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Preface

DISC, the International Symposium on DIStributed Computing, is an interna-
tional forum on the theory, design, analysis, implementation and application of
distributed systems and networks. DISC is organized in cooperation with the
European Association for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2011, the 25th Inter-
national Symposium on Distributed Computing, held during September 20–22,
2011 in Rome, Italy.

There were 136 regular papers submitted to the symposium (in addition to
a large number of abstract-only submissions). The Program Committee selected
31 contributions out of the 136 full paper submissions for regular presentations
at the symposium. Each presentation was accompanied by a paper of up to 15
pages in this volume. Every submitted paper was read and evaluated by at least
three members of the Program Committee. The committee was assisted by about
190 external reviewers. The Program Committee made its final decisions during
an electronic meeting held on June 1–22, 2011. Revised and expanded versions
of several selected papers will be considered for publication in a special issue of
the journal Distributed Computing.

The Best Paper Award of DISC 2011 was presented to Pierre Fraigniaud,
Sergio Rajsbaum and Corentin Travers for the paper “Locality and Checkability
in Wait-Free Computing.”

The Best Student Paper Award of DISC 2011 was presented to Michael
Hakimi and Adam Morrison for the paper “Fast and Scalable Rendezvousing,”
co-authored with Yehuda Afek.

The Program Committee also considered about 30 papers for brief announce-
ments, among the papers that were submitted as brief announcements, as well
as the regular submissions that generated substantial interest from the members
of the committee, but that could not be accepted for regular presentations. This
volume contains 11 brief announcements. Each two-page announcement presents
ongoing work or recent results, and it is expected that these results will appear
as full papers in other conferences or journals.

The program also featured three invited lectures, presented by Dahlia Malkhi
(Microsoft Research), Andrzej Pelc (Université du Québec en Outaouais), and
Peter Widmayer (ETH - Swiss Federal Institute of Technology Zurich). Pa-
pers summarizing the contents of these invited lectures are included in these
proceedings.

In addition, there were two tutorials offered in the program. The first, pre-
sented by Yoram Moses, was titled “Knowledge Strikes Again,” and dealt with
using knowledge for reasoning about distributed computation. The second
tutorial, presented by Christian Cachin, was titled “From Reliable to Secure
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Distributed Programming” and concerned making distributed programs Byzan-
tine fault-tolerant.

Last, but not least, the symposium program also featured a celebration in
honor of Nicola Santoro’s 60th birthday.

Five workshops were co-located with the DISC symposium this year: the
Third Workshop on Theoretical Aspects of Dynamic Distributed Systems
(TADDS), organized by Alexander Shvartsman and Roberto Baldoni, on
September 19; the workshop Toward Evolutive Routing Algorithms for Scale-
Free/Internet-Like Networks (TERANET), organized by David Ilcinkas and
Dimitri Papadimitriou, on September 19; the First International Workshop on
Algorithms and Models for Distributed Event Processing (AlMoDEP), organized
by Leonardo Querzoni and Luigi Laura, on September 19; the TransForm Work-
shop on the Theory of Transactional Memory (TransForm WTTM 2011/Euro-
TM Workshop), organized by Petr Kuznetsov and Srivatsan Ravi, on September
22 and 23; and DISC’s Social Network Workshop (DISC’s SON), organized by
Alessandro Panconesi, on September 23.

DISC 2011 acknowledges the use of the EasyChair system for handling
submissions, managing the review process, and compiling these proceedings.

September 2011 David Peleg
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DISC 2011 Invited Lecture:

Deterministic Rendezvous in Networks:
Survey of Models and Results

Andrzej Pelc�

Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. Two or more mobile entities, called agents or robots, start-
ing at distinct initial positions in some environment, have to meet. This
task is known in the literature as rendezvous. Among many alternative
assumptions that have been used to study the rendezvous problem, two
most significantly influence the methodology appropriate for its solution.
The first of these assumptions concerns the environment in which the mo-
bile entities navigate: it can be either a terrain in the plane, or a network
modeled as an undirected graph. In the case of networks, methods and
results further depend on whether the agents have the ability to mark
nodes in some way. The second assumption concerns the way in which
the entities move: it can be either deterministic or randomized. In this
paper we survey models and results concerning deterministic rendezvous
in networks, where agents cannot mark nodes.

Keywords: mobile agent, rendezvous, deterministic, network, graph.

1 Introduction

Two or more mobile entities, starting at distinct initial positions, have to meet.
This task, called rendezvous, has numerous applications in domains ranging from
human interaction and animal behavior to programming of autonomous mobile
robots and software agents. Algorithmic problems requiring accomplishing a ren-
dezvous task in a human-made environment come up mainly in two situations.
The first of them concerns autonomous mobile robots that start in different lo-
cations of a planar terrain or a labyrinth and have to meet, e.g., in order to
exchange information obtained while exploring the terrain and coordinate fur-
ther actions. The second situation concerns software agents, i.e., mobile pieces
of software that travel in a communication network in order to perform mainte-
nance of its components or to collect data distributed in nodes of the network.
Such software agents also need to meet periodically, in order to exchange col-
lected data and plan further moves. Since rendezvous algorithms do not depend
on the physical nature of the mobile entities, but only on their characteristics,
� Supported in part by NSERC discovery grant and by the Research Chair in Dis-

tributed Computing of the Université du Québec en Outaouais.

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 A. Pelc

such as perceiving capabilities, memory, mobility and on the nature of the envi-
ronment, throughout this paper mobile entities that have to meet will be called
by the generic name of agents, regardless of whether, in any particular applica-
tion, these are people, animals, mobile robots, or software agents. In the case
of more than two agents, the rendezvous problem is sometimes called gathering.
For the sake of uniformity, we will call it rendezvous also in this case.

Since agents that have to meet are not coordinated by any central monitor
and have to make moving decisions autonomously, the rendezvous problems be-
long naturally to the field of distributed computing. Among many alternative
assumptions that have been used to study the rendezvous problem, two most
significantly influence the methodology appropriate for its solution. The first of
these assumptions concerns the environment in which the agents navigate: it
can be either a terrain in the plane, or a network modeled as an undirected
graph. While rendezvous in the plane calls mostly for geometric considerations,
see, e.g., [5], the network scenario involves mainly methods coming from graph
theory. The second assumption concerns the way in which the agents move: it
can be either deterministic or randomized. More precisely, in any deterministic
scenario, the initial positions of the agents are chosen by an adversary which
models the worst-case situation, and each move of the agent is determined only
by its current history that may include the identity of the agent (if any), and the
part of the environment that the agent has seen to date. By contrast, in a ran-
domized scenario, initial positions of the agents are chosen at random and their
moves may also involve coin tosses. The cost of rendezvous is also different in
both scenarios: while in deterministic rendezvous the concern is with the worst-
case cost (usually defined as the time or the length of the agents’ trajectories
until rendezvous), in the randomized scenario it is the expected value of these
quantities. In both cases the problem is often to minimize the worst case (resp.
expected) cost. Deterministic rendezvous problems usually require combinatorial
methods, while randomized rendezvous often calls for analytic tools.

In this paper we survey results concerning deterministic rendezvous in net-
works, thus from the outset we restrict attention only to agents navigating in
networks and only to agents whose entire behavior is deterministic. Moreover,
we concentrate on the scenario where agents cannot mark visited nodes in any
way, neither by writing on whiteboards nor by dropping tokens.

This decision has three reasons. The first of them is the necessity of choos-
ing only a part of the vast body of the literature on rendezvous, due to space
limitations. The second reason is the wish to choose a body of problems whose
solutions are methodologically homogeneous. This is the main rationale behind
restricting attention to the network environment. Finally, we wanted to avoid
duplication of existing surveys on rendezvous. There are four main such surveys.
Chronologically the first of them is [1], almost entirely contained in the second
part of the excellent book [2], the latter being by far the most comprehensive
compendium to date on rendezvous problems. Both [1] and [2] concern random-
ized rendezvous, which is the main reason of our restriction to the deterministic
case. The third survey is [20]. While its scope is large, the authors concentrate
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mainly on presenting rendezvous models and compare their underlying assump-
tions. Finally, the recent book [19] deals mostly with rendezvous problems on
the ring, only briefly mentioning other network topologies in this context. Also
most of the attention in [19] is devoted to the scenario where visited nodes can
be marked by agents, usually using tokens. The aim of the present survey is
different. It differs from [1,2] by concentrating on deterministic rather than on
randomized settings; it differs from [20] by the level of details in treating the
rendezvous problem: besides presenting various models under which rendezvous
is studied, we want to report precisely the results obtained under each of them,
discussing how varying assumptions influence feasibility and complexity of ren-
dezvous under different scenarios. Finally, the present survey differs from [19] by
discussing many different topologies, including arbitrary, even unknown graphs,
rather than concentrating on a particular type of networks. Also, unlike [19], we
focus on the scenario where marking of nodes is not allowed.

The following assumptions are common to all papers that we will survey. The
first is modeling the network as a simple undirected connected graph, whose
nodes represent processors, computers or stations of a communication network,
or crossings of corridors of a labyrinth, depending on the application, and links
represent communication channels in a communication network, or corridors in
a labyrinth. Undirectedness of the graph captures the fact that agents may move
in both directions along each link, the assumption that the graph is simple (no
self-loops or multiple edges) is motivated by most of the realistic examples, and
connectivity of the graph is a necessary condition on feasibility of rendezvous
when starting from any initial positions.

There are two other assumptions common to all surveyed papers. One is the
anonymity of the underlying network: the absence of distinct names of nodes that
can be perceived by the navigating agents. There are two reasons for seeking
rendezvous algorithms that do not assume knowledge of node identities. The
first one is practical: while nodes may indeed have different labels, they may
refrain from informing the agents about them, e.g., for security reasons, or limited
sensory capabilities of agents may prevent them from perceiving these names.
The other reason for assuming anonymity of the network is that if distinct names
of nodes can be perceived by the agents, they can follow an algorithm which
guides each of them to the node with the smallest label and stop. Thus the
rendezvous problem reduces to graph exploration.

The last common assumption concerns port numbers at each node: a node
of degree d has ports 0, 1, . . . , d − 1 corresponding to the incident edges. Ports
at each node are seen by an agent visiting this node, but there is no coherence
assumed between port labelings at different nodes. The reason for assuming the
existence of port labelings accessible to agents is the following. If an agent is
unable to locally distinguish ports at a node, it may even be unable to visit all
neighbors of a node of degree at least 3. Indeed, after visiting the second neighbor,
the agent cannot distinguish the port leading to the first visited neighbor from
the port leading to the unvisited one. Thus an adversary may always force an
agent to avoid all but two edges incident to such a node. Consequently, agents
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initially located at two nodes of degree at least 3 might never be able to meet.
Note that the absence of port numbers need not preclude rendezvous, if agents
are allowed to take periodic snapshots of the entire network, as in [16,17].

2 Taxonomy of Rendezvous Problems

The main problem that has to be solved in order to make deterministic ren-
dezvous possible in large classes of networks is breaking symmetry. To see why
this is necessary, consider a highly symmetric network, such as an oriented ring
or an oriented torus. In the first case we mean a ring in which ports at all nodes
are labeled as follows: 0 the clockwise port and 1 the counterclockwise port. Sim-
ilarly, in an oriented torus ports North, East, South and West at each node are
labeled 0,1,2,3, respectively. Consider two identical agents starting at distinct
nodes of one of these networks and running the same deterministic algorithm.
If agents are unable to mark nodes in any way, it is easy to see that they will
never meet. Indeed, at all times they will use the port (at their respective current
nodes) having the same label (as their history is the same and the algorithm is
deterministic), and hence the distance between them will be always the same.
(Notice that the situation would be much different, if randomization were al-
lowed. In this case symmetry can be efficiently broken with high probability
using coin tosses to determine the next port to be used.)

In the deterministic scenario there are three ways to break symmetry. The
first is by distinguishing the agents: each of them has a label and the labels
are different. Each agent knows its label, but we do not need to assume that it
knows the label of the other agent. (If it does, then the solution is the well-known
algorithm Wait For Mommy: the agent with the smaller label stays idle, while
the other one explores the graph in order to find it.) Both agents use the same
parametrized algorithm with the agent’s label as the parameter. To see how this
can help, consider two agents that have to meet in an oriented ring of known
size n. As mentioned above, if agents are anonymous (and marking nodes is dis-
allowed), rendezvous is impossible. Now assume that agents have distinct labels
L1 and L2. A simple rendezvous algorithm is:

– Make L tours of the ring, where L is your label, and stop.
Then the agent with larger label will make at least one full tour of the ring while
the other one is already inert, thus guaranteeing rendezvous.

The second way of breaking symmetry is marking nodes, either by allowing
agents to drop tokens on visited nodes, or by using whiteboards at nodes, on
which agents can write and from which they can read information. As mentioned
above, this scenario will not be discussed in this survey.

Finally, the third way of breaking symmetry is by exploiting either non-
symmetries of the network itself, or the differences of the initial positions of
the agents, even in a symmetric network. This method is usable only for some
classes of networks, as either the network must have distinguishable nodes that
play the role of “focal points” or the initial positions of agents have to be “non-
symmetric” (the precise meaning of this condition will be defined later). On the
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other hand, the method is applicable even when agents are identical and nodes
cannot be marked. As a simple example of the application of this method, con-
sider a n-node line with two identical agents. If n is odd, then the line contains
a central node that both agents can identify and meet at this node. If n is even,
(and even when the port labelings are symmetric with respect to the axis of sym-
metry of the line) but the initial positions of the agents have different distances
from their closest extremity, then the following algorithm works:

– Compute your distance d from the closest extremity of the line, then traverse
the line d times and stop.
For the same reasons as before, this algorithm guarantees rendezvous, whenever
the initial positions of the agents are not symmetrically situated. On the other
hand, if they are symmetric (and port labelings are symmetric as well), then it is
easy to see that rendezvous is impossible. A variation of the method of exploiting
asymmetries of the initial configuration of agents occurs when there are more
than two agents that are able to take periodic snapshots of the network: this
scenario will be explained in details in Section 4.

As seen above, a scenario under which the rendezvous problem is studied must
specify the way in which symmetry is broken. This is usually connected with the
assumptions concerning the capability of agents to perceive and interact with
the environment. The weakest assumptions usually made in this respect are that
an agent entering a node perceives the degree of the visited node and the port
number by which it enters the node (however, the second of these assumptions
is sometimes dropped, see, e.g., [22]), and that it can read the port numbers
at the visited nodes in order to use the one that the algorithm indicates as the
exit port. As mentioned above, in some cases, much more powerful perception
capabilities are assumed: it is supposed that an agent may periodically take a
snapshot of the network, seeing where other agents are situated.

Another assumption that significantly influences feasibility and efficiency of
rendezvous is the amount of memory with which agents are equipped. It is either
assumed that this memory is unbounded and agents are modeled as Turing ma-
chines, or that the memory is bounded, in which case the model of input/output
automata (finite state machines) is usually used.

A different type of assumptions concerns the way in which agents move. Here
an important dichotomy is between the synchronous and asynchronous scenarios.
In the synchronous scenario agents move from node to node in synchronous
rounds and the meeting has to occur at a node. Asynchrony is captured in two
different ways. The precise definitions will be given later, but the general idea is
the following. In one model, an adversary decides when each agent moves, but
the move itself is instantaneous, thus it is possible to require meeting at a node,
as previously. In the second model, the agent chooses an edge but the adversary
determines the actual walk of the agent on this edge and can, e.g., speed up
or slow down the agent. Under this scenario it may be impossible to meet at a
node, and thus the requirement is relaxed to that of meeting at a node or inside
an edge.
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3 Synchronous Rendezvous

In this section we focus on the synchronous setting. Agents move in synchronous
steps. In every step, an agent may either remain at the same node or move to
an adjacent node. Rendezvous means that all agents are at the same node in the
same step. Agents that cross each other when moving along the same edge, do
not notice this fact. Two scenarios are considered: simultaneous startup, when
both agents start executing the algorithm at the same time, and arbitrary delay,
when starting times are arbitrarily decided by an adversary. In the former case,
agents know that starting times are the same, while in the latter case, they
are not aware of the difference between starting times, and each of them starts
executing the rendezvous algorithm and counting steps since its own startup.
The agent that starts earlier and happens to visit the starting node of the later
agent before the startup of this later agent, is not aware of this fact, i.e, it is
assumed that agents are created at their startup time and not waiting at the
node before it.

In [10] (whose journal version was published in 2006, but which is based on
two earlier conference papers published in 2003 and 2004), rendezvous of two
agents is considered and it is indicated that all results can be generalized to
an arbitrary number of agents. It is assumed that agents have different labels,
which are positive integer numbers, and each agent knows its own label (which is
a parameter of the common algorithm that they use), but is unaware of the label
of the other agent. In general, agents do not know the topology of the graph in
which they have to meet. Hence an agent, currently located at a node, does not
know the other endpoints of yet unexplored incident edges. If the agent decides
to traverse such a new edge (which means that it chooses a port number not
yet taken at this node), the choice of the actual edge belongs to an adversary, in
order to capture the worst-case performance. It is assumed that the agents have
unlimited memory and the authors aim at optimizing the cost of rendezvous. For
a given initial location of agents in a graph, this cost is defined as the worst-case
number of steps since the startup of the later agent until rendezvous is achieved,
where the worst case is taken over all adversary decisions, whenever an agent
decides to explore a new edge adjacent to a currently visited node, and over all
possible startup times (decided by an adversary), in the case of the arbitrary
delay scenario.

The following notation is used. The labels of the agents are L1 and L2. The
smaller of the two labels is denoted by l. The delay (the difference between
startup times of the agents) is denoted by τ , n denotes the number of nodes in
the graph, and D – the distance between initial positions of agents.

The authors start by introducing the problem in the relatively simple case
of rendezvous in trees. They show that rendezvous can be completed at cost
O(n + log l) on any n-node tree, even with arbitrary delay. It is also shown
that for some trees this complexity cannot be improved, even with simultaneous
startup. The class of trees is relatively easy from the point of view of rendezvous.
Indeed, any tree has either a central node or a central edge. In the first case this
node plays the role of the “focal point” and rendezvous can be accomplished at
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linear cost. In the second case, rendezvous is slightly more complicated and, after
identifying the central edge, it reduces to rendezvous in the two-node graph. It
is this case that is responsible for the O(log l) term in the cost complexity.

As soon as the graph contains cycles, another technique has to be applied.
The authors continue the study by concentrating on the simplest class of such
graphs, i.e., rings. They prove that, with simultaneous startup, the optimal cost
of rendezvous on any ring is Θ(D log l). They construct an algorithm achieving
rendezvous with this complexity and show that, for any distance D, it cannot
be improved.

With an arbitrary delay, Ω(n + D log l) is a lower bound on the cost required
for rendezvous in a n-node ring. Under this scenario, two rendezvous algorithms
for the ring are presented in [10]: an algorithm with cost O(n log l), for known
n, and an algorithm with cost O(lτ + ln2), if n is unknown.

For arbitrary connected graphs, the main contribution of [10] is a determinis-
tic rendezvous algorithm with cost polynomial in n, τ and log l. More precisely,
the authors present an algorithm that solves the rendezvous problem for any
n-node graph G, for any labels L1 > L2 = l of agents and for any delay τ be-
tween startup times, in cost O(n5

√
τ log l log n + n10 log2 n log l). The algorithm

contains a non-constructive component: agents use combinatorial objects whose
existence is proved by the probabilistic method. Nevertheless the algorithm is
indeed deterministic. Both agents can find separately the same combinatorial
object with the desired properties (which is then used in the rendezvous algo-
rithm). This can be done using brute force exhaustive search which may be quite
complex but in the adopted model only moves of the agents are counted and com-
putation time of the agents does not contribute to cost. Moreover, the authors
note that finding this combinatorial object can be done only once at a prepro-
cessing stage, the object can be stored in agents’ memories and subsequently
used in many instances of the rendezvous problem.

Finally, the authors prove a lower bound Ω(n2) on the cost of rendezvous
in some family of graphs. If simultaneous startup is assumed, they construct a
simple generic rendezvous algorithm, working for all connected graphs, which is
optimal for the class of graphs of bounded degree, if the initial distance between
agents is bounded.

The paper is concluded by an open problem concerning the dependence of
rendezvous cost on the delay τ . The dependence on the other parameters follows
from the results cited above. Indeed, a lower bound Ω(n2) on rendezvous cost
has been shown in some graphs. The authors also showed that cost Ω(log l) is
required even for the two-node graph. On the other hand, for agents starting at
distance Ω(n) in a ring, cost Ω(n log l) is required, even for τ = 0. However, the
authors ask if any non-constant function of τ is a lower bound on rendezvous cost
in some graphs. (Recall that the cost of their algorithm for arbitrary connected
graphs contains a factor

√
τ .) More precisely, they state the following problem:

Does there exist a deterministic rendezvous algorithm for arbitrary connected
graphs with cost polynomial in n and l (or even in n and log l) but independent
of τ?
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A positive answer to this problem has been given in [18] (whose conference
version was published in 2006). Again, the authors restrict attention to the ren-
dezvous of two agents, observing how this can be generalized for larger numbers
of agents, assuming that agents meeting at the same node can exchange informa-
tion. The authors present a rendezvous algorithm, working in arbitrary connected
graphs for an arbitrary delay τ , whose complexity is O(log3 l + n15 log12 n), i.e.,
is independent of τ and polynomial in n and log l. As before, the algorithm
contains a non-constructive component, but is deterministic.

In the same paper, one of the results from [10], concerning rendezvous in the
ring, is strengthened. Recall that the authors of [10] provided two rendezvous al-
gorithms in a n-node ring with arbitrary delay: an algorithm with cost O(n log l),
for known n, and an algorithm with cost O(lτ + ln2), if n is unknown. By con-
trast, an algorithm with cost O(n log l) for unknown n is provided in [18]. In
view of the lower bound Ω(n+D log l) proved in [10], the latter cost complexity
is optimal for some initial positions of the agents (when D is Θ(n)).

The rendezvous algorithms from [10,18], working for arbitrary connected
graphs, yield an intriguing question, stated in [10]. While both of them have
polynomial cost (the one from [10] depending on τ , and the one from [18] inde-
pendent of τ), they both use a non-constructive component, i.e, a combinatorial
object whose existence is proved using the probabilistic method. As mentioned
above, each of the agents can deterministically find such an object by exhaustive
search, which keeps the algorithm deterministic, but may significantly increase
the time of local computations. In the described model the time of these com-
putations does not contribute to cost which is measured by the number of steps,
regardless of the time taken to compute each step. Nevertheless, it is interest-
ing if there exists a rendezvous algorithm for which both the cost and the time
of local computations are polynomial in n and log l. Such an algorithm would
have to eliminate any non-constructive components. A positive answer to this
question has been given in [22].

A different scenario and a different optimization goal have been used in [6,14].
In these papers it is assumed that agents are anonymous, i.e., they use the same
algorithm without any parameter. In this case rendezvous is not possible for
arbitrary networks and arbitrary initial positions of the agents, as witnessed by
the example of the line of even size with symmetric port labelings, mentioned in
Section 2. In order to describe initial positions of the agents for which rendezvous
is possible, we need the notion of a view from a node of a graph, introduced in
[23]. Let G be a graph and v a node of G. The view from v is the infinite rooted
tree V(v) with labeled ports, defined recursively as follows. V(v) has the root
x0 corresponding to v. For every node vi, i = 1, . . . , k, adjacent to v, there is a
neighbor xi in V(v) such that the port number at v corresponding to edge {v, vi}
is the same as the port number at x0 corresponding to edge {x0, xi}, and the
port number at vi corresponding to edge {v, vi} is the same as the port number
at xi corresponding to edge {x0, xi}. Node xi, for i = 1, . . . , k, is now the root
of the view from vi.
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A pair (u, v) of distinct nodes is called symmetric, if V(u) = V(v). Initial
positions forming a symmetric pair of nodes are crucial when considering the
feasibility of rendezvous in arbitrary graphs. Indeed it follows from [6] that ren-
dezvous is feasible, if and only if the initial positions of the agents are not a
symmetric pair. For the particular case of the class of trees, this is equivalent to
the non-existence of a port-preserving automorphism of the tree that carries one
initial position to the other.

The aim in [6,14] was not optimizing the cost but the memory size of the
agents that seek rendezvous. In order to model agents with bounded memory,
the formalism of input/output automata traveling in the graph is used.

Since in the currently considered scenario the agents are identical, we assume
that agents are copies A and A′ of the same abstract state machine A, starting
at two distinct nodes vA and vA′ . We will refer to such identical machines as a
pair of agents.

The optimization criterion is the size of the memory of the agents, measured
by the number of states of the corresponding automaton, or equivalently by the
number of bits on which these states are encoded. An automaton with K states
requires Θ(log K) bits of memory.

In [14] (based on conference papers [12,13]) the authors focus attention on op-
timizing memory size of identical agents that permits rendezvous in trees. They
assume that the port labeling is decided by an adversary aiming at preventing
two agents from meeting, or at allowing the agents to meet only after having
consumed a lot of resources, e.g., memory space. This yields the following defi-
nition used in [14]. A pair of agents initially placed at nodes u and v of a tree
T solves the rendezvous problem if, for any port labeling of T , both agents are
eventually in the same node of the tree in the same round.

The following definition is crucial for considerations in [14]. Nodes u and v
of a tree T = (V, E) are perfectly symmetrizable if there exists a port labeling
μ of T and an automorphism of the tree preserving μ that carries one node
on the other. According to the above definition, the condition on feasibility
of rendezvous can be reformulated as follows: a pair of agents can solve the
rendezvous problem in a tree, if and only if their initial positions are not perfectly
symmetrizable. Consequently, throughout [14], the authors consider only non
perfectly symmetrizable initial positions of the agents.

It is first shown that the minimum size of memory of the agents that can solve
the rendezvous problem in the class of trees with at most n nodes is Θ(log n). A
rendezvous algorithm for arbitrary delay τ , that uses only a logarithmic number
of memory bits is a consequence, e.g., of [6]. It is observed in [14] that Ω(log n)
is also a lower bound on the number of bits of memory that enable rendezvous
in all trees of size linear in n.

Due to the above lower bound, a universal pair of finite agents achieving ren-
dezvous in the class of all trees cannot exist. However, the lower bound uses a
counterexample of a tree with maximum degree linear in the size of the tree.
Hence, it is natural to ask if there exists a pair of finite agents solving the ren-
dezvous problem in all trees of bounded degree. The authors give a negative
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answer to this question. In fact they show that, for any pair of identical finite
agents, there is a line on which these agents cannot solve the rendezvous prob-
lem, even with simultaneous start. As a function of the size of the trees, this
impossibility result indicates a lower bound Ω(log log n) bits on the memory size
for rendezvous in bounded degree trees of at most n nodes.

The main topic of [14] is the impact of the delay between startup times of
agents on the minimum size of memory permitting rendezvous. The authors show
that if this delay is arbitrary, then the lower bound on memory required for ren-
dezvous is Ω(log n) bits, even for the line of length n. This lower bound matches
the upper bound from [6], which shows that the minimum size of memory of the
agents that can solve the rendezvous problem in the class of bounded degree trees
with at most n nodes is Θ(log n). By contrast, for simultaneous start, they show
that the amount of memory needed for rendezvous depends on two parameters
of the tree: the number n of nodes and the number � of leaves. Indeed, they
show two identical agents with O(log �+ log log n) bits of memory that solve the
rendezvous problem in all trees with n nodes and � leaves. For the class of trees
with O(log n) leaves, this shows an exponential gap in minimum memory size
needed for rendezvous between the scenario with arbitrary delay and with delay
zero.

Moreover, it is shown in [14] that the size O(log � + log log n) of memory
used to solve the rendezvous problem with simultaneous start in trees with at
most n nodes and at most � leaves is optimal, even in the class of trees with
degrees bounded by 3. More precisely, for infinitely many integers �, the authors
show a class of arbitrarily large trees with maximum degree 3 and with � leaves,
for which rendezvous with simultaneous start requires Ω(log �) bits of memory.
This lower bound, together with the previously mentioned result showing that
Ω(log log n) bits of memory are required for rendezvous with simultaneous start
in the line of length n, implies that the upper bound O(log � + log log n) cannot
be improved even for trees with maximum degree 3.

Trade-offs between the size of memory and the time of accomplishing ren-
dezvous in trees by identical agents are investigated in [7]. The authors consider
trees with a given port labeling and assume that there is no port-preserving
automorphism of the tree that carries the initial position of one agent to that
of the other (otherwise rendezvous with simultaneous start is impossible). The
main result of the paper is a tight trade-off between optimal time of completing
rendezvous and the size of memory of the agents. For agents with k memory bits,
it is shown that optimal rendezvous time is Θ(n + n2/k) in n-node trees. More
precisely, if k ≥ c log n, for some constant c, the authors show agents accom-
plishing rendezvous in arbitrary trees of unknown size n in time O(n + n2/k),
starting with arbitrary delay. They also show that no pair of agents can accom-
plish rendezvous in time o(n + n2/k), even in the class of lines and even with
simultaneous start.

Trade-offs between the size ofmemory and the time of accomplishing rendezvous
are investigated in [3] in a slightly differentmodel. The authors consider rendezvous
of any number of anonymous agents. To handle the case of symmetric trees they
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weaken the rendezvous requirements: agents have to meet at one node if the tree is
not symmetric, and at two neighboring nodes otherwise. They observe that Ω(n)
is a lower bound on the time of rendezvous in the class of n-node trees and show
that any algorithm accomplishing rendezvous in optimal (i.e., linear) time must
use Ω(n) bits of memory at each agent. Then they show a rendezvous algorithm
that uses O(n) time and O(n) bits of memory per agent. Finally they show a poly-
nomial time algorithm using O(log n) bits of memory per agent. An additional
feature of the algorithms from [3] is that they can also work in an asynchronous
setting: each agent independently identifies the node or one of the two nodes where
meeting should occur, it reaches this node and stops.

While [14] solves the problem of minimum memory size needed for rendezvous
in trees, the same problem for the class of arbitrary connected graphs is solved in
[6]. The authors consider graphs with a given port labeling and establish the mini-
mum size of the memory of agents that guarantees deterministic rendezvous when
it is feasible. They show that this minimum size is Θ(log n), where n is the size of
the graph, regardless of the delay between the startup times of the agents. More
precisely, the authors construct identical agents equipped with Θ(log n) memory
bits that solve the rendezvous problem in all graphs with at most n nodes, when
starting with any delay τ , and they prove a matching lower bound Ω(log n) on the
number of memory bits needed to accomplish rendezvous, even for simultaneous
start. In fact, this lower bound is achieved already on the class of rings.

4 Asynchronous Rendezvous

In asynchronous rendezvous agents no longer perform their moves in synchro-
nized steps. While the agent chooses the adjacent node to which it wants to go,
the time at which this move is executed is chosen by an adversary, which con-
siderably complicates rendezvous. Two asynchronous models for rendezvous in
networks have been used in the literature. The first is adapted from the CORDA
model, originally used for rendezvous in the plane, cf. [5]. This model assumes
that the agents are very weak in terms of memory (they cannot remember any
past events), but they have significant sensory power (they can take snapshots
of the entire network, including other agents’ positions in it).

The model adapted from CORDA has been used in [16,17] to study ren-
dezvous of many agents in a ring, in which neither nodes nor ports have labels.
The authors concentrated on the rendezvous feasibility problem: for which ini-
tial configurations of agents rendezvous is possible? Agents are anonymous and
execute the same algorithm. They start at different nodes and operate in Look-
Compute-Move cycles. In one cycle, a robot takes a snapshot of the current
configuration (Look), then, based on the perceived configuration, makes a de-
cision to stay idle or to move to one of its adjacent nodes (Compute), and in
the latter case makes an instantaneous move to this neighbor (Move). Cycles
are performed asynchronously for each agent. This means that the time between
Look, Compute, and Move operations is finite but unbounded, and is decided by
the adversary for each agent in each cycle. The only constraint is that moves are
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instantaneous, and hence any agent performing a Look operation sees all other
agents at nodes of the ring and not on edges, while performing a move. (This is
where the model differs from the original CORDA model in which agents could
be perceived during a move in the plane.) However, an agent A may perform a
Look operation at some time t, perceiving agents at some nodes, then Compute
a target neighbor at some time t′ > t, and Move to this neighbor at some later
time t′′ > t′ in which some agents are in different nodes from those previously
perceived by A because in the meantime they performed their Move operations.
Agents are memoryless (oblivious), i.e., they do not have any memory of past
observations. Thus the target node is decided by the agent during a Compute
operation exclusively on the basis of the location of other agents perceived in
the Look operation performed in the same cycle.

An important capability studied in the literature on rendezvous is the multi-
plicity detection [5]. This is the ability of the agents to perceive, during the Look
operation, if there is one or more agents at a given node (or at a given point in
the case of the plane). In the case of the ring, it is proved in [17] that without
this capability, rendezvous of more than one agent is always impossible. Thus
the authors assume the capability of multiplicity detection. Note that an agent
can only tell if at some node there are no agents, there is one agent, or there are
more than one agents, but it cannot determine the number of agents at a node.

The main result of [17] is the solution of the rendezvous problem for all initial
configurations of any odd number of agents, for which rendezvous is possible. The
authors prove that, for an odd number of agents, rendezvous is feasible, if and
only if the initial configuration is not periodic, and they provide a rendezvous
algorithm for any such configuration. (A configuration is periodic, if it is fixed
by some non-trivial rotation of the ring, in the sense that such a rotation moves
occupied nodes to occupied nodes and empty nodes to empty nodes.)

For an even number of agents, it is proved in [17] that rendezvous is impossi-
ble, if either the number of agents is 2, or the initial configuration is periodic, or
when it has a symmetry axis on which there are no nodes. On the other hand,
the authors provide a rendezvous algorithm for all rigid initial configurations,
i.e., such in which all views of robots are distinct. This leaves unsettled one type
of configurations: symmetric non-periodic configurations of an even number of
agents with a node-on-axis type of symmetry. These are symmetric non-periodic
configurations in which at least one node is situated on the unique axis of sym-
metry. It is conjectured in [17] that in the unique case left open (non-periodic
configurations of an even number of agents with a node-on-axis symmetry), ren-
dezvous is always feasible. This conjecture has been confirmed in [16], for all
initial configurations of more than 18 agents. The authors provide a rendezvous
algorithm for all such symmetric non-periodic configurations of an even number
of agents with a node-on-axis type of symmetry.

A slightly different scenario was considered in [15]. The authors assume that
agents have only the local multiplicity detection capability: every agent can only
recognize whether the node in which it is currently situated contains another
agent or not. Agents are unable to tell if another node is occupied by one or
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by more agents. Under this weaker assumption the authors consider rendezvous
of an arbitrary number 2 < k ≤ �n/2� − 1 of agents in a n-node ring, starting
from a rigid initial configuration. For such configurations they show an algorithm
accomplishing rendezvous in O(n) asynchronous rounds. (Such a round is defined
as the shortest fragment of an execution in which each agent is activated at least
once.) This compares favorably to O(kn) asynchronous rounds in [17].

A significantly different model of asynchrony for rendezvous has been used in
[8,9,21]. Two agents are considered, with rendezvous occurring either at a node
or inside an edge. Agents have distinct labels. Each of them knows its own label,
but not that of the other agent. Nodes are anonymous and ports at each node are
labeled in a possibly incoherent way. Since meetings inside an edge are allowed,
unwanted crossings of edges have to be avoided. Thus, the authors consider an
embedding of the underlying graph in the three-dimensional Euclidean space,
with nodes of the graph being points of the space and edges being pairwise
disjoint line segments joining them. For any graph such an embedding exists.
Agents are modeled as points moving inside this embedding.

An algorithm for agent with label L depends on L and causes the agent to
make the following decision at any node of the graph: either take a specific
already explored incident edge, or take a yet unexplored incident edge (in which
case the choice of the edge is made by the adversary, to model the worst case,
since it is not assumed in general that agents know the topology of the graph).

There is another choice given to the adversary, this one capturing the asyn-
chronous characteristics of the rendezvous process. When the agent, situated at
a node v has to traverse an edge modeled as a segment [v, w], the adversary
chooses the actual movement of the agent on this segment, which can be at
arbitrary, possibly varying speed, and it chooses the starting time of the agent.

For a given algorithm, given starting nodes of agents and a given sequence of
adversarial decisions in an embedding of a graph G, a rendezvous occurs, if both
agents are at the same point of the embedding at the same time. Rendezvous is
feasible in a given graph, if there exists an algorithm for agents such that for any
embedding of the graph, any (adversarial) choice of two distinct labels of agents,
any starting nodes and any sequences of adversarial decisions, the rendezvous
does occur. The cost of rendezvous is defined as the worst-case number of edge
traversals by both agents (the last partial traversal counted as a complete one
for both agents), where the worst case is taken over all decisions of the adversary.

In [9] the authors concentrate on minimizing the cost of rendezvous and they
study three cases. First they consider rendezvous in an infinite line. For agents
initially situated at a distance D in an infinite line, they show a rendezvous
algorithm with cost O(D|Lmin|2) when D is known, and O((D + |Lmax|)3) if D
is unknown, where |Lmin| and |Lmax| are the lengths of the shorter and longer
label of the agents, respectively. These results still hold for the case of the ring
(even of unknown size) but then an algorithm of cost O(n|Lmin|) is also given
(and this is optimal), if the size n of the ring is known, and of cost O(n|Lmax|),
if it is unknown. In both these algorithms the knowledge of the initial distance
D between agents is not assumed, and for D of the order of n their complexity
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is better than that of infinite line algorithms. On the other hand, for small D
and small labels of agents, the opposite is true.

For arbitrary graphs, it is proved that rendezvous is feasible, if an upper bound
on the size of the graph is known, and an optimal algorithm of cost O(D|Lmin|)
is given, if the topology of the graph and the initial positions are known to
the agents. As an open problem, the authors state the question if asynchronous
deterministic rendezvous is feasible in arbitrary graphs of unknown size. The
solution from [9] uses the knowledge of the upper bound on the size.

In [21] the results from [9] for the infinite line have been improved. For known
D, the author proposes an improvement by a constant factor, while for the case
of unknown D an algorithm with cost O(D log2 D+D log D|Lmax|+D|Lmin|2 +
|Lmax||Lmin| log |Lmin|) is given.

Finally, in [8] the problem of feasibility of asynchronous rendezvous for ar-
bitrary graphs is solved. The authors propose an algorithm that accomplishes
asynchronous rendezvous in any connected countable (finite or infinite) graph,
for arbitrary starting nodes. A consequence of this result is a strong positive
answer to the above problem from [9]: not only is rendezvous always possible,
without the knowledge of any upper bound on the size of a finite (connected)
graph, but it is also possible for all infinite (countable and connected) graphs.

The cost of the algorithm from [8] is at least exponential in the labels of the
agents and the size of the graph, for the case of finite graphs. Thus a natural ques-
tion is the following: Does there exist a deterministic asynchronous rendezvous
algorithm, working for all connected finite unknown graphs, with cost polynomial
in the labels of the agents and in the size of the graph?

A partial solution to this problem has been given in [4], for particular graphs
and under strong additional assumptions. The authors consider rendezvous in an
infinite two-dimensional grid, where ports are consistently labeled N, E, S, W ,
agents have correct compasses and know their initial coordinates in the grid,
with respect to a common system of coordinates. They show an asynchronous
rendezvous algorithm for δ-dimensional infinite grids with cost O(dδpolylog(d)),
where d is the initial distance between the agents. This complexity is close to
optimal, as Ω(dδ) is a lower bound on the cost of any asynchronous rendezvous
algorithm in this setting.

References

1. Alpern, S.: Rendezvous search: A personal perspective. Operations Research 50,
772–795 (2002)

2. Alpern, S.,Gal, S.:The theory of search games and rendezvous. International Series in
OperationsResearchandManagementScience.KluwerAcad.Publ.,Dordrecht(2003)

3. Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Space-optimal
rendezvous of mobile agents in asynchronous trees. In: Patt-Shamir, B., Ekim, T.
(eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 86–100. Springer, Heidelberg (2010)

4. Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Hei-
delberg (2010)



Deterministic Rendezvous in Networks: Survey of Models and Results 15

5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gather-
ing Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

6. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space ren-
dezvous in arbitrary graphs. In: Proc. 29th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2010), pp. 450–459 (2010)

7. Czyzowicz, J., Kosowski, A., Pelc, A.: Time vs. space trade-offs for rendezvous in
trees (submitted)

8. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) ev-
erywhere. In: Proc. 21st ACM-SIAM Symp. on Discrete Algorithms (SODA 2010),
pp. 22–30 (2010)

9. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355,
315–326 (2006)

10. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

11. Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definition, properties and
classes. Networks 32, 165–180 (1998)

12. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidel-
berg (2008)

13. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. In: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA 2010), pp. 224–232 (2010)

14. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees, arXiv:1102.0467v1 [cs.DC]

15. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010)

16. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering
of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

17. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoretical Computer Science 390, 27–39 (2008)

18. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical
Computer Science 399, 141–156 (2008)

19. Kranakis, E., Krizanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring. Morgan and Claypool Publishers (2010)

20. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In:
Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9.
Springer, Heidelberg (2006)

21. Stachowiak, G.: Asynchronous Deterministic Rendezvous on the Line. In: Nielsen,
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SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)

22. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly
universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

23. Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part I-
Characterizing the Solvable Cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89
(1996)



Fast and Scalable Rendezvousing

Yehuda Afek, Michael Hakimi, and Adam Morrison

School of Computer Science
Tel Aviv University

Abstract. In an asymmetric rendezvous system, such as an unfair syn-
chronous queue and an elimination array, threads of two types, consumers
and producers, show up and are matched, each with a unique thread of
the other type. Here we present a new highly scalable, high through-
put asymmetric rendezvous system that outperforms prior synchronous
queue and elimination array implementations under both symmetric and
asymmetric workloads (more operations of one type than the other).
Consequently, we also present a highly scalable elimination-based stack.

1 Introduction

A common abstraction in concurrent programming is that of an asymmetric ren-
dezvous mechanism. In this mechanism, there are two types of threads that show
up, e.g., producers and consumers. The goal is to match pairs of threads, one of
each type, and send them away. Usually the purpose of the pairing is for a pro-
ducer to hand over a data item (such as a task to perform) to a consumer. The
asymmetric rendezvous abstraction encompasses both unfair synchronous queues
(or pools) [12] which are a key building block in Java’s thread pool implementa-
tion and other message-passing and hand-off designs [2, 12], and the elimination
technique [13], which is used to scale concurrent stacks and queues [7, 11].

In this paper we present a highly scalable asymmetric rendezvous algorithm
that improves the state of the art in both unfair synchronous queue and elim-
ination algorithms. It is based on a distributed scalable ring structure, unlike
Java’s synchronous queue which relies on a non-scalable centralized structure. It
is nonblocking, in the following sense: if both producers and consumers keep tak-
ing steps, some rendezvous operation is guaranteed to complete. (This is similar
to the lock-freedom property [8], while taking into account the fact that “it takes
two to tango”, i.e., both types of threads must take steps to successfully ren-
dezvous.) It is also uniform, in that no thread has to perform work on behalf of
other threads. This is in contrast to the flat combining (FC) based synchronous
queues of Hendler et al. [6], which are blocking and non-uniform.

Our algorithm is based on a simple and remarkably effective idea: the algo-
rithm itself is asymmetric. A consumer captures a node in the ring and waits
there for a producer, while a producer actively seeks out waiting consumers on
the ring. The algorithm utilizes a new ring adaptivity scheme that dynamically
adjusts the ring size, leaving enough room for all the consumers while avoiding
empty nodes that producers will futileness search. Because of the adaptive ring
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size, we can expect the nodes to be densely populated, and thus a producer that
starts to scan the ring and finds a node to be empty, it is likely that a consumer
will arrive there shortly. Yet simply waiting at this node, hoping that this will
occur, makes the algorithm prone to timeouts and impedes progress. We solve
this problem by introducing peeking a technique that lets the producer enjoy the
best of both worlds: as the producer traverses the ring, it continues to peek at
its initial node; if a consumer arrives there, the producer immediately tries to
partner with it, thereby minimizing the amount of wasted work.

Our algorithm avoids two problems found in prior elimination algorithms that
did not exploit asymmetry. In these works [1, 7, 13], both types of threads would
pick a random node in the hope of meeting the right kind of partner. Thus these
works suffer from false matches, when two threads of the same type meet, and
from timeouts, when a producer and a consumer both pick distinct nodes and
futilely wait for a partner to arrive. Most importantly, our algorithm performs
extremely well in practice. On an UltraSPARC T2 Plus multicore machine, it
outperforms Java’s synchronous queue by up to 60×, the FC synchronous queue
by up to 6×, and, when used as the elimination layer of a concurrent stack,
yields 3.5× improvement over Hendler et al.’s FC stack [5]. On an Intel Nehalem
multicore (supporting less parallelism), our algorithm surpasses the Java pool
and the FC pool by 5× and 2×, respectively.

The asymmetric rendezvous problem and our progress property are formally
defined in Sect. 2. Section 3 describes related work. The algorithm is presented
in Sect. 4 and empirically evaluated in Sect. 5. We conclude in Sect. 6.

2 Preliminaries

Asymmetric rendezvous: In the asymmetric rendezvous problem there are threads
of two types, producers and consumers. Producers perform put(x) operations
that return OK. Consumers perform get() operations that return some item
x handed off by a producer. Producers and consumers show up and must be
matched with a unique thread of the other type, such that a producer invoking
put(x) and a consumer whose get() returns x must be active concurrently.

Progress: To reason about progress while taking into account that rendezvous
inherently requires waiting, we consider both types of operations’ combined be-
havior. An algorithm A that implements asymmetric rendezvous is nonblocking
if some operation completes after enough concurrent steps of threads perform-
ing put() operations and of threads performing get(). Note that, as with the
definition of the lock-freedom property [8], there is no fixed a priori bound on
the number of steps after which some operation must complete. Rather, we rule
out implementations that make no progress at all, i.e., implementations where
in some executions, both types of threads take steps infinitely often and yet no
operation completes.
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3 Related Work

Synchronous queues: A synchronous queue using three semaphores was described
by Hanson [4]. Java 5 includes a coarse-grained locking synchronous queue, which
was superseded in Java 6 by Scherer, Lea and Scott’s algorithm [12]. Their algo-
rithm is based on a Treiber-style nonblocking stack [16] that at all times contains
rendezvous requests by either producers or consumers. A producer finding the
stack empty or containing producers pushes itself on the stack and waits, but
if it finds the stack holding consumers, it attempts to partner with the con-
sumer at the top of the stack (consumers behave symmetrically). This creates a
sequential bottleneck. Motivated by this, Afek, Korland, Natanzon, and Shavit
described elimination-diffracting (ED) trees [1], a randomized distributed data
structure where arriving threads follow a path through a binary tree whose inter-
nal nodes are balancer objects [14] and the leaves are Java synchronous queues.
In each internal node a thread accesses an elimination array in attempt to avoid
descending down the tree. Recently, Hendler et al. applied the flat combining
paradigm [5] to the synchronous queue problem [6], describing single-combiner
and parallel versions. In a single combiner FC pool, a thread attempts to become
a combiner by acquiring a global lock on the queue. Threads that fail to grab
the lock instead post their request and wait for it to be fulfilled by the combiner,
which matches between the participating threads. In the parallel version there
are multiple combiners that each handle a subset of participating threads and
then try to satisfy unmatched requests in their subset by entering an exchange
FC synchronous queue.

Elimination: The elimination technique is due to Touitou and Shavit [13]. Hendler,
Shavit and Yerushalmi used elimination with an adaptive scheme inspired by
Shavit and Zemach [15] to obtain a scalable linearizable stack [7]. In their scheme
threads adapt locally: each thread picks a slot to collide in from sub-range of the
collision layer centered around the middle of the array. If no partner arrives, the
thread eventually shrinks the range. Alternatively, if the thread sees a waiting
partner but fails to collide due to contention, it increases the range. In our adap-
tivity technique, described in Sect. 4, threads also make local decisions, but with
global impact: the ring is resized. Moir et al. used elimination to scale a FIFO
queue [11]. In their algorithm an enqueuer picks a random slot in an elimination
array and waits there for a dequeuer; a dequeuer picks a random slot, giving
up immediately if that slot is empty. It does not seek out waiting enqueuers.
Scherer, Lea and Scott applied elimination in their symmetric rendezvous sys-
tem [9], where there is only one type of a thread and so the pairing is between
any two threads that show up. Scherer, Lea and Scott also do not discuss adap-
tivity, though a later version of their symmetric exchanger channel, which is part
of Java [10], includes a scheme that resizes the elimination array. However, here
we are interested in the more difficult asymmetric rendezvous problem, where
not all pairings are allowed.
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4 Algorithm Description

The pseudo code of the algorithm is provided in Fig. 1. The main data structure
(Fig. 1a) is a ring of nodes. The ring is accessed through a central array ring,
where ring[i] points to the i-th node in the ring.1 A consumer attempts to
capture a node in the ring and waits there for a producer, whereas a producer
scans the ring, seeking a waiting consumer. Therefore, to guarantee progress the
ring must have room for all the consumers that can be active simultaneously.
(We expand on this in Sect. 4.4.) For simplicity, we achieve this by assuming the
number of threads in the system, T , is known in advance and pre-allocating a
ring of size T . In Sect. 4.3 we sketch a variant in which the maximum number
of threads that can show up is not known in advance, i.e., adaptive also to the
number of threads.

Conceptually each ring node should only contain an item pointer that encodes
the node’s state:

1. Free: item points to a global reserved object, FREE, that is distinct from
any object a producer may enqueue. Initially all nodes are free.

2. Captured by consumer: item is NULL.
3. Holding data (of a producer): item points to the data.

In practice, ring traversal is more efficient by following a pointer from one node to
the next rather than the alternative, traversing the array. Array traversal suffers
from two problems. First, in Java reading from the next array cell may result in
a cache miss (it is an array of pointers), whereas reading from the (just accessed)
current node does not. Second, maintaining a running array index requires an
expensive test+branch to handle index boundary conditions or counting modulo
the ring size, while reading a pointer is cheap. The pointer field is named prev,
reflecting that node i points to node i−1. This allows the ring to be resized with
a single atomic compareAndSet (CAS) that changes ring[1]’s (the head’s) prev
pointer. To support mapping from a node to its ring index, each node holds its
ring index in a read-only index field.

For the sake of clarity we start in Sect. 4.1 by discussing the algorithm with-
out adaptation of the ring size. The adaptivity code, however, is included and
is marked by a 	 symbol in Fig. 1, and is discussed in Sect. 4.2. Section 4.3
sketches some practically-motivated extensions to the algorithm, e.g. support-
ing timeouts and adaptivity to the total number of threads. Finally, Sect. 4.4
discusses correctness and progress.

4.1 Nonadaptive Algorithm

Producers (Fig. 1b): A producer searches the ring for a waiting consumer, and
attempts to hand its data to it. The search begins at a node, s, obtained by
hashing the thread’s id (Line 19). The producer passes the ring size to the hash

1 This reflects Java semantics, where arrays are of references to objects and not of
objects themselves.
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function as a parameter, to ensure the returned node falls within the ring. It then
traverses the ring looking for a node captured by a consumer. Here the producer
periodically peeks at the initial node s to see if it has a waiting consumer (Lines
24-26); if not, it checks the current node in the traversal (Lines 27-30). Once
a captured node is found, the producer tries to deposit its data using a CAS
(Lines 25 and 28). If successful, it returns.

1 struct node {
2 item : pointer to object
3 index : node’s index in the ring
4 prev : pointer to previous ring node
5 }
6

7 shared vars:
8 ring : array [1,...,T] of pointers to nodes,
9 ring [1]. prev = ring[T],

10 ring[ i ]. prev = ring[i−1] (i > 1)
11

12 utils :
13 getRingSize() {
14 node tail := ring [1]. prev
15 return tail.index
16 }

(a) Global variables

17 put(threadId, object item) {
18

19 node s := ring[hash(threadId,
20 getRingSize())]
21 node v := s.prev
22

23 while (true) {
24 if (s.item == NULL) {
25 if (CAS(s.item, NULL, item))
26 return OK
27 } else if (v.item == NULL) {
28 if (CAS(v.item, NULL, item))
29 return OK
30 v := v.prev
31 }
32 }
33 }

(b) Producer code

34 get(threadId) {
35 int ringsize , busy ctr, ctr := 0
36 node s, u
37

38 ringsize := getRingSize()
39 s := ring[hash(threadId, ringsize )]
40 (u,busy ctr) := findFreeNode(s,ringsize)
41 while (u.item == NULL) {
42 � ringsize := getRingSize()
43 � if (u.index > ringsize and
44 � CAS(u.item, NULL, FREE) {
45 � s := ring[hash(threadId, ringsize )]
46 � (u,busy ctr) := findFreeNode(s, ringsize )
47 � }
48 � ctr := ctr + 1
49 }
50

51 item := u.item
52 u.item := FREE
53 � if (busy ctr < Td and ctr > Tw and ringsize>1)
54 � // Try to decrease ring
55 � CAS(ring[1].prev, ring[ ringsize ], ring [ ringsize−1])
56 return item
57 }
58

59 findFreeNode(node s, int ringsize ) {
60 � int busy ctr := 0
61 while (true) {
62 if (s .item == FREE and
63 CAS(s.item, FREE, NULL))
64 return (s,busy ctr)
65 s := s.prev
66 � busy ctr := busy ctr + 1
67 � if (busy ctr > Ti·ringsize) {
68 � if ( ringsize < T) // Try to increase ring
69 � CAS(ring[1].prev, ring[ ringsize ], ring [ ringsize+1])
70 � ringsize := getRingSize()
71 � busy ctr := 0
72 � }
73 }
74 }

(c) Consumer code

Fig. 1. Asymmetric rendezvous algorithm. Lines beginning with � handle the adaptiv-
ity process.

Consumers (Fig. 1c): A consumer searches the ring for a free node and attempts
to capture it by atomically changing its item pointer from FREE to NULL using
a CAS. Once a node is captured, the consumer spins, waiting for a producer
to arrive and deposit its item. Similarly to the producer, a consumer hashes its
id to obtain a starting point for its search, s (Line 39). The consumer calls the
findFreeNode procedure to traverse the ring from s until it captures and returns
node u (Lines 59-74). (Recall that the code responsible for handling adaptivity,
which is marked by a 	, is ignored for the moment.) The consumer then waits
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until a producer deposits an item in u (Lines 41-49), frees u (Lines 51-52) and
returns (Line 56).

4.2 Adding Adaptivity

If the number of active consumers is smaller than the ring size, producers may
need to traverse through a large number (linear in the ring size) of empty nodes
before finding a match. It is therefore important to decrease the ring size if the
concurrency level is low. On the other hand, if there are more concurrent threads
than the ring size (high contention), it is important to dynamically increase the
ring. The goal of the adaptivity scheme is to keep the ring size “just right” and
allow threads to complete their operations within a constant number of steps.

The logic driving the resizing process is in the consumer’s code, which detects
when the ring is overcrowded or sparsely populated and changes the size accord-
ingly. If a consumer fails to capture many nodes in findFreeNode() (due to not
finding a free node or having its CASes fail), then the ring is too crowded and
should be increased. The exact threshold is determined by an increase threshold
parameter, Ti. If findFreeNode() fails to capture more than Ti · ring size it
attempts to increase the ring size (Lines 67-72). To detect when to decrease the
ring, we observe that when the ring is sparsely populated, a consumer usually
finds a free node quickly, but then has to wait longer until a producer finds
it. Thus, we add a wait threshold, Tw, and a decrease threshold, Td. If it takes
a consumer more than Tw iterations of the loop in Lines 41-49 to successfully
complete the rendezvous, but it successfully captured its ring node in up to Td

steps, then it attempts to decrease the ring size (Lines 53-55).
Resizing the ring is made by CASing the prev pointer of the ring head

(ring[1]) from the current tail of the ring to the tail’s successor (to increase
the ring size) or its predecessor (to decrease the ring size). If the CAS fails, then
another thread has resized the ring and the consumer continues. The head’s
prev pointer is not a sequential bottleneck because resizing is a rare event in
stable workloads. Even if resizing is frequent, the thresholds ensure that the cost
of the CAS is negligible compared to the other work performed by the algo-
rithm, and resizing pays-off in terms of better ring size which leads to improved
performance.

Handling consumers left out of the ring: A decrease in the ring size may leave a
consumer’s captured node outside of the current ring. Therefore, each consumer
periodically checks if its node’s index is larger than the current ring size (Line
43). If so, it tries to free its node using a CAS (Line 44) and find itself a new
node in the ring (Lines 45-46). However, if the CAS fails, then a producer has
already deposited its data in this node and so the consumer can take the data
and return (this will be detected in the next execution of Line 41).

4.3 Pragmatic Extensions and Considerations

Here we sketch a number of extensions that might be interesting in certain
practical scenarios.
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Timeout support: Aborting a rendezvous that is taking more than a specified
period of time is a useful feature. Unfortunately, our model has no notion of
time and so we do not model the semantics of timeouts. We simply describe
the details for an implementation that captures the intuitive notion of a time-
out. The operations take a parameter specifying the desired timeout, if any.
Timeout expiry is then checked in each iteration of the main loop in put(),
get() and findFreeNode(). If the timeout expires, a producer or a consumer in
findFreeNode() aborts by returning. A consumer that has captured a ring node
cannot abort before freeing the node by CASing its item from NULL back to
FREE. If the CAS fails, the consumer has found a match and its rendezvous has
completed successfully. Otherwise its abort attempt succeeded and it returns.

Avoiding ring pre-allocation: Ring pre-allocation requires in advance knowledge
of the maximum number of threads that can simultaneously run, which may
not be known a priori. The maximum ring size can be dynamic by allowing
threads to add and delete nodes from the ring. To do this we exploit the Java
semantics, which forces the ring variable to be a pointer to the array. This allows
a consumer to allocate a new ring (larger or smaller) and CAS ring to point to
it. Active threads periodically check if ring has changed and move themselves
to the new ring. We omit the details due to space limitations.

Busy waiting: Both producers and consumers rely on busy waiting, which may
not be appropriate for blocking applications that wish to let a thread sleep until
a partner arrives. Being blocking, such applications may not need our strong
progress guarantee. We plan to extend our algorithm to blocking scenarios in
future work.

4.4 Correctness

We consider the point at which both put(x) and the get() that returns x take
effect as the point where the producer successfully CASes x into some node’s
item pointer (Line 25 or 28). The algorithm thus clearly meets the asymmetric
rendezvous semantics. We next sketch a proof that, assuming threads do not
request timeouts, the algorithm is nonblocking (as defined in Sect. 2). Assume
towards a contradiction that there is an execution in which both producers and
consumers take infinitely many steps and yet no rendezvous successfully com-
pletes. Since there is a finite number of threads T , there must be a producer/-
consumer pair, p and c, each of which runs forever without completing. Suppose
c never captures a node. Then eventually the ring size must become T . This is
because after c completes a cycle around the ring in findFreeNode(), it tries
to increase the ring size (say the increase threshold is 1). c’s resizing CAS (Line
69) either succeeds or fails due to another CAS that succeeded in increasing,
because the ring size decreasing implies a rendezvous completing, which by our
assumption does not occur. Once the ring size reaches T , the ring has room
for c (since T is the maximum number of threads). Thus c fails to capture a
node only by encountering another consumer twice at different nodes, implying
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this consumer completes a rendezvous, a contradiction. It therefore cannot be
that c never captures a node. Instead, c captures some node but p never finds
c on the ring, implying that c has been left out of the ring by some decreasing
resize. But, since from that point on, the ring size cannot decrease, c eventually
executes Lines 43-46 and moves itself into p’s range, where either p or another
producer rendezvous with it, a contradiction.

5 Evaluation

We evaluate the performance of our algorithm in comparison with prior unfair
synchronous queues (Sect. 5.1) and demonstrate the performance gains due to
the adaptivity and the peeking techniques). Then we evaluate the resulting stack
performance against other concurrent stacks (Sect. 5.2).

Experimental setup: Evaluation is carried out on both a Sun SPARC T5240 and
on an Intel Core i7. The Sun has two UltraSPARC T2 Plus (Niagara II) chips.
Each is a multithreading (CMT) processor, with 8 1.165 HZ in-order cores with
8 hardware strands per core, for a total of 64 hardware strands per chip. The
Intel Core i7 920 (Nehalem) processor has four 2.67GHz cores, each multiplexing
2 hardware threads. Both Java and C++ implementations are tested.2 Due to
space limitations, we focus more on the Sun platform which offers more paral-
lelism and better insight into the scaling behavior of the algorithm. Unless stated
otherwise, results are averages of ten 10-second runs of the Java implementation
on an idle machine, resulting in very little variance.

Adaptivity parameters used: Ti = 1, Td = 2, and Tw = 64. A modulo hash
function, hash(t) = t mod ringsize, is used since we don’t know anything
about the thread ids and consider them as uniformly random. If however thread
ids are sequential the modulo hash achieves perfect coverage of the ring with few
collisions and helps in pairing producers/consumers that often match with each
other. We evaluate these effects by testing our algorithms with both random and
sequential thread ids throughout all experiments.

5.1 Synchronous Queues

Our algorithm (marked AdaptiveAR in the figures) is compared against the
Java unfair synchronous queue (JDK), ED tree, and FC synchronous queues. The
original authors’ implementation of each algorithm is used.3 We tested both JDK
2 Java benchmarks were ran with HotSpot Server JVM, build 1.7.0-ea-b137. C++

benchmarks were compiled with Sun C++ 5.9 on the SPARC machine and with gcc

4.3.3 (-O3 optimization setting) on the Intel machine. In the C++ experiments we
used the Hoard 3.8 [3] memory allocator.

3 We remove all statistics counting from the code and use the latest JVM. Thus,
the results we report are usually slightly better than those reported in the original
papers. On the other hand, we fixed a bug in the benchmark of [6] that miscounted
timed-out operations of the Java pool as successful operations; thus the results we
report for it are sometimes lower.
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and JDK-no-park: a version that always uses busy waiting instead of yielding
the CPU (so-called parking), and report its results for the workloads where it
improves upon the standard Java pool (as was done in [6]).

Producer/Consumer Throughput

N : N producer/consumer symmetric workload: We measure the throughput
at which data is transferred from N producers to N consumers. We focus first
on single chip results in Figs. 2a and 2e. The Nehalem results are qualitatively
similar to the low thread counts SPARC results. Other than our algorithm, the
parallel FC pool is the only algorithm that shows meaningful scalability. Our
rendezvous algorithm outperforms the parallel FC queue by 2 × −3× in low
concurrency settings, and by up to 6 at high thread counts.

Hardware performance counter analysis (Fig. 2b-2d) shows that our ren-
dezvous completes in less than 170 instructions, of which one is a CAS. In the
parallel FC pool, waiting for the combiner to pick up a thread’s request, match
it, and report back with the result, all add up. While the parallel FC pool hardly

Fig. 2. Rendezvousing between N pairs of producers and consumers. Performance
counter plots are logarithmic scale. L2 misses are not shown; all algorithms but JDK
had less than one L2 miss/operation on average.



Fast and Scalable Rendezvousing 25

performs CASes, it does require between 3× to 6× more instructions to complete
an operation. Similarly, ED tree’s rendezvous operations require 1000 instruc-
tions to complete and incur more cache misses as concurrency increases. Our
algorithm therefore outperforms it by at least 6× and up to 10× at high thread
counts. The Java synchronous queue fails to scale in this benchmark. Figures 2b
and 2c show its serializing behavior. Due to the number of failed CAS operations
on the top of the stack (and consequent retries), it requires more instructions
to complete an operation as concurrency grows. Consequently, our algorithm
outperforms it by more than 60×.

Adaptivity and peeking impact: From Fig. 2c we deduce that ring resizing oper-
ations are a rare event, leading to an average number of one CAS per operation.
Thus resizing does not adversely impact performance here. Throughput of the
algorithm with and without peeking is compared in Figure 4a. While peeking
has little effect at low thread counts, it improves performance by as much as
47% once concurrency increases. Because, due to adaptivity, a producer’s initial
node being empty usually means that a consumer will arrive there shortly, and
peeking increasing the chance of pairing with that consumer. Without it a pro-
ducer has a higher chance of colliding with another producer and consequently
spending more instructions (and CASes) to complete a rendezvous.

NUMA test: When utilizing both processors of the Sun machine the operating
system’s default scheduling policy is to place threads round-robin on both chips.
Thus, the cross-chip overhead is noticeable even at low thread counts, as Fig.
2f shows. Since the threads no longer share a single L2 cache, they experience
an increased number of L1 and L2 cache misses; each such miss is expensive,
requiring coherency protocol traffic to the remote chip. The effect is catastrophic
for serializing algorithms; for example, the Java pool experiences a 10× drop in
throughput. The more concurrent algorithms, such as parallel FC and ours, show
scaling trends similar to the single chip ones, but achieve lower throughput. In
the rest of the section we therefore focus on the more interesting single chip case.

1 : N asymmetric workloads: The throughput of one producer rendezvousing
with a varying number of consumers is presented in Figs. 3a and 4c. Nehalem
results (Fig. 4c) are again similar and not discussed in detail. Since the through-
put is bounded by the rate of a single producer, little scaling is expected and
observed. However, for all algorithms (but the ED tree) it takes several con-
sumers to keep up with a single producer. This is because the producer hands
off an item and completes, whereas the consumer needs to notice the rendezvous
has occurred. And while the single consumer is thus busy the producer cannot
make progress on a new rendezvous. However, when more consumers are ac-
tive, the producer can immediately return and find another (different) consumer
ready to rendezvous with. Unfortunately, as shown in Figure 3a, most algorithms
do not sustain this peak throughput. The FC pools have the worst degradation
(3.74× for the single version, and 3× for the parallel version). The Java pool’s
degradation is minimal (13%), and it along with the ED tree achieves close to
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Fig. 3. Single producer and N consumers rendezvousing. Left: Default OS scheduling.
Right: OS constrained to not co-locate producer on same cores as consumers.

peak throughput even at high thread counts. Yet this throughput is low: our
algorithm outperforms the Java pool by up to 3× and the ED tree by 12× for
low consumer counts and 6× for high consumer counts, despite degrading by
23% − 28% from peak throughput.

Why our algorithm degrades is not obvious. The producer has its pick of
consumers in the ring and should be able to complete a hand-off immediately.
The reason for this degradation is not algorithmic, but due to contention on chip
resources. A Niagara II core has two pipelines, each shared by four hardware
strands. Thus, beyond 16 threads some threads must share a pipeline — and
our algorithm indeed starts to degrade at 16 threads. To prove that this is
the problem, we present in Fig. 3b runs where the producer runs on the first
core and consumers are scheduled only on the remaining seven cores. While the

Fig. 4. Top left: Impact of peeking on N : N rendezvous. Top right: Rendezvous-
ing between N producers and a single consumer. Bottom: Intel 1 : N and N : 1
producer/consumer workloads throughput.
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trends of the other algorithms are unaffected, our algorithm now maintains peak
throughput through all consumer counts.

Results from the opposite workload (which is less interesting in real life sce-
narios), where multiple producers try to serve a single consumer, are given in
Figs. 4b and 4d. Here the producers contend over the single consumer node and
as a result the throughput of our algorithm degrades as the number of producers
increases (as do the FC pools). Despite this degradation, our algorithm outper-
forms the Java pool up to 48 threads (falling behind by 15% at 64 threads) and
outperforms the FC pools by about 2×.

Bursts: To evaluate the effectiveness of our adaptivity technique, we measure
the rendezvous rate in a workload that experiences bursts of activity (on the
Sun machine). For ten seconds the workload alternates every second between
31 thread pairs and 8 pairs. The 63rd hardware strand is used to take ring
size measurement. Our sampling thread continuously reads the ring size, and
records the time whenever the current read differs from the previous read. Fig-
ure 5a depicts the result, showing how the algorithm continuously resizes its
ring. Consequently, it successfully benefits from the available parallelism in this
workload, outperforming the Java pool by at least 40× and the parallel FC pool
by 4× to 5×.

Varying arrival rate: In practice, threads do some work between rendezvouses.
We measure how the throughput of the producer/consumer pairs workload is
affected when the thread arrival rate decreases due to increasingly larger amounts

Fig. 5. Top: Synchronous queue bursty workload throughput. Left: Our algorithm’s
ring size over time (sampled continuously using a thread that does not participate in
the rendezvousing). Right: throughput. Bottom: N : N rendezvousing with decreasing
arrival rate due to increasing amount of work time operations.
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of time spent doing “work” before each rendezvous. Figures 5c and 5d show that
as the work period grows the throughput of all algorithms that exhibit scaling
deteriorates, due to reduced parallelism in the workload. E.g., on the SPARC
the parallel FC degrades by 2× when going from no work to 1.5μs of work, and
our algorithm degrades by 3.4× (because it starts much higher). Still, on the
SPARC there is sufficient parallelism to allow our algorithm to outperform the
other implementations by a factor of at least three. (On the Nehalem, by 31%.)

Work uniformity: One clear advantage of our algorithm over FC is work unifor-
mity, since the combiner in FC is expected to spend much more time doing work
for other threads. We show this by comparing the percent of total operations
performed by each thread in a multiple producer/multiple consumer workload.
In addition to measuring uniformity, this test is a yardstick for progress in prac-
tice: if a thread starves, we will see it as performing very little work compared to
other threads. We pick the best result from five executions of 16 producer/con-
sumer pairs, and plot the percent of total operations performed by each thread.
Figure 6 shows the results. In an ideal setting, each thread would perform 3.125%
(1/32) of the work. Our algorithm comes relatively close to this distribution, as
does the JDK algorithm. In contrast, the parallel FC pool experiences much
larger deviation and best/worst ratio.

Fig. 6. Percent of total operations performed by each of 32 threads in an N : N test

5.2 Concurrent Stack

Here we use our algorithm as the elimination layer on top of a Treiber-style
nonblocking stack [16] and compare it to the stack implementations evaluated in
[5]. We implemented two variants. In the first, following [7], rendezvous is used
as a backoff mechanism that threads turn to upon detecting contention on the
main stack, thus providing good performance under low contention and scaling
as contention increases. In the second variant a thread first visits the rendezvous
structure, accessing the main stack only if it fails to find a partner. If it then
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Fig. 7. Comparing stack implementations throughput. Each of N threads performs
both push and pop operations with probability 1/2 for each operation type.

encounters contention on the main stack it goes back to try the rendezvous, and
so on.

We compare a C++ implementation of our algorithm to the C++ implemen-
tations evaluated in [5]: a lock-free stack (LF-Stack), a lock-free stack with a
simple elimination layer (EL-Stack), and an FC based stack. We use the same
benchmark as [5], measuring the throughput of an even push/pop operation mix.
Unlike the pool tests, here we want threads to give up if they don’t find a partner
in a short amount of time, and move to the main stack. We thus need to set Tw

to a value smaller than the timeout, to enable a decrease of the ring size. Figure
7 shows the results. Our second (non-backoff) stack scales well, outperforming
the FC and elimination stacks by more than 3.5×. The price it pays is poor
performance at low concurrency (2.5× slower than the FC stack with a single
thread). The backoff variant fails to scale above 32 threads due to contention on
the stack head, illustrating the cost incurred by merely trying (and failing) to
CAS a central hotspot.

6 Conclusion

We have presented an adaptive, nonblocking, high throughput asymmetric ren-
dezvous system that scales well under symmetric workloads and maintains peak
throughput in asymmetric (more consumers than producers) workloads. This is
achieved by a careful marriage of new algorithmic ideas and attention to imple-
mentation details, to squeeze all available cycles out of the processors.

Several directions remain open towards making the algorithm even more
broadly applicable and practical. In ongoing work we are extending the algorithm
so that it maintains peak throughput even when there are more producers than
consumers, and pursuing making the algorithm’s space consumption adaptive.
Adapting the algorithm to blocking applications (i.e., avoiding busy waiting)
and dynamically choosing the various threshold parameters are also interesting
questions.

Our results also raise a question about the flat combining paradigm. Flat
combining has a clear advantage in inherently sequential data structures, such
as a FIFO or priority queue, whose concurrent implementations have central
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hot spots. But as we have shown, FC may lose its advantage in problems with
inherent potential for parallelism. It is therefore interesting whether the FC tech-
nique can be improved to match the performance of our asymmetric rendezvous
system.

Availability: Our implementation is available on Tel Aviv University’s Multicore
Algorithmics group web site at http://mcg.cs.tau.ac.il/.

Acknowledgments: We thank Hillel Avni, Nati Linial and Nir Shavit for helpful
discussions, and the anonymous reviewers for their comments.
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Abstract. We consider the problem of computing a maximal indepen-
dent set (MIS) in an extremely harsh broadcast model that relies only on
carrier sensing. The model consists of an anonymous broadcast network
in which nodes have no knowledge about the topology of the network or
even an upper bound on its size. Furthermore, it is assumed that nodes
wake up asynchronously. At each time slot a node can either beep (i.e.,
emit a signal) or be silent. At a particular time slot, beeping nodes re-
ceive no feedback, while silent nodes can only differentiate between none
of its neighbors beeping, or at least one neighbor beeping.

We start by proving a lower bound that shows that in this model, it
is not possible to locally converge to an MIS in sub-polynomial time. We
then study four different relaxations of the model which allow us to cir-
cumvent the lower bound and compute an MIS in polylogarithmic time.
First, we show that if a polynomial upper bound on the network size is
known, it is possible to find an MIS in O(log3 n) time. Second, if sleeping
nodes are awoken by neighboring beeps, then we can also find an MIS in
O(log3 n) time. Third, if in addition to this wakeup assumption we allow
beeping nodes to receive feedback to identify if at least one neighboring
node is beeping concurrently (i.e., sender-side collision detection) we can
find an MIS in O(log2 n) time. Finally, if instead we endow nodes with
synchronous clocks, it is also possible to compute an MIS in O(log2 n)
time.

1 Introduction

An MIS is a maximal set of nodes in a network such that no two of them are
neighbors. Since the set is maximal every node in the network is either in the
MIS or a neighbor of a node in the MIS. The problem of distributively selecting
an MIS has been extensively studied in various models [3, 6, 21, 12, 14, 13, 15,
18, 16, 25] and has many applications in networking, and in particular in radio
sensor networks. Some of the practical applications include the construction of
a backbone for wireless networks, a foundation for routing and for clustering of
nodes, and generating spanning trees to reduce communication costs [21, 25].

This paper studies the problem of computing an MIS in the discrete beeping
wireless network model of [7]. The network is modeled as an undirected graph
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and time progresses in discrete and synchronous rounds, each being a time slot.
In each round a node can either transmit a “jamming” signal (called a beep)
or detect whether at least one neighbor beeps. We believe that such a model
is minimalistic enough to be implementable in many real world scenarios. For
example, it can easily be implemented using carrier sensing alone, where nodes
only differentiate between silence and the presence of a signal on the wireless
channel. Further, it has been shown that such a minimal communication model
is strong enough to efficiently solve non-trivial tasks [2, 7, 19, 24]. The model
is interesting from a practical point of view since carrier sensing typically uses
less energy to communicate and reaches larger distances when compared with
sending regular messages.

While this model is clearly useful for computer networks, it is also partially
motivated by biological processes which are often more robust and adaptable
than current computational systems. In biological systems, cells communicate
by secreting certain proteins that are sensed (“heard”) by neighboring cells [6].
This is similar to a node in a radio network transmitting a carrier signal which
is sensed (“heard”) by its neighbors. Such physical message passing allows for
an upper bound on message delay. Thus, for a computational model based on
these biological systems, we can assume a set of synchronous and anonymous
processors communicating using beeps [7] in an arbitrary topology. We have
recently shown that a variant of MIS is solved by a biological process, sensory
organ precursor (SOP) selection in flies, and that the fly’s solution provides a
novel algorithm for solving MIS [2]. Here we extend algorithms for this model in
several ways as discussed below.

This paper has two parts, we first prove a lower bound that shows that in a
beeping model with adversarial wake-up it is not possible to locally converge on
an MIS in sub-polynomial time. In the second part we present several relaxations
of this model under which polylogarithmic MIS constructions are possible.

The lower bound shows that if nodes are not endowed with any information
about the underlying communication graph, and their wake-up time is under
the control of the adversary, any (randomized) distributed algorithm to find an
MIS requires at least Ω(

√
n/ logn) rounds. We remark that this lower bound

holds much more generally. We prove the lower bound for the significantly more
powerful radio network model with arbitrary message size and collision detection,
and is therefore not an artifact of the amount of information which can be
communicated in the beeping model.

Following the lower bound, in the second part of this paper four weaker ad-
versarial models are considered and a polylog algorithm for MIS construction is
presented for each. First, we present an algorithm that uses a polynomial upper
bound on the size of the network, to compute an MIS in O(log3 n) rounds with
high probability. Our next two algorithms assume that nodes are awakened by
incoming messages (wake-on-beep). We present an O(log2 n) rounds algorithm in
the beeping model with sender collision detection. Next, we present a O(log3 n)
that works without sender collision detection in the same wakeup model. Fi-
nally, we show that even if nodes are only awakened by an adversary (and not
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by incoming messages) it is possible to use synchronous clocks to compute an
MIS in O(log2 n) time without any information about the network. These re-
sults are summarized in the table below. We highlight that all the upper bounds
presented in this paper compute an MIS eventually and almost surely, and thus
only their running time is randomized.

Assumptions Running Time
Section 4 None (lower bound) Ω(

√
n/ logn)

Section 5 Upper bound on n O(log3 n)
Section 6 Wake-on-Beep + Sender Collision Detection O(log2 n)
Section 7 Wake-on-Beep O(log3 n)
Section 8 Synchronous Clocks O(log2 n)

2 Related Work

The computation of an MIS has been recognized and studied as a fundamen-
tal distributed computing problem for a long time (e.g., [3, 4, 15, 20]). Per-
haps the single most influential MIS algorithm is the elegant randomized
algorithm of [3, 15], generally known as Luby’s algorithm, which has a run-
ning time of O(log n). This algorithm works in a standard message passing
model, where nodes can concurrently reliably send and receive messages over
all point-to-point links to their neighbors. [16] show how to improve the bit
complexity of Luby’s algorithm to use only O(log n) bits per channel (O(1) bits
per round). For the case where the size of the largest independent set in the
2-neighborhood of each node is restricted to be a constant (known as bounded
independence or growth-bounded graphs), [23] presented an algorithm that com-
putes an MIS in O(log∗ n) rounds. This class of graphs includes unit disk graphs
and other geometric graphs that have been studied in the context of wireless
networks.

While several methods were suggested for solving MIS in the case of sym-
metric processors, these methods have always assumed that nodes know some-
thing about the local or global topology of the network. Most previous methods
assumed that nodes know the set of active neighbors each has at each stage
of the execution. The first effort to design a distributed MIS algorithm for a
wireless communication model in which the number of neighbors is not known
is by [17]. They provided an algorithm for the radio network model with a
O(log9 n/ log log n) running time. This was later improved [18] to O(log2 n).
Both algorithms assume that the underlying graph is a unit disk graph (the
algorithms also work for somewhat more general classes of geometric graphs).
In addition, while the algorithms solve the MIS problem in multi-hop networks
with asynchronous wake up, they assume that an upper bound on the number of
nodes in the network is known. In addition to the upper bound assumption their
model allows for (and their algorithm uses) messages whose size is a function of
the number of nodes in the network.
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The use of carrier sensing (a.k.a. collision detection) in wireless networks has,
e.g., been studied in [5, 10, 24]. As shown in [24], collision detection can be
powerful and can be used to improve the complexity of algorithms for various
basic problems. [22] show how to approximate a minimum dominating set in
a physical interference (SINR) model where in addition to sending messages,
nodes can perform carrier sensing. In [9], it is demonstrated how to use carrier
sensing as an elegant and efficient way for coordination in practice.

The present paper is not he first one that uses carrier sensing alone for dis-
tributed wireless network algorithms. A similar model to the beep model consid-
ered here was first studied in [8, 19]. As used here, the model has been introduced
in [7], where it is shown how to efficiently obtain a variant of graph coloring that
can be used to schedule non-overlapping message transmissions. In [2] a variant
of beeping model, there called the fly model, was considered. The fly model made
three additional assumptions, which do not necessarily hold for biological sys-
tems: that all the processors wake up together at the same synchronous round,
that a bound on the network size is known to the processors, and that proces-
sors can detect collisions. That is, processors can listen on the medium while
broadcasting (as in some radio and local area networks). In addition to the work
from [2] the most closely related work to this paper are results from [24]. In
[24], it is shown that by solely using carrier sensing, an MIS can be computed in
O(log n) time in growth-bounded graphs (a.k.a. bounded independence graphs).
Here, we drop this restriction and study the MIS problem in the beeping model
for general graphs.

3 Model

Following [7], we consider a synchronous communication network modeled by an
arbitrary graph G = (V, E) where the vertices V represent processors and the
edges represent pairs of processors that can hear each other. We denote the set
of neighbors of node u in G by NG(u) = {v | {u, v} ∈ E}. For a node u ∈ V
we use dG(u) = |NG(u)| to denote its degree (number of neighbors) and we use
dmax = maxu∈V dG(u) to denote the maximum degree of G.

Instead of communicating by exchanging messages, we consider a more prim-
itive communication model that relies entirely on carrier sensing. Specifically,
in every round a participating process can choose to either beep or listen. If a
process at node v listens in round t it can only distinguish between silence (i.e.,
no process u ∈ NGt(v) beeps in round t) or the presence of one or more beeps
(i.e., there exists a process u ∈ NGt(v) that beeps in round t). Observe that a
beep conveys less information than a conventional 1-bit message, since in that
case it is possible to distinguish between no message, a message with a one, and
a message with a zero.

Initially all processes are asleep, and a process starts participating the round
after it is woken up by an adversary. We denote by Gt ⊆ G the subgraph induced
by the processes which are participating in round t.

Given an undirected graph H , a set of vertices I ⊆ V (H) is an independent
set of H if every edge e ∈ E has at most one endpoint in I. An independent set
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I ⊆ V (H) is a maximal independent set of H , if for all v ∈ V (H) \ I the set
I ∪ {v} is not independent. An event is said to occur with high probability, if it
occurs with probability at least 1 − n−c for any constant c ≥ 1, where n = |V |
is the number of nodes in the underlying communication graph. For a positive
integer k ∈ N we use [k] as short hand notation for {1, . . . , k}. In a slight abuse
of this notation we use [0] to denote the empty set ∅ and for a, b ∈ N and a < b
we use [a, b] to denote the set {a, . . . , b}.

We say a (randomized) distributed algorithm solves the MIS problem in T
rounds if any node irrevocably decides to be either inactive or in the MIS after
being awake for at most T rounds. Furthermore, no two neighboring nodes decide
to be in the MIS, and every node which decides to be inactive has at least one
neighbor which decided to be in the MIS.

4 Lower Bound for Uniform Algorithms

In this section we show that without any additional power or a priori information
about the network (e.g., an upper bound on its size or maximum degree), any
fast-converging (randomized) distributed algorithm needs at least polynomial
time to find an MIS with constant probability. In some ways, this result is the
analog of the polynomial lower bound [11] on the number of rounds required for
a successful transmission in the radio network model without collision detection
or knowledge of n.

We stress that this lower bound is not an artifact of the beep model, but a
limitation that stems from having message transmission with collisions and the
fact that nodes are required to decide (but not necessarily terminate) without
waiting until all nodes have woken up. Although we prove the lower bound for
the problem of finding an MIS, this lower bound can be generalized to other
problems (e.g., minimal dominating set, coloring, etc.).

Specifically, we prove the lower bound for the stronger communication model
of local message broadcast with collision detection. In this communication model
a process can choose in every round either to listen or to broadcast a message
(no restrictions are made on the size of the message). When listening a process
receives silence if no message is broadcast by its neighbors, it receives a collision
if a message is broadcast by two or more neighbors, and it receives a message if
it is broadcast by exactly one of its neighbors. The beep communication model
can be easily simulated by this model (instead of beeping send a 1 bit message,
and when listening translate a collision or the reception of a message to hearing
a beep) and hence the lower bound applies to the beeping model.

At its core, our lower bound argument relies on the observation that a node
can learn essentially no information about the graph G if upon waking up, it
always hears collisions or silence. It thus has to decide whether it remains silent
or beeps within a constant number of rounds. More formally:

Proposition 1. Let A be an algorithm run by all nodes, and consider a fixed
pattern b ∈ {silent, collision}∗. If after waking up a node u hears b(r) whenever
it listens in round r, then there are two constants � ≥ 1 and p ∈ (0, 1] that only
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depend on A and b such that either a) u remains listening indefinitely, or b) u
listens for � − 1 rounds and broadcasts in round � with probability p.

Proof. Fix a node u and let p(r) be the probability with which node u beeps
in round r. Observe that p(r) can only depend on r, what node u heard up to
round r (i.e., b) and its random choices. Therefore, given any algorithm, either
p(r) = 0 for all r (and node u remains silent forever), or p(r) > 0 for some r, in
which case we let p = p(r) and � = r.

We now prove the main result of this section:

Theorem 1. If nodes have no a priori information about the graph G then any
fast-converging distributed algorithm in the local message broadcast model with
collision detection that solves the MIS problem with constant probability requires
at least Ω(

√
n/ logn) rounds.

Proof. Fix any algorithm A. Using the previous proposition we split the analysis
in three cases, and in all cases we show that with probability 1 − o(1) any
algorithm runs for Ω(

√
n/ logn) rounds.

We first ask what happens with nodes running algorithm A that hear only
silence after waking up. Proposition 1 implies that either nodes remain silent
forever, or there are constants � and p such that nodes broadcast after � rounds
with probability p. In the first case, suppose nodes are in a clique, and observe
that no node will ever broadcast anything. From this it follows that nodes cannot
learn anything about the underlying graph (or even tell if they are alone). Thus,
either no one joins the MIS, or all nodes join the MIS with constant probability,
in which case their success probability is exponentially small in n.

Thus, for the rest of the argument we assume that nodes running A that
hear only silence after waking up broadcast after � rounds with probability p.
Now we consider what happens with nodes running A that hear only collisions
after waking up. Again, by Proposition 1 we know that either they remain silent
forever, or there are constants m and p′ such that nodes broadcast after m rounds
with probability p′. In the rest of the proof we describe a different execution for
each of these cases.

CASE 1: (A Node that Hears Only Collisions Remains Silent Forever)
For some k 
 � to be fixed later, we consider a set of k−1 cliques C1, . . . , Ck−1

and a set of k cliques U1, . . . , Uk, where each clique Ci has Θ(k log n/p) vertices,
and each clique Uj has Θ(log n) vertices. We consider a partition of each clique Ci

into k sub-cliques Ci(1), . . . , Ci(k) each with Θ(log n/p) vertices. For simplicity,
whenever we say two cliques are connected, they are connected by a complete
bipartite graph.

Consider the execution where in round i ∈ [k − 1] clique Ci wakes up, and in
round � the cliques U1, . . . , Uk wake up simultaneously. When clique Uj wakes
up, it is is connected to sub-clique Ci(j) for each i < �. Similarly, when clique
Ci wakes up, if i ≥ � then for j ∈ [k] sub-clique Ci(j) is connected to clique Uj .

During the first �−1 rounds only the nodes in C1 are participating, and hence
every node in C1 broadcasts in round � + 1 with probability p. Thus, w.h.p., for
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all j ∈ [k] at least two nodes in sub-clique C1(j) broadcast in round �. This
guarantees that all nodes in cliques U1, . . . , Uk hear a collision during the first
round they are awake, and hence they also listen for the second round. In turn,
this implies that the nodes in C2 hear silence during the first � − 1 rounds they
participate, and again for j ∈ [k], w.h.p., there are at least two nodes in C2(j)
that broadcast in round � + 2.

By a straightforward inductive argument we can show (omitted) that in gen-
eral, w.h.p., for each i ∈ [k − 1] and for every j ∈ [k] at least two nodes in
sub-clique Ci(j) broadcast in round � + i. Therefore, also w.h.p., all nodes in
cliques U1, . . . , Uk hear collisions during the first k − 1 rounds after waking up.

Observe that at most one node in each Ci can join the MIS (i.e., at most
one of the sub-cliques of Ci has a node in the MIS), which implies there exists
at least one clique Uj that is connected to only non-MIS sub-cliques. However,
since the nodes in Uj are connected in a clique, exactly one node of Uj must
decide to join the MIS, but all the nodes in Uj have the same state during the
first k− 1 rounds. Therefore if nodes decide after participating for at most k− 1
rounds, w.h.p., either no node in Uj joins the MIS, or more than two nodes join
the MIS.

Finally since the number of nodes n is Θ(k2 log n + k log n), we can let k ∈
Θ(

√
n/ logn) and the claim follows.

CASE 2: (After Hearing Only Collisions, a Node Beeps with prob. p′

After m Rounds)
For some k 
 m to be fixed later let q =

⌊
k
4

⌋
and consider a set of k cliques

U1, . . . , Uk and a set of m − 1 cliques S1, . . . , Sm−1, where each clique Ui has
Θ(log n/p′) vertices, and each clique Si has Θ(log n/p) vertices. As before, we
say two cliques are connected if they form a complete bipartite graph.

Consider the execution where in round i ∈ [m− 1] clique Si wakes up, and in
round � + j for j ∈ [k] clique Uj wakes up. When clique Uj wakes up, if j > 1 it
is connected to every Ui for i ∈ {max(1, j − q), . . . , j − 1} and if j < m it is also
connected to every clique Sh for h ∈ {j, . . . , m}.

During the first �−1 rounds only the nodes in S1 are participating, and hence
every node in S1 broadcasts in round � + 1 with probability p, and thus, w.h.p.,
at least two nodes in S1 broadcast in round � + 1. This guarantees the nodes in
U1 hear a collision upon waking up, and therefore they listen in round � + 2. In
turn this implies the nodes in S2 hear silence during the first � − 1 rounds they
participate, and hence, w.h.p., at least two nodes in S2 broadcast in round �+2.

By a straightforward inductive argument we can show (omitted) that in gen-
eral for i ∈ [m − 1] the nodes in Si hear silence for the first � − 1 rounds they
participate, and, w.h.p., at least two nodes in Si broadcast in round �+ i. More-
over, for j ∈ [k] the nodes in Uj hear collisions for the first m − 1 rounds they
participate, and hence w.h.p. there are at least two nodes in Uj who broadcast
in round � + m + j − 1. This implies that w.h.p. for j ∈ [k − q] the nodes in Uj

hear collisions for the first q rounds they participate.
We argue that if nodes choose weather or not to join the MIS q rounds after

participating, then they fail w.h.p. In particular consider the nodes in clique Uj
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for j ∈ {q, . . . , k − 2q}. These nodes will hear collisions for the first q rounds they
participate, and they are connected to other nodes which also hear beeps for the
first q rounds they participate. Therefore, if nodes decide after participating for
less or equal than q rounds, w.h.p. either a node and all its neighbors won’t be
in the MIS, or two or more neighboring nodes join the MIS.

Finally since we have n ∈ Θ(m log n+k log n) nodes, we can let k ∈ Θ(n/ log n)
and hence q ∈ Θ(n/ log n) and the theorem follows. ��

5 Using an Upper Bound on n

To circumvent the lower bound, this section assumes that all nodes are initially
given some upper bound N > n (it is not required that all nodes are given the
same upper bound) on the total number of nodes participating in the system. The
algorithm described in this section guarantees that O(log2 N log n) rounds after
a node wakes up, it knows whether it belongs to the MIS or if it is inactive (i.e.,
covered by an MIS node). Therefore, if the known upper bound is polynomial in
n (i.e., N ∈ O(nc) for a constant c), then this algorithm solves the MIS problem
in O(log3 n) rounds.

Algorithm: If a node hears a beep while listening at any point during the
execution, it restarts the algorithm. When a node wakes up (or it restarts), it
stays in an inactive state where it listens for c log2 N consecutive rounds. After
this inactivity period, nodes enter a competing state and group rounds into log N
phases of c log N consecutive rounds. Due to the asynchronous wake up and the
restarts, in general phases of different nodes will not be synchronized. In each
round of phase i with probability 2i/8N a node beeps, and otherwise it listens.
Thus by phase log N a node beeps with probability 1

8 in every round. After
successfully going through the log N phases of activity (recall that when a beep
is heard during any phase, the algorithm restarts) a node assumes it has joined
the MIS and goes into a loop where it beeps in every round with probability 1/2
forever (or until it hears a beep).

Algorithm 1. MIS with an upper bound N on the size of the network
1: for c log2 N rounds do listen � Inactive
2: for i ∈ {1, . . . , log N} do � Competing
3: for c log N rounds do
4: with probability 2i/8N beep, otherwise listen

5: forever with probability 1
2

beep then listen, otherwise listen then beep � MIS

Theorem 2. Algorithm 1 solves the MIS problem in O(log2 N log n) time, where
N is an upper bound on n that is a priori known to the nodes.

This is another example which demonstrates that knowing a priori information
about the network, even as simple as its size, can drastically change the com-
plexity of a problem.
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Proof Outline. First, we leverage the fact that for two neighboring nodes to go
simultaneously into the MIS they have to choose the same actions (beep or listen)
during at least c log N rounds. This does no happen w.h.p. and thus MIS nodes
are independent w.h.p. On the other hand, since nodes which are in the MIS keep
trying to break ties, an inactive node will never start competing while it has a
neighbor in the MIS, and even in the low probability event that two neighboring
nodes do join the MIS, one of them will eventually and almost surely leave the
MIS. The more elaborate part of the proof is showing that w.h.p., any node
either joins the MIS or has one of its neighbors in the MIS after O(log2 N log n)
consecutive rounds. This requires three technical lemmas. First we show that if
the sum of the beep probabilities of a neighbor are greater than a large enough
constant, then they have been larger than a (smaller) constant for the c log N
preceding rounds. We then use this to show that with constant probability, when
a node u hears or produces beep, no neighbor of the beeping node beeps at the
same time (and therefore the beeping node joins the MIS). Finally, since a node
hears a beep or produces a beep every O(log2 N) rounds, O(log2 N log n) rounds
suffice to stabilize w.h.p.

We remark that this algorithm is very robust, and in fact it works as-is if we
give the adversary the power to crash an arbitrary set of nodes in every round.
For such a powerful adversary, the running time guarantees have to be modified
slightly, since if an inactive node has a single MIS node which is then crashed
by the adversary, we must allow the inactive node to start competing to be in
the MIS again.

Knowing When You Are Done. We’ve argued hat with high probability
every node will (correctly) be in the MIS or the inactive state O(log3 n) rounds
after waking up, however observe that the algorithm provides no way for a node
to determine/output when it has arrived at the correct state. This is not a flaw
of the algorithm, but an inherent limitation of the model and assumptions in
which it is implemented. To see why, observe that regardless of what algorithm
is used, in every round there is a non-zero probability that all nodes which are in
the same state make the same random choices (beep or listen), and remain in the
same state on the next round. Although this probability will drop exponentially
fast with n, this already means that it is impossible for a node to distinguish
with certainty between a solo execution and an execution in which it has one or
more neighbors.

If we are willing to tolerate a small probability of error, we can turn Algorithm
1 (which is a Las Vegas algorithm) into a Monte Carlo algorithm and have every
node output their state O(log3 n) rounds after waking up. Theorem 2 guarantees
that w.h.p., the output describes an MIS. Another alternative, would be to endow
nodes with unique identifiers encoded in O(log n) bits. Using these identifiers it
is possible to augment the last phase of the algorithm (i.e., line 5) to detect
the case where two neighboring nodes are in the MIS state with certainty in
asymptotically the same round complexity (we omit the details due to lack of
space). Another alternative, which is described in detail in the next section, is
to use sender-side collision detection.
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6 Wake-on-Beep and Sender Collision Detection

This section considers a different relaxation of the model. Specifically, in addition
to allowing the adversary to wakeup nodes arbitrarily, in this and the next section
we assume that sleeping nodes wake up upon receiving a beep (wake-on-beep).
Moreover this section we also assume that when a node beeps, it receives some
feedback from which it can know if it beeped alone, or one of its neighbors
beeped concurrently (a.k.a. sender collision detection). We will show that in
such a model, it is possible to compute an MIS in O(log2 n) time, even if there
is no knowledge of the network (including no knowledge of neighbors and / or
any upper bound on the network size).

This algorithm is an improvement of the algorithm presented in [2], which
used an upper bound on the size of the network. In this algorithm nodes go
through several iterations in which they gradually decrease the probability of
being selected. The run time of the algorithm is still O(log2 n) as we show below.
Compared to the algorithm in [2], in addition to eliminating the dependence
on any topological information, the current algorithm tolerates asynchronous
wakeups if we assume wake-on-beep.

The algorithm proceeds in phases each consisting of x steps where x is the
total number of phases performed so far (the phase counter). Assuming all nodes
start at the same round, step i of each phase consists of two exchanges. In the
first exchange nodes beep with probability 1/2i, and in the second exchange a
node that beeped in the first exchange and did not hear a beep from any of
its neighbors, beeps again, telling its neighbors it has joined the MIS and they
should become inactive and exit the algorithm.

Asynchronous Wakeup. Nodes that wake up spontaneously, or are awakened
by the adversary, propagate a wave of wake-up beeps throughout the network.
Upon hearing the first beep, which must be the wake up beep, a node broadcasts
the wake up beep on the next round, and then waits one round to ensure none
of its neighbors is still waking up. This ensures that all neighbors of a node
wake up either in the same round as that node or one round before or after that
node. Due to these possible differences in wakeup time, we divide each exchange
into 3 rounds. Nodes listen in all three rounds to incoming messages. During the
second round of the first exchange each active node broadcasts a message to its
neighbors with probability pi (the value of pi is given in the algorithm). The
second exchange also takes three rounds. A node that broadcasts a message in
the first exchange joins the MIS if none of its neighbors has broadcast in any of
the three round of the first exchange. Such a node again broadcasts a message
in the second round of the second exchange telling its neighbors to terminate
the algorithm. The algorithm is detailed in Algorithm 2.

Safety Properties. While the algorithm in [2] uses a different set of coin flip
probabilities, it relies on a similar two exchanges structure to guarantee the safety
properties of the algorithm (when the algorithm terminates nodes are either MIS
nodes or connected to a MIS node and no two MIS nodes are connected to each
other). In [2], each exchange is only one round (since synchronous wakeup is
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Algorithm 2. MIS with wake-on-beep and sender-side collision detection
1: upon waking up (by adversary or beep) do beep to wake up neighbors
2: wait for 1 round; x← 0 � while neighbors wake up
3: repeat
4: x← x + 1 � 2x is current size estimate
5: for i ∈ {0, . . . , x} do � log 2x phases
6: ** exchange 1 ** with 3 rounds
7: listen for 1 round; v ← 0 � round 1
8: with probability 1/2i, beep and set v ← 1 � round 2
9: listen for 1 round � round 3

10: if received beep in any round of exchange 1 then v ← 0
11: ** exchange 2 ** with 3 rounds
12: listen for 1 round � round 1
13: if v = 1 then beep and join MIS � round 2
14: listen for 1 round � round 3
15: until in MIS or received beep in any round of exchange 2

assumed). We thus need to show that replacing each one round exchange with a
three round exchange does not affect the MIS safety properties of our algorithm.
We will thus start by proving that the termination lemma from [2], which relies
on the fact that all neighbors are using the same probability distribution in each
exchange, still holds.

Lemma 1. All messages received by node j in the first exchange of step i were
sent by processors using the same probability as j in that step (see [1] for proof).

Note that a similar argument would show that all messages received in the second
exchange of step i are from processors that are in the second exchange of that
step. Since our safety proof only relies on the coherence of the exchange they
still hold for this algorithm. Notice also that by adding a listening round at the
beginning and end of each exchange the algorithm now works in the un-slotted
model (with at most doubling the round complexity).

Runtime Analysis. After establishing the safety guarantees, we next prove
that with high probability all nodes terminate the algorithm in O(log2 n) time
where n is the number of nodes that participate in the algorithm. Let dv be the
number of active neighbors of node v. We start with the following definition [3]:
a node v is Good if it has at least dv/3 active neighbors u, s.t., du ≤ dv.

Lemma 4.4 from [3] : In every graph G at least half of the edges touch a Good
vertex. Thus,

∑
v∈Good dv ≥ |E|/2.

Note that we need less than O(log2 n) steps to reach x ≥ log n since each phase
until x = log n has less than log n steps. When x ≥ log n, the first log n steps
in each phase are using the probabilities: 1, 1/2, 1/4, ..., 2/n, 1/n. Below we show
that from time x = log n, we need at most O(log n) more phases to guarantee
that all processors terminate with high probability.
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Lemma 2. The expected number of edges deleted in a phase (with more than
log n steps) is Ω(|E|)
Proof. Fix a phase j, and fix a Good vertex v. We show that the expected number
of edges incident to v that are deleted in this phase is Ω(dv). Assume that at the
beginning of phase j, 2k ≤ dv ≤ 2k+1 for some k < log n. If when we reach step
i = k in phase j at least dv/20 edges incident to v were already removed we are
done. Otherwise, at step i there are still at least dv/3 − dv/20 > dv/4 ≥ 2k−2

neighbors u of v with du ≤ dv. Node v and all its neighbors u are flipping coins
with probability 1

2k at this step and thus the probability that at least one of
them broadcasts is:

Pr(v or a neighbor u with du ≤ dv beeps) ≥ 1 −
(

1 − 1
2k

)2k−2

∼= 1 − 1/e1/4.

On the other hand, all such nodes u, and v, have less than 2k+1 neighbors. Thus,
the probability that a node from this set that broadcasts a message does not
collide with any other node is:

Pr(no collisions) ≥ (1 − 1
2k

)2
k+1 ∼= 1/e2.

Thus, in every phase a Good node v has probability of at least (1− 1
e1/4 ) 1

e2 ≥ 1
27

to be removed. Thus, the probability that v is removed is Ω(1) and hence the
expected number of edges incident with v removed during this phase is Ω(dv).

Since half the edges touch a Good node, by linearity of expectation the ex-
pected number of edges removed in each phase is ≥ Ω(

∑
v∈Good dv) = Ω(|E|).

Note that since the number of edges removed in a phase in a graph (V, E) is
clearly always at most |E|, the last lemma implies that for any given history,
with probability at least Ω(1), the number of edges removed in a phase is at
least a constant fraction of the number of edges that have not been deleted yet.
Therefore there are two positive constants p and c, both bounded away from
zero, so that the probability that in a phase at least a fraction c of the number
of remaining edges are deleted is at least p. Call a phase successful if at least a
fraction c of the remaining edges are deleted during the phase.

By the above reasoning, the probability of having at least z successful phases
among m phases is at least the probability that a binomial random variable
with parameters m and p is at least z. By the standard estimates for Binomial
distributions, and by the obvious fact that O(log |E|/c) = O(log n), starting
from x = log n we need an additional O(log n) phases to finish the algorithm.
Since each of these additional O(log n) phases consists of O(log n) steps, and
since as discussed above until x = log n we have less than O(log2 n) steps, the
total running time of the algorithm is O(log2 n). ��

7 Wake-on-Beep with No Collision Detection

This section shows how to solve MIS in the wake-on-beep model with no collision
detection. To extend our algorithm to a model with no collision detection we
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increase the number of exchanges in each step from 3 to x (x is the same as in
Algorithm 2 and represents the current estimate of the network size). Prior to
starting the exchanges in each step each active processor flips a coin with the
same probability as in Algorithm 2. If the flip outcome is 0 (tail) the processor
only listens in the next cx exchanges (for a constant c discussed below). If the flip
outcome is 1 the processor sets v = 1 and sets, with probability 0.5, every entry
in the vector X of size cx to 1 (the rest are 0). In the following exchanges the
processor broadcasts a beep if X(j) = 1 where j is the index of that exchange and
only listens if X(j) = 0. If at any of the exchanges it listens it hears a beep it sets
v = 0 and stops broadcasting (even in the selected exchanges). If a node hears a
beep during these exchanges it does not exit the algorithm. Instead, it denotes
the fact that one of its neighbors beeped and sets itself to be inactive. If it does
not hear a beep in any of the exchanges of a future phase it becomes active and
continues as described above. Similarly, a node that beeped and did not hear any
beep in a specific step (indicating that it can join the MIS) continues to beep
indefinitely (by selecting half the exchanges in all future steps and following the
algorithm above).

However, the guarantees we provide differ from those in the stronger collision
detection model. Specifically, the algorithm guarantees that after a certain time
(which depends on the network size and is derived below), all MIS members are
fixed, and the safety requirements hold (all nodes not in the MIS are connected
to a node in the MIS and no two MIS members are connected). Until this time,
nodes can decide to become MIS members and later drop from the set if they find
out that one of their neighbors has also decided to join the MIS. Since nodes do
not have an estimate of the network size the processors continue to perform the
algorithm indefinitely. At the end of the section we describe a stopping criteria
that could be used if an estimate of the network size were available.

The main difference between this algorithm and Algorithm 2 a set of com-
petition exchanges that are added at the end of each coin flip. The number of
competition exchanges is equal to the current phase counter (which serves as the
current estimate of the network size). Initially the competition rounds are short
and so they would not necessarily remove all collisions. We require that nodes
that attempt to join continue to participate in all future competition rounds
(when v = 1). Processors that detect a MIS member as a neighbor set z to 1
and do not broadcast until they go through one complete set of competition
exchanges in which they do not hear any beep. If and when this happens they
set z = 0 and become potential MIS candidates again.

While not all collisions will be resolved at the early phases, when x ≥ log n
each set of competition exchanges is very likely to remove all collisions. We prove
below that once we arrive at such x values, all collisions are resolved with very
high probability such that only one processor in a set of colliding processors
remains with v = 1 at the end of these competition exchanges. From there,
it takes another O(log n) phases to select all members of the MIS as we have
shown for Algorithm 1. Since each such phase takes O(log n) steps with each step
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Algorithm 3. MIS with wake-on-beep without sender-side collision detection
1: upon waking up (by adversary or beep) do beep to wake up neighbors
2: wait for 1 round; x← 0; v ← 0; z ← 0 � while neighbors wake up
3: repeat forever
4: x← x + 1
5: for i ∈ {0, . . . , x} do
6: if v = 0 ∧ z = 0 then with probability 1/2i set v ← 1
7: X ← random 0/1-vector of length cx � c is a constant
8: z ← 0
9: ** cx competition exchanges **

10: for k ∈ {1, . . . , cx} do
11: listen for 1 round
12: if beep received then v ← 0; z ← 1 � z = 1: conn. to node in MIS
13: if v = 0 ∨X[k] = 0 then
14: listen for 1 round; if beep received then v ← 0; z ← 1
15: else � v = 1 ∧X[k] = 1
16: beep for 1 round

17: listen for 1 round; if beep received then v ← 0;

taking O(log n) rounds for the competition, the total run time of the algorithm
is O(log3 n).

Below we prove that if two neighbors in the network have v = 1 after the coin
flip in step i in a phase with x ≥ log n, then w.h.p., one would set v = 0 at the
end of step i of that phase and so at most one of them enters the MIS.

Lemma 3. Assume processor y collided with one or more of its neighbors setting
v = 1 in step i of phase x ≥ log n. Then the probability that y would still be
colliding with any of its neighbors at the end of the cx competition exchanges for
step i is ≤ 1

nc/3 .

Proof. If at any of the exchanges in this step all neighbors of y have v = 0 we
are done. Otherwise in each exchange, with probability at least 1/4 y decided
not to broadcast whereas one of its colliding neighbors decided to broadcast.
Thus, the probability that y does not resolve its collision in a specific exchange
is ≤ 3/4. Since there are (c log n) exchanges in this step, the probability that y is
still colliding at the end of these competition exchanges ≤ (3

4 )c log n ≤ 1
nc/3 . ��

Note that if a collision is not resolved in a specific exchange the colliding nodes
continue to broadcast in the following phase. As we proved in the previous sec-
tion, if all collisions are resolved in the O(log n) phases that follow the phase
x = log n the algorithm will result in a MIS set with very high probability. Since
we only need O(log2 n) < n steps for this, and we have n nodes, the probability
that there exists a step and a node in phase x ≥ log n such that a node that
collided during this step with a neighbor does not resolve this collision in that
step is smaller than 1

nc/3−2 . Thus, with probability ≥ 1− 1
nc/3−2 all collisions are

detected and the MIS safety condition holds.
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Stopping Criteria When an Upper Bound on the Network Size Exists.
The above algorithm leads to a MIS set and does not require knowledge of the

network size. However, the time it takes to reach an MIS is a function of the
size of the network and so if nodes do not have an estimate of this number
they cannot terminate the algorithm and need to indefinitely listen to incoming
messages. Note that, as the analysis above indicates, if a rough estimate on the
network size n exists, nodes can terminate the algorithm when x = 2 log n + 1.
At that phase we have a high probability that every collision that has occurred
during the last log n phases has been resolved (≥ 1− 1

nc/3−2 ) and as proved in the
previous section when all collisions are resolved the algorithm terminates with
very high probability. Note that when using the upper bound the algorithm is no
longer Las Vegas, but rather Monte Carlo since there is a (very low) probability
that the algorithm terminates with two neighbors that are both in the MIS.

8 Synchronized Clocks

For this section the only assumption we make on top of the beep model is that
that nodes have synchronized clocks, i.e., know the current round number t.

Algorithm: Nodes have three different internal states: inactive, competing, and
MIS. Each node has a parameter k that is monotone increasing during the exe-
cution of the algorithm. All nodes start in the inactive state with k = 6.

Nodes communicate in beep-triples, and synchronize by starting a triple only
when t ≡ 0 (mod 3). The first bit of the triple is the Restart-Bit. A beep is sent
for the Restart-Bit if and only if t ≡ 0 (mod k). If a node hears a beep on its
Restart-Bit it doubles its k and if it is active it becomes inactive. The second
bit sent in the triple is the MIS-Bit. A beep is sent for the MIS-Bit if and only
if a node is in the MIS state. If a node hears a beep on the MIS-bit it becomes
inactive. The last bit send in a triple is the Competing-Bit. If inactive, a node
listens to this bit, otherwise it sends a beep with probability 1/2. If a node hears
a beep on the Competing-Bit it becomes inactive. Furthermore, if a node is in
the MIS-state and hears a beep on the Competing-Bit it doubles its k. Lastly, a
node transitions from inactive to active between any time t and t + 1 for t ≡ 0
(mod k). Similarly, if a node is active when t = 0 mod k then it transitions to
the MIS state. In the sequel, we refer to this algorithm as Algorithm 2. The state
transitions are also depicted in Figure 1.

inactive
MIS: 0; Comp.: 0

competing
MIS: 0; Comp.: random

MIS
MIS: 1; Comp.: random

Restart : (t ≡ 0 mod k), if hear 1 then k = k · 2
t ≡ 0 mod k t ≡ 0 mod k

k = k · 2
hear 1hear 1

Fig. 1. State Diagram for Algorithm 2
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Idea: The idea of the algorithm is to employ Luby’s permutation algorithm
in which a node picks a random O(log n)-size priority which it shares with its
neighbors. A node then joins the MIS if it has the highest priority among its
neighbors, and all neighbors of an MIS node become inactive. Despite the fact
that this algorithm is described for the message exchange model, it is straight-
forward to adapt the priority comparisons to the beep model. For this, a node
sends its priority bit by bit, starting with the highest-order bit and using a beep
for a 1. The only further modification is that a node stops sending its priority if
it has already heard a beep on a higher order bit during which it remained silent
because it had a zero in the corresponding bit. Using this simple procedure, a
node can easily realize when a neighboring node has a higher priority. Further-
more, a node can observe that it has the highest-priority in its neighborhood
which is exactly the case if it does not hear any beep .

Therefore, as long as nodes have a synchronous start and know n (or an upper
bound) it is straightforward to get Luby’s algorithm working in the beep model
in O(log2 n) rounds.

In the rest of this section we show how to remove the need for an upper
bound on n and a synchronous start. We solely rely on synchronized clocks to
synchronize among nodes when a round to transmits a new priority starts. Our
algorithm uses k to compute an estimate for the required priority-size O(log n).
Whenever a collision occurs and two nodes tie for the highest priority the al-
gorithm concludes that k is not large enough yet and doubles its guess. The
algorithm uses the Restart-Bit to ensure that nodes locally work with the same
k and run in a synchronized manner in which priority comparisons start at the
same time (namely every t ≡ 0 (mod k)). It is not obvious that either a similar
k or a synchronized priority comparison is necessary but it turns out that algo-
rithms without them can stall for a long time. In the first case this is because
repeatedly nodes with a too small k enter the MIS state simultaneously while
in the second case many asynchronously competing nodes (even with the same,
large enough k) keep eliminating each other without one becoming dominant
and transitioning into the MIS state.

Analysis: To proof the algorithm’s correctness, we first show two lemmas that
show that with high probability k cannot be super-logarithmic.

Lemma 4. With high probability k ∈ O(log n) for all nodes during the execution
of the algorithm.

Proof. We start by showing that two neighboring nodes u, v in the MIS state
must have the same k and transitioned to the MIS state at the same time. We
prove both statements by contradiction.

For the first part assume that nodes u and v are in the MIS state but u
transitioned to this state (the last time) before v. In this case v would have
received the MIS-bit from u and become inactive instead of joining the MIS, a
contradiction.

Similarly, for sake of contradiction, we assume that ku < kv. In this case, dur-
ing the active phase of u before it transitioned to the MIS at time t it would have
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sent a beep at time t − ku and thus would have become inactive, contradicting
the assumption that ku < kv.

Given this we now show that for a specific node u it is unlikely to become the
first node with a too large k. For this we note that ku gets doubled because of a
Restart-Bit only if a beep from a node with a larger k is received. This node can
therefore not be responsible for u becoming the first node getting a too large
k. The second way k can increase is if a node transitions out of the MIS state
because it receives a Competing-Bit from a neighbor v. In this case, we know
that u competed against at least one such neighbor for k/6 phases with none of
them loosing. The probability of this to happen is 2−k/6. Hence, if k ∈ Θ(log n),
this does not happen w.h.p. A union bound over all nodes and the polynomial
number of rounds in which nodes are not yet stable finishes the proof. ��
Theorem 3. If during an execution the O(log n) neighborhood of a node u has
not changed for Ω(log2 n) rounds then u is stable, i.e., u is either in the MIS
state with all its neighbors being inactive or it has at least one neighbor in the
MIS state whose neighbors are all inactive.

Proof. First observe that if the whole graph has the same value of k and no
two neighboring nodes transition to the MIS state at the same time, then our
algorithm behaves exactly as Luby’s original permutation algorithm, and there-
fore terminates after O(k log n) rounds with high probability. From a standard
locality argument, it follows that a node u also becomes stable if the above as-
sumptions only hold for a O(k log n) neighborhood around u. Moreover, since
Luby’s algorithm performs only O(log n) rounds in the message passing model,
we can improve our locality argument to show that in if a O(log n) neighborhood
around u is well-behaved, then u behaves as in Luby’s algorithm.

Since the values for k are monotone increasing and propagate between two
neighboring nodes u, v with different k (i.e., ku > kv) in at most 2ku steps, it
follows that for a node u it takes at most O(ku log n) rounds until either ku

increases or all nodes v in the O(log n) neighborhood of u have kv = ku for
at least O(k log n) rounds. We can furthermore assume that these O(k log n)
rounds are collision free (i.e, no two neighboring nodes go into the MIS), since
any collision leads with high probability within O(log n) rounds to an increased
k value for one of the nodes.

