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Preface

This volume collects the papers accepted for presentation at MIRAGE 2011.
The MIRAGE conference is recognized internationally with presentations

coming from 19 countries despite the large worldwide economical crisis. Sub-
missions from Asia dropped compared with two years ago, and were fewer, than
those from Europe. France proved to be the most active scientifically in this area
this year again.

All papers were reviewed by three to four members of the Program Com-
mittee. The final selection was carried out by the Conference Chairs by strictly
following the reviewers’ decisions.

At this point, we wish to thank all the Program Committee members for
their timely and high-quality reviews. We also thank the invited speakers Peter
Eisert and John Paul Lewis for kindly accepting to present very exciting talks
that should allure many people to the conference.

mirage 2011 was organized by inria Rocquencourt and took place at inria,
Rocquencourt, close to the Versailles Castle. The next conference will take place
in two years in Berlin and will be chaired by Peter Eisert. We believe that the
conference was a stimulating experience for the audience, and that everybody
had an enjoyable stay in the nice city of Versailles, enjoying our excellent gala
dinner which took place in a very cosy castle.

June 2011 A. Gagalowicz
W. Philips
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André Gagalowicz INRIA Rocquencourt, Le Chesnay, France

Conference Co-chairs

Peter Eisert Fraunhofer HHI / Humboldt University,
Germany

J.P. Lewis Weta Digital, Victoria University, New Zealand

Organizing Committee
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Bundle Adjustment for Stereoscopic 3D

Christian Kurz, Thorsten Thormählen, and Hans-Peter Seidel

Max Planck Institute for Computer Science (MPII)
Campus E1 4, 66123 Saarbrücken, Germany

ckurz@mpi-inf.mpg.de

Abstract. The recent resurgence of stereoscopic 3D films has triggered
a high demand for post-processing tools for stereoscopic image sequences.
Camera motion estimation, also known as structure-from-motion (SfM)
or match-moving, is an essential step in the post-processing pipeline.
In order to ensure a high accuracy of the estimated camera parame-
ters, a bundle adjustment algorithm should be employed. We present
a new stereo camera model for bundle adjustment. It is designed to be
applicable to a wide range of cameras employed in today’s movie produc-
tions. In addition, we describe how the model can be integrated efficiently
into the sparse bundle adjustment framework, enabling the processing of
stereoscopic image sequences with traditional efficiency and improved
accuracy. Our camera model is validated by synthetic experiments, on
rendered sequences, and on a variety of real-world video sequences.

1 Introduction

In computer vision, stereo image sequences have been employed for a large num-
ber of applications over the past decades. However, the largest body of work
can be found on robot or autonomous vehicle navigation and motion estimation.
Implicated by this predominant area of application, stereo processing pipelines
usually have to face restrictive real-time requirements. Furthermore, there are
limits on the amount of data the algorithms are allowed to accumulate and
process. These requirements influence the types of algorithms employed.

Recently, however, the revival of 3D films using modern stereo 3D (S3D) tech-
nology has entailed the creation of an unprecedented amount of high-resolution
stereo image data. Today’s movies are often augmented with virtual objects, and
sometimes even the major part of the movie is computer generated. In order to
composite the virtual objects with a real image sequence, the camera parameters
of the real camera have to be estimated to render the virtual object with the
corresponding virtual camera. Thus, reliable and accurate camera motion esti-
mation for S3D sequences is a crucial part in movie post-processing and essential
for the creation of convincing special effects. Given the amount of computation
involved, post-processing is inherently done off-line and does not shy away from
computationally expensive algorithms.

Considering the increase in demand, some commercially available match-
moving packages already incorporate solvers for stereo cameras. However, the

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2011, LNCS 6930, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 C. Kurz, T. Thormählen, and H.-P. Seidel

employed algorithms are not published and an academic paper presenting a so-
lution to high quality camera motion estimation for stereo cameras is (to the
best of our knowledge) not yet available.

We present an approach allowing reliable and accurate camera motion esti-
mation for stereo sequences. In contrast to existing real-time approaches, we
employ a large number of automatically extracted feature points and optimize
the camera parameters with the gold-standard method: bundle adjustment. As
known from literature, the näıve implementation of bundle adjustment is com-
putationally expensive beyond feasability and can be sped up by employing the
sparse matrix structure of the Jacobian. The contributions of this paper are:

– An extended camera model for stereo cameras is presented. The model offers
great flexibility in terms of its parameters and therefore can be employed
for a variety of different cameras, ranging from entry-level consumer 3D
camcorders using a 3D conversion lens with a static camera geometry to
professional cameras used in movie productions.

– It is shown how the additional constraints introduced by the camera model
can be incorporated into the sparse bundle adjustment framework.

The approach is validated on a variety of data sets, from fully synthetic experi-
ments to challenging real-world image sequences.

This paper is organized as follows: Related work will be reviewed in the next
section, followed by a brief summary of camera motion estimation in Sec. 3.
Sec. 4 introduces our new camera model for stereoscopic bundle adjustment,
and the incorporation into bundle adjustment is described in Sec. 5. The results
of our new approach are shown in Sec. 6, followed by the conclusion.

2 Related Work

Structure-from-Motion. A general introduction to bundle adjustment can
be found in [1, 2]. Of late, research has been done towards processing data
of multiple independently moving cameras [3], or entire community photo col-
lections [4], demonstrating orthogonal approaches. Multi-camera systems either
assume a static and calibrated camera setup on a moving platform [5, 6] or
obtain the calibration by averaging parameters of the independent reconstruc-
tions [7]. There exist alternative approaches to SfM, but either the stereo rig is
assumed to be calibrated and no bundle adjustment is used [8], or the bundle
adjustment remains unaffected by the changes to the reconstruction pipeline [9].
To a certain extent, constraints arising from stereo geometry have been included
in bundle adjustment [10], but the model is incorporated into the algorithm by
simply adding soft constraints and without addressing the sparse structure of
the problem.

Self-Calibration. The problem of self-calibration for an uncalibrated stereo
rig with an unknown motion has been explicitly modelled for two pairs of stereo
images [11], even with varying vergence angles [12], but the focus of these papers
is rather on obtaining a one-time calibration of these two stereo pairs instead of
the optimization over a complete image sequence.
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Stereo Navigation, Ego-motion Estimation, Visual Odometry. Stereo
rigs used in robot or autonomous vehicle navigation and motion estimation are
usually assumed to be calibrated. Due to runtime constraints, the problem of mo-
tion estimation is often reduced to estimating the parameters of an inter-frame
motion model given two distinct sets of 3D points, and then feeding the results
to a Kalman filter to achieve robustness (see [13–16], for example). Optimized
feature selection and tracking, especially multi-frame tracking, is used in [17]
to achieve robustness for tracking features over longer sequences. There are at-
tempts at using bundle adjustment in visual odometry, thereby incorporating
the data produced by a calibrated stereo rig directly [18–20], but, in contrast
to these approaches, we do not assume the calibration of the stereo rig to be
known. A reduced order bundle adjustment is used in [21], but the processing
and parametrization of the input data are again tailored to meet the real-time
requirements of the system. In [22], a correlation-based approach to ego-motion
and scene structure estimation from stereo sequences is presented. The approach
is different from bundle adjustment and the transformation between left and
right frames is assumed to be constant.

Uncalibrated Stereo. Various approaches exist to obtain the epipolar geome-
try of an uncalibrated stereo rig [23–27], but these methods only consider a single
pair of images and there is no further optimization. Visual servoing [28–30] and
man-machine interaction [31] sometimes rely upon uncalibrated stereo cameras,
but the cameras are static and the algorithms avoid explicit 3D reconstructions.
For a moving stereo rig, restrictive assumptions on the scene structure have to be
made [32]. Quasi-Euclidean epipolar rectification [33] has recently been adapted
to work on uncalibrated stereo sequences [34], even with non-linear optimiza-
tion [35], but the scene representation differs from bundle adjustment.

Optical Flow, Three-Dimensional Scene Flow. While camera setups in
optical flow applications frequently employ two [36, 37] or more cameras [38],
research in this area is more geared towards recovering the non-rigid scene mo-
tion [39], whereupon the cameras are assumed to be calibrated. Optical flow can
be adapted for ego-motion estimation [40], but the method uses rectified input
images and makes restrictive assumptions on the scene structure.

Commercial Products. Several commercial products feature tools for stereo-
scopic tracking and stereo solving (PFTrackTMand SynthEyesTM, for example),
but the corresponding algorithms have not been published.

3 Structure-from-Motion

Given a sequence of K images Ik, SfM refers to the procedure of deriving a cam-
era matrix Ak for every image (representing the camera motion), and a set of J
3D object points Pj = (Px, Py, Pz , 1)� (representing the static scene structure).
The 2D feature point corresponding to Pj in image Ik is denoted by pj, k.
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stereo frame k

frame k − 1
frame k + 1
stereo

stereo

Ik,R

Ik−1,R

Ik,L Ik+1,L

Ik−1,L

Ik+1,R

Pj

pj,k,L
pj,k+1,R

pj,k+1,L

pj,k−1,L

pj,k,R

pj,k−1,R

Fig. 1. Each stereo frame consists of a left camera image Ik, L and a right camera
image Ik, R. In contrast to monocular SfM, there are now two sets of corresponding 2D
feature points pj, k, L and pj, k, R for the set of 3D object points Pj .

Traditionally, the SfM pipeline consists of several steps. At first, the 2D fea-
ture points are detected and tracked, and outliers are eliminated using geometric
constraints (e.g., the fundamental matrix). In the next step, initial camera pa-
rameters and 3D object points are established. To obtain initial values for the
intrinsic camera parameters, self-calibration is performed. These steps are not
described in this paper; details can be found in the literature [1]. As last step,
bundle adjustment is employed, which will be discussed in the following.

The goal of bundle adjustment is to minimize the reprojection error given by
the cost function

arg min
A,P

J∑
j=1

K∑
k=1

d(pj, k , Ak Pj)2 , (1)

where d(...) denotes the Euclidean distance. Thereby, the error is equally dis-
tributed over the whole scene. For numerical optimization of Eq. (1), the sparse
Levenberg-Marquardt (LM) algorithm is typically employed [1].

In the case of a stereo camera setup, the input consists of K stereo frames.
For convenience, the individual images are now denoted as Ik, L for the image of
the left camera, and Ik, R for the image of the right camera. Analogical, we get
separate projection matrices Ak, L and Ak, R, and we have to distinguish between
2D feature points pj, k, L and pj, k, R, respectively (see Fig.1).

Introducing x ∈ {L,R}, the cost function from Eq. (1) translates to

argmin
A,P

J∑
j=1

K∑
k=1

∑
x

d(pj, k, x , Ak, x Pj)2 . (2)

4 Camera Model

In this section, we first describe the camera model for our stereo bundle adjust-
ment for a metric camera. Bundle adjustment for monocular sequences is often
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also performed with a projective camera model [1]. However, the representation
of the geometric constraints between the left and the right camera is not pos-
sible in the projective framework, because transformations in the local camera
coordinate system including rotations and translations cannot be parametrized
independently from the current projective camera matrix. Thus, we propose to
enforce the constraints introduced by our metric stereo camera model after an
update from projective to metric space has been performed (cp. [1, 41]).

The 3 × 4 projection matrix A of a metric camera can be decomposed as

A = K [ I |0 ]
[
R −RC
0 1

]
, (3)

where C is the position of the camera center in world coordinate frame, R is
a rotation matrix representing the camera orientation, and K is a calibration
matrix comprising the intrinisc camera parameters, such as focal length. The
index k assigning a projection matrix to the corresponding image is omitted
throughout this chapter for the sake of readability.

Considering a standard stereo camera setup as employed in movie productions,
our first observation is that the two cameras of the stereo system undergo only
dependent motion – if the left camera translates to the right, the right camera
will inherently have to follow that same translation. Now, in order to improve
over the conventional bundle adjustment algorithm, we exploit this dependency:
Instead of treating the left and the right camera as separate entities, we consider
them as instances of the same camera system. A change of parameters introduced
by the left camera will therefore influence the position and orientation of the right
camera, and vice versa.

Secondly, to benefit from the combined camera model, the total number of
parameters representing the camera over the whole image sequence has to be
reduced. Since modern stereo camera systems allow the point of convergence of
the two cameras to change during acquisition, the relative rotation between the
cameras can not always be assumed to be constant over the sequence. Therefore,
this constraint, which would reduce the number of parameters significantly, is
only optionally enforced (however, all our results enforce this constraint).

Assuming the relative position offset of the two camera centers to be unknown
but constant is a constraint we always enforce, because the baseline between the
cameras is usually not changed. As a matter of principle, there is some freedom
in the choice of the stereo system base position. We chose it to coincide with the
center of the left camera. The result are two different decompositions for the left
and the right camera that can be expressed as

AL = KL [ RL |0 ]
[
R −RC
0 1

]
, (4)

AR = KR [ RR | − RRCR ]
[
R −RC
0 1

]
, (5)

where subscripts L and R denote parameters that are exclusive to the left and
right camera respectively.
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base frame origin

orientation RR

right camera

position C
right camera

orientation RL

left camera

Fig. 2. Our novel camera model for bundle adjustment. The camera geometry of every
stereo frame is given by a base frame (dashed lines), whose origin is aligned with the
center of the left camera. The orientation RL of the left camera is encoded independent
from the orientation of the base frame, allowing the position of the right camera to be
specified by a single parameter C (red arrow) for the whole sequence.

The rotation matrix of the left camera RL could be omitted for a static stereo
setup. However, if the point of camera convergence changes in a dynamic setup,
it is necessary to encode the orientation of the left camera separately from the
orientation of the stereo system. This is due to the fact that a rotation of the left
camera would otherwise inherently lead to a rotation of the coordinate frame in
which the relative translation of the right camera takes place (see Fig. 2).

Depending on the actual acquisition system in operation, parameters can be
chosen to be estimated for every frame, for a subset of frames, or for the whole
sequence. Furthermore, the intrinsic camera parameters can of course be treated
as shared between the two cameras, if this was the case at the time of recording.

5 Bundle Adjustment

To optimize Eq. (2), we extend the sparse LM algorithm [1].
First, we assemble a parameter vector q = (b�, c�, d�, e�, f�, g� )�. The

designation of the corresponding subvector for all parameters of our camera
model can be found in Tab. 1, along with a listing of the number of parameters
and the number of the respective vector entries.

Most parameters can either be assumed to be variable for each frame or joined
(i.e., estimated conjointly) over the whole sequence. The intrinsic parameters can
also be shared for both cameras.

It is also possible to restrict RL and RR in a way that makes them depend on
the vergence angle only. Dependent on the degrees of freedom for the convergence
point, this results in 1 or 2 degrees of freedom for the rotation matrices RL and
RR (cp. Tab.1).

For the sake of simplicity, we will assume a static stereo setup with joined
and shared intrinsic parameters henceforth, resulting in two single rotation ma-
trices RL and RR over the whole sequence, and a single calibration matrix K.
This would be the case in a stereo setup with a fixed convergence point, e.g., a
camcorder with a 3D conversion lens.
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Table 1. Stereo model parameters with their typical parameter count, the number
of elements in the associated vector, and the designation of the corresponding vector.
Example: For a sequence of K = 10 images, b contains 10 elements with 6 parameters
each, i.e., 60 entries in total. ’Joined’ indicates that the parameters are constant and
are jointly estimated over the whole sequence. ’Shared’ indicates that the respective
parameters of the right camera are estimated in combination with the corresponding
parameters of the left camera, so that there are no separate entries for these parameters
in the matrix J�J.

Model parameters # of parameters # of vector elements designation

base frame C, R 6 K b

left orientation RL 1-3 K, 1 (joined) c

right position CR 3 1 d

right orientation RR 1-3 K, 1 (joined), 0 (shared) e

left intrinsics KL 3 K, 1 (joined) f

right intrinsics KR 3 K, 1 (joined), 0 (shared) f

3D object points Pj 3 J g

The least squares problem that is the core of bundle adjustment is tackled by
the sparse LM algorithm that solves the linear equation system

Jδ = ε (6)

with the Jacobian matrix J = ∂p/∂q, the residual vector ε, and the update
vector δ. The Jacobian matrix J has the block structure J = [ B C D E F G ], where
B = ∂p/∂b, C = ∂p/∂c, et cetera. In the case of a conventional bundle ad-
justment that allows to enforce joined intrinsic parameters over the sequence,
the Jacobian J only comprises the matrices B, F, and G. Depending on the pa-
rameter interdependencies, J usually has a lot of zero entries (cp. Fig. 3). The
measurement vector p is constructed by placing all the 2D feature points from
all camera images in a single column vector. For the purpose of illustration, we
assume them to be sorted by their affiliation to the left or right camera, then
their image index k, and finally their corresponding 3D object point index j.

The solution to Eq. (6) is obtained by multiplication with J�, thereby directly
evaluating J�J and J�ε, leaving the explicit construction of J unnecessary.

A comparison of the structure of J�J taken from our stereo bundle adjustment
and from a conventional bundle adjustment can be found in Fig. 4. As becomes
evident, we only introduce changes to one block in the structure, which is the
top left one.Although the structure in the block is no longer sparse, this does
not have any influence on the matrix inversion (J�J)−1, since other elements
added on top during the sparse matrix inversion cause the sparse structure of
this block to break down anyway (cp. [1]). Furthermore, the size of this block
is significantly reduced due to the reduced number of parameters when using
stereo bundle adjustment with constant convergence point, leading to better
computational performance.
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gb f b c ed f g

Fig. 3. Block structure of the Jacobian
matrix J for a conventional bundle ad-
justment with joined intrinsic parameters
(left), and for our stereo bundle adjust-
ment (right). The individual block ma-
trices are set apart by different coloring.
The gray background on the right indi-
cates derivatives contributed by the right
camera.

Fig. 4. Structure of the matrix J�J used
in the solution of Eq. (6) for a con-
ventional bundle adjustment with joined
intrinsic parameters (left), and for our
stereo bundle adjustment (right). The
color indicates the contribution of the in-
dividual elements in the matrix multipli-
cation. The dashed square indicates the
relevant block for matrix inversion.

. . .

object points

circular camera path

1
2

3 4 5

stereo frames

Fig. 5. The setup used in the synthetic
experiments for the generation of the
ground truth camera and 3D object point
parameters.

Table 2. Average translation, rotation,
and focal length error, and average time
per iteration for the rendered sequence
for an unconstrained bundle adjustment,
a bundle adjustment with joined focal
length, and our stereo bundle adjust-
ment.

RMSE unconst. joined stereo

translation 1.7274mm 0.6459 mm 0.5964mm
rotation 0.0112 deg 0.0026 deg 0.0024 deg
focal length 1.3609mm 0.0975 mm 0.0600mm

Avg. time 719 ms 860ms 733ms

6 Results

In this section we present the evaluation of our stereo bundle adjustment with
purely synthetic data, rendered sequences and real-world sequences. The latter
can also be found in the video accompanying this paper, which can be down-
loaded from http://www.mpi-inf.mpg.de/users/ckurz/.

Our setup for the synthetic experiments is sketched in Fig. 5. It consists of
a virtual stereo configuration composed of two cameras. The cameras execute a
circular motion around a set of 296 3D object points arranged in a regular grid
on the surface of a cube. The cube has an edge length of 100mm, the radius of
the camera path is 300mm, and the opening angle of the cameras is 30 degrees.

We generate a total of 40 stereo pairs per trial, providing 80 images per se-
quence. All the ground truth measurements for the 2D feature points contained
in these images are calculated from the known ground truth camera and 3D ob-
ject points parameters. In a last step before the reconstruction process, Gaussian
noise with a standard deviation σsyn is applied to the measurements.
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Fig. 6. Average translation, rotation, and focal length error for a given Gaussian er-
ror σsyn of the 2D feature points over 1000 trials. The setup sketched in Fig. 5 was
used for the generation of the ground truth parameters.
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Fig. 7. Average translation, rotation and focal length error for a given Gaussian er-
ror σsyn of the 2D feature points over 1000 trials, while 20 percent of the feature points
were additionally disturbed by a large offset. The setup sketched in Fig. 5 was used for
the generation of the ground truth parameters.

For each value of σsyn, we perform a total of 1000 trials for a conventional
bundle adjustment, a conventional bundle adjustment with joined focal length
over the sequence, and our novel stereo bundle adjustment, whereas a different
random disturbance is introduced in the measurements each time. For each re-
construction, a similarity transformation is estimated to register it to the ground
truth, and then the average absolute position and orientation error is calculated.
The results can be found in Fig. 6. Our stereo bundle adjustment clearly outper-
forms the conventional methods in terms of the translation and rotation error,
while being on par with the conventional bundle adjustment with joined focal
length for the error in the estimated focal length.

Furthermore, to simulate outliers, another test series was conducted. In this
series, 20 percent of the measurements were disturbed by an offset of up to
12 pixel in addition to the Gaussian noise. Since not all outliers can be removed
in the outlier elimination step, the results, which can be found in Fig. 7, differ.
Our stereo bundle adjustment clearly outperforms both competitors again.

The second step in the evaluation was to process a rendered sequence with
known ground truth parameters. Again, results were generated for a conventional
bundle adjustment, a conventional bundle adjustment with joined focal length,
and our stereo bundle adjustment (see Tab. 2). Our algorithm achieves the best
results. In addition, Fig. 8 shows two sample stereo frames from the rendered
sequence with a wireframe overlay using the estimated camera parameters. As
can also be seen in the supplemental video, the wireframe fits the true scene
geometry almost perfectly.
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Fig. 8. This figure shows three exam-
ple stereo frames from a rendered indoor
sequence. The left images show the ac-
tual frames, whereas the right images the
same images augmented with the wire-
frame model of the scene placed using
the estimated camera parameters. The
results can also be found in the video ac-
companying this paper.

Fig. 9. Real-world sequence shot with a
HD camcorder with a 3D conversion lens.
The scene has been augmented by a green
cuboid to demonstrate the quality of the
estimated camera parameters.

Fig. 10. Stereo frames from the Ehren-
breitstein Fortress sequence. The green
dots signify the reprojections of recon-
structed 3D points, showing that no drift
in the parameters has occured.

Fig. 11. Stereo frames from the train sta-
tion sequence. The scene has been aug-
mented by a yellow cuboid to demon-
strate the quality of the estimated camera
parameters.

The first real-world sequence (see Fig. 9) was captured with a Panasonic
HDC-SDT750 camcorder with a 3D conversion lens and depicts some pieces of
garden furniture. As can be seen by the overlay geometry, our stereo bundle
adjustment was able to obtain excellent results for the camera parameters. The
second sequence (see Fig. 10) depicts a flyover over Ehrenbreitstein Fortress in
the Upper Rhine valley from the documentary UNESCO World Heritage - Upper
Middle Rhine Valley (courtesy of cinovent entertainment).

In the third sequence (see Fig. 11), a scene at a train station from Grand
Canyon Adventure 3D (courtesy of MacGillivray Freeman Films) is shown.
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7 Conclusion and Future Work

We have presented a novel camera model for stereo cameras for use in bundle
adjustment. The model has the generality to accommodate a wide range of the
stereo cameras used in today’s movie productions, and can be incorporated effi-
ciently into the conventional sparse bundle adjustment algorithms. A multitude
of tests has been conducted, validating our model.

For future work, we will update the other stages of the SfM pipeline to make
full use of the additional information provided by stereoscopic image sequences.
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3D Modeling of Haussmannian Facades

Chun Liu and André Gagalowicz
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Abstract. Urban modeling has attracted many attentions since Google
and Microsoft have launched their 3D geo softwares. However, in order
to achieve photo-realistic results at the same level as for the latest inter-
active video games for high-end applications, less effort has been made to
automate urban objects recognition and reconstruction. This paper con-
sists of the automation of image-based Haussmannian facade recognition
and reconstruction. The input image is firstly rectified and segmented in
order to obtain a rectangular and less distorted facade image extracted
from urban scenes. Then based upon various visual features and archi-
tectural knowledge, different facade elements which include windows,
doors and balconies are detected including positions and also measured
sizes. Combined with the depth information computed from 3D range
data, the facade geometries and textures can be produced. Finally, an
analysis-synthesis approach is used to reconstruct the full 3D facade rep-
resentation. The processing pipeline developed for this research has also
been verified and tested on various Parisian facades and confirmed the
desired recognition and reconstruction results.

1 Introduction

Large scale 3D building modeling has attracted much attention recently in broad
domains. With the advance of both hardware and software, building modeling
can be applied to various applications including urban planning, cultural heritage
preservation, entertainment and tourism.

With the rapid developments in imaging and sensing technologies, it is possible
to obtain large urban models efficiently and cheaply. Aerial images can be used to
estimate building volumes and to identify roofs and building footprints. Ground-
based laser scanners can be used to unveil building facade surface in 3D. Ground
taken facade image is used as the primary source for facade modeling analysis
and provides facade 2D structures and textures.

However, current facade modeling has been limited to simpler and regular
facades with perfect repetitions. Another limitation is that clean facade wall
and less occlusions is required. Therefore for complicated and more realistic
facades such as those of historical European cities with complex articulations of
projecting and retreating objects, materials and textures, it is much harder and
more challenging to automate the facade modeling from real photos.

This paper is dedicated to the modeling of 3D Haussmannian facades for urban
reconstruction of Paris which is one of the most complex historical European
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Fig. 1. Facades in Soufflot Street on the right side

cities. In Paris, Haussmannian buildings are widely spread and they are regarded
as icons of neo-classic Paris. They present rather regular and consistent elements
that are more suitable for analysis automation. Haussmannian buildings consist
of multiple highly similar floors, significant repetition of architectural elements
and well defined dimensions which are constrained to the street width. These
characteristics meet the construction laws requirement and aesthetic perceptions.
Therefore Haussmannian buildings exhibit a high degree of consistency. Together
with building volumes and roof modeling, a full Paris urban model has to be
obtained.

In our work, the facade geometries are recovered by a single view facade image
analysis and depth estimation from terrestrial 3D laser data. Assuming all the
facade elements are in parallelepipedic shapes, we are able to reconstruct the
full 3D visual representation of facades.

The work presented here has been realized in the framework of the competi-
tivity network TerraNumerica funded by the French government through ANR,
its funding agency. The project consisted of a group of 18 partners including
10 companies and 8 research laboratories coordinated by THALES. The pri-
mary target was to create a 3D compact representation of the whole Paris urban
area which would be suitable for various applications (tourism, flood control,
urbanism, games...). The budget of this project reached 15 M euros and covered
3D compact representation of buildings as well as vegetation using procedural
methods.

In this project we were supposed to dispose of rectified, segmented, geo-
referenced 2D Haussmannian facades, registered with 3D laser scanner data
(work performed by some of our partners). As they were not made available
during the period of our research, we had to perform everything mainly by hand
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beforehand. The work devoted to us by our consortium was to autmatically
reconstruct in 3D these Haussmannnian facades from their inputs. This is the
core of this paper.

1.1 Related Work

3D modeling from images has been a popular research topic in recent years.
Great efforts have been made for 3D scene understanding by using state-of-
the-art machine learning techniques [1]. Having multiple views, it is possible to
reconstruct more delicate 3D building models [2]. Yet, most facade modeling
researches thus far have been done on single view facade images. This is because
obtaining multiple-view images are often impossible in urban environments. In
addition near planar facade geometries and strong perspective distortions pro-
duce camera pose estimation problems.

In building facade recognition, two types of information are used, the visual
likelihood and the prior. In most works, windows are considered as the key ele-
ment in building facades which can help determine many high level information
such as floor and tile splits. However, the visual likelihood of windows is rather
ambiguous. One cannot model windows visual appearance in all cases. In [6], the
author assumes windows are rectangles which could be easily extracted in clean
facades without occlusions. In [8], windows are considered as image blob regions
which can be characterized by Haar-like features. Other assumptions can be that
windows are edge-framed rectangles [10] or are blob regions with different col-
ors contrast from surrounding walls [9]. The prior information used in building
facade recognition is perfect alignment of windows horizontally and vertically.
This information can be used in two approaches. In [6], [10], the authors are
proposing window rectangles and validate the rectangles according to the align-
ment at the same time. Or one can detect tiling first and then use the alignment
of windows to validate windows detection in a top down manner [5], [9].

There are also building reconstruction research works on 3D laser scans to
recover building facade surfaces and aerial photos to extract building volumes.
However, those methods have not been proven to be useful in recovering the
front visual information on the building facades. Therefore, the integration of
building facades modeling, building volume extraction and 3D surface scans are
highly needed for full urban reconstruction.

1.2 Organization of This Paper

The subsequent sections are organized as follows. Section 2 discusses Hauss-
mannian facade analysis and describes the reconstruction pipeline. Section 3
is devoted to data pre-processings including data acquisition, 2D image recti-
fication as well as 3D range data processing. Section 4 presents the 3D facade
geometry extraction from images and range data. Then facade reconstruction is
provided in section 5. Finally, results are given in section 6 and the conclusion
is drawn in section 7.
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2 Haussmannnian Facade and Its Reconstruction
Pipeline

2.1 Haussmannian Facade Image Characteristics

Despite the highly organized structure in Haussmannian facades, there are sev-
eral challenges in vision modeling of facades. Firstly, the Haussmannian facades
are not planar as skyscrapers in Manhattan. Instead, Haussmannian facades have
overhanging structures such as balconies, which consist of thin metal pieces with
multiple holes in front of windows. These balconies create significant difficulties
in vision recognition. They often block the view of windows. They cannot be
recognized by specific visual features such as color, texture or shape directly.
They do not own a volume so they could not be recovered through structure-
from-motion (SFM) method. The balconies cannot be either recovered from 3D
laser scans because the reflection of laser rays on multiple hole surfaces is ran-
dom. Secondly, the Haussmannian facades are of large dimensions. Typically the
facades are approximately 15 meters in height. According to this dimension, the
depth of window retreatments which is 0.5 meter, is negligible. This way, images
of Haussmannian facades become planar. Moreover, significant perspective dis-
tortions can be seen in facade images. These two problems basically restrict the
use of structure-from-motion. Lastly, inhomogeneous window textures also make
the direct image comparison impossible even though windows are highly repet-
itive, and needless to say, light variations and occlusions in urban environment
make the vision modeling more complicated.

2.2 Pipeline

Considering all the difficulties in the multiple view-based or the 3D range data-
based building reconstruction, we propose to use single view image-based recon-
struction instead (see figure 2).

The facade images taken from streets are calibrated, rectified and segmented
to get a rectangular and less distorted facade image region as pre-processing
the single view image-based reconstruction process. (This was supposed to be
performed by our partners in our consortium.) Then we analyse this rectilinear
image region to extract the 2D rectangles corresponding to various facade el-
ements such as windows. By assuming all the elements are in parallelepipedic
shapes, we can unwrap the facade elements and produce the respective 2D tex-
tures. Next, 3D laser scan data is registered onto the 2D images and used to
estimate depth for different facade elements. At the end, we use the CGA gram-
mar [4] to reconstruct the facade geometry and map the 2D textures on it to
produce a final compact 3D visual representation.

3 Data Pre-processing

Two data types are used to reconstruct the facades, 2D ground-taken facade
images with digital single SLR cameras, and terrestrial laser scans. However,
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Fig. 2. 3D facade reconstruction processing flowchart

a few challenges have to be solved for the facade reconstruction process. One
is due to the fact that there are several imperfections inside the data such as
distortions. Second, the data acquired from urban environment consists not only
of the facades but also of other urban objects. Therefore, pre-processing steps
are needed to correct and clean the data from those imperfections and from
environmental object noises.

3.1 Data Acquisition

Considering the light variations in urban areas, facade images should be taken
when the building facades are relatively illuminated homogeneously and less
occluded by vegetation. This is usually best taken in a cloudy morning, or in the
evening, of later Spring or early Autumn. In addition, the image should be taken
with wide angle lens so that the facade will be contained in one single image.
These restrictive conditions ensure that the maximum details in the facade image
can be preserved and different parts of the facade can be relatively easy to
differentiate in terms of geometry, color and texture. The 3D laser data was
provided by the French national geographic institute (IGN), and it is taken on
a Google StreetView-like car from front scanning.

3.2 Pre-processing

In a 2D facade image, the first type of distortion is introduced by the lens. The
radial lens distortion is considered as the main lens distortion source, which
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is a result of the shape of the lens. We use PTLens software [11] to reduce
the lens distortion. This software features built-in lens profiles which are used
to correct lens distortion. Once the images are calibrated, straight lines in the
images become almost straight so that it is much easier to detect parallelism and
intersections of lines for perspective rectification. The second type of distortion
is the perspective distortion from the imaging process. In order to rectify images,
we detect the line segments and estimate the horizontal and vertically vanishing
points from which a 2D planar homography is further computed. Lastly, we
manually extract the facade from undistorted image for 2D analysis.

Since the 3D scan data is continuous along the street, we manually segment
the data with the help of the 2D images in order to extract individual facade
data. Each facade data is re-scaled, oriented and positioned in a unique Cartesian
coordinate system.

4 Facade Geometry and Texture Extraction

For a complete 3D building visual representation, building 3D geometry and
texture have to be are mapped together. The 3D building geometry is obtained
from ground-taken 2D images and 3D laser scans. Assuming all facade elements
have parallelepipedic shapes, building textures can be produced by unwrapping
the meshes into 2D facade images and extracting corresponding image regions.

4.1 2D Facade Analysis

Facade images contain comprehensive informations and are used as main data
source for facade analysis. In 2D facade analysis, we use a top-down approach
starting from tiling to the recognition of the different facade elements. At the
end of the analysis, all facade elements are detected and parameterized as 2D
rectangles on the facade plane.

Tiling. The most important feature of a facade is its tiling. Tiling describes how
the facade is segmented horizontally and vertically. Each tile corresponds to a
room of the apartments attached to the facades (except for the ground floor).

Tiling is also a high level semantic facade feature which cannot be computed
directly although it is very helpful for facade analysis. We use window detections
to determine the tiling. The hue information is selected as it occured that it best
differentiates the windows from the facade walls. Then the detected window rect-
angles are validated to recover a rigid 2D lattice structure that indicates perfect
horizontal and vertical window alignment, which is important in Haussmannian
building typology.

The facade image is firstly segmented assuming the intensity of hue image fol-
lows two Gaussians distributions. One corresponds to facade walls and the other
represents all non facade wall elements. The parameters of the two Gaussians
are estimated by using EM (Estimation-Maximization) algorithm. Then the hue
image is segmented in the Markov Random Field framework [3] and formulated
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as a pixel labeling problem. We use the estimated Gaussian mixture to compute
a labeling cost. Suppose the facade wall color distribution is N(μwall, σwall) and
the other elements color distribution is N(μothers, σothers). The cost of labeling
wall pixel (color value v) as others is N(v − μothers, σothers). Likewise, the cost
of labeling pixel from others as wall, is N(v − μwall, σwall). We compute the la-
beling difference between each pixel and its neighbourhood to maintain labeling
consistency. It is computed as the sum of absolute label differences between each
pixel and its four connecting neighbouring pixels (top, bottom, left and right).
The minimization of the total energy is accomplished by using Belief Propaga-
tion. In the segmentation result, all elements other than facade wall are almost
labeled as 0, including the roof and various shops on the ground floor.

From the segmentation, roofs are separated on the top and the window rectan-
gles are extracted. Then window rectangles are validated by a 2D rigid structure.
Subsequently connections are made between closest window rectangles and only
window rectangles with more than two connections are left. The result from
this connecting and validation is an incomplete window lattice structure. By
assuming the perfect alignment of windows, missing window rectangles are re-
covered. Additionally, Haussmannian typology is checked to ensure no window
penetrating into ground floors and roofs. Then the floor split is decided by win-
dow rectangle bottoms, and the tile split is done by the separation line between
window rectangles. See figure 4.1 for the detailed process of window rectangle
detection for tiling.

Normal Window Extraction. With tiling information, window detection is
now limited to tiles which are defined by floor and tile separation lines. In ad-
dition, window counts are determined because only one window is allowed in
every tile. Consequently, the window detection in 2D facade analysis is reduced
to window dimension and position estimation.

Windows are parametrized as 2D rectangles inside each window tile. Because
in the Haussmannian facades, windows are aligned on the floor bottom, we only
need to fix three positions of window rectangles which are the top border and

(a) Hue Image (b) Windows Rect-
angles Connection

(c) Detected Win-
dows Rectangles

(d) Final Lattice
Completion

Fig. 3. Hue-based tiling
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(a) vertical border deter-
mination

(b) top border determina-
tion

Fig. 4. Window border determination

two vertical borders. To decide the values of these three positions, we define two
optimization energy functions by using histograms and edges. Equation 1 is used
to detect the two vertical borders (see figure 4(a)) and equation 2 is used to fix
the top border position (see figure 4(b)).

D(x0, x1) =
dssd(R1, R2) + dssd(R3, R4)

dssd(R1, R4)

× dhist(R1, R2) + dhist(R3, R4)
dhist(R1, R4) + dhist(R1, R0) + dhist(R4, R0)

(1)

D(y0) =
dhist(R0, R2) + dhist(R1, R2) + dhist(R2, R3)

dhist(R1, R0) + dhist(R3, R0)

× dncc(R0, R1) + dncc(R0, R3) + d0

dncc(R0, R2) + dncc(R1, R2) + dncc(R3, R2) + d1

(2)

The detailed procedure for window detection is described below.

1. First, the initial position of the window rectangle is placed in the middle of
the window tile, with the width set to be 2/3 of the total tile width and the
height to be 4/5 of the total tile height. The window rectangle is aligned
with the tile at the bottom border (see figure 5(a)).

2. Then, the top, left and right borders are refined by looking at the neighbor-
hood for the strongest edges. Some of the window rectangles will be aligned
to the real border.

3. Next, synchronization process is introduced to validate the detection. In the
synchronization, all window rectangles are re-sized to have the same dimen-
sions and re-aligned horizontally and vertically by averaging the positions
and dimensions. This way, we can eliminate the least possible window rect-
angle positions and dimensions.
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4. Furthermore, keeping the dimension constant, rectangles are moved from the
present position horizontally to reach an optimal location using the contex-
tual model. This move forces the image content inside the rectangle to be
maximally different from the outside. After this step, the synchronization
is applied again to keep the window rectangles in the same dimensions and
aligned.

5. Similarly, another step finalizing the position and width is done by modifying
separately the vertical borders of each window rectangle by a certain amount
to reach local width optimization with the same contextual model. This way,
the dimension and position is once again synchronized (see figure 5(b)).

6. Lastly, the optimal height is determined by using the same contextual model
(see figure 5(c)). In addition, the tiling can be refined further by taking the
middle positions between windows as the new vertical splits according to all
the recognized window positions and dimensions.

Dormer Window Detection. Dormer windows are detected through edge
detection and successive profiling. By using high-pass filter, we can highlight
dormer window regions as well as small textures on the roof surface. A high-pass
filter is defined by sliding a four-by-four window on the roof image and taking
the variance. The contrast of this filtered image can be further enhanced by
histogram equalization. Consequently, we can use image profiles (see figure 6) to
detect dormer windows using their positions and dimensions. On the x profile,
we can see pulse like patterns which correspond to the dormer windows. On
the y profile, large values in the beginning and the end indicate the horizontal
borders of dormer windows. This way, we can use signal processing to extract
dormer windows.

Balcony Detection. In the wrought iron guard region, image pixels are switch-
ing from the iron guard to another content behind it. As a result, the image
contains high spatial frequencies. In contrast, the luminance and texture change
are rather small in the facade wall regions so that the facade wall image regions
contain low spatial frequencies. Thus, we can consider that on each image floor
two types of image regions exist with different spatial frequencies. Then the rect-
angular wrought iron can be extracted by segmenting the image floor by spatial
frequencies.

The process starts from binary image segmentation using the spatial frequency
energy. The result from the segmentation separates the potential balcony regions
from facade walls. Next those regions are extracted as rectangles by profiling.
As the segmentation is sensitive to a single feature, several problems exist on
those rectangular regions. Balcony detection can be broken due to dark parts
on windows (loss of image details). As a consequence, balcony dimension can be
wrong. Those errors are corrected in further validation process which invokes the
structural priors. In this validation process, all wrought iron regions are checked
according to various empirical rules. At the end, the rectangular wrought iron
regions are detected in place.
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(a) Initial Guess (b) Second Vertical Borders Opti-
mization

(c) Top Border Optimization (d) Window Detection with Refined
Tiling

Fig. 5. Iterative window extraction
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Fig. 6. Edge profiling

Door Detection. Door is detected by using both edge and color information.
In the beginning, Canny edge detection is used to detect vertical edges to pro-
duce door rectangle candidates. By knowing that the door having a width of
one or two tile widths and door position is only close to the middle, or to the
left and to the right of the ground floor, we can filter out a lot of improper
hypotheses. Then we use color histogram intersection to select the valid door
region from rectangle candidates. A previously established small door database
is used. Because doors in Haussmannian facades are painted in limited number
schemes due to construction regulation, this small database was sufficient.

4.2 3D Depth Estimation

From the 2D analysis, all facade elements are detected as 2D rectangles. In order
to obtain the full 3D geometry, the depth information is required. Therefore, we
need to use ground-taken laser scans to estimate depth for the various facade
elements.

We first manually register the 3D scans with the facade images through a
raster depth map image produced from Delaunay triangulation on 3D point
clouds. After the registration, different facade object 2D masks are generated to
segment the 3D point clouds in the X-Y plane. Thus the depth is estimated by
using median values in the Z direction.

4.3 Shape Prior and Facade 3D Geometry

We assume various facade elements have a parallelepipedic shape. For example,
the window 3D geometry is modeled as a parallelepipedron without the front
face. Thus, by combining the 2D rectangles and the depth information, the full
3D facade geometry is produced by assembling individual terminal elements such
as windows, walls, and others together.

4.4 Texture Extraction

To finalize the building facade visual representation, textures are needed to be
mapped to the various facade elements. Because Haussmannian facades are not
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piece-wise planar due to the balconies, we need to process the facade image to
get unoccluded facade images for facade walls and windows. We assume the
facade walls and windows are symmetric vertically, thus we can copy the unoc-
cluded image region above the balconies and tile them over the occluded regions.
This way we achieve a simple version of in-painting to produce photo-realistic
textures. Because we assume parallelepipedic shapes for various terminal facade
elements, we can then project the geometries from 3D to 2D on the processed
facade images and compute UV texture coordinates. Thus, all facade elements
are texture-mapped.

5 Facade Reconstruction

A facade 3D visual representation is a semantically and hierarchically organized
data sets including facade geometry and texture coordinates. Such representa-
tion is valuable for various semantic building information processing. To obtain
such visual representation, we use CGA [4] repeat split grammars to reconstruct
repetitive building facades and adapt this synthetic building facades to real di-
mensions through an Analysis-Synthesis approach.

5.1 CGA Grammar-Based Reconstruction

We implemented CGA grammar introduced by Pascal Müller et al. in 2006 [4].
In this grammar modeling tool, an initial building shape is progressively split
into sub-spaces through shape derivation process using different split production
rules. At the end of the derivation, a hierarchical shape tree is produced where
each node represents an oriented and scaled shape occupying a small space with
a semantic name. All the terminal leaves are terminal shapes which are replaced
with terminal elements meshes (windows, doors, balconies, etc.). By extracting
all the terminal nodes and assemble geometries together, a 3D building model
is produced.

5.2 Reconstruction by Analysis-Synthesis

We automatically generate facade description from facade analysis results by us-
ing repetitive split rules so that a regular synthetic building facade is produced
which we call generic facade model. The use of the repetitive splits rules is for
reducing the number of specific split rules. Then we can adapt this generated
building representation in memory for changing the repetitive split to specific
split (non repetititve) to produce the final building model which we call specific
model. By using this Analysis-Synthesis approach, we achieve both building in-
formation compression with repetitive splits and the accurate dimension recovery
with specific splits.

The facade adaptation is done in two steps. Firstly, we project the 3D facade
mesh in 2D and establish characteristic point correspondences between this pro-
jected 2D geometry and 2D analysis. By comparing their location differences, we
can compute RBF (Radial Basis Function) transformation so that shapes in the
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(a) 2D Analysis Result (b) Wireframe (c) Textured Model

Fig. 7. 3D facade synthesis

shape tree are changed on their split rules in the memory. A second synthesis
is then invoked in memory but only on the affected shapes hence a modified
building 3D model is obtained. In the second step, we need to adjust all the
overlay shapes such as balconies which are not attached to any split rules from
original facade plane. By completing this two-step adaptation, a generic facade
model is transformed into a specific facade model. The final 3D facade model is
shown in figure 7.

6 Results and Conclusion

We applied our proposed processing pipeline on all fifteen facades of the Soufflot
street in Paris. The right side facade 3D model is presented in figure 1. And
the left side 2D analysis is shown in figure 8. For each facade, the processing
time is around 40 minutes starting from image calibration, through perspective
rectification, facade extraction, 2D analysis, depth inference and texture process-
ing until the grammar-based reconstruction. In order to evaluate the tiling and
window detection, we manually selected 100 facades from various boulevards, av-
enues and streets in Paris. 64 of 100 facades have been successfully automatically
processed with all windows detected in places.

We also evaluated different processing steps with various metrics. For example,
the 2D detection of windows can be accessed by computing the overlapping rate
between manually annotated ground truth and detection instances. Due to the
limitation on the numbers of pages published on this paper, we will present them
during the oral presentation.
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Fig. 8. Facade analysis on left handside Soufflot Street

The main contributions of this paper are three-folds. The first contribution is
that we have proven that a fully automatic image-based 3D building modeling
is feasible for large scale urban reconstructions. The second contribution is that
we have succeeded to produce both semantic analysis and synthesis. The last
contribution is that we have used Analysis-Synthesis approach to achieve both
the flexibility of grammar-based reconstruction and reconstruction accuracy. Of
course, this work is a starting point for large scale urban reconstruction. There
are still many challenging problems ahead. For facades with large lighting varia-
tions and significant occlusions, we still have not robustly extracted the building
geometry. In addition, our algorithm is implemented by using Python which runs
longer than pure C++ optimized code. We expect to continue our work in these
two directions.
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Abstract. In the present paper, we propose a novel recognition method
of pulmonary nodules (possible lung cancers) in thoracic CT scans. Pul-
monary nodules and blood vessels are represented by 3-D deformable
spherical and cylindrical models. The validity of these object models are
evaluated by the probability distributions that reflect the results of the
statistical anatomical analysis of blood vessel trees in human lungs. The
fidelity of the object models to CT scans are evaluated by five similarity
measurements based on the differences in intensity distributions between
the CT scans and templates produced from the object models. Through
these evaluations, the posterior probabilities of hypotheses that the ob-
ject models appear in the CT scans are calculated by use of the Bayes
theorem. The nodule recognition is performed by the maximum a poste-
rior estimation. Experimental results obtained by applying the proposed
method to actual CT scans are shown.

Keywords: Detection of lung cancers, Thoracic CT scans, Computer-
aided diagnosis, Statistical anatomical analysis, 3-D deformable object
models.

1 Introduction

Lung cancer is the most common cause of death among all cancers worldwide [1].
To cope with this serious situation, mass screening for lung cancer was widely
performed by simple X-ray films with sputum cytological tests. However, it is
known that the accuracy of this method is not sufficient for early detection
of lung cancer [2, 3]. Therefore, a lung cancer screening system by computed
tomography (CT) for mass screening is proposed [4]. This system improves the
accuracy of the cancer detection considerably [5], but has one problem, that
is, the number of the images is increased to over dozens of slice sections per
patient from 1 X-ray film. It is difficult for a radiologist to interpret all the
images in a limited time. In order to make the system more practical, it is
necessary to build a computer-aided diagnosis (CAD) system that automatically
detects abnormal regions suspected to comprise pulmonary nodules that are the
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major radiographic indicators of lung cancers, and informs a radiologist of their
positions in CT scans as a second opinion.

Extensive research has been dedicated to automated detection of pulmonary
nodules in thoracic CT scans [6]. Morphological [7] image filters [8–10] are con-
ventional approaches. In the work[11], a multiple-thresholding technique was
used to detect nodules that had peaked intensity distribution. Hessian-based
image filters [12, 13] individually enhanced blob- and ridge-shaped regions that
corresponded to nodules and blood vessels, respectively. These methods were
often used for initial detection of nodules, and were intentionally adjusted to
minimize the number of misdetection. Consequently, they yielded many false
candidates called false positives (FP) that corresponded to normal pulmonary
structures such as blood vessels.

In order to reduce false positives, feature-based discrimination methods be-
tween nodules and false positives have been also developed [14–17]. Kawata,
et al. reported a classification method [18] of nodules based on differences in
shape indexes, which were computed from two principal curvatures of intensity
profiles in images, between nodules and false positives. Suzuki, et al. proposed
a method [19] that suppressed false positives by using voxel values in regions of
interest as input for a novel artificial neural network [20].

Model-based methods are the promising approaches as well.1 Several works
with nodule models were reported. Lee, et al. [22] proposed a template-matching
method using nodular models with two-dimensional (2-D) Gaussian distribution
as reference images to CT scans. The method had an advantage of being able
to use the geometrical features of nodules as well as gray level features. Ozekes,
et al. [23] designed a 3-D prismatic nodule template that was composed of several
layered matrices. Farag, et al. [24] developed 3-D deformable nodule models
such as spherical models of various radii. These methods can make use of the
characteristics of the 3-D relation between a suspicious region in a slice section
and the other regions in the adjacent slice sections.

In the present paper, we propose a novel recognition method of pulmonary nod-
ules in thoracic CT scans. Pulmonary nodules and blood vessels, which often yield
false nodules on CT scans, are represented by 3-D deformable spherical mod-
els, cylindrical models and their combination models. The recognition method
proposed in this paper is based on [25], but has newly introduced the following
two evaluation techniques concerning the object models. First, the validity of the
blood vessel models are evaluated by the probability distributions that reflect the
results of the statistical anatomical analysis of blood vessel trees in human lungs.
Second, the fidelity of the object models to CT scans are evaluated by five similar-
ity measurements based on the differences in intensity distributions between the
CT scans and templates produced from the object models. Through these evalu-
ations, the posterior probabilities of hypotheses that the object models appear in
the CT scans are calculated by use of the Bayes theorem. The nodule recognition
is performed by the maximum a posterior (MAP) estimation.

1 A considerable work[21] has been also done to detect breast cancers by eliminating
false positives due to liner structures in X-ray mammograms.
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2 3-D Deformable Object Models

The method[25] represents nodules and blood vessels as 3-D geometrical object
models as described below.

A nodule is represented as a sphere model as shown in Figure 1(a). The priori
probability of appearance of the nodule model oN (the superscript “N” is the
label that means a nodule) is defined by

p(oN ) = PN g(rN ), (1)

where PN is the probability of the set of all possible nodules, rN is the radius
of the nodule model, and g(r) is a Gaussian distribution.

A curved section in a blood vessel tree is represented as a two-connected-
cylinder model as shown in Figure 1(b). The priori probability of appearance of
the curved blood vessel model oBc is defined by

p(oBc) = PBc {g(rBc
1 ) g(δBc) g(ψBc)} 1

3 , (2)

where PBc is the probability of the set of all possible curved blood vessels,
rBc

i is the radius of the i-th cylinder (i = 1, 2), δBc is a difference in section
area between the cylinders, and ψBc is an angle between the cylinders. The
exponent 1

3 is introduced for normalizing the number of the Gaussian terms
between Equations (1) and (2).

A bifurcation in a blood vessel tree is represented as a three-connected-
cylinder model as shown in Figure 1(c). The priori probability of appearance
of the bifurcated blood vessel model oBb is defined by

p(oBb) = PBb {g(rBb
1 ) g(δBb

23 ) g(δBb
123) g(ψ

Bb
12 ) g(ψBb

13 ) g(ψBb
23 )} 1

6 , (3)

where PBb is the probability of the set of all possible bifurcated blood vessels,
δBb
23 is the difference in section area between the two child cylinders, δBb

123 is
the difference in section area between the parent and child cylinders, that is
δBb
123 = π · {(rBb

1 )2 − (rBb
2 )2 − (rBb

3 )2}, and ψBb
ij is the angle between the i-th and

j-th cylinders. The exponent 1
6 is also introduced for the normalization.

2.1 Combination Models of Nodules and Blood Vessels

Two types of object model are newly introduced:

1. a combination model oNBc that consists of a nodule model and a curved
blood vessel model, and

2. another combination model oNBb that consists of a nodule model and a
bifurcated blood vessel model.

Figure 2 shows the procedure of generating the combination models. First, the
optimal nodule, curved and bifurcated blood vessel models are individually
searched for in the same way as [25]. The optimal combination models oNBc

and oNBb are generated by combining the optimal models and then are stored
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(a) Nodule

2

1

(b) CBV

1

2 3

(c) BBV

Fig. 1. 3-D object models that represent nodules, curved blood vessels (CBV) and
bifurcated blood vessels (BBV), respectively

in the combination models list that is depicted at the bottom of Figure 2. The
priori probabilities of appearance of each combination model are calculated by

p(oNBc) = PNBc

{
g(rN ) g(rBc

r1 ) g(δBc) g(ψBc)
} 1

4
, (4)

p(oNBb) = PNBb

{
g(rN ) g(rBb

r1 ) g(δBb
23 ) g(δBb

123)

g(ψBb
12 ) g(ψBb

13 ) g(ψBb
23 )

} 1
7
. (5)

VOI

Nodule

Combination models

CBV BBV

The optimal models

*

Fig. 2. The procedure of generating
the combination models

Some of the generated combination mod-
els have the singular arrangement of ob-
jects. The bottom right model indicated
by the “*” mark in Figure 2 is an example.
The nodule model is almost embedded in
the blood vessel model. Such a combina-
tion model can be matched to a normal
blood vessel region in CT and thus it can
be mistakenly determined to be a nodule.
To avoid such mistakes, the combination
models that include such embedded mod-
els are eliminated from the combination
model list.

2.2 Statistical Anatomical
Modeling of Blood Vessels in Lungs

The Gaussian distribution terms g(rB
1 ) in

Equations (2), (3), (4) and (5) implicitly
contain the mean radius μrB

1
and the stan-

dard deviation σB
r1. Generally, blood ves-

sels are thick in the central areas of lungs,
and they become thinner as they approach the peripheral areas. μrB

1
and σB

r1

should be defined based on such anatomical relations. In this paper, 3-D matrices,
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namely distribution models, are introduced that are composed of the statistical
values obtained by measuring blood vessels at each position in lungs. Here, the
distribution models of means and standard deviations of blood vessel radii are
constructed.

・・・

・・・
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thick
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・・・

Division of lung regions into 
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Eliminating of unnecessary cells 

and calculation of mean radius of 

blood vessels for each cell

Fig. 3. Construction procedure of the
distribution model of means of blood
vessel radii

Distribution Model of Means of
Blood Vessel Radii. Figure 3 shows the
top level block diagram of the construc-
tion procedure of the distribution model
of means of blood vessel radii. First, we
extract blood vessel regions from i-th
CT scan V i. Their radii are measured
by applying the distance transform pro-
cess to the extracted regions, and their
centerlines are extracted by the thinning
process[26]. Each pixel value on the cen-
terline in the processed images represents
the radius of the blood vessel at its posi-
tion in a lung. Let Ri denote the image
obtained from V i. Next, we settle a
boundary box so as to circumscribe the
lung region in V i, and divide it into
L×M ×N smaller boxes that are called
“cells”. The l-, m-, n-th cell in V i is de-
noted by Ci

l,m,n. The j-th radius value
on the centerline in Ci

l,m,n is denoted by
ui,j

l,m,n ∈ U i
l,m,n. Several cells include tis-

sues other than blood vessels such as di-
aphragms. They can be erroneously rec-
ognized as too thick or thin blood vessels.
Estimation of the mean radius would suf-
fer from such cells. In order to minimize
their effects, we calculate the mean radius
of each cell as follows:

ui
l,m,n =

∑
Ui

l,m,n

ui,j
l,m,n

#{U i
l,m,n}

(6)

where #{U i
l,m,n} is the number of radius values. We sort the cells at each po-

sition, i.e. C1
l,m,n, C2

l,m,n,..., CI
l,m,n, by the mean radius values, and eliminate

the cells that have the Nc largest and smallest radius values. Let Dr(l,m, n) de-
note a value at the position l, m and n in the matrix of the distribution model.
Dr(l,m, n) is calculated by
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Dr(l,m, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i,j

ui,j
l,m,n

Nu
l,m,n

(
N c

l,m,n

I
≤ Tp

)
0 (otherwise),

(7)

where Tp is a threshold value,Nu
l,m,n andN c

l,m,n are the numbers of the remaining
radius values and cells, respectively.

Distribution Model of Standard Deviations of Blood Vessel Radii. As
is the case with the mean distribution model, the standard deviation at the
position l, m and n in the matrix of the distribution model is calculated by

Dsd(l,m, n) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√√√√√√
∑
i,j

{
ui,j

l,m,n −Dr(l,m, n)
}2

Nu
l,m,n − 1

(
N c

l,m,n

I
≤ Tp

)
0 (otherwise).

(8)

3 Observation Models

The fidelity of an object model to a VOI in an observed CT image is evaluated by
using a similarity measurement between the CT VOI and a template produced
from the object model. The method[25] uses the following normalized correlation
coefficient (NCC) :

γc(vc, vt) =

∑
x,y,z

(
vc(x, y, z) − v̄c

)(
vt(x, y, z) − v̄t

)
√ ∑

x,y,z

(
vc(x, y, z) − v̄c

)2
√ ∑

x,y,z

(
vt(x, y, z) − v̄t

)2
, (9)

where vc(x, y, z) and vt(x, y, z) are the voxel value at x, y, z in the CT VOI and
the template, respectively. v̄c and v̄t are the mean voxel values of the CT VOI
and the template, respectively.

Using γc(vc, vt), the likelihood function is defined by

pc(vc|o) =
γc(vc, vt) + 1

2
. (10)

In this paper, the following four likelihood functions are newly introduced.

3.1 Sum of Absolute Distance

The likelihood function based on the sum of absolute distances (SAD) is defined
by

ps(vc|o) = −γs(vc, vt)
κs

, (11)
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where
γs(vc, vt) =

∑
x,y,z

∣∣∣vc(x, y, z) − vt(x, y, z)
∣∣∣, (12)

and κs is set to be a maximum value of γs(vc, vt).

3.2 Mutual Information and Normalized Mutual Information

From a CT VOI and a template, the histograms of pixel values hc(v) and ht(v)
are obtained, respectively, and their entropy values Hc and Ht are calculated,
respectively. From the simultaneous histogram obtained from the CT VOI and
the template hct(vc, vt), the joint entropy value Hct is also calculated.

The mutual information (MI) and normalized mutual information (NMI) are
calculated by

γm(vc, vt) = Hc +Hp −Hcp, (13)

γn(vc, vt) =
Hc +Hp

Hcp
, (14)

respectively. From these values, their likelihoods are calculated by

pm(vc|o) =
γm(vc, vt)

κm
, (15)

pn(vc|o) =
γn(vc, vt)

κn
, (16)

respectively. κm and κn are set to be maximum values of γm(vc, vt) and γn(vc, vt),
respectively.

3.3 L0-norm

The likelihood function based on the L0-norm (L0) is defined by

pl(vc|o) =
γl(vc, vt)

Nl
, (17)

where
γl(vc, vt) =

∑
x,y,z

δ
∣∣∣vc(x, y, z) − vt(x, y, z)

∣∣∣, (18)

δ(x) =

{
1 (x < Tl)
0 (otherwise).

(19)

Nl is the number of pixels in the CT VOI and Tl is a threshold.
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4 Recognition of Nodules and Blood Vessels Based on
MAP Estimation

Using the Bayes theorem, the posterior probability of an object model o given a
CT VOI vc is defined by

p(o|vc) = α p(vc|o) p(o), (20)

where α = [p(vc)]−1. p(vc|o) is the likelihood obtained from Equations (10), (11),
(15), (16) or (17). p(o) is a priori probability obtained from Equations (1), (2),
(3), (4) or (5).

The following evaluation value:

ρ(vc) =
max

τ∈{N,NBc,NBb}
p(oτ |vc)

max
τ∈{Bc,Bb}

p(oτ |vc)
(21)

is calculated. The CT VOI vc is determined to contain a nodule if the evaluation
value is larger than a threshold, and vice versa.

