. This is a very strong guarantee and as a result it comes at a high cost,
when applied directly.

Table 1 also contains the cost of paying bills monthly, which incur a 12 fold overhead
for the same level of protection. It is clear that there are advantages in paying in batches
if in fact the desired property is to hide any fixed period of time within the billing period
(an hour, a day, a week). We will see in the next section how we can do better than this:
we can aggregate the true cost of service provision, and use cryptographic methods to
reclaim most of the additional cost of privacy in the long term without sacrificing any
security.

Longer guarantees. Degradation of privacy in our framework is graceful, since some
privacy guarantees are provided for periods longer than what is strictly defined by the
chosen u-units. For example a user may choose a partially ε-differential function Kε,24

providing u-privacy for a day (i.e. 1 u-unit = 24 hourly periods) with ε = 0.01. In our
standing example this means he should add an extra amount to his bill drawn from a
Geometric distribution with parameter $2, 880, 000. What does that guarantee? Let’s
assume the adversary knows the exact consumption about all days except for one.
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Furthermore the adversary knows that the consumption on the target day could only
have taken one out of two values with equal probability: this means that the ratio of pri-
ors Pr[D=D1]

Pr[D=D2]
= 1. Then after receiving information about the bill the adversary would

at best know that 0.99 ≈ 1/(1 + ε) ≈ 1/eε ≤ Pr[D=D1|K′(D)]
Pr[D=D2|K′(D)] ≤ eε ≈ 1 + ε = 1.01.

This is a small amount of information.
Now let’s consider an adversary that tries to infer something over a longer period,

e.g., a week. The adversary knows all user consumption outside this target week, and
furthermore knows that user consumption within the week could only have been one of
two possibilities D′

1 or D′
2 with equal probability as before. Due to Lemma 3 we know

that the K ′(D) scheme is also partially ε-differentially private for a longer u-unit of a
week (1 weakly-unit = 7×24 hourly-units), with a new security parameter ε′ = ε·7. This
means that the new posterior ratio of probabilities over the two only possible outcomes
is 0.93 ≈ 1/(1 + ε′) ≈ 1/eε′ ≤ Pr[D=D1|K′(D)]

Pr[D=D2|K′(D)] ≤ eε′ ≈ 1 + ε′ = 1.07. Despite the
lower degree of privacy, some quantifiable protection is still available against longer-
term profiling.

Limitations. Our variant of differential privacy relies on only introducing positive noise.
This is desirable as it guarantees that the bill at least covers the cost of service provision.
At the same time this provides a one sided security property: a final bill can always be
confused with a lower bill, but not always with a higher bill. For example there is a
positive probability that a sensitive day passes with no consumption and then no noise
is added to the bill. If an adversary knows all other consumptions in the year, they can
infer that indeed no consumption took place on the unknown day. Our mechanism thus
assumes that the baseline of no consumption is not as sensitive as high consumption.

While information leakage about low levels of consumption is possible, it is not very
likely for high levels of security as characterised by the security parameter δ.

Summary. We have shown that adding noise to the bill can provide high levels of secu-
rity parametrised by a parameter ε and a privacy unit. This security holds even against
adversaries with knowledge of many readings. At the same time this comes with a high
overhead. In the next section we show that the bulk of the cost of providing privacy can
be recuperated in the long run. We achieve this by keeping hidden accounts of what is
actually due for service provision, versus what has been paid. In the long run users can
only add the necessary noise to keep their accounts positive, including negative noise –
while ensuring that their funds cover their consumption.

3 Private Billing with Rebates

We have seen that one way of protecting privacy involves adding ‘noise’ to the bill to be
payed for a certain period. Yet, the amount of noise can become significant particularly
to achieve a high quality of privacy or privacy for longer periods within the billing time
frame. For this reason we develop a complementary oblivious billing protocol that can
be used to alleviate those concerns. Its key features include:

– The ability to maintain a hidden bill of actual consumption that can be used to
reclaim any excess used for protecting privacy at a later time.
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– A mechanism for proving that the amount payed to the utility provider exceeds the
bill for actual consumption without revealing the actual bill.

– Support for an initial deposit to support later use of positive as well as negative
noise for the bills.

– Compatibility with anonymous e-cash schemes allowing bills to be settled anony-
mously, as well as advanced privacy friendly payment mechanisms that allow users
to hide the amounts actually payed to the utilities.

We discuss in detail and prove the correctness of the billing protocols, and the mech-
anisms to ensure payments exceed the amount consumed. The specifics of optional
e-cash protocols that allow hidden payments are beyond the scope of this work, and we
leave their detailed description to future work.

Our oblivious payment protocols can be used to reclaim in the long run an excess
payed as a result of a differentially private billing mechanism as presented in the previ-
ous sections. With the deposit facility, adding negative noise is possible, as long as the
overall balance of payments stays positive. The protocols can also be used to support
the naive mechanism where a bill for maximal consumption is payed, and allow parties
to later reclaim some of it back. Finally given anonymous e-cash they can be used to
provide full oblivious payments without the need to add any noise to the bills, as they
never need to be revealed (technically: noise = −fee). Which variant to use therefore
depends on the infrastructure available and the degree of complexity parties are ready
to accept.

3.1 The PSM Protocol

We will be building upon PSM (Privacy-Preserving Smart Metering), a cryptographic
protocol for privacy-friendly billing [5]. PSM mediates interactions among three par-
ties: a meter M that outputs consumption data cons and related information other ; a
service provider P that establishes a pricing policy Υ and a user U that receives con-
sumption readings from meter M and at each billing period pays a fee to provider P.
The pricing policy Υ is a public function that takes consumption data cons together
with other information other (e.g., the time of consumption) and computes a price. The
overall price price(D) =

∑|D|
i=1 pricei is computed by adding the prices corresponding

to the individual consumptions in a billing period. For our running private cloud exam-
ple, Υ (cons , other) = cons · 0.12 and does not depend on other . As in the original
protocols we assume a tamper resistant meter is used to provide accurate and appropri-
ately cryptographically packaged readings. These can be processed by the user to prove
their bill in zero-knowledge to the provider. At this point users may also choose to add
some noise to ensure differential privacy.

The security of PSM is shown in the simulation-based security paradigm [12,13].
In the real world, the protocol PSM(M, P, U) is run in an adversarial environment that
may corrupt some of the protocol parties, indicated by M̃, P̃, Ũ. Corrupted parties just
forward messages between the environment and honest protocol participants. In the
ideal world, dummy protocol parties DM, DP, DU run an ideal protocol Ideal(FPSM,
DM, DP, DU) by just forwarding messages to an ideal functionalityFPSM. Uncorrupted
Dx, x ∈ {M, P, U} interact with the environment while corrupted dummy parties D̃x

interact with a simulator Sim.
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We consider w.l.o.g. a corrupted provider P̃ and say that a protocol is secure against
P̃, if there exists a simulator Sim such that no environment Env can tell whether it is
interacting with PSM(M, P̃, U) or with Sim‖Ideal(FPSM, DM, D̃P, DU). Conceptually
Sim translates influence that Env has through P̃ on the protocol into influence on FPSM

through D̃P, and leakage that D̃P receives from FPSM into leakage that Env could learn
from P̃. Similarly, PSM is proven secure against a corrupted user Ũ.

Listing 1. Functionality FPBR

FPBR is parameterized by deposit relation R and a policy set Y and interacts with dummy parties
DM , DP and DU . Initially T = ∅, d = 0, account = 0.

On (Policy, Υ ) from DP where Υ ∈ Y
- store Υ ; send (Policy, Υ ) to DU

On (Consume, cons , other) from DM

- increment counter d; add (d, cons , other ) to T ; send (Consume, cons , other) to DU

On (Deposit, (inc, wit), instance) from DU where balance + inc ≥ 0
- if ((inc, wit), instance) ∈ R, let balance += inc, send (Deposit, instance) to DP

On (Payment, from, until , noise) from DU where
0 ≤ from ≤ until ≤ d and balance + noise ≥ 0

- for i = from to until , calculate pricei = Υ (consi, other i)
- let fee =

∑until
i=from pricei + noise and balance += noise

- send (Pay, from, until , fee) to DP

3.2 Rebate Ideal Functionality

We propose a new ideal functionalityFPBR (see Listing 1) that extends the functionality
FPSM. The functionality keeps track of the user’s consumptions in a set T containing
tuples (i, cons , other). During a payment, the policy Υ is applied to all (cons , other) in
the interval [from , until ] to compute the price pricei = Υ (cons i, other i) per consump-
tion. The overall fee that the user has to pay is computed as fee =

∑until
i=from pricei +

noise . The value noise is added to the fee to improve the user’s privacy. The ideal func-
tionality also maintains a balance that corresponds to the sum of all the noise added to
payments. Note that the user can get rebates by using negative noise, but that the balance
is never allowed to be negative.

The ideal functionality also allows to increase the balance through a deposit. The
user has to provide input ((inc, wit), instance) ∈ R. The parameterization by relation
R allows to support both standard deposit mechanisms that reveal the deposited amount
inc as well as advanced deposit mechanisms that hide this value from the provider. In
the simple mechanism the user reveals how much he wants to deposit: wit = ε and R
corresponds to simple equality, i.e. R = {(inc, ε), inc)|inc ∈ Z}.

To obtain a more advanced privacy-friendly deposit mechanism, the witness could
correspond to a one-show anonymous credential cred . The relation requires that cred
is a one-show credential with an increment value inc and serial number s issued un-
der public key pkB , i.e, R = {((inc, cred), (s, pkB))|Verify(pkB , cred , (inc, s)) =
accept}. The real protocol cryptographically enforces this using a zero-knowledge



Differentially Private Billing with Rebates 159

proof of signature possession [14].5 To obtain such a one-show credential without re-
vealing the value of inc to the provider, additional infrastructure is needed. In particular
such a mechanism seems to require some form of anonymous payment, either physi-
cal cash or anonymous e-cash. Given such a payment mechanism, the provider’s bank,
after receiving an anonymous payment of value inc and depositing this amount on the
provider’s bank account, could blindly issue the signature Sign(pkB, (inc, s)) using a
partially-blind issuing protocol [14]. The issue protocol guarantees that the bank does
not learn s, and thus even if the provider and his bank collude they cannot link the
issuing of cred to its use.

Listing 2. Protocol PBR(M, P, U)

Parties M, P, U are parameterized by R and Y and interact over secure channels. All participants
have registered public keys generated by Mkeygen, Pkeygen, Ukeygen with a key registration
authority FREG and keep their private keys secret. P also registers commitment parameters parc .

On (Policy, Υ ) from Env

- P runs Υs ← SignPolicy(skP, Υ ) and sends Υs to U
- Upon receiving Υs, U extracts Υ ; if Υ /∈ Y , he aborts
- if VerifyPolicy(pkP, Υs) = 1, U stores Υs, and sends (Policy, Υ ) to Env

On (Consume, cons , other) from Env

- M increments dM, runs SC ← SignConsumption(skM, parc , cons , other , dM) and
sends (SC) to U

- Upon receiving (SC), U runs b ← VerifyConsumption(pkM, parc , SC, dU + 1)
- if b = 1, U increments dU, adds SC to TU, parses SC as (dM, cons , opencons , ccons ,

other , openother , cother , sc), and sends (Consume, cons , other) to Env

On (Deposit, (inc, wit), instance) from Env where

balance + inc ≥ 0 and ((inc, wit), instance) ∈ R
- U runs (aux ′, D) ← Deposit(parc , (inc, wit), instance , aux , R)
- U sets balance += inc and aux = aux ′ and sends (D, instance) to P
- Upon receiving (D, instance), P runs (c′balance , b) ← VerifyDeposit(parc , D, cbalance ,

instance , R)
- if b = 1, he sets cbalance = c′balance and sends (Deposit, instance) to Env

On (Payment, from, until ,noise) from Env where

0 ≤ from ≤ until ≤ dU and balance + noise ≥ 0
- U runs (aux ′, Q) ← Pay(skU, parc , Υs, TU[from : until ],noise, aux)
- U sets aux = aux ′ and balance += noise; U sends (Q, from, until) to P
- Upon receiving (Q, from, until), P runs (fee, c′balance , b) ← VerifyPayment(pkM,

pkU, pkP, parc , Q, cbalance , from, until)
- if b=1, he sets cbalance = c′balance and sends (Pay, from, until , fee) to Env

5 A zero-knowledge proof of knowledge is a two-party protocol between a prover and a verifier.
The prover convinces the verifier, who knows only a public proof instance , that he knows
a secret input (called witness) that allows him to prove that the public and the secret value
together fulfill some relational statement (witness , instance) ∈ R without disclosing the
secret input to the verifier.
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3.3 Rebate Protocol

We propose a new protocol for privacy-preserving billing with rebates (PBR) (see List-
ing 2) that extends PSM with a mechanism for adding noise, keeping a hidden balance,
and making deposits. Like PSM, our protocol operates in the FREG hybrid-model [12]
where parties register their public keys at a trusted registration entity. As in the original
scheme the user receives signed policies from the utility provider P and signed readings
from the meter M. The payment transaction only reveals the overall fee, which now can
be subject to additional noise.

We extend this protocol with a novel oblivious rebate system that allows the user to
get rebates (in the amount of his noise) in future payments. The rebate is implemented
using a homomorphic update cnoise to a balance commitment cbalance that commits the
user to his balance towards the provider but keeps the balance itself secret. Our protocol
supports an optional Deposit mechanism that allows the user to add or withdraw funds
from the rebate balance . Value aux contains the opening for a commitment cbalance to
balance . Through the use of zero-knowledge proofs the provider is guaranteed that the
value committed to in cbalance is updated correctly and never becomes negative.

The protocol parties P, U, and M interact with each other using algorithms Pkeygen,
Ukeygen, Mkeygen (for key generation); SignPolicy, SignConsumption, Deposit, and
Pay (for generation of input); and VerifyPolicy, VerifyConsumption, VerifyDeposit,
and VerifyPayment (for verification of input). The functionality of the meter as well
as SignPolicy, SignConsumption, VerifyPolicy, and VerifyConsumption are unchanged
from the original scheme.6 We describe the new Deposit and VerifyDeposit algorithms
and the changes to Pay and VerifyPayment:

Listing 3. Algorithms

- Deposit(parc , (inc, wit), instance , aux , R). Parse aux as (balance, openbalance , cbalance).
Compute commitment (cinc , open inc) = Commit(parc , inc) and a non-interactive proof
πinc :7

πinc ← NIPK{ (inc, open inc , wit, balance, openbalance) :

(cbalance , openbalance) = Commit(parc , balance) ∧
(cinc , open inc) = Commit(parc , inc) ∧
((inc,wit), instance) ∈ R ∧ balance + inc ≥ 0} .

Let D = (πinc , cinc) and aux ′ = (balance + inc, openbalance + open inc , cbalance ⊗ cinc).
Output (aux ′, D).

- VerifyDeposit(parc , D, cbalance , instance , R). Parse D as (πbalance , cinc). Verify πinc . If
verification succeeds, set b = 1 and c′balance = cbalance ⊗ cinc , otherwise set b = 0. Output
(c′balance , b).

6 For the sake of brevity we omit the Reveal mechanism of PSM. It would add little new and
could be implemented in a straight forward manner using trapdoor commitments.

7 If R corresponds to equality, the protocol can be simplified to avoid computing cinc .
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- Pay(skU, parc , Υs, T,noise, aux ). Parse aux as (balance , openbalance , cbalance). Compute
commitment (cnoise , opennoise) = Commit(parc ,noise) and a non-interactive proof πnoise :

πnoise ← NIPK{ (noise, opennoise , balance , openbalance) :

(cbalance , openbalance) = Commit(parc , balance) ∧
(cinc , open inc) = Commit(parc , inc) ∧ balance + noise ≥ 0} .

Let aux ′ = (balance + noise , openbalance + opennoise , cbalance ⊗ cnoise).

The rest of the algorithm follows [5]: For each (i, cons , opencons , ccons , other , openother ,
cother , sc) ∈ T where from ≤ i ≤ until , calculate pricei = Υ (cons , other ), commitment
(cpricei

, openpricei
) = Commit(parc , price), and a proof πi that price i was computed

correctly according to the policy and the commitments ccons , cother . The proof πi depends
on the policy Υ and can use auxiliary values in Υs, see [5] on how to implement different
pricing policies.
Computing fee = noise+

∑until
i=from price i and open fee = opennoise +

∑until
i=from openpricei

gives an opening to a commitment to fee . Let Q = (fee, open fee , cnoise , πbalance , {sci, i,

cconsi , cotheri , cpricei
, πi}N

i=1). Output (aux ′, Q).8

- VerifyPayment(pkM, pkU, pkP, parc , Q, cbalance , from, until). Parse Q as (fee, open fee ,

cnoise , πbalance , {sci, di, cconsi , cotheri , cpricei
, πi}N

i=1). Verify πnoise . If verification fails,
set b = 0. Otherwise set c′balance = cbalance ⊗ cnoise and b = 1.

The rest of the algorithm follows [5]: For i = from to until , run Mverify(pkM, sci, 〈i, cconsi ,
cotheri〉) and verify πi. Set b = 0 if any of the signatures or the proofs is not correct. Add
the commitments to the prices c′fee = cnoise ⊗ (⊗N

i=1cpricei

)
and execute Open(parc , c

′
fee ,

fee, open fee). If the output is reject set b = 0. Output (fee, c′balance , b).

Theorem 2. Given the security of its building blocks, PBR is secure against a cor-
rupted provider P̃ and a corrupted user Ũ. (See [10] for the proof.)

Using PBR for differential privacy. Even an ideal cryptographic billing mechanism as
described by the PSM or PBR ideal functionalities cannot protect the user’s privacy
against an adversary/environment that already knows enough about the user’s behav-
ior – possibly including all consumption or additional random noise – to infer privacy
sensitive information from the final fee alone. For our privacy analysis we assume that
the environment Env is divided into a part EnvU that is controlled by the user, and a
part EnvP̃ that is controlled by the adversary and that may have some influence on and
knowledge about the user’s behavior. In the original PSM protocol all the final fee is
only the result of the individual consumptions of EnvU for which the provider may
make inferences or gain side information. The PBR protocol gives EnvU the possibility
to obscure the fee with random noise, which is easier to conceal from EnvP̃.

4 Conclusions

Our PBR protocol allows the user to add random noise to the final bill, to hide usage
patterns that could otherwise be deduced from the fee. The rebate protocol supports

8 In [5], the user keys skU and pkU are used to create and verify a signature on the payment
message. This intuitively facilitates non-repudiation and non-exculpability properties, but is
not modeled by the ideal functionality. This carries over to our adaptations.
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deposits, anonymous payments using e-cash, and negative bill noise, while ensuring
that the funds paid always cover the cost of consumption. The use of noise, however,
comes at a cost, as it is money that the user has to pay upfront as a deposit and cannot
invest elsewhere. Consequently, we adapt the differential privacy framework to study
how much noise is needed to protect specific consumption windows at different security
levels. The differential privacy framework protects users against worse case outcomes –
we leave as an open problem crafting more economical noise regimes to protect privacy
by making further assumption about the users’ typical behavior.
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Abstract. The goal of this paper is to show how the statistical decision
theory based on the parametric statistical model of the cover media can
be useful in theory and practice of hidden information detection.

1 Introduction and Contribution

It is an important and useful challenge for security forces to reliably detect in
a huge set of files (image, audio, and video) which of these files contain the
hidden information (like a text, an image, or an audio or a video record). An
efficient statistical test should be able to detect the presence of hidden informa-
tion embedded in the cover media. It is assumed that the embedding scheme is
a priori unknown but it belongs to a commonly used family of steganographic
LSB replacement based algorithms. Certainly, such steganographic algorithms
are not extremely efficient but they are simple, popular, and downloadable on
the Internet and can be easily applied by any person.

In such an operational context, the most important challenge is to get the hid-
den information detection algorithms with analytically predictable probabilities
of false alarm and non detection. These algorithms should be immediately appli-
cable without any supervised learning methods using sets of training examples
(SVM-based algorithms). On the contrary, the capacity of a hidden informa-
tion detection algorithm to detect a very sophisticated but not frequently used
embedding algorithm with a low embedding rate is not very important in the
framework of the above mentioned scenario.

The recently proposed steganalysers [7,8,9] are certainly very interesting and
efficient but these ad hoc algorithms have been designed with a limited exploita-
tion of cover media statistical model and hypothesis testing theory. Moreover,
the only solution to get the statistical properties of these ad hoc algorithms is
the statistical simulation by using large databases of cover media.

An alternative approach is to use the hypothesis testing theory with a para-
metric model of cover media. The first step in the direction of hypothesis testing
has been done in [14].
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In the actual paper, the direction started in [14] is extended to take into
account two new phenomena :

– an impact of data quantization on the statistical decision;
– benefits from using a parametric statistical model of cover media.

This paper is mainly, but not exclusively, devoted to the situation when the
cover media is represented by a natural image produced by a digital camera.
This fact defines the above mentioned points of our interest. The advantages
of a parametric statistical model are well known. The hypothesis testing theory
is relatively well developed for such models. We are especially interested in the
asymptotic decision theory and in dealing with non informative (nuisance) pa-
rameters of the cover media model. Both directions are interesting because the
number of bytes (or pixels) is typically very large for modern cover media and
the nuisance parameters of statistical model are only partially known.

Natural images are obtained by using a digital camera which obligatory in-
cludes a quantization. The parameters of statistical model are related to several
factors (the scene, the amount of light, the focus, the exposure, the objective
lens, CCD,...). Physically these factors define a continuous state space model
but the decision should be done by using the quantized output of digital cam-
era. More profound discussion of a parametric statistical model of natural images
is in the companion paper [2].

The goal of this paper is threefold :

1. define the statistical framework of hidden information detection based on a
parametric model of cover media by using the quantized observations;

2. design optimal statistical tests and to study their statistical properties and
the impact of quantized observations on the quality of these tests;

3. theoretically compare the (almost) optimal statistical tests with the WS
steganalysers, recently developed and commonly used in hidden information
detection.

The paper is organized as follows. The problem of statistical decision based on
quantized observations is stated in Section 2. The case of a known embedding
rate is discussed. Section 3 is devoted to the problem of quantization. Its impact
on the quality of statistical tests (steganalysers) is also studied here. A more
general and realistic case of unknown embedding rate is discussed in Section 4.
A solution to this case based on the local asymptotic approach is presented in
Section 5. Finally, the proposed (almost optimal) detection algorithm is theoreti-
cally compared with the WS steganalysers, commonly used in hidden information
detection in Section 6. Some conclusions are drawn in Section 7.

2 Statistical Decision Based on Quantized Observations

2.1 Model of Quantized Cover Media

Let us assume that the observation vector Cn = (c1, . . . , cn)T which characterizes
a cover media is defined in the following manner :

Cn = Q1[Yn], Yn ∼ Pθ, (1)
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where Q1[yi] = �yi� is the operation of uniform quantization (integer part of yi)
and the vector Yn = (y1, . . . , yn)T follows the distribution Pθ parameterized by
the parametric vector θ. The binary representation of c (the index is omitted to
seek simplicity) is

c = Q1[y] =
q−1∑
i=0

bi2i, where bi ∈ {0, 1}, c ∈ {0, 1, 2, . . . , 2q − 1}. (2)

A simplified model of quantization (1) is used in this paper. It is assumed that
the saturation is absent, i.e. the probability of the excess over the boundary 0
or 2q − 1 for the observation y is negligible.

2.2 Problem Statement: Test between Two Hypotheses

First, let us define two alternative hypotheses for one quantized observation z
(seeking simplicity) :

H0 : z = c = Q1[y] ∼ QQ1 = [q0, . . . , q2q−1] (3)

and

H1 : z=
{

Q2[y]+zswith probabilityR
c = Q1[y]with probability1 − R,

(4)

where R is the embedding rate, Q2[y] =
∑q−1

i=1 bi2i, is a uniform quantization
by using 2q−1 thresholds, Q2[y] ∼ QQ2 , zs ∼ Qs = B(1, p) is the Bernoulli
distribution which defines the hidden information (usually p = 0.5). In other
words, to get the double quantization Q2[y] from z = Q1[y] the LSB is deleted,
i.e. b0 ≡ 0. Hence, under hypothesis H1, the LSB is used as a container of hidden
information. In the rest of the paper it is assumed that Q2[z] = Q2[y].

2.3 A Known Embedding Rate. Two Simple Hypotheses: Likelihood
Ratio Test

Let us suppose that the distributions Qs(zs) = 1/2, zs ∈ {0, 1}, QQ1 , QQ2 and
the embedding rate R are exactly known. In this case the LR for one observation
is written as follows :

ΛR(z) = RΛ1(z) + (1 − R), Λ1(z) =
Qs(b0)QQ2 (Q2[z])

QQ1 (z)
=

QQ2 (Q2[z])
2QQ1 (z)

. (5)

where b0 is the LSB of z. The most powerful (MP) Neyman-Pearson test over
the class

Kα0 = {δ : P0(δ(Zn) = H1) ≤ α0} , (6)

where Pi(. . .) denotes the probability under hypothesis Hi, i = 0, 1, is given by
the following decision rule :

δR(Zn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H0 if ΛR(Zn) =

n∏
i=1

ΛR(zi) < h

H1 if ΛR(Zn) =
n∏

i=1

ΛR(zi) ≥ h

, (7)
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where the threshold h is the solution of the following equation P0(ΛR(Zn) ≥
h) = α0. The MP test δR(Zn) maximizes the power

βδR = 1 − P1(δR(Zn) = H0) = 1 − α1 (8)

over the class Kα0 .

3 Simple Model of Cover Media

3.1 Exact and Approximate Likelihood Ratio

Let us assume an independent random sequence y1, . . . , yn, yi ∼ N (θ, σ2). The
quantized variable zi follows a “discrete” normal distribution i.e. :

zi = Q1[yi] ∼ QQ1 = [q0, . . . , q2q−1], z ∈ [0, 1, 2, . . . , 2q − 1], (9)

where the coefficients qi are computed in the following manner

qi =
∫ i+1

i

ϕ(x)dx = Φ(i + 1) − Φ(i), ϕ(x) =
1

σ
√

2π
exp

{
− (x − θ)2

2σ2

}
, (10)

where Φ(x) =
∫ x

−∞ ϕ(u)du. It is easy to see that for any R the LR given by
equation (5) depends on the observations through the LR ratio Λ1(z) computed
under assumption that R = 1. The exact equation of this log LR is given by :

log Λ1(Zn)=n log
1
2

+
n∑

i=1

log QQ2 (Q2[zi])−
n∑

i=1

log QQ1 (zi)

=
n∑

i=1

1
2σ2

[
− (Q2[zi]+1+δ2,i−θ)2+(zi+0.5+δ1,i−θ)2

]
. (11)

The approximate equation of the log LR is

log Λ1(Zn)� log Λ̃1(Zn)=
n∑

i=1

1
2σ2

[
− (Q2[zi]+1−θ)2+(zi+0.5−θ)2

]
. (12)

The corrective terms due to quantization δ1,i and δ2,i are omitted in the last
equation and in the rest of this section.

3.2 The Moments of Approximate Log Likelihood Ratio

It follows from the central limit theorem [17] that the fraction

log Λ̃1(Zn) − nE

(
log Λ̃1(z)

)
σ
√

n
�

n→∞ N (0, 1), (13)

where σ2 = Var
(
log Λ̃1(z)

)
, � is the weak convergence and log Λ̃1(Zn) is the

approximate log LR given by (12), will converge in distribution to the stan-
dard normal distribution as n goes to infinity. The expectation and variance
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are denoted by E(. . .) and Var(. . .) respectively. Hence, to compute the error
probabilities it is necessary to get the expectations and variances of the approx-
imate log LR. Under hypothesis H0, the approximate log LR can be re-written
as follows

log Λ̃1(Zn)=
n∑

i=1

[
ζi(b0,i−0.5)

σ2
− (b0,i−0.5)2

2σ2

]
=

n∑
i=1

[
ζi(b0,i − 0.5)

σ2
− 1

8σ2

]
, (14)

where ζi = zi + 0.5 − θ, b0,i = LSB(zi) and under hypothesis H1 is

log Λ̃1(Zn) =
n∑

i=1

[
ξi(b0,i − 0.5)

σ2
+

1
8σ2

]
, (15)

where ξi = Q2[zi] + 1 − θ and b0,i = zs,i. Under hypothesis H0, the expectation
of the approximate log LR is given by the following expression

m0 = E0

[
log Λ̃1(z)

]
= − 1

8σ2
+

ε

σ2
, (16)

where the coefficient ε defines the impact of the quantization. This coefficient is
given by

ε=E0 [ζ(b0 − 0.5)] =
∞∑

m=−∞

[
Φ

(
2m+2−θ

σ

)
−Φ

(
2m+1−θ

σ

)]
(2m+1.5−θ)

2

−
∞∑

m=−∞

[
Φ

(
2m+1−θ

σ

)
−Φ

(
2m−θ

σ

)]
(2m+0.5−θ)

2
. (17)

Finally, the variance is given by

σ2
0 =Var0

[
log Λ̃1(z)

]
=

1
σ4

{
E0

[
ζ2(b0−0.5)2

]−[E0 (ζ(b0−0.5))]2
}

=
E0

[
ζ2
]−4ε2

4σ4
,

(18)
where

E0

[
ζ2
]

=
∞∑

m=−∞

[
Φ

(
m+1−θ

σ

)
−Φ

(
m−θ

σ

)]
(m+0.5−θ)2. (19)

Under hypothesis H1, the expectation and variance of the approximate log LR
are given by the following expressions

m1 = E1

[
log Λ̃1(z)

]
=

1
8σ2

, (20)

σ2
1 = Var1

[
log Λ̃1(z)

]
= Var1

[
ξ(b0 − 0.5)

σ2

]
=

1
4σ4

E1

[
ξ2
]
, (21)

where

E1

[
ξ2
]

=
∞∑

m=−∞

[
Φ

(
2m+2−θ

σ

)
−Φ

(
2m−θ

σ

)]
(m+1−θ)2, (22)
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Fig. 1. The impact of the quantization on the probability of false alarm α0 (left figure)
and missed detection α1 (right figure)

respectively. The following simplified equations can be proposed for the expec-
tation and variance of the approximate log LR given by (12) without taking into
account the impact of quantization

mi = (−1)i+1 1
8σ2

, σ2
i =

1
4σ2

, i = 0, 1. (23)

Proposition 1. Let us assume that the true embedding rate takes an arbitrary
value R̃ : 0 < R̃ ≤ 1. The power βδ1 of the MP test (7) with the log LR
log Λ̃1(Zn) given by (12) can be approximated by

βδ1 � 1 − Φ

(
Φ−1(1 − α0)

σ0

σR̃

− (m1 − m0)R̃
√

n

σR̃

)
(24)

for large n. The expectations mi and variance σ2
0 are computed by using equations

(16) - (22) (resp. (23)) with (resp. without) taking into account the impact of
quantization. The variance σ2

R̃
is also computed with taking into account the

impact of quantization

σ2
R̃

=
1

4σ2

[(
E1

[
ξ2
]
+

1
16

)
R̃+

(
E0

[
ζ2
]
+

1
16

−ε

)
(1−R̃)

]
−
[
m1R̃+m0(1−R̃)

]2
(25)

or without taking into account the impact of quantization

σ2
R̃

=
1 + R̃ − R̃2

4σ2
. (26)

It is worth noting that the explicit for form of the power function βδ1 given
in Proposition 1 conforms with the fact established in [10] that the “secure”
steganographic capacity is proportional only to the square root of the number
of covers n.

To illustrate the impact of the quantization, let us assume the following pa-
rameters of the Gaussian cover media model : R̃ = 1, θ ∈ [128; 132], σ = 1 and
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n = 200. The comparison of theoretical equations for α0 and α1 with the Monte
Carlo simulation (106 repetitions) are presented in Figure 1. The left figure shows
the probability of false alarm α0 calculated with (solid line) and without (dashed
line) taking into account the impact of quantization. Here, the required proba-
bility of false alarm is α0 = 10−3. First, the threshold h for the MP test δ1(Zn)
given by (7) is computed by using equations (23) and (24). Next, the probability
of false alarm α0 = α0(h) is computed as a function of this threshold by using
the corrected equations for the expectations and variances of the log LR, i.e.
(16) - (21) and (24) (with taking into account the impact of quantization). The
right figure shows the probability of missed detection α1 calculated with (solid
line) and without (dashed line) taking into account the impact of quantization
for the prescribed significance level α0 = 10−3. As it follows from Figure 1, the
impact of quantization on the probability of false alarm α0 and missed detection
α1 is significant.

4 An Unknown Embedding Rate: Two Composite
Hypotheses

Let us assume that the previously defined distributions are known, but the em-
bedding rate R is unknown. The following alternative composite hypotheses have
to be tested by using n observations Zn representing the cover media :

H0 = {R ≤ r∗} against H1 = {R > r∗}, (27)

where r∗ denotes the “frontier” value of embedding rate separating H0 and H1.
Hence, the LR (5) becomes

ΛR0,R1(Zn) =
n∏

i=1

R1Λ1(zi) + (1 − R1)
R0Λ1(zi) + (1 − R0)

, Λ1(zi) =
QQ2 (Q2[zi])
2QQ1 (zi)

(28)

where R0 ≤ r∗ < R1. The main difficulty is that the values of acceptable R0

and unacceptable R1 embedding rates are unknown. The ultimate challenge for
anyone in the case of two composite hypotheses is to get a uniformly MP (UMP)
test δ which maximises the power function

β(R) = 1 − PR(δ(Zn) = H0) (29)

for any R > r∗ over the class

Kα0 =
{

δ : sup
R≤r∗

PR(δ(Zn) = H1) ≤ α0

}
(30)

The above mentioned hypothesis testing problem can be efficiently solved by a
UMP test only if for any R0 < R1 the LR given by (28) is a monotonic function
of a certain statistics T = T (Zn), see detailed description of UMP tests in [1,13].
Unfortunately, this is not the case for the LR given by (28) and, hence, the
existence of a UMP test is compromised.
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5 Local Asymptotic Approach

Let us continue the discussion of the case of random embedding. An efficient
solution is based on the asymptotic local approach proposed by L. Le Cam
[1,12,11,15]. The idea of this approach is that the “distance” between alternative
hypotheses depends on the sample size n in such a way that the two hypotheses
get closer to each other when n tends to infinity. By using an asymptotic expan-
sion of the log LR, a particular hypothesis testing problem can be locally reduced
to a relatively simple UMP hypothesis testing problem between two Gaussian
scalar means [1,11,12,15]. This approach is applied to the following model

Zn ∼ QR =
n∏

i=1

R
1
2
QQ2 (Q2[zi]) + (1 − R)QQ1 (zi) . (31)

Let us consider two converging sequences of hypotheses Hj(n) = {R ∈ Rj(n)}
(j = 0, 1). The sets Rj(n) are of the form Rj(n) = r∗ + 1√

n
δr. If the Fisher

information F(r) for the observation zi is bounded and positively defined for
any R ∈]0; 1[, the log LR

log Λr∗

(
Zn;

δr√
n

)
def.= log Qr∗+ 1√

n
δr

(Zn) − log Qr∗ (Zn) (32)

possesses the following asymptotic expansion (see details in [1,11,12,15]) :

logΛr∗

(
Zn;

δr√
n

)
� δr√

n
ζn(Zn; r∗)− δ2

rF(r∗)
2

, ζn(Zn; r∗)=
n∑

i=1

∂log QR(zi)
∂R

∣∣∣∣∣
R=r∗

(33)

Moreover, the distribution of the efficient score weakly converges to the normal
law

L
(

1√
n

ζn(Zn; r∗)
)

�
n→∞

{
N (0,F(r∗)) under zi ∼ Qr∗

N (F(r∗)δr,F(r∗)) under zi ∼ Qr∗+ δr√
n

(34)

It can be shown that the efficient score is given by

ζn(Zn; r∗) =
n∑

i=1

ζ(zi; r∗) =
n∑

i=1

Λ1(zi) − 1
r∗Λ1(zi) + (1 − r∗)

(35)

and the Fisher information F(R) is

F(R) = ER

[
Λ1(z) − 1

RΛ1(z) + (1 − R)

]2

. (36)

Therefore, the following decision rule

δr∗(Zn) =
{H0 if ζn(Zn; r∗) < h
H1 if ζn(Zn; r∗) ≥ h

. (37)

defines a local MP test designed to choose between two alternatives (27). The
threshold h is the solution of the equation supR≤r∗ PR(ζn(Zn; r∗) ≥ h) = α0.
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6 Tractable Algorithm and Its Relation with Known
Steganalysers

6.1 Tractable Likelihood Ratio

As it follows from the previous sections, in the case of arbitrary embedding
rate R, an optimal solution is based on the log LR given by (28) if R0 and
R1 are known or on the efficient score given by (35) if they are unknown but
the value r∗ is known. It is easy to see that in both cases the useful information
obtained from observations Zn of cover media (with or without a secret message)
is concentrated in Λ1(z) or equivalently in log Λ1(z). Let us denote y

def.= ζ(z; r∗),
hence

y = f(x; r∗) def.=
ex − 1

r∗ex + 1 − r∗
with x

def.= log Λ1(z). (38)

This function is represented in Figure 2 for different values of r∗. Typical
densities of x = log Λ1(z) under alternative hypotheses H0 and H1 are also
shown in Figure 2 for the case of σ = 1.5. The asymptotic normality of
ζn(Zn; r∗) =

∑n
i=1 ζ(zi; r∗) is warranted due to Le Cam expansion (see equa-

tion (34)). Hence, it is sufficient to compute the expectations and variances of
f(Λ1(z); r∗) under alternative hypotheses H0 and H1. It follows from (14) that
the efficient score for one observation is

y = g(ζi, (b0,i − 0.5)) def.= f(x; r∗) with x =
ζi(b0,i − 0.5)

σ2
− 1

8σ2
(39)

under H0 and, hence, two first moments (k = 1, 2) are given by
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r∗=0.9

Fig. 2. The efficient score y = f(x; r∗) as a function of x = log Λ1(z) for r∗ =
0.1, 0.3, 0.5, 0.7, 0.9
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E0

[
gk(ζi, (b0,i − 0.5))

]
=

∞∑
m=−∞

[
Φ

(
2m+2−θ

σ

)
−Φ

(
2m+1−θ

σ

)]
gk

(
2m+

3
2
−θ,

1
2

)

+
∞∑

m=−∞

[
Φ

(
2m+1−θ

σ

)
−Φ

(
2m−θ

σ

)]
gk

(
2m+

1
2
−θ,−1

2

)
. (40)

It follows from (15) that the efficient score for one observation is

y = g(ξi, (b0,i − 0.5)) def.= f(x; r∗) with x =
ξi(b0,i − 0.5)

σ2
+

1
8σ2

(41)

under H1 and, hence, two first moments are given by

E1

[
gk(ξi, (b0,i − 0.5))

]
=

1
2

E1

[
gk(ξi, (b0,i − 0.5))|b0,i = 1

]
+

1
2

E1

[
gk(ξi, (b0,i − 0.5))|b0,i = 0

]
. (42)

To compute the loss of optimality of the MP test based on log Λ1(Zn) given
by (7) and designed for R = 1 against the local MP test given by (37) with
r∗ = 0.05 and the MP test based on log ΛR̃(Zn) when the true embedding rate
is R̃ = 0.1, let us consider the following Gaussian cover media model : θ = 129,
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MPtest, R=0.1, and local MP test: theory
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MPtest, R=0.1: simulation
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MP test, R=1: theory
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α0

Fig. 3. The power function β = β(α0) for the MP tests designed for R = 1 and R = 0.1
and for the local MP test designed for r∗ = 0.05 : theory and simulation
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σ = 1 and n = 104. The comparison of the theoretical power β = β(α0) as a
function of the false alarm rate α0 for these tests with the Monte Carlo simulation
(105 repetitions) are presented in Figure 3. These curves reflet the worst case
situation, i.e. the augmentation of σ or R̃ leads to the smaller difference between
the above mentioned tests.

6.2 A More Realistic Model of Cover Media

As it follows from equation (24), the power β of an optimal steganalyser depends
on the standard deviation σ of cover media pixels for a given rate of false alarm
α0. Hence, to increase the power β, someone has to reduce the standard devi-
ation σ by using a parametric model of cover media. As it is motivated in the
companion paper [2], the observation vector (pixels) extracted from the cover
media file (digital image, for instance) by using a specially chosen segment or
mask is characterized “block by block” by a regression model. Let us split the
observation vector C in M statistically independent n dimensional sub-vectors
Cj , i.e. CT = (CT

1 , . . . , CT
M ). It is assumed that each segment Cj is approximated

by :
Cj = Q1[Yj ], Yj = Hxj + ξ ∼ N (Hxj , σ

2
j In), j = 1, . . . , M, (43)

where H is a known [n × l] full rank matrix, n > l, xj ∈ R
l is a nuisance

parameter (content of the image), In is an (n × n) identity matrix and σ2
j is

the residual variance. The l columns of H span a column subspace R(H) of the
observation space Yj ∈ R

n. It is assumed that one column of H is obligatory
formed of ones. Such a parametric model is an efficient method to reduce the
standard deviation σ [2]. The new hypothesis testing problem with a parametric
model of cover media consists in deciding between

H0 : Z = C = Q1[Y ], (44)

and

H1: zi =
{
Q2[yi]+zs,i with probabilityR
ci =Q1[yi] with probability1−R

, i = 1, . . . , Mn, (45)

where Y T = (Y T
1 , . . . , Y T

M ), Yj ∼ N (Hxj , σ
2
j In). It follows from the previous

subsection that the tractable log LR log Λ1(Zj) in the case parametric model
can be re-written as follows :

log Λ1(Zj)=− 1
2σ2

j

∥∥Q2[Zj]−Hxj+1n+Δ2

∥∥2

2
+

1
2σ2

j

∥∥Zj−Hxj+0.5 ·1n+Δ1

∥∥2

2
, (46)

where 1n is an n-dimensional vector composed of ones, Δj is an n-dimensional
vector composed of corrective terms due to quantization δj,i, j = 1, 2. The
“approximate” log LR is given by

log Λ1(Zj)�− 1
2σ2

j

∥∥Q2[Zj ]−Hxj+1n

∥∥2

2
+

1
2σ2

j

∥∥Zj−Hxj+0.5 · 1n

∥∥2

2
. (47)
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In practice, xj and σ2
j are unknown. The theoretical aspects of dealing with

nuisance parameters in the framework of statistical decision theory is discussed in
[1,13]. An efficient approach to this problem is based on the theory of invariance
in statistics. The optimal invariant tests and their properties in the context of
image processing have been designed and studied in [4,5,6,16].