For any value of k, within O(k log n) rounds a node thus either performs
Luby’s algorithm for O(log n) priority exchanges, or it increases its k. Since k
increases in powers of two and, according to Lemma 4, with high probability it
does not exceed O(log n), after at most

∑O(log log n)
i 2i · 3 · O(log n) = O(log2 n)

rounds the status labeling around a O(log n) neighborhood of u is a proper MIS.
This means that u is stable at some point and it is not hard to verify that the
function of the MIS-bit guarantees that this property is preserved for the rest of
the execution. ��
We remark that as the algorithm of Section 5, this algorithm is also robust
enough to work as-is with an adversary capable of crashing nodes (with the
same caveats on the guarantees mentioned in Section 5).
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Switzerland

Abstract. We present tradeoffs between time complexity t, bit com-
plexity b, and message complexity m. Two communication parties can
exchange Θ(m log(tb/m2)+ b) bits of information for m <

√
bt and Θ(b)

for m ≥ √bt. This allows to derive lower bounds on the time complexity
for distributed algorithms as we demonstrate for the MIS and the color-
ing problems. We reduce the bit-complexity of the state-of-the art O(Δ)
coloring algorithm without changing its time and message complexity.
We also give techniques for several problems that require a time increase
of tc (for an arbitrary constant c) to cut both bit and message complex-
ity by Ω(log t). This improves on the traditional time-coding technique
which does not allow to cut message complexity.

1 Introduction

The efficiency of a distributed algorithm is assessed with at least one out of three
classic distributed complexity measures: time complexity (number of rounds for
synchronous algorithms), communication or bit complexity (total number of bits
transmitted), and message complexity (total number of messages transmitted).
Depending on the application, one or another measure might be more relevant.
Generally speaking, time complexity has received most attention; but commu-
nication complexity (bandwidth constraints) or message complexity (accounting
for message overhead) play a vital role as well. One cannot just ignore one of the
measures, as there are tradeoffs: One may for instance sometimes cut down on
time by exchanging larger messages. Alternatively, one may save messages and
bits by communicating “silently”. Two parties may for instance communicate for
free by telephone by simply never picking up the phone, and instead letting the
phone ring for a long time when transmitting a binary 1, and just a short time
for a binary 0. A more sophisticated example for silent communication employs
time-coding to communicate information through time. As illustration consider
pulse-position modulation, as used in wireless and optical communication. A k-
bit message can be dispersed over time by encoding the message with a single
pulse in one of 2k possible slots. Employing a single pulse within time t allows to
communicate at most log t bits.1 Reducing message complexity is harder in gen-
eral, and in some cases impossible as there are dependencies between messages.
1 The amount of information that can be communicated follows directly from our

bound.
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In this paper, we identify mechanisms for symmetry breaking that cut both
message and bit complexity by a factor of log t, even though multiple messages
cannot be combined into a single message through time-coding.

Although it is well-known that these dependencies exist, to the best of our
knowledge the tradeoffs are not completely understood. A considerable amount
of work deals with both message size and time complexity. These two measures
give a (rough) bound on the bit complexity, e.g. time multiplied by message
size as an upper bound. However, we show that for a given fixed bit complexity
allowing many arbitrary small messages (i.e. consisting of 1 bit) compared to
allowing only one large message might cause a drastic (up to exponential) gain
in time. For some examples both the time and overall message complexity, i.e.
the messages transmitted by all nodes, have been optimized, but the tradeoffs
between all three have not been investigated to the best of our knowledge.

In the first part of the paper we answer questions like “If we can prolong an
algorithm by a factor t in time and can increase the number of messages by a fac-
tor m, what is the effect on the bit complexity b?” We give a tight bound on the
amount of information exchangeable between two nodes of Θ(m log(tb/m2) + b)
bits for m <

√
bt and Θ(b) for larger m. A bound on the (communicable) infor-

mation together with a bound on the minimum required information that has
to be exchanged to solve a problem yields bounds on the time-complexity. We
derive such bounds for typical symmetry breaking problems, such as coloring
and maximal independent sets. We show that for t ∈ [2, n] any MIS and O(Δ)
coloring algorithms using up to c0 logn/ log t bits and messages for a constant c0
require time t. In light of the state of the art upper bounds for unrestricted com-
munication of O(logn) using O(log n) bits for the MIS problem, and O(log∗ n)
for the O(Δ) coloring problem, our lower bound indicates that even a logarith-
mic factor of log t in the amount of transmittable bits can make more than an
exponential difference in time.

In the second part, we identify two coding schemes, i.e. transformations, to
gain a factor log t in bit as well as message complexity by a time increase of tc

that cannot be achieved with traditional time coding. We employ them to de-
terministic and randomized coloring and maximal independent set algorithms.
Our techniques are applicable beyond these problems, e.g. for certain divide-
and-conquer algorithms. We also improve the bit complexity for the fastest ran-
domized O(Δ+log1+1/ log∗ n n) coloring for Δ being at least polylogarithmic, i.e.
from O(logΔ logn) to O(logn log logn), while maintaining its time complexity.

2 Related Work

In [7] the notion of “bit rounds” was introduced in the context of a coloring
algorithm, where a node must transmit either 0 or 1 in one bit round. This
bit round complexity is an interesting hybrid between time and bit complexity,
particularly useful in systems where sending a single bit does not incorporate a
significant protocol overhead. The paper [7] also states a lower bound of Ω(log n)
bit rounds to compute a coloring on a ring. In contrast, our bit-time complexity
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model is motivated by the fact that in practice time is frequently divided into
slots, i.e. rounds, and nodes might not transmit at all in a slot or they might
transmit more than a single bit. In some sense, the bit-time complexity model
unifies algorithm complexity focusing on running time and communication com-
plexity. For a survey on communication complexity see [11]. In a common set-up
two (or more) parties A,B want to compute a function f that depends on values
held by A and B and the goal is to derive bounds on the needed information.
For example, [16] shows that for some network topologies (involving more than
two nodes) reducing the number of allowed message exchanges by 1 can expo-
nentially increase the time complexity. The amount of exchangeable information
between two parties given a certain number of messages and time can be found
in e.g. [17]. To the best of our knowledge, we are the first to extend the tradeoff
to allow for a variable number of bits per message.

In [3] the communication complexity of breaking symmetry in rings and chains
is investigated. In [4] the running time of MIS algorithms is investigated depend-
ing on the amount of advice (measured in bits) that nodes are given before the
start of the algorithm. For a ring graph it is shown that Ω(n/ log(k) n) bits of
information are needed for any constant k to break the lower bound of Ω(log∗ n)
[12]. At first, asking a global instance, knowing the exact topology of the graph,
for advice seems to contradict the distributed approach. But the question re-
garding the amount of needed information to solve a task is interesting and
valuable for enhancing the understanding of distributed algorithms. In partic-
ular, since some (aggregate) knowledge of the graph is often necessary for an
efficient computation, e.g. the type of the graph.

There is a myriad of papers for different problems that consider two complex-
ity measures. However, whereas many papers concentrate on time complexity
and merely mention message size [14,13,8,1,2], others derive explicit tradeoffs
[5,15,6].

In a paper by Métivier et al. [15] an algorithm for the MIS problem was stated
running in time O(logn) with bit complexity O(logn) for general graphs. It im-
proves on the bit complexity of the fastest algorithm [14]. Essentially, each node
draws a random number in [0, n] and is joined the MIS, if its number is the small-
est. Our MIS algorithm trading time for bit/message complexity improves on [14]
through a different technique. For the MIS problem arbitrary large messages do
not allow for an arbitrary fast algorithm, i.e. in general graphs every algorithm re-
quires at leastΩ(

√
logn/ log logn) orΩ(logΔ/ log logΔ) communication rounds

for computing a MIS [9]. Interestingly, the opposite is true: An arbitrarily slow
algorithm allows for constant message and bit complexity. The lower bound is
achieved with a pseudo-symmetric graph, such that a node needs to get to know
its neighborhood up to distance Ω(

√
logn/ log logn) or Ω(logΔ/ log logΔ). For

the coloring problem, [18] presented a technique, where nodes select multiple
colors and keep any of them, if it is not also selected by a neighbor. The bit
complexity for Δ + 1 as well as O(Δ) algorithms is O(logΔ log n). The lat-
ter runs in time O(log∗ n) for graphs with Δ ∈ Ω(log1+1/ log∗ n n). Recently,
[19] used [18] to derive a (1 − 1/O(χ))(Δ + 1) coloring, where χ denotes the
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chromatic number of the graph. Deterministic Δ + 1 coloring algorithms [1,8]
are faster for graphs of sublogarithmic degrees, i.e. need O(Δ+ log∗ n) time and
might require a message exchange of size O(logn) in a communication round.

Apart from applications that rely only on pure time-coding, in [20] a data
gathering protocol is implemented saving on energy and bandwidth by coding
messages partly through time.

3 Model and Definitions

The communication network is modeled with a graph G = (V,E). For each
node, there exists a distinct communication channel (edge) to each neighbor.
Initially, a node v only knows the number of neighbors |N(v)| and has no other
information about them. We use the message passing model, i.e. each node can
exchange one distinct message with each of its neighbors in one synchronous
communication round. Communication is error free. All nodes start executing
the algorithm concurrently. The time complexity denotes the number of rounds
until the last node terminates.

In a (vertex) coloring any two neighboring nodes u, v have a different color. A
set T ⊆ V is said to be independent in G if no two nodes u, v ∈ T are neighbors.
A set S ⊆ V is a maximal independent set (MIS), if S is independent and there
exists no independent superset T ⊃ S. In our algorithm a node remains active
as long as it might still join the MIS, i.e. as long as it has no neighbor in the MIS
and it is not in the MIS itself. Inactive nodes are removed from the graph G. For
a node v its neighborhood N r(v) represents all active nodes within r hops of v
(not including v itself). We use N(v) for N1(v). The r hop neighborhood N r(v)
including v is denoted by N r

+(v). The term “with high probability” abbreviated
by w.h.p. denotes the number 1−1/nc for an arbitrary constant c. The maximum
degree is denoted by Δ and ΔN+(v) denotes the maximum degree of a node in
N+(v), i.e. ΔN+(v) := maxu∈N+(v) d(u).

The bit complexity denotes the maximum sum of the number of bits trans-
mitted over any edge during the execution of the algorithm, i.e. if an algorithm
has time complexity t then the bit complexity is maxe∈E

∑t−1
r=0 be(r), where be(r)

denotes the number of bits transmitted over edge e in round r. Analogously, the
message complexity denotes the maximum number of messages transmitted over
any edge.

The time complexity of a distributed algorithm is traditionally defined as the
number of communication rounds until the last node completes the algorithm.
Somewhat inconsistently, message respectively bit complexity often measure the
total of all exchanged messages respectively bits (of all nodes) or the expectation
of message and bits exchanges of a single node during the execution. In this
paper, analogous to the definition of time complexity, we consider the worst
node only; in other words, the message respectively bit complexity is given by
the number of messages or bits exchanged by the most loaded node. Both views
have their validity, are commonly used and sometimes even coincide. The focus
on a more local “maximum” measure is motivated by the observation that for
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distributed systems, an individual node might often form a bottleneck, and delay
an algorithm, although overall the constraints on bandwidth, energy etc. are
fulfilled. For example, if a single node in a battery powered sensor network must
transmit much more often than other nodes, it will become non-operational much
more quickly. This might have devastating effects on the network topology, e.g.
disconnecting it and thereby preventing further data aggregation.

4 Tight Bounds on the Transmittable Information

In all (reasonable) distributed algorithms nodes must exchange a certain mini-
mum of information with their neighbors. The amount of exchanged information
is not only given by the total amount of bits contained in the messages, but also
by the times, when the messages were sent and the size of the messages. In other
words, the number of different (observable) behaviors of a node v by a neighbor
u, i.e. the number of different ways v can communicate with u, determines the
total amount of exchanged information between two nodes. We first bound the
number of exchangeable information between two communication parties. By us-
ing a lower bound for the minimum needed amount of exchanged information for
any kind of problem one therefore gets a lower bound on the time complexity of
any algorithm depending on the bits and messages exchanged. We illustrate this
general technique by deriving lower bounds for the MIS and coloring problem.

Theorem 1. If a node executes t rounds using up to m ≤ t messages (at most
one message per round) with a total of b ≥ m bits within messages (i.e. at least
one bit per message), it can communicate in total Θ(m log(tb/m2) + b) bits for
m <

√
bt and Θ(b) bits for m ≥ √bt.

Proof. A node can decide not to transmit at all or it can transmit in nr ∈ [1,m]
rounds {r1, r2, ..., rnr} with ri ∈ [0, t − 1] for 1 ≤ i ≤ nr. In each chosen round
ri the node transmits at least one bit. The total number of choices of rounds
is given by

(
t

nr

)
. Say a node wants to transmit nri bits in round ri then the

sum of all bits transmitted nt in all rounds must be at least nr and at most
b, i.e. nr ≤ nt :=

∑nr

i=‘ nri ≤ b. Thus the number of all possible sequences
(nr1 , nr2 , ..., nrnr

) with nri ∈ [1, b−nr +1] is given by the composition of nt into
exactly nr parts, i.e. the number of ways we can write nt as a sum of nr terms,
i.e.

(
nt−1
nr−1

) ≤ (
nt

nr

)
. Each of the at most nt transmitted bits can either be 0 or

1, yielding 2nt combinations. Multiplying, these three terms and adding one for
the case that a node does not transmit, i.e.

(
t

nr

) · (nt−1
nr−1

) · 2nt + 1, gives a bound
on the different behaviors of a node for a fixed nr. Thus, overall the number of
behaviors is upper bounded by:

1 +
m∑

nr=1

b∑
nt=nr

(
t

nr

)
·
(
nt

nr

)
· 2nt ≤ 1 +mb · max

1≤nr≤m,0≤nt≤b

(
t

nr

)
·
(
nt

nr

)
· 2nt

≤ 1 +mb · max
1≤nr≤m

(
t

nr

)
·
(
b

nr

)
· 2b
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The last inequality follows due to nr ≤ nt ≤ b. We have
(
n
k

) ≤ (ne/k)k, thus(
b

nr

) ≤ (eb/nr)nr . Continuing the derivation we get:

≤ 1 +mb · max
1≤nr≤m

(et/nr)nr · (eb/nr)nr · 2b ≤ 1 +mb · 2b max
1≤nr≤m

(e2bt/n2
r)

nr

Next we compute the maximum:

d

dnr
(e2bt/n2

r)
nr = (e2bt/n2

r)
nr · (ln(e2bt/n2

r)− 2) = 0

⇔ ln(e2bt/n2
r)− 2 = 0 ⇔ e2bt/n2

r = e2 ⇔ nr =
√
bt

For m ≥ √bt we get: 1 +mb · 2b max1≤nr≤m(e2bt/n2
r)nr ≤ (m+ 1) · 2b · (e2)

√
bt

For m <
√
bt: 1+mb ·2b max1≤nr≤m(e2bt/n2

r)nr ≤ (m+1)(b+1) ·2b(e2bt/m2)m

Taking the logarithm yields the amount of transmittable information being
asymptotically equal to O(m log(tb/m2) + b) for m <

√
bt, since t ≥ m and

b ≥ m and O(b +
√
bt) = O(b) for b ≥ m ≥ √bt.

With the same reasoning as before a lower bound can be computed. We use(
n
k

) ≥ (n/k)k we have
(

b−1
nr−1

) ≥ ((b − 1)/(nr − 1))nr−1.

1 +
m∑

nr=1

b∑
nt=nr

(
t

nr

)
·
(
nt − 1
nr − 1

)
· 2nt ≥ max

1≤nr≤m,0≤nt≤b

(
t

nr

)
·
(
nt − 1
nr − 1

)
· 2nt

≥ max
1≤nr≤m

(
t

nr

)
·
(
b− 1
nr − 1

)
· 2b ≥ 2b max

1≤nr≤m
(t/nr)nr · ((b − 1)/(nr − 1))nr−1

≥ 2b max
1≤nr≤m

((b − 1)t/((nr − 1)nr))nr−1 ≥ 2b max
1≤nr≤m

((b − 1)t/n2
r)

nr−1

Next we compute the maximum:

d

dnr
((b − 1)t/n2

r)
nr−1 = ((b− 1)t/n2

r)
nr−1 · (ln(((b − 1)t/n2

r))− 2 + 1/nr) = 0

⇔ ln((b−1)t/n2
r)−2+1/nr = 0⇔ (b−1)t/n2

r = e2−1/nr ⇔ nr =
√

(b− 1)t/e1+1/(2nr)

For m ≥ √
(b− 1)t/e1+1/(2nr) we have: 2b max1≤nr≤m((b − 1)t/n2

r)nr−1 ≥
2b(e2)

√
(b−1)t/e2−1

For m <
√

(b − 1)t/e1+1/(2nr): 2b max1≤nr≤m((b − 1)t/n2
r)

nr−1 ≥ 2b(e2(b −
1)t/m2)m−1

This, yields Ω(m log(tb/m2) + b) for m <
√

(b − 1)t/e1+1/(2nr), since t ≥ m

and b ≥ m and Ω(b+
√
bt) ≥ Ω(b) for m ≥√

(b− 1)t/e1+1/(2nr).
Overall, the bounds become Θ(m log(tb/m2) + b) for m <

√
bt and Θ(b)

otherwise.
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Corollary 2. The amount of information that k parties can exchange within
t rounds, where each party can communicate with each other party directly and
uses up to m ≤ t messages (at most one message per round) with a total of b ≥ m
bits (i.e. at least one bit per message) is Θ(km log(tb/m2)+ b) for m <

√
bt and

Θ(kb) bits for m ≥ √bt.
Proof. Compared to Theorem 1, where one node A only transmits data to an-
other node B, the number of observable behaviors if k nodes are allowed to
transmit is raised to the power of k, i.e. if one node can communicate in x dif-
ferent ways then the total number of observable behaviors becomes xk. Taking
the logarithm gives the amount of exchangeable information for k parties, i.e.
log(xk) = k log x, where log x is the amount of information a single node can
transmit as stated in Theorem 1.

4.1 Lower Bound on the Time Complexity Depending on the Bit
(and Message) Complexity

We first bound the amount of information that must be exchanged to solve the
MIS and coloring problem. Then we give a lower bound on the time complexity
depending on the bit complexity for any MIS and coloring algorithm where a
message consists of at least one bit.

Theorem 3. Any algorithm computing a MIS (in a randomized manner) in a
constant degree graph, where each node can communicate less than c0 logn bits
for some constant c0 fails (w.h.p.).

The intuition of the so called “fooling set” argument proof is as follows: If a node
cannot figure out what its neighbors are doing, i.e. it is unaware of the IDs of
its neighbors, its chances to make a wrong choice are high.

Proof. Let us look at a graph being a disjoint union of cliques of size 2, i.e. every
node has only one neighbor. A node can communicate in up to 2c0 log n = nc0

distinct ways. In the deterministic case, let Bu ∈ [0, nc0 − 1] be the behavior
that a node u decides on given that it sent and received the same information
throughout the execution of the algorithm. Clearly, before the first transmission
no information exchange has occurred and each node u fixes some value Bu.
Since there are only nc0 distinct values for n nodes, there exists a behavior
B ∈ [0, nc0 − 1], which is chosen by at least n1−2c0 nodes given that they sent
and received the same information.

Consider four arbitrary nodes U = {u, v, w, x} that receive and trans-
mit the same information. Consider the graph with G′ = (U, {(u, v), (w, x)})
where u, v and also w, x are incident, G′′ = (U, {(v, w), (u, x)}) and G′′′ =
(U, {(u,w), (v, x)}). Note that u, v, w, x have no knowledge about the identity
of their neighbors (They only know that their degrees are 1). Assume a deter-
ministic algorithm correctly computes a MIS for G′ and v is joined the MIS,
then u is not joined the MIS in G′ but also not in G′′′, since it cannot distin-
guish G′ from G′′′. Thus w must join the MIS to correctly compute a MIS for
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G′′′. Therefore, both v, w are joined the MIS S in G′′ and thus S violates the
independence condition of a MIS.

For the randomized case the argument is similar. Before the first transmission
all nodes have received the same information. Since there are only nc0 distinct
behavior for n nodes at least a set S of nodes of cardinality |S| ≥ n1−c0 will decide
to transmit the same value B with probability at least 1/n2c0 (given a node sent
and received the same information). Now, assume we create a graph by iteratively
removing two randomly chosen nodes u, v ∈ S and adding an edge (u, v) between
them until S is empty. For each node v ∈ S must specify some probability to
be joined the MIS. Assume the algorithm sets at least |S|/2 nodes to join with
probability at least 1/2. Given that at most |S|/4 nodes have been chosen from
S to form pairs, the probability that two nodes u, v out of the remaining nodes
joining the MIS with probability 1/2, i.e. ≥ |S|/2 − |S|/4 = |S|/4 nodes, are
paired up is at least 1/16 independently of which nodes have been paired up
before. The probability that for a pair u, v behaving identically both nodes u, v
join (and thus the computation of the MIS fails) is at least 1/4. Since we have
|S|/2 = n1−2c0/2 pairs, we expect a set S′ ⊂ S of at least n1−6c0/2 · 1/16 · 1/4
pairs to behave identically and join the MIS. Using a Chernoff bound for any
constant c0 < 1/6 at least |S′| ≥ n1−6c0/1024 nodes behave identically with
probability at least 1− 1/nc for an arbitrary constant c.

An analogous argument holds if less |S|/2 nodes are joined with probability
more than 1/2. In this case for some pairs u, v w.h.p. no node will join the MIS.

Theorem 4. Any algorithm computing a MIS or coloring deterministically (or
in a randomized manner) transmitting only b ≤ c1

log n
log(t/ log n) bits per edge with

t ∈ [2 logn, nc2] for constants c1, c2 requires at least t time (w.h.p.). For t <
2 logn and b ≤ c1 logn bits no algorithm can compute a MIS (w.h.p.).2

Proof. If m ≥ √tb using the bound of Θ(b) of Theorem 1, a node can communi-
cate at most cthmc1 logn bits for a constant cthm. We have cthmc1 logn ≤ c0 logn
for a suitable constant c1. Due to Theorem 3 at least c0 logn bits are needed.
For t < 2 logn and b ≤ c1 logn, we have

√
tb ≤ 2c1 logn. If m <

√
tb, then

the amount of transmittable information becomes (neglecting cthm for now)
(m log(tb/m2) + b) ≤ √

tb log 2 + c1 logn ≤ 3c1 log n ≤ c0 logn for a suitable
constant c1.

For t ≥ 2 logn and m ≤ b ≤ √
tb the amount of transmittable in-

formation becomes O(m log(tb/m2) + b). We have maxm≤bm log(tb/m2) ≤
b log(t/b). The maximum is attained for m = b. Using the assumption b ≤
c1

log n
log(t/ log n) , we get further: b log(t/b) ≤ c1 log n

log(t/ log n) ·log(t log(t/ logn)/ logn) =

c1
log n

log(t/ log n) ·(log(t/ logn) + log(log(t/ logn))) = c1 logn
(
1 + log(log(t/ log n))

log(t/ log n)

)
≤

2c1 logn(since t ≤ n). Thus, we have m log(tb/m2)+b ≤ 2c1 logn+b ≤ 3c1 logn.
2 Note that the theorem does not follow directly from Theorem 3, since the number

of bits that can be communicated using time-coding is generally larger than b, i.e.
see Theorem 1.
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Due to Theorem 3 at least c0 logn bits required, thus for 3c1cthm < c0 at least
time t is required. The lower bound for the MIS also implies a lower bound for
O(Δ) coloring, since a MIS for constant degree graphs can be computed from a
coloring in constant time, i.e. in round i nodes with color i are joined the MIS,
if no neighbor is already in the MIS.

In a later section, we give an algorithm running in time O(t log n) using
O(log n/ log t) messages and bits. Thus, there exists an algorithm running in
O(log n) time transmitting only logn/c messages containing one bit for any con-
stant c. On the other hand, due to our lower bound any algorithm that transmits
only one message containing log n/c bits for a sufficiently large constant c re-
quires time n1/c1 for some constant c1 and is thus exponentially slower.

5 Algorithms Trading among Bit, Message, and Time
Complexity

We look at various deterministic and randomized algorithms for the coloring
and the maximal independent set problem as case studies. Before showing the
tradeoffs we reduce the bit complexity of the algorithms without altering the
time complexity. Then we show two mechanisms how prolonging an algorithm
can be used to reduce the bit and – at the same time – the message complexity.

The first mechanism is straight forward and useful for randomized algorithms
for symmetry breaking tasks, e.g. for MAC protocols where nodes try to acquire
a certain resource. Assume a node tries to be distinct from its neighbors or
unique among them. For example, for the coloring problem, it tries to choose
a distinct color from its neighbors. For the MIS problem it tries to mark itself,
and joins the MIS, if no neighbor is marked as well. Thus, if two neighbors get
marked or pick the same color, we can call this a collision. We can reduce the
probability of collisions by reducing the probability of a node to pick a color or
get marked in a round. Thus, if a node only transmits if it has chosen a color or
got marked, this causes less bits to be transmitted.

The second mechanism is beneficial for certain distributed algorithms that
solve problems by iteratively solving subproblems and combining the solutions.
Often the size (or number) of subproblems determines the number of iterations
required, e.g. for divide and conquer algorithms. Assume that a distributed al-
gorithm requires the same amount of communication to solve a subproblem
independent of the size of the subproblem. In this case, by enlarging the size
of the subproblem, the total number of iterations and thus the total amount of
information to be transmitted can be reduced.

Apart from that there are also general mechanisms that work for any algo-
rithm. Encoding information using the traditional time coding approach for k
rounds works as follows: To transmit a value x we transmit x div k in round
x mod k.3 Thus, in case k ≥ 2x − 1 a single message of one bit is sufficient.
3 The division operation x div k returns an integer value that states how often number

k is contained in x.
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Otherwise log x − log k bits are needed. Our lower bound (Theorem 1) shows
that a value of log x bits can be communicated by transmitting less than logx
bits using more than one message and more than one communication round.

5.1 Coloring Algorithm

In the randomized coloring algorithms using the Multi-Trials technique [18] a
node v picks a random number in [0, Δ] for each color not taken by one of its
neighbors. Thus, given that a node can choose among C(v) unused colors, the
size of a message is logΔ · |C(v)|. In [18] this is improved by letting a node pick
one color out of every maxu∈N(v) 2d(u) colors. This results in bit complexity of
O(logΔ logn) for O(Δ) and Δ+ 1 coloring. We use the improved algorithms as
subroutines.

To lower the bit complexity while maintaining the same time complexity we
let nodes get a color in two steps. First, a node picks an interval of colors. Second,
it attempts to obtain an actual color from the chosen interval.

5.2 Randomized O(Δ + log1+1/ log∗ n n) Coloring

We assume that initially each node v has |C(v)| = (1 + 1/2log∗ n−2)(ΔN+(v) +
log1+1/ log∗ n n) colors available. Each node v considers disjoint intervals
([0, l − 1], [l, 2l − 1], ...) of colors, where each interval contains l := (1 +
1/2log∗ n−1) log1+1/ log∗ n n colors and the total number of intervals is given by
|C(v)|/l. A node v first picks one of these intervals I(v) ∈ {0, 1, ..., |C(v)|/l} of
colors uniformly at random. From then on, it only considers a subgraph GI(v) of
G, i.e. only neighbors u ∈ N(v) that have picked the same interval I(u) = I(v).
All other neighbors operate on different intervals and have no influence on node
v. Then, a coloring is computed in parallel for all subgraphs. That is to say, node
v executes Algorithm ConstDeltaColoring [18] on GI(v) and tries to get a color
or better said an index indI(v) from {0, 1, ..., l− 1} in the interval I(v). Its final
color is given by the indI(v) plus the color offset I(v) · l of the chosen interval
I(v).

Lemma 1. Each node v has at most log1+1/ log∗ n n neighbors u ∈ N(v) with
I(u) = I(v) w.h.p.

Proof. Initially, each node picks independently uniformly at random one in-
terval out of (1 + 1/2log∗ n−2)ΔN+(v)/((1 + 1/2log∗ n−1) log1+1/ log∗ n n) = c1 ·
ΔN+(v)/ log1+1/ log∗ n n many with c1 = (2log∗ n−1 + 2)/(2log∗ n−1 + 1). Thus, a

node v expects E ≤ ΔN+(v)

c1·ΔN+(v)/ log1+1/ log∗ n n
= log1+1/ log∗ n n/c1 neighbors to

have chosen the same interval. Using a Chernoff bound the probability that
there are more than a factor 1 + c1/2 nodes beyond the expectation for a single
interval is bounded by 1− 2−c2

1/8·E = 1− 2−c1/8 log1+1/ log∗ n n/c1 ≥ 1− 1/nc0 for
an arbitrary constant c0. Thus, w.h.p. the number of nodes in an interval is at
most (1 + c1/2) · log1+1/ log∗ n n/c1 ≤ log1+1/ log∗ n n. The probability that this
holds for all intervals can be bounded to be 1− 1/nc0−3 using Theorem 2 from
[18].
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Theorem 5. The algorithm computes an O(Δ + log1+1/ log∗ n n) coloring with
bit complexity O(logn log logn) in time O(log∗ n) w.h.p. (for sufficiently
large n).

Proof. The initial transmission of the interval requires at most logn bits, i.e.
logΔ− log logn. Afterwards, when all nodes are split into subgraphs, the same
analysis applies as for the ConstDeltaColoring Algorithm from [18] with Δ ≤
log1+1/ log∗ n n, since each node only competes with at most log1+1/ log∗ n n − 1
other nodes due to Lemma 1 and we have (1 + 1/2log∗ n−1) log1+1/ log∗ n n avail-
able colors. The colors are picked such that the chance of getting a chosen color
is constant, i.e. a node u picks one color for every sequence of 2ΔN+(v) available
colors, where ΔN+(v) denotes the maximum size of an uncolored neighborhood
of an uncolored node v ∈ N(u) before the current communication round. Thus,
each node v that picks a color has probability 1/2 to actually get a color inde-
pendent of the choices of its neighbors, since the number of chosen colors of all
neighbors together is at most ΔN+(v), i.e. half the colors of all available colors
2ΔN+(v) and node v makes its choice independent of the concurrent choices of its
neighbors. Thus, after a node has picked and transmitted O(log n) colors with
probability 1 − 1/2O(log n) = 1 − 1/nc for an arbitrary constant c, a node has
obtained a color. Since each color requires log logn bits the total bit complexity
is O(logn log logn). We can apply Corollary 14 [18] that gives a running time of
O(log∗ n) w.h.p.

5.3 Rand. O(Δ) Coloring in Time tc using O(log n/ log t) Bits

One could use the previously described algorithm and traditional time coding
to save on the bit complexity maintaining the same number of transmitted mes-
sages. For readability and to illustrate both concepts quantitatively we focus
on the case tc ≥ log2+ε n (for an arbitrary small constant ε), where one can
save on both: the message complexity by a factor of log t and the bit complex-
ity by a factor of log logn log t.4 A node initially chooses an interval consisting
of (1 + 1/2log∗ n−2) log1+1/ log∗ n n colors. Then the node iteratively transmits a
single bit in a random round out of every tp = tc/(c1 logn1+1/ log∗ n) rounds. If
it is the only one transmitting, it chooses a color, informs its neighbors about
the obtained color and ends the algorithm.

Theorem 6. The algorithm computes an O(Δ + log1+1/ log∗ n n) coloring with
bit complexity O(logn/ log t) in time tc + O(log∗ n) for any parameter c and t
such that tc ≥ log2+ε n and t ≤ n for an arbitrary constant ε > 0 w.h.p.

Proof. The initial transmission of the interval requires less than logn bits,
i.e. logΔ − log logn. We can use Theorem 1 with b = m = O(log n/ log t)
messages m and bits b and at least tc/2 ≥ (log2+ε n)/2 rounds. Since√
bt > m the amount of information that can be communicated is

4 For small t ≤ 2 log n it is not possible to achieve bit complexity c1 log n/ log t for a
fixed constant c1 due to the lower bound given in Theorem 4.
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Algorithm FewBitsDeltaColoring, i.e. (1+ε)Δ for ε > 1/2log∗ n−2 and parameter
t > log2+ε n

1: s(v) := none; indI(v) := none; C(v) := {0, 1, ..., (1 + ε) log1+1/ log∗ n n− 1}
2: I(v) := random integer r ∈ [0, (1 + ε)ΔN+(v)/ log1+1/ log∗ n n + 1]
3: Transmit I(v) to all neighbors u ∈ N(v) using time tc/2 and log n/ log t bits and

messages
4: NI(v)(v) := {u ∈ N(v)|I(v) = I(u)} {Only consider nodes in the same interval}
5: i := 0; tp := tc/(c1 log1+1/ log∗ n n) {with constant c1}
6: repeat
7: if i mod tp = 0 then ts(v) := Random odd number in [0, tp] end if
8: if ts(v) = i then
9: Transmit 1

10: if nothing received then
11: indI(v) := arbitrary available color
12: Transmit indI(v)

13: end if
14: end if
15: N(v) := {u|u ∈ NI(v)(v) ∧ colorI(u) = none}
16: C(v) := C(v) \ {indI(u)|u ∈ N(v)}
17: i := i + 1
18: until indI(v) 
= none

19: color(v) := indI(v) + I(v) · (1 + ε) log1+1/ log∗ n n

Θ(m log(tb/m2) + b) = O(log n/ log t log(t/(logn/ log t)) + logn/ log t) ≥
O(log n/ log t log(t log t/ logn)) ≥ O(log n/ log t(log t + log(log t/ logn))) =
O(log n + logn(log log t/ log t − log logn/ log t) = O(log n) bits, since
log logn/ log tc < 1/2 because tc ≥ log2+ε n .

Due to Lemma 1 each node v has at most Δ0 := log1+1/ log∗ n n neighbors
competing for the (1+1/2log∗ n−2) log1+1/ log∗ n n colors of v’s chosen interval. A
node v transmits one bit for each interval of length tp. Since nodes make their
choices independently, the probability that node v is the only node transmit-
ting is at least 1 − Δ0/tp, corresponding to the worst case that all neighbors
transmit in different rounds. We have Δ0/tp = Δ0/(tc/(c2 log1+1/ log∗ n n) =
Δ0 · c2 log1+1/ log∗ n n/tc ≤ c2 log2+2/ log∗ n n/tc(due to Lemma 1) ≤ 1/tc·1/c3

for some constant c3 since tc ≥ log2+ε n.Thus the chance O(logn/ log t) =
c4 logn/ log t trials fail is (1/tc/c3)c4 log n/ log t = 1/nc1 for an arbitrary constant
c1 and a suitable constant c4.

5.4 Deterministic Δ + 1 Coloring

We adapt an algorithm [10] to turn a Δk coloring for any constant k into a Δ+1
coloring in time O(tcΔ logΔ) using O(logΔ/ log t) messages of size O(logΔ) and
for an arbitrary parameter t and arbitrary constant c. The algorithm reduces the
number of used colors in an iterative manner by splitting up the whole range
of colors into sequences of colors of size at least 2tc(Δ + 1). Consider all nodes
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SI that have a color in some sequence I consisting of 2tc(Δ + 1) colors, e.g.
I = {0, 1, ..., 2tc(Δ+ 1)− 1}. To compress the range of used colors to [0, Δ], we
can sequentially go through all 2tc(Δ + 1) colors and let node v ∈ SI choose
the smallest available color, i.e. in round i a node having the ith color in the
interval I can pick a new color from I not taken by any of its neighbors. After
going through all colors, we combine 2tc intervals {I0, I1, ..., I2tc−1} to get a new
interval I ′ of the same size, i.e. 2tc(Δ + 1) − 1. A node v with color i from Ij
with i ∈ [0, Δ] gets color c(v) = j · (Δ+ 1)+ i in I ′. Then we (recursively) apply
the procedure again on all intervals I ′.

Theorem 7. The deterministic Δ+1 coloring terminates in time O(tcΔ logΔ)
having bit complexity O(log2Δ/ log t) and message complexity O(logΔ/ log t) for
any parameter 1 < t ≤ Δ and any constant c.

Proof. We start from a correct Δk coloring for some constant k. A node gets to
pick a color out of a sequence (c1, c1 + 1, ..., c1 + 2tc(Δ+ 1)− 1) of 2tc(Δ + 1)
colors for c1 := c02tc(Δ + 1) and an arbitrary integer c0. Thus it can always
pick a color being at most c1 +Δ since it has at most Δ neighbors. After every
combination of intervals requiring time 2tc(Δ+1), the number of colors is reduced
by a factor of 2tc. We require at most x = k logΔ/ log(2tc) combinations since
(2tc)x = Δk. Therefore, the overall time complexity is O(tcΔ logΔ). In each
iteration a node has to transmit one color out of 2tc(Δ+1) many, i.e. a message
of log(2tc(Δ + 1)) = O(logΔ) bits (since tc ≤ Δ) giving O(log2Δ/ log t) bit
complexity.

5.5 MIS Algorithm

Our randomized Algorithm LowBitAndFast is a variant of algorithm [14]. It
proceeds in an iterative manner. A node v marks itself with probability 1/d(v).
In case two or more neighboring nodes are marked, the choice which of them
is joined the MIS is based on their degrees, i.e. nodes with higher degree get
higher priority. Since degrees change over time due to nodes becoming adjacent
to nodes in the MIS, the degree has to be retransmitted whenever there is a
conflict. Our algorithm improves Luby’s algorithm by using the fact that the
degree d(u) of a neighboring node is not needed precisely, but an approximation
d̃(u) is sufficient. Originally, each node maintains a power of two approximation
of the degrees of its neighbors, i.e. the approximation is simply the index of the
highest order bit equal to 1. For example, for d(v) having binary value 10110, it
is 4. The initial approximate degree consists of log logn bits. It is transmitted
using (well known) time coding for x = logn rounds, i.e. to transmit a value k
we transmit k div x in round k mod x. When increasing the time complexity by
a factor of tc0 for an arbitrary constant c0, a node marks itself with probability
1/(tc0 d̃(v)) for tc0 rounds, where the approximation is only updated after the tc0

rounds. Afterwards, a node only informs its neighbors if the degree changed by
a factor of at least two. For updating the approximation we use time message
coding for tc0 rounds and a constant number of messages and bits. Whenever a
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Algorithm LowBitAndFast for arbitrary value tc0 ≥ 16

For each node v ∈ V :
1: d̃(v) := index of highest order bit of 2|N(v)| {2 approximation of d(v)}
2: Transmit d̃(v) to all neighbors u ∈ N(v) using time coding for log n rounds
3: loop
4: for i = 1..tc0 do
5: Choose a random bit b(v), such that b(v) = 1 with probability 1

4tc0 ·d̃(v)

6: Transmit b(v) to all nodes u ∈ N(v)
if b(v) = 1 ∧ �u ∈ N(v), b(u) = 1 ∧ d̃(u) ≥ d̃(v) then Join MIS end if

7: end for
8: k(v) := max{�log i�|integer i, d̃(v)

i
≥ d(v)}

9: if k(v) > c0/2 log t then
10: Transmit k(v) using time message coding for tc0 rounds using c2 messages

of size 1 bit
11: d̃(v) := d̃(v) div 2k(v) + d̃(v) mod 2k(v)

12: end if
13: for all received messages k(u) do
14: d̃(u) := d̃(u) div 2k(u) + d̃(u) mod 2k(u)

15: end for
16: end loop

node is joined the MIS or has a neighbor that is joined, it ends the algorithm
and informs its neighbors.

Theorem 8. Algorithm LowBitAndFast terminates in time O(tc0 logn)
w.h.p. having bit and message complexity O(log n/ log t).

The analysis is analogous to [14] and differs only in the constants. The proof can
be found in [21].
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Abstract. Numerous problems in Theoretical Computer Science can be
solved very efficiently using powerful algebraic constructions. Computing
shortest paths, constructing expanders, and proving the PCP Theorem,
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algorithms that do not use heavy algebraic machinery, but have the same
(or better) efficiency has become a central field of study in this area. Com-
binatorial algorithms are often simpler than their algebraic counterparts.
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additional understanding of studied problems. In this paper we initiate
the study of combinatorial algorithms for Distributed Graph Coloring
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by a graph G = (V, E) of maximum degree Δ. The vertices of G host the
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imal Independent Set in O(Δ + log∗ n) time on general graphs, and in
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1 Introduction

1.1 Algebraic versus Combinatorial Algorithms

It is a common scenario in Theoretic Computer Science that very strong results
are achieved by powerful non-combinatorial techniques. In many occasions con-
sequent research focuses on devising combinatorial counterparts to these results.
This quest for combinatorial algorithms is often justified by the desire to obtain
better understanding of the problem at hand. In some cases it also leads to more
efficient and simple algorithms.

One notable example of such development is the celebrated PCP theorem.
This famous result was achieved [3,12] by algebraic techniques. Recently a sig-
nificant research effort was invested in devising a combinatorial proof for this
result [10,21]. Another important example is expanders and Ramanujan graphs.
Near-optimal algebraic constructions of expanders were devised in [1,19]. Rein-
gold, Vadhan and Wigderson [26] devised the first combinatorial construction
of expanders. Though the parameters of these combinatorial constructions are
somewhat inferior to algebraic ones, the techniques that were developed as a part
of this effort turned out to be useful for devising a log-space S-T-connectivity
algorithm [25]. Also, consequently to the work of [26], improved combinatorial
constructions of expanders and near-Ramanujan graphs were devised in [8].

This phenomenon occurs also in approximation algorithms. Linear and semidef-
inite programming is an extremely powerful algebraic technique in this area.
However, it is an active line of research to explore how well one can do without
linear programming. Yet another example of this phenomenon is algorithms for
computing (almost) shortest paths. Very efficient algorithms for this problem
were achieved about twenty years ago via fast matrix multiplication. Recently,
combinatorial algorithms for this problem were devised, which, in some scenar-
ios, outperform their algebric counterparts.

1.2 Distributed Coloring

We study the distributed coloring problem. We are given an n-vertex unweighted
undirected graph G = (V,E), with each vertex v ∈ V hosting a processor.
The processors share no common memory. They communicate with each other
by sending short messages (of size O(log n) each) over the edges of E. The
communication is synchronous, i.e., it occurs in discrete rounds. All vertices wake
up simultaneously. Each vertex v ∈ V has a unique identity number (Id(v)).
For simplicity we assume that all identifiers are from the range {1, 2, ..., n}. All
algorithms extend to larger ranges of identifiers.

Denote by Δ the maximum degree of G. In the (Δ+ 1)-coloring problem the
objective is to color G with Δ+1 colors legally, i.e., in such a way that for every
edge e = (u, v), the endpoints u and v will get distinct colors. The running time
of an algorithm is the number of rounds that elapse until all vertices compute
their final colors. Another closely related problem is the Maximal Independent
Set (henceforth, MIS) problem. In this problem we want to compute a subset
U ⊆ V of independent vertices (i.e., for every u, u′ ∈ U , there is no edge (u, u′)
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in the graph) with the property that for every vertex v ∈ V \ U , there exists a
neighbor u ∈ U of v.

These two problems are widely considered to be among the most fundamental
distributed problems. Recently, a significant progress was achieved in devising
deterministic distributed algorithms for them. Specifically, the authors of the
current paper [6], and independently Kuhn [16], devised a (Δ + 1)-coloring al-
gorithm with running time O(Δ + log∗ n). These algorithms also directly give
rise to algorithms that compute MIS within the same time. Both papers [6,16]
also devised a tradeoff, and showed that for any constant ε, 0 < ε < 1, a Δ1+ε-
coloring can be computed in O(Δ1−ε + log∗ n) time. (The results in [16] are, in
fact, even more general than this; they show that for any parameter t, 1 ≤ t ≤ Δ,
a Δ/t-coloring can be computed in O(Δ · t+ log∗ n) time.) Finally, on graphs of
small arboricity 1, the authors of the current paper devised in [5] an algorithm
that computes (Δ+ 1)-coloring and MIS in O( log n

log log n ) time.
All these results rely heavily on an algorithm of Linial [18], that computes an

O(Δ2)-coloring within log∗ n+O(1) time. The latter seminal result relies, in turn,
on an algebraic construction of Erdős, Frankl and Füredi [11] of set-systems with
certain special and very useful properties. Moreover, the algorithm of Kuhn [16]
takes this algebraic technique one step further, and devises an algebraic construc-
tion of sets of functions that are tailored for the needs of his coloring algorithm.
We remark also that even previous to the work of [6,16] (Δ + 1)-coloring al-
gorithms relied on algebraic techniques. Specifically, the (Δ + 1)-coloring and
MIS algorithms of Kuhn and Wattenhofer [17] that require O(Δ logΔ+ log∗ n)
time rely on Linial’s algorithm. To the best of our knowledge, the best currently
known deterministic algorithm of this type that does not rely on Linial’s method
is the algorithm due to Goldberg, Plotkin and Shannon [14]. The latter algorithm
requires, however, O(Δ2 + log∗ n) time.

The basic question that we investigate in the current paper is whether alge-
braic techniques are indeed necessary for devising efficient deterministic coloring
and MIS algorithms. We demonstrate that it is not the case, and devise combina-
torial (we also call them set-system free) coloring and MIS algorithms whose per-
formance matches the state-of-the-art. Specifically, one of our new combinatorial
algorithms computes a (Δ+1)-coloring and MIS within O(Δ+log∗ n) time, An-
other one provides a tradeoff and computes a Δ1+ε-coloring in O(Δ1−ε +log∗ n)
time, for any constant ε, 0 < ε < 1. We also devise combinatorial (Δ+1)-coloring
and MIS algorithms for graphs of small arboricity that run in O( log n

log log n ) time.
We believe that the value of these results is two-fold. First, it addresses the

aforementioned question, and shows that like in the context of PCP and expanders,
one also can get rid of algebraic techniques in the context of distributed deter-
ministic coloring. By this our algorithms seem to uncover a new understanding of
the nature of the explored problems. Second, since our algorithms are combinato-
rial, they are much easier for implementation by not-very-mathematically-inclined
programmers. In addition, the combinatorial nature of our algorithms enables for
more efficient implementation in terms of local computation. While the latter is

1 See Section 2 for its definition.
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usually suppressed when analyzing distributed algorithms, it may become crucial
when running the algorithms on certain simple real-world communication devices,
such as sensors or antennas.

1.3 Our Techniques

The most tempting approach to the problem of devising combinatorial color-
ing algorithms is to devise a combinatorial counterpart to Linial’s algorithm.
However, we were not able to accomplish this. Instead we observe that some of
the aforementioned coloring algorithms [5,6] start with computing an O(Δ2)-
coloring via Linial’s algorithm, and then employ this coloring in a way that can
be relatively easily made combinatorial. Our new algorithms invoke neither the
algorithm of Linial itself, nor a combinatorial analogue of it. Instead, in our
algorithms we start with partitioning the edge set of the graph into Δ forests
(using Panconesi-Rizzi algorithm [22]). We then color each forest separately, and
combine colorings of pairs of forest. In this way we obtain an O(Δ2)-coloring of
each of the Δ/2 pairs of forests. Next, we employ combinatorial algorithms to
manipulate the colorings in each of these pairs of forests, and to obtain, rougly
speaking, a (Δ+1)-coloring for each pair. We then merge these pairs again, and
manipulate the resulting coloring again. We iterate in this way up until we get a
unified coloring for the entire graph. Obviously, this schematic outline suppresses
many technical details. Also, this scheme does not achieve our best results, which
we obtain by using more sophisticated combinatorial methods. Nevertheless, it
seems to capture the basic ideas behind our combinatorial algorithms.

1.4 Related Work

Goldberg et al. [13] (based on [9]) devised (Δ+ 1)-coloring and MIS algorithms
that require O(Δ2 +log∗ n) time. Linial [18] stregthened this result, and showed
that an O(Δ2)-coloring can be computed in log∗ n+O(1) time. Kuhn and Wat-
tenhofer [17] improved the running time of [13] to O(Δ logΔ + log∗ n). The
latter was further improved to O(Δ + log∗ n) in [6,16]. On graphs of arboricity
a ≤ log1/2−ε n, for a constant ε > 0, [5] devised (Δ + 1)-coloring and MIS al-
gorithms that require O( log n

log log n ) time. A variety of additional algorithms and
tradeoffs for coloring graphs of small arboricity were devised in [5,7].

Awerbuch, Goldberg, Luby and Plotkin [4] devised deterministic (Δ + 1)-
coloring and MIS algorithms that require 2O(

√
log n log log n) time. The latter was

improved to 2O(
√

log n) by Panconesi and Srinivasan [23]. Randomized algorithms
with logarithmic running time were devised by Luby [20], and by Alon, Babai,
and Itai [2]. Kothapalli et al. [15] showed that an O(Δ)-coloring can be computed
in O(

√
logn) randomized time. Recently, Schneider and Wattenhofer [27] showed

that (Δ + 1)-coloring can be computed in randomized O(logΔ +
√

logn) time.
They have also showed a tradeoff between the number of colors and running
time with very efficient algorithms for O(Δ + logn)-coloring.



70 L. Barenboim and M. Elkin

2 Preliminaries

2.1 Definitions and Notation

Unless the base value is specified, all logarithms in this paper are to base 2. The
degree of a vertex v in a graph G = (V,E), denoted deg(v), is the number of
edges incident to v. A vertex u such that (u, v) ∈ E is called a neighbor of v
in G. The maximum degree of a vertex in G, denoted Δ = Δ(G), is defined by
Δ(G) = maxv∈V deg(v). A forest is an acyclic subgraph. A tree is a connected
acyclic subgraph. A forest F can also be represented as a collection of vertex-
disjoint tress F = {T1, T2, ..., Tk}. A tree T is said to be oriented if (1) there is
a designated root vertex rt ∈ V (T ), (2) every vertex v ∈ V (T ) knows whether v
is the root or not, and, in the latter case, v knows which of its neighbors is the
parent π(v) of v. (The parent π(v) of v is the unique neighbor of v that lies on the
(unique) path in T connecting v with rt.) A forest F = {T1, T2, ..., Tk} is said to
be oriented if each of the trees T1, T2, ..., Tk is oriented. A Forest-Decomposition
of a graph G = (V,E) is an edge partition such that each subgraph forms an
oriented forest. The arboricity of a graph G is the minimal number a such that
the edge set of G can be covered with at most a edge disjoint forests.

A mapping ϕ : V → IIN is called a coloring. A coloring that satisfies ϕ(v) �=
ϕ(u) for each edge (u, v) ∈ E is called a legal coloring. For a positive integer k,
a k-coloring ϕ is a legal coloring that employs at most k colors, i.e., for each
vertex v, ϕ(v) ∈ {1, 2, ..., k}.

For two positive integers m and p, an m-defective p-coloring of a graph G is
a (not necessarily legal) coloring of the vertices of G using p colors, such that
each vertex has at most m neighbors colored by its color. Note that each color
class in an m-defective coloring induces a graph of maximum degree m.

2.2 Coloring Procedures

In this section we summarize several well-known results that are used in the
current paper. Some of our algorithms use as a black-box a procedure due to
Kuhn and Wattenhofer [17]. This procedure accepts as input a graph G with
maximum degree Δ, and an initial legal m-coloring, and it produces a (Δ+ 1)-
coloring of G within time (Δ+1) · �log(m/(Δ+ 1)) = O(Δ · log(m/Δ)). We will
refer to this procedure as KW iterative procedure, or KW Procedure. For future
reference we summarize this in the next lemma.

Lemma 2.1. [17] Given a legal m-coloring of a graph with maximum degree Δ,
KW procedure produces a (Δ+ 1)-coloring within O(Δ · log(m/Δ)) time.

We also use a Δ-forest-decomposition procedure due to Panconesi and Rizzi
[22]. (A similar construction was used also by Goldberg et al. [14].) This proce-
dure accepts as input a graph G and computes a forest-decomposition with at
most Δ forests in O(1) time. We will refer to this procedure as PR Δ-Forest-
Decomposition Procedure, or PR Procedure.
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Next, we summarize the properties of several additional procedures that are
used by our algorithms. In these procedures, as well as in our algorithms, we
use the following naming conventions. If a procedure involves set-systems and
requires a legal coloring as input, then the suffix -SL is added to its name. If
the procedure involves set-systems, but does not require a coloring as input,
then the suffix -SET is added to its name. If the procedure is set-system free,
but it requires a legal coloring as input, then the suffix -LEG is added to its
name. The next lemma summarizes the properties of procedures Delta-Col-SL
and Trade-Col-SL for computing legal colorings, and Procedure Defective-Col-
LEG for computing defective colorings, devised in [6].

Lemma 2.2. [6] (1) Procedure Delta-Col-SL invoked on an input graph G with
an initial O(Δ2)-coloring computes a (Δ+ 1)-coloring in O(Δ) time.
(2) Given a graph G with an O(Δ2) coloring, and an arbitrary parameter t,
1 < t ≤ Δ1/4, Procedure Trade-Col-SL computes an O(Δ · t)-coloring in time
O(Δ/t).
(3) Procedure Defective-Col-LEG accepts as input a graph G with an initial
(c′ ·Δk)-coloring, for some constants c′ > 0 and k ≥ 2, and two parameters p, q
such that 0 < p2 < q. It computes a ( log(c′·Δk)

log(q/p2) ·Δ/p)-defective p2-coloring in time

( log(c′·Δk)
log(q/p2) ) ·O(q). Moreover, Procedure Defective-Col-LEG is set-system-free.

3 The Generic Method

Distributed computation of a (Δ+ 1)-coloring in general graphs is a challenging
task. However, for certain graph families very efficient, and even optimal, algo-
rithms are known. In particular, the algorithm of Goldberg and Plotkin [13] 1

is applicable for oriented forests. (Henceforth, the GP algorithm.) The GP algo-
rithm computes a 3-coloring of a forest in O(log∗ n) time. Using PR Procedure
the edge set of any graph can be partitioned into Δ oriented forests. Our algo-
rithms start by partitioning a graph into Δ forests, and computing a 3-coloring
in each forest, in parallel. Then these colorings are efficiently merged into a single
unified (Δ+ 1)-coloring.

We begin with describing a procedure called Procedure Pair-Merge that com-
bines the colorings of two edge-disjoint subgraphs. Procedure Pair-Merge accepts
as input a graph G = (V,E), such that E is partitioned into two edge-disjoint
subsets E′ and E′′. It also accepts two legal colorings ϕ′ and ϕ′′ for the graphs
G′ = (V,E′) and G′′ = (V,E′′), respectively. The colorings ϕ′ and ϕ′′ employ at
most c′ and c′′ colors, respectively. Procedure Pair-Merge returns a new coloring
ϕ for G such that for every v ∈ V , ϕ(v) = c′′ · (ϕ′(v) − 1) + ϕ′′(v). The new
coloring can be seen as an ordered pair < ϕ′(v), ϕ′′(v) >. This completes the de-
scription of the procedure. Observe that invoking Procedure Pair-Merge requires

1 The algorithm of [13] is based on an earlier algorithm of Cole and Vishkin [9].
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no communication whatsoever. The properties of the procedure are summarized
in the next lemma.

Lemma 3.1. Procedure Pair-Merge produces a legal (c′ · c′′)-coloring of G.

Next, we describe a generic method 2, called Generic-Merge, for merging the
coloring of 	 edge disjoint subgraphs of G, for a positive integer 	. Suppose that
we are given an edge partition E1, E2, ..., E� of E. Moreover, for 1 ≤ i ≤ 	, we
are given a legal coloring ϕi of Gi = (V,Ei) that employs at most ci colors,
ci ≥ Δ+1. In addition, the method Generic-Merge employs an auxilary coloring
procedure called Procedure Reduce(H , α, β). We will later use the method
Generic-Merge with a number of different instantiations of Procedure Reduce.
However, in all its instantiations Procedure Reduce accepts as input a graph H
with a legal α-coloring, and computes a legal β-coloring of H . Procedure Reduce
requires that α > β ≥ Δ+1. The method Generic-Merge also accepts as input a
positive integer parameter d, 1 ≤ d ≤ min{ci|1 ≤ i ≤ 	}. Roughly speaking, the
parameter d determines the ratio between α and β. To summarize, the method
Generic-Merge accepts as input a partition E1, E2, ..., E� of E, a legal ci-coloring
ϕi of Ei, for each i = 1, 2, ..., 	, a procedure Reduce, and a parameter d. It returns
a legal coloring ϕ of the entire input graph G.

The method Generic-Merge proceeds in phases. In each phase pairs of sub-
graphs are merged using Procedure Pair-Merge, in parallel. As a result we obtain
fewer subgraphs, but a greater number of colors is employed in each subgraph.
The number of colors is then reduced using Procedure Reduce, which is invoked
in parallel on the merged subgraphs. This process of pairing subgraphs, merg-
ing their colorings, and reducing the number of employed colors is repeated for
�log 	 phases, until all subgraphs are merged into the original input graph G.

Algorithm 1. Method Generic-Merge(G1, G2, ..., GΔ, ϕ1, ϕ2, ..., ϕΔ, c1, c2, ..., cΔ,
Procedure Reduce, d )
1: 	 := Δ /* 	 is the number of subgraphs */
2: while 	 > 1 do
3: for i := 1, 2, ..., 	/2�, in parallel do
4: {G′

i, ϕ
′
i} := Pair-Merge(G2i−1 , G2i, ϕ2i−1, ϕ2i, c2i−1, c2i)

5: {Gi, ϕi} := Reduce(G′
i, αi := c2i−1 · c2i, βi := αi/d�)

6: ci := c2i−1 · c2i/d�
7: end for
8: if 	 is odd then
9: {G��/2�, ϕ��/2�, c��/2�} := {G�, ϕ�, c�}

10: end if
11: 	 := �	/2�
12: end while
13: return {G1, ϕ1, c1}

2 We refer to a procedure as generic method if it accepts another procedure as input.
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In the first phase of Generic-Merge the pairs (G1, G2), (G3, G4),...,(G�−1, G�)
are merged into the subgraphs G′

1, G
′
2, ..., G

′
��/2	 by using Procedure Pair-Merge.

(In other words, G′
i = (V,E2i−1

⋃
E2i), for i = 1, 2, ..., �	/2�. If 	 is odd then

we define G�+1 = (V, ∅), c�+1 = 1, and, consequently, G′
��/2	 = G�.) Set αi =

c′i = c2i−1 · c2i, and βi = �αi/d�. (Intuitively, αi is an upper bound on the
number of colors used by the coloring that Procedure Pair-Merge produces for the
subgraph G′

i. Procedure Reduce transforms this coloring into a βi-coloring, with
βi = �αi/d�.) Next, Procedure Reduce(G′

i, αi, βi) is executed in parallel, for i =
1, 2, ..., �	/2�. In general, a phase proceeds as follows. Suppose that the previous
phase has produced the subgraphs G′

1, G
′
2, ..., G

′
�′ , such that each subgraph is

colored with at most c′1, c
′
2, ..., c

′
�′ colors, respectively. Then the subgraphs G′

2i−1

and G′
2i are merged into the subgraph G′′

i , and Procedure Reduce(G′′
i , α′

i =
c′2i−1 · c′2i, β′

i =
⌊
c′2i−1 · c′2i/d

⌋
) is executed in parallel, for i = 1, 2, ..., �	′/2�.

If 	 is odd then G′′
��′/2	 = G′

�′ . In this case the coloring of G′
� is also used for

G′′
��′/2	, instead of invoking Procedure Reduce on it. The method Generic-Merge

terminates once all subgraphs are merged into a single graph, that is, the input
graph G. This completes the description of the method Generic-Merge.

Lemma 3.2. The method Generic-Merge produces a legal (c1 · c2 · .... · c�)/d �−1

coloring ϕ of the input graph G.

4 Coloring Algorithms

4.1 Procedure Simple-Col

In this section we present our first algorithm that employs the method Generic-
Merge, called Procedure Simple-Col. The method Generic-Merge accepts as in-
put a partition of the input graph such that each subgraph in the partition
is legally colored. In order to compute such a partition, we invoke the PR
Procedure. Recall that this procedure computes a Δ-forest-decomposition of
G. In other words, the procedure outputs an edge partition {G1, G2, ..., GΔ},
Gi = (V,Ei), i ∈ {1, 2, ..., Δ}, such that each subgraph in this partition is an ori-
ented forest. Next, each forest is colored with 3 colors using the GP algorithm.
The Δ invocations of the GP algorithm are performed in parallel. They result
in legal colorings ϕ1, ϕ2, ..., ϕΔ. Since Δ ≥ 2, each coloring ϕi, i = 1, 2, ..., Δ,
employs at most Δ+ 1 colors.

Recall that the method Generic-Merge also accepts as input parameter a pro-
cedure (Procedure Reduce) for reducing the number of colors in a given coloring
of a graph. In Procedure Simple-Col we employ the KW iterative procedure as
Procedure Reduce. (The KW iterative procedure accepts as input a graph H
with an α-coloring, α ≥ Δ + 1, and computes a (Δ + 1)-coloring of H in time
O(Δ log(α/Δ)).) We invoke Generic-Merge on the partition {G1, G2, ..., GΔ}
with the colorings ϕ1, ϕ2, ..., ϕΔ such that c1 = c2 = .... = cΔ = Δ+ 1. Finally,
the parameter d is set to Δ + 1. Consequently, in each phase of Generic-Merge
pairs of (Δ+ 1)-colored subgraphs are merged into (Δ+ 1)2-colored subgraphs,
and then the number of colors in each subgraph is reduced back to Δ+ 1. Once
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Generic-Merge terminates, the input graph is legally colored using Δ + 1 col-
ors. The pseudocode of the procedure follows. Its properties are summarized
below.

Algorithm 2. Procedure Simple-Col(G)
1: {G1, G2, ..., GΔ} := Δ-Forests-Decomposition(G) /*using PR Procedure */
2: for i = 1, 2, ..., Δ in parallel do
3: ϕi := 3-color(Gi) /*using GP algorithm */
4: ci := Δ + 1
5: end for
6: Generic-Merge(G1, G2, ..., GΔ, ϕ1, ϕ2, ..., ϕΔ, c1, c2, ..., cΔ, KW procedure, Δ + 1)

Theorem 4.1. Procedure Simple-Col produces a legal (Δ+1)-coloring of G. Its
running time is O(Δ log2Δ) + log∗ n. This procedure is set-system free.

4.2 Procedures Poly-Col and Fast-Col

Our algorithm consists of two major stages. In the first stage we compute a
ΔO(1)-coloring, and in the second stage we reduce the number of colors from
ΔO(1) to (Δ+1). In the existing (Δ+1)-coloring algorithms that run in O(Δ)+
log∗ n time [6,16], both these stages employ set systems. In fact, as far as we
know, currently there is no known set-system free ΔO(1)-coloring algorithm that
runs within O(Δ)+ log∗ n time. The situation is somewhat better in the context
of the second stage, as there is a known set-system free algorithm (KW Pro-
cedure) that accepts a ΔO(1)-coloring as input and returns a (Δ + 1)-coloring.
However, its running time (O(Δ logΔ)) is higher than the desired bound of
O(Δ) + log∗ n. Therefore, we speed up both the first and the second stages
of the aforementioned scheme, and achieve a set-system free (Δ + 1)-coloring
algorithm with running time O(Δ+ log∗ n).

Before we begin with the description of our new algorithm, we provide a
brief survey of several known (not set-system free) algorithms (due to [6]) that
employ the two-stage technique described above. In the sequel, we modify these
algorithms, and eliminate the steps that employ set-systmes. Then we employ the
modified versions for devising our new results. We start with sketching Procedure
Defective-Col-SET from [6], that accepts as input a graph G and two parameters
p and q, and returns a defective coloring of G.

Algorithm 3. Procedure Defective-Col-SET (G, p, q)
1: ϑ := an O(Δ2)-coloring of G /* using set-systems */
2: ψ := Defective-Col-LEG (G, ϑ, p, q) /* set-system free */
3: return ψ
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Set p = Δε, q = Δ3ε, for an arbitrarily small constant ε > 0. By Lemma 2.2
(3), Procedure Defective-Col-SET invoked with these parameters computes an
O(Δ/p)-defective p2-coloring of G.

Next we sketch a procedure devised in [6] for computing a legal O(Δ5/4)-
coloring from a legal O(Δ2)-coloring in O(Δ3/4) time. This procedure is called
Procedure Trade-Col-SL. (The properties of this procedure in its general form are
summarized in Lemma 2.2 (2). In the current discussion we fix the parameter
t to be equal to Δ1/4.) Procedure Trade-Col-SL accepts as input a graph G
and a legal O(Δ2)-coloring ϑ of G. The procedure proceeds as follows. First,
it computes an O(Δ3/4)-defective O(Δ1/2)-coloring of the input graph using
Procedure Defective-Col-LEG. (See Lemma 2.2 (3).) To this end we set p = Δ1/4,
q = Δ3/4. (Normally, it is preceded by a step in which an O(Δ2)-coloring is
computed via Linial’s algorithm, i.e., using set systems. In the current version of
the procedure, this coloring is assumed to be provided as a part of the input.) The
defective coloring returned by the invocation of Procedure Defective-Col-LEG
induces a vertex partition into O(Δ1/2) subgraphs such that each subgraph has
maximum degree O(Δ3/4). Next, all subgraphs are legally colored with distinct
palettes of size O(Δ3/4) for each subgraph, in parallel. Then these colorings are
combined into a unified legal O(Δ5/4)-coloring. This completes the description of
Procedure Trade-Col-SL. Similarly to Algorithm 3, the computation is divided
into stages that either involve set-systems or are set-systems free.

Algorithm 4. Procedure Trade-Col-SL (G , ϑ)
1: ψ := Defective-Col-LEG (G, ϑ, p := Δ1/4, q := Δ3/4) /* set-system free; see

Lemma 2.2 (3) */
/* ψ is an O(Δ3/4)-defective O(Δ1/2)-coloring of G */
/* ψ induces a vertex partition into O(Δ1/2) subgraphs, each with max. degree
O(Δ3/4) */

2: for each subgraph Gi induced by color classes of ψ, in parallel do
3: ϕi := color Gi with O(Δ3/2) colors using Linial alg.[18] /* using set-systems */
4: ϕ′

i := Delta-Col-SL(Gi, ϕi) /* using set-systems; see Lemma 2.2 (1) */
/* ϕ′

i is an O(Δ3/4)-coloring of Gi */
5: end for
6: for i = 1, 2, ... in parallel do
7: combine all colorings ϕ′

i into a unified legal O(Δ5/4)-coloring ϕ of G
/*set-system free */

8: end for
9: return ϕ

Next, we turn to describing our new set-system free algorithm for computing
an O(Δ5/4)-coloring from scratch. Our algorithm employs the method Generic-
Merge, that was described in Section 3. In Section 4.1 the KW Procedure was
used as an instantiation for Procedure Reduce in the method Generic-Merge.
This time a different procedure is used as an instantiation for Procedure Re-
duce. This procedure reduces the number of colors from c2 ·Δ5/2 to c ·Δ5/4, for
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a positive constants c. Its running time is O(Δ3/4 logΔ) = o(Δ/ logΔ). Conse-
quently, the �logΔ phases of Generic-Merge require overall time of o(Δ). For
i = 1, 2, .., �logΔ, the colorings of subgraphs in the partition of phase i employ
at most (c · Δ5/4) colors each. In phase i, pairs of (c ·Δ5/4)-colored subgraphs
are merged into (c2 ·Δ5/2)-colored subgraphs, and the number of colors is then
reduced back to (c · Δ5/4) in each subgraph. Once the method Generic-Merge
terminates, the input graph is colored with (c ·Δ5/4) colors.

We use a modified version of Procedure Trade-Col-SL (Algorithm 4), as an in-
stantiation for Procedure Reduce. Given an O(Δ2)-coloring as input, Procedure
Trade-Col-SL computes an O(Δ5/4)-coloring in O(Δ3/4) time. Some of its steps
employ set-systems. (See Algorithm 4.) Consequently, the original Procedure
Trade-Col-SL cannot be used. We perform two modifications in the procedure.
First, the steps that employ set-systems are replaced by analogous set-system
free steps. Second, we show that the procedure computes an O(Δ5/4)-coloring
from an O(Δk)-coloring for any constant k ≥ 2, not only k = 2. We henceforth
refer to the modified procedure as Procedure Mod-Trade-LEG.

Procedure Trade-Col-SL employs set-systems for computing O(Δ3/2)-colorings
of subgraphsGi (line 3 of Algorithm 4). In addition, it employs set-systems in the
invocation of Procedure Delta-Col-SL for computing legal colorings of subgraphs
with linear number of colors (and in linear time) in the degree of the subgraphs
(line 4 of Algorithm 4). In Procedure Mod-Trade-LEG we omit the step of com-
puting O(Δ3/2)-coloring of subgraphs Gi. Instead of this step, ϕi is set as the
initial coloring ϑ, for all i. For each i = 1, 2, ..., O(Δ1/2), let Δi = Θ(Δ3/4) be
an upper bound on the maximum degree Δ(Gi) of the graph Gi. Since ϑ is an
O(Δ2)-coloring, it is also an O(Δ8/3

i )-coloring of Gi. Next, we replace the step
of coloring Gi using Procedure Delta-Col-SL with an invocation of the KW iter-
ative procedure, which is set-systems free. This procedure can start (see Lemma
2.1) with an arbitrarily large number of colors, as long as it is polynomial in
the maximum degree of the underlying graph. However, as a result, the running
time of procedure Mod-Trade-LEG grows by a multiplicative factor of logΔ,
and becomes O(Δ3/4 logΔ).

The original Procedure Trade-Col-SL accepts as input a (c′ · Δ2)-coloring
ϑ, for a positive constant c′, and reduces it into an O(Δ5/4)-coloring. Once
line 3 of Algorithm 4 is skipped1, the coloring ϑ is used only in one step of
Procedure Trade-Col-SL, specifically, in the step that computes the O(Δ3/4)-
defective O(Δ1/2)-coloring (line 1 of Algorithm 4). In this step a procedure called
Procedure Defective-Col-LEG is invoked with two input parameters p = Δ1/4

and q = Δε · p2, for an arbitrary small positive constant ε ≤ 1/4. Proce-
dure Defective-Col-LEG employs the coloring ϑ to compute a ( log(c′·Δ2)

log(q/p2) ·Δ/p)-
defective p2-coloring in time ( log(c′·Δ2)

log(q/p2) )·O(q). Procedure Defective-Col-LEG can
employ any legal t-coloring ϕ′ instead of the (c′ · Δ2)-coloring ϑ. In this case,
by Lemma 2.2 (3), it computes a ( log t

log(q/p2) · Δ/p)-defective p2-coloring in time

1 Line 3 of Algorithm 4 invokes the algorithm of Linial. To speed up the computation
of O(Δ3/2)-coloring ϕi, the algorithm of Linial employs the O(Δ2)-coloring ϑ.
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( log t
log(q/p2) )·O(q). In particular, if ϕ′ is aΔO(1)-coloring, then Procedure Defective-

Col-LEG employs ϕ′ to compute a ( log(ΔO(1))
log(q/p2) ·Δ/p)-defective p2-coloring in time

( log(ΔO(1))
log(q/p2) ) · O(q). In other words, if Procedure Defective-Col-LEG employs a

ΔO(1)-coloring, then it computes an O(Δ3/4)-defective O(Δ1/2)-coloring in time
O(q) = O(Δε · p2) = O(Δ1/2+ε).

The modified Procedure Mod-Trade-LEG proceeds as follows. It accepts as in-
put aΔO(1)-coloring ϑ. First, it computes anO(Δ3/4)-defective O(Δ1/2)-coloring
ψ of the input graph in time O(Δ1/2+ε) by Procedure Defective-Col-LEG as was
described above. Next, the subgraphs G1, G2, ... induced by color classes of ψ
are legally colored with distinct palettes of size O(Δ3/4) each, using the KW
iterative procedure in parallel on all subgraphs, in time O(Δ3/4 · log(ΔO(1)

Δ3/4 )) =
O(Δ3/4 logΔ). (Observe that the KW iterative procedure invoked on a subgraph
Gi needs an initial coloring ϑi to start working. Here we restrict the coloring
ϑ of the entire graph G to the vertex set Vi of the subgraph Gi. The resulting
restricted coloring is called ϑi, and is employed by the KW iterative procedure
as an initial coloring.) Then the colorings produced by the invocations of the
KW iterative procedure are combined into a unified legal O(Δ5/4) coloring. The
combining step requires no communication whatsoever. This completes the de-
scription of the procedure. Its pseudocode is provided below. It properties are
given in the next lemma.

Algorithm 5. Procedure Mod-Trade-LEG (G , ϑ)
1: ψ :=Defective-Col-LEG (G, ϑ, Δ1/4, Δ3/4) /* ψ is an O(Δ3/4)-defective O(Δ1/2)-

coloring */
2: for each subgraph Gi induced by ψ, in parallel do
3: ϕ′

i := color Gi with O(Δ3/4) colors using the KW iterative procedure
/* use the restriction ϑi of the coloring ϑ to the vertex set Vi of Gi as initial
coloring */

4: end for
5: for i = 1, 2, ..., in parallel do
6: combine all colorings ϕ′

i into a unified legal O(Δ5/4)-coloring ϕ of G
7: end for
8: return ϕ

Lemma 4.2. Procedure Mod-Trade-LEG invoked with a ΔO(1)-coloring ϑ as in-
put computes an O(Δ5/4)-coloring ϕ in time O(Δ3/4 logΔ). Specifically, if ϑ
is a (c′ · Δk)-coloring, for constants c′ > 0, k ≥ 2, then ϕ employs at most
( log(c′·Δk)

log Δε ·Δ5/4) = O(k
ε ·Δ5/4) colors.

Suppose that Procedure Mod-Trade-LEG is invoked with a (c2 ·Δ5/2)-coloring
as input, for a positive constant c to be determined later. Then it computes a
( log(c2·Δ5/2)

log Δε ·Δ5/4)-coloring ϕ, for an arbitrary positive constant ε ≤ 1/4. For any
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constant c such that c ≥ 2 log c+5/2
ε it holds that log(c2·Δ5/2)

log Δε ≤ c. (To satisfy the
condition set ε = 1/8, and c to be a sufficiently large constant.) Consequently,
the resulting coloring ϕ is a

⌊
c ·Δ5/4

⌋
-coloring.

Next, we present a set-system free procedure, called Procedure Poly-Col,
that computes an O(Δ5/4)-coloring of the input graph from scratch, in time
Õ(Δ3/4) + log∗ n. (This is in contrast to Procedure Defective-Col-LEG that ac-
cepts as input a legal O(Δ2)-coloring ϑ.) Procedure Poly-Col is very similar to
Procedure Simple-Col (Algorithm 2.) The main difference is that in step 8 Pro-
cedure Poly-Col invokes the method Generic-Merge with Procedure Mod-Trade-
LEG as an instantiation for Procedure Reduce instead of the KW Procedure. In
addition, the variables c1, c2, ..., cΔ, and d are set to

⌊
c ·Δ5/4

⌋
instead of Δ+ 1,

where c is a constant as above. The pseudocode of the procedure is given below.
Its properties are summarized in the next lemma.

Algorithm 6. Procedure Poly-Col(G)
1: {G1, G2, ..., GΔ} := Δ-Forest-Decomposition(G) /* using PR Procedure */
2: for i = 1, 2, ..., Δ in parallel do

3: ci :=
⌊
c ·Δ5/4

⌋
; ϕi := 3-color(Gi) /* using GP Alg.; each Gi is a forest */

4: end for
5: d :=

⌊
c ·Δ5/4

⌋
6: Generic-Merge(P ,G1 , G2, ..., GΔ, ϕ1, ϕ2, ..., ϕΔ, c1, c2, ..., cΔ,Procedure Mod-Trade-

LEG, d)

Lemma 4.3. Procedure Poly-Col computes from scratch a legal coloring ofG that
employs at most c ·Δ5/4 = O(Δ5/4) colors. Its running time is O(Δ3/4 log2Δ +
log∗ n). Moreover, Procedure Poly-Col is set-system free.

In what follows we devise a set-system free procedure for computing a (Δ+ 1)-
coloring in O(Δ + log∗ n) time. In [6] the authors of the current paper devised
a procedure, called Procedure Delta-Color, (henceforth, Procedure Delta-Color-
SL), that accepts as input a graph G and a γ-coloring, γ = O(Δ2), and computes
a (Δ + 1)-coloring of G in O(Δ) time. (See Lemma 2.2.) However, Procedure
Delta-Col-SL employs set-systems. Next, we overview Procedure Delta-Col-SL
from [6]. This procedure works as follows. If the number of colors in the coloring
it accepts as input is γ = O(Δ), then a (Δ + 1)-coloring of G is computed di-
rectly from the γ-coloring using the KW iterative procedure within O(Δ) time.
Otherwise, the graph G is partitioned into vertex-disjoint subgraphs with max-
imum degrees d < Δ, by invoking Procedure Defective-Col-LEG. Next, for each
subgraph, an O(d2)-coloring is computed using set-systems, by Linial’s algo-
rithm [18]. Then Procedure Delta-Col-SL is invoked recursively on each of the
subgraphs. As a result we obtain a (d+ 1)-coloring for each subgraph. (The re-
cursion depth is �log∗Δ�. For j = 1, 2, ..., �log∗Δ�, in recursion level �log∗Δ�−j
it holds that d = dj = Θ(Δ/Π log∗ Δ

i=j (log(i)Δ)), i.e., dj = Ω(Δ1−ε) for any con-
stant ε > 0.) These colorings are then merged into a unified legal (Δ+1)-coloring
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of the input graph. This completes the description of Procedure Delta-Col-SL.
The running time of a recursion level j, j = 1, 2, ..., �log∗Δ�, is O(dj · log(j)Δ).
Consequently, the overall running time is O(

∑log∗ Δ
j=1 (dj · log(j)Δ)) = O(Δ).

The only step in Procedure Delta-Col-SL that employs set-systems is the step
that computes O(d2)-colorings. Specifically, let dj = c ·Δ/Π log∗ Δ

i=j (log(i)Δ), for
some fixed positive constant c. For j = 1, 2, ..., �log∗Δ�, Procedure Delta-Col-SL
computes O(d2

j )-colorings of subgraphs of degree O(dj). To this end it employs
the algorithm of Linial [18]. We argue that if Procedure Delta-Col-SL accepts an
O(Δ5/4)-coloring instead of an O(Δ2)-coloring, then employing set systems is no
longer required. Observe that as dj = Ω(Δ1−ε), for any constant ε > 0, it follows
that for a sufficiently large Δ, Δ5/4 ≤ d2

j , for all j = 1, 2, ..., �log∗Δ�. Hence an
O(Δ5/4)-coloring is in particular an O(d2

j )-coloring for all j = 1, 2, ..., �log∗Δ�.
Therefore, invoking Procedure Delta-Col-SL with an O(Δ5/4)-coloring as input
instead of an O(Δ2)-coloring eliminates the need of computing O(d2

j )-colorings
of subgraphs. Indeed, for a subgraph H of degree dj , j ∈ {1, 2, ..., �log∗Δ�}, the
input coloring is already an O(d2

j )-coloring of H .
To summarize, we obtained a variant of Procedure Delta-Col-SL, to which

we will refer as Procedure Mod-Delta-LEG. This procedure accepts as input a
graph G of maximum degree Δ, and an O(Δ5/4)-coloring ϑ for G. The procedure
returns a (Δ+ 1)-coloring, and it does so within O(Δ) time. (Observe that the
running time of Procedure Mod-Delta-LEG is not greater than the running time
of Procedure Delta-Col-SL when invoked with an O(Δ5/4)-coloring as input. The
two procedures perform exactly the same steps, except that Procedure Mod-
Delta-LEG skips the invocation of the algorithm of Linial.)

To complete the algorithm it is only left to combine Procedure Poly-Col (that
computes an O(Δ5/4)-coloring from scratch) with Procedure Mod-Delta-LEG
that reduces the number of colors to Δ + 1. The resulting procedure will be
referred to as Procedure Fast-Col. It accepts as input a graph G, and performs
two steps. In the first step it computes an O(Δ5/4)-coloring ϑ using Procedure
Poly-Col. In the second step it invokes the set-system free variant (Procedure
Mod-Delta-LEG) of Procedure Delta-Col-SL with the coloring ϑ as input. This
procedure outputs a (Δ+1)-coloring. The running time of Procedure Fast-Col is
the sum of the running times of Procedure Poly-Col and Procedure Mod-Delta-
LEG. The former is, by Lemma 4.3, O(Δ3/4 log2Δ) + log∗ n, and the latter is
O(Δ). Hence the overall running time of Procedure Fast-Col is O(Δ) + log∗ n.

Theorem 4.4. Procedure Fast-Col computes a (Δ + 1)-coloring of the input
graph G in O(Δ+ log∗ n) time. Moreover, this computation is set-system free.

Our results give rise to set-system free algorithms for a variety of problems.
(Detailed proofs of these results will be provided in the full version of this paper.)

Corollary 4.5. (1) For an arbitrarily small constant ε > 0, and a parameter t,
1 < t ≤ Δ1−ε, one can compute an O(Δ · t)-coloring in O((Δ/t) + log∗ n) time.
(2) A Maximal Independent Set can be computed in O(Δ + log∗ n) time.
(3) For the family of graphs with bounded arboricity a(G) = o(

√
logn) a
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Maximal Independent Set and (Δ+1)-coloring can be computed in sublogarithmic
time. Results (1),(2) and (3) are obtained using set-system free algorithms.
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Abstract. In this paper, we propose a new distributed construction of
constant-degree expanders motivated by their application in P2P overlay
networks and in particular in the design of robust tree overlays. Our key
result can be stated as follows. Consider a complete binary tree T and
construct a random pairing Π between leaf nodes and internal nodes.
We prove that the graph GΠ obtained from T by contracting all pairs
(leaf-internal nodes) achieves a constant node expansion with high prob-
ability. In the context of P2P overlays our result can be interpreted as
follows: if each physical node participating to the tree overlay manages a
random pair that couples one virtual internal node and one virtual leaf
node then the physical-node layer exhibits a constant expansion with
high probability. We encompass the difficulty of obtaining the random
tree virtualization by proposing a local, self-organizing and churn re-
silient uniformly-random pairing algorithm with O(log2 n) running time.
Our algorithm has the merit to not modify the original tree overlay (we
just control the mapping between physical nodes and virtual nodes).
Therefore, our scheme is general and can be easilly extended to a large
class of overlays.

1 Introduction

Background and Motivation. P2P networks are appealing for shar-
ing/diffusing/searching resources among heterogeneous groups of users. Effi-
ciently organizing users in order to achieve these goals is the main concern that
motivated the study of overlay networks. In particular, tree overlays became re-
cently attractive since efficient implementations of various P2P communication
primitives such as content-based publish/subscribe or multicast are strongly tied
to the hierarchical and acyclic properties of trees ([4, 7, 12, 20]). Therefore, many
P2P variants of classical tree structures (e.g. B-trees, R-trees or P-trees) have
been designed so far [1, 5, 6, 16, 17, 22]. However, the effectiveness of their use
in real applications is shadowed by their vulnerability to faults and churn (i.e.
frequent joins and leaves). Therefore, it is a challenging problem to lay the bases
for designing robust tree overlays.
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A promising way of measuring the robustness of overlay networks is the evalu-
ation of the graph expansion. The (node) expansion h(G) of an undirected graph
G = (VG, EG) is defined as:

h(G) = min
S⊆VG||S|≤n/2

|Γ (S)|
|S| ,

where Γ (S) is the set of nodes that are adjacent to a node in S but not contained
in S. The implication of node expansion is that the deletion of at least h(G) · k
nodes is necessary to disconnect a component of k nodes in G. That is, graphs
with good expansion are hard to be partitioned into a number of large connected
components. In this sense, the expansion of a graph can be seen as a good
evaluation of its resilience to faults and churn. Interestingly, the expansion of tree
overlays is trivially O(1/n). This weakness to faults explains why tree overlays
are not pervasive in real applications.

Our focus in this paper is to provide a mechanism to make tree overlays ro-
bust. In particular, we are interested in generic schemes applicable with minimal
extra cost to a large class of tree overlays. As seen above, there is a broad class
of tree-based data structures with different characteristics. However, their dis-
tributed implementations face similar difficulties when trying to circumvent the
threat of disconnection. Therefore, providing a generic scheme for increasing their
robustness would offer the substantial benefit for their systematic distributed
implementation.

Our contribution. Solutions for featuring P2P tree overlays with robustness
range from increasing the connectivity of the overlay (in order to eventually
mask the network churn and faults) to adding an additional mechanism for
monitoring and repairing the overlay. However the efficiency of these techniques
is shadowed by the extra-cost needed to their implementation in dynamic set-
tings. Moreover, the design of those mechanisms often depends on the specific
tree overlay implementation, and thus their generalization is difficult. Therefore,
we propose a totally novel approach that exploits the principle of tree virtual-
ization. That is, in a tree overlay one physical node may be in charge of several
virtual nodes. The core of our approach is to use this mapping between virtual
and physical nodes such that the physical-node layer exhibits a good robustness
property (e.g. constant expansion).

Our primary contribution is the following theorem which is the key in the
construction of our random virtualization scheme:

Theorem 1. Let T be a complete n-node binary tree with duplication of the root
node (the duplicated root is seen to be identical to the original root). Then, we
can define a bijective function Π from leaf nodes to internal nodes. Let GΠ be the
graph obtained from T by contracting pairs (v,Π(v)) for all v 1. If Π is chosen
uniformly at random then GΠ has a constant (node) expansion with probability
1− o(1).
1 The contraction of (v, Π(v)) means that we contract the edge {v, Π(v)} assuming

that it (virtually) exists in T .
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An immediate consequence of this theorem is that the physical-node layer
achieves a constant expansion with high probability if a random chosen couple
composed of one leaf and one internal node is assigned to each physical node. It
should be noted that our random tree virtualization does not modify the original
properties of the tree overlay since we only control the mapping to physical nodes.
This feature makes our scheme applicable to a large class of tree overlays.

Note that the above result heavily relies on the uniform random bijection (i.e.
random perfect bipartite matching) between internal and leaf nodes in the tree
overlay. Therefore, in order to prove the effectiveness of our proposal in a P2P
context we also address the construction of random perfect bipartite matching
over internal and leaf nodes. We propose a local and self-organizing scheme that
builds upon the parallel random permutation algorithm of Czumaj et. al.[9]. Our
scheme increases the graph expansion to a constant withinO(log2 n) synchronous
rounds (n is the number of physical nodes). The quick convergence of our scheme
in dynamic settings is validated through extended simulations.

Roadmap. In Section 2, we discuss the related work and focus mainly the dis-
tributed computing area. In Section 3 we present the proof of our main result.
We discuss the distributed implementation of our scheme in Section 4 which also
includes the simulation results using adversarial scenarios. Finally, in Section 5
we conclude and propose some future research directions.

2 Related Works

Expander graphs have been studied extensively in many areas of theoretical
computer science. A good tutorial can be found in [15]. In the following we
restrict our attention to distributed constructions with a special emphasis on
specific P2P design.

There are several results related to expander construction in distributed set-
tings. Most of those results are based on the distributed construction of random
regular graphs, which exhibit a good expansion with high probability. To the best
of our knowledge one of the first papers that addressed expander constructions
in P2P settings is [18]. The authors compose d Hamiltonian cycles to obtain a
2d-regular graph. In [21] the authors propose a fault-tolerant expander construc-
tion using a pre-constructed tree overlay. It provides the mechanism to maintain
an approximate random d-regular graph under the assumption that the sys-
tem always manages a spanning tree. The distributed construction of random
regular graphs based on a stochastic graph transformation is also considered
in [8, 13]. They prove that repeating a specific stochastic graph modification
(e.g., swapping the two endpoints of a length-three path) eventually returns a
uniformly-random sampling of regular graphs. Since all the previously mentioned
algorithms are specialized in providing good expansion, the combination with
the overlays maintenance is out of their scope. Therefore, these works cannot be
easily extended to a generic fault tolerant mechanism in order to improve the
resilience of a distributed overlay. Contrary to the previous mentioned works, our
study can be seen as a way of identifying implicit expander properties in a given
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topological structure. There are several works along this direction. In [10] the
authors propose a self-stabilizing constructions of spanders, which are spanning
subgraphs including smaller number of edges than the original graph but having
the asymptotically same expansion as the original (i.e. O( 1

n ))2. Recently, Pan-
durangan and Trehan propose a local and self-healing scheme to manage a good
expansion for adversarial joins and leaves [19]. Abraham et al. [2] and Aspnes
and Wieder [3] respectively give the analysis of the expansion for some specific
distributed data structures (skip graphs and skip b-trees). Recently Goyal et.al.
[14] prove that given a graph G, the composition of two random spanning trees
has the expansion of at least Ω(h(G)/ log n), where n is the number of nodes in
G. We can differentiate our result from the above works by its generality, the
novelty of random tree virtualization concept and the constant expansion that
is also maintained in the event of joins and leaves.

3 The Expander Property of GΠ

3.1 Notations

For an undirected graph G, VG and EG respectively denote the sets of all nodes
and edges in G. Given a graph G and a subset of nodes S ⊆ VG, we define Ind(S)
to be the subgraph of G induced by S. For a set of nodes S, its complement is
denoted by S. The node boundary of a set S ⊆ VG is defined as a set of nodes in
S that connect to at least one node in S, which is denoted by Γ (S).

Let T = (VT , ET ) be a binary tree. The sets of leaf nodes and internal nodes
for T are respectively denoted by L(VT ) and I(VT ). Given a subset S ⊆ VT , we
also define L(S) = L(VT )∩S and I(S) = I(VT )∩S. For a (sub)tree X , the root
node of X is denoted by r(X), and the parent of r(X) is denoted by p(X).

3.2 Preliminary Results

In the following T denotes a complete binary tree without explicit statement.
The root of T is denoted by r(T ). We prove several auxiliary results that will be
further used in our main result.

Lemma 1. For any nonempty subset S ⊆ I(VT ) such that Ind(S) is connected,
|Γ (S)| ≥ |S|+ 1. In particular, if r(T ) �∈ S holds, |Γ (S)| ≥ |S|+ 2.

The above lemma can be generalized for any (possibly disconnected) subset
S ⊆ I(VT ).

Lemma 2. Given any nonempty subset S ⊆ I(VT ) \ {r(T )} such that Ind(S) of
T consists of m connected components, |Γ (S)| ≥ |S|+m+ 1 holds.

The following corollary is simply deduced from Lemma 2.

Corollary 1. Let X be a subtree of T . For any subset S ⊆ I(VX), |Γ (S)∩VX | ≥
|S ∩ VX |. In particular, if S is nonempty, we have |Γ (S) ∩ VX | ≥ |S ∩ VX |+ 1.

2 A spander is also called a sparsifier.
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3.3 Main Result

In what follows, |L(VT )| is denoted by n for short (i.e., n is the number of nodes
in GΠ). We also assume Π is a bijective function from leaf nodes to the set
of internal nodes (where the root doubly appears), which is chosen from all n!
possible functions uniformly at random. For a subset of nodes S ⊆ L(VT ), we
define Π(S) = {Π(u)|u ∈ S} and QΠ = S ∪Π(S).

Provided a subset S ⊆ L(VT ) satisfying |S| < n/2, we say a subtree X is S-
occupied if all of its leaf nodes belong to S. An S-occupied subtree X is maximal
if there is no S-occupied subtree X containing X as a subtree. Note that two S-
occupied maximal subtrees X1 and X2 in a common tree T are mutually disjoint
and p(X1) �= p(X2) holds because of their maximality. We first show two lemmas
used in the main proof.

Lemma 3. Let X be a maximal S-occupied subtree for a nonempty subset S ⊆
L(VT ). Then, |Γ (QΠ) ∩ VX | ≥ |QΠ ∩ VX |/2 holds.

Lemma 4. Given a subset S ⊆ L(VT ) such that |S| ≤ n/2, let X0, X1, · · ·Xk be
all maximal S-occupied subtrees and VX = ∪k

i=1VXi . For any α < 1, Pr(|Π(S)∩
I(VX)| ≥ α|I(VX)|) ≤ ( |S|

α(|S|−k)

) ( (|S|−k)
n

)α(|S|−k)

.

The implication of the above two lemmas is stated as follows: We are focusing on
a subset of boundary nodes Γ (QΠ) that are associated with some “hole” (that is,
the set of nodes not contained in QΠ) in S-occupied subtrees. Lemma 3 implies
that at least half of the nodes organizing the hole belong to Γ (QΠ). Lemma 4
bounds the probability that S-occupied subtrees have the hole with size larger
or equal to (1− α)|I(VX )|. We also use the following inequality:

Fact 1 (Jensen’s inequality). Let f be the convex function, p1, p2, · · · be a
series of real values satisfying

∑∞
i=1 pi = 1, and x1, x2, · · · be a series of real

values. Then, the following inequality holds:

∞∑
i=1

pif(xi) ≥ f(
∞∑

i=1

pixi)

We give the proof of the main theorem (the statement is refined).

Theorem 1. The node expansion of GΠ is at least 1
480 with probability 1−o(1).

Proof. To prove the lemma, we show that with high probability, |Γ (S)| ≥ |S|/480
holds for any subset S ⊆ VGΠ such that |S| ≤ n/2. In the proof, we identify
L(T ) and VGΠ as the same set, and thus we often refer to S as a subset of L(VT )
without explicit statement. Given a set S, let k be the number of maximal S-
occupied subtrees, X = {X1, X2, · · · , Xk} be all maximal S-occupied trees, and
VX = ∪k

i=1VXi . We also define P = {p(Xi)|Xi ∈ X}. Throughout this proof,
we omit the subscript Π of QΠ . For a subset Y ⊆ VT , let Q(Y ) = Q ∩ Y and
q(Y ) = |Q(Y )| for short.
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: node in Q : node not in Q

: node in Γ(Q(V
X
))

(duplicated copy)

: node in Γ(Q∩V
X
)

: S-occupied tree (=V
X
)

Fig. 1. Illustration of the set Γ (S)∩VX , Γ (Q(VX)), and their boundaries. in the proof
of Theorem 1

The goal of this proof is to show that |Γ (Q)| ≥ |S|/240 holds with high
probability in T for any given S. It follows that |Γ (S)| ≥ |S|/480 holds in GΠ .
To bound |Γ (Q)|, we first consider the cardinality of two subsets Γ (Q)∩VX and
Γ (Q ∩ VX) (= Γ (Q(VX))). See Fig. 1 for an example. While these subsets are
not mutually disjoint, only the roots of S-occupied subtrees can be contained in
both Γ (Q) ∩ VX and Γ (Q(VX)). It implies

|(Γ (Q) ∩ VX) ∩ Γ (Q(VX))| ≤ q(P ). (1)

Lemma 2 and 3 lead to the following inequalities:

|Γ (Q) ∩ VX | ≥ 1
2

(
k∑

i=1

|Q ∩ VXi |
)

≥ (|S| − k − q(VX))/2. (2)

|Γ (Q(VX)| ≥ |Q(VX)|+ 1
≥ (|S| − 1)− q(VX) + 1 = |S| − q(VX). (3)

By inequalities 1, 2, and 3, we can bound the size of Γ (Q) as follows:

|Γ (Q)| ≥ |(Γ (Q)) ∩ VX |+ |Γ (Q(VX))| − q(P )
≥ (|S| − k − q(VX))/2 + |S| − q(VX)− q(P ) (4)
≥ 3(|S| − k − q(VX))/2 + k − q(P ). (5)

We consider the following two cases according to the value of k:

(Case 1). k > |S|/16: We show |Γ (Q)| > |S|/240 holds for any Π . If q(P ) ≤
12k/13 holds, we have |Γ (Q)| ≥ k/13 ≥ |S|/240 from inequality 5 because
of q(VX) ≤ |S| − k. Furthermore, if |S| − q(VX) − q(P ) ≥ |S|/240, we have
|Γ (Q)| ≥ |S|/240 from inequality 4. Thus, in the following argument, we assume
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q(P ) > 12k/13 and |S| − q(VX) − q(P ) < |S|/240. Consider the subgraph H
of T induced by Q(P ). We estimate the number of connected components in
H to get a bound of |Γ (VH)| in T . Letting C = {C1, C2, C3, · · ·Cm} be the set
of connected components of H , we associate each leaf node u in a S-occupied
subtree Xi with the component in C containing p(Xi) (the node is associated
with no component if p(Xi) is not in Q(P )). Since each node v ∈ H has one
child belonging to VX , each component in H forms a line graph monotonically
going up to the root. Thus, if a component Ci has j nodes u1, u2, · · ·uj , which
are numbered from the leaf side, each node uh (1 ≤ h ≤ j) has a child as the root
of a S-occupied tree having at least 2h−1 leaf nodes (recall that T is a complete
binary tree). It follows that the number of nodes in S associated with Ci is
greater or equal to

∑j
h=1 2h−1 = 2j−1. Letting li be the number of components

in C consisting of i nodes, we have:

|S|/m ≥
n∑

i=0

li
m

(
2i − 1

)
≥ 2

∑n
i=0 i·(li/m) − 1

≥ 2
12k
13m − 1

≥ 2
3|S|
52m − 1, (6)

where the second line is obtained by applying Jensen’s inequality. To make the
above inequality hold, the condition |S|/m ≤ 120 ⇔ m ≥ |S|/120 is necessary.
Next, we calculate how many nodes in Γ (VH) ∩ VX is occupied by Q. From the
definition of H , Q(Γ (VH)) does not contain any node in P (if a node v ∈ P is
contained, it will be a member of VH and thus not in Γ (VH)). Thus, any node
in Γ (VH) is a member of VX , Q ∩ P , or VX ∪ P . Let Y = Q(VX ∪ P ∩ Γ (VH))
and y = |Y | for short. Since any node in Q ∩ P is not contained in Q and the
cardinality of Γ (VH) ∪ VX can be bounded by q(P ) (as the roots of S-occupied
trees), we have the following bound from Lemma 2:

|Γ (Q)| ≥ |Γ (VH) \Q|
≥ |Γ (VH) ∩Q ∩ P |
≥ |Γ (VH)| − |Γ (VH) ∩ VX | − |Γ (VH) ∩ (VX ∪ P )|
≥ |Γ (VH)| − q(P )− y
≥ q(P ) +m+ 1− q(P )− y
≥ m− y.

Since Y , Q(P ) and Q(VX) are mutually disjoint, we obtain y + q(VX) + q(P ) ≤
|S| ⇔ y ≤ |S| − q(VX) − q(P ) < |S|/240. Consequently, we obtain |Γ (Q)| ≥
|S|/240.

(Case 2). k ≤ |S|
16 : In the following argument, given a set S satisfying k ≤

|S|/16, we bound the probability Pr(|Γ (Q)| < |S|/32). From the inequality 5
and k − q(P ) ≥ 0, it follows |Γ (Q)| ≥ 3(15|S|/16 − q(VX))/2. In order to get
|Γ (Q)| ≤ |S|/32, we need 3(15|S|/16− q(VX))/2 ≤ |S|/32⇔ q(VX) ≥ 11|S|/12.
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Thus, from Lemma 4, we can bound the probability as follows:

Pr(|Γ (Q)| < |S|/32) ≤ Pr(|Π(S)| ≥ 11|I(VX)|/12)

≤
( |S|

11(|S| − k)/12

)( |S| − k
n

)11|S|/12

≤
( |S|

(|S|+ k)/12

)( |S|
n

)11|S|/12

.

Fixing k and |S|, we look at the number of possible choices of S. Since we can
determine a S-occupied subtree Xi by choosing one node in T as its root, the
set S is determined by choosing k nodes from all nodes in T . Thus, the total
number of subsets S organizing at most |S|/16 S-occupied subtrees are bounded
by

∑|S|/16
i=1

(
2n
i

)
. Summing up this bound for any |S| < n/2, the total number

is bounded by
∑n/2

|S|=1(32ne/|S|)|S|/16. Using the union bound, the well-known
inequality

(
n
m

) ≤∑m
i=1

(
n
m

) ≤ (ne/m)m, and the condition k < |S|/16, we have:

Pr

⎛⎝ ⋃
S⊆L(VT )||S|≤n/2

|Γ (Q)| < |S|
32

⎞⎠
≤

n/2∑
|S|=1

⎛⎝|S|/16∑
i=1

(
2n
i

)⎞⎠( |S|
(|S|+ k)/12

)( |S|
n

)11|S|/12

.

≤
n/2∑

|S|=1

(
32ne
|S|

)|S|/16 (192e
17

)17|S|/192 ( |S|
n

)11|S|/12

≤
n/2∑

|S|=1

(
(32e)1/16(192e/17)17/192

)|S|
( |S|
n

)(11/12−1/16)|S|

By numeric calculation, we have log((32e)1/16(192e/17)17/192) ≤ 0.841 and
(11/12− 1/16) ≥ 0.854. Thus,

≤
n/2∑

|S|=1

20.841|S|
( |S|
n

)0.854|S|
= o(1).

The theorem is proved. ��

A note on unbalnced trees. While the above theorem assumes that the tree T
is balanced, that assumption is used only to lead the inequality 6. Considering
an unbalanced tree where the difference of the depth among every pair of leaf
nodes is at most c, we can guarantee that the number of nodes associated with
a component Ci of size is j is greater or equal to 2j−c − 1. Thus, the inequality
6 is modified as 2

3|S|
52m −c − 1. This provides a weaker constraint on the value of

|S|/m, but showing a constant node expansion is still possible if c is constant.
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4 Distributed Construction of GΠ

To prove the impact of Theorem 1 in P2P settings we have to construct a ran-
dom bijection (i.e., random perfect bipartite matching) between internal and
leaf nodes in tree overlays. In this section, we show that this distributed con-
struction is possible with nice self-∗ properties. That is, our scheme is totally-
distributed, uses only local information, and is self-healing in the event of nodes
joins and leaves. In the following we state the computational model and our
network assumptions. Then, we propose our algorithm and study the impact of
its performances under two churn scenario.

4.1 Computational Model

We consider a set of virtual nodes (peers) distributed over a connected physi-
cal network. Virtual nodes are structured in a binary tree overlay. Each phys-
ical node managing a virtual node v can communicate with any physical node
managing v’s neighbors in the overlay. The communication is synchronous and
round-based. That is, the execution is divided into a sequence of consecutive
rounds. All messages sent in some round are guaranteed to be received within
the same round.

We assume that each physical node manages exactly one internal node and
one leaf node in the virtual overlay. Moreover, we also assume that the tree
is balanced. Note that these assumptions are not far from practice. Most of
distributed tree overlay implementations embed balancing schemes. The preser-
vation of matching structure is easily guaranteed by employing the strategy that
one physical node always join as two new nodes. We can refer as an example the
join/leave algorithm in [11], which is based on the above strategy and generally
applicable to most of binary-tree overlays.

4.2 Uniformly-Random Matching Construction

The way leaf and internal nodes are matched via a physical node is generally
dependent on the application requirements and is rarely chosen uniformly at
random. That is, the implicit matching offered by the overlay may be extremely
biased and the expansion factor computed in the previous section may not hold.
Fortunately, the initial matching can be quickly “mixed” to obtain a uniformly-
random matching. To this end we will extend the technique proposed by Czumaj
et. al.[9] for fast random permutation construction to distributed scalable match-
ings in tree overlays. The following stochastic process rapidly mixes the sample
space of all bipartite matchings between leafs and internal nodes:

1. Each leaf node first tosses a fair coin and decides whether it is active or
passive.

2. Each active node randomly probes a leaf node and sends a matching-
exchange request.
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3. The passive node receiving exactly one matching-exchange request accepts
it, and establishes the agreement to the sender of the request.

4. The internal nodes managed by the agreed pair are swapped.

Note that the above process is performed by all leaf nodes concurrently in a
infinite loop. Following the analysis by Czumaj et. al.[9], the mixing time of the
above process is O(log n).

The only point that may create problems in distributed P2P settings is the
second step. Our solution to implement the random sampling mechanism with
O(log n) time and message complexity is as follows: First, the prober sends a
token to the root. From the root, the token goes down along the tree edges by
selecting with equal probability one of its children. When the token reaches a
leaf node, the destination is returned as the probe result.

Overall, the distributed scalable algorithm for constructing a random bipar-
tite matching takes O(log2 n) time. In the following subsection, we evaluate the
performances of the above scheme face to churn.

4.3 Experimental Evaluation in Dynamic Environment

In this section, we experimentally validate the performance of our approach by
simulation. In the simulation scenario the following four phases are repeated.

Nodes join. We assume that a newly-joining node knows the physical address
of some leaf node u in the network. Let v and v′ be the leaf and internal
nodes that will be managed by the newly-joining physical node. The node u
is replaced by a newly internal node v′. Then v and u become children of v′.

Nodes leave. The adversary chooses a number of nodes to make them leave.
Since it is hard to simulate worst-case adversarial behavior, we adopt a
heuristic strategy: given a physical node v with leaf vL and internal node
vI , let h(v) be the height of the smallest subtree containing both vL and VI .
Intuitively, the physical node v with higher h(v) has much contributition for
avoiding the node boundary to be contained in a small subtree containing
vL. Following this intuition, the adversary always makes the node v with
highest h(v) leave.

Balancing. Most of tree-based overlay algorithms have some balancing mecha-
nism. While the balancing mechanism has a number of variations, we simply
assume a standard rotation mechanism. After a number of nodes join and
leave, the tree is balanced by standard rotation operation.

Matching Reconstruction. We run once the matching-mixing process de-
scribed in the previous section.

Since exact computation of node expansion is coNP-complete, we monitor the
second smallest eigenvalue λ of the graph’s Laplacian matrix, which has a strong
corelation to the node expansion: a graph with the second smallest eigenvalue λ
is a λ/2-expander. In the following we propose our simulations results first in a
churn free setting then in environments with different churn levels. Due to the
space limitation the churn-free simulations are defered to the Appendix.
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Churn free settings. We ran 100 simulations of 100 rounds with 512 nodes and
no churn. The value of λ is calculated at the begin of each round. These simula-
tions emphasize what is “expectable” from the mixing protocol and some of its
dynamic properties.
λ varies from 0.263 to 0.524 with an average value of 0.502 and a standard

deviation of 0.017. The low standard deviation and the closeness of average and
maximum reached values of λ indicates that the minimum is rarely reached.
Basically it is obtained when most nodes become responsible for internal nodes
that are close to their leaves. Intuitively if each node is responsible for an ancestor
of its leaf, there is no additionnal links between the left and the right subtrees
of the root. In that case we do not take benefit of mixing and get bad expansion
properties inherited from tree structures.

Churn prone settings. We ran 100 simulations of 100 rounds with 512 nodes and
rates of churn fo 10% respectivelly 30%. Time is divided in seven rounds groups.
During the first round a given percentage of new nodes join the system. During
the second a given percentage of nodes leave the system. During the third round
the tree is balanced and the mixing protocol is run. During other rounds the
mixing protocol is run. λ is measured at the end of each round. Nodes gracefully
leave the system. Those simulations investigate the impact of churn on λ and
how fast our mixing protocol restores a stable configuration.
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(a) λ over time with 10% of churn
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(b) λ over time with 30% of churn

Figure 2a shows the evolution of λ over time in the presence of 10% of churn
(10% is relative to the initial number of nodes). Each step stands for a round.
From a stable configuration where λ oscillates between 0.52 and 0.48, it drops
down to 0.4 every seven rounds due to arrivals and departures. The structure is
sensitive to churn in the sense that it significantly decreases the value of λ. On
the other hand, the proposed mixing protocol converges fast. It needs two rounds
to reach the average expected value of λ . Note that the theoretical convergence
was logarithmic in the number of nodes.

Figure 2b shows the evolution of λ over time in presence of 30% of churn
(30% is relative to the initial number of nodes). Each step stands for a round.
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Basically the increase of the churn stretches the curve. While the previous figure
( 2a) gives a good overview of the global behaviour of the protocol facing churn,
the figure 2b emphases some interesting details. First, the mixing protocol is not
monotonic; it might decrease λ. Second, the impact of arrivals and departures
are distinct. Moreover, the magnitude of their impact is not predictable because
the selection of bootstrap nodes is random. Starting from a stable situation
arrivals will always decrease λ. With the proposed join mechanism, a new comer
is weakly connected to the rest of the system. Starting from a stable situation
graceful departures will almost always decrease λ. But with the proposed leave
mechanism their impact is more subtle since they can largely modify the tree
balance which also implies link exchanges. In some rare cases those exchanges
(which could be thought as side effect shuffles of links) or the departure of weakly
connected nodes could increase λ.

5 Concluding Remarks

We proposed for the first time in the context of overlay networks a generic scheme
that transforms any tree overlay to an expander with constant node expansion
with high probability. More precisely, we prove that a uniform random tree
virtualization yields a node expansion of at least 1

480 with probability 1− o(1).
Second, in order to demonstrate the effectiveness of our result in the context
of P2P networks we further propose and evaluate in different churn scenario a
simple scheme for uniform random tree virtualization in O(log2 n) running time.
Our scheme is totally distributed and uses only local information. Moreover, in
the event of nodes join/leave or crash our scheme is self-healing.

The virtualization scheme itself is a promising approach and provides several
interesting questions. We enumerate the open problems related to our result:

– Better analysis of the matching convegence: The simulations results
show that the expansion computed is considerably larger than the theoretical
bound. That is, the spectral expansion ranges from 1/4 to 1/2 while the
theoretical bound is 1/480. In addition, the convegence time is also faster
than the theoretical bound computed as logarithmic in the number of nodes.
Finding tight bounds for both expansion and convegence time is an open
problem.

– Effective use of expander property: In addition to fault resilience, ex-
pander graphs also offer the rapidly-mixing property of random walks. That
is, MCMC-like sampling method effectively runs on our scheme. It is an in-
teresting research direction to use the expansion property for implementing
some statistical operations or query load balancing.

– Application of virtualization scheme to other overlays: The virtu-
alization scheme can be easilly modified in order to be applied to other
well-known overlays such as Chord or Pastry. Identifying the class of overlay
networks where the virtualizaton scheme efficiently works is a challenging
problem.
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– Self-healing strategies: Another interesting research direction would be to
exploit the constant expansion of the overlay in order to efficiently implement
self-healing strategies.
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A Omitted Proofs

A.1 Proof of Lemma 1

Proof. We prove the case of r(T ) �∈ S by induction on the cardinality of S.
(Basis) If |S| = 1, the lemma clearly holds because every internal node except
for the root of T has degree three. (Inductive step) Suppose as the induction
hypothesis that |Γ (S)| ≥ |S| + 2 holds for any connected set S of size k. we
prove that for any v ∈ I(VT ) that is connected to a node in S, |Γ ((S ∪ {v}))| ≥
|S ∪ {v}| + 2 holds. For short, let S′ = S ∪ {v}. Since S is connected, v is
connected to exactly one node in S. In other words, node v has two neighbors of
v in neither S nor Γ (S), which are elements of Γ (S′). In contrast, v is an element
of Γ (S) but not in Γ (S′). It follows that Γ (S′) ≥ Γ (S)− 1 + 2 holds. From the
induction hypothesis, we obtain Γ (S′) ≥ Γ (S) + 1 ≥ |S|+ 1 + 2 = |S′|+ 2. The
case r(T ) ∈ S is obviously deduced from the case of r(T ) �∈ S. The lemma is
proved. ��
A.2 Proof of Lemma 2

Proof. Let C1, C2, · · ·Cj , · · ·Cm be the set of connected components in Ind(S).
In the case of r(T ) ∈ S, we assume r(T ) ∈ C1 without loss of generality. We
prove the lemma by induction on j. (Basis) It holds from Lemma 1 (Inductive
step) Suppose |Γ (S)| ≥ |S|+ j+1 as the induction hypothesis. Consider adding
a new component Cj+1 into S. Let c be the number of nodes in Cj+1. Since
r(T ) �∈ Cj+1, from Lemma 1, |Γ (VCm+1)| ≥ c + 2 holds. At most one node is
shared by Γ (S) and Γ (VCm+1), we have |Γ (S ∪ VCj+1)| ≥ |S|+ j+1+c+2−1≥
(|S|+ c) + (j + 1). The lemma is proved. ��
A.3 Proof of Lemma 3

Proof. We omit the subscript Π of QΠ for short. We divides Q ∩ VX into three
mutually-disjoint subset S1, S2, and S3: Let S1 ⊆ VX ∩ Q be the set of nodes
that have no neighbor belonging to Q ∩ VX , S2 = Γ (S1) ∩ Q, and S3 = (Q ∩
VX) \ (S1 ∪ S2) (see Fig. 2). Since X is S-occupied, S2 consists only of internal
nodes. Thus, from Corollary 1, |S2| = |Γ (S1)| ≥ |S1| holds. By the definition of
S2 and S3, S2 ⊆ (Γ (Q)) ∩ VX and S3 ⊆ (Γ (Q)) ∩ VX hold. Consequently, we
have 2|Γ (Q)∩ VX | ≥ 2(|S2|+ |S3|) ≥ |S2|+ 2|S3|+ |S1| ≥ |Q∩ VX |. The lemma
is proved. ��
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S1

S2 S3

: node in Q : node not in Q

Fig. 2. Illustration of S1, S2, and S3 in the proof of Lemma 3

A.4 Proof of Lemma 4

Proof. Let Z = I(VX) for short. First, we fix a subset S′ ⊆ of S with cardinal-
ity α|Z|, and consider the probability that Π(S′) ⊆ Z holds. Without loss of
generality, we can regard Π as a permutation on Z whose first |S| elements are
mapped to Z. Thus, to compute the probability, it is sufficient to count the num-
ber of permutations where any element in S′ appears at the first |Z| elements
of Π . Dividing the counted number by n!, the probability can be calculated as
follows:

Pr(S′ ⊆ X) =
1
n!

(
n− |S′|
|Z| − |S′|

)
|Z|!(n− |Z|)!

=
|Z|(|Z| − 1)(|Z| − 2) · · · (|Z| − α|Z|+ 1)

n(n− 1)(n− 2) · · · (n− α|Z|+ 1)
≤
( |Z|
n

)α|Z|
.

Using the union bound, we can obtain the following bound:

Pr(Π(S) ≥ α|Z|) ≤ Pr

⎛⎝ ⋃
S′⊂S|S′=α|Z|

S′ ⊆ Z
⎞⎠ ≤

( |S|
α|Z|

)( |Z|
n

)α|Z|
.

Since |Z| = |S| − k holds, the lemma is proved. ��
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Abstract. A randomized implementation is given of a test-and-set register with
O(log log n) individual step complexity and O(n) total step complexity against
an oblivious adversary. The implementation is linearizable and multi-shot, and
shows an exponential complexity improvement over previous solutions designed
to work against a strong adversary.

1 Introduction

A test-and-set object supports an atomic test-and-set operation, which returns 0 to
the first process that executes it and 1 to all subsequent processes. Test-and-set is a
classic synchronization primitive, often used in multiprocessing computer systems as
a tool for implementing mutual exclusion. It also has close connections to the tradi-
tional distributed computing problems of consensus [11] and renaming [2]. For two
processes, test-and-set can be used to solve consensus and vice versa [11]; this implies
that test-and-set has no deterministic wait-free implementation from atomic registers.
Nonetheless, randomized implementations can solve test-and-set efficiently.

The randomized test-and-set object of Afek et al. [1] requires O(log n) steps on
average, where n is the number of processes. It is built from a tree of 2-process test-
and-set objects that are in turn built from 2-process randomized consensus protocols.
The performance bounds hold even when scheduling is under the control of an adap-
tive adversary, which chooses at each step which process executes the next low-level
operation based on complete knowledge of the system, including the internal states of
processes.