5 Experimental Results

5.1 Construction of Distribution Models of Pulmonary Blood
Vessels

We construct the distribution models of pulmonary blood vessels from 48 healthy
thoracic CT scans. The CT scans contain from 31 to 44 slice cross sections. The
parameters of our improvements are determined as follows. The division numbers
L, M and N are 30, 20 and 31, respectively. The distribution models of means
and standard deviations of blood vessel radii are shown in Figures 4 and 5,
respectively. Figure 4(c) and (d) show that thick blood vessels are distributed in
the central area in lungs, and thin blood vessels are distributed in the peripheral
area. The distribution shown in Figure 4(e) is more important. Thick blood
vessels do not necessarily gather around the center of a lung. They are on the
dorsal area of a lung.

5.2 Performance Comparison

We compare the performance of the likelihood functions in Section 3. By applying
our initial detection method[27] to actual 98 CT scans including 98 pulmonary
nodules identified by a radiologist, 96 nodules are detected with 56.4 FPs per
scan (two false negatives occur). The VOIs are extracted which include the initial
detected nodule candidates inside, and are fed into the proposed method as the
CT VOI vc in Equation (20). The VOI sizes are 15 × 15 pixels in the x-y slice
planes and 3 slices in the z (so-called body) axes. Figure 6 shows the free-response
receiver operating characteristic (FROC) curves that represent the relation be-
tween the true positive ratio and the number of false positives per scan. The
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Fig. 4. The distribution model of means of blood vessel radii

0 2.1
mm

(a) 3rd slice (b) 9th slice (c) 14th slice

(d) 19th slice (e) 24th slice (f) 30th slice

Fig. 5. The distribution model of standard deviation of blood vessel radii

curves indicated by NCC, SAD, MI, NMI and L0 represent the performance of
the likelihood functions of the Equations (10), (11), (15), (16) and (17), respec-
tively, in Section 3.

At the true positive ratio of 100%, the minimum (best) number of false posi-
tives is 19.2 per scan, that is obtained by SAD, and the second minimum number
is 22.3 by NCC. However, at the true positive ratio of 80%, the minimum FP
number is 3.3 by NCC and the second minimum FP number is 3.5 by NMI. The
FP number of the SAD is 4.5 at this true positive ratio. The performance order
of the five likelihood functions varies depending on the aimed true positive ra-
tio. At the sensitivity of 100%, the specificity of the results of SAD, which is the
best likelihood function at this sensitivity, against that of the initial detection is
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Fig. 6. The FROC curves

about 34.0% (= 19.2/56.4). The FP number of 19.2 per scan is almost equivalent
to that of 0.62 per slice and is less than the so-called practical upper limit 2 per
image[28].

6 Conclusion

In the present paper, we propose a novel recognition method of pulmonary nod-
ules in thoracic CT scans. Pulmonary nodules and blood vessels are represented
by 3-D deformable spherical and cylindrical models. The validity of the object
models are evaluated by the probability distributions that reflect the results of
the statistical anatomical analysis of blood vessel trees in human lungs. The
fidelity of the object models to CT scans are evaluated by five similarity mea-
surements. Through these evaluations, the posterior probabilities of hypotheses
that the object models appear in the CT scans are calculated by use of the
Bayes theorem. The nodule recognition is performed by the MAP estimation.
Comparison of performance of the five similarity measurements are performed.

In this paper, the distribution models are defined with respect only to the
means and standard deviations of blood vessel radii. Ones of our future works
for improving the recognition accuracy are to define the distribution models of
nodules and to use other statistics such as medians.
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Abstract. Camera calibration is a process of optimizing the camera
parameters. This paper describes an evaluation of different stochastic
and heuristic estimators for cost function minimization used in camera
calibration.

The optimization algorithm is a standard gradient walk on the epipolar-
constraint. The results show estimators work similar on the given set of
correspondence. Correspondences selected to a given distribution over
the frame gives better calibration results, especially the results on the
yaw angle estimation show more robust results. In this paper the distri-
bution will uniformly distributed over the frame using binning [1, 2].

The data used in this paper shows binning does lower the error behav-
ior in most calibrations. The L1-norm and L2-norm using binning does
not reach an error with respect to the ground truth higher 4 pix. The
calibrations rejecting binning shows an impulse on the 970 calibration.
To avoid this impulse binning is used.

Binning influences the calibration result more as the choice of the
right m-estimator or the right norm.

1 Introduction

Advanced driver assistance systems (ADAS) use stereo camera systems for object
detection, distance measuring or 3D reconstruction. A stereo system can de-
calibrate over time due to thermal or physical interaction. To counteract the
de-calibration of the camera, self-calibration is crucial.

Camera calibration is the process of determining geometric camera param-
eters. Usually camera calibration uses calibration targets for calibration [3–6].
Self-calibration uses no calibration targets for calibration and uses image data
instead [1, 2, 5–10]. In general, the camera system optimization is based on the
pinhole camera model (Fig. 1).
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Camera calibration can be separated in two parts. On the one hand the set
of intrinsic camera parameter determining the projection of the camera coordi-
nate system into the image coordinate and on the other hand the set of extrinsic
camera parameter relates to the camera orientation and the camera position. In
general, both parameter sets are obtained using non-linear equation optimization.

Non-linear optimization requires a good initial guess for the camera parame-
ters. Estimation of camera parameters has been studied in the last three decades.
Hence, various articles have been proposed for the direct estimation of the cam-
era parameter. The most robust methods are the M-estimator, the Least Median
of Squares (LMedS) method, and the Random Sample Consensus (RANSAC)
method, but all suffer either from outliers or Gaussian noise in image data
[11, 12]. Most described calibration methods use calibration targets [2–5, 8–
10, 13].

This paper presents an evaluation on different estimation methods including
the L1-norm, the L2-norm, the Blake-Zisserman, and the Corruption Gaussian
estimator [9, P. 618] on image data for self-calibration and investigate the effect
of equally distributed correspondences on the self-calibration. [3, 9] gives the
statement that the choice of the right M-estimator or norm leads to a robust
and accurate calibration. The evaluation in this paper shows that this statement
can not be hold.

In Sec. 2 the state of the art is outlined. In Sec. 3 the tested estimators are
described. Sec. 4 presents the results on the evaluation and this paper ends with
a conclusion on the evaluation in Sec. 5.

2 Essential Matrix Estimation

The projective camera geometry is based on the pinhole camera model. In the
pinhole camera model the projection rays intersects in a single point C, the
camera center. The focal length defines the distance between the image plane
and the camera center C. The principle point m0 = (u0, v0) is the intersection
of the ray from C into the image plane (Fig. 1).

The epipolar-constraint describes the projection from one camera coordinate
system into the other camera coordinate system for a stereo camera system
[8–10].

The intrinsic camera parameters are archived in the camera calibration matrix
[9, p. 163]

K =

⎛
⎝f s u0

0 ϕ · f v0
0 0 1

⎞
⎠ ,

with s the skew parameter indicating a skew pixel geometry and ϕ a scalar
describing the aspect ratio. To estimate the items in the set of intrinsic camera
parameter an initial camera calibration is used. In this paper we use the bundle
adjustment method for the calibration of the set of intrinsic camera parameter
[1, 4, 5, 13].
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Fig. 1. The pinhole camera model [14]

The mapping of correspondences from the right into the left image and vice
versa is described with

x′TFx = 0, (1)

with F the fundamental matrix and x′ the image pixel in the left image and x
the corresponding pixel in the right image [9, p. 245]. x′ and x are homogeneous
and represented in the pixel-coordinate-system. The fundamental matrix is the
natural extension of the essential matrix [15]

E = K ′TFK. (2)

[16, 17] shows stability analysis on Eq. (1) and leads to the separation of intrinsic
and extrinsic camera parameter Eq. (2). This separation of the fundamental
matrix leads with Eq. (1) to Eq. (3)

x′TFx = x′T (K ′−1)TEK−1x =

⎛
⎝u′v′

1

⎞
⎠

T

E

⎛
⎝uv

1

⎞
⎠ =

⎛
⎝u′v′

1

⎞
⎠

T

t×R

⎛
⎝uv

1

⎞
⎠ = 0, (3)

with an essential matrix E = txR, R the rotation matrix and tx the skew sym-
metric matrix with the translation vector for components. The methods in this
paper uses the algorithm described in [18] for correspondence detection.

In general, correspondences are usually not equally distributed on the image.
Binning is used to achieve near equally distributed correspondences [1, 2]

After correspondence mapping from one image into the other, the distance
of the x coordinate between the correspondences d(x′, x) = ‖x′ − x‖2 is called
disparity. Camera self-calibration using the epipolar-constraint with a stereo rig
as described in [2, 7–10].

3 Epipolar Constraint Optimization Using Stochastic or
Heuristic Estimators

In this section we present the evaluated methods: the L1-norm estimator, the
L2-norm estimator, the Blake-Zisserman estimator, and the Corrupted Gaussian
estimator.



An Evaluation on Estimators for Stochastic and Heuristic 43

The optimization problem described with Eq. (3) searches for the shortest
length between the error of Eq. (3) and its kernel

ker(x′Ex) ≡ 0 ⇐⇒ 0 = x′Ex.

To find the minimum distance between the error and the kernel of Eq. (3),
the presented algorithm use Shor’s algorithm with a standard newton gradient
method [19]. Shor’s algorithm assures a fast optimization process. For outlier
detection we use the estimator with the cost function C(·) : �n → �≥0.

A small residuum ξi = x′iExi indicates the inlier and a large residuum indi-
cates the outlier. The inliers are used for calibration [9].

The equation

Lp(ξ) = (
∫
�n

‖ξ‖pdt)
1
p =: ‖ξ‖p (4)

is called the Lebesque-Norm or p-Norm. The least mean square optimization
methods uses usually C(ξ) =

∑n
i=1 ‖ξi‖2 for regression [20]. However, the cost

function C(ξ) =
∑n

i=1 ‖ξi‖1 is not as outlier sensitive as C(ξ) =
∑n

i=1 ‖ξi‖2 [21].
The Corrupted Gaussian estimator is defined by

C(ξ) =
n∑

i=1

− ln(αe−ξ2
i + (1 − α)e

(
−ξi

ω
)2

ω ) (5)

with α ∈ [0, 1] the expected factor of the inlier and ω the ratio of the standard
deviation. Corrupted Gaussian estimation expects that the outliers have a Gauss
distribution with a large standard deviation.

Using Eq. (5) with α ≈ 1 leads to the Blake-Zisserman estimators

C(ξ) =
n∑

i=1

− ln(e−ξ2
i + ε), (6)

with ε << 1 a small expected error in the image data.

4 Experimental Investigations

A stereo camera system takes a sequence for testing. The experiments includes
1435 stereo image pairs in about 30 sec while driving. The sequence is taken
with the camera system shown in Fig. 2.

Fig. 3 - Fig. 10 presents the experimental results. The correspondences are
rectified and normalized using the algorithm described in [18].

Fig. 3 shows a calibration using the L1-norm. Each row represents the error
with respect to the ground truth of the three angles. In the second row in Fig. 3
the yaw angle is presented with an error value between [0, 7] pix while the other
angles are limited to 1 pix. The biggest error rise in calibration 970. This impulse
is also seen in the third row at the same frame.

Fig. 4 shows the calibration using the L2-norm. The behavior of figure Fig. 3
and Fig. 4 are similar on the given dataset. The impulse at calibration 970 does
appear in the calibration using the L2-norm and has the same value the L1-norm
shows.
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Fig. 2. The stereo-camera-system

Fig. 3. Stereo-calibration using the L1-norm the estimator for optimization. The first
row shows the pitch angle error with respect to the ground truth, and the second row
the yaw angle error with respect to the ground truth. The roll angle is given in the last
row.

The best behavior is illustrated in Fig. 5. The error value for the calibration of
the yaw angle is less then 6 pix. The Corrupted Gaussian estimator uses a value
to give a smooth change from the set of data and outlier. The Blake-Zisserman
estimator has a hard limit for a data outlier selector. The results using the
Blake-Zisserman estimator is presented in Fig 6.

The results on the stereo calibration using the Blake-Zisserman estimators
gives at calibration number 970 an unexpected impulse as much higher the other
calibrations does. The pitch angle has a error of 2416 pix, the yaw angle has a
error of 70 pix and the roll angle gives a error of 9 pix. For calibration number
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Fig. 4. Stereo-calibration using the L2-norm the estimator for optimization. The first
row shows the pitch angle error with respect to the ground truth, and the second row
the yaw angle error with respect to the ground truth. The roll angle is given in the last
row.

Fig. 5. Stereo-calibration using the Corrupted Gaussian estimator for optimization.
The first row shows the pitch angle error with respect to the ground truth, and the
second row the yaw angle error with respect to the ground truth. The roll angle is
given in the last row.
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Fig. 6. Stereo-calibration using the Blake-Zisserman estimator for optimization. The
first row shows the pitch-angle error with respect to the ground truth, and the second
row the yaw angle error with respect to the ground truth. The roll angle is given in
the last row.

Fig. 7. The calibration with number 970 has just correspondences in the left lower
corner. This leads to the hugh errors in the angle for calibration number 970.

970 see Fig. 7. In Fig. 7 the correspondences are centered in more or less a corner
of the frame. This impulse in a stereo camera system for an ADAS can have fatal
effect on the car behavior.

Binning is used to counteract this effect [1, 2]. Binning splits the image into
four partitions, and binning force to correspondence set to select correspon-
dences from the images until the bins are filled to the bin limit. Results from
the evaluation using binning are presented in Fig. 8 - Fig. 10

Fig. 8 shows (in contrast to Fig. 3) an error value in the range of [0, 4] pix.
The unexpected impulse behavior is avoided.
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Fig. 8. Stereo-calibration using the L1-norm estimator with the binning-approach. The
first row shows the pitch-angle error with respect to the ground truth, and the second
row the yaw-angle error with respect to the ground truth. The roll-angle is illustrated
in the last row.

Fig. 9. stereo-calibration using the L2-norm estimator with the binning-approach. The
first row shows the pitch-angle error with respect to the ground truth, and the second
row the yaw-angle error with respect to the ground truth. The roll-angle is illustrated
in the last row.
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Fig. 10. Stereo-calibration using the Corrupted Gaussian estimator with the binning-
approach. The first row shows the pitch-angle error with respect to the ground truth,
and the second row the yaw-angle error with respect to the ground truth. The roll-angle
is illustrated in the last row.

Fig. 11. Stereo-calibration using the Blake-Zisserman estimator with the binning-
approach. The first row shows the pitch-angle error with respect to the ground truth,
and the second row the yaw-angle error with respect to the ground truth. The roll-angle
is illustrated in the last row.



An Evaluation on Estimators for Stochastic and Heuristic 49

Fig. 9 shows a similar error behavior on the correspondences as Fig. 8. This
was expected, because this behavior was observed in the calibration without
binning.

Fig. 10 illustrates that using binning avoids the impulse seen in Fig. 5 at
calibration 970 and leads to a more accurate calibration.

The Corrupted Gaussian estimator is slightly more accurate as the Blake-
Zisserman estimator (see. Fig. 5 in contrast to Fig. 6 and Fig. 10 in contrast
to Fig. 11). A calibration using the L1-norm or L2-norm estimator is a robust
method using binning or rejecting binning.

Selecting correspondences use binning until a bin limit is reached gives better
results after the calibration step. The yaw- angle is the angle with the largest
error and the hardest angle to estimate, albeit if binning is used the error of the
yaw-angle shrinks while the number of calibration shrinks. Selecting correspon-
dences to reach the bin limit often use a certain number of frames. In general,
a calibration is done after a series of frames using binning. Therefor using no
binning before calibration can give a calibration after each frame.

5 Conclusion

If the evaluated estimators use binning then the error with respect to the ground
truth is at leased smaller over all calibrations. This paper gives a hint of a relation
between the yaw angle and the rotation angle. The number of correspondences
has an influence on the calibration is shown using binning. The influence on the
number of correspondences to the calibration quality is shown in [1].

A robust estimators use the L1-norm or the L2- norm. The assumption that
the error is Gaussian distributed is not correct in the scenario illustrated in this
paper. The Corrupted Gaussian and the Black-Zisserman estimator does use this
constraint on the error in the data. The large error values shows the error in the
data is not Gaussian distributed.

This paper shows that the use of binning is more important then the choice
of the right M-estimator or the right norm.

Further work has to be done in the robust essential matrix and fundamental
matrix estimation using probabilistic heuristics for long range approaches. The
selected correspondences in the image using the algorithm in [18] gives a random
selected set. A dynamic binning algorithm based on the equally distribution is
necessary to force an equally distributed set of correspondences in an image. The
correspondence distribution has to be checked against existing distributions in
stochastic and regression analysis.
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3. Luhmann, T., Robson, S., Reeves, C., Wainwright, P., Kyle, S.: Close range
Photogrametry:Principles, Methods and Applications, vol. 1. Whittles Publishing
(2006)

4. Pollefeys, M.: Self-calibration and metric 3D reconstruction from uncalibrated im-
age sequences. PhD thesis, K.U.Leuven (1999)
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Abstract. The modelling and understanding of the facial dynamics of
individuals is crucial to achieving higher levels of realistic facial ani-
mation. We address the recognition of individuals through modelling the
facial motions of several subjects. Modelling facial motion comes with nu-
merous challenges including accurate and robust tracking of facial move-
ment, high dimensional data processing and non-linear spatial-temporal
structural motion. We present a novel framework which addresses these
problems through the use of video-specific Active Appearance Models
(AAM) and Gaussian Process Latent Variable Models (GP-LVM). Our
experiments and results qualitatively and quantitatively demonstrate the
framework’s ability to successfully differentiate individuals by tempo-
rally modelling appearance invariant facial motion. Thus supporting the
proposition that a facial activity model may assist in the areas of motion
retargeting, motion synthesis and experimental psychology.

1 Introduction

Realising increasingly believable human facial animation is a key concept for
members of the computer science community and has been a desirable goal
since the start of facial animation. Human Computer Interaction (HCI)[1], med-
ical imagery and forensics [2] are just a few areas which greatly benefit from
the application of realistic facial animation. Furthermore, achieving convincing
human facial animation has been viewed as a major milestone for the special
effects industry; a fundamental step in connecting the audience with computer
generated content, whether it is virtual supporting characters in a live-action
film or a complete virtual cast in a videogame.

Realistic facial animation is a formidable challenge to both the academic fields
of computer vision and graphics as well as the entertainment and video game
industries. A major contributing factor to the difficulty of creating convincing
facial animation is our innate perceptions of the visual mechanics of the human
face. When presented with more realistic virtual characters it is this intrinsic
model of human facial motion that becomes a hindrance in our acceptance of
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the character. This phenomenon, aptly named the “uncanny valley”[3] has been
set as the main hurdle whom all involved in research in realistic facial animation
attempt to overcome.

In this paper we investigate whether it is possible for a system to distin-
guish an individual from others based on facial movement alone. To this end we
present a framework for capturing and modelling the facial dynamics of multiple
individuals. Our framework is capable of classifying individuals based on facial
motion without any appearance based cues and has the facilities to generate
synthetic facial motion. Well established techniques, such as Active Appearance
Models (AAM) for markerless feature tracking of video data and the Gaussian
Process Latent Variable Model (GP-LVM) for non-linear dimensionality reduc-
tion are incorporated into our framework. AAMs and GP-LVMs are techniques
that have been explored extensively in their respective fields of computer vision
and dimensionality reduction and have shown great promise in the modelling of
human motion data. Our novel contribution to this field lies is the modelling of
the facial dynamics rather than static images using the GP-LVM. In addition,
we are confident that modelling the facial dynamics of individuals will result in
practical applications in the areas of motion retargeting and motion synthesis
as well as have a positive impact in the field of experimental psychology.

The remainder of this paper is organised as follows: Section 2 consists of a
brief overview of facial animation and a summary of related work. We describe
our framework in more detail in Sect. 3, discuss our results in Sect. 4 and present
our conclusions in Sect. 5.

2 Background and Related Work

Over the last ten years the discriminative power of facial dynamics has become
more recognised in the computer vision community with increased research in
applying facial dynamics to facial recognition. It has been demonstrated that
using dynamic features to compliment appearance features can improve facial
recognition two-fold [4]. A disadvantage of analysing still images is that they are
normally taken during the apex of an expression which is atypical of realistic
facial motion; a complex combination of expressions at varying intensities. The
goals regarding facial recognition and analysis can roughly be grouped into one
of two categories. The first group focusing on recognising known expressions
at different intensities across different individuals whilst the second group are
concerned with discriminating individuals based on facial movement regardless
of which expressions they are performing. Our work falls into the latter category.

There have been numerous approaches to facial movement analysis each em-
ploying different dynamic features and techniques. Texture derived features such
as the similarities between Haar-like features [5], Extended Volume Local Binary
Pattern (EVLBP) features [6], dense optical flow [4] and a histogram of fused
Gabor wavelet representations [7] have been used to reduce a video sequence to
a lower dimensional temporal vector. Conversely, 3D parametric models [8, 9]
have been fitted to video sequences to produce similar temporal vectors.
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Once dynamic features of facial movements are extracted, machine learning
techniques are employed to infer structure from the features for classification,
regression or generative purposes. Techniques such as Support Vector Machines
(SVM) [5, 8], Principle Component Analysis (PCA), Linear Discriminant Anal-
ysis (LDA) and Hidden Markov Models (HMM)[6] can be used to classify one
individual or expression from another. However caution should be exercised when
combining dynamic features with appearance features as a wrong set of dynamic
features may hinder the task of recognition and classification instead of aiding
it [6]. Consequently, selecting a relevant set of dynamic features can be cast as
a feature selection problem [9]. One technique for selecting the features which
have the highest discriminative power is Boosting as shown in [6, 5, 7]. Our con-
tribution fits into this ideological model by using AAMs for feature extraction,
a GP-LVM coupled with K-Means clustering to reveal the higher level structure
of the facial data followed by an HMM to classify one individual from another.

Our case for using AAMs for feature extraction has been built on the ability
of AAMs to robustly track non-rigid deformation of facial movements as well
as large out of plane head rotations. Since being introduced to the Computer
Science community [10], AAMs have been extended to boost robustness and flex-
ibility through several proposed fitting methods [11]. More efficient algorithms
have also been proposed such as the Inverse Compositional (IC) method [12]
which achieved significant performance gains over typical gradient descent algo-
rithms. Boosting and Support Vector Regression (SVR) have also been utilised
to create non-linear fitting algorithms [11]. AAMs have also been extended to use
3D motion estimation to constrain the examples generated to ones only plausible
in 3D, drastically reducing fitting times [13].

The GP-LVM [14] is a non-linear probabilistic dimensionality reduction tech-
nique using Gaussian Processes (GP). Our motivation for using the GP-LVM is
that the GP-LVM and its various flavours have been used for unsupervised learn-
ing of human motion data [15–17], outperforming other dimensionality reduction
techniques [18]. Furthermore, GP-LVMs have been used in combination with
SVMs for facial expression classification [19]. More importantly, the GP-LVM is
a probabilistic model capable of generating the observational probabilities which
are instrumental to the modelling of facial dynamics in our framework. The work
in [20] shares similar attributes to our own, using AAMs to parameterise facial
motion from video. However whilst the focus of [20] is on creating an audio-
visual mapping using an SGP-LVM, ours is on discovering a mapping between
individuals and their differences in facial motion.

To summarise, our novel contribution is that instead of attempting to recog-
nise and classify facial expressions in individuals we have attempted to dis-
tinguish individuals performing similar and dissimilar facial actions. We are
attempting to model the style or facial dynamics which are individual specific by
discretisation of the latent space and incorporating dynamic features for purposes
of classification and synthesis of realistic facial motion. Additionally, whereas
previous works have been tested using established expression databases where
the expressions may have been posed [21] or triggered by stimuli [22]; we have
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attempted to apply our framework to video data of subjects undergoing natural
facial actions without constraints to global head movement.

3 AAM and GP-LVM Framework

Our framework models the facial dynamics of individuals through an HMM.
In order to build the HMM our framework requires the probabilities of the
observations given a particular latent state and the transitional probabilities
from one state to another. The observation probabilities are generated using the
GP-LVM whilst the observations themselves are features extracted using a face
tracker built on AAMs. Due to the inclusion of the GP-LVM, our framework
has the advantage over other classification frameworks by having the added
functionality of filtering the data and synthesising new data.

3.1 Obtaining Tracking Data Using AAMs

For the successful tracking of facial motion we would need an AAM trained on
a wide range of facial expressions. Initially, our training set of images was based
on the Facial Action Coding System (FACS) Action Units (AU) [23]. Our choice
stemmed from the fact that FACS has been the most authoritative attempt at
comprehensively measuring the facial movements of the human face. With 46
muscle-based AUs, it is possible to create a wide range of facial expressions using
the combinations of just two or three AUs. We created three AAMs for a sin-
gle individual. One training set consisted of images of single AUs, the second set
consisted of common combinations of AUs and the final set contained both the
single and combined AUs. In practice we found that these training sets performed
poorly. The AU images, although atomic in terms of expression, may be non-
orthogonal in the AAM space attributing to the poor performance of the AAM.

Consequently, to build an AAM tracker which tracked our subjects as accu-
rately as possible, we opted to create video clip specific AAMs. Our empirical
experience has shown that the fitting methods we used [12, 10] were unable to
accurately track features in video with models trained from multiple subjects
or the same subjects in different video clips. Ultimately our system applies the
Ramer-Douglas-Peuker algorithm [24] to the input video data. These key-frame
images returned by the algorithm would then be labelled semi-automatically for
use as the training set. Specifically, a subset of the training images would be
labelled manually to create a small initialising AAM. This AAM would then be
used to fit the label points onto the remaining key-frame images, accelerating
the labelling process. Since we were using AAMs trained on individual video
sequences we decided to just use the shape data from the AAM, shown in Fig. 1,
as input to the GP-LVM.

3.2 Normalising Shape Data for GP-LVM Use

Before the tracking data is used to create a GP-LVM the data needs to be nor-
malised for translation, scale and shape to remove variance due to appearance.
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Fig. 1. The tracking software: The utility used to mark the key-frames (left), the AAM
tracker on a single frame (middle) and the bottom panel shows the same data output
in Matlab (right)

This step was vital in ensuring that the GP-LVM learned the facial motions of
the individuals and not their appearances. For scale and translation normalisa-
tion, we apply the following: for each frame i in the video sequence with points
j = 1 . . . P the centre of the marker points (pcx

i , p
cy
i ) and the scaling factor si

are calculated as shown in (1) to (3).
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After the scale and translation information has been removed from the data
the next step is to remove shape information of the individual. In our tracker we
appended the the mean shape generated by the AAM to the tracking data which
would then be used to subtract from the normalised data to get the displacement
information.

3.3 Decoupling Global Head Motion

One of our video data sets containing Natural Expressions (NER) of students
performing authentic unconstrained facial motions contains a large degree of
global head motion. Since the main focus of our research is determining the dis-
criminative power of using facial motions as features, it was important to segre-
gate rigid global head motion from non-rigid facial deformations and preventing
one set of motions from influencing the other. More importantly, in practice, we
have observed that global head motion accounts for the majority of the variation
in the model, factoring out facial expression motions during the creation of the
GP-LVM if left unfiltered from the data.
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Compared to extracting global head movement from 3D tracking data which
involves calculating a linear transformation, decoupling global head movement
from 2D tracking data is a non-trivial process. One approach would be to treat
the face or the set of points as a 3D plane, then using homographies, recover
the head pose to subsequently determine the global head movement [25]. These
methods, though successful in recovering pose information, using homogrphies
to subtract the global movement from the 2D tracking data are not sufficient
for large out of plane rotations as they rely on the assumption that the face is a
plane.

Our selected approach was to use the structure from motion algorithm devel-
oped in [26]. Once the 3D rigid structure was recovered, the data was then ortho-
graphically projected onto 2D space. Subsequently, the translations between the
facial points in each frame of the rigid motion sequence and a manually selected
frontal pose frame was calculated. These translations could then be applied to
the original 2D tracking data to remove the global head movement.

3.4 Classification of Individual Facial Dynamics Using GP-LVM

Creating a GP-LVM from the normalised data reduced the dimensionality of
the data from 160 dimensions to two. Once the latent space is generated we
then segment the space into clusters using K-Means++ clustering [27]. Once the
clusters are set, the means of these clusters are taken to represent the states in
the HMM. The probabilities of these states can be interpreted as the probability
that the observed data generated came from the cluster k. Or more formally,
p(yi|Ck) where Ck is the mean position of the cluster k.

More interestingly however with regards to the HMM was the process of
modelling the transitional probabilities from one state to another. There are
a number of ways to go about generating these probabilities. One method would
be to assume transitional smoothness between states and model a Gaussian
over the transitional probabilities. Another method may be to actually model
these probabilities using a multi-modal Gaussian. However the initial method
that we selected was to use a non-parametric histogram approach where the
transition probabilities would be calculated by recording the actual states which
the tracking data of individuals would pass through. These values would then
be normalised to get the transitional probabilities.

Once both the probabilities for the states and the transitions were found, we
could then calculate the Viterbi path through the HMM state trellis, i.e. the
most likely path given the states and transition probabilities.

In practice when classifying individuals we get a set of candidate paths per
individual i.e. one path per combination of transitional model and individual. To
calculate the probability of each candidate path we have to take the multiplica-
tive sum (or sum of the logs) of the state probabilities and transition probabilities
for each observation in the path. The path with the highest probability is then
assigned to that individual.
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Fig. 2. Confusion matrices for classification on test points in lower dimensional space.
From top-left to bottom right. LPP, NPE, LDA, PCA, GP-LVM and Observational
space.

Table 1. Classification percentages for various reduced dimensional spaces

M205 M333 M777 M850

Observation Space 99.1803 93.8776 98.9691 100.0000

Embedded Space
LPP 100 0 0 0
NPE 0 100 0 0
LDA 37.7049 49.6599 61.8557 51.7007
PCA 86.8852 53.7415 62.8866 80.9524

GP-LVM 55.7377 89.7959 72.1649 91.1565

4 Experiments and Results

For our Experiments we used two video sets. A Simple Smile Set (SSS) which
consisted of four individuals (M205, M333, M777 and M850) performing a sim-
ple artificial smile. Each subject was asked to perform the smile multiple times
as consistently as possible and as close to an example video as possible. A sec-
ond video set consisting of Natural Expressions (NER) was acquired from a
psychology experiment. These video clips consist of greater numbers of individ-
uals watching a set of prepared video clips and periodically being asked a set of
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questions as well as being asked to perform a set of tasks. These stimuli were
designed to provoke natural actions and emotional responses with unconstrained
head movement. Although filmed using different cameras in different locations
all subjects were filmed at 1080p resolution with 25FPS in an environment with
controlled background and lighting conditions. We split the SSS data set into
a training set and a testing set by grouping the first and last smiles of each
individual as the training set and using the remaining three middle smiles as the
test set. The number of frames in the SSS was 1224 with 711 frames used for
the training set and the remaining 513 frames used for the test set.

4.1 Baseline Test

The purpose of the baseline test was to compare the classification strength of
existing linear dimensionality reduction methods against the GP-LVM. In this
experiment we only wanted to see how well classification performed without the
use of temporal information, treating each frame as a static image. Using the
SSS training set, we generated two dimensional latent spaces using Locality Pre-
serving Projection (LPP), Neighbourhood Preserving Embedding (NPE), LDA,
PCA and GP-LVM. We used Nearest Neighbours (NN) to classify the test set.
We also used observation space as a control. Figure 2 and Table 1 show that
the GP-LVM outperforms the linear dimensionality reduction techniques. It is
worth noting that the high classification accuracy rate achieved using just the
observation space shows that the data is very dense and that it is possible to
find very similar examples in the training set to match the test set using NN.
However, classifying data in the observation space is of little use to us since
additional tasks such as synthesis of data, generalising to more varied test cases
and filtering of data would not be possible.

Fig. 3. Normalised negative log probabilities of paths generated using different transi-
tion models. The lower values indicate a higher probability.
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Fig. 4. From top-left to bottom-right: Results from the smile experiment(1-3) and
the emotional talking experiment(4-6). The latent space of four individuals (1), the
same latent space clustered using K-Means clustering (2) and the paths through the
cluster centres of the training data in latent space (3). The latent space generated from
the six individuals (4), the clustered latent space (5) and the confusion matrix of the
classification process (6).
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4.2 Smile Experiment

The main aim of this particular experiment was to ascertain whether it was
possible to use the GP-LVM and HMM framework described in Sect. 3 to dis-
criminate different individuals performing the same action. The plots in Fig.
4 reveal that the paths generated from the discretised latent space using the
Viterbi algorithm are able to maintain the temporal structure of their respective
individuals within the training data. Furthermore, Fig. 3 confirms that it is pos-
sible to use the log probabilities of paths generated from the test data to classify
individuals successfully, showing a one hundred percent accuracy rate over our
test data with k = 32 clusters. Figure 3 demonstrates that a path generated
from a test smile and transitional model which came from the same individual
will have the highest log probability.

4.3 Emotional Talking Experiment

The Emotional Talking Experiment is an extension of the Smile Experiment.
Instead of trying to differentiate individuals who are performing a simple iden-
tical action, this experiment tested whether it was possible for the framework
to separate individuals performing a range of natural actions from one another.
Clips were taken from the NER set of six individuals talking about a subject
which made them angry. The data was split into a training set and a test set of
equal length, 8250 frames each. Classification was done in the same manner as
the Smile Experiment. The results in Fig. 4 demonstrate that although there is
a performance penalty with more complex data, it is still possible to separate
and classify individuals.

5 Conclusion and Future Work

In this paper we have presented a novel implementation for modelling facial
dynamics in a probabilistic framework using a GP-LVM and HMM on tracking
data generated using AAMs. The results from our experiments, in particular
with the NER set have demonstrated the discriminative power of combining
temporal information with discrete states to identify individuals in a complex
latent space that would otherwise be very difficult to do so with non-temporal
techniques. Our initial findings have supported our beliefs that it is possible to
distinguish individuals using only facial movement as dynamic features and have
encouraged us to continue our investigation within this topic.

Currently we acknowledge that we are working with a small data set of in-
dividuals and for future work we will attempt to generalise our model to a
larger data set with a wider range of subjects performing a more extensive set
of actions. Additionally, in our current experiments although we have decoupled
global head movement from the tracking data, we have yet to investigate how
using global head movement alone for the purposes of identifying individuals
compares with the use of facial expressions.
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We have argued the importance of dynamics in facial data in our framework
and have used a non-parametric dynamic model to calculate the transitional
probabilities in our HMM trellis. It will be of great interest to investigate how
different models for calculating transitional probabilities affect the discrimina-
tory power of our current framework. Furthermore there is also scope to explore
how efficient the GP-LVM is at synthesising individual specific facial motions.
Although it is beyond the scope of this paper, in future we may consider aug-
menting our feature extraction processes by introducing high-speed video to
capture more subtle facial motion.

Acknowledgements. We would like to express our thanks to Dr. Ian Penton-
Voak and Dr. Ian Stephen from the Department of Experimental Psychology at
the University of Bristol for kindly providing us the video data of individuals
making up the NER set.
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matics. In: SIGGRAPH 2004, pp. 522–531 (2004)

16. Lawrence, N.D., Quiñonero Candela, J.: Local Distance Preservation in the GP-
LVM through Back Constraints. In: ICML 2006, pp. 513–520 (2006)

17. Ek, C.H., Torr, P., Lawrence, N.D.: Gaussian Process Latent Variable Models for
Human Pose Estimation. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.)
MLMI 2007. LNCS, vol. 4892, pp. 132–143. Springer, Heidelberg (2008)

18. Quirion, S., Duchesne, C., Laurendeau, D., Marchand, M.: Comparing GPLVM
Approaches for Dimensionality Reduction in Character Animation. WSCG 16,
41–48 (2008)

19. Huang, M., Wang, Z., Ying, Z.: A Novel Method of Facial Expression Recognition
Based on GPLVM Plus SVM. In: ICSP 2010, pp. 916–919 (2010)

20. Deena, S., Galata, A.: Speech-driven facial animation using a shared gaussian pro-
cess latent variable model. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno,
Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A.,
Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp.
89–100. Springer, Heidelberg (2009)

21. Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive Database for Facial Expression
Analysis. In: AFGR 2000, pp. 46–53 (2000)

22. Wallhoff, F.: Facial Expressions and Emotion Database (2006)
23. Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System. [CD-ROM]

(2002)
24. Ramer, U.: An Iterative Procedure for the Polygonal Approximation of Plane

Curves. Computer Graphics and Image Processing 1, 244–256 (1972)
25. Zhu, Z., Ji, Q.: Real Time 3D Face Pose Tracking From an Uncalibrated Camera.

In: CVPR 2004, vol. 73 (2004)
26. Akhter, I., Sheikh, Y.A., Khan, S., Kanade, T.: Nonrigid Structure from Motion

in Trajectory Space. Neural Information Processing Systems (2008)
27. Arthur, D., Vassilvitskii, S.: K-Means++: The Advantages of Careful Seeding. In:

SODA 2007, pp. 1027–1035 (2007)



Towards Temporally-Coherent Video Matting

Xue Bai, Jue Wang, and David Simons

Adobe Systems, Seattle, WA 98103, USA
{xubai,juewang,dsimons}@adobe.com

Abstract. Extracting temporally-coherent alpha mattes in video is an
important but challenging problem in post-production. Previous video
matting systems are highly sensitive to initial conditions and image
noise, thus cannot reliably produce stable alpha mattes without tem-
poral jitter. In this paper we propose an improved video matting system
which contains two new components: (1) an accurate trimap propagation
mechanism for setting up the initial matting conditions in a temporally-
coherent way; and (2) a temporal matte filter which can improve the
temporal coherence of the mattes while maintaining the matte struc-
tures on individual frames. Experimental results show that compared
with previous methods, the two new components lead to alpha mattes
with better temporal coherence.

1 Introduction

Video matting refers to the problem of separating a hairy or fuzzy foreground
object from the background (either static or dynamic) by determining partial
pixel coverage around the object boundary on each video frame. Mathemati-
cally, a boundary pixel It

p on frame t is modelled as a convex combination of a
foreground color F t

p and a background color Bt
p:

It
p = αt

pF
t
p + (1 − αt

p)B
t
p, (1)

where αt
p ∈ [0, 1] is the alpha matte that matting systems seek to solve for. Once

estimated, the alpha matte can be used to create new composites, or as a layer
mask for applying object-specific effects in the video. It is thus a key component
in the video post-production pipeline.

The requirement for accurate video matting is two-fold. First, it requires spa-
tial accuracy, which means that the alpha mattes extracted on individual frames
should accurately represent the object to be extracted. Second, it demands tem-
poral coherence, meaning that playing the extracted mattes in normal video
speed should not result in noticeable temporal jitter. In fact, temporal coher-
ence is often more important as the human visualization system (HVS) is more
sensitive to temporal inconsistency when watching a video [1].

Due to the importance of temporal coherence, directly applying image mat-
ting approaches frame-by-frame for video is undesirable. Previous video matting
approaches combine image matting methods with special temporal coherence
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treatments to try to meet both goals. However, as we will demonstrate later,
these approaches still cannot reliably generate high quality, temporally-coherent
alpha mattes even in relatively simple cases. There are many contributing fac-
tors, and we argue that the two main reasons are:

1. Overlooking the sensitivity of matting algorithms to initial conditions. Mat-
ting algorithms usually require an input trimap to start with, and modern
approaches are very sensitive to how the trimap is defined on each frame.
Changing the trimap even slightly may result in a large change in the final
matte. Temporally-coherent video matting thus requires temporally-coherent
trimap generation as the first step. Unfortunately the importance of gener-
ating coherent trimaps has been largely ignored in previous approaches.

2. The lack of a temporal filter that can improve the temporal coherence while
maintaining spatial accuracy of the alpha mattes. Previous matting ap-
proaches try to impose some temporal coherence constraints when solving
for the alpha matte on each frame. However due to image noise and other
factors, the mattes generated in this way still contain temporal jitter.

In this paper we propose a new video matting system which contains two new
components that explicitly handle the two problems mentioned above. Specifi-
cally, we propose a temporally-coherent trimap propagation method, which al-
lows accurate trimap to be propagated from one frame to the next in a coherent
way. We show that this leads to greatly-improved matte stability, as the initial
matting conditions on adjacent frames are consistent. We further propose a novel
temporal matte filter which, unlike other low-pass filters, can greatly improve
the temporal coherence of the final alpha mattes. We combine these two new
components with existing matting techniques to form an efficient video mat-
ting system. Experimental results suggest that our system can generate more
temporally-coherent results than previous methods.

2 Related Work

Image matting techniques have been significantly advanced in recent years, and
have been incorporated into various commercial products such as Adobe Photo-
shop. Leading techniques include the matting Laplacian [2], the shared sampling
method [3] and learning-based approaches [4]. We refer readers to Wang and Co-
hen’s comprehensive survey [5] on recent image matting techniques.

Various approaches have been proposed to extend image matting methods
to video. These systems usually contain a binary segmentation module which
allows the user to interactively generate a binary mask for the foreground ob-
ject first, then create a trimap on each frame for alpha matting. The Bayesian
video matting system [6] assumes the static background can be reconstructed
from the input sequence, thus a background subtraction method can be used
for automatic trimap generation. Once the trimaps are generated, the Bayesian
matting [7] method is used in each frame to generate the final matte. The video
object cut-and-paste system [8] and the 3D cutout system [9] both use graph
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(a) (b) (c) (d) (e)

Fig. 1. Illustration on how the accuracy of the input trimap affects the final matte.
(a) Top: Uniform bandwidth matting band generated by eroding (green) and dilating
(blue) the binary segmentation boundary (red). Bottom: the corresponding matte. (b)
A narrow matting band using a small bandwidth and the resulting matte. (c) Adaptive
trimap generated by our system and the resulting matte. (d) An adaptive trimap and
its resulting matte on another example. (e) Slightly modified trimap from (d) and the
resulting matte.

cut optimization for binary segmentation. The binary masks are then eroded and
dilated evenly to create the trimaps for matting. The recently proposed Video
SnapCut system employs a more efficient binary segmentation tool based on
localized classifiers [10]. It also uses a modified matting Laplacian formulation
with an added temporal coherence term as the matting solution. Lee et al. [11]
propose a 3D matting approach by treating video data as a spatio-temporal cube
and extending the Robust matting approach [12] from 2D to 3D.

3 Limitations of Previous Approaches

Before introducing our techniques, we first analyze the limitations of previ-
ous video matting approaches, and explain why their resulting mattes are not
temporally-coherent.

3.1 Inaccurate and Inconsistent Trimaps

Since the trimap is treated as a hard constraint for matting, matting algorithms
are sensitive to even small changes to the trimap. Given a binary mask Bt,
previous video matting approaches [8,9,10] usually create a uniform bandwidth
unknown region by eroding and dilating Bt for a fixed number of pixels, as
shown in Figure 1. We call the unknown region of the trimap the matting band.
However, this uniform matting band is not accurate enough for objects with
various lengths of hair around the boundary. An example is shown in Figure 1a-
c. If the bandwidth is too large (Figure 1a), or too small (Figure 1b), the results
of using the matting Laplacian method [2] contain various artifacts. A more
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accurate alpha matte could be achieved by using an adaptive matting band
shown in Figure 1c, which is wider where the hair is longer, and is narrower where
the boundary is nearly solid. Previous video matting systems are incapable of
generating such trimaps.

However, using adaptive trimap alone is insufficient to guarantee the temporal
coherence of the alpha mattes. For the same part of the object, if the local band-
width is not consistent across frames, then the local mattes may have temporal
jitter. An example is shown in Figure 1d-e. For the same part of the object, if
we just change the inner boundary of the matting band a little bit, it could lead
to a significant change in the final alpha matte. This suggests that in order to
achieve temporally-coherent alpha matte, we not only need accurate adaptive
trimap generation, but also need to make sure that the local bandwidth of the
matting band to be temporally-consistent.

3.2 Weak Temporal Constraints

Previous video matting approaches usually contain a temporal coherence term
in the matting formulation. For instance, the recently proposed video SnapCut
system minimizes the following matting energy:

E(αt) = argmin
αt

∑
x

[
λT

x (αt
x − α̂t−1

x )2
]
+ ES(αt), (2)

where ES(αt) is the regular image matting energy which only involves frame
t, and α̂t−1

x is the temporal prior which is essentially the matte computed on
the previous frame and then warped by the optical flow. However, computing
optical flow around the object boundary is often problematic, not to mention
pixels that have partial foreground coverage. As the result, the warped alpha
matte is often inaccurate to serve as a pixel-wise prior for the current frame.
Furthermore, the temporal prior can only partially affect the final matte during
the optimization process, thus the temporal coherence of the final mattes can
still be poor, if the other terms in Equation 2 dominate the solution. We will
show examples to illustrate this problem in Section 4.3.

4 Our Approach

4.1 System Framework

We develop a new video matting system that explicitly addresses the limitations
of previous approaches. The system flow chart is shown in Figure 2. Given an
input sequence, we first apply the Video SnapCut system [10] to interactively
generate a binary mask for the target object on each frame. We then ask the
user to use brush tools to specify accurate trimaps on some keyframes. The
user-specified trimaps are then parameterized and propagated from keyframes
to all other frames, using the method described in Section 4.2. Mattes are then
computed given the trimaps, using the Robust Matting approach [12]. If the
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Fig. 2. The work flow of the proposed video matting system

mattes on some frames contain errors, the user can additionally modify the
trimaps on those frames and the system will automatically propagate the user
edits to neighboring frames to improve the mattes. Once the initial mattes are
computed, we apply a temporal matte filter on them to improve their temporal
coherence, as we will describe in Section 4.3.

4.2 Adaptive Trimap Propagation

Our adaptive trimap propagation method is illustrated in Figure 3. Given the
binary segmentation boundary (red line in Figure 3a), we first ask the user to
carefully specify the hair region of the object on a keyframe, as shown as light-
yellow in Figure 3a. For unspecified parts of the object, a very tight trimap is
generated by fattening the binary segmentation boundary. We then compute a
matte under the current trimap, as shown in Figure 3b. The user iterates until
a satisfying matte is achieved on the keyframe.

To parameterize the trimap, given any point pi on the binary contour, we can
define a local window Wi and compute a local inner and outer radius dF

i and
dB

i , which together can cover all fractional alpha pixels in the local window, as
shown in Figure 3b. By sampling along the object contour uniformly, we connect
a set of control points {pi, d

F
i , d

B
i },i = 1, ...,M , as shown in Figure 3c.

To propagate the parameterized trimap shape, we first use the optical flow
field computed between the current (frame t) and the next frame (frame t+1) to
push the set of control points to new locations {p′i, dF

i , d
B
i }, based on the object

motion. Due to optical flow errors and topology changes, the moved control
points p′i may not be on the binary segmentation boundary on frame t+ 1. To
assign the radius values to points on the object boundary, we employ a thin-plate
interpolation method [13]. Specifically, we compute the interpolation function as

f(x, y) = c0 + cxx+ cyy +
M∑
i=1

ciφ(‖(x, y) − p′i‖), (3)

where φ(r) = r2 log r is the thin plate spline function, and the coefficients
c0, cx, cy, c1, ..., cM are solved by minimizing smoothing thin plate spline energy
function (see [13] for details). We then uniformly sample a new set of control
points around the object boundary on frame t+1 as {qj},j = 1, ...,M . The inner
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iW

(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration of the adaptive trimap propagation. (a) User-specified trimap on
a keyframe. (b) Automatically computed local trimap radii based on the matte. (c)
Compute a set of control points around the object. (d). Propagate local radii to the
next frame. (e). Rasterized trimap on the next frame. (f). Computed matte on the next
frame based on the propagated trimap.

trimap radius at each new control point is dF (qj) = f(qj). The outer trimap ra-
dius dB(qj) is computed in a similar fashion. Once the local radii for all control
points are computed (Figure 3d), we rasterize the trimap and compute the matte
on the new frame, as shown in Figure 3e-f.

The above process describes how we propagate the trimap from frame t to t+1.
To further propagate the trimap, we need to update the radius values dF (qj)
and dB(qj), based on the newly-computed alpha matte on frame t + 1. One
straightforward idea is to update all radius values based on the alpha matte, as
we do on the keyframe. However, in practice we found that this solution quickly
leads to deteriorated trimaps, since the computed alpha matte may contain
errors, and these errors will in turn introduce more errors in the trimap. We
thus have to update the radius values conservatively, i.e., only update the local
trimap radius when we have high confidence on the local alpha matte.

Our key observation is that the matte quality is directly related to local fore-
ground and background color distributions. If the colors are distinct, the matte
is usually accurate. On the contrary, matte error is usually introduced when the
foreground and background color distributions overlap. For every control point
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t tt+1 t+1

Fig. 4. Adaptive trimap update on two examples using Equation 5

qj we thus compute a local matte confidence fj, based on the local color dis-
tributions. Specifically, inside the local window Wj centered at qj , we sample a
group of foreground and background colors based on the computed alpha matte
as Fk and Bk,k = 1, ..., S. We then estimate a foreground Gaussian mixture
Model (GMM) based on Fks, and a background GMM based on Bks, denoted
as GF and GB , respectively. The matte confidence fj is computed as

fj =
1
S

S∑
k=1

(
1 − GF (Bk) +GB(Fk)

2

)
, (4)

where GF (x) is the probability measured by the GMM model GF given a color
x. Since we feed background colors Bk to the foreground GMM GF , if the fore-
ground and background colors are well-separable, both GF (Bk) and GB(Fk)
should be small, thus the matte confidence fj is high. Once fj is computed, the
local trimap radius is updated as

d
F/B
final(qj) = (1 − fj)dF/B(qj) + fj d̂

F/B(qj), (5)

where d(qj) is the propagated radius computed using Equation 3, and d̂(qj) is
the new radius computed from the matte. When the local matte confidence is
low, we basically freeze the trimap radius update so that the trimap can stay
stable when the matte cannot be trusted to avoid divergence. Two examples are
shown in Figure 4. For the left example where the foreground and background
color distributions are separable and the matte confidence is high, our system
allows the trimap to be freely updated based on the estimated mattes. For the
right example where the color distributions are mixed, our system freezes the
trimap radius update to allow stability.
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4.3 The Temporal Matte Filter

As we discussed earlier, due to various contributing factors such as scene color
changes and image noise, mattes generated on individual frames often contain a
certain degree of temporal jitter. In this section we introduce a novel temporal
matte filter which can help reduce the jitter and improve the temporal coherence
of the final mattes.

Level Set based Matte Interpolation. Our temporal filter is based on the
level set parametrization of the grayscale alpha matte. We first describe how
to interpolate between two matte images, i.e., given two alpha mattes α1 and
α2, generate an in-between matte α∗ = fI(α1, α2, β), where β ∈ [0, 1] is the
interpolation coefficient. Directly applying pixel-wise interpolation will not work
since the two mattes are not aligned due to object or camera movement. We
instead use a level set based interpolation approach. As shown in Figure 5a-d,
given two input mattes, we first parameterize them using level set curves, where
each curve is defined as the boundary of the iso-level region: hi = ∂Mi,Mi =
{x|α(x) > i/K},i = 0, ...,K − 1. Note that each curve has a signed normal
pointing to the descendent direction of the alpha matte.

Given two level sets {h1
i } and {h2

i } (Figure 5b,d), we compute an interpolated
level set (Figure 5f) by interpolating each pair of corresponding curves h1

i and h2
i ,

using the distance-transform-based method shown in Figure 5e. We first apply a
signed distance transform on h1

i and h2
i , denoted as D1 and D2. We then average

the two distance transform fields to create a new distance field D∗ = (D1+D2)/2
(assuming β = 0.5), and then threshold it to an average binary shape M∗ as the
interpolation result. The contour of M∗ is the interpolated curve h∗i .

Once we have the interpolated level set {h∗i }, as shown in Figure 5g, for a
pixel x on the image plane, we first identify its shortest distances to the nearest
two level set curves h∗i and h∗i−1 as di(x) and di−1(x). The alpha value of x is
then interpolated as:

α(x) = γ · i
K

+ (1 − γ) · i− 1
K

, where γ =
di−1(x)

di−1(x) + di(x)
. (6)

By applying Equation 6 to all pixels between the inner and outer level set curves
h∗K and h∗0, and assigning other pixels outside these two curves to be 1 or 0, we
can reconstruct an interpolated matte as shown in Figure 5h. As we can see the
interpolated matte maintains the same alpha profile with the two input mattes,
despite that the two input mattes have a large shape difference.

Temporal Matte Filtering. We use the matte interpolation method de-
scribed above for temporal matte filtering. Given mattes on three adjacent frames
αt−1,αt and αt+1, our temporal filter is defined as:

αt
new = fI

(
αt, fI(αt−1, αt+1, 0.5), 0.5

)
, (7)

where fI is the level-set-based matte interpolation procedure described above.
Essentially the temporal filter is a weighted interpolation of three mattes using
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Fig. 5. Illustration of the temporal filter. (a-b) The first input matte and its level set
curves. (c-d) The second input matte and its level set curves. (e) Distance transform
based curve interpolation. (f) Interpolated level set curves. (g) The alpha value of
any pixel is determined by interpolation between nearest level set curves. (h) Final
interpolated alpha matte.

the same level set interpolation procedure, and the weights for the three frames
are {0.25, 0.5, 0.25}. The filter could be applied iteratively over a chunk of frames
to achieve stronger temporal smoothing effect.

Figure 6 compares the proposed temporal filter with other temporal smooth-
ing approaches. Given three input mattes, the simplest solution is to apply a
pixel-wise temporal Gaussian filter on them. However, as shown in the figure,
since the matte structures are not well-aligned, pixel-wise interpolation results
in a significantly blurred foreground edge. Another approach is to treat αt−1

and αt+1 as priors, and re-solve αt using Equation 2. However, this method
also produces blurry results and destroys the underlying matte structure. On
the contrary, our temporal filter is able to effectively reduce the temporal jitter
while maintaining the original matte structure.

5 Results and Comparisons

To demonstrate the effectiveness of the system, we applied it on a variety of
examples and compared the results with those generated by other approaches.
Figure 7 shows a few representative examples. For each example, we compare
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Matting 
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Fig. 6. Compare our temporal filter with other methods. Top: input mattes on three
consecutive frames. Bottom: smoothed αt by three methods: simple pixel-wise averag-
ing; solving Equation 2 using both αt−1 and αt+1 as priors; our temporal filter.

results generated by the following methods: commercial software Keylight from
The Foundry1, matting with uniform trimap, matting with adaptive trimap with-
out temporal filtering, and matting with both adaptive trimap and temporal fil-
tering. Due to the limited space, we only show detailed comparison on the “girl”
example. Since this example contains moving and textured background, tradi-
tional blue/green screen keying method such as Keylight cannot really work,
as shown in Figure 7a. Figure 7b-c show the uniform trimap approach and its
resulting matte. The trimap is too narrow for the hair region, thus the matte in
the hair region is less soft than desired. The trimap is also too wide for lower
body, which introduces a lot of noise in the matte. Using the adaptive trimap
generation method proposed in this paper, we can get substantially better mat-
tes as shown in Figure 7d-e. This matte is further improved after the temporal
filtering process, as shown in Figure 7f.

The benefit of the temporal filtering can only be seen when playing videos
at the normal speed. To demonstrate the effectiveness of the temporal filter,
we create a supplemental video which contains detailed comparisons on all three
examples with and without applying the temporal filter. The video can be down-
loaded at http://www.juew.org/mirage11/videoMatting.mp4.

1 http://www.thefoundry.co.uk/products/keylight/

http://www.thefoundry.co.uk/products/keylight/
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(a) (b) (c)

(d) (e) (f)

Boy Studio Toy

(a)

Fig. 7. Examples and comparisons. Top row: examples used for comparison. Bottom:
comparisons on the “girl” example. (a) Matte generated by Keylight. (b) Uniform
trimap. (c) Alpha matte generated using trimap (b). (d) Our variable bandwidth
trimap. (e) Alpha matte generated using trimap (d). (f) Final alpha matte after tem-
poral smoothing.

6 Conclusion

We propose a new video matting system which contains two new components:
an adaptive trimap propagation procedure and a temporal matte filter. The
adaptive trimap propagation method allows an accurate and consistent trimap
to be generated on each frame, which sets up a temporally-coherent initial con-
dition for the matte solver. The temporal matte filter can further improve the
temporal-coherence of the alpha mattes while maintaining the matte structure
on each frame. Combining these new components with previous image mat-
ting methods, our system can generate high quality alpha mattes with better
temporal-coherence than previous approaches.
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Despite the progress we made in this paper, video matting still remains a chal-
lenging problem in difficult cases. When the background contains strong textures
and similar colors to the foreground, extracting high quality matte on each sin-
gle frame may not be possible using existing image matting approaches. Another
limitation of the system is that the temporal filter is efficient on improving the
temporal stability of the mattes, but it also has a tendency to smooth out small
scale, fine matte structures. Future research has to address these problems in
order to develop a better video matting system.
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Abstract. Active contours or snakes are widely used for segmentation and track-
ing. These techniques require the minimization of an energy function, which is
generally a linear combination of a data fit term and a regularization term. This
energy function can be adjusted to exploit the intrinsic object and image features.
This can be done by changing the weighting parameters of the data fit and regu-
larization term. There is, however, no rule to set these parameters optimally for
a given application. This results in trial and error parameter estimation. In this
paper, we propose a new active contour framework defined using probability the-
ory. With this new technique there is no need for ad hoc parameter setting, since it
uses probability distributions, which can be learned from a given training dataset.

1 Introduction

With a constantly increasing demand for food it becomes necessarily to optimize agri-
cultural planning, e.g. to plant the best type of plants and use the best fertilizers for
a given field with a specific soil, expected weather, etc. This off course assumes it is
known what the best plant type is for a specific field. This has led to the development
of biological laboratories which quantitatively measure the development of plants un-
der the influence of specific stress factors, e.g. wind, lack of nutrients, etc. A common
feature to evaluate the well-being of a plant is to periodically measure the average leaf
temperature using a thermal camera.

The reliable measuring of average leaf temperature in thermal images is a time con-
suming task. It demands skilled technicians who spend time identifying and delineating
objects of interest in the image. Although interactive software can ease this work, this
approach becomes impractical when the measurements have to be monitored over time
for a large variety of plant types. This paper proposes an automated technique to seg-
ment leaves and measure its average temperature in thermal images. An interesting
approach to segment objects is based on probability theory [1,2]. In this work, a new
Bayesian technique is proposed. This new technique combines the Bayesian framework
with the popular active contour model, an extensively studied segmentation and track-
ing framework used in computer vision.
� Corresponding author.
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In the active contour framework, an initial contour is moved and deformed in order
to minimize a specific energy function. This energy function should be minimal when
the contour is delineating the object of interest, e.g. a leaf. Two main groups can be dis-
tinguished in the active contour framework: one group representing the active contour
explicitly as a parameterized curve and a second group which represents the contour
implicitly using level sets. In the first group, also called snakes, the contour generally
converges towards edges in the image [3,4,5]. The second group generally has an energy
function based on region properties, such as the intensity variance of the enclosed seg-
ment [6,7]. These level set approaches have gained a lot of interest since they have some
benefits over snakes. They can for example easily change their topology, e.g. splitting
a segment into multiple unconnected segments. Recently an active contour model has
been proposed with a convex energy function, making it possible to define fast global
optimizers [8,9].

Unfortunately do the level set approaches assume certain prior knowledge about the
regions defined, e.g. the variance of intensity in the segments should be minimal. These
kind of assumptions are unfortunately not always valid and might bias the tempera-
ture measurements of leaves. Therefore we will base our new active contour model on
the snake approach. This doesn’t form a problem since leaves don’t divide and there-
fore we don’t need the variable topology of level set active contours. Although snakes
don’t have global optimizers, several optimizations techniques have been proposed and
proven useful for segmentation and tracking. In order not to converge to local optima,
one or more regularization terms are incorporated in the energy function. The influence
of these regularization terms can be tuned using a set of weighting parameters. This
tuning is generally done by trial and error, which is a time consuming and error prone
approach. Even after manually tuning, the parameters might not be optimal since the
segmentation quality in function of these weighting parameters generally is not a con-
vex function. So only by exploring the full parameter space one can be sure to find the
optimal parameters. We propose a new active contour framework based on probability
theory. Instead of exhaustively searching optimal weighting parameters, the proposed
method uses prior knowledge about the probability of certain features, e.g. edges. It
also removes the linear influence of image features, i.e. it is not because the gradient of
an edge is twice as large as another edge, that it is twice as likely to be the true border
of an object. This is especially important if you are segmenting leaves in noisy images
with other objects.