Let us first assume that σ2
j is known. The nuisance parameter xj can be es-

timated (or more exactly rejected) by using Q2[Zj ] = Q2[Yj ] which is free from
the embedded information. To reject the nuisance parameters, the theory of in-
variance is usually used in the case non-quantized observations. The detailed de-
scription of theoretical and practical aspects (together with all necessary proofs)
how to use the invariance principle in the case of regression model can be found
in [4,5,6,16]. The idea of the invariant hypotheses testing approach is based on
the existence of the natural invariance of the detection problem with respect to
a certain group of transformation. Let us note that the above mentioned hy-
potheses testing problem given by (44) - (45) remains “almost” invariant under
the group of translations G = {g : g(Y ) = Y +Hx}, x ∈ R

l. The word “almost”
is due to the quantization Qj [y], j = 1, 2. Without the quantization, the invari-
ance will be exact. In such a case, the statistical decision should be based on
a maximal invariant to the group of translations G, i.e. all invariant tests with
respect to G are functions of a maximal invariant statistics (see the definition
in [3]). It is shown that the projection ε = WT Y of Y onto the left null space
R(H)⊥ of the matrix H is a maximal invariant. The matrix W = (w1, . . . , wn−l)
of size n × (n − l) is composed of eigenvectors w1,. . . ,wn−l of the projection
matrix P⊥

H = In−H(HT H)−1
HT corresponding to eigenvalue 1. The matrix W

satisfies the following conditions: WT H = 0, WWT = P⊥
H and WT W = In−l. In

practice, the nuisance parameter rejection is usually done by using the matrix
P⊥

H , because P⊥
H H = 0. Moreover, if the matrix H is full rank, then the invariant

test is equivalent to the generalized LR (or GLR) test. The “approximate” log
GLR (or “almost” invariant) is given by

log Λ̂1(Zj) � − 1
2σ2

j

∥∥Q2[Zj ]−Hx̂+1n

∥∥2

2
+

1
2σ2

j

∥∥Zj−Hx̂+0.5 · 1n

∥∥2

2

=
1
σ2

j

[
P⊥

H Q2[Zj ]
]T

[B0 − 0.5 · 1n] +
n

8σ2
j

, (48)

where B0 = (b0,1, . . . , b0,n)T and x̂ = (HT H)−1HT Q2[Zj] is the ML estimate of
the nuisance parameter x.

Under hypothesis H0, the expectation and variance of the “approximate” log
GLR for the total observation vector Y are given by the following expressions :

m0 = E0

⎡⎣ M∑
j=1

log Λ̂1(Zj)

⎤⎦ � M(2l − n)
8σ2 with

1
σ2 =

1
M

M∑
j=1

1
σ2

j

(49)

and
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σ2
0 =Var0

⎡⎣M∑
j=1

log Λ̂1(Zj)

⎤⎦�M(n−l)
[

1
4σ2 +

1
16σ4

]
with

1
σ4 =

1
M

M∑
j=1

1
σ4

j

. (50)

Let us assume that the true embedding rate takes an arbitrary value R̃ : 0 <
R̃ ≤ 1. Under hypothesis H1 with the true embedding rate R̃, the expectation
and variance of the “approximate” log GLR for the total observation vector Y
are given by the following expressions :

mR̃ = ER̃

⎡⎣ M∑
j=1

log Λ̂1(Zj)

⎤⎦ � M(2l − n + 2R̃(n − l))
8σ2 (51)

and

σ2
R̃

= VarR̃

⎡⎣ M∑
j=1

log Λ̂1(Zj)

⎤⎦ � M(n − l)
4σ2 +

M(n − l)(1 − R)2

16σ4 (52)

Proposition 2. Let us assume that the Lindeberg’s condition imposed on the
log LR log Λ̂1(Zj) is satisfied. It follows from the central limit theorem that the
following fraction∑M

j=1 log Λ̂1(Zj) − ER̃

[∑M
j=1 log Λ̂1(Zj)

]
√

VarR̃

[∑M
j=1 log Λ̂1(Zj)

] �
M→∞

N (0, 1) (53)

weakly converges to the standard normal distribution [17]. For large M , the power
βδ1 of the test (7) with the log LR

∑M
j=1 log Λ̂1(Zj) given by (48) can be approx-

imated

βδ1 � 1 − Φ

(
Φ−1(1 − α0)

σ0

σR̃

− (mR̃ − m0)
σR̃

)
(54)

where m0, mR̃, σ0 and σR̃ are calculated by using equations (49) - (52).

If the residual variance σ2
j is unknown, then the following GLR is used

log Λ̂1(Zj) � 1
σ̂2

j

[
P⊥

H Q2[Zj]
]T

[B0 − 0.5 · 1n] +
n

8σ̂2
j

, (55)

where σ̂2
j = 1

n−l

∥∥P⊥
H Q2[Zj ]

∥∥2

2
.

The first right hand side term in equation (48) defines the sensitivity of the test
because the second right hand side term

n

8σ̂2
does not depend on the embedded

secret message. Nevertheless, the second right hand side term
n

8σ̂2
of (48) is

also necessary to correctly calculate the threshold h in (7) by using the equation
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P0(
∑M

j=1 log Λ̂1(Zj) ≥ h) = α0. The first right hand side term in equation (48)
represents an inner product of the vector of “residuals” ε = P⊥

H Q2[Zj ], i.e.
the vector of projection of Q2[Zj ] on the orthogonal complement R(H)⊥ of the
column space R(H), and the vector [B0 − 0.5 · 1n] composed of LSB(zi) − 0.5 :

1
σ̂2

[
P⊥

H Q2[Zj ]
]T

[B0−0.5 · 1n]=
n∑

i=1

=“weight”︷︸︸︷
σ̂−2 ·

=“residual” εi︷ ︸︸ ︷
(Q2[zi]−(Hx̂j)i + 1)·

=LSB(zi)−0.5︷ ︸︸ ︷
(b0,i−0.5), (56)

where (Hx̂j)i is the i-th row of the vector Hx̂j . Let us now compare the last
equation with the recently developed steganalysers [7,8,9]. These steganalysers
are based on the following statistics [9] :

n∑
i=1

=“weight”︷︸︸︷
wi ·

=“residual” εi︷ ︸︸ ︷
(zi −F(z)i) ·

=2·(LSB(zi)−0.5)︷ ︸︸ ︷
(zi − zi) , (57)

where F(s) denotes a “filter” dedicated to estimate the cover-image by filtering
the stego-image, the weight wi is chosen as 1

1+σ2
i
, σ2

i is the “local” variance and
zi denotes the nonnegative integer zi with the LSB flipped. As it follows from
equations (56) - (57), the steganalysers developed in [7,8,9] coincide with the
first term of the tractable log GLR (48).

7 Conclusions

The problem of hidden information detection has been addressed from a sta-
tistical point of view. Two new phenomena have been studied : i) the impact
of observation quantization on the probabilities of false alarm and non detec-
tion; ii) the benefits from using a parametric statistical model of cover media.
Some (almost) optimal statistical solutions have been designed and studied to
solve the problem of hidden information detection. These solutions have been
theoretically compared with the WS steganalysers algorithm recently developed
[7,8,9]. Based on these theoretical findings, an efficient parametric model and
hidden information detection algorithms have been developed and tested in the
companion paper [2].
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Abstract. This paper investigates reliable steganalysis of natural cover
images using a local non-linear parametric model. In the framework
of hypothesis testing theory, the use of the model permits to warrant
predictable results under false alarm constraint.

1 Introduction

Information hiding has received an increasing interest in the last decades driven
by the numerous possible applications such as watermark identification and tam-
pering detection. Unfortunately malicious usage of information hiding, like ste-
ganography, have also emerged [8]. Steganography and steganalysis are a cat
and mouse game : steganographers embed a secret message in a cover medium
while steganalysts try to detect the presence of this hidden message. This pa-
per focuses on the simple but popular LSB replacement. Surely, much better
algorithms are nowadays available. However, the proposed methodology can be
applied to other schemes providing that a statistical model of steganographic
impact is available.

With many tools available in the public domain, steganography is within reach
of anyone, for legitimate or malicious usage. It is thus crucial for security forces
to reliably detect steganographic content among a set of media ; many methods
have been proposed for this purpose, see [2,5]. Even though some steganalyzers
are very efficient (the BOSS contest [4] is a good example), detection rate is
not the only performance criterion is some circumstances. For instance, when
carrying an investigation, steganalysis results will hardly be accepted without
an analytically predictable and warranted false alarm rate. In this situation, su-
pervised learning based method can hardly be used. This justifies the statistical
study of a steganography detection scheme to which this paper is devoted.

The study of steganalysis as a hypothesis test requires an accurate image
model ; only few works in the literature explicitly use such models. In [16,19],
the distribution of Discrete Cosine Transform (DCT) coefficients is used to detect
steganography in JPG images. In a similar fashion, the distribution of Discrete
Fourier Transform (DFT) coefficients is used in [20]. An independent and iden-
tically distributed (i.i.d) pixels model is exploited in [6] to derive a statistical
� This work is supported by French National Agency (ANR) through ANR-CSOSG

Program (Project ANR-07-SECU-004).
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hypothesis test. None of the previously cited image models used for steganaly-
sis offers a precise statistical description of image noise and an accurate model
of image content. This observation highlights the fundamental motivation of
current paper: filling the gap between the physical model of cover-image and
steganalysis. In the framework of hypothesis testing, an accurate image model is
fundamental to design a test which can warrant a predictable false alarm rate.

Unfortunately, modelling such a complex signal as image remains an open
problem as well as designing an optimal steganalysis, even in ideal context of a
known image(see the companion paper [22]). The goal of this paper is threefold:

– to locally model the content of a cover image by describing the optical system
which gives birth to a natural image;

– to exploit, as simply as possible, this model of natural image in the design
of an almost optimal test.

– to numerically compare the proposed detection scheme with other stegana-
lysis methods.

2 Overview of Proposed Methodology

This section presents the main contributions of the paper and describes the
organization of the paper. The goal is to give a complete overview of the proposed
work and to relate it to the well-known WS detector investigated successively
by Fridrich [7] and Ker [12,11].

2.1 Main Contributions

This paper assumes that a cover image is a matrix C={cl,m} of L×M grayscale
value pixels and that the corresponding stego-image Z={zl,m} is created by
replacing the LSBs of proportion R of the cover pixels. The set of grayscale
levels is denoted Y={0, . . . , 2b − 1}; b bits are used to quantize each pixel. As
explained in the companion paper [22], a cover pixel cl,m satisfies

cl,m = Q1[yl,m], (1)

where yl,m denotes the real value recorded by the digital camera before the quan-
tization and Q1[yi] = �yi� is the operation of uniform quantization (integer part
of yi). Some important details on the quantization are given in the companion
paper [22]. It is assumed (see Section 4) that

yl,m = θl,m + ξl,m

where θl,m is the mathematical expectation of yl,m and ξl,m is a zero mean
Gaussian random variable. The variance σ2

l,m of ξl,m is assumed to be known for
all (l, m). The matrix of parameters θl,m is denoted θ. It is supposed that θ ∈ Θ
where Θ is a known compact set.

In the following, the notation z indicates the integer z with LSB flipped [7],
i.e., z = z + 1 − 2 lsb(z) where lsb(z) is the LSB of z. The first step of the
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proposed detection algorithm is to estimate the cover image parameters θl,m ;
the notation θ̂={θ̂l,m} is used for the estimate of θ = {θl,m} obtained from the
analyzed image Z. The second step consists in calculating the matrix of residuals

r̂l,m = (zl,m − θ̂l,m)(zl,m − zl,m) (2)

which indicate the difference between stego-image and estimated cover, with the
sign adjusted to take into account the asymmetry in LSB replacement (even pix-
els could only be incremented, and odd pixels decremented).Then the proposed
test is based on a decision function with the following form:

Λ(Z) =
L∑

l=1

M∑
m=1

wl,mr̂l,m (3)

where wl,m is a weight so that the influence of pixels depends on their noise
level. Noisy areas, for which estimation of the cover is more difficult, are given
less weight than those in flatter areas.

This detector is quite similar to the Weighted Stego-image (WS) analysis ini-
tially proposed by [7] to estimate the payload size and deeply studied by [12].
Used as a detector, which is the focus of this paper, the WS is known to have
good performance. Contrary to the approach followed by [7,12], this paper pro-
poses two major novelties. First, the test is derived from the statistical theory
of hypotheses testing (see Section 3). Hence, the weights wl,m are theoretically
established and not empirically chosen. Second, the estimates ĉl,m of the cover
pixels initially used by [7,12] are replaced with the estimates θ̂l,m, see (2), of
the physical parameters describing the cover image content. From this way, it is
expected to reach a higher level of performance.

The proposed methodology is summed up in Fig. 1. This approach leads to a
reliable steganalysis because of two main advantages. First, the decision is made
independently from the image content as it is explicitly taken into account as a
“nuisance parameter”. Second, the performance of the test is clearly established;
this allows to meet a false alarm rate constraint by fixing a precalculated decision
threshold and to know in advance the power detection of the test with respect
to the insertion rate.
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Fig. 1. Working diagram of proposed applied test
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2.2 Organization of the Paper

Section 3 recalls the main theoretical results of the companion paper [22]. This
section presents the design of the optimal test, namely the Likelihood Ratio Test
(LRT), solving the problem of LSB replacement detection whatever the message
length (or insertion rate) is, when quantization corrective term is negligible. The
performance of the optimal LRT is asymptotically given in a closed form as
the number of pixel grows to infinity. This analytic expression of optimal test
power function can be used as an optimal upper bound for any practical test in
agreement with the square root law of steganographic capacity, see [13].

In [12], the author uses an empirical weighted autoregressive model to esti-
mate pixels’variance and value; the weighted coefficients are theoretically calcu-
lated in [22]. To get good detection performance, it is underlined by [12] that
cover image is fundamental. Hence, this paper proposes an accurate model of
natural images which takes account of the content θl,m, including specifically
non-stationarities and non-linearities. This content is usually not affected by the
steganographic content and hence can be estimated in a stego-image as well. The
general idea is to model the redundancies which locally exist between pixels. To
build such an image model, the physical process that gives birth to a digital
image is examined, and a generic model of digital imaging system along with a
model of the scene are presented in Section 4.

The non-linear model of the cover image is used in Section 5 to design a statis-
tical test for the practical case of unknown cover image content parameters θl,m.
The image non-linear model is “linearized” to allow a simple but yet efficient esti-
mation. The effects of both estimation and linearization on the test performance
are analyzed and the loss of optimality of the test, with respect to the ideal LRT,
is bounded.

Finally, Section 6 presents numerical results. The proposed test is applied
to some natural images. It is shown that for small false alarm rate, the test
outperforms the five detectors used for comparison. On the contrary, the revisited
WS exhibits slightly better performance for higher false alarm rate. Numerical
results are presented to explain and discuss this point.

3 Optimal Statistical Test for Known Cover Image

The main results of the theoretical analysis proposed in the companion paper [22]
is the design of the optimal LRT solving the problem of LSB replacement de-
tection when the parameters θl,m of the cover image are known. Neglecting the
quantization impact, this test is optimal whatever the message length (or inser-
tion rate) is. The performance of the optimal LRT is asymptotically given in a
closed form as the number of pixels grows to infinity.

3.1 Statistical Analysis of LSB Replacement Steganography

The probability mass function (pmf) of the pixel zl,m from a natural cover image
is given as:

QQ1(θl,m) = [q0(θl,m), . . . , q2b−1(θl,m)]
where, ∀k ∈ Y,



182 R. Cogranne et al.

qk(θl,m) =
1

σl,m

∫ (k+
1
2 )

(k− 1
2 )

φ

(
x − θl,m

σl,m

)
dx with φ(u)=

1√
2π

exp
(−u2

2

)
. (4)

Let the insertion rate R be defined as the number of hidden bits per pixel. The
steganographic process modifies in a known way the distribution QQ1(θl,m). In
these conditions, a short calculation [9,6,22] shows that the pmf of pixel zl,m

after insertion is given by QR
Q1

(θl,m) = [qR
0 (θl,m), · · · , qR

2b−1(θl,m)] where

∀k ∈ Y , qR
k (θl,m) =

(
1−R

2

)
qk(θl,m) +

R

2
qk(θl,m). (5)

As explained in [22, Eq.(27)], the hypothesis testing problem of steganalysis
consists in choosing between H0 = {R ≤ r∗} vs H1 = {R > r∗} or equivalently:{

H0 = {zl,m ∼ QR
Q1

(θl,m) , l ∈ 1, . . . , L,∀m = 1 . . . , M, ∀R ≤ r∗}
H1 = {zl,m ∼ QR

Q1
(θl,m) , l ∈ 1, . . . , L,∀m = 1 . . . , M, ∀R > r∗} (6)

where r∗ is a (reasonable) minimal insertion rate. The goal is to find a test
δ :YL·M 	→{H0;H1} such that hypothesis Hi is accepted if δ(Z) = Hi (see [14]
for complete information). Let

Kα0 =

{
δ : sup

θ∈Θ, R<r∗
�θ,R(δ(Z) = H1) ≤ α0

}
be the class of tests with an upper-bounded false alarm probability α0. Here
�θ,R(A) stands for the probability of the event A when zl,m is generated by
QR

Q1
(θl,m) for all (l, m). The power function βδ of the test δ is defined by the

probability of hidden bits detection

βδ(θ, R)=�θ,R(δ(Z) = H1).

3.2 Optimal Theoretical LRT

For theoretical convenience, let the mean variance σ̄ be defined by

1
σ̄2

=
1

L M

L∑
l=1

M∑
m=1

1
σ2

l,m

. (7)

When θl,m is known for all (l, m), the optimal solution, namely the LRT, is given
in the companion paper (cf. [22, section 6]). For large σ̄, this test is given as:

δ(Z) =

{
H0 if Λ(Z) < τα0 ,

H1 if Λ(Z) ≥ τα0 ,
(8)

where

Λ(Z)=
L∑

l=1

M∑
m=1

wl,m(zl,m−θl,m)(zl,m − zl,m) , wl,m =
σ̄

σ2
l,m

√
L M

. (9)

The threshold τα0 is chosen such that δ ∈ Kα0 . The following theorem is easily
derived from the central limit theorem applied to Λ(Z) for r� ≈ 0.
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Theorem 1. In virtue of the Lindeberg’s central limit theorem [14]:{
Λ(Z) d→ N (0 ; 1) under H0

Λ(Z) d→ N (
R
2σ̄

√
LM ; 1

)
under H1

(10)

with d→ the convergence in distribution as L M → ∞. Choosing τα0 = Φ−1(1 −
α0), it follows that δ(Z) ∈ Kα0 and

βδ(θ, R) = 1 − Φ

(
τα0 −

R
√

LM

2σ̄

)
. (11)

In the companion paper [22], the quantization impact lead us to design a local
most powerful (LMP) test for R in the neighborhood of r∗. On the contrary, the
decision Λ(Z) defined in (9), does not depend on R. Hence, the main conclusion
of the above results it that in Kα0 , the test δ(Z) is uniformly most powerful
(UMP) with respect to R, provided that the quantization is negligible. The
power function βδ(θ, R) has been established only for small R, but is shown to be
meaningful in practice for higher insertion rate, see Fig. 3 and [22, Fig. 3].Finally,
Theorem 1 asymptotically gives an explicit form of βδ(θ, R) in agreement with
the square root law of steganographic capacity [13] and independently from the
cover content parameters θ. The function βδ(θ, R) can be used as an upper
bound for the power of any test.

4 Natural Cover Image Model

In practice, the cover image parameters θl,m are not known. Estimating these
parameters is crucial for any detection algorithm. To this end a physical local
model of raw images (i.e. without in-camera processing) content is proposed.
This model will be used to simply and efficiently estimate image content.

4.1 Model of the Imaged Scene

A scene is described from camera point of view by its emitted radiance for several
color channels. Without any loss of generality, this section deals with grayscale
image (colors are processed individually). Hence, the radiance of the scene is a
function B(x, y) where (x, y) ∈ [0, xmax] × [0, ymax] = D ⊂ �

2 are the imaged
scene coordinates scale to sensor.

As described in [15], see fig. 2b, a scene is made of various solid objects Oi

associated each with the open domain Di⊂D and the radiance function Bi(x, y)
such that (x, y) /∈Di ⇒ Bi(x, y) = 0. The boundaries between domains Di and
Dj is a curve Γi,j : [0, 1] → D. The whole scene is consequently described as:

B(x, y) =
∑

i

Bi(x, y). (12)

From the properties of solid objects light emission, one can expect that [15]:
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B(x, y)

������� �	��
�
h(x, y; ςpsf )

y

x

y

x

������� �
������������

bk(x)

Ik(x) zk

I(x, y) Zi,j

(a) A general image acquisition pipeline.

D1

D2

D3

D4

Γ0,1

Γ0,2

Γ1,4

D0
x

y
bk(x)

(b) A 2D scene and its 1D model.

Fig. 2. Describing the scene and the image acquisition to model a natural image

1. for each object Oi, the radiance Bi(x, y) is a smooth function over Di,
2. the radiance B(x, y) is discontinuous across (most of) the boundaries Γi,j ,
3. the objects are of regular shape in the sense that each curve Γi,j(t) is twice

continuously differentiable for almost all t ∈ [0; 1].

4.2 Raw Pixel Recorded Value

The fundamental model used in this paper relies on the above scene description.
For a simpler yet efficient estimation of image content, it is proposed to adapt
the model in one dimension (1D). Hence, the scene is divided in K segments
Xk of negligible width, associated with the radiance bk(x), k∈{1, . . . , K}, see fig.
2. The variable y is (almost) constant over Xk, hence it is omitted to simplify
the notation. According to the above mentioned properties, the univariate func-
tion bk is continuous except at the boundaries and hence admits the following
decomposition [1]:

∀x ∈ Xk, bk(x) = b
(c)
k (x) + b

(s)
k (x)

where b
(c)
k is continuous and the singular part, b

(s)
k , is piecewise constant and

can be written:

∀x ∈ Xk , b
(s)
k (x) =

rk∑
d=1

uk,d 1(x−tk,d) (13)

with rk the number of discontinuities in the k-th segment Xk, 1(·) the unitary
step function defined as 1(x)=1 if x>0 and 1(x)=0 otherwise. The parameters
uk,d and tk,d are respectively the intensity and the location of d-th discontinuity.

The optical system is modelled by the Point Spread Function (PSF) h(x, y)
which characterizes the optical system [10]. The PSF depends on many unknown
elements (lens, focal length, atmosphere, . . . ) among which some are spatially
variant (aberration, out-of-focus, . . . ). This paper is restricted to an isotropic
Gaussian PSF:

h(x, y; ςpsf) =
1

ς2
psf

ϕ

(
ρ

ςpsf

)
where ϕ(ρ) =

1
2π

exp
(
−ρ2

2

)
,

ρ2 = x2+y2 and ςpsf > 0 is the blur parameter. Hence, the irradiance Ik reaching
Xk, the k-th sensor segment, can be written as:
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Ik(x) = I
(c)
k (x) + I

(s)
k (x) (14)

where I
(c)
k and I

(s)
k correspond respectively to the continuous and singular part

of radiance bk. They result from the convolution between bk(x) and h(x, y; ςpsf)
restricted to Xk. The function I

(c)
k is expected to be very smooth and hence is

assumed to be well approximated by algebraic polynomial of degree p−1:

I
(c)
k (x) =

p−1∑
i=0

s
(k)
i xi , ∀x ∈ Xk (15)

where the real coefficients s
(k)
i , which depend on Xk, are unknown. The goal is

here to highlight crucial importance of discontinuities and subsequent difficulties
it raised. That is why, a rather simple algebraic polynomials was used to model
for the continuous part I

(c)
k which is not the main focus. The function I

(s)
k

accounts for the discontinuities and should obviously be accurately modeled to
later accurately estimate the function Ik(x) from a raw image. After some algebra
(omitted due space limitations) the functions I

(s)
k admits the decomposition:

I
(s)
k (x) =

rk∑
d=1

uk,d Φ

(
x − tk,d

ςk,d

)
where Φ(u) =

u∫
−∞

φ(ν) dν (16)

and φ(·) is the Gaussian distribution function as defined in (4). Note that the
local blur parameter ςk,d > ςpsf in (16) varies for each discontinuity due to the
angle between the local 2D discontinuity orientation and the segment Xk, see
Fig.2b.

Finally, the irradiance Ik(x) is integrated over sensor pixels of the Charge-
Coupled Device (CCD) matrix. Hence, the intensity value yl,m recorded by the
sensor at position (l, m) over the CCD matrix is given by

yl,m = θl,m + ξl,m (17)

where ξl,m is a Gaussian random noise representing all the noises corrupting the
expected signal θl,m given by

θl,m =
p−1∑
i=0

s
(k)
i xi

l,m +
rk∑

d=1

uk,d

∫
Xk∩Cl,m

Φ

(
ν − tk,d

ςk,d

)
dν (18)

where xl,m is the coordinate of the sensor’s center at position (l, m), assuming
that xl,m ∈ Xk and that the sensor at position (l, m) records all the photons
arriving on the square region Cl,m ⊂ D.

The methodology presented in this paper relies on the model (17)-(18) of a raw
pixel intensity yl,m. The image analyzed in Section 6.2 have been subjected to in-
camera processing (demosaicing, gamma correction, white balance, etc. . . ) which
can not be modeled accurately as it remains partially unknown. However, one
can expect that the content model is not strongly modified by post-acquisition
processing as it is empirically shown in numerical results presented in section 6.
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5 From Cover Image Estimation to Almost Optimal
Steganalysis

In this section, it is proposed to use the optimal LRT, previously defined in
section 3.2, by replacing the parameters θl,m by some estimates θ̂l,m. This es-
timation is based on the model (18) and the analyzed image grayscale values
zl,m. The main difficulty is that the unknown parameters (tk,d, ςk,d) for all (k, d)
appear in a non-linear way in (18).

5.1 Estimation of the Cover Image Parameters

The goal is to estimate the unknown parameters θl,m. The model (18) shows that
there exist some redundancies between neighbor pixels but these redundancies
can only be exploited locally. To sum up this important point, the model (18)
is rewritten in matrix form. Let ηk=(tk,1, ςk,1, . . . , tk,rk

, ςk,rk
) be the vector con-

taining all the discontinuity parameters of Xk. Let θk be the vector containing
all the values θl,m such that xl,m ∈ Xk. It is assumed that all vectors θk have
the same number N of pixels such that N=L M/K. From (18), the ensuing
theoretical vector θk can be written:

θk = Hsk + F(ηk)uk. (19)

The polynomial coefficients sk = (s(k)
0 , . . . , s

(k)
p−1)

T
characterize the continuous

part spanned by the matrix H of size (N, p). For each value θl,m whose pixel has
coordinate xl,m ∈ Xk, the corresponding row in H is given by[

x0
l,m x1

l,m · · · xp−1
l,m

]
.

The coefficients uk=(u1, . . . , urk
)T represent the intensity of discontinuities

spanned by the matrix F(ηk) of size (N, rk). For each value θl,m whose pixel
has coordinate xl,m ∈ Xk, the corresponding raw in F(ηk) is given by[∫

Xk∩Cl,m

Φ

(
ν − tk,1

ςk,1

)
dν · · ·

∫
Xk∩Cl,m

Φ

(
ν − tk,rk

ςk,rk

)
dν

]
.

Due to space limitations, it is assumed that each segment Xk has at most one
discontinuity and that an estimate η̂k=(t̂k,1, ς̂k,1)T is available for each discon-
tinuity (if present) such that ‖ηk−η̂k‖1≤ϑ where ϑ is a small constant. The
literature proposes many methods giving such estimates (see for example [1]).
Adapting the methodology from [18], the non-linearity is treated by writing (19) :

θk = Hsk + uk,1F(η̂k) + Ḟ(η̂k)uk,1(ηk−η̂k) + o(ϑ2) (20)

where Ḟ(η̂k) is the jacobian (N × 2) matrix of F(ηk). This yields to the locally-
adapted linear model:

θk = G(η̂k)vk + o(ϑ2) with G(η̂k)=
(
H |F(η̂k) | Ḟ(η̂k)

)
and vk=(sk, uk,1, uk,1(ηk−η̂k))T .
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When the analyzed image does not contain hidden information, zl,m

= Q1[yl,m] = Q1[θl,m + ξl,m]. Let zk be the vector containing all the pixels
zl,m corresponding to the k-th segment. Assuming that the noise variance is
constant in each segment and that the quantization has negligible effects on the
estimation, θk can be estimated by using the linear estimate:

θ̂k = G(η̂k)
(
G(η̂k)TG(η̂k)

)−1
G(η̂k)T zk. (21)

The estimates θ̂l,m are obtained for all (l, m) by calculating the estimate (21) for
all segments. Alternatively, for LSB replacement, the LSB plane can for instance
be removed to have an estimation which is independent from steganography.

5.2 Almost Optimal Steganalysis

Let r =
∑K

k=1 rk be the total number of discontinuities over D. Let δ̂(Z) be
the test defined as in (8), associated with the threshold τ̂α0 and the following
decision function Λ̂(Z):

Λ̂(Z)=
L∑

l=1

M∑
m=1

wl,m(zl,m−zl,m)(zl,m−θ̂l,m). (22)

where
wl,m =

σ̄

σ2
l,m

√
K(N−p−3)

.

The following theorem establishes the loss of optimality of the test δ̂(Z) with
respect to the optimal LRT (when the parameters θl,m are known).

Theorem 2. In virtue of the Lindeberg’s central limit theorem:{
Λ̂(Z) d→ N (0 ; 1+b) under H0

Λ̂(Z) d→ N (
R
2σ̄

√
κ ; 1+b

)
under H1

(23)

where κ = K(N−p)−3r and b is an unknown bias: 0 ≤ b ≤ ε
σ̄2(N−p−3)

def.
= bmax

with ε a known (little) positive constant. Choosing τ̂α0 = Φ−1(1−α0)
√

1 + bmax,
it follows that δ̂(Z) ∈ Kα0 and

1−Φ

(
1

1+bmax

(
τ̂α0−

R

2σ̄

√
κ

))
≤ β̂(θ, R) ≤ 1−Φ

(
τ̂α0−

R

2σ̄

√
κ

)
. (24)

Proof. Omitted due to space limitations.

The comparison between β(θ, R) and β̂(θ, R) shows that the loss of optimality
of the later is due to: 1) the reduction of the number of “free parameters” from
L M to κ and 2) the unknown bias bmax which is due to linearization of F(ηk)
around the estimation values of discontinuity parameter η̂k. Hence, provided
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that r and bmax are sufficiently small, the test δ̂ is almost optimal. Values r and
ϑ were arbitrarily bounded to analytically calculate the power function β̂(θ, R).

The loss of optimality highlights a more general problem inherent to the “cal-
ibration” process, used to estimate cover image. Indeed, a tradeoff has to be
found between sparsity (to increase κ) and accuracy (to keep bmax low). Un-
fortunately, this problem remains open. This problem is inspected in section 6
through a comparison with the WS.

6 Numerical Results and Comparisons

6.1 Theoretical Results on Simulated Data

Figs. 3a and 3b present the results of Theorems 1 and 2 through a numerical
simulation. A Monte-Carlo simulation was repeated 25 000 times each with 400
segments of 32 pixels. Every segment has one discontinuity, whose location was
uniformly distributed, with settings uk=96, ς = 1.75 and ϑ = 1. An algebraic
polynomial of degree 3 was used, the insertion rate was set to 0,47 and the
additive noise was stationary with σ̄=5.43.

6.2 Comparisons with Other Detectors on Real Images

One of the main motivations of this paper was to define a reliable steganaly-
sis in the sense that it explicitly takes into account image content and has an
analytically predictable performance. Hence, it was chosen not to compare the
proposed test with supervised learning based detectors because, as discussed in
section 1, they cannot warrant any optimality of the decision rule.

The LSB replacement detectors compared in this section are : the proposed
test δ̂, the test proposed in [6], the χ2 test from [21], the RS detector [9] with the
original mask [0 1 1 0] and the WS [7] with moderated weights wl,m = (σl,m+5)−1

and the filter

⎛⎝−1/4 1/2 −1/4

1/2 0 1/2

−1/4 1/2 −1/4

⎞⎠ as described in [12]. The key role of image model is

�� � � � � �
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(a) Distributions of Λ (+) and Λ̂ (�).
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(b) ROC Curves of the tests δ and δ̂.

Fig. 3. Theoretical (- -) and empirical (—) results for simulated data
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(b) ROC Curves for R = 0.1

Fig. 4. Comparisons of detectors : ROC curves for UCID database

highlighted with a sixth detector δW based on the LRT defined in section 3 and
using a wavelet shrinkage to estimate the cover content θk. For a large scale
comparison the 1338 image of UCID [17] and 9000 images, previously cropped
to size 128× 128, from BOSSbase [4] were used.

On Fig. 4 and Fig. 5, the WS surprisingly exhibits higher power than the
proposed test δ̂ for intermediate false alarm rate α0. But in a practical appli-
cation, for instance when analysing the whole data of a suspect, it is obviously
less serious to consider that one set a false alarm rate constraint of 0.3 or even
0.1. Indeed it is reasonable to think that thousands or millions of images will be
inspected and a constraint of α0 = 10-2 is much more realistic. For such low false
alarm rate, Fig. 4 and Fig. 5 show that the proposed test outperforms the WS
which is the most serious challenger. Note that the detection power is higher (for
all detectors) on UCID images because their size is bigger that cropped BOSS
images.

To understand the tests performances depicted on the ROC curves of Fig.
4 and Fig. 5, a thorough comparison of the statics used by the detectors is
necessary. To this end, Fig. 6 shows the empirical distribution obtained on UCID
image database for R = 0 and R = 0.1 with the proposed test Λ̂, the WS and
the RS.

The results drawn in Fig. 6 permits understanding the importance of the image
content model. The WS detector relies on a basic autoregressive model which
fairly works for most images but fails for few. Hence, the distributions of WS
residuals exhibit heavy tails and outlier values under both hypothesis of cover
or stego images (see [3] for a thorough numerical analysis). These values explain
why one can not warrant a very low false alarm rate and a high power. On the
contrary, the proposed model of natural images permits an accurate estimation
of the cover which later prevents occurrence of most outliers. The distribution of
Λ̂ shown in Fig. 6 under null hypothesis H0 is close to the theoretically calculated
standard Gaussian ; this known distribution permits to meet a false alarm rate
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Fig. 6. Comparisons of decision ROC curves for UCID database

constraint. Note that under (stego) hypothesis H1 the distribution of Λ̂ is not
Gaussian anymore because as defined in (23), result depends on the noise power
� which varies for each inspected image.

The proposed test Λ̂ and the WS have a very similar expression but funda-
mentally differ on cover estimation. Highly textured images are typically difficult
to analyse without an accurate model of image content. Importance of that point
is illustrated in Fig. 7. Thirty highly textured images have been analysed 1000
times with an additive Gaussian stationary noise with standard deviation σ=0.5.
Results are normalised to have the same theoretical mean. Fig. 8 shows that for
all images, the standard deviation does not change much between the WS (with
standard wl,m=(σl,m + 1)−1 or moderated wl,m=(σl,m+5)−1 weights) and the
proposed test Λ̂. However, the textured content of these images can not be ac-
curately estimated with a rather simple model. This causes a textured error of
content estimation which might result in a bias in the WS residual. On the con-
trary, the proposed image model allows an accurate estimation of image content
and thus prevents the occurrence of most spurious values which later avoid a
reliable decision.
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Fig. 7. Monte-Carlo analysis (Mean and standard deviation) of textured images

Fig. 8. Three of the thirty textured images used for Monte Carlo simulation

7 Conclusions

This paper made a first step to fill the gap between physical model of cover-
image and steganalysis. A local non-linear parametric model of natural images
is proposed based on the physical properties of acquisition. To estimate simply,
yet efficiently, the cover image content it is proposed to linearized the model.
The theoretical findings of the companion paper [22] are exploited to design an
almost optimal test, i.e. with a bounded loss of optimality. This allows a reliable
steganalysis as the proposed test permits to analytically predict and warrant a
false alarm constraint.

Numerical results on two image databases show the relevance of the presented
approach. Thanks to the accurate image model, the proposed test exhibits much
better performance for small false alarm rate.
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Abstract. In this paper, we propose an adaptive video steganography
tightly bound to video compression. Unlike traditional approaches utiliz-
ing spatial/transformed domain of images or raw videos which are vulner-
able to certain existing steganalyzers, our approach targets the internal
dynamics of video compression. Inspired by Fridrich et al’s perturbed
quantization (PQ) steganography, a technique called perturbed motion
estimation (PME) is introduced to perform motion estimation and mes-
sage hiding in one step. Intending to minimize the embedding impacts,
the perturbations are optimized with the hope that these perturbations
will be confused with normal estimation deviations. Experimental results
show that, satisfactory levels of visual quality and security are achieved
with adequate payloads.

1 Introduction

Steganography is the art and science of hiding the very presence of commu-
nication by embedding secret messages into innocent-looking digital signals.
Although with a huge capacity, the video content has been less exploited for
steganography mainly due to processing complexities. Within these years, the
advent of high performance graphics processing unit (GPU) has made video
processing a much easier job, even with portable devices. What’s more, high
performance networking technologies have made networked multimedia applica-
tions increasingly popular such as video on demand, internet television, video
telephony, etc. In order to achieve real-time covert communications with ade-
quate payloads, it is obviously less suspicious to transmit video streams than a
large number of individual images.

In this paper, a specific integral part of video compression, namely motion
estimation is utilized for embedding purposes. We target this stage for the fol-
lowing three reasons: First, most existing steganalyzers (e.g., [4,10,12,17]) model
the videos as successive still images and the embedding process as adding in-
dependent mean zero Gaussian noises. The reliability of the model is likely to

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 193–207, 2011.
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deteriorate when embedding with motion information. Secondly, digital videos
are usually highly compressed for economical storage and efficient transmission.
The compression process can be modeled as an information-reducing process,
and improved steganographic security can be achieved by using the cover ob-
ject as side information to confine the embedding changes to those elements
whose values are the most “uncertain”[8]. Finally, as we will discuss in details in
3.3, compared to regular compression, very limited distortion is introduced by
embedding with motion information.

The idea of using motion vectors (MV) as the covert information carrier can be
dated back to Kutter et al’s work [11] in which they proposed a video watermark
scheme by altering the MVs directly. In recent years, steganographic methods
adopting improved strategies have been developed. Xu et al [15] suggested em-
bedding message bits in the magnitudes of MVs and the control data in the intra
frames, the LSBs of MVs’ horizontal or vertical components are used for embed-
ding. Fang and Chang [7] designed a steganography using MVs’ phase angles.
The MVs are arranged in pairs, and for each pair, if the phase angle difference
does not satisfy the embedding condition, one in the pair has to be replaced by
a new qualified MV. These two schemes select candidate motion vectors (CMV)
according to their magnitudes with the assumption that modifications applied
to MVs with larger magnitudes introduce less distortion. But Aly had pointed
out in his latest work [2] that the magnitude-based selection rule cannot ensure
minimum prediction errors. He hence designed a new selection rule directly as-
sociated with macro block (MB) prediction errors. MVs associated with high
prediction errors are chosen, and secret bits are embedded in the LSBs of both
their horizontal and vertical components.

We have realized that the methods outlined above share some features in com-
mon, i.e., each of them first selects a subset of MVs during motion estimation
following a pre-defined selection rule, then makes direct modifications to them
for data hiding. There are two issues of concern: First, these methods select
CMVs according to their magnitudes or associated prediction errors, and these
information are known to public and needed for extraction. In fact, if the adap-
tive selection rule is public, or only weakly dependent on a key, an attacker can
apply the same rule and start building an attack. Secondly, CMVs are arbitrarily
modified (e.g., LSB replacement) which violates the encoding principles a lot.
Consequently unexpected distortions and detectable statistical changes would be
invited which implies that even Aly’s selection rule cannot eventually guarantee
minimum distortion either.

In this paper, we propose an adaptive video steganography combined with
MPEG-4 video compression. Inspired by Fridrich et al’s PQ steganography [8],
a technique called perturbed motion estimation (PME) is introduced for in-
formation hiding. The secret bits are embedded at the same time of motion
estimation, and as no further modification is needed, the compressed data is af-
fected in a natural fashion. With PME, by virtue of the wet paper code [8], the
sender is free to use different criteria for non-shared selection rule designing. In
terms of security evaluation, the Kullback-Leibler divergence between the MV
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probability distributions of non-stego and stego compressed videos is leveraged
as a preliminary benchmark of the inherent detectability. We subject our method
to 2 image-oriented steganalytic algorithms (i.e.,[13,16]) to show their ineffective-
ness in attacking MV-based methods. Moreover, one specific steganalysis against
the MV-based steganography [18] is implemented for security tests. Experimen-
tal results show that compared to other MV-based methods, PME achieves a
better visual quality and a higher security level.

The rest of the paper is structured as follows. In section 2, the basic con-
cepts of motion estimation and wet paper code are introduced. In section 3,
the PME technique is presented. We give detailed descriptions of the embed-
ding and extracting procedures and make analysis of the introduced distortion.
In section 4, comparative experiments are conducted to show the performance
of our scheme with special attention paid to the security evaluation. Finally in
section 5, concluding remarks are given with some future research directions.

2 Preliminaries and Notations

2.1 Motion Estimation

Due to the large amount of data involved, lossy compression is routinely em-
ployed for economically storing digital videos on storage constrained devices or
efficiently transmitting them over bandwidth-limited networks. The raw video is
essentially a series of highly correlated image frames, and the temporal redun-
dancy that exists between frames can be greatly reduced by inter-frame coding.
State-of-the-art compression standards perform inter-frame coding based on a
local motion model of b×b pixels macro blocks (MB). Most MBs within an inter-
frame are coded as inter-MBs, and to encode current inter-MB C, the encoder
typically uses a prior coded frame as its reference and search for a good matching
MB within it. Block matching problem is generally formulated by quantifying the
similarity between C and candidate MBs in the reference frame using a similarity
metric. The candidate with the largest similarity is taken as C’s best prediction,
and denoted as R. In this paper, without loss of generality, we use mean square
error (MSE) as the matching criterion for its good theoretical significance.

MSE(C,R) =
1
b2

∑
1≤i,j≤b

(ci,j − ri,j)2, (1)

where ci,j and ri,j represent the luminance values of C and R respectively. Once
R is found, C’s MV will be calculated as

mv = (h, v) = (Hr − Hc, Vr − Vc) (2)

where h, v are the horizontal and vertical components, (Hr, Vr) and (Hc,Vc)
denote the coordinates of R and C respectively. Schematic diagram of MV cal-
culation is shown in Fig. 1. Consequently only mv representing the motion of C
and the differential block D = C−R need to be further coded and transmitted.
A generic structure of inter-MB coding is depicted in Fig. 2.

Later in Section 3, an optimized perturbation is introduced into regular
motion estimation for data hiding.
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R

C
mv

Fig. 1. Motion estimation applied to C

Fig. 2. Generic structure of inter-MB coding

2.2 Wet Paper Code

Fridrich et al suggested that one possible measure to improve the steganographic
security is to embed message using adaptively selected components of the cover
object, such as noisy areas or segments with a complex texture. However, if the
adaptive selection rule is public, or only weakly dependent on a key, the attacker
can apply the same rule and start building an attack. As a countermeasure,
they designed the wet paper code, a simple variable-rate random linear code,
to improve the performance of their PQ steganography [8] where the encoding
process is modeled as writing in memory with defective cells. Wet paper code
enables the sender to embed a message into arbitrary selected components of
the cover object without sharing the selection rule with the recipient.

In the embedding scenario, with a cover object X , the sender wants to send
out a q-bit message m = (m1, . . . , mq)T. X consists of n elements {xi}n

i=1,
xi ∈ J , where J is the range of discrete values for xi. Then an arbitrary se-
lection rule is used to pick up a k-element subset S ⊂ X as the information
channel. Any element in S is allowed to be modified if necessary for embedding,
and the remaining n−k ones are kept untouched. Assuming that the sender and
the recipient agree on a secret key K and a public parity function P, which is a
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mapping P : J → {0, 1}1, the sender’s job is to modify some xi ∈ S to create
the stego object Y = {yi}n

i=1 with the purpose that the newly obtained binary
column vector v ′ = {P(yi)}n

i=1 satisfies

Mv ′ = m (3)

where M is a q × n pseudo-random binary matrix generated by K. For detailed
encoding process, please refer to [8].