In the case of consensus, it is known that replacing an adaptive adversary with an
oblivious adversary, that fixes the entire schedule in advance, improves performance
exponentially, from an Ω(n) lower bound on the expected number of steps performed
by any one process [3] to an O(log n) upper bound [6]. Thus, a natural question is
whether an algorithm with step complexity lower than Θ(log n) is possible for test-
and-set against a weak adversary.

In this paper, we answer this question in the affirmative. We show that, even though
test-and-set has a fastO(log n) implementation against an adaptive adversary, this same
exponential improvement holds: by exploiting the limitations of the oblivious adversary,
we can reduce the complexity of test-and-set from O(log n) to O(log log n).
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The essential idea of our algorithm is to rapidly eliminate most processes from con-
sideration using a sequence of sifting rounds, each of which reduces the number of sur-
vivors to roughly the square root of the number of processes that enter the round, with
high probability; in particular, this reduces the number of survivors to polylogarithmic
in O(log logn) rounds.

The intuition behind the sifting technique is quite simple: each process either writes
or reads a register in each round with a carefully-tuned probability. The process contin-
ues to the next round only if it chooses to write, or if it reads the value ⊥, indicating
that its read preceded any writes in that round. Because an oblivious adversary can-
not predict which process will read and which will write, it effectively plays a game
where the processes access the register one at a time, with only writers surviving after
the first write; the probabilities are chosen so that the sum of the expected number of
initial readers and the expected number of writers is minimized. At the same time, this
scheme ensures that at least one process survives each round of sifting, because either
all writers survive, or, if there are no writers, all readers survive. This technique works
despite asynchrony or process crashes.

After Θ(log logn) rounds of sifting, the number of remaining candidates is small
enough that the high-probability bounds used to limit the number of survivors in each
round stop working. On the other hand, we notice that in this case we are left with
O(polylog n) survivors, and we can feed these survivors into a second stage con-
sisting of the adaptive test-and-set implementation of [2], that has step complexity
O(log k) for k participating processes. Thus, the running time of this second stage is
also O(log logn), which yields the step complexity upper bound of O(log logn). A
similar analysis shows that the total number of steps that all processes take during an
execution of the algorithm is O(n), which is clearly optimal.

It is worth noting that in the presence of an adaptive adversary, though the initial
sifting phase fails badly (the adversary orders all readers before all writers, so all pro-
cesses survive each round), the adaptive test-and-set still runs in O(log n) time, and
the O(log logn) overhead of the initial stage disappears into the constant. So our algo-
rithm has the desirable property of degrading gracefully even when our assumption of
an oblivious adversary is too strong.

While it is difficult to imagine an algorithm with significantly less than O(log logn)
step complexity, the question of whether a better algorithm is possible remains open.
This is also the case for the adaptive adversary model, where there is no lower bound
on expected step complexity to complement the O(log n) upper bounds of [1, 2].

The step complexity of our algorithm is O(log logn) in expectation, and O(log n),
with high probability. We notice that, even against a weak adversary, any step com-
plexity upper bound on test-and-set that holds with high probability has to be at least
Ω(log n). This result follows from a lower bound of Attiya and Censor-Hillel on the
complexity of randomized consensus [4].

Also of note, our algorithm suggests that non-determinism can be used to avoid some
of the cost of expensive synchronization in shared memory, if the scheduler is oblivious.
More precisely, Attiya et al. [5] recently showed that deterministic implementations of
many shared objects, including test-and-set, queues, or sets, have worst-case executions
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which incur expensive read-after-write (RAW) or atomic-write-after-read (AWAR)
operation patterns. In particular, ensuring RAW order in shared memory requires in-
troducing memory fences or barriers, which are considerably slower than regular in-
structions.

First, we notice that their technique also applies to randomized read-write algorithms
against an adaptive adversary, yielding an adversarial strategy that forces each process
to perform an expensive RAW operation pattern with probability 1. On the other hand,
the sifting procedure of our algorithm bounds the number of processes that may per-
form RAW patterns in an execution to O(

√
n), with high probability. This shows that

randomized algorithms can avoid part of the synchronization cost implied by the lower
bound of [5], as long as the scheduler is oblivious.

Roadmap. We review the related work in Section 2, and precisely define the model
of computation, problem statement, and complexity measures in Section 3. We then
present our algorithm and prove it correct in Section 4. In Section 4.4, we present a
simple technique for turning the single-shot test-and-set implementation into a multi-
shot one, and derive lower bounds in Section 5. We summarize our results and give an
overview of directions for future work in Section 6.

2 Related Work

The test-and-set instruction has been present in hardware for several decades, as a sim-
ple means of implementing mutual exclusion. Herlihy [11] showed that this object has
consensus number 2.

Several references studied wait-free randomized implementations of test-and-set.
References [10, 14] presented implementations with super-linear step complexity. (Ran-
domized consensus algorithms also implement test-and-set, however their step com-
plexity is at least linear [3].) The first randomized implementation with logarithmic step
complexity was by Afek et al. [1], who extended the tournament tree idea of Peterson
and Fischer [13], where the tree nodes are two-process test-and-set (consensus) imple-
mentations as presented by Tromp and Vitanyi [15]. Their construction has expected
step complexity O(log n). This technique was made adaptive by the RatRace protocol
of [2], whose step complexity is O(log2 k) with probability 1 − 1/kc, for c constant,
where k is the actual number of processes that participate in the execution. We use the
RatRace protocol as the final part of our test-and-set construction. Note that these previ-
ous constructions assume a strong adaptive adversary. The approaches listed above for
sublinear randomized test-and-set incur cost at least logarithmic in terms of expected
time complexity, even if the adversary is oblivious, since they build on the tourna-
ment tree technique. References [7, 8] give deterministic test-and-set and compare-and-
swap implementations with constant complexity in terms of remote memory references
(RMRs), in an asynchronous shared-memory model with no process failures (by con-
trast, our implementation is wait-free). The general strategy behind their test-and-set
implementation is similar to that of this paper and that of Afek et al. [1]: the algorithm
runs a procedure to elect a leader process, i.e. the winner of the test-and-set, and then
uses a separate flag register to ensure linearizability.



100 D. Alistarh and J. Aspnes

3 Preliminaries

Model. We assume an asynchronous shared memory model in which at most n pro-
cesses may participate in any execution, t < n of which may fail by crashing. We
assume that processes know n (or a rough upper bound on n). Processes communicate
through multiple-writer-multiple-reader atomic registers. Our algorithms are random-
ized, in that the processes’ steps may depend on random local coin flips. Process crashes
and scheduling are controlled by a weak oblivious adversary, i.e. an adversary that can-
not observe the results of the random coin flips of the processes, and hence has to fix
its schedule and failure pattern before the execution. On the other hand, we assume that
the adversary knows the structure of the algorithm. By contrast, a strong adaptive ad-
versary (as considered in Lemma 5) knows the results of the coin flips by the processes
at any point during the algorithm, and may adjust the scheduling and failure pattern
accordingly.

Problem Statement. The multi-use test-and-set bit has a test-and-set operation which
atomically reads the bit and sets its value to 1, and a reset operation which sets the bit
back to 0. We say that a process wins a test-and-set object if it reads 0 from the object;
otherwise, if it reads 1, the process loses the test-and-set. By the sequential specifica-
tion, each correct process eventually returns an indication (termination), and only one
process may return winner from a single instance of test-and-set (the unique winner
property). Also, no process may return loser before the winner started the execution,
and only the winner of an instance may successfully reset the instance.

Complexity Measures. We measure complexity in terms of process steps: each shared-
memory operation and (local) coin flip is counted as a step. The total step complexity
counts the total number of process steps in an execution, while the individual step com-
plexity (or simply step complexity) is the number of steps a single process may perform
during an execution.

As a second measure, we also consider the number of read-after-write (RAW) pat-
terns that our algorithm incurs. This metric has been recently analyzed by Attiya et
al. [5] in conjunction with atomic write-after-read (AWAR) operations (we consider
read-write algorithms, which cannot employ AWAR patterns). In brief, the RAW pat-
tern consists of a process writing to a shared variable A, followed by the same process
reading from a different shared variable B, without writing to B in between. Enforcing
RAW order on modern architectures requires introducing memory fences or barriers,
which are substantially slower than regular instructions. For a complete description of
RAW/AWAR patterns, please see [5].

4 Test-and-Set Algorithm

In this section, we present and prove correct a randomized test-and-set algorithm, called
Sift, with expected (individual) step complexityO(log logn) and total step complexity
O(n). The algorithm is structured in two phases: a sifting phase, which eliminates a
large fraction of the processes from contention, and a competition phase, in which the
survivors compete in an adaptive test-and-set instance to assign a winner.
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Shared:1

Reg , a vector of atomic registers, of size n, initially⊥2

Resolved , an atomic register3

procedure Test-and-Set()4

if Resolved = true then5

return loser6

/* sifting phase */
for round r from 0 to

⌈
5
2

ln ln n
⌉

do7

πr ← n−(2/3)r/28

flip ← 1 with probability πr, 0 otherwise9

if flip = 1 then10

Reg[r]← pi11

else12

val ← Reg[r]13

if val 
= ⊥ then14

Resolved ← true15

return loser16

/* competition phase */
result ← RatRace(pi)17

return result18

Fig. 1. The Sift test-and-set algorithm

4.1 Description

The pseudocode of the algorithm is presented in Figure 1. Processes share a vector Reg
of atomic registers, initially ⊥, and an atomic register Resolved , initially false. The
algorithm proceeds in two phases.

The first, called the sifting phase, is a succession of rounds r ≥ 0, with the property
that in each round a fraction of the processes are eliminated. More precisely, in round
r, each process flips a binary biased coin which is 1 with probability πr = n−(2/3)r/2

and 0 otherwise (line 9). If the coin is 1, then the process writes its identifier pi to the
register Reg[r] corresponding to this round, which is initially ⊥. Every process that
flipped 0 then reads the value of Reg[r] in round r. If this value is ⊥, then the process
continues to the next round. Otherwise, the process returns loser, but first marks the
Resolved bit to true, to ensure that no incoming process may win after a process has
lost (lines 13-16). We will prove that by the end of the

⌈
5
2 ln lnn

⌉
+ 1 rounds in this

phase, the number of processes that have not yet returned loser is O(log7 n), with high
probability.

In the competition phase, we run an instance of the RatRace [2] adaptive test-and-
set protocol, to determine the one winner among the remaining processes. In brief,
in RatRace, each process will first acquire a temporary name, and then compete in a
series of two-process test-and-set instances to decide the winner. Since the number of
processes that participate in this last phase is polylogarithmic, we will obtain that the
number of steps a process takes in this phase is O(log logn) in expectation.
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4.2 Proof of Correctness

We first show that the algorithm is a correct test-and-set implementation.

Lemma 1 (Correctness). The Sift algorithm is a linearizable test-and-set implemen-
tation.

Proof. The termination property follows by the structure of the sifting phase, and by
the correctness of the RatRace protocol [2]. The unique winner property also follows
from the properties of RatRace. Also, notice that, by the structure of the protocol, any
process that performs alone in an execution returns winner.

To prove linearizability, we first show that the algorithm successufully elects a leader,
i.e., given an execution E of the protocol and a process p� that returns loser in E , there
exists a (unique) process pw �= p� such that pw either returns winner in E , or crashes in
E . Second, we show that, using the Resolved bit, the test-and-set operation by process
pw can be linearized before p�’s test-and-set operation.

For the first part, we start by considering the line in the algorithm where process p�

returned loser. If p� returned on line 18, then the above claim follows by the linearizabil-
ity of the RatRace test-and-set implementation [2]. On the other hand, if p� returned on
line 16, it follows that p� has read the identifier of another process from a shared regis-
ter Reg[r] in some round r ≥ 1. Denote this process by q1. We now analyze the return
value of process q1 in execution E . If q1 crashed or returned winner in execution E ,
then the claim holds, since we can linearize q1’s operation or crash before p�’s opera-
tion. If q1 returns loser from RatRace, then again we are done, by the linearizability of
RatRace. Therefore, we are left with the case where q1 returned loser on line 16, after
reading the identifier of another process q2 from a register Reg[r′] with r′ ≥ r. Notice
that q2 and p� are distinct, since the write operations are atomic.

Next, we can proceed inductively to obtain a maximal chain of distinct processes
q1, q2, up to qk for some k ≥ 1 such that for any 1 ≤ i ≤ k − 1, process qi read
process qi+1’s identifier and returned loser in line 16. This chain is of length at most
n− 1. Considering the last process qk, since the chain is maximal, process qk could not
have read any other process’s identifier in line 13 during the sifting phase. Therefore,
process qk either obtains a decision value from RatRace in line 18, or crashes in E after
reading Resolved = false in line 6 of the protocol. Notice that, since the Resolved bit
is atomic, qk’s test-and-set operation could not have started after p�’s operation ended.
Therefore, if qk decides winner or crashes, then we can linearize its operation before
p�’s operation and we are done. Otherwise, if qk decides loser from RatRace, then
there exists another process pw that either returns winner or crashes during RatRace,
and whose RatRace(pw) operation can be linearized before qk’s. Therefore, we can
linearize pw’s test-and-set operation before p�’s to finish the proof of this claim.

Based on this claim, we can linearize any execution in which some process returns
loser as follows. We consider the losing processes in the order of their read operations
on register Resolved . Let p� be the first losing process in this order. We then apply the
claim above to obtain that there exists a process pw that either crashes or returns winner,
whose test-and-set operation can be linearized before that of p�. This defines a valid
linearization order on the operations that return in execution E . The other operations
(by processes that crash, except pw) may be linearized in the order or non-overlapping
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operations. The remaining executions can be linearized trivially. We note that, since we
use the Resolved bit to ensure linearization, we avoid the linearizability issues recently
pointed out by Golab et al. [9] for randomized implementations.

4.3 Proof of Performance

We now show that the algorithm has expected step complexity O(log logn). The intu-
ition behind the proof is that, for each round r, the number of processes that keep taking
steps after round r+1 of the sifting phase is roughly

√
nr (in expectation), where nr is

the number of processes that take steps in round r+ 1. Iterating this for �(5/2) ln lnn
rounds leaves at most polylogn active processes at the end of the sifting phase, with
high probability. We begin the proof by showing that the sifting phase reduces the set
of competitors as claimed.

Lemma 2. With probability 1 − o(n−c), for any fixed c, at most ln7 n processes leave
the sifting phase without returning loser.

Proof. Fix some c, and let c′ = c+ 1.
Let

κ = − 1
ln(2/3)

(
1− ln 7 + ln ln lnn

ln lnn

)
.

≤ − 1
ln(2/3)

<
5
2
.

We will show that, with high probability, it holds that for all 0 ≤ r ≤ κ ln lnn, at most
nr = n(2/3)r

processes continue after r rounds of the sifting phase. The value of κ is
chosen so that

nκ ln ln n = n(2/3)κ ln ln n

= exp
(
lnn · (2/3)κ ln ln n

)
= exp (exp (ln lnn+ ln(2/3) · κ ln lnn))

= exp
(

exp
(

ln lnn−
(

1− ln 7 + ln ln lnn
ln lnn

)
ln lnn

))
= exp (exp (ln lnn− ln lnn+ ln 7 + ln ln lnn))
= exp (7 ln lnn)

= ln7 n.

This bound is a compromise between wanting the number of processes leaving the
sifting phase to be as small as possible, and needing the number of survivors at each
stage to be large enough that we can characterize what happens to them using standard
concentration bounds. Because κ < 5

2 , and extra rounds of sifting cannot increase the
number of surviving processes, if there are at most ln7 n survivors after κ ln lnn + 1
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rounds, there will not be any more than this number of survivors when the sifting phase
ends after

⌈
5
2 ln lnn

⌉
+ 1 rounds, establishing the Lemma.

We now turn to the proof of the nr bound, which proceeds by induction on r: we
prove that if fewer than nr processes enter round r + 1, it is likely that at most nr+1 =
n(2/3)r+1

processes leave it. The base case is that at most n0 = n(2/3)0 = n processes
enter round 1.

Note that πr, the probability of writing the register in round r, is chosen so that
πr = n

−1/2
r .

From examination of the code, there are two ways for a process to continue the
execution after round r+ 1: by writing the register (with probability πr = n−(2/3)r/2),
or by reading ⊥ from the register before any other process writes it. Suppose at most
nr processes enter round r. Then the expected number of writers is at most nrπr =
n

1/2
r . On the other hand, since the adversary fixes the schedule in advance, the expected

number of processes that read ⊥ is given by a geometric distribution, and is at most
1/πr = n

1/2
r , giving an expected total of at most 2n1/2

r processes entering round r+1.
(The symmetry between the two cases explains the choice of πr given nr.) We now
compute a high-probability bound for the number of surviving processes.

Let R count the number of processes that read ⊥. For R to exceed some value m,
the first m processes to access the register in round r must choose to read it, which

occurs with probability (1 − πr)m ≤ e−mπr . It follows that Pr
[
R ≥ (c′ lnn)n1/2

r

]
≤

e−c′ ln n = n−c′ .
Let W be the number of processes that write the register in round r + 1. Using

standard Chernoff bounds (e.g., [12, Theorem 4.4]), we have Pr
[
W ≥ (c lnn)n1/2

r

]
≤

2−(c′ lnn)n1/2
r ≤ n−c′ , provided c′ lnn ≥ 6, which holds easily for sufficiently large n.

Combining these bounds, with probability at least 1− 2n−c it holds that the number
of survivors

W +R ≤ 2(c′ lnn)n1/2
r

≤ 2(c′ lnn)n(1/2)·(2/3)r

=
2c′ lnn

n(1/6)·(2/3)r · n(2/3)r+1

=
2c′ lnn

n
1/6
r

· nr+1

≤ 2c′ lnn

ln7/6 n
· nr+1

≤ nr+1,

provided ln1/6 n ≥ 2c′, which holds for sufficiently large n.
The probability that the induction fails is bounded by 2n−c′ = 2n−c−1 = 2

nn
−c per

round; taking the union bound over O(log logn) rounds gives the claimed probability
o(n−c).

To complete the proof of performance, first observe that the cost of the sifting phase
isO(log logn), by the above Lemma. The step complexity cost of a call to RatRace [2]
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withO(log7 n)1 other participants isO(log logn), with probability at least 1−(logn)−c,
andO(log n) otherwise. Choosing c ≥ 2 gives an expected extra cost of the bad case of
o(1). Summing all these costs, we obtain a bound of O(log logn) on the expected step
complexity of Sift.

Since, with high probability, at most log7 n processes participate in the RatRace
instance, by the properties of RatRace, we obtain that the step complexity of the Sift
algorithm is O(log n), with high probability.
We have therefore obtained the following bounds on the step complexity of the algo-
rithm.

Lemma 3 (Step Complexity). The Sift algorithm in Figure 1 runs in expected O(log
logn) steps, and in O(log n) steps, with high probability.

We can extend this argument to obtain an O(n) bound on the total number of steps that
processes may take during a run of the algorithm.

Corollary 1 (Total Complexity). The Sift algorithm has total step complexity O(n),
with high probability.

Proof. The proof of Lemma 2 states that, with high probability, at most n(2/3)r

pro-
cesses continue after sifting round r, for any 1 ≤ r ≤ κ ln lnn. Let β = �κ ln lnn�.

It then follows that the total number of shared-memory operations performed by
processes in the sifting phase is at most

∑β
i=0 n

(2/3)r

+
∑�(5/2) ln ln n	

i=β+1 n(2/3)β ≤ n+∑(5/2) ln ln n
i=1 n2/3 ≤ 2n, with high probability. Since the total number of operations

that ln7 n participants may perform in RatRace is O(polylog n), with high probability,
the claim follows.

We notice that the processes that return loser without writing to any registers during
an execution do not incur any read-after-write (RAW) cost in the execution. The above
argument provides upper bounds for the number of such processes.

Corollary 2 (RAW Cost). The Sift algorithm incurs O(
√
n) expected total RAW cost.

With high probability, the algorithm incurs O(n2/3 logn) total RAW cost.

Finally, we notice that the algorithm is correct even if the adversary is strong (the sifting
phase may not eliminate any processes). Its expected step complexity in this case is the
same as that of RatRace, i.e. O(log n).

Corollary 3 (Strong Adversary). Against a strong adversary, the Sift algorithm is
correct, and has expected step complexity O(log n).

4.4 Multi-use Test-and-Set

We now present a transformation from single-use to multi-use test-and-set implementa-
tions. This scheme simplifies the technique presented in [1] for single-writer registers,
in a setting where multi-writer registers are available. See Figure 2 for the pseudocode.

1 Reference [2] presents an upper bound of O(log2 k) on the step complexity of RatRace with
k participants, with high probability. A straightforward refinement of the analysis improves
this bound to O(log k), with high probability.
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Shared:1

T , a vector of linearizable single-use test-and-set objects2

Index , an atomic register, initially 03

Local:4

crtWinner , a local register, initially false5

procedure Test-and-Set() /* at process pi */6

v ← Index .read()7

res← T [v].test-and-set()8

if res← winner then9

crtWinner i ← true10

return res11

procedure ReSet()12

if crtWinner i = true then13

Index .write(Index .read() + 1)14

crtWinner i ← false15

Fig. 2. The multi-use test-and-set algorithm

Description. Processes share a list T of linearizable single-use test-and-set objects, and
an atomic register Index . Each process maintains a local flag crtWinner indicating
whether it is the winner of of the current test-and-set instance. For the test-and-set
operation, each process reads in variable v the Index register and calls the single-use
test-and-set instance T [v]. The process sets the variable crtWinner if it is the current
winner of T [v], and returns the value received from T [v]. For the reset operation, the
current winner increments the value of Index and resets its crtWinner local variable.
(Recall that, by the specification of test-and-set [1], only the winner of an instance may
reset it.)

The proof of correctness for the transformation is immediate. The complexity bounds
are the same as those of the single-use implementation.

Improvements. The above scheme has the disadvantage that it may allocate an infi-
nite number of single-use test-and-set instances. This can be avoided by allowing the
current winner to de-allocate the current instance in the reset procedure, and adding
version numbers to shared variables, so that processes executing a de-allocated instance
automatically return loser.

5 Lower Bound

We first notice that any test-and-set algorithm against an oblivious adversary has execu-
tions with step complexityΩ(log n), with probability at least 1/nc, for a small constant
c. In essence, this implies that any bound O(C) on the step complexity of test-and-set
that holds with high probability has to have C ∈ Ω(log n). This bound is a corollary
of a result by Attiya and Censor-Hillel [4] on the complexity of randomized consensus
against a weak adversary, and is matched by our algorithm.
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Lemma 4. For any read-write test-and-set algorithm A that ensures agreement, there
exists a weak adversary such that the probability that A does not terminate after logn
steps is at least 1/nγ, for a small constant γ.

Proof. Consider a test-and-set algorithmA. Then, in every execution in which only two
processes participate, the algorithm can be used to solve consensus. We now employ
Theorem 5.3 of [4], which states that, for any consensus algorithm for n processes and f
failures, there is a weak adversary and an initial configuration, such that the probability
that A does not terminate after k(n − f) steps is at least (1 − ckεk)/ck , where c is a
constant, and εk is a bound on the probability for disagreement.

We fix parameters k = log n, εk = 0 (since the test-and-set algorithm guarantees
agreement), n = 2, and f = 1. The claim follows, with the parameter γ = log c.

Strong Adversary RAW Bound. We now apply the lower bound of Attiya et al. [5]
on the necessity of expensive read-after-write (RAW) patterns in deterministic object
implementations, to the case of randomized read-write algorithms against a strong ad-
versary. We state our lower bound in terms of total RAW cost for a test-and-set object;
since test-and-set can be trivially implemented using stronger objects such as consen-
sus, adaptive strong renaming, fetch-and-increment, initialized queues and stacks, this
bound applies to randomized implementations of these objects as well.

Lemma 5 (Strong Adversary RAW Bound). Any read-write test-and-set algorithm
that ensures safety and terminates with probability α against a strong adaptive adver-
sary has worst-case expected total RAW complexity Ω(αn).

Proof (Sketch). Let A be a read-write test-and-set algorithm. We describe an adver-
sarial strategy S(A) that forces each process to perform a read-after-write (RAW) op-
eration in all terminating executions. The adversary schedules process p1 until it has
its first write operation enabled. (Each process has to eventually write in a solo ex-
ecution, since otherwise we can construct an execution with two winners.) Similarly,
it proceeds to schedule each process p2, . . . , pn until each has its first write operation
enabled (note that no process has read any register that another process wrote at this
point). Let R1, R2, . . . , Rn be the registers that p1, p2, . . . , pn write to, respectively
(these registers are not necessarily distinct).

The adversary then schedules process pn to write to register Rn. It then schedules
process pn until pn reads from a register that it did not last write to. This has to occur,
since otherwise there exists an execution E ′ in which process pn takes the same steps,
and a process q �= pn is scheduled solo until completion, right before pn writes to Rn.
Process q has to decide winner in this parallel execution. On the other hand, process
pn cannot distinguish execution E ′ from a solo execution, therefore decides winner in
E ′, violating the unique winner property. Since the algorithm guarantees safety in all
executions, process pn has to read from a register it did not last write to, and therefore
incurs a RAW in execution E .

Similarly, after process pn performs its RAW, the adversary schedules process pn−1

to perform its write operation. By a similar argument to the one above, if the adversary
schedules pn−1 until completion, pn−1 has to read from a register that it did not write to,
and incur a RAW. We proceed identically for processes pn−2, . . . , p1 to obtain that each
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process incurred a RAW in execution E dictated by the strong adversarial scheduler,
which concludes this sketch of proof.

Discussion. This linear bound applies to randomized algorithms against a strong ad-
versary. Since, by Corollary 2, the Sift test-and-set algorithm has expected RAW cost
O(
√
n) against a weak adversary, these two results suggest that randomization can help

reduce some of the inherent RAW cost of implementing shared objects, if the scheduler
is assumed to be oblivious.

6 Summary and Future Work

In this paper, we present a linearizable implementation of randomized test-and-set, with
O(log logn) individual step complexity andO(n) total step complexity, against a weak
oblivious adversary. Our algorithm shows an exponential improvement over previous
solutions, that considered a strong adaptive adversary. Also, it has the interesting prop-
erty that its performance degrades gracefully if the adversary is adaptive, as the algo-
rithm is still correct in this case, and has step complexity is O(log n).

Lower bounds represent one immediate direction of future work. In particular, it is
not clear whether better algorithms may exist, either for the oblivious adversary, or for
the adaptive one. Also, another direction would be to see whether our sifting technique
may be applied in the context of other distributed problems, such as mutual exclusion
or cooperative collect.

Acknowledgements. The authors would like to thank Keren Censor-Hillel for useful
discussions, and the anonymous reviewers for their feedback.
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Tight Space Bounds for �-Exclusion
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Abstract. The simplest deadlock-free algorithm for mutual exclusion requires
only one single-writer non-atomic bit per process [4,6,13]. This algorithm is
known to be space optimal [5,6]. For over 20 years now it has remained an in-
triguing open problem whether a similar type of algorithm, which uses only one
single-writer bit per process, exists also for 	-exclusion for some 	 ≥ 2.

We resolve this longstanding open problem. For any 	 and n, we provide
a tight space bound on the number of single-writer bits required to solve 	-
exclusion for n processes. It follows from our results that it is not possible to
solve 	-exclusion with one single-writer bit per process, for any 	 ≥ 2.

In an attempt to understand the inherent difference between the space com-
plexity of mutual exclusion and that of 	-exclusion for 	 ≥ 2, we define a weaker
version of 	-exclusion in which the liveness property is relaxed, and show that,
similarly to mutual exclusion, this weaker version can be solve using one single-
writer non-atomic bit per process.

Keywords: Mutual Exclusion, 	-exclusion, space complexity, tight bounds.

1 Introduction

1.1 Motivation

The 	-exclusion problem, which is a natural generalization of the mutual exclusion
problem, is to design an algorithm which guarantees that up to 	 processes and no more
may simultaneously access identical copies of the same non-sharable resource when
there are several competing processes. A solution is required to withstand the slow-
down or even the crash (fail by stopping) of up to 	− 1 of the processes. A process that
fails by crashing simply stops executing more steps of its program, and hence, there
is no way to distinguish a crashed process from a correct process that is running very
slowly. For 	 = 1, the 1-exclusion problem is the familiar mutual exclusion problem.

A good example, which demonstrates why a solution for mutual exclusion does not
also solves 	-exclusion (for 	 ≥ 2), is that of a bank where people are waiting for a teller.
Here the processes are the people, the resources are the tellers, and the parameter 	 is
to the number of tellers. We notice that the usual bank solution, where people line up in
a single queue, and the person at the head of the queue goes to any free teller, does not
solve the 	-exclusion problem. If 	 ≥ 2 tellers are free, a proper solution should enable
the first 	 people in line to move simultaneously to a teller. However, the bank solution,
requires them to move past the head of the queue one at a time. Moreover, if the person

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 110–124, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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at the front of the line “fails”, then the people behind this person wait forever. Thus, a
better solution is required which will not let a single failure to tie up all the resources.

The simplest deadlock-free algorithm for mutual exclusion, called the One-bit al-
gorithm, requires only one single-writer non-atomic shared bit per process [4,6,13].
The One-bit algorithm is known to be space optimal [5,6]. For over 20 years now it
has remained an intriguing open problem whether a similar type of algorithm, which
uses only one single-writer bit per process, exists for 	-exclusion for some 	 ≥ 2. In
[16], Peterson refers to the One-bit algorithm, and writes: “Unfortunately, there seems
to be no obvious generalization of their algorithm to 	-exclusion in general”. He fur-
ther points out that it is an interesting open question whether this can be done even for
n = 3 and 	 = 2, where n is the number of processes. This problem is one of the oldest
longstanding open problem in concurrent computing.

In this paper we resolve this longstanding open problem. For any 	 and n, we pro-
vide a tight space bound on the number of single-writer bits required to solved the
	-exclusion problem for n processes. It follows from our results that only in the case
where 	 = 1, it is possible to solve the problem with one single-writer bit per process.

1.2 The �-Exclusion Problem

To illustrate the 	-exclusion problem, consider the case of buying a ticket for a bus ride.
Here a resource is a seat on the bus, and the parameter 	 is the number of available
seats. In the 	-exclusion problem, a passenger needs only to make sure that there is
some free seat on the bus, but not to reserve a particular seat. A stronger version, called
	-assignment (or slotted 	-exclusion), would require also to reserve a particular seat.

More formally, it is assumed that each process is executing a sequence of instruc-
tions in an infinite loop. The instructions are divided into four continuous sections of
code: the remainder, entry, critical section and exit. The 	-exclusion problem is to write
the code for the entry code and the exit code in such a way that the following basic
requirements are satisfied.

	-Exclusion: No more than 	 processes are at their critical sections at the same time.

	-Deadlock-Freedom: If strictly fewer than 	 processes fail and a non-faulty process
is trying to enter its critical section, then some non-faulty process eventually enters its
critical section.

We notice that the above standard definition of the 	-deadlock-freedom requirement is
(slightly) stronger than only requiring that “if fewer than 	 processes are in their critical
sections, then it is possible for another process to enter its critical section, even though
no process leaves its critical section in the meantime”.

The 	-deadlock-freedom requirement may still allow “starvation” of individual pro-
cesses. It is possible to consider stronger progress requirements which do not allow
starvation. In the sequel, by an 	-exclusion algorithm we mean an algorithm that satis-
fies both 	-exclusion and 	-deadlock-freedom. We also make the standard requirement
that the exit code is required to be wait-free: once a non-faulty process starts executing
its exit code, it always finishes it regardless of the activity of the other processes.

In an attempt to pinpoint the reason for the inherent difference between the space
complexity of mutual exclusion and that of 	-exclusion for 	 ≥ 2, we will also consider
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a weaker version of the 	-exclusion problem in which the liveness property is relaxed.
Let n be the number of processes,

Weak 	-Deadlock-Freedom: If strictly fewer than 	 processes fail, at least one non-
faulty process is trying to enter its critical section, and at least n − 	 processes are
in their remainders, then some non-faulty process eventually enters its critical section,
provided that no process leaves its remainder in the meantime.

The weak 	-deadlock-freedom property guarantees that as long as no more than 	
processes try to enter their critical sections, all non-faulty processes should succeed
regardless of how many processes crash. By a weak 	-exclusion algorithm we mean
an algorithm that satisfies (1) 	-exclusion, (2) 1-deadlock-freedom, and (3) weak 	-
deadlock-freedom. For 	 = 1, a weak 1-exclusion algorithm is a mutual exclusion
algorithm.

1.3 Results

Our model of computation consists of an asynchronous collection of n processes that
communicate only by reading and writing single-writer registers. A single-writer reg-
ister can be written by one predefined process and can be read by all the processes. A
register can be atomic or non-atomic. With an atomic register, it is assumed that opera-
tions on the register occur in some definite order. That is, reading or writing an atomic
register is an indivisible action. When reading or writing a non-atomic register, a pro-
cess may be reading a register while another is writing into it, and in that event, the
value returned to the reader is arbitrary [12]. Our results are:

A Space Lower Bound. For any 	 ≥ 2 and n > 	, any 	-exclusion algorithm for n
processes must use at least 2n − 2 bits: at least two bits per process for n − 2 of the
processes and at least one bit per process for the remaining two processes. (Here a bit
can be atomic or non-atomic.)

A Matching Space Upper Bound. For 	 ≥ 2 and n > 	, there is an 	-exclusion
algorithm for n processes that uses 2n − 2 non-atomic bits: two bits per process for
n− 2 of the processes and one bit per process for the remaining two processes.

An Optimal Weak 	-Exclusion Algorithm. For 	 ≥ 2 and n > 	, there is a weak
	-exclusion algorithm for n processes that uses one non-atomic bit per process.

1.4 Related Work

To place our results in perspective, we give a brief history of the 	-exclusion problem.
The mutual exclusion problem was first stated and solved for n processes by Dijkstra
in [7]. Numerous solutions for the problem have been proposed since it was first intro-
duced in 1965. In [5,6], Burns and Lynch have shown that any deadlock-free mutual
exclusion algorithm for n processes must use at least n shared registers, even when
multi-writer registers are allowed. This important lower bound can be easily general-
ized to show that also any 	-exclusion algorithm for n processes must use at least n
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shared registers for any 	 ≥ 1. The One-bit mutual exclusion algorithm, which uses n
non-atomic bits and hence provides a tight space upper bound, was developed indepen-
dently by Burns [4] (also appeared in [6]), and by Lamport [13].

The 	-exclusion problem, which generalizes the mutual exclusion problem, was first
defined and solved in [9,10]. For a model which supports read-modify-write registers, a
tight space bound ofΘ(n2) shared states is proved in [9,10], for the 	-exclusion problem
for fixed 	 assuming the strong FIFO-enabling liveness property (and strong robustness).
There is a large gap between the constants in the upper and lower bounds. Both depend
on 	, but the constant in the upper bound is exponential in 	, while the constant in the
lower bound is linear in 	. Without the strong liveness property and when not requiring
that the exit code be wait-free, O(n) states suffice for mutual exclusion using read-
modify-write registers [15]. Several algorithms for 	-exclusion, which are based on
strong primitives such as fetch-and-increment and compare-and-swap, are considered
in [3]. The “bank example” in Section 1.1 is from [10].

In [16], Peterson has proposed several 	-exclusion algorithms for solving the prob-
lem using atomic read/write registers satisfying various progress properties ranging
from 	-deadlock-freedom to FIFO-enabling. The simplest algorithm in [16] requires a
single 3-valued single-writer atomic register per process. A FIFO-enabling 	-exclusion
algorithm using atomic registers is presented also in [1], which makes use of concurrent
time-stamps for solving the problem with bounded size memory. Long-lived and adap-
tive algorithms for collecting information using atomic registers are presented in [2].
The authors employ these algorithms to transform the 	-exclusion algorithm of [1], into
its corresponding adaptive long-lived version. An 	-exclusion algorithm using O(n2)
non-atomic single-writer bits which does not permits individual starvation of processes,
is presented in [8]. Many known mutual exclusion, 	-exclusion and 	-assignment algo-
rithms are discussed in details in [17].

2 A Space Lower Bound

In this section we assume a model where the only shared objects are atomic registers.
It is obvious that the space lower bound applies also for non-atomic registers. In the
following, by a register (bit), we mean an atomic single-writer register (bit).

Theorem 1. For any 	 ≥ 2 and n > 	, any 	-exclusion algorithm for n processes must
use at least 2n− 2 bits: at least two bits per process for n − 2 of the processes and at
least one bit per process for the remaining two processes.

In the next section we will provide a matching upper bound. Interestingly, Theorem 1
follows from the following special case when 	 = 2 and n = 3.

Theorem 2. Any 2-exclusion algorithm for 3 processes must use at least 4 bits: at least
two bits for one of the processes and at least one bit for each one of the remaining two
processes.

Proof of Theorem 1: We observe that any 	-exclusion algorithm, sayA, where 	 ≥ 2 for
processes p1, ..., pn (where n > 	), can be transformed into a 2-exclusion algorithm,
say A′, for processes p1, p2, p3, where the space for each one of the three processes in
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A′ is the same as the space for the corresponding process in A. Let the 	− 2 processes
p4, ..., p�+1 execute A until they all crash in their critical sections, and let st be the
global state immediately after these 	− 2 processes crash. A′ is now constructed from
A by replacing each one of the single-writer registers of processes p4, ..., pn, with a
constant its value equals to the value of the corresponding register in state st . The codes
of processes p1, p2, p3 in A′ are the same as in A, except the fact that in A′ whenever
a process needs to read the value of a register of one of the processes p4, ..., pn, it does
so by accessing the corresponding constant.

It follows from Theorem 2 and the above transformation that, for any three processes
from the set of n processes which participate in A, one of three processes must “own”
at least two bits and each one of remaining two processes must “own” at least one bit.
Thus, the n processes together must use at least 2n − 2 bits: two bits per process for
n− 2 of the processes and one bit per process for the remaining two processes. ��

For the rest of the section, we focus on proving Theorem 2. The proof is by contra-
diction. We show that any 2-exclusion algorithm for 3 processes which uses only one
single-writer bit per process must have an infinite run in which at least two processes
participate infinitely often and where no process ever enters its critical section. This
violates the 2-deadlock-freedom requirement.

2.1 The Model

Our model of computation, for proving the lower bound, consists of an asynchronous
collection of n processes that communicate via single-writer atomic registers. An event
corresponds to an atomic step performed by a process. The events which correspond
to accessing registers are classified into two types: read events which may not change
the state of the register, and write events which update the state of a register but do not
return a value. A (global) state of an algorithm is completely described by the values of
the registers and the values of the location counters of all the processes.

A run is a sequence of alternating states and events (also referred to as steps). For the
purpose of the lower bound proof, it is more convenient to define a run as a sequence of
events omitting all the states except the initial state. Since the states in a run are uniquely
determined by the events and the initial state, no information is lost by omitting the
states. Each event in a run is associated with a process that is involved in the event.

We will use x, y and z to denote runs. The notation x ≤ y means that x is a prefix of
y, and x < y means that x is a proper prefix of y. When x ≤ y, we denote by (y − x)
the suffix of y obtained by removing x from y. Also, we denote by x; seq the sequence
obtained by extending x with the sequence of events seq. We will often use statements
like “in run x process p is in its remainder”, and implicitly assumed that there is a
function which for any finite run and process, lets us know whether a process is in its
remainder, entry, critical section, or exit code, at the end of that run. Also, saying that an
extension y of x involves only processes from the set P means that all events in (y−x)
are only by processes in P . Next we define the looks like relation which captures when
two runs are indistinguishable to a given process.

Definition 1. Run x looks like run y to process p, if the subsequence of all events by p
in x is the same as in y, and the values of all the registers in x are the same as in y.
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The looks like relation is an equivalence relation. The next step by a process always
depends on the previous step taken by the process and the current values of the registers.
It should be clear that if two runs look alike to a given process then the next step by this
process in both runs is the same.

Lemma 1. Let x be a run which looks like run y to every process in a set P . If z is an
extension of x which involves only processes in P then y; (z − x) is a run.

Proof. By a simple induction on k – the number of events in (z − x). The basis when
k = 0 holds trivially. We assume that the Lemma holds for k ≥ 0 and prove for k + 1.
Assume that the number of events in (z − x) is k + 1. For some event e, it is the case
that z = z′; e. Since the number of events in (z′ − x) is k, by the induction hypothesis
y′ = y; (z′ − x) is a run. Let p ∈ P be the process which involves in e. Then, from the
construction, the runs z′ and y′ look alike to p, which implies that the next step by p in
both runs is the same. Thus, since z = z′; e is a run, also y′; e = y; (z− x) is a run. ��

To prove Theorem 2, we assume to the contrary that there exists a 2-exclusion algo-
rithm, called 2EX , for three processes which uses only one single-writer bit per process
and show that this assumption leads to a contradiction. All the definitions and lemmas
below refer to this arbitrary 2-exclusion algorithm for three processes.

2.2 Changing the Value of a Bit

For process p and run x, we use the notation value(x, p) to denote the value in x of the
single-writer bit that only p is allowed to write into. I.e., the value of p’s single-writer
bit at the global state immediately after the last event of x has occurred.

Lemma 2. Let P be a set of processes where |P | ≤ 2, let z be a run in which the
processes in P are in their critical sections, and let x be the longest prefix of z such that
the processes in P are in their remainder regions in x. If (z − x) involves only steps by
processes in P , then value(x, p) �= value(z, p) for every p ∈ P .

Proof. Assume to the contrary that value(x, p) = value(z, p) for some p ∈ P .

Case 1: |P | = 1 = {p}. Since non of the events in (z − x) involves the other two pro-
cesses, x looks like z to all processes other than p. By the 2-deadlock-freedom property,
there is an extension of x which does not involve p in which the other two processes
enter their critical sections. Since x looks like z to all processes other than p, by Lemma
1, a similar extension exists starting from z. That is, the other two processes can enter
their critical sections in an extension of z, while p is still in its critical section. This
violates the 2-exclusion property.

Case 2: |P | = 2 = {p, q}, value(x, p) = value(z, p) and value(x, q) = value(z, q).
Since non of the events in (z−x) involves the third process, call it process r, x looks like
z to r. By the 2-deadlock-freedom property, there is an extension of x which involve
only r in which r enters its critical section. Since x looks like z to r, by Lemma 1,
a similar extension exists starting from z. That is, r can enter its critical section in
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an extension of z, while p and q are still in their critical sections. This violates the
2-exclusion property.

Case 3: |P | = 2 = {p, q}, value(x, p) = value(z, p) and value(x, q) �= value(z, q).
By the 2-deadlock-free property, there is an extension y of x in which q is in its critical
section and (y− x) involves only q. By case 1 above, value(x, q) �= value(y, q). Since
non of the events in (y − x) and in (z − x) involves r, y looks like z to r. By the
2-deadlock-freedom property, there is an extension of y which involve only r in which
r enters its critical section. Since y looks like z to r, by Lemma 1, a similar extension
exists starting from z. That is, r can enter its critical section in an extension of z, while
p and q are still in their critical sections. This violates the 2-exclusion property. ��
Lemma 3. Let x be a run in which p is in its remainder and let z be the longest prefix
of x such that p is in its critical section in z. If (x − z) involves only steps by p, then
value(x, p) �= value(z, p).

Proof. Assume to the contrary that value(x, p) = value(z, p). Since non of the events
in (x − z) involves the other processes, x looks like z to all processes other than p. By
the 2-deadlock-freedom property, there is an extension of x which does not involve p
in which the other two processes enter their critical sections. Since x looks like z to all
the processes other than p, by Lemma 1, a similar extension exists starting from z. That
is, the other two processes can enter their critical sections in an extension of z, while p
is still in its critical section. This violates the 2-exclusion property. ��

2.3 Locking

Next we introduce the key concept of a locked process. Intuitively, process p is locked
in a given run, if p must wait for at least one other process to take a step before it may
enter its critical section.

Definition 2. For process p and run x, p is locked in x, if (1) p is in its entry code in x,
and (2) for every extension y of x such that (y − x) involves only steps by p, p is in its
entry code in y.

Lemma 4. There exists a run x0, such that all three processes are locked in x0, and no
process is in its critical section in any prefix of x0.

Proof. The run x0 is constructed as follows. We start from (any) one of the possible
initial states, and denote the initial values of the three bits of the processes p1, p2, p3 in
the initial state by init(p1), init(p2) and init(p3), respectively. We first let p1 run alone
until it is about to write and change the value of its single-writer bit from init(p1) to
1− init(p1) for the last time before it may enter its critical section if it continues to run
alone (by Lemma 2 such a write must eventually happen). We suspend p1 just before
it writes and repeat this procedure with p2 and then with p3. Then we let the processes
p1, p2, p3 to write the values 1− init(p1), 1− init(p2), 1− init(p3), respectively, into
their bits. The resulting run, where all three bits are set to values which are different
from their initial values, is x0. Each process p ∈ {p1, p2, p3}, can not distinguish x0

from a run in which before p has executed this last write, the other two processes run
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alone, flipped the values of their bits (by Lemma 2), and have entered their critical
sections. Thus, it follows from the 2-exclusion property and Lemma 1, that there can
not be an extension of x0 by steps of p only in which p is in its critical section, which
implies that each one of the three processes is locked in x0. ��
Lemma 5. Assume that x looks like z to p. Process p is locked in x if and only if p is
locked in z.

Proof. Assume to the contrary that p is locked in x and p is not locked in z. By defini-
tion, there is an extension ẑ of z such that (ẑ − z) involves only p and p is in its critical
section in ẑ. Since x looks like z to p, by Lemma 1, a similar extension exists starting
from x. That is, p is in its critical section in x; (ẑ − z). This contradicts the assumption
the p is locked in x. Since the looks like relation is symmetric, the result follows. ��
Lemma 6. Assume that p is in its remainder in x. For every q �= p, q is not locked in x.

Proof. Immediately from the 2-deadlock-freedom requirement. ��

2.4 Locking and Values

The following lemmas relate between locked processes and the values of their bits.

Lemma 7. Assume that the three processes are locked in x, and let z be an extension of
x such that p is not involved in (z−x) and q is in its remainder in z. Then, value(x, q) �=
value(z, q).

Proof. Assume to the contrary that value(x, q) = value(z, q). Let r be the third pro-
cess. By the 2-deadlock-freedom requirement, there is an extension ẑ of z such that (1)
(ẑ − z) involves only r, and (2) r is in its critical section in ẑ. There are two cases.

Case 1: value(x, r) = value(ẑ, r). In this case, x looks like ẑ to p. By Lemma 5, p
is locked in ẑ. This violates lemma 6 (i.e., this violates the 2-exclusion property).

Case 2: value(x, r) �= value(ẑ, r). By lemma 3 and the assumption that the exit code
is wait-free, there is an extension z′ of ẑ, such that (1) (z′ − ẑ) involves only r, r is in
its remainder in z′ and value(ẑ, r) �= value(z′, r). Thus, value(x, r) = value(z′, r).
This implies that x looks like z′ to p. By Lemma 5, p is locked in z′. This violates
Lemma 6. ��
Lemma 8. Assume that the three processes are locked in x, and let z be an extension
of x such that p is not involved in (z − x) and q is in its critical section in z. Then,
value(x, q) = value(z, q).

Proof. By lemma 3 and the assumption that the exit code is wait-free, there is an
extension z′ of z, such that (1) (z′ − z) involves only q, q is in its remainder in
z′ and value(z, q) �= value(z′, q). By Lemma 7, value(x, q) �= value(z′, q) Thus,
value(x, q) = value(z, q). ��
Lemma 9. Assume that the three processes are locked in x. For every two processes p
and q there is an extension z of x such that: (1) (z − x) involves only p and q, (2) p is
in its critical section in z, (3) q is in its remainder is z, (4) value(x, p) = value(z, p),
and (5) value(x, q) �= value(z, q).
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Proof. We construct z as follows. Starting from x we first let p and q run until one of
them enters its critical section. This is possible by the 2-deadlock-freedom requirement.
Then, we let the process that has entered its critical section, continue alone until it
reaches its remainder regions (recall that the exit code is assumed to be wait-free). At
that point we let the other process run alone until it enters its critical section (again, this
is possible by the 2-deadlock-freedom requirement), and we let this process continues
to run until it also reaches its remainder region. At this point both p and q are in their
remainders. Now we let, p run until it enters its critical section (again, this is possible
by the 2-deadlock-freedom requirement). The resulting run, where p is in its critical
section, and process q is in its remainder is z. By Lemma 8, value(x, p) = value(z, p),
and by Lemma 7, value(x, q) �= value(z, q). ��

2.5 Flexibility

Intuitively, process p is flexible in a given run, if p can change the value of its bit without
a need to wait for some other process to take a step.

Definition 3. For process p and run x, p is flexible in x, if there exists an extension z
of x such that: (1) (z − x) involves only steps by p, (2) for every x ≤ y ≤ z, p is in its
entry code in y, and (3) value(x, p) �= value(z, p).

Lemma 10. Let x be a run such that the three processes are locked in x. Then, at least
two processes are flexible in x.

Proof. We assume that p1, p2 and p3 are locked in x. By the 2-deadlock-freedom prop-
erty, if we extend x by letting processes p1 and p2 taking steps alternately, eventually
one of the two must enter its critical section. Let z be the shortest extension of x such
that in z both processes are still in their entry code, but the next step of one of them is
already in a critical section.

Case 1: for some y where x ≤ y ≤ z, either value(x, p1) �= value(y, p1) or
value(x, p2) �= value(y, p2). Let y be the shortest run where x < y ≤ z, and
value(x, p1) �= value(z, p1) or value(x, p2) �= value(z, p2). This means that only
one process, say p1, changed its bit in y, and all the steps of p2 in (y − x) are invisible
to (i.e., do not involve) p1 and p3. Thus, it is possible to remove from y all the events in
which p2 is involved in (y − x) and get a new run y1. Clearly y1 looks like y to p1 and
hence value(y, p1) = value(y1, p1), which implies that value(x, p1) �= value(y1, p1).
Thus, y1 is a witness for the fact that p1 is flexible in x.

Case 2: for all y where x ≤ y ≤ z, value(x, p1) = value(y, p1) and value(x, p2) =
value(y, p2). Thus, all the steps of the p1 in (z−x) are invisible to p2 and p3, and all the
steps of the p2 in (z − x) are invisible to p1 and p3. Thus, it is possible to remove from
z all the events in which p2 is involved in (z− x) and get a new run z1, and similarly, it
is possible to remove from z all the events in which p1 is involved in (z − x) and get a
new run z2. Clearly, z1 looks like z to p1 and z2 looks like z to p2. By definition, either
the next step of p1 from z1 is already a step in its critical section, or the next step of p2
from z2 is already a step in its critical section. This contradicts the assumption that all
the processes are locked in x.
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We conclude that either p1 or p2 is flexible in x. Assume w.l.o.g. that p1 is flexible
in x. We repeat the above argument to show that either p2 or p3 is flexible in x. ��

2.6 Main Lemma and Proof of Theorem 2

We are now ready to prove the main lemma and complete the proof of Theorem 2.

Lemma 11 (main lemma). Let x be a run such that all three processes are locked in
x. Then, there exists an extension z of x such that (1) all the processes are locked in z,
(2) two of the processes are involved in (z − x), and (3) for every x ≤ y ≤ z, all the
processes are in their entry codes in y.

Proof. We will construct the run z and show that z satisfies the required properties. We
start from the run x in which the three processes, p1, p2, p3 are locked. By Lemma 10 at
least two processes are flexible in x. W.l.o.g. we assume that p2 and p3 are flexible in x.
We construct and extension of x, called x2, which involves only process p2 as follows.
Starting from x, we let p2 run alone until it is about to write and change the value of
its single-writer bit from value(x, p2) to 1− value(x, p2). We suspend p2 just before it
writes, and call this run x2. For later reference, we denote by ep2 the write event that p2
is about to take once activated again, and denote by x′2 the run x2; ep2 .

Similarly, we construct and extension of x, called x3, which involves only process
p3 as follows. Starting from x, we let p3 run alone until it is about to write and change
the value of its single-writer bit from value(x, p3) to 1 − value(x, p3). We suspend p3
just before it writes, and call this run x3. For later reference, we denote by ep3 the write
event that p3 is about to take once activated again, and denote by x′3 the run x3; ep3 .

Next we construct an extension of x, called x23, which involves only p2 and p3. We
let p2 run alone until it is about to write and change the value of its single-writer bit
from value(x, p2) to 1 − value(x, p2). We suspend p2 just before it writes and then
let p3 run alone until it is about to write and change the value of its single-writer bit
from value(x, p3) to 1 − value(x, p3). We suspend p3 just before it writes. Then we
let the processes p2 and p3 to write the values 1 − value(x, p2) and 1 − value(x, p3)
respectively, into their bits in an arbitrary order. The resulting run, where the bits of p2
and p3 are set to values which are different from their values in x, is run x23. Thus, the
run x23 is the run x2; (x3 − x); ep2 ; ep3 (the order in which ep2 and ep3 are executed is
immaterial). We observe that x2; (x3 − x) looks like x3; (x2 − x) to all the processes.

We consider also the following two extension of x. By Lemma 9, there exists an
extension of x which we will call run x12, such that (x12 − x) involves only p1 and
p2, p1 is in its critical section in x12, p2 is in its remainder in x12, value(x, p1) =
value(x12, p1), and value(x, p2) �= value(x12, p2). By Lemma 9, there exists another
extension of x which we will call run x13, such that (x13 − x) involves only p1 and
p3, p1 is in its critical section in x13, p3 is in its remainder in x13, value(x, p1) =
value(x13, p1), and value(x, p3) �= value(x13, p3).

Let the run x̂12 be the run x; (x3 − x); (x12 − x); ep3 , and let the run x̂13 be the run
x; (x2 − x); (x13 − x); ep2 . Clearly, x23 looks like x̂12 to p3, and x23 looks like x̂13 to
p3. Informally, this implies that in x23, process p2 “suspects” that p1 is in its critical
section and p3 is in its remainder; and process p3 “suspects” that p1 is in its critical
section and p2 is in its remainder. Since p2 is in its remainder in x̂12, by Lemma 6, p3 is
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not locked in x̂12, and hence by Lemma 5, p3 is also not locked in x23. Similarly, since
p3 is in its remainder in x̂13, by Lemma 6, p2 is not locked in x̂13, and hence by Lemma
5, p2 is also not locked in x23.

Since both p2 and p3 are not locked inx23, there is an extension y2 ofx23 by steps of p2
only in which p2 is in its critical section, and there is (another) extension y3 ofx23 by steps
of p3 only in which p3 is in its critical section. Since both (y2−x) and (y3−x) do not in-
volve p1, by Lemma 8, value(x, p2) = value(y2, p2) and value(x, p3)=value(y3, p3).
Thus, value(x23, p2) �= value(y2, p2) and value(x23, p3) �= value(y3, p3). This means
that in (y2 − x23) there is a write event by p2, denoted ez2

p2
, which changes the value

of the bit of p2 to value(x, p2), and in (y3 − x23) there is a write event by p3, denoted
ez3

p3
, which changes the value of the bit of p3 to value(x, p3). Let run z2 be the shortest

extension of x23 such that z2; ez2
p2

is a prefix of y2, and let run z3 be the shortest extension
of x23 such that z3; ez3

p3
is a prefix of y2.

Next we construct the extension z of x23 which involves only p2 and p3. We first let
p2 run alone until it is about to change the value of its single-writer bit to value(x, p2).
We suspend p2 just before it writes and then let p3 run alone until it is about to change
the value of its single-writer bit to value(x, p3). We suspend p3 just before it writes.
Then we let the processes p2 and p3 to write the values value(x, p2) and value(x, p3)
respectively, into their bits in an arbitrary order. The resulting run, where the bits of p2
and p3 are set to values which are the same as their values in x, is the run z. That is, z
is exactly the run z2; (z3 − x23); ez2

p2
; ez3

p3
(the order in which the last two write events

are executed is immaterial). Below we prove that the three processes are locked in z.
Since (z − x) does not involve p1, x looks like z to p1, and thus by Lemma 5, p1 is

locked in z. To prove that the also p2 and p3 are locked in x, we will show that each one
of them can not distinguish between z and another run in which the other two processes
are in their critical sections. We now construct these two runs.

By Lemma 9, there exists an extension of x which we will call run w, such that
(w − x) involves only p2 and p3, p3 is in its critical section in w, p2 is in its remainder
in w, value(x, p3) = value(w, p3), and value(x, p2) �= value(w, p2). Clearly w looks
like x′2 to p1. Since p2 is in its remainder in w, by Lemma 6, p1 is not locked in w, and
hence by Lemma 5, p1 is also not locked in x′2. Thus, there is an extension y1 of x′2
by steps of p1 only, in which p1 is in its critical section. Since x′2 − x does not involve
steps by p1, value(x, p1) = value(x′2, p1). Since (y1−x) does not involve steps by p3,
by Lemma 8, value(x, p1) = value(y1, p1). Thus also value(x′2, p1) = value(y1, p1).

Recall that x23 = x2; (x3 − x); ep2 ; ep3 . We observe that (1) (x3 − x) involves only
p3 and does not change the value of the bit of p3, and (2) (y1−x′2) involves only p1 and
does not change the value of the bit of p1. Thus, by Lemma 1 (applied several times),
the sequence of events, x′23 = x2; (x3 − x); ep2 ; (y1 − x′2); ep3 is a legal run in which
p1 is in its critical section.

Since x′23 looks like x23 to p2 and to p3, by Lemma 1, x′23; (y3 − x23) is a run in
which both p1 and p3 are in their critical sections, and x′23; (z2 − x23) is a legal run.
Since (z2 − x23) involves only p2 and the value of the bit of p2 does not change, by
Lemma 1, the sequence y′3 = x′23; (z2−x23); (y3−x23); ez2

p2
is a legal run in which both

p1 and p3 are in their critical sections. Process p2, can not distinguish z from a run in
which before p2 executed its last write in z, the other two processes have entered their
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critical sections. That is, z looks like y′3 to p2. Thus, it follows from the 2-exclusion
property and Lemma 1, that there can not be an extension of z by steps of p2 only in
which p2 is in its critical section. This implies that p2 is locked in z.

Similarly, since x′23 looks like x23 to p2 and to p3, by Lemma 1, x′23; (y2 − x23)
is a run in which both p1 and p2 are in their critical sections, and x′23; (z3 − x23) is
a legal run. Since (z3 − x23) involves only p3 and the value of the bit of p3 does not
change, by Lemma 1, the sequence y′2 = x′23; (z3 − x23); (y2 − x23); ez3

p3
is a legal run

in which both p1 and p2 are in their critical sections. Process p3, can not distinguish z
from a run in which before p3 executed its last write in z, the other two processes have
entered their critical sections. That is, z looks like y′2 to p3. Thus, it follows from the
2-exclusion property and Lemma 1, that there can not be an extension of z by steps of
p3 only in which p3 is in its critical section. This implies that p3 is locked in z.

To conclude, we have shown that all three processes are locked in z. Furthermore,
it follows from the construction that two of the processes, p2 and p3, are involved in
(z−x), and that for every x ≤ y ≤ z, all the processes are in their entry codes in y. ��

Proof of Theorem 2: We have assumed to the contrary that 2EX is a 2-exclusion
algorithm for 3 processes which uses one single-writer bit per process. We show that
this leads to a contradiction. Starting from x0 found in Lemma 4, we repeatedly apply
the result of Lemma 11, to construct the desired infinite run, in which at least two
processes take infinitely many steps, but no process ever enters its critical section. That
is, we begin with x0 and pursue the following locking-preserving scheduling discipline:

1 x := x0; /* initialization */
2 repeat
3 let z be an extension x, its existence is proved in Lemma 11, where all the

processes are locked in z, two processes are involved in (z − x), and
for every x ≤ y ≤ z, all the processes are in their entry codes in y.

4 x := z /* "locking extension" of x */
5 forever

The above scheduling discipline, implies that there is an infinite run of 2EX in which
at least two processes take infinitely many steps, but no process ever enters its critical
section. The existence of such a run implies that 2EX does not satisfy 2-deadlock-
freedom. A contradiction. ��

3 A Space Upper Bound: The Two-bits Algorithm

In this section we provide a tight space upper bound for 	-exclusion. To make the upper
bound as strong as possible, we will assume that the registers are non-atomic.

Theorem 3. For 	 ≥ 2 and n > 	, there is an 	-exclusion algorithm for n processes
that uses 2n − 2 non-atomic bits: two bits per process for n − 2 of the processes and
one bit per process for the remaining two processes.

We present below a space optimal algorithm which is inspired by Peterson’s 	-exclusion
algorithm [16]. Our algorithm is for n processes each with unique identifier taken
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from the set {1, ..., n}. For each process i ∈ {2, ..., n − 1},the algorithm requires two
single-writer non-atomic bits, called Flag1[i] and Flag2[i]. For process 1 the algorithm
requires one single-writer non-atomic bit, called Flag1[1], and for process n the algo-
rithm requires one single-writer non-atomic bit, called Flag2[n]. In addition two local
variables, called counter and j, are used for each process. 	 is used as a constant.

THE TWO-BITS 	-EXCLUSION ALGORITHM: process i ∈ {1, ..., n} program.

Shared: Flag1[1..n − 1], Flag2[2..n]: arrays of non-atomic bits, initially all entries are 0.
Local: counter, j: integer ranges over {0, ..., n}.
Constant: Flag1[n] = 0, Flag2[1] = 0. /* used for simplifying the presentation */

1 if i �= n then Flag1[i] := 1 fi; /* save one bit */
2 repeat
3 repeat
4 counter := 0;
5 for j := 1 to n do
6 if (j < i and Flag1[j] = 1) or (Flag2[j] = 1)
7 then counter := counter + 1 fi od
8 until counter < 	;
9 if i �= 1 then Flag2[i] := 1 fi; /* save one bit */
10 counter := 0;
11 for j := 1 to n do
12 if (j < i and Flag1[j] = 1) or (j �= i and Flag2[j] = 1)
13 then counter := counter + 1 fi od
14 if counter ≥ 	 then if i �= 1 then Flag2[i] := 0 fi fi
15 until counter < 	;
16 critical section;
17 if i �= 1 then Flag2[i] := 0 fi; if i �= n then Flag1[i] := 0 fi;

In lines 1, process i (where i �= n) first indicates that it is contending for the critical
section by setting Flag1[i] to 1. Then, in the first repeat loop (lines 3–8) it finds out how
many processes have higher priority than itself. A process k has higher priority than
process i, if its second flag bit Flag2[k] is set to 1, or if k < i and Flag1[k] = 1. If less
than 	 processes have higher priority, i exits the repeat loop (line 8). Otherwise, process
i waits by spinning in the inner repeat loop (lines 3–87), until less than 	 processes have
higher priority. Once it exits the inner loop it sets its second flag, Flag2[i], to 1 (for
i �= 1). Then, again, it finds out how many processes have higher priority than itself.
If less than 	 processes have higher priority, process i exits the outer repeat loop (line
15) and can safely enter its critical section. Otherwise, the process sets its second flag
bit back to 0, and go back to wait in the inner repeat loop (lines 3–8). In the exit code a
process simply sets its flag bits to 0. A detailed proof appears in the full version.

The algorithm is also resilient to the failure by abortion of any finite number of
processes. By an abort-failure of process p, we mean that the program counter of p is
set to point to the beginning of its remainder code and that the values of all the single-
writer bits of p are set to their initial (default) values. The process may then resume its
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execution, however, if a process keeps failing infinitely often, then it may prevent other
processes from entering their critical sections.

4 Weak �-Exclusion

Recall that a weak 	-exclusion algorithm is an algorithm that satisfies (1) 	-exclusion,
(2) 1-deadlock-freedom, and (3) weak 	-deadlock-freedom. Next we show that the tight
bound for mutual exclusion [5,6], of one bit per process, holds for weak 	-exclusion.

Theorem 4. There is a weak 	-exclusion algorithm for n processes which uses one
single-writer non-atomic bit per process, for 	 ≥ 1.

There may be up to n processes potentially contending to enter their critical sections,
each has a unique identifier from the set {1, ..., n}. The algorithm makes use of a shared
array Flag , where, for every 1 ≤ i ≤ n, all the processes can read the boolean registers
Flag [i], but only process i can write Flag [i]. 	 is used as a constant.

ALGORITHM 2. process i ∈ {1, ..., n} program.

Shared: Flag [1..n]: array of non-atomic bits, initially all entries are 0.
Local: lflag [1..n]: array of bits; counter , j: integer ranges over {0, ..., n}.
1 counter := 0;
2 repeat
3 if counter < 	 then Flag [i] := 1 fi;
4 counter := 0;
5 for j := 1 to i− 1 do lflag [j] := Flag [j]; count := count+ lflag [j] od;
6 if counter ≥ 	 and Flag [i] = 1 then Flag [i] := 0 fi;
7 until Flag [i] = 1;
8 for j := i+ 1 to n do lflag [j] := Flag [j]; counter := counter + lflag [j] od;
9 while counter > 	 do
10 for j := 1 to n do
11 if (Flag [j] = 0) and (lflag [j] = 1)
12 then lflag [j] := 0; counter := counter − 1 fi
13 od
14 od
15 critical section;
16 Flag [i] := 0;

In lines 1–7, process i first indicates that it is contending for the critical section by
setting its flag bit to 1 (line 3), and then it tries to read the flag bits of all the processes
which have identifiers smaller than itself. If less than 	 of these bits are 0, i exits the
repeat loop (line 7). Otherwise, i sets its flag bit to 0, waits until the values of less than
	 of the flag bits of processes which have identifiers smaller than itself are 0 and starts
all over again. In line 8, i reads the flag bits of all the processes which have identifiers
greater than itself and remembers their values. Then, in the while loop in lines 9–14, it
continuously reads the n flag bits, and it exits the loop only when it finds that at least
n − 	 of the flag bits have been 0 at least once since it has set its flag bit to 1. At that
point it can safely enter its critical section. A detailed proof appears in the full version.
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5 Discussion

For any 	 and n, we provide a tight space bound on the number of single-writer bits
required to solve 	-exclusion for n processes. It is easy to modify the two-bits algorithm
(from Section 3), so that it uses a single 3-valued single-writer atomic register for n−2
of the processes and one bit per process for the remaining two processes. This, together
with the result stated in Theorem 1, provides a tight space bound for the size and number
of single-writer multi-valued registers required to solve 	-exclusion for n processes. We
leave open the question of what is the bound for multi-writer registers.
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Abstract. We present Selective Multi-Versioning (SMV), a new STM that re-
duces the number of aborts, especially those of long read-only transactions. SMV
keeps old object versions as long as they might be useful for some transaction to
read. It is able to do so while still allowing reading transactions to be invisible by
relying on automatic garbage collection to dispose of obsolete versions.

SMV is most suitable for read-dominated workloads, for which it performs
better than previous solutions. It has an up to×7 throughput improvement over a
single-version STM and more than a two-fold improvement over an STM keeping
a constant number of versions per object. We show that the memory consump-
tion of algorithms keeping a constant number of versions per object might grow
exponentially with the number of objects, while SMV operates successfully even
in systems with stringent memory constraints.

1 Introduction

Software Transactional Memory (STM) [20,32] is an increasingly popular paradigm
for concurrent computing in multi-core architectures. STMs speculatively allow multi-
ple transactions to proceed concurrently, which leads to aborting transactions in some
cases. As system load increases, aborts may become frequent, especially in the presence
of long-running transactions, and may have a devastating effect on performance [3]. Re-
ducing the number of aborts is thus an important challenge for STMs.

Of particular interest in this context is reducing the abort rate of read-only transac-
tions. Read-only transactions play a significant role in various types of applications, in-
cluding linearizable data structures with a strong prevalence of read-only operations [21],
or client-server applications where an STM infrastructure replaces a traditional DBMS
approach (e.g., FenixEDU web application [9]). Particularly long read-only transactions
are employed for taking consistent snapshots of dynamically updated systems, which are
then used for checkpointing, process replication, monitoring program execution, gath-
ering system statistics, etc.

Unfortunately, long read-only transactions in current leading STMs tend to be re-
peatedly aborted for arbitrarily long periods of time. As we show below, the time for
completing such a transaction varies significantly under contention, to the point that
some read-only transactions simply cannot be executed without “stopping the world”.
As mentioned by Cliff Click [1], this kind of instability is one of the primary practical
disadvantages of STM; Click mentions multi-versioning [5] (i.e., keeping multiple ver-
sions per object), as a promising way to make program performance more predictable.
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Indeed, by keeping multiple versions it is possible to assure that each read-only trans-
action successfully commits by reading a consistent snapshot [4] of the objects it ac-
cesses, e.g., values that reflect updates by transactions that committed before it began
and no partial updates of concurrent transactions. This way, multiple versions have the
potential to improve the performance of single-versioned STMs [19,16,13,11], which,
as we show below, might waste as much as 80% of their time because of aborts in
benchmarks with many read-only transactions.

However, using multiple versions introduces the challenge of their efficient garbage
collection. As we show below, a simple approach of keeping a constant number of
versions for each object does not provide enough of a performance benefit, and, even
worse, can cause severe memory problems in long executions. We further demonstrate
in Section 3 that the memory consumption of algorithms keeping k versions per object
might grow exponentially with the number of objects. The challenge is, therefore, to
devise an approach for efficient management of old object versions.

In Section 4, we present Selective Multi-Versioning (SMV), a novel STM algorithm
that addresses this challenge. SMV keeps old object versions that are still useful to
potential readers, and removes ones that are obsolete. This way, read-only transactions
can always complete – they neither block nor abort – while for infrequently-updated
objects only one version is kept most of the time.

SMV achieves this while allowing read-only transactions to remain invisible [13],
i.e., having no effect on shared memory. At first glance, combining invisible reads with
effective garbage collection may seem impossible — if read-only transactions are in-
visible, then other transactions have no way of telling whether potential readers of an
old version still exist! To circumvent this apparent paradox, we exploit separate GC
threads, such as those available in managed memory systems. Such threads have access
to all the threads’ private memories, so that even operations that are invisible to other
transactions are visible to the garbage collector. SMV ensures that old object versions
become garbage collectible once there are no transactions that can safely read them.

In Section 5 we evaluate different aspects of SMV’s performance. We implement
SMV in Java and study its behavior for a number of benchmarks (red-black tree mi-
crobenchmark, STMBench7 [18] and Vacation [8]).

We find that SMV is extremely efficient for read-dominated workloads with long-
running transactions. For example, in STMBench7 with 64 threads, the throughput of
SMV is seven times higher than that of TL2 and more than double than those of 2- and
8-versioned STMs. Furthermore, in an application with one thread constantly taking
snapshots and the others running update transactions, neither TL2 nor the k-versioned
STM succeeds in taking a snapshot, even when only one concurrent updater is running.
The performance of SMV remains stable for any number of concurrent updaters.

We compare the memory demands of the algorithms by limiting Java heap size.
Whereas k-versioned STMs crash with a Java OutOfMemoryException, SMV con-
tinues to run, and its throughput is degraded by less than 25% even under stringent
memory constraints.

In summary, we present the new approach for keeping multiple versions, which al-
lows read-only transactions to stay invisible and delegates the cleanup task to the al-
ready existing GC mechanisms. Our conclusions appear in Section 6.
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2 Related Work

As noted above, most existing STMs are single-versioned. Of these, SMV is most
closely related to TL2 [11], from which we borrow the ideas of invisible reads, commit-
time locking of updated objects, and a global version clock for consistency checking.
In a way, SMV can be seen as a multi-versioned extension of TL2.

The best-known representative of multi-versioned STMs is LSA [29]. LSA, as well
as its snapshot-isolation variation [30], implements a simple solution to garbage col-
lection: it keeps a constant number of versions for each object. However, this approach
leads to storing versions that are too old to be of use to any transaction on the one hand,
and to aborting transactions because they need older versions than the ones stored on
the other. In contrast, SMV keeps versions as long as they might be useful for ongoing
transactions, and makes them GCable by an automatic garbage collector as soon as they
are not. For infrequently updated objects, SMV typically keeps a single version.

Another multi-versioned STM, JVSTM [7], maintains a priority queue of all active
transactions, sorted by their start time. A cleanup thread waits until the transaction
at the head of the queue (the oldest transaction) is finished. When that happens, the
cleanup process iterates over the objects overwritten by the committed transaction and
discards their previous versions. Thus, while also keeping versions only as long as active
transactions might read them, the GC mechanism of JVSTM imposes an additional
overhead for transaction startup and termination (including both update and read-only
transactions).

In a recent paper [15], the authors improved the GC mechanism of JVSTM by main-
taining a global list of per-thread transactional contexts, each keeping information about
the latest needed versions. A special cleanup thread iterates periodically over this list
and thus finds the versions that can be discarded. This improvement, however, does not
eliminate the need for a special cleanup thread, which should run in addition to Java GC
threads. JVSTM read-only transactions still need to write to the global memory. In con-
trast, in this paper we present a simple algorithm with invisible read-only transactions,
which exploits the automatic GC available in languages with managed memory.

Other previous suggestions for multi-versioned STMs [3,25,22,6,27] were based on
cycle detection in the conflict graph, a data structure representing all data dependen-
cies among transactions. This approach incurs a high cost (quadratic in the number of
transactions), which is clearly not practical. Moreover, it requires reads to be visible in
order to detect future conflicts, which can be detrimental to performance. Nevertheless,
this approach can allow for more accurate garbage collection than practical systems
like SMV, which do not maintain conflict graphs. For example, our earlier work [22,27]
specified GC rules based on precedence information as to when old versions can be
removed. However, in addition to being too complex to be amenable to practical imple-
mentation, these earlier works did not specify when these GC rules ought to be checked.
Aydonat and Abdelrahman [3] propose to keep each version for as long as transactions
that were active at the time the version was created exist, but the authors do not specify
how this rule can be implemented efficiently. Other theoretical suggestions for multi-
versioned STMs ignored the issue of GC altogether [25].

Instead of multi-versioning, STMs can avoid aborts by reading uncommitted values
and then having the reader block until the writer commits [28], or by using read-write
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locks to block in case of concurrency [12,2]. These approaches differ from SMV, where
transactions never block and may always progress independently. Moreover, reads,
which are invisible in SMV, must be visible in these “blocking” approaches. In addition,
reading the values of uncommitted transactions might lead to cascading aborts.

Transactional mutex locks (TML) [10], have been shown to be very efficient for read-
dominated workloads due to their simplicity and low overhead. Unlike SMV, TML do
not allow concurrency between update transactions and thus do not exploit the paral-
lelism in read-write or write-dominated workloads.

Another technique for reducing the number of aborts is timestamp extension [29,14].
This mechanism requires maintaining a read-set and therefore is usually not used by
read-only transactions. Timestamp extension is applicable for SMV’s update transac-
tions as well, hence this improvement is orthogonal to the multi-versioning approach
presented in this paper.

3 Exponential Memory Growth

Before introducing SMV, we first describe an inherent memory consumption problem
of algorithms keeping a constant number of object versions. A naı̈ve assessment of the
memory consumption of a k-versioned STM would probably estimate that it takes up
to k times as much more memory as a single-versioned STM.

We now illustrate that, in fact, the memory consumption of a k-versioned STM in
runs with n transactional objects might grow like kn. Intuitively, this happens because
previous object versions continue to keep references to already deleted objects, which
causes deleted objects to be pinned in memory.

Consider, for example, a 2-versioned STM in the scenario depicted in Figure 1. The
STM keeps a linked list of three nodes. When removing node 30 and inserting a new
node 40 instead, node 30 is still kept as the previous version of 20.next. Next, when
node 20 is replaced with node 25, node 30 is still pinned in memory, as it is referenced
by node 20. After several additional node replacements, we see that there is a complete
binary tree in memory, although only a linked list is used in the application.

More generally, with a k-versioned STM, a linked list of lengthn could lead toΩ(kn)
node versions being pinned in memory (though being still linear to the number of write
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Fig. 1. Example demonstrating exponential memory growth even for an STM keeping only 2 ver-
sions of each object. A linked list causes a binary tree to be pinned in memory because previous
node versions continue to keep references to already deleted nodes.
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operations). This demonstrates an inherent limitation of keeping a constant number of
versions per object. Our observation is confirmed by the empirical results shown in
Section 5.5, where the algorithms keeping k versions cannot terminate in the runs with a
limited heap size, while SMV does not suffer from any serious performance degradation.

4 SMV Algorithm

We present Selective Multi-Versioning, a new object-based STM. The data structures
used by SMV are described in Section 4.1 and Section 4.2 depicts the algorithm.

4.1 Overview of Data Structures

SMV’s main goal is to reduce aborts in workloads with read-only transactions, without
introducing high space or computational overheads. SMV is based on the following
design choices: 1) Read-only transactions do not affect the memory that can be accessed
by other transactions. This property is important for performance in multi-core systems,
as it avoids cache thrashing issues [13,29]. 2) Read-only transactions always commit.
A read-only transaction Ti observes a consistent snapshot corresponding to Ti’s start
time — when Ti reads object oj , it finds the latest version of oj that has been written
before Ti’s start. 3) Old object versions are removed once there are no live read-only
transactions that can consistently read them. To achieve this with invisible reads, SMV
relies on the omniscient GC mechanism available in managed memory systems.

We now give a brief reminder of such a mechanism. An object can be reclaimed by
the garbage collector once it becomes unreachable from the call stack or global vari-
ables. Reachability is a transitive closure over strong memory references: if a reachable
object o1 has a strong reference to o2, then o2 is reachable as well (strong references are
the default ones in Java). In contrast, weak references [17] do not protect the referenced
object from being GCed; an object referenced by weak references only is considered
unreachable and may be removed.

As in other object-based STMs, transactional objects in SMV are accessed via object
handles. An object handle includes a history of object values, where each value keeps
a versioned lock [11] – data structure with a version number and a lock bit. In order to
facilitate automatic garbage collection, object handles in SMV keep strong references
only to the latest (current) versions of each object, and use weak references to point to
other versions.

Each transaction is associated with a transactional descriptor, which holds the rele-
vant transactional data, including a read-set, a write-set, status, etc. In addition, trans-
actional descriptors play an important role in keeping strong references to old object
versions, as we explain below.

Version numbers are generated using a global version clock, where transactional de-
scriptors act as “time points” organized in a one-directional linked list. Upon commit,
an update transaction appends its transactional descriptor to the end of the list (a spe-
cial global variable curPoint points to the latest descriptor in this list). For example, if
the current global version is 100, a committing update transaction sets the time point
value in its transactional descriptor to 101 and adds a pointer to this descriptor from the
descriptor holding 100.
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Fig. 2. Transactional descriptor of Tw references the over-written version of o1 (data5). This way,
read-only transaction Tr keeps a reference chain to the versions that have been overwritten after
Tr’s start.

Version management is based on the idea that old object versions are pointed to by
the descriptors of transactions that over-wrote these versions (see Figure 2). A com-
mitting transaction Tw includes in its transactional descriptor a strong reference to the
previous version of every object in its write set before diverting the respective object
handle to the new version.

When a read-only transaction Ti begins, it keeps (in its local variable startTP) a
pointer to the latest transactional descriptor in the list of committed transactions. This
pointer is cleared upon commit, making old transactional descriptors at the head of the
list GCable.

This way, active read-only transaction Tr keeps a reference chain to version oj
i if this

version was over-written after Tr’s start, thus preventing oj
i ’s garbage collection. Once

there are no active read-only transactions that started before oj
i was over-written, this

version stops being referenced and thus becomes GCable .
Figure 2 illustrates the commit of an update transaction Tw that writes to object o1

(the use of readyPoint variable will be explained in Section 4.3). In this example, Tw

and a read-only transaction Tr both start at time 9, and hence Tr references the transac-
tional descriptor of time point 9. The previous update of o1 was associated with version
5. When Tw commits, it inserts its transactional descriptor at the end of the time points
list with value 10. Tw’s descriptor references the previous value of o1. This way, the
algorithm creates a reference chain from Tr to the previous version of o1 via Tw’s de-
scriptor, which ensures that the needed version will not be GCed as long as Tr is active.

4.2 Basic Algorithm

We now describe the SMV algorithm. For the sake of simplicity, we present the al-
gorithm in this section using a global lock for treating concurrency on commit — in
Section 4.3 we show how to remove this lock.

SMV handles read-only and update transactions differently. We assume that transac-
tion’s type can be provided to the algorithm beforehand by a compiler or via special
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Algorithm 1. SMV algorithm for update transaction Ti.

1: Upon Startup:
2: Ti.startTime ← curPoint.commitTime

3: Read oj :
4: if (oj ∈ Ti.writeSet)
5: then return Ti .writeSet[oj ]
6: data ← oj .latest
7: if ¬validateRead(oj) then abort
8: readSet.put(oj )
9: return data

10: Write to oj :
11: if (oj ∈ Ti.writeSet)
12: then update Ti .writeSet.get(oj ); return
13: localCopy ← oj .latest.clone()
14: update localCopy; writeSet[oj ] ← localCopy

15: Function validateReadSet
16: foreach oj ∈ Ti .readSet do:
17: if ¬validateRead(oj) then return false
18: return true

19: Commit:
20: foreach oj ∈ Ti.writeSet do: oj .lock()
21: if ¬validateReadSet() then abort

� txn dsc should reference the over-written data
22: foreach oj ∈ Ti.writeSet do:
23: Ti .prevVersions.put(〈oj , oj .latest〉)

24: timeLock.lock()
25: Ti .commitTime ← curPoint.commitTime + 1

� update and unlock the objects
26: foreach 〈oj , data〉 ∈ Ti.writeSet do:
27: oj .version ← Ti.commitTime
28: oj .weak references.append(oj .latest)
29: oj .latest ← data; oj .unlock()
30: curPoint.next ← Ti; curPoint ← Ti

31: timeLock.unlock()

32: Function validateRead(Object oj )
33: return (¬oj .isLocked ∧ oj .version ≤ Ti .startTime)

program annotations. If not, each transaction can be started as read-only and then
restarted as update upon the first occurrence of a write operation.

Handling update transactions. The protocol for update transaction Ti is depicted in
Algorithm 1. The general idea is similar to the one used in TL2 [11]. An update trans-
action Ti aborts if some object oj read by Ti is over-written after Ti begins and before
Ti commits. Upon starting, Ti saves the value of the latest time point in a local variable
startTime, which holds the latest time at which an object in Ti’s read-set is allowed to
be over-written.

A read operation of object oj reads the latest value of oj , and then post-validates its
version (function validateRead. The validation procedure checks that the version is not
locked and it is not greater than Ti.startTime, otherwise the transaction is aborted.

A write operation (lines 12–14) creates a copy of the object’s latest version and adds
it to Ti’s local write set.

Commit (lines 20–31) consists of the following steps:

1. Lock the objects in the write set (line 20). Deadlocks can be detected using standard
mechanisms (e.g., timeouts or Dreadlocks [24]), or may be avoided if acquired in
the same order by every transaction.

2. Validate the read set (function validateReadSet).
3. Insert strong references to the over-written versions to Ti’s descriptor (line 23). This

way the algorithm guarantees that the over-written versions stay in the memory as
long as Ti’s descriptor is referenced by some read-only transaction.

4. Lock the time points list (line 24). Recall that this is a simplification; in Section 4.3
we show how to avoid such locking.

5. Set the commit time of Ti to one plus the value of the commit time of the descriptor
referenced by curPoint.

6. Update and unlock the objects in the write set (lines 26–29). Set their new version
numbers to the value of Ti.commitTime. Keep weak references to old versions.

7. Insert Ti’s descriptor to the end of the time points list and unlock the list (line 30).
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Algorithm 2. SMV algorithm for read-only transaction Ti.
1: Upon Startup:
2: Ti.startTP ← curPoint

3: Read oj :
4: latestData ← oj .latest
5: if (oj .version ≤ Ti.startTP.commitTime) then return latestData
6: return the latest version ver in oj .weak references, s.t.
7: ver.version ≤ Ti.startTP.commitTime

8: Commit:
9: Ti.startTP ← ⊥

Handling read-only transactions. The pseudo-code for read-only transactions appears
in Algorithm 2. Such transactions always commit without waiting for other transactions
to invoke any operations. The general idea is to construct a consistent snapshot based
on the start time of Ti. At startup, Ti.startTP points to the latest installed transactional
descriptor (line 2); we refer to the time value of startTP as Ti’s start time.

For each object oj , Ti reads the latest version of oj written before Ti’s start time.
When Ti reads an object oj whose latest version is greater than its start time, it continues
to read older versions until it finds one with a version number older than its start time.
Some old enough version is guaranteed to be found, because the updating transaction
Tw that over-wrote oj has added Tw’s descriptor referencing the over-written version
somewhere after Ti’s starting point, preventing GC.

The commit procedure for read-only transactions merely removes the pointer to the
starting time point, in order to make it GCable, and always commits.

4.3 Allowing Concurrent Access to the Time Points List

We show now how to avoid locking the time points list (lines 24, 31 in Algorithm 1), so
that update transactions with disjoint write-sets may commit concurrently.

We first explain the reason for using the lock. In order to update the objects in the
write-set, the updating transaction has to know the new version number to use. How-
ever, if a transaction exposes its descriptor before it finishes updating the write-set, then
some read-only transaction might observe an inconsistent state. Consider, for example,
transaction Tw that updates objects o1 and o2. The value of curPoint at the beginning
of Tw’s commit is 9. Assume Tw first inserts its descriptor with value 10 to the list,
then updates object o1 and pauses. At this point, o1.version = 10, o2.version < 10 and
curPoint → commitTime = 10. If a new read-only transaction starts with time 10, it can
successfully read the new value of o1 and the old value of o2, because they are both less
than or equal to 10. Intuitively, the problem is that the new time point becomes avail-
able to the readers as a potential starting time before all the objects of the committing
transaction are updated.

To preserve consistency without locking the time points list, we add an additional
boolean field ready to the descriptor’s structure, which becomes true only after the
committing transaction finishes updating all objects in its write-set. In addition to the
global curPoint variable referencing the latest time point, we keep a global ready-
Point variable, which references the latest time point in the ready prefix of the list (see
Figure 2).
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When a new read-only transaction starts, its startTP variable references readyPoint.
In the example above, a new transaction Tr begins with a start time equal to 9, because
the new time point with value 10 is still not ready. Generally, the use of readyPoint
guarantees that if a transaction reads an object version written by Tw, then Tw and all
its preceding transactions had finished writing their write-sets.

Note, however, that when using ready points we should not violate the real time
order — if a read-only transaction Tr starts after Tw terminates, then Tr must have
a start time value not less than Tw’s commit time. This property might be violated if
update transactions become ready in an order that differs from their time points order,
thus leaving an unready transaction between ready ones in the list.

We have implemented two approaches to enforce real-time order: 1) An update trans-
action does not terminate until the ready point reaches its descriptor. A similar approach
was previously used by RingSTM [33] and JVSTM [15]. 2) A new read-only transaction
notes the time point of the latest terminated transaction and then waits until the ready-
Point reaches this point before starting. Note that unlike the first alternative, read-only
transactions in the second approach are not wait-free.

According to our evaluation, both techniques demonstrate similar results. The wait-
ing period remains negligible as long as the number of transactional threads does not
exceed the number of available cores; when the number of threads is two times the
number of cores, waiting causes a 10− 15% throughput degradation (depending on the
workload) — this is the cost we pay for maintaining real-time order.

5 Implementation and Evaluation

5.1 Compared Algorithms

Our evaluation aims to check the aspect of keeping and garbage collecting multiple ver-
sions. Direct comparison was difficult because of different frameworks the algorithms
are implemented in1. We implement the following algorithms:

– SMV– The algorithm described in Section 4.
– TL2– Java implementation of TL2 [11] with a single central global version clock.

We use a standard optimization of not keeping a read-set for read-only transactions.
The code follows the style of TL2 implementation in Deuce framework [23].

– TL2 with time points– A variant of TL2, which implements the time points mech-
anism described in Section 4.1. This way, we check the influence of the use of time
points on overall performance and separate it from the impact of multi-versioning
techniques used in SMV.

– k-versioned– an STM based on a TL2-style’s logic and code, in which each object
keeps a constant k, number of versions (this approach resembles LSA [29]). Reads
operate as in SMV, except that if no adequate version is found, the transaction
aborts. Updates operate as in TL2.

– Read-Write lock (RWLock)– a simple global read-write lock. The lock is ac-
quired at the beginning of an atomic section and is released at its end.

1 DeuceSTM [23] framework comes with TL2 and LSA built-in, however, its LSA implementa-
tion is single-versioned.
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We use the Polite contention manager with exponential backoff [31] for all the algo-
rithms: aborted transactions spin for a period of time proportional to 2n, where n is the
number of retries of the transaction.

5.2 Experiment Setup

All algorithms are implemented in Java. We use the following benchmarks for perfor-
mance evaluation: 1) a red-black tree microbenchmark; 2) the Java version of STM-
Bench7 [18]; and 3) Vacation, which is part of the STAMP [8] benchmark suite.

Red-black tree microbenchmark. The red-black tree supports insertion, deletion, query
and range query operations. The initial size of the tree is 400000 nodes. It is checked
both for read-dominated workloads (80/20 ratio of read-only to update operations) and
for workloads with update operations only.

STMBench7. STMBench7 aims to simulate different behaviors of real-world programs
by invoking both read-only and update transactions of different lengths over large data
structures, typically graphs. Workload types differ in their ratio of read-only to update
transactions: 90/10 for read-dominated workloads, 60/40 for read-write workloads,
and 10/90 for write-dominated workloads. When running STMBench7 workloads, we
bound the length of each benchmark by the number of transactions performed by each
thread (2000 transactions per thread unless stated otherwise). We manually disabled
long update traversals because they inherently eliminate any potential for scalability.

Vacation (Java port). Vacation [8], emulates a travel reservation system, which is im-
plemented as a set of trees. In our experiments it is run with the standard parameters cor-
responding to vacation-high++. Note that STAMP benchmarks are not suitable for
evaluating techniques that optimize read-only transactions, because these benchmarks
do not have read-only transactions at all. We use Vacation as one exemplary STAMP
application to evaluate SMV’s overhead.

Setup. The benchmarks are run on a dedicated shared-memory NUMA server with 8
Quad Core AMD 2.3GHz processors and 16GB of memory attached to each processor.
The system runs Linux 2.6.22.5-31 with swap turned off. For all tests but those with
limited memory, JVM is run with the AggressiveHeap flag on. Thread scheduling
is left entirely to the OS. We run up to 64 threads on the 32 cores.

Our evaluation study is organized as follows: in Section 5.3, we show system perfor-
mance measurements. Section 5.4 considers the latency and predictability of long read-
only operations, and in Section 5.5, we analyze the memory demands of the algorithms.

5.3 Performance Measurements

SMV overhead. As we mentioned earlier, the use of multiple versions in our algorithm
can be exploited by read-only transactions only. However, before evaluating the per-
formance of SMV with read-only transactions, we first want to understand its behavior
in programs with update transactions only. In these programs, SMV can hardly be ex-
pected to outperform its single-versioned counterparts. For update transactions, SMV
resembles the behavior of TL2, with the additional overhead of maintaining previous
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Fig. 3. In the absence of read-only transactions multi-versioning cannot be exploited. The over-
head of SMV degrades throughput by up to 15%.
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Fig. 4. By reducing aborts of read-only transactions, SMV presents a substantially higher through-
put than TL2 and the k-versioned STM. In read-dominated workloads, its throughput is×7 higher
than that of TL2 and more than twice those of the k-versioned STM with k = 2 or k = 8.
In read-write workloads its advantage decreases because of update transactions, but SMV still
clearly outperforms its competitors.

object versions. Thus, measuring throughput in programs without read-only transac-
tions quantifies the cost of this additional overhead.

In Figure 3, we show throughput measurements for write-dominated benchmarks:
Red-black tree (Figure 3(a)) and Vacation (Figure 3(c)) do not contain read-only trans-
actions at all. The write-dominated STMBench7 workload shown in Figure 3(b) runs
90% of its operations as update transactions, and therefore the influence of read-only
ones is negligible.

All compared STM algorithms show similar behavior in all three benchmarks. This
emphasizes the fact that the algorithms take the same approach when executing update
transactions and that they all have a common underlying code platform. The differences
in the behavior of RWLock are explained by different contention levels of the bench-
marks. While the contention level in Vacation remains moderate even for 64 threads,
contention in the write-dominated STMBench7 is extremely high, so that RWLock out-
performs the other alternatives.

Figure 3 demonstrates low overhead of SMV when the number of threads does not
exceed 32; for 64 threads this overhead causes a 15% throughput drop. This is the cost
we pay for maintaining multiple versions when these versions are not actually used.
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Throughput. We next run workloads that include read-only transactions, in order to
assess whether the overhead of SMV is offset by its smaller abort rate. In Figure 4 we
depict throughput measurements of the algorithms in STMBench7’s read-dominated
and read-write workloads, as well as the throughput of the red-black tree. We see that
in the read-dominated STMBench7 workload, SMV’s throughput is seven times higher
than that of TL2. Despite keeping as many as 8 versions, the k-versioned STM cannot
keep up, and SMV outperforms it by more than twice.

What is the reason for 8 versions not being enough? In the full version of the pa-
per [26] we show the following two results that explain this: First, the probability of
accessing an old object version is extremely small (less than 2.5% even for the second
version). Therefore, keeping k versions for each object can be wasteful. Second, the
amount of work lost because the kth version is absent, is surprisingly high even for
large k values. Intuitively, this occurs since a transaction that needs to access the kth

version of an object must have been running for a long time, and the price of aborting
such a transaction is high. Hence, keeping previous versions is important despite the
low frequency of accessing them; keeping a constant number of versions per object will
typically not be enough for reducing the amount of wasted work.

We further note that SMV is scalable, and its advantage over a single-version STM
becomes more pronounced as the number of threads rises. In the read-write workload,
the number of read-only transactions that can use multiple versions decreases, and the
throughput gain becomes 95% over TL2 and 52% over the 8-versioned STM.

We conclude that in the presence of read-only transactions the benefit of SMV sig-
nificantly outweighs its overhead. In the full version of the paper [26] we explain this
benefit by looking at the amount of work wasted due to aborts. We show that in the
read-dominated workload, TL2 spends more than 80% of its time running aborted trans-
actions! Interestingly, k-versioned STMs cannot fully alleviate this effect, reducing the
amount of wasted time only to 36%. In contrast, SMV’s waste does not rise above 3%.

It is possible to employ timestamp extension [29,14] to reduce the amount of wasted
work in both TL2 and SMV. However, this approach requires read-only transactions
to maintain read-sets. The overhead of keeping a read-set is significant for long read-
only transactions. We implemented timestamp extension in both TL2 and SMV, and
our experiments showed that it did not improve the performance of either algorithm,
although it did reduce the amount of wasted work. For space imitations, we omit these
results.

5.4 Latency and Predictability of Long Read-Only Operations

In the previous section we concentrated on overall system performance without con-
sidering specific transactions. However, in real-life applications the completion time of
individual operations is important as well. In this section we consider two examples:
taking system snapshots of a running application and STMBench7’s long traversals.

Taking a full-system snapshot is important in various fields: it is used in client-server
finance applications to provide clients with consistent views of the state, for checkpoint-
ing in high-performance computing, for creating new replicas, for application moni-
toring and gathering statistics, etc. Predictability of the time it takes to complete the
snapshot is important, both for program stability and for usability.
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Table 1. Maximum time for completing long read-only operations. Long read-only traversals in
STMBench7 can be hardly predictable for TL2 and k-versioned STMs: they might take hundreds
of seconds under high loads. Vacation snapshot operation run by TL2 or k-versioned algorithms
cannot terminate even when there is only a single application thread. SMV presents stable per-
formance unaffected by the level of contention both for STMBench7 traversals and Vacation
snapshots.

(a) Maximum time (sec) for completing a

long read-only operation in STMBench7.

Number of threads
1 4 8 16 32

TL2 1.3 21.6 68.5 103.6 358.5
SMV 1.3 1.4 2.4 3.6 11.9
2-versioned 1.3 4.1 22.9 45.2 204.5
8-versioned 1.3 6.8 10.6 22.2 79.4

(b) Maximum time (sec) to take a

snapshot in Vacation benchmark.

Number of threads
1 4 8 16 32

TL2 — — — — —
SMV 1.4 1.3 1.2 1.4 1.5
2-versioned — — — — —
8-versioned — — — — —

We first show the maximum time for completing a long read-only traversal, which
is already built-in in STMBench7 (see Table 1(a)). As we can see from the table, this
operation takes only several seconds when run without contention. However, when the
number of threads increases, completing the traversal might take more than 100 seconds
in TL2 and k-versioned STMs. Unlike those algorithms, SMV is less impacted by the
level of contention and it always succeeds to complete the traversal in several seconds.

Next, we added the option of taking a system snapshot in Vacation. In addition to
the original application threads, we run a special thread that repeatedly tries to take
a snapshot. We are interested in the maximum time it takes to complete the snapshot
operation. The results appear in Table 1(b). We see that neither TL2 nor the k-versioned
STM can successfully take a snapshot even when only a single application thread runs
updates in parallel with the snapshot operation. Surprisingly, even 8 versions do not
suffice to allow snapshots to complete, this is because within the one and a half seconds
it takes the snapshot to complete some objects are overwritten more than 8 times.

On the other hand, the performance of SMV remains stable and unaffected by the
number of application threads in the system. We conclude that SMV successfully keeps
the needed versions. In Section 5.5, we show that it does so with smaller memory re-
quirements than the k-versioned STM.

We would like to note that while taking a snapshot is also possible by pausing mu-
tator threads, this approach is much less efficient, as it requires quiescence periods and
thus reduces the overall throughput.

5.5 Memory Demands

One of the potential issues with multi-versioned STMs is their high memory consump-
tion. In this section we compare memory demands of the different algorithms. To this
end, we execute long-running write-dominated STMBench7 benchmarks (64 threads,
each thread running 40000 operations) with different limitations on the Java memory
heap. Such runs present a challenge for the multi-versioned STMs because of their
high update rate and limited memory resources. As we recall from Section 5.3, multi-
versioned STMs cannot outperform TL2 in a write-dominated workload. Hence, the
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goal of the current experiment is to study the impact of the limited memory availability
on the algorithms’ behaviors.

Memory limit
2GB 4GB 8GB 12GB 16GB

TL2 606.89 631.56 630.3 674.96 647.17
SMV 450.12 543.04 563.74 595.78 602.01
2-versioned — 515.32 532.7 550.61 533.01
4-versioned — — — — 281.98
8-versioned — — — — —

Fig. 5. Throughput (txn/sec) in limited memory
systems: k-versioned STMs do not succeed to
complete the benchmark

Figure 5 shows how the algorithms’
throughput depends on the Java heap
size. A “—” sign corresponds to runs
in which the algorithm did not succeed
to complete the benchmark due to a
Java OutOfMemoryException. No-
tice that the 8-versioned STM is unable
to successfully complete a run even given
a 16GB Java heap size. Decreasing k to
4, and then 2, makes it possible to finish
the runs under stricter constraints. However, none of the k-versioned STMs succeed un-
der the limitation of 2GB. Unlike k-versioned STMs, SMV continues to function under
these constraints. Furthermore, SMV’s throughput does not change drastically — the
maximum decrease is 25% when Java heap size shrinks 8-fold.

The collapse of the k-versioned STM confirms the observation from Section 3, where
we have illustrated that its memory consumption can become exponential rather than
linear in the number of transactional objects.

6 Conclusions

Many real-world applications invoke a high rate of read-only transactions, including
ones executing long traversals or obtaining atomic snapshots. For such workloads,
multi-versioning is essential: it bears the promise of high performance, reduced abort
rates, and less wasted work.

We presented Selective Multi-Versioning, a new STM that achieves high perfor-
mance (high throughput, low and predictable latency, and little wasted work) in the
presence of long read-only transactions. Despite keeping multiple versions, SMV can
work well in memory constrained environments.

SMV keeps old object versions as long as they might be useful for some transaction
to read. We do so while allowing read-only transactions to remain invisible by relying
on automatic garbage collection to dispose of obsolete versions.

References

1. http://www.azulsystems.com/blog/cliff-click/
2008-05-27-clojure-stms-vs-locks

2. Attiya, H., Hillel, E.: Brief announcement: Single-Version STMs can be Multi-Version Per-
missive. In: Proceedings of the 29th Symposium on Principles of Distributed Computing
(2010)

3. Aydonat, U., Abdelrahman, T.: Serializability of transactions in software transactional mem-
ory. In: Second ACM SIGPLAN Workshop on Transactional Computing (2008)

4. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI
SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, pp. 1–10 (1995)

http://www.azulsystems.com/blog/cliff-click/2008-05-27-clojure-stms-vs-locks
http://www.azulsystems.com/blog/cliff-click/2008-05-27-clojure-stms-vs-locks


SMV: Selective Multi-Versioning STM 139

5. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading (1987)

6. Bieniusa, A., Fuhrmann, T.: Consistency in hindsight, a fully decentralized stm algorithm. In:
IPDPS 2010: Proceedings of the 24th IEEE International Parallel and Distributed Processing
Symposium (2010)

7. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Science
of Computer Programming 63(2), 172–185 (2006)

8. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional appli-
cations for multi-processing. In: IISWC 2008: Proceedings of The IEEE International Sym-
posium on Workload Characterization (September 2008)

9. Carvalho, N., Cachopo, J., Rodrigues, L., Rito-Silva, A.: Versioned transactional shared
memory for the FenixEDU web application. In: Proceedings of the 2nd Workshop on De-
pendable Distributed Data Management, pp. 15–18 (2008)

10. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex locks. In:
D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 2–13.
Springer, Heidelberg (2010)

11. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

12. Dice, D., Shavit, N.: TLRW: Return of the read-write lock. In: TRANSACT 2009: 4th Work-
shop on Transactional Computing (February 2009)

13. Ennals, R.: Cache sensitive software transactional memory. Technical report
14. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software trans-

actional memory. In: PPoPP 2008, pp. 237–246 (2008)
15. Fernandes, S.M., Cachopo, J.A.: Lock-free and Scalable Multi-Version Software Transac-

tional Memory. In: PPoPP 2011, pp. 179–188 (2011)
16. Fraser, K.: Practical lock freedom. PhD thesis. Cambridge University Computer Laboratory

(2003)
17. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn.

Addison-Wesley Longman, Amsterdam (2005)
18. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A Benchmark for Software Transactional

Memory. In: Proceedings of the Second European Systems Conference (2007)
19. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for

dynamic-sized data structures. In: PODC 2003, pp. 92–101 (2003)
20. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data

structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)
21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San

Francisco (2008)
22. Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In: SPAA 2009,

pp. 59–68 (2009)
23. Korland, G., Shavit, N., Felber, P.: Noninvasive Java concurrency with Deuce STM (poster).

In: SYSTOR 2009 (2009), Further details at http://www.deucestm.org/
24. Koskinen, E., Herlihy, M.: Dreadlocks: efficient deadlock detection. In: Proceedings of the

Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, pp. 297–303
(2008)

25. Napper, J., Alvisi, L.: Lock-free serializable transactions. Technical report, The University
of Texas at Austin (2005)

26. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective Multi-Versioning
STM. Technical report, Technion (2011)

27. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in transactional memory.
In: PODC (2010)

http://www.deucestm.org/


140 D. Perelman et al.

28. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transactions in an
STM. SIGPLAN Not. 44(4), 163–172 (2009)

29. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev,
S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

30. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In:
1st ACM SIGPLAN Workshop on Transactional Computing, TRANSACT (2006)

31. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software
transactional memory. In: PODC 2005, pp. 240–248 (2005)

32. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 12th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 204–213 (1995)

33. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: scalable transactions with a single
atomic instruction. In: SPAA 2008, pp. 275–284 (2008)



Brief Announcement:

Leaderless Byzantine Paxos

Leslie Lamport

Microsoft Research

Abstract. The role of leader in an asynchronous Byzantine agreement
algorithm is played by a virtual leader that is implemented using a syn-
chronous Byzantine agreement algorithm.

Agreement in a completely asynchronous distributed system is impossible in
the presence of even a single fault [5]. Practical fault-tolerant “asynchronous”
agreement algorithms assume some synchrony assumption to make progress,
maintaining consistency even it that assumption is violated. Dependence on syn-
chrony may be explicit [4], or may be built into reliance on a failure detector [2]
or a leader-election algorithm. Algorithms that are based on leader election are
called Paxos algorithms [6,7,8]. Byzantine Paxos algorithms are extensions of
these algorithms to tolerate malicious failures [1,9].

For Byzantine agreement, reliance on a leader is problematic. Existing algo-
rithms have quite convincing proofs that a malicious leader cannot cause incon-
sistency. However, arguments that a malicious leader cannot prevent progress are
not so satisfactory. Castro and Liskov [1] describe a method by which the system
can detect lack of progress and choose a new leader. However, their method is
rather ad hoc. It is not clear how well it will work in practice, where it can be
very difficult to distinguish malicious behavior from transient communication
errors.

The first Byzantine agreement algorithms, developed for process control ap-
plications, did not require a leader [10]. However, they assumed synchronous
communication: that messages sent between nonfaulty processes are received
within a known length of time. These algorithms are not suitable in the asyn-
chronous case because a loss of synchrony can cause inconsistency.

We propose a simple method for implementing a leaderless Byzantine agree-
ment algorithm: replacing the leaders in an ordinary Byzantine Paxos algorithm
by a virtual leader that is implemented using a synchronous Byzantine agreement
algorithm. Messages that in the ordinary algorithm are sent to the leader are
instead sent to all the servers. Each server then decides what message the leader
should send next and proposes it as the leader’s next message. The servers then
execute a synchronous Byzantine agreement algorithm to try to agree on the
vector of proposed messages—a vector containing one proposal for each server.
(This type of agreement is called interactive consistency [10].) Each server then
uses a deterministic procedure to choose the message sent by the virtual leader,
and it acts as if it had received this message.
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When the system behaves synchronously, as is required for progress by any
algorithm, each non-faulty server chooses the same virtual-leader message. The
virtual leader thus behaves correctly, and the Byzantine Paxos algorithm makes
progress. If the system does not behave synchronously, then the synchronous
Byzantine agreement algorithm may fail, causing different servers to choose dif-
ferent virtual-leader messages. This is equivalent to a malicious leader sending
conflicting messages to different processes. The malicious virtual leader can pre-
vent progress (which cannot be guaranteed without synchrony), but does not
cause inconsistency because a Byzantine Paxos algorithm can tolerate a mali-
cious leader.

Leaderless Paxos adds to a Byzantine Paxos algorithm the cost of the leader
agreement algorithm. The time required by a leader agreement algorithm that
tolerates F faulty servers is F + 1 message delays, which replaces the 1 message
delay of a leader simply sending a message. (Early-stopping algorithms probably
cannot be used because implementing a virtual leader seems to require simulta-
neous Byzantine agreement, which cannot guarantee early stopping [3].) For N
servers, approximately NF extra messages are required.
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1 Introduction

State machine replication is a general approach for constructing fault-tolerant
services, and a key protocol underlying state machine replication is consensus.
The set of Byzantine failures is so large that it has been applied for masking the
effects of compromised systems, and so Byzantine-tolerant consensus has been
used to construct systems that are meant to ameliorate the effect of compromise
(see [1] among others). In the Byzantine model, there is no trust among processes:
any process can behave in an arbitrarily faulty manner. However, in multi-site
systems, processes in the same administrative domain typically have a measure of
mutual trust. This is because such processes share fate: for example, if a process
in a domain is compromised, then other processes—perhaps all of them—can be
compromised as well, and the local services they rely upon may be compromised.
In [4], this observation was used to argue for the Mutually Suspicious Domain
(MSD) model, in which there is mutual trust between processes in a domain, but
no trust for inter-domain communication, i.e., processes within a domain must
protect itself from possible uncivil behavior from processes in other domains.

In this paper, we propose a consensus protocol for state machine replication
under the MSD model. We assume the typical Internet model, in which the
servers are in the same administrative domain and replicated for increased avail-
ability, and clients are in other administrative domains. The protocol, which we
call BP Fast Paxos, uses a hybrid failure model: processes within a domain as-
sume a crash failure model while across domains they assume a Byzantine failure
model. BP Fast Paxos is derived from Paxos [2], and provides low latency for
client requests, can tolerate any number of (Byzantine) faulty clients, up to 1/3
(crash) faulty servers, and can protect itself against denial of service attacks.

The contribution of this paper is the insight that we can tolerate Byzantine
clients, when we make the assumption that servers are benign faulty. We believe
this is a realistic assumption, since client software is often more exposed, while
servers are typically behind corporate firewalls and intrusion detection systems,
and thus better protected from compromise.
� This work was performed while Alessandro Mei was a Marie Curie Fellow at the
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2 Contribution: BP Fast Paxos

In BP Fast Paxos consensus is reached by the interaction between proposers
and acceptors, and learners that learn the consensus value. Given our failure
model, the mapping of these roles to clients and servers have two obvious choices:
(1) clients are proposers, and servers are acceptors and learners, and (2) pro-
posers are separate from both clients and servers. In the latter case, proposers
interact with clients, and can be placed at the edge of a data center, and is thus
more exposed to compromise than servers inside the data center.

We develop BP Fast Paxos by modifying Paxos in three essential ways: (i) The
〈Prepare〉 message sent by a proposer is replaced with a 〈TrustChange〉
message sent by acceptors. The reason for this change is that the acceptors can
then detect misbehavior of a Byzantine proposer, and simply change its trust
to another proposer whom can conclude the protocol. (ii) We also require that
〈Accept〉 messages (except those sent in round 0) contain a proof that it is
legitimate. To construct this proof, a proposer must collect signed 〈Promise〉
messages from acceptors, so that acceptors can verify the proof against the value
of the 〈Accept〉message. (iii) Finally, we introduce a mechanism to detect equiv-
ocation by the proposer for the current round. That is, if the current proposer
sends different 〈Accept〉messages to different acceptors, then we can detect this
using mechanisms similar to those used in Fast Paxos [3] to detect a collision in a
fast round. This change requires that acceptors are also learners, enabling them
to detect misbehavior through 〈Learn〉 messages, and replace a misbehaving
proposer through a trust change.

In the normal case behavior of the algorithm, where no agents are faulty, a
single unique proposer will try to have its value accepted by the acceptors. This
initial accept does not contain any signatures, and consensus will complete in two
communication steps, if no failures occur. Misbehavior is detected by learners
(and thus acceptors), in which case a trust change is required. In this case, also
HMAC-based signatures are necessary. If misbehavior or a crash is detected,
then more rounds are necessary.

Many protocols have been derived from Paxos, however, BP Fast Paxos is
the first protocol to leverage the separation of agent roles to distinguish their
individual failure assumptions. The protocol is two-step and is safe even when
all proposers are Byzantine, and does not require signatures for the common
case.
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We amend the framework, of two decades, of failure detectors [3,4] to bring it
in line with the modern view of solving a distributed task [8] that separates
processes and threads. While the conventional framework precludes a thread
from advancing in the absence of failure detector values to “its” process, we
allow live processes to advance the threads of failed processes. This provides for
the application of the wealth of simulation techniques [2,6,7] designed for read-
write threads and consequently to completely characterize task solvability with
failure detectors. When dealing with the extremes, consensus and set-consensus,
the former framework sufficed. With the advances in understanding of more
nuanced notions like k-set consensus the framework requires amendment.

What does it mean to solve a task? Paxos state-machine replication proto-
col [8] proposes the notion of solvability in which every process is split into a
proposer that submits commands to be executed, an acceptor that takes care
of the command execution order, and a learner that receives the outcomes of
executed commands. A command thus can still be executed when its proposer
is slow or crashed.

The separation of computation from control leverages simulation-based com-
puting proved to be very efficient in multiple contexts (e.g., [2,6,7]). Processes
may help each other to make progress by simulating each others’ steps. Even if
a participating process has crashed, its thread may nevertheless be executed.

Alas, when it comes to solving a task using a failure detector [3,4], we cannot
employ simulations. In a FD-based algorithm, each process periodically queries
its personal FD module to get hints about failures of other processes. It then
allowed to advance its personal thread rather than any thread for which input
is available. It thus precludes “helping.” But by enriching our model with a FD,
we should expand our horizons rather than narrow them!

This paper changes the FD theory in a technically minute but consequential
way. It tempers just with the definition of what does it mean to solve a task with
a FD, to allow the processes to simulate each other threads. In our definition,
the set of processes is partitioned into two classes: synchronization processes and
computation processes. Computation processes solve tasks by receiving inputs
and producing outputs. Synchronization processes help coordinating computa-
tion processes by using a FD. The FD provides each synchronization process
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with hints about the failures of other synchronization processes. The two classes
of processes communicate by reading and writing in the shared memory. Since
our framework allows for a simulation of computation processes, the power of
FDs to solve tasks can be completely characterized.

Consider any task T . As any T can be solved 1-concurrently, i.e., assuming
that at each moment of time there is at most one undecided participating process,
there exists the maximal k such that T is solvable k-concurrently. We show that
a FD D can be used to solve T if and only if D can be used to solve k-set
agreement.

The conclusion is that a task is completely characterized through the “level of
concurrency” its solution can tolerate. All tasks that can be solved k-concurrently
but not (k + 1)-concurrently (e.g., k-set agreement) are equivalent in the sense
that they require exactly the same amount of information about failures. This
characterization covers all tasks, including “colored” ones evading any charac-
terization so far [6,1].

Delporte et al. [5] showed that any FD that allows for solving consensus
among every pair of processes, also allows for solving consensus among all n
processes. Years of trying to extend the result to k-set agreement (k > 1) bore
no fruits. Using our new definition of solving a task, we immediately derive an
even stronger result: a FD solving k-set agreement among an arbitrary given set
of k + 1 processes, can solve k-set agreement among all n processes.

The natural derivation of these results suggests that our FD framework cap-
tures the right way of thinking about FD-based distributed computations.
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Abstract. This work, using a game-theoretic approach, considers
Internet-based computations, where a master processor assigns, over the
Internet, a computational task to a set of untrusted worker processors,
and collects their responses. In particular, we consider a framework where
altruistic, malicious, and rational workers co-exist, the communication
between the master and the workers is not reliable, and that work-
ers could be unavailable. Within this framework, we design algorithmic
mechanisms that provide appropriate incentives to rational workers to
act correctly, despite the malicious’ workers actions and the unreliability
of the network.

1 Motivation and Prior Work

In [1], an Internet-based master-worker framework was considered where a mas-
ter processor assigns, over the Internet, a computational task to a set of untrusted
worker processors and collects their responses. Three type of workers were as-
sumed: altruistic, malicious, and rational. Altruistic workers always compute
and return the correct result of the task, malicious workers always return an
incorrect result, and rational (selfish) workers act based on their self interest.
In other words, the altruistic and malicious workers have a predefined behavior:
the first are honest and the latter are cheaters (they do not care about their util-
ities). Rational workers decide to be honest or to cheat based on which strategy
would increase their utility. Under this framework, a game-theoretic mechanism

� This work is supported in part by the Cyprus Research Promotion Foundation grant
TΠE/ΠΛHPO/0609(BE)/05, Comunidad de Madrid grant S2009TIC-1692, Spanish
MICINN grant TIN2008–06735-C02-01, and the National Science Foundation grant
CCF-0937829.
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was designed that provided necessary incentives to the rational workers to com-
pute and report the correct task result despite the malicious workers’ actions.
The design objective of the mechanism is for the master to force a desired Nash
Equilibrium (NE), i.e., a strategy choice by each rational worker such that none
of them has incentive to change it. That NE is the one in which the master
achieves a desired probability of obtaining the correct task result, while maxi-
mizing its benefit. The utility of the mechanism was demonstrated by applying
it to two paradigmatic applications: a SETI-like volunteer computing system
and a contractor-based system, such as Amazon’s mechanical turk. This work
has not considered the possibility of network unreliability, which is a factor that
cannot be ignored in Internet-based computations [2].