This paper is arranged as follows. The next section provides a detailed description
of parametric active contours. Both the classical and gradient vector flow snakes are
explained. In section 3 our proposed algorithm is presented. Section 4 elaborates on the
results and compares the proposed methods with the classical snakes. Finally, section 5
recapitulates and lists some future research possibilities.

2 Active Contours

2.1 Snakes

The classical snake model proposed by Kass et al. [4], defines the active contour as a
parametric curve, r(s) = (x(s), y(s)) with s ∈ [0, 1], that moves in the spatial domain
until the energy functional in Eq. (1) reaches its minimum value.
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E[r] = Eint(r(s)) +Eext(r(s)) (1)

Eint[.] and Eext[.] represent the internal and external energy, respectively correspond-
ing to a regularization and a data fit term. A common internal energy function that
enforces smoothness along the contour is defined as follows:

Eint[r(s)] =
1
2

∫
α
∣∣∣∂r(s)
∂s

∣∣∣2 + β
∣∣∣∂2r(s)
∂ds2

∣∣∣2ds (2)

where α and β are weighting parameters. The first term, also known as tension energy,
prevents the snake to ”stretch” itself too much, thus avoid being attracted to isolated
points. The second term, known as bending energy, prevents the contour of developing
sharp angles. More complex internal energy functions, e.g. incorporating prior shape
knowledge, have also been reported in literature [10,11].

The external energy is derived from the image, so that the snake will be attracted
to features of interest. Given a grey level image I(x, y) , a common external energy is
defined as:

Eext[r] =
∫

−∣∣∇I(r(s)∣∣2ds (3a)

or

Eext[r] =
∫

−
∣∣∣∇(Gσ(x, y) ∗ I(r(s)))∣∣∣2ds (3b)

where ∇ is the gradient operator, Gσ(x, y) a 2D Gaussian kernel with standard devia-
tion σ and where ∗ is the convolution operator.

2.2 Optimization

Eq. (1) can be minimized using gradient descent by treating r(s) as a function of time,
i.e. r(s, t). The partial derivative of r with respect to t is then

dx(s, t)
dt

= α
d2x(s, t)
ds2

− β
d4x(s, t)
ds4

− ∂Eext

∂x
(4a)

dy(s, t)
dt

= α
d2y(s, t)
ds2

− β
d4y(s, t)
ds4

− ∂Eext

∂y
(4b)

The snake stabilizes, i.e. an optimum is found, when the terms dx(s,t)
dt and dy(s,t)

dt van-
ish.

This gradient descent approach requires a good initialization, close to the object
boundary, in order to segment the object. This limitation is caused by the nature of
the partial derivatives of the external energy, which differs from the null vector only
in the proximity of the object’s boundary. As we move away from the boundary these
derivatives approach the null vector, or under the influence of noise point towards false
optima. This results in a contour which will converge to a local optimum. To overcome
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this problem, Xu and Prince [12] proposed to replace the partial derivatives by an ex-
ternal force v(r(s)) = (u(r(s)), v(r(s))). This force is calculated by minimizing the
following energy functional:

EGV F [u, v] =∫∫
μ
(du
dx

2

+
du

dy

2

+
dv

dx

2

+
dv

dy

2)
+ | ∇f |2| v −∇f |2 dxdy (5)

where μ is a nonnegative parameter expressing the degree of smoothness of the force
field v and where f is an edge map, e.g. f(x, y) =| ∇I(x, y) |. The first term of Eq.
(5) keeps the field v smooth, whereas the second term forces the field v to resemble
the original edge map in the neighbourhood of edges. This new external force is called
gradient vector flow (GVF). For details on the optimization of Eq. (5) , we refer to [12].

3 Probabilistic Active Contours

The active contour framework has already been proven useful for a wide range of ap-
plications. However, tuning the weighting parameters of the energy function remains
a challenging task. The optimal parameters are a trade-off, where the regularization
weights have to be set high enough to overcome the influence of clutter and low enough
to accurately detect the true contour of the object. In this section, a new set of active
contours is defined. This framework is based on statistical modelling of object features,
thus omitting the tuning of the weighting parameters.

3.1 Framework

The goal of our active contour framework is to find the contour, r∗(.), which is most
probable to delineate the object of interest. This can be formalized as finding the contour
that maximizes P [O[r(.)]], where O[r(.)] is a predicate returning true if the contour
delineates the object of interest and returns false if it does not. Let’s assume that in
order to find such a probable contour we can use a set of features F (x, y) measured in
the image, e.g. the edge strength at a specific pixel. The optimal contour can be defined
as

r∗(.) = argmax
r(.)

P
[
O[r(.)]

∣∣F (., .)
]

(6)

Using Bayes rule, we can rewrite this as

r∗(.) = argmax
r(.)

P
[
F (., .)

∣∣O[r(.)]
]
P
[
O[r(.)]

]
P
[
F (., .)

] (7)

= argmax
r(.)

(
log

P
(
F (., .)

∣∣O[r(.)]
)

P
(
F (., .)

) + logP
(
O[r(.)]

))
(8)

Equivalent to the snake energy, we can define an internal and external probability, re-

spectively: Pint[r(.)] = logP
(
O[r(.)]

)
and Pext[r(.)] = log

P
(

F (.,.)
∣∣O[r(.)]

)
P
(
F (.,.)

) .
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3.2 Internal Probability

The internal probability is completely independent of the image and can be used to
incorporate the shape possibility of an object of interest. As an example we will use a
simple model proposed in [13], where the likeliness of a contour only depends on the
second derivative of the contour.

Pint[r(.)] = logP
[
O[r(.)]

]
= logP

(∣∣∣∂2r(s)
∂s2

∣∣∣]
=
∫ 1

0

logP
(∣∣∣∂r2(t)

∂t2

∣∣∣)dt (9)

For this last step we assume that the second derivative of r(t) is independent for every

t. This off course assumes that the probability distribution of P
(∣∣∣∂r(t)

∂t2

∣∣∣) is known.

This probability distribution can be learned out of a small training set of ground truth
segments. Note that this is just an example of an internal probability model. If the
objects of interest has a specific shape or if they have more pronounced local features,
e.g. jags, then the internal probability could be formulated using a more complex shape
model, such as the models proposed in [11,10].

3.3 External Probability

The external probability depends on the image features that are used to characterize an
object. As example we will model the objects of interest as an edge map, e.g.F (x, y) =|
∇I(x, y) | . If we consider the gradient to be independent for all (x, y), then the external
probability can be rewritten as:

Pext[r(.)] = log
P
[
F (., .)

∣∣O[r(.)]
]

P
[
F (., .)

]
= log

P
[| ∇I(., .) | ∣∣O[r(.)]

]
P
[| ∇I(., .) |]

=
∫∫
Ω+

log
P
(| ∇I(u,w) | ∣∣O[r(.)]

)
P
(| ∇I(u,w) |) du dw (10)

+
∫∫
Ω−

log
P
(| ∇I(u,w) | ∣∣O[r(.)]

)
P
(| ∇I(u,w) |) du dw (11)

where Ω+ = {(u,w)
∣∣(∃k ∈ [0, 1]

)(
r(k) = (u,w)

)} and Ω− = {(u,w)
∣∣(�k ∈

[0, 1]
)(

r(k) = (u,w)
)}. For the application of plant monitoring, imaging happens in a

strictly controlled environment. Due to this controlled imaging, technicians can avoid
clutter and thus minimize edges not coming from leaf contours.
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Therefore
∫∫
Ω−

log
P
(
|∇I(u,w)|

∣∣O[r(.)]
)

P (|∇I(u,w)|) du dw will be very small. This allows us to ap-

proximate Eq. (11) by discarding this factor, i.e.

Pext[r(.)] =
∫ 1

0

log
P (| ∇I(r(t)) | ∣∣O[r(.)]

)
P (| ∇I(r(t)) |) dt (12)

The probabilities used in Eq. (12) can be interpreted as follows:

– P (| ∇I(r(t)) | ∣∣O[r(.)]
)
: the probability that the gradient of a point lying on the

contour of a real segment is equal to | ∇I(r(s)) | .
– P (| ∇I(r(s)) | ∣∣r(s)): the probability that the gradient of a random point in the

image is equal to | ∇I(r(s)) | whether or not this point is on the contour of a real
object or not.

The probability distribution of the gradient strength of an object’s contour can be esti-
mated from a small training set of images where the objects are manually segmented.
First measure the gradient strength at the contours delineating the ground truth seg-
ments. Then based on these measurements, calculate the probability distribution, e.g.
using a kernel density estimator. The probability distribution of the gradient can be
estimated in a similar way, but instead of measuring only the gradient strength at the
contours, measure it at each pixel in the training data set. Note that although this exam-
ple uses the gradient, this framework could also incorporate other image features such
as ridges, intensity, output of a feature detector, region-based features, etc. [1,14,6].

3.4 Optimization

Substituting the proposed internal in external probabilities in Eq. (8) results in:

r∗(.) = arg max
r(.)

(
Pint

[
r(.)

]
+ Pext

[
r(.)

)]
= arg max

r(.)

∫ 1

0

log
P (| ∇I(r(s)) | ∣∣O[r(.)]

)
P (| ∇I(r(s)) |) + logP

(∣∣∣∂r2(s)
∂s2

∣∣∣)ds
(13)

This optimization can be solved using gradient descent by treating r(s) as a function of
time, i.e. r(s, t). The partial derivative of r with respect to t is then

dx(s, t)
dt

=
d logP

(∣∣∣∂r2(s,t)
∂s2

∣∣∣)
ds

+
∂ log

P
(
|∇I(r(s,t))|

∣∣O[r(.,t)]=true
)

P (|∇I(r(s,t))|)
∂x

(14a)

dy(s, t)
dt

=
d logP

(∣∣∣∂r2(s,t)
∂s2

∣∣∣)
ds

+
∂ log

P
(
|∇I(r(s,t))|

∣∣O[r(.,t)]=true
)

P (|∇I(r(s,t))|)
∂y

(14b)

In order to use gradient descent, the initial r(s) should be in the vicinity of the true
object. To avoid the probabilistic snake of converging to a local, false optimum, the
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same optimization technique as used with classical snakes can be used, i.e. optimization
using gradient vector flow. This can easily be done by imposing the edge map in Eq.

5 to be F (x, y) = log
P
(
|∇I(x,y)|

∣∣O(x,y)=true
)

P (|∇I(x,y)|) , where O(x, y) = true represents the
assumption that (x, y) lies on the contour of a leaf.

4 Results

The proposed method was developed to automate the measurement of average temper-
ature of leaves. Therefore individual leaves should be segmented and tracked over time.
The dataset used to validate the proposed method monitors sugar beet seedling plants
using a thermal camera. The time-lapse sequences were captured at a time resolution of
one image an hour. These thermal images are noisy, low contrast greyscale images. In
these time-lapse sequences the 4 leaves of the sugar beet seedlings all move in different
directions, at different speeds.

Fig.1 shows an example of leaf segmentation using both the classical active contours
as our proposed probabilistic active contours. All active contours are optimized using
the gradient vector flow optimization. The gradient vector flow force was calculated
using 30 iterations and a smoothing factor μ equal to 0.1. In Fig.1 (a) the initialization
of the four different snakes is shown. As can be seen, is this initialization already a
good approximation of the real leaf contours. This proper initialization is however not
sufficient for the classical active contours to converge to the real leaf boundaries. Two
examples of active contour segmentation using different weighting parameters α and β
in Eq. (2) can be seen in Fig.1 (b) and (c). The active contours in Figure (b) were opti-
mized using 1

6 and 1
3 respectively for weighting parameters α and β. These weighting

values are apparently too low to prevent the contours to converge to false local optima.
An example of such an incorrect convergence can be seen at the yellow contour, which
partially converged towards the border of a wrong leaf. The cause of these segmentation
errors is the difference in the gradient strength. Figure (d) shows the absolute value of
the gradient in the image. The bigger leaves display a much stronger gradient which
attract the contours of the elongated smaller leaves. Note this effect near the stalk of
the ”yellow” leaf. In Figure (c), the yellow contour converged correctly by increasing
the contour weighting parameters, i.e. values 5

3 and 2
3 respectively for parameters α and

β. However due to these strong smoothness constraints, the green and blue contours
lose the real leaf borders near the tip of the leaves. Clearly, a general set of weighting
parameter values is difficult to find. Even when such ”optimal” parameter combination
could be found for one image, it is unlikely that it would work for all the images in the
sequence.

We now show results for our proposed method to illustrate that it does not suffer from
the parameter selection, nor does it suffer from the linear influence that edge strength
has. In order to use the proposed method, the internal and external probabilities have to
be modelled first. The prior probabilities used for our method were learned using a sin-
gle ground truth image. This image originated from a training time lapse sequence that
was manually segmented. The distributions were calculated using the kernel density es-
timator with a normal distribution as kernel. In Fig.1 (e) the external probability at each
pixel is shown. The gradient strength at leaf borders varies between leaves, nevertheless
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of segmentation using (probabilistic) active contours. The top row contains in
(a) the initialization used for the (probabilistic) active contours, (b) the segmentation result of
the classical active contours with α = 1

6
, β = 1

3
, (c) the segmentation result of the classical

active contours with α = 1, β = 2
3

. The bottom row: (d) the gradient strength of the image, (e)
the external probability of each pixel in the image, (f) the segmentation result of the proposed
probabilistic active contours.

show the different leaves an equally strong probability at their border. This results in a
better segmentation result as can be seen in Figure (f).

The previous example started from an almost perfect initialization. This was helpful
to illustrate the problems that might occur with classical active contours, but it is rare
that such a good initial contour is available. A more realistic example is shown in Fig.
2. The initialization is shown in Figure (a). In Figure (b) a detailed view of the GVF
force field is shown. The force field points towards both leaves, as can be expected.
The regularization effect of the internal probability however enforces the contour to
converge to the correct leaf as is shown in Figure (c).

To quantitatively validate the proposed method, in 56 images have been manually
segmented, each containing 4 leaves. The initialization of the active contours was based
on these ground truth segments: the segments were dilated using a circular structuring
element of size 5, the borders of these dilated segments were then used as initialization.
As a validation metric the Dice coefficient is used: consider S the resulting segment
from the active contour, i.e. the region enclosed by r(s), and GT the ground truth seg-
ment, then the Dice coefficient between S and GT is defined as:

d(S,GT ) =
2 Area(S ∧GT )

Area(S) + Area(GT )
(15)

HereS∧GT consist of all pixels which both belong to the detected segment as well as to
the ground truth segment. If S and GT are equal, the Dice coefficient is equal to one. The
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(a) (b) (c)

Fig. 2. Examples of segmentation using probabilistic active contours. (a) the initialization used
for the (probabilistic) active contours, (b) the gradient vector flow of the external probability,
i.e. the force used to optimize the external probability of the active contour (c) the segmentation
result of the proposed probabilistic active contours.

(a) frame 1 (b) Frame 7 (c) Frame 15

Fig. 3. Example of tracking using probabilistic active contours

Dice coefficient will approach zero if the regions hardly overlap. In order to compare
our method with the active contours with the most optimal parameter setting, the image
sequence has been segmented with α and β both in the range of 0, 1

30 ,
2
30 ,

3
30 , ..., 1. The

best combination of α and β resulted in an average Dice coefficient of 0.872. Using
these optimal parameters, 24 segments resulted in a Dice coefficient equal to 0, i.e. the
segments where completely lost. The proposed probabilistic active contours resulted in
an average Dice coefficient of 0.929 with no leaves lost.

As a last example our proposed method was applied for leaf tracking in a time lapse
sequence. Since the movement of the leaves does not seem to have a clear motion model,
we cannot incorporate prior knowledge about the motion in our tracking methods such
as in [15,1]. Instead the result of frame t will be used as an initialization for frame t+1,
such as done by Tsechpenakis et al. [16]. As can be seen in n Fig. 3 does the proposed
method cope with the movement and deformation of the leaves. Even frame 15 where
the illumination level diminished due to nightfall, is still segmented correctly. If this
illumination change is too strong, the learned probability distributions will not corre-
spond to the image features. Therefore the segmentation results will be less accurate.
This can already be seen at Figure (c), where the contours delineating the bigger leaves
miss the true border at the center of the plant. Although this error is almost unnoticeable
at this frame, there’s a risk that it becomes more prominent in subsequent frames which
will use these contours as an initialization.
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5 Discussion and Conclusion

In this paper a new variant on the active contour framework is defined. Instead of opti-
mizing an energy function it strives to maximize the probability that the contour is on
the edge of an object. The proposed method does not need to tune a set of weighting
parameters, since it is based on probability theory. This approach however needs a good
estimate of the probability distribution functions that are needed for the calculation of
the internal and external probability. These probability distributions can be learned from
a ground truth training set. This method has been tested for the segmentation and track-
ing of sugar beet seedling leaves in thermal time lapse sequences. In these tests the
proposed technique has been shown to be useful and outperformed classical active con-
tours for the segmentation of multiple objects. To cope with changing light conditions,
the learned probability distributions should be updated in order to follow the illumi-
nation settings of the image. This could be done using methods similar to background
maintenance techniques [17]. We intend to investigate the influence of these methods
in future research.
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Abstract. Extracting the shape of the gallbladder from an ultrasonog-
raphy (USG) image is an important step in software supporting medical
diagnostics, as it allows superfluous information which is immaterial in
the diagnostic process to be eliminated. In this project, several active
contour models were used to segment the shape of the gallbladder, both
for cases free of lesions, and for those showing specific disease units,
namely: lithiasis, polyps, and anatomical changes, such as folds of the
gallbladder. The approximate edge of the gallbladder is found by ap-
plying one of the active contour models like the membrane and motion
equation as well as the gradient vector flow model (GVF-snake). Then,
the fragment of the image located outside the identified gallbladder con-
tour is eliminated from the image. The tests carried out showed that
the average value of the Dice similarity coefficient for the three active
contour models applied reached 81.8%.

1 Introduction

The rapid development of medical information technology contributes a lot to a
significant improvement in the visualisation and diagnostic capabilities of com-
puter systems supporting diagnostic processes in medicine. These systems have
become important tools helping physicians with difficult diagnostic tasks. Medi-
cal image analysis supports not only recognising human internal organs, but also
identifying lesions occurring in them. However, for some important organs like
the gallbladder there are no ready, practical solutions to help physicians in their
work.

The job of extracting the gallbladder structure from USG images is a diffi-
cult process because images have uneven backgrounds, as shown in Fig. 1. In
addition, there is a large variety of gallbladder shapes in USG images due to
individual traits of patients, among other reasons. USG images can also present
such diseases as lithiasis, polyps, changes of the organ shape like folds, turns and
others which hinder extracting the contour.

In general, literature includes many publications about extracting shapes of
organs from USG images. One group of algorithms are these that detect edges
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in the image [1, 3]. Edges are usually located in areas with a high gradient value
on the image, where the values of the grey level clearly change, e.g. from black
to white. Edge algorithms yield inexact results when detecting an edge that is
dotted and unclear. They are also computationally complex and leave noise which
needs to be eliminated later. Another solution is offered by algorithms based
on textures. Richard and Keen [11] have developed an algorithm designed for
detecting edges in USG images using the classification of pixels corresponding to
specific characteristics of textures. Although the algorithm is fully automatic, the
authors note that it is computationally complex. The computational complexity
of methods based on texture analysis is usually equal to O(n4) : W × H × r2

where: W is the image width, H is its height, and r denotes the length of the
ROI side.

Fig. 1. An example US image of the gallbladder

Algorithms based on deformable models like 2D AAM (the active appearance
model) and the active contour (ACM) yield very exact results with relatively low
calculation [12, 13]. They are usually semi-automatic methods where the initial
contour or the average shape model is initiated by the user. AAM models contain
information about the average shape of an object, e.g. the lumbar section of the
spine on a digital x-ray image [12] and data describing the most characteristic
modifications of this shape observed in the training set. The form of the model
may be modified by algorithms which try to fit it to the actual shape while not
allowing unnatural deformations to appear. The active contour is a mathematical
model of a deformable curve located within a two-dimensional environment of
an external field created by the local characteristics of the image. The fitting of
the model to the shape of the object is an iterative process just as in the case
of AAM. Active contour models have been used for US images to determine the
shape of such organs as: the carotid artery [7] and the liver [5]. However, they
have not yet been used to support the USG diagnostics of the gallbladder. In this
publication, the following active contour models have been used to determine the
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approximate area of the gallbladder: the membrane and motion equation as well
as the gradient vector flow model. Research covered 600 cases from different
patients, including USG images without lesions and ones showing lesions like:
lithiasis, polyps and changes in the shape of the organ, namely folds of the
gallbladder. This article is structured as follows. Section 2 presents methods for
detecting the gallbladder contour in USG images. Section 3 describes the method
of extracting the shape of the gallbladder from USG images. Section 4 discusses
the experiments conducted and the research results. The last section contains a
summary and sets out directions of future research.

2 Delineating the Contour in a USG Gallbladder Image

This chapter presents a method of determining the approximate contour of the
gallbladder in USG images. The first step towards determining the approximate
gallbladder contour in USG images is the normalisation transformation, which
makes it possible to improve the contrast of images if the values of image bright-
ness do not cover the entire range of possible values. The histogram normalisation
transformation is an elementary operation in digital image processing [6]. The
next step is to determine the approximate contour of the gallbladder by applying
one of the active contour models like the membrane equation and the motion
equation as well as the gradient vector flow model.

2.1 Active Contour Method

In a 2D image analysis context, an active contour is a flat curve which can
change its shape dynamically and fit itself to image elements such as edges or
borders. The concept of contour shape formation for matching image edges is
explained in Fig. 2. The objective of contour movements is to find the best fit,
in terms of some cost function, as a trade-off between the contour curvature and
the boundary of the image object under analysis. In [8] the potential energy
function of the active contour has been proposed to play the role of this cost
function. The energy function is given by the following integral equation:

ES =
∫ Sm−1

0

[Ei(v(s)) + Ee(v(s)) +Ep(v(s))]ds (1)

where the parametric equation v(s) = (x(s), y(s)) defines the position of the
curve, Ei represents the internal potential energy of the contour, Ee is the en-
ergy which models external constraints imposed onto the contour shape, and
Ep represents component energies derived from image features, e.g. the image
brightness distribution. The notation of the energy function in the discrete for-
mat is more convenient in the computer implementation of deformable models:

ES =
Sm−1∑
s=0

[Ei(v(s)) +Ee(v(s)) +Ep(v(s))] (2)
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Fig. 2. Building a model of the active contour method. Arrows represent the directions
in which nodal points move towards the edge of the analyzed object.

In this case, the energy equation is interpreted as the total of component energies
of all nodal points. The symbol s symbol is the index identifying the nodal point.

2.2 Membrane Model

The membrane model used in this project had been proposed in publications
[8, 10]. The value of energy Ei expressed in relationship (2) is presented by the
following membrane equation:

Ei(v(s)) = τ

∣∣∣∣dv(s)ds

∣∣∣∣2 + ρ

∣∣∣∣d2v(s)
ds2

∣∣∣∣2 (3)

The values τ and ρ influence the elasticity of the model and represent extensi-
bility and flexibility, respectively. In the case of the active contour, the discrete
version of the Ei equation can have the following form:

Ei(v(s)) = τ [v(s+ 1) − v(s)]2 + ρ[v(s+ 1) − 2v(s) + v(s− 1)]2 (4)

The value of energy Ee can be defined as:

Ee = β1
|v(s) − v0|3

3
+ β2ln|v(s) − v0| (5)

The value of the energy given by equation (5) depends only on the distance be-
tween the nodal point and the v0 point. This means that the vector of its gradient
in a given point always has the same direction as the line running through that
point and the field source point. The β1 and β2 parameters make it possible to se-
lect the degree to which the force acts on the nodal points and the distance from
the point v0, at which the minimum of its corresponding energy Ee occurs. The
value of the energy Ep with which the image acts can be presented by the fol-

lowing equation: Ep = −ξ
√
g2

x + g2
y where ξ is a parameter while gx and gy are

gradients of grey levels of the image along the Ox and Oy directions, respectively.
Directional gradients can be calculated using the following equations:

gx(x, y) = g(x+ 1, y) − g(x− 1, y)
gy(x, y) = g(x, y + 1) − g(x, y − 1)

(6)

where g(x, y) is the value of the grey level at the coordinates (x, y) .
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Publication [8] proposes a method for minimizing the active contour functional
using Euler equations and the finite difference method. For functional (2), the
Euler equations for the coordinates along, respectively, the Ox andOy, directions
can be written in the matrix form:

Ax + fx(x, y) = 0
Ay + fy(x, y) = 0

(7)

Matrix A is a pentadiagonal matrix mapping the elasticity of the model, vectors
of functions fx and fy correspond to components Ep and Ee of equation (2),
while the x and y vectors determine the coordinates of individual nodal points.
Equations (7) can be solved iteratively. To obtain the appropriate equations
in the iterative form [8], the left sides of these equations are equated with the
negated derivatives of vectors x and y in relation to time. Then the time dis-
cretization is introduced and the locations of nodes in iteration t are determined
based on the values calculated in the previous iteration. The iteration formulas
obtained have the following form:

xt = (A+ η1)−1(xt−1 − fx(xt−1, yt−1))

yt = (A+ η1)−1(yt−1 − fy(xt−1, yt−1))
(8)

where η is the value of the iteration step. The problem in equations (8) is that
reversing the pentadiagonal matrix yields a matrix in which all elements are not
zero. The number of addition and multiplication operations executed in a single
iteration is therefore high and grows proportionally to the square of the matrix
dimension, i.e. proportionally to the squared number of nodes in the model.

2.3 Motion Equation Model

The next model used in this project and proposed in article [9] is the applica-
tion of a specific physical interpretation of the deformable model. This model is
treated here as a flexible object of a specific mass moving within an environment
of a defined viscosity. Energy ES is minimized by changing it into the kinetic
energy of moving masses of nodal points, subsequently lost as a result of moving
within a viscous environment. To model the shifts of individual nodal points, a
motion equation of the following form is used:

m
δ2v(s, t)
δt2

+ l
δv(s, t)
δt

= F (s, t) (9)

F (s) = −∇ES(s) (10)

where v(s, t) is the vector of the nodal point coordinates, m is the mass assigned
to every node of the graph, l is the viscosity coefficient of the environment,
and F is the vector representing all forces acting on the nodes of the structure.
The force F for a single nodal point can be determined as the negated value of
the gradient of energy ES calculated in the image (10). The use of the motion
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equation (9) to describe contour dynamics makes it possible to quickly determine
the contour balance state and does not require determining the total minimum
value of energy ES shown by equation (2). In the computer implementation,
equation (9) is presented in the discrete form of:

m[v(s, t) − 2v(s, t− 1) + v(s, t− 2)] + l[v(s, t) − v(s, t− 1)] = F (s, t− 1) (11)

After determining the location of the nodal point at the moment t, we obtain
a formula allowing the location of nodal point at the time t to be calculated
iteratively based on the values of forces F and their location in the previous two
iterations. We obtain:

v(s, t) =
F (s, t− 1) +m(2v(s, t− 1) − v(s, t− 2)) + lv(s, t− 1)

m+ l
(12)

The numerical convergence and stability of equation (12) depends on the values
of parametersm and l, as well as on the way in which force F has been defined. In
the case of deformable models, the value of this force depends on many factors,
including the features of the analyzed image. The energy minimization method
coupled with the motion equation makes it possible to subsequently, in individual
iterations, change the location of individual nodal points or of all points at the
same time. In the first case, the order of node location modification can be
random or defined. If the location of all nodes is modified in the same iteration,
equation (12) can be written in the matrix form. The use of the same notation
as for equations (8) generates equations in the following form:

xt =
Axt−1 + fx(xt−1, yt−1) +m(2xt−1 − xt−2) + lxt−1

m+ l

yt =
Ayt−1 + fy(xt−1, yt−1) +m(2yt−1 − yt−2) + lyt−1

m+ l

(13)

The use of equations (13) requires fewer addition and multiplication operations
than of equations (8). In the case of the active contour, matrix A is a pentadiag-
onal one. For other models, it is a sparse matrix in which the number of elements
per row is constant. Consequently, the number of operations increases linearly
along with the increasing number of nodal points, and not with the square of
their number. This is why this method is more convenient for models with a
large number of nodal points.

2.4 Gradient Vector Flow Snake

The gradient vector flow snake (GVFs) used in this project had been proposed
in publications [14, 15]. The GVFs is an active contour model that minimises
energy function (2) by satisfying the Euler equation

αv′′(s, t) − βv′′′′(s, t) + �v = 0 (14)
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This can be viewed as a force balance equation

Fint + F
(g)
ext = 0 (15)

where Fint = αv′′(s, t)−βv′′′′(s, t) and F (g)
ext = �v. The internal force Fint discour-

ages snake to stretching and bending. The α and β prameters control snake’s ten-
sion and ridgity, respectively, and v′(s, t) and v′′′′(s, t) are the 2nd and 4th order
partial derivatives of v(s, t) with respect to paramter s. The force F (g)

ext = �v(x, y)
is called the gradient vector flow (GVF) field. The gradient vector flow field is
defined as the vector of the field �v(x, y) = [u(x, y), ū(x, y)] which minimises the
energy functional

ε =
∫ ∫

μ(u2
x + u2

y + ū2
x + ū2

y) + |∇g|2|�v −∇g|2dxdy (16)

whereas ux, uy, ūx and ūy are partial derivatives of the appropriate functions,
while μ is the regularization parameter. The μ parameter should be set depending
on the level of noise in the image (the more noisy the image the higher should
the μ be raised). The ∇g parameter is the image gradient. In particular, it
can be said that if ∇g is low, the energy equation is dominated by the sum of
squared partial derivatives of the vector field, which yields an only slightly varied
field. On the other hand, if ∇g is high, the second expression found in the sum
dominates the integral equation, which is then minimised by setting the value
of �v = ∇g. This produces the desired effect of a gradual change of the field in
uniform areas (where the g(x, y) value is constant). The GVF field functional
can be determined using the following Euler equations:

μ∇2u− (u − gx)(g2
x + g2

y) = 0

μ∇2ū− (ū− gy)(g2
x + g2

y) = 0
(17)

where ∇2 is the Laplacian operator. The equation (17) can be presented in their
discreet form:

ut(x, y, t) = μ∇2u(x, y, t) − b(x, y)u(x, y, t) + c1(x, y)

ūt(x, y, t) = μ∇2ū(x, y, t) − b(x, y)ū(x, y, t) + c2(x, y)
(18)

where

b(x, y) = gx(x, y)2 + gy(x, y)2

c1(x, y) = b(x, y)gx(x, y)
c2(x, y) = b(x, y)gy(x, y)

The coefficients b(x, y), c1(x, y) and c2(x, y) may be calculated once and fixed
for entire iterative process. To define the entire iterative solution, it was assumed
that indices i, j and n refer, respectively, to variables x, y, t. Let the distance
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between pixels along the Ox and Oy axes be, respectively, Δx and Δy, and
the time step for each iteration be expressed as Δt. Then, the required partial
derivatives can be approximated [14]. If these approximations are substituted in
equations (18), this produces the following iterative GVF solution:

un+1
i,j = (1 − bi,jΔt)un

i,j + r(un
i+1,j + un

i,j+1 + un
i−1,j+

+ un
i,j−1 − 4un

i,j) + c1i,jΔt

ūn+1
i,j = (1 − bi,jΔt)ūn

i,j + r(ūn
i+1,j + ūn

i,j+1 + ūn
i−1,j+

+ ūn
i,j−1 − 4ūn

i,j) + c1i,jΔt

(19)

where
r =

μΔt

ΔxΔy
(20)

Assuming that coefficients b, c1 and c2 are bounded, then equation (19) is stable
if the Courant–Friedrichs–Lewy [2] step size of r ≤ 1/4 is preserved. Having Δx,
Δy and μ values fixed and taking definition r from (20), we can estimate the re-
striction of the Δt time-step which must be kept to ensure the GVF convergence:

Δt ≤ ΔxΔy

4μ
(21)

The convergence expressed in (21) can be determined faster for coarse images,
e.g. when Δx and Δy are high. If μ is high and the GVF field is expected to be
smooth, the convergence in (19) will be slow (as the Δt must be low).

Figure 3 (b) shows an example with GVF external forces obtained from the
USG image presented in figure 3(a).

Fig. 3. Finding GVF external forces. (a) Sample USG image of the gallbladder. (b)
GVF external forces, zoom in of the area containing the gallbladder shape.
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Fig. 4. The gallbladder segmentation in USG images using active contour methods.
The dashed line shows manually initiated contour inside the gallbladder shape. (a), (b)
An image with visible cholecystolithiasis. (c), (d) A gallbladder fold.

3 Gallbladder Segmentation in a US Image

The proposed method for extracting the gallbladder shape in USG images makes
use of the calculated values of coordinates identifying the gallbladder contour
determined using one of the active contour models presented in sections 2.2–
2.4. The contour is initiated manually inside the gallbladder shape. In order to
extract the organ from the image, we have defined two areas identifying image
fragments: GB - the area inside the gallbladder contour and BG - the area
constituting the image background. Under these assumptions, the segmentation
is executed in such a way that in the USG image showing the gallbladder and
defined by the mapping g : M2 → Z, its fragment is replaced with the BG area
in which all pixels are set to black in colour. We obtain:

g′ =
{
g if (x, y) ∈ GB
0 (black) if (x, y) ∈ BG

(22)
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Figures 4(a) and 4(c) show images with the gallbladder contour marked. Figures
4(b) and 4(d) contain the US images with the segmented shape of the gallbladder.
Figures 4(a) and 4(b) show images with with lithiasis, while figures 4(c) and 4(d)
a fold of the gallbladder.

Table 1. Test results for three measurements based on 600 USG images of the gallblad-
der, where the following active contour models were applied: (ME) membrane equation
(MO) motion equation (GVFs) gradient vector flow snake. Mean Test Results – coming
from the three measurements.

Patient No. of images ME % MO % GVFs %

No lesions 300 85.2% 88.2% 89.1%

Lithiasis 110 77.3% 76.5% 77.8%

Polyp 90 79.4% 79% 80.3%

Fold/Turn 100 82.5% 83% 84.2%

Total 600 81.1% 81.6% 82.8%

Measurement 1

No lesions 300 84% 85.2% 86%

Lithiasis 110 75.1% 75.6% 76.5%

Polyp 90 79.7% 79% 80.3%

Fold/Turn 100 81.2% 82% 83.2%

Total 600 80% 80.4% 81.5%

Measurement 2

No lesions 300 87.3% 88.1% 89%

Lithiasis 110 79.2% 78.3% 80%

Polyp 90 81.2% 81% 81.5%

Fold/Turn 100 83.7% 84.2% 85.3%

Total 600 82.8% 82.9% 83.9%

Measurement 3

No lesions 300 85.5% 87.1% 88%

Lithiasis 110 77.2% 76.8% 78.1%

Polyp 90 80.1% 79.6% 80.7%

Fold/Turn 100 82.4% 83% 84.2%

Total 600 81.3% 81.6% 82.7%

Mean Test Results

4 Completed Experiments and Selected Research Results

In order to estimate the precision of models used to determine the approximate
contour of the gallbladder, the Dice’s similarity coefficient was used. Images
from the Department of Image Diagnostics of the Regional Specialist Hospital
in Gdańsk, Poland, were used in the research on USG image analysis. Dice’s
similarity coefficient is a value making it possible to compare the percentage
similarity of sets. These sets can be defined as areas with defined pixel numbers in
the analysed digital image. It was assumed that |Lvaccon| is the number of pixels
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found in the area delineated using the active contour method, while |Lvmanual| is
the number of pixels in the area isolated by the radiologist. The number of pixels
found in the common area is |Lvaccon ∩Lvmanual|. Dice’s similarity coefficient is
defined as follows:

s =
2 · |Lvaccon ∩ Lvmanual|
|Lvaccon| + |Lvmanual| × 100% (23)

Table 1 shows the results of three experiments based on measurements taken by
three different physicians specialising in radiology. Table 1 shows experimental
results for three active contour models used: the membrane equation (ME) and
the motion equation (MO), the gradient vector flow snake (GVFs). Results of
experiments for particular disease units are listed in the order of the number of
cases. Data presented in Table 1 indicates that the results obtained using the
three active contour models are comparable. Table 1 also shows the mean values
based on all measurements taken by three different physicians. The mean value
of Dice’s similarity coefficient based on Tab. 1 for the 600 tested USG images of
the gallbladder amounted to: 81.3% for the membrane equation (ME) and 81.6%
for the motion model (MO), 82.7% for the gradient vector flow model (GVFs).
The best (but not by far) results were produced using the gradient vector flow
model. The mean Dice’s coefficient for the three models used equals 81.8%.

5 Summary and Further Research Directions

This article presents a method of extracting the shape of the gallbladder from US
images developed for a computer system supporting the early diagnostics of gall-
bladder lesions. First, the histogram normalisation transformation was executed
allowing the contrast of USG images to be improved. The approximate edge of
the gallbladder is determined by applying one of the active contour models like
the membrane equation and the motion equation as well as the gradient vector
flow model. The contour is initiated manually inside the gallbladder shape. The
fragment of the image located outside the gallbladder contour is eliminated from
the image. The active contour method with the applied models yielded precise
results for both healthy organs and those showing specific disease units, namely:
lithiasis, polyps, folds and turns of the gallbladder. For the 600 USG images,
the mean Dice’s similarity coefficient for the three active contour models applied
was equal to 81.8%. Further research will be aimed at reducing the error for im-
ages showing such lesions as lithiasis and polyps, if they are located close to the
gallbladder edge. Currently, research is also conducted to identify lesions using
the AdaBoost (Adaptive Boosting) and SVM (Support Vector Machines) meth-
ods in processed USG images of the gallbladder after the uneven background of
the image is eliminated using the method presented here. In both of the above
machine learning methods which are now at the experimental stage, if the im-
age background is uniform the process of learning and classyfing features (i.e.
lesions) are more efficient.
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Abstract. We present a multi-view alpha matting method that requires
no user input and is able to deal with any arbitrary scene geometry
through the use of depth maps. The algorithm uses multiple observa-
tions of the same point to construct constraints on the true foreground
color and estimate its transparency. A novel free viewpoint rendering
pipeline is also presented that takes advantage of the generated alpha
maps to improve the quality of synthesized views over state-of-the-art
methods. The results show a clear improvement on image quality by im-
plicitly correcting depth map errors, providing more natural boundaries
on transparent regions, and removing artifacts.

1 Introduction

Transparency in a scene is often desirable and usually unavoidable. It can be the
result of hair, semi-transparent materials, motion blur, or even aliasing. It gives
the objects in the scene a realistic look as boundaries in real scenes are usually
not pixel sharp.

A very popular application that suffers greatly from transparency artifacts
is free viewpoint rendering. The goal is to render new views by interpolating
from nearby cameras [1]. New view synthesis is particularly useful for 3D TV.
Mixed boundary pixels produce ghosting artifacts in the synthesized view that
significantly reduce its quality.

This paper deals with estimating the transparency of objects in an image,
also known as an alpha map, using multiple views of the scene. It is a chal-
lenging problem since the transparency can have different causes and the object
boundaries are often complex (e.g. hair). We also address the application of the
obtained alpha maps to the free viewpoint rendering problem to improve the
quality of novel views.

1.1 Alpha Matting Background

The literature contains many single view alpha matte estimation algorithms,
including a comprehensive online benchmark [2]. Due to the under constrained
nature of the problem they all require user input to identify some pure foreground
and background regions to be used as examples. Some accept a sparse labeling
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in the form of strokes, while others require dense labeling in the form of a tri-
map. This is a considerable limitation since the need for user input limits the
applicability of the algorithms, particularly for video sequences.

Single view alpha matting algorithms can be divided into three categories ac-
cording to the assumptions made for an image: color sampling, alpha propaga-
tion, and optimization methods. Color sampling methods (e.g. shared sampling
[3]) take samples from nearby labeled regions. They assume color smoothness
to interpolate the alpha values between the labeled regions, usually requiring
a dense tri-map. Alpha propagation methods assume that the alpha values are
correlated to some local image statistics and use this to interpolate the alpha
values (e.g. Closed form matting [4]). These methods often allow sparse user
input. Optimization methods combine the previous two approaches to exploit
their strengths (e.g. Robust matting [5]). Although very impressive results have
been shown for single view alpha matting [2] it is expected that a multi-view ap-
proach would improve the existing methods since more information is available
and several observations of the same point can be used.

Zitnick et al. presented a free viewpoint rendering system that estimates the
alpha matte along depth discontinuities [6]. It uses a variant of Bayesian matting
[7] to estimate colors and opacities for mixed boundary pixels. Although the
stereo and rendering is multi-view, the matting is performed using a single view.
Moreover, they assume a fixed width boundary which limits the applicability in
scenes with large semi-transparent regions.

Hasinoff et al. [8] propose a method to estimate transparency at object bound-
aries using boundary curves in 3D space. They use a multi-view approach but
limit theirselves to mixed boundary pixel transparency. Intrinsic material trans-
parency is not addressed and objects are assumed to be opaque. Joshi et al. [9]
suggest a multi-view variance measure to estimate transparency. The approach
computes a tri-map and propagates color statistics. This imposes limitations on
the color statistics of the scene. Moreover, it does not use all available informa-
tion by using only the variance of the samples.

Wexler et al. [10] present a multi-view environment matting algorithm to
estimate the light transfer function of a foreground object (e.g. a magnifying
glass). They include alpha estimation in their algorithm but only handle planar
backgrounds in their paper. Moreover, they assume an alpha value independent
of viewpoint, which limits the algorithm to planar foregrounds as well. The most
closely related work is that of Wexler et al. in [11]. They developed a multi-view
approach to alpha matte estimation under a Bayesian framework. They show
very good results but limit their model to planar layers. Moreover, their model
has an alpha value independent of view, which is not suitable for mixed boundary
pixels.

The goal of our matting stage is to generate a layered depth image [12] from
each input camera. However, we focus on the construction of this LDI from real
world images while estimating transparency. Even modern LDI approaches like
[13] suffer from artifacts due to mixed pixel boundaries and transparency.
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1.2 Free Viewpoint Rendering Background

A review of the latest free viewpoint rendering methods [1] shows that one of
the dominant approaches is to calculate a depth map for each image and then
warp the pixel colors to the new view using camera calibration information. The
problem with this approach is that traditional depth maps have only a single
depth per pixel and do not take transparency into account. This results in ghost-
ing artifacts. Recent methods like Müller et al. [14] attempt to discard mixed
pixels to remove the artifacts. Yet, this approach discards information, suffers
from unnaturally sharp boundaries, and still produces artifacts for complicated
semi-transparent regions.

Our approach also shares a strong similarity with Fitzgibbon et al. [15]. We
use a similar scanning of the optical rays to find matching colors amongst the
images. Our approach is novel in that it uses linear constraints on RGB space to
estimate the true color of semi-transparent points while their approach ignores
transparency issues.

2 Modeling Transparency

When the transparency and color of an object are unknown the observed color
of a pixel can be the result of different situations. As mentioned in [10], if the
background is known to be white and the pixel is a 50% combination of red and
white, this can be due to any of the following:

1. Object is pink.
2. Object is red with a transparency of 50%.
3. Object is red but covers only 50% of the pixel (mixed boundary pixel).

Both transparency types are view dependent. The former because light rays will
traverse different paths through the object, and the latter because a 3D point
observed from a different view might not be a 2D boundary pixel any more.

Our model for a semi-transparent pixel p in image i is described by the fol-
lowing matting equation:

Mi = αiF + (1 − αi)Bi (1)

The observed color Mi is a mixture of the foreground and background colors.
It assumes a Lambertian surface, which results in a single foreground color F
shared by all images. Yet, the background color Bi and alpha value αi are view
dependent. Because most of the work is done individually for each pixel, the
index p is omitted.

3 Multi-view Alpha Estimation

Our algorithm requires the camera projection matrix and depth map for each
input image. Using this information all pixels can be back-projected into 3D
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Algorithm 1. Multi-view alpha algorithm
1: for all i ∈ Images do � Sample collection
2: for all p ∈ Image(i) do
3: object clusteri(p) ← FindCluster (p, depthmin)
4: depthobj ← depth(object cluster)

5: background clusteri(p) ← FindCluster
(
p, depthobj + εf

)
6: Bi(p) ← ref color(background cluster)
7: end for
8: end for
9: for all i ∈ Images do

10: for all p ∈ Image(i) do
11: sample set ← ∅ � Sample assembly
12: for all pixel ∈ object clusteri(p) do
13: j ← pixel.image
14: sample.M ← pixel.color
15: sample.B ← Bj(pixel)
16: If sample is stable Then add to sample set
17: end for
18: Project samples to main constraint � Alpha estimation
19: Fi(p) ← farthest color along RGB ray

20: α∗
i (p) ← ‖Mi(p)−Bi(p)‖

‖Fi(p)−Bi(p)‖
21: end for
22: end for
23: Minimize energy using graphcut � Alpha smoothing

world space and several observations of the same scene point can be grouped
together. The main objective of the algorithm is to estimate Bi, F , and αi for
each pixel. Because we can obtain several samples for a scene point and its
background, alpha estimation can be done pixel-wise and no tri-map or user
input is needed.

Our method is summarized in Algorithm 1. It can be divided into four stages.
First, color samples are collected for each pixel and its background. Second, the
samples are assembled together into geometric constraints. Then, using these
constraints the true color and alpha value are estimated. These first three stages
treat each pixel individually. The final stage uses a graph cut minimization to
enforce spatial smoothness in the alpha map. Each stage is described in detail
in the following sections.

3.1 Sample Collection

Instead of using neighbor pixels from the same image, as is common in most
alpha matting algorithms, our approach takes advantage of the fact that multi-
view systems observe a point in the scene several times from different angles.
Because of parallax the point is observed each time with a different background.
The background itself can often be directly observed in a different image, as
illustrated in Figure 1.

The colors observed for the same point are grouped together in clusters. Each
cluster can have as many samples as there are cameras in the system. The algo-
rithm scans the pixel’s optical ray to find the first two distinct clusters in space.
The first is denoted the foreground object cluster and contains the observed col-
ors from all the views where the corresponding space point is visible. The second
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Algorithm 2. Find color cluster algorithm
1: function FindCluster(pixel, depth0)
2: c∗ ← ∅ � Best cluster found
3: for d = depth0...depthmax do
4: cd ← ∅ � Cluster at depth d
5: pref (x, y, z) ← back-project pixel using d
6: for j ∈ V iews do
7: pj(u, v, w) ← project pref to view j
8: wmap ← nearest neighbor(depthj , u, v)
9: if |w − wmap| ≤ εw then

10: rgb ← bilinear interpolation(j, u, v)
11: Add rgb to cd

12: end if
13: end for
14: if score(cd) > score(c∗) then
15: c∗ ← cd � New best cluster
16: end if
17: if d − depth(c∗) ≥ εf then
18: break � No cluster found for a while, end search
19: end if
20: end for
21: return c∗

22: end function

view 2 view 3view 1

F

B1

B3
B2

(a) (b) Original (c) Background

Fig. 1. Background recovery. (a) The background color for views 2 and 3 is directly
observed by view 1. Image taken from [8]. (b) and (c) show an example of the recovered
background.

is the background cluster and contains observed colors for the background. The
method of collecting samples is detailed in Algorithm 2.

Each discretized depth d along the pixel’s optical ray is projected onto the
epipolar line of the other images. If the expected depth and the pixel’s depth
are similar, the pixel is added to a cluster at this position d. Due to noise and
necessary tolerances, this procedure will obtain many similar clusters at nearby
depths. These are essentially the same cluster at slightly different displacements.
To select the best cluster for a point in space the candidate clusters are ranked
according to the following formula:

score = median
Mk∈cluster

(‖Mref −Mk‖) (2)

where the median is over all the samples in the cluster. The choice of reference
color Mref differs for the object and background clusters. For the object cluster it
is the pixel color of the current view Mi. This creates a bias towards higher alpha
values as it tries to find similar colors, but maximizes the chances of finding a
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Fig. 2. Projection of samples onto main constraint. According to the final result in (c),
P3 is selected as Fi(p) and Mi is assigned an alpha of 42%.

match with the same foreground color. For the background cluster, the sample
Mj is selected whose camera j is closest to i because camera calibration and
depth map noise have a smaller impact on nearby cameras.

The object cluster has the observed colors for this point {Mj|j ∈ [views
where point is not occluded]}. The background cluster is discarded and only the
reference color is stored for the following stages. This reference color becomes
the background color for the current pixel Bi. If only one cluster is found then
no estimation is performed for this pixel (i.e. Fi(p) = Bi(p) = Mi(p), α∗

i (p) = 0).

3.2 Sample Assembly

From (1) it can be seen that Mi lies on the line segment between Bi and F in
RGB space. Because we do not know F we can use each sample to create a ray in
RGB space that starts from Bi and passes through Mi. One ray is constructed
for each entry in the object cluster. For an entry from image j, the background
is obtained from the corresponding Bj .

3.3 Alpha Estimation

Since Mi is directly observable and Bi was estimated in the previous stage,
the remaining task is to estimate F in Eq. (1). However, in order to facilitate
new view synthesis, we would like to have an image-based representation for the
color of the foreground objects (i.e. pre-rendered per source view) and hence we
estimate the foreground layers Fi(p) in a view dependant manner. To this effect,
using the assembled rays in RGB space one can derive two types of constraints,
as shown in Figure 2 and detailed in this section.

The first type of constraint is derived from the fact that all pixels belonging to
the same foreground object cluster should share the same F , thus all rays should
intersect at F (Fig. 2a). This is the underlying idea used for triangulation in
standard blue screen matting [16]. However, rays originating from backgrounds
with very similar color have very unstable intersection points, demonstrated in
Figure 2b. In the case where the backgrounds are exactly the same color the
rays are collinear.
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The second type of constraint captures the idea thatMi lies in the line segment
BiF . This means that F must lie on the

−−−→
BiMi ray at least as far asMi. This gives

an upper bound to the observed alpha values. This is specially useful for samples
which are always observed with similar background colors and their intersection
is therefore unreliable. If at least one image sees the true color of the point (i.e.
Mi = F ), which is a common case for mixed pixels at object boundaries, then
we can still recover the true alpha value even if the background is non-textured.

To estimate Fi(p) for a pixel p in image i, we first consider the ray defined by
Bi and Mi to be the main ray. Each Mj from the foreground object cluster of
the pixel p is then projected onto this ray in one of two ways, depending on the
intersection angle between the rays:

Pj =

{(
(Mj −Bi) · d̂i

)
d̂i +Bi if ∠ij ≤ ε∠

Ray intersection else
(3)

where d̂i is the ray direction from Bi to Mi.
If the angle between rays is lower than the threshold, the intersection is con-

sidered unreliable. Because this is caused by similar backgrounds, Mj can be
directly projected onto the main ray (Fig. 2b). If the intersection angle is above
the threshold, the point on

−−−→
BiMi closest to

−−−→
BjMj is used as the sample’s pro-

jection Pj (Fig. 2a).
Once all samples have been projected onto the main ray (Fig. 2c), Fi(p) is

taken as the farthest P along the ray. The alpha value is then calculated as the
distance of Mi to Bi relative to Fi(p):

α∗
i (p) =

‖Mi(p) −Bi(p)‖
‖Fi(p) −Bi(p)‖ (4)

3.4 Alpha Smoothing

The previous stage estimates the foreground and background colors as well as
the alpha value for each pixel. However, this is done independently for each pixel
and is noisy. We can improve this estimate by taking spatial information into
account. Since the alpha gradient directly contributes to the total gradient, we
assume that regions with low color variation imply low alpha variation. This is
exploited by applying a graph cut algorithm [17] to the obtained alpha values.
The continuous interval [0, 1] of alpha values is discretized into 100 labels with
constant separation. The energy to be minimized is of the standard form:

E =
∑
p∈I

Ed(p) + λ
∑

p,q∈I

Es(p, q) (5)

where λ controls the weight of the spatial term relative to the data term.
The data term controls how much the new alpha deviates from the previous

estimation. A truncated L1 norm is used as a robust cost measure:

Ed(p) = min (|α(p) − α∗(p)| , εα) (6)
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The spatial term penalizes variations in alpha value where the image gradient is
low. However, if the depth of the recovered clusters differs, the spatial term is
set to zero because the pixels belong to different objects.

Es(p, q) =

{
min(|α(p)−α(q)|,εα)

|∇M(p,q)|+1 if |Zi − Zj| < εz

0 else
(7)

3.5 Noise Considerations

There are three sources of noise for the algorithm: camera calibration parameters,
depth map, and RGB noise. Each of these was analyzed to determine their impact
in the estimation.

Camera calibration errors lead to an inaccurate optical ray for each pixel. The
effect is directly visible in the plot of the epipolar line. We tested this effect in
our datasets [6] using both the provided camera calibration and estimating the
parameters using off-the-shelf structure from motion techniques. In both cases
the epipolar line’s inaccuracy was visibly less than half a pixel. We therefore
assume sufficiently accurate calibration parameters.

The depth map on the other hand, presents considerable errors. Even though
the quality of the depth map can be improved by using better stereo methods,
it will still likely contain inaccuracies. This is taken into account in the sample
collection stage. The clustering of the backprojected points and ranking of the
clusters provides robustness against some depth map errors.

RGB noise has a stronger impact on pixels where the observed and background
colors are similar. This can be measured by the length of each sample constraint
(i.e. ‖Mj − Bj‖). Constraints with a small length have an unstable direction
and its projection is unreliable. Therefore, if the length is smaller than a given
threshold the constraint is ignored. If the main constraint is to be ignored then
no alpha value is calculated for the pixel (i.e. Fi(p) = Mi(p), α∗

i (p) = 1).

4 Free Viewpoint Rendering

As an application for the obtained alpha maps, a free viewpoint rendering sys-
tem was developed that handles transparent layers appropriately. The algorithm
takes four layers as input: left background, left foreground, right background, and
right foreground. Each layer has a depth map, an RGB texture, and an alpha
map. The layer components are obtained directly from the output of the alpha
estimation output for the left and right views. Areas where no alpha estimation
could be performed have an empty foreground, with the original image color and
depth used for the background layer. Left and right layers are merged to produce
the final background color Bn, foreground color Fn, and alpha value αn.

Each layer is first warped to the novel viewpoint independently. Small cracks
that appear due to the forward warping are filled using the same crack-filling
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algorithm presented in [14]. Cracks are found by looking for depth values that
are significantly larger than both neighboring values in horizontal, vertical, or
diagonal directions. The median color of neighboring pixels is then used to fill
in the cracks. Warped background layers are then combined pixel by pixel using
a soft z threshold:

Bn =

⎧⎪⎨⎪⎩
dlBl+drBr

dl+dr
if
∣∣Zb

l − Zb
r

∣∣ < εz

Bl else if Zb
l < Zb

r

Br else
(8)

where dl and dr are the distances from the novel view’s camera center to the left
and right views’ camera centers respectively. Merging of the foreground layers
must take transparency into account. First the left and right foreground colors
are combined. If both foreground pixels are close to each other, the final fore-
ground color is interpolated between the two. If they are far apart, it is assumed
that they represent different transparent layers and are thus combined using (1):

Fn =

⎧⎪⎪⎨⎪⎪⎩
dlFl+drFr

dl+dr
if
∣∣∣Zf

l − Zf
r

∣∣∣ < εz

αlFl + (1 − αl)Fr else if Zf
l < Zf

r

αrFr + (1 − αr)Fl else

(9)

αn =

{
max (αl, αr) if

∣∣∣Zf
l − Zf

r

∣∣∣ < εz

1 − (1 − αl)(1 − αr) else
(10)

Finally, (1) is applied to produce the final output color using Fn, αn, and Bn.
Because the foreground layers already have an alpha channel no extra processing
is necessary for the transparent regions or the boundary mixed pixels.

5 Results

5.1 Alpha Maps

Figure 3 shows the obtained alpha maps for the well known ballet and break-
dancers datasets [6]. A close up of two relevant regions is presented in Figure
4. The dancers in the scene have a mixed pixel boundary several pixels wide,
as seen in 4. The alpha values for these mixed pixels were succesfully recovered
without any user input. Hair presents a challenge for alpha estimation and even
though the semi-transparent region of Figure 4 has an uneven width, its alpha
matte was also extracted properly. The central region of the breakdancer has no
alpha values because the background could not be observed in any of the images.
Yet the mixed pixel boundary was also detected.

Figure 4 shows how the algorithm labels as semi-transparent the area where
the yellow sleeve and black vest meet. These pixels are indeed mixed pixels as
can be observed by the mixture of yellow and black on the border. However,
when the algorithm classifies them as transparent, it incorrectly assumes that
they are mixed with the wall behind.
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Fig. 3. Extracted alpha maps for the characters in the scenes

Fig. 4. Close up of semi-transparent regions. Left: Boundary pixels. Middle: Semi-
transparent hair. Right: Incorrect estimation.

5.2 Free Viewpoint Rendering

A novel view generated using our method is presented in Figure 5. Müller et
al.’s state-of-the-art method presented in [14] was implemented and used as a
comparison. At a broad scale, both algorithms produce novel views of similar
quality. Close ups of the most relevant differences are presented in Figure 6.

On Figure 6a it can be observed how an error in the depth map causes the
thumb to be warped incorrectly by Müller et al.’s method. The alpha matte
estimation stage of our algorithm succesfully recovers from this error in the
depth map and assigns the thumb to the proper place.

A semi-transparent region made of hair is presented on Figure 6b. Müller et
al.’s method produces an unnaturally sharp and even boundary for the hair. The
alpha map obtained with our method allows a more natural look of the hair.

Figure 6c shows an artifact present in Müller et al.’s approach due to the
wall being incorrectly assigned to the foreground, similar to a ghosting artifact.
Our method does not suffer from this type of artifacts. However, our method
presents more noise on the border. The noise suggests that the alpha smooth-
ing stage could be improved. The current algorithm enforces spatial smooth-
ness only on the alpha map and not in the foreground or background color
maps.

Finally, Figure 6d shows that the näıve hole filling approach used in [14] is
not suited to big holes in the background. Because our method uses the entire
dataset for the alpha estimation stage, the background can be recovered from
other images and no hole filling is necessary.
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(a) Müller et al.’s method [14] (b) Our method using alpha matte

Fig. 5. Comparison of synthesized views from a novel viewpoint

(a) Correction of depth innacuracies (b) Improved transparency handling

(c) Removal of line artifact on left
border

(d) Näıve hole filling vs. recovered
background

Fig. 6. Comparison of synthesized views from a novel viewpoint. Left column: Müller
et al.’s method. Right column: our proposed method.

6 Conclusions

We presented a multi-view alpha estimation algorithm that requires no user in-
teraction. It handles arbitrary scene geometry using pre-computed depth maps.
It automatically detects semi-transparent pixels in the images. The algorithm
handles mixed boundary pixels and hair regions correctly estimating their trans-
parency and true colors.

Using the results of the alpha estimation algorithm, a novel free viewpoint
rendering pipeline was developed and compared to the state of the art. The
alpha estimation stage allowed the free viewpoint rendering algorithm to correct
some depth map errors. The obtained results are of high quality and removed
several artifacts found in the state-of-the-art methods. Future research can focus
on better use of spatial information during alpha estimation and in simultaneous
depth and transparency estimation.
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Abstract. This paper presents an approach to intrinsic and extrinsic
camera parameter calibration from a series of photographs or from video.
For the reliable and accurate estimation of camera parameters it is com-
mon to use specially designed calibration patterns. However, using a
single pattern, a globally consistent calibration is only possible from po-
sitions and viewing directions from where this single pattern is visible.
To overcome this problem, the presented approach uses multiple coded
patterns that can be distributed over a large area. A connection graph
representing visible patterns in multiple views is generated, which is used
to estimate globally consistent camera parameters for the complete scene.
The approach is evaluated on synthetic and real-world ground truth ex-
amples. Furthermore, the approach is applied to calibrate the stereo-
cameras of a robotic head on a moving platform.

1 Introduction

Camera parameter estimation is the task of finding the intrinsic and extrinsic
camera parameters, which describe the projection of the 3D scene onto the 2D
image plane of the camera. From one calibrated camera the line of sight for a
given pixel can be computed; in combination with stereo algorithms two cali-
brated cameras can be used in combination with stereo algorithms to estimate
the depth for a given pixel [1]. Furthermore, camera calibration is required for
a number of computer vision applications in areas such as augmented reality,
robot navigation, or special effects generation.