As to the recipient, with the stego object Y, he first calculates the column
vector v ′ = {P(yi)}n

i=1, then extract the message m = Mv ′ using the matrix
M generated by the shared key K.

3 The Proposed Video Steganography

3.1 Perturbed Motion Estimation

We call our method Perturbed Motion Estimation (PME) because during inter-
frame coding we slightly perturb the encoder (the process of motion estimation)
for certain MBs to embed message bits. The sender can arbitrarily design a non-
shared selection rule for different considerations. In this paper, we take a MSE
based selection rule for example, and the selected MBs are called applicable MBs
defined by Definition 1.

Definition 1. (applicable MB). When searching for current MB C’s prediction,
with a preset scaling parameter α, we call C an applicable MB if other than its
best prediction R, there is at least one candidate R′ which satisfies

1.
MSE(C,R′) ≤ (1 + α)MSE(C,R) (4)

2.
P(mv)

⊕
P(mv′) = 1 (5)

where mv′ corresponds to the MV pointed to R′, P is employed as the parity
function defined as P(mv) = P((h, v)) = LSB(h + v) and

⊕
denotes the

XOR operator.

Among all qualified candidates of the applicable MB, the one with minimum
MSE(C,R′) is called C’s suboptimal prediction and denoted as R̂. Then the
MV m̂v pointed to R̂ is calculated as sketched in Fig. 3.

In the embedding scenario, we model one single inter-frame as the cover
object X = {Xi}n

i=1 where Xi denotes the ith inter-MB of X and n the to-
tal number. Assuming that the sender wants to communicate a q-bit message
m = (m1, . . . , mq)T where q is less than X ’s capacity (i.e., the total number of
its applicable MBs), and he agrees with the recipient on a secret key K used to
1 P(·) could be any function defined on J with the range {0,1}, if xi is a single integer,

LSB(xi) could be one good example.
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R

C

R
mv

mv

Fig. 3. Applicable MB C

generate a pseudo-random binary matrix M of dimensions q ×n, the procedure
of PME is described below.

Channel Building: With a preset scaling parameter α, this process is applied to
all inter-MBs to determine whether they are applicable. As a result, k applicable
MBs are selected with their indices recorded as w = (w1, w2, . . . , wk). These MBs
constitute the information channel S ⊂ X .

Wet Paper Coding: First, the sender calculates the column vector
v = {P(mv i)}n

i=1 = {vi}n
i=1, where mv i is the MV of Xi. Secondly, a new

q × k matrix M ′ is formed using the {wth
i }k

i=1 columns of M , and the sender
solves a system of linear equations to get a k-bit binary column vector u1 which
satisfies

M ′u1 = m ⊕Mv . (6)

Finally, a k-bit column vector u2 = {vwi}k
i=1 is formed, and u = {ui}k

i=1 is
obtained as

u = u1 ⊕ u2. (7)

Perturbation: For Xi(i = 1, 2, . . . , n), if i = wj and P(mv i) �= uj, m̂v i is
taken as its MV. Otherwise, mv i is used as usual.

After PME, further encoding processes will continue to generate the com-
pressed frame Y.

3.2 Extraction

Compared to the embedding process, the message extraction is much simpler
since most of the job has been done by the sender. When decoding the received
frame Y, the recipient first calculates the column vector v ′ = {P(mv ′

i)}n
i=1,

where mv ′
i is the MV of the ith inter-MB of Y. Then the agreed key K is used

to generate the q × n matrix M and message m is extracted as

m = Mv ′. (8)
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3.3 Embedding Distortion

As described in Fig. 2, after motion compensation, the differences signal D =
C − R will be subject to DCT coding, and the coefficients in T = DCT(D)
will be quantized and entropy coded before transmission. The main distortion
is introduced by the quantization step where a uniform quantizer is commonly
considered. The quantizer simply divides the sample ti,j by integer Q and rounds
to the nearest integer. Bellifemine et al’s research [3] looked into the distributions
of T ’s coefficients, and pointed out that if the motion compensation technique is
used, the 2D-DCT coefficients of the differential signal tend to be less correlated.
Thus the distribution of a sample t ∈ T can be well modeled with the Laplacian
probability density function given by

ft(t, σ) =
1√
2σ

e−
√

2
σ |t|, (9)

where σ2 is the variance of D [9]. The coefficients in D are usually modeled as
signals with zero mean, and we can take d2 = MSE(C,R) as an approximation
of σ2, i.e.,

ft(t, d) =
1√
2d

e−
√

2
d |t|. (10)

The probability that a sample will be quantized to Qi is simply the probability
that the sample is between Q(i − 1/2) and Q(i + 1/2) which is

pi =
∫ Q(i+1/2)

Q(i−1/2)

ft(t, d)dt. (11)

It is possible to compute the expected distortion as a function of Q and d:

D(Q, d) =
∑+∞

i=−∞
∫ Q(i+1/2)

Q(i−1/2)
(t − Qi)2ft(t, d)dt

= d2 + dQ√
2
e

Q√
2d −

√
2dQcosh(Q/

√
2d)

1−e−(
√

2Q/d) .
(12)

A commonly used quantization matrix sets Q = 16, and the values of D(16, d)
are plotted in Fig. 4(a) with d increased from 1 to 10. Practically for a given Q,
D(Q, d) is an increasing function with respect to common values of d. During
PME, if C happens to be an applicable MB and m̂v is used for substitution,
the differential signal will be calculated based on R̂, i.e., D̂ = C− R̂. Similarly
we use d̂2 = MSE(C, R̂) to estimate D̂’s variance σ̂2. A ratio defined as

γ =
D(Q, d̂) − D(Q, d)

D(Q, d)
× 100% (13)

is leveraged to measure the degree of embedding distortion introduced to C.
Since

d̂2 = MSE(C, R̂)
≤ (1 + α)MSE(C,R)
= (1 + α)d2,

(14)

we have
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Fig. 4. Expected distortions and upper bounds of distortion ratios in typical settings

γ ≤ D(Q,
√

1+αd)−D(Q,d)
D(Q,d) × 100%

= 	γ
, (15)

and the values of 	γ
 with some different values of α are plotted in Fig. 4(b).
With typical settings, if perturbation is applied to one MB, little distortion would
be introduced. Furthermore, as to the entire inter-frame, since only a subset of
its inter-MBs is likely to be affected, the overall impact is limited.

3.4 Practical Implementation for Video Applications

One dominant advantage of video data as the cover object is its huge capacity.
Although each single inter-frame offers a capacity far less than a comparative
still image since it is highly compressed, the payload can be shared, and the em-
bedding impact on the individual frame can be limited to a low level. Practically
the message to be sent is divided into small pieces, and the embedding can be
performed as follows.

We use a fixed l-bit binary vector q i to denote the binary-stored capacity
of the ith frame. At the beginning, q2 is estimated and embedded into the first
frame without any message bits using PME. Then every time before the ith frame
is used for embedding, q i+1 is acquired and embedded with q i − l message bits.
This continues until all message bits have been embedded, and in the last frame,
an agreed l-bit binary vector qe is embedded with the last message bits.

As for the recipient, first, q2 is extracted since the recipient knows that the
first frame always carries l bits. Then every time before extracting from the ith

frame, the size information q i is used to determine the dimension of the matrix.
This continues until q i = qe which indicates that there will be no more message
bits in the coming frames.

4 Performance Experiments

In this paper, the proposed steganography is implemented using a well-known
MPEG-4 video codec Xvid [1]. Besides, Fang and Chang’s [7], Xu et al’s [15] and
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Fig. 5. Sequences used in experiments

Aly’s [2] methods are also implemented for comparison, and are referred to as
ALG1, ALG2 and ALG3 respectively. As the message bits are embedded using
MVs, the embedding strength is measured by the average embedded bits per
inter-frame (bpf). As shown in Fig. 5, 22 standard test sequences in the 4:2:0
YUV format are used in our experiments, and they each have a frame size of
352 × 288 which corresponds to 396 MBs per frame.

4.1 Impacts on Visual Quality and Computational Efficiency

The visual quality is measured by the PSNR (peak signal-to-noise rate) and the
SSIM (structural similarity) [14] values with respect to the human visual system.
First, we repeat embedding processes over one 300-frame sequence “coastguard”
with increasing embedding strengths. For PME, the scaling factor α is increased
from 0 to 0.25 with the average payload increases from 0 to 57.9 bpf. For ALG1,
ALG2 and ALG3 different values of thresholds associated with MV magnitude
or prediction error are assigned to achieve comparative embedding strengths. As
illustrated in Fig. 6(a) and (b), the average values of PSNR and SSIS decrease
with embedding strength increases. Meanwhile, there are increases in the average
encoding time (ms per frame) as shown in Fig. 6(c).

For a more thorough investigation into how visual quality is affected, the
dynamic changes of PSNR and SSIM values along adjacent frames are calculated
and plotted in Fig. 7(a) and (b) respectively. The embedding strengths of the
four methods are set at a similar level, i.e., PME at 34.19 bpf, ALG1 at 32.99
bpf, ALG2 at 33.98 bpf and ALG3 at 33.95 bpf. In addition, the standard Xvid
MPEG-4 encoder is also employed as a reference and is referred to as STD. It
is observed that the values of PME decrease in a slighter and steadier manner
along frames compared to its competitors.

Tests on some different sequences are also conducted. For each sequence, with
comparative embedding strengths, the performances of the four methods are
evaluated. Compared to the standard Xvid MPEG-4 encoder, the computational
overheads, the decreases in PSNR and SSIM values are calculated and recorded
in Table 1.

4.2 Impacts on MV Statistical Characteristics

A natural approach to steganalysis is to model a non-stego object as a realiza-
tion of a random process and leverage detection theory to determine optimal
solutions and estimate performance. Since MV-based steganographic methods
are discussed here, we are interested in their ability to preserve MV statistical
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Fig. 6. Tests on “coastguard”
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Fig. 7. Impact on visual quality along frames

characteristics. The K-L divergence is a measure of “closeness” of histograms
in a way that is compatible with optimal hypothesis testing. Because of this
property, Cachin [5] suggested using the K-L divergence as a benchmark of the
inherent detectability of a steganographic system. In this paper, K-L divergence
is utilized as a basic means of gauging how easy it is to discriminate between
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Table 1. Test results of some different sequences. ES (Embedding Strength (bpf)), CO
(Computational Overhead (%)), DP (Decrease in PSNR(dB)), DS (Decrease in SSIS
(10−3)), K-L (K-L Divergence (10−3)).

Sequence Method ES CO DP DS K-L
PME 32.54 5.3 1.56 1.23 3.4

bus ALG1 31.81 6.1 2.75 2.11 6.1
ALG2 32.03 0.9 2.63 2.24 4.5
ALG3 29.05 1.1 3.67 3.50 5.0
PME 39.38 7.8 1.48 1.51 0.7

coastguard ALG1 32.99 7.6 3.45 3.59 3.7
ALG2 37.35 0.9 2.67 2.47 12.7
ALG3 34.39 1.2 4.19 3.81 3.9
PME 33.20 5.9 0.49 0.25 8.3

foreman ALG1 30.51 5.2 2.29 1.23 13.3
ALG2 32.38 0.9 0.84 0.45 13.1
ALG3 31.15 1.2 5.48 5.69 11.3
PME 24.01 4.6 1.56 1.23 1.6

stefan ALG1 22.08 4.5 1.84 1.62 5.6
ALG2 23.57 0.9 1.55 1.29 3.3
ALG3 21.08 1.1 2.72 2.45 3.1
PME 15.43 2.5 0.95 0.41 3.1

tempete ALG1 15.70 2.8 4.3 3.5 8.2
ALG2 16.27 1.1 0.64 0.26 10.3
ALG3 15.26 1.3 2.28 1.1 10.3
PME 51.52 8.6 0.63 0.35 9.4

walk ALG1 46.94 8.2 4.15 5.7 16.3
ALG2 51.38 1.1 1.56 0.89 17.1
ALG3 47.42 1.3 2.60 1.86 14.2

Table 2. Performance comparison among different steganalytic features (in the unit
of %)

Xuan’s Pevny’s Zhang’s
TN TP AR TN TP AR TN TP AR

PME 59.7 39.2 49.5 48.3 53.5 50.9 50.5 51.8 51.2
ALG1 46.8 53.3 50.1 51.3 52.9 52.1 57.0 47.8 52.4
ALG2 48.6 50.3 49.5 48.9 56.4 52.6 56.5 53.1 54.8
ALG3 45.5 54.4 50.0 49.1 53.3 51.2 60.3 56.1 58.2

non-stego and stego compressed videos. Let PX and PY be the MV probability
distributions of non-stego and stego videos, the K-L divergence between the two
is calculated as

DK−L(PX ||PY ) =
∑

PX(e)log
PX(e)
PY (e)

. (16)

Using the same settings as in 4.1, tests on “coastguard” with increasing embed-
ding strengths are performed and the results of the four methods are plotted in
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Fig. 8. ROC curves of the steganalyzers using Xuan’s and Pevny’s features

Fig. 6(d). K-L values of some different sequences are also calculated and recorded
in the last column of Table 1.

4.3 Steganalysis

In our steganalytic work, 20 CIF video sequences are trimmed to equal length
of 240 frames (“bus” and “stefan” are excluded due to their small sizes). The
considered embedding strength for each steganography is 50 bpf. For a given
steganography, each 240-frame sequence is compressed with random message
embedded to represent the class of stego videos. The other class comprises of
the compressed videos of the same sequences with no embedding involved.

In literature, most existing steganalyzers (e.g., [4,10,12,17]) model the videos
as successive still images and the embedding procedure as adding independent
mean zero Gaussian noises. However, if only a small portion of MVs are slightly
altered, the spatial/frequent coefficients will not be directly affected, thus the
accuracy of the model will be compromised. To support this conclusion, we have
subjected ALG1, ALG2, ALG3 and PME to steganalyzers utilizing Xuan et al’s
[16] 2 and Pevny et al’s [13] 3 features to test their spacial domain detectabilities.
In each attack, 16 non-stego and stego compressed video pairs are randomly
selected and decompressed to still images to train the classifier and the remaining
4 pairs to test the trained classifier. The classifier is implemented using Chang’s
support vector machine (SVM) [6] with the polynomial kernel.

To the best of our knowledge, the only specific steganalysis against MV-based
steganography was proposed by Zhang et al [18] using features derived from the
2 A 39-d feature vector formed by statistical moments of wavelet characteristic func-

tions [16].
3 A 686-d feature vector derived from the second-order subtractive pixel adjacency

matrix (SPAM) [13].
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Fig. 9. ROC curves of the steganalyzer using Zhang’s features

changes in MV statistical characteristics. With the same SVM classifier men-
tioned above, in each attack, 16 non-stego and stego compressed video pairs are
randomly selected and divided into none-overlapping 6-frame units as described
in [18] for training purposes and the rest 4 pairs for testing.

The true negative (TN) rates, true positive (TP) rates and their average
accuracy rates (AR) are computed by counting the number of detections in the
test sets. The results shown in Table 2 are the arithmetic averages of 20 random
attacks. Fig. 8 and Fig. 9 show ROC curves after testing on different data sets.
It can be seen that with the considered embedding strength, the steganalyzers
with Xuan et al’s and Pevny et al’s features can not reliably detect MV-based
steganography, and PME outperforms its competitors when attacked by the
specific steganalyzer.

5 Conclusion and Future Work

In this paper, a novel adaptive video steganography combined with MPEG-
4 video compression is proposed. Optimized perturbations are introduced to
motion estimation for data hiding. Since our approach targets the internal dy-
namics of video compression, it is immune to most existing blind steganalyzers.
In addition, the PME method shows a good ability in preserving MV statis-
tical characteristics which makes it less detectable to the specific steganalyzer
against MV-based steganography. Experimental results show that, satisfactory
levels of visual quality and security are achieved with adequate payloads. With
PME, steady covert communication can be carried out without incurring much
suspicion.

In our future work, the PME would be further optimized by testing on dif-
ferent parity functions and selection rule designing criteria. Besides, methods to
improve the computational efficiency and simplify the implementation are also
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to be explored. Meanwhile, attempts of further steganalysis are to be carried out
using a larger and more diversified database to ensure steganalytic security.

Acknowledgment. This work is supported by the Beijing Natural Science
Foundation under the Grant No. 4112063.
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Abstract. In this paper we propose an extension of the Scalar-Costa-
Scheme (SCS), called Soft-SCS, which offers better or equal achievable
rates than SCS for the AWGN channel. After recalling the principle of
SCS we highlight its secure implementations regarding the Watermarked
contents Only Attack, and we also describe the relations between the al-
phabet size and the secure embedding parameters. Since the gap between
the achievable rates of secure-SCS and SCS is important for low Water-
mark to Noise Ratios (WNR) regimes, we introduce Soft-SCS, a scheme
which enables to achieve security by matching a given distribution of
watermarked content while minimizing the embedding distortion. The
embedding is given by the optimal transport and the distortion is com-
puted using the transportation theory. Contrary to SCS, the distribution
of watermarked contents is not piecewise uniform of width (1-α)Δ, but
contains affine portions parametrized by a new embedding parameter
β used to maximize the robusness of Soft-SCS. As a consequence, the
achievable rates of Soft-SCS for low WNR regimes for both its secure
and robust implementations are higher than for SCS. Our conclusions are
that (1) the loss of performance between the secure and robust imple-
mentations of Soft-SCS for WNR regimes smaller than 0 dB is negligible
and (2) the robust implementation of Soft-SCS is equal to SCS for WNR
regimes over 0 dB.

1 Introduction

Watermarking can be used to convey sensitive information in a secure and robust
way. The security of symmetric watermarking techniques relies on the usage of
a secret key by both the embedding and decoding schemes. One way to increase
the security of the system is to use a different watermarking key for each content
to be watermarked, however this solution is practically difficult to implement.
For example, if one wants to watermark a database of images, he cannot use
different keys for each images because the watermark decoder would have to
know the mapping between the images and the keys. Another example is given
by the watermarking of digital sequences where the watermark is embedded
periodically and has to be decoded all along the sequence. In this practical

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 208–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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scenario, the key has to be repeated from time to time in order to enable fast
synchronization.

The assumption that a watermarking scheme uses the same key to watermark
a set of No contents has given birth to a set of security attacks and counter-
attacks. The goal of these security attacks is to try to estimate the secret key
used to generate the watermark signal, they use Blind Source Separation tech-
niques such as ICA [5,2] and PCA [7,3] or clustering techniques such as K-
means [1] and feasible sets [14]. Counter-attacks are however possible through
the development of secure watermarking schemes such as Natural Watermark-
ing or its adaptations for Gaussian host [4], or the Scalar-Costa-Scheme (SCS)
using specific parameters for uniform hosts. Those different schemes have been
proved to be secure under the Watermarked contents Only Attack (WOA) as-
sumption (e.g. the adversary only owns watermarked contents) and for i.i.d.
embedded message. In this context the watermarking system can achieve perfect
secrecy [14] aka stego-security [4] which means that the distributions of originals
and watermarked contents are identical and that there is no information leakage
about the secret key.

The goal of this paper is design a new robust watermarking scheme for uniform
host which can be secure under the WOA setup. Section 2 presents SCS, its
robust implementations (e.g. enabling to maximize the transmission rate) and its
secure implementations (guarantying perfect secrecy). The maximum achievable
rate for secure implementations is also analyzed for different Watermark to Noise
Ratios (WNRs).

Section 3 proposes and extension of SCS called the Soft-Scalar-Costa-Scheme
(Soft-SCS) and the embedding and computation of the distortion are detailed.
Finally section 4 compares the achievable rates of SCS and Soft-SCS for both
their secure and robust versions.

2 Scalar Costa Scheme

2.1 Notations

WCR and WNR denote respectively the Watermark to Content Ratio and the
Watermark to Noise Ratio and are expressed in dB. y represents a sample of the
watermarked signal, x of the host sample and w of the watermark sample with
y = x + w. d is the symbol to embed over an alphabet D and D = |D|. Sample
y suffers a AWGN n to produce to attacked sample z = y + n.

The subscript .r denotes a robust implementation or parameter, e.g. the one
maximizing the achievable rates and the subscript .s denotes the secure imple-
mentation or parameter, e.g. satisfying the constraint of perfect secrecy. Hence
SCSr and SCSs denote respectively robust and secure implementations of SCS
which use respectively parameters αr and αs.

2.2 SCS Embedding and Decoding

SCS [9] is built under the hypothesis called the flat host assumption. In this
setting the distribution of the host signal x is considered as piecewise uniform,
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additionally the embedding distortion is very small regarding the host signal, e.g.
σ2

w � σ2
x. The method uses uniform quantizers of step Δ during the embedding,

this means that the distribution of the watermarked contents can be considered
as periodical. As in the seminal paper, we will restrict our analysis on one period,
e.g for x ∈ (−Δ/2; Δ/2] . We denote by px(x), py(y) and pz(z) the PDFs of
respectively x, y and z, ⊗ represents the circular convolution.

To embed a symbol d ∈ D, SCS extracts the quantization noise q obtained by
applying one scalar uniform quantizer QΔ of width Δ translated according to d:

q(d) = QΔ

(
x − Δ

(
d

D
+ k

))
−
(

x − Δ

(
d

D
+ k

))
, (1)

where k denotes the secret key. The watermark signal is given by:

w = αq(d), (2)

where α is a parameter that is used to maximize the achievable rate. In the
sequel, we will assume that we are in the WOA setup and consequently that the
secret key is constant. Without loss of generality, we set k = 0 . The distortion
of the embedding is given by

σ2
w =

α2Δ2

12
, (3)

and the authors have derived an approximation of the embedding parameter
maximizing the achievable rate R for a given WNR. The approximation is given
by:

αr =

√
1

1 + 2.71.10−WNR/10
. (4)

Using the flat host assumption, the rate R is given by the mutual information
between the attacked signal and the embedded symbol:

R = I(z, d) = −
ˆ

Δ

pz(z) log2 pz(z)dz +
1
D

∑
d∈D

ˆ
Δ

pz(z|d) log2 pz(z|d)dz. (5)

Since the expressions of pz(z) = py(y)⊗pn(n) and pz(z|d) = py(y|d)⊗pn(n) have
no closed-form solutions due to the periodicity of the PDF, they are computed
as in [8] by working in Fourier domain using the convolution theorem1. The
integral term are also thereafter numerically computed.

The decoding is performed by computing the distance |z − c(d)| where c(d) is
the closest quantization cell for each of the D quantizers:

d̂ = arg min
d

|z − c(d)|. (6)

This tantamount to performing a maximum likelihood decoding:

d̂ = arg max
d

p(z|d). (7)

1 In [13] authors have considered a similar approach in order to compute the achievable
rate for Gaussian hosts.
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2.3 SCS Secure Modes

As it is mentioned in [14,10], SCS achieves perfect secrecy under the WOA setup
for an embedding parameter

αs =
D − 1

D
. (8)

Indeed in this case we have py(y) = px(x) and there is no information leakage
about the location of the quantization cells. Additionally, the adversary is unable
to distinguish watermarked samples from original ones. Two examples for D = 2
and D = 3 are illustrated on Fig. 1.

−Δ/2 0 Δ/2

2/Δ

y

p
(y
|d)

d = 0

d = 1

(a) D = 2, α = 1
2

−Δ/2 0 Δ/2

3/Δ

y

p
(y
|d)

d = 0

d = 1

d = 2

(b) D = 3, α = 2
3

Fig. 1. Distributions of the watermarked contents for the two first secure modes of
SCS

Eq. (8) and (4) imply that one can maximize robustness while assuring perfect
secrecy only if αs = αr, e.g. for a set of “secure” WNRs equal to

WNRs = −10 log10

[
1

2.71

((
D

D − 1

)2

− 1

)]
. (9)

The range of WNRs starts at −0.44dB for D = 2 and αs = 1/2, consequently
one way to perform both secure and robust watermarking is to select the alphabet
size D which gives a WNRs which is the closest to the targeted WNR. However
SCS doesn’t offer efficient solutions for low WNR (e.g. < −1dB).

In order to compare the performance of SCSs and SCSr we have computed
the achievable rates using respectively αr and αs for a wide range of WNR
and different alphabet size. The comparison is depicted on Fig. 2. All the rates
are upper bounded by the Capacity of the Ideal Costa Scheme (ICS) CICS =
0.5 log2(1+10WNR/10) [6,9]. We can notice (Fig. 2(a)) that the performance gap
between SCSr and SCSs is important for low WNR and it becomes negligible for
high WNR (Fig. 2(b)), provided that the adequate alphabet size is selected. Note
also that for a given D the gap between the secure and robust implementations
grows with respect with the distance between the used WNR and WNRs.

The inability of SCSs to achieve efficient embedding for low WNR is due to
the fact that SCSr select a small embedding parameter αr whereas SCSs is lower
bounded by α = 0.5. The goal of the scheme presented in the next section is to
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Fig. 2. Achievable rates for secure and robust SCS. The capacity of the Ideal Costa
Scheme is also represented.

modify SCS in such a way that the secure embedding provide better rates for
low WNR.

3 Soft Scalar-Costa-Scheme

Contrary to classical watermarking embedding schemes, Soft-SCS is based on
the principle of optimal distribution matching. In this context, the computation
of the embedding can be seen as a two stages process. Firstly we set-up the
distribution pY (y|d) of the watermarked contents, this first step is mandatory
if one wants to create an embedding that achieves perfect secrecy. Secondly we
compute the embedding that enables to match pY (y|d) from the host signal of
distribution pX(x) while minimizing the average distortion. This second step is
performed using optimal transport theory (see 3.2).
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Because the performances of SCSs for low WNR are maximized for D = 2,
the proposed scheme will be studied for binary embedding but could without
loss of generality be extended rato D-ary versions.

3.1 Shaping the Distributions of the Watermarked Contents

The rationale of Soft SCS is to mimic the behavior of SCS for α < 0.5 while
still granting the possibility to have perfect secrecy. This is done by keeping the
α parameter (we call it α̃ in order to avoid confusion with the parameter used
in SCS) and by adding a second parameter, called β, that will enable to have
linear portions in the PDF of watermarked contents. β (respectively −β) are
defined as the slope of the first (respectively the second) linear portions. The
cases β = +∞ is equivalent to SCS embedding. The differences between the
distributions of watermarked contents for SCS and Soft-SCS are depicted on
Fig. 3.

Δ

p(y|d)

(1 − α)Δ

1
(1−α)Δ

1
2(1−α)Δ

(a) SCS
Δ

(1 − α̃)Δ

1
(1−α̃)Δ

p(y|d)

1
2(1−α̃)Δ

p = βx + cst

(b) Soft-SCS

Fig. 3. Comparison between the distributions of SCS and Soft-SCS

In order to fulfill the constraint that
´

Δ pY (y|d, y ∈ [0; Δ])dy = 1, the equation
of the first affine portion on [0; Δ] is given by:

pY (y|d = 1, y ∈ [0; Δ]) = βy +
1 − α̃(1 − α̃)βΔ2

2(1 − α̃)Δ
= βy + A, (10)

with A = (1 − α̃(1 − α̃)βΔ2)/(2(1 − α̃)Δ) and by symmetry the second affine
portion is gives pY (y|d) = β(Δ − y) + A.

Depending of the values of α̃ and β the distributions of pY (y|d = 1, y ∈ [0; Δ])
for Soft-SCS can have three different shapes and the distributions will either look
like a big-top, a canyon or a plateau. For illustration purpose, the 3 configurations
are depicted on Fig. 4.

The intervals of the first linear portion (the second being computed by sym-
metry) and the type of shape are summarized on Table 1, they depend on a limit
value of β called βl which is different for α̃ < 1/2 or for α̃ ≥ 1/2. For canyon
and plateau shapes, the uniform portion of the PDF is equal to the one of SCS:

pY (y|d, y ∈ [0; Δ]) = 1/((1 − α̃)Δ). (11)
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Table 1. The different shapes of the distributions according to α̃ and β

α̃ < 1/2, βl = 1
α̃(1−α̃)Δ2 α̃ ≥ 1/2, βl = 1

(1−α̃2)Δ2

β ≤ βl Canyon shape Big Top shape
Domain of the affine portion [0; α̃Δ] [(2α̃ − 1)Δ/2; Δ/2]

β > βl Plateau shape
Domain of the affine portion

[
α̃Δ
2

− 1
2(1−α̃)βΔ

; α̃Δ
2

+ 1
2(1−α̃)βΔ

]

−Δ/2 0 Δ/2

2/Δ

y

p(
y
|d)

d = 0
d = 1

(a) Big Top, α̃ = 1
2
, β

′
= 0.4

−Δ/2 0 Δ/2

2/Δ

y

p(
y
|d)

d = 0
d = 1

(b) Plateau, α̃ = 1
2
, β

′
= 0.6

−Δ/2 0 Δ/2

5/3Δ

y

p(
y
|d)

d = 0
d = 1

(c) Canyon, α̃ = 2
5
, β

′
= 0.1

Fig. 4. Distributions of the watermarked contents for the 3 different configurations of
Soft-SCS

3.2 Embedding Computation and Decoding

The optimal way for computing the embedding that match the distribution of
watermarked contents while minimizing the average distortion is to use the trans-
portation theory [15,11]. Given FY (y|d) the CDF associated with pY (y|d) and
FX(x) the CDF associated with pX(x), the optimal transport minimizing the
average L2 distance is given by:

T (x) = F−1
Y ◦ FX(x), (12)

and the distortion by:

σ2
w =
ˆ 1

0

(F−1
Y (x|d) − F−1

X (x))2dx. (13)

The embedding function T (.) for the different configurations and d = 1 are given
in Appendix A. Depending of the value of x, the transport is either non-linear
affine:

T (x) =
ν1 +

√
ν2 + 2β(x − ν3)

β
, (14)

or affine:

T (x) = (1 − α)x +
αΔ

2
, (15)

where ν1, ν2 and ν3 are constants formulated in Table 2 of appendix A.
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Fig. 5. Optimal transport for different configurations of Soft-SCS (d = 0)
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Fig. 6. Empirical distortions (σ̂2
w) computed by Monte-Carlo simulations with 106

trials, and closed-form distortions (σ2
w) for Δ = 1024, and 1024 bins used to compute

the distributions

For visualization and parametrization purposes, since β ranges on R
+and

depends on Δ, we prefer to use β
′
such that:

β = 4 tan
(
πβ

′
/2
)

/Δ2, (16)

where β
′ ∈ [0, 1(. The shape of the distribution becomes independent of Δ and

the couple β
′
= 0.5 and α̃ = 0.5 corresponds to the case where the distribution

pY (y|d) is at the junction between the big-top and the plateau. The cases β
′
= 0

and β
′ → 1 correspond respectively to β = 0 and β → +∞.

Figure 5 illustrates different embeddings for d = 0 and different configura-
tions of (α̃, β

′
). Note that the embedding for d �= 0 can be easily computed by

translating both the host signal and the watermarked one by Δ/2.
The embedding distortion is computed using eq. (13) and contains 2 terms

related respectively to the affine and non-linear portions of the embedding. Its
close-form is detailed in appendix B. Fig. 6 illustrates the fit between the closed-
form formulae and Monte-Carlo simulations.

As for SCS, the decoding is performed using maximum likelihood decoding
(7).

4 Performance Analysis

4.1 Secure Embedding

It is easy to show that for α̃ = α̃s = 0.5 and D = 2, Soft-SCS achieves perfect
secrecy, the distributions can only have two shapes in this case which are the
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big-top and the plateau illustrated on Fig. 4(a) and Fig. 4(b) respectively. Using
numerical optimization, we compute for a given WNR the value of β

′
which

enables to maximize the achievable rate (5) and obtain β
′
s. The result of this

optimization, and its approximation using least square regression is given on
Fig. 7. The approximation gives
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Fig. 10. Achievable rates for Soft-SCSr

{
(β

′
s) = 0.9 × 1.1WNR , WNR < 0 dB

(β
′
s) = 1 , WNR ≥ 0 dB.

(17)

which means that Soft-SCSs and SCSs differ only for WNR < 0 dB.
The achievable rates of Soft-SCSs are depicted on Fig. 8and are compared

with SCSr and SCSs. We notice that Soft-SCSs not only outperforms the secure
version of SCS but also the robust one. The gap between Soft-SCSs and SCS
increases with respect to the noise power and is null for WNR = −0.44 dB. The
figure shows also that the gap between the implementation for the optimal value
of β

′
s and the approximation given in (17) is negligible.
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4.2 Robust Embedding

The same methodology is applied without the security constraint in order to
obtain the robust configuration of Soft-SCS. This time the rate has to be max-
imized according to α̃ and β

′
and their values after the numerical optimization

are depicted on Fig. 9. For WNR > −0 dB, the values of β
′
r oscillate between

β
′
= 0 and β

′
= 1 which are two variations of SCS (the slope being null with a

big top configuration or the slope being infinite plateau configuration.
Surprisingly we notice that there is no difference between Soft-SCSr and Soft-

SCSs for WNR < −9 dB, the common optimal value being α̃ = 0.5 and the
difference between the two schemes is negligible for WNR < −0 dB. For high
WNR however, the approximation is identical to SCSr with (α̃r) = αr (eq . 4)
and (β

′
r) = 1. We can conclude that the implementation Soft-SCSr behaves as

Soft-SCSw for low WNR and as SCSr for high WNR.

5 Conclusion and Perspectives

We have proposed in this paper an adaptation of the Scalar Costa Scheme based
on the principle of optimal distribution matching. The computation of the em-
bedding needs (1) to choose the distribution of the watermarked contents and
(2) to compute the optimal mapping from the host to the watermarked con-
tents. This method enables to outperform SCS both for its secure and robust
implementations for WNR ≤ 0 dB.

Contrary to a spread idea that robustness and security are antagonist con-
straints in watermarking, we have shown in this study that there exists wa-
termarking schemes that can guaranty perfect secrecy while maximizing the
achievable rate. SCSs can be used for high WNR with appropriate dictionary
size, αs = (D− 1)/D; and Soft-SCSs can be used for low WNR , α̃s and βs and
provide negligible loss of rate.

However, one can argue that for low WNR regimes the rates is rather small
and that one system involving redundancy or error correction should be used in
order to increase the reliability of the decoded symbols. This solution has to be
employed in a very cautious way since the redundancy might compromise the
security of the whole system [12]. Future works will investigate this direction if
there is a way to perform secure coding.

A Embedding Formulas for Soft-SCS

Here, for the shake of simplicity the α̃ parameter of Soft-SCS is written α.

A.1 Plateau Shape (β ≥ βl),

The CDF is given by, for
[

αΔ
2 − 1

2(1−α)βΔ ; αΔ
2 + 1

2(1−α)βΔ

]
by:

FY (x) =
β

2

(
x +

A

β

)2

,
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and the inverse function on [0; y1] is given by:

F−1
Y (x) =

−A +
√

2βx

β
.

with
FY

(
αΔ

2
+

1
2(1 − α)βΔ

)
=

1
2(1 − α)2βΔ2

= y1.

- The optimal transport on [0; y1Δ] is given by (y1Δ corresponds to the point
were FX(x) = y1):

T (x) = F−1
Y ◦ FX(x) =

−A +
√

2βx/Δ

β
.

On x ∈
[

αΔ
2 + 1

2(1−α)βΔ , Δ
2

]
, we now have:

FY (x) =
1

(1 − α)Δ
x − α

2(1 − α)
,

The optimal transport on [y1Δ, Δ
2 ] is given by:

T (x) = F−1
Y ◦ FX(x) = (1 − α)x +

αΔ

2
.

A.2 Canyon Shape (α < 1/2, β < βl)

for x ∈ [0; αΔ] and α < 0.5, the CDF is given by:

FY (x) =
β

2
x2 + Ax

The inverse function is given by for x ∈ [0; y2], with y2 = FY (αΔ) = βα2Δ2/2+
αΔA:

F−1
Y (x) =

−A +
√

A2 + 2βx

β
.

- The optimal transport is given on [0; y2Δ] by (y2Δ corresponds to the point
were FX(x) = y2):

T (x) = F−1
Y ◦ FX(x) =

−A +
√

A2 + 2βx/Δ

β
.

On [αΔ; Δ/2] , we now have:

FY (x) =
1

(1 − α)Δ
x − α

2(1 − α)
,

The optimal transport on [y2Δ, Δ
2 ] is given by:

T (x) = F−1
Y ◦ FX(x) = (1 − α)x +

αΔ

2
.
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A.3 Big Top Shape (α > 1/2, β < βl)

for x ∈ [(2α − 1)Δ/2; Δ/2] and α > 0.5, the CDF is given by:

FY (x) =
β

2
x2 + Ax − (2α − 1)2βΔ2/8 − A(2α − 1)Δ/2 =

β

2
x2 + Ax + C,

with C = −(2α − 1)2βΔ2/8 − A(2α − 1)Δ/2. The inverse function is given by
for x ∈ [0; 1/2]:

F−1
Y (x) =

−A +
√

A2 + 2β(x − C)
β

.

The optimal transport is given on [0; Δ/2] by:

T (x) = F−1
Y ◦ FX(x) =

−A +
√

A2 + 2β(x/Δ − C)
β

.

B Distortions Formulas for Soft-SCS

σ2
w = 2

ˆ 1/2

0

(F−1
Y (x) − F−1

X (x))2dx

σ2
w = 2

ˆ x1

x0

(
ν1 +

√
ν2 + 2β(x − ν3)

β
− Δx

)2

dx

+2
ˆ x2

x1

(
(1 − α)Δx +

αΔ

2
− Δx

)2

dx

= I1 + I2.

The values of x1 and x2 depend of the configuration of the PDF and their closed-
form are given in Table 2.

Table 2. The different configurations for the computation of the distortion

α < 1/2 α ≥ 1/2

β < βl Canyon shape Big Top shape
(x0, x1, x2) (0 ; βα2Δ2/2 + αΔA ; 1/2) (0 ; 1/2 ; 1/2)

(ν1, ν2, ν3) (−A, A2, 0) (−A,A2, ν3)

β > βl Plateau shape Plateau shape
(x0, x1, x2) (0 ; 1/

(
2(1 − α)2βΔ2

)
; 1/2) (0 ; 1/

(
2(1 − α)2βΔ2

)
; 1/2)

(ν1, ν2, ν3) (−A, 0, 0) (−A, 0, 0)

βl
1

α(1−α)Δ2
1

(1−α2)Δ2
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I1 and I2 are given by:

I1 = 2(Δ2

[
x3

3

]x1

x0

+
2 − 2Δν1

β

[
x2

2

]x1

x0

+
2ν1

3β3

[
(ν2 − 2βν3 + 2βx)3/2

]x1

x0

+I3 +
ν2
1 + ν2 − 2βν3

β2
(x1 − x0))

with

I3 = − 2Δ

3β2

[
x (ν2 − 2βν3 + 2βx)3/2

]x1

x0

+
2Δ

15β3

[
(ν2 − 2βν3 + 2βx)5/2

]x1

x0

,

and

I2 =
2α2Δ2

3

[(
x2 − 1

2

)3

−
(

x1 − 1
2

)3
]

.
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Abstract. Psychoacoustic models are routinely used in audio watermarking
algorithms to adjust the changes induced by the watermarking process to the
sensitivity of the ear. The performances of such models in audio watermarking
applications are tightly related to the determination of tonal and noise-like com-
ponents. In this paper, we present an improved tonality estimation and its integra-
tion into a psychoacoustic model. Instead of conventional binary classification,
we exploit bi-modal prediction for more precise tonality estimation. Experimen-
tal results show improved robustness of the considered audio watermarking algo-
rithm integrating the new tonality estimation, while preserving the high quality
of the audio track.

1 Introduction

A major requirement in audio watermarking is to guarantee the quality of a water-
marked copy. An audible watermark would essentially make the audio track useless
in most applications. For this reason, exploiting psychoacoustic models is one of the
main cornerstones while designing watermarking system for audio so as to preserve
high quality. Due to the interplay between fidelity and robustness constraints, higher
watermark energy at a fixed quality setting naturally results in increased robustness.

Psychoacoustic models share a number of elementary modules e.g. time�frequency
mapping via the short-time Fourier transform (STFT) [1], power spectrum estimation,
tonal component detector and calculation of individual masking thresholds aka. per-
ceptual slacks. Almost every psychoacoustic model includes a module that classifies
frequency bins as tone- or noise-like, or that scores the tonality of a frequency bin. The
performances of the overarching psychoacoustic model are intimately related to the
reliability of this module. It is therefore important in many applications e.g. audio in-
dexing which attempts at extracting perceptually significant components from the audio
signal, or audio coding which exploits psychoacoustic criteria to discard insignificant
components of the signals.

Existing tonality estimation methods fall into two categories: hard-decision classi-
fiers with binary detection results regarding the tonality vs. soft-decision classifiers
which assign a tonality score in [0� 1] to a frequency bin. A well-known binary classifier
is the tonal component detector used in the psychoacoustic model 1 of ISO-MPEG [2].
It is a so-called intra-frame method, i.e. each audio frame is processed individually,
that operates in the frequency domain and inspects the relative magnitudes of neigh-
bor frequency bins. Another intra-frame tonal detector is the Spectral Flatness Measure
(SFM) introduced by Johnston in his perceptual transform coder [3]. It estimates the

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 223–237, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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flatness of the spectrum (see [4]) by reducing spectrum information contained in a se-
lected critical band to a single continuous tonality score in [0� 1]. In contrast, inter-frame
methods consider the time evolution of the tonality over several audio frames. An ex-
ample is the Unpredictability Measure (UM) defined in the psychoacoustic model 2 of
ISO-MPEG [2] which measures the predictability error of each frequency bin based on
the information of the two previous frames.

Reliable tonality estimation leads to more accurate masking threshold, which can
considerably improve the performances of the psychoacoustic model. Subsequently, the
overall embedded watermark energy may be increased, naturally resulting in improved
robustness. In this paper, we present an improved approach for tonality estimation to-
gether with its integration within a baseline psychoacoustic model, which improves the
robustness of the considered audio watermarking system without sacrificing perceptual
fidelity. Section 2 briefly describes the baseline watermark embedding algorithm used
in this paper. Section 3 then fully details the proposed tonality estimation method as
well as its integration in the psychoacoustic model. The resulting modified psychoa-
coustic model is evaluated thoroughly in Section 4. It includes subjective evaluation of
the audio quality with listening tests and extensive benchmarking of the watermark ro-
bustness. Section 5 summarizes the findings of the paper and provide insight for future
research.

2 Audio Watermarking Embedding

2.1 Analysis-Synthesis Framework for Audio Signals

Audio signals are quasi-stationary within a short time period of e.g. 2-50 ms. Addi-
tionally, the human auditory system somehow performs a time-frequency analysis of
acoustic signals (see [5]). As a result, it is common practice in audio processing to
apply a short-time Fourier transform to obtain a time-frequency representation of the
signal so as to ‘mimic’ the behavior of the ear.

The STFT consists in (i) segmenting the input signal x in B-samples long frames
xn using a sliding window with a hop-size of R samples, and (ii) applying the discrete
Fourier transform (DFT) to each frame after multiplication with an analysis window.
This analysis phase results in a collection of DFT-transformed windowed frames X̃n

which can then be input to the subsequent audio processing primitive, should it be lossy
audio coding or watermarking.

At the other end, the modified DFT-transformed frames Ỹn output by the audio pro-
cessing application are used to reconstruct the audio signal during the so-called synthe-
sis phase. In a nutshell, the frames are inverse transformed, multiplied by a synthesis
window that suppresses audible artifacts by fading out spectral modifications at frame
boundaries, and add the resulting frames together with the appropriate time o�set.