2 Contributions

This work extends the master-worker framework of [1] by additionally consider-
ing the possibility that the communication between the master and the workers
is not reliable. That is, we consider the possibility that messages exchanged may
get lost or arrive late. This communication uncertainty can either be due to
communication-related failures or due to workers being slow in processing mes-
sages (or even crashing while doing so). For instance, Heien at al. [2] have found
that in BOINC only around 5% of the workers are available more than 80% of
the time, and that half of the workers are available less than 40% of the time.
This fact, combined with the length of the computation incurred by a task [3],
justifies the interest of considering in the Internet-based master-worker frame-
work the possibility of workers not replying. In order to introduce this possibility
in the framework, we consider that there is some positive probability that the
master does not receive a reply from a given worker. Since it is now possible for
a worker’s reply not to reach the master, we additionally extend the framework
of [1] by allowing workers to abstain from the computation. Imagine the situa-
tion where a rational worker decides to compute and truthfully return the task
result but its reply is not received by the master. In this case the master provides
no reward to the worker, while the worker has incurred the cost of performing
the task. Hence, it is only natural to provide to the workers the choice of not
replying, especially when the reliability of the network is low. This makes the
task of the master even more challenging, as it needs to provide the necessary
incentives to encourage rational workers to reply and do so truthfully, even in
the presence of low network reliability.

Within this extended framework, we develop and analyze two game-theoretic
mechanisms, a time-based mechanism and a reply-based one, that provide the
necessary incentives for the rational workers to truthfully compute and return
the task result, despite the malicious workers’ actions and the network unreli-
ability. Furthermore, we apply our mechanisms to two realistic settings: SETI-
like volunteer computing applications and contractor-based applications such as
Amazon’s mechanical turk. Full details can be found in [4].
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Abstract. Self-stabilization is a versatile approach to fault-tolerance
since it permits a distributed system to recover from any transient fault
that arbitrarily corrupts the contents of all memories in the system.
Byzantine tolerance is an attractive feature of distributed systems that
permits to cope with arbitrary malicious behaviors. This paper focuses
on systems that are both self-stabilizing and Byzantine tolerant.

We consider the well known problem of constructing a maximum met-
ric tree in this context. Combining these two properties is known to in-
duce many impossibility results. In this paper, we first provide two new
impossibility results about the construction of a maximum metric tree in
presence of transient and (permanent) Byzantine faults. Then, we pro-
pose a new self-stabilizing protocol that provides optimal containment
to an arbitrary number of Byzantine faults.

Keywords: Byzantine fault, Distributed protocol, Fault tolerance, Sta-
bilization, Spanning tree construction.

1 Introduction

The advent of ubiquitous large-scale distributed systems advocates that toler-
ance to various kinds of faults and hazards must be included from the very
early design of such systems. Self-stabilization [1,2,3] is a versatile technique
that permits forward recovery from any kind of transient faults, while Byzan-
tine fault-tolerance [4] is traditionally used to mask the effect of a limited number
of malicious faults. Making distributed systems tolerant to both transient and
malicious faults is appealing yet proved difficult [5,6,7] as impossibility results
are expected in many cases.

Related Works. A promising path towards multi-tolerance to both transient and
Byzantine faults is Byzantine containment. For local tasks (i.e. tasks whose cor-
rectness can be checked locally, such as vertex coloring, link coloring, or dining

� This work has been supported in part by ANR projects SHAMAN and SPADES,
by MEXT Global COE Program and by JSPS Grant-in-Aid for Scientific Research
((B) 22300009).
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philosophers), the notion of strict stabilization was proposed [7,8]. Strict sta-
bilization guarantees that there exists a containment radius outside which the
effect of permanent faults is masked, provided that the problem specification
makes it possible to break the causality chain that is caused by the faults. As
many problems are not local, it turns out that it is impossible to provide strict
stabilization for those. To circumvent impossibility results, the weaker notion of
strong stabilization was proposed [9,10]: here, correct nodes outside the contain-
ment radius may be perturbed by the actions of Byzantine nodes, but only a
finite number of times.

Recently, the idea of generalizing the containment area in strict and strong
stabilization to an area that depends both on the graph topology and the prob-
lem to be solved rather than an arbitrary fixed containment radius was pro-
posed [11,12] and denoted by topology aware strict (and strong) stabilization.
When maximizable metric trees are considered, [11] proposed an optimal (with
respect to impossibility results) protocol for topology-aware strict stabilization,
and for the simpler case of breath-first-search trees, [12] presented a protocol
that is optimal both with respect to strict and strong variants of topology-aware
stabilization. Up to this paper, the case of optimality for topology-aware strong
stabilization in the general maximal metric case remained open.

Our Contribution. In this paper, we investigate the possibility of topology-aware
strong stabilization for tasks that are global (i.e. there exists a causality chain of
size r, where r depends on n the size of the network), and focus on the maximum
metric tree problem. Our contribution in this paper is threefold. First, we provide
two impossibility results for self-stabilizing maximum metric tree construction
in presence of Byzantine faults. In more details, we characterize a specific class
of maximizable metrics (that includes breath-first-search and shortest path met-
rics) that prevents the existence of strong stabilizing solutions and we provide
a lower bound on the containment area for topology-aware strong stabilization
(Section 3). Second, we provide a topology-aware strongly stabilizing protocol
that matches this lower bound on the containment area (Section 4). Finally,
we provide a necessary and sufficient condition for the existence of a strongly
stabilizing solution (Section 5).

2 Model, Definitions and Previous Results

2.1 State Model

A distributed system S = (V, L) consists of a set V = {v1, v2, . . . , vn} of pro-
cesses and a set L of bidirectional communication links (simply called links). A
link is an unordered pair of distinct processes. A distributed system S can be
regarded as a graph whose vertex set is V and whose link set is L, so we use
graph terminology to describe a distributed system S. We use the following no-
tations: n = |V |, m = |L| and d(u, v) denotes the distance between two processes
u and v (i.e the length of the shortest path between u and v). Processes u and
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v are called neighbors if (u, v) ∈ L. The set of neighbors of a process v is denoted
by Nv. We assume each process can distinguish its neighbors from each other by
locally labeling them. We denote the maximal degre of the system by Δ.

In this paper, we consider distributed systems of arbitrary topology. We as-
sume that a single process is distinguished as a root, and all the other processes
are identical. We adopt the shared state model as a communication model in
this paper, where each process can directly read the states of its neighbors.
The variables that are maintained by processes denote process states. A pro-
cess may take actions during the execution of the system. An action is simply
a function that is executed in an atomic manner by the process. The action
executed by each process is described by a finite set of guarded actions of the
form 〈guard〉 −→ 〈statement〉. Each guard of process u is a boolean expression
involving the variables of u and its neighbors. A global state of a distributed
system is called a configuration and is specified by a product of states of all pro-
cesses. We define C to be the set of all possible configurations of a distributed
system S. For a process set R ⊆ V and two configurations ρ and ρ′, we denote
ρ

R�→ ρ′ when ρ changes to ρ′ by executing an action of each process in R simul-
taneously. Notice that ρ and ρ′ can be different only in the states of processes
in R. We should clarify the configuration resulting from simultaneous actions of
neighboring processes. The action of a process depends only on its state at ρ
and the states of its neighbors at ρ, and the result of the action reflects on the
state of the process at ρ′.

We say that a process is enabled in a configuration ρ if the guard of at least one
of its actions is evaluated as true in ρ. A schedule of a distributed system is an
infinite sequence of process sets. Let Q = R1, R2, . . . be a schedule, where Ri ⊆ V
holds for each i (i ≥ 1). An infinite sequence of configurations e = ρ0, ρ1, . . .
is called an execution from an initial configuration ρ0 by a schedule Q, if e

satisfies ρi−1
Ri�→ ρi for each i (i ≥ 1). Process actions are executed atomically,

and we distinguish some properties on the scheduler (or daemon). A distributed
daemon schedules the actions of processes such that any subset of processes
can simultaneously execute their actions. We say that the daemon is central if it
schedules action of only one process at any step. The set of all possible executions
from ρ0 ∈ C is denoted by Eρ0 . The set of all possible executions is denoted by
E, that is, E =

⋃
ρ∈C Eρ. We consider asynchronous distributed systems but we

add the following assumption on schedules: any schedule is strongly fair (that is,
it is impossible for any process to be infinitely often enabled without executing
its action infinitely often in an execution) and k-bounded (that is, it is impossible
for any process to execute more than k actions between two consecutive actions
of any other process).

In this paper, we consider (permanent) Byzantine faults : a Byzantine process
(i.e. a Byzantine-faulty process) can make arbitrary behavior independently from
its actions. If v is a Byzantine process, v can repeatedly change its variables
arbitrarily. For a given execution, the number of faulty processes is arbitrary
but we assume that the root process is never faulty.
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2.2 Self-Stabilizing Protocols Resilient to Byzantine Faults

Problems considered in this paper are so-called static problems, i.e. they require
the system to find static solutions. For example, the spanning-tree construction
problem is a static problem, while the mutual exclusion problem is not. Some
static problems can be defined by a specification predicate (shortly, specification),
spec(v), for each process v: a configuration is a desired one (with a solution) if
every process satisfies spec(v). A specification spec(v) is a boolean expression on
variables of Pv (⊆ V ) where Pv is the set of processes whose variables appear in
spec(v). The variables appearing in the specification are called output variables
(shortly, O-variables). In what follows, we consider a static problem defined by
specification spec(v).

A self-stabilizing protocol ([1]) is a protocol that eventually reaches a legitimate
configuration, where spec(v) holds at every process v, regardless of the initial
configuration. Once it reaches a legitimate configuration, every process never
changes its O-variables and always satisfies spec(v). From this definition, a self-
stabilizing protocol is expected to tolerate any number and any type of transient
faults since it can eventually recover from any configuration affected by the
transient faults. However, the recovery from any configuration is guaranteed only
when every process correctly executes its action, i.e. when we do not consider
existence of permanently faulty processes.

Strict stabilization. When (permanent) Byzantine processes exist, Byzantine
processes may not satisfy spec(v). In addition, correct processes near the Byzan-
tine processes can be influenced and may be unable to satisfy spec(v). Nesterenko
and Arora [7] define a strictly stabilizing protocol as a self-stabilizing protocol
resilient to unbounded number of Byzantine processes. More formally, given an
integer c, a process is c-correct if it is correct (i.e. not Byzantine) and located
at distance more than c from any Byzantine process. A configuration ρ is (c, f)-
contained for specification spec if, given at most f Byzantine processes, in any
execution starting from ρ, every c-correct process v always satisfies spec(v) and
never changes its O-variables. The parameter c refers to the containment radius
defined in [7]. The parameter f refers explicitly to the number of Byzantine
processes, while [7] dealt with unbounded number of Byzantine faults (that is
f ∈ {0 . . . n}).
Definition 1 ((c, f)-strict stabilization). A protocol is (c, f)-strictly stabiliz-
ing for specification spec if, given at most f Byzantine processes, any execution
e = ρ0, ρ1, . . . contains a configuration ρi that is (c, f)-contained for spec.

Strong stabilization. To circumvent impossibility results related to strict stabiliza-
tion, [10] defines a weaker notion. Here, the requirement to the containment radius
is relaxed, i.e. there may exist processes outside the containment radius that inval-
idate the specification predicate, due to Byzantine actions. However, the impact
of Byzantine triggered action is limited in times: the set of Byzantine processes
may only impact processes outside the containment radius a bounded number of
times, even if Byzantine processes execute an infinite number of actions.
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More formally, [10] defines strong stabilization as follows. From the states
of c-correct processes, c-legitimate configurations and c-stable configurations are
defined as follows. A configuration ρ is c-legitimate for spec if every c-correct
process v satisfies spec(v). A configuration ρ is c-stable if every c-correct process
never changes the values of its O-variables as long as Byzantine processes make
no action. Roughly speaking, the aim of self-stabilization is to guarantee that a
distributed system eventually reaches a c-legitimate and c-stable configuration.
However, a self-stabilizing system can be disturbed by Byzantine processes after
reaching a c-legitimate and c-stable configuration. The c-disruption represents
the period where c-correct processes are disturbed by Byzantine processes and
is defined as follows. A portion of execution e = ρ0, ρ1, . . . , ρt (t > 1) is a c-
disruption if and only if the following holds: (i) e is finite, (ii) e contains at
least one action of a c-correct process for changing the value of an O-variable,
(iii) ρ0 is c-legitimate for spec and c-stable, and (iv) ρt is the first configuration
after ρ0 such that ρt is c-legitimate for spec and c-stable. A configuration ρ0 is
(t, k, c, f)-time contained for spec if given at most f Byzantine processes, the
following properties are satisfied: (i) ρ0 is c-legitimate for spec and c-stable, (ii)
every execution starting from ρ0 contains a c-legitimate configuration for spec
after which the values of all the O-variables of c-correct processes remain un-
changed (even when Byzantine processes make actions repeatedly and forever),
(iii) every execution starting from ρ0 contains at most t c-disruptions, and (iv)
every execution starting from ρ0 contains at most k actions of changing the
values of O-variables for each c-correct process.

Definition 2 ((t, c, f)-strongly stabilizing protocol). A protocolA is (t, c, f)-
strongly stabilizing if and only if starting from any arbitrary configuration, every
execution involving at most f Byzantine processes contains a (t, k, c, f)-time con-
tained configuration. Parameter k is the (t, c, f)-process-disruption times of A.

Topology-aware Byzantine resilience. We describe here another weaker notion
than the strict stabilization: the topology-aware strict stabilization (denoted by
TA strict stabilization for short) introduced by [11]. Here, the requirement to
the containment radius is relaxed, i.e. the set of processes that may be disturbed
by Byzantine ones is not reduced to the union of c-neighborhood of Byzantine
processes (i.e. the set of processes at distance at most c from a Byzantine process)
but can be defined depending on the graph topology and Byzantine processes’
locations.

In the following, we give formal definition of this new kind of Byzantine con-
tainment. From now, B denotes the set of Byzantine processes and SB (that is
function of B) denotes a subset of V (intuitively, this set gathers all processes
that may be disturbed by Byzantine processes). A process is SB-correct if it is a
correct process (i.e. not Byzantine) that does not belongs to SB. A configuration
ρ is SB-legitimate for spec if every SB-correct process v is legitimate for spec
(i.e. if spec(v) holds). A configuration ρ0 is (SB , f)-TA contained for specifica-
tion spec if, given at most f Byzantine processes, in any execution e = ρ0, ρ1, . . .,
every configuration is SB-legitimate and every SB-correct process never changes
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its O-variables. The parameter SB refers to the containment area. Any process
that belongs to this set may be infinitely disturbed by Byzantine processes. The
parameter f refers explicitly to the number of Byzantine processes.

Definition 3 ((SB, f)-TA strict stabilization). A protocol is (SB, f)-TA
strictly stabilizing for specification spec if, given at most f Byzantine processes,
any execution e = ρ0, ρ1, . . . contains a configuration ρi that is (SB , f)-TA con-
tained for spec.

Similarly to topology-aware strict stabilization, we can weaken the notion of
strong stabilization using the notion of containment area. This idea was intro-
duced by [12]. We recall in the following the formal definition of this concept. A
configuration ρ is SB-stable if every SB-correct process never changes the values
of its O-variables as long as Byzantine processes make no action. A portion of
execution e = ρ0, ρ1, . . . , ρt (t > 1) is a SB-TA disruption if and only if the
followings hold: (i) e is finite, (ii) e contains at least one action of a SB-correct
process for changing the value of an O-variable, (iii) ρ0 is SB-legitimate for
spec and SB-stable, and (iv) ρt is the first configuration after ρ0 such that ρt

is SB-legitimate for spec and SB-stable. A configuration ρ0 is (t, k, SB, f)-TA
time contained for spec if given at most f Byzantine processes, the following
properties are satisfied: (i) ρ0 is SB-legitimate for spec and SB-stable, (ii) every
execution starting from ρ0 contains a SB-legitimate configuration for spec after
which the values of all the O-variables of SB-correct processes remain unchanged
(even when Byzantine processes make actions repeatedly and forever), (iii) every
execution starting from ρ0 contains at most t SB-TA disruptions, and (iv) every
execution starting from ρ0 contains at most k actions of changing the values of
O-variables for each SB-correct process.

Definition 4 ((t, SB, f)-TA strongly stabilizing protocol). A protocol A
is (t, SB, f)-TA strongly stabilizing if and only if starting from any arbitrary
configuration, every execution involving at most f Byzantine processes contains
a (t, k, SB, f)-TA time contained configuration that is reached after at most l
rounds. Parameters l and k are respectively the (t, SB , f)-stabilization time and
the (t, SB, f)-process disruption times of A.

2.3 Maximum Metric Tree Construction

In this work, we deal with maximum (routing) metric trees. Informally, the goal
of a routing protocol is to construct a tree that simultaneously maximizes the
metric values of all of the nodes with respect to some total ordering ≺. We recall
all definitions and notations introduced in [13].

A routing metric (or just metric) is a five-tuple (M,W,met,mr, ≺) where:
(i) M is a set of metric values, (ii) W is a set of edge weights, (iii) met is
a metric function whose domain is M × W and whose range is M , (iv) mr
is the maximum metric value in M with respect to ≺ and is assigned to the
root of the system, and (v) ≺ is a less-than total order relation over M . The ≺
relation must satisfy the following three conditions for arbitrary metric values
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m, m′, and m′′ in M : (i) irreflexivity (m �≺ m), (ii) transitivity (if m ≺ m′ and
m′ ≺ m′′ then m ≺ m′′), and (iii) totality (m ≺ m′ or m′ ≺ m or m = m′).
Any metric value m ∈M \{mr} must satisfy the utility condition (that is, there
exist w0, . . . , wk−1 in W and m0 = mr,m1, . . . ,mk−1,mk = m in M such that
∀i ∈ {1, . . . , k},mi = met(mi−1, wi−1)).

For instance, this model allows to modelize the following metrics: the shortest
path metric (SP), the flow metric (F), and the reliability metric (R) as pointed
in [13]. Note also that we can modelize the construction of a spanning tree
with no particular constraints or a BFS spanning tree using a routing metric
(respectively denoted by NC and by BFS).

An assigned metric over a system S is a six-tuple (M,W,met,mr, ≺, wf)
where (M,W,met,mr, ≺) is a metric and wf is a function that assigns to each
edge of S a weight in W . Let a rooted path (from v) be a simple path from
a process v to the root r. The next set of definitions are with respect to an
assigned metric (M,W,met,mr,≺, wf) over a given system S. The metric of a
rooted path in S is the prefix sum of met over the edge weights in the path and
mr. For example, if a rooted path p in S is vk, . . . , v0 with v0 = r, then the
metric of p is mk = met(mk−1, wf({vk, vk−1})) with ∀i ∈ {1, . . . , k − 1},mi =
met(mi−1, wf({vi, vi−1})) and m0 = mr. A rooted path p from v in S is called a
maximum metric path with respect to an assigned metric if and only if for every
other rooted path q from v in S, the metric of p is greater than or equal to the
metric of q with respect to the total order ≺. The maximum metric of a node
v �= r (or simply metric value of v) in S is defined by the metric of a maximum
metric path from v. The maximum metric of r is mr. A spanning tree T of S
is a maximum metric tree with respect to an assigned metric over S if and only
if every rooted path in T is a maximum metric path in S with respect to the
assigned metric.

The goal of the work of [13] is the study of metrics that always allow the
construction of a maximum metric tree. More formally, the definition follows. A
metric is maximizable if and only if for any assignment of this metric over any
system S, there is a maximum metric tree for S with respect to the assigned
metric.

Given a maximizable metric M = (M,W,met,mr,≺), the aim of this work
is to study the construction of a maximum metric tree with respect to M that
spans the system in a self-stabilizing way in a system subject to permanent
Byzantine faults (but we assume that the root process is never a Byzantine one).
It is obvious that these Byzantine processes may disturb some correct processes.
It is why we relax the problem in the following way: we want to construct a
maximum metric forest with respect to M. The root of any tree of this forest
must be either the real root or a Byzantine process.

Each process v has three O-variables: a pointer to its parent in its tree (prntv ∈
Nv∪{⊥}), a level that stores its current metric value (levelv ∈M) and an integer
that stores a distance (distv ∈ N). Obviously, Byzantine process may disturb (at
least) their neighbors. We use the following specification of the problem.
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We introduce new notations as follows. Given an assigned metric (M,W,met,
mr,≺, wf) over the system S and two processes u and v, we denote by μ(u, v)
the maximum metric of node u when v plays the role of the root of the system.
If u and v are neighbors, we denote by wu,v the weight of the edge {u, v} (that
is, the value of wf({u, v})).
Definition 5 (M-path). Given an assigned metric M = (M,W,met,mr,≺
, wf) over a system S, a path (v0, . . . , vk) (k ≥ 1) of S is a M-path if and
only if: (i) prntv0 = ⊥, levelv0 = mr, distv0 = 0, and v0 ∈ B ∪ {r}, (ii)
∀i ∈ {1, . . . , k}, prntvi = vi−1 and levelvi = met(levelvi−1, wvi,vi−1), (iii) ∀i ∈
{1, . . . , k},met(levelvi−1, wvi,vi−1) = max≺{met(levelu, wvi,u)|u ∈ Nvi}, (iv)
∀i ∈ {1, . . . , k}, distvi = legal distvi−1 (with ∀u ∈ Nv, legal distu = distu + 1 if
levelv = levelu and legal distu = 0 otherwise), and (v) levelvk

= μ(vk, v0).

We define the specification predicate spec(v) of the maximum metric tree con-
struction with respect to a maximizable metric M as follows.

spec(v) :

{
prntv = ⊥ and levelv = mr, and distv = 0 if v is the root r
there exists a M-path (v0, . . . , vk) such that vk = v otherwise

2.4 Previous Results

The first interesting result is due to [13] that provides a full characterization
of maximizable metrics as follow. A metric (M,W,met,mr,≺) is bounded if
and only if: ∀m ∈ M, ∀w ∈ W,met(m,w) ≺ m or met(m,w) = m. A metric
(M,W,met,mr,≺) is monotonic if and only if: ∀(m, m′) ∈ M2, ∀w ∈ W,m ≺
m′ ⇒ (met(m,w) ≺ met(m′, w) or met(m,w) = met(m′, w)). Then, [13] proves
that a metric is maximizable if and only if this metric is bounded and monotonic.
Secondly, [14] provides a self-stabilizing protocol to construct a maximum metric
tree with respect to any maximizable metric.

Now, we focus on self-stabilizing solutions resilient to Byzantine faults. Fol-
lowing [7], it is obvious that there exists no strictly stabilizing protocol for this
problem. If we consider the weaker notion of topology-aware strict stabilization,
[11] defines the best containment area as: SB = {v ∈ V \ B|μ(v, r) � max≺
{μ(v, b)|b ∈ B}} \ {r}. Intuitively, SB gathers correct processes that are closer
(or at equal distance) from a Byzantine process than the root according to the
metric. Moreover, [11] proves that the algorithm introduced for the maximum
metric spanning tree construction in [14] achieves this optimal containment area.
In other words, [11] proves the following results: (i) given a maximizable met-
ric M = (M,W,met,mr, ≺), even under the central daemon, there exists no
(AB , 1)-TA-strictly stabilizing protocol for maximum metric spanning tree con-
struction with respect toM where AB � SB and (ii) given a maximizable metric
M = (M,W,met,mr,≺), the protocol of [14] is a (SB, n− 1)-TA strictly stabi-
lizing protocol for maximum metric spanning tree construction with respect to
M.

Some other works try to circumvent the impossibility result of strict stabi-
lization using the concept of strong stabilization but do not provide results for
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all maximizable metric. Indeed, [10] proves the following result about spanning
trees: there exists a (t, 0, n−1)-strongly stabilizing protocol for maximum metric
spanning tree construction with respect to NC (that is, for a spanning tree with
no particular constraints) with a finite t. On the other hand, regarding BFS
spanning tree construction, [12] proved the following impossibility result: even
under the central daemon, there exists no (t, c, 1)-strongly stabilizing protocol
for maximum metric spanning tree construction with respect to BFS where t
and c are two finite integers.

Now, if we focus on topology-aware strong stabilization, [12] introduced the
following containment area: S∗

B = {v ∈ V |min{d(v, b)|b ∈ B} < d(r, v)}. We
proved then the following results: (i) even under the central daemon, there exists
no (t, A∗

B, 1)-TA strongly stabilizing protocol for maximum metric spanning tree
construction with respect to BFS where A∗

B � S∗
B and t is a finite integer and

(ii) the protocol of [15] is a (t, S∗
B , n − 1)-TA strongly stabilizing protocol for

maximum metric spanning tree construction with respect to BFS where t is a
finite integer.

The main motivation of this work is to fill the gap between results about TA
strong and strong stabilization in the general case (that is, for any maximizable
metric). Mainly, we define the best possible containment area for TA strong
stabilization, we propose a protocol that provides this containment area and we
characterize the set of metrics that allow strong stabilization.

3 Impossibility Results

We provide here our impossibility results about containment radius (resp. area)
of any strongly stabilizing (resp. TA strongly stabilizing) protocol for the maxi-
mum metric tree construction.

Strong Stabilization. We introduce here new definitions to characterize some
important properties of maximizable metrics that are used in the following. A
metric M = (M,W,met,mr,≺) is strictly decreasing if, for any metric value
m ∈ M , the following property holds: either ∀w ∈ W,met(m,w) ≺ m or
∀w ∈ W,met(m,w) = m. A metric value m is a fixed point of a metric M =
(M,W,met,mr,≺) if m ∈M and if for any value w ∈ W , we have: met(m,w) =
m. Then, we define a specific class of maximizable metrics and we prove that it
is impossible to construct a maximum metric tree in a strongly-stabilizing way
if the considered metric is not in the class.

Definition 6 (Strongly maximizable metric). A maximizable metric M =
(M,W,met,mr,≺) is strongly maximizable if and only if |M | = 1 or if the
following properties hold: (i) |M | ≥ 2, (ii) M is strictly decreasing, and (iii) M
has one and only one fixed point.

Note that NC is a strongly maximizable metric (since |M | = 1) whereas BFS
or F are not (since the first one has no fixed point, the second is not strictly
decreasing). Now, we can state our first impossibility result (the proof is available
in [16]).
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Theorem 1. Given a maximizable metric M = (M,W,met,mr,≺), even un-
der the central daemon, there exists no (t, c, 1)-strongly stabilizing protocol for
maximum metric spanning tree construction with respect to M for any finite
integer t if: (i) M is not a strongly maximizable metric, or (ii) c < |M | − 2.

Topology Aware Strong Stabilization. First, we generalize the set S∗
B previ-

ously defined for the BFS metric in [12] to any maximizable metric M =
(M,W,met,mr,≺). From now, S∗

B denotes the following set:

S∗
B = {v ∈ V \B |μ(v, r) ≺ max≺{μ(v, b)|b ∈ B}}

Intuitively, S∗
B gathers the set of correct processes that are strictly closer (ac-

cording to M) to a Byzantine process than the root. Note that we assume for
the sake of clarity that V \ S∗

B induces a connected subsystem. If it is not the
case, then S∗

B is extended to include all processes belonging to connected sub-
systems of V \ S∗

B that do not contain r. Now, we can state our generalization
of impossibility result of [12] (the proof is available in [16]).

Theorem 2. Given a maximizable metric M = (M,W,met,mr,≺), even under
the central daemon, there exists no (t, A∗

B , 1)-TA-strongly stabilizing protocol for
maximum metric spanning tree construction with respect to M where A∗

B � S∗
B

and t is a given finite integer.

4 Topology-Aware Strongly Stabilizing Protocol

The goal of this section is to provide a (t, S∗
B, n − 1)-TA strongly stabilizing

protocol in order to match the lower bound on containment area provided by
Theorem 2. If we focus on the protocol provided by [11] (that is (SB, n − 1)-
TA strictly stabilizing), we can prove that this protocol does not satisfy our
constraints since it is not (t, S∗

B, 2)-TA strongly stabilizing (see [16]).

4.1 Presentation of the Protocol

Our protocol needs a supplementary assumption. We introduce the following
definition.

Definition 7 (Set of used metric values). Given an assigned metric AM =
(M,W,met,mr,≺, wf) over a system S, the set of used metric values of AM
is defined as M(S) = {m ∈M |∃v ∈ V, (μ(v, r) = m) ∨ (∃b ∈ B,μ(v, b) = m)}.
We assume that we always have |M(S)| ≥ 2 (the necessity of this assumption
is explained below). Nevertheless, note that the contrary case (|M(S)| = 1) is
possible if and only if the assigned metric is equivalent to NC. As the protocol
of [10] performs (t, 0, n− 1)- strong stabilization with a finite t for this metric,
we can achieve the (t, S∗

B , n−1)-TA strong stabilization when |M(S)| = 1 (since
this implies that S∗

B = ∅). In this way, this assumption does not weaken the
possibility result.



160 S. Dubois, T. Masuzawa, and S. Tixeuil

Although the protocol of [11] is not (t, S∗
B, n− 1)-TA strongly stabilizing, our

protocol borrows fundamental strategy from it. In this protocol, any process
tries to maximize its level in the tree by choosing as its parent the neighbor that
provides the best metric value. The key idea of this protocol is to use the dist
variable (upper bounded by a given constant D) to detect and break cycles of
processes that have the same maximum metric. To achieve (SB, n−1)-TA strict
stabilization, the protocol ensures a fair selection along the set of its neighbors
with a round-robin order.

The possibility of infinite number of S∗
B-TA disruptions of the protocol of [11]

mainly comes from the following fact: a Byzantine process can independently
lie about its level and its dist variables. For example, a Byzantine process can
provide a level equal to mr and a dist arbitrarily large. In this way, it may lead
a correct process of SB \ S∗

B to have a dist variable equal to D− 1 such that no
other correct process can choose it as its parent (this rule is necessary to break
cycle) but it cannot modify its state (this rule is only enabled when dist is equal
to D). Then, this process may always prevent some of its neighbors to join a
M-path connected to the root and hence allow another Byzantine process to
perform an infinite number of S∗

B-TA disruptions.
It is why we modified the management of the dist variable (note that other

variables are managed exactly in the same way as in the protocol of [11]). In
order to contain the effect of Byzantine processes on dist variables, each process
that has a level different from the one of its parent in the tree sets its dist
variable to 0. In this way, a Byzantine process modifying its dist variable can
only affect correct processes that have the same level. Consequently, in the case
where |M(S)| ≥ 2, we are ensured that correct processes of SB \S∗

B cannot keep
a dist variable equal or greater than D− 1 infinitely. Hence, a correct process of
SB \S∗

B cannot be disturbed infinitely often without joining aM-path connected
to the root.

We can see that the assumption |M(S)| ≥ 2 is essential to perform the TA
strong stabilization. Indeed, in the case where |M(S)| = 1, Byzantine processes
can play exactly the scenario described above (in this case, our protocol is equiv-
alent to the one of [11]).

The second modification we bring to the protocol of [11] follows. When a
process has an inconsistent dist variable with its parent, we allow it only to
increase its dist variable. If the process needs to decrease its dist variable (when
it has a strictly greater distance than its parent), then it must change its parent.
This rule allows us to bound the maximal number of steps of any process between
two modifications of its parent (a Byzantine process cannot lead a correct one to
infinitely often increase and decrease its distance without modifying its parent).

Our protocol is formally described in Algorithm 4.1.

4.2 Proof of the (t, S∗
B, n − 1)-TA Strong Stabilization for spec

Due to the lack of space, only key ideas of this proof are provided but complete
proofs are available in [16]. First, we prove the following result with a proof very
similar to the one of [11].
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Algorithm 4.1. SSMAX , TA strongly stabilizing protocol for maximum met-
ric tree construction
Data:

Nv: totally ordered set of neighbors of v.
D: upper bound of the number of processes in a simple path.

Variables:

prntv ∈
{
{⊥} if v = r

Nv if v �= r
: pointer on the parent of v in the tree.

levelv ∈ M : metric of the node.
distv ∈ {0, . . . , D}: hop counter.

Functions:
For any subset A ⊆ Nv, choosev(A) returns the first element of A that is bigger than prntv

(in a round-robin fashion).

current distv() =

{
0 if levelprntv �= levelv
min{distprntv + 1, D} if levelprntv = levelv

Rules:
(Rr) :: (v = r) ∧ ((levelv �= mr) ∨ (distv �= 0)) −→ levelv := mr; distv := 0
(R1) :: (v �= r) ∧ (prntv ∈ Nv) ∧ ((distv < current distv())∨

(levelv �= met(levelprntv , wv,prntv )))
−→ levelv := met(levelprntv , wv,prntv ); distv := current distv()

(R2) :: (v �= r) ∧ ((distv = D) ∨ (distv > current distv())) ∧ (∃u ∈ Nv, distu < D − 1)
−→ prntv := choosev({u ∈ Nv |distu < D−1}); levelv := met(levelprntv , wv,prntv );
distv := current distv()

(R3) :: (v �= r) ∧ (∃u ∈ Nv, (distu < D − 1) ∧ (levelv ≺ met(levelu, wu,v)))
−→ prntv := choosev({u ∈ Nv |(levelu < D − 1)∧
(met(levelu , wu,v) = max≺{met(levelq , wq,v)|q ∈ Nv , levelq < D − 1})});
levelv := met(levelprntv , wprntv,v); distv := current distv()

Theorem 3. SSMAX is a (SB, n−1)-TA-strictly stabilizing protocol for spec.

We introduce here some notations. Given a configuration ρ ∈ C and a metric
value m ∈ M , we define the following predicate: IMm(ρ) ≡ ∀v ∈ V, levelv �
max≺ {m,max≺{μ(v, u)|u ∈ B ∪ {r}}}. Given an assigned metric to a system
S, we can observe that the set of metric values M(S) is finite and that we
can label elements of M(S) by m0 = mr,m1, . . . ,mk in a way such that ∀i ∈
{0, . . . , k − 1},mi+1 ≺ mi. Let LC be the following set of configurations:

LC =
{
ρ ∈ C∣∣(∀v ∈ V \ SB, spec(v)) ∧ (IMmk

(ρ))
}

Let EB = SB \S∗
B (i.e. EB is the set of process v such that μ(v, r) = max{μ(v, b)|

b ∈ B}). Note that the subsystem induced by EB may have several connected
components. In the following, we use the following notations:EB = {E1

B, . . . , E
�
B}

where each Ei
B (i ∈ {0, . . . , 	}) is a subset of EB inducing a maximal connected

component, δ(Ei
B) (i ∈ {0, . . . , 	}) is the diameter of the subsystem induced by

Ei
B, and δ = max{δ(Ei

B)|i ∈ {0, . . . , 	}}. When a and b are two integers, we define
the following function: Π(a, b) = ab+1−1

a−1 .
Let ρ be a configuration of LC and e be an execution starting from ρ. Let

p be a process of Ei
B (i ∈ {0, . . . , 	}) such that there exists a neighbor q that

satisfies q ∈ V \ SB and μ(p, r) = met(μ(q, r), wp,q) (such a process exists by
construction of Ei

B). Then, we can prove by induction the following property: if
v is a process of Ei

B such that dEi
B
(p, v) = d (where dEi

B
denotes the distance in

the subsystem induced by Ei
B), then v executes at most Π(k, d)ΔD actions in

e. We can deduce the following lemma:
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Lemma 1. If ρ is a configuration of LC, then any process v ∈ EB is activated
at most Π(k, δ)ΔD times in any execution starting from ρ.

If we assume that there exists an execution starting from a configuration of LC
such that a process v ∈ EB is never enabled and spec(v) is infinitely often false,
we can find a contradiction with the construction of the algorithm. Hence the
following lemma holds:

Lemma 2. If ρ is a configuration of LC and v is a process such that v ∈ EB,
then for any execution e starting from ρ either (i) there exists a configuration ρ′

of e such that spec(v) is always satisfied after ρ′, or (ii) v is activated in e.

Let LC∗ be the following set of configurations:

LC∗ = {ρ ∈ C|(ρ is S∗
B-legitimate for spec) ∧ (IMmk

(ρ) = true)}

Note that, as S∗
B ⊆ SB, we can deduce that LC∗ ⊆ LC. Hence, properties of

Lemmas 1 and 2 also apply to configurations of LC∗ and we can deduce the
following lemma:

Lemma 3. Configurations of LC∗ are (nΠ(k, δ)ΔD,Π(k, δ)ΔD,S∗
B , n− 1)-TA

time contained for spec and any execution of SSMAX (starting from any con-
figuration) contains such a configuration.

Finally, we can deduce the main theorem:

Theorem 4. SSMAX is a (nΠ(k, δ)ΔD,S∗
B , n − 1)-TA strongly stabilizing

protocol for spec.

5 Concluding Remarks

We now discuss the relationship between TA strong and strong stabilization
for maximum metric tree construction. As a matter of fact, the set of assigned
metrics that allow strong stabilization can be characterized. Indeed, properties
about the metric itself are not sufficient to decide the possibility of strong stabi-
lization: it is necessary to include some knowledge about the considered system
(typically, the metric assignement). Informally, it is possible to construct a maxi-
mum metric tree in a strongly stabilizing way if and only if the considered metric
is strongly maximizable and if the desired containment radius is sufficiently large
with respect to the size of the set of used metric values. The formal statement
of this result follows.

Theorem 5. Given an assigned metric AM = (M,W,mr,met,≺, wf) over a
system S, there exists a (t, c, n − 1)-strongly stabilizing protocol for maximum
metric spanning tree construction with a finite t if and only if (i) (M,W,met,mr,
≺) is a strongly maximizable metric, and (ii) c ≥ max{0, |M(S)| − 2}.
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Table 1. Summary of results

M = (M, W, mr, met,≺) is a maximizable metric

(c, f)-strict stabilization Impossible (for any c and f) by [7]

(t, c, f)-strong stabilization Possible ⇐⇒
{
M is a strongly maximizable metric, and

c ≥ max{0, |M(S)| − 2}
(for 0 ≤ f ≤ n − 1 and a finite t) by Theorem 5

(AB , f)-TA strict stabilization Impossible (for any f and AB � SB) by [11]
(SB , f)-TA strict stabilization Possible (for 0 ≤ f ≤ n − 1) by [11] and Theorem 3

(t, AB , f)-TA strong stabilization Impossible (for any f and AB � S∗
B) by Theorem 2

(t, S∗
B , f)-TA strong stabilization Possible (for 0 ≤ f ≤ n − 1 and a finite t) by Theorem 4

The “only if” part of this Theorem is a direct consequence of Theorem 1 when we
observe that |M(S)| ≤ |M | by definition. The “if” part of this Theorem comes
from the following observations. If |M(S)| = 1, it is equivalent to construct a
maximum metric spanning tree for M and for NC over this system. By [10], we
know that there exists a (t, 0, n−1)-strongly stabilizing protocol for this problem
with a finite t, that proves the result. If |M(S)| ≥ 2, we can prove that S∗

B =
{v ∈ V |min{d(v, b)|b ∈ B} ≤ c} and then we have the result by Theorem 4.

We can now summarize all results about self-stabilizing maximum metric tree
construction in presence of Byzantine faults with Table 1. Note that results
provided in this paper close every open question raised in related works and
that they subsume results from [10] and [12].

Our choice was to work with a specification of the problem that considers
the dist variable as an O-variable. This choice may appear a bit strong but it
permitted us to maintain consistency in the presentation of the results. In fact,
impossibility results of Section 3 can be proved with a weaker specification that
does not consider the dist variable as an O-variable (see [17]). On the other hand,
the stronger specification eased the bounding of the number of disruptions of the
proposed protocol. Our protocol is also TA strongly stabilizing with the weaker
specification but we were not able to exactly bound the number of disruptions.

The following questions are still open. Is it possible to bound the number
of disruptions for the weaker specification? Is it possible to perform TA strong
stabilization using a weaker daemon requirement? Is it possible to decrease the
number of disruptions without loosing containment optimality?
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Abstract. To identify the tradeoffsbetween efficiency and fault-tolerance
in dynamic cooperative computing, we initiate the study of a task perform-
ing problem under dynamic processes’ crashes/restarts and task
injections. The system consists of n message-passing processes which, sub-
ject to dynamic crashes and restarts, cooperate in performing independent
tasks that are continuously and dynamically injected to the system. The
task specifications are not knownapriori to the processes.This problemab-
stracts todays Internet-based computations, such as Grid computing and
cloud services, where tasks are generated dynamically and different tasks
may be known to different processes. We measure performance in terms
of the number of pending tasks, and as such it can be directly compared
with the optimum number obtained under the same crash-restart-injection
pattern by the best off-line algorithm. We propose several deterministic al-
gorithmic solutions to the considered problem under different information
models and correctness criteria, and we argue that their performance is
close to the best possible offline solutions.

Keywords: Performing tasks, Dynamic task injection, Crashes and
restarts, Competitive analysis, Distributed Algorithms.

1 Introduction

Motivation. One of the fundamental problems in distributed computing is to
have a collection of processes to collaborate in performing large sets of tasks. For
such distributed collaboration to be effective it must be designed to cope with
dynamic perturbations that occur in the computation medium (e.g., processes
or communication failures). For this purpose, a vast amount of research has
been dedicated over the last two decades in developing fault-tolerant algorith-
mic solutions and frameworks for various versions of such cooperation problems
(e.g., [9, 12, 16, 17, 21]) and in deploying distributed collaborative systems and
applications (e.g., [2, 11, 19, 20]).
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In order to identify the tradeoffs between efficiency and fault-tolerance in
distributed cooperative computing, much research was devoted in studying the
abstract problem of using n processes to cooperatively perform m independent
tasks in the presence of failures (see for example [10, 16, 18]). In this problem,
known as Do-All, the number of tasks m is assumed to be fixed and known
a priori to all processes. Although there are several applications in which the
knowledge of tasks can be known a priori, in todays typical Internet-based com-
putations, such as Grid computing (e.g., [11]), Cloud services (e.g., [2]), and
master-worker computing (e.g., [19, 20]), tasks are generated dynamically and
different tasks may be known to different processes. As such computations are
becoming the norm (and not the exception) there is a corresponding need to
develop efficient and fault-tolerant algorithmic solutions that would also be able
to cope with dynamic tasks injections.

Our Contributions. In this work, in an attempt to identify the tradeoffs be-
tween efficiency and fault-tolerance in dynamic cooperative computing, we initi-
ate the study of a task performing problem in which nmessage-passing processes,
subject to dynamic crashes and restarts, cooperate in performing independent
tasks that are continuously and dynamically injected to the system. The com-
putation is broken into synchronous rounds; unless otherwise stated, we assume
that tasks are of unit-length, that is, it takes one round for a process to perform
a task. An execution of an algorithm is specified under a crash-restart-injection
pattern. Then, the efficiency of an algorithm is measured in terms of the maxi-
mum number of pending tasks at the beginning of a round of an execution, taken
over all rounds and all executions. This enables us to view the problem as an
online problem and pursue competitive analysis [23], i.e., compare the efficiency
of a given algorithm with the efficiency of the best offline algorithm that knows
a priori the crash-restart-injection patterns.

Task performance guarantees: The first property we consider, which constitutes
the basic correctness property, requires that no task is lost, that is, a task is either
performed or the information of the task remains in the system. The second and
stronger property, which we call fairness, requires that all tasks injected in the
system are eventually performed.

Our approach: We deploy an incremental approach in studying the problem.
We first assume that there is a centralized authority, called central scheduler,
that at the beginning of each round informs the processes (that are currently
operational) about the tasks that are still pending to be performed, including
any new tasks injected in this round. The reason to begin with this assumption is
two-fold: (a) The fact that processes have consistent information on the number
of pending tasks enables us to focus on identifying the inherent limitations of the
problem under processes failures/restarts and dynamic injection of tasks without
having to implement information sharing amongst processes. The algorithmic
solutions developed under this information model are used as building blocks in
versions of the problem that deploy weaker information models. Furthermore,
lower bound results developed in this information model are also valid for weaker
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information models. (b) Studying the problem under this assumption has its own
independent interest, as the central scheduler can be viewed as an abstraction of
a monitor used for monitoring the computation progress and providing feedback
to the computing elements. For example it could be viewed as a master server
in Master-Worker Internet-based computations such as SETI [19] or Pregel [20],
or as a resource broker/scheduler in Computational Grids such as EGEE [11].

We then limit the information provided to the processes. We consider a weaker
centralized authority, called central injector, which informs processes, at the be-
ginning of each round, only about the tasks injected in this round and infor-
mation about which tasks have been performed only in the previous round. We
show how to transform solutions for the task performing problem under the
model of central scheduler into solutions for the problem under the model of
central injector with the expense of sending a quadratic number of messages in
every round. It also occurs that a quadratic number of messages must be sent
in some rounds by any correct distributed solution for the considered problem
in the model of central injector.

With the gained knowledge and understanding, we then show how processes
can obtain common knowledge on the set of pending tasks without the use of a
centralized authority. We now assume the existence of a local injector that injects
tasks to processes without giving them any global information (for example,
each process may be injected tasks that no other process in the system has
been injected, or only a subset of processes may be injected the same task).
The injector can be viewed, for example, as a local daemon of a distributed
application that provides local information to the process that is running on.
We show that solutions to this more general setting come with minimal cost to
the competitiveness, provided that reliable multicast [7] is available.

Our results: We now summarize our results — all of them concern deterministic
solutions.
(a) Solutions guaranteeing correctness: For the model of central scheduler, we
show a lower bound of OPT + n/3 on the pending-tasks competitiveness of
any deterministic algorithm, even for algorithms that make use of messages and
are designed for restricted forms of crash-restarts patterns. We claim that this
lower bound result is valid in all other settings we consider. We then develop
the near-optimal deterministic algorithm AlgCS that does not make any use
of message exchange amongst processes and achieves OPT + 2n pending-tasks
competitiveness. Using a generic transformation we obtain algorithm AlgCI for
the model with central injector with the same competitiveness as algorithm
AlgCS. Algorithm AlgCI has processes sending messages to each other in every
round. Finally, we develop algorithm AlgLI for the model with local injector and
we show that it achieves OPT + 3n pending-tasks competitiveness, under the
assumption of reliable multicast. These results are presented in Sect. 3.
(b) Solutions guaranteeing fairness: The issue of fairness is far more complex
than correctness; we show that it is necessary and sufficient to assume that
when a process restarts it does not fail again in the next at least two consecutive
rounds; under this restriction, called 2-survivability, we develop fair determnistic
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algorithms AlgCSF, AlgCIF, and AlgLIF in the three considered information
models and show that they “suffer” an additional additive surplus of n to their
competitiveness, comparing to the algorithms that guarantee only correctness.
An interesting observation is that fairness can only be guaranteed in infinite
executions, otherwise competitive solutions are not possible, c.f. Sect. 4.
(c) Bounding communication: We show that in the models of central and local
injector, if processes do not send messages to all other processes, then correctness
(and thus also fairness) cannot be guaranteed, unless stronger restrictions are
imposed on the crash-restart patterns. This result is detailed in Sect. 5.1.
(d) Non-unit-length tasks: For the above results we assumed that tasks are of
unit-length, that is, they require one round to be performed by some process. The
situation is even more complex when tasks may not be of unit-length. For the
model of central scheduler, we show that if tasks have uniform length d ≥ 1, that
is, each task requires d consecutive rounds to be performed by a process, then a
variation of algorithm AlgCS achieves OPT+3n pending-tasks competitiveness,
under the correctness requirement. We conjecture that similar techniques can
be applied to obtain competitive algorithms in the other information models
and under the fairness requirement. Then we show that bounded competitive-
ness is not possible if tasks have different lengths, even under slightly restricted
adversarial patterns. These results are given in Sect. 5.2.

The negative results of (c) and (d) give rise to interesting research questions
and yield interesting future research directions. These are discussed in Sect. 6.
Omitted details and proofs can be found in [24].

Related Work. The Do-All problem has been studied in several models of com-
putation, including message-passing (e.g., [10, 16]), shared-memory (e.g., [18]),
partitionable networks (e.g., [15]), in the absence of communication (e.g., [22])
and under various assumptions on synchrony/asynchrony and failures. As al-
ready mentioned, the underlying assumption is that the number of tasks m is
fixed, bounded and known a priori (as well as the task specifications) by all pro-
cesses. The Do-All problem is considered solved when all tasks are performed,
provided that at least one process remains operational in the entire computa-
tion (this can be viewed as a simplified version of our fairness property). The
efficiency of Do-All algorithms is measured either as the total number of tasks
performed – work complexity [10] or as the total number of available processes
steps [18]. Georgiou et al. [14] considered an iterated version of the problem,
where waves of m tasks must be performed, one after the other. All task waves
are assumed to be known a priori by the processes. Clearly the problem we con-
sider in this work is more general (and harder), as tasks do not come in waves, are
not known a priori, and their number might not be bounded. Furthermore, we
consider processes crashes and restarts, as opposed to the work in [14] that con-
siders only processes crashes. Chlebus et al. in [7] considered the Do-All problem
in the synchronous message-passing model with processes crashes and restarts.
In order to obtain a solution for the problem in this setting, they made two mod-
eling assumptions: (a) Reliable multicast: if a process fails while mutlicasting a
message, then either all (non-faulty) targeted processes receive the message, or
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none does, and (b) There is at least one process alive for k > 1 consecutive
rounds of the computation. In the present paper, as already mentioned, we also
require reliable multicast in the model with local injector, and as we discuss
in later sections, to guarantee fairness we require a similar restriction on the
process living period. Finally, in [15] an online version of the Do-All problem is
considered where the network topology changes dynamically and processes form
disjoint communication groups. In this setting the efficiency (work complexity)
of a randomized Do-All algorithm is compared with the efficiency of an offline
algorithm that is aware a priori of the changes in the network topology. Again,
the number of tasks is fixed, bounded and known a priori to all processes.

The notion of competitiveness was introduced by Sleator and Tarjan [23] and
it was extended for distributed algorithms in a sequence of papers by Bartal et
al. [6], Awerbuch et al. [5], and Ajtai et al. [1]. Several distributed computing
problems have been modeled as online problems and their competitiveness was
studied. Examples include distributed data management (e.g., [6]), distributed
job scheduling (e.g., [5]), distributed collect (e.g., [8]), and set-packing (e.g., [12]).

In a sequence of papers (e.g., [9, 21]) a scheduling theory is being developed
for scheduling computations having intertask dependencies for Internet-based
computing. The task dependencies are represented as directed acyclic tasks and
the theory has been extending the families of DAGs that optimal schedules can be
developed. This line of work mainly focuses on exploiting the properties of DAGs
in order to develop schedules. Our work, although it considers independent tasks,
focuses instead, on the development of distributed fault-tolerant task performing
algorithms and exploring the limitations of online distributed collaboration.

2 Model

Distributed Setting. We consider a distributed system consisting of n syn-
chronous, fault-prone, message-passing processes, with unique ids from the set
[n] = {1, 2, . . . , n}. We assume that processes have access to a global clock. We
further assume a fully connected underlying communication medium (that is,
each process can directly communicate with every other process) where mes-
sages are not lost or corrupted in transit.

Rounds. For a simplicity of algorithm design and analysis, we assume that a
single round is split into four consecutive steps: (a) Receiving step, in which a
process receives messages sent to it in the previous round; (b) Task injection
step, in which new tasks are injected to processes, if any; (c) Local computation
step, in which a process performs local computation, including execution of at
most one task; and (d) Sending step, in which a process sends messages to other
processes as scheduled in the local computation part.

Tasks. Each task specification τ is a tuple (id, ρ, code), where τ.id is a positive
integer that uniquely identifies the task in the system, τ.ρ corresponds to the
round number that the task was first injected to the system to some process
(or set of processes), and τ.code corresponds to the computation that needs to
occur so that the task is considered completed (that is, the computational part
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of the task specification that is actually performed). Unless otherwise stated,
c.f., Sections 5.2 and 6, we assume that it takes one round for each task to be
performed, and it can be performed by any process which is alive and knows the
task specification.

Tasks are assumed to be similar, independent and idempotent. By similarity
we mean that the task computations on any process consume equal or compa-
rable local resources. By independence we mean that the completion of any task
does not affect any other task, and any task can be performed concurrently with
any other task. By idempotence we mean that each task can be performed one
or more times to produce the same final result. Several applications involving
tasks with such properties are discussed in [16]. Finally, we assume that task
specifications are of polynomial size in n.

Adversary. We assume an adaptive and omniscient adversary that can cause
crashes, restarts and task injections. We define an adversarial pattern A as
a collection of crash, restart and injection events caused by the adversary. A
crash(r, i) event specifies that process i is crashed in round r. A restart(r, i)
event specifies that process i is restarted in round r; it is understood that no
restart(r, i) event can take place if there is no preceding crash(r′, i) event such
that r′ < r (unless i is first entering the computation). Finally an inject(r, i, τ)
event specifies that process i is injected the task specification τ in round r.

We say that a process i is alive in a round r if the process is operational at the
beginning of the round and does not fail by the end of the round (a process that
restarts at a beginning of a round and does not fail by the end of the round is
also considered alive in that round). We assume that when the adversary injects
tasks in a given round, it injects a finite number of tasks.

Restarts of processes: We assume that a restarted process has knowledge of only
the algorithm being executed and the ids of the other system processes (but no
information on which processes are currently alive). Algorithmically speaking,
once a process restarts, it waits to receive messages or to be injected tasks. Then
it knows that a new round has begun and hence it can smoothly start actively
participating in the algorithm. For the ease of analysis and better clarity of result
exposition we simply assume that processes are restarted at the beginning of a
round – but processes could fail at any point during a round. We also assume
that a process that restarts in the beginning of round r receives the messages
sent to it (if any) at the end of round r − 1.

Admissibility: We say that an adversarial pattern is admissible, if
(a) in every round there is at least one alive process; in case of finite executions,

all processes alive in the last round are crashed right after this round (in
other words, a finite execution of an algorithm ends when all processes are
crashed); and

(b) a task τ that is injected in a given round is injected to at least one alive
process in that round; that is, the adversary gives some window of opportu-
nity for task τ to either be performed in that round or other processes to be
informed about this task.
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Condition (a) is required to guarantee some progress in the computation. To
motivate condition (b), consider the situation where a process in a given round
is injected a task τ (and this is the only process being injected task τ) and then
the process immediately crashes. No matter of the scheduling policy or com-
munication strategy used, task τ cannot be performed by any algorithm; with
condition (b) we exclude the consideration of such uninteresting cases; these
tasks are not taken into consideration, neither for correctness, nor for perfor-
mance issues. From this point onwards we only consider admissible adversarial
patterns.

Restricted Classes of Adversaries. As we show later, some desired prop-
erties of task performing algorithms, such as fairness, may not be possible to
achieve in general executions under any admissible adversarial pattern. In such
cases, we also consider a natural property that restricts the power of adver-
sary, called t-survivability: Every awaken process must stay alive for at least t
consecutive rounds, where t ≥ 1 is an integer.

Information Models. In regards to the distribution of injected tasks, as dis-
cussed in Section 1, we study three settings:

(i) central scheduler: in the beginning of each round it provides all operational
processes with the current set of unperformed tasks’ specifications;

(ii) central injector: in the beginning of each round it provides all operational
processes with specifications of all newly injected tasks, and also confirma-
tion of tasks being performed in the previous round, i.e., for round r, it
informs all operational processes of the tasks injected in this round and the
tasks that have been successfully performed in round r − 1;

(iii) local injector: in the beginning of each round it provides each operational
process with specifications of tasks injected into this process; a task speci-
fication may be injected to many processes in the same round.

Correctness and Fairness. We consider two important properties of an algo-
rithm: correctness and fairness.

Correctness of an algorithm: An algorithm is correct if for any execution of the
algorithm under an admissible adversarial pattern, for any injected task and
any round following the injection time, there is a process alive in this round
that stores the task specification, unless the task has been already performed.
Observe that this property does not guarantee eventual performance of a task.

Fairness of an algorithm: We call an infinite execution of an algorithm under
an adversarial pattern fair execution if each task injected during the execution
is eventually performed. We say that an algorithm is a fair algorithm if every
infinite execution of this algorithm is fair; note that the adversary can form
finite executions in which not all tasks can be performed, not even by the offline
algorithm. In other words, this property requires correctness, plus the guarantee
that each task is eventually performed in any infinite execution of an algorithm.
Observe that the greedy offline algorithm described above is fair.
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Efficiency Measures. Per round pending-tasks complexity: Let Pr denote the
total number of pending tasks at the beginning of round r, where by pending task
we understand a task which has been already injected to some process (or a set of
processes) but not yet performed by any process.1 Then the per round pending-
tasks complexity is defined as the maximum Pr over all rounds (supremum in
case of infinite computations).

In case of competitive analysis, we say that the competitive pending-tasks
complexity is f(OPT, n), for some function f , if and only if for every adversarial
pattern A and round r the number of pending task in round r of the execution of
the algorithm against adversarial pattern A is at most f(OPT(A, r), n), where
OPT(A, r) is the minimum number of pending tasks achieved by an off-line al-
gorithm, knowing A, in round r of its execution under the adversarial pattern A.
In the classical competitiveness methodology function f needs to be linear with
respect to the first coordinate, however as we will show, sometimes more accurate
functions can be produced for the problem of distributed task performance.

Observe that the above definition allows for the optimum complexity of two
different rounds to be met by two different optimum algorithms. However a
simple greedy algorithm scheduling different pending tasks (with largest possible
pending time) to different alive processes at each round is optimal from the
perspective of any admissible adversarial pattern A and any round r (recall that
to specify the optimum algorithm we can use the knowledge of A).

For the sake of more sensitive bounds on competitiveness of algorithms, we
consider subclasses of adversarial paterns achieving the same worst-case per-
formance in terms of the optimum solution. These classes are especially useful
for establishing sensitive lower bounds. We say that an adversarial pattern A is
(k, r)-dense if OPT(A, r) = k. A pattern A which is (k, r)-dense for some round
r is called k-dense.

In Section 5.1 we also study the message complexity of solutions to the task
performing problem. Specifically we consider per-round message complexity, de-
fined as the maximum number of point-to-point messages sent in a single round
of an execution of a given algorithm, over all executions and rounds.

3 Solutions Guaranteeing Correctness

In this section we study the problem focusing on developing solutions that guar-
antee correctness, but not necessarily fairness (this property is studied in Sec-
tion 4). We consider unit-length tasks (non-unit-length tasks are discussed in
Section 5.2). We impose no restriction on the number of messages that can be
sent in a given round; for example processes could send a message to every
other processes, in every round (the issue of restricted communication is studied
in Section 5.1). The results of this section are obtained in the most general of
considered settings: the upper bounds hold against any admissible adversary,
1 If a task was performed by some process, but the adversary did not provide the

possibility to this process to inform another process or a central authority (scheduler
or injector) — e.g., the process is crashed as soon as it performs the task — then
this task is not considered performed.
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while the lower bounds hold even in the presence of a restricted adversary sat-
isfying t-survivability, for any t.

3.1 Central Scheduler

We first show that all algorithms require a linear additive factor in their com-
petitive pending-tasks complexity. This bound holds for all settings considered
in this work, as the central scheduler is the most restrictive one.

Theorem 1. Every algorithm has competitive pending-tasks complexity of at
least k+n/3 against some k-dense adversarial pattern satisfying t-survivability,
for every non-negative integers k, t.

Next, we show that the following simple algorithm, specified for a process i and
a round r, is near-optimal. Observe that the algorithm does not require sending
messages between processes.

Algorithm AlgCS(i, r)

– Get set of pending task specifications from the scheduler.
– Rank the task specifications in incremental order, based on the task id (τ.id for a

task specification τ ).
– Perform task with rank i mod n.

Theorem 2. Algorithm AlgCS achieves competitive pending-tasks complexity of
at most OPT + 2n against any admissible adversary.

3.2 Central Injector

We now relax the information given to the processes in the beginning of every
round by considering the weaker model of central injector. We first show how
to transform an algorithm specified for the setting with central scheduler, call it
source algorithm, into an algorithm specified for the setting with central injector,
call it target algorithm. The transformation maintains all local variables used by
the source algorithm and sends the same messages, but now additional local
variables are used and messages may contain additional information, required
by the processes in the target algorithm in order to obtain the same set of
pending tasks (under the same adversarial pattern) as the one that the central
scheduler provides by default to the processes in the source algorithm.

The main structure of a generic algorithm, call it GenCS, specified for the
setting with central scheduler is as follows (for a process i and round r):

Source Algorithm GenCS(i, r)

– Get set P of pending task specifications from the scheduler.
Receive messages by each process j that sent a message in the previous round
containing information xj .

– Based on P and each received information xj deploy the scheduling policy S to
perform a task.

– Send a message with information xi to all other processes.
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We now present the target algorithm, call it GenCI, which is obtained when
we deploy our transformation, call it tranCStoCI, to the source algorithm
GenCS. The text in bold annotates the elements added from tranCStoCI
(these elements essentially specify the transformation).

Target Algorithm GenCI(i, r)

– Get set N of specifications of newly injected tasks and set D of tasks
confirmed as done in round r − 1, from the central injector.
Receive messages by each process j that sent a message in the previous round
containing information xj, and Pj . Let R = {j : received a message from j
in this round}.

– Update local set Pi of pending tasks as follows: Pi =
⋃

j∈R∪{i} Pj ∪N \ D.
– Based on Pi and each received information xj deploy the scheduling policy S to

perform a task.
– Send a message with information xi and Pi to all other processes.

It is evident that algorithm GenCI continues to maintain the variables of
GenCS and sends the same messages as algorithm GenCS (but with more in-
formation). What remains to show is that the set of pending tasks used in the
scheduling policy S in a given round is the same for both algorithms.

Lemma 1. For any given round r, the set of pending tasks used in the scheduling
policy S is the same in the executions of algorithms GenCS and GenCI formed
by the same adversarial pattern.

Consider algorithm AlgCS of Section 3.1. This algorithm is a specialization of
algorithm GenCS where the xi’s are null and the scheduling policy S is simply
ranking the tasks in P in incremental order (based on their ids) and having
process i perform task with rank i mod n. Let Algorithm AlgCI be the al-
gorithm resulting by applying the transformation TranCStoCI to algorithm
AlgCS. Then, from Lemma 1 and Theorem 2 we get:

Theorem 3. Algorithm AlgCI achieves competitive pending-tasks complexity of
at most OPT + 2n against any admissible adversary.

In view of the lower bound in Theorem 1, algorithm AlgCI is near-optimal.

3.3 Local Injector

In this section we consider the local injector model. Consider algorithm AlgLI,
specified below for a process i and a round r. In each round r, each process i
maintains two sets, new and old. Set new contains all new tasks injected to this
process in this round. Set old contains older tasks that the process knows they
have been injected in the system (not necessarily to this process) but have not
been confirmed as done. We show the following:

Theorem 4. Algorithm AlgLI, assuming reliable multicast, is correct and near-
optimal; more precisely, it achieves competitive pending-tasks complexity of at
most OPT + 3n against any adversary.
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Algorithm AlgLI(i, r)

– Get specifications of newly injected tasks from local scheduler and store them in
set new (remove any older information from this set).
Receive messages sent (if any) by other processes in round r − 1.

– Update set old based on received messages: the new set old is the union of all the
received sets old and new minus the tasks that have been reported in the current
round as done in the previous round.

– Perform a task based on the following scheduling policy: if set old 
= ∅ then
rank tasks in old incrementally based on their ids and perform task with rank
i mod |old|. Otherwise, and if new is not empty, then rank the tasks in new in-
crementally based on their ids and perform task with the smallest rank.

– Send to all other processes sets new, old and the task id of the performed task.

4 Solutions Guaranteeing Fairness

We now turn our attention to the much challenging problem of guaranteeing fair-
ness. Recall from Section 2 that for fairness we consider only infinite executions
and for such executions there is always a fair (offline) algorithm.

4.1 Central Scheduler

We first demonstrate that the issue of fairness is much more involved than cor-
rectness. Consider the following simple fair algorithm LIS: each process performs
the Longest-In-System task, and in case of a tie it chooses the one with the small-
est task id.

Fact 5. Algorithm LIS has unbounded pending-tasks competitiveness under any
adversary, even for the restricted one satisfying t-survivability, for any t ≥ 1.

The above shows that a fair algorithm not only needs to have some provision
in eventually performing a specific task but it also needs to guarantee progress
when a large number of tasks is pending. Furthermore, we show that admissibility
alone is not enough to guarantee both fairness and bounded competitiveness.

Theorem 6. For any fair algorithm and any integer y > 0, there is a round r
and an admissible, adversarial pattern A such that the algorithm has more than
y · (OPT(A, r) + 1) pending tasks at the end of round r.

Note that Theorem 6 implies that the algorithms presented in Section 3 are not
fair. Therefore, in order to achieve both fairness and competitiveness, one needs
to consider some restrictions to the adversary. It can be easily verified that the
impossibility statement in Theorem 6 holds even if 1-survivability is assumed.
As it turns out, it is enough to assume 2-survivability to be able to obtain fair
and competitive algorithms.

Consider algorithm AlgCSF specified below for process i and round r. Each
process i maintains a variable age that counts the number of rounds that i
has been alive since it last restarted. A restarted process has age = 0, and it
increments it by one at the end of each local computation part. For simplicity, we
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Algorithm AlgCSF(i,r)

– Get pending tasks from central scheduler and messages sent (if any) in round r−1.
– Rank pending tasks lexicographically: first based on their pending period (older

tasks have smaller rank) and then based on their task ids (incremental order).
– Based on received messages, construct set ASure by including all processes j with

ager(j) = 1. If age = 1, then i includes itself in the set.
– If the number of pending tasks is larger than 2n then
• If ASure 
= ∅ then
∗ If age 
= 1 then perform task with rank n + i.
∗ Else rank processes in ASure based on their ids and perform task with

rank rank(i)ASure (i.e., ith task in ranked set ASure).
• Else [ASure = ∅]
∗ If age 
= 0 then construct set Recved by including all processes from

whom a message was received at the beginning of the round. Process i
includes itself in this set. Then rank processes in set Recved lexicograph-
ically, first based on their age and then based on id (increasing order). If
rank(i)Recved = 1 then perform task with rank 1, otherwise perform task
with rank i + 1.

∗ Else perform task with rank i + 1.
Else perform task with rank 1.

– Set age = age + 1.
– Send age to all other processes as the value of variable ager+1(i).

say that in round r process is in age x if it was alive for the whole x rounds, i.e.,
its age is x in the beginning of the round. Processes exchange these variables,
so, for reference reasons, we will be denoting by ager(j) the age that process i
knows that j has in round r (in other words, this is the age j reports to i at the
end of round r).

We begin to show that algorithm AlgCSF is fair, under the assumption of
2-survivability.
Lemma 2. If in a given round r, τold is the oldest pending task in the system
(has rank 1) and there is at least one process with ager = 1, then τold is performed
by the end of round r.

Observe that if in round r there is no process with age 1 but there is at least
one with age 0, then even if τold is not performed in round r, by Lemma 2 it will
be performed in round r + 1. Hence it remains to show the following.

Lemma 3. If in round r all alive processes are of age > 1 (ASure = ∅) and
τold is the oldest task in the system, then τold will be performed by round r+ 2n
at the latest.
Lemmas 2 and 3 yield fairness of algorithm AlgCSF:

Theorem 7. Algorithm AlgCSF is a fair algorithm under any 2-survivability
adversarial pattern.
It remains to show the competitiveness of algorithm AlgCSF, and this we show
against any admissible adversarial pattern (unlike fairness, which is guaranteed
if the pattern satisfies 2-survivability).
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Theorem 8. Algorithm AlgCSF achieves competitive pending-tasks complexity
of at most OPT + 3n against any admissible adversary.

It can be seen that the lower bound stated in Theorem 1 is also valid for fair
algorithms run against any admissible adversary, even the one restricted by t-
survivability. Hence, we may conclude that algorithm AlgCSF, as well as fair
algorithms AlgCIF and AlgLIF of competitiveness OPT+O(n) developed in the
subsequent Sections 4.2 and 4.3 for central and local injectors, are near-optimal.

4.2 Central Injector

Recall transformation TranCStoCI from Section 3.2. It is easy to see that algo-
rithm AlgCSF is a specialization of the generic algorithm GenCS: information xi

is the age of process i. The remaining specification of algorithm AlgCSF (along
with the required data structures) is essentially the specification of the schedul-
ing policy S in the setting with central scheduler. Now, let Algorithm AlgCIF
be the algorithm resulting by applying the transformation TranCStoCI to
algorithm AlgCSF (it is essentially algorithm GenCI appended with the schedul-
ing policy of algorithm AlgCSF). Then, from Lemma 1 and Theorems 7,8 we get:

Theorem 9. Algorithm AlgCIF is a fair algorithm that achieves competitive
pending-tasks complexity of at most OPT+3n under any 2-survivability adversary.

4.3 Local Injector

We now consider algorithm AlgLIF. This algorithm combines the mechanism
deployed by algorithm AlgLI for propagating newly injected tasks with a round
of delay and the scheduling policy of algorithm AlgCSF to guarantee fairness.
Reliable multicast is again assumed for assuring that processes maintain consis-
tent sets of pending tasks. A full description of algorithm AlgLIF is given in [24]
(it is essentially a combination of the descriptions of the two above-mentioned
algorithms). Its competitiveness is the same as the competitiveness of AlgCSF
plus an additive factor n coming from the one-round delay of the propagation
of newly injected tasks. Specifically we have that:

Theorem 10. Algorithm AlgLIF, assuming reliable multicast, is a fair algo-
rithm that achieves competitive pending-tasks complexity of at most OPT + 4n
against any 2-survivability adversary.

5 Extensions and Limitations

In this section we consider the impact of restricted communication and non-unit-
length tasks on the competitiveness of the problem of performing tasks under
dynamic crashes-restarts-injections patterns.

5.1 Solutions under Restricted Communication

In view of Theorems 1 and 2, we argue that exchanging messages between pro-
cesses does not help much in the setting with central scheduler, in the sense that
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in the best case it could slightly increase only the constant in front of the addi-
tive linear part of the formula on the number of pending tasks. In this section
we study the problem of how exchanging messages may influence the correctness
of solutions in more restricted settings of injectors. In particular, we show that
Ω(n2) per-round message complexity is inevitable in order to achieve correctness
even in the presence of central injector. On the other hand, recall that O(n2)
per-round message complexity is enough to achieve near-optimal solution in the
presence of central injector: algorithm AlgCI from Section 3.2 achieves near-
optimal competitiveness of at most OPT + 2n in this setting, c.f., Theorem 3.

Theorem 11. For any algorithm and any t ≥ 1, there is an adversarial pat-
tern satisfying t-survivability such that the execution of the algorithm under this
pattern results in Ω(n2) per-round message complexity, even in the model with
central injector.

5.2 Non-unit-Length Tasks

We now turn our attention to tasks that are not necessarily of unit-length, that
is, they might take longer than a round to complete. We consider a persistent
setting, in which once a process commits in performing a certain task of length x,
it will do so for x consecutive rounds, until the task is performed. If the process
is crashed before the completion of all x rounds, then the task is not completed.
We assume that processes cannot share information of partially completed tasks;
the task performance is an atomic operation. In view of these assumptions, the
number of pending tasks remains a sensible performance metric.

First, we consider tasks of the same length d ≥ 1, i.e., each task takes d rounds
to be performed. Consider a variation of algorithm AlgCS of Section 3.1 that
uses the same scheduling policy, but once a process chooses a task to perform, it
spends d consecutive rounds in doing so; call this AlgCSd. We show the following:

Theorem 12. Algorithm AlgCSd, for uniform tasks of length d, achieves com-
petitive pending-task complexity of at most OPT + 3n under any admissible ad-
versarial pattern, in the setting with central scheduler.

We conjecture that similar techniques would lead to near-optimal analysis for
the other algorithms developed in this paper, in the context of the remaining
two models of central and local injectors, and under the fairness requirement.

We now consider the case where tasks could be of different lengths. It follows
that bounded competitiveness is not possible, even under restricted adversarial
patterns, and even in the model with central scheduler.

Theorem 13. For any algorithm, any number n ≥ 2 of processes, any t ≥ 1
and any upper bound d ≥ 3 on the lengths of tasks, there is an adversarial
pattern satisfying t-survivability such that the execution of the algorithm under
this pattern results in unbounded competitiveness with respect to the pending task
complexity, even in the model with central scheduler.
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6 Future Directions

Several research directions emanate from this work. An intriguing question is
whether the assumption of reliable multicast, made in the setting with local
injector, can be removed or replaced by a weaker but still natural constraint.
We conjecture that t-survivability, for a suitable constant t, could be a good
candidate for such replacement. In view of Theorem 11, it is challenging to find
a natural restriction on the adversary such that both efficient performance and
subquadratic communication would be achieved in the settings with injectors.
For this purpose a version of the continuous gossip protocol developed in [13]
could be possibly used. In view of Theorem 13, it would be worth checking if
randomization would help (i.e., analyzing randomized algorithms under oblivious
adversaries), or whether a smoothed or average-case analysis might result in
bounded competitiveness for tasks of different lengths.

Another interesting challenge is to generalize the considered task specifica-
tions to dependent tasks. Other challenging modeling extensions could involve
replacing the fairness property by a more “sensitive” task latency measure, and
considering energy consumption issues.
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Abstract. The ability to collectively toss a common coin among n par-
ties in the presence of faults is an important primitive in the arsenal of
randomized distributed protocols. In the case of dishonest majority, it
was shown to be impossible to achieve less than 1

r
bias in O(r) rounds

(Cleve STOC ’86). In the case of honest majority, in contrast, uncon-
ditionally secure O(1)-round protocols for generating common unbiased
coins follow from general completeness theorems on multi-party secure
protocols in the secure channels model (e.g., BGW, CCD STOC ’88).

However, in the O(1)-round protocols with honest majority, parties
generate and hold secret values which are assumed to be perfectly hidden
from malicious parties: an assumption which is crucial to proving the
resulting common coin is unbiased. This assumption unfortunately does
not seem to hold in practice, as attackers can launch side-channel attacks
on the local state of honest parties and leak information on their secrets.

In this work, we present an O(1)-round protocol for collectively gen-
erating an unbiased common coin, in the presence of leakage on the local
state of the honest parties. We tolerate t ≤ ( 1

3
− ε)n computationally-

unbounded Byzantine faults and in addition a Ω(1)-fraction leakage on
each (honest) party’s secret state. Our results hold in the memory leak-
age model (of Akavia, Goldwasser, Vaikuntanathan ’08) adapted to the
distributed setting.

Additional contributions of our work are the tools we introduce to
achieve the collective coin toss: a procedure for disjoint committee elec-
tion, and leakage-resilient verifiable secret sharing.

1 Introduction
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private, are fundamental ingredients at the disposal of fault tolerant distributed
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algorithms. This was realized originating with the work of Rabin [28], introduc-
ing the power of a shared global common coin to obtain a dramatic reduction
in round complexity with respect to Ben-Or’s asynchronous randomized consen-
sus algorithm [3]1; and continued to be utilized in many beautiful distributed
algorithms to this day in various network models.

The assumption that a party’s local state—including its local randomness and
the values of its secret cryptographic keys—is perfectly hidden from an adversary
is an assumption that has undergone much scrutiny in the past few years in the
cryptographic community. This is in light of accumulating evidence which shows
that in practice, physical measurements (so called side-channel attacks) can be
made on honest parties’ devices, resulting in leakage from their local state that
can completely compromise the security of the cryptographic algorithm. Indeed,
a considerable amount of effort in the cryptographic community is devoted to-
day to develop new cryptographic schemes which are resistant to leakage (e.g.,
[20,25,13,2] and many more). Several models of leakage have been considered.
The one most relevant to this work is that an adversary can adaptively choose
any leakage functions, and receive the value of the leakage functions on the secret
state of the device, as long as the total amount of leakage is bounded (shorter
than the secret state) [2].

We propose to mirror this line of work in the regime of distributed fault tol-
erant algorithms. Namely, to address the question of how leakage from the local
state of non-faulty parties affects the correctness of fault-tolerant distributed
protocols. Here, in addition to the fact that some of the parties are faulty and
fully compromised, the adversary who is coordinating the action of the faulty
parties can obtain partial information in the form of leakage on the local state of
each honest party. This may potentially enable the adversary to alter the course
of the protocol’s execution. We note that in this context, the coordinating ad-
versary can adaptively choose the leakage function, depending on the history of
communication it sees thus far.

In particular, in this paper we provide a fault-tolerant, leakage-resilient pro-
tocol for collective unbiased coin tossing among n parties.

The problem of collective coin tossing in a distributed setting has received a
great deal of prior attention, starting with the work of Rabin [28] on distributed
consensus. When there is no honest majority of parties, results from the two-
party setting by [11] showed that a bias of 1

r must be incurred by any O(r)-round
protocol (this was recently shown optimal in a work of Moran et al. [26]). Loosely
speaking, the problem is that a dishonest party can do the following: At the last
round, before sending his final message, he can compute the outcome, and abort
if he does not favor this outcome, thus biasing the output. When there is an
honest majority of parties, this attack can be prevented using verifiable secret
sharing (VSS), a notion defined by Chor et al. [10]. Verifiable secret sharing
allows each of the n parties to toss a coin locally and share it among the n parties.
After all the local coins have been shared via a VSS, the parties reconstruct the

1 Ben-Or’s protocol does not require the local coin outcomes to ever remain private,
only requiring they be random. Alas, the number of rounds is exponential.
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values, and the output coin is set to be the xor of the local coins. The works
of Ben-Or et al. [4] and Chaum et al. [9] on secure multi-party computation
show how to achieve VSS—and thus how to construct an unbiased coin tossing
protocol—in expected O(1) rounds. These results ([4,9]) hold unconditionally in
the synchronous network model with less than a third Byzantine faults, assuming
perfectly secure channels of communication between pairs of users and the use
of a broadcast channel.

However, each of these protocols require the parties to generate and hold
secret values, and security is guaranteed only under the assumption that these
secrets are completely hidden from the adversarial view. It is easy to check that
correctness breaks down if the adversary obtains some partial information about
these secrets. This is the starting point of our work.

1.1 Our Contributions

1.1.1 Leakage-Resilient Coin Tossing
We construct a leakage-resilient collective coin-tossing protocol in synchronous
point-to-point networks with a broadcast channel and physically secure commu-
nication channels between pairs of parties.

We allow up to one third colluding, statically corrupted malicious parties.
Namely, a computationally unbounded rushing adversary can a priori choose
parties to corrupt; during the protocol, he sees the internal state of all corrupted
parties and can set the messages of these parties at any round, as a function
of all honest parties’ messages up to (and including) this round. In addition,
the adversary can make leakage queries at every round in the form of specifying
a party and a leakage function, and obtains the result of his leakage functions
applied to the internal state of the corresponding honest parties.

We allow the adversary to leak arbitrary functions of parties’ secret states, as
long as the total number of bits leaked from each party is at most some (pre-
specified) λ fraction of its entire secret state.2 Each leakage query is applied
to the secret state of a single party. Since participants of a distributed protocol
typically run on different physical hardware (and reside in different locations), we
believe that it is reasonable to assume each leakage query modeling a physical
measurement reveals information about each party’s execution separately. To
maximize generality within this setting, we allow the leakage queries on different
parties’ secret states to be interleaved (i.e., leak from party i, then from party j,
and then again from party i), and the choice of leakage queries to be adaptively
selected as a function of prior leakage. We remark that this distributed leakage
model is similar to a model proposed by Akavia et al. [1] in their work on public-
key encryption in which the secret key of the decryption algorithm is distributed
among two parties.

We call a n-party distributed protocol (t, λ)-leakage-resilient if it achieves its
desired functionality in the presence of an adversary who can control up to t
2 Our methods extend to also tolerate the Naor and Segev [27] leakage model which

allows leakage functions which are not necessarily shrinking but leave the internal
local state with enough min-entropy.
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parties and can leak up to a λ fraction of the internal secret state of each honest
party (as above). We can now state our main theorem.

Theorem (Coin Toss). For any constants δ, ε > 0, any λ ≤ δ(1−ε)
10+6δ , any n ≥ (3+

δ)t, and anym, there exists a (t, λ)-leakage-resilient n-party distributed protocol
that outputs a value v ∈ {0, 1}m, and terminates in O(1) rounds satisfying:

– Agreement: At the conclusion of the protocol, each party outputs a value
vi ∈ {0, 1}m. For all honest parties Pi, Pj , it holds that vi = vj .

– Randomness: With all but negligible probability (in n), the distribution of
the honest output value v is statistically close to uniform.

A few remarks are in order.

Fairness: We emphasize that our protocol achieves fairness, in that honest parties
output a random string even if dishonest parties abort prematurely.

Strings versus Bits: We note that the output of our coin tossing protocol can
be a long random string, as opposed to just a single bit. In the leak-free setting,
this point is not worth emphasizing, since the coin-tossing protocol can be run
in parallel to output as many bits as desired. However, in the leaky setting, if
we run many protocols in parallel, leakage bounds may deteriorate quickly: if
we run k protocols, where each protocol tolerates leakage rate λ, then in the
resulting parallel execution, the leakage rate becomes only λ

k . Thus, to maintain
leakage bounds we would need to run the protocol sequentially, resulting in many
rounds of communication. Our protocol has the property that it can output as
many bits as desired in constant rounds with constant leakage rate.

Weakening the Secure Channels Assumption: We assumed physically secure
channels; however, our leakage model immediately implies we can tolerate leak-
age of information from these channels, as parties’ messages are computed as
a function of public information and their personal secret state. To remove the
secure channels assumption altogether, we would need to send the messages be-
tween honest parties using encryption, which would necessitate a computational
assumption supporting the strength of the encryption algorithm. Furthermore,
one would have to consider whether leakage from the secret keys of the de-
cryption algorithm and the randomness used by the encryption algorithm can
be tolerated. A recent work of Bitansky et al. [5] suggests to send messages
encrypted with non-committing encryption (introduced by Canetti et al. [8]),
protocols in the secure channels model can be transformed into leakage-resilient
secure protocols that do not assume secure channels.

Relation to Using Imperfect Random Sources in Distributed Computing: The
question of achieving O(1)-round Byzantine Agreement and multi-party compu-
tation when parties do not have access to perfect local randomness, but rather to
independent imperfect random sources such as min-entropy sources [19,22,21],
seems strongly related to our work here. Indeed, one may naturally view a ran-
dom secret with leakage as a secret a-priori drawn from a min-entropy source.
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The crucial difference between these works and our own is that our leakage model
allows the adversary to leak adaptively during the protocol, as opposed to non-
adaptively before the protocol begins. More specifically, the approach taken in
[19,22,21] is to first generate truly random strings from the weak random sources,
and then to use these random strings in the underlying protocol execution. This
approach will not work in our setting, since the adversary can simply choose
to leak on the newly generated random strings. On the other hand, we note
that the works of [19,22,21] consider randomness coming from an arbitrary min-
entropy distribution, whereas our model considers perfect randomness that is
being leaked so as to leave min-entropy in the distribution.

Coin Flipping versus Byzantine Agreement: Achieving a weak form of collective
coin tossing was an important building block to construct Byzantine agreement
protocols in many works, most notably in the work of Dwork et al. [12], and of
Feldman and Micali [15]. Our schemes to construct collective coin tossing utilize
broadcast channels as a primitive (which are equivalent to Byzantine agreement),
and thus obviously cannot be used to construct Byzantine agreement. It is an in-
teresting question for future research how to achieve coin tossing in the presence
of leakage without assuming broadcast channels.

Using Coin Tossing to Force Honest Behavior: An important technique in multi-
party protocols, initially proposed by Goldwasser and Micali [18], is to force
parties to use the result of a common coin toss as their local randomness, to
ensure parties do not rig their coins. In this case, the result of the coin toss
will be known only to one party Alice, and yet all other parties will be able to
verify (via, say, zero-knowledge protocols) that Alice is using the result of the
collective coins in her computations. This idea was later used in the compiler
of [17] from the n-party secure function evaluation protocol with honest-but-
curious majority to one with malicious majority. Our coin tossing protocol can
similarly be turned into one where only one party Alice knows the result but
all other parties can verify (via, say, a leakage-resilient zero knowledge protocol
[16]) that Alice is using the result of the collective coins in her computations.

1.1.2 Leakage-Resilient Verifiable Secret Sharing
One of the tools in our construction, which is of independent interest, is a new
leakage-resilient verifiable secret sharing scheme. Verifiable secret sharing (VSS)
extends Shamir’s [29] secret sharing to ensure not only secrecy (i.e., corrupted
parties do not gain information about the dealer’s secret), but also unique recon-
struction of a secret s′ even if the dealer and/or a subset of parties are dishonest,
where for an honest dealer, s′ will be his original secret. Weakly leakage-resilient
(WLR) VSS is a VSS scheme with the additional guarantee that given the view
of any (t, λ) adversary who corrupts up to t parties and leaks λ-fraction of each
honest party’s secret state (including the dealer’s), the secret still retains a con-
stant fraction of its original entropy. We refer to this property as weak leakage
resilience. We now state our second main theorem.
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Theorem (WLR-VSS): Let n = (3 + δ)t for some constant δ > 0. Then for
any constants ε < 1 and λ ≤ δ(1−ε)

10+6δ , there exists a (t, λ)-leakage resilient VSS
protocol that runs in O(1) rounds, with the following modified secrecy guarantee:
If the dealer is honest during the sharing phase, then for any (t, λ) adversary
A, with high probability, given the view of A at the conclusion of the sharing
phase, the secret s retains ε fraction of its original entropy.

WLR-VSS is sufficient for our coin tossing construction; however, in the full
version [6] we also define and obtain a stronger version of leakage-resilient VSS,
in which given the view of a leaking adversary, the secret s retains its full entropy.
This stringent secrecy property rules out the possibility of standard VSS, since
leakage from the dealer directly reveals information on s. We thus put forth a
new notion and a construction of oblivious secret sharing, where a dealer shares a
uniformly distributed secret whose value he does not know. We believe that this
primitive can serve as a useful building block for constructing future leakage-
resilient protocols, which anyway make use of VSS in this fashion (e.g., in [15]
to achieve Byzantine Agreement).

1.1.3 Disjoint Committee Election
As a tool in our construction, we present a 1-round public-coin protocol for elect-
ing log2 n disjoint “good” committees of size approximately n1/2 from among n
parties. This is achieved using a modified version of the Feige committee election
protocol [14] run in parallel, where recurring parties are removed from all but
the first committee in which they appear.

1.2 Overview of Our Solution

Let us first see why simple and known coin tossing protocols are not resilient
to leakage. Consider the following well-known coin tossing protocol paradigm:
First, each party Pi chooses a random value ri and secret shares it to all other
parties using a verifiable secret sharing (VSS) protocol. Then, all the parties
reveal their shares and reconstruct r1, . . . , rn. Finally, the parties output ⊕ri.
This protocol is not resilient to leakage for several reasons.

First, the reduction from coin tossing to VSS fails. For example, a malicious
party Pj can simply leak from each party Pi the least significant bit of ri, and
then choose rj such that the xor of these least significant bits is zero. Thus, the
problem is that in the leaky setting, we cannot claim that the ri’s look random
to the adversary. Instead, all we can claim is that they have high min-entropy. To
address this first problem, the first idea is to use a multi-source extractor instead
of the xor function. Namely, output Ext(r1, . . . , rn), where Ext is an extractor
that takes n independent sources and outputs a string that is statistically close
to uniform. Note however, that we cannot use any such multi-source extractor,
since some of the sources (i.e., some of the rj ’s) may be chosen maliciously. Thus,
what we need is a multi-source extractor that outputs a (statistically close to)
uniform string, even if some of the sources are arbitrary, but independent of
the “honest” sources. Indeed, such an extractor was constructed by Kamp, Rao,
Vadhan and Zuckerman [23].
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Secondly, VSS protocols by and large are not resilient to leakage. Consider
a single VSS protocol execution in the above paradigm. If the adversary leaks
λ-fraction from each share, the total number of bits leaked is too large (indeed,
potentially larger than the size of the secret being shared), and we cannot even
guarantee that the secret ri has any min entropy. Thus, we cannot use any VSS
scheme, but rather we need to use a leakage-resilient one, with the guarantee that
even if λ-fraction of each share is leaked, the secret still has high min-entropy.
Indeed, we construct such a weakly leakage-resilient (WLR) VSS in Section 4.
We note that many distributed protocols use VSS protocols, which immediately
make them susceptible to leakage. Thus, our leakage-resilient VSS scheme may
be useful for other protocols as well.

Finally, two technical difficulties remain. In the above coin-tossing paradigm
utilizing WLR-VSS, each party shares his random value with all other n parties,
and thus each honest party holds information on all secret values ri. Since the
leakage is computed on a party’s entire secret state, the adversary may learn
information on the joint distribution of the ri’s. This creates a dependency issue:
recall that the output of the multi-source extractor is only guaranteed to be
random if the sources ri are independent. Further, in this paradigm the secret
state of each party will be quite large, consisting of n secret shares (one for
each secret value ri). This will yield poor leakage bounds, with leakage rate less
than 1

n , if we want to ensure no share of one particular secret can be entirely
leaked.

We avoid these problems by ensuring that each of the n parties will never hold
more than one secret share of the ri’s. To this end, we follow a two-step approach.
The first step is a universe reduction idea similar to the one going back to Bracha
[7]. Instead of having all parties generate and secret share random strings ri, we
elect a small committee E (of size approximately log2 n), and only the members
of E choose a random string ri which will be shared via WLR-VSS (and later
used in the construction of the collective coin). We utilize Feige’s protocol [14] to
elect this committee, which guarantees with high probability that the fraction
of faulty parties in E is the same as in the global network. The second idea
is that members of this committee do not WLR-VSS the ri they chose to all
n parties, but rather to small secondary committees. Namely, for every party
i ∈ E , all parties elect a secondary subcommittee Ei, and party Pi will WLR-
VSS her random string ri only to parties in Ei. We need to ensure that all
the secondary committees Ei are disjoint, to avoid the case where one party has
many shares. One may be tempted to simply force these committees to be disjoint
by eliminating members that appear in previous committees. Indeed, we follow
this approach. However, care must be taken when eliminating parties, since we
may eliminate too many honest parties, and remain with dishonest majority. In
Proposition 5.1, we modify Feige’s lightest bin committee election protocol [14]
to select such disjoint committees, where we carefully choose the parameters so
that when eliminating recurring honest parties, we have the guarantee that (with
overwhelming probability) we are left with enough honest parties.
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2 Background and Definitions

2.1 Verifiable Secret Sharing

A secret sharing scheme, a notion introduced by Shamir [29], is a protocol that
allows a dealer who holds a secret input s, to share his secret among n parties.
The guarantee is that even if t of the parties are malicious, they gain no infor-
mation about the secret s. A verifiable secret sharing (VSS) scheme, introduced
by Chor et al. [10], is a secret sharing scheme with the additional guarantee that
after the sharing phase, a dishonest dealer is either rejected, or is committed to
a single secret s, that the honest parties can later reconstruct. Further, if the
dealer is honest, then the original secret will be reconstructed, even if dishonest
parties do not provide their correct shares.

Definition 2.1 (Verifiable Secret Sharing). A VSS protocol tolerating tma-
licious parties for parties P = {P1, ..., Pn} is a two-phase protocol (Share,Rec),
where a distinguished dealer P ∗ ∈ P holds an initial input s, such that the fol-
lowing conditions hold for any adversary controlling at most t parties:

– Reconstruction: After the sharing phase, there exists a value s′ such that
all honest parties output s′ in the reconstruction phase.

– Validity: If the dealer is honest, then s′ = s.
– Secrecy: If the dealer is honest, then at the end of the sharing phase the

joint view of the malicious parties is independent of the dealer’s input s.

2.2 Robust Multi-source Extractors

A multi-source extractor takes as input several independent sources, each with
sufficient amount of entropy, and outputs a string that is statistically close to
uniform. In this work, we need a multi-source extractor that extracts randomness
even if some of the sources are “malicious,” but independent of the “honest” ones.
Such an extractor, which we refer to as a robust multi-source extractor, was
constructed by Kamp, Rao, Vadhan and Zuckerman [23]. The notion of entropy
that is used is min-entropy. A random variable X ⊆ {0, 1}n is said to have min
entropy k, denoted by H∞(X) = k, if for every x ∈ {0, 1}n, Pr[X = x] ≤ 1

2k ,
and is said to have min-entropy rate α if H∞(X) ≥ αn.

Theorem 2.2 ([23]). For any constant δ > 0 and every n ∈ N, there is a
polynomial-time computable robust multi-source extractor Ext :

({0, 1}d
)n →

{0, 1}m that takes as input n independent sources, each in {0, 1}d, and produces
an m-bit string that is ε-close to uniform, as long as the min-entropy rate of the
combined sources is δ, and where m = 0.99δnd and ε = 2−Ω((nd)/ log3(nd)).

2.3 Feige Committee Election Protocol

Our leakage-resilient coin tossing protocol uses Feige’s lightest bin committee
election protocol as a subroutine [14]. Feige’s protocol gives a method for select-
ing a committee of approximately k parties (out of n) for a given parameter k.
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It consists of one round, in which each party chooses and broadcasts a random
bin in

[
n
k

]
. The committee consists of the parties in the lightest bin.

Lemma 2.3 ([14]). For any constant β > 0 and any k < n, Feige’s protocol
is a 1-round public-coin protocol that elects a committee E such that for any set
C ⊂ [n] of size t = βn, it holds that |E| ≤ k, and ∀ constant ε > 0, Pr[|E \ C| ≤
(1− β − ε)k] < n

k exp[− ε2k
2(1−β) ] and Pr [|E ∩ C|/|E| ≥ β + ε] < n

k exp[− ε2k
2(1−β) ].

3 Modeling Leakage in Distributed Protocols

We consider synchronous point-to-point networks with a broadcast channel.
Point-to-point channels are assumed to be authenticated and to provide par-
tial privacy guarantees (see discussion below). We consider n-party protocols
where up to t statically corrupted parties perform arbitrary malicious faults.
More precisely, we consider a computationally unbounded adversary who sees
the internal state of all corrupted parties and controls their actions. We also
assume the adversary is rushing, i.e. in any round he can wait until all honest
parties send their messages before selecting the messages of corrupted parties.
Our results hold information theoretically, with no computational assumptions.

In this work we propose a strengthening of the standard model, where in
addition the adversary is able to leak a constant fraction of information on the
secret state of each (honest) party. We model this by allowing the adversary to
adaptively make leakage queries (i, f) throughout the protocol, where i ∈ [n]
and f : {0, 1}∗ → {0, 1}, and giving him the evaluation of f on the secret state
of party i. Note that this also captures leakage on communication channels, as
parties’ messages are computed as a function of public information and their
personal secret state; thus, we do not need to assume fully private channels, but
rather channels that achieve privacy with bounded information leakage.

For simplicity, we consider length-bounded leakage. Namely, we require that
no more than λ|statei| leakage queries can be made on any single party i’s secret
state for some leakage rate λ, where |statei| denotes the maximal size of the secret
state of party i at any given time during the protocol. But, our constructions
work equally well in the more general model of [27] where the output length of
the leakage on statei is not restricted, as long as the entropy of statei is decreased
by no more than the fraction λ.

Note that in this model, each leakage query is applied to the secret state
of a single party. Since participants of a distributed protocol typically run on
different physical hardware (and in fact in many cases in different locations across
the world), it is reasonable to assume each physical attack reveals information
about one party’s execution. To maximize generality within this setting, we allow
leakage queries on different parties’ secret states to be interleaved (i.e., leak from
party i, then from party j, and then again from party i), and to be adaptively
selected as a function of prior leakage.

We refer to such an adversary who can corrupt t parties and leak λ fraction
from the secret state of each honest party as a (t, λ) adversary, and say that a
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distributed protocol is (t, λ) leakage resilient if its original properties are satisfied
against such an adversary. In this paper, we will focus on constructing a leakage-
resilient unbiased coin tossing protocol.

Definition 3.1 (Leakage-Resilient Distributed Coin Tossing). A protocol
for parties P = {P1, ..., Pn} is a (t, λ) leakage-resilient m-bit distributed coin
tossing protocol if the following conditions hold for any (t, λ) adversary:
– Agreement: At the conclusion of the protocol, each party outputs a value
vi ∈ {0, 1}m. For all honest parties Pi, Pj, it holds that vi = vj .

– Randomness: With overwhelming probability in n (even if malicious parties
abort prematurely), the distribution of the honest output value v given the
view of the adversary is statistically close to uniform in {0, 1}m.

4 Verifiable Secret Sharing with Leakage

One of the subroutines in our leakage-resilient coin tossing protocol is a protocol
achieving verifiable secret sharing (VSS) in the presence of leakage. Recall the
standard VSS guarantee is that for any adversary A who corrupts t parties, a
dishonest dealer is committed to a single secret which will be reconstructed by
honest parties, and the secret input s of an honest dealer remains secret given
the view of A at the conclusion of the sharing phase. For our purposes, we will
need stronger guarantees, where for any (t, λ) adversaryA who corrupts t parties
and leaks λ-fraction of each honest party’s secret state (including the dealer’s),
the VSS reconstruction property still holds, and the secret input s of an honest
dealer retains a constant fraction of its original entropy given the entire view of
A (including leakage). We refer to this property as weak leakage resilience.

Definition 4.1 (WLR-VSS). A (λ, ε)-weakly leakage-resilient VSS protocol
tolerating t malicious parties for parties P = {P1, ..., Pn} is a VSS protocol such
that for any (t, λ) adversary A, with overwhelming probability in n, the VSS
reconstruction and validity properties hold, in addition to the following modified
secrecy property: If the dealer is honest during the sharing phase, then with
overwhelming probability over the view y ← viewA(S) of A at the conclusion of
the sharing phase of the protocol, H∞(S|viewA(S) = y) ≥ εH∞(S).

To construct a WLR-VSS protocol, we use a modified version of the Shamir
secret sharing scheme [29]. Recall in Shamir’s scheme, a secret s ∈ F is shared
by sampling a random degree d polynomial p(x) =

∑d
j=0 ajx

j ∈ F[x] such that
a0 = s, and taking the shares si to be the evaluations p(i). The scheme is secure
against d malicious parties, and d is typically set to t. In our case, we embed a
(large) secret s ∈ Fd−t+1 as the first several coefficients of a polynomial p(x) of
degree d = n−2t−1.3 The last t coefficients are chosen randomly, and the secret
shares are evaluations si = p(i). Intuitively, any t shares are independent of s,
and with high probability each bit of leakage (on any party) will not decrease

3 In our case, we will consider n = (3+ δ)t, which yields d = (1+ δ)t− 1, and s ∈ Fδt.
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the entropy of s by significantly more than this amount. The structure of secret
shares as a Reed-Solomon code with minimum distance n − d = 2t + 1 further
implies that the true secret can be reconstructed even if t of the parties are
malicious [24]. We will denote this secret sharing scheme by (SS,RecSS).

Our WLR-VSS protocol is inspired by [4]. First, the dealer secret shares his
input s via SS, along with two additional random values r, r′. Using the additive
homomorphic property of SS, the parties check the dealer by broadcasting a
(randomly selected) linear combination of their given shares, and verifying that
together they form a valid codeword. To protect an honest dealer from being
disqualified due to malicious parties giving bad values, the dealer will broadcast
the true shares of complaining parties, and these values will be verified in a
second check of the same form.

Loosely, since a dishonest dealer does not know what linear combination will
be chosen, it is unlikely that he can distribute bad shares that pass these tests.
Leakage information will not help, as the only secret values in the protocol are
the distributed shares, which the dealer already knows (in fact, chooses) himself.
On the other hand, no information on an honest dealer’s secret s is revealed from
the linear combinations, since shares of s are masked by shares of the random
r, r′. So the only information learned about s comes from leakage, which leaves
sufficient entropy remaining by the properties of SS.

Let F be a field with log |F| = 2n. We define (ShareWLR,RecWLR) in Figure 1.

Theorem 4.2. Let n = (3+δ)t for some constant δ > 0. Then for any constants
ε < 1 and λ ≤ δ(1−ε)

10+6δ , the protocol (ShareWLR,RecWLR) is a (λ, ε)-weakly leakage-
resilient VSS protocol tolerating t malicious parties that runs in O(1) rounds.

Due to space limitations, we defer the proof to the full version [6].
WLR-VSS is sufficient for our coin-tossing construction; however, some appli-

cations may demand a stronger notion of leakage resilience, where given the view
of a (t, λ) adversary, the secret s retains its full entropy. Note that this require-
ment is impossible to achieve for any standard VSS protocol, as the adversary
can always leak information on s directly from the dealer. We thus put forth
a new notion of oblivious secret sharing, where the dealer shares a uniformly
distributed secret whose value he does not know.

Definition 4.3 (Leakage-Resilient Oblivious (LRO) VSS). A λ-leakage-
resilient oblivious (LRO) VSS protocol tolerating t malicious parties for parties
P = {P1, ..., Pn} is a VSS protocol with no validity requirement, such that for any
(t, λ) adversary A, with overwhelming probability in n, the VSS reconstruction
property holds, in addition to the following modified secrecy property: If the dealer
is honest during the sharing phase, then with overwhelming probability over the
view y ← viewA of A at the conclusion of this phase, viewA is independent of
the value s′ that will be reconstructed in the second phase.

In the full version [6], we present a λ-LRO-VSS protocol for λ = Ω(1), tolerating
t ≤ n

3+δ malicious parties (for any constant δ > 0), using a WLR-VSS protocol
as a black box. Loosely, the dealer samples and WLR-VSSes a random value
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ShareWLR(s):

Round 1: The dealer P ∗ selects two random values r, r′ ← Fδt, and runs three
independent executions of the modified polynomial secret sharing algorithm
(see above): (s1, ..., sn) ← SS(n, t, s), (r1, ..., rn) ← SS(n, t, r), (r′1, ..., r

′
n) ←

SS(n, t, r′). To each party i, P ∗ sends the corresponding three shares si, ri, and
r′i.

Round 2: Each party Pi broadcasts three random pairs of bits αi, βi, γi ∈
{0, 1}2. Take α, β, γ to be the corresponding elements in F with bit descriptions
(α1, ..., αn), (β1, ..., βn), (γ1, ..., γn) ∈ {0, 1}2n. (Recall log |F| = 2n).

Round 3: Each Pi broadcasts the linear combination of his shares αsi+βri+γr′i ∈ F.
Round 4: Consider the received vector v = (v1, ..., vn), where supposedly vi =

αsi + βri + γr′i ∀i.
– If v is a valid codeword (i.e., all points lie on a degree-d polynomial), the

dealer is accepted, and the sharing phase concludes.
– If v is distance > t away from a valid codeword, the dealer is rejected, and

the sharing phase concludes.
– Otherwise, let D ⊂ [n] be the components i in disagreement with the nearest

codeword. For each i ∈ D, P ∗ broadcasts all three shares si, ri, r
′
i. If any

linear combination αsi +βri +γr′i with i ∈ D is inconsistent with the nearest
codeword, the dealer is rejected. Otherwise, parties continue to the next step.

Rounds 5-6: Repeat Rounds 2-3. That is, each party broadcasts a new triple of
random α̃i, β̃i, γ̃i and then broadcasts the linear combination ṽi = α̃si + β̃ri + γ̃r′i
of his shares.

Local Computation: Consider the new vector ṽ of values received in Round 6,
where ∀i ∈ D we use the values (s,ri, r

′
i) broadcast by the dealer in Round 4.

– If ṽ is distance > t away from a valid codeword, the dealer is rejected.
– Otherwise, let D̃ be the set of parties whose components differ from the

codeword closest to ṽ. If D ∩ D̃ 
= ∅ or |D ∪ D̃| > t, then the dealer is
rejected. Otherwise, the dealer is accepted.

RecWLR():

Round 1: Each party Pi broadcasts his share si.
Local Computation: Locally, Pi runs the modified polynomial secret sharing re-

construction algorithm s′ ← RecSS(s′1, ..., s
′
n), where s′i is the value broadcast by

party Pi, and outputs this value s′.

Fig. 1. Weakly leakage-resilient VSS protocol, (ShareWLR, RecWLR)

x, erases it, then samples and WLR-VSSes a second random value y; the final
output will be Ext2(x, y), where Ext2 is a two-source extractor. (Note we do
not require perfect erasures, by treating remaining information as leakage). To
ensure information is never leaked on x and y together, their values will be
shared among two disjoint committees, which are selected by all parties.

5 Disjoint Committee Election

We now exhibit a 1-round public-coin protocol for electing m = log2 n disjoint
“good” committees E1, ..., Em of size approximately n1/2.
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Let m = log2 n and k = n1/2. We run m parallel repetitions of the Feige
lightest bin protocol with n

k bins (see Section 2.3), where recurring parties are
removed from all but the first committee in which they appear. More explic-
itly, define the protocol ElectDisj as follows. In a single round, each party Pi

broadcastsm random values ri
1, ..., r

i
m ← [

n
k

]
. Locally, everyone iterates through

j = 1, ...,m, setting Ej to be the parties in the lightest bin in the jth election,
defined by r1j , ..., r

n
j . Then, to force disjointness, all parties in Ej ∩

(⋃
j′<j Ej′

)
are removed from Ej , and this becomes the final jth elected committee.

Proposition 5.1. The protocol ElectDisj is a 1-round public-coin protocol for
electing m = log2 n committees Ei such that for any constants β, ε > 0, and any
set of corrupted parties C ⊂ [n] of size βn, the following events simultaneously
occur with overwhelming probability in n: (1) ∀i �= j, Ei ∩ Ej = ∅, (2) ∀i, (1 −
β − ε)n1/2 ≤ |Ei| ≤ n1/2, (3) ∀i, |Ei∩C|

|Ei| < β + ε.

By construction, property (1) holds immediately. Further, by Lemma 2.3, each
Ej is of size at most k and has at least (1−β− ε

2 )k honest parties before erasures.
It thus remains to analyze the number of players who will appear in multiple
committees, and to show that erasing does not decrease the number of honest
parties in any committee by too much. We refer the reader to the full version of
the paper for a complete proof [6].

6 Unbiased Coin Tossing with Leakage

In this section, we construct our final leakage-resilient coin tossing protocol, as
characterized by Definition 3.1. Our construction makes black-box use of the
tools developed in the previous sections: in particular, a weakly leakage-resilient
verifiable secret sharing (WLR-VSS) protocol (from Section 4), and a disjoint
committee election protocol (from Section 5).

Recall we are within the model of a synchronous point-to-point network with
broadcast, and channels are assumed to be authenticated and private (with leak-
age). Our results are information theoretic, without cryptographic assumptions.

Theorem 6.1. For any constants δ, ε > 0, any λ ≤ δ(1−ε)
10+6δ , any n ≥ (3 + δ)t,

and any m, there exists a λ-leakage-resilient n-party distributed coin tossing
protocol tolerating t malicious parties that generates m unbiased random bits,
and terminates in O(1) rounds.

Proof. Let δ′ be any constant such that δ′ < δ. In Figure 2, we construct the
desired coin tossing protocol CoinToss using the following tools:

Elect: Feige’s 1-round public-coin protocol to elect a primary committee of size
approximately log2 n, as in Lemma 2.3.

ElectDisj: a 1-round public-coin protocol for electing log2 n disjoint secondary
committees of size n′ ≈ n1/2,4 as in Proposition 5.1.

4 Note that we will use prime notation (e.g., n′, t′, δ′) to denote parameters pertaining
to the secondary committees.
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CoinToss:

Step 1: Run Elect to elect a primary committee of approximate size log2 n (see
Lemma 2.3). Denote the set of indices of elected parties by E ⊂ [n].

Step 2: Run the ElectDisj protocol on the remaining parties [n] \ E to elect |E|
disjoint secondary committees E ′1, ..., E ′|E|, each of size approximately n1/2 (see
Prop. 5.1).

Step 3: ∀i ∈ E , Pi samples a random value ri ← Fδ′t′ and verifiably secret shares
it among the parties in his corresponding secondary committee, E ′i. That is, he
acts as a dealer in an execution of ShareWLR(ri).

Step 4: For each i ∈ E , all parties in the secondary committee E ′i execute the
reconstruction phase ri ← RecWLR() on the shares dealt by Pi. For any party
i ∈ E who was rejected as a dealer in the previous step, set ri = 0. Each secondary
committee member broadcasts his reconstructed value for ri.

Local Computation: Let r∗i be the most common value received from the parties
in secondary committee E ′i in the previous step. Output r ← Ext({r∗i }i∈E).

Fig. 2. Leakage-resilient coin tossing protocol

(ShareWLR,RecWLR): a (λ, ε) WLR-VSS protocol for n′ parties, tolerating t′ ≤
n′

3+δ′ malicious parties, terminating in O(1) rounds, as in Theorem 4.2.
Ext : ({0, 1}d)log

2 n → {0, 1}m: a robust multi-source extractor, where m =
.99(2

3 log2 n)(εd), as in Theorem 2.2. We interpret each element {0, 1}d as
an element of Fδ′t′ (i.e., d = δ′t′ log |F|), where the size of F depends on the
desired output length m.

By Proposition 5.1, with overwhelming probability in n, the disjoint secondary
committees E ′i will be “good,” in that they each have size n1/2−ζ ≤ |E ′i | ≤ n1/2

for any constant ζ > 0 and it holds that n′i ≥ (3 + δ′)t′i, where n′i = |E ′i | and
t′i = |E ′i ∩ C| (where C is the set of corrupted parties). We will thus assume
this is the case. Since n′i ≥ (3 + δ′)t′i, the validity, reconstruction, and secrecy
properties of the (λ, ε) WLR-VSS protocol (see Definition 4.1) will hold for
the ith execution of (ShareWLR,RecWLR) with overwhelming probability in n′i
(and thus in n). We now show that the protocol CoinToss satisfies the desired
agreement and randomness properties (see Definition 3.1).
Agreement. By the reconstruction property of the WLR-VSS protocol, for each
Pi ∈ E , the honest parties in E ′i will agree on the reconstructed value ri ←
RecWLR() and will broadcast this value to all parties in Step 4 (where ri = 0 if
Pi was rejected as a dealer in the sharing phase of the VSS). Since a majority
of the parties in E ′i are honest, all honest parties in [n] will agree on r∗i = ri for
each i, and so will agree on the final output r.

Randomness. Consider the values ri reconstructed by each secondary committee
E ′i. By the reconstruction property of the WLR-VSS, each ri is fully determined
by the conclusion of the sharing phase (Step 3 of the CoinToss protocol). The
secrecy property of the WLR-VSS implies that at the end of the sharing phase,
even given the view of the adversary (viewA), each honest party’s ri retains
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at least ε · (δ′t′ log |F|) bits of entropy. Therefore, conditioned on viewA (which
includes leakage), the random variables r∗1 , ..., r

∗
|E| ∈ Fδ′t′ are independent, where

for all j ∈ E ∩ C we think of r∗j as fixed. Further, together they have total min-
entropy at least (|E \ C|)(εδ′t′ log |F|). By Lemma 2.3, |E \ C| ≥ (1 − 1

3+δ −
ζ) log2 n for any constant ζ > 0 with overwhelming probability in n. Since the
extractor we use can extract even when many of the sources r∗j are fixed, we
can simply take the loose bound |E \ C| ≥ 2

3 log2 n. By Theorem 2.2, the final
output r = Ext({r∗i }i∈C) will be statistically close to uniform over {0, 1}m with
m = .99(2

3 log2 n)(εδ′t′ log |F|).
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A traditional distributed system was, usually, designed by some centralized man-
ufacturer and owned by some central owner. On the other hand, many modern
distributed systems (e.g., many Peer to Peer (P2P) networks) are formed when
people team up to pool their resources together to form such a system. We aim
to initiate an investigation into the way people make a distributed decision on
the composition of such a system, with the goal of realizing high values. Intu-
itively, we look at settings in which, by teaming up, a node increases its utility,
however, it also pays a cost that often (as mentioned later) increases with the
size of the system. The right balance is achieved by the right size system.

We terms such settings “European Union Grant Games”, motivated by the
following case study. In FP7, the current, 7th Framework Programme for sup-
porting research in Europe, the main emphasis is put on forming sets of re-
searchers, mostly large sets. A rationale is that a large impact can be realized
by a large set of researchers- a “network of excellence”. Of course, what the
commission is really interested in is the combination of size and quality. Note
that researchers also have an opposing motivation to form small sets, since the
grant is divided among set members. These factors also exist when people come
together to form certain distributed systems. For example, in the formation of
some social groups, people come together of their own free will, and realize ben-
efit by pooling their resources together; yet at the same time they want to limit
the size of their groups to maintain ’quality’ and to reduce overhead and risks.

As opposed to the studies of network creation games [2], we deal with splitting
a community, rather than with creating connections. As opposed to the classic
game theoretic work on group formation e.g. [3], we deal with the quality of the
groups formed. We study price of anarchy(POA) [4,5] (and also strong price of
anarchy(SPOA) [1]) – the ratio between the average (over the system’s compo-
nents) value of the optimal possible system, and the average value for the system
formed in the worst equilibrium. We formulate and analyze games showing how
simple changes in protocol can affect the SPOA drastically. We identify two im-
portant properties for a low SPOA: whether the parties joining a group need to

� Longer version at http://arxiv.org/abs/1105.5255. This paper supported in part by
the Net-HD MAGNET consortium, by the Israel Science Foundation, by the Technion
Gordon Center, the Bi-national US-Israel Science Foundation, the Israeli ministry of
science, the Google Inter-university center for Electronic Markets and Auctions, and
at the Technion by a fellowship of the Israel Council for Higher Education.
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reach agreement, and whether they are given an option of appealing a rejection
from a system. We show that the latter property is especially important if there
are some pre-existing collaboration/communication constraints.

The general setting: A granting agency wishes to award a prize ofM dollars to
a subset formed from n researchers. Each researcher i has a value vi representing
her overall quality. A subset whose sum of values is at least some given threshold
T is an eligible subset. We assume vi < T for every researcher i,at least one
eligible subset, and the agency does not know the researcher values a priori but
can verify the values from the grant proposal. We construct protocols for the
agency, by which researchers form candidate consortia (i.e. subsets); the agency
wishes to maximize the average value of the winning consortium. The prize is
equally distributed among the winning researchers.

Results. We study three games in order of improving quality. A first “naive”
attempt is the Gold-rush game: Informally (details in full paper), the agency
asks each researcher to choose a label from a finite set and submit it with a
proposal. Researchers with the same label form a consortium and the prize goes
to the consortium with the highest average. Thus, the player strategy is to choose
a label and her utility is the shared winning if she wins. The Gold-Rush game
has a bad POA (n/2): maybe it was “too easy” for anybody to join a consortium.