A common method for camera calibration is the usage of a calibration object
or calibration pattern for which the geometry is known. The knowledge of the
geometry of the pattern provides points in 3D space, while the corresponding
2D points are extracted from the image. With these extracted 2D-3D correspon-
dences the camera parameters can be estimated. Popular approaches for camera
calibration were presented by Tsai [2,3] and Zhang [4,5], both using calibration
patterns.

To compute the intrinsic parameters of the camera Zhang uses at least two
images of the pattern from different orientations. Tsai on the other hand uses
only a single image of a calibration pattern to estimate the extrinsic and intrinsic
camera parameters in a two stage approach. In both approaches the calibration
pattern consists of squares arranged in a grid. The corners of the squares are
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the 3D points used for calibration. Thus, four 3D points for each square are
obtained. However, finding the correct 2D position of the corner points in the
image can be difficult and error-prone considering the noise and blur present in
the images.

Tsai and Zhang both use a single pattern for camera parameter estimation.
However, if multiple cameras or if cameras in a larger environment have to be
calibrated, the problem arises that this may not be possible with a single pattern,
since only cameras that see the pattern can be calibrated.

If the task is to calibrate multiple cameras in a scene, one possibility is to
use the approach of Ueshiba and Tomita [6]. This approach uses a single cali-
bration pattern, which is placed at three or more locations, where a separate set
of images is taken for each location. Another possibility is to use multi-camera
self-calibration [7]. In this approach, instead of calibration patterns, a single laser
pointer is moved in the calibration volume. Tracking the position of the laser
pointer in each image of each camera allows to self-calibrate the cameras. How-
ever, both approaches require static cameras and, thus, can not handle multiple
images of a single moving camera.

If the task is to calibrate a moving camera in the scene, self-calibration can be
employed. This approach does not require a special calibration object. Intrinsic
camera parameters are computed from multiple uncalibrated images taken by the
camera. The movement of the camera provides enough constraints for computing
the intrinsic parameters [8,9]. However, camera self-calibration is a complex and
difficult task, where degenerate cases can occur.

Fig. 1. The suggested approach allows
camera calibration from images that have
a partial overlap. Each one of the shown
images contains two calibration patterns
where one of these patterns is also visible
in the next image.

For the application of augmented re-
ality, Fiala et al. [10,11] developed a
system called ARTag that employs mul-
tiple coded markers to calibrate the
camera. This system consists of a set
of different markers and algorithms to
detect the orientation and the position
of the markers in the image. The goal is
to augment the image/video with ren-
dered 3D virtual content by detecting
the relative position and orientation of
several markers to each other.

In this paper, we present an ap-
proach for performing camera calibra-
tion from a series of images or from a
video with multiple patterns. We neither restrict our approach to require a pat-
tern to be visible in all views nor a camera to see all patterns. In contrast to
existing work, the approach is very general and works with one or multiple mov-
ing or static cameras.

The approach is easy to apply in practice, as a user only has to distribute the
calibration patterns in the scene such that in each view some of them are visible
(see Fig. 1 for an example). The patterns are coded so that they can be identified
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in different images. It is not necessary for all patterns to be visible in all views;
a few patterns per view are sufficient as long as relative position and orientation
between every pattern or camera can be computed. Instead of using the corners
of the squares on the pattern as 2D points, we use the centers of gravity of the
projected squares. This has the advantage of a more reliable detection. However,
the center of gravity does not always coincide with the geometric center of the
squares under perspective projection. Therefore, these 2D points must be refined
after an initial parameter estimation of cameras and patterns, in order to achieve
a camera calibration with high accuracy.

2 Camera Calibration

Fig. 2. Calibration pattern used in our
approach. The L-shaped marker is used
to detect the orientation of the pattern,
while in the last row a pattern identifier
is encoded binary (here pattern no. 27 =
110112 is shown).

This chapter describes our approach to
estimate the intrinsic and extrinsic pa-
rameters of multiple cameras (either
static or moving) using multiple coded
patterns.

Tsai and Zhang are using the cor-
ners of the squares on the calibration
patterns as points. Finding those cor-
ner points becomes less accurate with
smaller size of the pattern in the image.
Hence, we use the centers of gravity as
initial 2D points, as they are easier to
detect. In order to extract enough 2D-
3D correspondences for camera parame-
ter estimation, the patterns used in our
approach consist of eight rows of squares
with twelve squares in a row, arranged
in a grid (see Fig. 2). To detect the orientation of the pattern, we use an L-
shaped marker in one corner of the pattern, which replaces three squares. To be
able to distinguish different patterns, we use an identifier for each pattern. The
identifier is coded in the last row of the pattern. It is a binary coded number with
squares representing 0s and rectangles representing 1s. The rectangles are twice
as long and half as thick as the squares resulting in the same surface area as
the squares. The grid of squares, including the coded identifier and the marker,
are surrounded by a frame. Using such a calibration pattern, provides enough
2D-3D correspondences for the estimation process.

2.1 Pattern Identification and Point Extraction

To identify the patterns and extract 2D points, we proceed as follows. First, we
threshold an image with a specified threshold t resulting in a binary image. Color
images are converted to gray-scale before thresholding. In the binary image we
perform a region analysis, where a single region consists of all pixels having the
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same value (black or white) and being 4-connected. Patterns are then identified
in the image as regions having a given number of neighbor regions The L-shaped
marker is then identified as the second biggest neighbor region within the pat-
tern. Knowing the orientation of the pattern, we are able to identify the last row
of the pattern. In order to distinguish squares from rectangles, which encode the
pattern identifier, we compute the standard deviation of all 2D pixel positions
in the region. In practice, this is already enough to distinguish squares from
rectangles since the standard deviation for the rectangles will be significantly
bigger than the one of the squares. Thereby, the expected standard deviation of
the squares is known from looking at the second last row of the pattern, which
only contains squares.

Finally, the initial 2D points for the parameter estimation are computed as
the mean of the pixel positions of each region. Note that the mean of the pixel
positions of a region corresponds to the center of gravity of the projected square.
Although the center of gravity is the same as the geometric center for a square
or a rectangle in 2D, this does not hold for projected squares or rectangles
in 3D space. However, the center of gravity is a good approximation of the
geometric center and our algorithm does work well with these measurements.
Nevertheless, once camera parameters are estimated, the measured 2D points
can be compensated with the current camera parameters in order to refine the
camera parameters.

2.2 Connection Graph Generation

B
C D

E
F

I
H

G

A

Fig. 3. Connection graph. Edges
between camera nodes (G, H, and
I) and pattern nodes (A – F ) rep-
resent the ability to estimate cam-
era parameters. A path from node
A to node E indicates the possibil-
ity to compute position and orien-
tation of these two patterns rela-
tive to each other, while this is not
possible for nodes E and F .

By distinguishing different patterns in the im-
ages, we can generate a connection graph.
This graph is an abstract representation of the
connections between camera views and visible
patterns. In the graph cameras and patterns
are represented by nodes (see Fig. 3). A cam-
era node is connected to a pattern node by an
edge, if the pattern represented by its node is
visible in the view of the camera represented
by its node. The edge means position and ori-
entation of a camera with respect to a pattern
can be estimated.

Our approach uses the following two ideas.
On the one hand, if two patterns are visible
in one image, the position and orientation be-
tween those patterns can be estimated (see
section 2.3: single view alignment). On the
other hand, if one pattern is visible in two dif-
ferent views, the position and orientation be-
tween the two cameras can be estimated (see
section 2.3: multiple view alignment).
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For the example shown in Fig. 3, this means relative positions and orientations
between these nodes can be estimated, as there is an edge between each pattern
node A, B, C, and D and the camera node G. By looking at the edges of the
transitive closure of the connection graph, it is possible to determine if it is also
possible to estimate the relative transformation between two camera nodes in
the graph. For the example shown in Fig. 3 it is possible to relate camera nodes
G and H , but not H and I.

2.3 Camera Parameter Estimation

Having generated the connection graph, we will now show how positions and
orientations of cameras and patterns in the scene are estimated. For simplicity,
in the following we will describe the problems as if the scene is observed by
multiple static cameras. However, a single moving camera or multiple moving
cameras can be handled in the same way by just generating a new virtual static
camera for each point in time.

The estimation of the camera parameters is done in six steps (compare Fig. 4):

1. Estimation of position and orientation between a single pattern and the
camera using Tsai’s approach,

2. Alignment of all patterns visible in one image,
3. Estimation of positions and orientations between all patterns in an image

and the camera,
4. Alignment of all cameras and all patterns,
5. Estimation of positions and orientations between all patterns and all cam-

eras, and
6. Refinement of 2D points and re-estimation of camera parameters (optional)

Â
(1)
i,k

B̂
(4)
i

Â
(2)
k

Â
(4)
k

Â
(5)
k

B̂
(5)
i

Calibration
1. Tsai

Alignment
2. Single View Bundle

Adjustment

View Bundle
Adjustment

3. Single View

5. Multiple
6. Refinement

Â
(3)
k

4. Multiple
View

AlignmentB̂
(2)
i,k B̂

(3)
i,k

Fig. 4. Algorithm overview

In our approach, camera view k is represented by its projection matrix Ak:

Ak =

⎡⎣fk 0 px, k

0 fk py, k

0 0 1

⎤⎦ [ I |0 ]
[
Rk −Rk C

¯ k

0� 1

]
= Kk [ I |0 ]

[
Rk −Rk C

¯ k

0� 1

]
, (1)
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with the 3 × 3 calibration matrix Kk, the 3 × 3 rotation matrix Rk, and the 3-
vector C

¯ k. The calibration matrix Kk contains the intrinsic camera parameters,
where fk is the focal length and px,k and py,k are the principal point offsets in
x- and y-direction, respectively. The rotation matrix is composed of consecutive
rotations around the y-, x- and z-axis with Euler angles ϕ, ϑ, and ρ: R = Rz(ρ) ·
Rx(ϑ) ·Ry(ϕ). The camera center is represented by C

¯ k. A pattern i is represented
by a 4×4 transformation matrix Bi =

[
Si −Si D

¯ i

0� 1

]
, with 3-vector D

¯ i representing
the pattern center and 3×3 rotation matrix Si composed of consecutive rotations
around the y-, x- and z-axis with Euler angles α, β, and γ. The projection of a 3D
point P of pattern i given in homogeneous coordinates in the pattern coordinate
system is then given by

p = Kk [ I |0 ]
[
Rk −Rk C

¯ k

0� 1

] [
Si −Si D¯ i

0� 1

]
P, (2)

where p is the corresponding 2D point in the image plane of camera k given in
homogeneous coordinates.

Radial distortion is modeled as follows. Let (xu, yu)� be the undistorted posi-
tion of the projection of the 3D point P

¯
. The distorted position of the projection

of P
¯

is then modeled as xd =
(
1+κ3r

2
u +κ5r

4
u

)
xu and yd =

(
1+κ3r

2
u +κ5r

4
u

)
yu,

where ru is the distance of (xu, yu)� from the principal point (px, py)�. Here,
(1 + κ3r

2
u +κ5r

4
u) is an approximation of the real radial distortion function with

a Taylor series and κ3 and κ5 are the parameters describing the lens distortion.
For the sake of clarity, we are denoting the resulting cameras matrices Ak and

pattern transformations Bi of the m-th processing step with an additional index:
A
(m)
k and B

(m)
i (compare Fig. 4).

Tsai Calibration. Having identified all patterns i in a camera view k, we use
Tsai’s approach [3] to estimate the position and orientation of the camera Â(1)

i,k rel-
ative to the pattern i. To be able to estimate the parameters, we have to provide
2D-3D correspondences between the image and the pattern. The (measured) 2D
points p̃i of pattern i are given by the 2D-3D point extraction (see section 2.1).
Here we use the centers of gravity of the found regions. The corresponding 3D
points Pi in the pattern coordinate system are given by the known structure of
the pattern. Since our calibration pattern is planar, we assume for the sake of
simplicity and without loss of generality that all 3D points lie in the x-y-plane
and that the geometric center of the whole pattern lies at the origin. During this
first processing step we define that the local coordinate system of the pattern
coincides with the world coordinate system. Thus, we have: B̂(1)

i,k = I ∀ k.
Since we assume that the pattern lies in the x-y-plane around the origin, Tsai’s

algorithm provides estimated parameters Â(1)
i,k for the location and orientation of

camera k with respect to pattern i by minimizing the cost function:

argmin
Â
(1)
i,k

∑
i,j,k

d
(
p̃j,k, Â

(1)
i,kB

(1)
i,kPj

)2 ∀ i, k, (3)

where d(x,y) is the Euclidean distance between homogeneous points x and y.
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Single View Alignment. Having an estimate Â(1)
i,k of the position and orienta-

tion of the camera k with respect to every visible pattern i in the image, we are
now able to compute parameters B̂(2)

i,k for all patterns in the image. Since there
is only one camera view for each image in reality, the different estimated camera
parameters Â

(1)
i,k are in fact resulting from different positions of the patterns in

the scene. Therefore, we align the different estimated cameras to a single refer-
ence camera with R = I,C

¯
= 0� for every camera view k. From the different

camera parameters

Â
(1)
i,k = K̂

(1)
i,k [ I |0 ]

[
R̂
(1)
i,k −R̂

(1)
i,k Ĉ

¯
(1)

i,k

0� 1

]
(4)

we now compute estimates of the positions of the patterns B̂
(2)
i,k in 3D space

relative to a reference camera Â
(2)
k for all patterns i in all views k. This is done

by setting

B̂
(2)
i,k :=

[
R̂
(1)
i,k −R̂

(1)
i,k Ĉ

¯
(1)

i,k

0� 1

]
∀ i, k and Â

(2)
k :=

1
nk

∑
i

K̂
(1)
i,k [ I |0 ] ∀ k, (5)

with nk denoting the number of patterns visible in view k. Note that we simply
average the intrinsic parameters K̂(1)

i,k from Tsai’s estimations to get an estimate

of the intrinsic parameters of the reference camera Â
(2)
k .

For the single view alignment, we have Â
(1)
i,kB

(1)
i,kP = p(1) ≈ p(2) = Â

(2)
k B̂

(2)
i,kP,

as can be verified by Eq. (2). Here, p(1) and p(2) are only approximately equal
due to the parameter averaging in Eq. (5).

Single View Bundle Adjustment. After the single view alignment we per-
form a bundle adjustment for every camera view k. The bundle adjustment
minimizes the reprojection error. The reprojection error is the sum of distances
between the measured 2D points p̃j,k in the image plane and the projections
of corresponding estimated 3D world points B̂i,kPj (both represented in homo-
geneous coordinates). Bundle adjustment uses non-linear Levenberg-Marquardt
optimization (Â(2)

k and B̂
(2)
i,k are used for the initialization of Â(3)

k and B̂
(3)
i,k ):

argmin
Â
(3)
k , B̂

(3)
i,k

∑
i,j

d
(
p̃j,k, Â

(3)
k B̂

(3)
i,kPj

)2 ∀ k . (6)

Multiple View Alignment. After having estimated camera parameters Â
(3)
k

and pattern parameters B̂(3)
i,k for every single image k with the single view bundle

adjustment, we now estimate globally consistent camera and pattern parame-
ters Â

(4)
k and B̂

(4)
i , respectively. Using the generated connection graph, we are

able to select two images k and k′ that have at least one pattern i in common.
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Consistent parameters are computed for these two images by fixating the camera
and pattern parameters of one image (Â(4)

k := Â
(3)
k , B̂

(4)
i := B̂

(3)
i,k ) and transform

the camera and pattern parameters of the other image in the following way:
Tk,k′ := B̂

(3)
i,k

(
B̂
(3)
i,k′
)−1 is a transformation to align views k and k′ where pattern i

is the link between those views. The equation Â
(4)
k′ := Â

(3)
k′ T−1

k,k′ transforms the

camera of view k′ and the equation B̂
(4)
i := Tk,k′ B̂

(3)
i,k′ aligns all patterns of view k′.

However, we only transform pattern that have not already been aligned before.
Using the connection graph we align all views by consecutively aligning one
unaligned view with all views that have already been processed. In addition,
using the connection graph we are able to detect constellations where the views
cannot be aligned.

Multiple View Bundle Adjustment. If all cameras and all patterns have
been aligned, we perform another bundle adjustment to minimize the reprojec-
tion error of the patterns B̂

(5)
i in all camera views Â

(5)
k (similarly, Â(4)

k and B̂
(4)
i

are used to initialize of Â(5)
k and B̂

(5)
i ):

argmin
Â
(5)
k , B̂

(5)
i

∑
i,j,k

d
(
p̃j,k, Â

(5)
k B̂

(5)
i Pj

)2
. (7)

Refinement. Since the center of gravity of the projected square does not back-
project to the geometric center of the square, 2D points are optionally refined.

Having computed globally consistent camera and pattern parameters Â(5)
k and

B̂
(5)
i and knowing the size of the squares (or rectangles), we are able to project the

corners of the squares into the image plane. For each square we get four points
forming a quadrilateral. From these four corner points we can then compute the
projection of the geometric center ĉgeo and the projection of the center of gravity
ĉgrav of the square.

The projection of the geometric center is the projection of the intersection of
the diagonals of that quadrilateral. For the projection of the center of gravity of
the square we first compute the centers of gravity of all four possible triangles
of the quadrilateral. The center of gravity of a triangle is the arithmetic mean
of its corners. The four computed centers of gravity form another quadrilateral.
The projection of the center of gravity of the original quadrilateral is then the
intersection of the diagonals of the second quadrilateral.

We then update the initial 2D points p̃j, init with

p̃j, new := p̃j, init − ĉgrav + ĉgeo (8)

and repeat the multiple view bundle adjustment of section 2.3 with the refined
2D points. If necessary, the refinement of the 2D points together with the mul-
tiple view bundle adjustment can be iterated. However, we observed the largest
improvement to usually occur after the first iteration.
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Table 1. The synthetic image sequence. Left: Comparison between estimated camera
parameters and ground truth without 2D point refinement. Right: Comparison be-
tween estimated camera parameters and ground truth with one iteration of 2D point
refinement.

Δf ΔC RMSE of {ϕ, ϑ, ρ}
[mm] [mm] [rad]

0.00861 0.07769 1.8215E−04
0.06058 0.26194 9.3651E−04
0.01667 0.10513 7.0942E−04
0.00287 0.03357 2.5241E−04
0.00593 0.11377 1.1414E−04
0.00130 0.13067 1.1775E−04
0.00637 0.06130 9.9409E−05
0.00428 0.07432 8.3503E−04
0.05864 0.11363 1.1946E−03

RMSE for whole series of images
0.02936 0.12170 6.3581E−04

Δf ΔC RMSE of {ϕ, ϑ, ρ}
[mm] [mm] [rad]

0.00166 0.01962 1.7127E−04
0.01492 0.05603 7.9734E−04
0.00311 0.02640 6.3498E−04
0.00106 0.01355 2.2049E−04
0.00872 0.05367 1.1054E−04
0.00238 0.03902 1.2050E−04
0.00026 0.01868 1.0056E−04
0.00161 0.03465 6.7190E−04
0.06134 0.07239 1.1350E−03

RMSE for whole series of images
0.02852 0.10208 5.6700E−04

3 Results

This section presents results of tests performed to evaluate our approach. In a first
test, we used synthetic data to be able to compare the estimated camera param-
eters with the ground truth. In a second test, we took images from several cali-
bration patterns located on scale paper to compare estimated pattern positions
with measured pattern positions. Finally, we applied our method to calibrate two
cameras of a robotic head which can perform human-like movements.

3.1 Synthetic Ground Truth Example

We rendered a series of 9 images of a scene in which we placed six calibration
patterns (see Fig. 5). Generating a synthetic series of images enabled us to
compare our estimation results with the ground truth (see Tab. 1). The rendered
virtual room had a size of approximately 16 square meters, which is important
to put the accuracy of results in Tab. 1 into relation. Compared to the overall
extend of the scene, the observed errors can be regarded as very low.

We performed camera parameter estimation using our approach. In the first
run we estimated camera and pattern parameters without refining the 2D points
obtained from Sec. 2.1. In a second run we then used the 2D point refinement
from Sec. 2.3. Although we found the estimation results using the initial 2D
points to be good, they could be improved by the 2D point refinement (an
improvement of approx. 3%, 16%, and 11% percent for focal length, camera
center and camera rotation, respectively). As expected, the first iteration of the
refinement resulted in the biggest improvements, while further iterations did not
improve the results significantly.
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Fig. 5. The synthetic image sequence. Top row and left column: 5 out of 9 images
shown. The positions of the projections of the estimated patterns into the image planes
of the estimated cameras can be seen. Right bottom: Detail of one of the images. Due
to occlusion this pattern is not visible in the image, however, from the other images
the position of the pattern can be estimated accurately.

3.2 Real-World Ground Truth Example

For a real-world example we printed seven calibration patterns and arranged
them on a paper with millimeter scale. Twelve images of this scene were taken.
Since we placed the pattern on the scale paper, in this example all patterns lay
in one plane. By using scale paper we were able to measure the corners of the
patterns. From the corner points we then computed the centers of the patterns.
After applying our camera calibration approach, we were able to compare the
estimated pattern positions to the measured ones (see Tab. 6b). The largest
absolute difference in Tab. 6b is 1.14 mm in relation to a 583 mm absolute
pattern distance (corresponding to a relative deviation of 0.2%).

3.3 Application Example

We applied our approach to the calibration of the stereo-cameras of a robotic
head. The cameras of the robotic head are able to move like human eyes and the
head of the robot is mounted on a rotating platform. Our goal was to calibrate
both cameras for different viewing directions. Because of the ability to look in
different direction with the cameras, it is impossible to calibrate the cameras
using a single pattern only.

With our method it was possible to calibrate the cameras. The result is shown
in Fig. 7. By distributing several calibration patterns in front of the robotic head
we managed to see at least one pattern in every image of the robot’s cameras.
Additionally, we found the calibration procedure to be very easy to apply, as
we did not have to pay attention to locate or align the calibration patterns in a
specific way with respect to each other.
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(a) Image sequence: 3 out of
12 images shown. Patterns
placed on paper with mil-
limeter scale. Projections of
estimated patterns into the
camera images are overlaid.

— 876.94 354.41 368.27 477.54 823.98 829.50
876.94 — 714.22 711.34 399.43 285.58 333.02
354.41 714.22 — 568.29 382.47 559.94 807.66
368.27 711.34 568.29 — 380.13 784.79 540.83
477.54 399.43 382.47 380.13 — 406.04 425.21
823.98 285.58 559.94 784.79 406.04 — 582.95
829.50 333.02 807.66 540.83 425.21 582.95 —

— 876.63 354.20 368.03 477.58 823.16 829.40
876.63 — 713.65 711.24 399.09 285.16 332.37
354.20 713.65 — 567.77 382.19 559.11 806.94
368.03 711.24 567.78 — 380.14 784.00 541.16
477.58 399.09 382.19 380.14 — 405.20 424.76
823.16 285.16 559.11 784.00 405.20 — 581.81
829.40 332.37 806.94 541.16 424.76 581.81 —

— 0.30 0.21 0.23 0.04 0.82 0.11
0.30 — 0.58 0.10 0.34 0.42 0.65
0.21 0.58 — 0.51 0.28 0.83 0.72
0.23 0.10 0.51 — 0.01 0.80 0.33
0.04 0.34 0.28 0.01 — 0.83 0.44
0.82 0.42 0.83 0.80 0.83 — 1.14
0.11 0.65 0.72 0.33 0.44 1.14 —

(b) Evaluation results. All values are given in millime-
ters. Distance between pattern i and j is given in col-
umn i and row j. Top: Measured distances between
pattern centers. Middle: Distances between estimated
pattern positions. Bottom: Difference between top
and middle table.

Fig. 6. Real-world image sequence and evaluation results

Fig. 7. Application example: This robotic head has two cameras as eyes. The images
at the left are two camera images taken with the eye-cameras (calibration patterns are
overlaid). The scene at the right shows all reconstructed calibration patterns in 3D
space.
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4 Conclusion

In this paper we have presented an approach for calibrating multiple camera
views in a globally consistent coordinate frame. We make use of multiple cali-
bration patterns that can be distributed in the scene, which makes our approach
flexible and easy to use. Furthermore, it addresses shortcomings of single pat-
tern based calibration methods. Intrinsic and extrinsic camera parameters are
estimated as well as position and orientation of the calibration patterns. For reli-
able and accurate estimation results we have simplified the 2D point extraction.
After an initial parameter estimation the approximate 2D points are refined to
increase accuracy.

Our method has been evaluated on a synthetic and a real-world series of
images showing the high flexibility and accuracy of the method. Additionally,
the approach has been applied to calibrate the stereo-cameras of a robotic head.

Future work will address how to use several patterns without pattern identi-
fiers, as it should be possible to distinguish the patterns by their relative positions
in space.
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Abstract. During the past decade, computer vision methods for inline
inspection became an important tool in a lot of industrial processes.
During the same time polarization imaging techniques rapidly evolved
with the development of electro-optic components, as e.g. the polariza-
tion cameras, now available on the market. This paper is dedicated to
the application of polarization techniques for visually inspecting complex
metallic surfaces. As we will shortly recall, this consists of a direct image
interpretation based on the measurement of the polarization parameters
of the light reflected by the inspected object. The proposed image in-
terpretation procedure consists of a Gabor pre-filtering and a Haralick
feature detector. It is demonstrated that polarization images permit to
reach higher classification rates than in case of a direct interpretation of
images without polarization information.

1 Introduction

The inspection of complex industrial parts for the inline real-time inspection,
requires adapted and efficient information retrieval and processing approaches.
This implies that the lighting technology but also the corresponding processing
methodology must be adapted to the specificities of the inspection task. The
central and decisive element is the surface to be characterized, i.e. the task
of automatically visual enhancing and classifying the defective regions to be
detected. Workpiece geometry, reflectivity and handling possibility are the major
parameters which must be taken into consideration for the determination of the
appropriate inspection methodology. Within this context, existing quality control
methods are based on the interpretation of the disturbances induced by the
surface on the projected light. Important information can be the geometry of the
light wave in case of structure-based approaches, the wavelength for multispectral
methods or the phase of the wave for polarization-based methods.

The commonly used formalism for the description of the polarization state
of an electromagnetic wave is the Stokes vector [Goldstein, 2003]. The complete
polarization information can be described with the Stokes vector, consisting of
4 parameters S0, S1, S2, S3 and describing the type and degree of polarization

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2011, LNCS 6930, pp. 122–132, 2011.
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of the wave. The computation of this vector necessitates a sensor which is sensi-
tive to the polarization information. In general CCD cameras are coupled with
additional polarization or liquid cristal filters. Concerning the method for the
interpretation of the polarization information, we distinguish between direct and
indirect approaches. In case of the former, the relevant information is directly
retrieved from the recorded polarization images for a qualitative interpretation
[Terrier et al., 2008]. For the latter, the polarization is used to recover the depth
information for a quantitative interpretation [Morel et al., 2006].

This paper is focussed on the direct interpretation of the polarization infor-
mation, related to important surface and material properties, such as the geom-
etry, the texture, the reflectivity or the type. A new direct surface interpreta-
tion method, based on the computation of appropriate features determined with
an appropriate image processing chain, is proposed. As the proposed research
is dedicated to the optimal characterization of industrial surfaces, a reference
database has specially been defined for the purposes of this paper. The class
and number of images were chosen in accordance with previous investigations
dedicated to a similar inspection task, where a structured light approach instead
of a polarization one has been considered [Caulier and Bourennane, 2010]. The
considered artificially produced defects have a clear geometry. This will help to
define general rules for further quality control experiments based on real defects.

The purpose of the paper is to propose a stepwise polarization-based image
processing approach, consisting of an enhancement of the relevant image infor-
mation by means of a Gabor filter method [Chengjun and Wechsler, 2003] and of
a characterization of this image signature using the statistic approach of Haralick
co-occurrence matrices [Porebski, 2008]. The first evaluates the amount of energy
for certain directions and image resolutions, the second evaluates the occurrence
of pixel pairs in an image. The classification rate is used for the evaluation of the
complete method, i.e. for the determination of the optimal parameters of both
approaches.

Different open and relevant problems within the context of non-destructive
testing for industrial quality control are tackled. Purpose of the proposed re-
searches are therefore:

– to determine how far the visual enhancement based on polarization imaging
is relevant for the industrial quality control,

– to evaluate if polarization-based approaches permit a direct interpretation
of the image contents,

– to evaluate if a previous Gabor image filtering leads to more appropriate
image signatures in case of direct image interpretation approaches,

– to find out which polarization features are the most appropriate,
– to propose a complete optimal image processing chain for polarization

imaging.

The rest of the paper is organized as follows. The proposed method is described
in section 2. Section 3 addresses the experimental results. Section 4 concludes this
paper.
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2 Proposed Method

2.1 Polarization-Based Image Enhancement Principle

As described previously, the purpose of this paper is the surface characterization
by means of the direct interpretation of polarization images. The geometrical and
textural properties of the samples to be characterized, which are illuminated
with a diffuse unpolarized light, are contained in the polarization state of the
reflected light by the surfaces. This information is described by the Stokes vector
and processed in the corresponding Stokes images for the direct interpretation
of the surfaces to be characterized.

IS0 which represents the total intensity without polarizer has the property
I2
S0 = I >= I2

S1 + I2
S2 + I2

S3, can be assimilated to the intensity image, i.e.
the image which would be obtained without polarization filter. In case of the
considered diffuse illumination in this paper, this would signify that IS0 permits
to reveal textural surface characteristics. IS1 and IS2 are the difference of two
images corresponding to 90 degree rotated polarization filter positions {0, 90}
and {45, 135}. As the textural surface changes do not influence the polarization
of the incoming light, contrariwise to the geometrical surface variations, this
means that these two Stokes images permit to reveal the geometrical surface
information. To facilitate the interpretation of the Stokes images, we evaluate
the linear degree of polarization image Idop and the angle of polarization IAMP

image. The latter is linked to the local slope of the surface.
The considered surfaces were chosen in accordance with the open problems

tackled within the industrial inspection context : metallic parts with different
defect types. The reference samples for image database elaboration were chosen
in order to be representative of the surfaces to be characterized, in accordance
with the requirements defined by the quality of automotive cast parts. This is
the reason why both non-acceptable and acceptable surfaces have been consid-
ered. Furthermore, two different types of defects, synonymous of geometrical and
texture changes of the surface, were recorded. These three defect classes corre-
sponding to the considered acceptable surfaces, and non-acceptable geometrical
and textural ones, are named ΩOK , Ω3D and Ω2D. The database contains self-
made artificial defects of different sizes, depths (0.4 to 1.0 mm), and material
(aluminum, copper, steel, brass).

Fig. 1 shows the polarization principle by means of a reference sphere and five
samples of the considered reference database. A majority of the considered de-
fects are geometrical ones, whereas the remaining correspond to painting marks.
The three Stokes images IS0, IS1 and IS2 are depicted for the six pieces. The
degree and angle of polarization images Idop and Iaop are shown for the sphere.

Fig. 1 shows that the considered Stokes, degree and angle of polarization
images permit the enhancement of geometrical and textural surface information.
Polarization even enables the discrimination of these two surface classes Ω3D and
Ω2D, see the images of the sphere and the central depicted artificial geometrical
defect. The three highlighted images of classes ΩOK and Ω3D in Fig. 1 clearly
show that the intensity image IS0 does not reveal the relevant information for a
clear discrimination between acceptable and non acceptable surfaces.
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Fig. 1. Polarization-based image visual enhancement principle. Upper images: princi-
ple explanation with a sphere. Middle images: some exemples taken from the reference
database Bottom images: selected examples showing the relevance of polarization in-
formation, as depth defects are better visually enhenced with IS1 then with IS0 images.
For a better understanding the original image and its contrast enhanced are depicted.

Thus, as all the considered scenes recordings and therefore the relevant infor-
mation to be extracted and characterized, are represented with grey level images,
the relevant surface information will be characterized by local grey level vari-
ations corresponding to local geometric and/or textural variations synonymous
of defective surface parts.

According to the surface types or recording conditions, different types of per-
turbing noise exist. Noise can be due to acceptable geometrical surface variations,
such as the grinding marks on the artificial surface, but also to the painting on the
surface inducing “salt and pepper” perturbations. Indeed, the micro-structures
of the painted coatings locally provoke higher light reflections. These images also
show that optimal recording conditions were deliberately not considered, as the
purpose is to define an approach for complex industrial surface interpretation.
A non perfectly homogeneous lighting was considered, so that additional grey
level variations non synonymous of critical surface, such as perturbing glares
e.g., were considered.
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The purpose is now to define an appropriate approach permitting the classifi-
cation of the considered surfaces in case of the three classes problem {Ω3D,Ω2D,
ΩOK}. In the following the proposed feature-based surface classification ap-
proach is described.

2.2 The Gabor Filters

As seen previously, the revealed geometrical and textural surface characteristics
are depicted with different local grey level variations corresponding to different
structures of different shapes and size in the Stokes images. A Gabor approach
was considered to be an appropriate enhancing function, as these filters per-
mit the enhancement of image structures of different shapes, frequencies and
orientations. In the following a brief overview of 2D Gabor is provided.

According to the definition of Dunn [Dunn, 1995] which is based on the defi-
nition of Daugman [Daugman, 1985], a 2D Gabor filter h is an oriented complex
sinusoidal wave hsin modulated by a 2D Gaussian envelope hgau, h = hsin.hgau.
Filter main parameters are the wavelength λ = 1/f , f is the frequency, the
standard deviation σ and the orientation α. Different values of these parameters
permit the elaboration of different filters of different shapes, sizes and directions.

For the purpose of this paper, the Gabor filter definition given by Kovesi will
be considered. The author defines three output images, Ir, Ii, Ia, results of the
convolution of the input image Iin with the (i) real part hr of the 2D filter h,
the (ii) imaginary part hi of the 2D filter h and the (iii) amplitude of both real
and imaginary images. Filter description according to Kovesi [Kovesi, 2011] is
provided by the following equation:

fr = cos(
2.π
λ
x·) · e−( x2

σ2
x

+ y2

σ2
y

) · fαg fi = sin(
2.π
λ
x·)e−( x2

σ2
x

+ y2

σ2
y

) · fαg

where σx = λ · kx and σy = λ · ky

Ir = Iin ∗ fr Ii = Iin ∗ fi Ia =
√

I2
r + I2

i (1)

fαg is a rotating function defined for an angle α in degrees (an angle of 0 gives
a filter that responds to vertical features). The scale factors kx and ky control
the filter σx and σy relative to the wavelength of the filter. This is done so that
the shapes of the filters are invariant to the scale. kx and ky control the shape
of the filter in the x- and y-directions.

The above described filters were designed for different shapes and sizes in
the x- and y-directions. However, as no specific surface orientation of defect
geometry is considered, no differentiation was done between the horizontal and
vertical image directions, so that σ = σx = σy and k = kx = ky.

2.3 Image Enhancement with Gabor Filters

The purpose is now to use the previously defined Gabor filters in order to enhance
the depicted defective surface regions and, if possible, reduce the non-defective
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ones. As different defective regions sizes and types are considered, this problem
is equivalent to determine the most optimal Gabor filter determined by its pa-
rameters (λ,k). In case of the considered defective surfaces, these parameters
should be adapted to the size of the defects, which are between 1 to 100 pixels,
if we consider e.g. the 3D defect borders or the 2D defect widths.

The “brute-force” approach would consist of varying the filter parameters
(λ,k) for the whole range, in order to define the most optimal values. However,
if we consider that the image information to be enhanced, i.e. the relevant signa-
tures are contained in the low and high frequencies bands, the task will consist
of finding a range of (λ,k) corresponding to these two frequency bands.

According to equation 1, λ permits to regulate the modulation of the cos
and sin waves with the Gaussian envelope. For λ = 1 the filtering is equivalent
to an image bluring with a Gaussian kernel, and therefore reveals low image
frequencies. Higher values of λ and of k permit image filterings with Gaussian
kernel modulated with cos or sin envelopes, which is equivalent to convolve the
image with second or first derivative filter kernels. Thus, in case of high image
frequencies enhancement and if the defect edges are considered as important
images signatures, a variation of the variance σ of the Gaussian kernel between
σ ∈ [2 : 4] seems to be an adequate choice. Therefore, the following ranges of
the Gabor filters were considered, λ ∈ {1, 2} and k ∈ {1, 2}, so that σ ∈ {1, 4}.

Fig. 2 depicts some of the considered Gabor filters and examples of the con-
sidered output images Ir, Ii and Ia for the three considered surface classes
ΩOK ,Ω2D and Ω3D.

Fig. 2. Left: involved Gabor filters. Right: Example of enhanced structures with two
Gabor filter for λ = 1.2 and k = 2.

The considered ranges of the filter parameters and the Gabor filter definition
[Kovesi, 2011], permit to consider three kind of filtering techniques: (i) smoothing
ones for λ = k = 1, (ii) first derivative ones for the imaginary filter part hi and
(iii) second derivative ones for the real filter part hr. The images of Fig. 2 show
how the different filters smooth or enhance the edges of the images according to
the considered filter value parameters for λ ∈ {1, 2} and k ∈ {1, 2}.
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This prefiltering step shows how the considered Gabor approach permits to
reveal different image structures, as e.g. the edges or the textures. However, the
spatial arrangement and size of these structures are specific for each of the three
considered surface types. These are circular structures for the Ω3D defect class,
no structures or linear ones for the ΩOK defect class and random structures for
the Ω2D defect class.

The next step of the proposed approach consists of the classification of these
structures by means of a texture analysis approach. For the purpose of the paper
Haralick features will be considered.

2.4 The Texture Analysis Approach

Concerning the evaluation of different texture-based processing approaches,
the involved methods were chosen according to the surface characteristics. The
Haralick [Porebski, 2008] approach is a statistic-based method which permits to
evaluate the occurrence of pixel pairs in an image. Each pair is characterized by its
spatial and grey level relation. Main parameters are the pixel pair spatial and in-
tensity characteristics, their distance in pixel dh ∈ {1, dmax}, with dmax the max-
imum distance in the considered image, and their angle in degrees αh ∈ {0, 45, 90,
135}, measured counterclockwise with the horizontal image direction.

For the purposes of this paper, three Haralick features are considered: the con-
trast hc, the homogeneity hh and the energy he. Each feature value is the average
of the four feature values for the four pixel directions αh ∈ {0, 45, 90, 135}.

2.5 Considered Image Processing Chain

The purpose is now to evaluate if the proposed Gabor pre-filtering approach
leads to an improvement of the surface characterization and, if this is the case,
to determine which Gabor filter is the most optimal. For this, two different image
analysis methods are considered. The first directly computes the co-occurrence
matrices and the three considered Haralick features on the Stokes image IS0,
IS1 and IS2. The second, pre-filters the Stokes images with Gabor filters for four
different angles αg ∈ {0, 45, 90, 135}, and computes for each direction the three
images. Ir corresponding to the even filter hr, Ii obtained with the odd filter hi

and the amplitude Ia images.
Fig. 3 shows the image analysis chain including both methods, and gives an

example on two different surfaces, a non-acceptable Ω3D and acceptable ΩOK one.
The images in Fig. 3 show the influence of the polarization information in

casse of the surface interpretation. The effect of the Gabor filtering on the visual
enhancement on two different surface types is depicted in the depicted images.
Whereas for the non-acceptable image, the grey level energy is spatially located
on the defect, this energy is spread on the whole acceptable image. This means
that the statistics defining the grey level distributions are different for both. This
is the reason why the second order co-occurrence matrices approach is applied.
These matrices are characterized using the three considered Haralick features
hc, hh and he.
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Fig. 3. Left: the recording set-up. Middle: the considered image processing chain. Right:
two processed surfaces of class Ω3D and ΩOK

2.6 Laboratory Set-Up and Reference Database

The considered laboratory set-up consists of a lighting, a positioning element of
the surfaces to be characterized and a CCD camera coupled with a linear rotating
polarizer. The diffuse lighting is generated with 12 circular arranged LED-lamps
of 5 W each around the object. The lamps, which are oriented on the top,
are covered by a white opaque hemisphere for diffuse lighting generation. The
acquisition part is composed of a 16 bits AVT Dolphin camera with a resolution
of 1280x960 pixel with a linear Schneider Kreuznach polarization filter in front
of the lens.

A set of seven different surfaces of aluminium copper, steel and brass was used
for the elaboration of the reference database. On each of these seven surfaces one
artificial 0.4 mm depth 3D defect was created. This surface region corresponds
to a Ω3D class. Some surfaces also contain 2D paint marks corresponding to Ω2D

class regions. All other surface regions are acceptable or do not contain critical
defects. These belong therefore to the ΩOK class. Each surface was recorded 12
times, which corresponds to 12 rotations of 30 degrees of the surface along the
optical camera axis. In order to have an appropriate polarization contrast, the
reference surfaces were positioned with an angle of 35 degrees with the optical
axes of the camera.

3 Experimental Results

The experimental results concern the validation of the proposed preprocessing
approach with Gabor filters and the determination of the appropriate Gabor
and Haralick parameters. The final purpose is the determination of the most ap-
propriate features for the surface characterization using the direct interpretation
using polarization imaging.

3.1 Classification and Feature Selection

The determination of the appropriate Gabor and Haralick parameters was done
by means of the classification rate Cr as evaluation criteria. Two different pro-



130 Y. Caulier and C. Stolz

Table 1. Selected features, classification and false positive rates csel, Cp and Cfp for
the different considered values of λ, k and h. The Cfp are indicated as exposants of
Cp. The highest classification rates are highlighted for each value of h. The depicted
selected features correspond to these highlighted values. The confusion matrix for the
most optimal parameters h = 60, w = 1.2, k = 1.2 is listed.

h=1 h=60
k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel
1.0 7901 9001 8500 8900 8800 8600 hc(Idop) 1.0 8101 9600 8800 8800 8800 8400 hc(IS1)

1.2 7801 8801 9000 8900 8800 8000 hh(Ia
0o (IS0)) 1.2 8001 9601 9000 8800 8800 8300 hc(Idop)

1.4 7801 8701 9100 9000 8700 8000 1.4 8101 9401 9000 8800 8500 8200 he(Ii
45o (IS1))

1.6 7801 8601 9100 8800 8700 8300 1.6 8101 9200 8900 8700 8700 8400 hc(Ii
0o (IS2))

1.8 7801 9000 9000 8500 8600 8000 1.8 8001 9300 9000 8700 8600 8200 hc(Ii
45o (IS2))

2.0 7801 8400 9000 8500 8600 8000 2.0 8101 9000 9100 8700 8600 8200

h=5 h=80
k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel
1.0 7900 9100 8700 8800 8900 8600 hh(Idop) 1.0 8001 9401 8600 8900 8900 8300 hc(IS1)

1.2 7800 8901 8900 8700 8700 8100 hc(Ir
0o (IS1)) 1.2 7901 9501 9000 8600 87 81 he(Idop)

1.4 7800 8800 9100 8600 8500 8000 he(Ii
45o (IS1)) 1.4 7901 9401 9000 8800 8700 8200 hc(Ii

45o (IS0))

1.6 7800 8700 8900 8700 8700 9300 hc(Ir
90o (IS1)) 1.6 7901 9201 8900 8700 8800 8400 hc(Ii

135o (IS1))

1.8 7900 9100 8800 8400 8500 8000 1.8 7901 9300 9000 8700 8600 8800 hc(Ii
0o (IS2))

2.0 7900 8800 8900 8500 8700 7900 2.0 7901 8900 9001 8600 8700 8300 hh(Ii
45o (IS2))

h=10 h=100
k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel
1.0 8100 9300 8400 8800 8900 8700 he(IS1) 1.0 8100 9300 8500 8800 8900 8500 hc(IS1)
1.2 8000 9200 8900 8600 8800 8100 hh(Idop) 1.2 8000 9100 9100 8800 8800 8200 he(IS1)

1.4 8000 8900 9200 8700 8600 8100 hc(Ii
135o (IS1)) 1.4 8000 9000 8900 8700 8700 8200 hc(Idop)

1.6 8000 8700 8900 8700 8600 8500 hh(Ii
90o (IS2)) 1.6 7900 8800 8900 8800 8900 8500 he(Ii

0o (IS0))

1.8 8000 9100 8900 8700 8600 8300 1.8 7900 8900 9000 8600 8800 8200 hc(Ii
90o (IS0))

2.0 8000 9000 9000 8600 8700 8400 2.0 7900 8900 8900 8700 8700 8600 hc(Ii
45o (IS1))

hh(Ii
45o (IS2))

h=20 h=120
k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel
1.0 8100 9400 8700 8800 8800 8500 hc(Idop) 1.0 7800 8701 8100 9000 9000 8800 he(Idop)

1.2 8000 9300 8900 8700 8700 8100 hc(Ii
45o (IS0)) 1.2 7800 8301 8900 9000 8600 7900 hh(Ii

135o (IS0))

1.4 8000 9200 9100 8800 8700 8300 hc(Ii
90o (IS0)) 1.4 7700 8300 9100 8900 8500 8000 hh(Ia

0o (IS1))

1.6 8000 9000 8900 8800 8800 8500 hc(Ir
0o (IS1)) 1.6 7800 8100 9200 9100 8800 8300

1.8 8000 9000 8800 8600 8600 8200 hh(Ii
90o (IS1)) 1.8 7800 8700 9200 8700 8600 8200

2.0 8000 8700 9100 8500 8600 8300 he(Ii
135o (IS1)) 2.0 7800 8300 8900 8800 8700 8200

h=40 Confusion matrix for h=60, w=1.2, k=1.2
k/w 1.0 1.2 1.4 1.6 1.8 2.0 csel Cp = 96.1
1.0 8100 9500 9000 9000 8800 8500 he(IS1)
1.2 8100 9400 8900 8800 8700 8200 hh(Idop) classified as -> ΩOK Ω2D Ω3D

1.4 8100 9300 9000 8900 8600 8100 hc(Ii
45o (IS0)) ΩOK 11 1 1

1.6 8100 9000 8800 8800 8900 8400 hh(Ii
90o (IS1)) Ω2D 1 6 1

1.8 8100 9100 8900 8800 8600 8300 he(Ii
45o (IS2)) Ω3D 0 1 83

2.0 8100 8800 9200 8800 8700 8400

cessing chains were considered, i.e. whether a Gabor filter-based preprocessing
was applied or not. Then, the rate Cp was computed for λ ∈ {1.0, 1.2, 1.4, 1.6, 1.8,
2.0}, k ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0} and h ∈ {1, 5, 10, 20, 40, 60, 80, 100, 120}. The
determination of the adequate features is done for the highest rate Cp, once for
each value of h. Classification and wrapper-based feature selection were done us-
ing a Naive Bayes approach. The results are depicted in Table 1. The notations
used for the selected features are self-explaining.

For the depicted results in Table 1, different remarks concerning the values of
λ, k, h and the number and type of selected features can be done. These remarks
hold for each of the nine 6 × 6 tables corresponding to the 9 values of h.

Highest classification rates were achieved for λ = 1.2 and λ = 1.4, whereas
lowest for λ = 1.0. Concerning the influence of h highest rates are observed when
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h ∈ [40 : 80]. The number of selected features remains low < 10 in comparison
with the total amount of computed features > 50. In general, the features com-
puted from the Gabor filtered images were more often selected than in case of
the direct approach.

3.2 Result Interpretation

The fact that lower rates were reached for λ = 1 shows that the high image
frequencies are important signatures, as for λ = 1 the images are smoothed.
In other words, this means that the enhanced lower image frequencies do not
contain the relevant polarization information.

An important geometrical feature seems to be the edges of the considered
geometrical defects. The fact that highest classification rates were achieved for
λ = 1.2, λ = 1.4 and h ∈ [40 : 80], shows that the optimal combination consists
of a (i) preliminary high pass Gabor filtering in order to enhance the defect
borders and then of a (ii) characterization by means of Haralick distance-based
features. In case of the considered defects h ∈ [40 : 80], which corresponds to
the observed optimal distance range, is also half the width of the geometrical
defects.

Concerning the use of the Stokes images IS0, IS1, IS2 or the degree and angle
of polarization images Idop, Iaop for a polarization-based image interpretation,
former ones seem to be more appropriate than the latter. Indeed, if the features
issued from IS0 and Idop images were mostly selected, this is not the case for
features computed on Iaop images. A possible explanation could be that the
indetermination in the angle of polarization determination, which brings abrupt
changes/discontinuities on a continuous Ω3D surface.

Then, for the importance of polarization information, the feature selection
results are also an indicator of feature importance. We remark, that for the all
the considered values of h the first selected features are allways the polarization
ones. This shows the relevance of polarization images in comparison to a purelly
diffuse approach in case of the considered inspection task. This also corresponds
to our explanation in case of Fig. 1. The depicted exemples clearly show the
adequate visual enhencement in case of IS1 images in comparison to IS0 images.

4 Conclusion

In this paper a polarization-based direct image interpretation approach has been
proposed and evaluated. The method consists of a preliminary filtering of the
polarization image by means of Gabor filters and then of a characterization using
the second order statistic approach of Haralick. The evaluation concerned the
relevance of Gabor filters, the relevance of Stokes images in comparison to the
degree and angle of polarization images, and the characterization of the whole
proposed image content description method.

The results showed that (i) high classification rates > 90% can be reached and
that (ii) the optimal polarization image characterization consists of a preliminary
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Gabor filtering permitting to enhance higher frequency image values, combined
with a feature-based characterization of the image edges. The proposed investi-
gations showed the avantages of using Gabor filters and Haralick features. The
evaluation methodology based on a classification rate computation and feature
selection for different values of λ, k and h, permitted to retrieve optimal Gabor
and Haralick parameters.

This approach can be applied to any other inspection task within the context
of industrial inspection. Thus, possible further works could consist of considering
a huger reference database containing more reference surfaces and also other
types of defects.
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Abstract. This paper presents a novel methodology based on joint his-
tograms, for the automated and unsupervised segmentation of multiple
sclerosis (MS) lesion in cranial magnetic resonance (MR) imaging. Our
workflow is composed of three steps: locate the MS lesion region in the
joint histogram, segment MS lesions, and false positive reduction. The
advantage of our approach is that it can segment small lesions, does not
require prior skull segmentation, and is robust with regard to noisy and
inhomogeneous data. Validation on the BrainWeb simulator and real
data demonstrates that our method has an accuracy comparable with
other MS lesion segmentation methods.

1 Introduction

Multiple sclerosis (MS) is a disease of the central nervous system, which is the
most common non traumatic neurological disease in young adults [1]. In clin-
ical practice, Magnetic Resonance Imaging (MRI) plays an important role for
determining MS lesions size and localization of affected tissue. Manual segmen-
tation of MS lesions is both challenging and time-consuming. Several techniques
have been proposed for automatic segmentation of MS lesions. Methods based
on one modality can extract large lesions [2], but small lesions are difficult to
distinguish from noise and image inhomogeneities. Most techniques rely on mul-
tiple modalities and exploit differences in contrast between various tissues [3,4].
Dugas-Phocion et al. [5] used multi-sequence MRI (T1,T2,T2 FLAIR, Proton
Density) within an EM based probabilistic framework to segment MS lesions.
Leemput et al. [6] proposed a fully automated atlas-based approach for MS lesion
segmentation with T1, T2 and PD sequences. Aı̈t-Ali et al. [7] proposed a multi-
dimensional parametric method to segment MS lesions with multi-sequence MRI
(T1, T2, PD) data. However, MRI data with significant noise and density inho-
mogeneities still provides a challenge. Also, the image registration process may
increase segmentation errors. In response to these existing challenges, a scheme
based on joint T1 and T2 histogram modelling is proposed to automatically
segment MS lesions.

This paper is organized as follows. The MS lesion segmentation approach is
described in Section 2. Section 3 provides the evaluation results and analysis
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on MR images from BrainWeb and clinical data. Conclusions and future explo-
rations are presented in Section 4.

2 Overview of the Proposed Segmentation Model

As preprocessing, a mutual information method is used to registration the differ-
ent modalities. Our segmentation method contains three steps (see Fig. 1 for an
overview). In the first step, each corresponding pair of T1 and T2 slices are used
to generate a joint histogram (256×256). Subsequently, the grey matter (GM)
and white matter (WM) clusters in the joint histogram space are estimated and
the MS lesion region is defined. In the second step, potential MS lesion areas are
segmented. In the third step, a false positive reduction method is used to refine
the segmentation results.

Fig. 1. Schematic representation of the proposed approach

2.1 Initial MS Lesions Region in Joint Histogram

The joint histogram is used to represent the number of occurrences of a pair
of grey level values corresponding to the same position in two images. In brain
MRI data, various anatomical tissues result in different grey levels and their
distribution in the joint histogram for T1 and T2 MRI have distinct charac-
teristics. In our work, joint histograms are used to incorporate the information
which reflects the tissue distribution relationship for T1 and T2 for MS lesions.
Fig. 2(a-d) show an example of a joint histogram and the distribution of various
anatomical tissues. Compared with the histograms of T1 and T2 (i.e. Fig. 2(c)
based on Fig. 2(a) and Fig. 2(b), respectively), tissues are separated in the joint
histogram (i.e. Fig. 2(d) generated by Fig. 2(a) and Fig. 2(b)) whereas these
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overlap in the individual T1 and T2 histograms. Hence, the joint histogram can
solve the overlap problem for various tissues. Fig. 2(e) shows the joint histogram
based on a MS case in which we can see that the region related to the MS lesions
in the joint histogram deviates from normal brain tissue, and the location of MS
lesions is near the grey matter (GM) and white matter (WM) regions. The corre-
sponding relationship of MS lesions in T1 and T2 is different from other tissues.
Specifically, the MS lesions exhibit hyposignals in T1 and hypersignals in T2,
with respect to normal white matter intensities [5,8]. This rule can be used to
locate the general distribution of MS lesions in the joint histogram.

Fig. 2. An example of the joint histogram combining the information from T1 (a) and
T2 (b) MRI images. (c) The T1 and T2 individual histograms. (d) The joint histogram
with the various tissue regions indicated: BG: background, GM: grey matter, WM:
white matter, and CSF: cerebrospinal fluid. (e) Binary joint histogram (The MS lesions
region is located by a red circle). (f) MS lesions region (translucent yellow region)
overlayed on the joint histogram.

We calculate the coordinates of the GM and WM cluster centers in the joint
histogram, which are defined as (GMT1, GMT2) and (WMT1,WMT2), respec-
tively. Based on the GM and WM cluster center locations we estimate the MS
region within the joint histogram. For T1, the grey level of MS lesions is sim-
ilar to GM tissue and expected to be hyposignal with regard to normal WM
tissue [5,8]. With regard to T1 we define the boundaries of the MS lesions re-
gions as WMT1 and GMT1 − (WMT1 − GMT1)/2 as indicated in Fig. 2(f). It
should be noted that the choice of these T1 boundaries have an arbitrary aspect,
but variations in these have indicated the robustness of the developed approach.
With respect to T2, the grey level of MS lesions is hypersignal compared to nor-
mal white matter [5], so the MS lesions region can be defined as above WMT2.
The defined region also includes some other tissue regions which are excluded in
subsequent steps.



136 Z. Zeng and R. Zwiggelaar

2.2 MS Lesions Area Extraction in the Histogram

In this step, joint histograms are generated for each T1 and T2 volume. We select
some slices to calculate the center coordinates of GM and WM. In general, the
WM or GM cluster centers are less well defined for slices at the top and bottom
of the volumes, but well defined at center slices. We find the coordinate centers
by using average coordinates of the middle slices in the joint histogram volume.
Firstly, we select the middle slice in the volume. To remove the background (BG)
from the joint histogram, we detect the maximum in the joint histogram and use
morphology to remove the surrounding area. Subsequently, a median filter (with
a 5×5 window size) which can preserve image details is used to decrease the
noise in the joint histogram. The choice of a median filter is arbitrary and could
be replaced by other smoothing approaches such as Gaussian filtering. In order
to consider both density information and spatial information, the class-adaptive
Gaussian Markov modelling approach (CAGMRF) [9] is used to segment the
joint histogram into five initial classes. We want to ensure that the highest
intensity area (containing both the WM and GM regions) has two sub-regions,
and we increase the number of groups until this is achieved. We obtain the
coordinates corresponding to the maximum grey value in the WM and GM
region by using WM and GM segmented areas separately. The WM and GM
center coordinates are propagated to neighboring slices by first using a small
circle around the coordinates. The circle area is used as the initial mask on the
neighbor slices to find the coordinates which can be used for the next slice central
points. Finally, according to our proposed model, we can define a rectangle region
for MS lesions in the joint histogram by using the average coordinate of WM
and GM which are generated in the previous steps. An example of the process
is shown in Fig. 3.

At this stage, some other parts, such as WM and GM regions, are still included
in the rectangle region. Fig. 4 shows an example of removing the non-lesions
region. Firstly, a fuzzy C-mean method with two clusters is used to extract the
brain tissue region. The result is shown in Fig. 4(b). Subsequently, erosion with
a circular structuring element (radius equal to 3 pixels) is used to disconnect the
normal brain tissue from the other regions and a 4-connected labeling method
is used to identify the normal brain region (assuming the normal tissue tends
to be the largest region present). Subsequently, the eroded area is regained by a
dilation (radius equal to 1 pixel). Fig. 4(c) shows the result. We use the normal
tissue region as a mask to remove the area which also exists in the rectangle
region. Finally, we draw a line which is determined by the coordinate centers of
WM and GM , and remove the region on the left side of the line. After removing
the normal tissue region, the remaining region, which is shown in Fig. 4(d),
represents the MS lesions. With this area, we can recognize whether MS lesions
exist in the volume and then segment MS lesions by using this region.

2.3 MS Lesions Slices Recognition

The abscissa and ordinate of each pixel coordinate inside the MS region in the
joint histogram which is generated from the previous steps are considered as the
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Fig. 3. The GM and WM coordinates estimation process

Fig. 4. An example of non-lesion region removal. (a) Joint histogram, (b) Fuzzy C-
mean segmentation, (c) Morphological processing, (d) MS lesions region (translucent
yellow region) overlayed on the joint histogram after non-lesion region removal.
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grey level value in T1 and T2, respectively. Then two images are generated by
using all the grey level values to the pixels in T1 and T2. Subsequently, the MS
lesions can be found by logical ’and’ for the two images. After that, a morphology
method is used to fill small holes. By considering the volume information, false
positive regions are removed. Specifically, all the connected areas in each slice
generated by the previous steps are labeled, and only those regions which are
located in roughly the same position in two neighboring slices in a volume are
considered as real regions and all the others are treated as false positives. We use
the interested regions as masks to extract the corresponding pixels in T2, then
convolve the generated slice with a Gaussian kernel (radius is defined as 5). We
define a threshold u to determine whether MS lesions exist in this slice. For each
slice, if the maximum pixel value of the image generated by the previous steps is
above u, the MS lesion exists and subsequently the false positive reduction step
is used. Otherwise, the procedure moves to the next slice in question.

2.4 False Positive Reduction

For those slices which contain potential MS regions, false positive reduction is
used to refine the segmentation results. In this step, a kernel function has been
introduced for region-based active contour segmentation in an effort to solve
the intensity inhomogeneities problem by extracting the intensity information
at local regions as defined by the kernel. A region-scalable model (RSF) [10] and
the GCS method [11] are used to obtain a convex behavior for the energy fitting
function. Subsequently, the data energy fitting function is minimized along the
deformation of the contour by using a split Bregman technique [12]. The energy
function is defined as [10]

E(φ, c1, c2) = ε(φ, c1, c2) + μP (φ) (1)

where the level set regularization term is defined as

P (φ) =
∫

1
2
(| ∇φ(x) | −1)2dx (2)

The region-scalable energy fitting function is defined as

ε(φ, c1, c2) =
2∑

i=1

λi

∫
Kσ(x− y) | fi(x) − I(y) |2 Mi(φ(y))dy (3)

where the Gaussian kernel function is given by Kσ(u) = (1/(2πσ2))e−|u|2/2σ2
.