The combination of (i) the segmenting-windowing-DFT in the analysis phase and
(ii) the IDFT-windowing overlap-add in the synthesis phase is the so-called weighted
overlap add (WOLA) technique which is summarized in Figure 1. Note that, in the
remainder of the article, we will refer to embedding the watermark in between the
analysis and synthesis phases as watermarking in the WOLA domain.
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Fig. 1. Analysis-Synthesis processing framework

2.2 Watermarking in the WOLA Domain

Over the last decade, a number of audio watermarking techniques exploiting the
analysis-synthesis framework have been proposed [6,7]. Hereafter, we will focus on
a watermarking system [8] which basically introduces a watermark by quantizing the
phase of WOLA coeÆcients while maintaining psychoacoustic fidelity. A correlation-
based detector in the time domain is then exploited to retrieve the watermark.

Phase Quantization-Based Embedding. The baseline audio watermarking system de-
tailed in [8] quantizes the phase of WOLA coeÆcients. In other words, the embedding
process consists in (i) extracting the phase ϕn of WOLA coeÆcients from incoming
transformed frames X̃n and arranging them sequentially in a 1-D signal ϕ1, (ii) apply-
ing the quantization based embedding algorithm to obtain the watermarked phases ψ,
and (iii) segmenting this signal in B-samples long frames ψn to reconstruct the water-
marked transformed frames Ỹn which can be subsequently inverse transformed back to
the time domain.

Assuming that the system embeds symbols taken from an A-ary alphabet �, the
embedding process can be written:

ψ[i] � θa�K[i]� a � �� i � S �B�� � [0 : S �B[� (1)

where θa�K is a sequence of reference angles in [��� �) associated to the symbol a,
pseudo-randomly generated from a secret key K [9]. The parameter S indicates that
each symbol may be spread across several WOLA frames to guarantee robustness. This
is a pure replacement watermarking strategy: the output angles ψ are independent of
the input angles ϕ derived from the host signal.

Psycho-Acoustic Adaptation. The straightforward strategy given in Equation (1) has
a major shortcoming: it introduces very audible artifacts. It is therefore necessary to
slightly adjust the embedding protocol so as to accommodate for the sensitivity of hu-
man auditory system.

1 Within this paper, all angles or angle di�erences are assumed to lie in the interval [��� �) after
appropriate modulo-2� operations, if not otherwise stated.
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Fig. 2. Geometrical illustration of the embedding process. The phase ϕ[i] is moved towards the
intended target value θa�K [i] while making sure that the embedding distortion δ[i] never exceeds
the threshold υ[i] recommended by the perceptual model. In case (a), the target angle is close
enough to be reached whereas, in case (b), the embedding process is bridled by the perceptual
constraint.

First, it is common practice to exclude samples outside a specified frequency band
from the watermarking process i.e.

ψ[i] � ϕ[i]� i � B�� �
�
[0 : �l[� ]�h : B�2]

�
� (2)

Angles below frequency tap �l are discarded due to their high audibility whereas angles
above frequency tap �h are ignored because of their high variability. For the remaining
angles, the embedding process is modified so that the embedding distortion, as mea-
sured by the angle di�erence δ̊[i] � �ψ[i]�ϕ[i]�, remains below psycho-acoustic slacks
υ[i] � [0� �] obtained after spectra analysis [8]. This can be formally written as:

ψ[i] � ϕ[i] �
δ̊[i]

�δ̊[i]�
min

�
�δ̊[i]��υ[i]

�
� i � B�� � [�l : �h]

with δ̊[i] � θa�K[i] �ϕ[i]� (3)

Controlling distortion this way allows to guarantee that the introduced changes are
strictly inaudible. For clarity, Figure 2 provides a geometrical interpretation of the em-
bedding process. In a nutshell, the embedding algorithm first identifies the shortest path
to reach the target angle θa�K[i] and moves towards it until (i) it reaches the specified tar-
get value, or (ii) it reaches the psycho-acoustic threshold υ[i] specified by the enforced
perceptual model.

Correlation-Based Detection in the Time Domain. At the receiver side, an audio
signal z is presented to the detector that may, or may not contain a watermark. For each
potential symbol a, an array of correlation scores is computed:

ρz�a[l] �
1

S �B

S �B�1�
i�0

z̆[i]r̆a�K[i � l]� l � [�(S �B � 1) : S �B � 1] (4)
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where z̆ its the whitened version of the tested audio signal z, r̆a�K is the whitened version
of a time-domain reference signal ra�K associated to the reference angles θa�K , and l is
the correlation lag. In the absence of watermark, this array of correlation scores should
be normally distributed with zero mean. A statistical watermark detector is therefore set
in place based on assess how much ρz�a deviates from a Gaussian distribution [10].

3 Psychoacoustic Models and Tonality Estimation

3.1 Baseline Psychoacoustic Model

Psychoacoustic models conventionally determine the masking curve of an audio signal
by means of (i) determining the sound pressure levels of maskers, (ii) calculating in-
dividual masking thresholds taking simultaneous and�or temporal masking e�ects into
account, (iii) combining individual thresholds to get the global thresholds. In our base-
line system [8], it is derived from the model 1 of ISO-MPEG [2] with three enhance-
ments: an attack detection module, an altered tonal component detector, and a noise
identification block. The perceptual slacks computation process is fully represented in
Figure 3.

Attack Detection Module. For a time frame with a quiet section followed by an abrupt
increase in audio energy, the calculated masking threshold would lead to smearing of
the watermarking energy over the whole frame, resulting in so-called pre-echoes in the
quiet portion. To circumvent this problem, the increase in average power between two
adjacent frames is compared to a threshold. If the increase is larger than the threshold,
no embedding will be carried out for the current frame [8].

Separation of Tonal, Noise and Non-tonal Components. The separation process is
performed in the WOLA domain. The algorithm first detects local maxima of the mag-
nitude spectrum as potential peaks of tonal components:

� �
�
i � [0 : B]

���An[i � 1] � An[i] � An[i] � An[i � 1]
�
� (5)

where An[i] � �X̃n[i]� is the amplitude of the spectrum X̃n with ��� denoting the magni-
tude of a complex number. When using the logarithmic scale to express a quantity in
decibels (dB), the subscript notation dB will be used.

In order to eliminate the influence from noise-like variations, local maxima are com-
pared to the magnitudes of surrounding spectral lines. A local maximum i� � � is
considered as tonal if

An[i�]dB � An[i� � k]dB � 1� 	 k � 
�1 � � � � 4�

� An[i�]dB � An[i� � k]dB � 7�  k � 
�1 � � � � 4�� (6)

In comparison to the MPEG psychoacoustic model 1 this is a less stringent condition
resulting in more peaks detected. Due to the asymmetry of the masking behavior, i.e.
noise masks better than tonal components [11], the selection of additional tonal compo-
nents is a more conservative approach leading to lower individual masking thresholds.
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Fig. 3. Masking threshold computation with integrated noise detection

A tonal component is then identified as the group consisting of the peak i� and its
neighboring frequency bins to the next minima. It is characterized by the sound pres-
sure level Ptm

X̃n
(i�) of the tonal masker obtained by summarizing the energy of the bins

belonging to the tonal component:

Ptm
X̃n

(i�) �
i�
��

k�i�
�

An[k]2� (7)

where (i��� i�
�
) denotes the bin indices of the next minima.

In a second step, the noise-like nature of the spectral bins not considered as tonal
is further evaluated by investigating their evolution over time. If the relative magnitude
slope variation for a frequency bin over successive frames is high compared to the mean
value, the frequency bin is assumed to be noisy [8].

The last step operates by critical band2. Remaining spectral lines within each criti-
cal band compose a single non-tonal component. Its sound pressure level, denoted as
Pnm

X̃n
(i�) , equals to the sum of the energy of left spectral lines within the critical band.

The non-tonal component is attached to the center of its associated critical band.

Individual Masking Threshold Computation. The masking threshold at frequency
bin index i due to a masker at the frequency bin index i� is evaluated as

�
tm�nm
X̃n

(i� i�)dB � Ptm�nm
X̃n

(i�)dB � ftm�nm�z(i�)
�
� g

�
z(i)� z(i�)

�
� (8)

2 Bark defined 24 critical bands of hearing. Within each band, Bark’s index z(�) operates a non-
linear mapping between the Bark scale and the conventional frequency scale.
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where z(i) denotes the Bark value for the i-th frequency bin. The functions ftm�nm(�) and
g(�� �) denote respectively the masking index and masking spread, defined in [2,12].

Global Masking Threshold Computation. The global masking threshold TX̃n
(i) for

the i-th frequency bin is obtained by adding the individual masking thresholds due to
tonal and non-tonal maskers

TX̃n
[i] �

Nt�
k�1

�tm
X̃n

(i� i�k) �
Nc�

k�1

�nm
X̃n

(i� i�k)� (9)

where Nt denotes the number of tonal components and Nc the number of critical bands.
The global masking threshold indicates how large the watermark energy is allowed for
a specific frequency bin without introducing audible artifacts. The threshold in quiet
segments is not taken into account in contrast to model 1 of ISO-MPEG, which pre-
vents uncovering the structure of the watermark in silent segments of the audio stream.
Finally, for all spectral bins identified as noisy the global threshold simply is set to the
signal level TX̃n

[i] � An[i]. In other words, for noisy frequency bins the energy of wa-
termark is maximized. The phase perceptual slacks υ[i] used in Equation (3) can then
be simply derived as follows [8]:

υ[i] � 2�arcsin

�
TX̃n

[i]

An[i]

�
� (10)

3.2 Improved Tonality Estimation

The classification of frequency bins into tonal or noise components is critical for a
psychoacoustic model. The tonal and noise classification method in Section 3.1 is a bi-
nary decision at each frequency bin. As a result, noise detection has to be performed
very carefully, because mis-interpretation of a component as noise can result in audi-
ble artifacts. In contrast, assigning a tonality measure to all frequency bins – not only
the identified noise components – could increase the overall embedded watermark en-
ergy and hence the robustness. Our new method replaces the noise detection module
in Figure 3 with a tonality estimator combining intra- and inter-frame estimator for the
magnitudes and phases of the spectrum. The new architecture is depicted in Figure 4.

Tonality Measure. Two tonality measures have been investigated in this work: the
spectral flatness measure and the unpredictability measure.

Spectral Flatness Measure (SFM). The SFM (see [4]) is used to estimate the tonality of
an entire frame xn or a set of predefined frequency bands. It is an intra-frame technique
which employs a criterion based on the spectrum’s magnitude of a frame:

SFM(X̃n) �

B

	
B�1
i�0 SX̃n

[i]

1
B

�B�1
i�0 SX̃n

[i]
� SX̃n

[i] �
An[i]2

B
� (11)

where SX̃n
is the short-time power-density spectrum of the WOLA frame X̃n. The SFM

values are in [0� 1], where 0 indicates a pure tonal signal and 1 a pure noise signal,
respectively. It can be shown that the inverse of the SFM is a measure how well a signal
can be predicted. A signal can be better predicted if it is more tone-like.
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Fig. 4. New tonality estimation and integration in psychoacoustic model

Unpredictability Measure (UM). The UM – proposed in the psychoacoustic model 2
of ISO-MPEG –consists in predicting the amplitude An and the angle ϕn of the WOLA
frame X̃n as follows:

Ân[i] � 2An�1[i] � An�2[i]� ϕ̂n[i] � 2ϕn�1[i] �ϕn�2[i]� (12)

and evaluating the resulting relative prediction error:

UMX̃n
[i] �

�X̃n[i] � X̂n[i]�

An[i] � Ân[i]
� X̂n[i] � Ân[i]e jϕ̂n[i]� (13)

It is an inter-frame method for a fixed frequency bin. A low UM value indicates that
the frequency bin can be well predicted. This is typically the case of tonal components.
Conversely, noise-like signals will have high UM values.

To obtain the predicted angle ϕ̂n[i], two angles ϕn�1[i]�ϕn�2[i] need to be extracted.
Moreover, cos(ϕ̂n[i]) and sin(ϕ̂n[i]) need to be evaluated in order to compute the UM
value. Such operations involve trigonometric operations which are computationally ex-
pensive. Most of this burden can be lifted by defining a couple of values3:

cn�1[i] � cos(ϕn�1[i]) �
�
X̃n�1[i]�

An�1[i]
� sn�1[i] � sin(ϕn�1[i]) �

�
X̃n�1[i]�
An�1[i]

� (14)

cn�2[i] � cos(ϕn�2[i]) �
�
X̃n�2[i]�

An�2[i]
� sn�2[i] � sin(ϕn�2[i]) �

�
X̃n�2[i]�
An�2[i]

� (15)

and by expressing cos(ϕ̂n[i]) and sin(ϕ̂n[i]) accordingly:

3
� and � denote the real and imaginary parts of a complex number.



Improving Tonality Measures for Audio Watermarking 231

t

f

i− 1

i

i+ 1

n− 2 n− 1 n

X̂n[i− 1]

X̂n[i]

X̂n[i+ 1]

fs
B

R
fs

(a) Conventional mono-modal
prediction (M � 0).

t

f

i− 1

i

i+ 1

n− 2 n− 1 n

X̂n[i]

(b) Asymmetric bi-modal pre-
diction (M � 1).

t

f

i− 1

i

i+ 1

n− 2 n− 1 n

X̂n[i]

(c) Symmetric bi-modal pre-
diction (M � 1, m � 0).

Fig. 5. Alternate prediction strategies in the time-frequency plane for the UM

cos(ϕ̂n[i]) �
�
2c2

n�1[i] � 1


cn�2[i] � 2cn�1[i]sn�1[i]sn�2[i]� (16)

sin(ϕ̂n[i]) � 2cn�1[i]sn�1[i]cn�2[i] �
�
2c2

n�1[i] � 1


sn�2[i]� (17)

This alternate representation only uses multiplication and addition operations.

Combining intra-frame and inter-frame prediction. Compared to UM, the computa-
tional complexity of SFM is notably lower. However, as any global metric, it fails to
grasp the local particularities of the spectrum. Let’s assume that the input frame is
made of a single tone. In the presence of noise, the SFM will be evaluated for the whole
spectrum resulting in a relatively high value. As a result, spectral lines near the tone
peak cause audible artifacts. Since the spectrum is processed globally, it is wrongly
interpreted as more noise-like despite the more tonal nature of the signal.

According to our listening tests, the UM method works well for quasi-stationary
signals with a long period. On the other hand, for audio signals with many short-
period time-varying tones, e.g. speech signals, UM is not capable of tracking tones
well, whereas SFM provides good results. A straightforward strategy to get better audio
quality is then to use the minimum of the global SFM and UM, though it significantly
hampers robustness performances as it is very conservative.

To solve this problem, we slightly modified the UM so as to combine the original
inter-frame prediction with an intra-frame prediction method over the frequencies. This
bi-modal prediction illustrated in Figure 5b should provide better tonal tracking capa-
bilities. More specifically the prediction process is revised as follows:

(m̂� m̂�) � arg min
m�m��[�M:M]

���X̃n[i] � X̂n[i�m�m�]
��� � (18)

X̂n[i�m�m�] � Ân[i�m�m�]e jϕ̂n[i�m�m�]

Ân[i�m�m�] � 2An�1[i � m] � An�2[i � m�]

ϕ̂n[i�m�m�] � 2ϕn�1[i � m] �ϕn�2[i � m�]�

The final Ân[i� m̂� m̂�] and ϕ̂n[i� m̂� m̂�] are subsequently used in Equation (13) for UM
calculation. Increasing M improves the prediction by providing diversity, resulting in
better audio quality but at the expense of watermarking power.
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In order to mitigate this trade-o�, it is possible to reduce the prediction diversity by
imposing additional constraint e.g. the prediction necessarily use the same frequency
bin in the previous frame:

m̂� � arg min
m��[�M:M]

���X̃n[i] � X̂n[i� 0�m�]
��� � (19)

This simplified bi-modal prediction depicted in Figure 5c maintains robustness per-
formances and only requires a symmetric search compared to the asymmetric one of
Equation (18). According to our experiments, UM evaluation using simplified bi-modal
prediction with M � 1 already provides very good results, which will be used for quality
and robustness evaluation.

Integration of UM into the Psychoacoustic Model. Given the UM values for individ-
ual frequency bins, the global masking thresholds are increased as follows:

TX̃n
[i]dB � TX̃n

[i]dB(1 � UMX̃n
[i]) � An[i]dB�UMX̃n

[i]� (20)

It should be noted that the masking threshold TX̃n
[i] is always smaller than the spectral

line energy An[i]. Moreover, for a tonal component (UMX̃n
[i] � 0), the masking thresh-

old of the peak remains unchanged in order to avoid audible artifacts. Conversely, for
pure noise components (UMX̃n

[i] � 1), the masking threshold is set equal to the spectral
line energy. Otherwise, the amount of threshold up-shift scales with the UM. In other
words, the noisier is a particular frequency bin, the more its corresponding perceptual
threshold can be lifted.

4 Comparison of Audio Quality and Robustness

To assess the impact of the psychoacoustic model on performances, we compared our
proposed new method to the baseline algorithm using a heuristic noise detection ap-
proach. To guarantee fair a comparison in terms of robustness, special care has been
taken to impose the same quality level in the two investigated setups.

4.1 Audio Quality Evaluation

Objective metrics are not reliable to quantify the quality of a audio track distorted by
embedded watermarks (see [13] for a discussion). As a result, quality assessment has to
be carried out via subjective listening tests.

The objective is to assess the quality of the new algorithm compared with the previ-
ous psychoacoustic model implementation. To do so, the ITU-R BS.1116 standard has
been selected [14]. The recommendation BS.1116 has been designed to assess the de-
gree of annoyance caused by any degradation of the audio quality to the listener. The use
of a continuous grading scale allows comparing di�erent watermarking embedders by
rating their quality. This scale uses the fixed points derived from the ITU-R Subjective
Di�erence Grade (SDG) scale [15] listed below:
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Impairment Grade SDG

Imperceptible 5.0 0.0
Perceptible, but not annoying 4.0 -1.0
Slightly annoying 3.0 -2.0
Annoying 2.0 -3.0
Very annoying 1.0 -4.0

The test procedure is a so-called double-blind A-B-C triple-stimulus hidden reference
comparison test. Stimuli A contains always the reference signal, whereas B and C are
pseudo-randomly selected from the watermarked and the reference signal. The subject
has to listen to all three items, select B or C as the reference – implicitly assigning a
grade of 5.0 – and assign a grade to the other item. From the rating results, the SDG
value is obtained by:

SDG � ScoreSignalUnderTest � ScoreReferenceSignal� (21)

Test Design. The standard [14] specifies 20 subjects as an adequate size for the lis-
tening panel. Since expert listeners participated in the test, the number of listeners has
been reduced to 13 for an informal test. A training session preceded the grading session
where a trial was conducted for each signal. The tests were performed with headphones
in a special cabin dedicated to listening tests. Six test signals – selected from the sound

Table 1. Test signals used in the listening tests

Item Attribute

Clarinet Single instruments with many tonal components.
Harpsichord Signal with attacks in time domain. Lot of harmonics misleading SFM.
Saxophon (Coleman) Used in MPEG evaluation. Contains a lot of modulated components.
Speech Male Engl.(2) A lot of interval times and modulated components.
Triangle Small bandwidth signal with attacks in time domain.
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Fig. 6. Listening results for the BS.1116 test
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(b) mp3Pro compression.
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(c) AAC compression.
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Fig. 7. Detection rates dr[%] for lossy compression
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(a) Time stretching.
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Fig. 8. Detection rates dr[%] for time scaling with factor st

quality assessment material (SQAM) [16] – with a length of 10-20 s have been pre-
sented to the listeners. These signals were used in evaluating perceptual audio codecs
and are chosen to reveal even small impairments to the listener. The six test signals can
cause problems to the watermark embedder as detailed in Table 1.

Analysis and Interpretation of Results. For the di�erent audio files, the mean SDG
value and the 95% confidence interval are plotted as a function of the di�erent audio
tracks to clearly reveal the distance to transparency (SDG � 0). The results in Figure 6a
and Figure 6b show that the watermarked items from both algorithms have nearly the
same, very good quality with SDG � [�1� 0].
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(a) White noise.
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(b) Pink noise.
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(c) Baby crying.
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(d) Laughter.
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(e) English female speech.
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(f) German male speech.

Fig. 9. Detection rates dr[%] for mixing signals

4.2 Robustness Tests

Having adjusted the quality to the same level, we evaluated the robustness of the al-
gorithms with a payload rate of 2 bit�sec, where payload bits are protected by a rate
1�2 tail-biting convolutional code. For robustness tests, a number of digital attacks
have been applied after embedding the watermarks. To compare two audio watermark-
ing embedders employing di�erent psychoacoustic models, these attacks are suÆcient,
since attacks like the acoustic path can be simulated by combination of these signal
processing operations. In all robustness tests 100 di�erent sound files with a total play
length of more than 7 hours were used.

Lossy Compression. Robustness against lossy compression was tested using a variety
of audio codecs, as shown in Figures 7a-7d, where only bitrates lower than or equal to 64
kBits�sec were evaluated. According to the reported experimental results, the detection
rate does not only depend on the bitrate, but also on the codec used. In all cases, the
proposed system behaves better than the baseline algorithm.
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Temporal Desynchronization. It is common practice in audio watermark benchmarks
to distinguish between pitch-invariant time scaling, also referred to as time-stretching,
and changing the playback speed of the audio track, which results in the modification of
its pitch. Experimental results are given in Figures 8a and 8b and demonstrate reason-
able robustness. Again, in all cases, the new algorithm proves better than the original
system.

Mixing Signals. The robustness against mixing or overdubbing with di�erent signals
for di�erent signal-to-noise ratios (SNRs) dB(A) has been tested to simulate the influ-
ence of environmental noise. The results in the Figures 9 indicate good robustness for
signals other than white or pink noise even if the disturbing signal has the same energy
(SNR � 0 dB(A)) as the watermarked one. In all cases, the proposed algorithm exhibits
superior performances than the baseline system.

5 Conclusions

In this paper, we proposed an adaptation of the tonality measure in a psychoacoustic
model for audio watermarking. The proposed algorithm revisits the prediction strategy
of the previously proposed unpredictability measure so as to provide more accurate
perceptual slacks. The resulting system is evaluated thoroughly with both early informal
listening tests and extensive robustness evaluation.

The principal benefits that can be expected from the presented system are (i) the
alterations of the psychoacoustic model can be re-used for other audio watermarking
algorithms; (ii) an eÆcient implementation of the UM evaluation is presented provid-
ing the opportunity for a fixed-point implementation on embedded devices; (iii) an ex-
tensive robustness evaluation providing evidence of the improvement by the developed
technique. Since tonal tracking and estimation is a research area on its own, further
improvements can be expected by applying advancements in this field to the audio
watermarking research.
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Abstract. Watermarking is discussed as possible means to enhance bio-
metric systems. Application scenarios for the employment of watermarks
as found in literature are discussed and analysed with respect to required
watermark properties, possible attacks, and eventual (cryptographic)
alternatives.

1 Introduction

Biometric recognition applications become more and more popular. Many insti-
tutions, governmental agencies and companies want to rely on this upcoming
technology to secure their environment because standard authentication meth-
ods like PINs, passwords, smart-cards etc. have many disadvantages. Possession
and knowledge based authentication techniques are prone to human errors since
the former can be lost and the latter can be forgotten. Moreover, these tech-
nologies can be applied without actually guaranteeing a specific human pres-
ence. Biometric authentication systems can resolve most of these issues, since
a biometric feature belongs only to one person and cannot be lost or forgot-
ten. But eventually, biometric features can be stolen or adopted and there exist
various other ways to circumvent the integrity of a biometric authentication
system. Recent work systematically identifies security threats against biometric
systems and possible countermeasures (among them watermarking) [40] and dis-
cusses man-in-the-middle attacks and BioPhishing against a web-based biometric
authentication system [52].

In their classical paper [39] Ratha et al. identified and described several stages
at which a biometric system may be attacked (denoted as attacked stage AS in
the following) by an intruder or imposter:

1. Fake the biometric trait of a genuine user at the sensor (e.g. fake finger or
printed face image)

2. The transmission between sensor and feature extractor may be intercepted
and resubmitted by changed or replayed data

3. Override the feature extractor to produce predefined feature sets
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4. Intercept and replace the extracted feature sets by a synthetic or spoofed
one

5. Override the matcher to always produce high matching scores
6. Modify, replace, remove stored ore add new templates at the database
7. Intercept the communication channel between template database and

matcher
8. Override the final decision

Spoofing a physiological biometric feature at the sensor site can be seen as
counterpart to exposing a password. If a fraudulent duplicate is accepted by the
sensor, breaking a biometric system is at least as easy as spying out a password.
However, the illegitimate acquisition of biometric features belonging to a target
person does not necessarily involve complicated spoofing techniques. It is a fact
that some biometric modalities, e.g. fingerprints, faces, irises, and hand-prints,
can not be classified as being secret data. These data may be acquired quite
easily: Fingerprint or even the full hand-print can be covertly lift off a glass,
and current widespread digital cameras with telephoto lenses are able to take
high resolution images of faces unseen by the photographed (using state of the
art equipment may even provide enough resolution and sharpness to extract the
iris out of a face image). Having acquired these “raw image data”, a dedicated
attack against the targeted person would be facilitated in case no further security
mechanisms are employed. The acquired image data could be presented to the
sensor (AS 1) or could be inserted into the transmission of data between sensor
and feature extractor (AS 2). Since also the feature set extraction might be
possible given the raw image data, the computed feature set could eventually be
injected into the data before being submitted to the matcher (AS 4), which can
also be applied to the communication channel between database and matcher
(AS 7). The latter attack supposes that the feature extraction scheme is publicly
known and is not protected by some template protection technique [19].

Of course, several strategies have been developed to cope with some these
problems. Liveness detection helps to resolve the issue of fooling the sensor with
prerecorded data (AS 1). Encryption techniques have been suggested to secure
the above-mentioned communication channels (AS 2,4,7). However, the “pub-
lic” availability of biometric data questions the necessity and appropriateness of
encryption techniques for ensuring privacy of biometric data in the data trans-
missions in AS 2 and AS 4. Rather it is necessary to verify the sender (i.e.
sensor and feature extractor) authenticity, as well as the integrity of the entire
authentication mechanism.

In this paper, we provide a critical survey about work done if and how wa-
termarking technology can either help to resolve some of the security issues
or help to enhance biometric schemes in some other way. Given the significant
amount of literature in the field, one might expect a more serious and system-
atic treatment of the topic. In many papers, the overall impression remains
that two “buzzwords” have been combined without carefully analysing what
this combination should actually achieve, why, and how this could be done. Sec-
tion 2 covers fundamental issues related to biometrics and watermarking and
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also shows watermarking application scenarios in the context of biometrics not
aimed at improving biometric systems at all. In Section 3, we review several ap-
plication scenarios for watermarking techniques found in literature which aim at
improving current biometric schemes. For each scenario, we discuss the required
properties of the watermarking system employed and sketch possible attacks
against the approach. Additionally, also potential (cryptographic) alternatives
to the application of watermarks are analysed. Finally, we discuss published pro-
posals on watermarking and biometrics with respect to the required properties
as identified before. Section 4 concludes the paper.

2 Watermarking in Biometric Systems

One of the first ideas to somehow combine biometric technologies and water-
marking is “biometric watermarking”. The aim of watermarking in this approach
is not to improve any biometric system, but to employ biometric templates as
“message” to be embedded in classical robust watermarking applications like
copyright protection in order to enable biometric recognition after the extrac-
tion of the watermark (WM). As a consequence, the WM has to be capable of
carrying the template data (capacity requirement) and should not be perceived.
The robust WM has to resist against unintentional and malicious cover data
manipulations.

Vielhauer et al. [46] introduce the general concept and notion of biometric
watermarks, also discussed in [1]. One of the most interesting applications in
the context is the “secure digital camera” [4], where an iris template of the pho-
tographer is embedded into digital images. Canon filed a corresponding patent
recently (US Patent Application No. 2008/0025574). A similar idea also addi-
tionally addressing image integrity is proposed in [12]. Low et al. [29] suggest
to embed offline signatures into digital images for copyright protection. Also for
3D graphics data, biometric watermarking has been suggested [32] by embedding
an image of the copyright owners’ biometric trait into a 3D mesh in a robust
manner.

In order to motivate the use of watermarking in the biometric context with
the aim of improving security, Jain et al. [17] suggest that if only traditional
cryptographic techniques are used for the protection of biometric data, the data
has to be decrypted somewhere along the way and therefore after decryption,
security for the data is not maintained anymore – here watermarking comes in as
a “second line of defence” similar to the DRM scenario since a watermark is still
present after decryption. In this manner, information carried by the watermark
can still be retrieved even if cryptographic tools have already been defeated.

There has been a lot of work done during the last years proposing watermark-
ing techniques to enhance biometric systems in some way. Dong et al. [7] try
to give a systematic view of the situation in the case of iris recognition by dis-
tinguishing whether biometric template / sample data are embedded into some
host data (“template embedding”), or biometric sample data is watermarked by
embedding some data into them (“sample watermarking”). In the latter case,
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they distinguish between robust embedding techniques for database ownership
protection and fragile techniques for sample tampering detection.

The impact of watermarking on the recognition performance of biometric sys-
tems has been investigated most thoroughly in the context of iris recognition also.
While Dong et al. [7] do not report on performance degradations when investigat-
ing a single watermark embedding algorithm and one iris recognition technique
only, Hämmerle et al. [10] find partially significant reductions in recognition ac-
curacy (especially in case of high capacity) when assessing two iris recognition
schemes and a couple of robust watermarking algorithms. Similar to the latter
results, recognition impact has been observed as well for speech recognition [26]
and fingerprint recognition [36] (the latter depending on the type of original
which is employed in watermark extraction, thus, this is a non-blind approach).

For fingerprint recognition, watermarking techniques aiming at negligible im-
pact on recognition performance have been designed. This is achieved for ex-
ample by applying two blind robust spatial watermarking methods embedding
a character bit string either sparing out fingerprint feature regions (i.e. close to
minutiae data) or by maintaining the ridge gradient orientations [42, 9]. This
approach has been followed by may other techniques (e.g. [5, 31]). On the other
hand, recent work by Zebbiche et al. [50, 51] proposes two robust WM schemes
for fingerprint images where WM data is embedded into the ridge area (region of
interest RoI) only. The aim is to increase robustness of WM due to the concen-
tration onto the RoI, while of course, some impact on recognition performance
may be expected by using this idea.

In many papers covering the use of watermarking in biometric system, the
authors remain rather vague about the actual aim, content, and required prop-
erty of the employed watermarking system. A good example is the paper by
Hong et al. [14] (although many more do exist) which discusses the application
of robust watermarking and symmetric encryption techniques for the exchange
of compressed biometric sample data, where they also investigate the impact on
accuracy of a fingerprint recognition scheme. Additionally, energy consumption
of different variants with respect to the applied compression in a distributed
authentication scenario with mobile sensors is investigated. It is not discussed,
which functionality the watermark is aimed to fulfil and how a successful attack
against the used watermarking system would look like. Consequently, there is
also no information about which data is embedded and which attacks against
the biometric scheme should be prevented by the usage of watermarking. As a
second example, we mention a quantisation-based robust watermarking of off-
line signatures [15] – while robustness against compression is investigated, the
actual aim of robustly embedding a watermark is not described.

With this survey, we try to provide a systematic and critical view of the
work done so far in this area. In the next section, we provide a discussion of
several application scenarios described in literature using both watermarking and
biometric technologies where the overall aim is to enhance a biometric system
in some way. We follow the idea of distinguishing between template embedding
and sample data watermarking schemes. For each scenario, we will explain the
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overall aim of the WM technique, we will discuss required watermark properties,
the types of attacks challenging the approach, and the possibility to replace the
watermarking scheme by some alternative (cryptographic) approach.

3 Watermarking Application Scenarios for Enhancing
Biometric Systems

3.1 Covert (Template) Communication

The aim of watermarking in this approach is to transmit biometric data (typ-
ically template data but also sample data is considered) hidden into arbitrary
carrier / host data (in this manner AS 2 can be avoided an attacker does not
realise that biometric data is transfered). For example, a fingerprint image may
carry face data or any arbitrary image could include fingerprint minutiae. An
attacker should be unaware of the concealed (real) data transfer. Therefore, this
is a typical steganographic application scenario, which is based on template (or
even sample data) embedding.

Attack. An attacker aims at detecting the WM in order to be able to intercept
the template data transfer.

WM properties and content. As a consequence, the WM has to be capable
of carrying the template / sample data (capacity requirement) and has to be
undetectable. In the passive warden scenario, robustness of the WM is not an
issue, however, robustness contradicts the requirement of a non-detectable
WM. Blind extraction is required as it is a must for all steganographic ap-
plication scenarios.

Crypto alternative. The is no cryptographic technique capable of replacing a
steganographic approach.

A data hiding approach that targets this scenario is introduced by Jain et al.
[16, 18] where fingerprint minutiae data are embedded into an arbitrary host im-
age (scenario 1). A robust amplitude modulation-based watermarking method
is used to embed a minutiae data set converted to a bitstream. Zebbiche et al.
[49] introduce a robust wavelet based watermarking method hiding fingerprint
minutiae data in fingerprint images (based on a method proposed by Kundur et
al. [24]). They argue that an intruder is likely only to treat the fingerprint image
instead the embedded data as well, so the scope is also a steganographic one.
Khan et al. [20] uses a robust embedding technique to hide fingerprint templates
into audio signals. Surprisingly, all proposals use robust embedding techniques
which actually destroys the most important steganographic property as outlined
above (non-detectability). In order to be able support non-detectability, stegano-
graphic WM needs to be applied instead of robust schemes. The remaining value
of the proposed robust schemes is in communicating embedded templates in a
way that the are not perceived by a human observer. When applying robust em-
bedding as being proposed, embedded templates resist non-malicious cover data
manipulations (which is an advantage over steganographic schemes in the case
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of an active warden). Thus, the application context has to determine if robust
WM or steganographic embedding serves the actual aim of the WM embedding
(inperceptability vs. non-detectability).

When considering the application context, we have doubts that it is steganog-
raphy which is actually most suited or required. When considering a classical
biometric system, a biometric sensor is typically expected to transmit biometric
authentication data over a dedicated channel to the feature extraction / match-
ing module and no other types of data, so that it is not clear what is to be
gained by steganography under these circumstances. It seems that in many pa-
pers, authors rather have confidentiality of embedded template data in mind,
but this can only be achieved by using encryption (which is also inconvenient
since decryption of the data is required before further processing). So in this
scenario, many proposed robust WM schemes seem to represent an attempt to
achieve a weak concealment of template content by embedding the data into
some host material thereby avoiding encryption. Unfortunately, in this manner,
neither the steganographic nor the confidentiality aim can be met.

In a distributed biometric system (as opposed to the classical case discussed
before) where authentication data is transmitted over networks where also other
type of data is communicated, the idea of applying steganography definitely
makes more sense. The work described in [35] is explicitely focused to the appli-
cation context – after a correlation analysis between host image and two images
of different biometric modalities, residual data (sample images substracted from
cover image) is embedded into the middle significant bit of the cover data. Since
non-detectablity is not plausible considering the embedding stategy, this pro-
posal fits better into the next category (two images are embedded thus enabling
multibiometric recognition).

3.2 Multibiometric Recognition

The aim of watermarking in this scenario is to embed biometric data into a
biometric sample in order to facilitate the employment of a multibiometric tech-
nique. The aim is an increased recognition performance due to the use of two
different modalities. By using WM techniques, both informations are fused into
a single data item which can be transmitted as a whole, however, the aim of
using WM for this purpose is hardly ever motivated clearly.

There are two variants: First, biometric template data is embedded into the
sample data of a different modality. These template data need to be generated
at the sensor site which makes this approach somewhat unrealistic, especially in
case of distributed biometric systems with low power sensor devices. The second
approach is to embed sample data into the sample data of a different modality,
which puts significant pressure to the capacity of the WM scheme. Therefore, in
this scenario, sample watermarking as well as template / sample data embedding
is used.

Attack. The resulting system is vulnerable in principle against all types of
attacks endangering classical unimodal systems systems. In particular, an
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attacker needs to embed sniffed biometric data of one modality into sniffed
sample data of a second modality when targeting AS 2 (for example, face
and iris biometric data can be extracted from a single high resolution image
of the subject to be attacked).

WM properties and content. As a consequence, the WM has to be capable
of carrying either template or sample data (capacity requirement) and ex-
traction has to be blind, since otherwise, the advantage of transferring only a
single data item would be lost by the required re-transmission of the original
sample for extraction. It is of advantage if the WM resists unintentional im-
age manipulations like compression or noise insertion, but robustness is not
a required property here. In order to prevent an attacker to embed a stolen
template, the embedding algorithm has to be dependent on a key. In this
context the multibiometric approach also enhances the scheme with respect
to resistance against targeting AS 2, since only samples which have correctly
embedded WM data should be accepted by the system.

Crypto alternative. The benefit of embedding additional authentication data
with WMs over classical cryptographic schemes is that this may be done
in a way where “allowed” manipulations can be conducted on the data.
Application of encryption to a concatenation of sample and template data
results in slightly more data to be transmitted, but unauthorised embedding
of stolen biometric data is prevented by this technique. Furthermore, this
approach definitely has no impact on recognition performance as opposed to
WM embedding.

Bartlow et al. [3] proposed a framework that encodes voice feature descriptors
in raw iris images stored in a database. An asymmetric watermarking and cryp-
tographic method using a public key infrastructure is used. The watermarking
method is based on the robust technique by Kutter et al. [25] and is used to track
data origin of data stored in centralised biometric databases. Hoang et al. [13]
embed fingerprint minutiae in facial images (with fragile watermarks), while Jain
et al. [18] embed face data into fingerprint images using a technique classified as
being robust. Chung et al. [5, 31] use the same embedding technique as well to
embed fingerprint templates into facial images and vice versa, and compare the
recognition performance of the resulting systems. They also use this embedding
technique as the fragile part of a dual watermarking approach [31, 22] so that
doubts remain about the actual robustness properties of the scheme. Vatsa et
al. employ robust embedding techniques: in [44], they embed voice features in
colour facial images, the same group [33, 43, 45] propose to embed facial template
data (and additional text data in the first work) into fingerprint sample data
using a robust (multiple) watermarking approach. Park et al. [34] suggest to use
robust embedding of iris templates into face image data to enable various func-
tionalities, among them proof of database membership, steganographic issues,
and of course multibiometric fusion. Kim et al. [21] propose a blind and robust
spread spectrum watermarking technique for embedding face template data into
fingerprint sample. Maiorana et al. [30] embed dynamic signature properties
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into the image of a static signature using a robust DCT-Radon transform based
embedding technique.

The approach of Zebbiche et al. [49], employing a robust wavelet based wa-
termarking method for hiding fingerprint minutiae data in fingerprint images
actually fits better into this scenario than into the steganographic one it has
originally been suggested for.

Most schemes propose to use robust WMs for embedding and therefore do
not provide the capacity for sample embedding (for many modalities, not even
for template data). It seems that for this application case, it would therefore
be better to abandon the idea of providing robustness but to use fragile or
steganographic embedding techniques (eventually protected by error correction
coding to provide some limited resistance against channel errors or lightweight
signal processing). Key-dependent embedding is discussed explicitly only in some
algorithms (e.g. [5, 31, 33]) but has turned out to be of importance in this setting.
It is somewhat questionable if WM is in fact a suited technology in this context
due to its potential impact on recognition performance (since the aim of the
entire technique is the improvement of recognition !) and the existence of a
sound cryptographic alternative.

A variant of the described ideas is to embed (template or sample) data into
samples of the same modality. In this case, two different biometric templates
of a single subject can be used in biometric matching which can also lead to
improved recognition performance. In this case, only a single sensor has to be
applied.

3.3 Two-Factor Authentication

The idea is to enable a two-factor authentication by requiring an additional to-
ken providing authentication data. Additional authentication data can be stored
on a smart-card which has to be submitted by the holder at the access control
site. The smart-card embeds the authentication data into the host sample data
using WM technology which is sent to the biometric feature extraction / match-
ing module. Another possibility for the second authentication factor could be
a password which is submitted by the user. As a special case, the second au-
thentication factor can be a biometric template stored on a smart-card. In this
case, the advantages with respect to improved recognition performance due to
the multibiometric nature of the scheme apply here as well.

Security of the overall system is increased simply by introducing an additional
but different authentication scheme. The aim of watermarking in this scenario
is similar as in the previous one since it is used to embed additional information
into sample data (which in the present case comes from a smart-card or from a
users’ password, whereas in the former scenario data is generated by a different
sensor). Again, the appropriateness of WM to be applied in this context is not
obvious, for the same reasons as discussed before. This scenario is a case of sample
watermarking, only as a special case template embedding can be applied.

Attack. The attacker can utilise a stolen smart-card (or sniffed password) and
additional sniffed sample data of the attackers’ target subject to fool the
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system. He uses the biometric system pretending to be a legitimate user,
but after WM embedding (e.g. of the data stored on the card), the attackers’
sample data is tampered to match that of the sniffed sample data while not
destroying the WM.

WM properties and content. As a consequence, the WM has to be capa-
ble of carrying the additional authentication data (capacity requirement:
passphrase, ID, or template data) and extraction has to be blind, since oth-
erwise, the advantage of transferring only a single data item would be lost by
the required re-transmission of the original sample for extraction. In order
to resist against a manipulation of the attackers’ sample acquired by the
sensor as described in [11], the WM scheme employed must not be robust.
Therefore, only semi-fragile or fragile WMs fit all requirements.

Crypto alternative. The situation is perfectly identical to the multibiometric
scenario and shares all corresponding problems discussed before.

A scheme embedding additional classical authentication data with robust wa-
termarking is described in [41]. Here, the embedded signature is used as an ad-
ditional security token like an additional password. In principle, all techniques
developed for the multibiometric scenario could be used in this context, however,
the majority of all schemes proposed also employ robust embedding, which is
subject to tampering as described before.

Jain and Uludag [18] propose to embed face template data stored on a smart-
card in fingerprint images (called senario 2 in the paper while scenario 1 is
a steganographic one). Instead of embedding an additional security token also
biometric template data from a second sensor can be embedded – in [36] an
encrypted palmprint template is embedded into a fingerprint image, where the
key is derived from palmprint classes. Since these additional data are not used
in multibiometric fusion but serve as independent second token coming from a
second sensor, this approach can be interpreted as being both, a multibiometric
recognition scheme or a two factor authentication scheme. Since the employed
WM system is a non-blind one, the applicability in a real system remains ques-
tionable.

It has to be pointed out that for this as well as for the former scenario, WM
is not the only means (and probably not the best one) to communicate the
“embedded” data in addition to sample data. Therefore, WM cannot be seen as
the key-enabling technology for both of these scenarios. In case WM is selected as
the means of transportation for the scenario investigated in this section, fragile
or semi-fragile schemes have to be used which usually also have less or no impact
on recognition performance.

3.4 Sample Replay Prevention

The aim of watermarking in this scenario is to prevent the use of sniffed sample
data to fool the sensor. During data acquisition, the sensor (i.e. camera) embeds a
watermark into the acquired sample image before transmitting it to the feature
extraction module. In case an intruder interferes the communication channel
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(AS 2), sniffs the image data and presents the fake biometric trait (i.e. the sniffed
sample image) to the sensor (AS 1), it can detect the watermark, will deduce non-
liveness and will refuse to process the data further. Therefore, the sensor needs to
be capable of extracting the WM in addition to embedding it. As a consequence,
all image data eventually additionally stored in the template database for some
reason also carry the WM which stems from the enrolment process in this case.
Consequently, image data from a compromised database cannot be used as fake
biometric traits either. In this scenario, sample watermarking is applied.