The main games: The next game has stricter rules for joining a group. Infor-
mally, all consortium members must agree on the consortium membership. We
further consider the case where researchers are nodes of a graph and are con-
nected by an edge if they cooperate directly; each consortium is required to be a
connected component in this graph. The SPOA is improved but is not optimal.
Intuitively, this game (CCC-CN) suffers from being TOO strict. We then intro-
duce a new game with looser rules (but stricter than Gold-rush). Informally, the
first round of this game is like the CCC-CN game, but in subsequent rounds,
subsets of researchers can appeal to join the winners if they can prove that they
improve the average. Eventually, a fixed point is achieved. This last game shows
strong improvement over the other games (results are in the full paper). However,
SPOA can vary over different topologies and there is an interesting relationship
between some graph parameters and SPOA; For example, it is intriguing that
SPOA grows in opposite directions for the complete graph and line graph .
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We consider the semi-matching problem in bipartite graphs. The network is
represented by a bipartite graph G = (U ∪V,E), where U corresponds to clients,
V to servers, and E is the set of available connections between them. The goal
is to find a set of edges M ⊆ E such that every vertex in U is incident to
exactly one edge in M. The load of a server v ∈ V is defined as the square
of its degree in M and the problem is to find an optimal semi-matching, i.e.
a semi-matching that minimizes the sum of the loads of the servers. Formally,
given a bipartite graph G = (U ∪ V,E), a semi-matching in G is a subgraph
M such that degM (u) = 1 for every u ∈ U . A semi-matching M is called
optimal if cost(M) :=

∑
v∈V (degM (v))2 is minimal. It is not difficult to see

that for any semi-matching M , |U|2
|V | ≤ cost(M) ≤ Δ|U | where Δ is such that

maxv∈V d(v) ≤ Δ. Consequently, if M∗ is optimal and M is arbitrary, then
cost(M) ≤ Δ|V |cost(M∗)

|U| . Our main result shows that in some networks the Δ|V |
|U|

factor can be reduced to a constant (Theorem 1).
The semi-matching problem has been extensively studied under various names

in the scheduling literature. Recently it has received renewed attention after the
paper by Harvey, Ladner, Lovász, and Tamir [4], where the name semi-matching
was introduced. In [4] and [2] the authors give two sequential polynomial time
algorithms that find an optimal semi-matching in a graph. We have considered
the distributed complexity of the semi-matching problem in the synchronous,
message-passing model of computations (Local). In this model the nodes of the
underlying network communicate in synchronized rounds. In a single round every
vertex can send and receive messages from all of its neighbors and can perform
some local computations. The running time of the algorithm is the number of
rounds needed to solve a problem. Let M∗ be an optimal semi-matching in
G = (U ∪ V,E) and let Δ = maxv∈V deg(v).

� The research supported by grant N N206 565740.
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Theorem 1. There is a distributed algorithm that finds a semi-matching M in
G = (U ∪ V,E) such that cost(M) ≤ λ · cost(M∗), where λ = min

(
3 · 105, Δ|V |

|U|

)
and the time complexity of the algorithm is O(min

(
Δ2, Δ log4(|V |+ |U |)) .

One of the main appeals of Theorem 1 is the simplicity of the procedure that
finds the semi-matching:

Algorithm

1. Let M := ∅.
2. For i = 1 to Δ do:

(a) Find a maximal matching Mi in Gi using algorithms from [3].
(b) Let M := M ∪Mi and Gi+1 := G[V (Gi) \ (V (Mi) ∩ U)].

3. Return M .

It is not difficult to see that the outcome is a semi-matching in G. On the other
hand, proving that M is a constant approximation of an optimal requires careful
analysis. Although the approximation constant in Theorem 1 is most likely an
artifact of our proof technique and can be significantly reduced, it is not possible
to find an optimal solution efficiently in the Local model of computations. We
have proved the following fact.
Theorem 2. There exists a graph G = (V,E) such that any deterministic dis-
tributed algorithm that finds an optimal semi-matching inG runs inΩ(|V |) rounds.
The running time of the algorithm from Theorem 1 involves Δ and it is not clear
if this dependency can be avoided. In that direction, we have proved that in some
cases even when Δ is unbounded it is possible to find a good approximation in
a constant number of rounds.
Theorem 3. Let c1, c2 ≥ 2 be such that c2|c1 and c2 is constant. Let G = (U ∪
V,E) be a bipartite graph such that for every v ∈ V , d(v) = c1 and for every u ∈ U ,
d(u) = c2. There is a distributed algorithm that finds a (min(3, c2))-approximation
of an optimal semi-matching, in a constant number of rounds depending on c2.
The proof of Theorem 3 hinges on the fact that it is possible to find a semi-
matching with cost of at most 3 |U|2

|V | ≤ 3cost(M∗) where M∗ is optimal.
The details of our work are available in [1].
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Abstract. In the context of Mobile Ad-hoc Networks (MANET), we
study the problem of disseminating a piece of information, initially held
by a source node, to some subset of nodes. We use a model of MANETs
that is well suited for dynamic networks and opportunistic communica-
tion. We assume that network nodes are placed in a plane where they can
move with bounded speed; they may start, crash and recover at differ-
ent times; and they communicate in a collision-prone single channel. In
this setup informed and uninformed nodes may be disconnected for some
time, but eventually some informed-uninformed pair must be connected
long enough to communicate. We show negative and positive results for
different types of randomized protocols, and we contrast them with our
previous deterministic results.

A MANET is a network of processing nodes that move in an environment that
lacks any form of communication infrastructure. In this paper we revisit a class
of MANETs that is well suited for opportunistic communication. Specifically,
nodes are placed in a plane, in which they can move with bounded speed, and
communication between nodes occurs over a collision-prone single channel. Our
model includes a parameter α that mainly characterizes the connectivity and a
parameter β that models the stability properties of the network, provided that
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nodes move, may crash and recover and may be activated at different times.
These parameters characterize any model of dynamic network, and affect the
progress that a protocol may achieve in solving basic tasks. Our model is for-
malized in [2] and it is slightly weaker than the one presented in [1]. In this
context, we consider the problem of information dissemination. Formally,

Definition 1. Given a MANET formed by a set V of n nodes, let P be a predicate
on V and s ∈ V a node that holds a piece of information I at time t1 (s is the source
of dissemination). The Dissemination problem consists of distributing I to the set
of nodes VP = {x ∈ V :: P(x)}. A node that has received I is termed covered, and
otherwise it is uncovered. The Dissemination problem is solved at time slot t2 ≥ t1
if, for every node v ∈ VP , v is covered by time slot t2.

The Dissemination problem abstracts several common problems in distributed
systems, e.g. Broadcast, Multicast, Geocast, Routing etc. To solve the Dissemi-
nationproblem we consider three classes of randomized algorithms: locally adap-
tive randomized algorithms where the probability of transmission of a node in
a step of an execution may depend on its own communication history; oblivious
randomized protocols where the probability of transmission of a node in a step
of an execution depends only on predefined parameters; and fair randomized
protocols, in which at each step all nodes transmit with the same probability.

Our Results. We have determined the minimum values for parameters α and β
under which randomized protocols to disseminate information with large enough
probability exist; we have studied the time complexity in relation with the max-
imum speed of movement and the probability of failure, and we have put the
results obtained here in perspective of our results in [1] highlighting the impact
of fundamental characteristics of Disseminationprotocols, such as determinism
vs. randomization, and obliviousness vs. adaptiveness, on dissemination time.
These results are extensively presented in [2] and summarized in Table 1. These
results show that there is no gap between oblivious and locally adaptive pro-
tocols and that randomization reduces the time complexity of the problem in
a linear factor in the oblivious case and in a logarithmic factor in the adaptive
case (for reasonably small values of α).

Table 1. Oblivious and fair lower bounds to achieve success probability p ≥ 2−n/2.
Locally adaptive lower bound in expectation. Upper bounds with probability p ≥
1− e−(n−1)/4.

randomized deterministic [1]

lower bounds oblivious Ω
(
αn + n2/ log n

)
Ω
(
αn + n3/ log n

)
locally adaptive Ω

(
αn + n2/ log n

)
Ω(αn + n2)

fair Ω
(
αn + n2/ log n

)
–

upper bounds oblivious O
(
αn + (1 + α/β) n2/ log n

)
O(αn + n3 log n)

locally adaptive – O(αn + n2)

fair O
(
αn + (1 + α/β) n2/ log n

)
–
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in Multi-commodity Flow Routing
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1 Introduction

In the concurrent multi-commodity flow problem, we are given a capacitated network
G = (V,E) of switches V connected by links E, and a set of commodities K =
{(si, ti, di)}. The objective is to maximize the minimum fraction λ of any demand
di that is routed from source si to target ti. This problem has been studied exten-
sively by the theoretical computer science community in the sequential model (e.g., [4])
and in distributed models (e.g., [2,3]). Solutions in the networking systems commu-
nity also fall into these models (e.g., [1,6,5]), yet none of them use the state-of-the-
art algorithms above. Why the gap between theory and practice? This work seeks to
answer and resolve this question. We argue that existing theoretical models are ill-
suited for real networks (§2) and propose a new distributed model that better captures
their requirements (§3). We have developed optimal algorithms in this model for data
center networks (§4); making these algorithms practical requires a novel use of pro-
grammable hardware switches. A solution for general networks poses an intriguing
open problem.

2 Existing Models: Theory vs. Practice

Prior solutions to the multi-commodity flow problem fall in one of three models. In
the sequential model [4], the entire problem input (solution) is known (computed) by
a single entity. In the Billboard model [3], routing decisions are made by agents at
the sources, one per commodity, that can read and write to a global “billboard” of link
utilizations. In the Routers model [2], routing decisions are made locally by all switches
by communicating only with their neighbors.

The fundamental problem with these models is that they are designed for a static
demand matrix (i.e., a single set of commodities), whereas real systems must respond
to rapidly changing demand matrices. The cost of collecting demands and communi-
cating the flows in the sequential model makes it impractical to respond to changing
demands at small timescales. Thus, systems like Hedera [1] recompute the flows from
scratch at large scheduling intervals (seconds). Similarly, the cost of flooding link uti-
lizations to the sources in the Billboard model causes systems like MPTCP [6] to apply
only coarse congestion control at sources based on indirect information. The Routers
model evades these problems, but because switches have no a priori knowledge of
the network topology, flows may change direction or circulate repeatedly in the net-
work. Thus, systems like FLARE [5] use pre-established routes and avoid rerouting
altogether.
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The second problem is that all known polynomial-time solutions, in all models, re-
quire fractionally splitting flows. Splitting flows causes packets to get reordered, which
causes throughput to collapse in the TCP protocol. If a flow’s paths have inconsistent
latencies, queuing occurs at the target; such uncertain packet delivery times make it
difficult to time retransmissions without exacerbating congestion. Thus, systems use ei-
ther heuristics to solve the integer (unsplittable) multi-commodity flow problem [1], or
complicated splitting heuristics that still cause reordering across subflows [6].

The third problem is that all models incorrectly assume that hardware switches are
identical to end hosts. To forward traffic at line rate—1 or 10 Gbps for today’s commod-
ity switches—switches require high-speed matching on packet headers and offer limited
general-purpose processing. Practical solutions must operate within these limits.

3 Routers Plus Pre-processing (RPP) Model

In almost any wired network, the demand matrix changes far more frequently than the
network topology. Thus, we propose the following extension to the Routers model:
We allow arbitrary (polynomial-time) pre-processing of the network G at zero cost
in time (but charge for any space required to store the results). This decouples the
problem of topology discovery from routing, turning the former into a dynamic graph
problem.

We also introduce two novel issues of practicality. First, we allow O(1)-sized mes-
sages that are injectively mapped to flow packets, or in-band messages, to be sent for
free, and charge only for out-of-band messages. Second, when possible, we ensure paths
of the same commodity are roughly equal in length, to minimize queuing and reorder-
ing at the target. We are interested in algorithms that are partially asynchronous, since
otherwise we would need expensive synchronizers to simulate rounds.

4 Algorithms

We have devised a simple algorithm in the RPP model for data center fat-tree net-
works [1]. Our algorithm locally splits and rate-limits the aggregate demand to each
target with the help of in-band messages, routing the maximum concurrent flow in an
optimal O(H) parallel rounds, whereH is the length of the longest flow path. By allow-
ing approximate splitting, we can drastically reduce the amount of splitting in practice.
Our solution uses carefully crafted rules in switches’ forwarding tables that allow line-
rate processing while minimizing packet reordering at the targets.

A solution for general networks in the RPP model poses an intriguing open problem.
One approach may be to use the free pre-processing to initialize connectivity oracles
that can route around “failed” (congested) links.
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Talk Abstract

Flash storage is making inroads into data centers, enabling a new class of applications
that require persistence as well as extreme performance. Clusters of flash can satisfy
millions of I/Os per second at sub-millisecond latencies while consuming significantly
less power than disk clusters. Unfortunately, current designs for scalable storage sys-
tems are predicated on the properties of hard disks, and can be inefficient or unreliable
when used with flash clusters. New abstractions are required to fully realize the potential
of flash clusters. We drew foundational lessons from designing Falcon, a new transac-
tional storage cluster which works at the speed of flash. In this keynote, we describe the
challenges and design choices we made.

The key idea in Falcon is to expose a cluster of network-attached flash devices as a
single, shared log to clients running within the data center. Applications running on the
clients can append data to this log or read entries from its middle. Internally, this shared
log is implemented as a distributed log spread over the flash cluster. This design makes
sense for two reasons:

– Falcon is a distributed SSD...
Falcon runs over raw flash chips directly attached to the network, obviating the
need for servers or SSD controllers in the storage cluster; this slashes infrastructure
cost and power consumption by an order of magnitude. In effect, Falcon acts as
a distributed SSD, implementing flash management and wear-leveling at cluster
scale.

– ... with a shared log interface.
From a top-down perspective, the Falcon shared log is a powerful primitive for
building applications that require strong consistency, such as databases, transac-
tional key-value stores and metadata services.

Abstractly the storage cluster implements an append-only totally ordered log, and we
need to implement a reliable and high-throughput total-ordering mechanism that stores
entries in the log. The solution seemed obvious at first: Use State-Machine-Replication
(SMR) and Paxos for forming a consistent sequence of append records.

In practice, we found that we needed to make many modifications and adaptations.
In this keynote, we articulate the issues we encountered and the novel design solutions
we employed to address them. In particular, we found that we needed to go beyond
traditional state-machine-replication (SMR) and Paxos in more than one way:
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Fig. 1. The FALCON Design

– To allow parallel streaming of I/O, a conventional approach is to partition the stor-
age space into autonomous partitions. In contrast, we partition the storage across
time; each entry in the shared log is mapped onto a set of devices, thus allowing
perfect load balance independent of the storage workload. In addition, this allows
us to support higher semantics such as multi-object atomicity and transactions.

– The prevalent design in replicated storage systems is to employ primary-backup
replication. This induces an I/O bottleneck at the primary, and limits throughput at
the I/O capacity of a single server. Our design separates sequencing control from
I/O, thus removing this bottleneck altogether. Though in itself, this idea is not new,
we are aware of no previous system which employs this scheme.

– Each time we fill up the space in a set of storage drives, we shift to a new con-
figuration. However, we continue to maintain old configurations in order to access
earlier data in the log. Thus, our reconfiguration mechanism actively handles a list
of configurations which map to a sequence of contiguous segments of the log. Ac-
cordingly, the read load of the shared log can be distributed over different sets of
flash drives.

– In order to allow us to operate directly over passive storage devices, we need to
adapt all protocols to a data centric model. The challenge in this model is that
storage devices are not allowed to communicate with each other. Our solutions
empower clients with most of the responsibility while employing thin servers.

Here we only briefly outline the Falcon design; the full architecture and implementation
is described in detail elsewhere [Microsoft Technical Report MSR-TR-2011-86]. To
append data to the shared log, a client first obtains a token from a tokenserver indicating
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the next free position in the shared log. The client then uses a configuration – basically, a
membership view of the storage cluster – to deterministically map this token to a replica
set of physical flash pages in the cluster. The client writes its data directly to these flash
pages across the network. To read the entry at a specific position in the shared log,
the client similarly uses the configuration to map the position to a set of physical flash
pages, and then reads the data directly from one of these pages. When a drive fails in
the cluster, clients in the system use a reconfiguration protocol to transition to a new
configuration. Figure 1 gives a high level view of the system architecture.

The Falcon design has been fully implemented, demonstrating the feasibility of our
design. The current Falcon implementation has been deployed over a cluster of 32 Intel
X25M server-attached SSDs. This deployment currently supports 400K 4KB reads/sec
and 200K 4KB appends/sec. Several applications have been prototyped over Falcon,
including a transactional key-value store and a fully replicated database. While we are
still evaluating these applications, the initial results are promising; for instance, our key-
value store can support atomic multi-gets and multi-puts involving ten 4KB keys each
at speeds of 40K/sec and 20K/sec, respectively.



Byzantizing Paxos by Refinement
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Abstract. We derive a 3f +1 process Byzantine Paxos consensus algo-
rithm by Byzantizing a variant of the ordinary Paxos algorithm—that is,
by having 2f+1 nonfaulty processes emulate the ordinary Paxos algorithm
despite the presence of f malicious processes. We have written a formal,
machine-checked proof that the Byzantized algorithm implements the or-
dinary Paxos consensus algorithm under a suitable refinement mapping.

You can verb anything.
Ron Ziegler (quoted by Brian Reid)

1 Introduction

The Paxos algorithm [6] has become a standard tool for implementing fault-
tolerant distributed systems. It uses 2f + 1 processes to tolerate the benign
failure of any f of them. More recently, Castro and Liskov developed a 3f + 1
process algorithm [2] that tolerates f Byzantine (maliciously faulty) processes.
Intuitively, their algorithm seems to be a Byzantine version of Paxos. Other
algorithms that also seem to be Byzantine versions of Paxos have subsequently
appeared [4,11,14].

The only previous attempt we know of to explain the relation between a
Byzantine Paxos algorithm and ordinary Paxos was by Lampson [13]. He de-
rived both from an abstract, non-distributed algorithm. We take a more di-
rect approach and derive a Byzantine Paxos algorithm from a distributed non-
Byzantine one by a procedure we call Byzantizing, which converts an N process
algorithm that tolerates the benign failure of up to f processes into an N + f
process algorithm that tolerates f Byzantine processes. In the Byzantized al-
gorithm, the N good processes emulate the execution of the original algorithm
despite the presence of f Byzantine ones. (Of course, a good process does not
know which of the other processes are Byzantine.)

The heart of ordinary or Byzantine Paxos is a consensus algorithm. We Byzan-
tize a variant of the classic Paxos consensus algorithm, which we call PCon, to
obtain an abstract generalization of the Castro-Liskov Byzantine consensus al-
gorithm that we call BPCon. (Section 3 explains why we do not Byzantize the
original Paxos consensus algorithm.)

It is easy to make something appear simple by hand-waving. The fact that
BPCon is derived from PCon is expressed formally by a TLA+ [7] theorem as-
serting that BPCon implements PCon under a suitable refinement mapping [1].
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(A derivation is an implementation proof presented backwards.) A formal proof
of the safety part of this theorem has been written and checked by the TLAPS
proof system; it is available on the Web [5]. We discuss liveness informally. We
believe that other Byzantine Paxos consensus algorithms can also be derived by
Byzantizing versions of Paxos, but we have not proved any other derivation.

We describe algorithms PCon and BPCon informally here. Their formal spec-
ifications are on the Web, along with the correctness proof [5]. (A pretty-printed
version of the algorithms’ PlusCal [9] code is also available on the Web site.)
Section 8 explains just what this proof proves. In Section 7, we describe how the
Castro-Liskov algorithm refines algorithm BPCon.

2 Consensus and Classic Paxos

We assume the usual distributed-computing model of asynchronous processes
communicating by messages. By a benign failure, we mean the loss of a mes-
sage or a process stopping. A Byzantine process may send any message, but we
assume that the identity of the sender of a message can be determined by the re-
ceiver. This can be achieved by either point-to-point communication or message
authenticators (MACs), which are described in Section 6.1.

2.1 Consensus

In a complete specification of consensus, proposer processes propose values, a
set of acceptor processes together choose one of the proposed values, and learner
processes learn what value, if any, has been chosen. The algorithm must tolerate
the failure of some number f of acceptor processes, as well as the failure of any
proposer or learner process.

To simplify the formal development, we eliminate the proposers and learners,
and we consider only acceptors. Our definition of what value is chosen makes
it clear how learning is implemented. Implementing proposers is not trivial in
the Byzantine case, since one must prevent a Byzantine process from pretending
to be a nonfaulty proposer. It becomes trivial by using digital signatures, and
Castro and Liskov explain how it is done with MACs.

With this simplification, the specification of consensus consists of a trivial
algorithm in which the acceptors can choose at most one value, but once chosen
a value must remain forever chosen.

It is well-known that fault-tolerant consensus cannot be implemented in a
purely asynchronous system [3]. We require that the safety properties (at most
one value chosen and a value never unchosen) hold even in the absence of any
synchrony assumption, and that liveness (a value is eventually chosen) holds
under suitable synchrony assumptions on nonfaulty processes and the commu-
nication among them.

2.2 Paxos Consensus

The classic Paxos consensus algorithm was described in [6] and independently
stated without proof by Oki [15]. It performs numbered ballots, each orchestrated
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by a leader. Multiple ballots may be performed concurrently (with different
leaders). Once an acceptor performs an action in a ballot, it never performs any
further actions of a lower-numbered ballot. We assume that ballots are numbered
by natural numbers.

Let N be the number of acceptors, where N > f , and let a quorum be any
N−f acceptors. For safety, we require that any two quorums have a non-empty
intersection, which is true if N > 2f . The only other property of quorums we
use is that there is a quorum consisting entirely of nonfaulty processes, which is
required for liveness.

An acceptor can vote for at most one value in any ballot. A value v is chosen
in a ballot iff a quorum of acceptors have voted for v in that ballot. A value is
chosen iff it is chosen in some ballot.

We say that a value v is safe at a ballot number b if no value other than v has
been chosen or ever can be chosen in any ballot numbered less than b. (Although
described intuitively in temporal terms, safe at is actually a function of the
algorithm’s current state.) The algorithm maintains the following properties:

P1. An acceptor can vote for a value v in ballot b only if v is safe at b.
P2. Different acceptors cannot vote for different values in the same ballot.

These properties are maintained by having the ballot-b leader choose a single
value v that is safe at b and asking the acceptors to vote for v in ballot b. An
acceptor will vote only when it receives such a request (and only if it has not
performed any action of a higher-numbered ballot). A ballot b proceeds in two
phases, with the following actions.

Phase 1a The ballot-b leader sends a 1a message to the acceptors.
Phase 1b An acceptor responds to the leader’s ballot-b 1a message with a 1b

message containing the number of the highest-numbered ballot in which it
has voted and the value it voted for in that ballot, or saying that it has cast
no votes.

Phase 2a Using the 1b messages sent by a quorum of acceptors, the leader
chooses a value v that is safe at b and sends a 2a message containing v to the
acceptors.

Phase 2b Upon receipt of the leader’s ballot-b 2a message, an acceptor votes
for v in ballot b by sending a 2b message.

(Remember that an acceptor performs a ballot-b Phase 1b or 2b action only if it
has not performed an action for a higher-numbered ballot.) A value v is chosen
iff a quorum of acceptors have voted for v in some ballot. A learner learns that a
value has been chosen if it receives 2b messages from a quorum of acceptors for
the same ballot (which by P2 must all report votes for the same value). However,
since we are not modeling learners, the 2b messages serve only to record votes.

In its Phase 2a action, the ballot-b leader must determine a safe value from
the ballot-b 1b messages it receives from a quorum. It does this by using the
following properties of the algorithm.

P3a. If no acceptor in the quorum has voted in a ballot numbered less than
b, then all values are safe at b.
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P3b. If some acceptor in the quorum has voted, let c be the highest-numbered
ballot less than b in which such a vote was cast. The value voted for in
ballot c is safe at b. (By P2, there is only one such value.)

Paxos implements a state machine by executing an infinite sequence of separate
instances of the consensus algorithm. There is normally a single leader executing
ballots, using the same ballot number in all the instances. If that leader fails,
a new leader executes Phase 1 for a higher-numbered ballot simultaneously for
all instances of the consensus algorithm. For all instances in which a ballot
was begun but learners may not know the chosen value, Phase 2 is executed
immediately. For ballots not begun, in which P3a holds, the leader waits until
it receives the necessary client proposals before executing Phase 2.

The ballot-b leader can always execute the Phase 1a action, and it can execute
the Phase 2a action if it has received 1b messages from a quorum of acceptors. An
acceptor can respond to messages from the leader if it has received no message
from a higher-numbered ballot. Therefore, the ballot-b leader and a nonfaulty
quorum of acceptors can choose a value if no higher-numbered ballot is begun.
The liveness property satisfied by classic Paxos consensus is obtained directly
from this observation; we will not bother stating it precisely. We just point out
that the essential property from which liveness follows is the ability of the ballot-
b leader to determine a safe value in Phase 2a from the ballot-b 1b messages sent
by a quorum of acceptors.

3 Byzantizing an Algorithm

We Byzantize a consensus algorithm by having N acceptors emulate it in the
presence of f fake acceptors—Byzantine processes that pretend to be accep-
tors. (Everything works with m ≤ f fake acceptors, but for simplicity we omit
this generalization.) We sometimes call the acceptors real to more clearly dis-
tinguish them from the fake acceptors. Processes other than acceptors may be
Byzantine—in particular, a Byzantized Paxos algorithm must tolerate malicious
leaders. However, assumptions about the non-malicious behavior of leaders is
required for liveness.

Formally, emulation means performing an action that, under a refinement
mapping, is an action of the emulated algorithm. A refinement mapping maps
each state of the emulating system (the implementation) to a state of the emu-
lated one (the specification). Refinement mappings are explained in more detail
in Section 8.

We are effectively assuming that which processes may be malicious are de-
termined in advance. Since the Byzantized algorithm assumes no knowledge of
which are the real acceptors and which the fake ones, this assumption results in
no loss of generality. (It can be viewed as adding a prophecy variable [1] whose
value always equals the set of processes that may fail.) Moreover, since a ma-
licious process can do anything, including acting like a nonfaulty one, we can
prove that the algorithm tolerates at least f malicious acceptors by assuming
that there are exactly f fake acceptors that are malicious from the start.
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We define the set of byzacceptors to be the union of the sets of real and fake
acceptors. We define a byzquorum to be a set of byzacceptors that is guaranteed
to contain a quorum of acceptors. If a quorum consists of any q acceptors,
then a byzquorum consists of any q + f byzacceptors. For liveness, we need the
assumption that the set of all real acceptors (which we assume never fail) form
a byzquorum.

In the Byzantized algorithm, a nonfaulty process must ensure that each action
in its emulation is enabled by the original algorithm. For example, if we were
modeling learners, the action of learning that a value v is chosen would be
enabled by the receipt of ballot-b 2b messages with value v from a quorum of
acceptors. In the Byzantized algorithm, the learner could perform that action
when it had received such messages from a byzquorum, since that set of messages
would contain a subset from a quorum of acceptors.

The key action in Paxos consensus is the leader’s Phase 2a action, which
chooses a safe value based on properties P3a and P3b. The leader can deduce
that P3a holds if it receives 1b messages from a byzquorum, each asserting
that the sender has not voted, because that byzquorum contains a quorum of
acceptors. However, P3b is problematic. In the original algorithm, it is satisfied
if there is a 1b message from some single acceptor reporting a vote in a ballot c.
However, in the Byzantized algorithm, there is no way to determine if a single
message is from a real or fake acceptor. One can maintain safety by requiring
that a vote be reported in the highest-numbered ballot c by f +1 byzacceptors.
However, liveness would then be lost because it is possible to reach a state in
which this condition does not hold for the 1b messages sent by the real acceptors.

One way to fix this problem is to assume N > 3f . In that case, any two
quorums have at least f +1 acceptors in common, and we can replace P3a and
P3b by

P3a′. If there is no ballot numbered less than b in which f +1 acceptors have
voted, then all values are safe at b.

P3b′. If there is some ballot c in which acceptors have voted and there is no
higher-numbered ballot less than b in which f +1 acceptors have voted,
then the value v voted for in c is safe at b.

The Phase 2a action is then always enabled by the receipt of 1b messages from
a byzquorum because, if P3a′ does not hold, then we can apply P3b′ with c
the largest ballot in which f +1 byzacceptors have voted for the same value.
However, this is unsatisfactory because if assumes N > 3f , so it leads to a
Byzantine consensus algorithm requiring more than 4f acceptors. Our solution
to this problem is to use the variant of the Paxos consensus algorithm described
in Section 4 below.

There is still another problem to be solved. For a Phase 2a action to be
enabled, it is not enough for the leader to have received 1b messages from a
quorum; it is also necessary that the leader has not already sent a (different)
2a message. If P3a holds, a malicious leader could send two 2a messages for
different safe values. This could lead to two different values being chosen in two
later ballots.
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The solution to this problem lies in having the leader and the acceptors coop-
eratively emulate the execution of the Phase 2a action, using a new Phase 2av
action. The leader sends to the byzacceptors a request to execute the Phase 2a
action for a particular value v . An acceptor responds to this request by exe-
cuting a Phase 2av action in which it sends a 2av message with value v to all
the byzacceptors. It executes the Phase 2av action only if (i) it can determine
that one such 2a message could be sent in the emulated algorithm (we explain
in Section 5 how it does this), and (ii) it has not already executed a Phase 2av
action in the current ballot. An acceptor can execute the Phase 2b action if it
has received 2av messages with the same value from a byzquorum. Since any
two byzquorums have a (real) acceptor in common, no two acceptors can exe-
cute Phase 2b actions for different values. The refinement mapping is defined
so an emulated 2a message is considered to have been sent when a quorum of
acceptors have sent the corresponding 2av messages.

4 Algorithm PCon

We now describe a variant called PCon of the classic Paxos consensus algorithm.
call PCon. As explained below, a more general version of this algorithm has
appeared before. Like classic Paxos, it assumes N acceptors with N > 2f +1.

In the classic algorithm described above, a ballot-b 2a message serves two
functions: (i) it asserts that a value is safe at b, and (ii) it instructs the acceptors
to vote for that value in ballot b. In algorithm PCon, we introduce a 1c message
to accomplish (i), and we allow the leader to send multiple 1c messages asserting
that multiple values are safe. We introduce a leader Phase 1c action and modify
the Phase 2a action as follows:

Phase 1c. Using the 1b messages from a quorum of acceptors, the leader chooses
a set of values that are safe at b and sends a 1c message for each of those
values.

Phase 2a. The leader sends a 2a message for some value for which it has sent
a 1c message.

The leader does not have to send all its 1c messages at once; it can execute the
Phase 1c action multiple times in a single ballot. To choose safe values in the
Phase 1c action, the ballot-b leader uses the following properties of the algorithm
after receiving 1b messages from a quorum of acceptors.

P3a. If no acceptor in the quorum has voted in a ballot numbered less than
b, then all values are safe at b.

P3c. If a ballot-c 1c message with value v has been sent, for some c < b, and
(i) no acceptor in the quorum has voted in any ballot greater than c and
less than b, and (ii) any acceptor in the quorum that has voted in ballot
c voted for v in that ballot, then v is safe at b.

The careful reader will have noticed that we have not specified to whom the
ballot-b leader sends its 1c messages, or how it learns about 1c messages sent
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in lower-numbered ballots so it can check if P3c holds. In algorithm PCon, the
1c messages are logical constructs that need not actually be sent. Sending a
2a message implies that the necessary 1c message was sent, and a 1b message
reporting a vote in ballot c implies that a ballot-c 1c message was sent. So, why
were 1c messages introduced in previous algorithms?

Systems that run for a long time cannot be based on a fixed set of accep-
tors. Acceptors must occasionally be removed and new ones added—a proce-
dure called reconfiguration. In classic Paxos, reconfiguration happens between
consensus instances, and a single instance is effectively executed by a single set
of acceptors. Two algorithms have been proposed in which reconfiguration hap-
pens within the execution of a single consensus instance, with different ballots
using possibly different sets of acceptors: Vertical Paxos [10] and an unpublished
version of Cheap Paxos [12]. The 1c messages serve to eliminate the dependence
on acceptors from lower-numbered ballots, which may have been reconfigured
out of the system. When a new active leader begins ballot b, case P3a holds for
the infinitely many instances for which Phase 2 of ballot b has not yet begun.
The leader’s 1c messages inform future leaders of this fact, so they do not have
to learn about votes cast in any ballot numbered less than b.

The astute reader will have observed that the definition of safe at implies
that if two different values are safe at b, then all values are safe at b. There is
no reason for the leader to do anything other than sending a message saying a
single value is safe, or sending messages saying that all values are safe. However,
the more general algorithm is just as easy to prove correct and is simpler to
Byzantize.

5 Algorithm BPCon

We now derive algorithm BPCon by Byzantizing the N -acceptor algorithm
PCon, adding f fake acceptors. We first consider the actions of a leader pro-
cess. There is no explicit 2a message or Phase 2a action in algorithm BPCon.
Instead, the acceptors cooperate to emulate the sending of a 2a message, as de-
scribed above in Section 3. The ballot-b leader requests that a Phase 2a action
be performed for a value v for which it has already sent a 1c message. On re-
ceiving the first such request, an acceptor executes a Phase 2av action, sending
a ballot-b 2av message for value v , if it has already received a legal ballot-b 1c
message with that value.

Since the leader’s request is necessary only for liveness, we do not explicitly
model it. Instead, we allow an acceptor to perform a ballot-b Phase 2av action
iff it has received the necessary 1c action and has not already sent a ballot-b
2av message.

Because the algorithm must tolerate malicious leaders, we let the ballot-b
leader send any 1a and 1c messages it wants. (Remember that we assume a
process cannot send a message that appears to be from another process.) There
is only one possible ballot-b 1a message, and algorithm PCon’s Phase 1a action
allows the leader to send it at any time. Hence the BPCon Phase 1a action is
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the same as the corresponding PCon action. The BPCon Phase 1c action allows
the ballot-b leader to send any ballot-b 1c message at any time.

Acceptors will ignore a 1c message unless it is legal. To ensure liveness, a
nonfaulty leader must send a message that (real) acceptors act upon. To see
how it does that, we must determine how an acceptor knows that a 1c message
is legal.

The sending of a ballot-b 1c message is enabled in PCon by P3a or P3c above,
which requires the receipt of a set of 1b messages from a quorum and possibly of
a 1c message. In BPCon, we put into the 1b messages additional information to
enable the deduction that a 1c message was sent. An acceptor includes in its 1b
messages the set of all 2av messages that it has sent—except that for each value
v , it includes (and remembers) only the 2av message with the highest numbered
ballot that it sent for v . Each of those 2av messages was sent in response to
a legal 1c message. As explained in our discussion of Byzantizing in Section 3,
this implies that given a set S of ballot-b 1b messages sent by a byzquorum, the
following two conditions imply P3a and P3c, respectively:

BP3a. Each message in S asserts that its sender has not voted.
BP3c. For some c < b and some value v , (a) each message in S asserts that

(i) its sender has not voted in any ballot greater than c and (ii) if it
voted in c then that vote was for v , and (b) there are f +1 1b messages
(not necessarily in S ) from byzacceptors saying that they sent a 2av
message with value v in ballot c.

A little thought shows we can weaken condition (b) of BP3c to assert:

(b′) there are f +1 1b messages from byzacceptors saying that they
sent a 2av message with value v in a ballot ≥ c.

The c of P3c is then the largest of those ballot numbers ≥ c reported by a real
acceptor.

To determine if a 1c message is legal, each acceptor maintains a set of 1b
messages that it knows have been sent. Our abstract algorithm assumes an action
that nondeterministically adds to that set any subset of 1b messages that have
actually been sent. Of course, some of those 1b messages may be from fake
acceptors, which may send any 1b message. Liveness requires the leader to ensure
that the acceptors eventually know that the 1b messages enabling its sending of
the 1c message have been sent. We discuss in Section 6 below how that is done.

As described above in Section 3, an acceptor performs a Phase2b action when
it knows that it has received identical 2av messages from a quorum of acceptors.
A 2a message of PCon is emulated by a set of identical 2av messages sent by a
quorum, with the Phase 2a action emulated by the sending of the last of that
set of messages.

6 Liveness and Learning about Sent Messages

Liveness of PCon requires that a nonfaulty leader executes a ballot b, no leader
begins a higher-numbered ballot, and the leader and nonfaulty acceptors can
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communicate with one another. The requirements for liveness of BPCon are the
same. However, it is difficult to ensure that a Byzantine leader does not execute
a higher-numbered ballot. Doing this seems to require an engineering solution
based on real-time assumptions. One such solution is presented by Castro and
Liskov.

Assuming these requirements, liveness of BPCon requires satisfying the fol-
lowing two conditions:

BL1. The leader can find 1b messages satisfying BP3a or BP3c.
BL2. All real acceptors will know that those messages have been sent.

These two conditions imply that the leader will send a legal 1c message, a
byzquorum BQ of real (nonfaulty) acceptors will receive that 1c message and
send 2av messages, all the acceptors in BQ will receive those 2av messages and
send 2b messages. Learners, upon receiving those 2b messages will learn that the
value has been chosen.

To show that BL1 holds, observe that the ballot-b leader will eventually receive
1b messages from the acceptors in BQ . Let S be the set of those 1b messages.
We now show that BP3a or BP3c holds.

1. It suffices to assume that BP3a is false and prove BP3c.
Proof Obvious.

2. Let c be the largest ballot in which an acceptor in BQ voted, let a be such
an acceptor, and let v be the value it voted for.
Proof The existence of such a c follows from 1.

3. Acceptor a received ballot-c 2av messages with value v from a byzquorum.
Proof By 2 and the enabling condition of the Phase 2b action.

4. No acceptor voted for a value other than v in ballot c.
Proof By 3, since any two byzquorums have an acceptor in common and an
acceptor can send at most one ballot-c av message.

5. At least f +1 acceptors sent ballot-c 2av messages with value v .
Proof By 3, since a byzquorum contains at least f +1 acceptors.

6. Condition (b′) of BP3c holds.
Proof By 5, because an acceptor sending a ballot-c 2av message with value
v implies that, for b > c, its ballot-b 1b message will report that it sent a
2av message with value v in some ballot ≥ c.

7. Condition (a) of BP3c holds.
Proof By 2 (no acceptor in BQ voted in a ballot > c) and 4.

8. qed

Proof By 1, 6, and 7.

This shows that BL1 eventually holds. To prove liveness, we need to show that
BL2 holds. To ensure that it holds, the leader must have a way of ensuring that
all the real acceptors eventually learn that a 1b message was sent. If the 1b
message was sent by a real acceptor, then that acceptor can just broadcast its
1b message to all the byzacceptors as well as to the leader. We now present two
methods for ensuring that an acceptor learns that a 1b message was sent, even
if it was sent by a fake acceptor.
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6.1 Sending Proofs

The simplest approach is for the leader to include with its 1c message a proof
that all the necessary 1b messages have been sent. The easiest way to do that
is to use full digital signatures and have byzacceptors sign their 1b messages.
The leader can just include the necessary properly signed 1b messages in its 1c
message.

There is another way for the leader to include in its 1c message a proof that a
message was sent, using only authentication with MACs. A MAC is a signature
mp→q that a process p can attach to a message m that proves to q that p sent m.
The MAC mp→q proves nothing to any process other than q. We now describe
a general method of obtaining a proof of a fact in the presence of f Byzantine
processes. We can apply it to the fact that a process p sent a particular message.

Suppose a message m asserts a certain fact, and process q receives it with MAC
mp→q from f +1 different processes p. With at most f Byzantine processes, at
least one of those processes p asserting the fact is nonfaulty, so the fact must be
true. However, q cannot prove to any other process that the fact is true. However,
suppose that it receives from 2f+1 processes p the message together with a vector
〈mp→r1 , . . . ,mp→rk

〉 of MACs for the k processes r1, . . . , rk . At least f +1 of
those vectors were sent by nonfaulty processes p, so they have correct MACs
and will therefore convince each ri that a nonfaulty process sent m. Therefore,
q can send m and these 2f +1 vectors of MACs to each of the processes ri as a
proof of the fact asserted by m.

In general, a vector of (j +1)f + 1 MACs provides a proof that can be sent
along a path of length j . For BPCon, we need it only for j = 1; one method of
Byzantizing fast Paxos [8] uses the j = 2 case [11].

6.2 Relaying 1b Messages

We now describe another way a leader can ensure that good acceptors learn that
a 1b message was sent. We have byzacceptors broadcast their 1b messages to all
byzacceptors (as well as to the leader), and have them relay the 1b messages to
the leader and to all other byzacceptors. Upon receipt of copies of a 1b message
from 2f +1 byzacceptors, the leader knows that at least f +1 real acceptors
sent or relayed that message to all byzacceptors. Assuming the requirements for
liveness, this implies that all acceptors will eventually receive copies of the 1b
message from f+1 different byzacceptors, from which they infer that the message
actually was sent.

This is the basic method used by Castro and Liskov. However, in their al-
gorithm, the byzacceptors relay the broadcast 1b messages (which they call
view-change-acks) only to the leader (which they call the primary). The leader
includes (digests) of the 1b messages in its 1c message, and an acceptor asks the
other byzacceptors to relay any 1b message that it hasn’t received that is in the
1c message.
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7 The Castro-Liskov Algorithm

The Castro-Liskov algorithm, like Paxos, executes a state machine by executing
an unbounded sequence of instances of a consensus algorithm. It contains engi-
neering optimizations for dealing with the sequence of instances—in particular,
for garbage collecting old instances and for transferring state to repaired pro-
cesses. We believe that those optimizations can be obtained by Byzantizing the
corresponding optimizations for classic Paxos, but they are irrelevant to con-
sensus. Some other optimizations, such as sending message digests instead of
messages, are straightforward details that we ignore for simplicity.

When we ignore these details and consider only the consensus algorithm at
the heart of the Castro-Liskov algorithm, we are left with an algorithm that
refines BPCon. In the Castro-Liskov algorithm, byzacceptors are called replicas.
The ballot-b leader is the replica called the primary, other byzacceptors being
called backups. The replicas also serve as learners.

We explain how the Castro-Liskov consensus algorithm refines BPCon by
describing how the messages of BPCon are implemented. We assume the reader
is familiar with their algorithm.

1a There is no explicit 1a message; its sending is emulated cooperatively by
the replicas when they decide to begin a view change.

1b This is the view-change message.
1c During a view change, the new-view message acts like 1c messages for all

the consensus instances. For an instance in which the primary instructs
the replicas to choose a specific value, it is a 1c message with that value.
For all other instances, it is a set of 1c messages for all values. (Condition
BP3a holds in those other instances.) The acceptors check the validity of
these 1c messages simultaneously for all instances.

2av This is a backup’s prepare message. The pre-prepare message of the pri-
mary serves as its 2av message and as the message (not modeled in
BPCon) that requests a Phase 2a action.

2b This is the commit message.

As explained in Section 6.2, the Castro-Liskov algorithm’s view-change-ack is
used to relay 1b messages to the leader. Its reply message is sent by replicas
serving as learners to inform the client of the chosen value.

We explained in Section 3 the difficulty in Byzantizing classic Paxos. Our
inability to obtain the Castro-Liskov algorithm from classic Paxos is not a de-
ficiency of Byzantizing; it is due to the fact that the algorithm does not refine
classic Paxos—at least, not under any simple refinement mapping. In the Castro-
Liskov consensus algorithm, a leader may be required to pre-prepare a value v
even though no replica ever committed v in a previous view. This cannot happen
in classic Paxos.

8 The Formal Specifications and Proof

All of our specifications and proofs are available on the Web [5]. Here, we give
an overview of what we have done.
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In addition to deriving BPCon from PCon, we also derive PCon as follows. We
start with a simple specification Consensus of consensus. We refine Consensus
by an algorithm Voting, a high-level non-distributed consensus algorithm that
describes the ballots and voting that underlie PCon. We then obtain PCon by
refining Voting.

All the specifications are written in PlusCal, a high-level algorithm language
that superficially resembles a toy programming language [9]. A PlusCal algo-
rithm is automatically translated into a TLA+ specification. It is these TLA+

specifications that we verify. The specifications of BPCon and PCon describe
only the safety properties of the algorithms, so we are verifying only safety for
them. For Voting and Consensus, we have written specifications of both safety
and liveness.

Each step in the derivation of BPCon from Consensus is described formally
by a refinement mapping. To explain what this means, we review refinement
mappings as defined in [1]. (They are slightly different in TLA+, which uses a
single state space for all specifications.)

Let ΣS denote the state space of a specification S , and let Σω
S be the set of

sequences of states in ΣS . The specification S is a predicate on Σω
S , where S (σ)

is true for a state sequence σ iff σ represents a behavior (possible execution)
permitted by S .

A refinement of a specification S by a specification R is described by a map-
ping φ from ΣR to ΣS . We extend φ in the obvious way (pointwise) to a mapping
from Σω

R to Σω
S . If F is a function on ΣS or Σω

S , we define F to be the function on
ΣR or Σω

R, respectively, that equals F ◦φ. We say that R refines (or implements)
S under φ iff R implies S . Thus, verifying correctness of the refinement means
verifying the formula R ⇒ S .

We have proved the correctness of the refinement of PCon by BPCon, and
our proof has been completely checked by the TLAPS proof system, with two
exceptions:

– A few trivial facts about finite sets are assumed without proof—for example,
that a finite, non-empty set of integers contains a maximal element. We used
TLC to check for errors in the TLA+ formulas that state these assumptions.

– A handful of simple steps in the complete TLA+ proof require temporal-
logic reasoning. These steps, and their proofs, are identical for every TLA+

refinement proof of safety properties. Since TLAPS does not yet handle
temporal reasoning, proofs of these steps were omitted.

We have also written a complete proof that Voting refines Consensus, including
the liveness properties. Most of the non-temporal steps of that proof have been
checked by TLAPS; see [5] for details. We have checked our refinement of Voting
by PCon with the TLC model checker, using a large enough model to be confi-
dent that there are no “coding” errors in our specifications. That, combined with
our understanding of the algorithms, gives us confidence that this refinement is
correct.

Mathematical correctness of a refinement tells us nothing useful unless the
refinement mapping is a useful one. For example, a simple counter implements
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PCon under a refinement mapping in which the counter changing from n to
n + 1 is mapped to the execution of the Phase 1a action by the ballot-n leader.
Our refinement mappings are intuitively reasonable, as indicated by our informal
description of the refinement mapping for the refinement of PCon by BPCon. Be-
cause the purpose of a consensus algorithm is to determine what value is chosen,
we can provide the following more rigorous demonstration that our refinement
mappings are the “right” ones.

For each of our specifications, we define a state function chosen that equals
the set of values that have been chosen (a set containing at most one value). Let
chosenS be the state function chosen defined for specification S . The following
relations among these state functions show that our refinement mappings are
the ones we want.

chosenVoting = chosenConsensus

chosenPCon = chosenVoting

chosenBPCon ⇒ chosenPCon

The last relation is implication rather than equality for the following reason. A
value v is in chosenPCon iff a quorum of acceptors have voted for v in the same
ballot. It is impossible for a learner to determine if that is true because it does
not know which byzacceptors are acceptors. We therefore define chosenBPCon

to contain a value v iff a byzquorum has voted for it in the same ballot, which
implies that v is in chosenPCon ; hence the implication. (For liveness, we must
show that any element of chosenPCon is eventually an element of chosenBPCon).

The first of these relations is essentially the definition of the refinement map-
ping under which Voting refines Consensus. The second has been checked by
TLC. The third has been proved and the proof checked by TLAPS.

9 Conclusion

For a number of years, we have been informally explaining Byzantine consensus
algorithms as the Byzantizing of ordinary Paxos. We decided that formalizing
the Byzantizing of Paxos would be interesting in itself and would provide a test
of how well TLAPS works on real problems.

Although the basic idea of Byzantizing was right, the formalization revealed
that we were quite wrong in the details. In particular, we originally thought
that the Castro-Liskov algorithm refined classic Paxos consensus. We wrote and
checked almost the complete proof of that refinement, discovering the error only
because we were unable to prove one of the last remaining steps. We are not
sure if we would have found the error had we written a careful, hierarchically
structured hand proof. We are quite sure that we would not have found it by
writing a conventional paragraph-style “mathematical” proof.

Our proof that BPCon refines PCon revealed a number of problems with
TLAPS that were then corrected. Our subsequent proof that Voting refines
Consensus went quite smoothly. We intend to finish checking that proof when
TLAPS supports temporal reasoning. We hope to prove that BPCon also refines
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PCon when suitable liveness properties are added to the specifications. It would
be nice to prove that PCon refines Voting. However, we probably won’t bother
because we are already convinced that the refinement is correct, and because its
simpler proof would be less of a test of TLAPS.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

2. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems 20(4), 398–461 (2002)

3. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)
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Abstract. A frequent problem in settings where a unique resource must
be shared among users is how to resolve the contention that arises when
all of them must use it, but the resource allows only for one user each
time. The application of efficient solutions for this problem spans a myr-
iad of settings such as radio communication networks or databases. For
the case where the number of users is unknown, recent work has yielded
fruitful results for local area networks and radio networks, although ei-
ther a (possibly loose) upper bound on the number of users needs to be
known [7], or the solution is suboptimal [2], or it is only implicit [11]
or embedded [6] in other problems, with bounds proved only asymptot-
ically. In this paper, under the assumption that collision detection or
information on the number of contenders is not available, we present a
novel protocol for contention resolution in radio networks, and we recre-
ate a protocol previously used for other problems [11, 6], tailoring the
constants for our needs. In contrast with previous work, both protocols
are proved to be optimal up to a small constant factor and with high
probability for big enough number of contenders. Additionally, the pro-
tocols are evaluated and contrasted with the previous work by extensive
simulations. The evaluation shows that the complexity bounds obtained
by the analysis are rather tight, and that both protocols proposed have
small and predictable complexity for many system sizes (unlike previous
proposals).

1 Introduction

The topic of this work is the resolution of contention in settings where an un-
known number of users must access a single shared resource, but multiple si-
multaneous accesses are not feasible. The scope of interest in this problem is
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wide, ranging from radio and local area networks to databases and transactional
memory. (See [2] and the references therein.)

A common theme in protocols used for this problem is the adaptive adjust-
ment of some user variable that reflects its eagerness in trying to access the
shared resource. Examples of such variable are the probability of transmitting
a message in a radio network or the frequency of packet transmission in a local
area network. When such adjustment reduces (resp. increases) the contention,
the technique is called back-off (resp. back-on). Combination of both methods
are called back-on/back-off. Protocols used may be further characterized by the
rate of adjustment. E.g., exponential back-off, polynomial back-on, etc. In par-
ticular, exponential back-off is widely used and it has proven to be efficient in
practical applications where statistical arrival of contenders is expected. Nev-
ertheless, worst case arrival patterns, such as bursty or batched arrivals, are
frequent [18, 12].

A technique called Loglog-iterated Back-off was shown to be within
a sublogarithmic factor from optimal with high probability in [2]. 1 The pro-
tocol was presented in the context of packet contention resolution in local area
networks for batched arrivals. Later on, also for batched arrivals, we presented
a back-on/back-off protocol in [7], instantiated in the k-selection problem in
Radio Networks (defined in Section 2). The latter protocol, named here Log-

Fails Adaptive, is asymptotically optimal for any significant probability of
error, but additionally requires that some upper bound (possibly loose) on the
number of contenders is known. In the present paper, we remove such require-
ment. In particular, we present and analyze a protocol that we call One-Fail

Adaptive for k-selection in Radio Networks. We also recreate and analyze
another protocol for k-selection, called here Exp Back-on/Back-off , which
was previously embedded in protocols for other problems and analyzed only
asymptotically [11, 6]. Our analysis shows that One-Fail Adaptive and Exp

Back-on/Back-off, both of independent interest, resolve contention among
an unknown and unbounded2 number of contenders with high probability in
optimal time up to constants. Additionally, by means of simulations, we evalu-
ate and contrast the average performance of all four protocols. The simulations
show that the complexity bounds obtained in the analysis (with high probability)
for these protocols are rather tight for the input sizes considered. Additionally,
they show that they are faster that Loglog-iterated Back-off and more
predictable for all network sizes than Log-Fails Adaptive.

Roadmap: The rest of the paper is organized as follows. In the following section
the problem, model, related work and results are detailed. In Section 3, we
introduce One-Fail Adaptive and its analysis. Exp Back-on/Back-off is
detailed and analyzed in Section 4. The results of the empirical contrast of all
1 For k contenders, we define with high probability to mean with probability at least

1− 1/kc for some constant c > 0.
2 We use the term unbounded to reflect that not even an upper bound on the number

of contenders is known. This should not be confused with the infinitely-many users
model where there are countably infinitely many stations. [4]
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four protocols is given in Section 5 and we finish with concluding remarks and
open problems in Section 6.

2 Preliminaries

A well-studied example of unique-resource contention is the problem of broad-
casting information in a multiple-access channel. A multiple-access channel is a
synchronous system that allows a message to be delivered to many recipients
at the same time using a channel of communication but, due to the shared na-
ture of the channel, the simultaneous introduction of messages from multiple
sources produce a conflict that precludes any message from being delivered to
any recipient. The particular model of multiple-access channel we consider here
is the Radio Network, a model of communication network where the channel is
contended (even if radio communication is not actually used [4]). We first precise
our model of Radio Network as follows.

The Model: We consider a Radio Network comprised of n stations called nodes.
Each node is assumed to be potentially reachable from any other node in one
communication step, hence, the network is characterized as single-hop or one-
hop indistinctively. Before running the protocol, nodes have no information, not
even the number of nodes n or their own label. Time is supposed to be slotted
in communication steps. Assuming that the computation time-cost is negligible
in comparison with the communication time-cost, time efficiency is studied in
terms of communication steps only. The piece of information assigned to a node
in order to deliver it to other nodes is called a message. The assignment of
a message is due to an external agent and such an event is called a message
arrival. Communication among nodes is carried out by means of radio broadcast
on a shared channel. If exactly one node transmits at a communication step,
such a transmission is called successful or non-colliding, we say that the message
was delivered, and all other nodes receive such a message. If more than one
message is transmitted at the same time, a collision occurs, the messages are
garbled, and nodes only receive interference noise. If no message is transmitted
in a communication step, nodes receive only background noise. In this work,
nodes can not distinguish between interference noise and background noise, thus,
the channel is called without collision detection. Each node is in one of two
states, active if it holds a message to deliver, or idle otherwise. As in [2, 16, 11],
we assume that a node becomes idle upon delivering its message, for instance
when an explicit acknowledgement is received (like in the IEEE 802.11 Medium
Access Control protocol [1]). For settings where the channel does not provide
such functionality, such as Sensor Networks, a hierarchical infrastructure may
be predefined to achieve it [6], or a leader can be elected as the node responsible
for acknowledging successful transmissions [22].

One of the problems that require contention resolution in Radio Networks is
the problem known in the literature as all-broadcast [4], or k-selection [16]. In
k-selection, a set of k out of n network nodes have to access a unique shared
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channel of communication, each of them at least once. As in [2, 16, 11], in this
paper we study k-selection when all messages arrive simultaneously, or in a
batch. Under this assumption the k-selection problem is called static. A dynamic
counterpart where messages arrive at different times was also studied [16].

The Problem: Given a Radio Network where k network nodes are activated
by a message that arrives simultaneously to all of them, the static k-selection
problem is solved when each node has delivered its message.

Related Work: A number of fruitful results for contention resolution have been
obtained assuming availability of collision detection. Martel presented in [19] a
randomized adaptive protocol for k-Selection that works in O(k+ logn) time in
expectation3. As argued by Kowalski in [16], this protocol can be improved to
O(k + log logn) in expectation using Willard’s expected O(log logn) selection
protocol of [23]. In the same paper, Willard shows that, for any given protocol,
there exists a choice of k ≤ n such that selection takes Ω(log logn) expected
time for the class of fair selection protocols (i.e., protocols where all nodes use
the same probability of transmission to transmit in any given time slot). For
the case in which n is not known, in the same paper a O(log log k) expected
time selection protocol is described, again, making use of collision detection.
If collision detection is not available, using the techniques of Kushilevitz and
Mansour in [17], it can be shown that, for any given protocol, there exists a
choice of k ≤ n such that Ω(logn) is a lower bound in the expected time to get
even the first message delivered.

Regarding deterministic solutions, the k-Selection problem was shown to be
in O(k log(n/k)) already in the 70’s by giving adaptive protocols that make
use of collision detection [3, 13, 20]. In all these results the algorithmic tech-
nique, known as tree algorithms, relies on modeling the protocol as a complete
binary tree where the messages are placed at the leaves. Later, Greenberg and
Winograd [10] showed a lower bound for that class of protocols of Ω(k logk n).
Regarding oblivious algorithms, Komlòs and Greenberg [15] showed the exis-
tence of O(k log(n/k)) solutions even without collision detection but requiring
knowledge of k and n. More recently, Clementi, Monti, and Silvestri [5] showed
a lower bound of Ω(k log(n/k)), which also holds for adaptive algorithms if colli-
sion detection is not available. In [16], Kowalski presented the construction of an
oblivious deterministic protocol that, using the explicit selectors of Indyk [14],
gives a O(k polylogn) upper bound without collision detection.

In [9], Gerèb-Graus and Tsantilas presented an algorithm that solves the
problem of realizing arbitrary h-relations in an n-node network, with probability
at least 1 − 1/nc, c > 0, in Θ(h + logn log logn) steps. In an h-relation, each
processor is the source as well as the destination of at most h messages. Making
h = k this protocol can be used to solve static k-selection. However, it requires
that nodes know h.

Extending previous work on tree algorithms, Greenberg and Leiserson [11]
presented randomized routing strategies in fat-trees for bounded number of
3 Througout this paper, log means log2 unless otherwise stated.
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messages. Underlying their algorithm lies a sawtooth technique used to “guess”
the appropriate value for some critical parameter (load factor), that can be used
to “guess” the number of contenders in static k-selection. Furthermore, modulo
choosing the appropriate constants, Exp Back-on/Back-off uses the same
sawtooth technique. Their algorithm uses n and it is analyzed only asymptoti-
cally.

Monotonic back-off strategies for contention resolution of batched arrivals of
k packets on simple multiple access channels, a problem that can be seen as
static k-selection, have been analyzed in [2]. In that paper, it is shown that r-
exponential back-off, a monotonic technique used widely that has proven to be
efficient for many practical applications is in Θ(k loglog r k) for batched arrivals.
The best strategy shown is the so-called loglog-iterated back-off with a makespan
in Θ(k log log k/ log log log k) with probability at least 1−1/kc, c > 0, which does
not use any knowledge of k or n. In the same paper, the sawtooth technique used
in [11] is informally described in a paragraph while pointing out that it yields
linear time for contention resolution thanks to non-monotonicity, but no analysis
is provided.

Later on, Farach-Colton and Mosteiro presented an optimal protocol for Gos-
siping in Radio Networks in [6]. The sawtooth technique embedded in [11] is
used in that paper as a subroutine to resolve contention in linear time as in
Exp Back-on/Back-off. However, the algorithm makes use of n to achieve
the desired probability of success and the analysis is only asymptotical.

A randomized adaptive protocol for static k-selection in a one-hop Radio
Network without collision detection was presented in [7]. The protocol is shown
to solve the problem in (e + 1 + ξ)k + O(log2(1/ε)) steps with probability at
least 1− 2ε, where ξ > 0 is an arbitrarily small constant and 0 < ε ≤ 1/(n+ 1).
Modulo a constant factor, the protocol is optimal if ε ∈ Ω(2−

√
n). However, the

algorithm makes use of the value of ε, which must be upper bounded as above
in order to guarantee the running time. Therefore, knowledge of n is required.

Our Results: In this paper, we present a novel randomized protocol for static
k-selection in a one-hop Radio Network, and we recreate a previously used tech-
nique suiting the constants for our purpose and without making use of n. Both
protocols work without collision detection and do not require information about
the number of contenders. As mentioned, these protocols are called One-Fail

Adaptive and Exp Back-on/Back-off. It is proved that One-Fail Adap-

tive solves static k-selection within 2(δ+1)k+O(log2 k) steps, with probability
at least 1− 2/(1 + k), for e < δ ≤∑5

j=1(5/6)j. On the other hand, Exp Back-

on/Back-off is shown to solve static k-selection within 4(1 + 1/δ)k steps with
probability at least 1 − 1/kc for some constant c > 0, 0 < δ < 1/e, and big
enough k. Given that k is a lower bound for this problem, both protocols are
optimal (modulo a small constant factor) for big enough number of contenders.

Observe that the bounds and the probabilities obtained are given as functions
of the parameter k, as done in [2], since this is the input parameter of our version
of the problem. A fair comparison with the results obtained as function of k and
n would require that k is large enough, so that n = Ω(kc), for some constant c.
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Both protocols presented are of interest because, although protocol Exp Back-

on/Back-off is simpler, One-Fail Adaptive achieves a better multiplicative
factor, although the constant in the sublinear additive factor may be big for
small values of k.

Additionally, results of the evaluation by simulation of the average behavior
of One-Fail Adaptive and Exp Back-on/Back-off and a comparison with
Log-Fails Adaptive and Loglog-iterated Back-off are presented. Both
algorithms One-Fail Adaptive and Exp Back-on/Back-off run faster than
Loglog-iterated Back-off on average, even for small values of k. Although
Loglog-iterated Back-off has higher asymptotic complexity, one may have
expected that it may run fast for small networks. On the other hand, the knowl-
edge on a bound of k assumed by Log-Fails Adaptive seems to provide an
edge with respect to One-Fail Adaptive and Exp Back-on/Back-off for
large values of k. However, Log-Fails Adaptive has a much worse behavior
than the proposed protocols for small to moderate network sizes (k ≤ 105). In
any case, for all values of k simulated, One-Fail Adaptive and Exp Back-

on/Back-off have a very stable and efficient behavior.

3 One-Fail Adaptive

As in Log-Fails Adaptive [7], One-Fail Adaptive is composed by two in-
terleaved randomized algorithms, each intended to handle the communication
for different levels of contention. One of the algorithms, which we call AT, is
intended for delivering messages while the number of nodes contending for the
channel is above some logarithmic threshold (to be defined later). The other
algorithm, called BT, has the purpose of handling message delivery after that
number is below that threshold. Nonetheless, a node may transmit using the
BT (resp. AT) algorithm even if the number of messages left to deliver is above
(resp. below) that threshold.

Both algorithms, AT and BT, are based on transmission trials with certain
probability and what distinguishes them is just the specific probability value
used. It is precisely the particular values of probability used in each algorithm
what differentiates One-Fail Adaptive from Log-Fails Adaptive. For the
BT algorithm, the probability of transmission is inversely logarithmic on the
number of messages already transmitted, while in Log-Fails Adaptive that
probability was fixed. For the AT algorithm the probability of transmission
is the inverse of an estimation on the number of messages left to deliver. In
One-Fail Adaptive this estimation is updated continuously, whereas in Log-

Fails Adaptive it was updated after some steps without communication. These
changes yield a protocol still linear, but now it is not necessary to know n. Fur-
ther details can be seen in Algorithm 1.

For clarity, Algorithms AT and BT are analyzed separately taking into account
in both analyses the presence of the other. We show the efficiency of the AT
algorithm in producing successful transmissions while the number of messages
left is above some logarithmic threshold, and the efficiency of the BT algorithm
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Algorithm 1. One-Fail Adaptive. Pseudocode for node x. δ is a constant such
that e < δ ≤∑5

j=1(5/6)j .

upon message arrival do1

κ̃← δ + 1 // Density estimator2

σ ← 0 // Messages-received counter3

start tasks 1, 2 and 34

Task 15

foreach communication-step = 1, 2, . . . do6

if communication-step ≡ 0 (mod 2) then // BT-step7

transmit 〈x, message〉 with prob 1/(1 + log(σ + 1))8

else // AT-step9

transmit 〈x, message〉 with probability 1/κ̃10

κ̃← κ̃ + 111

Task 212

upon reception from other node do13

σ ← σ + 114

if communication-step ≡ 0 (mod 2) then // BT-step15

κ̃← max{κ̃− δ, δ + 1}16

else // AT-step17

κ̃← max{κ̃− δ − 1, δ + 1}18

Task 319

upon message delivery stop20

handling the communication after that threshold is crossed. For the latter, we use
standard probability computations to show our time upper bound. For the AT
algorithm, we use concentration bounds to show that the messages are delivered
with large enough probability, while the density estimator κ̃ does not exceed
the actual number of messages left. This second proof is more involved since it
requires some preliminary lemmas. We establish here the main theorem, which
is direct consequence of the lemmata described that can be found in [8].

Theorem 1. For any e < δ ≤∑5
j=1(5/6)j and for any one-hop Radio Network

under the model detailed in Section 1, One-Fail Adaptive solves static k-
selection within 2(δ + 1)k + O(log2 k) communication steps, with probability at
least 1− 2/(1 + k).

4 Exp Back-on/Back-off

The algorithm presented in this section is based in contention windows. That
is, each node repeatedly chooses uniformly one time slot within an interval, or
window, of time slots to transmit its message. Regarding the size of such window,
our protocol follows a back-on/back-off strategy. Namely, the window is increased
in an outer loop and decreased in an inner loop, as detailed in Algorithm 2.

The intuition for the algorithm is as follows. Let m be the number of messages
left at a given time right before using a window of size w. We can think of
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Algorithm 2. Window size adjustment in Exp Back-on/Back-off. 0 < δ <
1/e is a constant.

for i = {1, 2, . . . } do1

w← 2i
2

while w ≥ 1 do3

Choose uniformly a step within the next w steps4

w ← w · (1− δ)5

the algorithm as a random process where m balls (modelling the messages)
are dropped uniformly in w bins (modelling time slots). We will show that, if
m ≤ w, for large enough m, with high probability, at least a constant fraction
of the balls fall alone in a bin. Now, we can repeat the process removing this
constant fraction of balls and bins until all balls have fallen alone. Since nodes
do not know m, the outer loop increasing the size of the window is necessary.
The analysis follows.

Lemma 1. For k ≥ m ≥ (2e/(1−eδ)2)(1+(β+1/2) lnk), 0 < δ < 1/e, m ≤ w,
and β > 0, if m balls are dropped in w bins uniformly at random, the probability
that the number of bins with exactly one ball is less than δm is at most 1/kβ.

Proof. Since a bigger number of bins can only reduce the number of bins with
more than one ball, if the claim holds for w = m it also holds for w > m. Thus,
it is enough to prove the first case. The probability for a given ball to fall alone
in a given bin is (1/m)(1 − 1/m)m−1 ≥ 1/(em). Let Xi be a random variable
that indicates if there is exactly one ball in bin i. Then, Pr(Xi = 1) ≥ 1/e. To
handle the dependencies that arise in balls and bins problems, we approximate
the joint distribution of the number of balls in all bins by assuming the load in
each bin is an independent Poisson random variable with mean 1. Let X be a
random variable that indicates the total number of bins with exactly one ball.
Then, μ = E[X ] = m/e. Using Chernoff-Hoeffding bounds [21], Pr(X ≤ δm) ≤
exp

(
−m (1− eδ)2 /(2e)

)
, because 0 < δ < 1/e.

As shown in [21], any event that takes place with probability p in the Poisson
case takes place with probability at most pe

√
m in the exact case. Then, we

want to show that exp
(−m(1− eδ)2/(2e)

)
e
√
m ≤ k−β , which is true for m ≥

2e
(1−eδ)2

(
1 +

(
1
2 + β

)
ln k

)
. ��

Theorem 2. For any constant 0 < δ < 1/e, Exp Back-on/Back-off solves
static k-selection within 4(1 + 1/δ)k steps with probability at least 1− 1/kc, for
some constant c > 0 and big enough k.

Proof. Consider an execution of the algorithm on k nodes. Let a round be the
sequence of time steps corresponding to one iteration of the inner loop of Algo-
rithm 2, i.e. the time steps of a window. Let a phase be the sequence of rounds
corresponding to one iteration of the outer loop of Algorithm 2, i.e. when the
window is monotonically reduced.
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Consider the first round when k ≤ w < 2k. Assume no message was trans-
mitted successfully before. (Any messages transmitted could only reduce the
running time.) By Lemma 1, we know that, for 0 < δ < 1/e and β > 0, at least
δk messages are transmitted in this round with probability at least 1− 1/kβ, as
long as k ≥ τ , where τ � (2e/(1− eδ)2)(1 + (β + 1/2) lnk).

Conditioned on this event, for some δ1 ≥ δ fraction of messages transmitted
in the first round, using the same lemma we know that in the following round at
least δ(1− δ1)k messages are transmitted with probability at least 1− 1/kβ, as
long as (1− δ1)k ≥ τ . This argument can be repeated for each subsequent round
until the number of messages left to be transmitted is less than τ . Furthermore,
given that the size of the window is monotonically reduced within a phase until
w = 1, even if the fraction of messages transmitted in each round is just δ, the
overall probability of reducing the number of messages left from k to τ within
this phase is at least (1− 1/kβ)log1/(1−δ)(2k).

Consider now the first round of the following phase, i.e. when 2k ≤ w < 4k.
Assume that at most τ nodes still hold a message to be transmitted. Using the
union bound, the probability that two or more of m nodes choose a given step
in a window of size w is at most

(
m
2

)
/w2. Applying again the union bound, the

probability that in any step two or more nodes choose to transmit is at most(
m
2

)
/w ≤ (

τ
2

)
/(2k) = τ(τ + 1)/(4k).

Therefore, using conditional probability, in order to complete the proof, it is
enough to show that(

1− τ(τ + 1)
4k

)(
1− 1

kβ

)log1/(1−δ)(2k)

≥ 1− 1
kc
, for some constant c > 0

exp
(
− τ(τ + 1)

4k − τ(τ + 1)
− log1/(1−δ)(2k)

kβ − 1

)
≥ exp

(
− 1
kc

)
τ(τ + 1)

4k − τ(τ + 1)
+

log1/(1−δ)(2k)
kβ − 1

≤ 1
kc
. (1)

Given that δ is a constant and fixing β > 0 as a constant, Inequality 1 is true
for some constant c < min{1, β}, for big enough k. Telescoping the number
of steps up to the first round when w = 4k, the running time is less than
4k + 2k

∑∞
i=0

∑∞
j=0(1− δ)j/2i = 4(1 + 1/δ)k. ��

5 Evaluation

In order to evaluate the expected behavior of the algorithms One-Fail Adap-

tive and Exp Back-on/Back-off, and compare it with the previously pro-
posed algorithms Loglog-iterated Back-off and Log-Fails Adaptive, we
have simulated the four algorithms. The simulations measure the number of steps
that the algorithms take until the static k-selection problem has been solved, i.e.,
each of the k activated nodes of the Radio Network has delivered its message,
for different values of k. Several of the algorithms have parameters that can be
adapted. The value of these parameters is the same for all the simulations of
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Fig. 1. Number of steps to solve static k-selection, per number of nodes k

Table 1. Ratio steps/nodes as a function of the number of nodes k

k 10 102 103 104 105 106 107 Analysis

Log-Fails Adaptive ξt = 1/2 46.4 1292.4 181.9 26.6 9.4 8.0 7.8 7.8

Log-Fails Adaptive ξt = 1/10 26.3 3289.2 593.8 50.3 11.5 4.5 4.4 4.4

One-Fail Adaptive 4.0 6.9 7.4 7.4 7.4 7.4 7.4 7.4

Exp Back-on/Back-off 4.0 5.5 5.2 7.2 6.6 5.6 7.9 14.9

Loglog-iterated Back-off 5.6 8.6 9.6 9.2 10.5 10.5 10.1 Θ
(

log log k
log log log k

)

the same algorithm (except the parameter ε of Log-Fails Adaptive that has
to depend on k). For Exp Back-on/Back-off the parameter is chosen to be
δ = 0.366. For One-Fail Adaptive the parameter is chosen to be δ = 2.72.
For Log-Fails Adaptive, the parameters (see their meaning in [7]) are chosen
to be ξδ = ξβ = 0.1 and ε ≈ 1/(k + 1), while two values of ξt have been used,
ξt = 1/2 and ξt = 1/10. Finally, Loglog-iterated Back-off is simulated
with parameter r = 2 (see [2]).

Figure 1 presents the average number of steps taken by the simulation of the
algorithms. The plot shows the the average of 10 runs for each algorithm as a
function of k. In this figure it can be observed that Log-Fails Adaptive takes
significantly larger number of steps than the other algorithms for moderately
small values of k (up to 105). Beyond k = 105 all algorithms seem to have a
similar behavior.

A higher level of detail can be obtained by observing Table 1, which presents
the ratio obtained by dividing the number of steps (plotted in Figure 1) by the
value of k, for each k and each algorithm. In this table, the bad behavior of
Log-Fails Adaptive for moderate values of k can be observed, with values
of the ratio well above those for large k. It seems like the value of ξt used has
an impact in this ratio, so that the smaller value ξt = 1/10 causes larger ratio
values. Surprisingly, for large values of k (k ≥ 106), the ratios observed are almost
exactly the constant factors of k obtained from the analysis [7]. (Recall that all
the analyses we refer to are with high probability while the simulation results
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are averages.) This may indicate that the analysis with high probability is very
tight and that the term O(log2(1/ε)) that appears in the complexity expression
is mainly relevant for moderate values of k. The ratio obtained for large k by
Log-Fails Adaptive with ξt = 1/10 is the smallest we have obtained in the
set of simulations. Loglog-iterated Back-off, on its hand, seems to have a
constant ratio of around 10. In reality this ratio is not constant but, since it is
sublogarithmic, this fact can not be observed for the (relatively small) values of
k simulated.

Regarding the ratios obtained for the algorithms proposed in this paper, they
seem to show that the constants obtained in the analyses (with high probabil-
ity) are very accurate. Starting at moderately large values of k (103 and up) the
ratio for One-Fail Adaptive becomes very stable and equal to the value of 7.4
obtained in the analysis. The ratios for the Exp Back-on/Back-off simula-
tions, on their hand, move between 4 and 8, while the analysis for the value of
δ used yields a constant factor of 14.9. Hence, the ratios are off by only a small
constant factor. To appreciate these values it is worth to note that the smallest
ratio expected by any algorithm in which nodes use the same probability at any
step is e, so these values are only a small factor away from this optimum ratio.
In summary, the algorithms proposed here have small and stable ratios for all
values of k considered.

6 Conclusions and Open Problems

In this work, we have shown optimal randomized protocols (up to constants) for
static k-selection in Radio Networks that do not require any knowledge on the
number of contenders. Future work includes the study of the dynamic version of
the problem when messages arrive at different times under the same model, either
assuming statistical or adversarial arrivals. The stability of monotonic strategies
(exponential back-off) has been studied in [2]. In light of the improvements
obtained for batched arrivals, the application of non-monotonic strategies to the
dynamic problem is promising.
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de-randomize their probabilistic construction and eliminate error prob-
ability. This is exactly what we do in this paper. That is, we show a

deterministic algorithm with radio use of Θ
(√

n/m
)
, which exactly

matches the lower bound proven in [2], up to a small multiplicative con-
stant. Therefore, our algorithm is optimal in terms of energy efficiency
and completely resolves a long sequence of works in this area [2, 11–14].
Moreover, our algorithm is optimal in terms of running time as well. In
order to achieve these results we devise a novel adaptive technique that
determines the times when devices power their radios on and off. This
technique may be of independent interest.

In addition, we prove several lower bounds on the energy efficiency of
algorithms for multi-hop networks. Specifically, we show that any algo-
rithm for multi-hop networks must have radio use of Ω(

√
n) per proces-

sor. Our lower bounds holds even for specific kinds of networks such as
networks modeled by unit disk graphs and highly connected graphs.

1 Introduction

Problem Description and Motivation: In wireless networks in general, and
in sensor and ad hoc networks in particular, minimizing energy consumption is
a central goal. It is often the case that energy resources are very limited for such
networks. Consider, for instance, a sensor network whose processors are fed by
solar energy. In such cases devising energy efficient algorithms becomes crucial.
A significant energy use of a processor takes place when its radio device is on.
Then, it is able to communicate with other processors in its transmission range
whose radio devices are also turned on. However, it wastes significantly more
energy than it would waste if its radio device was turned off. For example, in
typical sensor networks [16] listening to messages consumes roughly as much
energy as fully utilizing the CPU, and transmitting consumes up to 2.5 times
more energy. Moreover, if a processor runs in an idle mode, and its radio device
is off, it consumes up to 100 times less energy than it would consume if its
radio device was on. Therefore, the time that a processor can operate using an
allocated energy resource largely depends on how often its radio is turned on.

Processors in a wireless network may wake up at somewhat different time
points. For example, in the sensor network powered by solar energy, processors
wake up in the morning when there is enough light projected on their solar cells.
If the processors are spread over a broad area, then there is a difference in the
wake up times. The processors’ clocks start counting from zero upon wake up.
Since there is a difference in wake up times, the clocks get out of synchronization.
However, many network tasks require that all processors agree on a common
time counting. In such tasks processors are required to communicate only in
certain time points, and may be idle most of the time. If the clocks are not
synchronized, a certain procedure has to be invoked by each processor in order
to check the status of other processors. During this procedure processors may
turn their radio on constantly, resulting in a major waste of energy. Therefore,
clocks must be synchronized upon wake up in order to save energy and to allow
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the execution of timely mannered tasks. The clock synchronization itself must
be as efficient as possible in terms of energy use. It is desirable that among all
possible strategies, each processor selects the strategy that minimizes its radio
use. The energy efficiency of a processor is the number of time units in which
its radio device is turned on.

In this paper we devise energy efficient clock synchronization algorithms. The
goal of a clock synchronization algorithm is setting the logical clocks of all pro-
cessors such that all processors show the same value at the same time. In order
to achieve this goal, each processor executes an adaptive algorithm, which de-
termines the time points (with respect to its local clock) in which the processor
will turn its radio device on, for a fixed period of time. Once a processor’s radio
device is on, it is able to communicate with other processors in its range whose
radio devices are also on at the same time interval 1. Based on the received in-
formation a processor can adjust its logical clock, and determine additional time
intervals in which its radio device will be turned on. This process is repeated
until all processors are synchronized.

Our Results: We consider single-hop networks of m processors, such that the
maximum difference between processors wake up times is n. (Henceforth, the
uncertainty parameter.) We devise several deterministic synchronization algo-
rithms, the best of which has radio efficiency O(

√
n/m) per processor. Our

results improve the previous state-of-the-art algorithms devised by Bradonjic
et al. [2]. In [2] randomized algorithms for synchronization single-hop networks
were devised, whose energy efficiency is O(

√
n/m · polylog(n)) per processor.

Therefore, our deterministic results improve the best previous randomized re-
sults by a polylogarithmic factor. Moreover, Bradonjic et al. proved lower bounds
of Ω(

√
n/m) per processor for the energy efficiency of any deterministic clock

synchronization algorithm for single-hop networks. Hence, our algorithms are
optimal in terms of radio use up to constant factors.

We close the gap between the performance of the currently best-known ran-
domized and deterministic algorithms for this problem. This is particularly in-
teresting, because in many cases there exist (possibly inherent) significant gaps
between randomized and deterministic algorithms. Notable examples are con-
sensus where there is no deterministic solution, but there is a randomized one,
or Maximal Independent Set and O(Δ)-coloring for which the gaps between
best-known randomized and deterministic algorithms are exponential. In addi-
tion, our algorithms do not employ heavy machinery, as opposed to [2], where
expanders and sophisticated probabilistic analysis are employed. In contrast, we
devise a combinatorial construction that quickly ”spreads” processors’ radio use
approximately equally in time, which surprisingly allows them to synchronize
more efficiently via chaining synchronization messages with each other. As a

1 In our model more than one processor can transmit at a time without interference.
This can be achieved using standard multiple access schemes (CDMA, FDMA). Al-
ternatively, one can use traditional radio broadcast over our scheme. (See, e.g., [2].)
The problems of channel multiplexing, and of radio broadcast, are different from the
problem we address in this paper.
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result, our algorithm is also optimal in terms of running time (up to a small
constant factor). It runs in O(n) time, and improves the running time of [2],
which is O(n · polylog(m)).

We also prove lower bounds for multi-hop networks. We show that any deter-
ministic synchronization algorithm for an m-processor multi-hop network must
have total radio use Ω(m · √n). In [2] a simple deterministic algorithm for 2-
processor network was devised with energy efficiency O(

√
n) per processor. It

is extendable to m-vertex networks, in the sense that each processor learns the
differences between its clock and the clocks of its neighbors. The total radio effi-
ciency of the extended algorithm is O(m · √n). As evident from our results it is
far from optimal for single-hop networks. However, for multi-hop networks, its
total radio efficiency O(m · √n) is the best possible up to constant factors. Our
lower bounds hold even for very specific network types such as unit disk graph
and highly connected graphs.

High-Level Ideas: In the synchronization algorithm form processors devised in
[2] each processor determines by itself the time points in which it turns its radio
on. The decision of a processor does not depend by any means on the decisions of
other processors. Such a non-adaptive strategy makes the algorithm sub-optimal
unless the number of processors is constant. Moreover, the decisions are made
using randomization, and, consequently, the algorithm may fail. (However, the
probability of failure is very low, since it is exponentially in n close to zero.)
In contrast, our algorithms are deterministic and adaptive. In our algorithms,
periodically, each processor deterministically decides for the time points in the
future in which it will turn its radio on. Each decision is made based on all the
information the processor has learnt from communicating with other processors
before the time of decision. Such a strategy decreases the number of redundant
radio uses. In other words, the radio of a processor is used only if this processor is
essential for synchronization, and no other processor can be used instead. Since
all processors use this strategy, the radio use of each processor is as small as
possible.

Let V be an m-vertex set representing the processors of the network, and E
an initially empty edge set. Each time a pair of processors u, v ∈ V communicate
with each other, add the edge (u, v) to E. Once the graph G = (V,E) becomes
connected, all m processors can be synchronized. Each time a processor turns its
radio on, it communicates with other processors that also turn their radio on in
the same time. Consequently, additional edges are added to E, and the graph G
changes. In all time points the graph G consists of clusters. Initially, each vertex
is a cluster, and clusters are merged as time passes. Each time a new cluster is
formed, the clocks of the processors in the cluster are synchronized using our
cluster-synchronization procedures. Next, each processor selects exclusive (with
respect to other processors in the cluster) time points in the future in which
its radio will be turned on. For a sufficient number of points, such a selection
guarantees that one of the processors in the cluster will turn the radio on in the
same time with another processor from another cluster. This results in merging
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of the clusters. Our algorithms cause all clusters to merge into a single unified
cluster that contains all m vertices very quickly.

Related Work: Clock synchronization is one of the most intensively studied
and fundamentally important fields in distributed algorithms. [3, 4, 6–8, 10–
15, 17, 18]. The aspect of energy efficiency of clock synchronization algorithms
was concerned in most of these works. In [14] Polastre et al. devised an algo-
rithm with energy efficiency O(n) per processors. Each processor simply turns
its radio on for n+ 1 consecutive time units upon wake up. Since the maximum
difference between wake up points is n, this guarantees that all processors are
synchronized. More efficient solutions were devised by McGlynn and Borbash
[12], Palchaudhuri and Johnson [13], and by Moscibroda, Von Rickenbach, and
Wattenhofer [11]. In these solutions, each processor turns its radio on for O(

√
n)

time units that are randomly selected. Their correctness is based on the birth-
day paradox, according to which there exists a time point that is selected by two
processor with high probability. In this time point both processors turn their
radio on and are able to synchronize.

2 Preliminaries

The Setting: We use the following abstract model of a wireless network. We
remark that although this model is quite strong, it is sufficiently expressive
to capture a more general case as shown in [1, 2]. Global time is expressed as a
positive integer, and available for analysis purposes only. The network is modeled
by an undirected m vertex graph G = (V,E). The processors of the network are
represented by vertices in V , and enumerated by 1, 2, ...,m. For each pair of
processors u and v residing in the communication range of each other there is
an edge (u, v) ∈ E. Communication is performed in discrete rounds. Specifically,
time is partitioned into units of equal size, such that one time unit is sufficient
for a transmitted message to arrive at its destination. (At the physical level this
can be relaxed such that communication is possible if two processors turn their
radio on during intervals that overlap for at least one time unit.) A processor
wakes up in the beginning of a time unit, and its physical and logical clocks
start counting from zero. The clocks of all processors tick with the same speed,
and are incremented in the beginning of each new time unit. The wake up time
of the processors, and, consequently, the clock values in a certain moment may
differ. However, the maximum difference between the wake up times of any two
processors is bounded by an integer n, which is known to all processors. (In other
words, each processor wakes up with an integer shift in the range {0, 1, ...n} from
global time 0.) See [1] for a discussion on more general cases. Specifically, the
wake up shifts may be non-integers, and the clock speeds may somewhat differ,
as long as the ratio of different speeds is bounded by a constant.

Each processor has a radio device that is either on or off during each time
unit. If the radio device is off, its energy consumption is negligible. The energy
efficiency of an algorithm is the number of time units during which the radio de-
vice of a processor is on. A pair of processors (u, v) ∈ E are able to communicate
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in a certain time unit t (with respect to global time) only if the radio devices of
both u and v are turned on during this time unit.

Algorithm Representation: The running time f(n,m) of an algorithm is the
worst case number of time units that pass from wake up until the algorithm
terminates. The algorithm specifies initial fixed time points for a processor to
turn its radio on. In addition, it adaptively determines new time points each
time a processor turns its radio on. The time points are determined by assigning
strings to processors as follows. The strings of the m processors are represented
using a two dimensional arrayA. The arrayA containsm rows. For i = 1, 2, ...,m,
The ith row belongs to the ith processor. The number of columns of A is n +
f(n,m). All cells of A are set to 0, except the cells that are explicitly set to 1.
(Initially, all cells are set to 0.) The algorithm specifies an initial fixed string
Si for each processor i. For i = 1, 2, ...,m, suppose that processor i wakes up
at time ti, 0 ≤ ti ≤ n, with respect to global time. Then the ith row of A is
initialized as follows. For j = 0, 1, ..., |Si| − 1, set A[i][ti + j] = Si[j].

For j = 0, 1, 2..., at local time j, a processor i accesses the cell A[i][ti +
j]. A processor i turns its radio device on at local time k ≥ 0 if and only if
A[i][ti + k] = 1. If at global time t the radio device of a processor i is on, then
it can communicate with all processors j in its communication range for which
A[j][t] = 1. Based on the received information, processor i deterministically
decides whether to update cells in the row A[i]. It can update, however, only
cells that represent time points in the future, i.e., cells A[i][t′], for t′ > t. Observe,
however, that processor i is unaware both of global time and the shift ti. (In
particular, it is unaware of the index of the cell it is accessing in the rowA[i].) The
algorithm terminates once all processors detect a column of ones, i.e., a column
	 such that for all 1 ≤ j ≤ m, it holds that A[j][	] = 1. (Once all processors
detect a column of ones, they all turn their radio on in the same time, and
synchronize their clocks.) A clock synchronization algorithm A is correct if for
all i = 1, 2, ...,m, for all shifts ti, ti ∈ {0, 1, 2, ..., n}, once A is executed by all
processors there exists a column 	 such that for all j = 1, 2, ..,m, A[j][	] = 1.

Building Blocks and Definitions: A radio use policy is a protocol for a
processor i ∈ {1, 2, ...,m} that determines the local time points in which the
processor i turns its radio on. For r = 0, 1, 2, ..., in the beginning of time unit
r from wake up, the processor i decides whether to turn its radio device on as
explained above1.

For a fixed string s over the alphabet {0, 1} and a positive integer t, an (s, t)-
radio-use policy of a processor i determines the local time units in which i turns
its radio on. For a processor i that wakes up at global time ti, we say that
processor i performs an (s,t)-radio use policy if it sets A[i][ti + t + j] = s[j],
for j = 0, 1, ..., |s| − 1, and turns its radio device on accordingly. (Recall that
processor i turns its radio device on at local tick k if and only if A[i][ti +k] = 1.)
The processor starts performing the policy at global time ti + t. It completes the

1 The decision process can also be performed using a decision tree.
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policy at global time ti + t+ |s| − 1. During this period a processor may select
new time points in the future in which additional policies will be performed.

Next, we define the notion of length, covering-weight, and covering-density of
a policy. These definitions are used in the correctness analysis of the algorithms.
The length of an (s, t)-radio-use policy p, denoted len(p), is the difference between
the positions of the first and last ’1’ in s plus one. (In other words, if j is the
smallest index such that s[j] = 1, and k is the largest index such that s[k] = 1,
then len(p) = k − j + 1.) Intuitively, the length of a policy is the time duration
required for performing the policy. For the (s, t)-radio-use policy p, the string
s is a concatenation of two substring s′ ◦ s′′, defined by p. The substring s′ is
called the initial part of s, and the substring s′′ is called the main part of s. We
say that i performs the initial part of p in global time t′ if it performs the policy
p, and the global time t′ satisfies t + ti ≤ t′ ≤ t + ti + |s′| − 1. If i performs
the policy p, and the global time t′ satisfies t + ti + |s′| − 1 < t′, we say that i
performs the main part of p.

We say that two processors i and j overlap if there is a global time point
t′ in which both processors turn their radio on. Two processors u and v can
communicate (either directly or indirectly) if they overlap, or if there exist a
series of processors w1, w2, ..., wk, w1 = u,wk = v such that wi overlaps with
wi+1, for i = 1, 2, ..., k − 1. If such a series does not exist, we say that there is a
point of discontinuity between u and w. A point of discontinuity is a global time
point t′ in which either (1) there is no processor that performs a radio use policy,
or (2) each processor that do perform a radio use policy, completes it in time t′. A
global time interval (s′, t′) is continuous if there are no points of discontinuity in
it. For a continuous interval (s′, t′) such that s′ and t′ are discontinuity points,
all processors performing a radio use policy during the interval (s′, t′) form a
cluster c. In this case we say that c covers the interval (s′, t′). The length of a
cluster c that covers an interval (s′, t′), denoted len(c), is t′ − s′ + 1.

Each processor in a cluster adds weight to the cluster. Consequently, clusters
containing many processors are heavier than clusters containing few processors.
The covering-weight of a cluster c, denoted cwet(c), is the sum of lengths of
policies of processors contained in c. Consider two clusters c and c′ with the
same covering-weight, but such that the length of c is much shorter then the
length of c′. Therefore, c′ covers a much longer time interval. We show later in
this paper that clusters that cover longer intervals are ’better’ in a certain way.
Consequently, c′ is better than c, although they have the same covering weight.
On the other hand, a short and light cluster may be better than a long and
heavy one. Therefore, neither the length nor the covering-weight of a cluster are
expressive enough to determine how ’good’ a cluster is. Hence, we add the notion
of covering-density, which is the ratio between covering-weight and length of a
cluster. The covering-density of a cluster c, denoted cden(c), is cwet(c)

len(c) . Clusters
of lower covering-density are considered as better clusters. (Observe that these
definitions are different from the usual definitions of string weight and density
in which only the number of ones in the string are counted.)
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Next, we give similar definitions for intervals. The length of an interval q =
(s′, t′), denoted len(q), is t′ − s′ + 1. Suppose that during interval q there are
	 policies that are performed. (Possibly, some have started before time s′, and
some have ended after time t′.) Let q1, q2, ..., q� be the intervals contained in q
in which the main parts of the policies are performed. The covering-weight of an
interval q, denoted cwet(q), is Σ�

i=1len(qi). The covering-density of the interval,
denoted cden(q), is cwet(q)

len(q) .

3 Synchronization Algorithms for Single-Hop Networks

Procedure Synchronize
In this section we present a deterministic synchronization algorithm for complete
graphs on m vertices with energy efficiency O((

√
n/m) logn) per processor. In

the next section we devise an algorithm with energy efficiency O(
√
n/m) per

processor. As a first step, we define the following basic radio use policy for a
processor, consisting of two parts. Starting from local time t, for a given integer
k > 0, turn the radio devise on for k consecutive time units. (Henceforth, initial
part.) Then, for the following k2 time units, turn the radio on only once in
each k consecutive time units. (Henceforth, main part.) In other words, starting
from the beginning of the main part, the radio is turned on during time units
k, 2k, 3k, ..., k2. This completes the description of the policy. It henceforth will
be referred as k-basic policy. The string s of the policy is defined by s[i] =
1, s[(i + 2) · k − 1] = 1 for 0 ≤ i < k. The length of a k-basic policy is k + k2,
but the number of time units in which the radio is used is only 2k. We remark
that the k-basic policy is defined for any integer k > 0, but we employ policies
in which k = Θ(

√
n/m).

Consider a pair of processors u and v that wake up at the beginning of global
time units tu and tv, respectively, such that tu < tv. Suppose that both processors
use the k-basic policy p upon wake up, and that tv − tu < len(p). Then, there is a
global time unit t in which both processors turn their radio devices on. In this case
we say that the processors overlap. We summarize this fact in the next lemma.

Lemma 3.1. Suppose that processors u and v wake up at global time points
tu < tv, such that tv − tu < len(p), and execute the k-basic policy p upon wake
up, for an integer k > 0. Then u and v overlap.

Any two overlapping processors synchronize their clocks as follows. Each pro-
cessor executes the following procedure called Procedure Early-Synch. During its
execution the processor that began performing its radio policy later among the
two is synchronized with the other processor. In other words, the later processor
updates its logical clock to be equal to the logical clock of the earlier processor.
(Observe that the clock value of the later processor is not greater than that of
the earlier processor, therefore, clocks do not go backwards.) To this end, each
processor maintains the local variables Id, τ, J , where Id is the unique identity
number of the processor, τ is the local clock value, and J is the number of time
units passed since the processor began performing the current radio policy. The
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variable τ is updated in each time unit by reading the logical clock value and
assigning it to τ . The variable J is set to 0 each time the processor starts a radio
use policy, and is incremented in each time unit. Each time a processor turns
its radio on, it transmits the message (Id, τ, J). Once a processor u receives a
message (Idv, τv, Jv) form a processor v, processor u determines whether it be-
gan its radio policy after v did. If so, u updates its local clock to τv, and its
variable Ju to Jv. If both processors began their policy at the same time, then
the clocks are synchronized to the clock of the processor with the greater Id.
The procedure returns the value J = Ju = Jv. This completes its description.

Lemma 3.2. Procedure Early-Synch executed by two overlapping processors syn-
chronize their clocks.

Procedure Early-Synch can be generalized for synchronizing a cluster containing
an arbitrary number of processors. Recall that all processors in the cluster per-
form their policies in a time interval (s′, t′) containing no discontinuity points.
Hence, a message from a processor u can be delivered to all processors that begin
performing their policy after u does so. The message is received directly by all
processors that overlap with u, and is propagated in a rely-race manner to other
processors. In this way all the processors in the cluster can be synchronized with
the processor that was the first to start performing its policy.

The generalized procedure is called Procedure Cluster-Synch. During its exe-
cution all processors u ∈ V perform the k-basic policy. A vertex u starts per-
forming its policy at local time point Tu that is passed to the procedure as an
argument. (The argument is passed by another procedure that invokes Proce-
dure Cluster-Synch, which is described later in this section.) Each processor u
initializes a counter Ju that is set to 0 once the policy starts, and is incremented
by 1 in each time unit. Recall that the local clock of u is represented by the
variable τu. Each time a radio device of a processor u is on it transmits the
message (Idu, τu, Ju). For each received message (Idv, τv, Jv) from a vertex v, if
(Ju < Jv) or (Ju = Jv and Idu < Idv), then u updates its clock to τv and its
counter Ju to Jv. This completes the description of Procedure Cluster-Synch. Its
pseudocode is provided below. Its properties are summarized in Lemma 3.3. Its
correctness follows from the observation that all processors eventually synchro-
nize their counters J with the counter of the earliest processor in the cluster.

Algorithm 1. Procedure Cluster-Synch(Tu,k)
An algorithm for processor u.

1: Perform the k-basic policy starting from local time Tu

2: J := Early-Synch()
3: return J

Lemma 3.3. For a fixed k > 0, suppose that processors v1, v2, ..., v� perform
Procedure Cluster-Synch(Tvi , k), with the parameters Tv1 , Tv2 , ..., Tv�

, respectively.
If in the resulting execution the processors v1, v2, ..., v� form a cluster, then
v1, v2, ..., v� synchronize their clocks to the clock of the earliest processor v1.
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Next, we consider the most general problem in which m processors wake up at
arbitrary global time points in the time interval [0, n]. If each processor performs
the k-basic policy upon wake up, then several clusters may be produced. The
processors in each cluster can be synchronized using procedure Cluster-Synch.
However, the execution of procedure Cluster-Synch will not synchronize pro-
cessors from distinct clusters since any two distinct clusters are separated by a
discontinuity point. We devise a procedure, called Procedure Synchronize that
merges these clusters gradually, until only a single cluster remains. To this end,
the parameter k is selected to be large enough to guarantee that certain clus-
ters have large covering-density. The processors in a cluster with large covering-
density schedule the next policy execution times in a specific way that enlarges
the length of the cluster to the maximal extent. Somewhat informally, the cluster
is extended roughly equally to both of its sides. In other words, there is an inte-
ger L > 0 such that in the next phase the cluster begins L time units earlier than
in the previous phase, and terminates L units later than in the previous phase.
For a precise definition see Algorithm 2, line 14. The extension of the cluster
to both of its sides prevents time drifts, and, consequently, in each phase some
clusters overlap. Overlapping clusters are merged into fewer clusters of greater
covering-weight.

Algorithm 2. Procedure Flatten(Ju, k)
A protocol for a vertex u, executed once u completes the initial part of its pol-
icy.

1: /*** First stage ***/
2: J := Ju

3: wait for 2n− J time units
4: /*** Second stage ***/
5: B := {(Idu, J)}
6: transmit (Idu,J)
7: for each received message m = (Idv ,J ′) do
8: B := B ∪ {m}
9: end for

10: B′ := sort B by Ids in ascending order
11: len(c) := (max{J ′|(Id, J ′) ∈ B′} )
12: μ := the position of (Idu, J) in B′

13: 	 := |B|
14: next :=

⌊
2n + τu + len(c)−�·k2

2
+ μ · k2

⌋
15: return next /* returned locally to the caller of this procedure */

The procedure for extending the length of a cluster is called Procedure Flatten.
It is executed by processors in a synchronized cluster c, and proceeds in two
stages. The first stage (See Algorithm 2, lines 1-3) is executed by each processor
u in the cluster once the processor u is synchronized with the first processor of
the cluster v1. (In other words, once u completes the initial part of its k-basic
policy.) Then the counters J of u and v1 are also synchronized. A processor u
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schedules the next execution of its policy to be executed in 2n−J time units. The
second stage (Algorithm 2, lines 4-15) is executed once u performs the policy the
next time. Observe that it is executed in the same time by all processors in the
cluster. All processors of the cluster turn their radio on and learn the number
of processors in the cluster, their Ids, and the length of the cluster len(c) with
respect to the first stage. (We describe how to determine len(c) shortly.) Each
processor sorts the Ids and finds its position μ in the sorting. If the current local
time is τ , and the number of processors in the cluster is 	, it schedules the next
policy execution to local time

⌊
2n+ τ + len(c)−�·k2

2 + μ · k2
⌋
, and returns this

value.
The length of the cluster len(c) is equal to the difference between the global

time points of the beginning and the end of the cluster. Thus, the length len(c)
is determined by the latest processor in c. Once the latest processor v� completes
its policy in the first stage, its counter J� (which is synchronized with the counter
of the earliest processor) is equal to the number of time units passed since the
cluster has started. Once v� completes its policy, the entire cluster c is completed.
Hence, at that moment, it holds that len(c) = J�. All processors learn this
value in the second stage. (See step 11 in the pseudocode of Algorithm 2.) This
completes the description of the procedure. Its properties are summarized below.

Lemma 3.4. Suppose that Procedure Flatten is executed by a cluster c of 	
processors that is formed in a global time interval [p, q]. Then
(1) The second stage of Procedure Flatten is performed at global time p+ 2n by
all processors of c.
(2) Performing the policies by the scheduling of the second stage forms a cluster
c′ of length 	 · k2.
(3) The cluster c′ covers an interval that contains the interval [4n + p+q

2 −
�·k2

2 , 4n+ p+q
2 + �·k2

2 ].

In order to synchronize m processors that wake up at arbitrary times from
the interval [0, n], set k =

⌈√
8 · n/m

⌉
. Procedure Synchronize is performed in

phases as follows. For i = 1, 2..., the ith phase starts in global time (i− 1) · 4n.
In each phase, two iterations are performed. Initially, in the first iteration of
the first phase, each processor performs the k-basic radio policy upon wake
up. Consequently, clusters are formed in the interval [0, 2n]. Each cluster is
synchronized using Procedure Cluster-Synch. In the second iteration of the first
phase, Procedure Flatten is performed. Then the next phase starts. In the first
iteration of each phase, the k-basic policy is performed by each processor starting
from a time point that was scheduled for it in the previous phase by Procedure
Flatten. Consequently, new clusters are formed and synchronized. In the second
iteration, Procedure Flatten is performed, and schedulings for the next phase
are determined. Procedure Synchronize terminates once the interval [i · 4n, i ·
4n + 2n] is continuous, for an integer i > 0. A continuous cluster of length
at least 2n necessarily contains all m processors. Finally, Procedure Cluster-
Synch is executed causing all m processors to synchronize. This completes the
description of Procedure Synchronize. The pseudocode is provided below.
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Algorithm 3. Procedure Synchronize()
An algorithm for a processor v

1: k =
⌈√

8 · n/m
⌉

; τ = 0

2: for i = 1, 2, ..., �log n� do
3: J := Cluster-Synch(τ , k)
4: τ := Flatten(J, k)
5: end for
6: Cluster-Synch(τ , k)

Procedure Synchronize preserves cluster distances in each phase in the fol-
lowing sense. Suppose that processors u and v wake up at global times tu and
tv respectively. Then, for i = 1, 2, ..., logn, there are clusters ci and c′i such that
ci covers an interval containing the point (tu + 4n · i), and c′i covers an interval
containing the point (tv + 4n · i). Moreover, the cluster ci contains the proces-
sor u, and the cluster c′i contains the processor v. This observation, which is a
consequence of Lemma 3.4, is summarized below.

Corollary 3.5. Suppose that a processor v performs the k-basic policy in time
t ∈ [0, 2n]. If a cluster c covers an interval containing the time point (t+ 4n · i)
for some integer i > 0, then c contains v.

In each phase of Procedure Synchronize, after the execution of Procedure Flat-
ten, the sum of lengths of produced clusters is at least k2 ·m > 2n. Consequently,
at least two clusters overlap in each phase, and the number of clusters is de-
creased in each phase. Hence, it is obvious that m phases are sufficient to merge
all clusters into a single cluster. However, the merging process is actually much
faster. The next Lemma states that after logn phases there is a single cluster
containing all m processors.

Lemma 3.6. Once Procedure Synchronize is executed, the global time interval
[�logn · 4n, �logn · 4n+ 2n] is continuous.

By Corollary 3.5 and Lemma 3.6, allm processors are synchronized during global
time interval [�logn · 4n, �log n · 4n+2n]. Each processor performs the k-basic
policy a constant number of times in each phase. Hence, in each phase, the
number of time units in which each processor turns its radio on is O(k) =
O(

√
n/m). The properties of Procedure Synchronize are summarized below.

Theorem 3.7. Procedure Synchronize performs clock synchronization of m pro-
cessors waking up at arbitrary time points from the interval [0, n]. The energy
efficiency of each processor is O(

√
n/m · logn). The running time of Procedure

Synchronize is O(n log n).

Procedure Dynamic-Synch
In this section we show that by using a more sophisticated procedures one can
achieve energy efficiency of O(

√
n/m) per processor. We devise a procedure
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called Dynamic Flattening. The use of dynamic flattening allows completing
the synchronization in two phases instead of O(log n) phases that are required
by Procedure Synchronize that was devised in the previous section. The main
difference of Procedure Dynamic Flattening comparing to Procedure Flatten is
that the scheduling stage is performed during the first execution of the policy
rather than in the end of a phase. This scheduling is performed only once, shortly
after a processor wakes up. A processor schedules the next execution of its policy
to the first available free interval, i.e., an interval in which no other processor
is scheduled. To this end, a queue of processors is maintained by each cluster.
Consequently, the next policy execution of each processor v is scheduled in such a
way that the main part of v’s policy does not overlap with any of the other m−1
processors when they execute the main parts of their policies after scheduling.
(In contrast, in Procedure Flatten the new scheduling of phase i guarantees
only that the main part of the policy of v does not overlap with any processor
in the cluster containing v in phase i.) At time 2n at least 1

2m processors are
scheduled one after the other to perform their policy. As a result, the global
interval [2n, 4n] is continuous. To guarantee that all m processor perform their
policy during this interval, each processor performs an additional independent
invocation of its policy at time 2n+ 1 from wake up.

The algorithm that employs this idea is called Procedure Dynamic-Synch.

Informal description of Procedure Dynamic-Synch (for each v ∈ V )

step 1. The vertex v sets k :=
⌈√

8 · n/m
⌉
, and performs the initial part of the

k-basic policy.
step 2. If during step 1 one of the following holds: (i) v does not discover any
other processor whose radio is turned on, or (ii) all discovered processors have
waken up after v did, or have waken up at the same time as v but have smaller
Ids than that of v,
then v initializes a cluster c and an empty queue qc. The processor v enqueues
itself on qc and starts the main part of its policy once the initial part is complete.
step 3 (Dynamic Flattening). Otherwise, a queue q is already initialized and
maintained by the processor u currently executing the main part of its policy.
(The queue q was created by the earliest processor in the cluster and passed in a
rely-race manner. We stress that u is not necessarily the earliest processor in the
cluster.) Then v enqueues itself on q by communicating with u, and receives the
number 	 of processors that appear in q before v. Suppose that u has performed
the main part of its policy for r rounds once communicating with v. Then v
schedules the next k-basic policy execution such that the main part of its policy
is executed in (	−1)·k2−r time units. This guarantees that policies of processors
in q are executed one after the other immediately, in the order they appear in q.
step 4. Once v completes executing its main part, it dequeues itself from q and
passes q to the next scheduled processor (with which it necessarily overlaps).
step 5. Execute the k-basic policy at time 2n+1 from wake up. (Independently
of steps 1-4.) This completes the description of the procedure. Its properties are
summarized below.
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Lemma 3.8. Suppose that m processors wake up during the global time interval
[0, n], and execute procedure Dynamic-Synch. Then it holds that: (1) for any pair
of processors u and v, the time intervals in which their main parts are executed
are distinct (i.e., have no common time points) in the global interval [0, 2n],
(2) each cluster c that covers an interval in [0, 2n] satisfies that cden(c) ≤ 1,
(3) there exists a cluster c′ that covers an interval containing the global time
point 2n. At global time 2n the queue of c′ contains at least m/2 processors.

By Lemma 3.8 (3), at global time point 2n at least m/2 processors are scheduled
consequently. Hence the global interval [2n, 4n] is continuous. All m processors
execute their policy during this interval. Hence all m processors synchronize
their clocks. Each processor execute the k-basic policy (fully or partly) 3 times.

Theorem 3.9. Proc. Dynamic-Synch synchronizes the clock of m processors
that wake up in the interval [0, n]. The energy efficiency per processor is O(

√
n/m).

Each processor completes the execution of Procedure Dynamic-Synch within at
most 4n time units from wake up. Therefore, the running time of the procedure
is O(n). Since in the worst case a processor may wait Ω(n) time units in order
to exchange messages with any other processor, this running time is tight.

Theorem 3.10. The running time of Proc. Dynamic-Synch is O(n). It is opti-
mal up to constant factors.

We conclude this section by stating our lower bounds for multi-hop networks.

Theorem 3.11. In any deterministic clock synchronization algorithm A for
general graphs the sum of processors radio use is Ω(m · √n). Therefore, the
average (and the worst case) energy efficiency of A per processor is Ω(

√
n).

Theorem 3.11 applies also to unit disk graphs. In the full version of this paper
[1] we prove additional lower bounds, for an even narrower family of 	-connected
graphs. Specifically, for this family of graphs, we prove that the energy efficiency
of any deterministic algorithm is Ω(

√
n/	).

4 Conclusion

In this paper we have devised optimal radio-use deterministic algorithms for
clock synchronization in single-hop networks with energy efficiency Θ(

√
n/m).

We also proved lower bounds of Ω(
√
n) for multi-hop networks. Our results

suggest that in order to beat this bound of Ω(
√
n), each neighborhood in the

graph must be highly connected, containing no isolated regions. For wireless
networks, this requires a certain level of uniformity in the processors distribution.

In [2] a deterministic synchronization algorithm was devised for two-processor
networks with efficiency O(

√
n). This algorithm can be used also in multi-hop

network in order to synchronize each processor with its neighbors. The energy
efficiency in this case is O(

√
n) per processors. Somewhat surprisingly, our lower

bounds imply that this simple approach is optimal in general multi-hop networks.



Deterministic and Energy-Optimal Wireless Synchronization 251

References

1. Barenboim, L., Dolev, S., Ostrovsky, R.: Deterministic and Energy-Optimal Wire-
less Synchronization (2010), http://arxiv.org/abs/1010.1112

2. Bradonjic, M., Kohler, E., Ostrovsky, R.: Near-Optimal Radio Use For Wire-
less Network Synchronization. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS,
vol. 5804, pp. 15–28. Springer, Heidelberg (2009)

3. Boulis, A., Srivastava, M.: Node-Level Energy Management for Sensor Networks
in the Presence of Multiple Applications. Wireless Networks 10(6), 737–746 (2004)

4. Boulis, A., Ganeriwal, S., Srivastava, M.: Aggregation in sensor networks: an
energy-accuracy trade-off. Ad Hoc Networks 1(2-3), 317–331 (2003)

5. Bush, S.F.: Low-energy sensor network time synchronization as an emergent prop-
erty. In: Proc. of the 14th International Conference on Communications and Net-
works, pp. 93–98 (2005)
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Abstract. This paper addresses two primary questions: (i) How much faster can
we disseminate information in a large wireless network if we have multiple com-
munication channels available (as compared to relying on only a single commu-
nication channel)? (ii) Can we still disseminate information reliably, even if some
subset of the channels are disrupted? In answer to the first question, we reduce
the cost of broadcast to O(log log n) rounds/hop, approximately, for sufficiently
many channels. We answer the second question in the affirmative, presenting two
different algorithms, while at the same time proving a lower bound showing that
disrupted channels have unavoidable costs.

1 Introduction

This paper addresses two primary questions: (i) How much faster can we disseminate
information in a large wireless network if we have multiple communication channels
available (as compared to relying on only a single communication channel)? (ii) Can
we still disseminate information reliably, even if some subset of the channels are dis-
rupted? In answer to the first question, we reduce the cost of broadcast to O(log logn)
rounds/hop, approximately, for sufficiently many channels. We answer the second ques-
tion in the affirmative, presenting two different algorithms, while at the same time prov-
ing a lower bound showing that disrupted channels have unavoidable costs.

Multi-channel Networks. In more detail, we study the multihop broadcast problem
in the t-disrupted radio network model [11–14, 17, 26, 30, 31]. This model describes
a synchronous multihop radio network, and assumes that in each round, each process
chooses 1 out of C available communication channels to participate on. Simultaneously,
an adversary selects, at each process, up to t < C channels to locally disrupt, preventing
communication. In this study, we also equip processes with receiver collision detectors,
but assume that disruption is indistinguishable from collisions.
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As detailed in [11, 26], the adversary in the t-disrupted model does not represent a
literal adversarial device; it cannot spoof messages or reactively jam a broadcast (i.e.,
scan the channels to discover a broadcast in progress, then jam the remainder of trans-
mission). The adversary instead incarnates the unpredictable message loss that plagues
real radio network deployments. This message loss has many (non-malicious) causes,
including: unrelated protocols using the same unlicensed spectrum band, time-varying
multipath effects, and electromagnetic interference from non-radio devices, such as mi-
crowaves. The goal of the t-disrupted model is two-fold: (1) to improve efficiency: most
real radio network protocols have access to multiple communication channels,1 and
therefore theoretical algorithms should enjoy this same advantage; and (2) to improve
robustness: a protocol proved correct in a model with unpredictable message loss is a
protocol more likely to remain correct in a real deployment, where such loss is often
unavoidable.

Results: No Disruption. We start by showing that adding communication channels
makes broadcast more efficient, yielding O(log logn) rounds/hop in a network of di-
ameter D > log n with Θ(log n) channels. In more detail, in the setting with no dis-
ruption (t = 0), we present a randomized algorithm that solves broadcast in O((D +
logn)(log C + log n

C )) rounds, w.h.p. Notice, for a single channel (C = 1), our algo-
rithm has the same running time as the canonical Bar-Yehuda et. al algorithm [3], but as
the number of channels increases so does our algorithm’s performance advantage. This
comparison however, is not exact, as unlike [3], we assume collision detection. With
this in mind, we prove a lower boundΩ(D+ log2n

C ) rounds for broadcast algorithms in
our collision detector-equipped model. It follows that for C = Ω(log n): our algorithm
is within a factor of O(log log n) of optimal, and for sufficiently small D, it is strictly
more efficient than the best possible single-channel algorithm.

The key insight of this algorithm is the following: At a high-level, standard single-
channel broadcast algorithms, such as [3], require processes to sequentially test logn
broadcast probabilities, exponentially distributed between 1/n and 1/2. The idea is that
for every process with transmitting neighbors, one of these probabilities will match
what is required for the message to be received. Our algorithm, by contrast, leverages
multiple communication channels to test multiple probabilities in parallel, allowing
processes to hone in on the correct probabilities more efficiently.

While it may not be surprising that some speed-up is possible using multiple chan-
nels, it is non-trivial to determine exactly what is feasible for two reasons. First, the
multiple communication channels can only speed up one part of the algorithm (i.e., the
contention resolution); it cannot speed-up the time to relay the message over long dis-
tances. Second, the multiple channels cannot all be used in parallel by any one proces-
sor, as each has only one transceiver. Thus, the “obvious” solutions, e.g., multiplexing
the single-channel protocol over multiple channels, are not applicable. If logn channels
could be used in parallel, we could readily achieve a rounds-per-hop cost of O(1); that
we can still achieveO(log logn) rounds-per-hop with only one transceiver, is, perhaps,
surprising.

1 The 802.11 b/g network protocols [1], for example, divide the shared 2.4 Ghz band into 13
channels, while Bluetooth [4] divides the same band into 79 channels.
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Results: t-Disruption. Having showing that additional communication channels im-
proves efficiency, we next turn our attention to showing that they also improve robust-
ness. We now assume disruption (i.e., t > 0) and that processes have access to a com-
mon source of random bits. We argue that this latter assumption is often justified in
practice, as most radio network deployments require devices to be configured with a
common network id, and a hash of this id can provide a seed for a pseudo-random bit
generator.2

In this setting, we present a randomized algorithm that solves broadcast in O((D +
logn)(C log C log log C

C−t + log n
C−t )) rounds, w.h.p., where t is the upper bound on disrupted

channels. Notice, for t up to a constant factor of C, this algorithm performs only a
factor of O(log log C) slower than the no disruption case. In other words, even with
lots of disruption, our multi-channel algorithm still outperforms the best possible single
channel solution in many cases, and is more efficient than the canonical single chan-
nel algorithm of [3]. The key insight of this algorithm is that we replace the broadcast
and receive primitives used in the no disruption case with simulated versions. These
simulated broadcasts and receives use the common randomness to generate coordinated
random frequency hopping patterns. These patterns are used to evade adversarial dis-
ruption with sufficient probability for the original no disruption arguments to still apply.

Lastly, we consider the case with disruption and no common randomness. We de-
scribe a randomized algorithm that solves broadcast in this setting inO((D+log n) Ct

C−t ·
log (n

t )) rounds, w.h.p. Notice, for large t, this algorithm now performs slightly worse
than [3], but this is arguably still a reasonable price to pay for the added robustness. We
conclude by showing this price to be not just reasonable, but also be necessary. In more
detail, we prove a lower bound of Ω((D+ logn) Ct

C−t ) rounds to solve broadcast in this
setting.