Kσ(x − y) can be regarded as a weight on points y with regard to the center
point x. Due to the local aspect of the kernel function, the effect on ε generated
by I(y) is almost zero when y is further away from the center position x. The
local fitting energy ε is determined by the value of σ. In this case, the energy
of small region is small and these can be easily removed. In Eq. 3, M1(φ) =
H(φ),M2(φ) = 1−H(φ), φ denotes the boundary of MS lesions. The Heaviside
function H can be approximated by Hε [13].
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Hε(x) =
1
2

[
1 +

2
π
arctan

(
x− 0.5
ξ

)]
(4)

According to the derivation written by Li et al. [10], the optimal functions c1(x),
c2(x) that minimize E(φ, c1, c2) are obtained by:

ci(x) =
Kσ(x) ∗ [M ε

i (φ(x))I(x)]
Kσ(x) ∗M ε

i (φ(x))
, i = 1, 2 (5)

For fixed c1(x), c2(x), the function φ is defined as

∂φ

∂t
= −δ(φ)(λ1e1 − λ2e2) − div(

∇φ
| ∇φ | ) (6)

where δ is the derivative of Hε. ei(x) =
∫
Kσ(y− x) | I(x)− ci(y) |2 dy, i = 1, 2.

The simplified flow represents the gradient descent for minimizing the energy:

E(φ) =| ∇φ | +〈φ · r〉 (7)

where r = λ1e1 − λ2e2. Bresson et al. [14] transformed the constrained opti-
mization problem to an unconstrained optimization problem by restricting the
solution to lie in a finite interval: 0 ≤ φ ≤ 1, the global convex model can be
written as

min0≤φ≤1E(φ) = min0≤φ≤1(| ∇φ | +〈φ · r〉) (8)

Goldstein et al. [12] used the Split Bregman algorithm to solve the global convex
model. The Split Bregman algorithm for the minimization of Eq. 8 proposed by
Yang et al. [15] can be summarized as

1: while ‖ φk+1 − φk ‖> Ψ do
2: Define rk = λ1e

k
1 − λ2e

k
2

3: φk+1 = GS(rk,
−→
dk,

−→
bk , λ)

4: −→
d

k+1
= shrinkg(

−→
bk + ∇φk+1, 1/λ)

5: −→
b

k+1
= −→

b
k

+ ∇φk+1 −−→
d

k+1

6: Find Ωk =
{
x : φk(x) > μ

}
7: Update ek

1 and ek
2

8: end while

where GS(rk,
−→
dk,

−→
bk , λ) denotes the Gauss-Seidal iteration method, the −→b ,−→d are

auxiliary variables, the shrinkg is a shrinkage frame (see [12,15]), and Ω is the
refined MS lesions region.

After false positive reduction, we use the volume information to identify the
false negative regions. Specifically, all the interested regions segmented by the
previous steps are marked as true positive. Finally, considering the volume in-
formation, the corresponding relationship is used to find the false negative pixels
in the neighboring slices which are generated by the second step.
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Fig. 5. Segmentation results. Red: MS Lesions. From left to right: slice 40, slice 81,
slice 97, slice 100, slice 104, slice 111. The first row shows T1 MRI, the second row
shows T2 MRI, the third row shows our results overlayed (red) on T2, the fourth row
shows the segmentation results on T2 by using Rouäınia’s method [2], the fifth row
shows the ground truth (red) overlayed on T2.

3 Experimental Results

The approach was tested on 9% noise, 40% intensity non-uniformity Brain-
Web [16] simulated MRI data. Usually people report on lesion detection on
MRI images with 3% noise level. The T1 and T2 volumes (181× 217× 181 vox-
els) are co-registered. The voxel size was 1mm3. In the first step, all the joint
histograms are generated. Slice 90 in the histogram sequence is selected to find
the center coordinate of the WM and GM clusters. Then two circle masks with
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Fig. 6. Zoom in of segmentation results. Red: MS Lesions. The first row: slice 97. The
second row: slice 100. The third row: slice 104. The fourth row: slice 111.

radius equal to 4 are used to find the WM and GM coordinates in slices 80
to 100. The average coordinates of the cluster centers are WM (119, 82) and
GM (93, 91), respectively. According to the MS lesions distribution model, the
distribution region can be defined in the joint histogram. The range is from 80
to 119 on T1, and from 119 to 256 on T2. Subsequently, FCM and morphology
are used to remove the normal brain tissue. In the second step, false positive
regions are removed. The segmentation results are convolved with a Gaussian
kernel (radius equal to 5). A threshold u=30 is defined to determine whether
MS lesions exist. In the third step, the minimization of the Region-Scalable en-
ergy fitting method is used to reduce false positive pixels for the selected slices
with MS lesions. Finally, the false negative interested regions are found by using
corresponding relationship. In Eq. 1, μ = 1. In Eq. 3, λ1 = 10, λ2 = 20, the pa-
rameter σ is defined as 5. In Eq. 4, ξ = 0.1. The iteration termination criterion
of Split Bregman Ψ is defined as 10−6. Some of our results which are compared
with Rouäınia’s method [2] are shown in Fig. 5. We can see that our method
is more robust and deals well with high noise levels and inhomogeneous data.
In the case of high density inhomogeneous data, density method based on one
modality (e.g. [2]) will misclassify other tissues as MS lesions.

We also compared our method with the Leemput’s method [6] (referred to as
KVL) and Aı̈t-Ali’s method [7] (referred to as LSA) by using the BrainWeb [16]
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Table 1. Dice index for lesion segmentation on Brainweb data for different noise levels

Algorithm 3% noise 5% noise 7% noise 9% noise

KVL [6] 0.80 0.73 0.61 0.47
LSA [7] 0.79 0.75 0.74 0.70

Our algorithm 0.81 0.79 0.77 0.74

Fig. 7. Real brain images. (a) T1, (b) T2, (c) Our segmentation results (red) overlayed
on T1, (d) Manual segmentation of MS lesions (red) overlayed on T1.

data. The following co-registered modalities T1, T2 and PD were used for the
KVL and LSA segmentation methods as proposed in their papers. In our method,
we only use the co-registered T1 and T2 volumes. Experiments were done on
slices 60 to 120 which contain 93% of the lesions. The Dice Similarity Coefficient
(DSC) is used to compare segmentations. Given two targets R1 and R2, the DSC
is defined by:

DSC(R1, R2) = 2 × (R1 ∩R2)/(R1 +R2). (9)

where R1 and R2 denote the number of voxels assigned to the segmentation
results and the ground truth, respectively. In our experiment, different levels of
noise were added: 3%, 5%, 7% and 9% (one case at each noise level was used).
Tab. 1 shows MS lesion Dice results for KVL, LSA and our method. In all the
cases, our method shows improved results. In the KVL implementation (using
the publicly available code/tool box), the statistical brain atlas of SPM99 [17]
was normalized to the target brain volume images. In Fig. 6, four example slices
are shown. The automatic segmentation results of the test data show improved
results compared to alternative methods. However, compared with the ground
truth segmentation, the lesions are slightly under-segmented. Since the intensity
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of MS lesions changes gradually into normal tissue, and the lesions boundary con-
tain noise, it is still difficult to identify the optimal segmentation. We can use
the above results as a good initialization for a level set method to provide a re-
fined lesion boundary, so a structural over-segmentation and under-segmentation
may not be problematic. Also we can increase the erosion parameter, the results
would be improved in some cases.

Our algorithm are also tested on two real MRI volumes (512 × 512 × 512
voxels of 0.5 × 0.5 × 0.5 mm3). The average coordinates are calculated as WM
(209, 21) and GM (201, 28), respectively. The results compared with the manual
segmented results by a human expert are shown in Fig. 7. Again, this shows a
slight under-segmentation of MS lesions. However, as discussed in the previous
paragraph, this is not seen as a significant problem.

4 Conclusion and Future Work

In this paper, we have proposed a new method which can automatically recog-
nize and segment MS lesions. This is achieved by using a joint histogram that
exploits multi-sequence information to locate the MS lesions region in each slice.
This region is automatically estimated by using median filtering, class-adaptive
Gauss-Markov modeling, fuzzy C-means, morphology methods. We tested our
method on multi-modality images from BrainWeb. The evaluation showed that
our method based on joint histograms can effectively and automatically recog-
nize and segment MS lesions. Our method has three advantages. Firstly, it can
effectively solve the grey level overlap problem between MS lesions and other
tissues in the brain. Secondly, our method does not need to remove the skull and
can deal with any slice in the MRI volume. Thirdly, compared with state-of-art
methods, our approach is more robust and less sensitive to noise and inhomo-
geneous data. However, it should be clear that the developed methodology has
a slight heuristic feel to it and there are a number of parameters. With respect
to the latter, we have investigated ranges for most parameters which indicated
robustness.

In the future, we will validate our algorithm on a larger clinical database,
by comparing our segmentation results of MS lesions with ones manually seg-
mented according to type (young, inflammatory, necrosis) and their evolution
characteristics over time.
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Abstract. This paper presents a method to reconstruct a surface from
images of a scene taken by an equiangular catadioptric camera. Such a
camera is convenient for several reasons: it is low cost, and almost all vis-
ible parts of the scene are projected in a single image. Firstly, the camera
parameters and a sparse cloud of 3d points are simultaneously estimated.
Secondly, a triangulated surface is robustly estimated from the cloud.
Both steps are automatic. Experiments are provided from hundreds of
photographs taken by a pedestrian. In contrast to other methods work-
ing in similar experimental conditions, ours provides a manifold surface
in spite of the difficult (passive and sparse) data.

1 Introduction

The automatic 3d modeling of scenes from image sequence is still an active area
of research. In our context where the scene is an environment and the view points
are in the neighborhood of the ground (not aerial images), the use of a wide view
field camera is a natural choice since we should reconstruct everything which is
visible around the view points. There are two steps: geometry estimation and
surface estimation. The former estimates the camera parameters in conjunction
with a sparse cloud of 3d points of the scene surface. The camera parameters
are the successive 6D poses (rotation + translation) where the images are taken,
and intrinsic parameters which define the projection function of the camera. The
latter estimates a list of textured triangles in 3d from the images. In the ideal
case, the triangle list is a manifold surface which approximates the scene surface.
“Manifold surface” means that every point in the list has a neighborhood which
has the disk topology. Thus the triangle list has neither hole nor self-intersection
and it partitions the 3d space in “inside” and “outside” regions.

Now, our approach is compared with previous work. An exhaustive survey is
outside the paper scope and we focus on the most close approaches. In contrast
to the majority of other reconstruction systems, we don’t try to reconstruct a
dense set of points using dense stereo methods. We think that a well chosen and
sparse set of features is enough in many cases and for several applications such as
interactive walkthrough and vehicle localization. We also note that only a small
number of reconstruction systems use a catadioptric camera (a convex mirror
of revolution mounted in front of a perspective camera) and nothing more; the
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most used acquisition hardware is defined by one or several perspective camera(s)
pointing in several directions like the Ladybug [16].

A 3d modeling method of scene using a catadioptric camera was developed.
Firstly, the camera parameters (poses and intrinsic parameters) and a sparse
cloud of 3d points are estimated [11]. Then a quasi-dense reconstruction is done
and approximated by triangles [12]. However, these triangles are not fully con-
nected and the resulting 3d models have holes. Comparing with this method,
ours uses the same geometry estimation but a different surface estimation which
provides a manifold surface. We describes these two steps in Sections 2 and 3,
respectively.

An accurate surface reconstruction method from fully calibrated camera was
developed [7]. A great number of interest points are matched (in this context, a
non negligible part of them have low accuracy or even are false positive). Then,
a method based on 3d Delaunay of the reconstructed points and on optimiza-
tion (Graph-Cut) of all point visibilities (similar to [8]) is used to obtain an
approximation of the surface. Last, the surface is refined by minimizing a global
correlation score in the images. In practice, results are provided on sequences
with a reduced number of images (dozens of images). In this work, no informa-
tion is provided on how to obtain a manifold surface: the second optimization
(correlation) needs the manifold property but the first optimization (visibility)
does not enforce this property. We also use a 3d Delaunay of the reconstructed
points and optimize the point visibilities, but our 3d point cloud is sparser and
more accurate (it is provided by bundle adjustment of Harris interest points).

A reconstruction system based on a costly hardware mounted on a car was
also developed [17]. It involves several perspective cameras pointing in several
directions, accurate GPS/INS (global positioning system + inertial navigation
system). The approach is briefly summarized as follows. Firstly, successive poses
are estimated using Kalman fusion of visual reconstruction, INS and GPS. Sec-
ondly, interest points are detected and tracked in the images; then a sparse cloud
of 3d points is obtained. Third, this cloud is used to select planes in 3d, which
are used to drive a denser reconstruction. Fourth, the obtained 3d depth maps
are merged by blocks of consecutive images. Last, a list of triangles which ap-
proximate the dense 3d information is generated. This approach is incremental
and real-time, it allows reconstruction of very long video sequences. However,
the resulting surface is not manifold since the triangles are not connected. This
problem could be corrected by using a merging method such as [4] followed
by a marching cube [13], but this is not adequate to large scale scene since it
requires a regular subdivision of space into voxels. For this reason (and other
reasons mentioned in [8]), an irregular subdivision of space into tetrahedra is
more interesting for large scale scene.

A few works renounce to reconstruct a dense cloud of points for 3d scene
modeling. In [15] and [14], the main goal is real-time reconstruction. Both papers
reconstruct a sparse cloud of points, add them in a 3d Delaunay triangulation,
select the “outside” tetrahedra thanks to visibility (a tetrahedron is “outside”
if it is between a 3d point and a view point where the point is seen). The
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remaining tetrahedra are “inside” and the surface result is the list of triangles
between inside and outside tetrahedra. Both works are experimented on very
simple scenes and their surfaces are not guaranteed to be manifold.

Note that a lot of Delaunay-based surface reconstruction methods exist [2]
to reconstruct a (manifold) surface from an unorganized point cloud, but these
methods require a dense enough cloud and ignore the visibility constraints pro-
vided by a geometry estimation step. In our context where visibility constraints
are used, the list of adequate methods is reduced to [5,8,15,7,14]. Among these
works, only [5] gives some details on how to obtain a manifold surface, but this
is experimented on very small input cloud.

2 Geometry Estimation

Here we introduce the catadioptric camera and summarize problems to be solved
in the catadioptric context: matching, geometry initialization and refinement.

2.1 Catadioptric Camera

Our low cost catadioptric camera is obtained by mounting a mirror of revolution
in front of a perspective camera (the Nikon Coolpix 8700) thanks to an adapter
ring. We assume that the catadioptric camera has a symmetry axis and the scene
projection is between two concentric circles (Fig. 1). The camera model defines

a0

a1

a

r
c

p

o

m

Fig. 1. From left to right: catadioptric camera, camera model (view field and image),
and catadioptric image. The camera model has center c, symmetry axis (vertical line),
view field bounded by two angles a0 and a1. Point p with ray angle a (such that
a0 ≤ a ≤ a1) is projected to m with radius r between the two concentric circles.

the projection function from the camera coordinate system to the image. Our
model is central (all observation rays of the camera go through a point called
the centre) with a general radial distortion function. This distortion function
is a polynomial which maps the ray angle a (between the symmetry axis and
the line between a 3d point and the centre) to the image radius r (the distance
between the point projection and the circle center in the image). This model is
a Taylor-based approximation which simplifies the geometry estimation.
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During a sequence acquisition, the camera is hand-held and mounted on a
monopod such that the symmetry axis is (roughly) vertical. The mirror [1] is
designed such that the distortion function is linear (equiangular camera) with a
very large view field: 360 degrees in the horizontal plane and about 40 degrees
below and above. In practice, the user alternates a step forward in the scene
and a shot to get a sequence of photographs. We don’t use video (although the
acquisition is more convenient) since the video hardware under similar view field
and image quality is more costly.

2.2 Matching

Here we explain how to match image points detected in two successive images
of the sequence. According to the acquisition process described in Section 2.1,
the camera motion is a sequence of translations on the ground and rotations
around axes which are (roughly) vertical. In this context, a high proportion of
the image distortion (due to camera motion) is compensated by image rotation
around the circle center. The Harris point detector is used since it is invariant to
such image rotation and it has a good detection stability. We also compensate
for the rotation in the neighborhood of the detected points before comparing the
luminance neighborhood of two points using the ZNCC score (Zero Mean Nor-
malized Cross Correlation). Here a list of point pairs matched in the two images
is obtained. Then the majority of image pixels are progressively matched using
match propagation [10]. Last the list is densified: two Harris points satisfying
the propagation mapping between both images are added to the list.

2.3 Geometry Initialization

Firstly, the radial distortion function (Section 2.1) which maps the ray angle to
the image radius is initialized. On the one hand, approximate values of the two
angles which define the view field (above and below the horizontal plane) are
provided by the mirror manufacturer. On the other hand, the two circles which
bound the scene projection are detected in images. Since the two angles are
mapped to the radii of the two circles, we initialize the radial distortion function
by the linear function which links these data. Second, the ray directions of the
matched Harris points are estimated thanks to the calibration. Third, the 2-
view and 3-view geometries (camera poses and 3d points) of consecutive images
pairs are robustly estimated from the matched ray directions and RANSAC
applied on minimal algorithms (more details in [11]). Fourth, we estimate the
whole sequence geometry (camera poses and 3d points) using adequate bundle
adjustments (BAs) applied in a hierarchical framework [11]. Remind that BA
is the minimization of the sum of squared reprojection errors by the (sparse)
Levenberg-Marquardt method [6].

2.4 Geometry Refinement

As mentioned in Section 2.1, our camera model is an approximation. Further-
more, the two angles used for the initialization above are also approximations
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of the true angles (they depend on the unknown pose between mirror and the
perspective camera). For these reasons, our current model should be refined.
Therefore the linear radial distortion polynomial is replaced by a cubic polyno-
mial whose the four coefficients should be estimated [11]. Then we apply a last
BA to refine simultaneously all camera poses, 3d points and the four coefficients.
A 2D point is involved in BA iff its reprojection error is less than a threshold (2
pixels).

3 Surface Estimation

Firstly, the link between the 3d Delaunay triangulation and the surface estima-
tion problem is described. Then we explain how to obtain a manifold surface
from the data provided by the geometry estimation in Section 2. These data
are the cloud P of 3d points pi, the list C of view points cj (3d location of
images), and the visibility lists Vi of pi (i.e. pi is reconstructed from the view
points cj such that j ∈ Vi). The surface estimation has four steps: 3d Delaunay,
Ray-Tracing, Manifold Extraction, and Post-Processing.

3.1 From 3d Delaunay Triangulation to Surface Estimation

Let T be the 3d Delaunay triangulation of P . Remind that T is a list of tetrahedra
which “partitions” the convex hull of P such that the vertices of all tetrahedra
are P . By “partitions”, we means that the union of tetrahedra is the convex hull
and the intersection of two tetrahedra t0 and t1 is either empty or a t0 vertex or
a t0 edge or a t0 triangle (i.e. a t0 facet). Here are two useful properties of T [2]:
(1) the edges of all tetrahedra roughly define a graph neighborhood of P in the
different directions and (2) two different triangles of the tetrahedra are either
disjoint, or have one vertex in common, or have two vertices (and its joining
edge) in common.

Assume that P samples an unknown surface S0. We would like to approximate
S0 by a triangle list S whose vertices are in P . The denser sampling P of S0,
the better approximation of S0 by S. Since this approximation boils down to
define connections between points of P which are neighbors on the surface, a
possible approach is to search S as a subset of the facets of all tetrahedra of T .
In this case, the triangles of S meet property (2) above. Now assume that (3)
all vertices of S are regular. A vertex p of S is regular if the edges opposite to
p in the triangles of S having p as vertex form a simple polygon (Fig. 2). S is a
manifold surface since it meets (2) and (3).

3.2 3d Delaunay

As suggested in Section 3.1, the first step is the 3d Delaunay triangulation of
P . Remind that pi has very bad accuracy if it is reconstructed in degenerate
configuration: if pi and all cj , j ∈ Vi are (nearly) collinear [6]. This case occurs in
part of the camera trajectory which is a straight line and if points reconstructed
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Fig. 2. O is regular since the edges opposite to O define a simple polygon abcdea. O′

and O′′ are not regular since polygons a′b′c′d′e′a′ − f ′g′h′f ′ and a′′b′′c′′d′′e′′a′′f ′′g′′a′′

are not simple (the former is not connected, the latter has multiple vertex a′′).

from this part are in the “neighborhood” of the straight line. Thus, P is filtered
before Delaunay: we remove pi from P if all angles ̂cjpick (j, k ∈ Vi) are less than
a threshold ε. It is also possible to improve the final S by adding “artificial points”
in P which have empty visibility lists (more details are given in Section 4).

3.3 Ray-Tracing

Now we use the visibility information to segment T in “outside” and “inside”
tetrahedra. Note that a tetrahedron is 100% inside or 100% outside since our
target surface is included in the facets of all tetrahedra of the partition T . A
tetrahedron which is intersected by ray (line segment) cjpi, j ∈ Vi is outside
since point pi is visible from view point cj . In practice, all tetrahedra are ini-
tialized inside and we apply ray-tracing for each available ray to force outside
all tetrahedra intersected by the ray.

In our catadioptric context where points are reconstructed in almost all di-
rections around view point, the view points are in the convex hull of P . This
implies that the region outside the convex hull of P can not be intersected by ray
and this region is classified inside. For implementation convenience [3] (obtain
a complete graph of tetrahedra), tetrahedra are added to establish connections
between the “infinite point” and the facets of the convex hull. These tetrahedra
are classified inside although they have no physical volume in 3d.

3.4 Manifold Extraction by Region Growing

At first glance, S could be defined by the list of triangles separating the inside
and the outside tetrahedra. Unfortunately, the experiment shows that S is not
manifold because it has vertices which are not regular (Section 3.1).

It is suitable to change the outside and inside definitions for the manifold
extraction: outside becomes intersected, inside becomes non-intersected, and now
the outside tetrahedra form a sub-list O of intersected tetrahedra such that its
border S (a list of triangles) is manifold. The tetrahedra which are not outside
are inside. These new definitions apply in the sequel of the paper.

Growing one tetrahedron at once. The manifold extraction is a region
growing process: we progressively add to O new tetrahedra, which were inside
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and intersected, such that the border S of O is continually manifold. Region
growing is a convenient way to guarantee the manifold constraint, but the final
O depends on the insertion order of the tetrahedra in O. Indeed, a tetrahedron in
O which has vertices in S enforces manifold constraints on these vertices, which
are shared by other tetrahedra which are not (or not yet) in O.

To reduce the manifold constraints, we choose the new tetrahedron such that
it has at least one facet included in S (i.e. it is in the immediate neighborhood
of O). We also choose a priority score for each intersected tetrahedron to define
the insertion order: the number of rays which intersect the tetrahedron. The
tetrahedra in the neighborhood of O are stored in a priority queue for fast
selection of the tetrahedron with the largest priority.

Growing several tetrahedra at once. Note that the region growing above
does not change the initial topology of O. Here O is initialized by the tetrahedron
with the largest score and it has the ball topology. This is a problem if the true
outside space has not the ball topology, e.g. if the camera trajectory contains
closed loop(s) around building(s). In the simplest case of one loop, the true
outside space has the toroid topology and the computed outside space O can
not close the loop (left of Fig. 3).

We correct this kind of problem with the following region growing. Firstly,
we find a vertex on S such that all inside tetrahedra which have vertex S are
intersected. Then, we force all these tetrahedra to outside. If all vertices of these
tetrahedra are regular, the region growing is successful and O is increased. In the
other case, we restore these tetrahedra to inside. In practice, we alternate “one
tetrahedron at once” and “several tetrahedra at once” region growings until no
tetrahedron may be added in O.

Fig. 3. Left: adding one tetrahedron at once in O (in light blue) can not close the loop
due to non regular vertex. Right: adding several tetrahedra at once close the loop.

3.5 Post-Processing

Although the surface S provided by the previous steps is manifold, it has sev-
eral weaknesses which are easily noticed during visualization. Now we list these
weaknesses and explain how to remove (or reduce) them using prior knowledge
of the scene.

A “peak” is a vertex pi on S such that the ring of its adjacent triangles
in S defines a solid angle w which is too small (or too large) to be physically
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plausible, i.e. w < w0 or w > 4π − w0 where w0 is a threshold. We try to
remove peak pi from S as follows. We consider the acute side of the peak (inside
or outside tetrahedra) and reverse its status (inside becomes outside, and vice
versa). The removal is successful if all vertices of the reversed tetrahedra are
regular. Otherwise, the reversed tetrahedra are reversed a second time to go back
in the previous configuration and we try to remove an other peak. In practice,
we go through the list of S vertices several times to detect and remove the peaks.

The surface S is smoothed to reduce the reconstruction noise. Let p be the
concatenation vector of all pi in S. We apply a mesh smoothing filter p ← p+Δp
where Δp is a discrete laplacian defined on the mesh vertices [18].

Up to now, S is closed and contains triangles which correspond to the sky
(assuming outdoor image sequence). These triangles should be removed since
they do not approximate a real surface. They also complicate the visualization
of the 3d model from a bird’s-eye view. Firstly, the upward vertical direction v is
robustly estimated assuming that the camera motion is (roughly) on a horizontal
plane. Secondly, we consider open rectangles defined by the finite edge cici+1

and the two infinite edges (half lines) starting from ci (or ci+1) with direction
v. A triangle of S which is intersected by an open rectangle is a sky triangle
and is removed from S. Now S has hole in the sky. Lastly, the hole is increased
by propagating its border from triangle to triangle such that the angle between
triangle normal (oriented from outside to inside) and v is less than threshold α0.

Last, the texture should be defined for each triangle of S. We use a simplified
version of [9], which gets “as is” the texture of a well chosen view point cj

for each triangle t of S. In our case where the image sequence has hundreds of
images (not dozens), we pre-select a list of candidate cj for t as follows: t is
entirely projected in the cj image (large t are splitted), t is not occluded by an
other triangle of S, cj provides one of the k-largest solid angle for triangle t.

4 Experiments

The acquisition set up is described at the end of Section 2.1. Our sequence has
208 images taken along a full turn around a church. The trajectory length is
about (25± 5cm)× 208 = 52± 10m (the exact step lengths between consecutive
images are unknown). The radii of large and small circles of the catadioptric
images are 563 and 116 pixels.

The geometry estimation step (Section 2) reconstructs 76033 3d points from
477744 2D points (inliers). The RMS error of the final bundle adjustment is 0.74
pixels. The estimated view field angles (Fig. 1) are a0 = 41.5 and a1 = 141.7
degrees; the angles provided by the mirror manufacturer are a0 = 40 and a1 =
140 degrees. Fig. 4 shows images of the sequence and the result of this step.

Then the surface is estimated (Section 3) using ε = 5 degrees, w0 = π/2 stera-
dians, α0 = 45 degrees, and k = 10. Fig. 5 explains the advantages of the steps of
our method. Row 1 shows that the reconstructed points can not be used “as is” as
vertices of the surface. The surface fairing (peak removal and surface smoothing)
is necessary. Remind that a 3d point may be inaccurate for several reasons: (1) if
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Fig. 4. Top view of the geometry estimation result (left) and four catadioptric images
(right) for the church sequence. The top view includes 76033 points, 208 poses around
the church, numbers for the locations of the four images, “T” for tree locations around
the camera trajectory, and numbers for the image locations.

it has large depth (it is reconstructed from far camera poses), (2) if it has small
depth (the central approximation of the true non-central camera model provides
bad accuracy in our context) and (3) image noise. Row 2 shows top views of the
surface before (left) and after (right) the sky removal. On the left, the surface is
closed and we see the sky triangles. On the right, the surface can be visualized at
a bird’s eye view. Note that the current version of the sky removal process is very
simple; it should be improved to remove large triangles on the top of the model
(including those which connect trees and the church). The left of row 3 shows that
the surface forms a blind alley if the “several tetrahedra at once” region growing
is not used (the pedestrian can not go from location 3 to location 4, see Fig. 4).
The right of row 3 shows that the loop is closed around the church if this region
growing is used (the pedestrian can go from location 3 to location 4). Row 4
shows that the “several tetrahedra at once” region growing is also very useful
to improve the outside space estimated by the “one tetrahedron at once” region
growing. However, both region growings are not enough to avoid problems as the
one shown on the left of row 5: there is an ark which connects a vertical surface
to the ground, although all tetrahedra which define the ark are intersected by
rays. We tried to solve this problem by changing the priority score of the tetra-
hedra, but arks always appear somewhere. Here we greatly reduce the risk of
arks thanks to a simple method. In the 3d Delaunay step, “artificial points” are
added in P such that the long tetrahedra potentially involved in arks are split-
ted in smaller tetrahedra. The artificial points are added in a critical region for
visualization: the immediate neighborhood of the camera trajectory. Technical
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Fig. 5. Row 1: local view of the church 3d model without (left) or with (right) peak
removal and surface smoothing (Section 3.5). Row 2: top view without (left) or with
(right) the sky removal (Section 3.5). Rows 3 and 4: without (left) or with (right) the
“several tetrahedra at once” region growing (Section 3.4). Row 5: without (left) or with
(right) the artificial points (Section 3.2). In all cases, gray levels encode the triangle
normals.
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Fig. 6. Bird’s-eye views of the church 3d model obtained with the complete method

details are described in the appendix for the paper clarity. The right of row 5
shows that ark is removed thanks to the artificial points. Fig. 6 shows other
views of the church obtained with the complete method.

The 3d Delaunay has 59780 vertices and is reconstructed using the incremen-
tal 3d Delaunay of CGAL [3]. During the ray tracing step, 191947 tetrahedra are
intersected by 398956 rays. The manifold extraction step by region growing pro-
vides a surface with 94228 triangles and 162174 outside tetrahedra. The ratio be-
tween outside and intersected tetrahedra is 86% (the ideal value is 100%). Lastly,
898 sky triangles are removed. The surface estimation (without texturing) takes
about 30 seconds on a Core 2 Duo E8500 at 3.16 GHz. A complete walkthrough
around the church is provided in a mpeg video available at www.lasmea.univ-
bpclermont.fr/Personnel/Maxime.Lhuillier. This video is cyclic and includes the
sky since the 3d model is viewed from a pedestrian’s-eye view

5 Conclusion

The proposed method has two steps: geometry estimation and surface estima-
tion. We briefly summarize the former and focus on the latter. Our results con-
trast with the previous ones since we are able to provide manifold surface (up to
sky removal) from a reconstructed sparse cloud of points (instead of dense) in non
trivial cases. The current system is able to reconstruct the main components of
outdoor scene (ground, buildings, dense vegetation) and allows interactive walk-
through. Technical improvements are possible for several steps (surface fairing,
sky removal and texture mapping). Future work includes the integration of edges
in the 3d model, a real-time version of the surface estimation step, and a specific
process for thin structures such as trunks and electric posts.

Appendix

The artificial points have empty visibility lists, their number is equal to 0.5% of
the number of the reconstructed points, and they are randomly and uniformly
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added in the immediate neighborhood N of the camera trajectory. We define N
by the union of half-balls (southern hemispheres such that the north direction
is v) centered on all cj with radius r = 10 meanj ||cj+1 − cj ||.
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Abstract. In this paper, a method to enable people to experience "Chinkin" in 
the virtual space is introduced. Chinkin is a traditional artistic technique to draw 
designs on lacquer ware with fine lines and dots, and it was widely used to 
produce Daimyo's utensils in the Edo period during the 17th and the 19th 
century in Japan. The author develops a virtual Chinkin system based on the 
virtual sculpting method which is an interactive CG creating method developed 
by the author. Chinkin consists of some processes and each process is realized 
by virtual carving: an interactive deformation of solids, and virtual painting: an 
interactive generation of a 3D texture map. In this system, the user can 
experience each process of the Chinkin technique in the virtual space and can 
create virtual sculptures ornamented with Chinkin designs as CG. Both the 
operation and the result are similar to the real ones and it would be useful for 
introduction, education and preservation of the traditional Chinkin technique at 
museum and school. 

1   Introduction 

Computer technology has been progressed remarkably and it is widely used in many 
fields. Recently the field of heritage and museum is very interested in using computer 
technologies. The most principal duty of former museums for visitors is just to exhibit 
their collections and tell their brief background information. However, recent 
museums are expected to tell more background and related information of the 
collections and they have to treat huge information. Thus some museums start to use 
computer graphics (CG), virtual reality (VR), network technologies and robotics for 
dissemination and interaction about their collections, and many researches for digital 
museums are studied, such as a digital display case for museums [1], a museum guide 
system providing visual and auditory feedback via a sensor board [2], and a museum 
tour guide robot [3]. Information techniques are also used for digital archives of 
artistic works, artistic techniques, and heritage recently [4, 5]. 

One of the important duties of museums is to tell traditional and artistic techniques 
of creating museum arts and crafts. Real experience of such art-creating techniques is 
a good way to learn, but it is usually difficult to prepare places, tools, and guides for 
those techniques. Some of art-creating techniques use knives and chemicals, and they 
would be dangerous. One of the solutions for this problem is virtual experience of art-
creating techniques. Interactive CG creating methods such as sketch-based operation 
is suitable for these purposes. A lot of methods to simulate drawing materials such as 
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brushes and pencils to create 2D CG are developed [6, 7]. Some art-creating 
techniques such as clay work and embossing are simulated to realize interactive 3D 
CG creating system [8, 9, 10]. The operations and the results are similar to those of 
the real arts in those CG systems and the user could have experience of art-creating 
techniques in the virtual space, and they are useful for education, and preservation of 
the art creating technique at schools and museums. As one of these CG creating 
methods, the author has taken wooden sculpting and printing, and has developed a CG 
creating system [11, 12, 13]. In this system, the user can experience virtual wooden 
carving and woodblock printing, and can create works as 2D and 3D CG interactively. 

The author is doing research on using information technology such as CG and Web 
for the Tokugawa Art Museum with other researchers and curators of the museum. 
The Tokugawa Art Museum is famous as a large Japanese traditional art collection 
created in the Edo period during the 17th and the 19th century. The principal 
collections of this museum are the Daimyo's utensils, such as furniture and dinner 
sets. Many of the Daimyo's utensils are lacquered and ornamented with beautiful 
designs. They are often produced with "Chinkin" and "Makie" techniques, and many 
visitors are interested in those traditional Japanese artistic techniques. 

In this paper, a method to enable people to experience Chinkin in the virtual space 
is proposed. This method is implemented on the virtual sculpting system: an 
interactive CG creating system developed by the author, and a virtual Chinkin system 
is developed. The user can experience the Chinkin technique in the virtual space and 
can create works ornamented with Chinkin as 3D CG interactively. Each process of 
Chinkin is realized by improvement of virtual carving and virtual painting methods 
which the author has developed for the virtual sculpting system. In the proposed 
method, both the operation and the works created by the system are similar to the real 
ones and it would be useful to introduce this traditional art technique in the museum. 

2   Overview of the Real Chinkin Technique 

Lacquer ware is also called "Japan ware", and it is widely known as a traditional craft 
in Japan and some Asian countries [14]. Typical lacquer wares are furniture, dining 
utensils or sculptures made of wood, and they have been produced in many places in 
Japan. A type of lacquer ware: "Wajima-nuri" crafted around Wajima city in Japan is 
renowned for its beautiful lacquered surfaces and the ornamental designs drawn on 
them. 

The ornamental design of Wajima-nuri is often drawn with fine gold lines or dots. 
This design is usually created with a "Chinkin" technique. Chinkin is a traditional 
artistic technique in Japan and some Asian countries to draw designs on lacquered 
surfaces as shown in Fig. 1. 
The process of the Chinkin technique is as follows. 

 
1. The design is carved into the lacquered surface with a very sharp chisel or a needle 

as shown in Fig. 2(a). This process is called "Subori".  
2. Lacquer is inlayed into the carved track for gluing. 
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3. Gold powder or leaf is put on the lacquered surface as shown in Fig. 2(b) and the 
piece is placed in a damp environment. The gold powder sticks to the applied 
lacquer. This process is called "Kin-ire". 

4. The lacquered surface is wiped with a cloth, the excess gold is wiped off, and only 
the gold in the carved track is left. The design comes out with gold lines and dots 
as shown in Fig. 2(c) and Fig. 2(d). This process is called "Shiage". 

  

Fig. 1. Works of Chinkin 

    

  (a) "Subori"          (b) "Kin-ire"        (c) "Shiage"     (d) A work with Chinkin 

Fig. 2. The process of creating a Chinkin work 

In creating Chinkin, it is necessary to carve a lacquered surface with a chisel first, 
so a failure is not allowed and elaborate skills are required. In addition, lacquer might 
cause a skin rash. So there are many people who are interested in creating Chinkin 
works, but it is not so easy for them to experience Chinkin actually. 

3   Outline of Virtual Sculpting 

The method for virtual Chinkin is realized based on the virtual sculpting method 
developed by the author. Virtual sculpting is an interactive 3D CG creation method 
based on carving and painting operation implemented with a pressure sensitive pen 
and a LCD display. The user can create a virtual solid work as a 3D CG by carving 
and painting a virtual object interactively.  

In virtual Chinkin creation, a lacquered virtual sculpture is ornamented by a virtual 
Chinkin technique: Subori, Kin-ire, and Shiage in the same way as a real Chinkin 
creation. The virtual Subori process is realized based on the virtual carving method, 
and the virtual Kin-ire process and the virtual Shiage process are realized based on the 
virtual painting method. 
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3.1   Virtual Carving 

In virtual carving, an original workpiece and virtual chisels are prepared. The original 
workpiece is polyhedron by curved surfaces and the shape is expressed as a CSG 
(Constructive Solid Geometry) with quadric surfaces. Each virtual chisel is defined by 
a cube, an ellipsoid, a cylinder, and combinations of them.  

The user operates a virtual chisel on the surface of the virtual workpiece with a 
pressure sensitive pen (Fig. 3(a)). When the user drag a pen on a display, the position 
and the pressure of the operation decide the position of the chisel in the virtual space 
(Fig. 3(b)). The tilt of the virtual chisel is decided by the tilt of the pen and the 
transition of the pressure of operation. The carving track is created by combining the 
shape of virtual chisels automatically (Fig. 3(c)). The shape and the depth of carving 
track would be changed according to the operation of the pen, and the user can 
experience realistic virtual carving operation. 

The surface is removed or attached by the shapes of chisels and deformed 
immediately (Fig. 4(a)). By performing these operations repeatedly, the user can 
create a virtual sculpture (Fig. 4(b)). The Shape of a virtual sculpture is also expressed 
by a CSG expression with quadric surfaces. 

        

   (a) Carving with a pen           (b) Placing a virtual chisel     (c) Creating a carving track 

Fig. 3. Outline of virtual carving 

                                      

 (a) Removing/attaching a virtual chisel                  (b) An example of a virtual sculpture 

Fig. 4. Deformation of a solid object by carving operations 

In this system, lists of intersecting points are used to deform the workpiece 
expressed with CSG in real time [11]. A list of intersecting point is generated for each 
viewing line correspondence to all pixels of the screen. Each list stores all intersecting 
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points of the viewing line with the surface of the workpiece, and arranges them in 
order of distance from the viewpoint. The head of each list is a visible intersecting 
point for each viewing line and used to compute the luminance and render an image. 
Lists for an original workpiece are generated first, and redrawing after each carving 
operation is performed by renewing the lists. Renewing process is enough fast and 
suitable for interactive deformation. The lists are also renewed when the viewpoint is 
changed by replaying the carving record from the beginning. 

3.2   Virtual Painting 

The user can paint ink on a virtual sculpture with a virtual brush directly. This is 
realized by generating and renewing a 3D texture map with painting operation. Some 
methods to create texture by painting operation have been developed [15]. The virtual 
painting method in this paper pays attention to small irregularities on the surface of a 
virtual sculpture and contact with a virtual pen. This method is similar to the way to 
check the local accessibility of the surface [16], and the similar effect is realized in 
some commercial CG software such as cavity masking of Zbrush [17]. The proposed 
method in this paper checks collision points between the surface of a virtual sculpture 
and a virtual brush and renew the 3D texture map at the same time in once painting 
operation. This method is used for Kin-ire and Shiage process in virtual Chinkin. 

The tip of the virtual brush is defined by a sphere (the radius: r) as shown in Fig. 5. 
When the user operates a virtual brush with a pressure sensitive pen, a painting area 
on the surface of the virtual sculpture is decided and the system rolls the sphere of the 
virtual brush in the area. 

The collision points between the sphere and the surface of the sculpture are 
calculated by using points of the surface stored in the lists of intersecting points. Fig. 
6(a) shows the decision process of the contact points. The center point of the sphere is 
put on one viewing line first and it moves on the viewing line. Then the distance 
between the center point of the sphere and each intersecting point is calculated, and 
the position of the sphere is decided. Intersecting points near the surface of the sphere 
(the distance <d) are considered as contact points.  

This process is done on every viewing line in the painting area. The collision 
points are judged as painted, corresponding pixels of the 3D texture map are renewed 
immediately, and the image of a painted virtual sculpture is synthesized. 

The size of the virtual brush: the painting area and the radius of the sphere of the 
tip changes depending on the pressure of the operation, so the painting result would 
be changed according to the operation and the shape of the virtual sculpture as shown 
in Fig. 6(b). In this virtual painting method, tracks carved by a sharp chisel would not 
be painted as a real painting process (Fig. 5, Fig. 6). 

 

Fig. 5. A method for virtual painting 
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(a) The decision process of collision points         (b) Painting a virtual sculpture 

Fig. 6. The decision process of collision points and an example of virtual painting result 

4   Implementing Virtual Chinkin 

In this paper, Subori, Kin-ire, and Shiage processes in the Chinkin technique are 
studied and implemented on the system. Each technique of Chinkin is realized in the 
virtual space based on the virtual sculpting method. A carving process, a painting 
process, and a 3D texture map of the virtual sculpting system are improved for the 
virtual Chinkin method. 

4.1   The Subori Process 

In the real Subori process, a craftsman carves designs into lacquered surfaces with a 
shape chisel or a needle (Fig. 2(a)), and it is much the same as wooden carving 
process.  

In the virtual Subori, a virtual lacquered sculpture is prepared in the system. The 
shapes of a chisel and a needle for Subori could be expressed as a triangle and an 
ellipsoid respectively (Fig. 7(a)(b)). The same shapes of virtual chisels are prepared 
(Fig. 7(c)(d)), and the user carves the surface of a virtual lacquered sculpture with 
virtual chisels in first step of the virtual Chinkin creation. 

    

    (a) A real needle      (b) A real chisel       (c) A virtual needle     (d) A virtual chisel 

Fig. 7. Chisels for "Subori" (real and virtual) 
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4.2   The Kin-Ire Process 

The virtual Kin-ire process and the virtual Shiage process are realized by improving a 
3D texture map and the painting process of the virtual sculpting. In the former virtual 
sculpting system, a 3D texture map consists of color values (RGB) and a moisture 
value, which expresses virtual ink and mainly used for creating virtual wooden prints 
[12]. In the Chinkin technique, a workpiece is painted both with lacquer and gold 
powder, and the properties of reflection of two materials are different very much. So, 
in this study the coefficient of specular reflection is added to the elements of the 3D 
texture map. 

In the real Kin-ire process, the craftsman spread gold powder on the lacquered 
surface with a brush (Fig. 2(b)). The behavior of the gold powder is similar to ink, and 
the operation is similar to painting with a brush, so the virtual Kin-ire process is 
realized by improving the virtual painting method. When the user operates a virtual 
brush, the points where the brush reaches are considered that the gold powder is stuck 
to and the corresponding pixels of the 3D texture map are changed from lacquer to 
gold. 

In the Kin-ire process, the gold powder sticks not only on the lacquered surface but 
also inside of the track carved by a chisel. To realize that in virtual Chinkin, the size 
of a sphere which expresses the tip of the virtual brush is determined small 
independently of the pressure of operation enough to go into the track (Fig. 8(a)). 

4.3   The Shiage Process 

In the real Shiage process, the craftsman wipes the gold powder off from the 
lacquered surface with a cloth, and only the gold powder in carved tracks is left 
because the gold powder in the carved tracks is adhered with lacquer and the cloth 
does not reach inside of the tracks (Fig. 2(c)(d)).  

The virtual Shiage process is also realized by improving the virtual painting 
method. The cloth could be considered as a kind of a painting brush. The cloth would 
not reach inside of the carved tracks, so the sphere of the virtual cloth is determined 
large independently of the pressure of operation not to go into the track (Fig. 8(b)). 
The user operates a virtual cloth (brush), and the points where the cloth reaches are 
considered that the gold powder is wiped off and the corresponding pixels of the 3D 
texture map are changed from gold to lacquer. 

 

(a)Virtual "Kin-ire" process        (b)Virtual "Shiage" process 

Fig. 8. "Kin-ire" and "Shiage" in virtual Chinkin 
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5   Point-Based Rendering for Virtual Sculptures 

In the virtual sculpting method, lists of intersecting points are constructed for each 
viewing line as mentioned in Chapter 3, and they are used for interactive deformation 
and image rendering of a virtual sculpture. Renewing process is enough fast for each 
carving operation in real time. However it is necessary to reconstruct whole lists to 
change a viewpoint by replaying carving record from the beginning.  

To change a viewpoint in real time, a point-based rendering method is adopted in 
the system. Point-based rendering is a technique that renders objects as a set of points 
and it is often used to render huge data obtained by a 3D scanner from a wide scene 
[18]. In the virtual sculpting method, the lists of intersecting points store whole 
intersecting points of viewing lines with the virtual sculpture correspondence to all 
pixels of the screen. All points are on the surface of the virtual sculpture and they are 
useful for point-based rendering in moving a viewpoint. 

As far as seeing from the original viewpoint, all intersecting points look perfectly 
adjacent each other and the rendered image is equal to an image rendered by the 
former method (Fig. 9(a)). However, when the viewpoint is changed, holes between 
points would be appeared (Fig. 9(b)(c)). To fill such holes in point-based rendering 
method, a disk is often used to render each point [19]. This method is effective if 
points are distributed uniformly. However, points stored in the lists of intersecting 
points are generated by projection from a viewpoint, so densities of points at a surface 
of the virtual sculpture would be changed according to the angle between normal 
vectors of the surface and viewing lines. 

Thus line segments are used to render points in this paper. In the lists of 
intersecting points, each two points always make a pair and a segment line between 
them shows inside of the virtual sculpture. The color of each segment line is decided 
to interpolate colors of two points linearly. Half pairs of points are rendered as 
segment lines and other points are rendered as points. 

A virtual sculpture is rendered with the point-based rendering method during 
moving a viewpoint, and when a new viewpoint is fixed, lists of intersecting points at 
a new viewpoint are reconstructed to prepare additional deformation by carving 
operation, and a fine image is at a new viewpoint rendered by the former method. 

 

      (a)                   (b)                  (c) 

Fig. 9. Rendering a virtual sculpture only with a set of points. A virtual sculpture is seen from 
an original viewpoint (a), seen from an angle of 45 degrees (b), and seen from an angle of 90 
degrees (c). 
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5   Experiments 

5.1   Implementation 

The proposed methods are implemented on a Windows PC (CPU: Intel Core2 
Extreme 3.2GHz, memory size: 2GB, Graphics board: GeForce 9800GTX, 512MB), 
and a LCD pen display (Wacom Cintique), and a prototype CG system was built. The 
resolution of the window for an image is 512x512 (pixels), and the resolution of a 3D 
texture map is 512x512x512 (pixels). The resolution of the 3D texture map is limited 
by the memory size of the PC. 

5.2   Results 

Images in Fig. 10 are rendered as the proposed method using points and segment 
lines. About 210,000 points and 50,000 segment lines are used for the image, and the 
computation time is about 30(fps). Line segments could interpolate each pair of points 
and fill holes. Some details of the surface are lost by the interpolation. However this 
method is used only in moving a viewpoint and a fine image generated when a new 
viewpoint is fixed, so the quality is enough fine to see the shape of a virtual sculpture 
in moving a viewpoint.  

 

      (a)                  (b)                   (c) 

Fig. 10. Rendering virtual sculptures with points and line segments. A virtual sculpture is seen 
from an angle of 45 degrees (a), seen from an angle of 90 degrees (b), and another painted 
sculpture is seen from an angle of 45 degrees (c). 

Fig. 11 shows the virtual Chinkin technique. The user uses a pressure sensitive pen 
for each process of virtual Chinkin as shown in Fig. 11(a). Fig. 11(b) shows a virtual 
lacquered board after the Subori process into which designs are carved with a virtual 
chisel. The user could carve the designs into the virtual board with a pressure 
sensitive pen interactively. Fig. 11(c) shows the virtual board after the Kin-ire 
process. The user could operate a virtual brush with a pen, and gold powder is stuck 
both on the surface and in the carved tracks. Fig. 11(d) shows the finished work after 
the Shiage process. The user could operate a virtual cloth with a pen to wipe off the 
gold powder, and only the gold powder in the carved track is left and the ornamented 
designs are appeared as gold lines and dots, which is the same way as real Chinkin.  
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The difference of the feel of materials between lacquered surfaces and the 
ornamental designs with gold powder could be expressed by adding the coefficient of 
specular reflection to the elements of the 3D texture map. Fig. 12 shows other 
examples of virtual Chinkin works. 

                   

    (a) Operating the system                  (b) Children creating virtual works 

             

  (c) After the Subori process    (d) After the Kin-ire process     (e) After the Shiage process 

Fig. 11. Creating a virtual Chinkin work 

5.3   Discussion 

The prototype system enabled us to experience Chinkin creating processes in the 
virtual space. The computation time for carving (Subori) and painting (Kin-ire and 
Shiage) are fast enough to create virtual works interactively. The virtual works 
created with the system also have features of real Chinkin works such as the design 
with thin lines and small dots and a contrast between dark color of the lacquered 
surface and shining gold in the carved tracks. 

I tested the system at a cultural event in Japan, and many children and aged people 
used the system (Fig 11(b)). The system had a good reputation and many people 
enjoyed to create virtual chinkin works. 

However, some problems are shown. Some designs of Chinkin are composed of 
very fine lines and dots, and the resolution of the image and the 3D texture map are 
not enough to create such works. The resolution of the 3D texture map is limited by 
the memory size of the PC in the current system, and a method to reduce the size of 
the 3D texture map or a new technique to realize virtual painting with out 3D texture 
map is necessary. 
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 (a) After the Kin-ire process on a bowl       (b) After the Shiage process (the finished work) 

             

    (c) Chinkin on a board         (d) Chinkin on a sculpture        (e) Chinkin on a sphere 

Fig. 12. Examples of virtual Chinkin on virtual sculptures 

6   Conclusion 

In this study, the method to realize a Chinkin technique in the virtual space was 
proposed and it was implemented on PC. This method is based on the virtual 
sculpting method and user can create a 3D CG sculpture with Chinkin designs 
interactively. The operation of each process of the virtual Chinkin technique is similar 
to the real one, and the finished works of the virtual Chinkin technique are also 
similar to the real ones. A new rendering method that renders an image of a virtual 
sculpture with points and line segments enables the system to move a viewpoint in 
real time, and the usability of the system has been improved. 

In the Subori process of the real Chinkin technique, the craftsman changes the tilt 
angle of a chisel during to change the shape of carving tracks, but the tilt angle of a 
virtual chisel is fixed in the present system. Consideration of the tilt angle of a chisel 
in virtual Chinkin is one of the future works. To render more realistic images, the 
microgeometry of carved tracks should be considered [20]. In the real Chinkin, some 
different size of gold powder are used to change the style of works, and it is necessary 
to consider the difference of property of virtual gold powder for more realistic virtual 
Chinkin works. Developing a virtual Chinkin system which can be used by visitors of 
an art museum is also expected. Testing of operation and results of the virtual Chinkin 
technique by craftsmen and curators would be necessary. 
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Abstract. This paper demonstrates how latency tolerant parallel parti-
cle swarm optimization can be used to achieve real-time full-body motion
tracking. The tracking is realized using multi-view images and articulated
3D model with a truncated cones-based representation of the body. Each
CPU core computes fitness score for a single camera. On each node the
algorithm uses the current temporary best fitness value without waiting
for the global best one from cooperating sub-swarms. The algorithm runs
at 10 Hz on eight PC nodes connected by 1 GigE.

1 Introduction

Markerless 3D human motion tracking is an important problem in computer
vision due to many potential applications, including, but not limited to, visual
surveillance, recognizing human activities, clinical analysis and sport (biome-
chanics) [10]. Commercial systems for human motion capture are typically based
on optical or magnetic markers and usually require laboratory environment and
the attachment of markers on the body segment being analyzed. Thus, a tech-
nique for articulated human motion tracking that does not need markers at-
tached to body would greatly extend the applicability of the motion capture.

Tracking articulated motion is difficult task because of generally unpredictable
nature of human movements, high variability of human appearance, self-occlusions
and depth ambiguities. The high-dimensional non-linear search space and the ex-
ponentially increasing computational overload are the main challenges in full ar-
ticulated body tracking on the basis of markerless techniques. Three dimensional
model based methods are generally more accurate in comparison to methods rely-
ing on learned mapping between pose exemplars and a set of image features. An ar-
ticulated human body can be perceived as a kinematic chain consisting of at least
eleven parts corresponding to body parts. Typically such a 3D human model con-
sists of very simple geometric primitives like cylinders or truncated cones. On the
basis of such geometrical primitives a lot of hypothetical body poses are generated
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c© Springer-Verlag Berlin Heidelberg 2011



170 B. Kwolek, T. Krzeszowski, and K. Wojciechowski

and after projecting to the image space are compared with real images through a
likelihood function.

Particle filtering is one of the most important and common tracking algo-
rithms in non-intrusive human motion capture. In a particle filter each sample
represents some hypothesized body pose. For a 3D model consisting of eleven
geometric primitives we need around 26 parameters to describe the full body
articulation. That means that tracking full articulated body is very computa-
tionally demanding task. For instance, in [2] processing for 5 seconds long video
took about one hour using a particle filter with 200 samples and 10 annealing
layers. In more recent work [6], the processing time of Lee walk sequence from
Brown University is larger than one hour. Several attempts were proposed to
mitigate the inherent limitations of particle filtering such as degeneracy, loss of
diversity and course of dimensionality. Recently, Particle Swarm Optimization
(PSO) was proposed as an alternative of particle filtering for full-body articu-
lated motion tracking [5][8][13]. Some work has also been done in order to achieve
real-time articulated body tracking [12][8].

In this work we propose a communication latency tolerant parallel algorithm
for PSO based articulated motion tracking. The algorithm consists of multiple
swarms that are executed in parallel on multiple computers connected via a
peer-to-peer network. The computers exchange information about the location
of the best particle and its corresponding fitness function of a sub-swarm. Next
to each optimization iteration, information about the global particle location
and the corresponding fitness score is sent asynchronously without blocking the
sending thread. The message contains also data about the frame number and the
iteration number. The computers receive the data in a separate thread. On
the basis of arriving data the receiving threads are responsible for determining
the best particles for each frame and each iteration. The best values are stored in
a mutually exclusive memory. After each iteration, the processing thread checks
if its global particle is better than the particle sent via other computers. If yes,
it updates its own best particle and continues the optimization.

The contribution of our work is a parallel particle swarm optimization algo-
rithm for real-time object tracking. The novelty of our work lies in the asyn-
chronous exchange mechanism for the best particle location and its fitness score
during the multiple calls of particle swarm optimization, which take place during
object tracking. This results in a communication latency tolerant parallel algo-
rithm for object tracking. The algorithm is fast and affective because it strongly
relies on the stochastic nature of Particle Swarm Optimization algorithm. In
particular, a sub-swarm, which as a first one finished tracking of the object in
a given frame, it carries out the rediversification of the particles using its cur-
rent global best particle, without waiting for the best locations of the remaining
sub-swarms. In such circumstances the algorithm takes the best locations of the
cooperating sub-swarms from the previous iterations, which were determined
for the considered frame. The algorithm has been evaluated in multi-view based
markerless full-body tracking. The tracking can be done at real-time frame rates
using ordinary network of peers consisting of multi-core PCs.
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2 Relevant Work

PSO was applied in a number of areas as a technique to solve large, non-linear
optimization problems [11]. The applications of PSO in computer vision and
graphics are still rather limited. The main applications of PSO in computer vision
are connected with non-articulated object tracking. For example, [14] shows that
in tasks consisting in tracking human face a variant of PSO, called sequential
PSO behaves better than a particle filter in terms of tracking accuracy.

Existing algorithms for articulated motion tracking can be roughly divided
into two categories, namely, discriminative and generative [9]. Discriminative
approaches attempt to learn a direct mapping between image descriptors, such
as edges or shapes to the 2D human pose. A major limitation is that their per-
formance is considerably lower in circumstances in which is difficult to obtain
reliable features, for instance in the cluttered scenes. Generative approaches gen-
erate a number of plausible pose hypotheses, which are then evaluated against
the current image for evidence. The pose hypotheses are generated on the basis
of a 3D model of the human body. Such a model is projected onto an image
plane and an error function is calculated to indicate the quality of the match.
The mentioned approaches are based on a rather coarse 3D models of the human
body. In methods introduced in [3][4], realistic human body models were devel-
oped to accomplish tracking through analysis-by-synthesis. In such an approach
the texture mapping is used to obtain a precise textured model of the person.

Very recently, PSO has been successfully applied to full-body articulated mo-
tion tracking [5][8][13]. In [5], the articulated pose is estimated through a hi-
erarchical search. The articulated human body model is represented as a 3-D
kinematic tree consisting of 13 nodes. The experiments were performed on Lee
walk sequence, which was downsampled at frame rate of 30 Hz. On images of size
640 × 480 the average error distance between estimated pose and ground-truth
pose is larger than 50 mm, whereas the processing time of the sequence with
75 images is larger than one hour. The above mentioned sequence has also been
used in [13]. The average error on 15 virtual markers is about 40 mm. Our work
differs from theirs in a number of ways, of which the most crucial is the focus
on full body motion tracking in real-time. To the best of our knowledge, ours is
the first near real-time system that is able to accomplish full-body articulated
motion tracking. The quality of tracking on various number of computers was
compared by analyses carried out both through qualitative visual evaluations
as well as quantitatively through the use of the motion capture data as ground
truth. The preliminary results demonstrate that the tracking accuracy is in the
same range as the accuracy in work mentioned above.

Some parallel PSO algorithms were proposed to speed-up the optimization of
complex engineering optimization problems but, to the best of our belief, so far,
no parallel PSO algorithm for object tracking has been proposed. In particular,
our algorithm executes not only the PSO iterations in parallel in a given frame,
but being latency tolerant and asynchronous it starts processing the next frame
without waiting for all best locations of the cooperating sub-swarms.
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3 3D Body Model and Cost Function

The skeleton of the human body is modeled as a kinematic tree. The articulated
3D model consists of eleven segments with the limbs represented by truncated
cones, which model the pelvis, torso/head, upper and lower arm and legs. The
configuration of the model is defined by 26 DOF. It is parameterized by position
and orientation of the pelvis in the global coordinate system and the relative
angles between the connected limbs. In order to obtain the 3D human pose each
truncated cone is projected into 2D image plane via perspective projection. In
such a way we obtain an image with the rendered model in a given configuration.
Such image features are then matched to the person extracted by image analysis.

The fitness function consists of two components: f(x) = w1f1(x) + w2f2(x),
where wi stands for weighting coefficients that were determined experimentally.
The function f1(x) reflects the degree of overlap between the body parts and the
projected segments of the model into 2D image. It is expressed as the sum of
two components. The first component is the overlap between the binary image
and the considered rasterized image of the model. The second component is the
overlap between the rasterized image and the binary one. The larger the degree
of overlap is, the larger is the fitness value. The function f2(x) is calculated on
the basis of distance transform based Chamfer matching.

4 Latency Tolerant Parallel PSO for Object Tracking

Particle swarm optimization is a population based optimization technique, which
is stochastic in nature and makes use of the memory of each particles as well as
the knowledge gained by the swarm as a whole. In the ordinary PSO algorithm
the update of particle velocity and position is given by the following equations:
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where w is the positive inertia weight, v(i)
j is the velocity of particle i in dimen-

sion j, r(i)1,j and r
(i)
2,j are uniquely generated random numbers with the uniform

distribution in the interval [0.0, 1.0], c1, c2 are positive constants, p(i) is the best
position found so far by particle i, pg denotes a best position, which can be:

• a global best that is immediately updated when a new best position is found
by any particle in the swarm

• neighborhood best where only a specific number of particles is affected if a
new best position is found by any particle in the sub-population

A topology with the global best converges faster as all the particles are attracted
simultaneously to the best part of the search space. Neighborhood best allows
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parallel exploration of the search space by multi-swarm. Such configuration de-
creases the susceptibility of falling into local minima, however, it typically slows
down the convergence speed.