Attack. An attacker aims at removing the WM in order to be able to use sniffed
data for replay attacks or as fake traits.

WM properties and content. As a consequence, the WM has to be robust.
It has to be detectable in the image as long as the image can be used in the
recognition process (note that this corresponds well to the DRM scenario
where a robust WM has to be detectable as long as the image is of sufficient
quality). The extracted mark needs to carry at least the information “yes, I
have been acquired by a sensor” (so eventually zero-bit WM could be used),
but could also carry actual sensor IDs. The WM must be detected in blind
manner, other wise the sample would have to be sent unprotected a second
time.

Crypto alternative. Encrypting the data after acquisition for transmission
provides similar functionality, however, the data needs to be decrypted for
feature extraction and matching, which is a severe disadvantage. In any case,
the WM may serve as additional “second line of defence” as it is suggested in
the DRM context as well. Generic liveness detection techniques also target
the attempt of using sniffed image data to fool the sensor and are a possible
alternative method, however, usually at a much higher cost.

The proposed solution by Bartlow et al. [3] exactly targets the database envi-
ronment. All robust WM algorithms, e.g. those proposed by Uludag and Gunsel
[42, 9] could be employed in this scenario. Of course, problems with respect to
impact of robust WM on recognition performance are valid in this scenario as
well.

3.5 Sensor and Sample Authentication

The aim of watermarking in this scenario is to ensure the integrity of the sample
data acquisition and transmission process. During data acquisition, the sensor
(i.e. camera) embeds a watermark into the acquired sample image before trans-
mitting it to the feature extraction module. The feature extraction module only
proceeds with its tasks if the WM can be extracted correctly (which means that
(a) the data has not been tampered with and (b) the origin of the data is the
correct sensor). If an attacker tries to inject a sniffed image into the communi-
cation channel between sensor and feature extraction module for a replay attack
or modifies a correctly acquired image in some malicious manner (AS 2), this is
prevented by this approach. The same strategy can be applied to raw image data
in the template database (if present). In this scenario, sample watermarking is
applied.
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Attack. An attacker aims at inserting the WM in order to mimic correctly
acquired sensor data.

WM properties and content. In contrast to the previous scenario, the WM
needs to be unique in the sense that it has to uniquely identify the sensor
and carry a unique transaction number or timestamp. Resistance against a
WM insertion attack can be achieved by sensor-key dependent embedding.
Since the watermarking scheme has to be able to detect image manipula-
tions, semi-fragile techniques are the method of choice. The WM could also
eventually be fragile resulting in every minor modification attempt to be de-
tected. However, each channel error or compression after embedding during
transmission will destroy the WM in this case leading to a high false nega-
tive rate during authentication which is a highly undesired effect. Therefore,
fragile WM can only by used in definitely lossless environments. Especially
in semi-fragile watermarking it was found to be highly advantageous to em-
bed image-dependent watermark data in order to prevent an embedding
of image-independent watermarks after modifications have been conducted.
WM extraction should be blind, otherwise the sample would need to be sent
a second time (which would be possible in principle but is undesired due to
transmission overhead).

Crypto alternative. Classical authentication protocols can be used to secure
the communication between sensor and feature extraction module – a digital
signature signed with the private key of the acquisition device can ensure
the authenticity of the sensor and the integrity of the image data. However,
digital signatures represent separate data which has to be taken care of sep-
arately. Cryptographic digital signatures are not capable of providing any
robustness against channel errors and unintentional signal processing “at-
tacks” like compression, which is the same as with fragile WM. Additionally,
WM eventually provide information about the location where image data
tampering has occurred, which could be used to determine if recognition-
critical data has been affected (e.g. the iris texture in rectangular eye images)
or to gain information if an intentional attack is the cause of the damaged
WM (e.g., if the image data is corrupted by transmission noise “only”, we
result in evenly distributed tamper locations).

Yeung et al. [48] propose a fragile watermarking technique to add the ability for
integrity verification of the captured fingerprint images against altering during
transmission or in a database. Also, the method is shown to have little impact
on recognition performance. Ratha et al. [37, 38] propose to embed a response
to an authentication challenge sent out by a server into a WSQ compressed
fingerprint image in order to authenticate the sensor capturing the fingerprint
image. If the (fragile) watermark cannot be extracted, either the image has been
tampered with or the image does not come from the correct sensing device.
Since the approach is bound to a specific format, it is not even robust against
lossless format conversions. Wang et al. [47] also introduce a fragile watermarking
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scheme, however, they propose to embed image dependent data (i.e. SVD data)
into the image contrasting to the former to approaches by Yeung et al. and
Ratha et al.

Also, semi-fragile watermarking has been suggested to verify authenticity
of biometric sample data. Two different embedding techniques for embedding
both, a sample image dependent signature as well as a template are proposed
by Komninos et al. [23]. PCA features are used as embedded data in [28], the
embedded data can as well be used for an approximate recovery of the sample
data in [6], and [2] proposes the embedding of robust signatures into fingerprint
images.

Finally, [27] use two embedding techniques, the first for checking integrity on
a block level using CRC checks, the second providing reversible watermarking
(i.e. the sample is recntructed to the original before data embedding took place)
in case the first rates the sample as being authentic.

It has to be noted, that a combination of the last two scenarios (sample replay
prevention and sample and sensor authentication) seems to be highly sensible
and desirable. This can also easily done at low cost since in both cases the sensor
embeds WM information. Kim et al. [22, 31] is the first approach somewhat
addressing this issue by proposing a dual WM scheme to protect fingerprint
images by using a robust and fragile method.

Overall, it has to be stated that this scenario is not at all specific to biometric
systems. The general discussion if (semi-)fragile WM is a sensible alternative to
classical authentication protocols in case of image data to be protected applies
to the discussed scenario, as well as all corresponding arguments do.

4 Discussion and Conclusion

In this paper we have discussed the available literature on the use of watermark-
ing technology to enhance biometric systems. While the majority of proposals
in the field employs watermarking to enable multibiometric scenarios (with the
primary aim of increasing recognition accuracy) or to facilitate steganographic-
like scenarios (in order to conceal the transfer of biometric data), we have also
identified three scenarios where watermarking has been suggested to help in
improving the security of classical uni-modal biometric systems.

We have found that the WM schemes as suggested to be used in the context
of biometric systems often exhibit somewhat adhoc properties and specific re-
quirements are not analysed in detail. In many cases, the actual WM method
proposed does not lead to the desired effect or at least not in an optimal manner.
A more thorough analysis of concrete attack scenarios is desirable for many envi-
ronments in order to tailor required WM properties better to specific demands.

For most scenarios considered, WMs are not the only means to achieve the
desired goals (and for some scenarios, WM are definitely not the best means
to do so). For the covert (template) transmission scenario, we have found that
the steganographic aim itself does only make sense under specific circumstances.
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In case of making sense, there is no other technique that achieves the same effect.
If confidentiality is actually what the aim of WM is, only (additional) encryption
can provide this in a sound manner.

Two scenarios use WM as a means to transport additional information embed-
ded into sample data (i.e. multibiometric recognition and two factor authentica-
tion). Of course, this can be done in some classical way involving cryptography
or not, however, these alternatives usually exhibit the classical disadvantages
as compared to watermarking since they cannot provide any robustness even
against format conversions. Since we have seen that robustness on the other
hand potentially impacts on recognition performance and should therefore be
avoided if possible, semi-fragile embedding techniques remain as the only sensible
ones here. If schemes of this type can meet corresponding capacity requirements
depends on the actual amount of data to be embedded.

With respect to sample replay prevention, WM is an attractive choice from
the application viewpoint, since it prevents the encryption–decryption effort of
classically securing template or sample confidentiality. However, sniffing of tem-
plate data is not prevented and in case a different biometric system is not able to
detect the embedded mark or does not even support this feature, the approach
is flawed (contrasting to encrypting the data, where an attacker simply is not
able to access the plaintext at all). Additionally, as already mentioned, in this
approach robustness is absolutely a must, therefore caution needs to be paid not
to degrade recognition.

For sample and sensor authentication, (semi-)fragile WM can be used as a
means to provide the desired aims. The alternative cryptographic techniques
provide more security, but on the other hand absolutely no robustness against
the slightest modification of the data is achievable. In addition, the “classic”
techniques are not able to localise possible data manipulations and authentica-
tion data has to be communicated separately.

With respect to WM properties, a disadvantage inherent in many (robust)
watermarking schemes when applied to biometric sample data is that of possible
negative impact on recognition performance [10] – besides the design of specific
watermarking approaches taking this problem into account (e.g. [42, 9]) an en-
tirely different solution is to rely on reversible WM schemes [27, 8] which enable
to reconstruct the original signal after WM extraction. This property (which
is important e.g. in applying WM to medical imagery) fits perfectly into the
biometric scenario since it enables recognition with entirely unaffected sample
data. However, such schemes typically do not provide enough capacity to embed
template data. Another option is to use (semi-)fragile or steganographic embed-
ding techniques, which do offer sufficient capacity and exhibit almost no impact
on recognition accuracy. Therefore, in case robustness is not a vital requirement
but only a desired property (i.e. multibiometric embedding), it should be either
employed in a way not affecting recognition or avoided. Furthermore, blind WM
extraction is a must for most scenarios and is highly desirable for the remaining
ones. For the WM application cases where template data or even sample data
has to be embedded, capacity turns out to be a critical and even limiting factor.
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Summarising, more thorough investigations are required in this field to (a)
identify sensible application scenarios for watermarking in biometrics and to (b)
select and/or design appropriate WM schemes to support the desired function-
alities and we hope that this survey can represent a first step in this direction.
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Abstract. By reversible data hiding, the original cover can be loss-
lessly restored after the embedded information is extracted. Kalker and
Willems established a rate-distortion model for reversible data hiding,
in which they proved the capacity bound and proposed a recursive code
construction. In this paper we improve the recursive construction by de-
signing a data embedding method for all-zero covers and a more efficient
compression algorithm. We prove that the proposed codes can approach
the capacity bound under various distortion constraints. We also apply
this coding method to RS method for spatial images, and the exper-
imental results show that the novel codes can significantly reduce the
embedding distortion.

Keywords: data hiding, watermark, reversible data hiding, recursive
construction, arithmetic coder.

1 Introduction

Data hiding is a technique for embedding information into a cover media such
as images, audio and video files, which can be used for the purpose of media
notation, copyright protection, integrity authentication and covert communica-
tion, etc. Most data hiding methods embed messages into the cover media to
generate the marked media by only modifying the least significant part of the
cover, and thus keep perceptual transparency. The embedding process will usu-
ally introduce permanent distortion to the cover, that is, the original cover can
never be reconstructed from the marked cover. However, in some applications,
such as medical imagery, military imagery and law forensics, no degradation
of the original cover is allowed. In these cases, we need a special kind of data
hiding methods, referred to as reversible data hiding or lossless data hiding, by
which the original cover can be losslessly restored after the embedded message
is extracted.

� Corresponding author.

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 255–269, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



256 W. Zhang, B. Chen, and N. Yu

Many reversible data hiding methods have been proposed since it was intro-
duced. Fridrich et al. [1] presented a universal framework for reversible data hid-
ing, in which the embedding process is divided into three stages. In the first stage,
extract losslessly compressible features (or portions) from the original cover. The
second stage compresses the features with a lossless compression method, and
thus saves space for the payload (message). In the third stage, embed messages
into the feature sequence and generate the marked cover. One direct reversible
embedding method is to compress the feature sequence and append messages
after it to form a modified feature sequence, then replace the original features
by the modified features, and thus generate the marked cover. Therefore, after
extracting the message, the receiver can restore the original cover by decom-
pressing the features. Fridrich et al. [1] suggested the features that can exploit
characteristics of certain image formats, e.g., texture complexity for spatial im-
ages and middle frequency coefficients for JPEG images. Celik et al. [2] extended
Fridrich’s scheme by predicting multiple LSB planes. The same idea proposed
in [1] can also be used for reversible data embedding into binary images [3,4] or
videos [5,6].

To increase embedding capacity, the researchers desire to construct a longer
feature sequence that can be perfectly compressed. One of such constructions
is difference expansion (DE), first proposed by Tian [7], in which the features
are the differences between two neighboring pixels of pixel pairs. The features
are compressed by expansion, i.e., the differences are multiplied by 2, and thus
the least significant bits (LSBs) of the differences can be used for embedding
messages. The methods proposed in [8] and [9] can achieve better performance
by applying DE to the prediction-errors.

Another well-known strategy for reversible data hiding is histogram shift (HS),
in which the histogram of the image is used as the compressible feature because
the distribution of the pixel values of an image is usually uneven. To compress
the histogram, Ni et al. [10] proposed selecting a peak bin and a zero bin, and
shifting the bins between them toward the zero bin by one step. Therefore, the
bin neighboring to the peak bin is emptied out, which with the peak bin can be
used to represent 1 and 0 respectively. It is easy to see that steeper histogram
implies better compression rate, and usually the histogram of residuals is quite
steep. Thus, most state-of-the-art methods apply histogram shift to residuals of
the image [11,12].

According to the stage where distortion happens, we divide reversible data
hiding into two types as follows. Type-I: all distortion is introduced in the stage
of message embedding. Type-II: both compression stage and embedding stage
will introduce some distortion to the cover, and compression stage is responsible
for major distortion. The methods in [1,2,3,4,5,6] belong to Type-I; and yet both
DE-based methods [7,8,9] and HS-based methods [10,11,12] belong to Type-II.
Both types process the feature compression and data embedding in a separate
way. In the present paper, we pay our attention to designing joint coding of
compression and embedding for a binary feature sequence, which can be directly
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used to improve Type-I methods. In fact, schemes in Type-II can be converted
to Type-I, and we will discuss how to do such conversion in one of our coming
papers.

For the Type-I reversible data hiding, the core problem is how to reversibly
embed data into a compressible feature sequences with good performance. The
performance is measured by embedding rate versus distortion, which is a spe-
cial rate-distortion coding problem. A formal model for this problem has been
established by Kalker and Willems [13]. In [13], the authors obtained the rate-
distortion function, i.e., the upper bound of the embedding rate under a given
distortion constraint, and they also proposed a joint compression and embedding
code construction, called recursive code construction [13,14], which consists of a
non-reversible data embedding code and a conditional compression code.

In this paper, we improve the recursive construction to approach the rate-
distortion bound proved in [13]. In the novel construction, we use a data embed-
ding code for all-zero covers and a backward extraction strategy, which enable us
to design a very efficient conditional compression algorithm. The proposed codes
can be directly applied to Type-I reversible data hiding schemes and significantly
reduce the distortion for various given embedding rates.

The rest of this paper is organized as follows. The coding model, theoretical
upper bound of embedding rate and recursive construction are briefly introduced
in Section 2. The proposed coding method with the analysis of embedding rate
versus distortion is elaborated in Section 3. The experiment results on improving
RS schemes are given in Section 4. The paper is concluded with a discussion in
Section 5.

2 Coding Model and Recursive Construction

2.1 Coding Model

Throughout this paper, we denote matrices and vectors by boldface fonts, and
use the same notation for the random variable and its realization for simplicity.
We denote the entropy by H(X) and conditional entropy by H(X |Y ).

To do reversible data hiding, a compressible feature sequence should first be
extracted from the original cover. For Type-I schemes, the features can usually
be represented by a binary sequence. Therefore we directly take the binary fea-
ture sequence as the cover to discuss the coding method. A formal setup and
theory limit for reversible data hiding into a compressible sequence have been
established in [13] by Kalker and Weillems, and we follow their notation.

Assume that there is a memoryless source producing binary compressible
cover sequence x = (x1, x2, · · · , xN ) such that xi ∈ {0, 1} with the probabil-
ity P (xi = 0) = p0 and P (xi = 1) = p1, 1 ≤ i ≤ N . The assumption of
x being compressible implies that the ratios of 0’s and 1’s are biased. With-
out loss of generality, we assume that p0 > 1/2. We use Hamming distance to
measure the embedding distortion on the cover x. Because the message m is
usually compressed and encrypted before being embedded, we assume that the
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message is a binary random sequence. If we can reversibly embed L-length mes-
sage m = (m1, m2, · · · , mL) into x to get the marked cover y = (y1, y2, · · · , yN)
with d modifications on average, we define the embedding rate as ρ = L/N and
the distortion as Δ = d/N . Furthermore, we define the embedding efficiency as
e = ρ/Δ, which means the average number of bits embedded per unit distortion.
We hope to get high embedding efficiency for various given embedding rates.

A direct construction for reversible data hiding is proposed by Fridrich et al.
[1] as follows. First compress the cover x into a string Comp(x) with a lossless
compression algorithm Comp( ). The length of Comp(x) is approximately equal
to NH(p0). Therefore we can append N(1 − H(p0)) bits of message m after
Comp(x) to obtain y = Comp(x)||m. The recipient can extract the message m
from y and reconstruct x by decompressing Comp(x). As the bits of Comp(x) are
uncorrelated with those of x and the message m is random, the expectation of
distortion between x and y is 0.5. The embedding rate is equal to (1 − H(p0)),
which in fact is the maximum achievable embedding rate. If we only need to
embed a shorter message with length equal to αN(1 − H(p0)) for some α < 1,
we can execute the above-mentioned method on a fraction α of the symbols in x.
In this case, the embedding rate ρ = α(1 − H(p0)) and the distortion Δ = α/2.
Therefore, for the distortion constraint Δ, this simple method can achieve a
rate-distortion line

ρsim(p0, Δ) = 2Δ(1 − H(p0)) . (1)

Virtually, the simple method above is not optimal. In fact, this method achieves
only a lower and fixed embedding efficiency 2(1 − H(p0)).

The maximum embedding rate achievable within the distortion constraint Δ
is called the capacity under the distortion Δ. The following theorem proved by
Kalker et al. [13] gives expression of the capacity.

Theorem 1. [13] The reversible embedding capacity ρrev for a memoryless bi-
nary source with p0 ≥ 1/2 is, for 0 ≤ Δ ≤ 1/2, given by

ρrev(p0, Δ) = H(max(p0 − Δ, 1/2)) − H(p0) (2)

Note that the above bound can be increased for non-memoryless sequences,
but we assume the binary cover is memoryless throughout this paper and this
assumption in fact is suitable for most schemes.

2.2 Recursive Construction

To improve the embedding efficiency, Kalker et al. [13] proposed a recursive em-
bedding method, which consists of a non-reversible embedding algorithm and a
conditional compression algorithm. First select a non-reversible embedding code
E with distortion D and embedding rate R. Assume the binary cover sequence
x = (x1, x2, · · · , xN ) is sufficiently long. The sequence is segmented into disjoint
blocks of length K, such that x = x1||x2|| · · · ||xN/K . Without loss of general-
ity, we assume that N/K is a sufficiently large integer. By using the embedding
code E , KR bits of message m1 can be embedded into the first host block x1,
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resulting to the first marked block y1. The recipient can reconstruct x1 under
the condition of known-y1 because she can observe y1. Therefore the amount of
information needed to reconstruct x1 is equal to H(x1|y1), which means we can
compress x1 into a sequence of length H(x1|y1). This compressed sequence is
embedded into the second block x2, leaving room for KR−H(x1|y1) bits of aux-
iliary message. Similarly, the information for reconstructing x2 is embedded into
x3. This process is continued recursively until xK−1. For the last block xK , the
simple method described in Subsection 2.1 is used to complete a full reversible
data hiding method. When N and N/K are large enough, the distortion of this
method is equal to distortion of the code E , and the embedding rate is equal to
R − H(x1|y1)/K.

This recursive construction can achieve higher embedding efficiency than the
simple method because of two key points: 1) the data is embedded by an effi-
cient non-reversible embedding code; 2) the cover block is compressed under the
condition of corresponding marked block. However the recursive construction
proposed above cannot still approach the upper bound of embedding efficiency.

3 Improved Recursive Construction

3.1 Motivations and Overall Framework

In this section, we will improve the recursive construction to approach the upper
bound of embedding efficiency for various embedding rates. To do that, we first
observe the rate-distortion function (2), which shows that the maximum capacity
is equal to 1 − H(p0), and it can be achieved when distortion Δ = p0 − 1/2. In
Fig. 1, we draw the rate-distortion lines for p0 = 0.7 and 0.9, which show that
the capacity increases with distortion Δ for 0 ≤ Δ ≤ p0 − 1/2, but keeps equal
to 1 − H(p0) for p0 − 1/2 < Δ ≤ 1/2. Therefore, we only need to consider how
to construct codes for 0 ≤ Δ ≤ p0 − 1/2.

In Corollary 1 of [13], Kalker et al. proved that the optimal embedding manner
for 0 ≤ Δ ≤ p0 − 1/2 is that only the most probable symbol is allowed to be
modified. In other words, only zeros are allowed to be changed if p0 ≥ 1/2.

Inspired by the observation above, we improve the recursive construction as
follows. We only embed messages into zeros of the cover block xi = (xi,1, · · · , xi,k)
to obtain the marked block yi = (yi,1, · · · , yi,k), and thus only zeros in xi will
be modified for the ith block such that 1 ≤ i ≤ N/K − 1. Therefore, for the
position j such that yi,j = 0, the corresponding xi,j must also be equal to 0.
This property can be used to compress xi under the condition of known-yi. In
fact, we can first delete the symbol xi,j in xi at position j such that yi,j = 0
and obtain a subsequence of xi, denoted by x′

i, and then compress x′
i by a

lossless compression algorithm Comp( ). This method will extremely improve the
compression rate because most symbols in xi have been compressed by deletion.
The compressed x′

i, denoted by Comp(x′
i), cascaded with an auxiliary message

are embedded into the next block xi+1 to get the next marked block yi+1. To
extract the message and reconstruct the cover, the extraction process must be
performed via a backward manner. To extract message from yi, we first extract
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Fig. 1. Maximum capacity lines for p0 = 0.7 and 0.9

message from yi+1 and obtain x′
i by decompression. Combining x′

i and yi, we
can reconstruct xi and know the positions of zeros in xi. According to these
positions of zeros of xi, we can extract message from yi.

The detailed process and an example for embedding and extraction will be
described in Subsection 3.3. We now deal with the first problem, that is, how to
construct efficient codes for embedding data into an all-zero cover.

3.2 Data Embedding into All-Zero Covers

Data embedding into all-zero covers is just a special case of the coding model
in Section 2 with taking p0 = 1, which can be realized by a decompression
algorithm, e.g., the reverse zero-run length (RZL) coding proposed by Wong et
al. [6]. In this section, we proposed a more efficient embedding code by improving
the RZL method.

Assume the cover sequence x = (x1, x2, · · · , xN ) is an N -length all-zero cover,
which means every symbol xi = 0 for 1 ≤ i ≤ N . We want to embed a part of the
message sequence m = (m1, m2, · · · , mL, · · ·) into x. Two pointers, P1 and P2
are needed in the embedding process. P1 is used to label the last cover symbol
that has been modified, and P2 is used to count the number of message bits that
have been embedded. The following embedding construction is an rate-variable
coding method, in which the embedding rate is determined by a parameter k,
k ≥ 1. First set P1 = 0 and P2 = 0. The encoder reads the message bit mP2+1,
and there are two embedding cases according to the value of mP2+1.

Case 1. If mP2+1 = 0, set P1 = P1 + 2k, P2 = P2 + 1 and one bit mP2+1 is
embedded. In this case, no cover symbol is modified.
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Case 2. If mP2+1 = 1, read the next k bits (mP2+2, · · · , mP2+k+1), which
can be represented by a decimal integer belonging to [0, 2k − 1], denoted
by (mP2+2, · · · , mP2+k+1)int. Set P1 = P1 + (mP2+2, · · · , mP2+k+1)int +
1, P2 = P2 + k + 1, and flip xP1 from “0” to “1”. Thus, k + 1 bits
(mP2+1, · · · , mP2+k+1) are embedded, and only one cover symbol, xP1, is
modified.

For both cases, we have embedded the first P2 bits of message into the first P1
cover symbols. In the same manner, we continue to embed the rest message bits
(mP2+1, mP2+2, · · ·) into the rest cover symbols (xP1+1, · · · , xN ), until N−P1 <
2k. The obtained marked cover is denoted by y = (y1, y2, · · · , yN).

To extract the message from y, first set pointers P1 = 0 and P2 = 0. With
P1+1 as the start point, read a 2k length block from y, i.e., (yP1+1, · · · , yP1+2k).
There are also two cases according to whether the block (yP1+1, · · · , yP1+2k)
includes “1”.

Case 1. If all symbols in (yP1+1, · · · , yP1+2k) are equal to “0”, let the (P2+1)th
message bit mP2+1 = 0, P1 = P1 + 2k, and P2 = P2 + 1.

Case 2. If there exists symbol “1” in (yP1+1, · · · , yP1+2k), search for the first
index i such that yP1+i = 1 and yP1+1 = yP1+2 = · · · = yP1+i−1 = 0. The
integer i − 1 can be represented by a binary sequence consisting of k bits,
denoted by (i−1)bin. Let the (P2+1)th message bit mP2+1 = 1, the next k
bits (mP2+2, · · ·mP2+k+1) = (i− 1)bin, and P1 = P1 + i, P2 = P2 + k + 1.

In the same manner, extract messages from the rest symbols (yP1+1, · · · , yN)
until N − P1 < 2k and there is no symbol “1” in the rest N − P1 symbols of
the marked cover. Now we use a simple example to show the embedding and
extraction process of the method above.

Example 1. Take the parameter k = 2. Assume the cover is a 9-length all-zero
cover, i.e. N=9, and the message consists of 7 bits, as shown in Fig. 2. To embed
the message, first set pointers P1 = 0 and P2 = 0, and then do the following
three steps.

Step 1. Read m1 = 0, thus set P1 = P1 + 22 = 4, and P2 = P2 + 1 = 1.
Step 2. Read mP2+1 = m2. Because m2 = 1, read the next two message bits

(m3, m4) = (0, 1), which is interpreted as a decimal integer (0, 1)int = 1. Set
P1 = P1 + (0, 1)int + 1 = 6, P2 = P2 + k + 1 = 4, and flip xP1 = x6 to “1”.

Step 3. Read mP2+1 = m5. Because m5 = 1, read the next two message bits
(m6, m7) = (1, 0), interpreted as a decimal integer (1, 0)int = 2. Set P1 =
P1 + (1, 0)int + 1 = 9, P2 = P2 + k + 1 = 7, and flip xP1 = x9 to “1”. As
N − P1 = 9− 9 = 0 < 4, the embedding process stops. The marked cover is
denoted by y that is obtained by modifying the sixth and ninth bits of the
cover x.

To extract the message from y, we first set P1 = 0 and P2 = 0, and then do the
following three steps.
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Index 1 2 3 4 5 6 7 8 9 

Message m 0 1 0 1 1 1 0   

Cover x 0 0 0 0 0 0 0 0 0 

Marked cover y 0 0 0 0 0 1 0 0 1 

Embedding steps Step 1 Step 2 Step 3 
 

Fig. 2. Example of data embedding into all-zero covers

Step 1. Read the first four bits (y1, y2, y3, y4) = (0, 0, 0, 0) from y. Because this
is an all-zero block, set m1 = 0, P1 = P1 + 4 = 4, and P2 = P2 + 1 = 1.

Step 2. With P1 + 1 = 5 as the start point, read successive four bits (y5, y6,
y7, y8) = (0, 1, 0, 0). Because the first symbol “1” appears at the second
position in this block, i.e., the index i = 2 and (i − 1)bin = (0, 1). Let
mP2+1 = m2 = 1 and (m3, m4) = (i − 1)bin = (0, 1). Set P1 = P1 + i = 6
and P2 = P2 + 1 + k = 4.

Step 3. Although N −P1 = 9− 6 = 3 < 4, the extraction process will continue
because the last three symbols of y includes a “1”. The “1” appears at
the third position in (y7, y8, y9) = (0, 0, 1), so let the index i = 3 and thus
(i−1)bin = (1, 0). Thus, we extract the last three bits of messages such that
mP2+1 = m5 = 1 and (m6, m7) = (i − 1)bin = (1, 0).

In this example, we embed 7 bits of message into a 9-length cover with only 2
modifications. We denote this embedding method by E0. To analyze the em-
bedding rate and distortion of E0, we investigate the two cases in the em-
bedding process. In Case 1, we embed one bit into a 2k-length cover without
making any modification; in Case 2, we embed k + 1 bits of messages by ex-
pending n = (mP2+2, · · · , mP2+k+1)int + 1 cover symbols and one modification.
Because the message block (mP2+2, · · · , mP2+k+1) is random, the probability
P (n = j) = 1/2k for any j ∈ {1, 2, · · · , 2k}, and thus the expectation of n is
equal to

1
2k

(1 + 2 + · · · + 2k) =
2k + 1

2
. (3)

Therefore in Case 2, we on average embed k+1 bits into (2k+1)/2 cover symbols
with one modification. Because P (mP2+1 = 0) = P (mP2+1 = 1) = 1/2, the two
cases occur with equal probability . In summary, for one embedding step, the
average number of embedded bits is equal to

Nmess =
1
2
× 1 +

1
2
× (k + 1) =

k + 2
2

. (4)

The average number of expended cover symbols is equal to

Ncover =
1
2
× 2k +

1
2
× 2k + 1

2
=

2k+1 + 2k + 1
4

, (5)

and the average number of modifications is equal to
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Nmodi =
1
2
× 0 +

1
2
× 1 =

1
2

. (6)

Therefore the embedding rate R and distortion D of code E0 can be calculated
as follows

R0 =
Nmess
Ncover

=
2k + 4

2k+1 + 2k + 1
, D0 =

Nmodi
Ncover

=
2

2k+1 + 2k + 1
. (7)

3.3 Improved Recursive Construction

We use E0 as the non-reversible embedding code and design a corresponding com-
pression algorithm to improve the recursive construction in [13,14]. Assume that
the binary cover sequence x = (x1, x2, · · · , xN ) is generated from a memoryless
source satisfying P (xi = 0) = p0 and P (xi = 1) = p1. Firstly we divide x into
N/K disjoint blocks of length K, such that x = x1||x2|| · · · ||xN/K . In every block
we only embed messages into zero symbols via the embedding code E0. Therefore,
we can on average embed Kp0R0 bits into the Kp0 “0’s” of x1 = (x1,1, · · · , x1,K)
by flipping Kp0D0 “0’s” to “1’s” because the code E0 has embedding rate R0 and
distortion D0, yielding the first marked block y1 = (y1,1, · · · , y1,K). Therefore,
at the position j, such that 1 ≤ j ≤ K and y1,j = 0, the corresponding x1,j must
also be equal to “0”, because no “1” in x1 has been flipped to “0” in y1. We
use this property to compress x1 under the condition of known-y1 by deleting
all symbols in x1 at position j’s such that y1,j = 0, resulting to a subsequence
of x1. Denote this subsequence by x′

1, and thus x′
1 = {x1j |1 ≤ j ≤ K, y1j = 1}.

The ratio of zeros in y1 is equal to the ratio of non-modified zeros of x1, that is
p0(1−D0). Thus, the ratio of ones in y1 is equal to 1− p0(1−D0) = p1 + p0D0,
and the average length of x′

1 is equal to K(p1 +p0D0). In other words, under the
condition of known-y1, the block x1 is compressed to x′

1 with compression rate
p1 + p0D0, and we can reconstruct x1 by replacing ones of y1 by the symbols
of x′

1.
Furthermore we compress x′

1 with a lossless compression algorithm Comp( ),
e.g., an arithmetic coder. Denote the ratio of zeros and ones in x′

1 by q0 and q1

respectively, which can be easily computed as follows.

q0 =
p0D0

p1 + p0D0
, q1 =

p1

p1 + p0D0
. (8)

Therefore x′
1 can be compressed with the rate about equal to H(q0). In summary,

when y1 is known, the amount of information needed to reconstruct x1 is equal
to

K(p1 + p0D0)H(q0) . (9)

By using the code E0, the compressed information Comp(x′
1) is embedded into

the zeros of the next block x2, leaving room for K(p0R0 − (p1 + p0D0)H(q0))
bits of auxiliary message and resulting to the second marked block y2. The infor-
mation for reconstructing x2, denoted by Comp(x′

2) is embedded into the third
block x3. This process is continued recursively until the one but the last block
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xN/K . For the last block xN/K , we directly compress the block and make room
for K(1 − H(p0)) bits, into which we embed Comp(x′

N/K−1) for reconstructing
the second last block xN/K−1. In addition, we also embed the overhead infor-
mation, such as the value of p0, the block length K, and the parameter k used
by code E0, into the last block.

To extract the message and reconstruct the cover, the extraction process must
be performed in a backward manner. To extract messages from the ith block yi,
for 1 ≤ i ≤ N/K − 1, we must first extract messages from yi+1 and obtain x′

i

by decompression. Combining x′
i and yi, we can reconstruct xi and know the

positions of zeros in xi, according to which we can extract messages from yi by
using the code E0.

When N and N/K are large enough, the embedding rate and distortion of
the method above can be estimated by ρrec and Drec such that

ρrec = p0R0 − (p1 + p0D0)H(q0), Drec = p0D0 . (10)

When varying the parameter k in the code E0, we can get variable rate (R0, D0)
by Eq. (7), and thus yield rate-variable recursive construction with embedding
rate ρrec(k) and distortion Drec(k) as follows.

ρrec(k) = p0
2k + 4

2k+1 + 2k + 1
−
(

p1 + p0
2

2k+1 + 2k + 1

)
H(q0), (11)

Drec(k) = p0
2

2k+1 + 2k + 1
, k ≥ 1 . (12)

Now we use an example with only two blocks to illustrate the embedding and
extraction process of the method described above.

Example 2. This example is based on Example 1. As shown in Fig.3, the first
cover block x1 consists of ten symbols with only one “1”. The first seven message
bits are the same as in Example 1, which are embedded into the zeros of x1 and
generate a nine-length marked block as we have obtained in Example 1. We
denote this marked block in interim step by y′

1. Replace zeros of x1 by y′
1 and

generate the ultimate marked block y1. Denote the index set of 1’s in y1 by Ind1,
and thus Ind1 = {3, 7, 10}, according to which we extract bits from x1 and get
x′

1 = (x3, x7, x10) = (1, 0, 0). The sequence x′
1 is compressed to Comp(x′

1) and
then is embedded into the second block.

To reconstruct the cover block and extract messages from the marked block
y1, we first count the number of ones in y1 that is equal to 3. Second, we extract
messages from the second marked block and decompress the extracted messages
successively until we get a 3-length decompressed sequence which is just x′

1.
Thus, we can reconstruct x1 by replacing the ones of y1 by x′

1. After that
we know the index set of zeros in x1 such that Ind0 = {1, 2, 4, 5, 6, 7, 8, 9, 10},
according to which we extract bits from y1 and get the sequence y′

1. Finally, we
can extract the seven message bits from y′

1 by using the code E0.



Capacity-Approaching Codes for Reversible Data Hiding 265

Index 1 2 3 4 5 6 7 8 9 10  Second Block 
message 0 1 0 1 1 1 0 …   … 

 

1y  0 0  0 0 0 1 0 0 1  
 

1x  0 0 1 0 0 0 0 0 0 0 … 
 

1y  0 0 1 0 0 0 1 0 0 1 Comp( 1x )… 
 

1x    1    0   0  

Comp( 1x ) Comp( 1x )  
 

Fig. 3. Example of improved recursive construction

3.4 Performance Comparison

We compare the coding method above with the codes proposed in [13] and [14].
In the original recursive construction [13], Kalker and Willems used Hamming
matrix embedding [16] as the non-reversible data embedding code, by which we
can embed k bits of message into 2k − 1 cover bits by at most one modification.
The Hamming codes modify zeros and ones with equal probability. Maas et al.
[14] improved the original recursive construction by adjusting Hamming code to
change more zeros than ones for the case k = 2.

Both theoretical and simulation results of the proposed method are compared
with the codes in [13,14] for p0 = 0.8 and 0.65. The simulation results are
obtained by embedding random messages into a 216-length cover. In the exper-
iments, we set the length of cover blocks K=200, and an adaptive arithmetic
coder [15] is used as the compression algorithm Comp( ). We compare the codes
by using the measurement of embedding efficiency versus embedding rate. As
shown in Fig.4, the proposed codes significantly outperform the codes presented
in [13,14]. For small p0 (p0 = 0.6), the embedding efficiency of codes in [13,14] is
close to that of simple codes, while the embedding efficiency of proposed codes
is still close to the upper bound. However, we note that the proposed codes with
small parameter k will perform poor when the value of p0 decreases. Therefore
we generate codes for p0 = 0.8 by using k = 1, 2, 3, 4, 5, while for p0 = 0.65
we only use k = 2, 3, 4, 5. The suitable coding parameters for p0 ∈ [0.54, 1] are
proposed in Table 1. When p0 is smaller than 0.54, the minimal parameter k
should further increase, but the capacity for such cases usually is too small for
practical applications.

Note that this construction can not reach the upper bound of embedding
efficiency because E0 is not optimal. If we use the decompressionor of an optimal
compression algorithm as coding method for all-zero covers, we have R0 = H(D0)
and then it is easy to prove that Eq. (10) is equivalent to Eq. (2). Therefore, the
proposed construction in fact is optimal for reversible data hiding.
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Fig. 4. Comparison of embedding efficiency vs. embedding rate between the proposed
codes and codes in [13, 14]

Table 1. Coding parameter k according to p0

p0 [0.66, 1] [0.58, 0.66) [0.54, 0.58) . . .

k ≥ 1 ≥ 2 ≥ 3 . . .
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4 Applications in Type-I Schemes

The coding method above can be directly applied to data hiding schemes that
belong to Type-I, such as the schemes in [1,2,3,4,5,6]. Taking the regular-singular
(RS) method in [1] as an example, we illustrate the ability of the proposed codes
for reducing embedding distortion.

The RS method [1] is proposed for spatial images by constructing compressible
features based on texture complexity. Assume the cover is a 8-bit grayscale
image. The image first is divided into small groups, e.g., n pixels per group.
A permutation F is used to flip the gray values, the amplitude of which is
controlled by a positive inter A. For instance, when A = 1, the flipping function
is as follows:

F : 0 ↔ 1, 2 ↔ 3, 4 ↔ 5, · · · , 254 ↔ 255 . (13)

For a pixel group G = (x1, · · ·xn), F (G) = (F (x1), · · ·F (xn)). A distinguishing
function f is used to detect the changing direction of the variation of the group.

f(G) =
n−1∑
i=1

|xi+1 − xi| . (14)

By using the functions F and f , the pixel group can be defined as regular (R) ,
singular (S), or unusable (U) such that

G ∈ R ⇔ f(F (G)) > f(G)
G ∈ S ⇔ f(F (G)) < f(G)
G ∈ U ⇔ f(F (G)) = f(G)

. (15)

For typical picture, adding some noise will lead to an increase of the variation,
so we expect a bias between the number of regular groups and the number of
singular groups. By assigning a “0” to a regular group and a “1” to a singular
group, we can generate a binary cover sequence satisfying p0 > 1/2. Flipping
between “0” to “1” can be realized by applying F to the corresponding pixel
group.

Usually larger amplitude A implies larger capacity but also larger embedding
distortion. In our experiments, we set A from 1 to 4, and the group size n = 4.
For each value of A, we embed messages with the original RS method and the
proposed codes into 10 test images [17] with size of 512 × 512 (see Fig.5), and
calculate the average embedding rate and average PSNR. We observed that the
ratio of zeros p0 in the RS sequence varies from 0.54 to 0.87. In our coding
method, we use the minimal parameter k according to p0 as proposed in Table

Fig. 5. Text images with size of 512 × 512
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Fig. 6. Experimental results on improving RS method

1. As shown in Fig.6, the proposed codes can significantly increase the PSNRs
for various embedding rates. Herein, the embedding rate is defined as bits carried
by per pixel (bpp).

5 Conclusion

Most state-of-the-art reversible data hiding schemes use a strategy with separate
processes of feature compression and message embedding. Kalker and Willems
noted that higher embedding rate under given distortion constraint may be
achieved by using joint encoding of feature compression and message embedding
and thus proposed the recursive code construction. In this paper we improve
the recursive construction by using not only the joint encoding above but also a
joint decoding of feature decompression and message extraction. The improved
codes can approach the capacity bound and significantly outperform previous
codes [13,14] by embedding efficiency.

The current codes are designed for embedding data into a biased 0-1sequence.
These kinds of codes cannot be directly used for the Type-II schemes such as
DE-based schemes and HS-based schemes, because the Type-II schemes generate
a binary feature sequence in a special compression manner that accounts for the
majority of the distortion. In one of our subsequent papers, we will discuss how
to convert the Type-II schemes to fit the coding model established by Kalker
and Willems [13] and apply the codes propose in the present paper to improve
these schemes.
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Dr. Tomáš Filler and anonymous reviewers for their valuable comments.



Capacity-Approaching Codes for Reversible Data Hiding 269

References

1. Fridrich, J., Goljan, M.: Lossless Data Embedding for All Image Formats. In: Proc.
of EI SPIE, Security and Watermarking of Multimedia Contents IV, San Jose,
vol. 4675, pp. 572–583 (2002)

2. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless Generalized-LSB Data
Embedding. IEEE Trans. on Image Processing 14(2), 253–266 (2005)

3. Xuan, G., Shi, V., Chai, P., et al.: Reversible Binary Image Data Hiding by
Run-Length Histogram Modification. In: 19th International Conference on Pat-
tern Recognition, ICPR 2008 (2008)

4. Li, S., Kot, A.C.: Privacy Protection of Fingerprint Database Using Lossless Data
Hiding. In: Proceedings of the 2010 IEEE International Conference on Multimedia
and Expo., pp. 1293–1298 (2010)

5. Du, R., Fridrich, J.: Lossless Authentication of MPEG-2 Video. In: Proc. of IEEE
International Conference on Image Processing, vol. 2, pp. 893–896 (2002)

6. Wong, K., Tanaka, K., Takagi, K., Nakajima, Y.: Complete Video Quality-
Preserving Data Hiding. IEEE Trans. on Circuits and Systems for Video Tech-
nology 19(10), 1499–1512 (2009)

7. Tian, J.: Reversible Data Embedding Using a Difference Expansion. IEEE Trans.
Circuits Syst. Video Technol. 13(8), 890–896 (2003)

8. Thodi, D.M., Rodriguez, J.J.: Expansion Embedding Techniques for Reversible
Watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)

9. Hu, Y., Lee, H.-K., Li, J.: DE-based Reversible Data Hiding with Improved Over-
flow Location Map. IEEE Trans. Circuits Syst. Video Technol. 19(2), 250–260
(2009)

10. Ni, Z., Shi, Y.Q., Ansari, N., Wei, S.: Reversible Data Hiding. IEEE Trans. Circuits
Syst. Video Technol. 16(3), 354–362 (2006)

11. Tsai, P., Hu, Y.C., Yeh, H.L.: Reversible Image Hiding Scheme Using Predictive
Coding and Histogram Shifting. Signal Process. 89, 1129–1143 (2009)

12. Luo, L.X., Chen, Z.Y., Chen, M., et al.: Reversible Image Watermarking Using
Interpolation Technique. IEEE Trans. Inf. Forensics and Security 5(1), 187–193
(2010)

13. Kalker, T., Willems, F.M.: Capacity Bounds and Constructions for Reversible
Data-Hiding. In: Proc. of 14th International Conference on Digital Signal Pro-
cessing, DSP 2002, pp. 71–76 (2002)

14. Maas, D., Kalker, T., Willems, F.M.: A Code Construction for Recursive Reversible
Data-Hiding. In: Proc. Multimedia and Security Workshop at ACM Multimedia,
Juan-les-Pins, France (December 6, 2002)

15. Sayood, K.: Introduction to Data Compression, pp. 87–94. Morgan Kaufmann Pub-
lishers, San Francisco (1996)

16. Crandall, R.: Some Notes on Steganography. Posted on steganography mailing list
(1998), http://os.inf.tu-dresden.de/~westfeld/crandall.pdf

17. Miscelaneous gray level images,
http://decsai.ugr.es/cvg/dbimagenes/g512.php

http://os.inf.tu-dresden.de/~westfeld/crandall.pdf
 http://decsai.ugr.es/cvg/dbimagenes/g512.php


Code Obfuscation against Static and Dynamic

Reverse Engineering

Sebastian Schrittwieser1 and Stefan Katzenbeisser2

1 Vienna University of Technology, Austria
sebastian.schrittwieser@tuwien.ac.at

2 Darmstadt University of Technology, Germany
katzenbeisser@seceng.informatik.tu-darmstadt.de

Abstract. The process of reverse engineering allows attackers to under-
stand the behavior of software and extract proprietary algorithms and
data structures (e.g. cryptographic keys) from it. Code obfuscation is
frequently employed to mitigate this risk. However, while most of to-
day’s obfuscation methods are targeted against static reverse engineer-
ing, where the attacker analyzes the code without actually executing it,
they are still insecure against dynamic analysis techniques, where the
behavior of the software is inspected at runtime. In this paper, we intro-
duce a novel code obfuscation scheme that applies the concept of software
diversification to the control flow graph of the software to enhance its
complexity. Our approach aims at making dynamic reverse engineering
considerably harder as the information an attacker can retrieve from the
analysis of a single run of the program with a certain input, is useless for
understanding the program behavior on other inputs. Based on a pro-
totype implementation we show that our approach improves resistance
against both static disassembling tools and dynamic reverse engineering
at a reasonable performance penalty.