Related Work. We use the terminology multihop broadcast to describe the problem
addressed in this paper, as we want to clearly separate it from the local broadcast prob-
lem we solve as a subroutine. Previous work on this problem, however, has used both
reliable broadcast (e.g., [19]) and broadcast (e.g., [3]) to refer to the same problem. All
terms describe the same goal of disseminating a message from a single distinguished
source to every process in a radio network.

Theoretical concern with broadcasting in radio networks began with the investiga-
tion of centralized solutions. Chlamtac and Kutten [5] opened the topic by proving the
calculation of optimal broadcast schedules to be NP-hard, Chlamtac and Weinstein [6]
followed with a polynomial-time algorithm that guaranteed schedule lengths of size
O(D log2 n), and Alon et al. proved the existence of constant diameter graphs that re-
quire Ω(log2 n) rounds [2]. An oft-cited paper by Bar Yehuda et al. [3] introduced the
first distributed solution to broadcast, launching a long series of papers investigating
distributed solutions under different model assumptions; c.f., [7–10, 22]. The algorithm
in [3] assumes no topology knowledge or collision detection, and solves broadcast in

2 Note, if the adversary in the t-disrupted model represented an actual adversarial device, we
would have to worry about keeping such information secure. But as explained previously, this
adversary is an abstraction of the diverse, and hard to predict interference sources that plague
real networks, and does not represent behavior with malicious intent.
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O((D + logn) log (n)) rounds, w.h.p. In later work [10, 21], this bound was improved
toO((D+log n) log (n/D)), which performs better in graphs with large diameters. For
the assumption of no topology knowledge, these broadcast bounds can be considered
the best known. In centralized setting, the optimal result Θ(D + log2 n) in undirected
multi-hop networks is given in [16] and [23].

Our algorithm for the no disruption setting matches the Bar-Yehuda algorithm for
the case where C = 1, and performs increasingly better as we increase the number
of channels. Its comparability with the bound of [10, 21] depends on the diameter. Our
model, however, unlike the model in [3, 10, 21], assumes receiver collision detection, so
these comparisons are not exact. (The O(D logn)-time broadcast algorithm of [29], by
contrast, does assume collision detection, but a direct comparison is foiled in this case
because the model of [29] constrains the communication graph to be growth-bounded,
whereas our model, as in the canonical results referenced above, works for arbitrary
graphs.) This motivates theΩ(D+ log2 n

C ) lower bound we prove in Section 6 for solv-
ing broadcast in our model. Notice, this implies that the best possible single-channel
broadcast algorithm in our model requires Ω(D + log2 n) rounds. For C = Ω(log n),
and sufficiently small D, our no disruption algorithm is strictly more efficient. In Sec-
tion 4, we show that even if we introduce significant disruption, if we assume a common
source of randomness we still outperform the best possible single channel solution in
many cases.

Koo [19] considered broadcast in a model that assumed a single channel and Byzan-
tine failures, which, due to their ability to spoof messages, are arguably more chal-
lenging than the disruption faults considered in our work. The corrupt processes in this
model, however, could not disrupt communication. In later work, Koo, now collaborat-
ing with Bhandari, Katz, and Vaidya [20], extended the model to allow for a bounded
number of collisions. Their focus was on feasibility (i.e., for what amount of corrup-
tions is broadcast still solvable) not time complexity. Drabkin et al. [15] and Pelc and
Peleg [27] both studied broadcast in radio network models that assume a single channel
and probabilistic message corruption. Finally, in recent work, Richa et al. [28] con-
sidered efficient MAC protocols in a single channel, multihop radio network, with an
adversary that can cause a bounded amount of communication disruption.

2 Model

We model a synchronous multihop radio network with multiple communication chan-
nels, symmetric communication links, receiver collision detection, and adversarial dis-
ruption. In the following, for integer x > 1, let [x] = {1, ..., x}, and assume log denotes
the base-2 logarithm. Fix an undirected graphG = (V,E), with diameterD, where the
vertexes in V correspond to the n > 1 processes in the network, which we uniquely
label from [n]. We assume processes know n. To simplify notation we also assume that
n is a power of 2. In this paper, when we denote a property holds with high probability
(w.h.p.), we assume a probability of at least 1 − 1

nx , for some sufficiently large posi-
tive integer x. Fix a set [C] of communication channels for some integer C ≥ 1, and
a known upper bound on disruption, t, 0 ≤ t ≤ C. Executions in our model proceeds
in synchronous rounds labeled 1, 2, . . . . Because we study broadcast problems, we as-
sume processes can receive a message from and output a message to the environment,
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during each round. All processes start in round 1, but following the standard assumption
made in the study of multihop broadcast (e.g., [3]), we assume no process can broadcast
before it receives a message, either from another process or the environment.

To model disruption, we use the t-disrupted model, which was introduced in [13],
and has since been extensively studied in the context of both single hop and multihop
radio networks [11–14, 17, 26, 30, 31]. (See [11] for a good overview of this model
and results.3) In the t-disrupted model, in each round r, an adversary chooses, for each
process i, a set disp(i, r) of up to t channels to disrupt. The adversary can use the
history of the execution through round r − 1, as well as the process definitions, in de-
ciding disp(i, r). It does not, however, have advance knowledge of the random choices
made in r. We consider two cases for the random choices: (i) common randomness,
where processes can access a common source of random bits in each round, and (ii) no
common randomness, case where the bits are independent at each process. Next, each
process i chooses a channel c ∈ [C] on which to participate, and decides whether to
broadcast or receive. If i broadcasts it receives nothing. If i receives, three behaviors
are possible: (1) if no neighbor of i in G broadcasts on c in r and c /∈ disp(i, r), i
detects silence, indicated by ⊥; (2) if exactly one neighbor j of i in G broadcasts on c
in r, and c /∈ disp(i, r), i receives j’s message; (3) if two or more neighbors of i in G
broadcast on c in r, or c ∈ disp(i, r), i detects a collision, indicated by ±. (That is, re-
ceiving on a disrupted channel is indistinguishable from detecting a collision.) Notice,
i learns nothing about the activities of processes on other channels during this round.

The Multihop Broadcast Problem. Our goal in this paper is to define bounds for the
multihop broadcast problem, which is defined as follows: At the beginning of round 1, a
single source process is provided a messagem by the environment. We say an algorithm
solves the multihop broadcast problem in r rounds if and only if every process outputs
m by round r, w.h.p.

The Local Broadcast Problem. In this paper, following the approach of [18], we
decompose multihop broadcast into first solving local broadcast, and then using the
construction presented in [18] to transform this local solution into a global one.

In more detail, the TA-local broadcast problem, for positive integer TA, assumes that
the environment injects a message m at arbitrary processes at arbitrary times, and that
every process that receives the message from the environment must eventually output
ack. We say an algorithm solves the TA-local broadcast problem if and only if the
following hold: (a) If some process i receives the message from the environment in
round r and outputs ack in round r′ ≥ r, then all neighbors of i output the message
by round r′, w.h.p. (b) We say a process is active in a given round r if it received the
message from the environment in some round r′ ≤ r, and it has not yet output ack by
the beginning of r. Given any interval of TA rounds, if process i has a neighbor that
is active in every round of the interval, then i outputs the message by the end of the
interval, with constant probability.

3 This model has been called many different names. Originally [13] it was unnamed; later
works[11, 14] called it the disrupted radio network model; it was only in more recent work [26]
that the more descriptive name of t-disrupted was introduced.
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Transforming Local Broadcast to Multihop Broadcast. The following theorem,
which follows from Theorem 7.8 of [18], reduces the problem of multihop broadcast to
local broadcast:4

Theorem 1 (Theorem 7.8 of [18]). Given an algorithm that solves the TA-local broad-
cast problem, we can construct an algorithm that solves the multihop broadcast problem
in O((D + logn)TA) rounds.

3 Upper Bound for No Disruption

We begin with an algorithm for the case with no disruption (i.e., t = 0), that solves
multihop broadcast in O((D + logn)(log C + log n

C )) rounds. For C = 1, this running
time matches the canonical broadcast algorithm of Bar-Yehuda et al. [3], but as the
number of channels increases so does our performance advantage. In Section 6, we will
prove that for sufficiently large C, this is within a O(log logn) factor of optimal.

As described in Section 2, our approach is to first solve the local broadcast problem,
then apply Theorem 1 to generate our global solution. Our algorithm only makes use of
up to logn channels, so in this section we assume, w.l.o.g., C ≤ logn.

Intuition. The key insight of our protocol is to trade channel diversity for time com-
plexity. Most existing broadcast algorithms (e.g., [3]) described at a high level, have pro-
cesses sequentially test logn different broadcast probabilities exponentially distributed
between 1/n and 1/2. For each process waiting to receive a message from transmit-
ting neighbors, one of these probabilities should sufficiently reduce the contention and
hence match what is needed to ensure that the message is delivered. Our algorithm, by
contrast, leverages multiple channels to test multiple probabilities in parallel, gaining
efficiency.

Our local broadcast algorithm consists of two subroutines: SEARCH and LISTEN.
During, SEARCH, processes assign an exponential distribution of probabilities to the
channels (captured by schan in our algorithm description). A receiving process can
then do a binary search over the channels (with silence indicating the probability is too
low, and a collision indicating too high), to find the probability that best matches the
number of transmitting neighbors. (This search is what necessitates receiver collision
detection in our model.) If C ≤ log n, however, then this SEARCH subroutine identifies
only a rough range of logn/C probabilities, in which is included the right probability

4 Formally, the local broadcast problem described above is a simplified presentation of the Ab-
stract MAC Layer formalism first introduced in [24]. The result cited from [18] provides an
implementation of multihop broadcast that uses a probabilistic Abstract MAC Layer imple-
mentation. Our definition of local broadcast simplifies the Abstract MAC Layer definition
down to only the properties needed to apply the transformation in [18]. In more detail, receiv-
ing a message m from the environment in our model corresponds to bcast(m) in the Abstract
MAC Layer, and outputting the message corresponds to calling recv(m). In addition, the TA

parameter corresponds to fprog(Δ), the constant probability of the TA property holding corre-
sponds to 1−εprog, and the high probability of all neighbors eventually outputting the message
corresponds to 1− εack. We do not define an equivalent of fack or frcv , as neither are used in
the transformation. We point the interested reader to [18] for more details.
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for actually receiving a message. During the LISTEN subroutine, transmitting processes
cycle through the different probabilities assigned to each channel (captured by lchan
in our algorithm description).5 In both subroutines, care must be taken to account for
the fact that many processes are both transmitters and receivers: a problem we solve by
having processes choose a role with probability 1/2.

Algorithm Description. The local broadcast algorithm has all processes alternate be-
tween executing the SEARCH and LISTEN subroutines presented in Figure 1, starting
in round 1. Each call to SEARCH returns a candidate channel c1, and the following call
to LISTEN is made with channel = c1. On receiving a message msg from the envi-
ronment, a process sets m← msg, and continues to try to transmit the message for the
subsequent AMAX calls to both subroutines, starting with the next call to SEARCH.
After these AMAX calls it outputs ack. In all other rounds, it sets m ← ⊥. (Note, as
required by our model, processes do not broadcast until they first receive a message.)

Constants Used in Algorithm. Let k = � log n
C . The constant k represents the (ap-

proximate) number of probabilities assigned to each channel. Let pc = 1/2k(c−1)+1,
for c ∈ [C]. The function schan() returns channel c ∈ [C] with probability pc, and the
null channel 0 with the sum of the remaining probability: 1−∑c∈[C] pc. That is, schan
chooses channels using an exponential probability distribution.

Next, we define a family of functions lchan(r), for r ∈ {1, ..., k + 3}. Intuitively,
lchan partitions the logn probabilities from { 1

n ,
2
n , ...,

1
2} among the C channels. This

means that k, defined above as � log n
C , describes the number of probabilities in each

channel partition. For each index passed to lchan, it assigns channels one of the prob-
abilities from their partition, and then randomly selects a channel based on this distri-
bution. The function lchan(r) is defined as follows: if r = 1, it returns channel 1 with
probability 0; if r > k + 1, it returns channel C with probability 0; if r = k + 3 and
k = 1, it returns channel C − 1 with probability 0; for all other r and c pairs, it returns
channel c with probability (2pc)/2r−1. As with schan(), it returns the null channel 0
with the sum of the remaining probabilities for the given r value. The function lchanis
defined for more than k values (i.e., k + 3 instead of k) because, to simplify the proof
later, it helps if in addition to using every probability in a given channel’s partition,
we also use a constant number of probabilities that have been assigned to neighboring
channels.

Finally, let SMAX = 2(�log (C) + 1), LMAX = � log n
C  + 3, and AMAX =

Θ(log n), where the constants are defined in our main theorem proof.

Correctness Proof. We prove that each pair of calls to SEARCH and LISTEN receives
a message with constant probability, assuming there is a message to be received. We also
prove that over AMAX calls to these subroutines, a message is received w.h.p. It follows
that we solve TA-local broadcast problem for TA = O(SMAX + LMAX), which
when combined with Theorem 1 yields an algorithm that solves multihop broadcast
problem in O((D + logn)(log C + log n

C )) rounds.

5 To make the probabilities work in our proofs, transmitters also try, for each channel, a constant
number of probabilities from the neighboring channels. This is why lchan cycles through
log n/C + O(1) different probability assignments, not just log n/C.
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SEARCH(m)
c1 ← 1; c2 ← C; count← 1
while count ≤ SMAX

phase← random(broadcast, listen)
if (phase = broadcast) and (m 
= ⊥)

bc ← schan()
bcast(m, bc)

else if (phase = listen) and (c1 
= c2)
channel ← �c1 + (c2 − c1)/2�
rmsg ← recv(channel)
if (rmsg = ⊥) then c2 ← channel − 1
else c1 ← channel

count← count + 1

LISTEN(m,channel)
count← 1
while count ≤ LMAX

phase← random(broadcast, listen)
if (phase = broadcast) and (m 
= ⊥) then

bc ← lchan(count)
bcast(m, bc)

else
rmsg ← recv(channel)
if (rmsg 
= ⊥) and (rmsg 
= ±) then

output(rmsg)
count← count + 1

Fig. 1. The SEARCH and LISTEN subroutines called by our local broadcast solution. SMAX =
Θ(log C) and LMAX = Θ(log n/C).

To begin the proof, fix a process i and a call to SEARCH. Let I , |I| ≤ Δ, be the set
of active neighbors of i during this call—that is, the neighbors of i with a message to
send (i.e.,m �= ⊥ in their call to SEARCH). We say a call to SEARCH is valid for this
process i if and only if these following three conditions hold: (1) at the conclusion of
the subroutine, c1 = c2; (2) for each recv(c), if pc|I| ≤ 1

2 , it returns⊥; and (3) for each
recv(c), if pc|I| ≥ 4, it does not return⊥. (Otherwise, if a call to SEARCH is invalid, it
may return a channel with too much or too little contention.) We prove this occurs with
constant probability:

Lemma 1. The call to SEARCH is valid with constant probability.

Proof (Proof (sketch)). To prove the first condition of validity we must show that
SEARCH sets phase ← listen at least γ ≥ (�log(C) + 1) times. Since this occurs
according to a binomial distribution, with median 1

2 · SMAX ≥ γ, we conclude that
with probability at least 1

2 the SEARCH completes with c1 = c2.
To prove the second condition, let L contain every channel c such that i receives on

c and assume pc|I| ≤ 1
2 . For a given c ∈ L, the condition holds with probability (1 −

1
2pc)|I|, and hence by a union bound, the condition holds over all relevant rounds with
probability at least 1/2. We prove the third condition in a similar manner, concluding
that the condition holds over all relevant rounds with probability at least 0.8.

We now show that if process i’s call to SEARCH is valid then, with constant probability,
process i will receive a message during the subsequent call to LISTEN (assuming, of
course, |I| > 0).

Lemma 2. Suppose process i’s call to SEARCH is valid and |I| > 0. Then, process i
will receive a message during the subsequent LISTEN subroutine, with constant prob-
ability.

Proof (Proof (sketch)). Let c be the channel returned by the call to SEARCH.
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We consider two cases for the size of I . In the first case, assume |I| = 1. Here,
pc′ |I| ≤ 1

2 for every channel c′ > 1. Since we assume SEARCH was valid (with
constant probability), every call to recv during the subroutine would return⊥. It follows
that LISTEN executes on channel c = 1, where process i will receive a message with
probability at least 1

2 · 1
2 · p1 = 1

8 .
For the second case, assume |I| > 1. Let pmin be the smallest non-0 probability

assigned to channel c in all k + 3 calls to lchan in the listen phase, and let pmax be
the largest probability. We can then bound both pmax and pmin: pmax|I| ≥ 1 and
pmin|I| ≤ 2.

By definition, pmin ≤ pmax. Combined, we conclude that there must exists a prob-
ability p′, among those assigned to channel c by lchan during LISTEN such that
1 ≤ p′|I| ≤ 2. Consider the LISTEN round during which p′ is assigned to chan-
nel c by lchan. During this round, process i will receive a message with probabil-
ity prcv ≥ 1

2p
′′|I|(1 − p′′)|I|−1, where p′′ = p′

2 is the probability that a process
broadcasts in channel c in that round, and the first 1

2 bounds the probability that i
receives. Note that 1

2 ≤ p′′|I| ≤ 1 and p′′ ≤ 1
2 . We now simplify prcv: prcv =

1
2p

′′|I| (1− p′′)|I|−1 ≥ 1
2p

′′|I| (1− p′′)|I|. This later term is greater than or equal to
1
2p

′′|I| ( 1
4

)p′′|I| ≥ 1
2 · 1

4 = 1
8 . Notice, the third step uses our above-stated fact that

p′′ ≤ 1
2 , and the fourth step uses the other above-stated fact that 1

2 ≤ p′′|I| ≤ 1.

We can now prove that the algorithm solves the local broadcast problem.

Lemma 3. The algorithm solves the 2(SMAX +LMAX)-local broadcast problem.

Proof. By Lemmas 1 and 2, we know the algorithm satisfies property (b) of the local
broadcast problem, for TA = 2(SMAX + LMAX) (the factor of 2 accounts for the
case that a message arrives after SEARCH has begun, necessitating we wait until the
next call to SEARCH begins before the process begins trying to send the message).
To show the algorithm satisfies property (a), assume that some process i receives the
message from the environment for the first time at some round r. Let j be a neighbor
of i. By our above argument, over the next AMAX pairs of calls to SEARCH and
LISTEN, j will receive the message from i (or another neighboring process) with some
constant probability p. Process j therefore fails to receive the message in all AMAX
pair of calls, with probability no greater than (1 − p)AMAX ≤ e−p·AMAX . Because p
is constant and AMAX = O(log n), for sufficiently large constant factors, this failure
with probability no more than 1

nx+1 , for any positive constant x. By a union bound over
the O(n) neighbors of i, property (a) holds w.h.p., as needed.

Given Lemma 3, we can now apply Theorem 1 to derive our final result:

Theorem 2. We can construct an algorithm that solves the multihop broadcast problem
with no disruption (t = 0) in O((D + logn)(log C + log n

C )) rounds.

4 Upper Bound for Disruption and Common Randomness

In this section, we assume that channels may be disrupted (i.e., t > 0) and that processes
have access to a common source of randomness. We present an algorithm that solves the
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sim-bcastγ(m, c):
simcount← 1
while simcount ≤ γ

ψ ← a channel permutation generated with
common source of randomness for this round.
bcast(m,ψ(c))
simcount← simcount + 1

sim-recvγ(c)
rmsg ← ±; simcount← 1
while simcount ≤ γ

ψ ← a channel permutation generated with
common source of randomness for this round.
m← recv(ψ(c))
if m 
= ± then rmsg ← m
simcount← simcount + 1

return rmsg

Fig. 2. The simulated broadcast and receive functions that replace the bcast and recv functions
of the no disruption algorithm (Figure 1) to produce a local broadcast algorithm for the setting
with disruption and a common source of randomness. For SEARCH, γ = Θ( C

C−t
log log C), and

for LISTEN, γ = Θ( C
C−t

).

multihop broadcast problem in O((D+ logn)(C log C log log C
C−t + log n

C−t )) rounds, where t
is the known upper bound on disrupted channels. Therefore, for even large amounts of
disruption (i.e., for any t up to a constant factor of C) our disruption-tolerant protocol
performs only a factor of O(log log C) slower than our no disruption protocol from
Section 3. This means that for sufficiently large C, we still outperform the best possible
single channel solution in many cases, and are more efficient than the canonical single
channel algorithm of [3]. It follows that common randomness is a potent weapon against
disruptive interference.

Intuition. Our approach is to extend the no disruption algorithm from Section 3. In
more detail, we replace the broadcast and received primitives of the no disruption pro-
tocol with disruption-tolerant versions that use coordinated frequency hopping (speci-
fied by the common random bits) to evade disruption. We show that the new sim-recv
subroutine outputs the same value as its no disruption counterpart (i.e., the recv subrou-
tine) with just enough probability to ensure that our analysis still applies. Note that the
new subroutines call the bcast and recv functions several times, but not so much that
the running time becomes unwieldy.

Algorithm Description. Our local broadcast algorithm replaces each call to bcast and
recv in the no disruption subroutines from Figure 1, with calls to simulated broadcasts
and receives that use multiple rounds to evade disruption. In more detail, in our mod-
ified version of the SEARCH subroutine from Figure 1, which we call DSEARCH,
we replace each call to bcast(m, bc) with a call to sim-bcastγS (m, bc), and each call to
recv(channel) with a call to sim-recvγS(channel), where sim-bcast and sim-recv are
defined in Figure 2, and γS = Θ( C

C−t log log C). For the modified LISTEN subroutine,
which we call DLISTEN, we do the same replacement of bcast and recv with sim-bcast
and sim-recv, substituting γL = Θ( C

C−t ) for γS . For any round r of an execution, we
assume that every process generating the random channel permutation ψ during r, will
generate the same permutation, using the common randomness.
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Correctness Proof. We begin by bounding the probability that our simulated bcast and
receives behave the same as if we were in the no disruption setting. This claim follows
primarily from the fact that the probability that the adversary disrupts every channel in
ψ(c) in the relevant round is O(1/ log C).
Lemma 4. Suppose process i calls sim-recv during some round of DSEARCH, and all
of i’s neighbors also call either sim-bcast or sim-recv during this same round. With
probability at least 1−O( 1

log C ), sim-recv will return i the same value as if these same
processes had called bcast and recv, with the same parameters, in the setting where
t = 0.

If we replace γS with γL, we can show a similar result for DLISTEN, this time with
constant probability:

Lemma 5. Suppose process i calls sim-recv during some round of DSEARCH, and all
of i’s neighbors also call either sim-bcast or sim-recv during this same round. With
constant probability, sim-recv will return i the same value as if these same processes
had called bcast and recv, with the same parameters, in the setting where t = 0.

We now show, much as in Section 3, that the local broadcast performs well:

Lemma 6. The algorithm solves the 2(SMAX · γS + LMAX · γL)-local broadcast
problem.

Given Lemma 6, we apply Theorem 1 to derive our final result regarding multihop
broadcast:

Theorem 3. We can construct an algorithm that solves the multihop broadcast problem
with common randomness in O((D + logn)(C log C log log C

C−t + log n
C−t )) rounds.

5 Upper Bound for Disruption and No Common Randomness

In this section, we assume disruption and no common source of randomness. We present
an algorithm that solves multihop broadcast in O((D + logn) Ct

C−t log (n
t )) rounds. In

Section 6, we prove this to be within a factor of O(log (n
t )) of optimal. Unlike the

common randomness case, here we actually perform (slightly) worse than the single
channel algorithm of [3] (at least, for large t). This difference, however, is bounded by
a factor of O(log n), which is arguably still a reasonable price to pay for the increased
robustness. In the following, we assume w.l.o.g. that C < 2t.

Intuition. There are three basic challenges to overcome: First, because some t chan-
nels are disrupted, processes must attempt to communicate on more than t channels,
and to avoid the disruption, the communication must be randomized. Second, since the
processes have no source of common randomness, the random channel selection po-
tentially delays the receivers from finding the broadcasts. Third, processes still have to
solve the problem of contention, i.e., the fact that many broadcasters may be competing
to send a message. To overcome these problems, we have processes repeatedly choose
channels uniformly at random, cycling through the logn broadcast probabilities that are
exponentially distributed between 1/n and 1/2.
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Algorithm Description. Our local broadcast algorithm works as follows. First, the ex-
ecution is divided into epochs of length �logn/C. If a message is injected at a process
v in some round r, then process v waits until the beginning of the next epoch before
trying to disseminate the message. We say that a process that has received message m
by the first round of some epoch e, but has not yet returned an acknowledgment for m,
participates in epoch e. In each round of an epoch, each participating process decides
whether to broadcast and on which channel. In particular, in round r, a participating
process v broadcasts with probability 1/2r; it chooses channel c ∈ [C] with probability
1/C. Every process u that is not broadcasting a message chooses a channel on which to
listen with the same uniform probability 1/C. A process v returns an acknowledgment
when it has participated for Θ((C2 logn)/(C − t)) epochs.

Correctness. We argue that this protocol solves TA-local broadcast for
TA = O((C2 logn/C)/(C − t)). We first argue that if process u has a participating
neighbor in epoch e, then by the end of the epoch, it receives the message with constant
probability:

Lemma 7. Let u be a process that has not received the messagem prior to epoch e. Let
V be the set of neighbors of u participating in epoch e, and assume that |V | > 0. Then
with probability at least (C − t)/(32C2), u receives message m by the end of epoch e.

Proof (Proof (sketch)). Process u receives the message m in a round r if the following
three conditions are satisfied: (a) there is exactly one process in v ∈ V that broadcasts
in round r; (b) the channel selected by v is not disrupted in round r; and (c) process u
chooses to listen on the same channel on which v broadcasts in round r. Consider round
r = �log |V | in epoch e. We now bound the probability that these three events occur.

Let c ∈ C be the channel chosen by u in round r of epoch e. With probability
(C − t)/C we observe that c is not disrupted. We calculate the probability that exactly

one participating process in V broadcasts on channel c:
∑

v∈V
1

C2r

(
1− 1

C2r

)|V |−1 ≥
1/(32C). Thus, with probability (C − t)/(32C2), process u receives the message by the
end of the epoch.

From this we conclude that the protocol solves the TA-local broadcast problem:

Lemma 8. The specified protocol solves the TA-local broadcast problem for TA =
O(C

2 log(n/C)
(C−t) ).

Proof. First, we argue that every process with active neighbors receives the message
within time TA with constant probability. Consider a process u. By Lemma 7, during
each epoch in which a neighbor participates, u receives the message with probability
(C − t)/(32C2). Thus, over (32C2/(C − t)) epochs, process u receives the message
with constant probability. An active neighbor may not participate for the first epoch
when it receives the message, and from this we conclude that if TA = [(32C2/(C −
t)) + 1] log(n/C), then u receives the message as required.

Next, we argue that when a node sends an acknowledgment, every neighboring pro-
cess has received the message. Specifically: in each epoch, each neighbor receives the
message with constant probability. Thus within O(log n) epochs, every neighbor has
received the message with high probability, as required.
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Since t < C ≤ 2t, we can apply Theorem 1 to conclude:

Theorem 4. We can construct an algorithm that solves the multihop broadcast problem
without common randomness in O((D + logn)( Ct

C−t ) log (n
t )) rounds.

6 Lower Bounds

We begin by showing that the O((D + logn)(log C + log n
C ))-time broadcast algorithm

from Section 3 is (almost) tight for sufficiently large C, by proving a Ω(D + log2 n
C )

lower bound for solving broadcast in this setting. (In more detail, for C = Ω(logn), the
upper bound is within a factor of O(log logn) of the lower.)

Theorem 5. For any D ≤ n/2: every multihop broadcast algorithm requires Ω(D +
log2 n

C ) rounds.

Proof. We first note that we can simulate any protocol for a network with C > 1 in a
network where C = 1. In more detail, we use C rounds in the single channel network to
simulate each round from the multi-channel network, with each simulation round being
dedicated to a different channel. It follows that if f(n) is a lower bound for multihop
broadcast in a network where C = 1, then f(n)/C is a lower bound for networks with
larger C. The question remains what lower bounds apply to our network model with
C = 1. The commonly cited Ω(D log (n/D)) bound of Kushilevitz and Mansour [25],
proved for randomized distributed multihop broadcast, does not apply in our setting, as
we assume receiver collision detection. In fact, there are no bounds, that we know of,
specific to distributed broadcast with collision detection. With this in mind, we turn to
the bound for centralized solutions to broadcast in single channel networks, from [2].
This bound proves that there exists a family of constant-diameter graphs such that every
centralized broadcast algorithm requires at least f(n) = Ω(log2 n) rounds. Centralized
solutions, of course, are stronger than randomized distributed solutions with collision
detection, so a bound for the former certainly holds for the latter. By our above sim-
ulation argument, it holds that no algorithm can solve multihop broadcast in less than
f(n)/C = Ω( log2 n

C ) rounds. If we replace n with n − D, due to our assumption that

D ≤ n/2 we get a network of size O(n) that still requires Ω( log2 n
C ) rounds to broad-

cast in. If we put this network on one end of a line of D nodes, and make the far end
the broadcast source, the bound extends to Ω(D + log2 n

C ).

We now continue with a lower bound for the setting with disruption (t > 0) and no com-
mon source of randomness. In Section 5, we presented a O((D + logn) Ct

C−t log (n
t ))-

time broadcast algorithm in this setting. Our lower bound below shows this to be within
a factor of O(log (n

t )) of optimal. This bound uses the following fact, first proved in
our study of the wireless synchronization problem in the t-disrupted model [12]:

Lemma 9 (Theorem 4 of [12]). Assume there are two processes u and v attempting to
communicate in a t-disrupted network with C channels, t > 0, and no common source
of randomness. Fix a constant ε. With probability ε, u and v cannot communicate for
Ω( Ct

C−t log(1/ε)) rounds.
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We use this fact to prove our bound on broadcast:

Theorem 6. Assume no common source of randomness. It follows that every algorithm
requires Ω((D + logn) Ct

C−t ) rounds to solve the multihop broadcast problem.

Proof. We consider two different networks. First, consider the simple network with
only two processes, u and v. Lemma 9 shows that for ε = 2/n there is a probability of
at least 2/n that u and v do not communicate for Ω(logn Ct

C−t ) rounds.
Next, consider the “line” network consisting of a set of processes v0, v2, ..., vD,

where v0 is the source and can communicate only with v1, and, for 0 < i < D, vi

can communicate only with vi−1 and vi+1. Fix ε′ = 1/4e. By Lemma 9, we know that
with probability 1−ε′, for some constant c, it takes vi at least c( Ct

C−t ) rounds to transmit
the message to vi+1.

We now calculate the probability that for some D/2 of the vi, the communication
from vi to vi+1 is faster than c( Ct

C−t ). In particular, for a given set of D/2 links, the

probability is ε′D/2 that each communication from vi to vi+1 is faster than c( Ct
C−t ).

Moreover, there are at most
(

D
D/2

) ≤ (2e)D/2 such sets of D/2 links. Thus, for ε′ <
1/4e, we conclude that the probability of D/2 links exceeding the specified speed is at
most (2eε′)D/2 < (1/2)D/2 ≤ 1/2 (whereD > 1). Thus, with probability at least 1/2,
half the links require time Ω( Ct

C−t ), leading to a running time ofΩ(D Ct
C−t ). Combining

these two claims yields the desired result.

7 Conclusion and Future Work

In this paper, we study the problem of multihop broadcast in a radio network model
that assumes multiple channels and a bounded amount of adversarial disruption. We
show that additional communication channels can add both efficiency (as compared to
the single channel setting) and robustness (in terms of resilience to a bounded amount
of adversarial communication disruption). These advantages are especially pronounced
if we assume a common source of randomness. This reinforces our belief that broadcast
algorithms should better leverage the multiple communication channels made available
today by most popular radio protocols.

An interesting future work is to relax the assumption on the knowledge of an up-
per bound on t, and design algorithms that perform with running time relative to the
actual amount of adversarial disruption. Another interesting future work is to design
deterministic solutions that leverage the multi-selectors introduced in [17].
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Abstract. We consider the problem of leader election (LE) in single-
hop radio networks with synchronized time slots for transmitting and
receiving messages. We assume that the actual number n of processes
is unknown, while the size u of the ID space is known, but possibly
much larger. We consider two types of collision detection: strong (SCD),
whereby all processes detect collisions, and weak (WCD), whereby only
non-transmitting processes detect collisions.

We introduce loneliness detection (LD) as a key subproblem for solv-
ing LE in WCD systems. LD informs all processes whether the system
contains exactly one process or more than one. We show that LD cap-
tures the difference in power between SCD and WCD, by providing an
implementation of SCD over WCD and LD. We present two algorithms
that solve deterministic and probabilistic LD in WCD systems with time
costs of O(log u

n
) and O(min(log u

n
, log(1/ε)

n
)), respectively, where ε is the

error probability. We also provide matching lower bounds.
We present two algorithms that solve deterministic and probabilistic

LE in SCD systems with time costs ofO(log u) andO(min(log u, log log n+
log( 1

ε
))), respectively, where ε is the error probability. We provide match-

ing lower bounds.

1 Introduction

We study the leader election problem in single-hop radio networks with synchro-
nized time slots for transmitting messages, but where messages are subject to
collisions. We focus on the time cost of electing a leader and the dependence
of this cost on the number n of actual processes in the network as well as on
a known, finite ID space I of the processes. We assume that while n may be
unknown, each process knows its own ID and the ID space I. We only restrict
the size of the ID space, u = |I|, to be at least n; the number of processes in the
system may be much smaller than the size of the ID space.

The time cost of leader election depends significantly on the ability of the
processes to detect message collisions. The problem has been well studied in
single-hop systems which have no collision detection (e.g., [3,6,10,1,8]) and in
systems with strong collision detection (SCD) in which all processes can detect
message collisions (e.g., [11,2,5,3,7,9]). However, the cost of leader election is
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under-explored in systems with weak collision detection (WCD) wherein only
the listening processes detect message collisions. We focus on the time costs of
solving leader election, both deterministic and randomized, in WCD systems
and compare them to the time costs for leader election in SCD systems.

The primary challenge to solving leader election in WCD systems is to distin-
guish the following two cases: (1) n > 1 and all the processes transmit simulta-
neously resulting in a collision, which remains undetected because no process is
listening, (2) n = 1 and any message transmitted by the process does not collide,
but the successful transmission is undetected because no process is listening. In
both cases the transmitting processes receive the same feedback from the WCD
system despite different outcomes. Note that these two cases are distinguishable
in SCD systems. Hence, loneliness detection — determining whether or not there
is exactly one process in the system — is a key subproblem of leader election.

Summary of Results. We define the Loneliness Detection (LD) problem in
Sect. 4 and determine the time complexity of solving LD in single-hop wireless
networks in Sect. 5. We show that LD can be solved deterministically in WCD
systems in O(log u

n ) time slots for n > 1 and in O(log u) time slots for n = 1.
Interestingly, in the probabilistic case, if n > 1, LD can be solved in WCD
systems in a constant number of rounds with high probability; however, if n = 1,
then our algorithm takes O(log u) time slots. We demonstrate that these time
bounds are tight by presenting matching lower bounds.

In Sect. 4, we implement an SCD system on top of a WCD system augmented
with a solution to LD. This allows us to deploy SCD-based protocols on WCD
systems. We explore such SCD-based protocols for LE in Sect. 6 where we present
upper and lower bounds for both deterministic and randomized LE in SCD
systems. First, we present a deterministic LE protocol that terminates in at
most O(log u) time slots and show a matching lower bound. For probabilistic
LE, we interleave Nakano and Olariu’s algorithm from [9] with our deterministic
algorithm to solve the problem in O(min(log u, log logn + log(1

ε )) rounds with
termination probability at least 1−ε (where 1 < ε < 0). We present a lower bound
of Ω(min(log(u

n ), log(1
ε ))) for probabilistic LE on SCD systems with termination

probability at least 1 − ε. Note that the lower and upper bounds match when
ε = O( 1

n ). Subsequently, in Sect. 6, we demonstrate that the same upper and
lower bounds hold for LE in WCD systems as well.

The full proofs omitted here due to space constraints are available in [4].

2 System Models, Definitions, and Notations

Our model considers a finite set of n processes with unique IDs from I, a finite
ID space of size u. The set J ⊆ I denotes the set of IDs of the n processes.

Processes. Processes communicate by broadcasting messages from a fixed al-
phabetM on the shared channel. We assume thatM does not contain the special
placeholder elements ⊥ and &, which denote silence and collision, respectively.
We assume that time is divided into rounds, and processes have synchronized
clocks and can detect the start and end of each round. Processes transmit only
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at round boundaries, and each transmission is contained within a single round.
We assume that all processes wake up at time 0, which is the start of round 1.

A process i transmits a message m in round r through the action send(m, r)i

and receives a message m′ in round r through the action receive(m′, r)i. If a
process i does not send a message in round r, then, we say that process i executes
action send(⊥, r)i. If a process does not send a message in round r, then it is
assumed to be listening in round r. If a process i does not receive a message in
round r, then the process either receives silence through action receive(⊥, r)i or
receives a collision notification through action receive(&, r)i. We assume that in
every execution, for each process i and each round r, exactly one event of the
form send(∗, r)i and exactly one event of the form receive(∗, r)i occurs.

Wireless Channels. A wireless channel is a broadcast medium in which at
most one process can successfully send a message in any round. We assume that
a known, nondecreasing time-bound function b : N+ → R≥0, which maps each
round to an upper bound on the real time at which the round ends. Any channel
that satisfies a time-bound function b is said to be a b-time-bounded channel.

The behavior of a channel in a round r is determined by the set T of trans-
mitting processes in round r. If no process transmits a message in round r, i.e.,
|T | = 0, then for each process i in the system, the event receive(⊥, r)i occurs;
that is, all processes receive silence in round r. If exactly one process j trans-
mits a message (say) m in round r, i.e., |T | = 1, then for each process i in the
system, the event receive(m, r)i occurs. If two or more processes send messages
in a given round, i.e., |T | > 1, then we say that the round experiences a message
collision. The responses given by a channel in the event of a message collision are
determined by their collision detection ability. We consider two types of channels.

Weak Collision Detection (WCD) Channels. In WCD channels, in the case
of a collision, every transmitting process receives its own message, and every
process that is listening receives &. That is, if |T | > 1, then for each process i in
T , where event send(mi, r)i occurs, the event receive(mi, r)i occurs, and for each
process i not in T , the event receive(&, r)i occurs. We denote the time-bound
function of a WCD channel by bWCD.

Strong Collision Detection (SCD) Channels. In SCD channels, if a message
collision occurs, then all processes receive & in that round. That is, if |T | > 1,
then for each process i, the event receive(&, r)i occurs.

We also consider probabilistic SCD channels in which the real-time duration of
a round is specified by a function ρ : N+× [0, 1]→ R≥0, where ρ(r, ε) is an upper
bound on the real time by which round r terminates with probability at least
1 − ε. We assume that ρ is nondecreasing with respect to r and nonincreasing
with respect to ε. Additionally, we assume that every round terminates in finite
time with probability 1; that is, for each round r, ρ(r, 0) is finite. We say that a
probabilistic SCD channel whose round duration is upper bounded by a function
ρ is ρ-time-bounded.

We assert that systems with SCD are at least as powerful as systems with
WCD because SCD provides more information than WCD to the transmitting
processes in a given round. A proof appears in [4].
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3 The Leader Election Problem

Leader election (LE) is a problem in which each process i eventually outputs
leader(l)i where l is the ID of some process in the system, and the process l is
the leader. The safety properties of LE state that every process i performs at
most one leaderi event, and no two processes output different leaders.

We consider two variants of the LE problem, deterministic and probabilistic,
which differ only in their liveness properties. The deterministic liveness prop-
erty states that in any execution, for every process i ∈ J , some event of the form
leader(∗)i occurs. The probabilistic liveness property states that in the space
defined by all infinite executions, for every process i some event of the form
leader(∗)i occurs with probability 1. For each process i, an upper bound on the
number of rounds within which a leaderi event occurs with probability at least
1 − ε is given by ρLE(ε) where ρLE : [0, 1] → N+ is a nonincreasing function.
Deterministic leader election satisfies the safety properties and the determin-
istic liveness property, whereas probabilistic leader election satisfies the safety
properties and the probabilistic liveness property.

For the purposes of demonstrating lower bounds, we also consider the variant
η-LE of leader election where η ∈ N+. Specifically, deterministic η-LE denotes
the variant of deterministic leader election in which the system consists of η
processes and η is known to the processes; similarly, probabilistic η-LE denotes
the variant of probabilistic leader election in which the system consists of η
processes and η is known to the processes.

Prior Work. There is a significant body of work exploring LE in wireless sys-
tems with collisions. Most of the results focus on LE in SCD systems. For de-
terministic LE in single-hop SCD systems, there exist matching time bounds
O(log n) from [2,5] and Ω(logn) from [3] where n, the number of processes in
the system, is known. When n is unknown, the best known deterministic upper
bound on the time complexity of LE in SCD systems is O(n) in [7] for arbitrary
multi-hop networks of which single-hop is a special case; however, the result in
[7] assumes that an upper bound u of n is known and is O(n). To our knowledge,
better upper and lower bounds are not known.

For probabilistic LE in single-hop SCD systems, Willard presents an algorithm
in [11] that solves LE on SCD systems in expected time O(1), O(log log u), and
log logn+ o(log logn) in the cases where n is known, where n is unknown, but u is
known, and where both n and u are unknown, respectively. For the case where n
and u are unknown, the results in [9] provided an improved algorithm with running
time log logn + o(log logn) + O(log(1

ε )) with probability of termination at least
1− ε. A lower bound ofΩ(log 1

ε ) for this problem has been presented in [9] only for
“uniformalgorithms” in which all the processes transmitwith the same probability
in each round (although the probability can vary from one round to another).

To our knowledge, the problem of LE seems to be relatively under-explored
in the context of WCD systems. The best known time bounds for deterministic
LE in single-hop WCD systems, based on the results for broadcast in multi-hop
wireless networks in [10], is Θ(log n) where n is known.
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4 The Loneliness Detection Problem

Loneliness detection (LD) is a service that interacts with processes through
output alone. In some round r, LD outputs alone(a, r)i for all processes i where
a is Boolean. The safety properties state that if a is true there is exactly one
process in the system, and if a is false, then there is more than one process. Note
that LD outputs its alone event at all processes in the same round.

We consider two variants of LD, deterministic and probabilistic, which differ
only in their liveness properties. The deterministic liveness property states that
in any execution, for each process i, some alonei event occurs. The probabilis-
tic liveness property states that in the probability space defined by all infinite
executions, for each process i, some alonei event occurs with probability 1. The
upper bound on the number of rounds within which some alone event occurs
with probability at least 1− ε is given by ρLD(ε) where ρLD : [0, 1]→ N+ is non-
increasing, and ρLD(0) is finite. A deterministic loneliness detector satisfies the
safety and the deterministic liveness properties, whereas a probabilistic loneliness
detector satisfies the safety and the probabilistic liveness properties.

A solution to deterministic LD in which an alone event occurs within rLD

rounds is said to be a rLD-round-bounded, and a solution to randomized LD in
which some alone event occurs with probability at least 1 − ε within ρLD(ε)
rounds is said to be ρLD(ε)-round-bounded.

We show that Loneliness Detection (LD) is, in a sense, exactly the difference
between SCD and WCD. Note that LD is solved on SCD systems using the
following trivial algorithm. Each process i in the system sends a message m at
the beginning of round 1 and waits until the end of round 1. If a & is received
at the end of round 1, then the algorithm returns alone(false, 1)i, otherwise it
returns alone(true, 1)i.

We now present an algorithm that implements an SCD channel over a WCD
system augmented with an LD service. In order to distinguish the actions of the
two channels, we rename the send and receive actions associated with the WCD
channel as sendWCD and receiveWCD actions, respectively.

Pseudocode Notation. When an action at a process is triggered by an event
e, we denote the trigger with “upon e” in the pseudocode. Similarly, when the
automaton is waiting for the occurrence of an event e to proceed, we denote it
with “wait until e”. Instances in which an algorithm performs an action a are
denoted “perform a”.

We also use the following notation to bind values to certain variables. Consider
the statements “upon e(x, y)” and “wait until e(x, y)”. In both cases, if (say)
x is undefined and y is defined at the point in the code where the statements
occur, then the semantics of the code is to wait for any event of the form e(∗, y),
and when an event (say) e(x′, y) occurs, bind the value of x′ to x.

Algorithm Description. The algorithm consists of two concurrent tasks: Init
and Communicate. In the Init task each process i waits for the alone(aLD, rLD)i

event from the LD service. The Communicate task consists of two WCD rounds,
called Transmit and Ack, which are executed for every round rs of the SCD
channel. Let T denote the set of processes that transmit some message mi in
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Algorithm 1. Implementing SCD on a WCD system using an LD service
Each process i executes two concurrent tasks: Init and Communicate.
Variables:

m ∈M∪ {⊥}
m′, p2msg ∈ M∪ {�,⊥}
rLD, rs ∈ N+

Task Init:
Wait until event alone(aLD, rLD)i from the LD service; halt

Task Communicate:
loop forever

/* Round rs for the SCD channel starts here */
upon send(m,rs)i wait for Task Init to terminate
Transmit Round:

perform sendWCD(m,rLD + 2rs − 1)i

wait until receiveWCD(m′, rLD + 2rs − 1)i

Ack Round:
if (m = ⊥ and m′ ∈M) then perform sendWCD(“ack”, rLD + 2rs)i

else perform sendWCD(⊥, rLD + 2rs)i

wait until receiveWCD(p2msg, rLD + 2rs)i

if (m′ = ⊥) then perform receive(⊥, rs)i

else if (aLD = true) then perform receive(m,rs)i

else if (p2msg 
= ⊥) then perform receive(m′, rs)i

else perform receive(�, rs)i

/* Round rs ends here */
end loop

round rs of the SCD channel via send(mi, rs)i for each process i ∈ T . In the
Transmit round, each process i ∈ T executes sendWCD(mi, rLD + 2rs − 1)i.
All other processes listen to the channel via sendWCD(⊥, rLD + 2rs − 1)i. At
the end of the Transmit round, each process i ∈ T receives its own message
via the event receiveWCD(m′, rLD + 2rs − 1)i where m′ = mi. Each listening
process j receives either some message, ⊥, or & via receiveWCD(m′, rLD +
2rs − 1)j . In the Ack round, each process i ∈ T listens to the channel via the
event sendWCD(⊥, rLD + 2rs)i. Each process j ∈ J \ T sends an “ack” via
the event sendWCD(“ack”, rLD +2rs)j iff j received a message in the Transmit
round; otherwise j listens to the channel via the event sendWCD(⊥, rLD+2rs)j .
At the end of the Ack round, each process receives either “ack”, ⊥, or & via
receiveWCD(p2msg, rLD +2rs)∗. If p2msg is “ack” or &, then the transmission
in the Transmit round was successful, and m′ is that transmitted message; so the
algorithm outputs receive(m′, rs)i at each process i. If aLD is true, then there is
only one process in the system, and so the transmission in the Transmit round
was successful, and the algorithm outputs receive(m, rs)i at the lone process i.
However, if aLD is false and p2msg is ⊥, then there was a collision, and the
algorithm outputs receive(&, rs)i at each process.

Note that although the Init and Communicate tasks are executed concur-
rently, the Communicate task waits for the Init task to terminate before
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proceeding to sending and receiving messages on the WCD channel. The pseu-
docode is shown in Algorithm 1.

Theorem 1. Algorithm 1 implements a deterministic SCD channel over a WCD
system with a deterministic LD service. If the WCD channel is bWCD-time-
bounded and the LD service is rLD-round-bounded, then the SCD channel im-
plementation is b-time-bounded, where b(r) = bWCD(rLD + 2r).

Proof Sketch. We show that (1) if no process sends a message in a round (say)
rs, then all the processes receive ⊥ in round rs; (2) if exactly one process sends
a message (say) m in round rs, then all the processes receive m in the round rs;
and (3) if multiple processes send messages in round rs, then all the processes
receive & in round rs.

Properties (1) and (2) are easy to verify based on the following observations.
When n = 1, at the lone process i, the event alone(true, rLD)i occurs, and when
n > 1, at each process i, the event alone(false, rLD)i occurs. For property (3)
let T denote the set of transmitting processes in round rs. If |T | ≥ 2, then there
is a message collision. From the properties of a WCD channel, we know that for
every process j ∈ T ,m′

j ismj , and for every process i /∈ T ,m′
i is & (andmi is ⊥).

Therefore, in the Ack round, for each process i event sendWCD(⊥, rLD + 2rs)
occurs, and consequently, p2msgi is ⊥. Given that aLD = false, and m′

i �= ⊥ at
every process i, each process i executes receive(&, rs)i. That is, if |T | ≥ 2, then
all processes receive & in round rs.

Next we determine a time-bound function b for the SCD channel. Let bWCD

denote a time-bound function for the underlying WCD channel. From the pseu-
docode we know that the deterministic LD service outputs the alone events
in round rLD of the WCD channel, and subsequently between every pair of
events send(∗, r)i and receive(∗, r)i, there are exactly two sendWCD events of
the form sendWCD(∗, rLD + 2r − 1)i and sendWCD(∗, rLD + 2r)i. Therefore,
b(1) = bWCD(rLD + 2) and for each round r, b(r) = bWCD(rLD + 2r). ��
Additionally, if the underlying LD service is a ρLD(ε)-round-bounded probabilis-
tic LD service, then Algorithm 1 implements a ρ(r, ε)-time-bounded probabilistic
SCD channel where ρ(r, ε) = bWCD(ρLD(ε) + 2r). Thus, we have the following
result whose correctness proof is similar to Theorem 1.

Theorem 2. Algorithm 1 implements probabilistic SCD channel over a WCD
channel and a probabilistic LD service. If the WCD channel is bWCD-time-
bounded and the probabilistic LD service is ρLD(ε)-round-bounded, then the prob-
abilistic SCD channel implementation is ρ(r, ε)-time-bounded where ρ(r, ε) =
bWCD(ρLD(ε) + 2r).

Remark 1. Implementing LD on top of a WCD system augmented with a solu-
tion to LE takes just one additional round. First, all the processes elect a leader
with the assumed solution to LE. In the next round of the assumed WCD sys-
tem, (1) every process that is not the leader transmits, outputs false, and then
halts; (2) concurrently, the leader outputs true iff it receives ⊥ at the end of this
round, and outputs false otherwise. Correctness is straightforward.
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5 Algorithms and Lower Bounds for Loneliness Detection

Here, we explore algorithms and lower bounds for Loneliness Detection. Since
LD can be solved in SCD systems in a single round, we focus on WCD systems.

5.1 Upper Bounds for LD in WCD Systems

We present two algorithms, one deterministic and the other randomized. The
deterministic algorithm solves the deterministic LD problem in O(log( u

n−1 ))
rounds whereas the randomized algorithm solves the probabilistic LD problem
in O( log(1/ε)

n−1 ) rounds with probability 1− ε, for ε ∈ (0, 1]. We also combine these
algorithms to solve probabilistic LD with probability 1.

Bitwise Separation Protocol (BSP). BSP solves the deterministic LD prob-
lem in WCD systems in O(log u

n−1 ) rounds. The algorithm is as follows. Let the
ID of each process i be represented as a sequence of bits denoted idi; since the
ID space is of size u, the sequence is �log(u) bits long. Starting from the least
significant bit, number the bits from 1 to �log(u), and let idi[k] denote the k-th
bit of process i’s ID. Let Tk = {i ∈ J : idi[k] = 1}1. The algorithm proceeds in
phases, each phase consisting of a Transmit round and an Ack round.

In the Transmit round of the k-th phase, exactly the processes in Tk that have
not yet halted transmit a message. In the Ack round, if a process i ∈ J \Tk that
has not halted receives either a message or & in the Transmit round, then i sends
an “ack” message; furthermore, processes in Tk do not send a message in the
Ack round. If a process i ∈ J that has not yet halted either sends or receives an
“ack” message or receives & in the Ack round of a given phase k, then i outputs
alone(false, 2k)i and halts.

If ⊥ is received in all the Ack rounds, then the algorithm terminates at the end
of 2�logu rounds and the lone process (say) j outputs alone(true, 2�logu)j .
The pseudocode is shown in Algorithm 2.

Theorem 3. BSP solves the deterministic LD problem and for each process i;
some alonei event occurs after 2�log(u) rounds if n = 1 and within 2(�log u−
�logn+ 1) rounds if n > 1.

Proof Sketch. From the pseudocode in Algorithm 2, note that every process
i performs exactly one alonei event. First, assume that alone(true, r)i occurs.
From the pseudocode, we see that r = 2�logu. For the purpose of contradiction,
we assume that n > 1. Since no alone(false, ∗)i event occurs, i never sends an
“ack” and i never receives an “ack” or & in any Ack round. This can happen
only if in the Transmit round of every phase k ≤ �log u, either all the processes
transmit or all the processes listen; this implies that all the processes share the
same ID. This contradicts our assumption that process IDs are unique. Hence,
when n = 1, event alone(true, 2�logu)i occurs at the lone process i.

Alternatively, assume that alone(false, r)i occurs. From the pseudocode, we
know that m

′′
i �= ⊥ in round r; that is, i either sent or received an “ack” message

1 Recall that J is the set of processes comprising the system.
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Algorithm 2. Bitwise Separation Protocol
Let m ∈ M denote a message that i sends to signal its presence in the system.
Process i executes the following:

for k := 1 to �log(u)�
Transmit round:

if (id[k] = 1) then perform send(m, 2k − 1)i

else perform send(⊥, 2k − 1)i

wait until receive(m′, 2k − 1)i

Ack round:
if (id[k] 
= 1 and m′ 
= ⊥) then perform send(“ack”, 2k)i

else perform send(⊥, 2k)i

wait until receive(m′′, 2k)i

if (m′′ 
= ⊥) then perform alone(false, 2k)i; halt.
endfor
perform alone(true, 2�log(u)�)i

or received& in the Ack round of phase r/2. Therefore, there is at least one other
process in the system. Furthermore, since i either sent or received an “ack”
message or received & in round r, then the properties of the WCD channel
imply that the same is true for all processes. Hence, for each process j, the event
alone(false, r)j occurs.

Now we provide an upper bound on r. Since representing unique IDs among
n processes requires �logn bits, and since each process ID is of length �log u
bits, we infer that within the first �log u−�logn+1 bits of the process IDs, at
some bit position k, there exist at least two processes i and j such that idi[k] = 1
and idj [k] = 0. Therefore, in phase k, i transmits and j listens in the Transmit
round. Hence, alone(false, 2k) event occurs at each process. ��

Random Separation Protocol (RSP). RSP is used to solve probabilistic LD
in WCD systems. RSP verifies that n > 1 in 2 log(1/ε)

n−1 rounds with probability
at least 1− ε where ε ∈ (0, 1]. However, if n = 1, RSP does not terminate.

The protocol is identical to BSP except that IDs in RSP are infinite-bit strings
in which the bits is chosen independently and uniformly at random. In each phase
k, if idi[k] = 1, then i transmits in the Transmit round; otherwise i listens in the
Transmit round. It can be verified easily that RSP terminates in the first phase
k in which for some pair of processes i and j, idi[k] �= idj [k].

The probability that the k-th bit of the IDs of all processes are identical is
2 · (1

2 )n = (1
2 )n−1. It follows that, for a given ε ∈ (0, 1], the probability that RSP

does not terminate in log(1/ε)
n−1 phases is ε.

Theorem 4. In RSP, if n > 1 and ε ∈ (0, 1], then for every process i the event
alone(false, r)i occurs within the first log(1/ε)

n−1 phases, that is, r ≤ 2 log(1/ε)
n−1 , with

probability at least 1− ε.
Remark 2. For ε = 2−n, Theorem 4 implies that, if n > 1, then for every process
i, the event alone(false, r)i occurs within the first 2 n

n−1 rounds with probability
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at least 1 − 2−n. Thus, for n > 1, the number of rounds within which RSP
terminates with high probability is always at most 4.

Combined Separation Protocol (CSP). Even though RSP terminates in
fewer rounds than BSP with high probability if n > 1, it fails to terminate if
n = 1. We overcome this problem by interleaving RSP and BSP, executing BSP
in the odd rounds and RSP in the even rounds; CSP terminates when either
BSP or RSP terminates.

Theorem 5. CSP solves probabilistic LD on WCD systems where

ρLD(ε) =

⎧⎨⎩
4�log u if n = 1,
4(�log u − �logn+ 1) if ε = 0 and n > 1,
4 min

(
(�log u − �logn+ 1), log(1/ε)

n−1

)
if ε ∈ (0, 1] and n > 1.

5.2 Lower Bounds for LD in WCD Systems

In this section, we present lower bounds for both probabilistic and deterministic
LD problems in WCD systems.

Lemma 1. For any LD algorithm A for WCD systems, any n > 1, and any
round number r ≤ �log(u) − �log(n − 1)� − 2, there exists a set JLB of n
processes, such that, when A is run on the system consisting of all processes in
JLB, the probability that A does not terminate within r rounds, is at least (1

2 )rn.

Proof Sketch. For each process i, we consider executing A on system Si consist-
ing of only process i. Without loss of generality, assume that each execution of
Si takes at least r rounds. Consider the probability space of all executions corre-
sponding to r rounds of Si. For each such execution and each round z, 1 ≤ z ≤ r,
define transi(z) to be true if i transmits in round z, and false otherwise. Denote
the probability of events in this space by Pri. We define the boolean function
dtdi (dominating transmission decision) on {1, ..., r} recursively. dtdi(1) is as-
signed the value that is more likely to be taken by transi(1), i.e., dtdi(1) = true
iff Pri{transi(1) = true} ≥ 1

2 . Let DTDi,1 denote the event in the probability
space Pri that transi(1) = dtdi(1). For each z ≥ 2, we define dtdi(z) to be the
value that is more likely to be taken by transi(z), conditioned onDTDi,z−1, i.e.,
dtdi(z) = true iff Pri{transi(z) = true|DTDi,z−1} ≥ 1

2 . We denote by DTDi,z

the event that for each round r′, 1 ≤ r′ ≤ z, transi(r′) = dtdi(r′).
Since for each process i and each round z, 1 ≤ z ≤ r, there are two possible

values for dtdi(z), there are 2r possible values for dtdi sequences. Since 2r < u
n−1 ,

by the Pigeonhole principle, there exists a set JLB of n processes that have
identical sequences of dominating transmission decisions, i.e., ∀i, j ∈ JLB, dtdi =
dtdj . Let S be the system consisting of processes in JLB. For each z, 1 ≤ z ≤ r,
let cdtd(z) denote the common dominating transmission decision of the processes
of JLB in round z.
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Consider an execution α in system S. If for each process i ∈ JLB and each
round z ≤ r of α, transi(z) = cdtd(z), then for each i ∈ JLB there exists an
execution β in Si such that i cannot distinguish α from β in the first r rounds.
However, in α, the only valid output is alone(false, ∗)∗ whereas in β, the only
valid output is alone(true, ∗)∗. Hence, j cannot terminate within r rounds. By
induction we show that the probability that for each i ∈ JLB and z, 1 ≤ z ≤ r,
transi(z) = cdtd(z) is at least (1

2 )rn. Hence, with probability at least (1
2 )rn, A

does not terminate within r rounds. ��
Lemma 2. For n = 1, no LD algorithm for WCD systems guarantees termina-
tion within �log(u) − 2 rounds.

Theorem 6. For any LD algorithm A for WCD systems, and any n > 1, there
exists a set of processes, JLB, where |JLB| = n, such that the probability that
A terminates within min

( log( 1
ε )

n , �log u
n−1− 2

)
rounds, when run on the system

consisting of all processes of JLB, is at most 1− ε. For n = 1, no LD algorithm
for WCD systems guarantees termination within �log(u) − 2 rounds.

Proof. For n > 1, the proof follows by substituting r = min
( log( 1

ε )

n , �log u
n−1−2

)
in Lemma 1. For n = 1, the proof follows from Lemma 2. ��
Theorem 7. For n > 1, no deterministic LD algorithm for WCD systems guar-
antees termination within �log u

n−1 rounds. For n = 1, no deterministic LD
algorithm guarantees termination within �log(u) − 2 rounds.

5.3 Revisiting SCD on WCD Systems

In Sect. 4, we presented an implementation of an SCD channel over a WCD
channel using an LD service. In Sect. 5.1, we presented the BSP and CSP al-
gorithms that solve deterministic and probabilistic LD, respectively, over WCD.
Note that, BSP and CSP do not send any messages on the WCD channel after
they terminate. Hence, Algorithm 1 may use the WCD channel after round r in
isolation. Therefore, BSP and CSP can be used as an LD service in Algorithm
1 to implement deterministic and probabilistic SCD systems, respectively.

6 Algorithms and Lower Bounds for Leader Election

In this section, we study deterministic and probabilistic LE problems in both
SCD and WCD systems and demonstrate matching upper and lower bounds.

6.1 Upper Bounds for LE in SCD Systems

In this section, we present two algorithms: Bitwise Leader Election Protocol
(BLEP) and Combined Leader Election Protocol (CLEP). The former is a de-
terministic algorithm which solves deterministic LE in SCD systems. The latter
is a randomized algorithm which interleaves BLEP and Nakano and Olariu’s
algorithm in [9] to solve probabilistic LE in SCD systems.
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Algorithm 3. Bitwise Leader Election Protocol
active = true
for r := 1 to log(u)�+ 1

if (active = true and idi[r] = 1) then perform send(idi, r)i

else perform send(⊥, r − 1)i

wait until receive(m′, r − 1)i

if (m′ ∈ I) then perform leader(m′)i; halt.
if (m′ = �) then active = (active)&(idi[r] = 1)

endfor

Bitwise Leader Election Protocol (BLEP). BLEP solves deterministic LE
in SCD systems in O(log u) rounds. In BLEP, every process contending to be
the leader is active, and inactive otherwise; a Boolean variable active denotes
whether or not a process is active. Initially, all the processes are active. The
execution proceeds from round 1 to round �log u� + 1. In each round r, every
process i such that i is active and idi[r] = 1, transmits its ID idi; all other
processes are silent in round r. At the end of round r, every process j receives
some response from the SCD channel. If j receives a collision notification & at
the end of round r, and j was active but did not transmit its ID in round r
(because idj [r] = 0), then j ceases to be active (becomes inactive) at the end of
round r and therefore stops contending to be the leader. On the other hand, if
the response at the end of round r is the ID of some process l, then j elects l
as the leader, outputs leader(l)j , and halts. If j receives ⊥ at the end of round
r, then j does nothing. The execution proceeds to round r + 1, and so on, until
round �log u�+ 1. The pseudocode is shown in Algorithm 3.

Theorem 8. BLEP solves the LE problem within �log(u)�+ 1 rounds.

Proof Sketch. Establishing the safety properties of LE is straightforward and
follows from the pseudocode. Next, we prove that some leader event occurs
within �log u�+ 1 rounds.

From the pseudocode, we see that if i and j are active in round r, then for
each r′, 1 ≤ r′ ≤ r, idi[r′] = idj[r′]. Therefore, at the end of �log u rounds,
there can be at most two active processes in the system. If just one process (say)
i remains active, then consider the earliest round r ≤ �log u� at the end of which
i is the only active process. By construction, multiple processes are active at the
beginning of round r. Since i is the only process active at the end of round r, for
each process j �= i that is active in round r, idj [r] = 0 and idi[r] = 1. Hence, in
round r, only i transmits its ID, and all the processes in the system receive i’s
ID. Therefore, for each process j in the system, leaderj event occurs in round
r ≤ �log u� and contradicts our assumption that no leader event occurs by the
end of round �log u�.

On the other hand, if two processes (say) i and j remain active, then the first
�log u� bits of their IDs are identical. Therefore, the last bit of their IDs must be
different. Without loss of generality, let idi[�log u�+1] = 1 and idj [�log u�+1] =
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0. In round �log u�+ 1 only i transmits its ID and therefore, for each process i,
leaderi event occurs in round �log u�+ 1. ��

Combined Leader Election Protocol (CLEP). Nakano and Olariu [9]
present a randomized LE algorithm for SCD systems that terminates in O(1)
rounds if n = 1, and in O(log logn + log(1

ε )) rounds with probability at least
1 − ε if n > 1. CLEP interleaves Nakano-Olariu’s algorithm with BLEP, by ex-
ecuting BLEP in the odd rounds and Nakano-Olariu in the even rounds. The
time complexity of CLEP matches the lower bound for probabilistic LE.

Theorem 9. CLEP solves the LE problem in SCD systems and terminates
within ρLE(ε) rounds with probability at least 1− ε where:

ρLE(ε) =

⎧⎨⎩O(1) if n = 1,
O(log u) if ε = 0 and n > 1,
O(min(log u, log logn+ log(1

ε )) if ε ∈ (0, 1] and n > 1.

6.2 Lower Bounds for LE in Both SCD and WCD Systems

Here we present lower bounds for deterministic and probabilistic LE in SCD
systems in Theorems 10 and 12, respectively, and they match the upper bounds
presented in Theorems 8 and 9, respectively. Note that these lower bounds hold
for the weaker WCD systems as well. We demonstrate these lower bounds by
proving the lower bounds for η-LE, and since η-LE is equivalent the LE problem
where n = η is known, lower bounds for η-LE hold for LE as well.

Lemma 3. For any η > 1 and any randomized η-LE algorithm A in SCD sys-
tems, there exist some set J of η processes such that there is a non-zero proba-
bility that A, when run on J , does not terminate within �log u

η−1 − 2 rounds.

Proof Sketch. Let k = �log u
η−1 − 2. Assume for contradiction that there exists

an η > 1 and an η-LE algorithm A that terminates within k rounds with prob-
ability 1. We construct executions of A for each process i in which i receives &
from the channel in each round that it transmitted and receives ⊥ otherwise.
Using techniques from Lemma 1, we show that there exists an execution of A on
some set JLB of η processes for which either each process i ∈ JLB elects itself
as the leader or no process is elected leader within k rounds. This violates the
properties of η-LE and forces the contradiction. ��
Theorem 10. For any n > 1, no deterministic LE algorithm in SCD systems
can guarantee termination within �log u

n−1 − 2 rounds.

The proof follows from Lemma 3. Next we derive a lower bound for termination
probability of 2-LE and extend it to the LE problem.

Lemma 4. Let A be any 2-LE algorithm in SCD systems and suppose that
r < �log(u) − 1 and 2 ≤ u. There exist two processes such that the probability
of termination of A within k rounds, when A is run on the system of those two
processes, is at most 1− (1

4 )r+1.



Leader Election Using Loneliness Detection 281

Proof Sketch. The proof structure is similar to that of Lemma 1. The key dif-
ference is the following. In the proof of Lemma 1 we considered some specific
executions of an LD algorithm ALD in WCD systems with just one process and
showed that such executions are locally indistinguishable from some (other) spe-
cific executions of ALD in a WCD system with a specific set of n processes.
In SCD systems, such a construction is not feasible for the following reason. In
WCD systems when a transmitting process always receives the same feedback
from the channel. On the other hand, in SCD systems, a transmitting process
could receive different feedback depending on whether or not a collision occurred.
To circumvent this issue, we consider executions of A, a solution to 2-LE problem
in SCD systems, in a fake scenario where a process receives & in every round
that it transmits. We use such executions to demonstrate that with probability
at least (1

4 )r+1, A does not terminate. ��
Theorem 11. For any u ≥ 2, any ID space I of size u, any ε ∈ (0, 1], and any
2-LE algorithm A in SCD systems, there exist two processes with IDs from I
such that, when A is run with just those two processes, the probability that A
terminates within min(log( 1

4ε )/2, �log(u) − 2) rounds is at most 1− ε.
Theorem 12. For any u ≥ 2, any ID space I of size u, any ε ∈ (0, 1], any
η, 1 ≤ η ≤ u

2 , and any 2η-LE algorithm A in SCD systems, there exist 2η
processes with IDs from I such that, when A is run with just those 2η processes,
the probability that A terminates within min(log( 1

4ε )/2, �log(u
n ) − 2) rounds is

at most 1− ε.
Proof Sketch. Assume for the sake of contradiction that there exists some 2η-
LE algorithm A that terminates within min(log( 1

4ε )/2, �log(u
n )−2) rounds with

probability greater than 1− ε. Consider an ID space I∗ of size u∗ = �u
η �. Using

A we construct a 2-LE algorithm A∗ that emulates A on groups of processes and
terminates when A does. Since A terminates within min(log( 1

4ε )/2, �logu∗− 2)
rounds with probability greater than 1− ε, the same bounds apply to A∗ as well,
and this contradicts contradicts Theorem 11. ��

6.3 Leader Election in Weak Collision Detection Systems

In this section, we show that the LE problem in WCD systems can be solved in
time complexities that match the lower bounds presented in Sect. 6.2 for both
deterministic and probabilistic cases. We can solve LE on WCD systems by first
implementing SCD systems on WCD systems as presented in Sect. 5.3, and then
solving LE on the thus constructed SCD systems using BLEP and CLEP from
Sect. 6.1. Thus, we have the following results.

Theorem 13. For a WCD system with IDs from an ID-space of size u and
consisting of n processes, 1 ≤ n ≤ u, there exists a deterministic LE algorithm
with a time-bound function given by rLE = O(log u) rounds.

Note that the time complexity above, O(log u), matches the Ω(log u
n ) lower

bound presented in Lemma 3 asymptotically when n << u.
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Theorem 14. For a WCD system with IDs from an ID-space of size u and
consisting of n processes, 1 ≤ n ≤ u, there exists a randomized LE algorithm
with a time-bound function ρLE(ε) where for any ε ∈ (0, 1],

ρLE(ε) =
{
bWCD(O(log(u))) if n = 1
bWCD(O(min(log u, log logn+ log(1

ε ))) if n > 1.

The upper bounds presented above match the respective lower bounds. For n =
1, Theorem 6, along with the reduction of LD to LE in the Remark 1, shows an
Ω(log u) lower bound for LE in WCD systems which matches the upper bound.
For n > 1, the upper bound presented above matches the lower bound presented
in Theorem 12, when ε = O( 1

n ).
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Abstract. We give an improved algorithm for drawing a random sample
from a large data stream when the input elements are distributed across
multiple sites which communicate via a central coordinator. At any point
in time the set of elements held by the coordinator represent a uniform
random sample from the set of all the elements observed so far. When
compared with prior work, our algorithms asymptotically improve the
total number of messages sent in the system as well as the computation
required of the coordinator. We also present a matching lower bound,
showing that our protocol sends the optimal number of messages up to a
constant factor with large probability. As a byproduct, we obtain an im-
proved algorithm for finding the heavy hitters across multiple distributed
sites.

Keywords: distributed streams, sampling, reservoir sampling.

1 Introduction

For many data analysis tasks, it is impractical to collect all the data at a single
site and process it in a centralized manner. For example, data arrives at multiple
network routers at extremely high rates, and queries are often posed on the union
of data observed at all the routers. Since the data set is changing, the query
results could also be changing continuously with time. This has motivated the
continuous, distributed, streaming model [8]. In this model there are k physically
distributed sites receiving high-volume local streams of data. These sites talk to
a central coordinator, who has to continuously respond to queries over the union
of all streams observed so far. The challenge is to minimize the communication
between the different sites and the coordinator, while providing an accurate
answer to queries at the coordinator at all times.

A fundamental problem in this setting is to obtain a random sample drawn
from the union of all distributed streams. This generalizes the classic reservoir
sampling problem (see, e.g., [15], where the algorithm is attributed to Waterman;
see also [19]) to the setting of multiple distributed streams, and has applications
to approximate query answering, selectivity estimation, and query planning. For
example, in the case of network routers, maintaining a random sample from
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the union of the streams is valuable for network monitoring tasks involving
the detection of global properties [13]. Other problems on distributed stream
processing, including the estimation of the number of distinct elements [7,8] and
heavy hitters [4,14,17,21], use random sampling as a primitive.

The study of sampling in distributed streams was initiated by Cormode et al
[9]. Consider a set of k different streams observed by the k sites with the total
number of current items in the union of all streams equal to n. The authors
in [9] show how k sites can maintain a random sample of s items without re-
placement from the union of their streams using an expected O((k + s) logn)
messages between the sites and the central coordinator. The memory require-
ment of the central coordinator is s machine words, and the time requirement
is O((k + s) logn). The memory requirement of the remote sites is a single ma-
chine word with constant time per stream update. Cormode et al. also prove
that the expected number of messages sent in any scheme is Ω(k + s log(n/s)).
Each message is assumed to be a single machine word, which can hold an integer
of magnitude (kns)O(1).

Notation. All logarithms are to the base 2 unless otherwise specified. Through-
out the paper, when we use asymptotic notation, the variable that is going to
infinity is n, and s and k are functions of n.

1.1 Our Results

Our main contribution is an algorithm for sampling without replacement from
distributed streams, as well as a matching lower bound showing that the mes-
sage complexity of our algorithm is optimal. A summary of our results and a
comparison with earlier work is shown in Figure 1.

New Algorithm: We present an algorithm which uses an expected

O

(
k log(n/s)

log(1 + (k/s))

)
number of messages for continuously maintaining a random sample of size s from
k distributed data streams of total size n. Notice that if s < k/8, this number is
O
(

k log(n/s)
log(k/s)

)
, while if s ≥ k/8, this number is O(s log(n/s)).

The memory requirement in our protocol at the central coordinator is s ma-
chine words, and the time requirement is O

(
k log n/s

log(1+k/s)

)
. The former is the same

as that in the protocol of [9], while the latter improves their O((k + s) logn)
time requirement. The remote sites in our scheme store a single machine word
and use constant time per stream update, which is clearly optimal.

Our result leads to a significant improvement in the message complexity in the
case when k is large. For example, for the basic problem of maintaining a single
random sample from the union of distributed streams (s = 1), our algorithm
leads to a factor of O(log k) decrease in the number of messages sent in the
system over the algorithm in [9].
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Our algorithm is simple, and only requires the central coordinator to com-
municate with a site if the site initiates the communication. This is useful in a
setting where a site may go offline, since it does not require the ability of a site
to receive broadcast messages.

Upper Bound Lower Bound
Our Result Cormode et al. Our Result Cormode et al.

s < k
8

O
(

k log(n/s)
log(k/s)

)
O(k log n) Ω

(
k log(n/s)
log(k/s)

)
Ω(k + s log n)

s ≥ k
8

O(s log(n/s)) O(s log n) Ω(s log(n/s)) Ω(s log(n/s))

Fig. 1. Summary of Our Results for Message Complexity of Sampling Without Re-
placement

Lower Bound: We also show that for any constant q > 0, any correct protocol
must send Ω

(
k log(n/s)

log(1+(k/s))

)
messages with probability at least 1 − q. This also

yields a bound of Ω
(

k log(n/s)
log(1+(k/s))

)
on the expected message complexity of any

correct protocol, showing the expected number of messages sent by our algorithm
is optimal, upto constant factors.

In addition to being quantitatively stronger than the lower bound of [9], our
lower bound is also qualitatively stronger, because the lower bound in [9] is on
the expected number of messages transmitted in a correct protocol. However,
this does not rule out the possibility that with large probability, much fewer
messages are sent in the optimal protocol. In contrast, we lower bound the num-
ber of messages that must be transmitted in any protocol 99% of the time. Since
the time complexity of the central coordinator is at least the number of messages
received, the time complexity of our protocol is also optimal.

Sampling with Replacement. We also show how to modify our protocol to
obtain a random sample of s items from k distributed streams with replacement.
Here we achieve a protocol with O

((
k

log(2+(k/(s log s))) + s log s
)

logn
)

messages,
improving the O((k+ s log s) logn)-message protocol of [9]. We obtain the same
improvement in the time complexity of the central coordinator.

Heavy-Hitters. As a corollary, we obtain a protocol for estimating the heavy
hitters in distributed streams with the best known message complexity. In this
problem we would like to find a set H of items so that if an element e oc-
curs at least an ε fraction of times in the union of the streams, then e ∈ H ,
and if e occurs less than an ε/2 fraction of times in union of the streams, then
e /∈ H . It is known that O(ε−2 logn) random samples suffice to estimate the
set of heavy hitters with high probability, and the previous best algorithm [9]
was obtained by plugging s = O(ε−2 logn) into a protocol for distributed sam-
pling. We thus improve the message complexity from O((k + ε−2 logn) logn) to
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O
(

k log(εn)
log(εk) + ε−2 log(εn) logn

)
. This can be significant when k is large com-

pared to 1/ε.

1.2 Related Work

In addition to work discussed above, other research in the continuous distributed
streaming model includes estimating frequency moments and counting the num-
ber of distinct elements [7,8], and estimating the entropy [2]. The reservoir sam-
pling technique has been used extensively in large scale data mining applica-
tions, see for example [10,16,1]. Stream sampling under sliding windows has been
considered in [6,3]. Deterministic algorithms for heavy-hitters over distributed
streams, and corresponding lower bounds were considered in [21].

Stream sampling under sliding windows over distributed streams has been
considered in [9]. Their algorithm for sliding windows is already optimal upto
lower-order additive terms (see Theorems 4.1 and 4.2 in [9]). Hence our improved
results for the non-sliding window case do not translate into an improvement for
the case of sliding windows.

A related model of distributed streams was considered in [11,12]. In this model,
the coordinator was not required to continuously maintain an estimate of the
required aggregate, but when the query was posed to the coordinator, the sites
would be contacted and the query result would be constructed. In their model,
the coordinator could be said to be “reactive”, whereas in the model considered
in this paper, the coordinator is “pro-active”.

Roadmap: We first present the model and problem definition in Section 2, and
then the algorithm followed by a proof of correctness in Section 3. The analysis
of message complexity and the lower bound are presented in Sections 4 and 5 re-
spectively, followed by an algorithm for sampling with replacement in Section 6.

2 Model

Consider a system with k different sites, numbered from 1 till k, each receiving
a local stream of elements. Let Si denote the stream observed at site i. There is
one “coordinator” node, which is different from any of the sites. The coordinator
does not observe a local stream, but all queries for a random sample arrive at
the coordinator. Let S = ∪n

i=1Si be the entire stream observed by the system,
and let n = |S|. The sample size s is a parameter supplied to the coordinator
and to the sites during initialization.

The task of the coordinator is to continuously maintain a random sample
P of size min{n, s} consisting of elements chosen uniformly at random with-
out replacement from S. The cost of the protocol is the number of messages
transmitted.

We assume a synchronous communication model, where the system progresses
in “rounds”. In each round, each site can observe one element (or none), and
send a message to the coordinator, and receive a response from the coordinator.
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The coordinator may receive up to k messages in a round, and respond to each of
them in the same round. This model is essentially identical to the model assumed
in previous work [9]. Later we discuss how to handle the case of a site observing
multiple elements per round.

The sizes of the different local streams at the sites, their order of arrival,
and the interleaving of the streams at different sites, can all be arbitrary. The
algorithm cannot make any assumption about these.

3 Algorithm

The idea in the algorithm is as follows. Each site associates a random “weight”
with each element that it receives. The coordinator then maintains the set P of s
elements with the minimum weights in the union of the streams at all times, and
this is a random sample of S. This idea is similar to the spirit in all centralized
reservoir sampling algorithms. In a distributed setting, the interesting aspect is
at what times do the sites communicate with the coordinator, and vice versa.

In our algorithm, the coordinator maintains u, which is the s-th smallest
weight so far in the system, as well as the sample P , consisting of all the elements
that have weight no more than u. Each site need only maintain a single value
ui, which is the site’s view of the s-th smallest weight in the system so far.
Note that it is too expensive to keep the view of each site synchronized with
the coordinator’s view at all times – to see this, note that the value of the s-th
smallest weight changes O(s log(n/s)) times, and updating every site each time
the s-th minimum changes takes a total of O(sk log(n/s)) messages.

In our algorithm, when site i sees an element with a weight smaller than ui, it
sends it to the central coordinator. The coordinator updates u and P , if needed,
and then replies back to i with the current value of u, which is the true minimum
weight in the union of all streams. Thus each time a site communicates with the
coordinator, it either makes a change to the random sample, or, at least, gets to
refresh its view of u.

The algorithm at each site is described in Algorithms 1 and 2. The algorithm
at the coordinator is described in Algorithm 3.

Algorithm 1. Initialization at Site i

/* ui is site i’s view of the s-th smallest weight in the
union of all streams so far. Note this may ‘‘lag’’ the
value stored at the coordinator. */

ui ← 1;

Algorithm 2. When Site i receives element e

Let w(e) be a randomly chosen weight between 0 and 1;
if w(e) < ui then

Send (e, w(e)) to the Coordinator and receive u′ from Coordinator;
Set ui ← u′;
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Algorithm 3. Algorithm at Coordinator

/* The random sample P consists of tuples (e, w) where e is an
element, and w the weight, such that the weights are the s
smallest among all the weights so far in the stream */

P ← φ;
/* u is the value of the s-th smallest weight in the stream

observed so far. If there are less than s elements so far,
then u is 1. */

u← 1;
while true do

if a message (ei, ui) arrives from site i then
if ui < u then

Insert (ei, ui) into P ;
if |P| > s then

Discard the element (e, w) from P with the largest weight;
Update u to the current largest weight in P (which is also
the s-th smallest weight in the entire stream);

Send u to site i;
if a query for a random sample arrives then

return P

3.1 Correctness

The following two lemmas establish the correctness of the algorithm.

Lemma 1. Let n be the number of elements in S so far. (1) If n ≤ s, then the
set P at the coordinator contains all the (e, w) pairs seen at all the sites so far.
(2) If n > s, then P at the coordinator consists of the s (e, w) pairs such that
the weights of the pairs in P are the smallest weights in the stream so far.

The proof of this lemma has been omitted due to space constraints.

Lemma 2. At the end of each round, sample P at the coordinator consists of a
uniform random sample of size min{n, s} chosen without replacement from S.

Proof. In case n ≤ s, then from Lemma 1, we know that P contains every element
of S. In case n > s, from Lemma 1, it follows that P consists of s elements
with the smallest weights from S. Since the weights are assigned randomly, each
element in S has a probability of s

n of belonging in P , showing that this is an
uniform random sample. Since an element can appear no more than once in the
sample, this is a sample chosen without replacement. ��

4 Analysis of the Algorithm (Upper Bound)

We now analyze the message complexity of the maintenance of a random sample.
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For the sake of analysis, we divide the execution of the algorithm into “epochs”,
where each epoch consists of a sequence of rounds. The epochs are defined in-
ductively. Let r > 1 be a parameter, which will be fixed later. Recall that u is
the s-th smallest weight so far in the system (if there are fewer than s elements
so far, u = 1). Epoch 0 is the set of all rounds from the beginning of execution
until (and including) the earliest round where u is 1

r or smaller. Let mi denote
the value of u at the end of epoch i − 1. Then epoch i consists of all rounds
subsequent to epoch i− 1 until (and including) the earliest round when u is mi

r
or smaller. Note that the algorithm does not need to be aware of the epochs,
and this is only used for the analysis.

Suppose we call the original distributed algorithm described in Algorithms
3 and 2 as Algorithm A. For the analysis, we consider a slightly different dis-
tributed algorithm, Algorithm B, described below. Algorithm B is identical to
Algorithm A except for the fact that at the beginning of each epoch, the value u
is broadcast by the coordinator to all sites.

While Algorithm A is natural, Algorithm B is easier to analyze. We first note
that on the same inputs, the value of u (and P) at the coordinator at any round
in Algorithm B is identical to the value of u (and P) at the coordinator in
Algorithm A at the same round. Hence, the partitioning of rounds into epochs is
the same for both algorithms, for a given input. The correctness of Algorithm B
follows from the correctness of Algorithm A. The only difference between them
is in the total number of messages sent. In B we have the property that for
all i from 1 to k, ui = u at the beginning of each epoch (though this is not
necessarily true throughout the epoch), and for this, B has to pay a cost of at
least k messages in each epoch.

Lemma 3. The number of messages sent by Algorithm A for a set of input
streams Sj , j = 1 . . . k is never more than twice the number of messages sent by
Algorithm B for the same input.

Proof. Consider site v in a particular epoch i. In Algorithm B, v receives mi at
the beginning of the epoch through a message from the coordinator. In Algorithm
A, v may not know mi at the beginning of epoch i. We consider two cases.

Case I: v sends a message to the coordinator in epoch i in Algorithm A. In
this case, the first time v sends a message to the coordinator in this epoch, v
will receive the current value of u, which is smaller than or equal to mi. This
communication costs two messages, one in each direction. Henceforth, in this
epoch, the number of messages sent in Algorithm A is no more than those sent
in B. In this epoch, the number of messages transmitted to/from v in A is at
most twice the number of messages as in B, which has at least one transmission
from the coordinator to site v.
Case II: v did not send a message to the coordinator in this epoch, in Algorithm
A. In this case, the number of messages sent in this epoch to/from site v in
Algorithm A is smaller than in Algorithm B. ��
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Let ξ denote the total number of epochs.

Lemma 4. If r ≥ 2,

E[ξ] ≤
(

log(n/s)
log r

)
+ 2

Proof. Let z =
(

log(n/s)
log r

)
. First, we note that in each epoch, u decreases by a

factor of at least r. Thus after (z + 	) epochs, u is no more than 1
rz+� = ( s

n ) 1
r� .

Thus, we have

Pr[ξ ≥ z + 	] ≤ Pr
[
u ≤

( s
n

) 1
r�

]
Let Y denote the number of elements (out of n) that have been assigned a weight
of s

nr� or lesser. Y is a binomial random variable with expectation s
r� . Note that

if u ≤ s
nr� , it must be true that Y ≥ s.

Pr[ξ ≥ z + 	] ≤ Pr[Y ≥ s] ≤ Pr[Y ≥ r�E[Y ]] ≤ 1
r�

where we have used Markov’s inequality.
Since ξ takes only positive integral values,

E[ξ] =
∑
i>0

Pr[ξ ≥ i] =
z∑

i=1

Pr[ξ ≥ i] +
∑
�≥1

Pr[ξ ≥ z + 	]

≤ z +
∑
�≥1

1
r�
≤ z +

1
1− 1/r

≤ z + 2

where we have assumed r ≥ 2. ��
Let nj denote the total number of elements that arrived in epoch j. We have
n =

∑ξ−1
j=0 nj . Let μ denote the total number of messages sent during the entire

execution. Let μi denote the total number of messages sent in epoch i. Let Xi

denote the number of messages sent from the sites to the coordinator in epoch
i. μi is the sum of two parts, (1) k messages sent by the coordinator at the start
of the epoch, and (2) two times the number of messages sent from the sites to
the coordinator.

μi = k + 2Xi (1)

μ =
ξ−1∑
j=0

μi = ξk + 2
ξ−1∑
j=0

Xj (2)

Consider epoch i. For each each element j = 1 . . . ni in epoch i, we define a 0-1
random variable Yj as follows. Yj = 1 if observing the j-th element in the epoch
resulted in a message being sent to the coordinator, and Yj = 0 otherwise.

Xi =
ni∑

j=1

Yj (3)
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Let F (η, α) denote the event ni = η and mi = α. The following Lemma gives a
bound on a conditional probability that is used later.

Lemma 5. For each j = 1 . . . ni − 1

Pr[Yj = 1|F (η, α)] ≤ α− α/r
1− α/r

Proof. Suppose that the j-th element in the epoch was observed by site v. For
this element to cause a message to be sent to the coordinator, the random weight
assigned to it must be less than uv at that instant. Conditioned on mi = α, uv

is no more than α.
Note that in this lemma we exclude the last element that arrived in epoch

i, thus the weight assigned to element j must be greater than α/r. Thus, the
weight assigned to j must be a uniform random number in the range (α/r, 1).
The probability this weight is less than the current value of uv is no more than
α−α/r
1−α/r , since uv ≤ α.

��
Lemma 6. For each epoch i

E[Xi] ≤ 1 + 2rs

Proof. We first obtain the expectation conditioned on F (η, α), and then remove
the conditioning. From Lemma 5 and Equation 3 we get:

E[Xi|F (η, α)] ≤ 1 + E

⎡⎣(

η−1∑
j=1

Yj)|F (η, α)

⎤⎦ ≤ 1 +

η−1∑
j=1

E[Yj |F (η, α)] ≤ 1 + (η − 1)
α − α/r

1 − α/r
.

Using r ≥ 2 and α ≤ 1, we get: E[Xi|F (η, α)] ≤ 1 + 2(η − 1)α.

We next consider the conditional expectation E[Xi|mi = α].

E[Xi|mi = α] =
∑

η

Pr[ni = η|mi = α]E[Xi|ni = η,mi = α]

≤
∑

η

Pr[ni = η|mi = α](1 + 2(η − 1)α)

≤ E[1 + 2(ni − 1)α|mi = α]
≤ 1 + 2α(E[ni|mi = α]− 1)

Using Lemma 7, we get

E[Xi|mi = α] ≤ 1 + 2α
(rs
α
− 1

)
≤ 1 + 2rs

Since E[Xi] = E[E[Xi|mi = α]], we have E[Xi] ≤ E[1 + 2rs] = 1 + 2rs. ��
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Lemma 7

E[ni|mi = α] =
rs

α

Proof. Recall that ni, the total number of elements in epoch i, is the number of
elements observed till the s-th minimum in the stream decreases to a value that
is less than or equal to α/r.

Let Z denote a random variable that equals the number of elements to be
observed from the start of epoch i till s new elements are seen, each of whose
weight is less than or equal to α/r. Clearly, conditioned on mi = α, it must be
true that ni ≤ Z. For j = 1 to s, let Zj denote the number of elements observed
from the state when (j − 1) elements have been observed with weights that are
less than α/r till the state when j elements have been observed with weights
less than α/r. Zj is a geometric random variable with parameter α/r.

We have Z =
∑s

j=1 Zj and E[Z] =
∑s

j=1E[Zj ] = sr
α . Since E[ni|mi = α] ≤

E[Z], the lemma follows. ��

Lemma 8

E[μ] ≤ (k + 4rs+ 2)
(

log(n/s)
log r

+ 2
)

Proof. Using Lemma 6 and Equation 1, we get the expected number of messages
in epoch i:

E[μi] ≤ k + 2(2rs+ 1) = k + 2 + 4rs

Note that the above is independent of i. The proof follows from Lemma 4, which
gives an upper bound on the expected number of epochs. ��

Theorem 1. The expected message complexity E[μ] of our algorithm is as fol-
lows.

I: If s ≥ k
8 , then E[μ] = O

(
s log

(
n
s

))
II: If s < k

8 , then E[μ] = O

(
k log(n

s )
log( k

s )

)
Proof. We note that the upper bounds on E[μ] in Lemma 8 hold for any value
of r ≥ 2.
Case I: s ≥ k

8 . In this case, we set r = 2. From Lemma 8,

E[μ] ≤ (8s+ 8s+ 2)
(

log(n/s)
log 2

)
= (16s+ 2) log

(n
s

)
= O

(
s log

(n
s

))
Case II: s < k

8 . We minimize the expression setting r = k
4s , and get: E[μ] =

O

(
k log( n

s )
log( k

s )

)
. ��



Optimal Random Sampling from Distributed Streams Revisited 293

5 Lower Bound

Theorem 2. For any constant q, 0 < q < 1, any correct protocol must send
Ω
(

k log(n/s)
log(1+(k/s))

)
messages with probability at least 1− q, where the probability is

taken over the protocol’s internal randomness.

Proof. Let β = (1+ (k/s)). Define e = Θ
(

log(n/s)
log(1+(k/s))

)
epochs as follows: in the

i-th epoch, i ∈ {0, 1, 2, . . . , e− 1}, there are βi−1k global stream updates, which
can be distributed among the k servers in an arbitrary way.

We consider a distribution on orderings of the stream updates. Namely, we
think of a totally-ordered stream 1, 2, 3, . . . , n of n updates, and in the i-th epoch,
we randomly assign the βi−1k updates among the k servers, independently for
each epoch. Let the randomness used for the assignment in the i-th epoch be
denoted σi.

Consider the global stream of updates 1, 2, 3, . . . , n. Suppose we maintain a
sample set P of s items without replacement. We let Pi denote a random variable
indicating the value of P after seeing i updates in the stream. We will use the
following lemma about reservoir sampling.

Lemma 9. For any constant q > 0, there is a constant C′ = C′(q) > 0 for
which

– P changes at least C′s log(n/s) times with probability at least 1− q, and
– If s < k/8 and k = ω(1) and e = ω(1), then with probability at least 1− q/2,

over the choice of {Pi}, there are at least (1 − (q/8))e epochs for which the
number of times P changes in the epoch is at least C′s log(1 + (k/s)).

Proof. Consider the stream 1, 2, 3, . . . , n of updates. In the classical reservoir
sampling algorithm [15], P is initialized to {1, 2, 3, . . . , s}. Then, for each i > s,
the i-th element is included in the current sample set Pi with probability s/i, in
which case a random item in Pi−1 is replaced with i.

For the first part of Lemma 9, let Xi be an indicator random variable if i
causes P to change. Let X =

∑n
i=1Xi. Hence, E[Xi] = 1 for 1 ≤ i ≤ s, and

E[Xi] = s/i for all i > s. Then E[X ] = s +
∑n

i=s+1 s/i = s + s(Hn − Hs),
where Hi = ln i + O(1) is the i-th Harmonic number. Then all of the Xi are
independent indicator random variables. It follows by a Chernoff bound that

Pr[X < E[X ]/2] ≤ exp(−E[X ]/8)
≤ exp(−(s+ s ln(n/s)−O(1))/8)

≤ exp(−Θ(s))
( s
n

)s/8

.

There is an absolute constant n0 so that for any n ≥ n0, this probability is less
than any constant q, and so the first part of Lemma 9 follows.

For the second part of Lemma 9, consider the i-th epoch, i > 0, which contains
βi−1k consecutive updates. Let Yi be the number of changes in this epoch. Then
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E[Yi] ≥ s(Hβi−1k − Hβi−2k) = Ω(s log β). Note that β ≥ 9 since s < k/8 by
assumption, and β = 1 + k/s. Since Yi can be written as a sum of independent
indicator random variables, by a Chernoff bound,

Pr[Yi < E[Yi]/2] ≤ exp(−E[Yi]/8) ≤ exp(−Ω(s log β)) ≤ 1
βΩ(s)

.

Hence, the expected number of epochs i for which Yi < E[Yi]/2 is at most∑e−1
i=1

1
βΩ(s) , which is o(e) since β ≥ 9 and e = ω(1). By a Markov bound, with

probability at least 1− q/2, at most o(e/q) = o(e) epochs i satisfy Yi < E[Yi]/2.
It follows that with probability at least 1 − q/2, there are at least (1 − q/8)e
epochs i for which the number Yi of changes in the epoch i is at least E[Yi]/2 ≥
C′s log β = C′s log(1 + (k/s)) for a constant C′ > 0, as desired.

��
Corner Cases: When s ≥ k/8, the statement of Theorem 2 gives a lower bound
of Ω(s log(n/s)). In this case Theorem 2 follows immediately from the first part
of Lemma 9 since these changes in P must be communicated to the central
coordinator. Hence, in what follows we can assume s < k/8. Notice also that if
k = O(1), then k log(n/s)

log(1+(k/s)) = O(s log(n/s)), and so the theorem is independent of
k, and follows simply by the first part of Lemma 9. Notice also that if e = O(1),
then the statement of Theorem 2 amounts to proving an Ω(k) lower bound,
which follows trivially since every site must send at least one message.

Thus, in what follows, we may apply the second part of Lemma 9.

Main Case: Let C > 0 be a sufficiently small constant, depending on q, to
be determined below. Let Π be a possibly randomized protocol, which with
probability at least q, sends at most Cke messages. We show that Π cannot be
a correct protocol.

Let τ denote the random coin tosses of Π , i.e., the concatenation of random
strings of all k sites together with that of the central coordinator.

Let E be the event that Π sends less than Cke messages. By assumption,
Prτ [E ] ≥ q. Hence, it is also the case that

Pr
τ,{Pi},{σi}

[E ] ≥ q.

For a sufficiently small constant C′ > 0 that may depend on q, let F be the
event that there are at least (1− (q/8))e epochs for which the number of times
P changes in the epoch is at least C′s log(1 + (k/s)). By the second part of
Lemma 9,

Pr
τ,{Pi},{σi}

[F ] ≥ 1− q/2.

It follows that there is a fixing of τ = τ ′ as well as a fixing of P0,P1, . . . ,Pe to
P ′

0, P
′
1, . . . , P

′
e for which F occurs and

Pr
{σi}

[E | τ = τ ′, (P0,P1, . . . ,Pe) = (P ′
0, P

′
1, . . . , P

′
e)] ≥ q − q/2 = q/2.
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Notice that the three (sets of) random variables τ, {Pi}, and {σi} are indepen-
dent, and so in particular, {σi} is still uniformly random given this conditioning.

By a Markov argument, if event E occurs, then there are at least (1− (q/8))e
epochs for which at most (8/q) ·C · k messages are sent. If events E and F both
occur, then by a union bound, there are at least (1 − (q/4))e epochs for which
at most (8/q) · C · k messages are sent and P changes in the epoch at least
C′s log(1 + (k/s)) times. Call such an epoch balanced.

Let i∗ be the epoch which is most likely to be balanced, over the random
choices of {σi}, conditioned on τ = τ ′ and (P0,P1, . . . ,Pe) = (P ′

0, P
′
1, . . . , P

′
e).

Since at least (1−(q/4))e epochs are balanced if E and F occur, and conditioned
on (P0,P1, . . . ,Pe) = (P ′

0, P
′
1, . . . , P

′
e) event F does occur, and E occurs with

probability at least q/2 given this conditioning, it follows that

Pr
{σi}

[i∗ is balanced | τ = τ ′, (P0,P1, . . . ,Pe) = (P ′
0, P

′
1, . . . , P

′
e)] ≥ q/2− q/4 = q/4.

The property of i∗ being balanced is independent of σj for j �= i∗, so we also
have

Pr
σi∗

[i∗ is balanced | τ = τ ′, (P0,P1, . . . ,Pe) = (P ′
0, P

′
1, . . . , P

′
e)] ≥ q/4.

Since C′s log(1 + (k/s)) > 0 and P changes at least C′s log(1 + (k/s)) times in
epoch i∗, we have that P changes at least once in epoch i∗. Suppose the first
update in the global stream at which P changes is the j∗-th update. In order for
i∗ to be balanced for at least a q/4 fraction of the σi∗ , there must be at least qk/4
different servers which receive j∗, for which Π sends a message. In particular,
since Π is deterministic conditioned on τ , at least qk/4 messages must be sent
in the i∗-th epoch. But i∗ was chosen so that at most (8/q) · C · k messages are
sent, which is a contradiction for C < q2/32.

It follows that we have reached a contradiction, and so it follows that Ckemes-
sages must be sent with probability at least 1− q. Since Cke = Ω

(
k log(n/s)

log(1+(k/s))

)
,

this completes the proof. ��

6 Sampling with Replacement

We now present an algorithm to maintain a random sample of size s with re-
placement from S. The basic idea is to run in parallel s copies of the single
item sampling algorithm from Section 3. Done naively, this will lead to a mes-
sage complexity of O(sk log n

log k ). We obtain an improved algorithm based on the
following ideas.

We view the distributed streams as s logical streams, Si, i = 1 . . . s. Each Si

is identical to S, but the algorithm assigns independent weights to the different
copies of the same element in the different logical streams. Let wi(e) denote the
weight assigned to element e in Si. wi(e) is a random number between 0 and
1. For each i = 1 . . . s, the coordinator maintains the minimum weight, say wi,
among all elements in Si, and the corresponding element.
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Let β = maxs
i=1 w

i; β is maintained by the coordinator. Each site j maintains
βj , a local view of β, which is always greater than or equal to β. Whenever a
logical stream element at site j has weight less than βj , the site sends it to the
coordinator, receives in response the current value of β, and updates βj . When a
random sample is requested at the coordinator, it returns the set of all minimum
weight elements in all s logical streams. It can be easily seen that this algorithm
is correct, and at all times, returns a random sample of size s selected with
replacement. The main optimization relative to the naive approach described
above is that when a site sends a message to the coordinator, it receives β,
which provides partial information about all wis. This provides a substantial
improvement in the message complexity and leads to the following bounds.

Theorem 3. The above algorithm continuously maintains a sample of size s
with replacement from S, and its expected message complexity is O(s log s logn)

in case k ≤ 2s log s, and O
(
k log n

log( k
s log s )

)
in case k > 2s log s.

Proof. We provide a sketch of the proof here. The analysis of the message com-
plexity is similar to the case of sampling without replacement. We sketch the
analysis here, and omit the details. The execution is divided into epochs, where
in epoch i, the value of β at the coordinator decreases by at least a factor of r
(a parameter to be determined later). Let ξ denote the number of epochs. It can
be seen that E[ξ] = O( log n

log r ). In epoch i, let Xi denote the number of messages
sent from the sites to the coordinator in the epoch, mi denote the value of β
at the beginning of the epoch, and ni denote the number of elements in S that
arrived in the epoch.

The ni elements in epoch i give rise to sni logical elements, and each logical
element has a probability of no more than mi of resulting in a message to the
coordinator. Similar to the proof of Lemma 6, we can show using conditional
expectations that E[Xi] ≤ rs log s (the log s factor comes in due to the fact that
E[ni|mi = α] ≤ r log s

α . Thus the expected total number of messages in epoch i is
bounded by (k+ 2sr log s), and in the entire execution is O((k+ 2sr log s) log n

log r ).
By choosing r = 2 for the case k ≤ (2s log s), and r = k/(s log s) for the case
k > (2s log s), we get the desired result. ��
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Abstract. We study the information spreading yielded by the (Parsi-
monious) k-Flooding Protocol in geometric Mobile Ad-Hoc Networks. We
consider n agents on a square of side length L performing independent
random walks with move radius ρ. At any time step, every active agent
v informs every non-informed agent which is within distance R from v
(R > 0 is the transmission radius). An agent is only active for the next k
time steps following the one in which has been informed and, after that,
she is removed. At the initial time step, a source agent is informed and
we look at the completion time of the protocol, i.e., the first time step
(if any) in which all agents are informed.

The presence of removed agents makes this process much more com-
plex than the (standard) flooding and no analytical results are available
over any explicit mobility model.

We prove optimal bounds on the completion time depending on the
parameters n, L, R, and ρ. The obtained bounds hold with high prob-
ability. Our method of analysis provides a clear picture of the dynamic
shape of the information spreading (or infection wave) over the time.

1 Introduction

In the Geometric Random-Walk Model [7,11,12], n agents perform independent
random walks over a square of side length L and we consider the following
infection process. Every agent can be in three different states: non-informed
(white) state, informed-active (red), informed-removed (black). During a time
step, every agent performs one step of the random walk and every red agent
informs (infects) all white agents lying within distance R. A white agent that
has been informed (for the first time) at time step t, she becomes red at time
step t+1. Finally, when an agent becomes red she stays red for k time step and,
after that, she becomes black and stays that, forever.

At the initial time step, a source agent is in the red state. The completion
time of the above infection process is the first time step in which every agent
� Partially supported by the Italian MIUR-COFIN COGENT.
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gets into the black state. If this time step does not exist then we say the infection
process does not complete.

This random process is inspired by two main scenarios: The Susceptible-
Infected-Removed (SIR) process which is widely studied in Mathematical Epi-
demiology [1,2,4] and the (Parsimonious) k-Flooding Protocol [3] in geometric
Mobile Ad-Hoc Networks (MANET).

While the standard flooding is extremely inefficient in terms of agent’s energy
consumption and message complexity, the k-flooding protocol (for small values
of k) strongly reduces the agent’s energy consumption and the overall message
complexity. However, as discussed later, the infection process yielded by the k-
flooding (for small k) over a dynamic network is much more complex than that
yielded by the standard flooding.

The k-flooding has been studied in [3] on Edge-Markovian Evolving Graphs
(Edge-MEG). An Edge-MEG [6,7] is a Markovian random process that generates
an infinite sequence of graphs over the same set of n agents. If an edge exists at
time t then, at time t+1, it dies with probability q. If instead the edge does not
exist at time t, then it will come into existence at time t + 1 with probability
p. The stationary distribution of an Edge-MEG with parameter p and q is the
famous Erdös-Rényi random graph G(n, p̃) where p̃ = p

p+q . The work [3] gives
tight bounds on the k-flooding on stationary Edge-MEG for arbitrary values of
p, q and k. In particular, it derives the reachability threshold for the k-flooding,
i.e., the smallest k = k(n, p, q) over which the protocol completes.

Edge-MEG is an analytical model of dynamic networks capturing
time-dependencies, an important feature observed in real scenarios such as (faulty)
wireless networks and P2P networks. However, it does not model important fea-
tures of MANET. Indeed, in Edge-MEG, edges are independent Markov chains
while, in MANET, there is a strong correlation among edges: agents use to act
over a geometric space [7,11,12,15].

Our Contribution. We study the k-flooding protocol in the geometric random-
walk model (the resulting MANET will be called geometric-MANET ). The move
radius ρ determines the maximal distance an agent can travel in one time step.
Even though network modelling issues are out of the aims of this work, both
the transmission radius and the move radius play a crucial role in our analysis
and, thus, a small discussion about them is needed. Both parameters depend on
several factors. In mathematical epidemiology, they depend on the agent’s mo-
bility, the kind of infection and on the agent’s social behaviour that all together
determine the average rate of “positive” contacts. In typical biological cases, the
move radius can be significantly larger than the transmission radius. In MANET,
the move radius depends on, besides the agent’s mobility, the adopted protocol
that tunes the transmission rate of the agents: the larger is the time between two
consecutive transmissions the larger is ρ. A larger ρ could yield a better mes-
sage complexity at the cost of a larger completion time (the correct trade-offs is
derived in [8] for the standard flooding).
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It turns out that the issue of setting the “most suitable” move radius con-
cerns both the network modelling and the protocol design. For these reasons, we
investigate the k-flooding for a wide range of values for parameters R and ρ.

We first show a negative result. If the transmission radius R is below the con-
nectivity threshold (the connectivity threshold refers to the uniform distribution
of n (static) agents over the square), then for any ρ � 0 , with high probability
(w.h.p.)1, the k-flooding does not complete for any k = O(1).

We thus study the k-flooding for R over the connectivity threshold. We em-
phasize that the ”static” connectivity among generic agents says nothing about
the behaviour of red agents over the time which is the crucial issue in the k-
flooding process.

If ρ � R, we prove that, for any choice of k � 1, the information spreads
at “optimal” speed Θ(R), i.e., the k-flooding protocol w.h.p. completes within
O(L/R) time steps. Observe that, since ρ � R, this bound is asymptotically
optimal.

Then, we consider move radii that can be up to any polynomial of R, i.e.
ρ � poly(R). We prove that the information spreads at “optimal” speed Θ(ρ).
So, for any k � 1, the k-flooding w.h.p. completes in time O(L/ρ) which is
optimal for any ρ � R. Notice that this optimal information speed makes the 1-
flooding time smaller than the static diameter O(L/R) of the stationary graph:
our bound is thus the first analytical evidence that agent’s mobility actually
speeds-up this infection process. Finally, we observe that, in both cases, the
energy-efficient 1-flooding protocol is as fast as the standard flooding [7,8].

Adopted Techniques and Further Results. It is important to emphasize
that the presence of black agents in the infection process makes the analysis tech-
niques adopted for the flooding almost useless. In particular, percolation theory
[12,11,17], meeting and cover time of random walks on graphs [18], and the ex-
pansion/bootstrap arguments [7,8] strongly rely on the fact that an informed
agent will be active for all the flooding process. Furthermore, the analysis of
k-flooding over the Edge-MEG model [3] strongly relies on the stochastic inde-
pendence among the edges and the consequent high node-expansion property of
G(n, p): properties that clearly do not hold in geometric-MANET.

Our method of analysis significantly departs from all those mentioned above.
Besides the optimal bounds on the completion time, our analyses provide a
clear characterization of the geometric evolution of the infection process. We
make use of a grid partition of the square into cells of size Θ(R) and define a
set of possible states a cell can assume over time depending on the number of
red, white and black agents inside it2. We then derive the local state-evolution

1 An event is said to hold with high probability (w.h.p.) if its probability is at least
1−1/n. For the sake of simplicity, we here adopt a weaker definition: the event must
hold with probability at least 1− 1/na for some constant a > 0. It is easy to verify
that we can let all our results to hold with the standard high probability by just
changing the constant factors in the analysis.

2 When ρ >> R, we also need a further grid partition into supercells of size Θ(ρ) and
a more complex argument.
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law of any cell. Thanks to the regularity of this law, we can characterize the
evolution of the geometric wave formed by the red cells (i.e. cells containing
some red agent). A crucial property we prove is that, at any time step, white
cells (i.e. cells containing white agents only) will never be adjacent to black cells,
so there is always a red wave working between the black region and the white
one. Furthermore, we show that the red wave eventually spans the entire region
before all agents become black.

The generality of our method of analysis has further consequences. Thanks
to the regularity of the red-wave shape, we are able to bound the time by which
a given subregion will be infected for the first time. This bound is a function of
the distance between the subregion and the initial position of the source agent.
Actually, it is a function of the distance from the closest red agent at the starting
time. So, our technique also works in the presence of an arbitrary set of source
agents that aim to spread the same infection (or message). Under the same
assumptions made for the single-source case, we can prove the completion time
is w.h.p. Θ(ecc(A)/R) (or Θ(ecc(A)/ρ)) where A is the set of the positions of
the source agents at starting time and ecc(A) is the geometric eccentricity of A
in the square.

Related Works. As mentioned above, there are no analytical studies of the par-
simonious flooding process over any geometric mobility model. In what follows,
we briefly discuss some analytical results concerning the flooding over some mod-
els of MANET. In [14], the flooding time is studied over a restricted geometric-
MANET. Approximately, it corresponds to the case ρ = Θ(L). Notice that,
under this restriction, the stochastic dependence between two consecutive agent
positions is negligible. In [13], the speed of data communication between two
agents is studied over a class of Random-Direction models yielding uniform sta-
tionary agent’s distributions (including the geometric-MANET model). They
provide an upper bound on this speed that can be interpreted as a lower bound
on flooding time when the mobile network is very sparse and disconnected (i.e.
R, ρ = o(1)). Their technique, based on Laplacian transform of independent
journeys, cannot be extended to provide any upper bound on the time of any
version of the flooding. We observe that, differently from our model, both [14]
and [13] assume that when an agent gets informed then all agents of her cur-
rent connected component (no matter how large it is) will get informed in one
time step. The same unrealistic assumption is adopted in [17], where bounds on
flooding time (and some other tasks) are obtained in the Poisson approximation
of the geometric-MANET model. In [7,8], the first almost tight bounds for the
flooding time over geometric-MANET have been given. As mentioned before,
their proofs strongly rely on the fact that informed agents stay always active.
Flooding and gossip time for random walks over the grid graph (so, the agent’s
space is a graph) have been studied in [18]. Here, an agent informs all agents
lying in the same node. Besides the differences between k-flooding and flooding
discussed before, it is not clear whether their results could be extended to the
random walk model over geometric spaces. Especially, in their model, there is
no way to consider arbitrary values of the move radius.
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Roadmap of the Paper. The rest of the paper is organized as follows. After
giving some preliminary definitions in Section 2, we analyze the case ρ � R in
Section 3. In Section 4, we present the results for the case ρ � R2/

√
logn. In

Section 5, we introduce a slight different geometric random-walk model and a
more powerful technique to extend the bound O(L/ρ) to any ρ � poly(R). In
Section 6, we first briefly describe the extension to multi-source case and, then,
derive the completion threshold of R for the k-flooding, for constant k. Finally,
some open questions are discussed in Section 7. Due to the lack of space, most
of the proofs are omitted (see the full version of the paper [10].

2 Preliminaries

We analyze geometric-MANET over a square Q of side length L > 0 by consid-
ering some suitable partition C(Q) of Q into a grid of square cells of side length
	.

We say that two cells are adjacent if they touch each other by side or by
corner. The cell-diameter D�(Q) of Q is defined as follows. Given two cells
c,c′ ∈ C(Q), define their cell-distance d�(c,c′) as the length of the shortest
cell-path p = 〈c = c0,c1, . . . ,cs = c

′〉 such that, for every i, ci is adjacent to
ci+1. Then, we define

D�(Q) = max{ d�(c,c′) | c,c′ ∈ C(Q) }
Similarly, we can define the cell-distance between a cell and any cell subset C,
i.e.,

d�(c, C) = min{d�(c,c′) | c′ ∈ C}
Observe that the size of the square and the cell-diameter D�(Q) are tightly
related: D�(Q) = Θ(L/	).

According to the geometric random-walk model, there are n agents that per-
form independent random walks over Q. At any time step, an agent in position
x ∈ Q, can move uniformly at random to any position in B(x, ρ) ∩ Q, where
B(x, ρ) is the disk of center x and radius ρ. This is a special case of the Random
Trip Model introduced in [15] where it is proved that it admits a unique sta-
tionary agents distribution and, in this case, it is almost uniform. In the sequel,
we always assume that at time t = 0 agents’ positions are random w.r.t. the
stationary distribution.

Let us consider n mobile agents acting over the square Q according to the
geometric random-walk model. We say that the resulting geometric-MANET
satisfies the density property w.r.t. the cell partition of side length 	 if, with
probability at least 1− (1/n)4, for every time step t = 0, 1, . . . , n and for every
cell c ∈ C(Q), the number #c of agents in c at time step t satisfies the following
inequalities

[Density Property] η1	
2 � #c � η2	

2,where η1, η2 are positive constants.
(1)
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We observe that a sufficient condition for the density property in our model is
	 � β(L/

√
n)
√

logn, for a suitable constant β > 0.
In the k-flooding protocol, at any time step, every agent can be in three

different states: white (non-informed) state, red (informed-active), and black
(informed-inactive). Then, the configuration conf (t) is defined as the set of the
positions of the n agents together with their respective states at the end of time
t.

The analysis of the information spreading will be performed in terms of the
number of infected cells. Given a cell c ∈ C(Q), the neighborhood N(c) is the
set of cells formed by c and all its adjacent cells. Since the stationary agent’s
distribution is almost uniform and the maximal speed of any message in the
geometric-MANET is R+ ρ. we easily get the following lower bound.

Fact 1 For any k, the k-flooding time is w.h.p. Ω(L/(R+ ρ)).

For the sake of simplicity, we will prove our results by assuming L =
√
n (i.e.,

average agent density equal to 1). It is straightforward to scale all the definitions
and results to an arbitrary average density of agents. Furthermore, all the proofs
of the upper bounds in Sections 3-5 are given for the case k = 1 (1-flooding),
however, all our arguments can be easily extended to the k-flooding protocol,
for any k � 1. Indeed, all our arguments concern the properties of the geometric
wave formed by those red cells containing agents that have been just informed.
So, the behaviour of the other red agents is not relevant in our analysis.

3 High Transmission-Rate or Low-Mobility

We warm-up with the case where the move radius is smaller than the trans-
mission radius. More precisely, we assume ρ � R/(2

√
2). We consider a grid

partition of Q into cells of side length 	 = R/(2
√

2) and the move radius satisfies
ρ ≤ R/(2√2). So, an agent lying in a cell c cannot escape from N(c) in one step.
This makes the analysis simpler than the cases with larger ρ. However, some of
the crucial ideas and arguments adopted here will be exploited for the harder
cases too.