The equation (1) has three main components. The first component, referred
to as inertia, models the particle’s tendency to continue the moving in the same
direction. Thus, it controls the exploration of the search space. The second com-
ponent, called cognitive, attracts towards the best position p(i) previously found
by the particle. The last component is referred to as social and attracts towards
the best position pg. The fitness value that corresponds to p(i) is called local
best p(i)

best, whereas the fitness value corresponding to pg is referred to as gbest.
The PSO is initialized with a group of random particles (hypothetical solu-

tions) and then it searches hyperspace (i.e. Rn) of a problem for optima. Particles
move through the solution space, and undergo evaluation according to some fit-
ness function f . Much of the success of PSO algorithms comes from the fact that
individual particles have tendency to diverge from the best known position in
any given iteration, enabling them to ignore local optima, while the swarm as
a whole gravitates towards the global extremum. If the optimization problem is
dynamic, the aim is no more to seek the extrema, but to follow their progression
through the space as closely as possible. Since the object tracking process is a
dynamic optimization problem, the tracking can be achieved through incorpo-
rating the temporal continuity information into the traditional PSO algorithm.
This means, that the tracking can be accomplished by a sequence of static PSO
optimizations to determine the best person’s pose, which are followed by re-
diversification of the particles to cover the possible state in the next time step.
In the simplest case, the re-diversification of the particle i can be done as follows:

x
(i)
t ← N (x̂t−1, Σ) (3)

where x̂t−1 is the state estimate in time t−1. In the global best configuration the
estimate x̂t−1 is equal to pg determined in the last iteration. In the configuration
with neighborhood best it is selected as the best position of any sub-swarm.

PSO is parallel in nature. To shorten the optimization time several studies on
parallelizing the algorithm were done so far. In general, two parallelization strate-
gies are considered, namely synchronous and asynchronous. In the synchronous
algorithm at the end of each iteration all nodes communicate with each other to
determine the global best fitness. In asynchronous parallelization the particles
use the current temporary best fitness without waiting for the global best one.
However, up to now all of the published literature reported parallel PSO algo-
rithms for static optimization, where the particles are evaluated and evolved in
parallel in several iterations until the global extremum is found out.

The latency tolerant parallel PSO uses asynchronous exchange mechanism
for the best particle location and its fitness score during the multiple calls of
particle swarm optimization, which take place during object tracking. In par-
ticular, subsequent to each iteration no barrier synchronization is executed as
the algorithm strongly relies on the stochastic nature of PSO. Particularly, if
a sub-swarm, which as a first one finished object tracking in a given frame,
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it carries out the rediversification of the particles using its current global best
particle, without waiting for the global best optimum determined by the par-
ticipating sub-swarms. It is worth mentioning that in such circumstances the
estimate of the object state is determined using the global best locations of co-
operating sub-swarms, which were available during determining in each iteration
the global best location of the considered population. After each optimization
iteration, information about the global particle location and the corresponding
fitness score is sent asynchronously without blocking the sending thread. The
frame number and the iteration number are included in the message for a con-
trol mechanism aiming at processing the same frame by all computers without
large inter-frame delays. The threads receive the data in a separate thread. On
the basis of arriving data the receiving threads are responsible for determining
the best particles for each frame and iteration. The best values are stored in a
mutually exclusive memory. After each iteration, the processing thread checks if
its global particle is better than the particle sent via other computers. If yes, it
updates its own best particle and continues the optimization.

5 Experimental Results

The algorithm was tested in two multi-camera systems consisting of synchro-
nized and calibrated cameras. The first system consists of two calibrated and
synchronized cameras. It acquires images of size 640 × 480 at frame rate of 15
Hz. Figure 1 depicts sample images that were acquired by the cameras. At the
figure we can also see the projected and overlaid model on both input images.

In the second system the images were captured by four calibrated and synchro-
nized cameras acquiring images of size 1920× 1080 with rate 24 fps. Each pair of
the cameras is approximately perpendicular to the other two, see the placement
of video cameras in Fig. 2. A commercial motion capture (moCap) system from
Vicon Nexus provides ground truth motion of the body at rate of 100 Hz. The
system uses reflective markers and sixteen cameras to recover the 3D position of
such markers. The synchronization between the moCap and multi-camera system
is based on hardware from Vicon Giganet Lab. The digital cameras are capable
to differentiate overlapping markers from each camera’s view.

The precision of human motion tracking was evaluated experimentally in sce-
narios with a walking person. The analysis of gait is currently an active research
area due to various applications in medicine, surveillance, etc. Although we

Fig. 1. Human motion tracking using two cameras. The images illustrate the initial
model configuration overlaid on the image in first frame.
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Fig. 2. Layout of the laboratory with four cameras. The images illustrate the initial
model configuration, overlaid on the image in first frame and seen in view 1 and 2 (upper
row), and in view 3 and 4 (bottom row).

focused on tracking of torso and legs, we also estimated the pose of both arms
as well as of the head. The body pose is described by position and orientation
of the pelvis in the global coordinate system as well as relative angles between
the connected limbs. The results obtained on various number of computers were
compared by analyses carried out both through qualitative visual evaluations as
well as quantitatively by the use of the motion capture data as ground truth.

Figure 3 shows results obtained in the two camera system. The left images in
each image pair depict the projected and overlaid model on the image from the
first camera, whereas the right images are from the second one. The initialization
of the system was done manually through fitting the 3D model onto the images,
see Fig. 1. The tracking was done using 300 particles and 10 iterations.

Fig. 3. Articulated 3D human body tracking in two camera setup. Shown are results
in frames #10, 20, 30, 40, 50, 60, 70. The left sub-images are seen from view 1, whereas
the right ones are seen from view 2.

Figure 4 demonstrates some results that were obtained in the four camera
system. The quality of tracking is illustrated using images from first and second
camera. The initialization of the tracking was done manually. Optionally, the
tracking can be initialized on the basis of data from the moCap system. The same
number of particles and iterations was utilized as in the previous experiment. In
all experiments on image sequences from the four camera system we used images
of size 480 × 270.

Figure 5 depicts the errors that were obtained during motion tracking using
one and two desktop computers. The experiments were done on image sequences
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Fig. 4. Articulated 3D human body tracking in four camera setup. Shown are results
in frames #20, 40, 60, 80, 100, 120, 140. The left sub-images are seen from view 1,
whereas the right ones are seen from view 2.

Fig. 5. Tracking errors [mm] versus frame number at 1 and 2 PCs

from the four camera system. The errors of tracking the head, torso and knee
were calculated using moCap data as ground truth. In optimizations we used
300 particles and 10 iterations. In the configuration consisting of two computers
the optimizations were achieved using 150 particles on each computer. As we
can observe in the plots shown at Fig. 5, the difference between error estimates
obtained by the ordinary algorithm and the parallel algorithm running on two
computers is not significant.

In Fig. 6 are shown the error estimates that were obtained on single and eight
computers. In a PC cluster with 8 nodes the optimizations were performed using
38 particles on each computer. As we can observe, the average error is far below
90 mm. It is worth noting here that something better results can be obtained
using our GLPSO (Global-Local PSO) algorithm [7].

The experiments were conducted on desktop PCs with 4 GB RAM, Intel
Core i5, 2.8 GHz. All measurements were conducted on a cluster that was com-
posed of identical machines connected with a TCP/IP 1 GigE (Gigabit Ethernet)
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Fig. 6. Tracking errors [mm] versus frame number at 1 and 8 PCs.

local area network. The parallelization of the code was done using OpenMP
directives. The parallel computations were realized on multi-core (4-core) CPUs.

Currently, OpenMP is widely utilized standard for parallelizing programs in a
shared memory environment [1]. It consists of a set of directives (pragmas) and
library routines that can be inserted into Fortran or C/C++ codes to enable use
of more than one thread. OpenMP provides a fork-and-join execution model in
which a program begins execution as a thread. The thread executes sequentially
until a parallelization directive for a structured block of code is found. If this
takes place, such a thread creates a set of threads and becomes the master thread
of the new group of threads. Each thread executes the same code redundantly
until the end of the parallel section and the threads communicate by sharing
variables. The exit point of a structured block is an implicit synchronization
point for the master thread and the threads created for the block. After the
synchronization the master thread continues with the computation and the other
threads end. In our system each CPU core is responsible for calculation of the
fitness function for single camera.

Table 1 shows computation times and speeds-up that were obtained on our
PC cluster. The depicted times are needed to extract single model configuration
using images from four camera views. In the experiments we focused on efficiency
of parallel particle swarm optimization algorithm and therefore the computation
times do not comprise the image processing. The image processing was done in
advance and all images needed to compute the fitness score were stored on local
hard drives. It is worth mentioning that time needed for image processing is
about 20% of the total processing time. Moreover, the code of image processing
can be easily parallelized. Currently, the communication between the PC nodes
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Table 1. Tracking time [ms] for single human pose (computed on the basis of images
from 4 camera views) and speed-up

Latency tolerant Blocking

#PCs #particles time [ms] speed-up time [ms] speed-up

1 300 635.7 - 635.7 -

2 2 × 150 339.6 1.87 370.4 1.72

3 3 × 100 227.1 2.80 257.5 2.47

4 4 × 75 173.7 3.66 202.2 3.14

6 6 × 50 123.7 5.14 146.5 4.34

8 8 × 38 96.9 6.56 110.8 5.74

is realized using popular QT library. As we can see, the speed-up of our latency
tolerant parallel PSO is considerable. Using a cluster consisting of 8 PCs and
PSO with 300 particles and 10 iterations the human motion tracking can be
done at about 10 fps. The tracking time of blocking version of the parallel PSO
is considerably larger in comparison to our latency tolerant algorithm. When
images from two camera system are used, we can perform full-body motion
tracking together with image preprocessing in real-time with 10 fps.

In Tab. 2 are depicted the average errors that were obtained during a com-
putations on different numbers of computers. The pose error in each frame was
determined on the basis of M = 39 markers mi(x) ∈ R3, i = 1, . . . ,M ex-
pressing locations in the world coordinates. The pose error was expressed as the
average Euclidean distance:

E(x, x̂) =
1
M

M∑
i=1

||mi(x) −mi(x̂)|| (4)

where mi(x) denotes for marker’s position that was calculated using the esti-
mated pose, whereas mi(x̂) stands for the position that was determined using
data from our motion capture system. From the above set of markers, four mark-
ers were placed on the head, seven markers on each arm, 6 on the legs, 5 on the
torso and 4 markers were attached to the pelvis. Given the discussed placement
of the markers on the human body the corresponding virtual marker’s were as-
signed on the 3D model. The position of such virtual markers was determined
for each estimate of the human pose and then employed in calculating the av-
erage Euclidean distance expressed by (4). The ground truth was extracted on
the basis of data stored in c3d files. Finally, the average errors shown in Tab. 2
were calculated on the basis of the following equation:

Err(x, x̂) =
1

LM

L∑
k=1

M∑
i=1

||mi(x) −mi(x̂)|| (5)

where L denotes the number of frames in the utilized test sequences. The dis-
cussed results were obtained on L = 180 images, see also Fig. 4, and averaged
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Table 2. Average errors [mm]

#PCs #particles error [mm] std. dev. [mm]

1 300 75.8 45.8

2 2 × 150 72.2 38.1

3 3 × 100 71.9 34.1

4 4 × 75 74.3 40.3

6 6 × 50 73.9 37.9

8 8 × 38 72.7 36.9

over 5 runs of the algorithm. As we can observe, for a configuration with multiple
nodes the average error is smaller than the error obtained on a single node. This
means that multiple swarms PSO can generate better results in comparison to
PSO based on single swarm.

The complete human motion capture system was written in C/C++. One of
the future research directions of the presented approach is to explore multiple
GPUs to further shorten the processing time [8].

6 Conclusions

We have presented communication latency tolerant parallel algorithm for particle
swarm optimization. We demonstrated experimentally that the parallel PSO
is especially well suited for real-time full-body articulated object tracking. To
show its advantages we have conducted several experiments on walking sequences
and realized computations on different numbers of computers connected with
a TCP/IP 1 GigE local area network. The quality of tracking was compared
by analyses carried out both through qualitative visual evaluations as well as
quantitatively through the use of the motion capture data as ground truth.
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Abstract. Snap Composition broadens the applicability of interactive
image composition. Current tools, like Adobe’s Photomerge Group Shot,
do an excellent job when the background can be aligned and objects
have limited motion. Snap Composition works well even when the input
images include different objects and the backgrounds cannot be aligned.
The power of Snap Composition comes from the ability to assign for every
output pixel a source pixel in any input image, and from any location
in that image. An energy value is computed for each such assignment,
representing both the user constraints and the quality of composition.
Minimization of this energy gives the desired composition.

Composition is performed once a user marks objects in the different
images, and optionally drags them into a new location in the target
canvas. The background around the dragged objects, as well as the final
locations of the objects themselves, will be automatically computed for
seamless composition. If the user does not drag the selected objects to
a desired place, they will automatically snap into a suitable location. A
video describing the results can be seen in
www.vision.huji.ac.il/shiftmap/SnapVideo.mp4.

1 Introduction

Image composition is common in digital image editing, whose objective is to
combine images from different shots into a single output image that looks natu-
ral and realistic. Three approaches are common for image composition: Matting,
Blending, and Optimal Cuts. Matting [22] attempts to make an accurate seg-
mentation of an object, allowing to place it in a new image. In image blending
[6,15,13,10,20] a user builds a new image from patches taken from the input
images, and the seams between these patches are eliminated by the blending.
In Optimal Cuts [1], the seam between images to be combined is computed au-
tomatically within their overlap areas. In all of the above, the user placement
of the objects is a hard constraint, and the geometry of both the background
and the foreground do not change. Rearrangement of a single image is presented
in [7,19,2,16]. Snap Composition allows the user to define approximate regions
and target locations, letting objects snap into place during a single optimization
process. Background rearrangement to match the objects is done as well.

Digital Photomontage [1] presented a pioneering approach to create a seamless
composite from selected instances of objects in multiple aligned images. Their
� This research has been suppoted by a grant from the Israel Science Foundation.

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2011, LNCS 6930, pp. 181–191, 2011.
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(a) (b) (c) (d)

Fig. 1. Snap Composition. (a-b): input images with regions to include in composition
are marked in green and regions to avoid are marked in red. (c) Initial canvas, where
selected kids are in their original locations. (d) Snap Composition results. The kids
from (a) were automatically spaced to allow the kid from (b) to snap in between, and
background is rearranged for a seamless composition.

process selected optimal seams followed by gradient-domain fusion. It is assumed
that the camera is in the same location in all images, and that objects move very
little. When objects move significantly between images, or when camera motion
causes parallax, a different approach is needed.

The issues of moving objects and parallax were also addressed for construc-
tion of panoramic images [21,9]. While panoramic stitching is based on global
registration, the goal of image composition is to satisfy user requirements. This
is done by using the concept of visual similarity between the output and the
input images, rather than trying to achieve a true geometric consistency. Fig. 6
shows possible conflict between global alignment and user sketch.

The computation of individual shifts for every pixel using global energy min-
imization, as done in Snap Composition, follows the ShiftMap framework [16].
As in other composition approaches, the user constraints in ShiftMap are hard,
and several attempts may be necessary until the user places the objects in the
“right” locations. The energy terms in Snap Composition allow flexibility of
object location, which is automatically determined during optimization.

The task shown in Fig. 1 is an example of the issues addressed in this paper.
A user would like to insert the selected “green” kid from Fig. 1.b between the
two kids in Fig. 1.a, even though there is not enough space there. Using existing
methods, this task requires two steps: (i) Specify new locations for the two kids
in Fig. 1.a with a larger gap between them, and compute a new image. (ii) Place
the kid from Fig 1.b into its new location using image cloning, matting, or digital
Photomontage. During this process the user has made three selections for the
locations of the three kids, and many attempts may be needed until a good result
is obtained. Snap-Composition determines these locations using a single global
optimization, substantially reducing user interaction. Fig. 2 compares the result
of Snap Composition to Adobe Photomerge Group Shot using same images.

Another contribution of this paper addresses the approximate optimization of
graph labeling whose energy function has a data term and a smoothness term.
We have observed that a better optimum is obtained when the weight of the
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(a) (b) (c)

Fig. 2. Comparing the example in Fig. 1 to Adobe Photomerge Group Shot. This
emphasizes the importance of individual displacements of objects, which is not one
of the features supported by Photomerge. (a-b) Photomerge results obtained using
different ordering of input images. (c): Snap Composition results.

smoothness term is gradually increased during iterations. This process, inspired
by Lagrangian relaxation, was found especially helpful in cases that the graph
has a very large number of labels.

2 Editing as Graph Labeling

Image composition is represented as graph labeling as done in ShiftMap image
editing [16]. The composite image R(u, v) is reconstructed from the input images
I(x, y, i) based on the shifts M(u, v) = (tx, ty, i) as follows: R(u, v) = I(u +
tx, v + ty, i), where i is an index on the input images. In the graph labeling
representation the nodes are the pixels (u, v) of the output image, where each
output pixel (u, v) is labeled by a shift M(u, v) = (tx, ty, i). The optimal shifts
M minimize the new cost function below, tailored for image composition:

E(M) =
∑
p∈R

Ed +
∑

(p,q)∈N

{Er + αEs} (1)

The data term Ed(M(p)) is defined over single pixels, providing user constraints
such as desired locations of objects or a preference that an area will not be used
in the output. Er(M(p),M(q)) is a pairwise term built from user constraints
for preserving object integrity. Es(M(p),M(q)) is a pairwise term addressing
seamless composition. N of the pairwise term is defined over four spatial neigh-
bors of each pixel, and α is a user defined weight for the smoothness term. In
the optimization process we gradually increase α to get a better convergence as
describe in Sec. 2.3. Each term will now be defined in detail. Once the graph is
given, optimal labeling (i.e. optimal shifts) is computed using the alpha expan-
sion algorithm for graph cuts [11,4,5].

2.1 User Constraints

The data term Ed indicates the user constraints such as the approximate location
of an object in the output image. Specific pixels in the input image can be marked
by the user as “do not use in output” or as “must appear in some approximate
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output location”. Each object marked by the user is represented by a mask
S(x, y, i) over the input images. S(x, y, i) will be non zero for the marked pixels
where user has imposed a constraint. If the user dragged an object to a particular
location on the target canvas, the mask is also assigned a desired approximate
shift (Px, Py), otherwise it is assumed that the desired shift is zero.

The data term. Ed(M(u, v)) for an output pixel (u, v) with a shift M(u, v) =
(tx, ty, i) is assigned as follows:

1. If (u + tx, v + ty) falls outside image boundary, or if S(u + tx, v + ty, i) is
marked as “must disappear”, then Ed(M(u, v)) = ∞.

2. In case S(u+ tx, v+ ty, i) is marked by the user to move by (Px, Py), if |tx −
Px, ty − Py| ≤ LD, then Ed(M(u, v)) = −1. Otherwise, |tx − Px, ty − Py| >
LD, and we assign Ed(M(u, v)) = 1. LD is a parameter specifying permitted
deviations from the location specified by the user. When LD is smaller than
the size of its associated region, no region duplication is possible. We usually
used LD values that are about 10 percent from the image dimensions to
allow flexibility in object location, while avoiding unwanted duplications of
the marked objects.

3. In all other cases Ed(M(u, v)) = 0.

The rigidity term. Er(M(p),M(q)) verifies that the marked objects move
coherently, and do not occlude each other. Let M(p) point to d1 = (x1, y1, i1)
and M(q) point to d2 = (x2, y2, i2). If either d1 or d2 points to a pixel in a
selected area (non-zero in S(x, y, i)), and M(p) �= M(q),we incur a cost setting
Er(M(p),M(q)) = ∞.

This term is verifying that two neighbors marked pixels in any of the input
images must remain neighbors in the output image. Together with the smooth-
ness term that penalizes stitching artifacts, it helps to avoid the situation where
multiple marked objects are occluding each other. If rigidity term together with
LD value of Ed, were not introduced, the high benefit of including the marked
pixels in the output would have caused marked objects to be duplicated several
times and create unwanted results.

2.2 The Smoothness Constraint

The smoothness term. Es(M(p),M(q)) represents discontinuities introduced
to the output image by discontinuities in the shifts: A shift discontinuity exists
in the output image R between two neighboring locations, (u1, v1) and (u2, v2), if
their shifts are different (M(u1, v1) �= M(u2, v2)). The smoothness term Es(M)
takes into account both color differences and gradient differences between cor-
responding spatial neighbors in the output image and in the input images. This
term is similar to [1,17].

Es(M) =
∑

(u,v)∈R

∑
j

(R((u, v) + ej) − I((M(u, v)) + ej))2 + (2)

β
∑

(u,v)∈R

∑
j

(∇R((u, v) + ej) −∇I((M(u, v)) + ej))2
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where ej are vectors representing the four immediate neighbors of a pixel, the
color differences are Euclidean distances in RGB, ∇ represents the magnitude
of the image gradients, and β is a weight combining these two terms. In our
experiments we used β = 10.

As our pairwise energy terms are not a metric distance, the theoretical guar-
antees of alpha expansion are lost. In practice we have found that good results
are still possible, as also observed in [12,1].

2.3 Relaxation in Energy Minimization

Energy minimization by graph labeling has very high complexity due to its non
convex nature and the very large number of labels. The approximate optimization
methods are not likely to reach the global minimum. However, we found that if we
gradually increase the weight of the smoothness term during the iterations of the
alpha expansion, and use in each iteration the labeling of the previous iteration
as an initial guess, we converge to a better result. This heuristic solution has been
inspired by Lagrangian Relaxation [8] and Graduated Non-Convexity [3].

We start our iterations with the relatively easy satisfaction of the user con-
straints (data term and rigidity term). The smoothness term is much harder to
satisfy, and we avoid using it in the first iteration (α = 0), but gradually increase
the weight of the smoothness term during iterations until we reach the desired
weight. In a set of experiments we found that this approach obtained a lower
energy and a better result in comparison to the use of the desired weight from
the first iteration. Figure 3 compares the minimum energy obtained by the two
approaches.

2.4 Hierarchical Solution for Graph Labeling

We use a multi-resolution approach to reduce the complexity of finding the
optimal graph labeling. Multi-resolution approaches to graph labeling were also
done in[14,18,16]. We build a Gaussian pyramid for the input images, and coarse
shifts are computed using the small input images to generate a small composite
image. This operation is very efficient, as both the number of nodes and the
number of possible labels (shifts) is small. In practice we select only shifts whose
magnitudes are smaller than 25% of image size. Once coarse shifts are assigned,
they are interpolated as an initial guess for the labels in the higher resolution
level of the pyramid.

There are too many possible shifts when addressing higher resolutions in the
pyramid. We limit our examination only to shifts that are popular in the initial
interpolation from the lower resolution, and are used as labels of at least 50
pixels. We also add the nine closest shifts around each of these candidates. While
we do not use all possible shifts, the smaller set still allows a pixel to get a more
accurate shift, and also to switch from one group of pixels to another, improving
the cut between regions.
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Fig. 3. Gradual Relaxation: The red curve represents the minimal energy obtained
when minimization is performed on the desired weight of the smoothness term, a dif-
ferent run for each weight. The black curve represents the minimum obtained when
iterations started with no smoothness term, and the weight of the smoothness term is
gradually increased until its desired value is reached (single run). Gradual increase of
the weight of the smoothness term gives a better minimum most of the times.

Our pyramid contains about 100 × 100 pixels in its smallest level. It took
up to a minute to perform the composition on most images in this paper, and
a GPGPU implementation is in progress with the goal of reaching interactive
speeds.

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a-b) Input images where selected regions are marked in green. (c) Canvas image
with selected regions placed in their initial location. The overlap between the selected
regions presents a special difficulty to other tools. (d) Microsoft Photo Fuse results.
Note that the man’s head is cropped. (e) Adobe Photomerge Group Shot results. (f)
Snap Composition results.
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(a) (b) (c)

(d) (e)

Fig. 5. (a-b) Input images where selected regions are marked in green. (c) Canvas image
with selected regions placed in their initial locations. (d) Adobe Photomerge Group
Shot results. While the background is nicely aligned, the “blue” girl is distorted. (e)
Snap composition results.

3 Experimental Results

We tested Snap Composition against both Adobe’s “Photomerge Group Shot”
and Microsoft’s “Photo Fuse”. In most cases but two “Photo Fuse” failed to align,
and no results are given for the failed cases. Fig. 4 compares Snap Composition
against both methods. Snap composition creates a better composite image as it
enables local modifications of both images after alignment, overcoming geometric
misalignments that are not handled by the other methods. Fig. 5 compares
to “Photomerge Group Shot”, where the blue girl has been distorted. More
examples are in Fig. 6, Fig. 8, and Fig. 9. We have found that that user marking
by drawing a thick outline around the object is most convenient, and we used it
in most of our examples. But the marking is very flexible due to the effect of the
smoothness terms, and as demonstrated in Fig. 6 the marking does not need to
include an entire object.

Snap Composition sometimes fails when filling the background, and the most
common failure is duplication of regions that belong to the foreground, into the
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(a) (b) (c)

(d) (e)

Fig. 6. (a-b) Input images. Regions to be included in composition are marked in green,
unwanted regions marked in red. (c) Selected regions shown at their user selected
location on the composition canvas.(d) Adobe Photomerge Group Shot places the kid
on the road twice based on a global alignment. (e) Snap composition result, allowing
rearrangement of both objects and background.

(a) (b)

(c)

Fig. 7. Failure example: (a) Four similar input images placed in a canvas. Regions to
keep are marked in green. (b) Initial Snap Composition. Some body parts are duplicated
to create the background. (c) User interaction, giving higher costs to these duplications
(as a second interaction phase), created a nice final composition image.

background. Such failure is shown in Fig. 7. Another possible failure case is the
duplication of marked objects when the allowed deviation of object location (LD
defined in 2.1) is very large. The user can recover from these failures by marking
on the output image the undesired duplications. Pixels in the marked region will
come from elsewhere, and this is done by increasing the cost on the undesired
labeling. We used this feature only in the example of Fig. 7. All other examples
did not need this feature.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 8. (a-b) Input images after alignment, where wanted regions are marked in green
and unwanted regions are marked in red. (c) Canvas image with selected objects placed
in their initial location. (d) Snap Composition results. (e) Zoom in to composition by
Adobe Photomerge Group Shot. (f) Zoom in to composition by Microsoft Photo Fuse.
(g) Zoom in to Snap Composition.

(a) (b) (c) (d)

Fig. 9. (a-b) Input images where wanted region are marked in green. (c) Canvas image
with selected objects placed in their initial location. (d) Snap Composition results.
Note that the “pink” girl has been shifted down automatically for better composition.

In all the experiments we avoided using photometric blending, in order to
show the pure effect of Snap Composition.

The user interaction tool we have built includes the ability to (i) sketch an
area that should be included in the output; (ii) sketch an area that should not be
included in the output; (iii) set approximate locations of selected areas in output
canvas; and (iv) sketch on the output image areas that should be changed. The
use of this tool is demonstrated in the accompanied video.

4 Conclusion and Discussion

This paper presents Snap Composition, a method for image composition that
extends existing image composition approaches by adding the possibility to
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automatically compute best locations of the objects and the rearrangement of
the background for seamless composition. All Computations are done in a single
global optimization step. These capabilities are not possible as a single auto-
matic step in any available composition tool, and increase the applicability of
interactive image composition.

While the examples shown in this paper do not include any photometric
blending, it is recommended that blending such as gradient domain blending
be applied at the seams of stitched regions.

In addition to the visual results, it was found that gradual increase of the
smoothness term lets the process converge to a better minimum and a better
result.
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Abstract. The use of 3D avatar scanned from real person 3D data has
become more and more common in different fields such as video games
and movies. The target applications for these models require different
constraints on the result to be fulfilled. In this paper we propose to
generate high-resolution closed meshes of a person that can be used for
virtual try-on applications, therefore the 3D model should be precise
enough for the customer to recognize him/herself wearing a virtual gar-
ment. Our approach uses a generic model which is deformed using fast
editing method to fit a point cloud obtained from a 3d scanner. Our
system is fully automatic and requires only an unoriented point cloud.

1 Context and Related Works

1.1 Virtual Try-on Applications

Virtual try-on applications are still in development, although some techniques
already show impressive results [13] [1] none of them is widely used in large scale
industrial and commercial process. The main steps leading to a virtual try-on
application should be from the customer point of view :

– Acquisition of the 3D measurements of the body
– Cloth selection from a database
– Watching the simulation showing the cloth on his/her 3D avatar

Each one of these steps has focused the attention of the scientific community
: building a cloth database requires the collection of garments 2D pattern de-
signed by professionals as well as mechanical parameters of the textiles obtained
from Kawabata machines. Then the 3D pattern garments need to be converted
to 3D and positioned automatically on the avatar. Finally realistic simulation is
achieved by solving the mechanical equations taking care of collision and buck-
ling. [7]

The work described in this paper will focus on the first step. Acquisition of the
3D measurements of the customer is a crucial step to help him/her choose the
best fitting size for the cloth. Therefore the avatar must be precise enough for
the simulation to be as realistic as possible. Furthermore, the cloth simulation
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imposes constraints on the mesh to be valid, it must be a closed manifold of
genus 0 to avoid cloth from penetrating a topological hole.

In our system acquisition is performed using a 3D laser scanner developed by
the French company 3D Ouest [2]. The customer is asked to wear only underwear
not too loose so that the measures are as close as possible to the customer shape.
The acquisition provides a point cloud that needs to be turned into a 3D mesh
ready to use in the cloth simulation. Nevertheless, the use of 3D avatars should
not limited to the pipeline of cloth simulation ; we think that the possibility to
enrich automatically the features of the avatar is very important for animation
or statistical analysis of the human body for instance. To provide more features
on the final avatar we propose to use a generic model that can contain many
informations computed offline and to fit it to the acquired point cloud. With this
strategy all reconstructed models will be related to one single mesh topology
allowing statistical analysis and a rough skinning can be used to make basic
animations of all the generated models.

The process has to be fast : the customer should not wait too long to get
his/her avatar, one current reference time is around one minute that is the
time for the customer to get his/her cloth back after the scanning process. One
minute is quite enough for a large variety of strategies. We propose to use some
paradigms of surface editing methods that are able to run at interactive time
speed to get our mesh quickly. To make fitting possible we must first analyse
the point cloud to detect feature points and to segment it in order to guide the
deformation process.

But for our process to be efficient we have to make some assumptions on
the position of the customer. We choose a standard position that we ask the
customer to keep during the scan. The person must be standing with the two
feet on the ground and legs slightly apart. Arms must be slightly apart from the
torso. See Fig 1.

1.2 Related Works

Interested readers can find an exhaustive survey on segmentation and modeling
of 3D human body using scanned data in [24]

Feature Points Detection. We are interested only in automatic feature points
detection without markers on the body. Manual processing should be avoided so
that a client won’t be too disturbed and manual placement of markers is itself
time consuming. Automatic detection is still a complicated problem if general
poses are considered but for a fixed position we can obtain enough points using
dedicated detection algorithms. A lot of methods rely on the analysis of slices
using various criteria to extract special points (extrema, angles, convexity or
concavity etc.). Leong et al. [17] tried to find mathematical definitions of points
defined in ASTM and ISO and detected them by combining image analysis and
computational geometry. Those criteria are used along with statistical informa-
tion about the human body proportions to limit the search area. Wang et al. [22]
proposed a full pipeline to reconstruct and extract features from laser scanned
data using fuzzy logic concepts.
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Surface from Point Cloud. Retrieving a surface from a point cloud is a widely
studied problem in computational geometry or reverse engineering. Methods can
be split in two groups : constructive methods that are based upon triangulation of
the point cloud using Voronöı diagrams or Delaunay triangulations, a description
of these methods can be found in [9] or meshless methods that try to fit an
implicit function to the point cloud. For the latter, the current state-of-the-art
method would be the Poisson surface reconstruction [15]. It is also possible to
combine both approaches [4]

Surface Deformation. Surface deformation methods have been studied for many
years. A recent state of the art and course has been made by Sorkine and Botsch
[21]. Two classes of deformations can be defined : surface deformations and space
deformations. A focus on linear surface deformation has been made in [8], while
surveys on space deformation can be found in [5] and [11]. The former ones
consist in finding a displacement function defined over the surface whereas the
latter look for displacement functions defined in the space in which the surface
is embedded (that is R3 in most of cases). Each of these classes comprises linear
or non-linear approaches. Surface deformation methods lead to solving a linear
system, often symmetric definite positive, whose size depends on the representa-
tion of the surface (number of vertices in a mesh for example). Once the regions
allowed to move are fixed the system can be pre-factorized off-line which enables
fast deformations since only back-substitution is needed. Nevertheless not all
surface representations can be used because differential properties need to be
computable on the representation. On the other hand, space deformation meth-
ods are able to deal with a lot of surface representations and their complexity is
independent of the surface representation. When using space deformation, one
needs to define a control object that will be edited to compute the deformation.
In order to achieve deformation of complex shapes like a human body, especially
around joints, the best technique would be to use cage-based deformation such as
proposed by [18] but it requires to build a complex control object and constrain-
ing the position of a specific vertex in the mesh is not as easy as with surface
deformation. Among all the methods, the use of linear or non-linear approaches
is related to the quality of the conservation of details (i.e. differential proper-
ties). In our system precise conservation of the details of the generic model are
not useful since we want to fit a target model with a different shape so a linear
method was chosen.

Model Based Approaches. Interactive model-based approaches were proposed
for head [14] and complete body [20], they rely on the placement of feature
points that were used to build a deformation field using RBF functions. A fully
automatic process was performed by Allen et al. [3]. They used the CAESAR
database and developed an optimization procedure to fit a template model to all
the data. After that they used these reconstructions to make a PCA approach
for reconstruction. The main limitation of this method is that it requires a large
database of good quality acquisition and the fitting part relied on 74 markers that
were put on the subjects which needs to be avoided for our application. Using a
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model to reconstruct the surface and add additional information for animation
was proposed by Moccozet et al. [19]. Reconstruction of a large database is often
a first step to build a statistical model of the human body including variations
in shape and pose. [12] [3] [6].

2 Our System

In this part we present our system to generate a 3D model of the customer.
The scanner is composed of 3 laser lights of different wavelengths filmed by 3
calibrated cameras. Each laser emits a planar beam whose equation is known
at each time. The images of the camera are analyzed to find pixels of the laser
beam and by combining the plane equation and the calibration information, 3D
points are obtained.

Once this point cloud is obtained we start the reconstruction process. The
different steps of this process are :

– Point cloud analysis to extract feature points and a rough segmentation
– Adjustment of the pose of the generic model with a linear surface deformation

approach using information from the point cloud analysis
– Optimization of the vertices positions to be as close as possible to the point

cloud

The following subsection will detail each one of these steps. Let us first define
some elements that will be used in the subsections.

The point cloud provided by the scanner is a set C = (pCi)i=1..nC of nC points
in R3, we note (pCi) = (xCi , yCi , zCi). Our generic model is a triangulated mesh
made by a computer graphics designer respecting all the constraints for cloth
simulation. The 3D mesh is defined by M = (V, F ) and a function p where V
is the set of vertices. We can assume that V = {0; ..;nV − 1} where nV is the
number of vertices. F is a set of nF triplets of vertices of V defining the triangles
of the manifold. p is the function of the 3D realization of the mesh associating a
3D position in space to each vertex of V :

p :
{
V → R3

v �→ p(v) = (x(v), y(v), z(v))

To make it simpler we will write pi = p(i) = (xi, yi, zi)

2.1 Point Cloud Analysis

The first part of the process is to extract information from the point cloud
in order to adjust the pose of the generic model. Feature point definition and
detection can be a very complex task since, for a same body part such as elbow,
wrist ... different users may not always choose the same point in the point cloud.
Mathematical description of many feature points is not an easy task and supposes
often a strong regularity of the surface to be computed which is hard to obtain
since there are always holes due to occlusions or parts of the body that weren’t
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Fig. 1. Left : a point cloud provided by the scanner including axis orientations, the
person stands in the standard position, middle : a binary image constructed by pro-
jecting the points in the Oyz plane and filtered by a median filter, right : results of the
segmentation

reached by the light of the lasers. For these reasons we will only use feature
points to adjust the pose of the model and provide a good initialization for an
optimization procedure, we will not use these points as strong constraints on
specific points of the point cloud.

We introduce some elements useful for the analysis of the mesh. Axis orien-
tations are defined as in Fig 1. For n ∈ N, let In = {i ∈ N, 0 ≤ i ≤ n − 1}.
Let xCMax = maxi∈InC

xCi and xCMin = mini∈InC
xCi . In a same manner

we define yCMax, yCMin, zCMax and zCMin. We will use slices of the point
cloud defined as follow :

slicey(i) = {pCj ∈ C, yCMin+ i.hy ≤ yCj < yCMin+ (i+ 1).hy}

We use a similar definition for z axis. hy and hz represent the thickness of the
slices along y and z axes. The choice of these thicknesses is made as a compromise
between the desired precision and the density of points provided by the scanner.
In our case we found hz = 3mm and hy = 10mm to be good enough values.

Finally we construct a binary image that will help us in finding feature points
and segmenting the points cloud. We project all the points of C in the Oyz
plane. We digitize this plane into pixels and put a binary value 1 when a point
of C is in the pixel and 0 otherwise. Our aim is to obtain a single component
without holes as shown in Fig 1 on the right. Therefore we chose a fixed value of
digitization along the z axis (100 pixels) the value along y axis is computed for
each acquisition so that the aspect ratio of the point cloud is preserved. Such an
image is shown in Fig 1 on the right.

Crotch Detection. To find the crotch position we use the slices along the z axis.
Let us define the following sequence (ymin|z) :
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ymin|z(i) = min
pCj

∈slicez(i)
{yCj}

According to the reference position the customer is supposed to have, we can
say that the crotch is located in a slice at a local maximum of this sequence
whose positions are roughly around zCMin+zCMax

2 . So we look for the highest
maximum of the sequence around this value to find the crotch height.

Shoulder. Using a point around the armpit is a difficult problem because if the
arm is too close to the torso the point detected will be too low and this will
probably lead to deformation artefacts. To avoid this problem we use a feature
point in the shoulder area. First, we use the binary image to find an approximate
2D position of the armpit. We start from a pixel in the center column of the image
roughly at the neck height, this pixel belongs to the mask and has therefore a
binary value of 1. To find the right armpit approximate position we start to move
left from this pixel and we analyse the binary sequence, as long as the binary
sequence is a list of 1’s followed by 0’s we move to the next line and start again
from one pixel lower. Once we reach a line with a sequence of 1’s followed by
one or a few 0’s and 1’s again we can say that we found a transition between
the torso and the right arm. This would be our rough armpit position. As we
said this position is not reliable for pose approximation, so starting from this
point we move up in the image (we have a sequence of 1’s) until we reach a 0.
This gives us a position on the shoulder juste above the armpit that will be our
feature point. The left feature point position is found in a similar way.

Rough Segmentation. Now that we have crotch and armpit estimation we can
obtain a segmentation of the image : points that are under the crotch are split
between left and right and set to right and left leg. Then the armpit positions
are used to separate the arms. See Fig 1 for the result. This segmentation can
be used to segment the point cloud just by looking at the label of the pixel for
a specific point.

Wrists and Ankles. Since in our reference position the subject has his two feet
on the ground, to adjust the pose we only need a rough position around the ankle
so we take the points in slicey(iankle) with iankle such that yCMin+ iankle.hy ≤
12cm < yCMin + (iankle + 1).hy. We split slicey(iankle) between points that
have a positive value of z and others (left and right legs actually) we take the
center of gravity of these subsets as feature points for the left and right ankle.

Wrists positions are estimated as the barycenters of the slices with the smallest
area in the lower part of each arm.

Chin and Nose. The only point we use as a feature point is the nose but for the
detection we look at slices along the y axis and study the sequence :

xmax|y(i) = max
pCj

∈slicey(i)
{xCj}

Chin and nose can be regarded as local maxima in this sequence. Once the slice
is found we take the point with the largest value of x in the slice as feature point.
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2.2 Pose Adjustment

Once the feature points have been extracted, pose adjustment of the generic
model can be performed. To do this task we propose to use a linear surface
deformation method. Let’s first recall some paradigm of surface editing. The
main idea of surface editing is to define handle regions on the surface that the
user can manipulate, fixed region that will not move and free regions that will
be deformed in a smooth manner when the user manipulates handle regions. An
easy way to compute such a deformation is to use a differential representation of
the mesh and solve a minimization problem to preserve as much as possible the
differential representation while enforcing some constraints on the position of a
few vertices. In our framework we chose to use Laplacian coordinates. Laplacian
coordinates are evaluated at each point of the mesh using a discrete Laplace
operator. The discretization of the Laplacian operator has been well studied and
has led to a variety of formulas. The general formulation is :

δi = Δ(pi) =
∑

j∈N(i)

wij(pi − pj)

where N(i) is the 1-ring neighborhood of the vertex i. The choice of wij depends
on the properties we want for the coordinates see [23] for a discussion, these
values desribe the Laplacian matrix L. We look for new positions of the vertices
p′i, the minimization problem is formulated as :

min
p′

∑
‖Δ(p′i) − δi‖2

This leads us to solve the bi-Laplacian equation

L2p′ = Lδ

There are two ways of enforcing constraints to this system. The soft way is to
add other energy terms in the minimization ‖p′i − piconstraint‖2. The hard way
is to remove rows and columns corresponding to constrained points and transfer
the values to the right-hand side.

In this system we use a uniform discretization of the Laplacian (i.e. wij =
1

|N(i)|) that means that δi represents the difference between pi and the center of
gravity of its neighbors. We also use soft constraints.

We defined 2 sets of handle regions on the generic model, see Fig 2. The first
set is composed of points that will be moved using the feature points detected
in the point cloud analysis. The second set is composed of slices along each
member and will help to adjust the volume of the model to fit the point cloud in
a first approximation. We pre-compute the matrices for these sets of constraints
off-line, so that we only need to build the right-hand side.

In a first step we use only the set related to feature points. For each region of
this set we use a feature point to find a transformation, we use only translation
and scale transformations. Translation is often obtained by aligning the center
of gravity (ankles, wrists) or an extreme point (nose, crotch) of the region in
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Fig. 2. Generic model with handle sets. In yellow, the handles related to a specific
feature point, in red the ones used to retrieve volumetric information.

the generic model with the feature point detected. Scale is evaluated by taking
a slice in the concerned member along the y axis in the point cloud around the
feature point and computing its bounding box. This box is matched with the
one of the handle region of the generic model.

In a second step we consider the deformed generic model after the first step,
we pick slices in the segmented point cloud around each handle and find a scale
deformation by matching the bounding boxes.

Now we have a deformed model in the same pose as the scanned customer
and with roughly the same volume everywhere, we use it as the initialization of
an optimization procedure.

2.3 Vertex Position Optimization

To get more precisely the shape of the customer we optimize the position of the
vertices assuming we have a good initialization provided by the pose adjustment
of the previous section.

We define an energy function over the mesh vertices with 2 terms, the first
one Edata that moves the vertices towards the point cloud and the second one
Esmooth that ensures smoothness :

E(V ) = Edata + Esmooth =
nC−1∑
i=0

d(pCi ,M)2 +
∑
v∈V

‖∇(v)‖2

with d(p,M) the distance between a 3D point p and the mesh M , we choose
the distance to the projection of point p on its closest facet f(p) in M. f(p)
is found using a fast search structure. Once we have it the distance can be
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expressed relatively the the vertices positions of M . Let us note vf(p)1, vf(p)2,
vf(p)3 the vertices of f(p) and nf(p) the normal of the facet f(p) : nf(p) =
(vf(p)2 − vf(p)1) ∧ (vf(p)3 − vf(p)1). The distance is then :

d(p,M) =
nf(p).(p− vf(p)1)

‖nf(p)‖

Expressing d(p,M) relatively to the vertices of M enables us to optimize E using
a gradient descent approach.

Applying this method directly on the mesh yet leads to unsatisfactory results
because the generic mesh is too dense and wrong displacements in the first
iterations can lead to considerable artefacts. To deal with this problem we use a
multiresolution strategy : we have a precomputed lower resolution of the generic
model and its relation to the higher resolution. We first optimize the lower
resolution mesh, then reconstruct the higher resolution with the new position
and use it as a new initialization for the optimization.

3 Implementation, Results and Future Works

The whole process was implemented in C++, the sparse linear system for pose
adjustment is solved using UMFPACK library [10].

Reconstruction of the point cloud of Fig 1 is shown in Fig 3.

Fig. 3. Our reconstruction of the point cloud in fig 1

To measure the validity of the approach we compare measures on our recon-
structed model with another state-of-the-art method for surface reconstruction
from point cloud [15], we use both methods to reconstruct a computer-made
3D model of a human body by taking only the points of the mesh so that we
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Fig. 4. The computer made model used as ground truth. Red lines show heights where
measures are taken.

Table 1. Comparison of our method with a ground truth 3D model and Poisson surface
reconstruction [15]. Circumferences are measured at different heights y on the models
see Fig 4.

Our approach Poisson Ground Truth our % error Poisson % error

y = 1540mm 425mm 432mm 422mm 0.71 2.37

y = 1390mm 1318mm 1325mm 1318mm 0.0 0.53

y = 1230mm 942mm 954mm 944mm 0.21 1.06

y = 1030mm 208mm 202mm 204mm 1.96 0.98

y = 890mm 1022mm 1033mm 1025mm 0.29 0.78

y = 590mm 425mm 440mm 426mm 0.23 3.29

y = 150mm 241mm 247mm 241mm 0.0 2.49

don’t introduce errors due to the acquisition process and we compare the mea-
sures with the different reconstructions. We choose to measure circumferences
at various heights since these are most likely the important values for a virtual
try-on application. Percentage of error is calculated for each method relatively
to the ground truth provided by the original mesh, see Table 1. Location of the
measures on the original mesh are shown in Fig 4 For Poisson reconstruction we
chose a depth parameter so that the generated mesh has a similar number of
vertices as our generic model (depth = 12)

Processing time for the whole reconstruction is around 20 seconds on a modern
laptop computer.

Our method provides results comparable to recent techniques of surface re-
construction from point cloud in terms of speed and precision. Yet some parts
of the human body are still hard to reconstruct (hair and hands especially) for
two reasons : the acquisition system has to be able to provide points for these
area which is not always possible for hair with current technologies, and the re-
construction procedure has to be able to get fine details compared to the global
size of the subject.
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Fig. 5. Another reconstructed model with texture information

To complete the surface information we plan to add texture information that
will be captured from calibrated cameras during the scan. Applying a state-of-
the-art method such as [16] already gives promising results as shown in Fig 5,
but further work needs to be done with illumination variations between images,
and seam visibility in critical areas like the face.

Acknowledgements. The authors wish to thank Kévin Leduc for designing the
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Abstract. Bag-of-visual-words (BOVW) is a representation of images which is
built using a large set of local features. To date, the experimental results presented
in the literature have shown that this approach achieves high retrieval scores in
several benchmarking image databases because of their ability to recognize ob-
jects and retrieve near-duplicate (to the query) images. In this paper, we propose a
novel method that fuses the idea of inserting the spatial relationship of the visual
words in an image with the conventional Visual Words method. Incorporating the
visual distribution entropy leads to a robust scale invariant descriptor. The exper-
imental results show that the proposed method demonstrates better performance
than the classic Visual Words approach, while it also outperforms several other
descriptors from the literature.

1 Introduction

Over the years, a great number of approaches have been introduced in the field of
content-based image retrieval (CBIR). Multiple features can be abstracted in order to
obtain an efficient description of the visual content of an image. According to this ap-
proach, the visual content of the images is mapped into a new space named the fea-
ture space. Beginning with the so called global features, images can be described via
a general single vector, conducing to a first rough classification. A feature is a set of
characteristics of the image, such as color, texture and shape.

Trying to achieve successful content-based image retrieval exclusively via global
features often proves to be rather challenging since the output depends on the image
queries. CBIR with global features is notoriously noisy for image queries of low gen-
erality, i.e. the fraction of relevant images in a collection. In contrast to text retrieval
where documents matching no query keyword are not retrieved, CBIR methods typi-
cally rank the whole collection via some distance measure [2]. If, for example, a query
image depicts the plan of a white plate on a black background, due to the common fea-
tures (round-shaped white foreground towards black background) that are met in a great
number of images, the early ranked results may be dominated by non-plate depicting
images.

Local-feature approaches provide a slightly better retrieval effectiveness than global
features [1]. They represent images with multiple points of interest in a feature space
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in contrast to single-point global feature representations. While local approaches pro-
vide more robust information, they are more expensive computationally due to the high
dimensionality of their feature spaces and usually need nearest neighbors approxima-
tion to perform points-matching [16]. High-dimensional indexing still remains a chal-
lenging problem in the database field. Thus, global features are more popular in CBIR
systems as they are easier to handle and still provide basic retrieval mechanisms. In
any case, CBIR with either local or global features does not scale up well to large
databases efficiency-wise. In small databases, a simple sequential scan may be accept-
able, however, scaling up to millions or billion images efficient indexing algorithms are
imperative [11].

In order to surpass the aforementioned difficulty the Bag-of-visual-words (BOVW)
[6] approach is adopted. BOVW is inspired directly by the bag-of-words model, a well-
known and widely used method in text retrieval, where a document is represented by a
set of distinct keywords. The same concept governs the BOVW model, in which an im-
age is represented by a set of distinct visual words derived from local features. BOVWs
are fast becoming a widely used representation for content-based image retrieval, for
mainly two reasons: their better retrieval effectiveness over global feature represen-
tations on near identical images, and much better efficiency than local feature repre-
sentations. However, experimental results of reported work show that the commonly
generated visual words are still not as expressive as the text words [22]. When employ-
ing this approach, the extracted local features are clustered using k-means classifier and
the computed cluster centers (i.e. the mean vectors) are called visual words. The set of
visual words forms a visual vocabulary also known as codebook. For every new image
added in the collection its local features must be extracted and assigned to the best fit-
ting visual word from the existing codebook. By the end of that process a local feature
histogram is composed for each image in the collection. The size of the codebook is
directly related to the k-means clustering step and the filtering parameters that were set.
Determining the appropriate size of the codebook is essential but very difficult to pre-
dict. Ideally, a small-sized codebook, which would allow fast identification and search
tasks, is desired. However, while a small vocabulary may produce the expected results
in some image collections, it proves to be inefficient in others due to its low discrim-
inating abilities. On the other hand, a wider codebook often contains redundant visual
words which results not only in increasing the computational cost caused by the high
dimensionality of the produced local feature vectors but also in some cases forces the
early ranked positions to be filled with spurious results. Multiple approaches to enhance
the bag of words approach have been proposed in literature [10].

In several CBIR systems with global features, a feature can further be enriched with
information about the spatial distribution of the characteristic, that it describes. In the
following, a new techniques is proposed to incorporate to the BOVW the distribution
state of each single visual word in the spatial dimension. This method revises BOVW
approach by applying information about Distribution Entropy (DE) [20] of the visual
words in the image. Fusing these two techniques allowed us to result in a promising
model for CBIR, which is easy to implement and presents well ranked relative retrieval
results. In Section 2 we briefly review relative literature about spatial distribution infor-
mation in several low level features.
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The rest of the paper is organized as follows. In Section 3 we present the proposed
CBIR approach. Section 4 provides the details on the used image database, the simi-
larity measure and the performance evaluation. The experimental results are described
and compared with other methods and finally, Section 5 gives an overall conclusion.

2 Spatial Distribution Information

Due to the statistical nature of several global features, they can only index the content
of images in a limited way. To make these features more effective for image indexing,
spatial information should be considered. In [8] the authors proposed a technique of
integrating color information with spatial knowledge to obtain an overall description of
the image. This technique involves three steps: the selection of a set of representative
colors, the analysis of spatial information of the selected colors, and the retrieval process
based on the integrated color-spatial information. Stricker et al [19] partition an image
into 5 partially overlapping, fuzzy regions. From each region in the image they extract
the first three moments of the color distribution and store them in the index. The feature
vectors in the index are relatively insensitive to small translations and rotations.

Pass et al [15] described the concept of color coherent vector (CCV) and use it to
separate a color histogram vector into two parts: a coherent vector and a non-coherent
vector. A pixel is called coherent if its connected component is large enough. A CCV of
an image is the histogram over all coherent pixels of the image. In [9] a color correlo-
grams method is proposed, which collects statistics of the co-occurrence of two colors.
A simplification of this feature is the autocorrelogram, which only captures the spatial
correlation between identical colors.

The MPEG-7 standard includes the Color Layout Descriptor [13], which represents
the spatial distribution of color of visual signals in a very compact form. The CLD
uses representative colors on an 8 × 8 grid followed by a Discrete Cosine Transform
and encoding of the resulting coefficients. Spatial Color Distribution descriptor (SpCD)
[4] is a recently proposed compact composite descriptor (CCD) which combines color
and spatial color distribution information. In order to extract the color information, a
fuzzy system is being used, which is maps the number of colors that are included in the
image into a custom palette of 8 colors. The way by which the vector of the proposed
descriptor is being formed, describes the color spatial information contained in images.

Rao et al [17] introduced annular color histogram. In this method the centroidCi and
the radius ri of each color bin in the histogram are calculated. Ci serves as the center
of N concentric circles with nri radius, where 1 ≤ n ≤ N . This division allows us to
count the number of pixels of a color bin in each n circle providing important spatial
information which however is size variant since it is relative to the number of pixels of
a color bin in the annular circles.

The Spatial-Chromatic Histogram (SCH) proposed by Cinque et al [5], describes
how identical color pixels are distributed in an image and was found to be more ef-
ficient than the annular color histogram due to its smaller index. However, SCH uses
the standard deviation σ to measure the square root of the average squared distance of
pixels in a bin from the computed centroid of the bin. This means that σ is size variant
and when this method is used in CBIR it can ultimately lead to falsely ranked results.
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Sun et al [20] proposed a new Color Distribution Entropy (CDE) descriptor which
describes the spatial information of an image and is based on the Normalized Spatial
Distribution Histogram (NSDH) and the definition of entropy. This method presents
low dimension indexes and is therefore very efficient in CBIR. Furthermore, the NSDH
is size invariant because annular color histograms are normalized by the number of
pixels of the color bins. Thus, CDE is also size invariant. More details about annular
histograms and CDE are given in Section 3.

3 Visual Words Distribution Entropy

In this paper we propose a novel method for content-based image retrieval that is based
on the BOVW method using the SURF [3] descriptors to produce the visual vocabulary
and the CDE method to enhance the visual words histogram with a local spatial rela-
tionship component. In the proposed method a predefined number of Annular Visual
Words are used to form the codebook for image classification and identification.

3.1 Annular Visual Words Histogram

In this section we present the structure of the proposed method. The block diagram in
Figure 1 depicts the different implementation stages. Initially, in order to produce the
visual codebook, we use a set of 237434 images from the ImageCLEF 2010 Wikipedia
test collection. SURF descriptors are extracted from these images. Then, we randomly
select 100000 descriptors to create the visual words that will form our codebook. SURF
descriptors are clustered and the mean vector (using k-means) is used as a visual word.
For our experiment we used two different scenarios with 128 and 256 sized codebooks
respectively.

For every query image its SURF features are extracted. The local features are as-
signed to the best fitting visual word using the nearest neighbor method from the earlier
created codebooks. A visual words histogram can now be computed for each image.

The spatial information of the visual words is incorporated using the following
method: Based on the annular color histogram generation, we introduce the annular
visual words histogram. Let Ai be the count of SURF descriptors belonging in the vi-
sual word i. Let Ci = (xi, yi) be the centroid of the visual word i, xi and yi defined
as:

xi =
1
Ai

∑
(x,y)∈Ai

x; (1)

yi =
1
Ai

∑
(x,y)∈Ai

y (2)

Let ri be the radius of the visual word i:

ri = max
(x,y)∈Ai

√
(x− xi)2 + (y − yi)2 (3)

We divide each radius ri into N = 3 and draw 3 concentric circles centered at Ci,
creating three different image areas. Aij is the count SURF features belonging to the
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Fig. 1. Blog diagram of the Annular Visual Words implementation

Fig. 2. The first 8 annular visual words for a query image

visual word i inside circle j. Figure 2 illustrates the first 8 annular visual words for an
image.

At this point we incorporate the visual words distribution entropy (VWDE). This
method is based on the normalized spatial distribution histogram (NSDH) according to
which the annular color histogram (or in our case the annular visual words histogram)
can be defined as Pi where:

Pi = (Pi1, Pi2, . . . , PiN ) (4)

where
Pij = |Aij |/|Ai| (5)

The VWDE of a visual word i can be defined as:

Ei(Pi) = −
N∑

j=1

Pij log2(Pij) (6)
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Fig. 3. A visual example of the proposed method a. input image b. extraction of the local features
c. visual words assignment d. indexing of the ”yellow” visual word of the annular visual words
histogram.

which gives a dispersive degree of the pixel patches of a bin in an image. The VWDE
index for an image can be written as:

(A1, E1, A2, E2, . . . , An, En) (7)

Where hi is the number of the SURF features that belongs to the visual word i, Ei is
the VWDE of these features i and n is the number of the visual words of the codebook.

Figure 3 depicts a quick visual example of the method. Figure 3.a is the input image,
Figure 3.b depicts the extraction of the points of interest, Figure 3.c depicts the assign-
ment of the key points to three different visual words (yellow, green, red) and finally
Figure 3.d illustrates the indexing of annular visual words histogram of the yellow-
assigned visual words of the image.

The SURF descriptors of the visual word i are more dispersed in the far annular
circles than those closer to the centroid. The closer (in a spatial sense) the descriptors
are found together the more possible it is for them to belong to the same object. This can
and should be taken under consideration in order to strengthen the effect of descriptors
found in the near to the centroid circles and, correspondingly, weaken the effect of those
in the farther circles. We adopt the weight function f(j) proposed in [20]. The weight
function should satisfy f(j1) > f(j2) when annular circle j1 is out of j2. With,

f(j) = 1 +
j

N
(8)

equation 6 can be written as:

Ei(Pi) = −
N∑

j=1

f(j)Pij log2(Pij) (9)

In order to remove the influence of the symmetrical property of entropy that forces
perceptually dissimilar histograms to present the same entropy, Sun et al [20] proposed
an improved formula for the computation of color distribution entropy (I-CDE). The
improved formula is based on the observation that even though perceptually dissimilar
histograms may have the same entropy they have different histogram areas. The area of
histogram H is defined as,
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A(H) =
n∑

i=1

(pi × i) (10)

and
H = {p1, p2, . . . , pn} (11)

And the weight function that allows the discrimination of the different areas is given
by:

g(H) = 1 +
A(H)
n

(12)

Applying this new weight function on equation 9 the I-VWDE function is described as:

Ei(Pi) = −g(Pi)
N∑

j=1

f(j)Pij log2(Pij) (13)

Similar to our method, Ding et al [7] proposed a video annotation method based on an
annular spatial partition scheme. In this approach the spatial partition scheme is based
on the distribution of the overall points of interest. The centroid of the annular regions is
computed according to the distribution of the keywords found in an image via the SIFT
[12] descriptors. The centroid serves as the center of three concentric circles that define
three annular regions. For each region the BOW histogram is computed and the three
regional histograms are used to produce an overall feature vector. The main difference
regarding our method is that we compute annular visual words histograms for the three
regions that are formed per visual word centroid and then we employ the I-VWDE
described by function 13, achieving a size invariant method which also removes the
influence of the symmetrical property of entropy.

4 Experimental Results

In this section we present our first experimental results. In subsection 4.1 we define the
database details, subsection 4.2 presents the similarity measure that was implemented
in order to evaluate the image correlation.

4.1 Database Details

The Nister image database consists of K groups of four images each [14]. The image
size is set to 640 × 480 pixels (VGA). Each group of four depicts an image of a single
object captured from different angles and in some cases under different light conditions.
The first image of every group is used as a query image and only the images from the
same group are considered to be relevant. The first subset of 1000 images of the database
with 250 queries was used in order to calculate the efficiency of the proposed method.

4.2 Similarity Measure

The distance D(i, j) of two images i and j is defined as:

D(i, j) = t(ni, nj) × E(Ei, Ej) (14)
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where t(ni, nj) is the distance between the histogram of visual words calculated using
the Tanimoto coefficient:

Tij = t(ni, nj) =
nT

i nj

nT
i ni + nT

j nj − nT
i nj

(15)

and where E(Ei, Ej) is the Euclidean distance between the I-VWDE histograms.