Keywords: Code obfuscation, reverse engineering, software protection,
diversification.

1 Introduction

Today, software is usually distributed in binary form which is, from an attacker’s
perspective, substantially harder to understand than source code. However, var-
ious techniques can be applied for analyzing binary code. The process of reverse
engineering aims at restoring a higher-level representation (e.g. assembly code)
of software in order to analyze its structure and behavior. In some applications
there is a need for software developers to protect their software against reverse
engineering. The protection of intellectual property (e.g. proprietary algorithms)
contained in software, confidentiality reasons, and copy protection mechanisms
are the most important examples. Another important aspect are cryptographic
algorithms such as AES. They are designed for scenarios with trusted end-points
where encryption and decryption are performed in secure environments and with-
stand attacks in a black-box context, where an attacker does not have knowledge
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of the internal state of the algorithm (such as round keys derived from the sym-
metric key). In contrast to traditional end-to-end encryption in communications
security, where the attacker resides between the trusted end-points, many types
of software (e.g. DRM clients), have to withstand attacks in a white-box context
where an attacker is able to analyze the software while its execution. This is
particularly difficult for software that runs on an untrusted host.

Software obfuscation is a technique to obscure the control flow of software as
well as data structures that contain sensitive information and is used to miti-
gate the threat of reverse engineering. Collberg et al. [8] define an obfuscating
transformation τ as a transformation of a program P into a program P ′ so that
P and P ′ have the same observable behavior. The original program P and the
obfuscated program P ′ must not differ in their functionality to the user (aside
from performance losses because of the obfuscating transformation), however,
non-visible side effects, like the creation of temporary files are allowed in this
loose definition. Another formal concept of software obfuscation was defined by
Barak et al. [3]. Although this work shows that a universal obfuscator for any
type of software does not exist and perfectly secure software obfuscation is not
possible, software obfuscation is still used in commercial systems to “raise the
bar” for attackers. In the context of Digital Rights Management systems it is
the prime candidate for the protection against attackers who have full access
to the client software. While the research community developed a vast num-
ber of obfuscation schemes (see e.g. [5] and [16]) targeted against static reverse
engineering, where the structure of the software is analyzed without actually
executing it, they are still insecure against dynamic analysis techniques, which
execute the program in a debugger or virtual machine and inspect its behavior.

In this work we introduce a novel code obfuscation technique that effectively
prevents static reverse engineering and limits the impact of dynamic analysis.
Technically, we apply the concept of code diversification to enhance the complex-
ity of the software to be analyzed. Diversification was used in the past to prevent
“class breaks”, so that a crack developed for one instance of a program will most
likely not run on another instance and thus each copy of the software needs to be
attacked independently. In this work we use diversification for the first time for
a different purpose, namely increasing the resistance against dynamic analysis.

The main contribution of the paper is a novel code obfuscation scheme that
provides strong protection against automated static reverse engineering and
which uses the concept of software diversification in order to enhance the com-
plexity of dynamic analysis. Note that we do not intend to construct a perfectly
secure obfuscation scheme, as dynamic analysis can not be prevented. However,
our aim is to make attacks significantly more difficult so that knowledge derived
from one run of the software in a virtual machine does not necessarily help in
understanding the behavior of the software in runs on other inputs.

The remainder of the paper proceeds as follows. After a short overview of
related work (Section 2) we introduce our approach in Section 3. In Section 4
we explain how performance is influenced by our method and evaluate security
aspects. Finally, a conclusion is given in Section 5.
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2 Related Work

There are a number of publications on software obfuscation and their imple-
mentation. A comprehensive taxonomy of obfuscating transformations was in-
troduced in 1997 by Collberg et al. [8]. To measure the effect of an obfuscating
transformation, Collberg defined three metrics: potency, resilience and cost. Po-
tency describes how much more difficult the obfuscated program P ′ is to under-
stand for humans. Software complexity metrics (e.g. [6,12,22,11,13,21,19]), which
were developed to reduce the complexity of software, can be used to evaluate
this rather subjective metric. In contrast to potency that evaluates the strength
of the obfuscating transformation against humans, resilience defines how well it
withstands an attack of an automatic deobfuscator. This metric evaluates both
the programmer effort (how much effort is required to develop a deobfuscator)
and the deobfuscator effort (the effort of space and time required for the de-
obfuscator to run). A perfect obfuscating transformation has high potency and
resilience values, but low costs in terms of additional memory usage and in-
creased execution time. In practice, a trade-off between resilience/potency and
costs (computational overhead) has to be made. However, the main problem of
measuring an obfuscation technique’s strength is that a well-defined level of se-
curity does not exist, even though it can make the process of reverse engineering
significantly harder and more time consuming. Several other theoretical works
on software obfuscation can be found in [17] and [23].

As preventing disassembling is nearly impossible in scenarios where attackers
have full control over the host on which the software is running, the common so-
lution is to make the result of disassembling worthless for further static analysis
by preventing the reconstruction of the control flow graph. To this end, [16] and
[5] use so-called branching functions to obfuscate the targets of CALL instruc-
tions: The described methods replace CALL instructions with jumps (JMP) to a
generic function (branching function), which decides at runtime which function
to call. Under the assumption that for a static analyzer the branching function
is a black box, the call target is not revealed until the actual execution of the
code. This effectively prevents reconstruction of the control flow graph using
static analysis. However, the concept of a branching function does not protect
against dynamic analysis. An attacker can still run the software on various in-
puts and observe its behavior. Medou et al. [18] argue that recently proposed
software protection models would not withstand attacks that combine static and
dynamic analysis techniques. Still, code obfuscation can make dynamic analysis
considerably harder.

An attack is called a class break, if it was developed for a single entity, but
can easily be extended to break any similar entity. In software, for example, we
would speak of a class break if an attacker can not only remove a copy protec-
tion mechanism on the software purchased, but also can write a generic patch
that removes it from every copy of the software. For software publishers, class
breaks are dreaded, because they allow mass distribution of software cracks (e.g.
on the Internet) to people who would otherwise not be able to develop cracks
themselves. The concept of diversification for preventing class breaks of software
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was put forth by Anckaert [1]. An algorithm for automated software diversifica-
tion was introduced by De Sutter et al. [9]. Their approach uses optimization
techniques to generate different, but semantically equivalent, assembly instruc-
tions from code sequences. While software diversification is an effective solution
(see e.g. [2]), it raises major difficulties in software distribution, because each
copy has to be different. There is no efficient way for the distribution of diversi-
fied copies via physical media (e.g. DVD), and software updates for diversified
software are difficult to distribute as well. Franz [10] proposes a model for the
distribution of diversified software on a large scale. The author argues that the
increasing popularity of online software delivery makes it feasible to send each
user a different version of the software. However, a specific algorithm for the
diversification process is not given.

Another approach to protect cryptographic keys embedded in software is the
use of White-Box Cryptography (WBC), which attempts to construct a de-
cryption routine that is resistant against a “white-box” attacker, who is able
to observe every step of the decryption process. In WBC, the cipher is imple-
mented as a randomized network of key dependent lookup tables. A white-box
DES implementation was introduced by Chow et al. [7]. Based on this approach,
other white-box implementations of DES and AES have been proposed, but all
of them have been broken so far (see e.g. Jabob et al. [14], Wyseur et al. [24]
and Billet et al. [4]). Michiels and Gorissen [20] introduce a technique that uses
white-box cryptography to make software tamper-resistant. In their approach,
the executable code of the software is used in a white-box lookup table for the
cryptographic key. Changing the code would result in an invalid key. However,
due to the lack of secure WBC implementations, the security of this construction
is unclear.

Hardware-based approaches would allow to completely shield the actual exe-
cution of code from the attacker. However, this only moves attacks to the tamper
resistance of the hardware, while raising new challenges like difficult support for
legacy systems and high costs. Therefore, hardware-based software protection is
out of scope of this work.

3 Approach

Our approach combines obfuscation techniques against static and dynamic re-
verse engineering. Within this paper, the term static analysis refers to the process
of automated reverse engineering of software without actually executing it. Using
a disassembler, an attacker can translate machine code into assembly language,
a process that makes machine instructions visible, including ones that modify
the control flow such as jumps and calls. This way, the control flow graph of
the software can be reconstructed without executing even a single line of code.
By inserting indirect jumps that do not reveal their jump target until runtime
and utilizing the concept of a branching function we make static control flow
reconstruction more difficult.

Employing code obfuscation to prevent static analysis is a first step towards
running code securely, even in the presence of attackers who have full access
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to the host. However, an attacker is still able to perform dynamic analysis of
the software by executing it. The process of disassembling and stepping through
the code reveals much of its internal structure, even if obfuscating transforma-
tions were applied to the code. Preventing dynamic analysis in a software-only
approach is not fully possible as an attacker can always record executed in-
structions, the program’s memory, and register values of a single run of the soft-
ware. However, in our approach we aim at making dynamic analysis considerably
harder for the attacker by applying concepts from diversification. In particular,
the information an attacker can retrieve from the analysis of a single run of the
program with certain inputs is useless for understanding the trace of another
input. It thus increases costs for an attacker dramatically, as the attacker needs
to run the program many times and collect all information to obtain a complete
view of the program. This concept can be considered as diversification of the
control flow graph.

3.1 Protection against Static Reverse Engineering

In our approach we borrow the idea of a branching function to statically obfus-
cate the control flow of the software. While previous implementations replace
existing CALL instructions with jumps to the branching function, we split the
code into small portions that implement only a few instructions and then jump
back to the branching function. While this increases the overhead, it makes the
blocks far more complex to understand. Because of the small size of code blocks,
they leak only little information: A single code block usually is too small for an
attacker to extract useful data without knowing the context the code block is
used inside the software. The jump from the branching function to the following
code block is indirect, i.e. it does not statically specify the memory address of
the jump target, but rather specifies where the jump target’s address is located
at runtime. Static disassembling results in a huge collection of small code blocks
without the information on how to combine them in the correct order to form a
valid piece of software.

Figure 1 explains this approach. The assembly code of the software is split
into small pieces, which we call gadgets. At the end of each gadget we add a jump
back to the branching function. At runtime, this function calculates, based on
the previously executed gadget, the virtual memory address of the following gad-
get and jumps there. The calculation of the next jump target should not solely
depend on the current gadget, but also on the history of executed gadgets so
that without knowing every predecessor of a gadget, an attacker is not able to
calculate the address of the following one. We achieve this requirement by assign-
ing a signature to each gadget (see Section 3.3). During runtime, the signatures
of executed gadgets are summed up and this sum is used inside the branching
function as input parameter for a lookup table that contains the address of the
subsequent gadget. Without knowing the signature sum of all predecessors of a
gadget, it is hard to calculate the subsequently executed gadget.
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_branch:
save flags on stack
save registers on stack
EAX <= [sig]
ADD lookupTable to EAX
target <= [EAX]
restore registers
restore flags
jump to [target]

Gadgets Branching Function (pseudocode)

1

2

3

4

5

6

Fig. 1. Overall architecture of the obfuscated program: small code blocks (gadgets) are
connected by a branching function

3.2 Protection against Dynamic Reverse Engineering

The approach effectively prevents static analysis, as a debugger is not able to
connect gadgets to each other without calculating signature sums and executing
the branching function. Dynamic analysis, however, reveals all gadgets used in
a single invocation of the software as well as their order. An attacker can easily
remove the jumps to the branching function by just concatenating called gad-
gets in their correct order. By performing this task for several inputs, he gets
significant information on the software behavior.

To mitigate that risk, we diversify the control flow graph of the software so
that it contains many more control flow paths than the original implementation.
We diversify gadgets (i.e. add semantically identical but syntactical different
gadgets to the code) and add input dependent branches so that different gadgets
get executed upon running the software with different inputs. We can symbolize
this by a gadget graph, where the actual gadget code is stored in the edges
that connect two nodes, which symbolize the state of a program. Figure 2 shows
the multi-target branching concept before gadget diversification. For every node,
we create outgoing edges and fill them with gadgets (i.e. instructions from the
original code). All outgoing edges of one node start with the same instruction
and only differ in gadget length. In a further step, these gadgets are diversified.
Every path through the graph is a valid trace of the program. The branches are
input dependent: based on the program’s input the branching function decides
which path through the graph has to be taken. For a logical connection between
gadgets, we implement a path signature algorithm that uniquely identifies the
currently executed node and all its predecessors (see Section 3.3).
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xor esi, edi
xor esi, [ebp]

and edi, 0xff

and edi, 0xff
mov edi, [te2+edi*4]

xor esi, [ebp]
add ebp, 4
mov esi, ebx

add ebp, 4
mov esi, ebx

and edi, 0xff
mov edi, [te2+edi*4]
xor esi, edi

xor esi, edi
xor esi, [ebp]
add ebp, 4

mov edi, [te2+edi*4]
xor esi, edi
xor esi, [ebp]
add ebp, 4

Fig. 2. Gadget graph

Fig. 3. Diversified control flow graph

In order to increase the security of the obfuscation, we prevent that a path
that is valid for one input is also valid for other inputs. We do this by modifying
some instruction’s operands and automatically compensate these modifications
during runtime by corrective input data. Consider, for example, the assembly
instruction add eax, 8. If we replace this instruction with add eax, ebx; sub
eax, 1, where the content of the register eax is derived from the program’s
input, only a value of 9 in ebx would yield to the correct value in register eax.
Figure 3 shows a more complex control flow graph.

All paths through this graph are valid and semantically equal traces of the
program. However, because of the inserted modifications to operands, one specific
path yields correct computation only for a specific input (or a group of inputs)
and fails otherwise. If an attacker would use the trace of one input for running the
program in the context of another input (e.g. by diverting the control flow in the
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branching function), our modifications to operands would not be compensated by
the new input and the program would show unexpected behavior and might crash
at some point (e.g. because of access to miscalculated memory addresses). The
process of creating the diversified gadget graph is much easier and faster than
breaking the obfuscation as an attacker has to obtain each trace individually.

At the beginning of our obfuscation algorithm, a random gadget graph is
created from the software to be obfuscated, based on the input parameters for
branching level and gadget size. We then generate unique path signatures (for
details see Section 3.3) inside a depth-first search that traverses through all
possible paths of the graph. Furthermore, we diversify the gadget code (see
Section 3.4), assign the path signature to the gadget and add the gadget to the
output file. For every possible path that can be taken to reach a gadget, we
add the gadget’s memory address and path signature sum to the lookup table.
Finally, we attach the branching function and the lookup table to the obfuscated
code. Algorithm 1 shows the obfuscation algorithm in pseudocode.

Algorithm 1. Obfuscation algorithm in pseudocode
create random gadget graph
DepthFirstSearch (graph)

while path signature of current gadget is not unique do
create random path signature

end while
diversify gadget code
add path signature to gadget
output gadget code
add gadget’s memory address and path signature sum to lookup table

end DepthFirstSearch
output branching function
output lookup table

3.3 Graph Construction

The main challenge of our approach against dynamic reverse engineering is the
performance of the obfuscation algorithm. One the one hand, our approach aims
to significantly delay dynamic analysis of an attacker by making it hard to tra-
verse the entire graph within a reasonable time frame (i.e. a brute force attack).
However, on the other hand, the initial construction of the graph has to be
dramatically less time consuming than an attack. We solve this problem with
full knowledge of the structure of the graph at obfuscation time compared to
runtime. The obfuscation algorithm creates the graph and stores its structure
in memory, allowing very efficient graph traversal at obfuscation time. In con-
trast, an attacker only has access to the binary code of the software that does
not contain an explicit description of the graph’s structure. An attacker has to
execute all (or at least most) paths of the graph through the branching function,
including the gadget’s entire code, in order to rebuild the graph and obtain a
complete view of the software.



278 S. Schrittwieser and S. Katzenbeisser

Our graph construction algorithm takes the original program code as well as
a minimum and maximum gadget size and a minimum and maximum branching
size as input parameters and is based on a depth-first search. Starting at the root
node, the algorithm adds a random number of child nodes (within the bounds
of the branching size) and assigns a gadget to each connecting edge. All edges
to child nodes contain the same code by means of being filled with a random
number of instructions (within the given bounds on the gadget size) from the
original code. Only the gadget size and therefore the number of instructions
differ at this stage. Gadgets are not diversified at graph construction time. We
define the absolute number of instructions executed until reaching a node of
the graph as node level. Before adding a new node to the graph, the algorithm
calculates the node level of the new node and checks if it already exists anywhere
in the graph. It that case, instead of creating the node, the algorithm links to the
existing node. This method prevents a continually growing width of the graph.

During gadget graph construction, we calculate and store a path signature in
each node. We make it unique (see below) so that it clearly identifies the node
and all its predecessors. The signature is based on simple ADD and SUB assem-
bly instructions on a fixed memory location. Each gadget adds (or subtracts) a
random value to (or from) the value stored in memory. When traversing through
the graph, the value stored at the memory location identifies the currently ex-
ecuted gadget and the path that was taken through the graph to reach this
gadget. A node can have more than one signature, as more than one path of the
graph could reach this node. In that case, each node signature uniquely identifies
one of the possible paths from the root to the node. During signature assignment
we prevent collisions (two nodes sharing the same signature), by comparing the
current signature to all previously calculated signatures and choosing a differ-
ent value for the ADD or SUB instruction if needed. We decided to implement
a trail-and-error approach instead of an algorithm that generates provable dis-
tinct signatures to avoid performances bottlenecks at runtime. Figure 4 shows
the path signature for a small graph.

We further add a second input parameter to the branching function described
in the static part of our approach. Now, both the program’s input and the
path signature are input parameters for a lookup table that determines the next
gadget to be called. To eliminate any information leakage from the branching
function’s input value, only a hash value of the program’s input and the path
signature is stored in the lookup table.

3.4 Automatic Gadget Diversification

An efficient generation of semantically equivalent mutations of gadgets is the key
challenge for software diversification. This process has to be fully automatic to
be able to process large amounts of source code and the transformation function
is preferably one-way to prevent differential analysis of gadgets. Pattern-based
diversification algorithms (e.g. [9]) are a reasonable first code replacement step.
However, the fact that an attacker only has local view on a gadget, can help to
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Fig. 4. Path signatures

improve the strength of the diversification by inserting code dependency prob-
lems that are locally undecidable for an attacker.

We propose a combination of dummy code insertions and a process we call
instruction splitting. The idea is to split basic instructions into two ore more
instructions that are in combination semantically equivalent to the original in-
struction and then insert dummy code instructions in between them. We create
bogus dependencies between the actual gadget code and dummy instructions
by accessing data of split instructions inside the dummy code. To identify and
remove dummy instructions, an attacker has to be sure that the code does not
perform any vital operations on the code that is executed afterwards. However,
this problem is hard to decide due to dependencies between gadgets. Because
of the small gadgets sizes, an attacker only has local view on a gadget without
knowledge of the subsequently executed gadget.

A simple example is the instruction add eax, 5 that can be split into the
two instructions add eax, 2 and add eax, 3. Of course, this simple transfor-
mation provides only very limited security against automatic gadget matching
algorithms. We can, however, tremendously improve the strength of the trans-
formation by inserting dummy code. For example, the instruction mov dword
[0x0040EA00], eax can be considered as dummy code, if the value that is
stored in 0x0040EA00 is not used anywhere later in the software. The instruction
sequence add eax, 2; mov dword [0x0040EA00], eax; add eax, 3 is only
semantically equivalent to add eax, 5, if mov dword [0x0040EA00], eax is
dummy code. For an attacker with only local knowledge, this is an ambiguous
problem.

Simple pattern based transformations do not withstand automated attacks
aiming at reversing the diversification. The instructions test eax, eax and cmp
eax, 0 are semantically equivalent, but the transformation is weak,
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xor esi, [ebp]

add ebp, 4

add ebx, 4

mov eax, [esp+4]

jmp branch

τ⇒

xor esi, [ebp]

sub ebp, eax

add ebp, 12

add eax, 5

add ebx, 2

mov dword [0x0040EA00], ebx

add ebx, 2

mov eax, [esp+4]

jmp branch

Fig. 5. Code block diversification and obfuscation

because a very simple matching algorithm can easily identify them as equiva-
lent. However, analogous to the instruction splitting method, multi-instruction
patterns can be combined with dummy code insertions to enable strong diversi-
fication. To provide an example, consider the instructions push ebp; mov ebp,
esp. A semantically equivalent expression would be push ebp; push esp; pop
ebp. A simple substitution transformation of one version for the other would
most likely not withstand an automated attack. However, if the transformation
is combined with dummy code insertion (e.g. push ebp; push esp; add esp,
[0x0040EA00]; pop ebp, where 0x0040EA00 is 0), an attacker with local knowl-
edge of the gadget can not reveal the dummy code instructions and hence can
not decide gadget equivalence locally.

Figure 5 shows the transformation of a small code block. The transformation
function τ adds dummy code (lines 4 and 6) and modifies the instruction add
ebp, 4 so that it only provides the correct functionality if the corresponding
input 8 is loaded into register eax. This modification prevents an attacker from
extracting this specific (and fully functional) trace and using it with other inputs.
To be able to generalize a trace, all input dependent operand modifications would
have to be removed, thus the entire code would have to be analyzed instruction
by instruction.

4 Discussion

The following section discusses the impact of our obfuscation scheme on perfor-
mance and size of the resulting program and evaluates security aspects.

Performance and Size. To demonstrate the effectiveness of our approach, we
implemented a prototype that reads assembly source code and generates an
obfuscated version of it. We measured the performance losses of a simple bench-
marking tool as well as a standard AES implementation using 8 different gadgets
sizes. While the dynamic part of our approach accounts for an increase in re-
quired memory space because of diversified copies of gadgets, execution time
heavily depends on the size and implementation of the branching function, as
it inserts additional instructions. The performance decreases with the number
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of gadgets, due to calls to the branching function, which are required to switch
between gadgets. In contrast, the strength of the obfuscation is directly propor-
tional to the number of gadgets, so a trade-off between obfuscation strength and
performance has to be made. We compared different gadget sizes from 1 to 50
with the execution times of the non-obfuscated programs (see Figure 6). While
very small gadgets result in significant performance decreases, the execution time
for a program with a gadget sizes of 10 and bigger approximates the execution
time for the original program.
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Fig. 6. Execution time for different gadget sizes

Security. We classified our method with Collberg’s metric. Potency (strength
against humans) can be evaluated with software complexity metrics. Program
Length [11], Nesting Complexity [12], and Data Flow Complexity [22] are in-
creased by our obfuscating transformation and we rate its potency level simi-
lar to Collberg’s transformation “Parallelize Code” (potency level: high). Both
methods hide the control flow graph and allow the attacker only local view on
small code blocks.

Resilience (strength against automated deobfuscators) is based on the run-
time of a deobfuscator and the scope of the obfuscation transformation. The
runtime grows exponentially with the size of the software and the branching
level of the resulting graph, as a deobfuscator has to traverse through the entire
graph to reconstruct the control flow. For example, splitting a small program
(100 assembly instructions) into gadgets of 12 to 15 instructions and building
a gadget graph where every node has 2 to 3 child nodes, yields to more than
1800 different paths through this graph. In Collberg’s classification, the scope of
our transformation is “global”. The combination of both measures results in the
resilience level “strong”.

We furthermore used two state-of-the-art reverse engineering tools to evaluate
the strength of the static part of our approach. At first, we tried to reconstruct
the program’s control flow with the disassembler IDA Pro 5.6. Table 1 compares
the automated disassembling rates for the original versions of the code and the
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Table 1. Amount of successfully reconstructed code areas (IDA Pro)

AES algorithm MOV benchmark

original obfuscated original obfuscated

37.96% 10.27% 100% 0.13%

obfuscated ones. The values in the table are the percent of successfully recon-
structed areas. While IDA Pro was able to reconstruct nearly 38% of the original
AES code, the percentage for the obfuscated version declined to about 10%. For
the MOV benchmark, the difference was even larger. The results show that for
both the AES algorithm and the MOV benchmark, the obfuscated version was
much more difficult to reconstruct for IDA Pro. The huge differences between the
two examples was caused by different amount of obfuscated code. While for the
MOV benchmark the entire code was obfuscated, in the AES example only the
algorithm itself was obfuscated. IDA Pro was able to reconstruct non-obfuscated
parts of the code correctly, but failed at reconstructing obfuscated code. The dis-
assembler is not able to determine the jump targets of the branching function
without actually executing it.

The second tool we used for evaluation is Jakstab [15] which aims at recovering
control flow graphs. Jakstab was not able to resolve the indirect jump at the
end of the branching function of our sample program. Although it successfully
extracted some of the jump targets from the lookup table, the correct order of
the jumps still remained unknown to Jakstab.

Although both tools implement methods for disassembling software and re-
constructing control flow graphs, it is not surprising to see them fail at breaking
our proposed obfuscation technique as they are not tailored to our particular
implementation. Hence, for a more realistic evaluation we also discuss on what
a possible deobfuscator for our approach would look like.

One of the main strengths of our approach is that obfuscated software does
not contain an explicit representation of the graph structure. It is hidden inside
the lookup table, which only reveals the direct successor of a gadget within a
single trace during runtime. If an attacker wants to manipulate the software
(e.g. remove a copy protection mechanism) he could pursue the following two
strategies:

– Reconstructing the entire graph. Without obfuscation, an attacker
would search for the copy protection code inside the software and then re-
move it. In our diversified version of the software, however, multiple different
versions of the copy protection are distributed over the entire code. More-
over, they are split into small blocks to fit into the gadgets. An attacker
could execute every possible trace of the software and so reconstruct the en-
tire control flow graph. The result would, without doubt, reveal the structure
of the code as the individual traces can be analyzed separately. However, the
enormous number of possible paths through the graph makes this approach
time consuming.
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– Removing diversity of a single trace. Alternatively, the attacker could
remove the copy protection code from one trace and then make this trace
valid for all inputs (i.e. remove diversity). The main challenge of this ap-
proach is, that the attacker has to analyze and understand the entire trace
to be able to identify and remove modifications to operands that were in-
serted during obfuscation time to bind the code to a specific input.

Neither strategy can likely be performed without human interaction. In the first
one, a large number of variants of the same copy protection mechanism would
have to be identified and removed manually from the individual traces. In the
second strategy, a human deobfuscator would have to analyze an entire trace
to be able to identify the inserted modifications that make the trace specific to
a single input. We believe, that this high amount of manual effort significantly
raises the bar for reverse engineering attacks.

5 Conclusion

This paper proposed a novel software obfuscation method, based on control
flow diversification, which makes it difficult for an attacker to relate structural
information obtained by running a program several times and logging its trace.
By splitting code into small portions (gadgets) before diversification, we achieve
a complex control flow graph and static analysis can only reveal very limited
local information of the program. We practically evaluated the strength of our
approach against automated deobfuscators and showed that it can dramatically
increase the effort for an attacker. A performance evaluation showed observable
slowdowns for very small gadgets sizes, due to the vast amount of inserted jumps.
Versions with bigger gadgets, however, yield to very reasonable performance
results.

Future work includes the development of more sophisticated diversification
techniques. In contrast to the current implementation where diversification is
done only inside gadgets, we consider inter-gadget diversification as an even
more effective method against automated gadget matching algorithms.
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Abstract. This paper summarizes several iterations in the cat-and-
mouse game between digital image forensics and counter-forensics
related to an image’s JPEG compression history. Building on the counter-
forensics algorithm by Stamm et al. [1], we point out a vulnerability in
this scheme when a maximum likelihood estimator has no solution. We
construct a targeted detector against it, and present an improved scheme
which uses imputation to deal with cases that lack an estimate. While
this scheme is secure against our targeted detector, it is detectable by a
further improved detector, which borrows from steganalysis and uses a
calibrated feature. All claims are backed with experimental results from
2 × 800 never-compressed never-resampled grayscale images.

Keywords: Image Forensics, Counter-Forensics, JPEG Compression.

1 Introduction

Advances in information technology, the availability of high-quality digital cam-
eras, and powerful photo editing software have made it easy to fabricate digital
images which appear authentic to the human eye. Such forgeries are clearly un-
acceptable in areas like law enforcement, medicine, private investigations, and
the mass media. As a result, research on computer-based forensic algorithms to
detect forgeries of digital images has picked up over the past couple of years.

The development of digital image forensics soon became accompanied by so-
called “tamper hiding” [2] or digital image counter-forensics. The aim of digital
image counter-forensics, as the name suggests, is to fool current digital image
forensics by skillfully taking advantage of their limitations against intelligent
counterfeiters. In other words, counter-forensics challenge the reliability of foren-
sic algorithms in situations where the counterfeiter has a sufficiently strong mo-
tive, possesses a background in digital signal processing, and disposes of detailed
knowledge of the relevant digital forensic algorithms. Hence, studying counter-
forensics is essential to assess the reliability of forensics methods comprehen-
sively, and eventually to improve their reliability.

However, almost all counter-forensic algorithms are imperfect. This means
they may successfully mislead specific forensic algorithms against which they
are designed. But their applications either skips over some traces of counterfeit
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Fig. 1. Succession of advances in JPEG forensics and counter-forensics: contributions
of this paper are shaded in gray

uncovered or leaves additional traces in the resulting images. These traces, in
turn, can be exploited to detect that counter-forensics has been applied. This
limitation is mentioned in the early literature on counter-forensics [2] and we are
aware of one specific publication in the area of digital camera identification [3].
This paper contributes new targeted detectors of counter-forensics against the
forensic analysis of an image’s JPEG compression history.

Due to its popularity for storing digital images of natural scenes, JPEG com-
pression is an image processing operation that is of great interest to researchers
in both forensics and counter-forensics. In this paper, first, by exploring features
of the high-frequency AC coefficient distributions, a novel targeted detector is
presented to detect counter-forensics of JPEG compression proposed by Stamm
et al. [1]. We shall refer to this detector as “first kind” detector throughout this
paper. Then we improve the original counter-forensic algorithm by estimating
the relation between the distributions of AC coefficients. This novel algorithm
avoids obvious identifying traces of the original counter-forensics method and,
as a result, it is undetectable by our first kind detector. Finally, a more powerful
“second kind” detector is presented, which can be used to detect both the orig-
inal method and the improved method. This novel forensic tool borrows from
techniques in steganalysis, namely the so-called “calibration” of JPEG DCT co-
efficient distributions [4,5,6]. To maintain better overview, Figure 1 visualizes
the above-described succession of advances in forensics and counter-forensics by
depicting the relations between our contributions and existing work. The effec-
tiveness of all presented methods is validated experimentally on a large set of
images for different JPEG quality factors.

This paper is organized as follows. Section 2 briefly reviews related work.
A targeted detector against Stamm et al.’s [1] counter-forensics of JPEG com-
pression is presented in Section 3. An improved variant of the counter-forensics
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method and a more powerful detector are proposed in Sections 4 and 5, respec-
tively. Section 6 concludes with a discussion.

2 Related Work

We refrain from repeating the details of standard JPEG compression here. Foren-
sics and counter-forensics of JPEG compression have attracted the interest of
researchers recently. Regarding forensic techniques, Fan and Queiroz [7] propose
a way to detect JPEG compression history of an image. The authors provide
a maximum-likelihood (ML) method to estimate the quantization factors from
a spatial domain bitmap representation of the image. Farid [8] verifies the au-
thenticity of JPEG images by comparing the quantization table used in JPEG
compression to a database of tables employed by selected digital camera mod-
els and image editing software. He et al. [9] demonstrate how local evidence of
double JPEG compression can be used to identify image forgeries. Pevny and
Fridrich [10] present a method to detect double JPEG compression using a max-
imum likelihood estimator of the primary quality factor.

Note that all these fruits of researches on forensics of JPEG compression are
obtained under the assumption that no counter-forensics algorithms has been
applied to suppress evidence of image tampering or to change other forensically
significant image properties.

Regarding counter-forensics of JPEG compression, Stamm et al. [1] propose a
counter-forensics operation capable of disguising key evidence of JPEG compres-
sion by restoring the DCT coefficients according to their model distribution. In a
separate publication [11], the same team further proposes an anti-forensic opera-
tion capable of removing blocking artifacts from a previously JPEG-compressed
image. They also demonstrate that by combining this operation with the method
in [1], one can mislead a range of forensic methods designed to detect a) traces
of JPEG compression in decoded images, b) double JPEG compression, and c)
cut-and-paste image forgeries.

At the time of submission we were not aware of any prior work on countering
counter-forensics specific to an image’s JPEG compression history. Only after
the presentation of our work at the Information Hiding Conference we learned
about independent research of another counter-forensic technique against Stamm
et al.’s [1] method: Valenzise et al. [12] present a detector based on noise measures
after recompression with different quality factors.

3 Detecting Stamm et al.’s Counter-Forensics of JPEG
Compression

3.1 Stamm et al.’s DCT Histogram Smoothing Method

The intuition of Stamm et al.’s counter-forensic method is to smooth out gaps
in the individual DCT coefficient histograms by adding noise according to a dis-
tribution function which is conditional to the DCT subband, the quantization
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factor, and the actual value of each DCT coefficient [1]. The conditional noise dis-
tribution for the AC coefficients is derived from a Laplacian distribution model
of AC DCT coefficients in never-quantized digital images.1 The maximum like-
lihood estimates of the Laplacian parameter λ(i,j) for the frequency subbands
I(i,j), (i, j) ∈ {0, . . . , 7}2, are obtained from the quantized AC coefficients using
the formula:

λ̂ML(i,j) = − 2
Q(i,j)

ln
(
γ(i,j)

)
, (1)

where γ(i,j) is defined as

γ(i,j) =

√
Z2

(i,j)Q
2
(i,j) − (2V(i,j)Q(i,j) − 4S(i,j))(2NQ(i,j) + 4S(i,j))

2NQ(i,j) + 4S(i,j)

− Z(i,j)Q(i,j)

2NQ(i,j) + 4S(i,j)
. (2)

Here, S(i,j) =
∑N

k=1 |yk|, yk is the k-th quantized coefficient in subband (i, j), N
is the total number of the quantized (i, j) AC coefficients. Z(i,j) is the number of
coefficient that take value zero and V(i,j) is the number of nonzero coefficients in
this subband. Q(i,j) is the quantization factor for subband (i, j) which is either
known (if the image is given in JPEG format) or has to be estimated, e. g., with
the method in [7]. Once λ̂ML(i,j) is known, the AC coefficients can be adjusted
within their quantization step size to fit the histogram as close as possible to a
Laplacian distribution with parameter λ̂ML(i,j).

In the high frequency subbands, because Q(i,j) is high, it is more likely that
all coefficients are quantized to zero. This happens more often the smaller the
overall JPEG quality factor (QF) is. If all the coefficients are zero, i. e., V =
0, Z = N, S = 0, then according to Eq. (2), γ(i,j) = 0. Hence the parameter
estimate λ̂ML(i,j) is undefined in Eq. (1). Our experiments suggest that this
happens pretty often. Table 1 shows the average share of all-zero frequency
subbands with different QF for 1600 tested images.

In this situation, Stamm et al.’s method just allows these coefficients to re-
main unmodified for that the perturbations to each DCT coefficient caused by
mapping all decompressed pixel values to the integer set {0, . . . , 255} in the
spatial domain will result in a plausible DCT coefficient distribution after re-
transformation into the DCT domain by the forensic investigator. However, as
we shall see, this conjecture is too optimistic. It leaves us a clue to build our
first kind targeted detector.

1 A non-parametric model is employed for the DC coefficients, which in general do not
follow any parsimonious distribution model. This part is not touched in this paper.
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Table 1. Average share of all-zero frequency subbands for different JPEG qualities

JPEG quality factor (QF) 60 70 80 90

All-zero frequency subbands (in %) 23.4 19.2 11.5 2.5

i

j

Fig. 2. The high frequency subbands according to our definition (shaded cells)

3.2 Targeted Detector Based on Zeros in High Frequency AC
Coefficients

Throughout this paper, we define a high frequency subband as subband that lies
below the anti-diagonal of the 8×8 matrix of DCT subbands (cf. Fig. 2). Under
this definition, there are 28 high frequency subbands.

All high frequency subbands where λ̂ML(i,j) is undefined exhibit a high rate of
zero coefficients—even though the perturbations to each DCT coefficient caused
by mapping all decompressed pixel values to the set {0, . . . , 255} will result in
a plausible DCT coefficient distribution. Based on this observation, a targeted
detector with different threshold T can be constructed as follows. If the rate R
of zero coefficients in high frequency subbands is less or equal to T (R ≤ T ),
then the detector classifies a given input image as unsuspicious. Otherwise, it is
flagged as image after compression and counter-forensics.

All experiments reported in this paper draw on a set of 1600 test images
captured with a single Minolta DiMAGE A1 camera. The images were stored
in raw format and extracted as 12-bit grayscale bitmaps to avoid inference of
color filter interpolation or noise reduction. One test image sized 640×480 pixels
has been cropped from each raw image at a random location to avoid resizing
artifacts. The test images were made available to us by Ker [13]. All JPEG
compression and decompression operations were carried out by us using libjpeg
version 6b with its default DCT method on an Intel Mac OS 10.6 platform.

The 1600 never-compressed images were randomly and equally divided into
two groups. The 800 images in the first group were first compressed with different
quality factor (QF= 60, 70, 80, 90), then subject to counter-forensics of JPEG
compression using Stamm et al.’s method. Finally the original uncompressed
images in the first group and the images after counter-forensics were tested
together. Let PFA and PMD (PD = 1 − PMD) denote the probabilities of false
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Fig. 3. The ROC of the detector based on the rate of zeros in high frequency subbands
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Fig. 4. Empirical PFA as a function of threshold T

alarm and missed detection, respectively. Fig. 3 shows the receiver operation
characteristics (ROC) curve for this first kind detector. Fig. 4 shows the empirical
PFA of detectors with different threshold T , and Fig. 5 shows PMD as a function
of threshold T for different QF.

The figures suggest that to minimize the overall error (PE, which is calculated
by dividing the number of the tested images by the number of misclassifid im-
ages), T should be chosen around T ≈ 0.2. The 800 images in the second group
were used to test the targeted detectors with T = {0.15, 0.20, 0.25}. Table 2
reports the results.

3.3 Targeted Detector Based on the Magnitude of High Frequency
AC Coefficients

Another feature of the frequency subbands whose λ̂ML(i,j) are undefined is that
the magnitude of the their AC coefficients is very small. Experiments on the
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Fig. 5. Empirical PMD as a function of threshold T

Table 2. PFA, PMD and PE for the detectors with T = {0.15, 0.20, 0.25}: (%)

T PE PFA
PMD

QF=60 QF=70 QF=80 QF=90 Average

0.15 20.6 54.6 1.4 5.4 20.0 21.6 12.1
0.20 21.8 24.7 2.3 9.9 27.5 44.5 21.0
0.25 25.0 7.6 3.8 12.1 32.8 68.8 29.3

Table 3. PFA, PMD and PE for the second targeted detector: (%)

PE PFA
PMD

QF=60 QF=70 QF=80 QF=90 Averagel

22.9 0.3 0.8 2.5 20.3 90.4 28.5

first 800 images indicated that the magnitude is never larger than |yk| ≤ 2.
Based on this observation, another targeted detector can be established like
this: for a given image, the absolute values of the (unquantized) AC coefficients
are examined. If there exists a subband where the maximum absolute value of
its AC coefficients is not larger than 2, then the image is judged to be a forgery.
Otherwise it can be classified as authentic. To test this detector, the second
group of 800 images were used. Table 3 shows the value of the two kinds of
errors for different QF. It is can be seen that the PMD is very high if QF is larger
than 80. This is so because with increasing QF, there are fewer subbands where
λ̂ML(i,j) is undefined.

3.4 Combination of the Two Targeted Detectors

Judging from the above discussion, it can be seen that with QF increasing, both
detectors become less sensitive to the counter-forensics operation. This is intu-
itive because the higher the QF the more similar are the original image and the
image after counter-forensics. It is also noticeable that PMD for the first detec-
tor with proper T are lower than the second one, whereas the second detector
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Table 4. The performance of the detectors combining the first targeted detector with
different T and the second targeted detector: (%)

T PE PF A
PMD

QF=60 QF=70 QF=80 QF=90 Average

0.15 19.6 54.1 0.8 2.5 18.9 21.6 10.9
0.20 18.4 24.3 0.8 2.5 20.2 44.4 16.9
0.25 19.6 7.3 0.8 2.5 20.2 67.5 22.8

generates a very low PFA. Based on this observation, a targeted detector combin-
ing the two approaches can be built like this: we first pass a given image though
the second detector. If the result is negative (that is, the image is considered a
forgery), then we trust the decision because PFA of the second detector is very
low. Conversely, if the result is positive, then the image is passed on to the first
detector with threshold T . Table 4 reports the performance of a detector combin-
ing the first detector with different T and the second detector. The experiment
is done on the second group of images. It can be seen that the performance of
the combined detector is better than of any single detector. Our detector is good
at detecting the counter-forensics operation of JPEG compression when QF is
not too high, while keeping the PFA reasonably low.

4 Improved Counter-Forensics of JPEG Compression

To overcome the obvious vulnerability in the high frequency subbands, which
persists in Stamm et al.’s method due to undefined λ̂ML(i,j), we propose a way
to impute estimates for the Laplacian parameter λ if Eq. (1) has no solution.