Theorem 2. Let R � c0L
√

logn/n for a sufficiently large constant c0 and ρ ≤
R/(2

√
2). Then, for any k � 1, the k-flooding time is w.h.p. Θ(L/R).

3.1 Proof of Theorem 2

The lower bound is an immediate consequence of Fact 1. Let us now consider
the upper bound. For the sake of simplicity, we assume that the time step is
divided into 2 consecutive phases: the transmission phase where every red agent
transmits the information and the move phase where every agent performs one
step of the random walk.

We need to introduce the feasible states of a cell during the infection process.
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Definition 1. At (the end of) any time step a cell c can be in 4 different states.
It is white if it contains only white agents. It is red if it contains at least one red
agent. It is black if it contains black agents only. It is grey if it is not in any of
the previous 3 cases.

We will show that the infection process, at any time step, has (w.h.p.) a well
defined shape in which no white cell is adjacent to a black one and there is no
grey cell. This shape is formalized in the following definitions. A subset of white
cells is a white component if it is a connected component w.r.t. the subset of all
the white cells.

Definition 2. A configuration conf (t) is regular if the following properties
hold

a) No cell is grey.
b) Every white component is adjacent to a red cell.
c) No white cell is adjacent to a black cell.

Observe that the starting configuration conf (0) is regular.

Definition 3. A white cell is red-close if it is adjacent to a red cell.

The next lemma determines the local state-evolution of any cell in a regular
configuration.

Lemma 1. Consider any cell c at time step t and assume conf (t) be regular.
Then the following properties hold.
1) If c is red-close then it becomes red in conf (t+ 1) w.h.p.
2) If c is (no red-close) white then it becomes white or red in conf (t+ 1).
3) If c is red then it becomes red or black in conf (t+ 1).
4) If c is black then it becomes red or black in conf (t+ 1).

As an easy consequence of the above lemma, we get the following

Lemma 2. For any t � n, if conf (t) is regular, then w.h.p. conf (t+ 1) is
regular as well.

The above result on regular configurations provides a clear characterization of
the shape of the infection process. We now analyze the speed of the process.
Observe that we can now assume that all configurations are regular (w.h.p.).

Lemma 3. For any t < n, let w be any white cell in conf (t+ 1) and let Red (t)
be the set of red cells in conf (t). It holds w.h.p. that

d�(w, Red (t+ 1)) � d�(w, Red (t))− 1

Starting from the initial configuration conf (0) (that has one red cell), Lemma
3 implies that every white cell in Q w.h.p will become red within O(D�(Q)) =
O(L/R) time steps. Moreover, thanks to Lemmas 1 and 2, every red cell will
become either red or black. Finally, when all cells are black or red, after the next
time step there are no more white agent and the theorem follows.
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4 Medium Transmission-Rate or Medium Mobility

We consider the network formed by n mobile agents with transmission radius
R � c0

√
logn and move radius ρ such that R/2 ≤ ρ ≤ αR2/

√
logn for suffi-

ciently small constant α > 0. We consider a grid partition of Q into cells of side
length 	 = R/(4

√
2) The constant c0 is chosen in order to guarantee the density

condition (Eq. 1).

Theorem 3. Under the above assumptions, the k-flooding time over Q is w.h.p.
bounded by Θ(L/ρ).

4.1 Proof of Theorem 3

We adopt Def.s 1, 2, and 3 given in the previous section. Moreover, we need the
further

Definition 4. Two cells are ρ-close if the (Euclidean) distance between their
geometric centers is at most ρ.

As in the previous section, we provide the local state-evolution law of any cell
in a regular configuration.

Lemma 4. Consider any cell c at time step t and assume conf (t) be regular.
Then the following properties hold w.h.p.
1) If c is red-close then it becomes red in conf (t+ 1).
2) If c is ρ-close to a red-close cell, then c becomes red in conf (t+ 1).
3) If c is white but it is not ρ-close to any red-close cell then it becomes white
or red in conf (t+ 1).
4) If c is red or black but it is not ρ-close to any red-close cell then it becomes
red or black in conf (t+ 1).

As an easy consequence of the above lemma, we get the following

Lemma 5. For any t < n, if conf (t) is regular, then w.h.p. conf (t+ 1) is
regular as well.

In what follows, we assume that all configurations are regular (w.h.p.) and ana-
lyze the speed of the infection process. Differently from the previous section, we
will show this “speed” is Θ(ρ).

Lemma 6. For any t < n, let w be any white cell in conf (t+ 1) and let
Red-close (t) be the set of red-close cells in conf (t). It w.h.p. holds that

d�(w,Red-close (t+ 1)) � max{d�(w,Red-close (t))−Θ(ρ/R), 0}

The starting configuration conf (0) is regular and contains one red cell. So,
Lemma 6 implies that every white cell in Q w.h.p will become red within
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O

(
D�(Q)	

ρ

)
= O

(
L

ρ

)
time steps

Moreover, thanks to Lemma 4, every red cell will become either red or black.
Finally, when all cells are black or red, in the next time step there are no more
white agent and the theorem follows.

5 Low Transmission-Rate or High Mobility

In this section, we study the case when the move radius can be much larger than
the transmission radius. More precisely, the move radius can be an arbitrary
polynomial of the transmission radius, i.e. ρ = O(poly(R)), we also assume
R � c0

√
logn, for a sufficiently large c0, and ρ � 5R.

A slightly different version of the geometric random-walk model is here adopted,
the cellular random walk : the square Q is partitioned in squared supercells of
edge length ρ. Then an agent lying in any position of a supercell C selects her
next position independently and uniformly at random over the supercell neigh-
borhood N(C). Moreover, an agent can be informed by another (red) agent only
if they both belong to the same supercell. So, in the cellular random walk model,
the influence of an agent lying in a supercell C, in the next time step, is always
restricted to the subregion N(C). Observe that the cellular random walk model
preserves all significant features of the standard one while, on the other hand,
it avoids several geometric technicalities. The latter would yield a much more
elaborate analysis without increasing the relevance of the obtained results.

We consider a cell partition of Q with 	 = R/
√

2 such that the grid of super-
cells is a subgrid of the grid of cells of side length 	. In what follows, the cells
of size length ρ are called supercells and those of size length 	 are called cells,
simply. As usual, we assume R � c0L

√
logn/n for a sufficiently large constant

c0 that guarantees the density property w.r.t. the cells (and, consequently, w.r.t.
the supercells).

Theorem 4. Under the above assumptions and for ρ such that 5R � ρ �
poly(R), the k-flooding time over Q is w.h.p. Θ(L/ρ).

5.1 Proof of Theorem 4

The higher agent mobility forces us to analyze the infection process over the
supercells (besides over the cells). During the information spreading, the state
a supercell can assume is defined by some bounds on the number of red and
white agents inside it. Roughly speaking, the number of white agents must never
be too small w.r.t. the number of red agents, moreover the latter must increase
exponentially w.r.t. R2. Since the infection process is rather complex, we need to
consider a relative large number of possible supercell states. Our analysis will first
show every supercell eventually evolves from the initial white state to the final
black state according to a monotone process over a set of intermediate states.
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Then, we will show that the speed of this process is asymptotically optimal, i.e.,
proportional to the move radius.

For a supercell C and a time step t, let #t
r(C), #t

w(C), and #t
b(C) be, re-

spectively, the number of red, white, and black agents in C. We define

ĥ =
⌈
logR2

(
c0
ρ2

R2
logn

)⌉
(2)

Observe that the assumption ρ = O(poly(R)) implies ĥ = Θ(1).

Definition 5. For any time t and for any supercell C, we define some possible
states of C at time t.

State h = 0 (White State): #t
r(C) = 0 and #t

b(C) = 0.
State h = 1, . . . , ĥ− 1 (Intermediate States): The values of #t

r(C) and
#t

w(C) satisfy

ahR
2h � #t

r(C) � bhR
2h

and #t
w(C) � chρ

2

where ah, bh, ch are constants (suitably fixed - see the full version [10]) that
satisfy ah < bh, a1 � a2 � · · · � aĥ−1 > 0, 0 < b1 � b2 � · · · � bĥ−1, and
c1 � c2 � · · · � cĥ−1 > 0.

State ĥ (Red State): #t
r(C) � 90 ρ2

R2 logn.
State ĥ+ 1 (Black State): #t

w(C) = 0.

All the above states are mutually disjoint but the last three ones, i.e., ĥ− 1, ĥ,
ĥ+1. For every supercell C and time step t, in order to indicate that C satisfies
the condition of state h, we will write ht(C) = h.

Definition 6. The configuration conf (t) is regular if for every supercell C (1)
an h ∈ {0, 1, . . . , ĥ, ĥ+1} exists s.t. ht(C) = h and (2) if ht(C) = ĥ+1, it holds
that,∀C′ ∈ N(C), ht(C′) = ĥ ∨ ht(C′) = ĥ+ 1.

In the sequel, we exchange the order of the phases in a time step: the move
phase now comes before the transmission one. Clearly, this does not change
our asymptotical results. The next technical lemmas allow to control the 1-step
evolution of the state of any supercell in terms of the number of red and white
agents and how such agents spread over its cells. Remind that constants η1, η2
are defined in the density property (Eq. 1).

Lemma 7. Let C be a supercell such that #t
w(N(C)) � λρ2, for some constant

λ � 720/c20. Then, immediately after the move phase of time t + 1 (and before
the transmission phase), w.h.p., for every cell c in C, it holds that the number
of white agents in c is at least (λ/36)R2.

Lemma 8. Let C be a supercell such that #t
r(C) � λRk, for some constants

λ � 1800/c20 and k � 2. Then, immediately after the move phase of time t + 1,
w.h.p. in every supercell C′ ∈ N(C), the cells in C′ hit by some red agent are at
least min{(λ/30)Rk, ρ2/(2R2)}.
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Lemma 9. Let C be any supercell such that ht(C) = ĥ. Then, immediately after
the move phase of time t+ 1, w.h.p. for every supercell C′ ∈ N(C) all the cells
in C′ are hit by some red agent.

Lemma 10. For any time step t and any supercell C, let #̂t
r(C) = max{#t

r(C′),
C′ ∈ N(C)}. If, for some M > 0, it holds that #̂t

r(C) � M , then it holds that
#t+1

r (C) � 68η2MR2 w.h.p.

We are now able to provide the local state-evolution law of any supercell in a
regular configuration. Let us definemt(C) = max{h |∃C′ ∈ N(C) : ht(C′) = h}.
Lemma 11. if conf (t) is regular then the following implications hold w.h.p.,
for every supercell C:
(a) mt(C) = 0 ⇒ ht+1(C) = 0
(b) 1 � mt(C) � ĥ− 1 ⇒ ht+1(C) = mt(C) + 1
(c) mt(C) = ĥ ∧ (ht(C) = h with h < ĥ)⇒ ht+1(C) = ĥ

(d) mt(C) = ĥ ∧ ht(C) = ĥ ⇒ ht+1(C) = ĥ+ 1
(e) mt(C) = ĥ+ 1 ⇒ ht+1(C) = ĥ+ 1

As a consequence of the above lemma, we get

Lemma 12. For any t < n, if conf (t) is regular, then w.h.p. conf (t+ 1) is
regular as well.

Lemma 13. With high probability the initial configuration conf (0) is regular
and a supercell C exists such that h0(C) = 1.

For any time t, let Red(t) be the set of supercells whose state at time t is at least
1. For any supercell C, denote by dt

�(C) the distance w.r.t. supercells between
C and Red(t). Clearly, if C ∈ Red(t) then dt

�(C) = 0.

Lemma 14. For any t � n, if conf (t) is regular, then w.h.p., let for any
supercell W such that ht(W ) = 0, it holds that

dt+1
� (W ) � dt

�(W )− 1

Theorem 4 is an easy consequence of Lemmas 12, 13 and 14.

6 The Multi-source Case and the Completion Threshold

The multi-source k-flooding. Consider the k-flooding process with n agents
over the square Q whose starting configuration contains an arbitrary subset of
source agents. Every source agent has the same message (infection) and, again,
the goal is to bound the completion time. Let A be the set of positions of the
source agents at starting time.

For any point x ∈ Q, define

d(x,A) = min{d(x, a) |a ∈ A}
ecc(A) = max{d(x,A) | x ∈ Q}

The parameter ecc(A) is the geometric eccentricity of A in Q.
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Theorem 5. Under the same assumptions of the single-source case, for any
choice of the source positions A, the k-flooding time is w.h.p.
i) Θ(ecc(A)/R), for any ρ � R/(2

√
2);

ii) Θ(ecc(A)/ρ), for any R/2 � ρ � poly(R).

Sketch of Proof. The crucial observation is that in all cases (i.e. those of Sect.s 3,
4, and 5), the obtained local state-evolution law of the cells works for any starting
configuration provided it is a regular one. It is easy to verify that, for any choice
of the source subset, the starting configuration is w.h.p. regular. Moreover, our
analysis of the speed of the information spreading does not change at all: the
initial distance between every white cell (supercell) and its closest red cell (red-
close supercell) decreases w.h.p. by 1 at any time step. In the case of more source
agents, such initial distance is bounded by ecc(A). ��
The Completion Threshold for R. Consider the k-flooding protocol on the
geometric-MANET of n agents over the square Q of side length

√
n. Then the

following negative result holds.

Theorem 6. Let k be any fixed positive constant, R be such that R < γ
√

logn
for a sufficiently small positive constant γ, and ρ be such that 0 � ρ � √

n.
Then, w.h.p. the k-flooding protocol does not complete.

The proof (see [10]) shows the existence of some agents that w.h.p. do not ”meet”
any other agent for the first k time steps provided that R and k satisfy the
theorem’s hypothesis.

7 Conclusions

The probabilistic analysis of information spreading in mobile/dynamic networks
is a challenging issue that is the subject of several current research projects
and some relevant advances have been obtained in the last five years by using
approaches based on time/space discrete approximation of the evolving systems
and discrete probability [3,5,6,11,13,17,18]. We believe this discrete approach is
rather promising to address several important related questions which are still
far to be solved.

The more related open question to our work is the analysis of the k-flooding for
non-constant k under the connectivity threshold. For instance, is the Θ(log n)-
flooding able to complete significantly under the above threshold? Which is the
role of the move radius ρ?

A more general challenging issue is to extend the analysis of the parsimonious
flooding to other explicit models of MANET such as the random way-point
model [15,9].
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Abstract. Traceroute measurements are one of the main instruments to shed
light onto the structure and properties of today’s complex networks such as the In-
ternet. This paper studies the feasibility and infeasibility of inferring the network
topology given traceroute data from a worst-case perspective, i.e., without any
probabilistic assumptions on, e.g., the nodes’ degree distribution. We attend to a
scenario where some of the routers are anonymous, and propose two fundamental
axioms that model two basic assumptions on the traceroute data: (1) each trace
corresponds to a real path in the network, and (2) the routing paths are at most a
factor 1/α off the shortest paths, for some parameter α ∈ (0, 1]. In contrast to
existing literature that focuses on the cardinality of the set of (often only minimal)
inferrable topologies, we argue that a large number of possible topologies alone
is often unproblematic, as long as the networks have a similar structure. We hence
seek to characterize the set of topologies inferred with our axioms. We introduce
the notion of star graphs whose colorings capture the differences among inferred
topologies; it also allows us to construct inferred topologies explicitly. We find
that in general, inferrable topologies can differ significantly in many important
aspects, such as the nodes’ distances or the number of triangles. These negative
results are complemented by a discussion of a scenario where the trace set is best
possible, i.e., “complete”. It turns out that while some properties such as the node
degrees are still hard to measure, a complete trace set can help to determine global
properties such as the connectivity.

1 Introduction

Surprisingly little is known about the structure of many important complex networks
such as the Internet. One reason is the inherent difficulty of performing accurate, large-
scale and preferably synchronous measurements from a large number of different van-
tage points. Another reason are privacy and information hiding issues: for example,
network providers may seek to hide the details of their infrastructure to avoid tailored
attacks.

Since knowledge of the network characteristics is crucial for many applications (e.g.,
RMTP [13], or PaDIS [14]), the research community implements measurement tools to

� Due to space constraints, some proofs are omitted in this document. They are available from
the ArXiv document server (ID: 1105.5236).
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analyze at least the main properties of the network. The results can then, e.g., be used
to design more efficient network protocols in the future.

This paper focuses on the most basic characteristic of the network: its topology. The
classic tool to study topological properties is traceroute. Traceroute allows us to collect
traces from a given source node to a set of specified destination nodes. A trace between
two nodes contains a sequence of identifiers describing a route between source and
destination. However, not every node along such a path is configured to answer with its
identifier. Rather, some nodes may be anonymous in the sense that they appear as stars
(‘∗’) in a trace. Anonymous nodes exacerbate the exploration of a topology because
already a small number of anonymous nodes may increase the spectrum of inferrable
topologies that correspond to a trace set T .

This paper is motivated by the observation that the mere number of inferrable topolo-
gies alone does not contradict the usefulness or feasibility of topology inference; if the
set of inferrable topologies is homogeneous in the sense that the different topologies
share many important properties, the generation of all possible graphs can be avoided:
an arbitrary representative may characterize the underlying network accurately. There-
fore, we identify important topological metrics such as diameter or maximal node de-
gree and examine how “close” the possible inferred topologies are with respect to these
metrics.

1.1 Related Work

Arguably one of the most influential measurement studies on the Internet topology was
conducted by the Faloutsos brothers [9] who show that the Internet exhibits a skewed
structure: the nodes’ out-degree follows a power-law distribution. Moreover, this prop-
erty seems to be invariant over time. These results complement discoveries of similar
distributions of communication traffic which is often self-similar, and of the topologies
of natural networks such as human respiratory systems. This property allows us to give
good predictions not only on node degree distributions but also, e.g., on the expected
number of nodes at a given hop-distance. Since [9] was published, many additional
results have been obtained, e.g., by conducting a distributed computing approach to
increase the number of measurement points [7]. However, our understanding remains
preliminary, and the topic continues to attract much attention from the scientific com-
munities. In contrast to these measurement studies, we pursue a more formal approach,
and a complete review of the empirical results obtained over the last years is beyond the
scope of this paper.

In the field of network tomography, topologies are explored using pairwise end-to-
end measurements, without the cooperation of nodes along these paths. This approach
is quite flexible and applicable in various contexts, e.g., in social networks [5]. For a
good discussion of this approach as well as results for a routing model along shortest
and second shortest paths see [5]. For example, [5] shows that for sparse random graphs,
a relatively small number of cooperating participants is sufficient to discover a network
fairly well.

The classic tool to discover Internet topologies is traceroute [8]. Unfortunately, there
are several problems with this approach that render topology inference difficult, such as
aliasing or load-balancing, which has motivated researchers to develop new tools such
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as Paris Traceroute [6,11]. Another complication stems from the fact that routers may
appear as stars in the trace since they are overloaded or since they are configured not to
send out any ICMP responses. The lack of complete information in the trace set renders
the accurate characterization of Internet topologies difficult.

This paper attends to the problem of anonymous nodes and assumes a conserva-
tive, “worst-case” perspective that does not rely on any assumptions on the underlying
network. There are already several works on the subject. Yao et al. [16] initiated the
study of possible candidate topologies for a given trace set and suggested computing
the minimal topology, that is, the topology with the minimal number of anonymous
nodes, which turns out to be NP-hard. Consequently, different heuristics have been pro-
posed [10,11].

Our work is motivated by a series of papers by Acharya and Gouda. In [3], a network
tracing theory model is introduced where nodes are “irregular” in the sense that each
node appears in at least one trace with its real identifier. In [1], hardness results are
derived for this model. However, as pointed out by the authors themselves, the irregular
node model—where nodes are anonymous due to high loads—is less relevant in prac-
tice and hence they consider strictly anonymous nodes in their follow-up studies [2]. As
proved in [2], the problem is still hard (in the sense that there are many minimal net-
works corresponding to a trace set), even with only two anonymous nodes, symmetric
routing and without aliasing.

In contrast to this line of research on cardinalities, we are interested in the network
properties. If the inferred topologies share the most important characteristics, the nega-
tive results in [1,2] may be of little concern. Moreover, we believe that a study limited
to minimal topologies only may miss important redundancy aspects of the Internet.
Unlike [1,2], our work is constructive in the sense that algorithms can be derived to
compute inferred topologies.

Finally, in a broader context, Alon et al. [4] recently initiated the study of the multi-
agent exploration of link weights in known network topologies, and derived bounds on
the number of rounds and the number of agents required to complete the discovery of
the edge weights or a shortest path.

1.2 Our Contribution

This paper initiates the study and characterization of topologies that can be inferred
from a given trace set computed with the traceroute tool. While existing literature
assuming a worst-case perspective has mainly focused on the cardinality of minimal
topologies, we go one step further and examine specific topological graph properties.

We introduce a formal theory of topology inference by proposing basic axioms (i.e.,
assumptions on the trace set) that are used to guide the inference process. We present
a novel definition for the isomorphism of inferred topologies which is aware of traffic
paths; it is motivated by the observation that although two topologies look equivalent
up to a renaming of anonymous nodes, the same trace set may result in different paths.
Moreover, we initiate the study of two extremes: in the first scenario, we only require
that each link appears at least once in the trace set; interestingly, however, it turns out
that this is often not sufficient, and we propose a “best case” scenario where the trace set
is, in some sense, complete: it contains paths between all pairs of non-anonymousnodes.
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The main result of the paper is a negative one. It is shown that already a small number
of anonymous nodes in the network renders topology inference difficult. In particular,
we prove that in general, the possible inferrable topologies differ in many crucial as-
pects, e.g., the maximal node degree, the diameter, the stretch, the number of triangles
and the number of connected components.

We introduce the concept of the star graph of a trace set that is useful for the char-
acterization of inferred topologies. In particular, colorings of the star graphs allow us
to constructively derive inferred topologies. (Although the general problem of com-
puting the set of inferrable topologies is related to NP-hard problems such as minimal
graph coloring and graph isomorphism, some important instances of inferrable topolo-
gies can be computed efficiently.) The chromatic number (i.e., the number of colors in
the minimal proper coloring) of the star graph defines a lower bound on the number
of anonymous nodes from which the stars in the traces could originate from. And the
number of possible colorings of the star graph—a function of the chromatic polynomial
of the star graph—gives an upper bound on the number of inferrable topologies. We
show that this bound is tight in the sense that there are situations where there indeed
exist so many inferrable topologies. Especially, there are problem instances where the
cardinality of the set of inferrable topologies equals the Bell number. This insight com-
plements (and generalizes to arbitrary, not only minimal, inferrable topologies) existing
cardinality results.

Finally, we examine the scenario of fully explored networks for which “complete” trace
sets are available. As expected, inferrable topologies are more homogenous and can be
characterized well with respect to many properties such as node distances. However, we
also find that other properties are inherently difficult to estimate. Interestingly, our results
indicate that full exploration is often useful for global properties (such as connectivity)
while it does not help much for more local properties (such as node degree).

2 Model

Let T denote the set of traces obtained from probing (e.g., by traceroute) a (not nec-
essarily connected and undirected) network G0 = (V0, E0) with nodes or vertices V0

(the set of routers) and links or edges E0. We assume that G0 is static during the prob-
ing time (or that probing is instantaneous). Each trace T (u, v) ∈ T describes a path
connecting two nodes u, v ∈ V0; when u and v do not matter or are clear from the con-
text, we simply write T . Moreover, let dT (u, v) denote the distance (number of hops)
between two nodes u and v in trace T . We define dG0(u, v) to be the corresponding
shortest path distance in G0. Note that a trace between two nodes u and v may not
describe the shortest path between u and v in G0.

The nodes in V0 fall into two categories: anonymous nodes and non-anonymous (or
shorter: named) nodes. Therefore, each trace T ∈ T describes a sequence of symbols
representing anonymous and non-anonymous nodes. We make the natural assumption
that the first and the last node in each trace T is non-anonymous. Moreover, we assume
that traces are given in a form where non-anonymous nodes appear with a unique, anti-
aliased identifier (i.e., the multiple IP addresses corresponding to different interfaces of
a node are resolved to one identifier); an anonymous node is represented as ∗ (“star”)
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in the traces. For our formal analysis, we assign to each star in a trace set T a unique
identifier i: ∗i. (Note that except for the numbering of the stars, we allow identical
copies of T in T , and we do not make any assumptions on the implications of identical
traces: they may or may not describe the same paths.) Thus, a trace T ∈ T is a sequence
of symbols taken from an alphabet Σ = ID ∪ (

⋃
i ∗i), where ID is the set of non-

anonymous node identifiers (IDs): Σ is the union of the (anti-aliased) non-anonymous
nodes and the set of all stars (with their unique identifiers) appearing in a trace set.
The main challenge in topology inference is to determine which stars in the traces may
originate from which anonymous nodes.

Henceforth, let n = |ID| denote the number of non-anonymous nodes and let s =
|⋃i ∗i| be the number of stars in T ; similarly, let a denote the number of anonymous
nodes in a topology. Let N = n+ s = |Σ| be the total number of symbols occurring in
T .

Clearly, the process of topology inference depends on the assumptions on the
measurements. In the following, we postulate the fundamental axioms that guide the
reconstruction. First, we make the assumption that each link of G0 is visited by the
measurement process, i.e., it appears as a transition in the trace set T . In other words,
we are only interested in inferring the (sub-)graph for which measurement data is avail-
able.

AXIOM 0 (Complete Cover): Each edge ofG0 appears at least once in some trace in T .

The next fundamental axiom assumes that traces always represent paths on G0.

AXIOM 1 (Reality Sampling): For every trace T ∈ T , if the distance between two
symbols σ1, σ2 ∈ T is dT (σ1, σ2) = k, then there exists a path (i.e., a walk without
cycles) of length k connecting two (named or anonymous) nodes σ1 and σ2 in G0.

The following axiom captures the consistency of the routing protocol on which the
traceroute probing relies. In the current Internet, policy routing is known to have in
impact both on the route length [15] and on the convergence time [12].

AXIOM 2 (α-(Routing) Consistency): There exists an α ∈ (0, 1] such that, for every
trace T ∈ T , if dT (σ1, σ2) = k for two entries σ1, σ2 in trace T , then the shortest path
connecting the two (named or anonymous) nodes corresponding to σ1 and σ2 inG0 has
distance at least �αk.

Note that if α = 1, the routing is a shortest path routing. Moreover, note that if α =
0, there can be loops in the paths, and there are hardly any topological constraints,
rendering almost any topology inferrable. (For example, the complete graph with one
anonymous router is always a solution.)

A natural axiom to merge traces is the following.

AXIOM 3 (Trace Merging): For two traces T1, T2 ∈ T for which ∃σ1, σ2, σ3, where σ2

refers to a named node, such that dT1(σ1, σ2) = i and dT2(σ2, σ3) = j, it holds that the
distance between two nodes u and v corresponding to σ1 and σ2, respectively, in G0, is
at most dG0(σ1, σ3) ≤ i+ j.
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Any topology G which is consistent with these axioms (when applied to T ) is called
inferrable from T .

Definition 1 (Inferrable Topologies). A topologyG is (α-consistently) inferrable from
a trace set T if axioms AXIOM 0, AXIOM 1, AXIOM 2 (with parameter α), and AX-
IOM 3 are fulfilled.

We will refer by GT to the set of topologies inferrable from T . Please note the following
important observation.

Remark 1. In the absence of anonymous nodes, it holds that G0 ∈ GT , since T was
generated from G0 and AXIOM 0, AXIOM 1, AXIOM 2 and AXIOM 3 are fulfilled by
definition. However, there are instances where an α-consistent trace set for G0 contra-
dicts AXIOM 0: as trace needs to start and end with a named node, some edges cannot
appear in an α-consistent trace set T . In the remainder of this paper, we will only con-
sider settings where G0 ∈ GT .

The main objective of a topology inference algorithm ALG is to compute topologies
which are consistent with these axioms. Concretely, ALG’s input is the trace set T
together with the parameter α specifying the assumed routing consistency. Essentially,
the goal of any topology inference algorithm ALG is to compute a mapping of the
symbols Σ (appearing in T ) to nodes in an inferred topology G; or, in case the input
parameters α and T are contradictory, reject the input. This mapping of symbols to
nodes implicitly describes the edge set of G as well: the edge set is unique as all the
transitions of the traces in T are now unambiguously tied to two nodes.

u v

*12

*34

u v

*14

*23

uv

*34

*12

u

*23

*14

v

Fig. 1. Two non-isomorphic inferred topologies,
i.e., different mapping functions lead to these
topologies

So far, we have ignored an impor-
tant and non-trivial question: When are
two topologies G1, G2 ∈ GT different
(and hence appear as two independent
topologies in GT )? In this paper, we pur-
sue the following approach: We are not
interested in purely topological isomor-
phisms, but we care about the identifiers
of the non-anonymous nodes, i.e., we are
interested in the locations of the non-
anonymous nodes and their distance to
other nodes. For anonymous nodes, the
situation is slightly more complicated:
one might think that as the nodes are
anonymous, their “names” do not matter.
Consider however the example in Figure 1: the two inferrable topologies have two
anonymous nodes, one where {∗1, ∗2} plus {∗3, ∗4} are merged into one node each
in the inferrable topology and one where {∗1, ∗4} plus {∗2, ∗3} are merged into one
node each in the inferrable topology. In this paper, we regard the two topologies as dif-
ferent, for the following reason: Assume that there are two paths in the network, one
u � ∗2 � v (e.g., during day time) and one u � ∗3 � v (e.g., at night); clearly,
this traffic has different consequences and hence we want to be able to distinguish
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between the two topologies described above. In other words, our notion of isomorphism
of inferred topologies is path-aware.

It is convenient to introduce the following MAP function. Essentially, an inference
algorithm computes such a mapping.

Definition 2 (Mapping Function MAP). Let G = (V,E) ∈ GT be a topology in-
ferrable from T . A topology inference algorithm describes a surjective mapping func-
tion MAP : Σ → V . For the set of non-anonymous nodes in Σ, the mapping function
is bijective; and each star is mapped to exactly one node in V , but multiple stars may
be assigned to the same node. Note that for any σ ∈ Σ, MAP(σ) uniquely identifies a
node v ∈ V . More specifically, we assume that MAP assigns labels to the nodes in V :
in case of a named node, the label is simply the node’s identifier; in case of anonymous
nodes, the label is ∗β , where β is the concatenation of the sorted indices of the stars
which are merged into node ∗β .

With this definition, two topologies G1, G2 ∈ GT differ if and only if they do not
describe the identical (MAP-) labeled topology. We will use this MAP function also for
G0, i.e., we will write MAP(σ) to refer to a symbol σ’s corresponding node in G0.

In the remainder of this paper, we will often assume that AXIOM 0 is given. More-
over, note that AXIOM 3 is redundant. Therefore, in our proofs, we will not explicitly
cover AXIOM 0, and it is sufficient to show that AXIOM 1 holds to prove that AXIOM 3
is satisfied.

Lemma 1. AXIOM 1 implies AXIOM 3.

PROOF. Let T be a trace set, and G ∈ GT . Let σ1, σ2, σ3 s.t. ∃T1, T2 ∈ T with σ1 ∈
T1, σ3 ∈ T2 and σ2 ∈ T1 ∩ T2. Let i = dT1(σ1, σ2) and j = dT2(σ1, σ3). Since any
inferrable topology G fulfills AXIOM 1, there is a path π1 of length at most i between
the nodes corresponding to σ1 and σ2 in G and a path π2 of length at most j between
the nodes corresponding to σ2 and σ3 inG. The combined path can only be shorter, and
hence the claim follows. �

3 Inferrable Topologies

What insights can be obtained from topology inference with minimal assumptions, i.e.,
with our axioms? Or what is the structure of the inferrable topology set GT ? We first
make some general observations and then examine different graph metrics in more de-
tail.

3.1 Basic Observations

Although the generation of the entire topology set GT may be computationally hard,
some instances of GT can be computed efficiently. The simplest possible inferrable
topology is the so-called canonic graph GC : the topology which assumes that all stars
in the traces refer to different anonymous nodes. In other words, if a trace set T contains
n = |ID| named nodes and s stars, GC will contain |V (GC)| = N = n+ s nodes.
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Definition 3 (Canonic Graph GC ). The canonic graph is defined by GC(VC , EC)
where VC = Σ is the set of (anti-aliased) nodes appearing in T (where each star
is considered a unique anonymous node) and where {σ1, σ2} ∈ EC ⇔ ∃T ∈ T , T =
(. . . , σ1, σ2, . . .), i.e., σ1 follows after σ2 in some trace T (σ1, σ2 ∈ T can be either
non-anonymous nodes or stars). Let dC(σ1, σ2) denote the canonic distance between
two nodes, i.e., the length of a shortest path in GC between the nodes σ1 and σ2.

Note that GC is indeed an inferrable topology. In this case, MAP : Σ → Σ is the
identity function.

Theorem 1. GC is inferrable from T .

GC can be computed efficiently from T : represent each non-anonymous node and star
as a separate node, and for any pair of consecutive entries (i.e., nodes) in a trace, add
the corresponding link. The time complexity of this construction is linear in the size of
T .

With the definition of the canonic graph, we can derive the following lemma which
establishes a necessary condition when two stars cannot represent the same node in G0

from constraints on the routing paths. This is useful for the characterization of inferred
topologies.

Lemma 2. Let ∗1, ∗2 be two stars occurring in some traces in T . ∗1, ∗2 cannot be
mapped to the same node, i.e., MAP(∗1) �= MAP(∗2), without violating the axioms in
the following conflict situations:

(i) if ∗1 ∈ T1 and ∗2 ∈ T2, and T1 describes too a long path between anonymous node
MAP(∗1) and non-anonymous node u, i.e., �α · dT1(∗1, u) > dC(u, ∗2).

(ii) if ∗1 ∈ T1 and ∗2 ∈ T2, and there exists a trace T that contains a path between two
non-anonymous nodes u and v and �α · dT (u, v) > dC(u, ∗1) + dC(v, ∗2).

PROOF. The first proof is by contradiction. Assume MAP(∗1) = MAP(∗2) represents
the same node v of G0, and that �α · dT1(v, u) > dC(u, v). Then we know from
AXIOM 2 that dC(v, u) ≥ dG0(v, u) ≥ �α · dT1(u, v) > dC(v, u), which yields the
desired contradiction.

Similarly for the second proof, assume for the sake of contradiction that MAP(∗1) =
MAP(∗2) represents the same node w of G0, and that �α · dT (u, v) > dC(u, ∗1) +
dC(v, ∗2) ≥ dG0(u,w) + dG0(v, w). Due to the triangle inequality, we have that
dG0(u,w) + dG0(v, w) ≥ dG0(u, v) and hence, �α · dT (u, v) > dG0(u, v), which
contradicts the fact that G0 is inferrable (Remark 1). �
Lemma 2 can be applied to show that a topology is not inferrable from a given trace set
because it merges (i.e., maps to the same node) two stars in a manner that violates the
axioms. Let us introduce a useful concept for our analysis: the star graph that describes
the conflicts between stars.

Definition 4 (Star Graph G∗). The star graphG∗(V∗, E∗) consists of vertices V∗ rep-
resenting stars in traces, i.e., V∗ =

⋃
i ∗i. Two vertices are connected if and only if they

must differ according to Lemma 2, i.e., {∗1, ∗2} ∈ E∗ if and only if at least one of the
conditions of Lemma 2 hold for ∗1, ∗2.
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Note that the star graph G∗ is unique and can be computed efficiently for a given trace
set T : Conditions (i) and (ii) can be checked by computing GC . However, note that
whileG∗ specifies some stars which cannot be merged, the construction is not sufficient:
as Lemma 2 is based on GC , additional links might be needed to characterize the set
of inferrable and α-consistent topologies GT exactly. In other words, a topology G
obtained by merging stars that are adjacent inG∗ is never inferrable (G �∈ GT ); however,
merging non-adjacent stars does not guarantee that the resulting topology is inferrable.

What do star graphs look like? The answer is arbitrarily: the following lemma states
that the set of possible star graphs is equivalent to the class of general graphs. This
claim holds for any α.

Lemma 3. For any graphG = (V,E), there exists a trace set T such thatG is the star
graph for T .

The problem of computing inferrable topologies is related to the vertex colorings of
the star graphs. We will use the following definition which relates a vertex coloring of
G∗ to an inferrable topology G by contracting independent stars in G∗ to become one
anonymous node in G. For example, observe that a maximum coloring treating every
star in the trace as a separate anonymous node describes the inferrable topologyGC .

Definition 5 (Coloring-Induced Graph). Let γ denote a coloring of G∗ which as-
signs colors 1, . . . , k to the vertices of G∗: γ : V∗ → {1, . . . , k}. We require that γ
is a proper coloring of G∗, i.e., that different anonymous nodes are assigned different
colors: {u, v} ∈ E∗ ⇒ γ(u) �= γ(v). Gγ is defined as the topology induced by γ.
Gγ describes the graph GC where nodes of the same color are contracted: two ver-
tices u and v represent the same node in Gγ , i.e., MAP(∗i) = MAP(∗j), if and only if
γ(∗i) = γ(∗j).

The following two lemmas establish an intriguing relationship between colorings of
G∗ and inferrable topologies. Also note that Definition 5 implies that two different
colorings of G∗ define two non-isomorphic inferrable topologies.

We first show that while a coloring-induced topology always fulfills AXIOM 1, the
routing consistency is sacrificed.

Lemma 4. Let γ be a proper coloring of G∗. The coloring induced topology Gγ is a
topology fulfilling AXIOM 2 with a routing consistency of α′, for some positive α′.

An inferrable topology always defines a proper coloring onG∗.

Lemma 5. Let T be a trace set and G∗ its corresponding star graph. If a topology G
is inferrable from T , then G induces a proper coloring on G∗.

The colorings of G∗ allow us to derive an upper bound on the cardinality of GT .

Theorem 2. Given a trace set T sampled from a networkG0 and GT , the set of topolo-
gies inferrable from T , it holds that:

|V∗|∑
k=γ(G∗)

P (G∗, k)/k! ≥ |GT |,

where γ(G∗) is the chromatic number of G∗ and P (G∗, k) is the number of colorings
of G∗ with k colors (known as the chromatic polynomial of G∗).
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PROOF. The proof follows directly from Lemma 5 which shows that each inferred topol-
ogy has proper colorings, and the fact that a coloring ofG∗ cannot result in two different
inferred topologies, as the coloring uniquely describes which stars to merge (Lemma 4).
In order to account for isomorphic colorings, we need to divide by the number of color
permutations. �
Note that the fact that G∗ can be an arbitrary graph (Lemma 3) implies that we cannot
exploit some special properties of G∗ to compute colorings of G∗ and γ(G∗). Also
note that the exact computation of the upper bound is hard, since the minimal coloring
as well as the chromatic polynomial of G∗ (in P�) is needed. To complement the upper
bound, we note that star graphs with a small number of conflict edges can indeed result
in a large number of inferred topologies.

Theorem 3. For anyα > 0, there is a trace set for which the number of non-isomorphic
colorings ofG∗ equals |GT |, in particular |GT | = Bs, where GT is the set of inferrable
and α-consistent topologies, s is the number of stars in T , and Bs is the Bell number
of s. Such a trace set can originate from a G0 network with one anonymous node only.

PROOF. Consider a trace set T = {(σi, ∗i, σ
′
i)i=1,...,s} (e.g., obtained from exploring

a topology G0 where one anonymous center node is connected to 2s named nodes).
The trace set does not impose any constraints on how the stars relate to each other,
and hence, G∗ does not contain any edges at all; even when stars are merged, there
are no constraints on how the stars relate to each other. Therefore, the star graph for T
has Bs =

∑s
j=0 S(s,j) colorings, where S(s,j) = 1/j! ·∑j

�=0(−1)�
(
j
�

)
(j − 	)s is the

number of ways to group s nodes into j different, disjoint non-empty subsets (known as
the Stirling number of the second kind). Each of these colorings also describes a distinct
inferrable topology as MAP assigns unique labels to anonymous nodes stemming from
merging a group of stars (cf Definition 2). �

3.2 Properties

Even if the number of inferrable topologies is large, topology inference can still be
useful if one is mainly interested in the properties of G0 and if the ensemble GT is
homogenous with respect to these properties; for example, if “most” of the instances in
GT are close to G0, there may be an option to conduct an efficient sampling analysis
on random representatives. Therefore, in the following, we will take a closer look how
much the members of GT differ.

Important metrics to characterize inferrable topologies are, for instance, the graph
size, the diameter DIAM(·), the number of triangles C3(·) of G, and so on. In the fol-
lowing, let G1 = (V1, E1), G2 = (V2, E2) ∈ GT be two arbitrary representatives of
GT .

As one might expect, the graph size can be estimated quite well.

Lemma 6. It holds that |V1| − |V2| ≤ s − γ(G∗) ≤ s − 1 and |V1|/|V2| ≤ (n +
s)/(n+ γ(G∗)) ≤ (2+ s)/3. Moreover, |E1|− |E2| ≤ 2(s− γ(G∗)) and |E1|/|E2| ≤
(ν + 2s)/(ν + 2) ≤ s, where ν denotes the number of edges between non-anonymous
nodes. There are traces with inferrable topologyG1, G2 reaching these bounds.
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Observe that inferrable topologies can also differ in the number of connected com-
ponents. This implies that the shortest distance between two named nodes can differ
arbitrarily between two representatives in GT .

Lemma 7. Let COMP(G) denote the number of connected components of a topology
G. Then, |COMP(G1)− COMP(G2)| ≤ n/2. There are traces with inferrable topology
G1, G2 reaching these bounds.

An important criterion for topology inference regards the distortion of shortest paths.

Definition 6 (Stretch). The maximal ratio of the distance of two non-anonymous
nodes in G0 and a connected topology G is called the stretch ρ: ρ =
maxu,v∈ID(G0) max{dG0(u, v)/dG(u, v), dG(u, v)/dG0(u, v)}.
From Lemma 7 we already know that inferrable topologies can differ in the number
of connected components, and hence, the distance and the stretch between nodes can
be arbitrarily wrong. Hence, in the following, we will focus on connected graphs only.
However, even if two nodes are connected, their distance can be much longer or shorter
than in G0.
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Fig. 2. Due to the lack of a trace between v
and w, the stretch of an inferred topology can
be large

Figure 2 gives an example. Both
topologies are inferrable from the
traces T1 = (v, ∗, v1, . . . , vk, u) and
T2 = (w, ∗, w1, . . . , wk, u). One inferrable
topology is the canonic graphGC (Figure 2
left), whereas the other topology merges the
two anonymous nodes (Figure 2 right). The
distances between v and w are 2(k+2) and
2, respectively, implying a stretch of k + 2.

Lemma 8. Let u and v be two arbitrary
named nodes in the connected topologies
G1 and G2. Then, even for only two stars
in the trace set, it holds for the stretch that
ρ ≤ (N − 1)/2. There are traces with inferrable topology G1, G2 reaching these
bounds.

We now turn our attention to the diameter and the degree.

Lemma 9. For connected topologies G1, G2 it holds that DIAM(G1) − DIAM(G2) ≤
(s − 1)/s · DIAM(GC) ≤ (s − 1)(N − 1)/s and DIAM(G1)/DIAM(G2) ≤ s, where
DIAM denotes the graph diameter and DIAM(G1) > DIAM(G2). There are instances
G1, G2 that reach these bounds.

PROOF. Upper bound: As GC does not merge any stars, it describes the net-
work with the largest diameter. Let π be a longest path between two nodes u
and v in GC . In the extreme case, π is the only path determining the network
diameter and π contains all star nodes. Then, the graph where all s stars are
merged into one anonymous node has a minimal diameter of at least DIAM(GC)/s.
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Fig. 3. Estimation error for diameter

Example which meets the
bound: Consider the trace set
T = {(u1, . . . , ∗1, . . . , u2),
(u2, . . . , ∗2, . . . , u3), . . . ,
(us, . . . , ∗s, . . . , us+1)} with x
named nodes and star in the middle
between ui and ui+1 (assume x to be
even, x does not include ui and ui+1 ). It holds that DIAM(GC) = s · (x+ 2) whereas
in a graph G where all stars are merged, DIAM(G) = x + 2. There are n = s(x + 1)
non-anonymous nodes, so x = (n− s− 1)/s. Figure 3 depicts an example. �

Lemma 10. For the maximal node degree DEG, we have DEG(G1) − DEG(G2) ≤
2(s− γ(G∗)) and DEG(G1)/DEG(G2) ≤ s− γ(G∗) + 1. There are instances G1, G2

that reach these bounds.

Another important topology measure that indicates how well meshed the network is, is
the number of triangles.

Lemma 11. Let C3(G) be the number of cycles of length 3 of the graph G. It
holds that C3(G1) − C3(G2) ≤ 2s(s − 1), which can be reached. The relative
error C3(G1)/C3(G2) can be arbitrarily large unless the number of links between
non-anonymous nodes exceeds n2/4 in which case the ratio is upper bounded by
2s(s− 1) + 1.

4 Full Exploration

So far, we assumed that the trace set T contains each node and link of G0 at least
once. At first sight, this seems to be the best we can hope for. However, sometimes
traces exploring the vicinity of anonymous nodes in different ways yields additional
information that help to characterize GT better.

This section introduces the concept of fully explored networks: T contains suffi-
ciently many traces such that the distances between non-anonymous nodes can be esti-
mated accurately.

Definition 7 (Fully Explored Topologies). A topology G0 is fully explored by a trace
set T if it contains all nodes and links ofG0 and for each pair {u, v} of non-anonymous
nodes in the same component of G0 there exists a trace T ∈ T containing both nodes
u ∈ T and v ∈ T .

In some sense, a trace set for a fully explored network is the best we can hope for.
Properties that cannot be inferred well under the fully explored topology model are
infeasible to infer without additional assumptions onG0. In this sense, this section pro-
vides upper bounds on what can be learned from topology inference, and accordingly,
we will constrain ourselves to routing along shortest paths only (α = 1).

Let us again study the properties of the family of inferrable topologies fully explored
by a trace set. Obviously, all the upper bounds from Section 3 are still valid for fully
explored topologies. In the following, let G1, G2 ∈ GT be arbitrary representatives of
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GT for a fully explored trace set T . A direct consequence of the Definition 7 concerns
the number of connected components and the stretch. (Recall that the stretch is defined
with respect to named nodes only, and since α = 1, a 1-consistent inferrable topology
cannot include a shorter path between u and v than the one that must appear in a trace
of T .)

Lemma 12. It holds that COMP(G1) = COMP(G2) (= COMP(G0)) and the stretch
is 1.

The proof for the claims of the following lemmata are analogous to our former proofs,
as the main difference is the fact that there might be more conflicts, i.e., edges in G∗.

Lemma 13. For fully explored networks it holds that |V1| − |V2| ≤ s− γ(G∗) ≤ s− 1
and |V1|/|V2| ≤ (n+s)/(n+γ(G∗)) ≤ (2+s)/3. Moreover, |E1|−|E2| ∈ 2(s−γ(G∗))
and |E1|/|E2| ≤ (ν + 2s)/(ν + 2) ≤ s, where ν denotes the number of links between
non-anonymous nodes. There are traces with inferrable topologyG1, G2 reaching these
bounds.

Lemma 14. For the maximal node degree, we have DEG(G1) − DEG(G2) ≤ 2(s −
γ(G∗)) and DEG(G1)/DEG(G2) ≤ s − γ(G∗) + 1. There are instances G1, G2 that
reach these bounds.

From Lemma 12 we know that fully explored scenarios yield a perfect stretch of one.
However, regarding the diameter, the situation is different in the sense that distances
between anonymous nodes play a role.

Lemma 15. For connected topologies G1, G2 it holds that DIAM(G1)/DIAM(G2) ≤
2, where DIAM denotes the graph diameter and DIAM(G1) > DIAM(G2). There are in-
stancesG1, G2 that reach this bound. Moreover, there are instances with DIAM(G1)−
DIAM(G2) = s/2.

The number of triangles with anonymous nodes can still not be estimated accurately in
the fully explored scenario.

Lemma 16. There exist graphs whereC3(G1)−C3(G2) = s(s−1)/2, and the relative
error C3(G1)/C3(G2) can be arbitrarily large.

Property/Scenario Arbitrary Fully Explored (α = 1)
G1 −G2 G1/G2 G1 −G2 G1/G2

# of nodes ≤ s− γ(G∗) ≤ (n + s)/(n + γ(G∗)) ≤ s− γ(G∗) ≤ (n + s)/(n + γ(G∗))
# of links ≤ 2(s− γ(G∗)) ≤ (ν + 2s)/(ν + 2) ≤ 2(s− γ(G∗)) ≤ (ν + 2s)/(ν + 2)

# of connected components ≤ n/2 ≤ n/2 = 0 = 1

Stretch - ≤ (N − 1)/2 - = 1

Diameter ≤ (s− 1)/s · (N − 1) ≤ s s/2 (¶) 2

Max. Deg. ≤ 2(s− γ(G∗)) ≤ s− γ(G∗) + 1 ≤ 2(s− γ(G∗)) ≤ s− γ(G∗) + 1

Triangles ≤ 2s(s− 1) ∞ ≤ 2s(s− 1)/2 ∞

Fig. 4. Summary of our bounds on the properties of inferrable topologies. s denotes the number
of stars in the traces, n is the number of named nodes, N = n + s, and ν denotes the number
of links between named nodes. Note that trace sets meeting these bounds exist for all properties
for which we have tight or upper bounds. For the entry marked with (¶), only “lower bounds” are
derived, i.e., examples that yield at least the corresponding accuracy; as the upper bounds from
the arbitrary scenario do not match, how to close the gap remains an open question.
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5 Conclusion

We understand our work as a first step to shed light onto the similarity of inferrable
topologies based on most basic axioms and without any assumptions on power-law
properties, i.e., in the worst case. Using our formal framework we show that the topolo-
gies for a given trace set may differ significantly. Thus, it is impossible to accurately
characterize topological properties of complex networks. To complement the general
analysis, we propose the notion of fully explored networks or trace sets, as a “best pos-
sible scenario”. As expected, we find that fully exploring traces allow us to determine
several properties of the network more accurately; however, it also turns out that even
in this scenario, other topological properties are inherently hard to compute. Our results
are summarized in Figure 4.

Our work opens several directions for future research. So far we have only inves-
tigated fully explored networks with short path routing (α = 1), and a scenario with
suboptimal routes still needs to be investigated. One may also study whether the min-
imal inferrable topologies considered in, e.g., [1,2], are more similar in nature. More
importantly, while this paper presented results for the general worst-case, it would be
interesting to devise algorithms that compute, for a given trace set, worst-case bounds
for the properties under consideration. For example, such approximate bounds would be
helpful to decide whether additional measurements are needed. Moreover, maybe such
algorithms may even give advice on the locations at which such measurements would
be most useful.

Acknowledgments. Stefan Schmid would like to thank H. B. Acharya and Ingmar
Poese for initial discussions in Calcutta and Berlin. We are also grateful to Steve Uhlig
and Bernhard Ager for their comments and the literature pointers. A full version of this
article including all proofs is available on ArXiv (ID: 1105.5236).
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In large-scale networking environments, such as data centers, a key difficulty is
the assignment of labels to network elements. Labels can be assigned statically,
e.g. MAC-addresses in traditional Layer 2 networks, or by a central authority as
in DHCP in Layer 3 networks. On the other hand, networks requiring a dynamic
solution often use a Consensus-based state machine approach. While designing
Alias [2], a protocol for automatically assigning hierarchically meaningful ad-
dresses in data center networks, we encountered an instance of label assignment
with entirely different requirements. In this case, the rules for labels depend
on connectivity, and connectivity (and hence, labels) changes over time. Thus,
neither static assignment nor a state machine approach is ideal.

In the context of large scale data center networks, practical constraints are
important. A centralized solution introduces a single point of failure and ne-
cessitates either flooding or a separate out-of-band control network to establish
communication between the centralized component and all network elements;
this is problematic at the scale of a data center. We also require a solution that
scales, is robust in the face of miswirings and transient startup conditions, and
has low message overhead and convergence time. To this end, we specify the La-
bel Selection Problem (LSP), which is the problem of practical label assignment
in data center networks.

Fig. 1. Sample Topology

In LSP, we consider topologies
made up of chooser processes con-
nected to decider processes, as shown
in Fig. 1. More formally, each chooser
c has a set c.deciders of deciders as-
sociated with it. This set can change
over time. Each chooser c is connected
to each decider in c.deciders with a
fair lossy link. Such links can drop messages, but if two processes p and q are
connected by a fair lossy link and p sends m infinitely often to q, then q will
receive m infinitely often. Both decider and chooser processes can crash in a
failstop manner (thus going from up to down) and can recover (thus going from
down to up) at any time. We assume that a process writes its state to stable
storage before sending a set of messages. When a process recovers, it is restored
to the state before sending the last set of message; duplicate messages may be
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sent upon recovery. So, we treat recovered processes as perhaps slow processes,
and allow for duplicate messages.

We require an assignment of labels to choosers such that any two choosers that
are connected to the same decider have distinct labels. Figure 1 illustrates sets
of choosers and the deciders they share. For instance, chooser c3 shares deciders
d1 and d2 with choosers c1 and c2 and shares d3 with c4 and c5. Because of this,
c3 may not select the same label as any of choosers c1, c2, c4 and c5, but c3 and
c6 are free to select the same label. We denote c’s current choice of label with
c.me: c.me =⊥ indicates that c has not chosen a label.

We specify LSP with two properties, Progress: For each chooser c, once c
remains up, eventually c.me �=⊥ and Distinctness: For each distinct pair of
choosers c1 and c2, once c1 and c2 remain up and there is some decider that
remains up and remains in c1.deciders∩ c2.deciders, eventually always c1.me �=
c2.me. A key difficulty in solving LSP is that a chooser can not necessarily know
when its choice satisfies Distinctness. This is because its set c.deciders can
change over time, thereby introducing new conflicts.

To solve LSP, we introduce a simple, randomized Decider/Chooser Protocol
(DCP). DCP is a Las Vegas type randomized algorithm: the labels that are
computed always satisfy the problem specification, but the algorithm is only
probabilistically fast. It is also a fully dynamic algorithm [3], in that it makes
use of previous solutions to solve the problem more quickly than by recomputing
from scratch.

We have applied DCP to a variety of problems in large scale networks. For
instance, DCP can be used for handoff in wireless networks, with mobile devices
functioning as choosers and APs as deciders; this exemplifies a topology with fre-
quently changing links between choosers and deciders. Additionally, by applying
DCP to a portion of Alias [2], we drastically reduce the amount of forwarding
state needed in network elements. We also apply a modified version of DCP in
Alias, in which the chooser is distributed across multiple nodes. Doing so allows
for hierarchical address aggregation, which in turn reduces the forwarding state
maintained by network elements.

Assigning labels to nodes is not a new problem. Perhaps closest to our problem
is [1], which considers the issues of assigning labels to nodes in an anonymous
network of unknown size. With DCP, we leverage the symmetry inherent in our
network topology and use randomization to design a more practical algorithm.
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Abstract. The election of an eventual leader in an asynchronous sys-
tem prone to process crashes is an important problem of fault-tolerant
distributed computing. This problem is known as the implementation of
the failure detector Ω. In this work we propose a specification of Ω suited
to dynamic systems, i.e., systems in which processes can enter and leave.

1 System Model and Specification of ΔΩ

We assume that the system is made up of an arbitrary number of processes.
We consider that i is the identity of the process denoted pi. We also assume
that there is a sequential time domain T . This time, that is not known by the
processes, is used only to describe the behavior of the system and specify the
eventual leadership problem. Let τ ∈ T and τ0 be the time at which the system
starts. Π(τ) denotes the set of processes that compose the system at time τ .
Hence, Π(τ0) �= ∅ is the initial set of processes. It is assumed that, at any time,
there is at least one process in the system: ∀τ : Π(τ) �= ∅.

Let us consider a process pi that joins the system. This occurs at some
time denoted τ(joini). Similarly, if it ever crashes or leaves the system, its
crash/departure time is denoted τ(exiti). If pi neither crashes nor leaves the
system, τ(exiti) = +∞.

Each process pi has a local variable denoted leaderi whose aim is to contain
the identity of the leader. When pi ∈ Π(τ), the notation leaderτ

i is used to
denote the value of leaderi at time τ .

Preliminary definitions

– Given a message m, m.sender denotes the identity of its sender.
– MSG inT (τ) denotes the set of messages that are in transit at time τ .
– LEFT (τ) is the set of processes that have left the system or crashed by

time τ .
– SANE(τ) ≡ [∀m ∈ MSG inT (τ) : m.sender /∈ LEFT (τ)

]
.

� Mikel Larrea has been supported by the Spanish Research Council, grant TIN2010-
17170, and the Basque Government, grants IT395-10 and S-PE10UN55. Michel Ray-
nal has been supported by the SHAMAN French ANR project.

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 328–329, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



ΔΩ: Specifying an Eventual Leader Service for Dynamic Systems 329

Formal statement of the EL NI property (Eventual Leadership in Non-Increasing
systems). If after some time τ , no process enters the system, a leader is eventually
elected. This property classically defines Ω in non-dynamic systems [1].[∃ τ : ∀ τ1, τ2 ≥ τ : (τ1 ≥ τ2)⇒ (Π(τ1) ⊆ Π(τ2)

]
⇒ [∃ p� ∈

⋂
τ ′≥τ Π(τ ′) : ∃ τ1 ≥ τ : ∀ τ2 ≥ τ1 : ∀ pi ∈ Π(τ2) : leaderτ2

i = 	
]
.

Formal statement of the EL ND property (Eventual Leadership in Non-Decreasing
systems). While EL NI addresses the case where, after some time, the system
only decreases, the property EL ND is its counterpart for the case where after
some time, the system only increases. If after some time τ , no process leaves the
system or crashes, a leader has to be eventually elected (Item i), and the new
processes eventually adopt it forever (Item ii).[∃τ : ∀ τ1, τ2 ≥ τ : (τ1 ≤ τ2)⇒ (Π(τ1) ⊆ Π(τ2))

]
⇒ [∃τ1 ≥ τ, ∃ p� ∈ Π(τ1) :

(i)
[∀ τ2 ≥ τ1 : ∀ pi ∈ Π(τ) : leaderτ2

i = 	
]

(ii) ∧ [∀ τ ′ ≥ τ :
(
pi ∈ Π(τ ′) \Π(τ)

)
⇒ (∃ τ0 ≥ τ(joini) : ∀ τ ′′ ≥ τ0 : leaderτ ′′

i = 	
)]]

.

Formal statement of the STAB property. The third property addresses the sta-
bility of the elected leader. It states that as soon as there is a time τ such that
(1) all processes in Π(τ) agree on the same leader p� and (2) the system is sane
(in the sense it cannot be polluted by old messages from processes that have left
the system or have crashed) then any process pi in Π(τ) continues to consider
p� as its leader until pi or p� exits the system by leaving or crashing (Item i).
Moreover, if time permits (Item ii) all processes joining the system eventually
consider p� as their leader. Let us observe that Item ii is not redundant with
respect to the previous EL NI and EL ND properties, as it covers the case where
p� remains forever in the system while processes are permanently entering and
leaving the system. The interested reader will find more developments in [2].[∃ τ, ∃p� ∈ Π(τ) :

(
(∀ pi ∈ Π(τ) : leaderτ

i = 	) ∧ SANE(τ)
)]

⇒ [∀ τ ′ : τ ≤ τ ′ ≤ τ(exit�) :
(i)

[∀ pi ∈ Π(τ) ∩Π(τ ′) : leaderτ ′
i = 	

]
(ii) ∧ [∀ pi ∈ Π(τ ′) \Π(τ):[

(τ(exiti) = τ(exit�) = +∞)
⇒ (∃ τ ′′ ≥ τ(joini) : ∀τ ′′′ ≥ τ ′′ : leaderτ ′′′

i = 	
)]]]

.
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Motivation. Robot networks [4] have recently become a challenging research area
for distributed computing researchers. At the core of scientific studies lies the
characterization of the minimum robots capabilities that are necessary to achieve
a certain kind of tasks, such as the formation of geometric patterns, scattering,
gathering, etc. The considered robots are often very weak: They are anonymous,
oblivious, disoriented, and most importantly dumb. The last property means
that robots cannot communicate explicitly by sending messages to one another.
Instead, their communication is indirect (or spatial): a robot ’writes’ a value to
the network by moving toward a certain position, and a robot ’reads’ the state
of the network by observing the positions of other robots in terms of its local
coordinate system. The problem we consider in this paper is the gathering of
fault-prone robots. Given a set of oblivious robots with arbitrary initial loca-
tions and no agreement on a global coordinate system, the gathering problem
requires that all correct robots reach and stabilize the same, but unknown be-
forehand, location. A number of solvability issues about the gathering problem
are studied in previous work because of its fundamental importance in both the-
ory and practice. One can easily find an analogy of the gathering problem to the
consensus problem, and thus may think that its solvability issue are straight-
forwardly deduced from the known results about the consensus solvability (e.g.,
FLP impossibility). However, many differences lies between those two problems
and the solvability of the gathering problem is still non-trivial. An important
witness encouraging the difference is that the gathering problem can be solved
in a certain kind of crash-prone asynchronous robot networks [1, 3], while the
consensus cannot be solved under the asynchrony and one crash fault.

Our Contribution. In this paper, we investigate the solvability of the gather-
ing problem of n-robot networks subject to Byzantine faults. As we mentioned,
there still exists a large gap between possibility and impossibility of the Byzan-
tine gathering problem. As known results, Byzantine gathering is feasible only
under very strong assumptions (fully-synchronous atomic-execution models or
� This work is supported in part by the DIGITEO project PACTOLE, the ANR

projects SHAMAN and R-DISCOVER, KAKENHI no. 22700010 and 21500013, and
Foundation for the Fusion of Science and Technology (FOST).
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small number of robots) [1], and also the impossibility results are proved only for
severe models (asynchrony, oblivious and uniform robots, and/or without agree-
ment of coordinate systems) [1,3]. Filling this gap has remained an open question
until now. In this paper, we respond negatively: Namely, we prove that Byzantine
gathering is impossible even if we assume an ATOM models, n-bounded central-
ized scheduler, non-oblivious and non-uniform robots, and a common orientation
of local coordinate systems, for only one Byzantine robot. Those assumptions
are much stronger than that shown in previous work, inducing a much stronger
impossibility result.

At the core of our impossibility result is a reduction to 1-Byzantine-resilient
gathering in mobile robot systems from the distributed 1-crash-resilient consen-
sus problem in asynchronous shared-memory systems. In more details, based on
the distributed BG-simulation by Borowsky and Gafni [2], we newly construct a
1-crash-resilient consensus algorithm using any 1-Byzantine-resilient gathering
algorithm on the system with several constraints. Thus, we can deduce impossi-
bility results of Byzantine gathering for the model stated above. More interest-
ingly, because of its versatility, we can easily extend our impossibility result for
general pattern formation problems: We show that the impossibility also holds
for a broad class of pattern formation problems including line and circle forma-
tion. To the best of our knowledge, this paper is the first study explicitly bridging
algorithmic mobile robotics and conventional distributed computing theory for
proving impossibility results.

It is remarkable that our reduction scheme equips a non-trivial feature which
is not addressed in the prior work of the BG-simulation: It privides a “syn-
chrony” simulation on the top of fully-asynchronous shared memory systems.
The assumption of n-bounded scheduler restricts the relative speed of each robot
(formally, n-bounded scheduler only allows the activation schedules where each
robot is activated at most n times between any two consecutive activations of
some robot). An interesting insight we can find from our result is that it is pos-
sible to trade the synchrony and Byzantine behavior of robot networks to the
asynchrony and crash behavior of shared memory systems, which implies that
the gap between synchronous robot networks and classical distributed compu-
tation models is as large as that between synchrony and asynchrony in classical
models.
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Abstract. For which settings will local observations of an unknown
environment allow simple mobile agents (micro-robots) to draw global
conclusions? This question has been studied for a long time when the en-
vironment is a graph, and the mobile agents walk on its vertices, under
a variety of models. In this talk, however, we are interested in geometric
environments.

More specifically, we discuss the problem of reconstructing an un-
known simple polygon from a series of local observations. We aim to
understand what types of sensing information acquired at vertices of the
polygon carry enough information to allow polygon reconstruction by
mobile agents that move from vertex to vertex. It turns out that ideas
from distributed computing help to reconstruct the polygon topology
even if the sensing information is purely non-geometric. We also briefly
touch on a few related problems such as guarding the polygon and ren-
dezvous. The reported work has been done over the years with Davide
Bilo, Jeremie Chalopin, Shantanu Das, Yann Disser, Beat Gfeller, Matus
Mihalak, Subhash Suri, and Elias Vicari.
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Abstract. This paper studies notions of locality that are inherent to
the specification of a distributed task and independent of the computing
environment, in a shared memory wait-free system.

A locality property called projection-closed is identified, that com-
pletely characterizes tasks that are wait-free checkable. A task T =
(I,O, Δ) is checkable if there exists a wait-free distributed algorithm
that, given s ∈ I and t ∈ O, determines whether t ∈ Δ(s), i.e., if t is
a valid output for s according to the specification of T . Moreover, de-
termining whether a projection-closed task is wait-free solvable remains
undecidable, and hence this is a rich class of tasks.

A stronger notion of locality considers tasks where the outputs look
identically to the inputs at every vertex (input value of a process). A
task T = (I,O, Δ) is said to be locality-preserving if O is a covering
complex of I. This topological property yields obstacles for wait-free
solvability different in nature from the classical agreement impossibility
results. On the other hand, locality-preserving tasks are projection-closed
and therefore always wait-free checkable. A classification of locality-
preserving tasks in term of their relative computational power is pro-
vided. A correspondence between locality-preserving tasks and subgroups
of the edgepath group of an input complex shows the existence of hier-
archies of locality-preserving tasks, each one containing at the top the
universal task (induced by the universal covering complex), and at the
bottom the trivial identity task.

Keywords: distributed verification, local computing, wait-free, decision
task.
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1 Introduction

A task is a distributed coordination problem in which each process starts with a
private input value, communicates with the other processes by applying opera-
tions to shared objects, and eventually decides a private output value. It can be
described by a triple (I,O, Δ) where I is the set of input configurations, O is
the set of output configurations, and Δ is the specification of the task mapping
every input configuration to a set of possible output configurations. A protocol
is a distributed program that solves a task.

Often it is useful to consider (input or output) configurations where the states
of only a subset of the processes are specified. If s is an input configuration, π(s)
denotes the configuration obtained by projecting out the processes specified by π.
Then, the map Δ of a task specifies with Δ(π(s)) the valid output configurations
for π(s). For instance, let G be a network of processes, with one process per node,
exchanging information along their incident edges. Assume one wants to color
the nodes of G in such a way that two adjacent nodes are assigned different
colors. The literature tackling this task (see, e.g., [6,29]) generally assumes that
d+ 1 colors are available, where d denotes the maximum degree of G. The main
motivation for this assumption is that every graph is (d+ 1)-colorable, whereas
there are graphs that are not d-colorable, like, e.g., the complete graphs, or the
cycles of odd length. A more careful look at the specification Δ of the (d + 1)-
coloring task enables to identify a stronger property: any partial (d+1)-coloring
Δ(π(s)) for a subgraph π(s) induced by any set of processes specified by π, can
be extended to a (d+1)-coloring Δ(s) for s. In other words, the (d+1)-coloring
specification Δ satisfies the monotony condition

Δ(π(s)) ⊆ π(Δ(s)) (1)

for every set of processes s, and every projection π. Instead, the specification of
the d-coloring task does not satisfy this inclusion, even in networks that are d-
colorable. For instance, if s denotes the four nodes of a 4-cycle, and π(s) denotes
two antipodal nodes in this cycle, then the output consisting in coloring the
nodes of π(s) with distinct colors cannot be extended to a valid output for the
whole set s. It may thus be not coincidental that 3-coloring the n-node ring can
be achieved in O(log∗ n) rounds (see [10]) whereas 2-coloring rings (of even size)
requires Ω(n) rounds (see [30]).

The monotony condition expresses a notion of locality satisfied by the task,
that can be phrased as: any output for a partial input is a partial output for
the full input. It is important to observe that this notion expresses a form of
locality that is inherent to the specification of a task, and independent of the
distributed computing model. For instance, at the other extremity of the wide
spectrum of distributed computing models, previous work in wait-free comput-
ing, where asynchronous processes subject to crash failures communicate via a
read/write shared memory, often assumes tasks satisfying the monotony condi-
tion. Typically, consensus satisfies it. (Note that the inclusion is strict for con-
sensus, whereas equality holds for (d+ 1)-coloring). Monotony captures locality
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Outputs
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Fig. 1. An intersection-closed task, which is not monotone, and not wait-free solvable.
The projection π depicted is for the black process. The black process always starts with
0. When both run, they must agree on the input of the white process, either 1 or 2.
If the white process runs solo, it must decide its own input. If the black process runs
solo, it can decide 1 or 2.

in a general sense, independent of the computing environment, by expressing
the relationship between the various scales of computation. Indeed, monotony
relates the specification for subsets of processes to the specification for larger
sets. Thus, it relates the individual behavior of each process with the behavior
of small group of processes, which in turn is related to the behavior of larger
and larger groups, until one reaches the scale of the whole system.

A weaker form of locality results from putting the burden on the protocol to
find a right output in Δ(π(s)) for π(s), that can be extended to an output Δ(s)
for s. In other words, instead of imposing a task to satisfy Eq. 1, it might be
sufficient to assume the intersection-closeness condition

Δ(π(s)) ∩ π(Δ(s)) �= ∅. (2)

This weaker condition is an obvious requirement for a task to be wait-free solv-
able whereas monotony is not a necessary condition for wait-free solvability. How-
ever, putting this burden on the shoulders of the protocol may be too much. In-
deed, for s �= s′ with π(s) = π(s′), it may be the case that π(Δ(s))∩π(Δ(s′)) = ∅
even if Eq. 2 is satisfied for all s, s′, and π. See Fig. 1 for an example.

In this case, the processes in π(s) running alone have no clue whether they
have to output a solution extendable to an output for s or for s′. This is why tasks
are usually assumed to satisfy the monotony condition instead of the weaker
intersection-closeness condition.

Unfortunately, neither the intersection-closeness condition nor even the mono-
tony condition provide sufficient constraints for solvability, or for efficient com-
putation. For instance, in the network setting, monotony is not a guaranty for
a task to be solved by having every node merely inspecting nodes at a constant
distance (cf. the Ω(log∗ n) lower bound for (d + 1)-coloring [30]). Neither it is,
in the wait-free setting, a guaranty for a task to be solvable (cf. the FLP impos-
sibility result for consensus [14]). This paper investigates two other notions of
locality, namely the projection-closeness condition, obtained by simply reversing
the monotony condition,

π(Δ(s)) ⊆ Δ(π(s)) (3)
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and the one resulting from combining monotony with projection-closeness. These
latter two notions are shown to be rich concepts, enabling to capture important
features of the computational nature of tasks, at least as far as wait-free com-
puting is concerned.

Our Results. The objective of this paper is to investigate the ability of a
shared memory system to solve tasks satisfying various forms of locality. Our
investigation is performed in the wait-free setting where computation tolerates
the halting failures or delays by n−1 out of n processes. In this context, it is con-
venient to view I and O as complexes (including configurations for any number
of processes, between 1 and n), with the specification Δ mapping every simplex
s ∈ I to a sub-complex Δ(s) of O. See Figure 2 for a graphical representation
of our results.

First, we show that the projection-closeness condition of Eq. 3 is closely related
to the ability of checking a task. Informally, for checking a task T = (I,O, Δ),
every process i ∈ [n] is given a pair (si, ti), and the participating processes must
check that the simplex t with decision values ti, i = 1, . . . , n, is a valid output
simplex according to Δ, for an input simplex s with values si. Deciding the latter
is performed according to the (informal) specifications:

• if t ∈ Δ(s) then all participating processes must output “yes”,
• otherwise at least one participating process must output “no”.

Hence checking the task T corresponds to solving a checking task, where the input
entry of the ith process is a pair (i, (si, ti)), and where each process must return
either “yes” or “no”. We prove that a task is wait-free checkable if and only if
it is projection-closed (cf. Theorem 1). It is remarkable that the locality notion
expressed by Eq. 3 captures precisely the ability to wait-free verify the results
of a computation, even if these results have been obtained using more resources
(e.g., oracles) or stronger models (e.g., t-resilience). Moreover, we show that the
set of projection-closed tasks is large by proving that determining whether a
projection-closed task is wait-free solvable remains undecidable (cf. Theorem 2).
This latter result is obtained by proving that every task is equivalent to a wait-
free checkable task (via implementations that preserve step-complexity).

Next, we turn our attention to tasks that are both projection-closed and
monotone. As for monotony alone, the two conditions combined do not seem
to provide sufficient structural constraints for relating them to wait-free com-
putability. Nevertheless, we were able to identify a subclass of these tasks, that
offers a stronger notion of locality expressible in the framework of algebraic
topology. A task T = (I,O, Δ) is said to be locality-preserving if and only if O
is a covering complex of I, that is there exists a map p : O → I which agrees
with Δ, i.e.,

∃p : O → I | ∀t ∈ O, t ∈ Δ(p(t)). (4)

We show that, indeed, locality-preserving form a subclass of the monotone
and projection-closed tasks (cf. Theorem 3). The notion of locality captured
by locality-preserving tasks is made explicit topologically. Informally, locality-
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Monotony:
Δ(π(s)) ⊆ π(Δ(s))

Projection-closed:
π(Δ(s)) ⊆ Δ(π(s))

Wait-free checkable

Wait-free solvable

Intersection-closed:
Δ(π(s)) ⋂ π(Δ(s)) ≠ ∅

All tasks

Locality-p
reserving

Fig. 2. The universe of tasks

preserving tasks are tasks where, from the perspective of a subset π(s) of pro-
cesses with given input values, the possible inputs to the other processes look
identically in structure to their possible outputs (see Figure 3 for an example).

We show that locality-preserving tasks form a wide and rich class of tasks.
We classify locality-preserving tasks in terms of their computational power. By
identifying a correspondence between locality-preserving tasks and covering com-
plexes (the classic algebraic topology notion used to study locality), we prove
that locality-preserving task T implements locality-preserving task T ′ if and only
if H ⊆ H ′, where H,H ′ are groups associated to each of the tasks. This result
demonstrates the existence of an infinite set of partial orders of locality preserv-
ing tasks. Each of these partial orders contains a hierarchy of locality-preserving
tasks between the trivial identity task, and a universal task for this partial order.
Some of these partial orders are finite, while others are infinite. As in [25], we
use topology techniques both to prove impossibility results, and to show when
one task can implement another.

Due to space limitation, proofs are presented in a companion technical re-
port [17].

Related Work. The locality notions considered in this paper, are local in
the sense that they can be checked individually for pairs (s, t), s ∈ I, t ∈ O.
The main obstacles to wait-free solvability studied in the past, most notably
for set agreement and renaming [2], are of a different nature. Indeed, any wait-
free protocol is actually a mapping from a subdivision of the input complex to
the output complex [26]. Hence, topological properties must be preserved by a
wait-free protocol. Checking these properties is hard, and, in fact, determining
whether a task is wait-free solvable is not decidable [20,24].

A different notion of locality has received lots of attention in the framework
of network computing. Specifically, the so-called LOCAL and CONGEST mod-
els [35] have been designed to study communication locality issues. One promi-
nent result in this framework is the Ω(log∗ n) lower bound [30] for the number
of rounds required to 3-color the nodes of the n-node ring network. In several
papers in this framework, the main focus is on whether randomization helps [34],
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Fig. 3. Two-cover task. The task is for two processes, which start with binary inputs.
On the left side of the figure, the specification of the task says that if both start with
the same value, they must decide the same value: if they start with 0, decide either 0 or
2; if they start with 1, decide 1 or 3. If they start with different values, the valid outputs
are defined in the figure, via edge labels b or d. The relation Δ defines also the possible
outputs when only one process runs solo: e.g., when the white process starts with 0, it
can decide 0 or 2, while if it starts with 1, it can decide 1 or 3. Notice that O, a cycle of
length 8, locally looks like I, a cycle of length 4, in the sense that the 1-neighborhood
of each vertex v in I is identical to the 1-neighborhood of a corresponding vertex in
Δ(v). In the right side of the figure it is shown how O covers I, by wrapping around
it twice, where p identifies edges with the same label.

on the impact of non-determinism [16], and on the power of oracles providing
nodes with information about their environment [15]. The impact on the de-
sign of efficient protocols of the absence of a priori knowledge on the global
environment has been recently addressed in [28].

Starting with the pioneering work by Angluin [1], covering spaces have been
used to derive impossibility results in anonymous networks, but only in the
1-dimensional case of graph coverings. Sufficient and sometimes necessary con-
ditions on the communication graph and on the initial common knowledge for
solving fundamental distributed problems such as leader election or termination
detection are given in, e.g., [1,9,33], under several models of local computation.
See [9] for an introduction to local computation in anonymous networks.

One can roughly classify the methods for ensuring the correctness of a program
as either verifying, testing, or checking. Unlike verifying and testing, checking is
performed at run time. A sequential checker [7] consists of a battery of tests
(performed at run time) which compare the output of the program with either
a predetermined value, or with a function of the outputs of the same program
corresponding to different inputs. A similar idea is spot-checking [13] where the
goal it to know if the output is reasonably correct, i.e., close in some problem-
specific distance to the correct output. Related areas may be learning, where
samples of outputs are used to infer the task it is being solved, as in [19] and
property testing [21]. Blum et al. [8] introduced the notion of program testers
and correctors, see also [22,31].
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In the parallel and/or distributed computing context, the results are not so
advanced as in the sequential setting. Parallel program checking has been studied
in the PRAM model [37]. In the synchronous model, distributed self-testing and
correcting protocols that tolerate crash failures are presented for the byzantine
generals task in [18]. Self-testing/correcting is reminiscent of the notion of check-
ing as a means of making a distributed algorithm self-stabilizing, as explored
in [4,5] in the synchronous setting. In the framework of network computing, dis-
tributed verification has been addressed only recently (see, e.g., [11]), though
previous research on proof labeling schemes [27] already gave some insights on
the ability of checking global predicates locally (see also [23]).

2 Model

We consider a standard read/write shared memory wait-free model. The system
consists of n asynchronous processes, denoted by the integers in [n] = {1, . . . , n}.
The processes can fail by crashing (a crashed process never recovers). Any num-
ber of processes can crash, at any time. We recall here the main features of this
model, and refer to [3,26,32] for a more detailed and accurate description.

The processes that take an infinite number of steps in a run are correct, the
others crashed. If a process crashes initially, it does not take any step, and we say
it does not participate in the run. A process participates in a run if it takes at
least one step. At the core of the model is the following assumption. We enforce
protocols to be wait-free, that is to avoid all instructions that would cause a
process to wait for the result of the action of another process. In particular,
in a wait-free protocol, a process i cannot check whether another process has
crashed, or is just very slow.

When solving a task, in each run of a protocol, processes start with pri-
vate input values. A process i ∈ [n] is not aware of the inputs of other pro-
cesses. The initial states of the processes differ only in their input values. Each
process i has to eventually decide irrevocably on a value. Consider a run r
where only a subset of k processes participate, 1 ≤ k ≤ n. These processes
have distinct identities {id1, . . . , idk}, where for every i ∈ [k], idi ∈ [n]. A set
s = {(id1, x1), . . . , (idk, xk)}, is used to denote the input values or decision values
in the run, where xi denotes the value of the process with identity idi (either
an input value, or a decision value). We denote by ID(s) the set of identities of
the processes in s, i.e., ID(s) = {id1, . . . , idk}. The input values of processes not
in ID(s) are irrelevant, as they do not participate in the run, so they are not
included in s.

Let s′ be a subset of s = {(1, x1), . . . , (n, xn)}, ID(s) = [n]. We say that
π(s) = s′, for a projection π, that eliminates processes in ID(s)\ ID(s′). Because
any number of processes can crash, all such subsets s′ of s are of interest, to
consider runs where only processes in ID(s′) may participate. That is, the set of
possible input sets forms a complex because its sets are closed under containment.
Similarly, the set of possible output sets also form a complex. Following the
topology notation, the sets of a complex are called simplexes.
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More formally, a complex K is a set of vertices V (K), and a family of finite,
nonempty subsets of V (K), called simplexes, satisfying: (i) if v ∈ V (K) then
{v} is a simplex, and (ii) if s is a simplex, so is every nonempty subset of s. The
dimension of a simplex s is |s| − 1, the dimension of K is the largest dimension
of its simplexes, and K is pure of dimension k if every simplex belongs to a
k-dimensional simplex. A 1-dimensional complex K is thus simply a graph1. In
distributed computing, one refers to colored simplexes (and complexes), since
each vertex v of a simplex is labeled with a distinct process identity i ∈ [n].

We denote by I the input complex, and by O the output complex. An input-
output pair is a pair (s, t) made of a simplex s ∈ I and a simplex t ∈ O,
with ID(t) ⊆ ID(s). The strict inclusion ID(t) ⊂ ID(s) takes into account the
case when the processes in ID(s) \ ID(t) fail, and do not decide, which, in the
wait-free model, should not prevent the participating non-failing processes to
decide. A task T is described by a triple (I,O, Δ) where I and O are pure
(n− 1)-dimensional complexes, and Δ is a map from I to the set of non-empty
sub-complexes of O, satisfying (s, t) is an input-output pair for every t ∈ Δ(s).
Intuitively, Δ specifies, for every simplex s ∈ I, the valid outputs for the pro-
cesses in ID(s) that may participate in the computation. We assume that Δ is
(sequentially) computable.

A protocol A solves task T = (I,O, Δ) if, for every simplex s ∈ I, and every
run r of A on s, every correct process decides, and the simplex t corresponding
to these decisions belongs to Δ(s).

3 Projection-Closeness and Wait-Free Checkability

This section addresses the first of the two notions of locality tackled in this
paper. The locality considered here is obtained by simply reversing the direction
of the inclusion in the monotony condition of Eq. 1.

Definition 1. A task T = (I,O, Δ) is projection-closed if and only if for every
s ∈ I and every projection π, we have π(Δ(s)) ⊆ Δ(π(s)).

Projection-closeness is as poorly related to wait-free solvability as is the
intersection-closeness notion of Eq. 2. Consider for example, approximate agree-
ment [12] for two processes, illustrated in Fig. 4a. While it is wait-free solvable,
it is not projection-closed. Intuitively, because the validity requirement in di-
mension 0 “if a process runs solo, has to decide its own value” conflicts with
the agreement requirement in dimension 1 “when processes start with different
values, they can decide any values, as long as they are at most 1/2 apart from
each other.” More precisely, take the input simplex s = {(1, 0), (2, 1)} (top edge

1 It is the graph whose nodes are the vertices of K, and whose edges and nodes are
the simplexes of K. More generally, the concept of complexes is, in some sense, a
natural extension of the concept of graphs, to higher dimensions. They can also be
viewed as forming a subclass of hypergraphs, in which every non-empty subset of an
hyperedge must be an hyperedge.
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labeled a in the figure), and apply the projection π that eliminates process 2, to
obtain π(Δ(s)) which consists of all vertices for process 1 in the output complex,
while Δ(π(s)) consists of only vertex t = {(1, 0)}. For the same reason, consensus
is not projection-closed; in contrast, consensus is not wait-free solvable.
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Fig. 4. Two tasks for 2 processes

Instead, projection-closeness is well related to checking the result of a com-
putation supposedly solving a task T = (I,O, Δ). Intuitively, processes get as
inputs the vertices of s, t, s ∈ I, t ∈ O, and want to decide if indeed the compu-
tation of t for s was correct, namely, if t ∈ Δ(s). That is, each process i gets as
input a pair (xi, yi), such that the xi values define s, while the yi values define
t. Then, checking T corresponds to solving a checking task Tc:

• If t ∈ Δ(s) then all processes that decide must output 1, interpreted as “yes”.
• If t /∈ Δ(s) then whenever all participating processes decide, one of them

must output 0, interpreted as “no”. When not all participating processes
decide, then some may decide 1 and others 0.

Formally, Tc = (I×O, Sn, Δc). The input complex I×O consists of all simplexes
s× t, s ∈ I, t ∈ O, ID(s) = ID(t), where, for every i ∈ [n],

(i, (xi, yi)) ∈ s× t ⇐⇒
{

(i, xi) ∈ s
(i, yi) ∈ t

The output complex Sn consists of all simplexes where processes decide values
in {0, 1}. Now, to define Δc, let SJ be the sub-complex of Sn induced by the
processes in J , for J ⊆ [n]. In other words, SJ = π(Sn) where π is the projection
from [n] to J . Also, for J ⊆ [n], let Y [J ] = {(i, 1), i ∈ J} be the simplex
corresponding to all processes in J outputting “yes”, and let Y [J ] be the complex
induced by Y [J ]. We have now all the ingredients to define Δc. For any s× t ∈
I ×O with ID(s) = ID(t) = J ,

Δc

(
s× t

)
=
{
Y [J ] if t ∈ Δ(s)
SJ \ Y [J ] otherwise.

We now define wait-free checkability as follows:

Definition 2. A task T is wait-free checkable if and only if its corresponding
task Tc is wait-free solvable.
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The following theorem states the exact correspondence between projection-
closeness and wait-free checkability.

Theorem 1. A task T is wait-free checkable if and only if it is projection-closed.

We now prove that the set of wait-free checkable tasks, or, equivalently, the set
of projection-closed tasks, forms a large class of tasks.

Theorem 2. Determining whether a wait-free checkable task is wait-free solv-
able is undecidable.

To establish the theorem, we show that every task is essentially equivalent to
a wait-free checkable task, under a very strong notion of equivalence. Following
[25], a task T ′ implements task T (both defined on n processes) if one can
construct a wait-free protocol for T by calling one instance of a black box for T ′

followed by any number of operations on read-write registers2. We write T ≤ T ′

to emphasize that T ′ is at least as powerful as T . In Section 4 we use this
implementation, while for the theorem here, it suffices to use its particular case
where no operations on read-write registers are used; namely, if there exists a
wait-free protocol A that solves T , in which processes can call one instance of a
black box that solves T ′, and do not execute any read-write operations:

Definition 3. We say T ≤ T ′ if task T ′ implements task T , and T � T ′ if there
is an implementation without executing any read-write operations.

Based on Definition 3, one can define the following equivalence relation ∼ be-
tween tasks

T ∼ T ′ ⇐⇒ (T � T ′ and T ′ � T ) .

This equivalence notion and the fact that determining whether a task is wait-free
solvable is undecidable [20,24] are the key ingredients in the proof of Theorem 2.
Consider as an example consensus, which as mentioned above, is not wait-free
checkable. However, consensus is equivalent to the checkable consensus task,
depicted in Figure 4b for two processes. This task is obtained from consensus,
by adding new input and output values 2, 3, 4, 5, and then allowing for processes
running solo on inputs 0, 1, to decide any value (but when a process starts with
2, 3, 4 or 5 it decides its own input always).

4 Locality-Preserving Tasks

In this section, we turn our attention to locality-preserving tasks, which are
both monotone and projection-closed (see Fig. 2) and preserve locality in a
strong, topological sense. Before defining the class, we need to recall some simple
topology facts. Missing proof can be found in [17].

2 A more general notion of implementation allows read-write operations before calling
the black box, and calling the black box more than once.
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Preliminaries. For two complexes K and K ′, a map f : K → K ′ is a function
f : V (K) → V (K ′) such that whenever s = {v0, . . . , vq} is a simplex in K,
then f(s) = {f(v0), . . . , f(vq)} is a simplex in K ′. The map is color-preserving
if it preserves ids, that is, for each v ∈ V (K), ID(f(v)) = id(v). Hence, if the
map is color preserving, and f(s) = s′, then dim(s) = dim(s′). An edge e in a
complex K is an ordered pair of (not necessarily) distinct vertices e = (u, v),
where {u, v} is a simplex in K. The origin and end of e = (u, v) are respectively
denoted orig(e) = u and end(e) = v. A path α in K is a finite sequence of
edges α = e1 • e2 • · · · • ek, where end(ei) = orig(ei+1). The path α is closed
at u if orig(α) = orig(e1) = u = end(ek) = end(α). A complex K is connected
if for every pair of vertices u, v in K, there is a path from u to v. A covering
complex [36] is the discrete analogue of a covering space. The notion of covering
complex formalizes the idea of one complex looking identically to another locally.
Its definition is recalled below (see [36]):

Definition 4. A pair (K̃, p) is a covering complex of a complex K if and only
if the following three properties are satisfied:

1. p : K̃ → K is a map;
2. K̃ is connected;
3. for every simplex s in K, p−1(s) is a union of pairwise disjoint simplexes,
p−1(s) = ∪s̃i, with p|s̃i : s̃i → s a one-one correspondence for each i.

The simplexes s̃i are called the sheets over s. We often refer to p as a covering
map. Next observations easily follow from the definition of covering complexes:
K = im(p), and hence, K is connected. If s is a q-simplex in K, each sheet s̃i

over s is also a q-simplex. For each vertex v in K, the complex star(v) consists of
all simplexes that contain v. One can check that K and K̃ are locally isomorphic
in the sense that if ṽ is such that p(ṽ) = v, then star(v) is isomorphic to star(ṽ).

Let T = (I,O, Δ) be a task. In the following, we assume that the output
complex is connected (otherwise, our analysis can be done on each connected
component), and that O does not contain irrelevant simplexes. That is, for each
t ∈ O, there exists s ∈ I such that t ∈ Δ(s). Let p : O → I a covering map. We
say that p agrees with Δ if p(s̃) = s ⇐⇒ ID(s) = ID(s̃) ∧ s̃ ∈ Δ(s), for every
s ∈ I, s̃ ∈ O. In particular, p is color-preserving.

Definition 5. A task T = (I,O, Δ) is locality-preserving if and only if there
exists a covering complex (O, p) of I, with a map p that agrees with Δ.

Example of locality-preserving tasks is depicted in Figure 3, where the color
of a vertex (black or white) represents its identity. Instead of adding input and
output values to vertexes, labels are added to edges, which is sufficient to specify
Δ, as the tasks are both monotone and projection-closed. For example, in Figure
3, the edge labeled a on the left side represents an input simplex. This input
simplex is mapped by Δ to a set of two output simplexes, namely the two edges
labeled a on the right side of the picture. In these tasks, the outputs look like
the inputs, locally. For example, in Figure 3, the top left corner formed by the
white vertex (with the two edges labeled a and b) is mapped by Δ to the two
opposite corners that look the same locally.
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Characterization. Recall that task T = (I,O, Δ) is said to be monotone when
Δ(π(s)) ⊆ π(Δ(s)) for every s ∈ I, and any projection π. In other words, for
any t′ ∈ Δ(π(s)), there exists t ∈ Δ(s) such that π(t) = t′. We say that T is
strongly monotone if, for every s ∈ I, any projection π, and any t′ ∈ Δ(π(s)),
there exists a unique t ∈ Δ(s) such that π(t) = t′. So, intuitively, a task that is
strongly monotone permits to extend any partial output in a unique manner. In
order to characterize locality-preserving, we say that a task T is one-to-one if
and only if, for every pair (s, s′), s �= s′ of 0-dimensional simplexes in I, we have
Δ(s) ∩Δ(s′) = ∅.
Theorem 3. A task T is locality-preserving if and only if T is projection-closed,
one-to-one, and strongly monotone.

As every projection-closed task is wait-free checkable (Theorem 1), we get the
following.

Corollary 1. Every locality-preserving task is wait-free checkable.

As demonstrated by the next corollary, few locality-preserving tasks are wait-free
solvable. For an input complex I, the identity task TId,I = (I, I, Δ) over I simply
requires that each process decides its input in every execution: ∀s ∈ I, Δ(s) = {s}.
More generally, we say that a task is an identity task by having each process output
a function of its input, without any shared memory operations. Identity tasks with
input I are the tasks equivalent to TId,I for the ∼ relation.

Corollary 2. The identity tasks are the only locality-preserving task that are
wait-free solvable.

Hierarchies of Locality-Preserving Tasks. In this section we classify the
locality-preserving tasks in term of their relative computing power, that is in
their capacity of mutual implementation (Definition 3). For the remaining of
this section, we fix an arbitrary input complex I and study the relative power
of locality-preserving tasks with input I. We establish that each such locality-
preserving task induces subgroups of a group defined from the closed paths in I.
Moreover, the relative power of locality-preserving tasks with input I directly
depends on the subgroups they induce.

Edgepath groups and locality-preserving tasks. Our exposition follows Rotman
[36]. Let K a complex and v∗ ∈ V (K). The edgepath group of K with basepoint
v∗ is G(K, v∗) = {[α] : α is a closed path at v∗}. [α] consists of the equivalence
class of closed paths α′ that can be deformed to α along 2-simplexes. More
precisely, the paths α′ and α are equivalent if one can be obtained from the other
by applying the following rule a finite number of times: replace (u, v) • (v, w) by
(v, w) or (v, w) by (u, v)• (v, w) whenever {u, v, w} is a simplex of K. The group
operation is path concatenation, which is compatible with path equivalence.
Given α = e1 • . . . • en, the inverse of [α] is [α−1] where α−1 = e−1

n • . . . • e−1
1

and each e−1
i is the edge obtained by reversing the end and origin of ei. The
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identity element is [(v∗, v∗)]. If K is connected, changing the basepoint results
in an isomorphic group ([36], Theorem 1.4).

Covering complexes of K induce subgroups of the edgepath group of K. Con-
versely, every subgroup of the edgepath group is induced by a covering complex.
Formally, the notation of a covering complex is extended to pointed complexes.
p : (K̃, ṽ∗) → (K, v∗) is a covering complex when (K̃, p) is a covering complex
of K, and p(ṽ∗) = v∗. Each covering complex p : (K̃, ṽ∗) → (K, v∗) determines
a subgroup of G(K, v∗), namely, p#(G(K̃, ṽ∗)), where p# is the homomorphism
induced by p, which is one-to-one ([36], Theorem 2.3). Let H = p#(G(K̃, ṽ∗)).
Keeping p unchanged but choosing a different basepoint ṽ′∗ ∈ K̃ such that
p(ṽ′∗) = p(ṽ∗) = v∗ may induce a different subgroup H ′ = p#(G(K̃, ṽ′∗)). H and
H ′ are however conjugate subgroups of G(K, v∗). Conversely, if H ′ is conjugate
to H then H ′ = p#(G(K̃, ũ)) for some ũ ∈ V (K̃) ([36], Theorem 2.4). Finally,
let p : (K̃, ṽ∗) → (K, v∗) and q : (J̃ , w̃∗) → (K, v∗) two covering complexes of
(K, v∗) and H(= p#(G(K̃, ṽ∗))), H ′(= q#(G(J̃ , w̃∗))) the induced subgroups. If
H ′ ⊆ H , there exists a unique map r : (J̃ , w̃∗) → (K̃, ṽ∗) such that pr = q.
Moreover, r : (J̃ , w̃∗) → (K̃, ṽ∗) is a covering complex ([36], Theorem 3.3). In
particular, when H = H ′, r is an isomorphism.

On the other hand, for every subgroup H of G(K, v∗) there exists a connected
complex KH and a map p such that p : (KH , ṽ∗)→ (K, v∗) is a covering complex
for some ṽ∗ ∈ V (KH) and p#(KH , ṽ∗) = H ([36], Theorem 2.8). In particular,
the trivial group {[(v∗, v∗)]} that consists in the identity element is a subgroup
of any subgroup, and the corresponding covering complex p : (Ku, ṽ∗)→ (K, v∗)
is called the universal covering of K, because it covers any other covering of K.
The universal covering complex is simply connected since p# is one-to-one and
p#(G(Ku, ṽ∗)) = {1}.

By definition, each locality-preserving task T = (I,O, Δ) determines a cov-
ering complex p : O → I and conversely, a covering complex p : O → I de-
fines a locality-preserving task with input I. It thus follows from the discussion
above that every locality-preserving task with input I induces subgroups of the
edgepath group of I, and reciprocally each subgroup induces a locality-preserving
task. This is captured by the next lemma.

Lemma 1. Let I be a connected input complex and v∗ ∈ V (I). (1) Every sub-
group H ⊆ G(I, v∗) induces a locality-preserving task T = (I,O, Δ) whose asso-
ciated covering map satisfies p#(G(O, ṽ∗)) = H for some ṽ∗ ∈ V (O). (2) Every
locality-preserving task T = (I,O, Δ) induces a conjugacy class of subgroups
of G(I, v∗); each subgroup H in the class satisfies H = p#(G(O, ṽ∗)) for some
ṽ∗ ∈ V (O), where p is the covering map associated with T .

Then, Theorem 3.3 in [36] discussed earlier implies the following result.

Lemma 2. Let I be an input complex and v∗ ∈ V (I). Let T = (I,O, Δ) and
T ′ = (I,O′, Δ′) two locality-preserving tasks with input I and p : O → I,
p′ : O′ → I their respective covering map. If p′#G(O′, ṽ′∗) ⊆ p#(G(O, ṽ∗)) for
some vertexes ṽ′∗ ∈ V (O′), ṽ∗ ∈ V (O), there exists a covering complex p′′ :
(O′, ṽ′∗) → (O, v∗) satisfying p′ = pp′′.
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Group-based hierarchies of locality-preserving tasks. We consider locality-pre-
serving tasks that can be defined over a given input complex I. The following
result explicits the existence of a hierarchy of locality-preserving tasks, using
the implementation relation “≤” of Definition 3. By Lemma 1(2), every locality-
preserving task induces a conjugacy class.

Theorem 4. Let I be a connected complex. Let TK = (I,K, ΔK) and TL =
(I,L, ΔL) be two locality-preserving tasks with input complex I. Let v∗ ∈ V (I)
and CK and CL the conjugacy classes of subgroups of G(I, v∗) induced by TK and
TL respectively. TL ≤ TK if and only if ∃HK ∈ CK, HL ∈ CL such that HL ⊇ HK.

We say that a task is universal for some set of tasks if it implements any task
in that set (in the sense of “≤” in Definition 3). Theorem 4 implies that the set
of locality-preserving tasks with input complex I has a universal task, which is
the task defined by the universal covering of I. More generally, it shows that
every locality-preserving task T = (I,O, Δ) lies in between the trivial identity
task TId,I and the task defined by the universal covering complex of I.
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Abstract. In the wake of the decisive impossibility result of Fischer,
Lynch, and Paterson for deterministic consensus protocols in the ayn-
chronous model with just one failure, Ben-Or and Bracha demonstrated
that the problem could be solved with randomness, even for Byzantine
failures. Both protocols are natural and intuitive to verify, and Bracha’s
achieves optimal resilience. However, the expected running time of these
protocols is exponential in general. Recently, Kapron, Kempe, King, Saia,
and Sanwalani presented the first efficient Byzantine agreement algo-
rithm in the asynchronous, full information model, running in polylog-
arithmic time. Their algorithm is Monte Carlo and drastically departs
from the simple structure of Ben-Or and Bracha’s Las Vegas algorithms.

In this paper, we begin an investigation of the question: to what extent
is this departure necessary? Might there be a much simpler and intuitive
Las Vegas protocol that runs in expected polynomial time? We will show
that the exponential running time of Ben-Or and Bracha’s algorithms
is no mere accident of their specific details, but rather an unavoidable
consequence of their general symmetry and round structure. We view
our result as a step toward identifying the level of complexity required
for a polynomial-time algorithm in this setting, and also as a guide in
the search for new efficient algorithms.

1 Introduction

Byzantine agreement is a fundamental problem in distributed computing, first
posed by Pease, Shostak, and Lamport [18]. It requires n processors to agree
on a bit value despite the presence of failures. We assume that at the outset of
the protocol, an adversary has corrupted some t of the n processors and may
cause these processors to deviate arbitrarily from the prescribed protocol in a
coordinated malicious effort to prevent agreement. Each processor is given a bit
as input, and all good (i.e. uncorrupted) processors must reach agreement on a
bit which is equal to at least one of their input bits. To fully define the problem,
we must specify the model for communication between processors, the computa-
tional power of the adversary, and also the information available to the adversary
as the protocol executes. We will work in the message passing model, where each
pair of processors may communicate by sending messages along channels. It is
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assumed that the channels are reliable, but asynchronous. This means that a
message which is sent is eventually received (unaltered), but arbitrarily long de-
lays are allowed. We assume that the sender of a message is always known to
the receiver, so the adversary cannot “impersonate” uncorrupted processors.

We will be very conservative in placing limitations on the adversary. We con-
sider the full information model, which allows a computationally unbounded
adversary who has access to the entire content of all messages as soon as they
are sent. We allow the adversary to control message scheduling, meaning that
message delays and the order in which messages are received may be maliciously
chosen. One may consider a non-adaptive adversary, who must fix the t faulty
processors at the beginning of the protocol, or an adaptive adversary, who may
choose the t faulty processors as the protocol executes. Since we are proving an
impossibility result, we consider non-adaptive adversaries (this makes our result
stronger). We will consider values of t which are = cn for some positive constant
c < 1

3 . (The problem is impossible to solve if t ≥ n
3 .) We define the running

time of an execution in this model to be the maximum length of any chain of
messages (ending once all good processors have decided).

In the asynchronous setting, the seminal work of Fischer, Lynch, and Paterson
[10] proved that no deterministic algorithm can solve Byzantine agreement, even
for the seemingly benign failure of a single unannounced processor death. More
specifically, they showed that any deterministic algorithm may fail to terminate.
In light of this, it is natural to consider randomized algorithms with a relaxed
termination requirement, such as terminating with probability one. In quick
succession following the result of [10], Ben-Or [3] and Bracha [5] each provided
randomized algorithms for asynchronous Byzantine agreement terminating with
probability one and tolerating up to t < n

5 and t < n
3 faulty processors respec-

tively. These algorithms feature a relatively simple and intuitive structure, but
suffer greatly from inefficiency, as both terminate in expected exponential time.
However, when the value of t is very small, namely O(

√
n), the expected running

time is constant.
This state of affairs persisted for a surprising number of years, until the re-

cent work of Kapron, Kempe, King, Saia, and Sanwalani [12] demonstrated that
polynomial-time (in fact, polylogarithmic time) solutions are possible. They pre-
sented a polylogarithmic-time algorithm tolerating up to (1

3 − ε)n faulty proces-
sors (for any positive constant ε) which is Monte Carlo and succeeds with proba-
bility 1− o(1) [13]. The protocol is quite technically intricate and has a complex
structure. It subtly combines and adapts several core ingredients: Feige’s lightest
bin protocol [9], Bracha’s exponential time Byzantine agreement protocol (run
by small subsets of processors) [5], the layered network structure introduced in
[16,17], and averaging samplers.

It seems quite hard to adapt the techniques of Kapron et al. to obtain a Las
Vegas algorithm and/or an algorithm against an adaptive adversary, since their
protocol relies heavily on universe reduction to ultimately reduce to a very small
set of processors. Once we reduce to considering a small subset of the processors,
an adaptive adversary could choose to corrupt the entire subset. Even against
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a non-adaptive adversary, there is always some chance that the small subset we
ultimately choose will contain a high percentage of faulty processors. This is
essentially why the Kapron et al. protocol incurs a (small) nonzero probability
of failure.

Compared to the protocols of Ben-Or [3] and Bracha [5], the Kapron et al.
protocol [12,13] appears to be a distant point in what may be a large landscape
of possible algorithms. The full range of behaviors and tradeoffs offered by this
space remains to be explored. Many interesting questions persist: is there a Las
Vegas algorithm that terminates in expected polynomial time? Is there an ex-
pected polynomial time algorithm against an adaptive adversary? Is there a much
simpler algorithm that performs comparably to the Kapron et al. algorithm, or
at least runs in polynomial time with high probability?

In this work, we investigate why simple Las Vegas algorithms in the spirit of
[3,5] cannot deliver expected polynomial running time for linear values of t (i.e.
t = cn for some positive constant c). More precisely, we define a natural class
of protocols which we call fully symmetric round protocols. This class encom-
passes Ben-Or [3] and Bracha’s protocols [5], but is considerably more general.
Roughly speaking, a protocol belongs to this class if all processors follow the
same program proceeding in broadcast rounds where the behavior is invariant
under permutations of the identities of the processors attached to the validated
messages in each round. In other words, a processor computes its message to
broadcast in the next round as a randomized function of the set of messages
it has validated, without regard to their senders. We additionally constrain the
protocols in the following way. Whenever a processor chooses its message ran-
domly, it must choose from a constant number of possibilities. This means that
at each step of the protocol, a processor will make a random choice between at
most R alternatives, where R is a fixed constant. Note that the set of alternatives
itself can vary; it is only the maximum number of choices that is fixed. We give
a formal description of fully symmetric round protocols in Section 3. We will
prove that for any algorithm in this class which solves asynchronous Byzantine
agreement, there exists some input values and some adversarial strategy which
causes the expected running time to be exponential in n, when t = cn for any
fixed positive constant c.

Our general proof strategy is to consider a chain of E-round executions (for
some suitably large value E) where the behavior of some good processors is the
same between any two adjacent executions in the chain, and the two ends of the
chain must have different decision values. This implies that some execution in
the chain must not have terminated within E rounds. This is reminiscent of a
strategy often used to prove a lower bound of t rounds for deterministic protocols
in the synchronous setting (see [8] for example). Employing this sort of strategy
for randomized algorithms presents an additional challenge, since any particular
execution may be very unlikely. To address this, we consider classes of closely
related executions where an adversary is able to exert enough control over a real
execution to force it to stay within a chosen class with significant probability.
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We view this work not as a primarily negative result, but rather as a guide in
the search for new efficient Byzantine agreement algorithms in the asynchronous,
full information setting. The goal of this paper is to illuminate some of the ob-
stacles that must be surmounted in order to find an efficient Las Vegas protocol
and to spur new thinking about protocols which lie outside the confines of our
impossibility result without requiring the full complexity of the Kapron et al.
protocol. We hope that the final outcome of this line of research will be inter-
esting new algorithms as well as a greater understanding of the possible features
and tradeoffs for protocols in this environment.

Other Related Work In the synchronous, full-information setting, polylogarith-
mic round randomized protocols for byzantine agreement against a non-adaptive
adversary were given by King, Saia, Sanwalani, and Vee [16,17], Ben-Or, Pavlov,
and Vaikuntanathan [4], and Goldwasser, Pavlov, and Vaikuntanathan [11]. Re-
stricting the adversary to be non-adaptive is necessary to achieve polylogarith-
mic time protocols (for values of t which are linear in n), since Bar-Joseph and
Ben-Or [2] have proven that any randomized, synchronous protocol against a
fail-stop, full information adversary who can adaptively fail t processors must
require at least t√

n log n
rounds in expectation. Another lower bound for random-

ized Byzantine agreement protocols was proven by Attiya and Censor [1], who
showed that for each integer k, the probability that a randomized Byzantine
agreement algorithm tolerating t faults with n processors does not terminate in
k(n− t) steps is at least 1/ck for some constant c. This bound holds even against
a considerably weaker adversary than we are considering.

Recent work of King and Saia [14,15] has provided Byzantine agreement pro-
tocols in the synchronous setting with reduced communication overhead, namely
Õ(n3/2) bits in the full information model against a non-adaptive adversary [14],
and Õ(

√
n) bits against an adaptive adversary under the assumption of private

channels between all pairs of processors [15]. The use of averaging samplers in
recent protocols is foreshadowed by a synchronous protocol presented by Bracha
[6] that assigned processors to committees in a non-constructive way. Chor and
Dwork [7] provide an excellent survey that covers this as well as the other early
work we have referenced.

2 Preliminaries

We begin by formally specifying the model we use and developing a needed
mathematical definition.

The Model. We consider n processors who communicate asynchronously by send-
ing and receiving messages. We assume that the communication channel between
two processors never alters any messages, and that the sender of a message can
always be correctly determined by the receiver. To model asynchrony, we follow
the terminology of [10]. We suppose there is a message buffer, which contains
all messages which have been sent but not yet received. A configuration includes



352 A. Lewko

the internal states of all processors as well as the contents of the message buffer.
A protocol executes in steps, where a single step between two configurations
consists of a single processor p receiving a value m from the message buffer, per-
forming local computation (which may involve randomness), and sending a finite
set of messages to other processors (these are placed in the message buffer). We
note that the value returned by the message buffer is either a message previously
sent to p or ∅ (which means that no message is received). The only constraint on
the non-deterministic behavior of the message buffer is that if a single processor
p takes infinitely many steps, then every message sent to p in the message buffer
is eventually received by p.

We suppose there is an adversary who controls some t of the processors. We
assume these t processors are fixed from the beginning of the protocol. These
will be called the faulty processors, while the other processors will be called good
processors. The faulty processors may behave arbitrarily and deviate from the
protocol in malicious ways. The adversary also controls the message scheduling
(i.e. it decides which processor takes the next step and what the message buffer
returns, subject to the constraints mentioned above). Our adversary is compu-
tationally unbounded, and has access to the content of all messages as soon as
they are sent. Based on this information, the adversary can adaptively decide in
what order to deliver messages, subject only to the constraint that all messages
which are sent between good processors must eventually be delivered.

We model the use of randomness in a protocol by allowing each processor to
sample from its own source of randomness, which is independent of the sources
sampled by other processors and unpredictable to the adversary. This means that
before a good processor samples from its random source, the adversary will know
only the distribution of the possible outcomes and nothing more.

Adjusting Probability Distributions. We will constrain our fully symmetric round
protocols to always choose the next message randomly via some distribution on
at most R possibilities, where R is a fixed constant. We note that the possible
messages themselves can change according to the state of the processor as the
protocol progresses: it is only the number of choices that is constrained, not
the choices themselves. Since the probability distributions on R values can be
arbitrary, we will define closely related distributions which have more convenient
properties for our analysis.

We let D denote a distribution on a set S of size at most R. We let ρs denote
the probability that D places on s ∈ S. In our proof, we will be considering t
samples of such a distribution D. For each s ∈ S, the expected number of times
that s occurs when t independent samples of D are taken is ρst. In general,
this may not be a integer. We will prefer to work with integral expectations, so
we define an alternate distribution D̃ on the same set S. We let ρ̃s denote the
probability that D̃ places on s for each s ∈ S. The definition of D̃ is motivated
by two goals: we will ensure that ρ̃st is an positive integer for each s ∈ S, and
also that ρ̃s and ρs are sufficiently close for each s ∈ S.

Since the size of S is at most R, there must exist some s∗ ∈ S such that
ρs∗ ≥ 1

R . We fix this s∗, and we also fix a small real number ε > 0 (whose precise
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size with respect to t, R will be specified later). For all s ∈ S − {s∗}, we define
ρ̃s to be the least positive integer multiple of 1

t which is ≥ max{ρs, ε}. For s∗,
we define ρ̃s∗ = 1−∑

s∈S−{s∗} ρ̃s.

Lemma 1. When t > R2 and 0 < ε < 1
R2 − 1

t , D̃ is a probability distribution
on S, and ρ̃st is a positive integer for each s ∈ S.

We will additionally use the following consequence of the Chernoff bound. (The
proofs of both lemmas can be found in the full version of this paper.)

Lemma 2. Let D be an arbitrary distribution on a set S of at most R possible
values, and let D̃ be defined from D as above, with t = cn > (2

c )R2 and ε <
c

2R2 − 1
t (where c is a positive constant satisfying 0 < c < 1

3). Let s ∈ S, and
let ρs, ρ̃s denote the probabilities that D and D̃ assign to this value, respectively.
Let X1, . . . , X(1−c)t denote independent random variables, each equal to 1 with
probability ρs and equal to 0 with probability 1− ρs. Then:

P

⎡⎣(1−c)t∑
i=1

Xi ≥ ρ̃st

⎤⎦ ≤ e−δc3n/(3(1−c)),

where δ is defined to be the minimum of ε and 1
4R .

3 Fully Symmetric Round Protocols

We now define the class of fully symmetric round protocols. In these protocols,
communication proceeds in rounds. These are similar to the usual notion of
rounds in the synchronous setting, but in the asynchronous setting a round
may take an arbitrarily long amount of time and different processors may be
in different rounds at any given time. Our definition is motivated by the core
structure of Bracha’s protocol, so we first review this structure. Bracha’s protocol
relies on two primitives, called Broadcast and Validate. The broadcast primitive
allows a processor to send a value to all other processors and enforces that even
faulty processors must send the same value to everyone or no value to anyone.
The Validate primitive essentially checks that a value received via broadcast
could have been sent by a good processor (we elaborate more on this below).
Bracha describes the basic form of a round of his protocol as follows1:

round(k)
Broadcast(v)
wait till Validate a set S of n− t k-messages
v := N(k, S)

Here, a k-message is a message broadcast by a processor in round k, and N
is the protocol function which determines the next value to be broadcast (N
1 Bracha refers to this as a “step” [5] and uses the terminology of “round” a bit

differently.
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is randomized). In Bracha’s protocol, N considers only the set of k-messages
themselves, and does not consider which processors sent them. This is the “sym-
metric” quality which we will require from fully symmetric round protocols. This
structure and symmetry also characterize Ben-Or’s protocol [3], except that the
Broadcast and Validate primitives are replaced just by sending and receiving.
We will generalize this structure by allowing protocol functions N which consider
messages from earlier rounds as well.

Fully symmetric round protocols will invoke two primitives, again called Broad-
cast and Validate. We assume these two primitives are instantiated by determin-
istic protocols. In each asynchronous round, a processor invokes the Broadcast
primitive and broadcasts a message to all other processors (that message will be
stamped with the round number). We will describe the properties of the broadcast
primitive formally below. To differentiate from the receiving of messages (which
simply refers to the event of a message arriving at a processor via the communica-
tion network), we say a processor p accepts a messagem when p decides thatm is
the outcome of an instantiation of the broadcast primitive. When we refer to the
round number of a message, we mean the round number attached to the message
by its sender. For a fully symmetric round protocol, a round can be described as
follows:

round(k)
Broadcast(v)
wait till Validate a set S of n− t k-messages
let S′ denote the set of all validated i-messages for all i < k
v := N(k, S ∪ S′)

The message to be broadcast in the first round is computed as N(0, b), where b
is the input bit of the processor. As in the case of Bracha’s protocol, we consider
the set of messages S ∪S′ as divorced from the sender identities, so the protocol
function N does not consider which processor sent which message. Note here
that we have allowed the protocol function to consider all currently validated
messages with round numbers ≤ k (i.e. were broadcast by their senders in rounds
≤ k). In contrast, the Validate algorithm may consider the processor identities
attached to messages.

In summary, in each round a processor waits to validate n− t messages from
other processors for that round. Once this occurs, it applies the protocol function
N to the set of validated messages. This protocol function determines whether or
not the processor decides on a final bit value at this point (we assume this choice
is made deterministically), and also determines the message to be broadcast in
the next round. This choice may be made randomly. We note that choice of
whether to decide a final bit value (and what that value is) only depends on the
set of accepted messages themselves, and does not refer to the senders.

Key Constraint on Randomized Behavior. We constrain a processor’s random
choices in the following crucial way. We assume that when a processor employs
randomness to choose its message to broadcast in the next round, it chooses
from at most R possibilities, where R is a fixed, global constant independent of
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all other parameters (e.g. it does not depend on the round number or the total
number of processors)2. Note that the choices themselves may depend on the
round number, the total number of processors, etc. The messages themselves
may also be quite long - there is no constraint on their bit length.