4.3 Performance Evaluation

For the evaluation of the performance of the proposed image retrieval method one of the
metrics we employed is the Averaged Normalized Modified Retrieval Rank (ANMRR)
[13]. The average rank AV R(q) for query q is:

AV R(q) =
NG(q)∑
k=1

Rank(k)
NG(q)

(16)

Where NG(q) is the number of ground truth images for query q, K = min(XNG ×
NG(q), 2 × GTM), GTM = max(NG). If NG(q) > 50 then, XNG = 2 else
XNG = 4. Rank(k) is the retrieval rank of the ground truth image. Consider a query
and assume that the kth ground truth image for this query q is found at position R. If
this image is in the firstK retrievals thenRank(k) = R else Rank(k) = (K+1). The
modified retrieval rank is:

MRR(q) = AV R(q) − 0.5 × [1 +NG(q)] (17)

The normalized modified retrieval rank is defined as:

NMRR(q) =
MRR(q)

1.25 ×K − 0.5 × [1 +NG(q)]
(18)

and finally the average of NMRR over all queries is computed as:

ANMRR(q) =
1
Q

Q∑
q=1

NMRR(q) (19)

whereQ is the total number of queries. The ANMRR has a range of 0 to 1 with the best
matching quality defined by the value 0 and the worst by 1.

Apart from the ANMRR metric, we also evaluated the performance of the method
using the Mean Average Precision (MAP) metric:

Percision = P =
Number of relevant images retrieved

Total number of images retrieved
(20)

Recall = R =
Number of relevant images retrieved

Total number of images retrieved
(21)
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The average precision AP is:

AP (q) =
1
NR

NR∑
n=1

PQ(Rn) (22)

where Rn is the recall after the nth relevant image retrieved and NR the total number
of relevant documents for the query. MAP is computed by:

MAP =
1
Q

∑
q∈Q

AP (q) (23)

where Q is the set of queries q.
The last evaluation metric that we employ is the Precision at 10 (P@10) and Precision

at 20 (P@20) metrics that describe the system’s capability to retrieve as many relevant
results as possible in the first 10 and 20 ranked positions, respectively. This evaluation
of the system’s performance is critical for web based retrieval systems where the users
are particularly interested in the credibility of the first results.

4.4 Results

In this section we present our experimental results using the 1000 images from the Nis-
ter database with 250 queries, described in Subsection 4.1, evaluated by the ANMRR,
the MAP, the P@10 and the P@20 metrics described in Subsection 4.3. We also give the
corresponding results of the Visual Words method, for comparison reasons. Addition-
ally, we calculate how significant is the performance deviation between the descriptors.
Significance test tell us whether an observed effect, such as a difference between two
means, or a correlation between two variables, could reasonably occur just by chance
in selecting a random sample. This application uses a bootstrap test, one-tailed, at sig-
nificance levels 0.05, 0.01, and 0.001, against a baseline run.

Through the proposed method we achieved to significantly improve the results of
the Visual Words method. In particular, the ANMRR metric appears improved by a
percentage of 36.37% in our method with a 128 word vocabulary compared to the cor-
responding 128 sized vocabulary and the Visual Word method. The improvement is
more evident in the 256-visual words vocabulary. The ANMRR metric is improved
by 65.69% using the proposed method compared to the corresponding Visual Word
method. Figure 4.a and 4.b illustrate the retrieval results for the Annular Visual Words

Table 1. Retrieval effectiveness for Visual Words and Annular Visual Words. Significance-tested
with a bootstrap test, one-tailed, at significance levels 0.05 (***), 0.01 (**), and 0.001 (*), against
the visual words baseline.

Descriptor MAP P@10 P@20 ANMRR
Visual Words (128 Visual Words) 0.7581 0.3192 0.1656 0.2018
Annular Visual Words (128 Visual Words) 0.8115*** 0.3396*** 0.1792*** 0.1480***
Visual Words (256 Visual Words) 0.7351 0.3044 0.1632 0.2293
Annular Visual Words (256 Visual Words) 0.8254*** 0.346*** 0.1808*** 0.1384***
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Fig. 4. Experimental results a. the retrieval results in the first four ranked positions using the
proposed method b. the retrieval results in the first four ranked positions using the Visual Word
method.

Table 2. Retrieval effectiveness for several low level features with spatial distribution information

Descriptor MAP P@10 P@20 ANMRR
SpCD 0.8178 0.3408 0.1772 0.1485
AutoCorrelograms 0.7616 0.3192 0.1692 0.1955
CLD 0.7258 0.3084 0.1648 0.2285
TOP-SURF 0.6177 0.2704 0.1498 0.3209

and the Visual Words, respectively. As shown in the example, the AVW methods man-
ages to retrieve all four relevant results ranked in the first four position, while the VW
method only retrieves two of the four relevant results in the first four positions.

The following table presents the results from three descriptors with spatial distribu-
tion information as well as the results of the recently proposed TOP-SURF[21] visual
words descriptor for further comparison with the proposed descriptor.

The proposed method outperforms all four descriptors and according to the AN-
MRR evaluation metric, our method achieves a 7.30% improvement compared to the
SpCD descriptor, a 41.26% improvement compared to the AutoCorrelograms descrip-
tor, a 65.10% improvement compared to the CLD descriptor and an impressive 131.83%
improvement compared to the TOP-SURF descriptor.

5 Conclusions

In this paper, we have presented a novel method that fuses the idea of inserting the
spatial distribution relationship of the visual words in an image with the conventional
Visual Words method. By locating the centroids of the 128 in the first scenario and
the 256 in the second scenario different visual words distribution, we computed an-
nular visual words histograms. Incorporation of the visual distribution entropy led to
a robust scale invariant descriptor. The experimental results show that the proposed
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method demonstrates better performance than the Visual Words method, while it also
outperforms descriptors such as SpCD, AutoCorrelograms and CLD. Our next step is
to thoroughly examine and optimize the similarity matching method in order to further
improve our results.

The proposed descriptor is implemented in the image retrieval system img
(Rummager)[18] and is available online1 along with the image databases and the queries.
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Abstract. In this paper, a novel method to generate video summaries is pro-
posed, which is allocated mainly for being applied to on-line videos. The novelty
of this approach lies in the fact that the video summarization problem is con-
sidered as a single query image retrieval problem. According to the proposed
method, each frame is considered as a separate image and is described by the
recently proposed Compact Composite Descriptors(CCDs) and a visual word his-
togram. In order to classify the frames into clusters, the method utilizes a pow-
erful Self-Growing and Self-Organized Neural Gas (SGONG) network. Its main
advantage is that it adjusts the number of created neurons and their topology in an
automatic way. Thus, after training, the SGONG give us the appropriate number
of output classes and their centers. The extraction of a representative key frame
from every cluster leads to the generation of the video abstract. A significant
characteristic of the proposed method is its ability to calculate dynamically the
appropriate number of clusters. Experimental results are presented to indicate the
effectiveness of the proposed approach.

1 Introduction

In the last decades, observing the increasingly use of multimedia data, it is realized
that they have penetrated in our everyday life. A characteristic example of multimedia
data is the digital video, whose on-line use, especially the last years, has been increased
dramatically.

This fact automatically entails that video web sites have become overcrowded and
the amount of data has reached to an uncontrollable point. It is no coincidence that in
August 2008 YouTube was considered to be the world’s second search engine1 while in
2010, more than 2 billion videos watched per day on-line2. Consequently, the situation
necessitates the generation of a representative video abstraction with a view to facilitat-
ing the user to decide rapidly and easily whether or not he/she is interested in a video
without the need to watch the entire video but only the essential content of it.

Over the last years a noteworthy amount of work in the field of video summarization
has been observed (e.g. [22,29,21,18,4]). In the literature a lot of significant approaches

1 http://tinyurl.com/yz5wb8x
2 http://www.focus.com/images/view/48564/

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2011, LNCS 6930, pp. 216–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of this issue are demonstrated. Nevertheless, in a recent survey [12] the authors con-
clude that “video abstraction is still largely in the research phase”. In [27] the authors
conclude also that “practical applications are still limited in both complexity of method
and scale of deployment”. The main idea behind video summarization is to take the
most representative and most interesting segments of a long video in order to concate-
nate it to a new, smaller, sequence.

Truong et al.[27] proposed two basic forms of video summaries: key frames and
video skims. Key Frames, also called representative frames or R-frames is a collection
of salient images extracted from the underlying video source. Video skims, also called
a moving-image abstract, moving storyboard, or summary sequence consists of a col-
lection of video segments (and corresponding audio) extracted from the original video.
One popular kind of video skim in practice is the movie trailer. Both forms of generating
a video summary are presented in a method that is based on clustering all the frames of
a video and extracting the key frames of the most optimal clusters and then the preview
is formed using the video shots that the key frames belong to [15]. It is a fact that the
majority of techniques, in which the summarization of a video is aimed, are focused on
the extraction of key frames instead of the preview of the video.

Video summarization methods can also be separated by the low-level features which
are used for content analysis[20]. In general, video summarization is either performed
by low level image features (e.g. [6]), audio features (e.g. [28]), textual elements (e.g.
[10]), or a fusion of several features (multimedia/multimodal methods, e.g. [21]). Re-
garding low level image features, authors in [20,19] created a key frame selection tool,
which implements summarization of video clips by key frame extraction based on sev-
eral global and local image features.

In this paper, we propose a new key frame extraction approach using low level fea-
tures from the visual content of the image that expands the problem of video summa-
rization to a problem of single query image retrieval. More particularly, the method
utilizes the recently proposed Compact Composite Descriptors (CCDs). The effective-
ness of CCDs against to several global low level features for video summarization has
been illustrated in [19]. Additionally, the proposed method utilizes a visual words (VW)
histogram [11]. VWs are inspired directly by the bag-of-words model (BOVW), a well-
known and widely used method in text retrieval, where a document is represented by
a set of distinct keywords. The same concept governs the BOVW model, in which an
image is represented by a set of distinct visual words derived from local features. In
[20] the authors conclude that histogram of visual words produces more stable results
than the ones based on global image features. CCDs are described in Section 2, whereas
BOVW and visual-word histograms are described in details in Section 3.

According to the proposed method, video is considered as a sequence of frames. Each
frame is considered as a separate image and is described by CCDs and from a histogram
of visual-words. Additionally, the whole video is described by an artificially generated
image, which is generated dynamically from the video. Afterwards, the distance of the
low level features of each frame with the low level features of the artificially gener-
ated image is calculated, in order to extract the video summary. These distances are
inserted as input in a powerful Self-Growing and Self-Organized Neural Gas (SGONG)
network[3]. The SGONG network has the ability to calculate the optimal number of
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output neurons and finally to classify each frame of the video in the appropriate cluster.
More details about the SGONG are given in Section 4. The total of the clusters sets the
video summary. The frame that corresponds to the center of each cluster is considered
as the frame that is able to describe the cluster. A significant characteristic of the pro-
posed method is its ability to calculate dynamically the appropriate number of clusters.
Consequently, a video summary is generated. The entire procedure is given in details in
Section 5 while the experimental results are shown in Section 6. Finally the conclusions
are drawn in Section 7.

2 Compact Composite Descriptors

The family of Compact Composite Descriptors (CCDs) includes the following four
descriptors:

1. the Color and Edge Directivity Descriptor (CEDD) [24]
2. the Fuzzy Color and Texture Histogram (FCTH) [24],
3. the Brightness and Texture Directionality Histogram (BTDH) descriptor [8] and
4. the Spatial Color Distribution Descriptor (SpCD) [9]

The Color and Edge Directivity Descriptor (CEDD) and the Fuzzy Color and Texture
Histogram (FCTH) are used to describe natural color images. CEDD and FCTH use
the same color information, since two fuzzy systems are applied to them, resulting in
reducing the scale of the colors of the image to 24. These 2 descriptors demand a small
size for indexing images. The CEDD length is 54 bytes per image while FCTH length
is 72 bytes per image. The early fusion of CEDD and FCTH leads to a new descriptor,
called Joint Composite Descriptor (JCD) [7].

The Brightness and Texture Directionality Histogram (BTDH) descriptor combines
brightness and texture characteristics in order to describe grayscale images. A two unit
fuzzy system is used to extract the BTDH descriptor; the first fuzzy unit classifies the
brightness value of the images pixels into clusters in order to extract the brightness
information using Gustafson Kessel [14] fuzzy classifier and the other one is used to
extract texture information suggested by the Directionality histogram in [26].

The Spatial Color Distribution Descriptor (SpCD) is used for artificially generated
images combining color and spatial color distribution information. This descriptor uses
a fuzzy linking system that reduces the scale of the image to 8 colors. SpCD captures the
spatial distribution of the color by dividing the image into sub-images not to mention
the fact that its length does not exceed 48 bytes per image.

3 Bag of Visual Words

Content based image retrieval with global features is notoriously noisy for image queries
of low generality, i.e. the fraction of relevant images in a collection [2]. On the other
hand, local-feature approaches provide a slightly better retrieval effectiveness than global
features [1] but are more expensive computationally [23].

In order to surpass the aforementioned difficulty the Bag-of-visual-words (BOVW)
approach is adopted. When employing this approach, the extracted local features are
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clustered using k-means classifier and the computed cluster centers are called visual
words. The set of visual words forms a visual vocabulary also known as codebook.
For every new image added in the collection its local features must be extracted and
assigned to the best fitting visual word from the existing codebook. By the end of that
process a local feature histogram is composed for each image in the collection. Multiple
approaches to enhance the bag of words approach have been proposed in literature [16].

In this paper, a visual word histogram with a universal vocabulary/codebooks is used.
SURF [5] local features are extracted from all the 237434 images from the ImageCLEF
2010 Wikipedia test collection. Then, we randomly select 100000 descriptors to create
the visual words that will form our codebook. SURF descriptors are clustered in 256
clusters and the mean vector (using k-means) is used as a visual word.

For every frame the SURF features are extracted. The local features are assigned to
the best fitting visual word using the nearest neighbor method from the earlier created
codebooks.

4 Self-Growing and Self-Organized Neural Gas Network

The Self-Growing and Self-Organized Neural Gas (SGONG) Network[3] is an unsuper-
vised neural classifier. SGONG network combines the advantages both of the Kohonen
Self-Organized Feature Map (SOFM) [17] and the Growing Neural Gas (GNG) [13]
neural classifiers according to which, the learning rate and the radius of the neighbor-
ing domain of neurons is monotonically decreased during the training procedure. The
SGONG network has been used in [3] in order to reduce the colors of an image. It has
also been utilized by a new method for hand gesture recognition[25]. It has the ability to
cluster the input data, so as the distance of the data items within the same class (intra-
cluster variance) is small and the distance of the data items stemming from different
classes (inter-cluster variance) is large. A significant characteristic of this classifier is
that it adjusts the number of created neurons and their topology in an automatic way.
To achieve this, at the end of each epoch of the SGONG classifier, three criteria are
introduced. These criteria are able to improve the growing and the convergence of the
network. A main advantage of the SGONG classifier is its ability to determine the final
number of clusters.

The SGONG consists of two layers, the input and the output layer. It has the follow-
ing main characteristics:

– Is faster than the Kohonen SOFM in its convergence.
– In contrast with GNG classifier, a local counter is defined for each neuron that

influences the learning rate of this neuron and the strength of its connections. This
local counter depends only on the number of the training vectors that are classified
in this neuron.

– The dimensions of the input space and the output lattice of neurons are always
identical.

– Criteria are used to ensure fast convergence of the neural network. Also, these cri-
teria permit the detection of isolated classes.

The coordinates of the classes’ centers are defined by the corresponding coordinates of
the output neurons. Each output neuron is described by two local parameters. The first
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parameter is related to the training ratio and the second one refers to the influence by the
nearby neurons. At the beginning of the training, the SGONG network consists of only
two neurons . As the training procedure progresses, the network inserts new neurons in
order to achieve better data clustering. Its growth is based on the following criteria:

– A neuron is inserted near the one with the greatest contribution to the total clas-
sification error, only if the average length of its connections with the neighboring
neurons is relatively large.

– The connections of the neurons are created dynamically by using the Competitive
Hebbian Learning method.

The main characteristic of the SGONG is that both neurons and their connections ap-
proximate effectively the the topology of the input data.

5 Implementation- Method Overview

A detailed description of the method is demonstrated in the following steps:
To begin with, the video is decomposed into its frames. Each frame corresponds to

independent image. The first step of the proposed method includes the dynamic con-
struction of an artificial image. In order to determine the value of each pixel of the
artificially generated image, it is executed a uniform color quantization in the frames of
the video with 216 unique colors. Thus, every pixel of the artificially generated image
is the corresponding most frequent used pixel of all the color quantized frames. In other
words, as artificially generated image is defined an image whose each pixel is described
by the following equation:

F (R,G,B)x,y =
N∑

F=1

pF (R,G,B)x,y (1)

p(R,G,B)x,y = pMax(F (R,G,B)x,y)(R,G,B)x,y (2)

Where F (R,G,B)x,y is the number of pixels that can be found in the position x, y
and their values is pF (R,G,B)x,y . The (R,G,B) value of the pixel of the artificial
image in a position x, y equals to the value (R,G,B) of the pixels that have the higher
F (R,G,B)x,y .

In order to avoid out of memory problems and to make the algorithm more efficient
and quicker, all the frames of the video are resized into a smaller size. This procedure is
taking place using tiles for each frame, and not the entire frame. For the calculation of
the tiles of each frame is used the bicubic method and the final size of each tile is set to
be 128× 128 pixels. This number is chosen as a compromise between the image detail
and the computational demand.

In the next step for each frame of the video the Compact Composite Descriptors
(CCDs) and the visual words histogram are calculated. Note that, the descriptors are
calculated from the original frames and not from the color quantized and resized ones.
The CCDs descriptors that are extracted are the Joint Composite Descriptor (JCD), the
Brightness and Texture Directionality Histogram (BTDH) descriptor and the Spatial
Color Distribution Descriptor (SpCD).
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Fig. 1. (A) Original Video, (B) Key Frames and Timeline

Table 1. Evaluation Videos

Title Type URL
Waka-Waka Video Clip http://www.youtube.com/watch?v=pRpeEdMmmQ0

Al Tsantiri News Tv Show http://www.youtube.com/watch?v=KjbA3L6kQa8
Mickey Mouse Animation http://www.youtube.com/watch?v=jOvFIoBoxag
Gummy Bear Animation http://www.youtube.com/watch?v=astISOttCQ0
Radio Arvila Tv Show http://www.youtube.com/watch?v=UHbjy9k53cU

As it has already mentioned, the problem of video summarization is expanded to a
single query image retrieval problem. The artificial image is used as the query image
in order to retrieve and sort the frames of the video to ranking lists. This sorting is
accomplished by calculating the distance between the descriptors of the artificial image
and the descriptors of each frame. The distance is calculated by using the Tanimoto
coefficient:

D(i, j) = Tij = t(xi, xj) =
xT

i xj

xT
i xi + xT

j xj − xT
i xj

(3)

where xT is the transpose vector of the descriptor x.
In the absolute congruence of the vectors, the Tanimoto coefficient takes the value 1,

while in the maximum deviation the coefficient tends to zero.
The procedure is repeating for every descriptor (JCD, BTDH, SpCD, visual words

histogram) and in the end four ranking lists are constructed.
The next step includes the classification of the frames, which is implemented by

the Self-Growing and Self-Organized Neural Gas (SGONG) network. The SGONG is
fed by the distances of all frames from the artificially generated image. At this point it
is worth mentioning that it is required the setting of some important parameters. The
setting of these parameters are significant for the correct operation of SGONG network
and regard the adding and the removing of the neurons. Moreover, another parameter
that should be considered is the maximum number of neurons. This number should be
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Fig. 2. Key Frames Extracted Per Method. (A) Proposed Method Produced 8 Key Frames, (B)
BTDH Descriptor Produced 4 Key Frames, (C) JCD Descriptor Produced 6 Key Frames, (D)
SpCD Descriptor Produced 7 Key Frames and (E) Visual Words Approach Produced 6 Key
Frames.
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chosen appropriately in order to the successful convergence of the SGONG network
into a number of neurons less than this threshold. Also, the right choice of the learning
rate of the network is an absolute necessity.

After training, the weights of the output neurons define the centers of the clusters.
Each cluster corresponds to a “scene”. The total of the “scenes” describes the whole
video. For each cluster there is a representative key frame, which describes the cluster.
This key frame is the nearest one of all the corresponding frames to the center of the
cluster as it results from the SGONG classifier. Thus, for each cluster a key frame is
extracted. These key frames are considered as the most significant frames of the cluster.
A significant characteristic of the proposed method is its ability to calculate dynamically
the appropriate number of clusters, which is based in the main advantage of the SGONG
to adjust the number of created neurons and their topology in an automatic way.

In order to be illustrated the participation of every frame in every scene/cluster vi-
sually, is used a timeline. For every key frame, which has been calculated according to
the proposed method, there is a timeline. The green color (see Fig.1) corresponds to the
parts of the video that participate in this scene.

Fig. 3. User ratings

Table 2. Number of Key Frames Per Method

Title Length Proposed Method BTDH JCD SpCD Visual Words
Waka-Waka 211 s 8 4 6 7 6
Lazopoulos 196 s 8 5 6 4 6

Mickey Mouse 84 s 11 5 6 3 4
Gummy Bear 164 s 8 5 5 5 5
Radio Arvila 209 s 4 5 3 4 6
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6 Experimental Results

In order to indicate the effectiveness of the proposed method, a user study was held. The
proposed method that utilizes the combination of four descriptors was compared with
the single utilization of each descriptor. So, users had to choose their favourite summary
between five different summaries for each video. In this study five videos are analysed.
Each participating user had to mark the five summaries for each video with a degree(5
points for the best down to 1 point for the worst). Sixteen users were participated in
the study. Figure 2 shows the five video summaries for the Waka-Waka video extracted
from the proposed method and from the four pre-mentioned techniques.

According to the results of the study illustrated in Figure 3, the proposed method
reached the highest rating comparing with the other four techniques. More particularly,
the score of the proposed method was 358 points with a clear difference from the other
four approaches. The method that utilizes the BTDH descriptor came second with 228
points, while the method based on the visual word histogram and the method that uti-
lizes the SpCD descriptor followed with 226 and 216 points respectively. The method
that uses the JCD descriptor was found in the last place with 172 points.

The number of key frames extracted by all methods for each video is depicted in
Table 2. It can easily be understood, the proposed method generated much more key
frames than the other methods. A striking example is the generation of eleven key
frames by the proposed approach in the Micky Mouse video, while the average number
of the extracted key frames of the other methods is 4.5.

7 Conclusions

In this paper, a novel approach to summarize a video, based on a new Self-Growing
and Self-Organized Neural Gas network is proposed. The proposed method utilizes
the combination of four descriptors in order to describe the frames of the video. Our
approach appears to have quite good results according to the user study held for the
purposes of this paper. The method seems to be the best out of the other four techniques
for each one of which only one descriptor was utilized. In addition, it has the advantage
to determine the optimal number of the extracted key frames of a video.
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Abstract. Automatic detection and pose estimation of humans is an
important task in Human-Computer Interaction (HCI), user interaction
and event analysis. This paper presents a model based approach for de-
tecting and estimating human pose by fusing depth and RGB color data
from monocular view. The proposed system uses Haar cascade based de-
tection and template matching to perform tracking of the most reliably
detectable parts namely, head and torso. A stick figure model is used to
represent the detected body parts. The fitting is then performed inde-
pendently for each limb, using the weighted distance transform map. The
fact that each limb is fitted independently speeds-up the fitting process
and makes it robust, avoiding the combinatorial complexity problems
that are common with these types of methods. The output is a stick
figure model consistent with the pose of the person in the given input
image. The algorithm works in real-time and is fully automatic and can
detect multiple non-intersecting people.

1 Introduction

Motion capture for humans is an active research topic in the areas of computer vi-
sion and multimedia. It has many applications ranging from computer animation
and virtual reality to human motion analysis and human-computer interaction
(HCI) [2] [18]. The skeleton fitting process may be performed automatically or
manually, as well as intrusively or non-intrusively. Intrusive manners include,
for example, imposing optical markers on the subject [11] while non-automatic
method could involve manual interaction to set the joints on the image, such
as in [4]. These methods are usually expensive, obtrusive, and not suitable for
surveillance or HCI purposes. Recently, due to the advances on imaging hard-
ware and computer vision algorithms, markerless motion capture using a camera
system has attracted the attention of many researchers. One of the commercial
solutions for markerless motion capture includes Microsoft’s Kinect system [17]
for console systems. Kolb et al. [14] gives an account of recent developments in
Time-of-Flight (ToF) technology and discusses the current state of the integra-
tion of this technology into various vision and graphics-related applications.

Since the application domain is less restrictive with only a monocular view,
human pose estimation from monocular image captures has become an emerging
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Fig. 1. Flowchart of the proposed system for upper-body human pose estimation

issue to be properly addressed. Haritaoglu et al. [10] tries to find the pose of a
human subject in an automatic and non-intrusive manner. It uses geometrical
features to divide the blob and determine the different extremities (head, hands
and feet). Similarly, Fujiyoshi and Lipton [8] have no model but rather determine
the extremities of the blob with respect to the centroid and assume that these
points represent the head, hands and feet. Guo et al. [9] attempts to find the exact
positions of all body joints (like the neck, shoulder, elbow, etc.) by minimizing
the distance based criterion function on the skeletonized foreground object to fit
the stick model. Neural networks [19] and genetic algorithms [22] have also been
used to obtain the complete position of all the joints of the person. Jensen et al.
[12] tries to estimate the pose based on an articulated model, for gait analysis
using calibrated ToF camera.

The simplest representation of a human body is the stick figure, which con-
sists of line segments linked by joints. The motion of joints provides the key
to motion estimation and recognition of the whole figure. This concept was ini-
tially considered by Johansson [13], who marked joints as moving light displays
(MLD). Along this vein, Rashid [20] attempted to recover a connected human
structure with projected MLD by assuming that points belonging to the same
object have higher correlations in projected positions and velocities.

The organization of the paper is as follows: Section 2 discusses the proposed
approach with subsections giving details about each module used in the sys-
tem. Section 3 extends the discussion towards the implementation details about
the proposed prototype. Finally, Section 4 concludes the paper and delineates
possible directions for future research.

2 Overview of the Entire System

In this work, we assume that a depth-camera is static and is positioned at human
height. It is also assumed that users’ interaction spaces are non-intersecting and
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Fig. 2. (a) ZCam from 3DV Systems; (b) Data output from ZCam - top row: primary
and secondary infrared images, bottom row: a depthmap and a RGB color image

upper-body and face are visible without any occlusion. A block diagram of the
human detection and pose estimation approach used in our work is shown in
Fig. 1. The following subsections provide details of each module incorporated in
the system.

2.1 Depth Camera

We use ZCam from 3DV Systems [1] (shown in Fig. 2(a)) in our work done in
mid-2010. The technology of this device is similar to Kinect systems currently
available in the market. This camera uses active illumination for depth sensing -
it emits modulated infra-red (IR) light and based on the time-of-flight principle,
the reflected light is used to calculate depth (distance from camera) in a scene.
This camera provides both RGB (640 x 480 resolution, VGA size) image and
a grayscale depthmap (320 x 240 resolution, QVGA size) image at 30 frames
per second (fps). Figure 2(b) shows a sample of four images obtained from the
camera. The top row shows active brightness (left) and passive brightness (right)
IR images and the bottom row shows the depthmap (left) and the RGB (right)
image respectively. It can be observed in the depthmap, that the depth values
of objects near the camera appear bright while those of objects that are farther
appear darker.

2.2 Foreground Segmentation

We use the RGB image and the depthmap as inputs to the system (see Fig. 3).
A threshold is used to remove noise (with low values) from the raw depth map
information, obtained from ZCam without any calibration. These foreground
pixels are then segmented into regions by a linear-time component labeling al-
gorithm [6]. The extracted connected components or blobs, obtained from the
depth map using 8-connectivity of pixels, are thresholded based on area. The
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Fig. 3. (a) Input depthmaps; (b) Input RGB images; (c) Foreground segmented RGB
images obtained using (a) and (b)

Fig. 4. Haar cascade based detection logic

above blob analysis helps in pruning out small blobs and background noises in
the input image. The processed depthmap is then used as a binary mask to
obtain the foreground object in the RGB image.

2.3 Haar Cascade Based Detection

The object detector [16] based on Haar classifiers is used for detecting humans
in the foreground segmented RGB images. Grayscale based object detector is
used instead of an RGB based object detector, since it reduces the time com-
plexity of the system by operating on a single channel. Human detector helps
in differentiating humans from non-human objects present in the segmented
foreground grayscale image (non-trivial using depth mask detection). For upper
body detection, the classifier trained for upper-body (head + torso) [15] is used.
The detected regions are then passed on to frontal face detector classifier (see
Fig. 4). In case, the frontal face detection fails, a profile face detector [5] is used
to detect faces. If either upper body detector or the profile face detector fails to
produce any positive results then the frame is completely rejected and the next
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Fig. 5. Haar cascade based detection for upper-body and face. Circumscribed circles
denote successful face (inner circle) and upper body detection (outer circle), whereas
a single circle denotes a successful upper-body (either false positive or true positive)
detection along-with unsuccessful face detection (either false negative or true negative).
(a) Haar cascade based detection on original grayscaled RGB images. (b) Haar cascade
detection on foreground segmented grayscaled RGB images.

frame is analyzed for any possible upper-body detection. If no face is detected in
the identified upper body region, then it is assumed to be a false positive and the
detection is rejected for further analysis. This successive detection logic helps in
reliably determining the positive detections and pruning out the false positive
detections. In order to reduce the computation time as well as the false positives,
Haar detection is done on the foreground segmented image (see Fig. 5).

2.4 Template Matching Based Tracking

The template-based approach determines the best location by matching an ac-
tual image patch against an input image, by “sliding” the patch over the input
search image using normalized cross-correlation, defined as:

R(x, y) =

∑
x′,y′(TG′

RGB(x′, y′) · IG′
RGB(x+ x′, y + y′))√∑

x′,y′ TG′
RGB(x′, y′)2 ·∑x′,y′ IG′

RGB(x+ x′, y + y′)2
(1)

where, TG′
RGB(x, y) = TG

RGB(x, y) − TG
RGB

IG′
RGB(x, y) = IG

RGB(x, y) − IG
RGB

TG
RGB is the grayscaled RGB template image and IG

RGB is the grayscaled RGB
input image. Since template-based matching requires sampling of a large num-
ber of points, we can reduce the number of sampling points by reducing the
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Fig. 6. Template Matching based tracking logic

Fig. 7. Results for template matching based tracking. Templates are grayscaled and
down-sampled to QVGA to reduce computation time. Similarly, input RGB image is
also grayscaled and down-sampled to QVGA: (a) upper-body template identified in pre-
vious frame; (b) face templates identified in previous frames; (c) input image grayscaled
and down-sampled with marked rectangular regions denoting successful template based
tracking.

resolution of the search and template images by the same factor (in our case,
down-sampled by a factor of 2) and performing the operation on the resultant
downsized images. The template images/patches are obtained from the success-
ful detection in the previous frame; either by Haar cascade based detection or by
template based matching (see Fig. 6). Advantages of using template matching,
over Haar cascades, is reduced computation time and higher true positives, since
a Haar cascade misses variations in object orientation and pose. Template match-
ing is successful in handling large pose variances of the object, if the inter-frame
variance is low, since consecutive frames are used for matching. The system may
fail for humans not facing (non-frontal pose) the camera. Haar cascade based
detection is used only when there are no templates to perform matching or when
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Fig. 8. (a) The stick model used for human upper-body skeleton fitting; (b) Anthro-
pometric ratios of typical human body [3]

the template matching fails to track the template in the input image. Haar cas-
cade based detection is forced after certain empirically chosen time-lapse/frames,
to handle drifting errors and appearance of new person into the scene. Figure 7
shows examples of the template matching on the input images.

2.5 Stick Human Body Model

The skeleton model is represented by a vector of 7 body parts (bp1 to bp7) as
shown in Fig. 8(a). The proportions between the different parts are fixed and
were determined based on NASA Anthropometric Source Book [7] and [3](see
Fig. 8). Each body part has its own range of possible motion. Each body part
(bpi) is composed of two extremities (exi,1, exi,2), representing the coordinates
of the body part in the image plane:

bpi = {exi,1, exi,2} (2)

where, exi,j = (xi,j , yi,j). xi,j is the x coordinate of extremity j of the body part
i and yi,j is the coordinate of the extremity j of the body part i.

The head, neck and shoulder (both left and right) joints are estimated based
on detected upper-body and head region. The centroid of the detected head
template is taken as head point. The shoulder joints are taken as the lower
extremities of the detected upper body region in the input image. Based on the
anthropometric ratios, the neck point is estimated to be at 2/3 of the vertical
distance from head to shoulder points. Similarly, length of upper arms is taken
as 2/3 of shoulder width and 5/9 of shoulder width in case of lower arms. This
helps to detect head, neck and shoulder points of the detected humans from the
foreground segments of the input grayscale image.

2.6 Limbs Fitting

In order to estimate the remaining joints (elbow and wrist, both left and right)
and limb inclinations (upper and lower arm, both left and right), linear regression
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Fig. 9. Flowchat of limbs fitting method, based on linear regression of sampled weighted
distance transform map

Fig. 10. DT on foreground segmented depthmap normalized from 0 to 255 range for
visualization: (a) foreground segmented depthmap; (b) distance transform map

on sampled weighted-distance transform map (distance transform analysis) is
performed (see Fig. 9). Once the elbow joints are estimated (as discussed in Sec.
2.5), weighted-distance transform w.r.t. these joints are computed for estimating
wrist joints and 2D inclinations for lower arms. The Distance Transform (DT)
maps each image pixel into its smallest distance to regions of interest [21]. Fig-
ure 10 shows some examples of DT on input images. Limb movements for human
body can be out of the image plane, which DT fails to capture in the depthmap.
In order to take into account the projected lengths of the limbs weighted-distance
transform is calculated. The distance map of the image is multiplied with vari-
ance factor representing the variance ratio of the point w.r.t. the reference point
(parent joint) in the direction orthogonal to the image plane. This variance can
easily be calculated from the input depthmap. The weighted-distance transform
Dw(p, c) for point p w.r.t. c in depth image (Id) is defined as:

Dw(p, c) = D(p) · (1 +
|Id(p) − Id(c)|

Id(c)
) ∀ Id(c) �= 0 (3)
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Fig. 11. Sampling of weighted distance transform map for left lower arm pose estima-
tion. The green color points have already been estimated based on upper body and
head region detection. The blue colored joints are estimated by sampling followed by
linear regression.

where, D(p) is DT value at point p in the input depth map image Id. c is the
reference point (parent joint) for estimating the angles for upper and lower arms.
e.g. for estimating the inclination of upper left arm, reference point (c) is left
shoulder joint and similarly for estimating the lower right arm, reference point
(c) is right elbow joint. Sampling of the Weighted-Distance Transform map is
done upto length l from the reference point (parent joint) c in an angular region
varying from 0 to 2π, and with a predefined sampling angle. Temporal infor-
mation can be incorporated to improve computational efficiency by imposing
range constraints on the angular region for sampling the map (see Fig. 11). The
length l of arms is estimated based on anthropometric ratios as discussed in
Sec. 2.5. The step size for sampling (search for optimal value in 1-D) the ori-
entation angle influences the robustness and speed of the technique. If it’s too
large, a good solution could be overlooked. However, the whole process might
take too long if the step size is chosen small. It then becomes possible to sample
points along and for each candidate solution. In estimation of both upper arms
and lower arms, a second global maximum is taken as the estimated pose of the
limb. In case of upper arms, the global maxima always denotes the angle from
left or right shoulder joint towards torso’s center region; since weighted-distance
transform map value is always maxima along this path (see Fig. 10). Similarly
for lower arms, a global maximum denotes the angle connecting the elbow joints
to shoulder joints, as the physical structure of human body, upper arms are
broader in width compared to lower arms. Due to these reasons second maxima
is universally chosen to represent the estimated limb’s inclination.

The sampling rate is an adjustable parameter that also influences the robust-
ness and speed of the method. Indeed, the more points there are along a line to
validate a solution, the more robust the system is if a part of a limb has been
poorly extracted. However, the fitting process becomes more time consuming.
A local method such as the one presented above also increases the robustness
of the whole system in the following way. If some region of the blob has been
poorly extracted, it is likely that only this part will be poorly fitted, while the
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Table 1. Computational time for various modules in our system

Modules Time/frame (in ms)

Haar cascade based upper-body & face detection ∼ 57ms/frame

Skeleton fitting ∼ 11ms/frame

Total time using detection ∼ 68 ms/frame

Template matching based tracking ∼ 3ms/frame

Skeleton fitting ∼ 5ms/frame

Total time using tracking ∼ 8 ms/frame

Average Running Time (Threshold = 15 frames/sec) ∼ 14 ms/frame

Fig. 12. (a) Foreground segmented grayscaled RGB image; (b) Input depthmap; (c)
Estimated upper body human stick figure overlaid upon the grayscaled RGB image

other limbs will be successfully fitted if the upper body detection is successful.
In the case of a global method, a small error can lead to the failure of the whole
fitting module. However, because of the local fitting method, even if one part is
missed, the overall fitting is often acceptable. The fitting process for the right
arm is independent from that of the left arm, therefore, the error in the estima-
tion process of the former will not affect the later, and vice-versa. This makes
our proposed local approach more robust.

3 Experimental Results

We have developed a working prototype of our human detection and pose estima-
tion logic. The prototype was implemented using C/C++ and OpenCV library,
on a windows platform. The prototype works in real-time using live feeds from
3DV camera mounted on top of a personal computer. We have tested the above
prototype for single as well as multiple (upto 3) non-intersecting people with
appearance and disappearance of people at random and for various different up-
per body poses. The input RGB stream is of 640 x 480 resolution (VGA) at 30
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fps and the depth stream is of 320 x 240 resolution (QVGA) at 30 fps. For fore-
ground segmentation, blob with size less than 400 pixels (empirically chosen) are
considered as non-humans. Haar cascade based detection is done on VGA size
grayscaled RGB image to increase true positive detections. Template match-
ing based tracking is done on a QVGA size grayscaled RGB image to reduce
computation time. Threshold used for enforcing Haar cascade based detection is
empirically chosen as 15 frames. Since foreground segmentation is the most crit-
ical step in pose estimation, poor foreground segmentation can sometimes lead
to incorrect pose estimation. Figure 12 shows a few examples of our analysis
done on input frames of humans interacting in various poses. Table 1 gives the
time taken (on a machine with Intel Core 2 Extreme processor, 3 GHz and 3 GB
RAM) for various processes in the prototype. The average running time of the
entire process is less than the total time used for detection (∼68 ms/frame) since
Haar cascade based detection is enforced only once in every 15 frames while for
the rest of the frames, template matching based tracking (∼8ms/frame) is used.
A rigorous performance analysis for measuring the scalability and robustness of
our approach can be a possible scope of future work.

4 Conclusions

In this paper, we have presented a viable vision-based human pose estimation
technique using RGB and depth streams from a monocular view. An articulated
graphical human model is created for pose estimation of upper-body parts for
HCI applications. Our technique uses a balance of Haar cascade based detection
and template matching based tracking. Haar based detection handles appear-
ance of humans and drifting errors in tracking, while template matching based
tracking is able to handle variations in object pose and makes the approach
computationally light. Limbs fitting is performed progressively, one limb at a
time, instead of globally. This way, the process is faster and robust. We have
demonstrated the technique for various real-world input data. Some improve-
ments are possible in this framework. Incorporating skin detection and edge
detection would reduce false positive configurations for lower arms. Occlusion
handling and comparative studies with published work form nice scope of work
in the future.
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Abstract. Various matting methods have been proposed to isolate ob-
jects from images by extracting alpha mattes. Although they typically
work well for images with smooth regions, their ability to deal with
complex or textured patterns is limited due to their inductive inference
nature. In this paper we present a Transductive Matting algorithm which
explicitly treats the matting task as a statistical transductive inference.
Unlike previous approaches, we assume the user marked pixels do not
fully capture the statistical distributions of foreground and background
colors in the unknown region of the given trimap, thus new foreground
and background colors are allowed to be recognized in the transduc-
tive labeling process. Quantitative comparisons show that our method
achieves better results than previous methods on textured images.

1 Introduction

Using image matting techniques for creating novel composites or facilitating
other editing tasks has gained considerable interests from both professionals
and consumers. In the matting problem, an observed image I is modeled as
a convex combination of a foreground image F and a background image B as
I = αF + (1 − α)B, and matting techniques try to estimate the alpha matte α
(and sometimes with F ) from I with the help of additional constraints provided
by the user. Once estimated, the alpha matte can be used as a soft mask for
applying a variety of object-based editing operations.

Recently proposed matting techniques are capable of generating fairly accu-
rate mattes for images with smooth regions and homogeneous color distributions,
as demonstrated in the quantitative studies conducted in [1], [2] and [3]. The test
images used in these studies usually contain a single or few dominant foreground
colors which remain stable towards the foreground boundary, along with signif-
icantly blurred backgrounds. In this case the smoothness assumption on image
statistics made in these approaches typically holds, leading to satisfying results.

Unfortunately, as we will demonstrate later, for images containing textured
foreground and/or background regions, the performance of these approaches de-
grades rapidly. The reason is twofold. First, most approaches assume foreground
and background colors remain constant or vary smoothly in a local window. This
assumption will not hold over strong edges inside the foreground or background
region. Second, alpha values are often estimated in an aggressive way in previous
approaches. In order to fully capture the fine details of fuzzy objects such as hair
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and fur, previous methods try to estimate fractional alpha values for all pixels
under consideration, which often leads to erroneous mattes. We argue that both
limitations come from the inductive inference nature of these approaches.

One way to solve this problem is to always require the user to provide an
accurate trimap where most pixels are marked as either foreground or back-
ground, and only transparent pixels are marked as unknown. However this is
often a labor-intensive process. To improve matting performance over complex
images with less accurate trimaps, we treat the matting task as a transductive
statistical inference, under the assumption that new foreground and background
regions may exist in the unknown region of the given trimap (see Figure 5).
These new regions are close, but not equal to user-marked foreground and back-
ground regions in some feature spaces. With transductive inference, our method
is able to identify these regions and mark them correctly as either definite fore-
ground or background, and only estimate fractional alpha values for real mixed
pixels, which is not possible for an inductive inference setting. To the best of our
knowledge our method is the first to explicitly solve the matting problem as a
transductive inference.

A quantitative evaluation is conducted on different data sets. Experimental
results suggest that our algorithm outperforms previous approaches on highly-
textured images in terms of both accuracy and robustness.

2 Related Work

Recent image and video matting approaches have been well summarized in a
comprehensive survey in [1]. They are classified into three categories, sampling-
based, affinity-based, and combined approaches.

Given a user-specified trimap, sampling-based approaches collect a set of
nearby known F and B colors, and use them as close approximations of the
true F and B colors of unknown pixels, which leaves alpha estimation to be
relatively straightforward. Earlier representative sampling-based techniques in-
clude Ruzon and Tomasi’s method [4] and Bayesian matting [5]. The recent
Robust matting algorithm [2] proposes an improved color sampling procedure
to selectively evaluate color samples, which is further improved in [6]. All these
methods use color samples in an inductive way: user-specified known pixels are
used as training data to build parametric or nonparametric models, and then
the models are applied to unknown pixels for alpha estimation. For complex im-
ages, if the sampled colors do not represent the true B and F colors of unknown
pixels, these methods tend to produce large errors.

Affinity-based approaches define constraints on the gradient of the alpha
matte based on local image statistics. Poisson matting [7] estimates the matte
by solving a set of Poisson equations. The random walk matting algorithm [8]
uses the classic exponential affinity for matting. The geodesic matting tech-
nique [9] measures the weighted geodesic distances that a random walker will
travel from an unknown pixel to reach the foreground and the background, and
use the distance ratio as the alpha value. The closed-form matting [3] derives
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a matting Laplacian by assuming that F and B colors are a linear mixture of
two colors in a small window, which is used also in the automatic Spectral mat-
ting approach [10] and the mylti-layer matting system [11]. For complex images
with large local color variations, the smoothness assumptions often do not hold,
leading to less accurate results.

Combined approaches integrate sampling methods and matting affinities to-
gether through an optimization process. Representative techniques include the
iterative matting approach [12], Easy matting [13], Robust Matting [2], and
the high-res matting system [14]. Although combined approaches often generate
higher quality mattes [1], the inductive nature of these approaches limits their
performance on complex images, as we will demonstrate later.

Our work is also inspired by recent success on applying transductive inference
for image segmentation [15]. This method is based on the Laplacian graph regu-
larizer, and segmentation is modeled as finding a labeling function (alpha matte)
which is only allowed to vary in low density areas in the feature space. Although
it estimates continuous alpha values in the intermediate step, this algorithm does
not accurately model the shape of the matte in the foreground-to-background
transition area, thus is not able to generate accurate mattes.

3 Transductive vs. Inductive Matting

In machine learning tasks, transductive inference is often employed in cases where
both labeled (training) and unlabeled (test) data is presented. Since all the
data is available, transductive inference algorithms will take this advantage and
produce a mapping function in such a way that the statistics of unlabeled data
is also respected. In inductive inference, the test data is unknown beforehand,
thus the mapping function is designed solely on the training data to map any
possible input data to the output space. Obviously, inductive inference has a
higher requirement on the “quality” of the training data, or in other words, how
well the limited training data can represent the statistical characteristics of the
test data. In areas of the feature space where test data may exist but no training
data has been collected, inductive inference tends to make mistakes, as visualized
in Figure 2 in [15].

(a) (b) (c) (d)

Fig. 1. (a). F (white), B(black) and U(gray) for matting. (b). Previous matting ap-
proaches will generate fractional αs for both mixed points and new F and B points.
(c). Transductive segmentation generates a binary classification. (d). Our algorithm
generates fractional αs for mixed points and also labels new F s and Bs correctly.
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(a) (b) (c) (d) (e)

Fig. 2. (a). Input image with trimap boundaries. (b) Bayesian matting. (c). Closed-
form matting. (d). our method. (e). ground-truth.

In the matting task, we assume the user has already provided a relatively
loose trimap where the majority of pixels have been marked as either F or
B as training data, and the rest are marked as U as test data. Since U is
known, matting can be treated naturally as a transductive inference, which has
a number of advantages over inductive inference when the color distribution
in U is complicated and is not fully captured by both F and B. An analytic
example is shown in Figure 1. Suppose F , B and U are distributed as in 1(a)
in the feature space, note that mixed points (points between the two clusters)
as well as new F s and Bs are unmarked. Previous matting approaches tend to
generate fractional αs aggressively, thus will label new F s and Bs with fractional
αs (1(b)). Transductive segmentation can label new F s and Bs correctly, but is
not able to generate correct αs for mixed points (1(c)). Our proposed method
can deal with unlabeled data correctly as shown in 1(d).

A real example is shown in Figure 2, which is generated using one of the
ground-truth foreground objects in the data set proposed in [2]. In this local
region shown in 2(a), the background is highly textured and the white region
between green leafs in U is not marked as B (in local sense). Consequently,
previous approaches have difficulties to deal with the white region and its edges,
as shown in 2(b)-(d). Our method is able to correctly identify the white pixels
as new background colors, and generate a matte that is much closer to the
ground-truth.

4 The Algorithm

4.1 Optimization Formulation

Our algorithm is designed to explicitly meet the following three objectives:

1. it should be able to identify new F or B colors presented in U ;
2. it should be able to correctly label new F and B colors;
3. it should be able to accurately estimate αs for real mixed pixels in U .

Previous approaches mostly ignore Objective 1 and 2 and only focus on Objective
3. We show here how additional transductive inference can be added to meet all
three objectives.
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Recall that in the transductive segmentation work [15], the labeling func-
tions f is only allowed to vary in low-density regions in the feature space, and
segmentation is modeled as the following optimization problem:

min
f

∑
i∈{F,B}

ci [Yi − f(Xi)] +
∫

U

‖Δf‖2psdV, (1)

where the summation is over all known pixels, Xi are feature vectors of unknown
pixels and Yi are user-provided labels. ci is a positive weight controlling how
much we want to trust the known labels, which typically is set to be +∞. The
integral term is a s-weighted Laplacian operator which only allows f to vary
where the density estimation p is low. Given the fact that a direct solution of
this optimization cannot be obtained, graph Laplacian methods are used to solve
for its discrete approximation:

min
α∈�n

∑
i∈{F,B}

ci [Yi − f(Xi)] + αtLα, (2)

where α is the vector of α values of all pixels, and L is the Laplacian matrix
whose coefficients are determined by a kernel function k(Xi, Xj) (for instance a
Gaussian kernel), which measures the similarity between two feature vectors Xi

and Xj .
However, this approach cannot be directly applied to the matting problem as

for fuzzy objects, a large number of pixels may present fractional αs, thus the
density estimation p does not necessarily correspond to where the alpha matte
should vary. In other words, mixed pixels may form high density regions in the
feature space, and directly optimizing Equation 1 will force the alpha matte to
stay constant is these regions, resulting in matting errors.

In our algorithm we force f to vary not in low density regions, but in high
density regions of real mixed pixels. This can be achieved if we have a mixed pixel
detector, which for each Xi calculates a probably γi, indicating how likely this
pixel has a fractional alpha value. With this detector Xi can thus be decomposed
into two components: Xi = γiXi + (1 − γi)Xi. Let Xm

i = γiXi and Xb
i =

(1−γi)Xi be two subsets, applying density estimation on subset Xb
i will allow f

to vary in the correct regions. Denoting pb as density of Xb
i , we then replace p in

Equation 1 with pb. Furthermore, If we relax the kernel function and allow each
Xi to be associated with a weight wi, and define the weighted kernel function as
k(Xi, Xj , wi, wj) = wiwjk(Xi, Xj), the discrete approximation of the modified
optimization problem becomes:

min
α∈�n

∑
i∈{F,B}

ci [Yi − f(Xi)] + αtLbα, (3)

where in the Laplacian matrix Lb the similarity between two pixels is computed
as:

kb(Xi, Xj) = k̃b(Xi, Xj , 1 − γi, 1 − γj). (4)
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The solution of the updated optimization problem in Equation 3 will satisfy
the Objective 1 and 2, however not 3, since the exactly shape of f is not charac-
terized for mixed pixels. To achieve this we add another term to the optimization
problem as ∑

i∈U

λiγ
2
i ‖αi − α̂i‖2 + αtLmα, (5)

where α̂i is the prior alpha value for Xi (data term), Lm is a matting Laplacian
defined by a matting kernel function km(Xi, Xj) = k̃m(Xi, Xj , γi, γj). λi is a
weight to balance the two terms.

Combining 3 and 5, the final optimization problem is defined as

min
α∈�n

∑
i∈{F,B}

ci [Yi − f(Xi)] +∑
i∈U

λiγ
2
i ‖αi − α̂i‖2 + αt(Lb + Lm)α. (6)

In our system we usually set ci = +∞ as we treat the input trimap as a hard
constraint, and fix λi = 0.1 as it generates good results in our tests. In next
sections we will describe how we compute γi, α̂i, and the two kernel functions
k̃b and k̃m.

4.2 Kernel Functions

In our system for a pixel i the feature vector Xi contains three components: the
RGB color vector Ii, the color level of a local 3 × 3 patch Ip

i as the texture
feature, and a geometric position Gi which is not defined by the absolute (x, y)
coordinates of the pixel, but by its relative location in the unknown region pa-
rameterized using level set curves, as shown in Figure 3a. We first parameterize
the boundary curve of the F region as CF (t), then apply a distance transform
in U to parameterize the region using level set curves. for pixel i, Gi is parame-
terized as (ti, di).

This parametrization allows us to compare relative locations of two points in
U instead of on the image lattice, thus shape corners of the foreground boundary
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can be respected. An illustration is shown in 3b, where two pixels Ii and Ij are
on the two sides of a sharp corner. If we use absolute coordinates, the two pixels
have a short distance and a strong affinity value, which will encourage αi and αj

to be the same, thus statistical changes along CF will not be respected. Using
our parametrization these two points will have a much smaller affinity value.

The primary goal of the Laplacian Lb is to classify new F s and Bs in a binary
sense. We use a weighted Gaussian kernel for it as

k̃b(Xi, Xj, ai, aj) = aiaj exp(−(‖Ii − Ij‖2/2h2
c+

‖Ip
i − Ip

j ‖2/2h2
p + ‖Gi −Gj‖2/2h2

g)). (7)

To reduce the complexity, similar to [15], we use a truncated version of the
Gaussian kernel for the geometric distance, by setting hg = 1.25 and applying a
threshold at 0.05. In this way Lb becomes a sparse matrix. hc and hp are color
and texture variances which can be either fixed as user-specified constants, or
computed dynamically using local image statistics as proposed in [16]. We found
the latter usually works better when the input image contains both smooth
regions and textured regions.

Recall that in [15], the kernel is further normalized as

k(Xi, Xj) =
k̃(Xi, Xj)

[d̃(Xi)d̃(Xj)]τ
, (8)

where d̃(Xi) =
∑n

j=0 k̃(Xi, Xj), and τ = 1 − s/2 (s is the free parameter in
Equation 1). However, in our system we do not want this normalization to hap-
pen since each Xi is associated with a weight, and normalizing the kernel will
undesirably cancel out the effects of the weights. We thus set s = 2 and τ = 0
for both Lb and Lm.

Denoting W b as the n × n matrix where W b
ij = kb(Xi, Xj) (see Equation 4

and 7), Dd as the diagonal n× n matrix where Db
ii =

∑n
j=0 k

b(Xi, Xj), then Lb

is defined as Lb = Db −W b.
The goal of Lm in the optimization problem 6 is to accurately estimate alpha

values for real mixed pixels in U , which have been extensively studied in previous
matting approaches. Although the same weighted Gaussian kernel can be defined
for Lm as described in [8], the recently proposed matting Laplacian [3] has
been shown to be able to generate the most accurate mattes among affinity-
based matting approaches [1]. In our system we use this affinity and define
k̃m(Xi, Xj , ai, aj) = aiajμ(i, j), where μ(i, j) is the matting Laplacian coefficient
defined in Equation 12 in [3]. Similarly, we define Wm as the n×n matrix where
Wm

ij = km(Xi, Xj) = k̃m(Xi, Xj , γi, γj), Dm as the diagonal n×n matrix where
Dm

ii =
∑n

j=0 k
m(Xi, Xj), and Lm as Lm = Dm −Wm.

4.3 Estimation of γi and α̂i

Recall the convex combination assumption of the matting problem: I = αF+(1−
α)B. Under this assumption, and given a relatively tight input trimap (compared



246 J. Wang

with a few scribbles), we assume that if a pixel Ii can be well approximated as a
linear combination of a known foreground color F̂ and background color B̂, then
it has a higher probability to be a mixed pixel. Similar to the sampling scheme
proposed in [2], for an unknown pixel Ii, we sample a relatively large number of
nearby foreground and background colors F k, Bk, i = 1, ...,M , and try to find a
good linear approximation of Ii among them.

Specifically, for a sample pair (F a, Bb)(a, b ∈ [1,M ]), we first normalize the
distance |F a − Bb| to 1 and align Bb to (0, 0) and F a to (1, 0) in the 2D plane
defined by the three points F i, Bj and Ii in the 3D color space, as shown in
Figure 4. We then compute the coordinates of Ii in this plane as (dx, dy), and
compute an estimated α and a mixture probability γ as

α̂(F a, Bb, Ii) = Γ (dx), (9)

γa,b,i = P (α̂) · exp
(
− δ(dy−εy)(dy−εy)

σy

)
, (10)

where Γ (x) is a truncation function whose output is 1 if x > 1, 0 if x < 0,
and x otherwise. δ(x) is a standard step function where δ(x) = 1 for x ≥ 0 and
δ(x) = 0 otherwise. εy and σy are two constants which are empirically chosen as
εy = 0.1 and σy = 0.025, which generate good results in our tests. Intuitively,
if Ii is closer to the line, which means dy value is smaller, then γ is higher,
indicating the three points can be better approximated using a line in the color
space. P (α̂) is a weighting function defined as

P (α̂) = 4α̂(1 − α̂). (11)

P (α̂) has its maximal value of 1 at α̂ = 0.5 and gradually goes to 0 as α̂
approaches either 0 or 1. The intuition for applying such a weighting function
is that if α̂ is closer to 0 or 1, Ii is closer to known F and B and actually has a
higher probability to be a new foreground or background color.

We do this analysis for every pair of (F a, Bb), and the top three pairs are cho-
sen which generate the highest γa,b,i, and their average γi and α̂i are computed
as the final results for Ii at the color sampling step.

Finally, individually estimated γi is still somewhat noisy, since there is no
spatial smoothness constraint in γi estimation. However, for two neighboring
pixels Ii and Ij , if their colors are similar, then their mixture probabilities γi

and γj should also be close. To generate a smoother mixture map which respects
the local image statistics, we apply the matting affinity proposed in [3] as a spa-
tial smoothness constraint for the mixture map, and use the matting Laplacian
coefficients defined in that approach as smoothing weights between neighboring
pixels. Mathematically, the smoothing operation is applied as

γt+1
i = (1 − λs)γt

i + λs

∑
j∈N(i)

(μ(i, j) · γt
j)/

∑
j∈N(i)

μ(i, j), (12)

where N(i) is a 3×3 window centered at i. μ(i, j) are coefficients in the matting
Laplacian matrix. t stands for smoothing iteration, which is fixed to be 20 in our
system. λs is the step width parameter which is set to be 0.5.
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Fig. 5. Example of estimated mixture maps. Each example from left to right: orig-
inal image with trimap boundaries, γi before adaptive smoothing, γi after adaptive
smoothing.

Figure 5 shows some examples of estimated mixture probability maps. Note
how the mixture maps capture the real foreground edge for near-solid boundaries
(first row) as well as large fuzzy regions (bottom row).

4.4 Iterative Refinement

One may have noticed that the mixture map estimation largely depends on the
available F and B training data. After the optimization problem in Equation 6
is solved as a large linear system, some pixels in the unknown region may have
been classified as F and B, giving us new F and B samples which could be
used to refine the mixture map estimation. In this way the whole process can be
iterated until convergence. The convergence is guaranteed since the upper limit
of the number of possible new F and B samples is all the pixels in U , and in
practice we found the matte usually becomes stable after 2 to 3 iterations.

5 Link with Other Approaches

Many previous matting and segmentation approaches can be treated as special
cases of the proposed algorithm. If we simply set γi = 1 everywhere in U , then
Lb becomes an empty matrix and our algorithm degrades to a regular matting
algorithm, which shares similar components with the state-of-the-art matting
algorithms. For example, Lm incorporates the matting Laplacian [3], and the
matte prior α̂ is computed in a similar way as in [2]. On the contrary, if we
set γi = 0 for all pixels, then Lm becomes an empty matrix and the algorithm
degrades to a transductive segmentation algorithm which is similar to the one
proposed in [15]. By automatically varying γi at different regions, our algorithm
combines the advantages of transductive labeling and matting together, thus is
able to generate accurate alpha mattes in a more robust way.

Some tri-level segmentation algorithms have been recently proposed which
are able to generate relatively accurate trimaps based on user-specified scrib-
bles [17,14]. These approaches usually build color models not only for F and
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E5 E6

E1

E4

E2 E3

Fig. 6. Six test images containing textured
backgrounds, with trimap boundaries over-
layed and ground-truth mattes

Bayesian Clo.form Robust Our

T1 793.2 346.7 392.0 94.6
T2 2395.2 451.2 420.7 280.9
T3 263.0 123.0 152.7 79.6
T4 1786.5 401.9 331.4 117.3
T5 3233.0 339.6 320.1 216.6
T6 971.9 106.5 91.8 55.7

Fig. 7. MSE of mattes generated by
different algorithms on the data set in
Figure 6

B, but also for U by linearly blending F and B models, thus are similar to the
linear mixture analysis proposed in our approach on the concept level. However,
our approach differs from these approaches from two major aspects. first, in
trimap generation systems the trimap generation and alpha matting are treated
as separate steps, thus any errors in trimap generation will be magnified in the
matting step. In our system the matting and transductive labeling are integrated
together and they help each other. Second, trimap generation methods mostly
use inductive inference, relying on the user to provide enough color samples to
construct the proper statistical models (for instance Gaussian Mixtures). In our
system the new F and B labeling is done under a more robust transductive
inference framework.