This part is builts on prior research by Lam and Goodman [14]. They argue
that the distribution of DCT coefficients I(i,j) is approximately Gaussian for
stationary signals in the spatial domain. Hence, if the variance of all 8×8 blocks
σ2

block in a image was constant, then the variance σ2
(i,j) of frequency subband

I(i,j) would be proportional to σ2
block. Suppose σ2

block = K(i,j) · σ2
(i,j) and let

K(i,j) = k2
(i,j) to simplify notation. Then σblock = k(i,j) · σ(i,j), where k(i,j) is a

scaling parameter. Now adding one important characteristic of natural images,
namely that the variance of the blocks varies between blocks, leads us to Lam
and Goodman’s double-stochastic model [14]. Let p(.) denote the probability
density function, then

p(I(i,j)) =
∫ ∞

0

p(I(i,j) | σ2
block)p(σ2

block)d(σ2
block). (3)

As discussed above, p(I(i,j) | σ2
block) is approximately zero-mean Gaussian, i. e.,

p(I(i,j) | σ2
block) =

1√
2πσ(i,j)

exp

(
−

I2
(i,j)

2σ2
(i,j)

)
. (4)
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Table 5. The performance of targeted detectors with different T for improved method:
(%)

T PE PF A
PMD

QF=60 QF=70 QF=80 QF=90 Average

0.15 28.7 54.1 24.0 22.1 22.0 21.0 22.3
0.20 43.1 24.3 50.1 48.2 50.0 42.3 47.8
0.25 56.5 7.3 68.8 70.1 68.7 67.5 68.8

Following the argument in [14] further, we can approximate the distribution
function of the variance p(σ2

block) by exponential distributions and half-Gaussian
distributions. Adapted to our notation we obtain for the exponential distribution:

p(x) = λ exp (−λx) ; (5)

and for the half-Gaussian distribution:

p(x) =

{
2λ√
2π

exp
{
−x2λ2

2

}
for x ≥ 0

0 for x < 0.
(6)

Plugging Eqs. (5) or (6) into Eq. (4), respectively, yields the same Laplacian
shape for the AC coefficient distribution in natural images (proofs in [14]),

p(I(i,j)) =
k(i,j)

√
2λ

2
exp

(
−k(i,j)

√
2λ|I(i,j)|

)
. (7)

So the relationship of the Laplacian parameters λ(i,j) for frequency subbands
I(i,j) are only determined by k(i,j). For any two AC DCT subbands I(i,j) and
I(m,n) it holds that

λ(i,j)

λ(m,n)
=

k(i,j)

√
2λ

k(m,n)

√
2λ

=
k(i,j)

k(m,n)
. (8)

To learn the scaling parameters k(i,j) from our images, we first select blocks with
different variance randomly from our image database while keeping the number
of blocks for each variance bracket approximately constant. We then transform
the selected blocks to the DCT domain and calculate the variance σ(i,j). With
σblock and σ(i,j) known for a balanced sample, k̂(i,j) can be estimated with the
least squares method. Once k̂(i,j) is determined, λ̂(i,j) can be imputed using
Eq. (8) in cases where λ̂ML(i,j) cannot be calculated from Eq. (1). This procedure
avoids the obvious vulnerability in the high frequency subbands that made the
original DCT histogram smoothing method of [1] detectable with our first kind
detector. All other parts of the algorithm remain the same in our improved
variant of Stamm et al.’s method.

As the obvious singularity in the high frequency subbands no longer exist
with the improved method, our targeted detector of Sect. 3.4 fails to detect it
or produces unacceptably many false positives (see Table 5).
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5 Second Kind Detector Using Calibration

The final contribution of this paper is a more powerful detector. This time we
seek inspiration from steganalysis of JPEG images, since both forensics and
steganalysis strive for closely related goals [15,16].

The notion of calibration was coined by Fridrich et al. in 2002 in conjunction
with their attack against the steganographic algorithm F5 [4]. The idea is to
desynchronize the block structure of JPEG images, e. g., by slightly cropping
it in the spatial domain. This way one obtains a reference image which, after
transformation to the DCT domain, shares macroscopic characteristics with the
original unprocessed JPEG image. Kodovsky and Fridrich [6] give a detailed
analysis of the nature of calibration in steganalysis. While pointing out some
fallacies of calibration, they also studied in depth how, why, and when calibration
works. Based on their research and the fact that calibration has been successfully
used to construct many steganalysis schemes [4,5,17], we decided to investigate
the usefulness of calibrated features to set up a detector for JPEG compression
counter-forensics.

In this paper, a single calibrated feature, the ratio of the variance of high
frequency subbands, is utilized to establish a detector. For a given image I, first,
in spatial domain, we crop it by 4 pixels in both horizontal and vertical direction
(similar to [5]) to obtain a new image J . Then we calculate the variance of 28
high frequency subbands for both images I and J . The calibrated feature F is
calculated as follows:

F =
1
28

28∑
i=1

(
vI,i − vJ,i

vI,i

)
, (9)

where vI,i is the variance of i-th high frequency subband in I and vJ,i is the
variance of i-th high frequency subband in J .

According to Lam and Goodman [14], the variance of frequency subbands is
determined by the variance of pixels in the spatial domain (see also Sect. 4). In
digital images of natural scenes, the variances of pixels in spatial proximity are
often very similar. Hence, cropping the image can be treated as a transposition
of the spatial pixels. So, for a authentic image, the changes of the variance of fre-
quency subbands should be negligible. However, for images that have undergone
counter-forensics, even though DCT coefficients have been smoothed to match
the marginal distribution of authentic images, this variance feature is violated
after cropping. The change of the variance of frequency subbands is notable,
especially in high frequency subbands.

Our second kind detector with threshold G works as follows. If F ≤ G, then
the detector decides for a normal image. Otherwise the detector flags an image
as after compression and counter-forensics.

To test our new detector, the first 800 images are first compressed with dif-
ferent quality factor (QF= 60, 70, 80, 90), then processed with counter-forensics
of JPEG compression using our improved method of Sect. 4. Finally the original
uncompressed images, together with images after counter-forensics are used for



Countering Counter-Forensics: The Case of JPEG Compression 295

QF=60

QF=70

QF=80

QF=90

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

PFA

P
D

(a) ROC for different QF

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

PFA

P
D

(b) The average ROC

Fig. 6. The ROC of detectors with different G
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testing. Figure 6 shows the ROC curve for the new detector. Figure 7 shows the
PFA of detectors with different G and Fig. 8 reports the information of PMD for
different QF of detectors with different G.

It can be seen from the ROC curve (Fig. 6) that our new detector is pretty
good at detecting our improved method of JPEG compression counter-forensics.
The two kinds of errors PFA and PMD can be kept very low simultaneously.
Table 6 shows the result using the second group of 800 images with G =
{0.10, 0.15, 0.20}. Observe that both PFA and PMD are very low for our choice of
G. Even for QF=95, with G = 0.1, PMD is below 0.2%, which is a satisfactory
value.

We also tested our new detector against the original histogram smoothing
method by Stamm et al. [1]. Table 7 reports the results, which are also very sat-
isfactory. We have no explanation, though, why the calibrated feature produces
slightly higher PMD for the original methods compared to the improved method
which uses imputed values if λ̂ML(i,j) is undefined.

Note that all results refer to detection rates of counter-forensics. Our new
methods do not aim to detect JPEG compression as such, but attempts to
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Table 6. PFA, PMD and PE for the detector with G = {0.10, 0.15., 0.20}: (%)

G PE PFA
PMD

QF=60 QF=70 QF=80 QF=90 Average

0.10 0.3 1.3 0.0 0.0 0.0 0.3 0.1
0.15 0.8 0.4 0.0 0.0 0.1 3.8 1.0
0.20 2.9 0.3 0.0 0.1 1.5 12.4 3.5

Table 7. Performance of the detectors with G = {0.10, 0.15, 0.20} for detecting the
method by Stamm et al. [1]: (%)

G PE PFA
PMD

QF=60 QF=70 QF=80 QF=90 Average

0.10 0.5 1.3 0.0 0.0 0.0 1.3 0.3
0.15 1.7 0.4 0.0 0.0 0.8 7.5 2.0
0.20 4.2 0.3 0.0 0.3 1.5 18.9 5.2

conceal it. Therefore, in practice, our detectors should be used in combination
with existing methods to detect plain JPEG compression, e. g., [7].

6 Discussion and Conclusion

The contribution of this paper is to document several incremental advances in
the area of forensics and counter-forensics of JPEG compression. We decided to
cut the dialectical iterations at a stage where a sufficiently powerful detector
of counter-forensics could be found. This second kind detector uses a single
calibrated feature, which was inspired from the literature on JPEG steganalysis.

According to the performance measures of this second kind detector and the
preceding analysis, it is reasonable to state that our second kind detector is ef-
fective in detecting counter-forensics of JPEG compression, which modifies DCT
coefficients independently to smooth the marginal distributions of AC subbands.
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In reaction to this detector, future research on counter-forensic of JPEG compres-
sion needs to find way to keep both our calibrated feature F and the distribution
of frequency subbands similar to authentic (i. e., never-compressed) images. This
is a similar problem as faced by steganographic embedding functions for JPEG
images. As for JPEG compression forensics, it is likely that more reliable and
distinguishable calibrated features can be found so that detectors keep on a level
playing field with advances in counter-forensics. Like in almost any security field,
the cat-and-mouse game between attackers and defenders will continue.

Another open research question is a systematic comparison of the detection
performance of our method and the more recent approach by Valenzise et al. [12].

As for every digital forensics paper, we deem it appropriate to close with
the usual limitation that digital forensics, despite its mathematical formalisms,
remains an inexact science. Hence the results of its methods should rather be un-
derstood as indications (subject to underlying technical assumptions and social
conventions), never as outright proofs of facts.

Acknowledgements. The first author gratefully receives a CSC grant for PhD
studies in Germany and an IH student travel grant supporting her trip to Prague.
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Abstract. We propose Stegobot, a new generation botnet that com-
municates over probabilistically unobservable communication channels.
It is designed to spread via social malware attacks and steal informa-
tion from its victims. Unlike conventional botnets, Stegobot traffic does
not introduce new communication endpoints between bots. Instead, it is
based on a model of covert communication over a social-network overlay
– bot to botmaster communication takes place along the edges of a social
network. Further, bots use image steganography to hide the presence of
communication within image sharing behavior of user interaction. We
show that it is possible to design such a botnet even with a less than
optimal routing mechanism such as restricted flooding. We analyzed a
real-world dataset of image sharing between members of an online so-
cial network. Analysis of Stegobot’s network throughput indicates that
stealthy as it is, it is also functionally powerful – capable of channeling
fair quantities of sensitive data from its victims to the botmaster at tens
of megabytes every month.

1 Introduction

Malware is an extremely serious threat to modern networks. In recent years, a
new form of general-purpose malware known as bots has arisen. Bots are unique
in that they collectively maintain communication structures across nodes to re-
siliently distribute commands and data through a command and control (C&C)
channel. The ability to coordinate and upload new commands to bots gives the
botnet owner vast power when performing criminal activities, including the abil-
ity to orchestrate surveillance attacks, perform DDoS extortion, sending spam
for pay, and phishing.

The evolution of botnets has primarily been driven by botnet responses
based on the principle of ‘whatever-works’. Early botnets followed a central-
ized architecture however the growing size of botnets led to scalability problems.
Additionally, the development of mechanisms that detect centralized command-
and-control servers further accelerated their demise [6,11,9]. This led to the de-
velopment of a second generation of decentralized botnets. Examples are Storm
and Conficker [25,19,20] that are significantly more scalable and robust to churn.

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 299–313, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We believe that one of the main design challenges for future botnets will be
covertness — the ability to evade discovery will be crucial to a botnet’s survival
as organizations step up defense efforts. While there are several covertness con-
siderations involved, one of the most important ones is hiding communication
traces. This is the topic of the present paper. We hope to initiate a study in the
direction of defenses against covert botnets by designing one in the first place.

We discuss the design of a decentralized botnet based on a model of covert
communication where the nodes of the network only communicate along the
edges of a social network. This is made possible by recent advances in malware
strategies. Social malware refers to the class of malware that propagate through
the social network of its victims by hijacking social trust. Instances include
targeted surveillance attacks on the Tibetan Movement [15] and the non-targeted
attack by the Koobface [4] worm on a number of online social networks including
Facebook [1].

By adopting such a communication model, a malicious network such as a
botnet can make its traffic significantly more difficult to be differentiated from
legitimate traffic solely on the basis of communication end-points. Additionally,
to frustrate defense efforts based on traffic flow classification, we explore the use
of covert channels based on information hiding techniques. What if criminals used
steganographic information hiding techniques that exploit human social habits
in designing botnets? Would it be possible to design such a botnet? Would it be
weaker or stronger than existing botnets? These are some of the questions we
hope to answer in this paper.

The rest of this paper is organized as follows: in Section 2 we describe our
threat model along with an overview on JPEG steganography primitives, which
is essential in the design of the social botnet introduced in this paper, Stegobot.
In Section 3 we describe the design and construction of various components.
We evaluate the use of of image steganography in designing the command and
control channel of Stegobot using a real world dataset in Section 4.1; and the
routing mechanism in Section 4.2. This is followed by related work in Section 5
and conclusions in Section 6.

2 Preliminaries

2.1 Threat Model

We assume the threat model of a global passive adversary. Since a botnet is a
distributed network of compromised machines acting cooperatively, it is fair to
assume that the defenders will also cooperate (ISPs and enterprises) and hence
have a global view of communication traffic (strong adversary).

We also assume that botnet infections are not detected. As with any botnet
Stegobot cannot withstand hundred-percent clean up of all infected machines.
However we expect it to easily withstand random losses of a considerable num-
bers of bots. This assumption is due to the fact that online social networks are
often scale-free graphs. In a seminal paper [5], Albert and Baraba’si showed that
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scale-free graphs are highly robust to the removal of randomly selected nodes. In-
deed the real world social graph considered in this paper (see dataset description
in section 4.2) has a power-law degree-distribution with a slope of γ = 2.3.

2.2 JPEG Steganography

A primary goal of this paper is to show that a botnet based on covert channels
can be constructed with a simple design and successfully operated. We use JPEG
steganography to construct communication channels between the bots. We now
review the main results in JPEG steganography that are of relevance to this
paper. A full discussion on the relative merits and demerits of various design
choices is defered until section 5.

We considered the JSteg scheme [3,21] but the resulting steganographic capac-
ity of the communication is rather low; steganographic images are detectable [13]
even at low embedding rates of 0.05 bits per non-zero non-one coefficients. A
better scheme is proposed by Fridrich et al. [8] who showed that the average
steganographic capacity of grayscale JPEG images with quality factor of 70 can
be approximated to be 0.05 bits per non-zero AC DCT coefficient. The most
recent scheme based on the same principle (of minimal distortion embedding) as
the Fridrich scheme is the YASS [23] scheme, which has been shown undetectable
at payloads of 0.05 bits per non-zero DCT coefficient.

3 Stegobot Construction

A botnet is a distributed network of a number of infected computers. It is owned
by a human controller called the botherder and consists of three essential com-
ponents: the botmaster(s), the bots, and the Command and Control (C&C) chan-
nel. Bots are compromised machines running a piece of software that implement
commands received from one or more botmasters; they also send botcargo –
information acquired by the bot such as the result of executing botherder com-
mands – to the botmaster. Botmasters refer to compromised machines that the
botherder interacts with in order to send commands via a C&C channel. The
botmaster sends instructions to the bots to carry out tasks and receives botcargo
sent back to it by the bots.

3.1 Design Goals

A distinguishing feature of Stegobot is the design of the communication channel
between the bots and the botmaster. Stegobot is designed for stealth, therefore
we do not wish to include any C&C communication links between computers
that do not already communicate.

A further goal is to design probabilistically unobservable communication chan-
nels connecting the botmaster and the bots. If the C&C communication is un-
observable then botnet detection can be significantly more difficult than where
communication is not hidden. This is because in the latter case, traffic-flow
signatures and the changes in the structure of traffic connectivity induced by
the presence of the botnet can lead to easier detection and removal of the bot-
net [10,16].
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Fig. 1. The topology of the Stegobot botnet

3.2 Malware Propagation and Bots

The first step in botnet creation is malware deployment. The malware is an
executable which infects the machine and performs the activities necessary of a
bot. Stegobot is designed to infect users connected to each other via social links
such as an email communication network or an online social network that allows
friends to exchange emails. The propagation of malware binaries takes place via
social-malware attacks [15].

Social-malware attacks refer to the use of carefully written email lures to de-
liver botnet malware combined with the use of email communication networks
to propagate malware. This works when the attackers take the trouble to write
emails that appear to come from the co-workers or friends of the victim (so-
cial phish). A more effective attack is to replay a stolen email containing an
attachment that was genuinely composed by a friend back to the victim after
embedding a malicious payload within the attachment.

Once the attacker secures an initial foothold (deploy the malware on at least
one victim’s machine), the attacker can expand the list of compromised machines
with little additional effort. Whenever one of the initial set of victims sends
an email containing an attachment to one of their colleagues, the bot quickly
embeds a malicious payload to the attachment. Upon opening the attachment,
the receiver’s computer also gets infected and the process continues. Therefore
once a single user is compromised (and the compromised machine continues to
be operated for sending emails), the attacker can recruit additional bots in an
automated fashion. Indeed this was the modus operandi behind the Ghostnet
surveillance attacks on both Google and the Tibetan administration in 2009 [15].

Of course the attacker’s attempts at composing email lures can fail with non-
zero probability. However this exercise needs to succeed only once (as explained
in the previous paragraph) to generate a botnet containing thousands of nodes,
and the risk of failure is offset by targeting multiple people within a social group.
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3.3 Bots

In Stegobot, bots possess a pre-programmed list of activities such as harvest-
ing email addresses and passwords, or credit card numbers or simply to log all
keystrokes. Alternatively, in a more flexible design the bots execute commands
received from the botmaster. For instance, bots receive search keywords from
the botmaster and respond with matches from the filesystem, as in the case of
the Tibetan attacks [15].

As explained in the previous paragraph, Stegobot spreads along the social net-
work of its victims. While we have used emails to explain social-malware attacks,
the attacks are by no means restricted to email communication networks alone;
online social networks are equally good targets. For instance, Koobface [4] is a
worm that propagates on Facebook over social links, demonstrating that migrat-
ing from conventional email to social network messaging does not insulate users
from social malware attacks. Further, it is noteworthy that Facebook is adding
email extensions to its existing service; and Google added a social networking
service — Google Buzz — to its popular email service in 2010. This allows bots
to communicate with each other and the botmaster over the social network as
explained in the next section.

3.4 Message Types

Stegobot uses two types of message constructions. First, Bot-commands are
broadcast messages from the botmaster. Examples include search strings for file
contents or within keylogged data.

Second, botcargo messages return information requested by the botmaster such
as files matching search strings. Botcargo messages can be divided further into
two types: locally generated (botcargo-local) or forwarded messages (botcargo-
fwd) on a multi-hop route to the botmaster.

3.5 Communication Channel

In Stegobot, we use the images shared by the social network users as a media
for building up the C&C channel. Specifically, we use image steganography tech-
niques to set up a communication channel within the social network, and use it
as the botnet’s C&C channel.

A bot running on a computer can communicate with a bot running on a dif-
ferent computer if both the computers are being used by people connected by
an edge in the social network. The social network acts as a peer-to-peer over-
lay over which the information is transferred from each bot to the botmaster.
In Stegobot, information between bots must only be transferred using stegano-
graphic channels. In our case, this channel is constructed by hiding the botcargo
within images using standard techniques reviewed in earlier sections. By keeping
the size of the botcargo within certain limits, it is possible to make the pres-
ence of bot communication difficult to discover by examining the communication
channel alone (section 4.1).
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One-hop communication takes place according to a push-pull model. Consider
the example of Facebook (see figure 2). When a user pushes (uploads) an image
to Facebook from an infected host, the bot intercepts the image and inserts the
botcargo into the image using an image steganography technique as previously
discussed. In our prototype this was done by uploading botcargo into all pictures
on the victim’s computer; a more practical approach might be to concentrate
on a subset of directories where the user stores pictures. Upon completion of
image upload, all the neighbors of the user are notified (by Facebook). When
a neighbor of the publisher logs into Facebook from an infected machine and
views the picture, the bot pulls (intercepts) the image and extracts the stegano-
graphically embedded botcargo from the image. All botcargo is finally destined
for the botmaster who downloads the cargo by viewing newly posted pictures
from her neighbors. When the botmaster intends to issue a command, she does
so by preparing a botcargo message and uploading it to her Facebook account.
It is worth noting that Facebook presently downloads all the images on to your
computer automatically when a Facebook page is visited; the embedded images
don’t need to be clicked on by the victim for botcargo transfer.

While the communication channel used in our design and experiments is based
on Facebook, any social communication mechanism involving rich content can be
utilized in its place. In theory, blocking access to Online Social Networks (OSNs)
will stop Stegobot. In practice, efforts to limit access is not easy since the use
of OSNs for furthering business goals is on the increase. Additionally, such mea-
sures are easily circumvented by determined users leveraging open anonymizing
proxies.

Multi-hop communication: In Stegobot, routing is based on a very simple algo-
rithm namely restricted flooding.

Congestion control: Each bot maintains a bandwidth throttle which is used to
control the ratio of botcargo-local to botcargo-fwd messages.

Metrics: We measure the effectiveness of the routing strategy using a set of
metrics.

– Channel efficiency the percentage of botcargo-fwd messages that reach the
botmaster averaged over all bots.

– Channel bandwidth is similar to efficiency, but it is the absolute number of
botcargo-fwd messages that reach the botmaster averaged over all bots.
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– Duplication count is the number of duplicate botcargo-fwd messages received
by the botmaster.

– Botnet bandwidth is the total number of botcargo-fwd reaching the botmaster
every month excluding duplicates.

4 Experiments

In order to convince ourselves that a Stegobot deployment could indeed be prof-
itably operated in a real world setting, we performed a number of experiments
which are detailed below.

4.1 Steganography Experiments

We use YASS [23] as the image steganography scheme of the C&C channel over
the Facebook social network. Facebook’s image processing can interfere with
the bots’ steganographic communication channel. In order to minimize this, the
bot performs an image adaption process as follows before embedding a payload:
1) each image is converted to the JPEG format, 2) images are resized to meet
the maximum resolution limits performed by Facebook, i.e., 720× 7201. This is
performed keeping the aspect ratio of the images.

We use a database of 116 different images to perform our experiments. In
each experiment an image is adapted to Facebook constraints, as mentioned be-
fore, and then the hidden information is embedded into that image using YASS
scheme. The stego image is then uploaded into Facebook through a Facebook
user account, and then downloaded from the Facebook using another Facebook
account. Finally, the downloaded image is evaluated by the YASS detector de-
scribed in [23] in order to extract the hidden message. To evaluate the robustness
of our steganographic process we calculate the bit error rate (BER) metric which
is defined as the ratio of error message bits to the total number of message bits
for each image.

Table 1 summarizes the average of the BER parameter (over all of the images)
for different metrics of YASS scheme. Q is the quality factor of YASS scheme and
represents the amount of compression performed by YASS during the steganog-
raphy process. Q has a range of [0, 100] and directly impacts the quality of the
stego image, i.e., higher Q results in images with higher quality/size. Based on
the results of our experiments, Facebook’s uploading process is equivalent to
the application JPEG compression over the image with a quality factor of Qf .
For Q > Qf Facebook applies extra compression on the image which results in
loosing some of hidden information bits. On the other hand decreasing Q results
in lower number of bits being inserted by the YASS scheme. So, there should be
an optimum value for Q within the range of [0, 100] which minimizes the BER
rate, i.e., maximizes the robustness to Facebook perturbations. As table 1 shows
1 More recently, Facebook is allowing uploading of higher-resolution images that

increase the steganographic capacity at least 10 times based on our preliminary
experiments.
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Table 1. Average BER (over 116 images) without removing ’bad images’

q 2 4 6 8 10 12 14 16 18 20

Q=65 0.3073 0.1320 0.0520 0.0227 0.0097 0.0047 0.0022 0.0010 0.0006 0.0003
Q=70 0.2966 0.1318 0.0529 0.0219 0.0096 0.0049 0.0025 0.0010 0.0005 0.0002
Q=75 0.3015 0.1557 0.0680 0.0283 0.0101 0.0067 0.0027 0.0010 0.0004 0.0000
Q=80 0.3086 0.1839 0.0846 0.0347 0.0143 0.0089 0.0034 0.0015 0.0008 0.0000
Q=85 0.3512 0.2618 0.1777 0.0854 0.0372 0.0183 0.0127 0.0053 0.0024 0.0013
Q=90 0.4287 0.3917 0.3639 0.3390 0.3146 0.2906 0.2567 0.2122 0.1591 0.1262

Table 2. Number of bits inserted in each image for different values of q

q 2 4 6 8 10 12 14 16 18 20

Data bits 40280 20140 13426 10070 8056 6173 5754 5035 4475 4028

Table 3. Average BER after removing ’bad images’

q 2 4 6 8 10 12 14 16 18 20

Q=65 0.2945 0.1088 0.0311 0.0092 0.0022 0.0002 0.0000 0.0000 0.0000 0.0000
Q=70 0.2836 0.1105 0.0340 0.0095 0.0016 0.0002 0.0000 0.0000 0.0000 0.0000
Q=75 0.2892 0.1372 0.0492 0.0136 0.0011 0.0001 0.0000 0.0000 0.0000 0.0000
Q=80 0.2977 0.1686 0.0662 0.0175 0.0020 0.0003 0.0000 0.0000 0.0000 0.0000
Q=85 0.3436 0.2512 0.1631 0.0646 0.0165 0.0029 0.0012 0.0000 0.0000 0.0000
Q=90 0.4255 0.3877 0.3589 0.3331 0.3074 0.2823 0.2464 0.1978 0.1396 0.1035

the BER values are minimized for a Q = 75, hence we approximate the quality
factor of the Facebook compression to be Qf ≈ 75.

We also investigate the effect of the redundancy parameter of YASS, q, on
the BER. The parameter q represents the number of times an information bit
is repeated inside an image by the YASS scheme. Intuitively, we expect that
larger q results in reducing the BER, since more redundant bits can help better
in reconstructing a noisy message; this is confirmed through our experiments
as table 1 shows. In fact, the q parameter makes a tradeoff between robustness
and steganographic capacity: increasing q improves robustness by reducing BER
while it also reduces the number of data bits inserted by the YASS scheme.
Table 2 shows the number of bits inserted by YASS for different values of q.

Our experiments show that a small number of image, namely bad images,
are responsible for a majority of errors in the average BER. Excluding these
images in the steganography process can significantly reduce average BER. We
define and use a metric, SelfCorr, in order to decide whether an image is ’bad’
or ’good’. The SelfCorr metric evaluates the cross correlation of an image by a
noise-filtered version of itself. We declare images with SelfCorr> 0.9964 as ’bad’
images. Table 3 illustrates the BER results after excluding the small number of
’bad’ images determined by the SelfCorr metric. As can be seen, the average
BER is significantly improved, e.g, the average BER is 0 for q ≥ 12.
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4.2 Routing Results

Combining social-malware with steganographic channels yields a covert botnet
where new bots are recruited as infections spread along the edges of the social
network, while existing bots communicate using the well understood image based
steganographic channels. In this section, we study the routing capabilities of such
a botnet using a real-world example.

Dataset: We chose to study the Flickr2 social network [2], an online friendship
network that facilitates image sharing. We crawled the Flickr website and down-
loaded on a fraction of the Flickr social network. Specifically, our dataset con-
tains 7200 nodes (people), the social network edges (online friendship relations)
between them, and the number of images posted per person per month. The
dataset corresponds to user activity on Flickr over a period of 40 months. The
Flickr dataset will be made available on our website for the research community.

In our simulation, each bot node generates K botcargo-local (see section 3.4)
messages per month. K = 10 corresponds to say ten files that the bot plans to
route to the botmaster across the social overlay network. ttl is fixed at log(N =
7000) � 3 hops. Each bot reserves a minimum of 5% of node bandwidth to
forward botcargo-fwd messages received from neighbors. Further, we assume bot-
command messages broadcast from the botmaster at a rate of one message per
month. This means that the botmaster can instruct her bots to change operation
no more than once a month.

Stegobot’s infection strategy is based on social malware attacks. In our exper-
iments, we have assumed an infection rate of 50%. While this number might ap-
pear high to some readers, it is actually a conservative estimate; social-malware
has been known to have infection rates approaching 90-95% in real-world at-
tacks [15].

Botcargo preparation: Each bot gathers botcargo (both from the host as well as
from its neighbors). It then encodes as much of the botcargo in a single image
as allowable according to a detection threshold 
 bits. The practically possible
values for the number of bits is given in table 2 and a discussion in section 4.1.

Routing: In Stegobot, routing is carried out by restricted flooding. Each bot
publishes (floods) botcargo to all neighbors (joined the botnet) within ttl hops
in the social network. Finally, the botmaster receives botcargo through the one
of its infected neighbors. We assume that the botmaster is a randomly chosen
node in the network. For each of the graphs below, we averaged the results over
fifty different botmaster nodes.

Figure 3 shows the efficiency of botcargo transmission for increasing amounts
of ttl and various numbers of botcargo-local messages. For K = 5 botcargo-local
messages, the efficiency peaks at 30% and decreases and then stabilizes for higher
ttl values as the resulting increase in the number of botcargo-fwd messages begins

2 Unfortunately, we did not have access to the Facebook topology or the upload
patterns of users.
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Fig. 3. Average channel efficiency against ttl

to cause congestion. Congestion effects are also felt when the number of botcargo-
local messages increase even at a smaller ttl. This justifies our intuition for using
ttl = log(N) where N is the number of infected nodes in the botnet.

In restricted flooding, high-degree nodes in the topology play the role of hubs
and are able to pull and collect large amounts of botcargo. As such they become
a natural point where stolen information is collected and can then be siphoned
off to the botmaster.

Channel Bandwidth and Efficiency: Figure 4 shows the bandwidth and efficiency
of the communication channel in the average case. Figure 4.a shows the monthly
average number of botcargo-fwd messages received by the botmaster (normal-
ized by the size of the botnet) for various amounts of botcargo-local messages
collected per bot (constant across bots). Figure 4.a also shows the average ef-
ficiency of the communication channel from a bot to the botmaster as the size
of the botcargo changes. The network seems to operate at an average efficiency
of 30% of collected botcargo reaching the botmaster when K = 2 (#botcargo
per bot per month). This decreases with increase in K although the absolute
number of messages delivered at the botmaster increases marginally from .75
per bot for K = 2 to 2.5 per bot for K = 10. Further increases result in even
more marginal increases as the effects of congestion result in decreasing routing
efficiency. A positive effect of increasing per node botcargo collection sizes (K)
is the reduction in duplicate messages reaching the botmaster. This is shown in
figure 4.b, the proportion of duplicate messages rapidly decreases until K = 10
and further reduces to 40% at K = 20. We observe that the positive effects of
duplication reduction correspond with an increase in normalized bandwidth as
the number of botcargo-local messages collected per node increase.
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(a) Normalized Bandwidth and Effi-
ciency

(b) Duplication

Fig. 4. Communication channel bandwidth and efficiency

The main result of our experiments is shown in figure 5. Figure 5.a shows the
average number of botcargo messages delivered to the botmaster. This shows an
increasing trend. This can be traced to the increasing number of users and the
number of average number of photo updates per user increase over the months in
our dataset. The sharp drops and increases are related to routing performance
under churn, when a few large uploaders suddenly stop using uploading for
certain periods of time, or dormant users being uploading in larger numbers (say
from one-two images to twelve-fifteen images per month). Figure 5.b indicates
the cumulative amount of traffic received by the botmaster over the years and
gives a sense of the total amount of sensitive material she can steal and the long-
term trends. Combining the total number of messages reaching the botmaster
(18000 botcargo-fwd) with the number of bits embedded in each message, we
obtain a monthly bandwidth of between 21.60MB/month in the average case
(q = 8) to 86.13MB (q = 2) for lower interference from the image adaption
process.

Overall, it is easy to see that even with a simple and naive routing algorithm
such as restrictive flooding, the botmaster is easily able to collect around 10%
of the total amount of stolen information. With a slightly more sophisticated
algorithm that exploits the presence of medium and high degree hub nodes as
super-peers, one could design a better routing algorithm. For instance, in the
current implementation all nodes behave the same way, hence hub nodes also
locally flood all the botcargo they receive. This is replayed back and forth be-
tween hubs and the rest of the network causing severe congestion. By ensuring
that super-peers carefully route incoming botcargo only to other super-peers, we
believe it should be possible to significantly improve network throughput.
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(a) Botcargo delivered (b) Cumulative botcargo delivered

Fig. 5. Experimental results for the number of delivered batcargo

5 Related Work

Most current botnets use a peer-to-peer architecture [19,20] which improves ro-
bustness and scalability. Botnet detection techniques exploit inter-bot interac-
tion patterns [16] or exploit the statistical characteristics of traffic flows [10,28]
to localize bots. Both these approaches require access communication traffic be-
tween the bots. By using (probabilistically) unobservable communication chan-
nels, Stegobot evades all these detection approaches.

The work closest to ours is the work of Nappa et al. [17] who describe the de-
sign of a resilient botnet using the Skype protocol for inter-bot communication.
The use of Skype for VoIP communication is popular and is hence difficult to
block without annoying legitimate users. By hijacking active (logged in) Skype
sessions, the botnet is able to bypass firewalls that might otherwise prevent bots
from directly communicating with each other. Our design goes a lot further due
to the unobervability properties of our communication channel. Unlike the design
of Nappa et al., we do not add new connection end-points – no communication
between user-accounts (bots) that do not already communicate, and no addi-
tional communication is introduced beyond what that users already exchange,
resulting in a stealthy design.

5.1 JPEG Steganography

Practical steganography schemes are based either on heuristic methods or pro-
vide some provable security based on some specific model. One of the first prac-
tical steganography schemes for the JPEG images is the JSteg scheme [3,21]. It
is based on using the Least Significant Bit (LSB) components of the quantized
DCT coefficients. More specifically, the message bits are simply replaced with
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the LSBs of the DCT coefficients of an image, considering some exclusions for
preserving the image quality. The embedding path for the LSBs was originally
sequential while the use of pseudo-random path was suggested in later imple-
mentations. Even with pseudo-random path the LSB steganography techniques
are shown to be detectable through different kind of attacks [27,29,14,13] that
exploit artifacts made in the first order statistics of the DCT coefficients.

These attacks led the next generation of the JPEG steganography schemes,
namely statistical restoration-based schemes, to consider preserving statistical
behavior of the cover images [24]. The main idea is to divide the cover image
into two disjoint parts, which one part is used to embed the message and the
other part is used to make corrections in order to preserve the selected statistical
behavior of the image. A related approach for preserving the statistical behavior
is used in the Model Based Steganography [22], where some specific model is
preserved for the DCT coefficients.

As an example of the heuristic steganography schemes we can mention the F5
scheme [26], which was developed to address the detectability of the LSB-based
embedding schemes. By decreasing the absolute value of the coefficients by 1 and
using some other tricks the F5 scheme avoids the obvious artifacts on different
features of the image. To increase the embedding efficiency F5 uses a coding
scheme, namely Matrix Embedding.

Another approach for steganography, recently attracting more attention, is
the minimal distortion embedding [7,12]. These schemes focus on increasing the
embedding efficiency by decreasing the embedding distortion. Newman et al.
in [18] propose JPEG-compatibility-steganalysis resistant method, which em-
beds the message into the spatial domain of the image before performing the
JPEG compression. YASS [23] is a more recent scheme based on the approach
of minimal distortion embedding.

6 Conclusions

The essence of communication security lies not merely in protecting content
but also unobservability. In this paper, we have presented and analyzed the de-
sign of a covert botnet using unobservable communication channels that aims
to steal sensitive information. The proposed botnet deploys innovative social
malware infection strategies to create an overlay network over the social com-
munication network of victims. A critical aspect of our design is the use of image
based steganographic techniques to hide bot communication and make it indis-
tinguishable from image noise. While techniques for image steganography are
well known, we go one step further to show that it is possible to design an ef-
fective covert network by exploiting the social network connecting users and the
social habits of individual users.

Acknowledgements. The authors would like to thank Anindya Sarkar for
providing the source code for the YASS image steganography scheme.
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Abstract. In this paper, we propose CoCo, a novel framework for es-
tablishing covert timing channels. The CoCo covert channel modulates
the covert message in the inter-packet delays of the network flows, while
a coding algorithm is used to ensure the robustness of the covert mes-
sage to different perturbations. The CoCo covert channel is adjustable:
by adjusting certain parameters one can trade off different features of
the covert channel, i.e., robustness, rate, and undetectability. By simu-
lating the CoCo covert channel using different coding algorithms we show
that CoCo improves the covert robustness as compared to the previous
research, while being practically undetectable.

1 Introduction

A covert channel intends to conceal the very existence of a hidden message,
covert message, by communicating it through a legitimate communication chan-
nel, i.e., the overt channel. Considering the computer networks, covert channels
lie within two major categories: covert storage channels, and covert timing chan-
nels [5]. Covert storage channels work by modifying some unused/random bits
in the packet header of a network flow [19,12,9]. Alternatively, a covert tim-
ing channel modulates the covert message into the timing pattern of network
flow packets [3,21]. A covert channel needs to be undetectable, meaning that the
covert traffic should not be distinguishable from a legitimate traffic. Murdoch et
al. show that many of the storage covert channels can be detected easily since
the covert message modifies the benign pattern of the utilized header fields [17].
Also, different statistical tests have been utilized to detect covert timing chan-
nels [2,7]. In addition to undetectability, a covert message needs to be robust to
the perturbations caused by the communicating network and/or an adversary.
Under given undetectability and robustness requirements a covert channel aims
in maximizing its rate, i.e., the number of covert message bits sent per covert
flow packets.

In this paper, we design CoCo as a reliable and adjustable framework for
establishing covert timing channels. CoCo modulates the covert message in the
inter-packet delays (IPD) of a network flow, while a coding algorithm is used to
ensure the covert message robustness. A main contribution of CoCo over the pre-
vious work is that CoCo is adjustable: a user of the covert channel can tradeoff
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different features of the covert channel, e.g., undetectability, rate, and robust-
ness, considering the application and network conditions. Recent research tends
towards developing covert channels with provable undetectability [15], however,
for many applications of covert channels a practical undetectability is sufficient.
Instead of providing a provable undetectability for all applications CoCo adjusts
its level of undetectability to what is needed for each specific application, re-
sulting in significant improvements in robustness and/or the rate of the covert
message. The adjustments are performed based on the channel models for noise
and adversarial perturbations, and also the performance priorities of the covert
channel users.

The CoCo covert channel is fast and easy to implement. To communicate a
covert message, m, a sender S generates a network flow f for a given traffic
model using a keyed IPD generator. The sender, then, slightly manipulates f
according to c which is an encoded version of the covert message m, resulting in
the covert flow, f c. Finally, f c is sent to a receiver R through a noisy channel,
e.g., the Internet. The receiver extracts the covert message from a noisy version
of f c using a secret key which is only shared between the sender and the receiver.
The channel noise is composed of two components: the natural noise of the overt
network, e.g., network delays, and the perturbations performed by an adversary
in order to degrade/destroy covert channels. CoCo is robust to both natural and
adversarial perturbations of the communication channel by taking advantage of
efficient coding algorithms. By adjusting the encoding algorithm and the gain
of the covert message, as defined later, CoCo is able to balance between rate,
undetectability, and robustness of the covert message. Our experiments show
that the choice of the coding algorithm and also the encoding rate impacts the
robustness performance of the covert message. We show through experiments
that under reasonable requirements for practical undetectability CoCo improves
the robustness performance significantly compared to similar previous research.

The rest of this paper is organized as follows; we mention some related work in
Section 2. In Section 3, we discuss the system model and features of the covert
timing channel. In Section 4, we describe a detailed description of the CoCo
covert timing channel. In Section 5, we evaluate the detection performance of
our covert channel using different coding algorithms. The undetectability of the
CoCo covert channel is evaluated in Section 6, and the paper is concluded in
Section 7.

2 Related Work

The very first covert timing channels are based on having a sender either send or
remain silent in specific time intervals in order to communicate covert message
bits 1 and 0, respectively [18,11]. These schemes not only are limited by the
need for accurate synchronization between the sender and the receiver, but also
are easily detectable using statistical tests [3]. Later research on covert timing
channels leans toward inserting the covert message directly in the inter-packet
delays (IPD). In [4] a covert timing channel is proposed that tries to mimic the
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empirical distribution of the legitimate traffic by splitting the empirical IPDs dis-
tribution into two equally-sized small-delay and large-delay groups and sending
a 0-bit (1-bit) covert message by randomly replaying an IPD from the small-
delay (large-delay) set. Berk et al. also suggest to encode the messages directly
into the inter-packet delays in order to maximize the covert capacity [2]. Shah
et al. propose the keyboard JitterBug, a low capacity channel for leaking the
typed information over an existing interactive network connection [21].

To defend against covert timing channels two different approaches have been
taken in the literature. The first approach is to actively disrupt the network
communication in order to destroy possibly existing covert timing channels. An
example for this is the use of network jammers that apply random delays over
the network packets [10]. Even though such disruptions can seriously devote the
capacity of covert timing channels they also disrupt the expected performance
of the legitimate traffic. This is more of a problem in the case of interactive
traffic and real-time traffic. In addition, such disruptions can result in changing
the traffic shape, hence, revealing the existence of the traffic disruptors to the
covert communicating parties. Another approach in defending covert channels
is to passively monitor network traffic in order to detect such channels. This is
done using different statistical tests including shape tests, regularity tests and
entropy tests [3,2,7].

To thwart these detection mechanisms Gianvecchio et al. devise a model-based
covert timing channel that models the network traffic in order to generate the
covert traffic [8]. The scheme, however, requires frequent communication of traffic
model parameters from the sender to the receiver. Recent research has considered
simple encoding of messages into the inter-packet delays in order to increase the
data rate of covert communication. Sellke et al. use a simple Geometric code
in conjunction with pseudo random generators to build a low-rate undetectable
covert timing channel for i.i.d. traffic [20]. The scheme is limited by the strong
assumption of the additive jitter being bounded. Liu et al. in [14] also modulate
covert messages in the IPDs of the traffic by using spreading codes in order to
increase the robustness of the covert channel to the network perturbations. A
similar covert timing channel is proposed in [15] for i.i.d. traffic that provides
provable undetectability for the covert message.

3 Preliminaries

3.1 System Model

A covert channel consists of a sender (S) sending a covert message to a receiver
(R) through a steganographic channel. In this paper, we consider the design of
a covert timing channel for computer networks, i.e., the steganographic commu-
nication is established through the packet timing information of a network flow,
the cover flow. The designed covert channel is active, in a sense that it generates
the timings of the network traffic used for embedding the covert message. CoCo
is based on modulating the covert message into the inter-packet delays (IPD)
of network flows. Some secret information, the secret key, is shared between the
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sender and the receiver so that a third-party is not able to either extract the
covert message, or detect the presence of the covert communication channel.

3.2 Adversary Model

We assume that the CoCo covert traffic is monitored by an adversary that tries to
detect the presence of covert timing channels. This requires the covert channel
to be undetectable, as defined later. Also, we consider active adversaries that
perturbs network traffic in order to destroy the possibly existing covert timing
channels. An effective covert timing channel should be robust to the channel
noise which is combined of the adversarial perturbations and the natural noise
of the network.

The adversarial perturbations are constrained in two ways; first of all, they
should not interfere with the benign traffic, as such perturbations are usually
performed by entities providing services to legitimate users, e.g., intrusion detec-
tion systems. Secondly, the adversarial perturbations should be concealed from
covert parties: having knowledge of the active adversaries the covert parties can
evade the detection by taking alternative covert mechanisms which are not af-
fected by the known perturbations. Based on this, we assume that the adversarial
perturbations can amplify the effect of the network noise in the channel noise,
but they do not change the behavior of the channel noise drastically. In our
simulations throughout this paper we model the channel noise as an amplified
version of the network noise.

3.3 Features of the Covert Timing Channel

Undetectability. We define a covert channel to be undetectable by a test algorithm
A with a Cross-Over Error Rate (COER) of C if the algorithm A is not able
to distinguish between a legitimate flow and a covert flow with a COER smaller
than C. A test A has a COER of C if it returns the same rates of false alarms
and misses in detecting a covert traffic. This is further elaborated in Section 6.

Robustness. As mentioned above, a cover flow containing the covert message is
perturbed by the channel noise which is composed of the network noise and the
adversary noise. We define a covert timing channel to be robust to the channel
noise with a bit error rate (BER) of ε if the receiver is able to extract the covert
message with a BER of at most ε. BER is defined as the number of errored
covert bits at the receiver divided by the total number of covert bits.

Rate. Another feature of a covert channel is the rate of the covert communica-
tion. We define the rate of the CoCo covert channel to be

r = lim
N→∞

K

N
(1)

where K is the number of covert message bits sent using N + 1 packets of a
cover flow. Under given undetectability and robustness requirements, a covert
channel designer aims in maximizing the rate of the covert channel. As will be
discussed later, the choice of the coding algorithm of CoCo trades off the rate
for the robustness of the covert channel.
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4 The CoCo Scheme

In this section we describe the scheme of the CoCo covert timing channel.

4.1 The CoCo Sender Scheme

The sender of the covert channel, S, inserts the covert message into the inter-
packet delays of the covert traffic. Figure 1 illustrates the scheme of the CoCo
sender that consists of the following components:

ENC

IPDG

MOD

m=(m(1),…,m(k))

KIPDG

c=(c(1),…,c(n))

d=(d(1),…,d(n))

ds=(ds(1),…,ds(n))

KC

Fig. 1. The block diagram of the CoCo sender

– IPD Generator (IPDG): pseudo-randomly generates the inter-packet delays
(IPD) according to a given traffic model and using a secret key.

– Message Encoder (ENC): encodes the covert message bits using a coding
algorithm in order to make the covert channel robust to the channel noise.

– IPD Modulator (MOD): modulates the output of the ENC encoder into the
IPDs generated by the IPDG block.

A covert flow is generated in three steps:

A. Encoding the message. An encoder ENC is called an (n, k) coding algorithm
if for any block of k message bits, m = (m(1), . . . , m(k)), it generates a block
of n encoded bits, c = (c(0), . . . , c(n)). Such an encoder has a coding rate of
k/n which also determines the rate of CoCo, i.e., r = k/n. A CoCo sender
divides a covert message into blocks of k bits and encodes each block using the
ENC (n, k) coding algorithm. The ENC encoder accepts inputs in the binary
format and generates output in the bipolar format, i.e., m(i) ∈ {0, 1}, and
c(j) ∈ {−1, 1} (1 ≤ i ≤ k, 1 ≤ j ≤ n). Note that the ENC encoder may be
protected by an encoding key Kc in order to protect the message confidentiality
in case of a compromise. This is not necessary as the covert message m can
be encrypted before encoding. In Section 5, we investigate the use of different
coding algorithms as the ENC encoder of CoCo and compare the functionality
of CoCo for different schemes.

B. Generating the inter-packet delays. The IPDG block generates sequences of
inter-packet delays pseudo-randomly according to a given traffic model. The
IPDG takes a traffic model and a secret key, KIPDG, as input and generates
sequences of IPDs according to the given traffic model. The secret key KIPDG
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is only shared between the sender S and the receiver R, that enable S and R to
generate the same pseudo-randomly generated sequences of IPDs. In Section 4.3
we design an IPDG for generating i.i.d. traffic. In fact, the i.i.d. assumption is
for the sake of simplicity and the IPDG can be designed in a similar manner for
any type of network traffic.

C. Modulating the IPDs with the encoded message. Once the coded message c is
generated (step A) it is embedded within the inter-packet delays generated by
the IPDG (step B). In order to send a length n encoded message c = (c1, ..., cn),
the sender requires a length n IPD sequence d = (d(1), ..., d(n)). The modulated
IPDs are given by:

dS(i) = d(i) + a × c(i) 1 ≤ i ≤ n (2)

where dS(i) is the ith modulated IPD and a is the amplitude of the covert
channel. We define the gain of the covert channel, γ, as:

γ = log2

a

σ
(3)

where σ is the standard deviation of the channel jitter (channel jitter is the effect
of the channel noise on the inter-packet delays). In fact, γ represents the signal-
to-noise ratio of the covert communication and is used in our evaluations in the
following sections. Finally, the timings of the covert flow, tS = (tS(1), ..., tS(n +
1)), are evaluated as:

tS(i) =
i−1∑
j=1

dS(j) + tS(1) (2 ≤ i ≤ n + 1) (4)

where tS(1) is the timing of the first packet which is selected at random from
the interval [0, 2] seconds.

4.2 The CoCo Receiver Scheme

After being perturbed by the channel noise, the covert traffic receiver, R, receives
the packets of the covert flow at times tR = (tR(1), ..., tR(n + 1)). The IPDs of
the received flow, dR = (dR(1), ..., dR(n)), are evaluated as:

dR(i) = tR(i + 1) − tR(i) (1 ≤ i ≤ n) (5)

The receiver intends to extract the covert message form the received IPDs dR

which is a noisy version of the sent IPDs dS. The CoCo receiver scheme is shown
in Figure 2 which consists of three components:

– IPD Generator (IPDG): the same IPD generator used by the CoCo sender.
– Message Decoder (DEC): a decoder for the ENC encoded messages. A key

might be shared between ENC and DEC algorithms.
– IPD Demodulator (DMOD): extracts the modulated bits from the received

IPDs.
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DEC

IPDG

DMOD

KIPDG d=(d(1),…,d(n))

KC

dR=(dR(1),…,dR(n)) ))(~),...,1(~(~ nccc

))(~),...,1(~(~ nmmm

Fig. 2. The CoCo receiver block diagram

The CoCo receiver scheme works in three steps in order to extract the covert
message bits from a received covert flow.

A. Re-generating the IPDs. The receiver uses the same IPD generator used by
the sender in order to re-generate the IPDs used by the sender to modulate
the covert message, i.e., d. The IPDG block uses a key KIPDG which is only
shared between the sender and receiver and is essential for the covert channel
undetectability. In Section 4.3, we describe the design of the IPDG for an i.i.d.
traffic model.

B. Demodulating the encoded message. The received IPDs sequence dR can be
represented as:

dR(i) = dS(i) + δ(i) (6)
= d(i) + a × c(i) + δ(i) (7)

As mentioned in part A, the IPD sequence d can be regenerated by the re-
ceiver using some shared information. So, the receiver is able to evaluate c̃ =
(c̃(1), . . . , c̃(n)) which is a noisy version of the encoded message c:

c̃(i) =
dR(i) − d(i)

a
(8)

= c(i) + δ(i)/a (9)

C. Decoding the covert message. The final step in extracting the covert message
is to decode the noisy encoded message, c̃. The DEC algorithm is used to decode
the length-n c̃ derived in the previous step into a length-k recovered message
m̃ = (m̃(1), . . . , m̃(k)). The goal of the DEC algorithm is to minimize the bit-
error rate (BER) which is defined as:

BER =
∑k

i=1 e(m(i), m̃(i))
k

(10)

where e(x, y) = 1 for x �= y, and e(x, y) = 0 for x = y.
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4.3 IPD Generator for an i.i.d. Traffic Model

The IPDG is responsible for generating IPDs according to a given traffic model
in a pseudo-random manner. Using a secret key, KIPDG, the sender and receiver
are able to use IPDG to generate the same IPDs sequences, while it is crypto-
graphically infeasible for a third party to generate the same sequences of IPDs.
The IPDG can be set up to generate any kind of traffic in a random manner that
allows the CoCo covert channel to be implemented for different types of traffic.
For the sake of simplicity we design an IPDG for generating i.i.d. network traffic.
In fact, i.i.d. traffic models are used in many analysis of network traffic and they
constitute fundamental elements of many advanced network traffic models.

The IPDG uses a keyed cryptographically secure pseudo-random number gen-
erator (CSPRNG), being known to anyone including the attacker. However, the
key of this SCPRNG, KIPDG, is only shared between the sender S and the re-
ceiver R. Also, S and R agree on the cumulative density function (CDF) of the
legitimate traffic, g(·). To generate the ith IPD value, d(i), the IPDG uses the
CSPRNG along with its key KIPDG to draw a number u(i) uniformly at random
from the range of [0, 1]. The IPD value d(i) is then generated as:

d(i) = g−1(u(i)) (11)

where g−1(·) is the inverse of the CDF function g(·). Note that since g(·) is a
one-to-one function with output range of [0, 1] its inverse function g−1 is also a
one-to-one function with input domain of [0, 1]. It is easy to show that the IPD
sequence d generated in this manner has an empirical distribution according to
the CDF function g(·). A more elaborated approach can be taken to generate
IPDs according to non-i.i.d. traffic models.

5 CoCo Performance for Different Coding Schemes

A covert timing channel can be considered as a noisy communication channel for
the cover message. The use of the ENC/DEC encoding algorithms is to improve
the detection performance of the covert message at the receiver. In this paper,
we consider the use of different types of linear encoding schemes. The linear
codes are classified into two main groups: block codes and convolutional codes. A
third class of linear codes is derived by combining block codes and convolutional
codes, the Turbo codes, which are known to approach the channel capacity. We
also consider Low-density parity check (LDPC) codes, another class of capacity-
approaching codes.

Simulation methodology. In each of the simulations a random covert message is
generated with a length appropriate for the selected ENC algorithm. The random
message is, then, used to generate the covert traffic using the CoCo sender scheme
described in Section 4.1. In order to simulate the effect of the channel noise we
randomly select samples of network jitter from a large database and apply them
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to the IPDs of the covert traffic (note that as discussed in Section 3.2 we consider
the channel noise to be an amplified version of the natural network noise). The
jitter database is collected over the Planetlab [1] and contains 100000 packets
(jitters have an average standard deviation of approximately 12msec). Finally,
a receiver R uses the receiver scheme mentioned in Section 4.2 to extract the
covert message bits from the perturbed covert traffic. Note that for the sake
of simulations we do not need to generate and add the IPDs to the encoded
message, as the IPDs are regenerated by the receiver and are canceled out from
the received noisy message before performing the decoding algorithm.

5.1 Block Codes

Reed-Solomon (RS) Codes. Reed-Solomon (RS) codes [13] are a class of linear
block correcting-codes that are maximum distance separable (MSD), e.g., they
meet the equality criteria of the singleton bound [13]. RS codes have been used
in satellite communications for many years because of their strength regarding
bursty errors. For an (n, k) RS code, each code symbol is m bits, where n = 2m−1
is the size of the coded message (e.g., an n-bit RS code consists of m×n binary
bits).

Table 1 shows the detection performance of the CoCo scheme using RS en-
coders with different parameters (each simulation is run 1000 times and the gain
of the covert scheme is γ = 0). Instead of BER, for evaluating RS codes we use
a similar metric, Block Error Rate (BLER). This is because each error in an RS
code affects a whole block of data. As can be seen from the table, decreasing the
rate of the RS encoder improves the detection performance of the covert chan-
nel, as more redundant bits are inserted to compensate for the channel noise.
Note that larger symbol size m requires more processing resources for the en-
coder and decoder; hence for similar BLER and rate a code with smaller m is
preferred. To illustrate the effect of covert gain on the detection performance we
also run the simulations for different values of γ. Table 2 shows the detection
results for a (7, 3) RS code. As can be seen, increasing γ significantly improves
the detection performance. In Section 6, we investigate the effect of the gain on
the undetectability of the CoCo covert channel.

Golay codes. Golay codes [13] are one of the few existing perfect codes, i.e., they
meet the equality criteria of the hamming bound [13]. Unfortunately, there are
only two instances of the Golay codes: a binary (23, 12) code, and a ternary (11, 6)
code. We use the binary Golay code of (23, 12) which is able to correct 3 errors
in a block of 23 encoded bits. Considering the high running speed of Golay codes
we concatenate them with simple Hamming codes [13] in order to improve the
CoCo robustness. Tables 3 and 4 illustrate the detection performance achieved
by concatenating the binary Golay code with 2-bit and 3-bit parity check codes,
respectively. A 2-bit parity check reduces the rate from 12/23 to 10/23, however
significantly improves the BER. As an example, for γ = 0 the the BER is reduced
from 0.13 to 0.02. The results are even better using 3 bits of parity.
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Table 1. RS codes for different param-
eters (1000 runs, γ = 0)

rate (r) m k n BLER

0.57 3 4 7 0.363
0.43 3 3 7 0.136
0.29 3 2 7 0.135
0.14 3 1 7 0.029
0.26 4 4 15 0.155
0.20 4 3 15 0.074
0.13 4 2 15 0.060
0.07 4 1 15 0.018
0.16 5 5 31 0.087

Table 2. BLER of the (7,3) RS code
for different gains (1000 runs) (r = 0.43)

γ BLER

-1 0.129
0 0.036
1 0.001

1.6 0.008
2 0.0002

Table 3. Binary (23, 12) Golay code
and 2-bits parity check (r ≈ 0.43)

γ
Correct Detected

BER
blocks errors

-1 0.4712 0.8078 0.1016
0 0.8637 0.8437 0.0213
1 0.9827 0.8959 0.0018

1.6 0.9950 0.9400 0.0003
2 0.9989 1.0000 0.0000

Table 4. Binary (23, 12) Golay code
and 3-bits parity check (r ≈ 0.39)

γ
Correct Detected

BER
blocks errors

-1 0.4712 0.9030 0.0504
0 0.8639 0.9213 0.0107
1 0.9853 0.9863 0.0002

1.6 0.9964 0.9722 0.0001
2 0.9989 1.0000 0.0000

5.2 Convolutional Codes

Convolutional codes are another class of linear error-correcting codes that have
use in many different applications [13]. An (n, k) convolutional code is a device
with k inputs and n outputs. The input stream of a message m is split into k
streams entering the inputs of the encoder, and each of the n output streams
is evaluated by convolving some of the input streams with a generator sequence
G. The length of the generator function is called the constraint length v, and
u = v − 1 is the memory of the encoder. An easy to implement decoder for
convolutional codes is an ML decoder based on the Viterbi algorithm [13].

The convolutional codes simulated in this paper use a constraint length of
v = 7. This is a popular value which is also used in the Voyager program and also
the IEEE 802.16e standard. Larger v results in more powerful codes but is only
used in space missions because of the decoder’s high complexity. Convolutional
codes also use puncturing which is a method to make a k2/n2-rate code out of a
k1/n1 code by deleting some of the encoded bits based on a puncturing matrix.
An M/N puncture means that out of M code bits only N bits are used. Table 5
shows the BER performance of CoCo using different convolutional codes, and
Table 6 shows the results for a specific code, but for different γ.
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Table 5. Average BER of Convolu-
tional code (1000 runs, each 10000 bits)
for different rates (γ = 0)

Rate (r) k/n puncture BER

0.67 1/3 6/3 0.2029
0.6 1/2 6/5 0.1653
0.57 1/2 8/7 0.1514
0.5 1/2 1/1 0.1098
0.5 1/3 6/4 0.1414
0.4 1/3 6/5 0.0815
0.33 1/3 1/1 0.0413
0.25 1/4 1/1 0.0351
0.2 1/5 1/1 0.0200

Table 6. Average BER of CoCo using
a Convolutional code with k/n = 1/2
and puncturing of 1/1 (1000 runs, each
10000 bits) (r = 0.5)

γ BER

-1 0.3825
0 0.1095
1 0.0076

1.6 0.0006
2 0.0001

5.3 Turbo Codes

Turbo codes are a class of high-performance error correction codes and are the
first practical capacity-approaching codes [16]. A turbo code is generated by
concatenating two or more constituent codes, where each constituent code can
be a convolutional or a block code. Usually some interleaver reorders the data
at the input of the inner encoders. Turbo codes are decoded through iterative
schemes. There are two types of Turbo codes: Block Turbo Codes (BTC), and
Convolutional Turbo codes (CTC). In Figure 3 we draw the BER of the CoCo
covert channel using BTC and also CTC codes. The simulated BTC and CTC
codes are used in the IEEE 802.16e standard. Due to the space constraints we
leave the use of other convolutional codes for the future research.

5.4 Low Density Parity-Check Codes (LDPC)

First designed by Gallager in 1962, LDPC codes are linear error correcting codes
which are considered as another class of capacity-approaching codes [16]. Com-
pared with the turbo codes the LDPC codes outperform for high code rates
while the turbo codes are better suited for lower code rates. The LDPC en-
coders are represented by randomly generated sparse parity-check matrices and
their decoding is performed iteratively using message-passing decoders [16].

We simulate the CoCo covert channel using the LDPC codes used in the IEEE
802.16e standard. In particular, we use a rate 0.5 LPDC code with k = 384.
The BER performance of this covert channel is illustrated in Figure 3; we leave
the simulation of other LDPC codes for the future research due to the space
constraints.

5.5 Comparisons and Tradeoffs

Figure 3 shows the average BER of the CoCo covert scheme using different
coding algorithms and for different values of γ. The coding schemes are selected
such that they result in a covert channel with a rate close to r = 0.5 (note that
not all the codes can be designed for an exact rate of r = 0.5). As can be seen,
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Fig. 3. The average BER of the CoCo using different coding schemes

the BER performance depends on the type of the coding scheme used by the
CoCo. As an example, the CoCo covert channel using ”Goaly(23,12)-Parity 2”
outperforms the one using ”RS(7,3)” code, even though they both have a rate
of r = 0.43. We observe that in all of the cases, for a given rate, increasing γ
reduces the BER of the CoCo. We also observe that for a given rate the choice of
the coding algorithm depends on the gain γ. As an instance, the ”Conv(2,1)-no
Punc” code outperforms all of the 0.5-rate codes for gains larger than 1, but is
outperformed by all of them for γ ≤ 0.

Unlike previous covert channels that the BER performance depends on the
noise power [20,14,15], the BER performance of the CoCo only depends on the
signal-to noise ratio of the covert channel, i.e., γ (see equation (9)). This, unlike
the other schemes, enables CoCo to provide similar performance for different
noise powers by adjusting the covert channel amplitude a. In contrast, other
schemes lose performance as the channel noise power increases [20,14,15]. For a
covert rate of r = 0.5 the covert channel of [15] results in BER rates varying
from 0.04 to 0.16 for a channel with Gaussian noise N(mN , σN ) where σN varies
between 50ms and 500ms. The BER performance is even worse for the covert
channel of [20], as compared in [15]. [14] also results in BERs of approximately
0.07 to 0.32 for a gaussian noise with 1ms ≤ σN < 20ms. On the other side, as
mentioned above the BER performance of CoCo does not depend on the noise
power, but on the gain of the covert channel. For a similar rate of r = 0.5 CoCo
can achieve BER rates less than 10−4 for a gain parameter of 2. In fact, the gain
parameter makes a tradeoff between the robustness and undetectability of the
CoCo covert scheme. Larger γ reduces the BER, hence improves the robustness of
the CoCo, while degrades the undetectability of CoCo as discussed in Section 6.
In fact the CoCo covert channel sacrifices the provable undetectability achieved
by recent research [15] for a better robustness/rate performance and a practical
undetectability.
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Another feature of the CoCo covert channel is being adjustable: based on the
application of the covert channel and the adversarial model one can tradeoff
undetectability, rate, and robustness of the CoCo covert channel. As discussed
in Section 6 the choice of γ trades off the undetectability and robustness of
the CoCo covert channel. Also, for a specific coding scheme reducing the rate
improves the covert channel robustness.

6 Undetectability Analysis

We use the two-sample Kolmogorov-Smirnov (K-S) test [6] to evaluate the un-
detectability of the CoCo covert channel. We simulate the CoCo covert channel
for sending SSH covert traffic and use the K-S test to distinguish between covert
SSH traffic and legitimate SSH traffic. To model the legitimate traffic we use
SSH traces collected by the CAIDA project from its equinix-chicago monitor —
an OC192 link of a Tier 1 ISP — in January 2009 [22]. Our evaluations show that
84.6% of the SSH flows have a flow rate almost uniformly distributed between
0.2pps and 4.2pps. We select 100 SSH flows with rates uniformly distributed
within this range to represent our sample for the legitimate traffic, as required
by the two-sample K-S tests. Each of the selected flows have at least 100 packets.

We then use CoCo to generate the covert traffic. The IPDG of CoCo simply
models each SSH flow as a Poisson process with a rate randomly selected from
the range of the samples, i.e., [0.2pps, 4.2pps]. Note that a more complicated
traffic model can be generated in order to better match the behavior of a certain
traffic, e.g., by matching the statistical behavior of the legitimate traffic [14].
Each flow is then generated as described in Section 4.3 and is used to modulate
the covert message. Also, we use the same IPDG to generate legitimate traffic
for the target traffic.

For different values of γ we run the two-sample K-S test between the traffic
sample and the CoCo covert flows. Also, we run the same K-S tests between the
legitimate flows and the traffic sample. We use the K-S test to distinguish be-
tween the legitimate traffic and the CoCo covert traffic by setting up a threshold
for the K-S test, ηKS . If the K-S test of a flow passes ηKS the flow is declared
covert, otherwise legitimate. The test produces a false alarm if the K-S test re-
sult is higher than the ηKS for a legitimate traffic, and produces a miss if a test
value is smaller than ηKS for a covert flow. For some value of ηKS , the K-S test
results in the same rates of false alarms and misses; we call this error rate as the
Cross-Over Error Rate (COER) of the K-S test. A good test should result in
very small COER rates, e.g., orders of 10−2, while a bad test has COER values
close to 0.5 (a random guess has a COER of 0.5). Table 7 shows the COER of
the K-S test for our simulations. As can be seen, even for γ = 2 the K-S test
is very poor in distinguishing between legitimate traffic and the CoCo covert
traffic. In fact, this gives a practical undetectability as compared to the prov-
able undetectability provided by [15]. In many applications of the covert chan-
nels a practical undetectability is sufficient. By adjusting the γ parameter the
CoCo covert channel can be designed such that it achieves the undetectability
requirements for a specific application .
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Table 7. COER of the K-S in detecting the CoCo covert flows

γ -1 0 1 1.6 2

K-S test 0.4690 0.4660 0.3390 0.3480 0.3700

7 Conclusions

In this paper, we design CoCo, an adjustable framework for covert timing chan-
nels. Using efficient coding algorithms we show that CoCo can reliably transfer
covert messages with bit error rates as low as 10−4, while remaining practically
undetectable. Also, the robustness of the CoCo covert channel depends on the
signal-to-noise ratio, not the noise power, making it suitable for establishing very
noisy covert channels.
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Abstract. Translation-based steganography (TBS) is a new kind of text
steganographic scheme. However, contemporary TBS methods are vul-
nerable to statistical attacks. Differently, this paper presents a novel
TBS, namely Lost in n-best List, abbreviated as LinL, that is resilient
against the current statistical attacks. LinL employs only one Statistical
Machine Translator (SMT) in the encoding process which selects one of
the n-best list of each cover text sentence in order to camouflage messages
in stegotext. The presented theoretical analysis demonstrates that there
is a classification accuracy upper bound between normal translated text
and the stegotext. When the text size is 1000 sentences, the theoretical
maximum classification accuracy is about 60%. The experiment results
also show current steganalysis methods cannot detect LinL.

Keywords: LinL, natural language steganography, translation-based
steganography (TBS), text steganography, linguistic steganography.

1 Introduction

The demand for translating fueled the necessity of machine translation (MT)
systems in business, science, World Wide Web, education, news, etc. As a result,
the popular use of MT by a wide variety of people creates a high volume of traffic
for accessing and generating translation. Such huge traffic allows communicating
parties to establish a covert channel to transmit steganographic covers and the
adversary is impossible to investigate all of them. This renders translation an
attractive steganographic carrier.

The core idea of Translation-Based Steganography (TBS) [1, 2, 3] is: “When
translating a non-trivial text between a pair of natural languages, there are
typically many possible translations. Selecting one of these translations can
be used to encode information” [1]. So the methods to generate the various
translations for a given sentence are very important for the security of TBS and
its embedding rate.

Contemporary TBS methods have used many different machine translators
and a post-processing pass to obtain various translations. The translations ob-
tained by these methods are much different from each other, so the stegotexts

T. Filler et al. (Eds.): IH 2011, LNCS 6958, pp. 329–341, 2011.
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generated by TBS are also much different from normal translated text. Conse-
quently, Meng et al. [4] and Chen et al. [5] successfully got their methods (STBS
and NFZ-WDA) to detect TBS.

Like the relation between cryptography and cryptanalysis, steganography and
steganalysis is a cat-and-mouse game. Although the statistical methods (STBS
and NFZ-WDA) seem to be promising on steganalysis of TBS, translated text is
still an attractive steganographic carrier due to demand for translation. Because
translated texts have been widely used on the Internet, using translated text
as a covert channel will draw less attention. For example, the translators of
Google [6], Systran [7], Linguatec [8], just name a few, are widely used on the
Internet, and in Google’s vision, people will be able to translate documents
instantly into the world’s main languages in the future. So it is attractive to
research much securer TBS.

To enhance the security of TBS, the most important work is to obtain various
and similar translations for each cover text sentence. We find the n-best list [9]
is a promising method to generate the similar translations.

Generally, the machine translator just generates the best translation for a
given input. However, the second best translation, third best translation, and
so on, can also be generated according to the applications. The first “n” best
translations are known as n-best list, which has been widely used for improving
the quality of machine translation and automatic speech recognition [9].

The following is an example of n-best list which is generated by Moses [10],
and the n-best list is compared with the translations by other on-line machine
translators.

Listed below is a German sentence: hierbei handelt es sich nicht nur um einen
statistischen fehler oder um glückliche umstände. Translating this sentence to
English by Moses, the 5-best list and the translations from Google, Systran,
Linguatec are:

1-best: this is no mere statistical error or lucky coincidence.
2-best: this is not mere statistical error or lucky coincidence.
3-best: this is not just statistical error or lucky coincidence.
4-best: this is not only of a statistical error or lucky coincidence.
5-best: this is not only a statistical error or lucky coincidence.

Google: This is not just a statistical error-or lucky circumstances.
Systran: here it does not only concern around a statistic error or happy would

stand around itself.
Linguatec: this is not only a statistical fault or happy circumstances.
The example shows the sentences of the n-best list are more similar to each

other than sentences from different translators. So using n-best list to improve
the security of TBS seems to be feasible.

Therefore, this paper presents a novel TBS, namely lost in n-best list (i.e.
LinL), which employs the n-best list to resist the current statistical detection.
LinL just uses one Statistical Machine Translator (SMT) in the encoding process
and selects one of the n-best list of each cover text sentence to encode the
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secret message. The difference between normal translated text and stegotext is
defined by a mathematical model, and finally we give a theoretically maximum
classification accuracy between normal translated text and stegotext. A series of
experiments also performed to show current steganalysis methods cannot detect
LinL.

The organization of this paper is as follows: Section 2 presents an overview of
the related work. Section 3 briefly covers the basic operations of the TBS algo-
rithm and some of the steganalysis methods. Section 4 focuses on the Statistical
Machine Translation (SMT), and shows why n-best list is suitable for TBS. In
Section 5, we use a mathematical model to define the difference between normal
translated text and stegotext, and get a formula to compute the classification
accuracy upper bound between normal translated text and stegotext. In Section
6 we present the results of using STBS and NFZ-WDA to detect LinL. Possible
attacks on LinL are discussed in Section 7. Finally, Section 8 concludes the
paper.

2 Related Work

Text-based information, like web pages, academic papers, emails, e-books and
so on, exchanged or distributed on Internet plays an important role in people’s
daily life. Because there are a huge number of texts available in which one can
hide information, a covert communication known as linguistic steganography [11]
has attracted more and more people’s attention.

2.1 Linguistic Steganography

Linguistic steganography is a text steganography method that specifically con-
siders the linguistic properties when generated and modified text, and in many
cases, uses linguistic structure as the space in which messages are hidden [11].
TEXTO [12] is an early linguistic steganography program. It works just like a
simple substitution cipher, with each of the 64 ASCII symbols or uuencode from
secret data replaced by an English word. Wayner [13] introduced a method which
uses precomputed context-free grammars to generate steganographic text with-
out sacrificing syntactic and semantic correctness. Chapman and Davida [14]
gave another steganographic method called NICETEXT. The texts generated by
NICETEXT not only had syntactic and lexical variation, but whose consistent
register and “style” could potentially pass a casual reading by a human observer.
Chang and Clark [15] introduced a method to integrate text paraphrasing into
a linguistic steganography system.

Non-linguistic approaches to text steganography have also been researched.
Liu and Tsai [16] proposed a steganographic method for data hiding in Microsoft
Word documents by a change tracking technique. Desoky [17, 18, 19, 20] has
introduced a series of text steganography methods , which are named as noiseless
steganography (Nostega).
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2.2 Statistical Steganalysis

For detecting the above linguistic steganography, some steganalytic algorithms
have been proposed. Taskiran et al. [21] used a universal steganalytic method
based on language models and support vector machines to differentiate sentences
modified by a lexical steganography algorithm from unmodified sentences. Chen
et al. [22] used the statistical characteristics of correlations between the general
service words gathered in a dictionary to classify given text segments into ste-
gotexts and normal texts. This method can accurately detect NICETEXT and
TEXTO systems. The paper [23] also brought forward a detection method for
NICETEXT, which took advantage of distribution of words. Another effective
linguistic steganography detection method [24] uses an information entropy-like
statistical variable of words together with its variance as two features to classify
text segments.

3 Translation-Base Steganography and Steganalysis

This section briefly presents an overview of the translation-based steganography
(TBS). To introduce TBS, we focuse on the “Lost in Just the Translation (Li-
JtT)” [2] which extends the original “Lost in Translation (LiT)” [1] into one
which allows the sender to only transmit the stegotext. The encoding processes
of both LiT and LiJtT are selecting the translation results by various translators
to encoding bits.

Conceptually, TBS works as follows: First, the sender obtain a cover text in
the source language. The cover text could be a secret of the sender or could have
been obtained from public sources — for example, a news website. Then, the
sender translates the sentences in the source language into the target language
using multiple different translators. Because a sentence translated by different
translators may generate different translation results, the sender essentially cre-
ates multiple translations for each sentence and ultimately selects one of these
to encode some bits of the hidden message.

The encoding process of LiJtT specifically works as follows. After generating
multiple translations for a given cover text sentence, the sender uses the secret
key (which is shared between the sender and receiver) to hash the individual
translated sentences into bit strings. The lowest h bits of the hash strings,
referred to as header bits, are interpreted as an integer b ≥ 0. Then the sentence
whose lowest [h + 1, h + b] bits corresponds to the bit-sequence that is to be
encoded is selected.

When the receiver receives a translation which contains a hidden message, he
first breaks the received text into sentences. Then applies a keyed hash to each
received sentence. The lowest [h + 1, h + b] bits in this hash contain the next b
bits of the hidden message. Figure 1 illustrates the protocol.

These methods to generate different translations for data hiding can be de-
tected by statistical methods. Papers [25, 26] present the first steganalysis
method on TBS, which needs to know the MT set and the source language
of the cover text. Due to the source language and the translator set may be part
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Fig. 1. Illustration of the basic protocol (from [2]). The adversary can observe the
message between Alice and Bob containing the selected translation.

of the private secret of the sender [2], the method cannot be used in general.
To blind detection of TBS, Meng et al. [4] introduced a statistical steganaly-
sis method which was named STBS. STBS is based on the word and 2-gram
frequency difference between normal text and stegotext, the average classifying
accuracy is about 80% when the text size is 20K bytes . To accurately detect
TBS when the text size is much smaller, Chen et al. [5] gave another statistical
steganalysis method, which is named natural frequency zoned word distribution
analysis (NFZ-WDA). When the text size is 5K bytes, the detection accuracy is
above 90%.

The steganalysis methods have demonstrated that the security of TBS is
based on the methods to generate various translations. The more similarity
between the translations, it is the more difficult to classify normal translated
text and stegotext. The contemporary TBS uses different translators and a post-
processing pass to generate the various translations for a cover text sentence.
Because the translations resulted from different translators are much different
to each other, Meng et al. [4] and Chen et al. [5] successfully introduced their
methods to detect TBS. So it becomes clear that generating similar translations
for the cover text sentence is pivotal for the security of TBS.

To generate the various and similar translations of a cover text sentence, n-
best list of statistical machine translation (SMT) [9] seems to be a good strategy.
To thoroughly study the security of using n-best list in TBS encoding process,
we introduce the process of statistical machine translation.

4 Statistical Machine Translation

Statistical Machine Translation (SMT) as a research area started in the late
1980s. Lately, most competitive statistical machine translation systems use
phrase-based translation [27].
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Fig. 2. An illustration of phrase-based translation

SMT working process can be simply summarized as follows(by translating
a different language to English as an example): For all the candidate English
sentences of a foreign language sentence, SMT counts a probability cost for
each of them and outputs the sentence with the highest probability cost as the
translations.

Figure 2 illustrates the process of phrase-based translation.
The probability cost that is assigned to a translation is a product of the prob-

ability costs of four models: phrase translation table, language model, reordering
model, and word penalty.

Each of the four models contributes information over one aspect of the char-
acteristics of a good translation:

“The phrase translation table ensures that the English phrases and the foreign
language phrases are good translations of each other.

The language model ensures that the output is fluent English.
The distortion model allows for reordering of the input sentence.
The word penalty provides means to ensure that the translations do not get

too long or too short” [27].
Each of the models can be given a weight that sets its importance. Mathe-

matically, the cost of translation is:

p(e|f) = Φ(f |e)weightΦ × LMweightLM × D(e, f)weightd × W (e)weightw

The probability cost of the English translation e given the foreign input f, p(e|f),
is broken up into four models, phrase translation Φ(f |e), language model LM(e),
distortion model D(e, f), and word penalty W (e) = exp(length(e)). Each of the
four model is weighted by a weight [27].

To translate a sentence, the main process of SMT is to search the best
translation from hundreds and thousands of candidate translations. An up-
per bound for the number of candidate English sentences can be estimated by
N ∼ 2nf |Ve|nf [27] where nf is the number of foreign words of the translated
sentence , and |Ve| the size of the English vocabulary. Because the search space
is very large, one can imagine that the best translation, the second best trans-
lation, the third best translation, and so on, will be very similar to each other.
Thus, the stegotext generated by TBS that is based on n-best-list would be
difficult to be differentiated from normal translated text.
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To validate the security of using n-best list in TBS, we provide both theory
analysis and experiment study. In the next section, we give a theory analysis of
using n-best list in TBS.

5 Theoretically Analyze the Security of LinL

In this section, we estimate the difference between normal translated text and
stegotext by establishing a mathematical model, and we finally give a formula
to compute the classification accuracy upper bound of LinL.

The translation process of SMT shows each candidate English sentence is
associated with a probability cost, i.e., from SMT point of view each candidate
English sentence is just treated as a probability, SMT just outputs the sentence
with the highest probability as the translations. From the perspective of SMT,
the probability cost is considered as the only feature of the translations. So the
difference between the n-best list can be defined by the difference between each
sentence’s probability cost, and the difference between normal translated text
and stegotext can be defined by the difference between their probability cost
distributions.

Fig. 3. The distribution of the probability cost of normal translated sentences

Figure 3 shows the distribution of the probability cost of the normal translated
sentences. Except some very high values, the distribution of the probability
cost can be approximatively considered as normal distribution. Because the
difference of the probability cost of n-best list is very small, he distribution of the
probability cost of stegotext sentences can also be approximatively considered
as normal distribution.

For a text segment which contains m sentences, there are totaly m proba-
bility cost features. Because each probability cost feature can be considered
as a normal distribution variable, the vector of the m probability cost features
can be considered as m-variate multivariate normal. The m-vector is the only
measurement of the text. So the problem of classifying between normal trans-
lated text and stegotext is turned to the classification of two multivariate normal
distributions.
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Table 1. The means and variances of the probability cost of normal translated texts
and stegotexts

Type Ave Var

normal -44.49 42.89

Li2L -45.16 42.77

Li4L -46.12 44.99

Li8L -46.79 47.85

Suppose the distributions of the probability cost of the normal translated
texts and stegotexts are denoted by two normal distributions: N(μ1, σ1) and
N(μ2, σ2), where μ1 and μ2 are the means, and σ1 and σ2 are the variances
of the first and second populations, respectively. The means and variances of
normal translated texts and stegotexts can be obtained by a statistical method.
Table 1 shows the means the variances of different type of texts that we have
obtained from more than 10 thousands of sentences of each type. Li2L, Li4L and
Li8L represent TBS with 2-best, 4-best and 8-best list to generate the stegotext,
respectively.

Assume that the text contains m sentences and the probability cost of all
sentences are independent, so the normal translated texts and stegotexts can be
denoted by two m-variate multivariate normal distributions: N(μm1, Σ1) and
N(μm2, Σ2), where,

μm1 =

⎡⎢⎢⎢⎣
μ1

μ1

...
μ1

⎤⎥⎥⎥⎦ and μm2 =

⎡⎢⎢⎢⎣
μ2

μ2

...
μ2

⎤⎥⎥⎥⎦
are the mean vectors (each contains m values),

Σ1 =

⎡⎢⎢⎢⎣
σ1

σ1

. . .
σ1

⎤⎥⎥⎥⎦ and Σ2 =

⎡⎢⎢⎢⎣
σ2

σ2

. . .
σ2

⎤⎥⎥⎥⎦
are the covariance matrices of the first and second populations, respectively.

The problem of classification of two multivariate normal distribution has been
thoroughly researched in multivariate statistical analysis. For the two m-variate
multivariate normal distributions, as defined above, the maximum classification
accuracy can be computed by the following formula [28]:

Accuracy =
∫ √

m
|μ1−μ2|
σ1+σ2

−∞
(2π)−

1
2 e−

1
2 t2dt



LinL:Lost in n-best List 337

Table 2. Maximum classification accuracy of LinL

��������������Type
Length (Sen.)

100 200 300 400 500 600 700 800 900 1000

Li2L 0.53 0.54 0.55 0.56 0.57 0.58 0.58 0.59 0.59 0.60

Li4L 0.57 0.60 0.63 0.65 0.66 0.68 0.69 0.70 0.71 0.72

Li8L 0.60 0.64 0.67 0.70 0.72 0.73 0.75 0.77 0.78 0.79

Using this formula to compute the maximum classification accuracy of normal
translated texts and stegotexts, which only needs to know the means and vari-
ances of the probability cost.

With the data of Table 1, the maximum classification accuracy between nor-
mal translated text and stegotext can be couputed. Table 2 shows the maximum
classification accuracy with the data of Table 1. From the data of Table 2, the
following can be concluded:

– The classification accuracy increases with the text size increases.
– The less n-best list used in the TBS encoding process, the more secure for

LinL.

6 Experiment

A series of experiments were performed to show the security of LinL. The exper-
iments use the steganalysis methods which have successfully detected contem-
porary TBS to detect LinL.

Moses [10] was used to translate from German to English to generate the
n-best list. The WMT08 News Commentary data set [29], about 55k sentences
were used to train Moses and as the source text of the experiment. Li2L, Li4L
and Li8L were tested. The normal translated texts and stegotexts were split to
10K bytes segment. STBS [4] and NFZ-WDA [5] methods were tested respec-
tively. Table 3 shows the detection results.

The experiment results in Table 3 shows both STBS and NFZ-WDA cannot
detect LinL. When using STBS to detect Li2L and Li4L, the detection accuracy
is no better than random guess. Even using STBS to detect Li8L, the detection
accuracy is still very low. When using NFZ-WDA to detect Li2L, Li4L and Li8L,
respectively, it would classify most of the test texts to normal translated text.

7 Discussion

This section discusses the various possible attacks on LinL. As one of the serial
TBS methods, some the discussions about LiT [1] and LiJtT [2], like future
machine translation and repeated sentence problems, are also suitable for LinL.
We just discuss the problems that may come out with LinL in this section.
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Table 3. Experiment results of using STBS and NFZ-WDA to detect LinL

Type Train Test Non-stego Stego Accuracy(%)

STBS

Normal 50 229 155 74
51.02

Li2L 50 212 142 70
Normal 50 229 99 130

48.49
Li4L 50 169 75 94

Normal 50 229 133 96
61.36

Li8L 50 110 35 75

NFZ-WDA

Normal 50 229 224 5
51.02

Li2L 50 212 211 1
Normal 50 229 194 35

54.02
Li4L 50 169 148 21

Normal 50 229 178 51
59.29

Li8L 50 110 87 23

7.1 Translation Quality

Whether the translation quality of stegotext is worse than normal translated
text? From SMT point of view, some sentences of stegotext are not the best
translation, but the second best translaion, third best translation, and so on, the
answer is yes. However, translation quality is difficult to be used as a feature
to classify a text to normal translated text and stegotext. First, the translation
quality is difficult to count, and the translation quality of different machine
translator or the same machine translator with different training database is
much different. Second, the best translation given by a MT may not be the best
translation from human’s perspective. So using translation quality to attack
LinL seems impossible.

7.2 Statistical Attacks

Statistical attacks have been extremely successful at all area of steganography,
such as image [30], video [31] and text [22]. We also cannot preclude the ex-
istence of yet-undiscovered statistical methods for defeating LinL. However, a
classification accuracy upper bound between normal translated text and stegotet
is given, it can be used as a reference when use LinL. For steganography and
steganalysis, it is an arm race. Once a statistical steganalysis is known, it is
actually easy to modify the steganography method to resist its attacks.

8 Conclusion

This paper introduces a novel translation based steganography, namely LinL,
which uses the n-best list of a statistical machine translator (SMT) to encode
the secret message. We just use one machine translator in the encoding process,
the generated texts (stegotexts) of LinL are very similar to normal translated
text, so it is difficult to classify normal translated texts and stegotexts. To
show the security of LinL, we have derived a detection accuracy upper bound of
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LinL, and some steganalysis methods are tested on LinL, the experiment results
show current steganalysis methods cannot classify normal translated text and
stegotext.

Comparing with contemporary TBS, LinL can resist statistical detection and
the embedding rate can be changed easily. Further more, LinL does not need
post-processing algorithms either. To enhance the embedding rate, we can select
a bigger “n” of the n-best list. To enhance the security of LinL, we just select a
smaller “n” of the n-best list. However, if we just select the 1-best translation
result, LinL will just be a normal translator.

The security of LinL maybe can continue to improve, for example, according
to the sentence length or the probability cost of each translations, to select a
different number of “n” for each sentence will be better for the security and
embedding rate of LinL. This problem will be investigated in the future work.
Although there is still some research work to be done for LinL, the theory anal-
ysis and experiment results shown have demonstrated that using n-best list to
enhance the security of TBS is promising.
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Fontaine, Caroline 43
Fridrich, Jessica 85, 102
Furon, Teddy 28, 43

Goljan, Miroslav 85, 102
Gul, Gokhan 71

Hämmerle-Uhl, Jutta 238
Holub, Vojtěch 85, 102
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Kodovský, Jan 85, 102
Kohlweiss, Markulf 148
Kurugollu, Fatih 71

Lai, ShiYue 285

Meerwald, Peter 28
Meng, Peng 329

Nagaraja, Shishir 299
Nikiforov, Igor 163, 178
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