Nevertheless, one can imagine integrating these technique together to build
a more efficient system. Given an input image, a trimap can be interactively
generated using trimap segmentation algorithms. Since the resulting trimap will
not be perfect where U region may still contain some F and B colors, our
algorithm can be applied to improve the matting quality, especially for complex
images.

6 Evaluations and Comparisons

To quantitatively evaluate the algorithm, a test data set is constructed which,
unlike data sets used in previous approaches, contains highly-textured back-
grounds, as shown in Figure 6. For image E5 and E6 we shoot the foreground
dolls against multiple known backgrounds, and use triangular matting meth-
ods [18] to extract the ground-truth mattes. The foregrounds and ground-truth
mattes in E1 to E4 are borrowed from the data sets in [2] and [3], but we compose
them onto more complicated backgrounds to create test images. Note that the
data set contains both hairy foreground objects and near-solid ones. For each
example a relatively loose trimap is specified as the user input.

Four algorithms are applied on the test data set, including Bayesian matting
[5], closed-form matting [3], Robust matting [2], and the proposed transductive
matting algorithm. Specifically, Bayesian matting is chosen as a representative
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Original Bayesian Closed-form Robust Our Ground-truth

Fig. 8. Partial mattes extracted by different algorithms

Table 1. MSE of mattes generated by our algorithm on the data set in [1], and their
ranks among total of 8 test systems. Format: Minrank : Maxrank.

T1 T2 T3 T4 T5 T6
58.92 : 93.52 51.62 : 142.32 41.82 : 70.52 74.71 : 248.53 154.22 : 355.31 36.53 : 47.61

sampling-based approach, closed-form matting as the most accurate affinity-
based method, and robust matting as a well-balanced optimization-based algo-
rithm which combines sampling and affinities.

Figure 7 shows the Mean Squared Errors (MSE) of extracted mattes against
the ground-truth. Alpha values are stretched to 0 − 255 for MSE calculation.
Figure 8 and 2 shows partial mattes generated by different algorithms. There
results clear suggest the proposed algorithm outperforms previous approaches
on these complex images.

To evaluate the performance of the proposed algorithm on simper images
with smooth F and B regions, we apply it on the test data set proposed in [1],
which contains 6 test images, each with a ground-truth matte and a series of
trimaps. Table 1 shows the MSE values of our extracted mattes, and their ranks
comparing with the other 7 matting algorithms. The results suggest that the
proposed algorithm performs comparably well with other matting methods when
the input image does not contain complex textures.
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7 Conclusion

Previous inductive-inference-based matting algorithms tend to produce erro-
neous mattes when dealing with textured objects. In this paper we propose a
transductive matting algorithm which explicitly models the trimap-based mat-
ting task under a transductive inference framework, thus not only is able to
produce higher quality results on textured or non-homogeneous images, but also
can produce accurate mattes for regular images with smooth foreground and
background regions.
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A New Buckling Model for Cloth Simulation
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Abstract. Textiles are normally incompressible: when we try to com-
press them, they immediately buckle. Unfortunately, many cloth simu-
lation solvers disregard this fact. In this paper, we present an efficient
method to model buckling using distance contraint. This constraint is
formulated as a linear complementarity problem (LCP) and can be eas-
ily integrated within a collision handling process.

1 Introduction

Buckling for thin materials is one of the most challenging problems in computer
animation. Accurate simulation of cloth buckling is important for a wide variety
of natural phenomena and has numerous applications, including video games
and fashion.

Many researches point out that buckling occurs when an object cannot resist
to a compressing force and creates a disequilibrium status. As for cloth materials,
when a compression force is added to them, at first cloth can stand force and
keep the same shape while after a critical moment it reaches an unstable state
producing a huge shape change.

Cloth simulation would not be noticeably realist without including buckling.
However, simulation of buckling involves several important difficulties. One such
problem is keeping cloth incompressible during the simulation without losing
physical dynamical effect.

Most of the methods for buckling are based upon geometrical constraints. For
example, Choi [6] presented a post buckling model based upon the construction
of a post-buckling shape in every spring of a cloth model. Decaudin [8] studied the
procedure to model a pressed cylinder cloth and generated buckling effect using a
diamond geometrical hypothesis. Both of existing methods generate a buckling
effect from a predefined shape instead of from the dynamics rules of a cloth
simulation system, which makes the simulation not very realistic. Therefore, it
is critical to develop a physically-based buckling model combined with the cloth
simulation procedure to generate fast and realistic buckling effects.

In this paper, we propose a new method using distance contraints formulated
as a linear complementarity problem which fits to cloth simulation. The simula-
tion uses a mass-spring representation to model cloth physically. The buckling
disturbance is applied to the system when some springs are compressed. In our
method, a linear complementarity problem (LCP) is incorporated into our col-
lision treatment process. This allows us to use only one LCP solver for the
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distance contraints and collisions treatment. Our experimentation with our dy-
namics solver and textile Kawabata evaluation system (KES) parameters shows
realistic results.

The remainder of this paper is organized as follows. We review related work
in Section 2. Our new method for buckling is presented in Section 3. It is in-
corporated in implicit collision handling in Section 4. Results and discussion are
presented in Section 5.

2 Related Work

In most previous works, the problem of distance constraint in textile tension
modeling is solved using stretch resistance (Choi and Ko [7] have an excellence
survey on cloth simulation).

The general approach is to treat cloth as an elastic material [20] [3] [2] [5]. To
reduce stretching, elastic models adopt sometimes stiff springs. Unfortunately,
stiff springs system degrades the numerical stability of the solver [10].

We class the constraint-based approach in two categories depending on the
implementation of the solvers used: individual constraint or global constraint.

Individual Constraint. Provot [17] presented a first method for spring length con-
trol; the solver iteratively displaces the vertices related to stretched springs. How-
ever, he found a poor convergence since each displacement may stretch neighbor
springs.

When tight tolerances of cloth are not required, the Provot’s method was used
widely because it’s simple to implement. Bridson [4] limits the changing of spring
length per timestep to 10% of the current length. Müller [14] used position based
approach to enforce inextensibility on each spring separately.

Global Constraint. In contrast to iterative constraint enforcement, House et al.
[12] used Lagrange multipliers to treat stretching. Their approach alleviates the
difficulties associated with poor numerical conditioning and artificial damping.
House et al. later encountered difficulties in handling collision response within
their late works [13].

Hong et al. [11] used a linearized implicit formulation in order to improve
stability of constrained dynamics. Tsiknis [21] proposed triangle-based strain
limiting together with a global stitching step for stable constraint enforcement.
This allowed for larger time-steps and reduced the need for springs to maintain
the cloth on the constraint manifold. Both of these approaches enforce inexten-
sibility only for strain exceeding 10%.

Recently, Goldenthal and al. [9] used a projection method based upon Con-
strained Lagrangian Mechanics to produce inextensible cloth. However their
method cannot deal with real behavior cloth, that act with KES (Kawabata
Evaluation System) parameters.
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3 Buckling Model for Cloth Simulation

Section 2 was related to the problem of textile stretching. In order to model
buckling, we need, on the contrary to deal with textile compression problems.

In this section, we introduce the necessary background material on which
we build our method. This consists of a buckling disturbance and contraint
force computation from compressed springs. We will present briefly a review of
constrained dynamics.

3.1 Buckling Strategy

In general, cloth simulation using mass-spring systems encountered difficulties of
in-plane compressing. This problem is due to the fact that gradient of constraints
is also in-plane and a compressed point never moves away from the plane.

Our global strategy consists in suppressing all compressed springs as textile
does not put up with compression. In order to obtain a convergent algorithm, we
fully decompress the most compressed one (by displacing one of the two masses
of the corresponding springs orthogonally to the surface) and we continue by
choosing the next most compressed spring (it will be compulsorily less com-
pressed than the former one) until the stack of compressed spring is empty. The
decompression of the chosen compressed spring is realized in the following way:
if AB is the most compressed spring and the compression of AD is greater than
that of BE and if the compression of AC is greater than the compression of AF,
we pull the mass A out of the plane to its destination position A1 (geometri-
cally ideal) using the ABCD modifying schema shown on the left of figure 2. In
general, for this configuration, the position A1 is the intersection point of three
spheres, the ray of which is equal to l0, the rest length of the springs (supposed

Fig. 1. Compressed springs and its decompression
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Fig. 2. Integrating of position constraint Δp in modified gradient conjugated algorithm

to have the same lengthes in our case). We choose, between the two possible
intersections A1, that one which does not change the sign of the curvature and
choose it randomly if the surface is flat.

The position correction is done directly in our dynamical solver. We have used
the modified gradient conjugated algorithm presented in the works of Baraff and
al. [2].

−−→
AA1 is simply the position correctionΔp which is considered as a position

constraint and forces the simulator to solve the dynamical equation with this
constraint. The modified algorithm is shown as follows:

However, this method has some limitations, all in-plane compressed points
cannot be treated at the same time but a parallel version of this technique is in
preparation.

Testing has shown that, the in-plane compression problem can be treated
correctly but computing time is presently enormous. However, this test gives us
the possibility to study in details the interactions between the control of buckling
and that of collisions which is an important problem not yet fully solved.

Figure 3 and 5 show the experimentation results, more details will be pre-
sented in section 5 (Videos will be shown during the oral presentation).

4 Buckling Model Incorporated in the Collision Handling

We used the implicit contact handling for deformable objects presented by
Otaduy [15] and combined our buckling within the collision solver. This method
can handle complex and self-collision situations.

4.1 Numerical Integration and Dynamics

We consider a physical system governed by the ordinary differential equation:

Mv̇ = f(x, v) + fext

ẋ = v
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where x denotes a state vector, v denote the velocity vector, M denotes the
mass matrix, f(x, v) denote the internal forces and fext denote the external
forces (such as those due to gravity, etc.).

We have used time discretization methods that have been used or described
in depth in the research by Baraff and Witkin [2], Otaduy and al. [15], Pabst
et al. [16], etc.

Given a state S(x0, v0) at the beginning of a time step, the velocity v is
updated by this linear equation:

Av = b

We have used a backward Euler scheme with linear approximation of forces and
assumed a constant mass matrix per time step. The linear velocity update rule
is rewritten as:

A = M − h
∂f

∂v
− h2 ∂f

∂x

b = hf0 + v0(M − h
∂f

∂v
)

4.2 Implicit Collision Handling

The basic concept for the implicit contact handling is a non penetration con-
straint that can be described briefly as follows.

The set of object q configurations free of contact can be limited by a constraint
manifold in a high-dimensional configuration space G. Collision detection locally
samples this constraint manifold. If we group all contact points in one vector p,
the free space defined by the constraint manifold G can be approximated by a
set of algebraic inequalities g(p) > 0.

For example, if we have a contact point pa and a normal vector n of the
object surface at pa, a non-penetration constraint at pa can be satisfying : g(p) =
nT (p− pa) ≥ 0

In order to enforce non-penetration at the end of the time step, we can formu-
late the constraints implicitly. We propose a semi-implicit formulation of contact
constraints linearized as:

g(p) = g0 +
∂g

∂p
(p− p0) ≥ 0 (1)

with the rows of the Jacobian ∂g
∂p formed by the contact normal n at the time of

impact and g0 = g(p0).
Note that the contact point p can be found anywhere in the object surface.

In our cloth simulation system, p is represented by the three end-points of a
triangle containing p:

p = paα+ pbβ + pc(1 − α− β)

we obtained:
ṗ = ṗaα+ ṗbβ + ṗc(1 − α− β) =

∂ṗ

∂v
v
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if we rewrite p = p0 + hṗ we obtain:

g(p) = g0 +
∂g

∂p

∂ṗ

∂v
vh ≥ 0 (2)

we obtained :
Jv ≥ − 1

h
g0 (3)

where J = ∂g
∂p

∂ṗ
∂v and ∂ṗ

∂v denote the barycentric coordinates of the contact point.
We used the collision detection method presented in the research of Provot

[18], readers can find more details in his papers for edge-edge, point-triangle
collision detection technics.

The solution to our constrained dynamics problem alone does not guarantee
a penetration-free state at the end of a time step. There are two possible rea-
sons: the linearization of the contact constraints, and the fact that the collision
response induced by some constraints may in turn violate other constraints that
were not yet accounted for. To overcome this problem, a collision test will be
done at the end of each iterative loop to ensure a contact free state.

4.3 In-Plane Incompressible Constraint

We propose a new method to solve the problem of in-plane compressed springs
incorporating the collision handling process. In this method, we treat all in-
plane compressed springs simultaneously by formulating our problem as a linear
complementarity problem (LCP).

Using the same definitions as in section 4.2, the constraints of in-plane com-
pressed springs can be represented by a set of algebraic inequalities g(p) ≥ 0.

The in-plane compression problem can be represented by two subproblems:
spring compression and pulling points out of plane. We firstly define the spring
compression problem. Given an in-plane compressed spring rab connected by a
pair of points pa and pb and a direction vector u from pa to pb, an individual
in-compressible constraint can be rewritten as:

gab = uT (pb − pa) − l0 ≥ 0

where l0 is the length of the spring rab at rest state. In semi-implicit form, the
constraint g can be rewritten as:

g(p) = g0 +
∂g

∂p
(p− p0) ≥ 0

with each row of Jacobian ∂g
∂p formed by direction vector u at the time of com-

pressing g0 = g(p0). If we rewrite the equation above with p = p0 + vh, we
obtained:

g0 +
∂g

∂p
vh ≥ 0 (4)

note that g0ab = uT (p0a−p0b)−l0 the deformation of the spring at the beginning
of the iterative process.
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The in-plane point pull out can be defined as a modification of point position
along the direction of surface normal vector. Our idea is to add a very small
force to pull the point out of the plane. In reality, cloth is never absolutely flat
and try to buckle immediately when it is compressed. We consider a force of the
contact surface (e.x: a table) which raises cloth when it is compressed in-plane.

The pull-out constraint is simply defined as:

g(p) = g0 + nT (p− p0) ≥ 0

where g0 could be set to zero. If we rewrite the g(p) as semi-implicite equation,
we obtained:

g(p) =
∂g

∂p
vh ≥ 0 (5)

where ∂g
∂p formed by normal vector of the surface at the point p.

In summary, each in-plane compression constraint is composed by two con-
straints : incompressible constraint (equation 4) and pull-out constraint (equa-
tion 5). The set of constraint equations can be rewritten as a matrix J, where
each row of J presented a constraint. We obtained:

Jv ≥ − 1
h
g0 (6)

We have seen that our in-plane compression constraint (eq. 6) has the same
properties as collisions constraint (eq. 3) and can be combined together. That
allows us to solve collision and buckling problem at the same time.

4.4 Linear Complementarity Formulation

We use the method of Lagrange multipliers to model the adjustment forces
as JTλ with λ ≥ 0 (λ > 0 when a point is compressed). A complementarity
condition 0 ≤ λ⊥g(p) ≥ 0 mean that forces (λ > 0) cannot be adjusted when a
spring is not compressed (g(p) > 0).

Here we have a mixed linear complementarity problem (MLCP - combining
of equalities and inequalities equations). We denote by v∗ the unconstrained
velocities (solved from A v = b ), the MLCP that define the constrained velocities
v = v∗ +Δv can be presented as follows:

AΔv = JTλ (7)

0 ≤ λ⊥JΔv ≥ − 1
h
g0 − Jv∗ (8)

4.5 Mixed Linear Complementarity Problem Solver

In order to solve the MLCP, we rewrite our problem as:

0 ≤ λ ⊥ Bλ ≥ c

where B = JA−1JT and c = − 1
hg0 − Jv∗.
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Using Gauss-Seidel method, we can easily determine λ then solve AΔv = JTλ
for Δv. In fact, to compute B, we need to compute A−1. This matrix inversion is
very expensive when A is order of 3nx3n where n is the number of masses (about
40000 masses to simulate 1m2 of cloth). To avoid the matrix inversion, we adapt
the iterative constraint anticipant method presented in the work of Baraff [1] to
solve our LCP.

Given a velocity correction Δv(i− 1) at an iterative step i− 1, the Lagrange
multipliers λ(i) can be computed by:

0 ≤ λ(i)⊥(JD−1
A JT )λ(i) ≥ − 1

h
g0 − Jv ∗ −JD−1

A (LA + UA)Δv(i− 1) (9)

where DA is diagonal, LA is strictly lower triangular, UA is strictly upper, and
A = DA − LA − UA.

The velocity correction Δv(i) is refined using block-Jacobi relaxation:

DAΔv(i) = (LA + UA)Δv(i− 1) + JTλ(i) (10)

We start the iterative constraint anticipant with λ(0) = 0 andΔv(0) = 0 then we
repeat the computation of λ andΔv using equation 9 and 10 until AΔv−JTλ ≤ ε
(in our method, we choice ε = 10E-12)

5 Results and Discussion

In our work, we performed two typical experiments in the buckling research area.
The first experiment is compressing textile around a cylinder the which is

difficult to solve for buckling. Another experiment is the standard case of buck-
ling, when a planar piece of cloth is pushed uniformly along two opposite sides.
The planar cloth with in-plane compression is the standard model for verifying
buckling effects, since without buckling, a cloth simulation system will come to
a numerical unstable state when compression remains in plane and increases up
to program divergence. The procedure of cylinder buckling is very similar to the
effect produced when you raise up your sleeves around your arm. Therefore if
the cylinder buckling experiment can achieve good results, the application to
virtual try-on system would also get vivid effects.

The spring length used in our experimentat is 0.005m and the number of the
masses is 20 × 20 for the planar cloth and 20 × 40 for the cylinder model. The
time step is 10E-4 in order to get natural and stable results.

Cylinder Experiment: In this experiment the cylinder is produced by a 10cm×
20cm rectangle cloth. At the initial state, there is no external force on the cylin-
der, then a force pulling down textile uniformly on its top border is added to the
cloth through displacement constraint implementation. The energy equivalence
condition is the criterion for the force and the threshold is 10E-8J. After adding
the force, the cloth simulator computes the following status and add buckling
displacement to the system constraint. With the energy criterion, after the sys-
tem comes to a stable state, the in-plane force will continue to act on the cloth.
Figure 3 shows the buckling result.
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Fig. 3. Cylinder cloth buckling Fig. 4. Comparison: result with the dia-
mond assumption method from [8]

Fig. 5. Comparison: our result on the left and result coming from a shape control using
Choi’s approach [6]

Fig. 6. Buckling results on the body model

In Plane Pulling Cloth Experiment: this experiment uses a 10cm× 10cm
cloth. Cloth is laid on a horizontal plane. The initial state of the cloth is rest,
then one border of cloth is pushed uniformly along its border, while the opposite
one is blocked. It is implemented with system constraint as in our paper. Then
we keep on adding the same force to the cloth. Figure 5 is the comparison with
the post spring shape assumption method from Choi [6]. Figure 6 is a result of
virtual try-on in order to illustrate the validity to the 3D garment simulation.
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6 Conclusion and Future Work

In this paper, we have introduced a new buckling model integrated efficiently
in collision handling. Using incompressible springs as well as non linear cloth
simulations, we found that this method can be used efficiently to model various
thin materials. This allows also an efficient analysis of the evolution of contact
surfaces over time.

Actually, we are developing a complete virtual try-on system, from design over
tailoring until try-on and customization of virtual garments with few interactions
required from the user.

In this goal, we would like to further investigate the scalability of our colli-
sion handling method in order to speed up the cloth simulation process. Many
collisions computing can be treated in a same time using GPU-based streaming
method [19]. This would allow us to obtain a final result in a shorter time.
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Abstract. This paper presents a service that creates complete and re-
alistic 3D models out of a set of photographs taken with a consumer
camera. In contrast to other systems which produce sparse point clouds
or individual depth maps, our system automatically generates textured
and dense models that require little or no post-processing. Our recon-
struction pipeline features automatic camera parameter retrieval from
the web and intelligent view selection. This ARC3D system is available
as a public, free-to-use web service (http://www.arc3d.be). Results are
made available both as a full-resolution model and as a low-resolution
for web browser viewing using WebGL.

1 Introduction

Computerised 3D models have become part of peoples everyday lives. Indeed,
the average home is filling up with 3D capable products, such as 3D-TVs, smart
phones, computers, video games, etc. We also see an increased use of 3D on the
web, with new standards such as WebGL [1] and XML3D [2]. That said, the
creation of 3D content has not followed suit. Most 3D content in movies and
games are modelled using expensive scanners or manual labour. We attempt to
bridge this wide gap between users and producers of 3D content by introducing
a public, easy-to-use 3D reconstruction pipeline that outputs textured and dense
3D models, from normal photos as the only user-generated input.

1.1 Previous Work

There already exist a number of public methods for 3D reconstruction. ARC3D
[3] is the “mother” of 3D reconstruction services and is also the predecessor of
the system presented in this paper. The original ARC3D has been on-line since
2005 and produces dense depth maps that can be (manually) merged into a com-
plete model. Two similar services are Microsoft’s well-known PhotoSynth [4] and
the more recent 3dTubeMe [5]. Both solutions generate a sparse point cloud which
gives an overview of scene geometry but does not provide enough detail for photo-
realistic visualisation. There do exist previous extensions for dense reconstruc-
tion, but they are limited to advanced users. The Bundler software [6] is an open
source package for reconstructing a sparse 3D point cloud. It can be combined
with the PMVS software [7] to create dense point clouds. This method is intended
for computer vision professionals rather than for the general public, and is thus
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non-trivial to install and operate. In contrast, our ARC3D extension generates a
complete and textured 3D mesh, is fully automatic and is easy to use. The user
simply uploads images to our web service which takes care of the rest.

All systems mentioned above are based on approximately the same struc-
ture from motion fundamentals [8,9]. Local features are extracted and matched
between the images. The matches are used to compute relative poses between
image pairs and to triangulate a sparse reconstruction. The sparse reconstruc-
tion is then optionally upgraded to dense by a multi-view stereo algorithm. The
method assumes that the internal parameters of the cameras are known or fixed,
which is typically not the case if arbitrary cameras are used for the photos.
However, there exist two practically usable methods for computing them. The
classical methods start with a projective reconstruction which is upgraded to
euclidean by finding the absolute quadric or its dual [10] (but also see [8] for
a more intuitive, euclidean interpretation). The euclidean upgrade is analogous
to recovering the camera intrinsic parameters and can thus be used to calibrate
the cameras. This method provides good results if the camera motion is general,
but may break down in cases of turntable motion and planar scenes. More re-
cently, it has been shown that EXIF meta data can be used to approximate a
calibration matrix [6]. Since EXIF data may be inaccurate, one has to rely on
a subsequent bundle adjustment. Relying on EXIF may increase robustness to
degenerate camera motion but may decrease accuracy.

Recent research [11,12] have shown promising results in large scale 3D recon-
struction using images from photo-sharing communities. Such methods require
an abundance of photos to ensure sufficient overlap and quality. It is thus only
applicable to well-photographed, famous landmarks; one can simply not expect
a high-quality 3D model out of a limited set of casually taken photographs. A
state-of-the-art 3D reconstruction algorithm such as ARC3D is able to produce
models with accuracies comparable to a lidar scanner [13]. As our goal is quality
rather than quantity, we focus on reconstructions on a smaller scale, at the order
of 100 images, taken with the purpose of creating 3D. We encourage but do not
enforce ordered images and constant camera parameters.

Our method consists of a sparse reconstruction followed by a dense upgrade
(Section 2). We improve the EXIF based pre-calibration by searching the web
for missing camera parameters (Section 3). This yields a higher success rate. At
the end of the dense reconstruction, we add a new step that first selects suitable
views for remeshing (Section 4) and then computes a textured mesh from their
depth maps (Section 5). To the best of our knowledge, there are no public 3D
reconstruction pipelines available that provide this functionality.

2 Reconstruction Pipeline

Our 3D reconstruction pipeline computes depth maps from input images:

– Precalibration. We extract information from the EXIF image meta data to
create an initial calibration matrix Kpre for each camera. We automatically
search the Web for missing information. See Section 3 for more details.
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– Epipolar Geometry Computation. SURF features [14] are extracted and
matched between all image pairs. For pairs where both cameras have an esti-
mated Kpre, we compute an essential matrix using the 5-point algorithm [15]
in a RANSAC scheme. For pairs without Kpre, we compute a Fundamental
matrix using the 7-point algorithm [9].

– Optional step: Self calibration. If there are less than two images with
Kpre, we employ the self calibration method described in [3]. This method
breaks down if Kpre varies throughout the image sequence or if the motion
and/or structure are not general enough.

– Sparse Reconstruction. This first selects an initial view pair. To ensure
a large enough baseline, we examine whether they cannot be matched too
well with the infinite homography [8]. The scene is reconstructed by adding
views sequentially. For each new view, we resection its camera using the 3-
point algorithm [16] and triangulate all matches with already reconstructed
views. A bundle adjustment is then performed to minimise the reprojection
errors. We optimise for the six pose parameters, focal length and two radial
distortion coefficients.

– Dense Reconstruction. The sparse reconstruction is used to initialise a
dense reconstruction with 3D coordinates for each pixel, and not just for
SURF feature points. Using the computed cameras, we order overlapping
images into chains, rectify them and employ a dense stereo algorithm based
on dynamic programming [17]. The stereo pairs are then linked together in
their chain, and the optimal depth for each pixel is tracked using a Kalman
filter. The result is a dense depth map for each view, where each pixel tells us
its distance from the camera. In addition, the method also produces quality
maps, recording in how many views each pixel was successfully matched. The
depth maps are used as input to the mesh generation step which is detailed
in Section 5.

3 Camera Parameter Retrieval

Most recent Structure from Motion pipelines use EXIF meta data for camera
pre-calibration [5,4,6]. The EXIF data typically contains the focal length fe of
the camera lens, given in millimetres. This can be used to obtain an estimate of
the focal length in pixels: f̂ = fewi

ws
.

Here, wi and ws are the widths of the image (in pixels) and camera sensor
(in millimetres), resp. Assuming zero skew, the principal point at the origin
and unity aspect ratio (square pixels) gives us a pre-calibration matrix of the
following form:

Kpre =

⎡⎣ f̂ 0 wi

2

0 f̂ hi

2
0 0 1

⎤⎦
3.1 Obtaining the Sensor Width

While almost every camera stores fe in the EXIF tag, many low-end consumer
cameras do not store ws. However, the information can usually be found in the
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technical specifications of the camera. To this end, we maintain a database of
sensor widths for different camera models, indexed by the EXIF model name.
Whenever an unknown camera model is encountered, our software automati-
cally searches the web for ws. If the camera model is not very obscure, there is
likely to be a review or product description web page that contains the required
information. In practice, we perform the following steps:

– Google search. The model and make tags of the EXIF data are combined
to generate a Google search query. To better focus the search, we append the
words camera, specification, specs and sensor to the query. We also add the
string dpreview to favour web pages from the Digital Photography Website1,
which contains many camera specifications.

– Parse for sensor sizes. The first five resulting HTML documents from
Google are parsed for candidate sensor sizes. Sensor sizes can be given in
two different formats: width x height in mm or as an imperial fraction, such
as 1/1.8′′. We use a regular expression matcher to obtain all potential sensor
sizes in the document.

– Reject invalid dimensions. The imperial fractions do not measure the
diagonal of the sensor, but rather the diagonal of an imagined Vidicon tube
[18] centred on the sensor. Since these fractions are well defined, we use
a look-up table to convert them to mm of width and height. A fraction
that is not found in the look-up table is discarded. We also discard any
measurements outside the interval [2.0, 40.0] mm and we limit ourselves to
dimensions with aspect ratio close to 4:3. Camcorders and industrial cameras
may have a different aspect ratio than 4:3, but such cameras typically do
not produce EXIF data and would not be usable nevertheless. If there is still
more than one sensor size left, we select the one closest to the word sensor
in the document.

3.2 Retrieval Results

Uploaded Content. We first evaluated the retrieval system using data up-
loaded by users during the course of two months. Out of 23 950 uploaded images,
we first removed 9 788 images which were lacking fe. Note that ARC3D is still
able to process such images using the alternative calibration method. Out of the
remaining images, 5 505 already had ws in the EXIF data and were thus removed
from the experiment. Finally, 170 of the remaining images lacked a model tag
and were also discarded. This left us with 8 487 images that were used as input
to the algorithm. These images were found to have been taken with 114 different
camera models.

We evaluated the performance using two methods: per camera and per image.
In the per-camera evaluation we simply search for each of the 114 camera models.
In the per-image evaluation we weight the per-camera result with the number
of images taken with each camera. This is to reflect the fact that some camera

1 http://www.dpreview.com

http://www.dpreview.com
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models are more probable than others. We use the term retrieved for camera
models that returned any value and correct when the returned value was correct
(verified manually). The results were as follows:

Nr input Retrieved Correct Precision Recall
Per camera 114 76 73 96% 64%
Per image 8487 7622 7450 98% 88%

The precision is of high importance, as a false positive might severely harm the
reconstruction algorithm. We achieve a high value both for the per-camera and
for the per-image evaluation. The recall value is seen to be remarkably higher
in the per-image evaluation result. This reflects the fact that most people use
well-known cameras with a review on the Web. Failure cases include cellphone
cameras (for which the camera specs are typically not listed on-line), old or
unfamiliar camera models, and Google responses leading to web pages where
several cameras are compared.

In summary, we can expect around 88% chance for any randomly chosen
image that has fe but a missing ws to retrieve a correct sensor dimension. This
is indeed a great improvement for reconstruction systems relying on EXIF data
for pre-calibration.

Bundler Package. We also evaluated the tool using the camera list included
in version 0.4 of the Bundler software package2. The list contains 268 different
camera models with sensor widths. For each camera, we retrieved a value from
the web, ww, and compared it to the corresponding value from Bundler, wb.
We computed the relative error between the two as ε = (|ww − wb|)/wb, and
considered the measurement to be correct if ε < 5%. This margin was accepted
since the conversion from imperial fractions to millimetres is non-standard and
may produce slightly different results. Out of the 268 models, we managed to
retrieve a sensor width for 249 cameras. 208 of them were within the error margin.
This gave us the following result: Precision: 84%, Recall:78%. These rates are
inferior to the results that we obtained. However, most cameras on the Bundler
list date back to 2005 and earlier. The quality of the Bundler list can also be
questioned, as we have found several of its values to be incorrect.

4 View Selection for Mesh Generation

Reconstructed depth maps typically have large overlaps since each scene point
has to be visible in several images for 3D reconstruction. On the other hand,
too much overlap causes unnecessary computational load for a mesh generation
algorithm. Moreover, low-quality images (e.g. with motion blur) may produce
low-quality depth maps that harm the mesh generation process. We therefore
employ a view selection algorithm that from a set of views, Vin, selects the best
suited views for mesh generation, Vout. Recent publications on view selection for
2 http://phototour.cs.washington.edu/bundler/

http://phototour.cs.washington.edu/bundler/
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3D reconstruction [19,20] are concerned with the selection of views before dense
reconstruction and not after as in our case. Here, we are not interested to the
same degree in the overlap between images.

We identify three criteria for our algorithm: (1) The views should cover the
whole scene with as little overlap as possible, (2) we want to prioritise depth
maps of high quality and (3) the number of views for re-meshing should be
limited. While (3) is simply an upper limit of m such that |Vout| ≤ m, the other
criteria require some more attention.

(1) Coverage. We add a view to Vout only if it does not overlap too much
with views already added. Scene elements common between views are used to de-
termine the degree of overlap. Rather than using the dense depth maps, we avoid
heavy computations by using the sparsely reconstructed 3D points to determine
scene overlap. As in [20], we argue that the coverage of the sparse reconstruction
is approximately the same as for the dense one. We also use their definition of a
covered 3D point; a point is covered if it is seen in one or more selected views.
To quantify the amount of overlap between views, we could count the number of
uncovered points in each new view. However, using this number directly would
bias towards views with a larger number of 3D points. This is undesirable, as
the sparse 3D points are generally not evenly distributed and areas of high point
densities would thus be favoured. Instead, we compute the coverage ratio as the
ratio between the uncovered and the total number of points seen in a view. The
coverage ratio ranges between 0 when no new scene content is present in the
view and 1 when all points are uncovered, irrespective of the absolute number
of 3D points.

(2) Quality measure. Our multiview stereo algorithm generates a quality
map for each depth map. How many times each pixel was seen in another view
serves as quality measure. We use the average value as quality measure qi of the
entire depth map.

4.1 Algorithm

Denoting the set of sparsely reconstructed 3D points as M , and MV ⊂M as the
3D points seen in view V , we iterate the following steps:

Fig. 1. Example input images for
bunny, face and corner sequences

Table 1. Results for view selection al-
gorithm

Cams Faces Time

Bunny
Vin 88 616k 45m
Vout 22 607k 15m

Face
Vin 18 475k 9.7m
Vout 6 457k 2.7m

Corner
Vin 8 399k 4.2m
Vout 2 380k 1.8m
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1. From all views we have not already checked or added, select the one with
the highest quality. Vc is the set of checked views.

V̂ = max
q

(Vin\[Vc ∪ Vout])

2. Compute the coverage ratio:

c =
|MV̂ \MVout |

|MV̂ |
3. Add the view if the uncovered part was large enough:

Vout =

{
Vout ∪ V̂ , c ≥ τ

Vout, c < τ

4. Keep track of the views we have checked:

Vc = Vc ∪ V̂
5. If Vc = Vin all views are checked. In that case we reduce τ , set Vc = ∅ and

start over, unless one of the stop criteria is satisfied.

Stop Criteria. The iteration stops if any of the following criteria is fulfilled:

1. Max allowed views reached: |Vout| = m
2. All views added: Vout = Vin

3. All 3D points covered: MVout = M

Fig. 2. Results of view selection algorithm. Top: Selected cameras are highlighted.
Bottom: Mesh details for Vin and Vout.
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4.2 Results

We evaluated the view selection algorithm on three image sequences, Fig. 1.
For each set, we computed two 3D models, one out of all views (Vin) and one
out of the selected views (Vout). We compared the performance in terms of
computational speed and model completeness, measured as the number of faces
in the resulting mesh. It should be mentioned that the view selection algorithm
itself is very fast and its computation time is negligible here.

For all experiments, m = 30 and τ = 0.7 with a decrement of 0.1. The
numerical results are presented in Table 1. The resulting camera poses as well
as comparative views of the resulting meshes, with and without applying view
selection, are shown in Fig. 2. The visual difference is negligible for most parts
of the meshes. Discrepancies tend to occur in poorly reconstructed areas, such
as in the ears of the bunny and in the eye of the face. The eye is actually slightly
better reconstructed from Vout, which is likely due to the emphasis on the quality
measure. In the corner sequence, areas on the edge of the model which are not
covered well by the sparse reconstruction are lost. The marginal loss of geometry
is however well motivated by the large improvement in computational speed.

5 Mesh Generation

This section describes the creation of a textured mesh out of a scene’s depth
maps. Given a set of suitable, selected views (Section 4), we clean the depth
maps and create a mesh using a state-of-the-art remeshing algorithm. Finally,
we use the input images to texturise the model and create a WebGL-ready
version by downsampling the mesh.

5.1 Depth Maps to Model

The depth maps belonging to Vout are combined into a complete 3D model by
applying the following steps, illustrated in Figure 3:

– Filtering of depth maps. Since it is more efficient to work with 2D images
than with 3D meshes, we perform as much of the filtering as possible in image
space. By using the corresponding quality map, we first remove all pixels in
the depth map not seen in at least three views. We then find the largest
connected component and remove all pixels not belonging to the hull of
this component. Finally, an erosion is performed to get rid of possibly noisy
border pixels.

– Depth map to 3D. Each depth map is back projected into a 3D range grid.
A rough mesh is obtained by connecting neighbouring vertices in the grid.
We measure the angle between each triangle normal and the optical axis of
the camera and remove all triangles where the angle is greater than 80◦.
We also remove sliver triangles, where the length of the smallest side is less
than 2 times the length of the largest. As this operation often creates small
floating pieces, we remove all connected components having a face count of
less than 10% of the largest component.
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(a) (b)

Fig. 3. (a) Creating a mesh out of depth maps. Top left: Original noisy depth map. Top
right: The depth map is cleaned and back projected onto a range grid (Bottom left).
All range grids are combined and remeshed (bottom right). (b) The mesh is textured
to produce the final result. Vin = 18, Vout = 4.

Fig. 4. Resulting model reconstructed from a DSLR camera. Vin = 21, Vout = 6.

– Poisson reconstruction. The vertices from all depth maps are merged
and used as input to the Poisson reconstruction algorithm [21]. This method
casts the remeshing into a spatial Poisson problem and produces a water-
tight, triangulated surface. The Poisson reconstruction algorithm assumes a
complete and closed surface, and covers areas of low point density with large
triangles. To get rid of these “invented” surfaces we remove all triangles with
a side larger than five times the mean value of the mesh.
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(a) (b)

(c)

Fig. 5. Reconstruction results. (a) Vase, Vin = 63, Vout = 18. (b) Statue, Vin = 26,
Vout = 6. (c) Further reconstruction results.
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– Applying texture. We compute texture coordinates for each face by deter-
mining in which cameras the face is seen. To handle occlusions, we examine
if the rays between the camera centre and face vertices pass through any
other face of the model. Using an octree data structure and employing line
and frustum culling makes this computationally feasible. If the face is seen
in more than one view, we project the triangle into each image and select
the one with the largest projection area. This favours fronto-parallel, high
resolution and close-up images.

– Downscaling of the model. The remeshed model is large and may contain
hundreds of thousands of faces. While such a high detail is desirable in some
contexts, the amount of data makes the mesh unsuitable for on-line viewing.
To this end, we apply a subdivision algorithm [22] to create a low-resolution
version of the mesh. Since the texture remains at full resolution, the viewing
experience is not seriously degraded. We set the maximum number of faces
to 10 000 which results in an uncompressed size of around 1MB.

5.2 Results

All models shown in this paper are the direct output of our reconstruction
pipeline and have not been modified in any way. The input images have been
taken with the purpose of creating 3D content in terms of their coverage, but
can be offered in random order.

Figs 3 and 4 display models obtained with semi-professional DSLR cameras
under good lighting conditions. Both geometry and texture are of good qual-
ity. Fig. 5 shows results obtained from consumer cameras. The vase in (a) was
captured without a tripod in a dimly lit museum. The glass casing around the
vase made it impossible to use the flash. Nevertheless, the resulting model is
well reconstructed. The same can be said about the statue in (b), which was
captured under daylight conditions. In (c) we show further models produced by
the system.

6 Conclusion

We have presented an automatic system for the creation of textured meshes
out of images taken with a digital camera. Both the initial and final part of a
traditional 3D reconstruction pipeline have been enhanced, with functions for
camera parameter retrieval and mesh generation, resp. Result are delivered both
as an archive with the full resolution model, and as a link that opens the low
resolution version in a WebGL model viewer. We also provide the original, raw
depth maps and the recovered camera parameters.

Our system is currently on-line at http://www.arc3d.be and open to the
public, completely free for non-commercial purposes.
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Abstract. Image quality assessment is a challenge research topic in imaging 
engineering and applications, especially in the case where the reference image 
cannot be accessed, such as aerial images. In view of such an issue, a novel 
learning based evaluation approach was developed. In practice, only objective 
quality criteria usually cannot achieve desired result. Based on the analysis of 
multiple objective quality assessment criteria, a boosting algorithm with 
supervised learning, LassBoost (Learn to Assess with Boosting), was employed 
to seek the unification of the multiple objective criteria with subjective criteria. 
This new approach can effectively fuse multiple objective quality criteria 
guided by the subjective quality level such that the subjective /objective criteria 
can be unified using weighted regression method. The experimental results 
illustrate that the proposed method can achieve significantly better performance 
for image quality assessment, thus can provide a powerful decision support in 
imaging engineering and practical applications. 

Keywords: supervised learning, image quality evaluator, unification of 
subjective and objective assessment criteria, Boosting. 

1   Introduction 

Image quality assessment is a challenging topic in image engineering and application. 
PSNR is the most typical measurement for image assessment when the reference 
image is provided. However, only a few methods can serve to assess without the 
reference image, such as aerial image evaluation. Moreover, most of those methods 
are only capable of working for the image corrupted by single factor and cannot yet 
exceptionally deal with the assessment under the complicated background without 
reference image. In order to address this problem, there are several difficulties should 
be overcome. First of all, there are no unified criteria for the image assessment 
without reference image. Secondly, it requires too much human efforts to assessing 
with subjective criteria. And the image corrupted by multi-factor cannot be assessed 
by single criteria, and so on. 

Recently, the research of image quality evaluation mainly includes two aspects, 
subjective criteria and objective criteria. NIIRS (National Imagery Interpretability 
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Ratings Scale) is a widely-used quantitative subjective criterion[1][2], which 
specifically considers the relationship between user requirements and the quality of 
remote images. Moreover, the objective evaluation usually considers image resolution 
as the metric for image quality assessment[3], in which image sharpness plays an 
important role and is often measured by gradient functions. Gradient depicts the 
variation of gray values between different pixel locations. We can admit that the 
sharpness of image is proportional to the value of gradient. In general, gradient can be 
quantitatively calculated by the method of edge detection. Thus, there are several 
assessment methods using image sharpness to build the gradient functions[4], such as 
energy gradient function, Tenengrad function, Brenner function, variance function, etc. 
The image noise can be viewed as a high frequency signal which is of larger gradient 
value, therefore, it is a tradeoff between anti-noise capability and image quality 
evaluation. Besides, based on the Shannon sampling theorem—the greater entropy is, 
the more information it comprises. As a result, the entropy[5] can be also considered as 
a metric when the mean of image gray values is a constant. However, the value of 
entropy doesn’t reflect the detail information such as image edges, hence, it also can’t 
be viewed as the only criteria of evaluating the image under the complicated 
background. SNR(Signal to Noise Ratio) is widely used criteria for image quality 
evaluation, which doesn’t work without the reference image, since it is too difficult to 
separate noise from the corrupted image. J.M. Delvit and D.Leger et al.[6] presented a 
new approach which applies artificial neural network to estimate the value of SNR. 
First of all, training dataset is built based on the known noise model. Subsequently, a 
mapping function is learnt between image features and the corresponding SNR. 
Finally, the learned mapping model can be applied for precisely predicting the SNR of 
testing image. Inspired by this method, we developed a novel approach to explore the 
problem of image assessment based on boosting methodology. 

Furthermore, the boosting algorithm is widely used in the supervised learning and 
semi-supervised learning [7][8], which predicts samples using a weighted vote over a 
set of weak classifiers. Freund and Schapire[9] proposed the AdaBoost algorithm, 
which is the most typical version of boosting algorithm. More importantly, Friedman 
et al.[10] imported an additive logistic regression model into AdaBoost and exactly 
explained the boosting algorithm from a statistical view. From the perspectives of 
additive regression model and exponential loss function, Friedman et al. proposed 
some new boosting algorithms including “GentleBoost” and “LogitBoost” which are 
widely used in text classification and image recognition. Torralba et al.[11] proposed 
the algorithm “JointBoost” for multi-class classification in computer vision. Based on 
this work, Pipei Huang et al.[12] proposed a novel algorithm for solving multi-task 
learning problem and which is capable of working for the high dimensional feature 
space. Recently, Balazs Kegl et al.[13][14] constructed the products of base classifiers 
as a new hypothesis and presented a novel boosting approach.  

In order to deal with the image quality assessment without reference image, 
especially for which are influenced by multiple degradation factors, there are several 
issues should be overcome: Firstly, single objective criteria only serves to evaluate the 
images degraded by one kind of factors and reflects a particular characteristic of image 
quality, which lead to be sensitive to noise and worse assessment results the testing 
image is corrupted by multiple degradation factors. Moreover, desirable unified criteria 
of image quality assessment without reference usually cannot be determined, whereas 
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the subjective knowledge from experts is crucial to the assessment. However, it 
requires too much human resources to implement in each corrupted image using 
subjective method. In order to synchronously resolve the two issues mentioned above, 
we present a new approach, LassBoost, to make unification between the subjective and 
objective criteria. At first, we select out multiple typically objective assessment 
criteria. Subsequently, make use of LassBoost to learn the weights of objective criteria 
under the expert supervision. Moreover, the approach would fuses all the objective 
criteria using weighted regression such that the subjective/objective criteria can be 
effectively unified. Besides, the approach also can update the feature space of objective 
criteria and relearn the weights for the other complicated assessment task. 

The rest of this paper is organized as follows. Section 2 analyzes the existing 
limitations in single objective criteria. Section 3 conducts the theory of image quality 
assessment in the paper, describes the possible mapping between feature space and 
subjective quality levels which are built by experts, as well as the feasibility of fitting 
this mapping with supervised learning technology. In Section 4, LassBoost is 
proposed such that the resulting image quality evaluator can be designed. Section 5 
illustrates the experimental results and the final section concludes the paper. 

2   Characteristic and Limitation of Single Objective Assessment 
Criteria 

There are two typical problems in image quality assessment. The first problem is 
assessment with reference image, which is required to use the criterion, such as 
PSNR, to measure the “distance” between degraded image and reference image. The 
second one is the quality assessment method without reference image. Objective 
criteria could be work in the case where the image is degraded by single factor. 
However, no single objective criteria can achieve good performance on the testing 
image which is degraded by multiple factors, such as Gaussian noise, salt and pepper 
noise, motion blur, defocus blur, etc. Therefore, we should import subjective 
knowledge from experts into the image assessment problem. 

In general, the classical objective criteria of image quality assessment can be 
classified into three categories[4][5]. The first category is objective criteria based on 
the definition of gradient (such as energy gradient function, TenenGrad function, 
Brenner function, point sharpness function and so on), and which depend on the 
prerequisite that the image gradient is proportional to the sharpness of image textures 
and edges. The assessment criteria take use of the gradient values to evaluate image 
edge and specific details, apparently, cannot achieve good performance, when the 
densities of image gradient are destroyed by a large amount of noise drawn from 
different distribution models. Moreover, the second criteria are derived by the order 
degree of image information which is determined by the probability distribution of 
gray values, such as entropy. These criteria are of promising anti-noise capability, 
since the random noises from Gaussian model reduce the degree of order, and which 
would lead to entropy increase. Whereas the metric abilities of the second criteria are 
worse than those derived from image gradient. The third assessment criteria are 
derived from the image variance, such as MSE and improved PSNR, and which are 
dependent on the assumption that variance is proportional to the sharpness values of 
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image texture and edge. So the criterion is actually a tradeoff between the 
sensitiveness of noise and the metric capability of image edge details. In addition, 
weighting algorithm based on multiple objective criteria seems to absorb the 
advantages of several criteria, such as the abilities including anti-noise, sharpness 
measurement. In fact, the discrepancy of the images corrupted by different factors is 
very large, so the weight coefficients of the criteria cannot be easily determined and 
updated only if the expert information in not taken into account. As a result, the 
traditional weighting methods would have plenty of limitations in the complicated 
assessment issue. In fact, the specific multi-objective assessment criteria are selected 
from the three categories above. And the existing characteristics in all the categories 
are covered by the selected criteria as many as possible. However, because of the 
limitation of pages, the detail is not listed. 

In summary, each objective criterion has its own advantages, such as anti-noise, 
the metric capability of edge details, but there are still of much limitation whichever 
you uses. As a result, there is no one objective criteria which can exceptionally handle 
the images assessment problem without reference image, especially in that case where 
the images are corrupted by multiple factors or under the situation without reference 
image. 

3   The Mapping between Feature Space of Multiple Objective 
Criteria and Experts’ Subjective Assessment Criteria 

Due to the limitations of using single objective criteria as method for image assessing, 
we can reasonably imagine that experts’ evaluation results are the golden standard. 
Hence, there should be a certain mapping relation between multiple objective criteria 
and the subjective assessment criteria from experts, whereas this relation cannot be 
specifically obtained by mathematical formula. However, it can be solved by learning 
a mapping model with supervised learning technology, and consequently derive a new 
approach for image assessment, where both subjective knowledge and objective 
criteria will be taken into account. 

As a result, we propose a novel approach to explore the image quality assessment 
problem with machine learning technology. The crucial steps of our approach are 
shown as Figure 1. First of all, we calculate the features with the objective assessment 
criteria on each training image. Subsequently, the image label evaluated by experts is 
constructed and considered as absolutely correct quality level. Thirdly, we use the 
LassBoost algorithm to learn a generalized model through which the specific mapping 
between the features and labels would be built. Finally, the weights learnt from the 
model will apply to predict the quality level of testing data. 

Based on the limitation analysis concerning objective criteria, the experiments in 
the paper choose nine classical objective criteria to construct the feature space. The 
space is able to expand to high dimensions based on different task requirements.  

Furthermore, the images in the dataset are evaluated to ten levels by several experts 
and each level is represented by one particular score. All the score (referred to as 
label) used for accessing the average should be evaluated from different experts and 
the average value would be viewed as the final subjective assessment result. 
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Fig. 1. Unification of the multiple objective criteria and subjective assessment criteria 

4   Learning Algorithm for Constructing Evaluator System 

In the multi-class classification problems, we have C  learning categories, and 
assume that all the samples come from the same space X Z× . For simplicity, we 
assume that FX R⊂ and Z R⊂ , where F  indicates the number of feature dimension as 
well as the number of objective criteria of the paper. The available data from different 
categories is denoted as

1{( , )}N
i i ix z X Z= ⊂ × . Each experiment is considered as a multi-

class classification problem, {1, 2,..., }iz C∈ . 

In order to evaluate the experts’ subjective assessment quantitatively and precisely, 
the images in dataset divide the score into 10 levels based on their qualities, thus the 
quality assessment issue is specified and reformulated to a multiple classes 
classification problem. Our algorithm in the paper is expanded from the framework of 
GentleBoost[12][15], which is a classical boosting classifier in binary classification. 
Before we conduct the new algorithm, we need to make a brief explanation on 
GentleBoost algorithm. The loss function of GentleBoost is defined as follows: 

( )( )yH xJ E e−=  (1)

Where x and y denote an input training sample and an output label { 1, 1}y ∈ − + . 

( )H x  represents the additive model such as 
1

( ) ( )
T

tt
H x h x

=
=∑ , where (.)th  and t  

denote a weak classifier and the iterations number respectively. 
Through the second order Taylor approximation, the optimization problem in 

GentleBoost becomes: 

( ( ) ( )) ( ) 2arg min [ ] [ ( ( )) ]t

t

y H x h x yH x
t

h
E e E e y h x− + − −  (2)

where (.)th  is chosen to minimize the new loss. 

If ( )yH xw e i−= ∀  is defined as the weight of each sample, optimizing (2) is equal 
to minimize the weighted squared error as follows: 



 A Novel Approach to Image Assessment by Seeking Unification 279 

2

1

( ( ))
N

wse i i t i
i

J w y h x
=

= −∑  (3)

where N is the number of training samples. If the weak classifier is the decision 
stump, i.e., 

( ) ( ) ( )f f
t i i ih x a x b xδ θ δ θ= > + ≤  (4)

where 
f

ix  denotes the f th feature of the sample ix , θ  is threshold, (.)δ  is the 

indicator function, a and b are parameters. Setting 0 0
b
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In each iteration of GentleBoost, the algorithm chooses the feature with which the 
weak classifier mostly minimizes the exponential loss function. This feature is 
referred to as the predictive feature. 

In order to implement assessing in different scenarios, we extend the GentleBoost 
algorithm to multiple classes with the method of one-against-all. The new algorithm 
referred to as LassBoost is illustrated as follows: 

 
 

Algorithm 1. LassBoost: Learn to assess based on boosting methodology 

Input: 
1 1( , ),..., ( , ), 1... ,1i i ix z x z i N z C= < ≤  

Output: Ensemble classifier :H X Z→  
Initialize: Set the weights 1,1iw i N= ≤ ≤  

For  c=1 to C  Do 

IF iz c= Then 

1c
iz = +  

Else 
1c

iz = −  

End IF 
For  t=1 to T  Do 
For  f=1 to F  Do 
Calculate ( , )a b to construct the weak classifiers： 

( ) ( ) ( )c f f
th x a x b xδ θ δ θ= > + ≤  

Use weak classifier to evaluate loss function： 

2

1

( ( ))
N

c c
wse i i t i

i

J w z h x
=

= −∑  

End For 
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Determine the predictive feature *f  and its related threshold 
*θ ： 

* *

,
( , ) arg min ( , )f

wsef
f J x

θ
θ θ=  

Update the ensemble classifier： 
* *

1( ) : ( ) ( , )c c c f
t t tH x H x h x θ−= +  

Update weights： 
* *( , ):

c c f
i tz h xc c

i iw w e θ−=  

End For 
End For 

 
 
In the description of Algorithm 1, LassBoost adapt GentleBoost algorithm into a 

multi-class problem that includes C binary classification elements. Subsequently, 
LassBoost is required to scan each feature and corresponding threshold to learn the 
regression parameters ( , )a b  of classifier as well as build the loss function iteratively. 

The feature and the corresponding threshold which mostly minimize the loss function 
are chosen as the predictive feature *f  and the predictive threshold *θ . The 

algorithm updates the ensemble classifier in terms of * *
1( ) : ( ) ( , )c c c f

t t tH x H x h x θ−= + and 

updates the weights to samples according to
* *( , ):

c c f
i tz h xc c

i iw w e θ−= . The algorithm repeats 

the procedure above to ensemble the weak learner into the final classifier. 
At the prediction step, LassBoost makes the final decision over each sample with 

the ensemble classifier which is combined by c components. More specifically, the 
final predictive result of each sample is determined by the highest confidence that is 

output by the ensemble learner. For the weak classifier, ( , )c f
th x θ , the output of 

regression stump is the value of regression parameter decided by the threshed θ  of 
the f th feature, a or b . Finally, the algorithm combines the output of each weak 

learners in terms of * *

1
( ) ( , )

Tc c f
T tt

H x h x θ
=

=∑ . The algorithm iterates the procedure 

described above and learns c  category classifiers with which each of the testing 
samples would be evaluated with c confidence values. The category corresponding to 
the highest confidence score is the finally predictive assessment result. 

5   Experiments 

5.1   Dataset 

We build the dataset with the image of “Lena” to evaluate the LassBoost algorithm. 
There are three category images which are respectively corrupted by noise, blur or 
mixture. The noises used in the experiment include Gaussian, salt and pepper, and 
mixture noise, while the blur type would cover motion blur, defocus blur as well as 
mixture one. Table 1 illustrates fifteen corruptions used in our experiment. 
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Table 1. Categories of the image corruption and corresponding parameter 

Image category Corruptions Parameter values

Image corrupted 
by noise 

Gaussian noise Gaussian noise with average 
0 and variance 0.01-0.03 

Salt and pepper noise with 
density 0.02-0.06 

Salt and pepper noise
Mixture noise (Gaussian + salt 

and pepper) 

Image corrupted 
by blur 

Motion blur Motion blur with scale 10-30 
and angle 20 

Defocus blur with scale 5-15 
Defocus blur
Mixture blur(motion + blur)

Image corrupted 
by noise and blur 

Gaussian noise + motion blur
 
 
Gaussian noise with variance 

0.01， Salt and pepper noise 
with density 0.02；Motion blur 
with scale10-30 and angle 20, 
Defocus blur with scale 5-15 

Gaussian noise + defocus blur
Gaussian noise + mixture blur
Salt and pepper noise + motion 

blur 
Salt and pepper noise + 

defocus blur 
Salt and pepper noise + 

mixture blur 
Mixture noise + motion blur
Mixture noise + defocus blur
Mixture noise + mixture blur

The experimental formulation is shown as Table 1 where each group has 200 
images which are produced by the model with different parameters. Nine dimensional 
features calculated by objective criteria are applied and 200 images of each group are 
evaluated into 10 levels scored by experts, in terms of the scale of corruption 
parameters.  

5.2   Experimental Results and Analysis 

There are several classification methods used in the experiments which include 
LassBoost, SVM and logistic regression. The LassBoost algorithm is a multi-class 
nonlinear classifier based on the theory of one-against-all. SVM used in the 
experiment is a typical nonlinear kernel algorithm offered by libsvm, where the radial 
basis kernel method is applied. Moreover, linear logistic regression model serves to 
make a comparison with other nonlinear methods. The five-fold cross validation is 
applied to each baseline method in the experiments. 

Figures 2-6 depict the accuracies and standard deviation results concerning 
LassBoost, SVM and logistic regression on fifteen different problems. The horizontal 
axis denotes the images degraded by different corruptions, while the vertical axis 
denotes the classification accuracies, and the black bar means standard deviations of 
each classification result. Five-fold cross validation is employed in the experiment 
where three folds are used for the training, one left fold is used for baseline methods 
for parameter tuning (such as the regularization parameter and the times of iteration) 
and the last fold is used in the testing. All the accuracies demonstrated in the figures 
are the average results of five-fold experiment. 
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Fig. 2. The evaluation results of images corrupted by noise 

 

Fig. 3. The evaluation results of images corrupted by blurring 

 

Fig. 4. The evaluation results of images corrupted by Gaussian noise and blurring 

In the experiments of Figures 2-3, the data corrupted by single factor obey a linear 
distribution, hence, both the linear and the nonlinear model can get the high 
accuracies and the strong stabilities. Since image parameters used for building the 
dataset vary continuously, the resulting features produced from neighboring images 
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should have high proximity. However, the scoring errors of subjective assessment 
from experts are inevitable, thus the assessment accuracy is very difficult to achieve 
up exactly to one hundred percent. Nevertheless, the error influences the results 
slightly, such that it can be accepted for image quality assessment in practice. 

 

Fig. 5. The evaluation results of images corrupted by salt-pepper noise and blurring 

 

Fig. 6. The evaluation results of images corrupted by mixture noise and blurring 

Figures 4-6 show that the three classifiers perform absolutely different generalized 
abilities in the case of mixture corruptions. The nonlinear classifiers such as 
LassBoost and SVM get higher accuracies and stronger stabilities than the liner 
classifier. We can notice that the experimental data distributions will be no longer 
fitting linear models. Therefore, only nonlinear classifier model can fit the separating 
hyperplanes corresponding to the nonlinear image data. Furthermore, taking into 
account the time complexity of kernel SVM algorithm of libsvm, we design the 
quality evaluator using LassBoost to solve the assessment problem. 

In Table 2, the results are selected randomly from the experimental results in five-
fold cross validation. The first row is the name of noise and blur and the rows from 
second to tenth mean the confidence results that the three testing samples are 
classified into different quality levels, yet the confidence value is normalized to [-1 1]. 
The results of last two rows make a comparison of final predictive results and real 
quality levels. 
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Table 2. The confidence comparison of images which are classified into the wrong category in 
the mixture corruption experiment 

Experiment 
Name 

 
Confidence  
of Category 

Mixture 
Noise+Motion 

Blur 

Mixture 
Noise+Defocus 

Blur 

Mixture 
Noise+Mixture 

Blur 

Category 1 -1.0 -1.0 -0.999
Category  2 0.153 -0.043 0.036
Category  3 0.382 -0.036 0.046
Category  4 0.290 -0.030 0.055
Category  5 0.207 0.028 0.063
Category  6 0.401 0.038 1.0
Category  7 0.404 0.147 0.255
Category  8 1.0 0.354 0.047
Category  9 0.521 1.0 0.035

Category  10 0.295 0.665 -1.0
Predict Level Level 8 Level 9 Level 6
Real Level Level 9 Level 10 Level 7

The final predictive result of our algorithm is determined by the level with the 
highest confidence score. For instance, the sample in second column is classified into 
level 8 and the corresponding confidence is 1.0, however the ideal prediction would 
be level 9, thus it leads to a mistake. If the confidence is sorted by descending order, 
we can notice that the real level ranks the second place, and which is actually yet 
subject to the principle that the value of confidence is inversely proportional to the 
distance between predictive result and real category. It is because that the deviations 
caused by experts’ subjective assessment are inevitable, the evaluator learned from 
these data probably makes a wrong prediction on few particular individuals. 

6   Conclusions 

In the paper, we present a novel approach for image quality assessment which can 
unify the subjective and objective criteria with supervised learning technology, and 
design a learning evaluator system. The evaluator can effectively synchronize multiple 
objective criteria and objective criteria, which employs the weighted regression 
method. Moreover, the proposed method is capable of implementing in the large scale 
problem without reference image. Besides, the feature dimension of the dataset and the 
corresponding assessment score from expert system can be updated as different 
application requirements. Finally, the experimental results show that the LassBoost 
algorithm achieves better and more stable assessment results in different problems. 
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