Full Symmetry. Fully symmetric round protocols are invariant under permuta-
tions of the identities associated with validated messages in each round. At the
end of each round, a good processor may consult all previously validated mes-
sages (divorced from any information about their senders) and must choose a
new message to broadcast at the beginning of the next round. It may make this
choice randomly, so we think of the set S∪S′ of all previously validated messages
as determining a distribution on a constant number of possible messages for the
next round. We emphasize that since S ∪ S′ is just the set of the bare messages
themselves, it also contains no information about which messages were sent by
the same processors, so the distribution determined by S ∪S′ is invariant under
all permutations of the processor identities associated with messages for each
round where the permutations may differ per round.

Broadcast and Validate Primitives. We now formally define the properties we
will assume for the broadcast and validate primitives. We recall that these are
assumed to be deterministic. We first consider broadcast. We suppose that the
broadcast primitive is invoked by a processor p in order to send messagem to all
other processors. We consider the n processors as being numbered 1 through n,
which allows us to identify the set of processors with the set [n] := {1, 2, . . . , n}.
We will assume that for each permutation π of the set of [n], there exists a finite
schedule of events that can be applied (starting from the current configuration)
such that at the end of the sequence of events, all processors have accepted
the message m and that for each i from 1 to n − 1, there is a prefix of the
schedule such that at the end of the prefix, exactly the processors π(1), . . . , π(i)
have accepted the message m. Essentially, this means that every possible order
of acceptances can be achieved by some applicable schedule. (Note that within
these schedules, all processors act according to the protocol.) More formally, we
make the following definition:

Definition 1. We say a broadcast protocol allows arbitrary receiver order
if for any processor p invoking the protocol to broadcast a message m and for
any permutation π of [n], there exists a finite schedule σπ of events that can be
applied consecutively starting from the initial configuration such that there exist
prefixes σ1, . . . , σn = σπ of σπ such that in the configuration resulting from σi,
exactly the processors π(1), . . . , π(i) have accepted m, and no other processors
have.

It is clear that this property holds if one implements broadcast simply by invok-
ing the send and receive operations on the communication network. This prop-
erty also holds for Bracha’s broadcast primitive, which enforces that even faulty
2 This constraint is satisfied by Ben-Or and Bracha’s protocols, since both choose from

two values whenever they choose randomly.
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processors must send the same message to all good processors or no message
at all. This property will be useful to our adversary (who controls scheduling)
because it allows complete control over the order in which processors accept
messages. We assume that our fully symmetric round protocols treat each in-
vocation of the broadcast primitive as “separate” from the rest of the protocol
in the sense that any messages sent not belonging to an instance of the broad-
cast primitive do not affect a processor’s behavior within this instance of the
broadcast primitive.

We consider the Validate primitive as an algorithm V which takes as input the
set of all accepted messages so far along with accompanying information speci-
fying the sender of each message. The algorithm then deterministically proceeds
to mark some subset of the previously accepted messages as “validated”. We
assume that this algorithm is monotone in the following sense. We let W+ ⊆ S+

be two sets of accepted message and sender identity pairs (we use the + symbol
to differentiate these sets of messages with senders from sets of messages without
sender identity attached). Then if a message, sender pair (m, p) ∈ W+ is marked
valid by V (W+), then this same pair (m, p) will be marked valid by V (S+) as
well. In other words, marking a message as valid is a decision that cannot be
reversed after new messages are accepted.

We assume the validation algorithm is called each time a new message is
accepted to check if any new messages can now be validated. Bracha’s Validate
algorithm is designed to validate only messages that could have been sent by
good processors in each round. It operates by validating an accepted message
m for round k if and only if there are n− t validated messages for round k − 1
that could have caused a good processor to send m in round k (i.e. m is an
output of the protocol function N that occurs with nonzero probability when
these n − t validated round k − 1 messages are used as the input set). In the
context of Bracha’s algorithm, where the behavior for one round only depends on
the messages from the previous round, this essentially requires faulty processors
to “conform with the underlying protocol” [5] (up to choosing their supposedly
random values maliciously) or have their messages be ignored.

In the context of protocols that potentially consider messages from all previ-
ous rounds, one might use a stronger standard for validation. For instance, to
validate a message mk for round k sent by a processor p, one might require that
there are messages m1, . . . ,mk−1 for rounds 1 through k− 1 sent by p which are
validated and that there are sets of validated messages S1, . . . , Sk−1 such that
each Si contains messages for rounds ≤ i and exactly n− t messages for round
i, Si ⊂ Si+1 for each i < k − 1, and N(i, Si) = mi+1 with non-zero probability
for each i from 1 to k− 1. This essentially checks that there is a sequence of sets
of validated messages that p could have considered in each previous round that
would have caused a good processor to output messages m1, . . . ,mk in rounds 1
through k with non-zero probability.

Roughly, we will allow all validation algorithms that never fail to validate a
message m sent by a good processor p when all of the previous messages sent
by p and all of the messages that caused the processor p to send the message m
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have been accepted. We call such validation algorithms good message complete.
We define this formally as follows.

Definition 2. A Validate algorithm V is good message complete if the fol-
lowing condition always holds. Suppose that S+

1 ⊂ S+
2 ⊂ . . . ⊂ S+

k are sets of
validated messages (with sender identities attached) such that each S+

i contains
exactly n−t round i messages and m1, . . . ,mk occur with non-zero probability as
outcomes of N(1, S1), . . ., N(k, Sk) respectively. Then if a set W+ of messages
(with sender identities attached) includes S+

k as well as the messages m1, . . . ,mk

from the same sender, then V (W+) marks mk as validated.

This means that if during a real execution of the protocol, a good processor p
computes its first k messages m1, . . . ,mk by applying N(1, S1), N(2, S2), . . . ,
N(k, Sk) respectively and another good processor q has accepted m1, . . . ,mk

from p as well as all of the messages in Sk, then q will validate mk.
We note that the use of Validate protocols which are not good message com-

plete seems quite plausible in the Monte Carlo setting at least, since a Monte
Carlo algorithm can afford to take some small chance of not validating a message
sent by a correct processor. In this case, it would also be plausible to consider
randomized validation protocols. However, since we are considering Las Vegas
algorithms, we will restrict our attention in this paper to deterministic, good
message complete validation protocols.

We have now completed our description of fully symmetric round protocols.
In summary, they are round protocols that invoke a broadcast primitive allow-
ing arbitrary receiver order, invoke a Validate primitive that is good message
complete, are invariant under permutations of the processor identities attached
to the messages in each round, and always make random choices from a constant
number of possibilities.

4 Impossibility of Polynomial Time for Fully Symmetric
Round Protocols

We are now ready to state and prove our result.

Theorem 1. For any fully symmetric roundprotocol solving asynchronousByzan-
tine agreementwithn processors for up to t = cn faults, for c > 0 apositive constant,
there exist some values of the input bits and some adversarial strategy resulting in
expected running time that is exponential in n.

Proof. We suppose we have a fully symmetric round protocol with resilience
t = cn. We will assume that t divides n for convenience, and also that ct is an
integer. These assumptions will make our analysis a little cleaner, but could easily
be removed. We let R denote the constant bound on the number of possibilities
for each random choice. E will denote a positive integer, the value of which will
be specified later. (It will be chosen as a suitable function of c, R and n, and will
be exponential in n when c, R are positive constants.)
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We will be considering partial executions of the protocol lasting for E rounds.
For convenience, we think of our protocol as continuing for E rounds even if
all good processors have already decided (this can be artificially achieved by
having decided processors send default messages instead of terminating). The
adversary must fix t faulty processors at the beginning of an execution. Once
these processors are fixed, we divide the n processors into disjoint groups of t
processors each, so there are n

t groups. We will refer to the groups as G1 through
Gn/t. We choose our groups so that exactly ct of the processors in each group
are faulty. The main idea of our proof is as follows. Since the broadcast and
validation primitives essentially constrain the behavior of faulty processors, we
think of the adversary as controlling only the (supposedly) random choices of
faulty processors as well as the message scheduling. This means that when faulty
players invoke the randomized function N(i, S), they may maliciously chose any
output that occurs with nonzero probability. In all other respects, they will follow
the protocol.

The adversary will choose the message scheduling so that the t processors in a
single group will proceed in lockstep: the sets of messages that they use as input
to N will always be the same in each round. This means that all t processors in a
group will be choosing their next message from the same distribution. Since there
are only a constant number of possibilities and the adversary controls a constant
fraction of the processors in the group, it can ensure with high probability that
the collection of messages which are actually chosen is precisely equal to the
expectation under the adjusted distribution. More precisely, we let D denote the
distribution (on possible next round messages) resulting from applying N to a
particular set of messages in a particular round, and we let S denote the set
of (at most R) outputs that occur with nonzero probability. We define D̃ with
respect to D as in Section 2. Then, with high probability, once the adversary sees
the outputs chosen by the (1 − c)t good processors in the group, it can choose
the messages of the ct faulty processors in the group so that the total number of
processors in the group choosing each s ∈ S is exactly ρ̃st. (This is proven via
Lemma 2.)

We can then consider classes of executions which proceed with these groups
in lockstep as being defined by the set of messages used as input to N in each
round by each group (as well as the sets of sender, round number pairs for the
messages, but these pairs are divorced from the messages themselves). With
reasonable probability, an adversary who controls the message scheduling and
the random choices of faulty processors can force a real execution to stay within
such a class for E rounds. We will prove there exists such a class in which some
good processors fail to decide in the first E rounds. Putting this all together, we
will conclude that there exist some values of the input bits and some adversarial
strategy that will result in expected running time that is exponential in n.

Our formal proof begins with the following definition.

Definition 3. An E-round lockstep execution class C is defined by a setting of
the input bits for each group (processors in the same group will have the same
input bit), message sets Sj

i for all 1 ≤ i ≤ E and 1 ≤ j ≤ n/t where Sj
i is used
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as the input to N in round i by each processor in group Gj during some real
execution, and sets Zj

i of processor, round number pairs consisting of all pairs
(p, k) such that the message broadcast by processor p in round k is contained in
Sj

i . We require that for all i, j, if (p, k) ∈ Zj
i and processors p and p′ are in the

same group Gj′ , then (p′, k) ∈ Zj
i as well.

We have required that an E-round lockstep execution class C describe some
real execution, but note that such an execution is not unique. There are many
possible executions that correspond to the same class C. It is crucial to note that
the messages in sets Sj

i are not linked to their sender, round number pairs in Zj
i .

In other words, given the sets Zj
i and Sj

i , one has cumulative information about
the messages and the senders, but there is no specification of who sent what.

We will construct a chain C0, C1, . . . , CL of E-round lockstep execution classes
with the following properties:

1. For each Sj
i in each C�, the number of occurrences of each message s is

exactly equal to ρ̃st, where ρ̃s denotes the probability on s in the distribution
D̃ defined from D as in Section 2, where D is the distribution on possible
messages induced by N(i− 1, Sj

i−1).
2. Each C� and C�+1 differ only in the sets Sj

i for one group Gj .
3. It is impossible for any good processor to decide the value 1 during an

execution in class C0.
4. It is impossible for any good processor to decide the value 0 during an

execution in class CL.

Once we have such a chain of E-round lockstep execution classes, we may argue
as follows. Since each C� and C�+1 differ only in the behavior of processors in
a single group, it is impossible for all good processors to have decided 0 in an
execution in class C� and all good processors to have decided 1 in an execution
in class C�+1. Since the only decision value possible in C0 is 0 and the only
decision value possible in CL is 1, there must be some C�∗ which leaves some
good processors undecided. In other words, any execution in this class C�∗ does
not terminate in ≤ E rounds. Finally, we will show that when the input bits
match the inputs for C�∗ , the adversary can (with some reasonable probability)
cause a real execution to fall in class C�∗ . Since E is exponential in n whenever
R, c are positive constants, this will prove that the expected running time in this
case is exponential.

To generate the chain of E-round lockstep execution classes with the proper-
ties required above, we first observe that given settings of the input bits for each
group and sets zj

i ⊆ [n] of size n − t (each is a complement of some group) for
every i from 1 to E and every j from 1 to n/t, we can create a real execution
in which the n− t round i round messages validated by group Gj in round i are
exactly those sent by senders in the set zj

i . We then create C0 by using arbitrary
sets zj

i and input bits all equal to zero. We then employ a recursive algorithm de-
signed to gradually shift the input bits to 1 by first making incremental changes
to the sets zj

i so that a particular group will not be heard by the other groups,
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making it “safe” to change the inputs for that group without affecting other
processors.

To reach an E-round lockstep execution class where a particular group’s mes-
sages are not heard by other processors, we follow an inductive strategy with
round E acting as the base case. Suppose that we want to change the inputs
for processors in group Gj . We cannot do this immediately if it might affect the
behavior of processors outside this group in the first E rounds. We define i−1 to
be the earliest round in which the set zj′

i−1 for some other group Gj′ includes a
sender in Gj . We now seek to change the set zj′

i−1 to be the complement of group
Gj . Now we have a new instance of the same problem: in order to change what
messages group Gj′ members accept in round i− 1 without affecting processors
outside of this group, we must first get to a lockstep execution class where pro-
cessors outside of group Gj′ do not accept messages sent from group Gj′ with
round numbers ≥ i until they have completed E rounds. The important thing
to notice here is that the new instance of the problem always involves a higher
round number. Hence, we can formulate this as a recursion, and eventually we
reach a point where it is enough to ensure that the messages of some group Gj′′

with round numbers ≥ i′ are not heard by some other group Gj′′′ in round E.
This is now easy to do, since we can arrange for the n − t other round E mes-
sages to be validated while we delay the messages with round numbers ≥ i′ from
group Gj′′ to Gj′′′ , so the processors in group Gj′′′ can exit round E. (Notice
here that E will be the earliest round in which any group may receive messages
with round number ≥ i′ from Gj′′ , and this ensures that these messages cannot
be needed to validate the round E messages of processors outside Gj′′ .) More
intuition about how this occurs as well as the formal algorithm and proof can
be found in the full version of this paper.

4.1 Completing the Proof of Theorem 1

We consider our chain of E-round lockstep execution classes C0, . . . , CL satisfying
properties 1 through 4. Among these, there is some C�∗ which results in some
good processors remaining undecided after E rounds. We now use Lemma 2 to
complete our proof. We recall that this lemma shows that when the good pro-
cessors in a group each sample their next message independently from the same
distribution D on at most R possibilities, with high probability the adversary
can choose the “random” bits of the faulty processors in the group to ensure that
the number of times each possible message is chosen within the group exactly
matches the expected number under distribution D̃.

We let δ′ denote the value δc3/(3(1−c)) appearing in the statement of Lemma
2. We note that δ′ is a positive constant which can be chosen to depend only
on R and c (recall the ε is chosen with respect to R and c). We consider an
execution which begins with the same input bits as C�∗ . As the execution runs,
the adversary will choose the message scheduling and the supposedly random
bits for the faulty processors in an attempt to create message sets through the
first E rounds that match the sets Sj

i associated to C�∗ . For details on how the
message scheduling is chosen, see the full version of this paper.
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In order for the adversary to be successful in creating an execution that falls
into class C�∗ , it must ensure that the messages chosen in each round by each
group conform precisely to the expected numbers for each possibility under the
corresponding distribution D̃. This can be done as long as the number of good
processors in the group choosing each possibility s do not exceed the expected
number, ρ̃st. When this occurs, the adversary can set the messages of the faulty
processors in the group so that each expectation is matched precisely. We note
that the sets Sj

i always contain all of the round k messages sent by a group or
none of them (recall we have required that if (p, k) ∈ Zj

i for any processor p,
any rounds i, k, and any group j, then (p′, k) ∈ Zj

i for all processors p′ in the
same group as p). Thus, as long as the adversary achieves the desired multi-set of
messages for each group, the sets Sj

i of C�∗ will be attained. (It does not matter
which processor from each group sends which message, as long as the multi-set
of messages produced by each group matches the specification of C�∗ .)

Since there are at most R possible messages for each group and there are
n/t = 1/c groups, the union bound in combination with Lemma 2 ensures that
the probability of the adversary failing in any given round is at most R

c e
−δ′n.

Thus, the adversary will succeed in producing the sets Sj
i associated with C�∗

through E rounds with probability at least 1 − ER
c e

−δ′n. When the adversary
succeeds, some good processors will remain undecided at the end of E rounds.

We now fix the value of E as E := c
2Re

δ′n. This is exponential in n, and
the probability that the adversary can force the execution to last for at least E
rounds is ≥ 1

2 . This proves that the expected running time is exponential. This
completes our proof of Theorem 1.

5 Directions for Future Work

We hope that the restrictions we placed on fully symmetric round protocols in
order to implement our proof strategy may provide useful clues for where one
should look when searching for polynomial expected time algorithms (particu-
larly Las Vegas algorithms). Informally speaking, we may ask: how far does one
have to go beyond the realm of fully symmetric round protocols in order to find
an expected polynomial time algorithm? Does one have to abandon symmetry
completely? Or might one deviate from our specifications in more subtle ways?

Weaker Symmetry. For instance, we could consider an enlarged class of protocols
that is symmetric in a weaker sense: behavior could still be invariant under
permutations of the processor identities attached to accepted messages, but these
permutations could be fixed for the entire history of previous rounds, instead of
allowed to change per round. We do not know whether our impossibility result
can be extended to protocols exhibiting this weaker kind of symmetry.

More Randomness. It is also intriguing to consider the small change of lifting the
restriction on the number of random choices. Though our probabilistic analysis
is not nearly optimized, it does seem fairly sensitive to the number of possibilities
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considered when a processor makes a random choice. Having more choices will
considerably decrease the adversary’s chances of arranging the numbers of all
outcomes to conform with their adjusted expectations. However, it is not clear
how to leverage using more randomness to achieve faster Las Vegas algorithms.
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Randomized Consensus in Expected O(n2)

Total Work Using Single-Writer Registers

James Aspnes�

Yale University

Abstract. A new weak shared coin protocol yields a randomized wait-
free shared-memory consensus protocol that uses an optimal O(n2) ex-
pected total work with single-writer registers despite asynchrony and
process crashes. Previously, no protocol was known that achieved this
bound without using multi-writer registers.

1 Introduction

The consensus problem is to get a group of n processes to agree on a bit. In a
wait-free randomized consensus protocol, each process starts with an input
bit and produces a decision bit; the protocol is correct if it satisfies agreement,
where all processes that finish the protocol choose the same decision bit; valid-
ity, where every decision bit is equal to some process’s input; and probabilistic
termination, where every non-faulty process completes the protocol after a fi-
nite number of its own steps with probability 1. These conditions are required
to hold despite asynchrony and up to n− 1 crash failures.

We consider consensus in an asynchronous shared-memory system where the
timing of events and failures is under the control of an adaptive adversary, one
that can observe the complete state of the system—including the internal states
of process—but that cannot predict future coin flips made by the processes.

Processes communicate by reading and writing a collection of atomic reg-
isters, which may be single-writer (only one particular process is allowed to
write to each register) or multi-writer (any process can write to any register).
In either case we assume that a register can be read by all processes. The cost of
a protocol is measured by counting either the expected total number of opera-
tions carried out by all processes (the total work or total step complexity) or
the maximum expected number of operations carried out by any single process
(the individual work or individual step complexity). For either measure,
a worst-case adversary is assumed.

Single-writer registers were used in most early shared-memory consensus pro-
tocols [1, 3, 6, 8, 11–14, 18]. More recent protocols [4, 7] have used multi-writer
registers for increased efficiency. Though multi-writer registers can be imple-
mented from single-writer registers (see, for example, [9, Theorem 10.9]), this
imposes a linear blow-up in the costs, and the question of whether a stronger
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lower bound might apply to single-writer register protocols than to multi-writer
register protocols has remained open [7]. We answer this question, by giving a
wait-free randomized consensus protocol using only single-writer registers that
matches the lower bound on total step complexity for multi-writer registers.

1.1 Prior Work

Wait-free randomized consensus can be solved using shared memory by reduc-
tion to a weak shared coin [5]. A weak shared coin is a protocol in which
each process chooses a bit, with the property that there is some agreement
parameter δ > 0 such that for each possible value b, all processes choose b with
probability at least δ for any adversary strategy. A construction of Aspnes and
Herlihy [5], which uses only single-writer registers, shows that any weak shared
coin protocol with expected total work T (n) and agreement parameter δ can be
used to solve consensus with O

((
n2 + T (n)

)
/δ
)

expected total work. In partic-
ular, finding a weak shared coin with total work O(n2) and constant agreement
parameter gives consensus in O(n2) expected total work.

Though early randomized consensus protocols [1, 13] did not use a shared coin,
much of the subsequent development of randomized consensus protocols for the
adaptive-adversary model has been based on this technique [3, 4, 6–8, 11, 12, 14,
18]. The typical structure of a shared coin protocol is to have the processes col-
lectively generate Θ(n2) random ±1 votes, and have each process choose what it
sees as the majority value. The intuition is that after Θ(n2) votes, the margin of
the majority value is likely to be Ω(n), large enough that the adversary cannot
disguise it by selectively delaying processes casting votes it doesn’t like.

The main variation between protocols is in how they detect when enough votes
have been cast. For many years, the best known protocol was that of Bracha and
Rachman [12]. In this protocol, each process maintains in its own register both
a count of how many votes it has generated so far and the sum of all of its votes.
After every n/ logn votes, a process collects all of the register values (by reading
all n registers), and decides on the majority value if the sum of the counts
exceeds n2. The dominant cost is the cost of the collect, which amortizes at
O(log n) register operations for each of the O(n2) total votes, giving O(n2 logn)
total work.

The reason for checking the vote count every n/ logn steps is that it guarantees
that at most n2/ logn extra votes can be generated once the initial n2 common
votes are cast. It can then be shown that (a) the common votes produce with
constant probability a net majority at any fixed multiple of n, their standard
deviation; while (b) using Hoeffding’s inequality, the net extra votes seen by
any one process have probability less than 1

n2 of exceeding 2n, giving a low
probability that any of the processes sees a large shift from the extra votes.
Factoring in the additional shift of up to n − 1 votes that have been generated
but not written still leaves a constant probability that all processes see the same
majority value.

The main excess cost in the Bracha-Rachman protocol is the Θ(log n) amor-
tized cost per vote of doing a full collect every n/ logn votes. This is needed
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to keep the extra votes from diverging too much: if we collect only every Θ(n)
votes, we would expect a constant probability for each process that the Θ(n2)
extra votes it sees change the majority value.

The goal of finding an O(n2) total-work shared coin with constant agreement
parameter was finally achieved by Attiya and Censor using multi-writer reg-
isters [7] in a paper that also showed that Ω(n2) total work was necessary for
consensus. The key idea is to use Bracha-Rachman, modified to do collects every
n votes, but add a single termination bit that shuts down voting immediately
once some process detects termination. This makes all processes see essentially
the same set of extra votes, meaning that it is no longer necessary to bound the
effect of the extra votes separately for each process. However, a single multi-
writer register is needed to implement the termination bit, even though the rest
of the protocol uses only single-writer registers.

1.2 Our Approach

We show that the multi-writer bit is not needed: it can be replaced by an array
of single-writer termination bits (one for each process) that propagate via a
gossip protocol running in parallel with the voting mechanism at an amortized
cost of O(1) operations per vote. The intuition for why this works is that, as
more processes detect termination, fewer processes are left voting. So while some
processes may see a full O(n2) extra votes, later processes will see fewer; thus
the probability that each process sees enough extra votes to shift the majority
drops geometrically, giving a constant total probability that any process returns
the wrong value. To make this work, a counting argument is used to show that
the k-th process to detect termination sees at most 2n2/k extra votes, and that
this bound holds simultaneously for all k with constant probability. This avoids
a blow-up that would otherwise occur using simple union bounds.

2 The Shared Coin Protocol

Code for the shared coin algorithm is given in Algorithm 1. The structure is
similar to the protocol of Bracha and Rachman [12] as improved by Attiya and
Censor [7], with the single termination bit of the Attiya-Censor protocol replaced
by an array of termination bits that are sampled randomly. The essential idea
is that a process repeatedly generates random ±1 votes (using the CoinFlip()
subroutine, which generates each value ±1 with equal probability). These are
added to the process’s sum field in a[pid], while at the same time the number of
votes the process has generated is written to the count field. Each process checks
after every n votes to see if the sum of all the count fields exceeds a threshold
T = 64n2, and probes a random termination bit done[r] before every vote. If
either enough votes have been generated or done[r] is set, the process exits the
loop immediately, setting done[pid] and returning the sign of the sum of all the
sum fields.
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shared data:
Register a[p] for each process p, with fields a[p].count and a[p].sum, both

initially 0.
Boolean register done[p] for each process p, initially false.

for i← 1 . . .∞ do1

if i mod n = 0 then2

if
∑n

p=1 a[p].count ≥ T then break3

end if4

Choose r uniformly at random from {1 . . . n} \ {pid}.5

if done[r] = true then break6

v ← CoinFlip()7

a[pid]← 〈a[pid].count + 1, a[pid].sum + v〉.8

end for9

done[pid]← true10

return sgn
(∑n

p=1 a[p].sum
)

11

Algorithm 1. Shared coin protocol

3 Analysis

For the analysis of the protocol, we fix an adversary strategy. This is a func-
tion that selects, after each initial prefix of the computation, which process will
execute the next operation, leaving the results of the calls to CoinFlip and the
random choices of done-bit probes as the only source of nondeterminism. We
then wish to show that each outcome ±1 is chosen by all processes with at least
constant probability.

The essential idea is to show first that the sum of the votes generated before
each process detects termination is likely to be large and then that the sums of
the extra votes seen by each process p are likely to be small simultaneously for all
p. In this case, no process’s extra votes causes it to see a majority different from
the common majority. This approach follows similar arguments used for previous
protocols based on Bracha-Rachman [4, 6, 7, 12]. The main new wrinkle is that
we consider non-uniform error probabilities, where a process that sets done[p]
early is more likely to return the wrong value than a process that sets it later.

We write that a process’s i-th vote is generated when the process executes
the call to CoinFlip() in Line 1. We will be more interested in when a vote
is generated than when it is ultimately added to a[p]. We let X1, X2, X3, . . .
be random variables, with Xt representing the return value of the t-th call to
CoinFlip() by any process, and let St =

∑t
i=1Xi be the sum of the first t

generated votes. Because each Xi has expectation zero, the sequence {St} is a
martingale, and we can use tools for bounding the evolution of martingales to
characterize the total vote trajectory over time.1

1 A good general reference on martingales (and other stochastic processes) is [15].
Discussion of applications of martingales to analysis of algorithms can be found
in [2, 16, 17].
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Because we are examining votes when they are generated and not when they
are written, we say that a process p observes a vote Xt generated by q if Xt is
generated before p reads a[q] during its final collect. The observed votes are not
necessarily read by p or included in its final tally; but since at most one vote
generated by q can be missing when p reads a[q], the sum that p computes will
differ from the sum it “observes” by at most n− 1.

3.1 Overview of the Proof

We now give an outline of the structure of the proof:

1. We bound how far the values in the registers lag behind the generated votes
(Lemma 1). This bound is used first to bound the total number of votes
generated (in Lemma 2) and later to bound the gap between the generated
votes observed by a process and the sum computed by that process during
its final collect.

2. We show that the sum ST of the first T votes is at least 8n with probability
at least 1/8 (Lemma 3). This 8n majority is our budget for losses in the later
stages of the protocol.

3. If the preceding event holds, the probability that St ever drops below 4n
during subsequent votes is shown to be less than 1/8 (Lemma 4). This bound
is obtained by combining Kolmogorov’s inequality and the bound on the
total number of votes from Lemma 2. A consequence is that it is likely that,
for every process, St is above 4n when the process detects termination and
begins its final collect.

4. While a process’s final collect is in progress, extra votes may come in that
reduce the value seen by the process below 4n (this does not contradict
Lemma 4, because the adversary may be selective in when it allows the pro-
cess to read particular registers). While different processes may see different
numbers of extra votes (processes that detect termination later will have
observe fewer other processes still generating votes), we can bound simulta-
neously the number of extra votes seen by each process as a function of the
order in which they set their termination bit (Lemma 5).

5. The extra votes observed by each process also form a martingale, and thus
the probability that they reduce the total by 3n or more can be bounded
using Azuma’s inequality [10]. Even though the different number of extra
votes observed by each process varies, the resulting probability bounds form
a geometric series that sums to less than 1/8 (Lemma 6).

6. After subtracting the 3n bound on extra votes from the 4n bound of the pre-
vious step, we have a constant probability that the number of votes observed
by every process is at least n. Since the actual total read by each process
differs from the observed value by at most n−1, this gives that every process
sees at least +1 votes, proving agreement (Theorem 1).

The choice of the thresholds 8n and 4n is somewhat arbitrary; these particular
values happen to be convenient for the proof, but it is likely that further opti-
mization is possible. The threshold n in the last step is needed because of the
gap between generated votes and the values actually stored in the registers.
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We now proceed with the details of the proof.

3.2 Deterministic Bounds on Error and Running Time

The following lemma bounds the difference between the generated votes and the
values in the registers:

Lemma 1. Let γpi = 1 if vote Xi is generated by p, and 0 otherwise. In any
state of the protocol after exactly t calls to CoinFlip() have been made, we have:

1. t− n ≤∑n
p=1 a[p].count ≤ t.

2. For all p,
∣∣∣(∑t

i=1 γpiXi

)
− a[p].sum

∣∣∣ ≤ 1.

Proof. Immediate from inspection of the protocol and the observation that for
each process, there can be at most one vote that has been generated in Line 1
but not yet written in Line 1.

Lemma 2. The total number of votes τ generated during any execution of the
protocol is at least T and at most T + n2 + n.

Proof. Before a process p can finish, it must first write done[p] in Line 1. Con-
sider the first process to do so. This process can only exit the loop after seeing∑n

p=1 a[p].count ≥ T , which occurs only if at least T votes have already been
generated (and written).

For the upper bound, suppose that at some time, T + n votes have been
generated; then from Lemma 1 we have

∑n
p=1 a[p].count ≥ T . Each process

can generate at most n more votes before executing the test in Line 1 and
exiting. Adding in these votes, summed over all processes, gives a total of at
most (T + n) + n2 = T + n2 + n votes.

It is easy to see from Lemma 2 that the total work for Algorithm 1 is O(n2); the
main loop contributes an amortizedO(1) operations per vote (plus an extra O(n)
operations per process for the first execution of the collect in Line 1), while the
assignment to done[pid] and the final collect contributes O(n) more operations
per process. Summing these contributions gives the claimed bound.

3.3 Common Votes and Extra Votes

For each process p, let κp be the number of votes generated before p either
observes a total number of votes greater than or equal to T in Line 1 or observes
a non-false value in done[r] in Line 1. For each t, let ξpt be the indicator variable
for the event that both t > κp and a vote Xt is generated by some process q
before p reads a[q] in Line 1; formally, ξpt = [t > κp] ∧ γpt, where γpt is the
random variable defined in Lemma 1. Since all votes X1 . . . Xκp are generated
before p executes Line 1, the sum over all q of votes generated by q before p
reads a[q] is given by Sκp +

∑
t ξptXt. We will refer to these votes as the votes
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observed by p, even though (by Lemma 1) up to one such vote for each process
q may not be written to a[q] before p reads it.

We will show that, with constant probability, the total votes observed by
every process is bounded away from 0 by at least n in the same direction. The
essentially idea is to show that

∣∣Sκp

∣∣ is likely to be large for all p, and that
the extra votes |∑t ξptXt| are likely to all be small. This argument essentially
follows the structure of the proofs of correctness for the shared coins in [12] and
subsequent work [4, 6, 7]. The new part is a trick for simultaneously bounding
the number of extra votes observed by each process p after time κp, based on
the effect of the random sampling of the done bits.

3.4 Bound on Common Votes

To simplify the argument, we concentrate on the case where all processes see a
positive total vote; the negative case is symmetric. First we consider the effect
of the pre-threshold votes:

Lemma 3. For sufficiently large n, Pr[ST ≥ 8n] ≥ 1/8.

Proof. Immediate from the normal approximation to the binomial distribution:
8n =

√
T is one standard deviation.

For the remainder of the proof we consider only events that occur after the T -th
vote is generated. The bounds we obtain will thus hold independently of the
value of ST .

First, we use Kolmogorov’s inequality (following the approach in [7]) to bound
how far St can drop after ST .

Lemma 4

Pr
[
min
t≥T

(St − ST ) ≤ −4n
]
≤ 1

8
.

Proof. From Lemma 2, there are at most n2 + n votes after T , giving a total
variance of at most n2 + n. Thus,

Pr
[
min
t≥T

(St − ST ) ≤ −4n
]
≤ Pr

[
max
t≥T

|St − ST | ≥ 4n
]

≤ n2 + n

(4n)2

=
1
16

+
1

16n

≤ 1
8
,

where the second inequality follows from Kolmogorov’s inequality and the last
inequality holds for n ≥ 1.

In particular, we have that, with probability at least 7/8, Sκp ≥ ST − 4n for all
p.
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3.5 Bound on Extra Votes

We now consider the votes generated after a process detects termination but
before it finishes its final collect in Line 1; i.e., those votes Xt for which ξpt =
1. Notice that for each p and t, the value of ξpt is determined before Xt is
generated; formally, ξpt is measurable Ft−1, where Ft−1 records all events prior
to the generation of Xt. It follows that E[ξptXt|Ft−1] = ξpt E[Xt|Ft−1] = 0, since
E[Xt|Ft−1] = 0. This implies that extra votes observed by p form a martingale
difference sequence and their sum can be bounded using Azuma’s inequality [10].
If np =

∑
ξpt, then Pr [

∑
ξptXt ≤ −2n] ≤ exp(−4n2/n2

p), and the probability
that any process p observes

∑
ξptXt ≤ −3n is bounded by

∑
p exp(−9n2/n2

p)
by the union bound. The main trick is to show that, with constant probability,
most np values are small enough that this sum is a small constant.

The basic idea behind this trick is that if a particular vote generated by some
process q might be an extra vote for many processes, then these processes must
all have written their done bits, making it more likely that q will read true on its
next probe of the done array and finish. In particular, this means that the k-th
process to write its done bit will observe at most n/k extra votes on average from
q, and n2/k extra votes on average from all processes. By itself, this would give
a probability-(1/2) bound of 2n2/k on the number of extra votes observed by pk

using Markov’s inequality. But in fact we can show the stronger result that this
bound holds simultaneously for all pk with probability 1/2, by bounding the sum
of the number of termination bits set when each vote is generated and arguing
that each of pk’s extra votes contributes at least k to this sum. The result is the
following:

Lemma 5. Let pk be the k-th process to write its done bit. With probability at
least 1/2, it holds simultaneously for all k that npk

=
∑

t ξpkt ≤ 2n2/k.

Proof. For each vote Xt, let its contribution ct be
∑

k ξpkt. Consider the se-
quence of votes Xt1 , Xt2 , . . . generated by some single process q. If one of these
votes Xti has contribution wti , then q’s next probe of the done array will find
true with probability at least k/n; in other words, with probability at least k/n,
a contribution k vote is the last vote q generates. Letting C be the expected total
contribution of q’s votes, we get the recurrence

C ≤ k + (1− k/n)C,

which has the solution

C ≤ n,
no matter how the adversary chooses k. It follows that the expected total con-
tribution of all votes cast by q is at most n, and thus that the expected total
contribution

∑
t ct of all votes cast by all processes is at most n2. By Markov’s

inequality, we have

Pr

[∑
t

ct ≤ 2n2

]
≥ 1/2.
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Now observe that process pk only observes extra votes of contribution k or
greater, since all other votes were generated before pk wrote its done bit. So
ξpkt = 1 implies ct ≥ k, and thus∑

t

ξpkt =
1
k

∑
t

ξpktk

≤ 1
k

∑
t

ξpktct

≤ 1
k

∑
t

ct.

This holds for all k. So in the event that
∑

t ct ≤ 2n2, which occurs with prob-
ability at least 1/2, we have

∑
t ξpkt ≤ 2n2/k for all k.

We now bound the extra votes for each process. To avoid dependencies, we define
a truncated version of the extra votes for each process pk, capped at

⌊
2n2/k

⌋
votes; when the bound in Lemma 5 holds, this will be equal to the actual extra
votes. Let ξ′pkt = ξpkt if

(∑
s<t ξpks

)
<

⌊
2n2/k

⌋
and 0 otherwise. Then ξ′pkt

is predictable and the sequence
{∑

i≤t ξ
′
pkiXi

}
is a martingale. If we consider

just the sequence of values Xi1 , Xi2 , . . . for which ξ′pki = 1, we have a bounded
martingale difference sequence of length at most 2n2/k. It follows from Azuma’s
inequality that

Pr

[∑
t

ξ′pktXt ≤ −3n

]
≤ exp

(
− (3n)2

2(2n2/k)

)
= e−(9/4)k. (1)

Summing this quantity for all k gives

Lemma 6. Pr
[∃k∑t ξ

′
pktXt ≤ −3n

]
< 1/8.

Proof. Using the union bound and (1):

Pr

[
∃k

∑
t

ξ′pktXt ≤ −3n

]
≤

n∑
k=1

Pr

[∑
t

ξ′pktXt ≤ −3n

]

≤
n∑

k=1

e−(9/4)k

=
n∑

k=1

(
e−9/4

)k

≤ e−9/4

1− e−9/4

≈ 0.1178 . . .
< 1/8.
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3.6 Full Result

We can now state the full result:

Theorem 1. Algorithm 1 implements a shared coin with agreement parameter
1/32.

Proof. From Lemma 3, the probability that ST ≥ 8n is at least 1/8. Suppose
that this event occurs; we now consider the probability that subsequent events
involving XT+1 . . . cause some process to compute a non-positive total vote.

Recall that each process p observes a total vote Sκp +
∑

t ξptXt, and that the
actual vote computed by the process may be as low as Sκp +

∑
t ξptXt− (n− 1)

(the n− 1 is from the unwritten votes described in Lemma 1). Lemma 4 gives a
probability of at most 1/8 that any Sκp is less than ST − 4n. Lemma 5 gives a
probability of at most 1/2 that

∑
t ξpt �=

∑
t ξ

′
pt for any p. Finally, Lemma 6 gives

a probability of at most 1/8 that
∑

t ξ
′
pt ≤ −3n for any p. These probabilities sum

to 3/4; so there is a probability of at least 1/4 that none of these bad events occur,
in which case the total vote computed by p is at least ST − 4n− 3n− (n− 1) =
ST − 8n+ 1.

When ST ≥ 8n, this quantity is at least 1, and thus all processes return +1
with probability at least (1/8)(1/4) = 1/32. That all processes return −1 with
at least the same probability follows from symmetry of the algorithm.

Corollary 1. There is a wait-free randomized shared-memory consensus proto-
col using only-single writer registers that executes O(n2) expected total operations
against an adaptive adversary.

4 Conclusions

We have shown that the expected total work needed for randomized shared-
memory consensus with an adaptive adversary is O(n2) using only single-writer
registers, matching the upper and lower bounds for multi-writer registers of
Attiya and Censor [7]. This leaves the question of what happens with individual
work. Here the best known lower bound is Ω(n), which matches the Attiya-
Censor lower bound and which is immediate from the need for a process in a
solo execution to read at least one register belonging to each other process before
deciding. The best known upper bound is given by an O(n log2 n) algorithm of
Aspnes and Waarts [6] that modifies the Bracha-Rachman protocol by having
processes generate votes of increasing weight. We suspect that the gossip-based
termination detector used here might be able to reduce this upper bound to
O(n log n), but that closing the gap completely will likely require new techniques.

Acknowledgments. I would like to thank Hagit Attiya and Keren Censor for
suggesting the possibility of faster single-writer consensus and for several useful
discussions.
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Abstract. The semi-synchronous model is an important middle ground
between the synchronous and the asynchronous models of distributed
computing. In this model, processes can detect (timeout) when other
processes fail. However, since detection is done by timing out, it incurs
a cost much higher than the typical delay of messages.

The paper presents a new communication primitive, Timely Announced
Broadcast (TAB), and uses it in algorithms for consensus and set con-
sensus in the semi-synchronous model. Separate implementations of TAB,
withstanding different types of failures, allow to derive algorithms for con-
sensus and set consensus under crash and omission failures.

The time bounds obtained by our algorithms asymptotically match,
or improve, the previously known bounds.

Keywords: semi-synchronous systems, timely announced broadcast,
terminating reliable broadcast, set consensus.

1 Introduction

Most research in distributed computing considers two models, synchronous and
asynchronous. In the synchronous model, processes take steps in rounds, and
messages sent in one round are received by the next round; in the asynchronous
model, processes take steps at arbitrary times, and there is no upper bound
on message delay. Practical systems, however, are neither as predictable as the
synchronous model nor as unpredictable as the asynchronous one. An important
middle ground is the semi-synchronous model [4] in which there are bounds
on the time processes take steps, or message are delivered, but they are only
approximately known.

In the context of fault-tolerant distributed algorithms [3], it is assumed that
consecutive steps by a correct process require time at least c1 and at most c2,
� Part of this work done while visiting EPFL.

�� Part of this work done while at EPFL.

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 374–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Structured Derivation of Semi-Synchronous Algorithms 375

while messages are delivered within at most time d after they are sent. When
failures are benign, i.e., stopping to take steps or omitting to send/receive mes-
sages, they can be detected by timing out the faulty process, according to these
time bounds, since they stop sending messages. However, to avoid suspecting the
innocents, timing out a process must take a relatively long time, which we denote
TO(d), and assume TO(d) > d, typically by a large margin (this is discussed
further in Section 2).

A classical problem in fault-tolerant distributed computing is the k-set con-
sensus problem [7], in which processes are required to output at most k different
values; if a correct process outputs v then v must be the input of some process.
The consensus problem is a special case where k = 1. In the synchronous model,
exactly �f/k�+1 rounds are required for solving k-set consensus in the presence
of f crash failures, for any f < n [7,8]. This extends the bound for the well-
known consensus problem (where k = 1), which can be solved in exactly f + 1
rounds (e.g., [10]).

These round-based algorithms can easily be simulated in the semi-synchronous
model, by waiting to timeout all processes that did not send a message in a
round, before proceeding to the next round. In this manner, executing an r-
round synchronous algorithm takes roughly rTO(d) time, namely, the timeout
cost is paid for each round.

Perhaps surprisingly, this cost is not inherent, and it has been shown by
Attiya, Dwork, Lynch and Stockmeyer [3] that the consensus problem can be
solved in time 2fd + TO(d), that is, the timeout cost is paid only once (this
algorithm is called ADLS). They also show that the timeout cost must be paid
at least once, by proving a time lower bound of (f − 1)d+ TO(d). In follow-up
work, Michailidis [17] presented an algorithm solving set consensus within time
� f

k �d+ TO(2d).
Despite being simple, the structure of the ADLS algorithm is quite different

from other consensus algorithms, and the way it works is considered “a mystery”
(cf. [14]). This might be the reason there has been very little work in the semi-
synchronous model.

Our contribution: In this paper, we present a new communication primitive,
called timely announced broadcast (TAB), which simplifies the design of semi-
synchronous algorithms for consensus and set consensus. TAB has simple im-
plementations in different failure models, and we present two efficient ones for
crash and omission failures. Combining these TAB implementations with sim-
ple consensus and set consensus algorithms lead to structured algorithms that
match, or even improve, the best known time bounds for the semi-synchronous
model.

Specifically, TAB provides three primitives to broadcast, announce and deliver
a message. Informally, after a process q broadcasts m, all other processes first
announce m and only then deliver m. In addition to common properties of
broadcast primitives (like integrity and validity), it is guaranteed that if a correct
process delivers m from q, then every correct process announces m from q. In
this respect, TAB is similar to known primitives like adopt-commit (e.g., [13])
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or graded consensus (e.g., [12]). Unlike these other primitives, however, TAB
also provides timing guarantees, as it bounds the time duration between the
broadcast, announcement, and delivery of the same message.

We present implementations of TAB in the presence of crash and omission fail-
ures. For crash failures, the time for both announcement and delivery is bounded
by d, while for omission failures, the time for announcement is bounded by d and
the time for delivery is bounded by 2d. (The last algorithm assumes that n > 2t,
where t is the maximum number of failures that can occur in an execution; we
reserve f for the number of failures in a specific execution.)

We then show how TAB can be used in a simple flooding-style algorithm
for terminating reliable broadcast, leading to a simple consensus algorithm with
the same time bounds. A somewhat more elaborate, but still intuitive when
considered in a synchronous setting, algorithm is needed for solving set consensus
using TAB. Employing the TAB implementation for crash failures, we get a time
bound of fd+TO(2d) for consensus and a time bound of �f/k�d+TO(2d) for set
consensus. Employing the TAB implementation for omission failures, we get a
time bound of 2fd+TO(4d) for consensus and a time bound of 2�f/k�d+TO(4d)
for set consensus.

Prior bounds: Table 1 summarizes the time bounds of our algorithms and pre-
vious results.

A couple of papers extended [3] to omission failures. Ponzio [18] showed that
when n > 2t, a simulation of crash failures on top of omission failures can
be applied to the algorithm of [3] to derive an algorithm for omission failures
requiring 4(f + 1)d+ TO(d) time. Berman and Bharali [6] present an improved
consensus algorithm for omission failures, requiring 3(f + 1)d + TO(d) time,
when n > 2t. Both papers [18,6] also present more complicated bounds for the
case n ≤ 2t.

As for lower bounds, Herlihy, Rajsbaum and Tuttle [16] prove that in the semi-
synchronous model, any k-set consensus algorithm for n processes and n−1 crash
failures, requires time �n−1

k �d+ TO(d). Herlihy and Rajsbaum [15] extend this
result to hold also with adversaries that fail processes in a coordinated man-
ner. For the threshold adversary considered in our paper, where process failures

Table 1. Comparison of our results with prior results (algorithms for omission failures
assume n > 2t)

Problem crash failures omission failures

Consensus Attiya et al. [3] 2fd + TO(d)

Michailidis [17] fd + TO(2d)

Ponzio [18] 4(f + 1)d + TO(d)

Berman and Bharali [6] 3(f + 1)d + TO(d)

this paper fd + TO(2d) 2fd + TO(4d)

k-set consensus Michailidis [17] 	f/k
d + TO(2d)

this paper 	f/k
d + TO(2d) 2	f/k
d + TO(4d)
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are independent, they show a bound of � f−1
k �d + TO(d), extending the previ-

ous result. These lower bounds show that our upper bounds are asymptotically
optimal.

2 Preliminaries

Model of Computation: We use the model defined in [3], in which there are n
processes p1, . . . , pn, and their respective message buffers, buff1, . . ., buffn. Each
process pi is modeled as a (possibly infinite) state machine with a local state set
Qi, including a distinguished initial state.

A configuration is a vector s = ((q1, b1) . . . , (qn, bn)) where statei(s) = qi is
the local state of pi and buffi(s) = bi is the content of pi’s buffer. In the initial
configuration all processes are in their initial states and all buffers are empty.

Processes communicate by sending messages. We assume that messages sent
from pi to pj contain a sequence number and that the sender’s id is part of every
message. The action send(pj ,m) represents the sending of message m to process
pj .

Each process pi follows a deterministic algorithm that governs its state tran-
sitions and the messages it sends. The possible events are either computation
events of the form comp(pi, S), where pi is a process and S is a set of send ac-
tions, or delivery events of the form deliv(pi,m), where pi is a process and m is
a message.

An execution is an infinite sequence of alternating configurations and events
α = C0, π1, C1, . . . , πr, Cr, . . . , satisfying the following conditions:

1. C0 is the initial configuration.
2. If πr is an event of process pi, then statej(Cr−1) = statej(Cr) and

buffj(Cr−1) = buffj(Cr) for every j �= i. That is, states and buffers of pro-
cesses other than pi do not change.

3. If πr = comp(pi, S), then statei(Cr) and S are obtained by applying γi to
statei(Cr−1) and buffi(Cr−1); furthermore, buffi(Cr) = ∅. That is, pi, based
on its local state and the contents of its buffer, performs the send actions
in S, clears its buffer and possibly changes its local state, all in one atomic
transition.

4. If πr = deliv(pi,m), then statei(Cr) = statei(Cr−1) and buffi(Cr) =
buffi(Cr−1) · {m}. That is, the message m is appended to pi’s buffer.

5. For every delivery event πr = deliv(pi,m) there is exactly one computation
event πl = comp(pj , S) where l < r and send(pi,m) ∈ S. That is, each
delivery is matched to a unique earlier send.

Below, ‘time’ is always a nonnegative real number. A timed event is a pair (π, t),
where π is an event and t is a time. A timed execution is an infinite sequence of al-
ternating configurations and timed eventsα = C0, (π1, t1), C1, . . . , (πr , tr), Cr , . . .,
where C0, π1, C1, . . . , πr, Cr, . . . is an execution and the times are nondecreasing
and unbounded.
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Types of Failures: Fix real numbers c1, c2, and d, 0 < c1 ≤ c2 < ∞ and
0 < d < ∞. A process pi is correct in a timed execution α if the following
conditions hold:

1. There is a computation event comp(pi, S) at time 0.
2. If the lth and rth timed events, l < r, are both computation events of pi

with no intervening computation events of pi, then c1 ≤ tr − tl ≤ c2.
3. If a message m is sent by pi to pj at the lth timed event then there exists
r > l such that the rth timed event is the matching delivery deliv(pi,m),
and tr − tl ≤ d.

If a process is not correct, we say it is faulty, and denote by t the largest number
of faulty processes that the protocol has to tolerate.

We model failure types by restricting the behavior of a faulty process. We
only consider benign failures, where faulty processes follow the algorithm. With
crash failures a faulty process may stop taking steps (or not start at all), but its
messages are delivered on time. Specifically, every message that is sent at time
T is received the latest at time T + d, if the receiver process is correct.

Omission failures are slightly more severe than crash failures, and although
they ensure the delivery times of messages, messages sent by a faulty process or
to faulty process may not be delivered at all. Specifically, every message that is
received at time T is sent not before time T − d. Every message that is sent by
a correct process is received if the receiver is correct.

Following the literature on early-stopping consensus and set consensus, we
denote by f the number of processes that fail in a specific execution of the
algorithm, assuming that the execution is clear from the context. We reserve t
to denote the maximum number of failures that is possible in all executions.

A Timeout Task: Let TO(T ) be the worst-case time to detect that time T has
elapsed. In order to ensure that time T has elapsed, a process must count T

c1

of its own steps,1 since it might be running “fast” (i.e., time c1 between steps).
But if the process is actually running “slow” (i.e., time c2 between steps), the
actual waiting time is c2T

c1
. That is, TO(T ) = CT , with C = c2

c1
.

In order to detect the failure of process p, processes must ensure that no
messages from p are in transit. Therefore, the worst-case elapsed time between
the failure of p and the time when all correct processes determine that p has
failed is roughly Cd.

3 Timely Announced Broadcast

We introduce a new communication primitive, Timely Announced Broadcast
(TAB), and show how it can be used to solve the consensus and set consen-
sus problems. TAB is defined in terms of three primitives, ta-broadcast(m),

1 We ignore rounding issues and assume that c1 always divides T and c2.
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Algorithm 1. TAB with crash failures; code for process p
1: upon ta-broadcast (m) do
2: send 〈Announce, m, p〉 to all
3: send 〈Msg, m, p〉 to all

4: upon received 〈Announce, m, q〉 do
5: if not announced m from q yet then
6: announce(m, q)

7: upon received 〈Msg, m, q〉 do
8: if not announced m from q yet then
9: announce(m, q)
10: ta-deliver(m, q)

announce(m, q), and ta-deliver (m, q). Informally, after a correct process q in-
vokes ta-broadcast(m), all other processes first announce(m, q) and only then
ta-deliver (m, q).

The announce message indicates to a process to wait for a forthcoming mes-
sage, causing it to extend its timeout and wait enough time to deliver the ex-
pected message (as demonstrated in Section 4).

In addition to common properties of broadcast primitives (like integrity and
validity), it is guaranteed that if a correct process ta-deliversm from p, then every
correct process announces m from p. TAB also provides timing guarantees, as it
bounds the time duration between the broadcast, announcement, and delivery
of the same message. In our implementations of TAB, these bounds are in O(d),
with the constant being small, i.e., 1 or 2.

Definition 1 (TAB). An algorithm solves timely announced broadcast in the
presence of benign failures, with two parameters d1 ≥ d2 > 0, if the following
properties hold:

Integrity. If a process ta-delivers a message m from p, then m was ta-broadcast
by p.

Validity. If a correct process p ta-broadcasts a message m at time T , then all
correct processes eventually announce m from p and ta-deliver m from p the
latest at time T + d1.

Announcement. For any message m, if any process ta-delivers m from p at
time T , then every correct process announces m from p the latest at time
T + d2.

Implementing TAB in the presence of crash failures: Algorithm 1 implements
TAB, with crash failures and assuming n > t.

It is easy to verify that the algorithm satisfies the properties of Definition 1,
with d1 = d2 = d.

Implementing TAB in the presence of omission failures: Algorithm 2 implements
TAB, with omission failures and assuming n > 2t. It is simple to show that the
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Algorithm 2. TAB with omission failures and n > 2t; code for process p
1: upon ta-broadcast(m) do
2: send 〈Msg, m〉 to all

3: upon received 〈Msg, m〉 from q do
4: send 〈Ack, m, q〉 to all

5: upon received 〈Ack, m, q〉 the first time do
6: announce(m, q)

7: upon received t + 1 〈Ack, m, q〉 do
8: ta-deliver(m, q)

algorithm satisfies the properties of Definition 1, with d1 = 2d and d2 = d.
Inspecting the code verifies that the integrity property holds.

Lemma 1 (Integrity). If a process ta-delivers m from p, then m was ta-
broadcast by p.

Lemma 2 (Validity). If a correct process p ta-broadcasts a message m at time
T , then all correct processes eventually announce m from p and ta-deliver m
from p the latest at time T + d1, where d1 = 2d.

Proof. Since p is correct and ta-broadcasts m at time T , it sends 〈Msg,m〉 to
all by time T , and by time T + d, all correct processes send 〈Ack,m, p〉 to all.2

Since n > 2t, this means that by time T + 2d, every process receives at least
n − t ≥ t + 1 〈Ack,m, p〉 messages and therefore announces and ta-delivers m
from p. ��
Lemma 3 (Announcement). For any message m, if any process ta-delivers
m from p at time T , then every correct process announces m from p the latest
at time T + d2, where d2 = d.

Proof. If a process delivers m from p at time T , then it received t+1 〈Ack,m, p〉
messages by time T , at least one of them was sent by a correct process q by time
T . Then by time T + d, every correct process receives an 〈Ack,m, p〉 message
from q and announces m from p. ��

4 Terminating Reliable Broadcast from TAB

The Terminating Reliable Broadcast (TRB) problem is defined in terms of two
primitives, broadcast and deliver, and has a dedicated sending process s. The
sender process s is the only process that invokes broadcast. When failures are
benign, we have the following requirements.
2 To simplify the statements of the results and the proofs, we assume c2 � d and

approximate d + c2 with d.
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Definition 2 (TRB). An algorithm solves terminating reliable broadcast in
the presence of benign failures if the following properties hold:

Integrity. A process delivers at most one message, and if a process delivers a
message m �= ⊥, then m was broadcast by s.

Validity. If the sender s is correct and broadcasts a message m, then s eventu-
ally delivers m.

Agreement. If a correct process delivers a message m, then every correct pro-
cess delivers m.

Termination. Every correct process eventually delivers some message.

Consensus from TRB: Non-uniform consensus can be easily implemented from
TRB with a simulation, where n instances of the TRB algorithm are executed
in parallel, in each instance i process i is the sender and uses its initial value for
that, and all processes apply a deterministic function on the resulting vector.
The response time of this consensus algorithm equals the response time of the
TRB algorithm.

TRB from TAB: It is easy to solve TRB in a synchronous system, using a
familiar, simple flooding mechanism. In the simplest form of this protocol (cf. [5,
Algorithm 15]), for a synchronous system with crash failures, the sender sends
a message to all processes; each process that gets this message, echoes it by re-
sending it to all processes, and returns the value. If no value was returned after
f + 1 rounds, the process returns ⊥.

This algorithm can be deployed in a semi-synchronous system by timing out
the processes that failed at the beginning of the round before correct processes
advance to the next round. This algorithm however, is susceptible to timing
delays, since timing out a process takes TO(d) and hence timing out r rounds
may take rTO(d) time, yielding a (f + 1)Cd-time algorithm for consensus.

To overcome this problem, instead of sending and receiving messages directly,
processes use TAB to send and announce-deliver messages. The TAB protocol
allows processes to warn other processes that they are about to deliver a message,
thus alerting them to wait for their copy of this message.

The pseudocode is given as Algorithm 3. For a process p, Zp holds the set of
processes who have sent an announcement and p must wait for their message.
For any process q ∈ Zp, if process p does not receive a message from q within
a specific time, namely 2d1, it suspects q to be faulty and stops waiting for a
message from q by removing q from Zp (line 11). When Zp = ⊥, all processes
who have only sent an announcement are crashed, so it is safe to deliver ⊥
(lines 12-13). We show the algorithm solves TRB.

Lemma 4 (Integrity). A process delivers at most one message, and if a process
delivers a message m �= ⊥, then m was broadcast by s.

Proof. The first part of the lemma follows from the code (a process stops after
delivering a message). Assume that a process p delivers m �= ⊥. Since a non-
⊥ message is delivered only after a ta-deliver event at line 9, this means that
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Algorithm 3. TRB from TAB; code for process p (s is the sender process)
1: initially
2: Zp ← {s}
3: upon broadcast v do /* called only by s */
4: ta-broadcast (v)

5: upon announce(m, q) do /* a message from q is forthcoming, wait for it */
6: Zp ← Zp ∪ {q}
7: upon ta-deliver(v, q) the first time

do /* a message from q ta-delivered, echo it and deliver */
8: ta-broadcast (v)
9: deliver v

10: upon no ta-deliver(v, q) for 2d1 time since the last announce(v, q) or time 0
do /* suspect q */

11: Zp ← Zp \ {q} /* stop waiting for all messages from q */
12: if Zp = ∅ then
13: deliver ⊥

p ta-deliver (m, q). By the Integrity property of TAB, m was ta-broadcast by
process q. If q = s, this finishes the proof. Otherwise, q ta-broadcast value it ta-
deliver from some process. Either q ta-deliver message from s or after a chain of
processes, where by the Integrity property of TAB and the fact that no process
executes line 8, at least one of processes in the chain will ta-deliver message from
process s. Therefore, if p deliver a non-⊥ message, then it must be m. ��
Lemma 5 (Validity). If the sender s is correct and broadcasts a message m,
then s eventually delivers m.

Proof. From the Validity property of TAB, s ta-delivers m the latest at time d1.
Since at this time s cannot execute the upon rule of Line 10, s delivers m by
Line 9. ��
Lemma 6 (Agreement). If a correct process delivers a message m, then every
correct process delivers m.

Proof. By contradiction. Because of Lemma 4, w.l.o.g. assume that at time Tp,
a correct process p delivers v, the value broadcast by s, and at time Tq, a correct
process q �= p delivers ⊥.

If process q delivers⊥ at time Tq, it did not ta-deliver nor receive an announce-
ment for 2d1 time (a ta-delivery would have led to deliver v and an announcement
would have delayed the delivery of ⊥). Thus, process p cannot deliver before time
Tq−d1: before delivering it would have ta-broadcast its message to all, and thus,
since p is correct, q would have received this message. Therefore, Tp > Tq − d1.
Because p delivered v, it ta-delivered a message; in more detail, there is a chain
of deliveries from the source to p. Each of these ta-broadcast events is at most
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d1 apart from each other. Since Tq ≥ d1, and the source ta-broadcasts at time
0, there is one process in this chain that ta-broadcasts after Tq − 2d1 but before
Tq − d1. Because of the Announcement property, an announcement is received
by q between Tq − 2d1 and Tq − d1 + d2 ≤ Tq. This contradicts the fact that q
neither ta-delivers nor receives an announcement between Tq − 2d1 and Tq. ��
The upon rule of Line 10 ensures the next lemma.

Lemma 7 (Termination). Every correct process eventually delivers some mes-
sage.

The next lemma shows the timing property of the TRB algorithm.

Lemma 8. In a run with an actual TAB transmission time d1 and f faulty
processes that obey the timing requirements, a correct process delivers a value by
time fd1 + TO(2d1).

Proof. By Lemma 7, a correct process p eventually delivers a value for the sender
s. If p delivers m �= ⊥ in Line 9, then it can be easily shown (cf. [5, Algorithm
15]) that it has receivedm along a chain of r re-broadcasts by different processes.
It follows that r ≤ f + 1, since once m reaches a correct process it is sent to all
processes. Thus, it is delivered by time (f + 1)d1 = fd1 + d1 ≤ fd1 + TO(d1)
(since TO(d) ≥ d).

Consider now the case p delivers ⊥ in Line 13; we argue that each process q
added to Zp is removed by time fd1 + TO(2d1), and the upon rule of Line 10
ensures ⊥ is delivered.

A process q is added to Zp in the upon rule of Line 5. Since no process
announces the same process twice (by Line 7), an announcement is forwarded
through a chain of r different processes pi1 , . . ., pir .

If none of these processes is correct, then r ≤ f , and hence q is added in the
upon rule of Line 5 before time fd1, and it is timed out (in the upon rule of
Line 10) before time fd1 + TO(2d1), implying the claim.

So, let pr′ be the first correct process among pi1 , . . ., pir ; clearly, r′ ≤ f + 1,
and hence p receive the ta-broadcasts from pr′ before time r′d1 ≤ (f + 1)d1 ≤
fd1 + TO(2d1) (since TO(d) ≥ d). ��
By substituting the appropriate TAB implementations, we get:

Corollary 1. There is a TRB algorithm, and hence consensus algorithm, which
withstands crash failures and terminates within time fd+ TO(2d).

Corollary 2. There is a TRB algorithm, and hence consensus algorithm, which
withstands omission failures and terminates within 2fd+TO(4d), assuming that
n > 2t.

5 Set Consensus from TAB

Definition 3 (Set consensus). An algorithm solves k-set consensus in the
presence of benign failures if each process starts with an input value, and decides
on a value, such that the following properties hold:
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Integrity. If a process decides v, then v is the input of some process.
Agreement. The correct processes decide on at most k different values.
Termination. Every correct process eventually decides.

The pseudocode for set consensus appears in Algorithm 4. Recall that all pro-
cesses start at time 0. Each process p keeps an array of known initial values;
knowp[q] is the initial value of process q learned by p, and is initially ⊥. During
the algorithm, process p learns the initial values of other processes. Unlike TRB
that has a unique source, in set consensus all processes are sources. Therefore,
process p keeps a set Zp for each process q: Zp[q] denotes the set of processes
who sent an announcement for q, that is, Zp[q] is the set of processes who have

Algorithm 4. Set Consensus from TAB; code for process p
1: initially
2: ∀q ∈ Π : knowp[q]← ⊥

/* knowp[q] contains the initial value of process q learned by p */
3: ∀q ∈ Π : Zp[q]← {q}

/* set of processes that announced the knowledge of the initial value of q */

4: upon starting with input v do
5: knowp[p]← v
6: ta-broadcast (knowp)

7: upon announce(kn, q) do
8: for all r : kn[r] �= ⊥ do
9: Zp[r]← Zp[r] ∪ {q}

/* q learned r’s initial value but p didn’t, wait for this value */

10: upon ta-deliver(kn, q) do
11: for all r ∈ Π do
12: if knowp[r] = ⊥ and kn[r] �= ⊥ then
13: knowp[r]← kn[r] /* learn initial values q knows */
14: if updated knowp then
15: ta-broadcast (knowp) /* inform others about new learned initial values */
16: if can-decide? then
17: decide min(knowp)

18: upon no ta-deliver(v, q) for 2d1 time since the last announce(v, q) or time 0
do /* suspect q */

19: for all r ∈ Π do
20: Zp[r]← Zp[r] \ {q} /* stop waiting for all messages from q */
21: if can-decide? then
22: decide min(knowp)

23: function can-decide?
24: Kp ← {q : knowp[q] = ⊥} /* set of processes that p doesn’t know their value */
25: Up ← {q : ∃r s.t. knowp[r] = ⊥ ∧ q ∈ Zp[r]}

/* set of processes that know values of those processes that p doesn’t know */
26: return (|Kp| < k) or (|Up| < k)
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learned the initial value of process q. As for Algorithm 3, if process p does not
receive a message from q within the specified time, namely 2d1, it suspects q to
be faulty and stops waiting for a message from q (lines 18-20).

The decision condition is also more complicated that in TRB. As in syn-
chronous set consensus algorithms [7], process p can decide if it knows more
than n − k values, i.e., |Kp| < k, where Kp denotes the set of processes that p
does not know their initial value. Additionally, process p can decide if fewer than
k processes know the initial value of those processes that p does not know, i.e.,
the size of Up � {q : ∃r s.t. knowp[r] = ⊥ ∧ q ∈ Zp[r]} is strictly less than k.
That is, if only k− 1 processes know some values that p does not know, at most
k− 1 different values might be decided; therefore, p can decide on the minimum
value that it knows.

The correctness proof follows arguments similar to those used to prove the
correctness of Algorithm 3. A process decides only on a value from the know
array; the values in this array are either the process’s initial value or those
received in a ta-deliver event. Hence, the Integrity property of TAB implies the
next lemma.

Lemma 9 (Integrity). If a process decides v, then v was proposed by some
process.

Lemma 10 (Agreement). The correct processes decide on at most k different
values.

Proof. Assume, towards a contradiction, that at least k + 1 different values,
v1 < . . . < vk+1 < . . ., are decided. Let p be a correct process that decides vk+1.
By Line 26, p decides either because |Kp| < k or because |Up| < k.

If |Kp| < k, then since p decides on the minimum value it has seen it follows
that it has not seen v1, . . . , vk, that is, k values, which is a contradiction.

Otherwise, p decides because |Up| < k. Note that this happens only when
the condition of Line 18 is satisfied, i.e., 2d1 timeout expires. |Up| < k implies
that (i) at most k − 1 processes know values that p doesn’t know. This means
that at most k different values are decided (including p’s decision value). By the
assumption, (ii) there are at least k + 1 decisions.

From (i) and (ii), it follows that there is a decision value x < vk+1, such that
every process in Up that knows x also knows a value smaller than x. Let q be a
correct process that decides x. We consider two cases for how q has received x:

Case 1, q receives x after p decides: Since p decided vk+1 and x < vk+1, p
does not know x, this implies that q did not receive x from p. Therefore, q must
have received x from some process in Up, possibly through other intermediate
processes. But every process in Up that knows x also knows a value smaller than
x, a contradiction.

Case 2, q receives x before p decides: q must appear in Zp[r], for some r ∈ Π ,
since q ta-broadcasts x before deciding. Since p does not know x and p has
timed out all faulty processes by Line 18, p must have detected q’s failure, a
contradiction. ��
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The upon rule of Line 18 together with the properties of TAB ensure the next
lemma.

Lemma 11 (Termination). Every correct process eventually decides.

Proof. We show that every correct process continues to take steps until it decides
or crashes, i.e., the condition of Line 26 eventually becomes true.

Assume, by way of contradiction, that some correct process p continues to
take steps without deciding. This means that the sizes of the sets Kp and Up

it has are greater than or equal to k (according to Line 26). Thus, there are at
least k unknown values and at least k processes in Z �

⋃
r∈Π Zp[r]. Consider

one of these processes, say q. Since q ∈ Z, it has ta-broadcast knowq. If q is a
correct process, by the Validity property of TAB, p ta-delivers a message from
q within d1. Otherwise, p suspects q after 2d1 according to Line 18. In either
case, the condition of Line 26 becomes satisfied, which contradicts the fact that
p never decides. ��

The final lemma shows the timing property of the set consensus algorithm.

Lemma 12. In a run with an actual TAB transmission time d1 and f faulty
processes that obey the timing requirements, a correct process decides by time
�f/k�d1 + TO(2d1).

Proof. (Sketch) By Lemma 11, a correct process p eventually decides. Let p
decide v, where v is the initial value of some process q, i.e., knowp[q] = v. From
Line 26, p decides because either (i) |Kp| < k or (ii) |Up| < k.

In case (i), it can be easily shown (cf. [7]) that p has received v along a chain
of r ≤ �f/k�+ 1 re-broadcasts by different processes. Thus v is decided by time
(�f/k�+ 1)d1 ≤ �f/k�d1 + TO(d1) (since TO(d) ≥ d).

In case (ii) we show that each process q′ ∈ Zp[q] is removed by time �f/k�d1+
TO(2d1). Process q′ receives v through a chain of r different processes.

If none of these processes is correct, then r ≤ �f/k�. Therefore, q′ is added
to Zp[q] by time rd1 ≤ �f/k�d1 in the upon rule of Line 7 and is removed from
Zp[q], after a timeout TO(2d1), by time rd1 +TO(2d1) ≤ �f/k�d1 +TO(2d1) in
the upon rule of Line 18, which implies the lemma.

Otherwise, p receives v from a correct process by time r′d1, where r′ ≤ �f/k�+
1. Therefore, p decides v by time (�f/k� + 1)d1 ≤ �f/k�d1 + TO(2d1) (since
TO(d) ≥ d). ��

By substituting the appropriate TAB implementations, we get:

Corollary 3. There is a k-set consensus algorithm, which withstands crash fail-
ures and terminates within time �f/k�d+ TO(2d).

Corollary 4. There is a k-set consensus algorithm, which withstands omission
failures and terminates within 2�f/k�d+ TO(4d), assuming that n > 2t.
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6 Summary

This paper presents a new communication primitive and uses it to derive con-
sensus and set consensus algorithms for semi-synchronous systems, under several
types of failures. The time bounds achieved by our algorithms asymptotically
match or improve previously known bounds, but we consider the main contribu-
tion of our paper to be the modular structure of our algorithms, which provides
insight into the behavior of efficient semi-synchronous algorithms.

The time bounds of our algorithms are the sum of two terms: one depend-
ing only on d and another depending on a timeout (which itself depends on d).
Interestingly, it can be shown that the first term is even smaller in some exe-
cutions. Let δ be the maximum transmission delay of a certain execution. Then
the execution time of, e.g., our consensus algorithm for crash failures is in fact
fδ + TO(2d), which is important for the case δ + d. (The other bounds can be
adjusted similarly.)

We remark that our algorithms are early stopping, since their time bounds
depend on f , the actual number of failures in an execution, rather than on
t, the maximal number of failures. Thus, overall, the execution time of these
algorithms is a constant (in terms of f) plus a term that depends only on the
actual properties of an execution, f and δ (and not t and d).

The most obvious open question is to tighten the time bounds, especially for
omission failures.

It is also interesting to study how TAB (or some extension thereof in the
style of [9]) can yield algorithms that withstand timing or Byzantine failures.
Ponzio [18] showed that in the presence of Byzantine failures, consensus can be
solved in (f +1)(d+TO(d)). Attiya and Djerassi-Shintel [2] prove lower bounds
in the presence of t timing failures. Specifically, they showed any consensus al-
gorithm requires Ω( n

n−tTO(d)) time, while a k-set consensus algorithm requires
Ω( n

k(n−t)TO(d)) time. This leaves a gap for small values of t.
Taking a broader perspective, can TAB be used to derive efficient algorithms

for other problems, or even as a general technique for simulating synchronous
algorithms?

The partially synchronous model [11] considers an asynchronous system and
requires algorithms to terminate only after the system experiences a long enough
synchronous period. (This is also known as the eventually synchronous model.)
It would be intriguing to investigate implementing TAB in this model, and using
it to efficiently solve problems such as consensus and set consensus. A key step
would be to make our algorithms work even when not all process start at the
same time (non-synchronized start).

Aguilera, Le Lann and Toueg [1] show how fast failure detection can speed up
consensus in a synchronous system; their results are similar to [3]. However, as
explained in their paper, “specialized hardware” or “different messaging service”
are required to achieve fast failure detection. This is in contrast to the ADLS
model, studied in our paper, which assumes that all messages sent in this model
take at most time d.
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1 Introduction

Informally, the goal of Byzantine agreement (BA) is to maintain a consistent
view of the world in spite of the challenge posed by (Byzantine) faults. The
problem was first introduced by Pease et al. [PSL80]. They went on to show
that BA(in a synchronous and non-authenticated setting) is possible if and only
if 2/3 of the nodes are non-faulty. In the asynchronous setting, Fisher et al.
[FLP85] proved the impossibility of BA tolerating even a single crash failure.
Being a fundamental problem in the area of distributed algorithms, BA has
been studied in wide variety of models including partially synchronous networks
[DDS87], non-threshold adversaries [HM00] and mixed-adversaries [AFM99].

Owing to its high fault tolerance, an important variant on BA is the authenti-
cated model proposed by Pease et al. [PSL80]. Since generation of authenticated
signature for every message is costly, some works choose to consider alternatives
for authentication and avoid the excess use of signatures. Specifically, Borcherd-
ing [Bor95, Bor96b] investigated the case when signatures are used in only some
rounds but not all. A different approach was taken by Srikanth and Toueg [ST87]
where authenticated messages are simulated by non-authenticated sub-protocols.
In another line of work, Borcherding [Bor96a] considered different levels and
styles of authentication and its effects on the agreement protocols. His work fo-
cuses on the properties of authentication scheme that allows us to build faster
protocols for BA. Gong et al. [GLR95] studied the assumptions required for the
authentication mechanism in protocols for BA that use signed messages. They
present new protocols for BA that add authentication to oral message protocols
so that additional resilience is obtained with authentication. In all, ABA has
been fairly well studied by researchers.

Gupta et al. [GGBS10] consider the problem of Authenticated Byzantine
Agreement(ABA) under a mixed adversary model. They give completeness the-
orems for ABA protocols over a complete network. In this work, we extend their
results to arbitrarily connected (undirected) networks.

2

3

4

1

Fig. 1. Network G

1.1 Motivating Example

For starters, consider the network in Figure 1. Imagine the case when either 1
or 3 is Byzantine faulty but both of them have the ability to authenticate their
messages; while 2, 4 are non-faulty but do not have the power to authenticate.
We claim that in such a scenario 2 cannot reliably send a message across to 4.



Byzantine Agreement Using Partial Authentication 391

In particular, consider the following executions E1 and E3: In E1, 2 intends
to send α to 4, and during E3, 2 wants to send β (different from α). Now, the ad-
versary employs the following strategy: In Eγ

1, adversary corrupts γ and sends
what an honest γ would have sent in Eγ . It can be shown that the messages
received by 4 in both the executions are same and thus, 4 cannot distinguish
between E1 and E3. The actual views can be proved to be same using induc-
tive arguments. However, we do not take this up in any more detail. We, also,
note that we do not use this fact elsewhere in the article. Thus, it seems that in
the aforementioned scenario, nodes in G (ref. Figure 1) cannot have Byzantine
agreement(BA) given the parties can’t establish a reliable communication chan-
nel – which is fundamental to every distributed protocol. But, interestingly, our
theorems show that nodes can agree in spite of nodes 2 and 4 not being able to
establish a reliable communication link.
G turns out to be a classic example, which seems to suggest - “Perhaps, BA is

more fundamental to Distributed Computing than all pair point-to-point com-
munication”. We give a simple protocol in Table 1 that solves BA over G. This is
one of the many interesting examples where it seems that a BA protocol cannot
exist - but our characterization gives an “efficient” way to identify if a protocol
can indeed exist or not.

Organization of the Paper. In Section 2, we introduce the model. We give a
summary/implications of the main theorem in Section 2.1. We, then, prove the
main theorem over Sections 3, 4 and 5.

2 Model and Contributions

We consider a set of n nodes, communicating over a synchronous network. That
is, the protocol is executed in a sequence of rounds wherein in each round, a
node can perform some local computation, send new messages to its neighbours,
receive the messages sent to him in that round by the nodes (and if necessary
perform some more local computation), in that order. The communication net-
work is abstracted as an undirected graph. We further assume that there is a
communication channel for each edge of the graph. Also, the communication
channel between any two nodes is perfectly reliable and authenticated. We re-
mark that all the nodes are aware of the topology of the network. During the
execution, the adversary may corrupt up to t nodes. The adversary can make
the corrupted node behave in an arbitrary way. Further, the adversary can read
the internal states of up to another k nodes. We refer to such an adversary as
(t,k)-adversary. One may view such an adversary as a mixed adversary.

We also assume the existence of authentication tools such as Public Key In-
frastructure (PKI) and Digital Signature Schemes (DSS). Nodes can authenticate
themselves and their messages with these authentication tools. We assume that
every node has a secret key SK and a signature scheme Sign(SK,mesg) that
allows it to sign the message mesg with its signature. Also, we assume that any
1 Let γ ∈ {1, 3} and define γ to be 3 if γ = 1 or 1 otherwise.
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node can verify if a message carries the signature of a given node. It is assumed
that the nodes sign whenever they send any message and also discard any re-
ceived message that does not have a valid signature on it. This ensures that the
receiver can uniquely identify the sender of the message. Since the adversary
can look into the internal states of k nodes outside its control, it can forge the
signature of all the k. So, in all the adversary can forge/generate the signatures
of (t+ k) nodes. From now on, we use the term κ-connected network to denote
a κ-vertex connected network. Also, throughout the paper we use n to denote
the number of nodes in the network. Every node starts with an input value from
the set V = {0, 1}.
Definition 1 (Byzantine Agreement)

– Agreement: All non-faulty nodes decide on the same value u ∈ V .
– Validity: If all non-faulty nodes start with the same initial value v ∈ V , then
u = v.

– Termination: All non-faulty nodes eventually decide.

Here a node is considered as faulty if and only if he deviates from the delegated
protocol. Therefore, the nodes that do not deviate from the designated protocol
are non-faulty nodes. A node who follows the designated protocol diligently,
even if adversary has complete access to his internal state is referred as passively
corrupt node. A node is honest if he follows the designated protocol, and over
whom adversary has absolutely no control. In particular, the adversary cannot
replicate/forge the signature of honest nodes. For the purpose of this paper, we
refer to both honest and passively corrupt nodes together as non-faulty.

Definition 2 ((t,k)-BA Protocol). A protocol is a (t, k)-BA protocol if it
accomplishes Byzantine agreement (ref. Definition 1) in the presence of a (t,k)-
adversary.

Definition 3 ((2t,t)-Connectivity). A network N = (IP, E) is (2t, t)-
Connected if its minimum degree is at least 2t and it is (t+ 1)-connected.

2.1 Results and Contributions

The contributions of this paper are many fold :

1. Complete Characterization: We give the necessary and sufficient condition(s)
for designing protocols for agreement over (undirected) networks. We prove
that BA Protocols over a n node network tolerating a (t,k)-adversary exist
if and only if n > 2t+ min(t, k) and the network is

(t+ 1)-connected if n > (2t+ k)
(2t, t)-connected if (t+ k) < n ≤ (2t+ k)

(2t+ 1)-connected if n ≤ (t+ k)

The above holds for k > 0. For k = 0 it reduces to n > t and network should
be (t+ 1)-connected.
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2. Unification: In the standard authenticated model (ABA) [PSL80], the adver-
sary can forge messages only on behalf of corrupt nodes. On the other hand,
in the unauthenticated model (BA), every node can be treated as passively
corrupt node2. Thus, characterizing possibility of BA protocols for the entire
spectrum leads to unification of the extant literature on BA. As an elabora-
tion consider the result presented in previous paragraph. It says if n ≤ (t+k)
then 2t + 1 connectivity is necessary and sufficient – which is characteriza-
tion of BA over non-authenticated setting. To elaborate, n ≤ (t+k) implies
there are no honest nodes with a signature scheme that the adversary cannot
forge and thus, collapses to the setting of non-authenticated BA.

3. Agreement can be easier than all pair point-to-point communication: From
the results presented in this paper, it is evident that for all networks with
n > (2t+ k), (t+ 1)-connectivity is sufficient for agreement. We, now, show
that if k > 0 then for simulating point-to-point communication (2t + 1)-
connectivity is necessary. Consider a scenario where the Sender, say S, is
non-faulty but the adversary can sign for S; in such a scenario, it is well-
known that if the network is not (2t+1)-connected, there must exist a node j
such that reliable message transmission from S to j is impossible[DDWY93].
From the above argument one can see that BA is easier than all pair point-
to-point communication.

4. BA is easier than Byzantine Generals (BG) [PSL80, LSP82]: Informally,
the problem of reliable broadcast in presence of Byzantine faults is also
studied under the name of BG. Note that if a protocol for BG exists, then it
vacuously is also a protocol for reliable point-to-point message transmission.
Till this juncture, BA and BG have been isotopic forms. That is, BA iff
BG. However, we show that BA and BG are two different problems and in
fact BA is more primitive and fundamental to distributed computing than
BG. In other words, there are several networks over which BA is possible
whereas BG is impossible, in spite of having an overwhelming non-faulty
majority.

Organization of the Proof. From now on, we assume that k > 0. We, also,
assume that, w.l.o.g, either n > (2t+ k) or (t+ k) < n ≤ (2t+ k) or n ≤ (t+ k).
We consider these cases in Sections 3, 4 and 5 respectively. We establish the
main theorem of the paper in Theorem 1.

3 The Good: When the Honest Are in Abundance

Lemma 1. (t, k)-BA protocol over any general network N = (IP, E), |IP| >
(2t+ k), exists if and only if N is (t+ 1)-connected.

Proof. Necessity: The necessity of (t+1)-connectivity is straight forward due to
the presence of t Byzantine faults. Elaborating further, the adversary may crash
t nodes and disconnect the network.
2 A node not having no authentication facility at all can also be visualized as passively

corrupt and therefore, the adversary can forge messages on his behalf.
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Sufficiency: We assume that every node i has a secret key SKi and a signature
scheme Sign(SKi,mesg) that allows i to sign message mesg with i’s signature.
Also, we assume that any node can verify if a message carries a valid signature
of i. It is assumed that the nodes sign whenever they send any message and also
discard any received message that does not have a valid signature on it. Nodes
run the Flood-Set protocol given in Algorithm 1.3

Algorithm 1. Flood-Set(N , i, σ) Node i starts with its input σ ∈ {0, 1}
Ω[n] = ∅ 	 Maintain a set for each node in the network, Initially empty
for each j : (i, j) ∈ E do

Send(σ, j) 	 i sends its input to its neighbours
end for
Round← 1
while Round ≤ 2n do 	 Flood for 2n rounds

for each j : (i, j) ∈ E do
Receive(j)
∀x ∈ IP, Ω[x] = Ω[x] ∪ mesg’s originating from node x and received from j

end for
for each j : (i, j) ∈ E do

Send(Ω, j) 	 Send messages to neighbours
end for
Round = Round + 1 	 Increment Round

end while

Node x deems the execution/invocation of the flood-set protocol by node j as
dirty if he detects the Byzantine influence(i.e., if x received two different inputs
from j with a valid signature of j or never receives any messages with valid
signature of j); otherwise we say that the execution is clean for i. (Note that in
our setting an execution can be dirty when either j is either faulty or passively
corrupt.)

At the end of Flood-Set protocol, x modifies Ω in the following way: the jth

location of this tuple is changed to a ⊥ if node j’s flood-set execution is dirty, else
if it is clean (and thus, had a single value v), then Ω[j] = v. x takes a majority
over Ω and outputs it as its decision value; otherwise, it outputs a default value.
The proof of correctness hinges on the fact that n > 2t + k. Rearranging the
terms, (n− t− k) > t, means that the honest nodes are in strict majority. Thus,
the clean runs of the honest nodes carries us through. For a complete proof, we
refer the readers to the full version [BGG+]. ��

4 The Bad: When Faulty Outnumber the Honest

We now take a detour and limit our focus to 2-connected networks. Specifically, we
first construct (1, ψ)-BA protocol on a 2-connected network, where ψ ∈ [2, n− 2].
3 This protocol is essentially the Dolev-Strong protocol [DS83] followed by n rounds

of flooding.
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Our approach can be outlined as follows: we design a protocol Π for the weakest
case, that is to say the adversary always uses his full power and corrupts exactly 1
node actively and (n− 2) nodes do not have the power to authenticate themselves.
It is straightforward to see that such a protocol would also work for the stronger
assumptions in which more nodes have the power to authenticate themselves or the
adversary does not corrupt anyone. Finally, we extendΠ to a more general setting
where the adversary controls t ≥ 1 nodes.

4.1 Π: The Baby Protocol

Designing Π: Nodes exchange messages as per the Flood-Set protocol, given as
Algorithm 1. Node i applies a “modified” decision rule, which is as follows: If
a majority exists over all the clean runs, then i outputs it as his decision and
halts. Else, if the number of nodes which had a clean run is more than 2, i
outputs 0 and halts. However, if the number of clean runs is only 2: Say, only
runs of nodes a and b are clean. Notice that, one of the nodes a or b must be
honest while the other node may be corrupt.

We now make a big assumption (and later show how to get rid of it): We assume
that both a and b are non-faulty. Node x, x ∈ IP− {a, b}, sends his input to node
a using the following routing strategy: (a) through the direct edge(if it exists),
(b) otherwise a and b have at least 2 vertex disjoint paths between them and all
the nodes in these paths must use these paths only. (c) else let χ = {p1, p2..., pj}
be the set of paths to a from x, if any such path includes b, x chooses it otherwise
it chooses the shortest path to a. x also sends its input to b along an analogous
set of rules. Nodes a and b are required to sign with their signature and send
them back to x along the same path. If a and b receive more than one value
from a node or not along the routing protocol given, a and b do not respond.
Suppose, x receives, say, α and β from a and b respectively. If either a or b do
not match with his input bit, x drops that message (Note that he cannot infer
anything whether the node who signed on the toggled bit is corrupt or not).

Now, every node tries to get its input signed by a and b. After that, every node
runs the Flood-Set protocol, given as Algorithm 1, twice. The first time with its
input bit signed by a and the next time with its input signed by b. If both these
runs turn out to be clean but the values contradict each other – both runs of i
are overruled to be dirty. And if i has both its runs clean and consistent – then
i’s run is declared clean. At the end of Flood-Set protocol, i take a majority
among all clean runs including the two runs of a and b; otherwise it decides on
a default value(say, 0) and the protocol terminates. This would work as along
as one of the node’s execution in the flood-set protocol is clean. We, now, prove
that if both a and b are non-faulty, then at least one node will have a clean run.

Lemma 2. If both a and b are non-faulty, at least one node shall have a clean run.

Proof. Since N is 2-connected, there can be two cases: (a) a, b are a vertex cut-
set4 in N . (b) a, b are not a vertex cut-set. In the former, it is easy to see that
4 A vertex cut-set in a network is a set of vertices whose removal from the graph makes

it disconnected.
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the claim is maintained as there shall be at-least two components upon removing
a and b and it is clear that the adversary may be present only in one component.
Thereby, the nodes in the other component can get the signature of a and b and
hence, they will be able to sent their value to all other nodes successfully - one
of a or b is honest and the other is non-faulty - so either both the runs will be
clean with a consistent value or one of the runs will be clean and the other will
be dirty - and from the protocol, both these cases are deemed to be clean runs.
The case of both runs being clean with a contradictory value can happen only
if one of a, b and the node is faulty.

In the later, there is only one component upon removing a and b. If a and b are
adjacent, notice that the both a (resp. b) are sure to have a neighbor other than
b (a) (as N is 2-connected, neighborhood of each node is at least 2). In this case,
one of them is guaranteed to be non-faulty and hence from the routing method
it is easy to see that, one of these node’s will have a clean run (arguments go
similar to previous case). If a and b are neither vertex cut-sets nor adjacent then
there are at least 2 vertex disjoint paths between a and b. And active adversary
resides in only one of them. Hence, at least of the nodes in the other path will
send its input bit to get signed from a, b as per the routing algorithm. Hence, it
easy to see that such a node always exists and hence at least one of the nodes
modulo a, b will have a clean run. And, thus the Lemma. ��
Observe that, all nodes would have agreed, under the big assumption that both
a and b were non-faulty. However, if the protocol has not had the clean run -
Lemma 2 implies that either a or b is faulty. Depending on whether nodes a and
b are a vertex cut-set or not, nodes do the following.

The Shallow Side. If a and b are not a vertex cut-set, a publicly chosen (say,
the node with the least UID outside a, b) non-faulty node i may send his input to
everyone using paths outside a and b. Besides that, i sends his input to a through
a path avoiding b and also, to b via path avoiding a. Note that these paths are
bound to exist as it is a 2-connected network. This completes the construction
of Π when a and b are not a cut-set. This simple protocol is a BA protocol as i
is guaranteed to be a non-faulty node.

The Far Side: The Diamond Protocol. Consider the case when a and b
are a vertex cut-set. Let a and b partition the network N into x components
c1, c2, . . . cx. Nodes, now, choose a representative from each of these components,
say ni from is chosen from ci (via some function on UID’s). Nodes, now, create
a (virtual) overlay-ed network N ′ whose vertices include ni’s, a and b. An edge
appears between any two vertices only if there is an edge between the components
represented by them. Note that we are not looking for a direct edge between
ni’s, we are looking for edge between Ci’s and a, b (each edge may have to be
simulated via one or more edges). Notice that every ni has to be connected to
both a and b (follows from 2-connectivity of N ). Thus, N ′ (ref. Figure 2) has to
be 2-connected (follows from N being 2-connected and that a, b are a cut). Now,
we pair every node in N ′ (other than a and b) with another node (pairings are
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Fig. 2. Network N ′

chosen via a pre-decided strategy)5. Consider one such pairing (nx, ny). Now,
nodes a, b, nx and ny simulate network G in Figure 1. Specifically, a, b, nx and
ny simulate nodes 1, 3, 2 and 4 respectively. They execute rounds 1 and 2 of the
Diamond protocol (Table 1). It is assumed that nodes sign on all the messages
they send and discard any received message with an invalid signature. The rest
of the nodes, merely, act as routers relying messages. The only difference w.r.t.
the Diamond protocol is that in lieu of rounds 3 and 4, node 4(that is, ny)
executes the Flood-Set protocol given in Algorithm 1 on network N with the
tuple containing inputs ψ1 and ψ3. If it is a clean run, nodes decide on that value
and halt.

Claim. If node 4 does not receive the input value of node 2 by the end of this
protocol, node 2 can identify the Byzantine faulty node.

Claim. Node 2 can sense if his input value has been reliably communicated to
node 4.

The proofs of the above Claims have been omitted due to the constraints on
space and can be obtained from [BGG+]. Notice that if nodes have not agreed
on any value, we can invoke Claim 4.1 to infer that node 2(here it is, nx) can
identify the adversary (between a, b). If nodes haven’t decided yet: nodes nx and
ny swap their codes, that is, nx deploys the code of 4 and vice-versa and then,
they re-execute the Diamond protocol given above. If nodes still did not agree,
both nx and ny can identify the faulty node is (out of a and b). The executions
proceed until nodes have decided and halted or when all the pairings have tried
their luck. When all the pairings are exhausted, notice that all ni’s can identify
the adversary and this as good as the adversary making himself public!

5 A node can be involved in multiple pairings.
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Table 1. Diamond protocol

Code for node 1:

Let node 1 start with an input σ1 ∈ {0, 1}.

1. Receives the values sent by nodes 2 and 4
and them across to 4 and 2 respectively.

2. Do nothing.
3. Receive ψ from node 4 and send it to 2.
4. Do nothing.
5. Receive from 2 and output the same.

Code for node 3:

Let node 3 start with an input σ3 ∈ {0, 1}.

1. Receives the values sent by nodes 2 and 4
and them across to 4 and 2 respectively.

2. Do nothing.
3. Receive ψ from node 4 and send it to 2.
4. Do nothing.
5. Receive from 2 and output the same.

Code for node 2:

Let node 2 start with an input σ2 ∈ {0, 1}.

1. Sends σ2 to nodes 1 and 3.
2. Receive ψ1 and ψ3 from nodes 1 and 3 re-

spectively.
3. Do nothing.
4. Receive ψ′

31 from node 1 and ψ′
13 from node

2. If any of these values is a ⊥ then replace
it with his input value, σ2.
If ψ′

13 = ψ′
31 = σ2, then decide on σ2.

Else if ψij �= σ2, then decide on ψj .
5. Send the value decided upon to 1 and 3.

Code for node 4:

Let node 4 start with an input σ4 ∈ {0, 1}.

1. Sends σ4 to nodes 1 and 3.
2. Receive ψ1 and ψ3 from node 1 and node 3

respectively.
3. Send the value ψ3 to node 1 and ψ1 to node

3.
4. Create a set W from ψ1 and ψ3. If |W | = 1

decide on that element, else output σ4.
5. Do nothing.

All the ni’s agree on the input of the non-faulty node (out of a and b). Now,
each of these ni’s send the decision to the nodes in the connected component
represented by ni and also to a and b. This completes the construction of Π
((1, n− 2)-BA protocol).

Lemma 3. For every 2-connected network on n nodes, Π is a (1, n − 2)-BA
protocol.

Proof. Termination is obvious. For agreement, the use of Flood-Set (Algorithm
1) and the Diamond protocol for communication ensures that all the non-faulty
nodes have consistent values and hence the decision rule simply implies that all
of them agree on the same value. If all non-faulty nodes start with same input
σ, every node’s input (modulo the faulty ones) has to be σ and the protocol
decides only upon receiving at least inputs from three nodes. Thus, if all the
non-faulty nodes start with the same input, σ is the only possible output. Hence,
by definition, it is a (1, n− 2)-BA protocol over a 2-connected network. ��

4.2 Beyond 2-Connected Networks

We, now, extend Π to an arbitrarily connected network. Before that, we in-
troduce new machinery. It is convenient to model the threshold adversary as a
non-threshold adversary [HM97, FM98, HM00]. Informally, a non-threshold ad-
versary captures the faults by a fault structure. That is, an enumeration of all the
possible “snapshots” of faults in the network. Note that a single snapshot can be
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described by an ordered pair (B,K), where B,K ⊆ IP and B ∩K = ∅, 6 which
means that the nodes in the set B are Byzantine faulty while the nodes in the
set K are passively corrupt. A fault structure is a collection of such pairs. More
precisely, we define the fault structure by A, where A ⊆ 2IP×IP. The adversary
is allowed to corrupt any pair from the fault structure. The fault structure is
monotone in the sense that if (B1,K1) ∈ A, then ∀(B2,K2) such that B2 ⊆ B1

andK2 ⊆ K1, (B2,K2) ∈ A. We note that A can be uniquely represented by list-
ing the elements in its maximal basis A which we define below. In what follows,
unless specified otherwise, we work with only the maximal basis of A.

Definition 4 (Maximal Basis of A). For any monotone fault structure A, its
maximal basis A is defined as A = {(B,K)|(B,K) ∈ A, �(X,Y ) ∈ A, (X,Y ) �=
(B,K), X ⊇ B and Y ⊇ K}.

It is evident that a (t, k)-fault is characterized by a fault basisA = {(B,K)||B| ≤
t, |K| ≤ k,B ∩K = ∅}. We define the size of the fault-basis to be the number of
(B,K) pairs in the set A. From now on, we work with the maximal basis of A.

The Case of 3-Sized Structures. We first give the characterization for the
case of 3-sized structures and then extend it to any adversary structure. We
begin by setting the stage for constructing protocols on N tolerating A. Since
(t+ k) < n (and thus, |Bi|+ |Ki| < |IP|), there is at least one honest node. Let
us denote the honest node when the adversary corrupts (Bi,Ki) by hi.

Assume that upon removing the nodes in (B1∪B2∪B3), say N is partitioned
into x components, namely, c1, c2, . . . cx. Let us denote the honest node when
the adversary corrupts (Bi,Ki) by hi. Now, we choose a representative from
each of B1, B2, B3 and each of the components in the following fashion: If
any of them have a hi’s, it is chosen as the representative; otherwise, the node
with the lowest UID is picked. Note that, at most two of the three hi’s, say
hα and hβ, may lie within a Bi (this follows from the definition of hi). Our
goal is to ensure the presence of an honest representative. Consider the case
when h2 and h3 lie inside B1. In this case, if B1 is corrupt, h1 is honest and
will have an honest representative and our target is achieved. However, when
B1 is not corrupt, one of h2 or h3 is honest (follows from definition of hi’s),
but we are not sure which of them is honest. So, we need to be a little smarter
in picking up a representative. Hence, we create a virtual node and use it as a
representative in case both h2 and h3 lie inside B1. The virtual node we create
has the following property: Either it is honest or faulty but never passively
corrupt. As with every virtual node, it is crucial to define its simulation, the
notion of send/receive for the virtual node and its signature. For an exposition
on virtual nodes, we refer the readers to [HM00].

Simulation of Virtual Node. Nodes h2 and h3 combine to simulate the
virtual node. Since, they may not be adjacent, we need to specify how they

6 This is not a serious assumption as if there some nodes common to both sets, such
nodes can w.l.o.g placed solely in set B.
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communicate. If h2 and h3 have a path consisting of nodes exclusively from
B1 and those outside the B2 and B3, they use this path to communicate and
agree7. However, if all paths between h2 and h3 have a node either from B2

or B3, communication is carried out as follows: They send the values to each
other via any two paths (chosen deterministically) such that one of them avoids
nodes in B2 and the other avoids B3(such paths are guaranteed to exist as the
network is (t+ 1)-connected). h2 and h3, now, take a majority over these values
among the values obtained in the clean runs8. If they share a path exclusively
in B1 - when B1 is not corrupt, the objective of creating an honest is achieved
as h2, h3 are non-faulty and they share a good path and when it is corrupt, the
simulation is allowed to fail. When the construction uses 2 paths (one from B2

and the other from B3), if either h2 or h3 has a signature scheme which the
adversary cannot replicate (in other words, honest) - the only value that can
be received consistently is the value of the honest node. Thus, the simulation
is consistent. While if one of them is faulty, the protocol does not rely on the
simulation and we are allowed to fail.

Signature. The notion of signature for a virtual node is a natural extension of
the simulation. Any message which has to be signed by the virtual node contains
a sequence of signatures from h2, h3 and the nodes along the communication
path. The verification relies on the fact that every node knows h2, h3 and
the nodes involved in the simulation. A valid signature amounts to a correct
sequence of signatures on the message sent by the virtual node.

Send/Receive. Virtual node sending a message to node i is defined as follows:
h2 and h3 exchange messages using the aforementioned paths and then run
the Flood-Set protocol. Now they send the transcripts to i. i takes a majority
among the clean runs of the Flood-Set reveals the transcript. Once the transcript
is received, the message of the virtual node is extracted. The Flood-set works
when the virtual node is honest. If it is not honest, the flooding is allowed to
fail. i sending a message to the virtual node is equivalent to - i sending message
separately to h2 and h3 and they exchange the messages they received from i
and then, take a majority over the clean runs. The consistency of send, receive
rely on the paths chosen and the fact that one of the paths is always good. The
signatures of the nodes along the path play a crucial role in allowing i to verify
the transcripts.

Lemma 4. (t, k)-BA protocol over any general network N = (IP, E), when (t+
k) < |IP| ≤ (2t + k), tolerating a 3-sized fault basis A = {(B1,K1), (B2,K2),
(B3,K3)}, ∀(Bi,Ki) ∈ A, |Bi| = t and |Ki| = k, exists if and only if N is
(2t, t)-connected.

7 Which is only possible when both are non-faulty. However, when they are a faulty
they cannot agree and the simulation fails. However, in this case the protocol does
not rely on this virtual node to provide a honest representative.

8 Clean runs are those in which only one message with a valid signature is received.
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Proof. Sufficiency: Say ni is chosen from ci (components formed after removing
B1, B2 and B3 fromN ) and bi fromBi, i ∈ {1, 2, 3}. We, now, create a overlay-ed
network N ′(this construction is similar to the section on diamond protocol) on
ni’s and bi’s in which an edge appears between any two nodes(representatives)
only if there is a edge between the components represented by them. Each of
these ni’s is connected to at least two bi’s (Since, N is (t+ 1)-connected).

Notice that N ′ is 2-connected (similar to the argument in The far side in
Section 4.1). Also, atleast one of the representatives is honest (follows from the
election of representatives). Hence, nodes in N ′ now execute Π (ref. Section 4.1)
and by Lemma 3 all the (non-faulty) representatives agree. After the represen-
tatives agree, they distribute their decision across their components and to the
representatives of Bi’s. For nodes that lie inside Bi’s: Since the network N is
(2t, t)-connected (Definition 2), every node has a degree at least 2t. This implies
that any node in Bi has a direct edge to a node outside all Bi’s OR has a direct
edge to one node from each of the Bi’s. In the former, it can decide on the value
obtained from outside Bi’s. In the latter, it takes a majority among the three
values received from each of the Bi’s. This is bound to work as two of the three
Bx’s are non-faulty and would have agreed in the execution of Π . The proof of
correctness stems from the fact that once the representatives agree (similar to
Lemma 3), it is easy that all the nodes in their respective components also agree.
Necessity: We construct two executions and prove that there is a non-faulty
node for which both of them are indistinguishable. Thus, the node remains in a
bivalent state forever. It is an argument along the lines of canonical impossibility
proofs in distributed computing. For further details, one may refer to the full
version of the paper [BGG+]. ��

3-Sized to n-Sized. We, now, extend the characterizations over a 3-sized fault
basis to an n-sized fault basis.

Lemma 5. (t, k)-BA protocol over a network N tolerating a n-sized fault basis
A exists if and only if there exists (t, k)-BA protocols for every 3-sized fault basis
B, B ⊆ A.

This extension is along the lines of [HM00] and readers may refer to the full
version of the paper [BGG+].

Lemma 6. (t, k)-BA protocol over a network N = (IP, E), (t+k) < n ≤ (2t+k),
exists if and only if N is (2t, t)-Connected.

Proof. By invoking Lemma 4 and Lemma 5. ��

5 The Ugly: When Only the Faulty can Authenticate

Lemma 7. (t, k)-BA Protocol over N , n ≤ (t + k), exists if and only if N is
(2t+ 1)-connected.
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Proof. Since n ≤ (t + k), it basically means that the signatures schemes of all
nodes outside adversary’s control can be forged and hence the power of authen-
tication is entailed useless. Hence, proofs from the standard unauthenticated
model of BA [Lyn96, Dol82] will lead us here. ��
Main Theorem 1. (t, k)-BA protocol over a network N = (IP, E), |IP| = n,
exists if and only if n > 2t+ min(t, k) and N is

(t+ 1)-connected if n > (2t+ k)
(2t, t)-connected if (t+ k) < n ≤ (2t+ k)

(2t+ 1)-connected if n ≤ (t+ k)

Proof. By invoking Lemma 1, Lemma 6 and Lemma 7 and the result of Gupta
et al. [GGBS10], we establish the theorem. ��

6 Concluding Remarks

Possibly, for the first time in literature we show that there are networks over
which agreement is possible even though not all non-faulty nodes can reliably
communicate with each other. In essence, all-node global consistency is strictly
easier than all-pairs point-to-point communication. In this perspective, it ap-
pears that the problem of agreement could be a more fundamental primitive
to general distributed computing than what (even the ubiquitous problem of)
reliable communication is.

The focus of this work has been, primarily, to establish (im)possibility results
for BA. Hence, the protocols presented in this paper are sub-optimal and there
is a definite scope for improving the same. Further, it will be interesting to study
this problem in more generic settings such as directed networks, asynchronous
networks and may be under the influence of a non-threshold adversary.
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Abstract. For every integral parameter k > 1, given an unweighted
graph G, we construct in polynomial time, for each vertex u, a distance
label L(u) of size Õ(n2/(2k−1)). For any u, v ∈ G, given L(u), L(v) we
can return in time O(k) an affine approximation d̂(u, v) on the dis-
tance d(u, v) between u and v in G such that d(u, v) � d̂(u, v) �
(2k − 2)d(u, v) + 1. Hence we say that our distance label scheme has
affine stretch of (2k − 2)d + 1. For k = 2 our construction is compara-
ble to the O(n5/3) size, 2d + 1 affine stretch of the distance oracle of
Pǎtraşcu and Roditty (FOCS ’10), it incurs a o(log n) storage overhead
while providing the benefits of a distance label. For any k > 1, given a
restriction of o(n1+1/(k−1)) on the total size of the data structure, our
construction provides distance labels with affine stretch of (2k − 2)d + 1
which is better than the stretch (2k − 1)d scheme of Thorup and Zwick
(J. ACM ’05). Our second contribution is a compact routing scheme with
poly-logarithmic addresses that provides affine stretch guarantees. With
Õ(n3/(3k−2))-bit routing tables we obtain affine stretch of (4k − 6)d + 1,
for any k > 1. Given a restriction of o(n1/(k−1)) on the table size, our
routing scheme provides affine stretch which is better than the stretch
(4k − 5)d routing scheme of Thorup and Zwick (SPAA ’01).

1 Introduction

A distance label scheme is a pair of protocols. A pre-processing protocol takes a
graph as input and maps each vertex u to a label L(u) and a query protocol that
takes two labels L(u), L(v) as input and outputs an estimate d̂(u, v). Typically,
distance label schemes are measured by (1) the time complexity of the pre-
possessing protocol, (2) the size of the labels, (3) the time complexity of the
query algorithm, and (4) the quality of the distance estimation. Thorup and
Zwick [17] prove that for any integer k > 1 it is possible to preprocess a graph in
polynomial time to obtain labels of size at most1 Õ(kn1/k). Given any L(u), L(v),
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in time O(k), a distance estimation d(u, v) � d̂(u, v) � (2k−1)d(u, v) is provided.
Distance labels are a special type of a Distance Oracle, a global data structure
that returns estimations on the all-pairs distance matrix. Distance labels have
the benefit of allowing to easily partition the distance oracle into sub-regions.
For example, suppose we have a distance label scheme for the whole world road
network, it is easy to distribute to each mobile phone in a succinct manner the
part of the map in the world that is relevant to that particular phone.

In this paper we focus on unweighted graphs and consider distance estimations
d̂ that have both a linear multiplicative term and an additive term. We say that a
distance estimation d̂ has affine stretch of αd+β if d(u, v) � d̂(u, v) � αd(u, v)+β
for all u, v. It is known that any distance oracle of o(n2) size must have affine
stretch αd + β such that α + β � 3, and this is true even if we restrict our
attention to unweighted graphs (see [17]).

Pǎtraşcu and Roditty [14] prove that unweighted graphs have a distance oracle
of O(n5/3) expected size that provides affine stretch of 2d+1. Given a restriction
of o(n2) on the size of the distance oracle, the 2d+1 affine stretch of [14] is better
than the stretch 3d distance oracle of [17]. (The [17] scheme uses only O(n3/2)
memory). However, the scheme of [14] seems to require a global data structure.
We could not see an obvious way to distribute this information into balanced
labels of size Õ(n2/3).

Our first contribution is a distance label scheme that for any integer k > 1, can
be pre-processed in polynomial time and produce labels of size Õ(n2/(2k−1)) that
provide distance estimation in O(k) time with affine stretch of (2k − 2)d + 1.
Relative to the 2d + 1 result of [14], our k = 2 scheme requires O(log2/3 n)
more total memory but provides the benefits of a distance label. Note that
for any k > 1, our (2k − 2)d + 1 scheme requires more memory than the [17]
(2k−1)d scheme (but has better stretch) and less memory than the [17] (2k−3)d
scheme (but has worse stretch). To highlight our contribution relative to the best
previous results, consider a problem where there is some external restriction of
o(n1+1/(k−1)) on the total size of the distance oracle, and ask for the best affine
stretch under such restrictions. Our construction provides distance labels with
affine stretch of (2k−2)d+1 which is better than the best previous solution which
obtains stretch (2k−1)d. Note that according to an Erdös-Simonovits conjecture
about density of large girth graphs [8], any distance oracle on unweighted graphs
with o(n1+1/(k−1)) memory must have an affine stretch αd+β with α+β � 2k−1.

Technically, we make two contributions. First we observe that the scheme
of [14] naturally2 generalizes to a distance oracle with O(n1+2/(2k−1)) memory
and affine stretch of (2k−2)d+1 using the hierarchical sampling scheme of [17].
The main technical contribution of [14] was a new ball growing protocol. Our
second contribution it to show that for distance labels one can instead use the
sampling technique of [16] to obtain similar bounds.

For stretch 2d+ 1 with Õ(n2/3) labels the high level idea is to build clusters
B(u) around each node u such that |B(u)| = Õ(n1/3) and for every w ∈ B(u),

2 We have learnt that M. Patrascu, L. Roditty, M. Thorup have independently made
a similar observation.
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| {v : w ∈ B(v)} | = Õ(n1/3). These clusters are built using the sampling tech-
nique of [16]. Given two nodes s and t the proof then proceeds much like [1,14],
by separating into two cases. If B(s) ∩ B(t) �= ∅ then we can get the exact
distance. Otherwise if B(s) and B(t) are disjoint, then we use the observation
of [14] that the diameter of the smallest of the two balls is at most (d(s, t)+1)/2.

In the second part we study compact routing schemes with affine stretch. A
routing scheme maps each vertex to some routing information (its routing table)
and a poly-log size label (its address). Given a target label, the source needs to
decide with its routing table how to forward a message using a poly-log sized
header. The affine stretch of a routing scheme is a bound on the worst case
route length taken by the routing scheme relative to the shortest path. Routing
schemes are more challenging than distance labels since the source has access
only to a poly-log size label of the target (while in the distance label model we had
symmetric information about the source and target). Intuitively, this asymmetry
generates difficulties in maintaining similar space-stretch trade-off in comparison
with distance labeling or distance oracles. On the other hand, when progressing
to the target, a message can profit from vertices it traverses. Nevertheless, for
small distances in a sparse graph this advantage seems negligible. Given space
bound of Õ(n1/k) and k > 2, there are gaps between the best known distance
labeling and the best known compact routing. Distance labeling achieve stretch
2k− 1 [17], whereas the best known routing schemes only achieves stretch 4k−
5 [16].

Our second contribution is a compact routing scheme that with Õ(n3/(3k−2))-
bit routing tables obtains affine stretch of (4k − 6)d + 1, for any k > 1. Our
(4k− 6)d+ 1 scheme requires more memory than the [16] (4k− 5)d scheme (but
has better stretch) and less memory than the [16] (4k − 9)d scheme (but uses
less memory). To highlight our contribution relative to the best previous results,
consider a problem where there is some external restriction of o(n1/(k−1)) on
the size of the routing tables, and ask for the best affine stretch under such
restrictions. Our construction provides a compact routing scheme with affine
stretch of (4k − 6)d + 1 which is better than the best previous solution which
obtains stretch (4k − 5)d (see [16]).

Our stretch 2d+1 routing scheme is based on our approach for 2d+1 labeling,
but requires some additional ideas. The main new difficulty is when the smaller
ball is around the source. This requires to redefine the ball around the source,
spread routing information among vertices, and using hashing to find the relevant
information. Such ideas were previously used (to the best of our knowledge) only
for name-independent routing (for example, see [1]). For the general case we need
an additional step. When the smaller ball is around the source we first try routing
near the ball to gather information but if this fails we go back to the source and
then proceed as in [16].

Related Work. One idea to reduce the size of the representation of distance
information is to use sparse graph spanners, that is a spanning subgraph of
the original graph using possibly less edges while preserving distances between
vertices up to some estimation. A simple extension of the Kruskhal’s greedy
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algorithm [3] shows that, for every k � 1, every weighted graph with n ver-
tices has a spanner of size O(n1+1/k) and stretch (2k − 1)d. As quoted in the
introduction, according to some girth conjecture, there are unweighted graphs
on which every stretch αd+β spanner has size Ω(n1+1/k) if α+β < 2k+1 (this
is proved for k = 1, 2, 3, 5, and for all k if α = 1 [19]). In the last decade many
constructions have been obtained for different trade-offs between α and β, see
for instance [5,6,7,13,18]. It seems that the picture of possible trade-offs is far
from complete.

Graph spanners give a trivial compact data structure to represent approx-
imate distances, however they do not give a fast way to extract approximate
distances or to extract the best path in the spanner. Typically, sparse graphs
(say with o(n1+1/k) edges) have trivial spanners (the graph itself), but extract-
ing short paths in the spanner is as hard as extracting shortest paths in the
original graph. So, other more “structured” constructions of spanners have been
given, based on tree-covers or partitions [4,12,17], that support fast approxi-
mate distance queries, and so lead to compact and fast distance oracles. They
achieve space Õ(n1+1/k), affine stretch O(kd), and query time O(k) (and even
time O(1) for [12]). Interestingly, [15] have showed that every distance oracle on
sparse graphs that supports time t stretch αd distance queries must have space
n1+Ω(1/(αt)). So, the space bound of a distance oracle is constrained not only by
the representation of approximate distances (or spanner representation) but also
by the query time: fast distance oracles imply large space data structures, inde-
pendent of the density of the input graph. In this context [14] have showed that,
under a conjecture about set intersecting data structures, any distance oracle
on sparse unweighted graphs of Õ(n) edges with affine stretch < 2d+ 1 requires
space Ω(n1.5).

Compact Routing has been already investigated in the late ’70s for the very
first interconnected computer networks [11]. Trade-offs between the size of the
routing tables and the stretch on the route length are similar to the one achieved
by spanners and distance oracles. Many results have been publish in this fields in
the last decade, in particular for routing in specific graph classes (low dimension
networks, scale free networks, planar networks, road networks, and so on), cap-
turing the topology of real networks. For general graphs, the state-of-the-art is
the Thorup and Zwick routing scheme [16] that, with Õ(n1/k) routing tables and
polylog addresses, routes along paths with affine stretch (4k−5)d. Like distance
oracles, under a girth conjecture, the lower bound on the stretch is α+β � 2k−1
for any stretch αd+ β routing scheme of space o(n1/(k−1)). So, optimal routing
schemes is known only for k = 1 and 2. If we consider routing schemes with
affine stretch d+β, then a lower bound of Ω(n/β2) on the space exists [10]. This
latter lower bound indicates, even if girth and set intersecting conjecture do not
hold, that trade-offs in compact routing are different from those for spanners.
While graph spanners of o(n) edge density exist for affine stretch d+2 ([2]) and
d + 6 ([5]), affine stretch d+ β, for any constant β, cannot be guaranteed by a
o(n) memory routing scheme even with arbitrarily large routing decision time.
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2 Fast Approximate Distance Labeling

Theorem 1. Let k � 2 be an integer. Every unweighted n-vertex graph enjoys
a distance labeling with affine stretch s(d) = (2k− 3)d+2 �d/2 � (2k− 2)d+1,
labels of length Õ(n2/(2k−1)), and query time O(k). Construction of the labels
takes polynomial time.

Hereafter, our constructions are described as randomized. Most of randomness
comes from the construction of some small hitting sets, or vertex coloring, for
which deterministic versions of polynomial time complexity exist.

For the sake of the presentation, we will sketch the first case of our distance
labeling, whenever k = 2. It achieves stretch d+ 2 �d/2 � 2d+ 1 and labels of
length Õ(n2/3). Most of the ideas of this base case will be reused for the general
construction, and also for routing.

Let G = (V,E) be any unweighted graph with n vertices. The construction has
some similarities with the technique used in the Thorup-Zwick compact routing
scheme [16]. It is based on the selection of some subset of vertices L ⊆ V named
hereafter landmarks.

Given a set of landmarks L and a base set W ⊆ V , we define, for
every vertex u ∈ V , its ball with respect to W and L as: BW,L(u) =
{v ∈W : d(u, v) < d(u, L)} where d(u, L) = min {d(u, 	) : 	 ∈ L}. In other
words, BW,L(u) consists of all the closest vertices ofW around u up to the closest
landmark. For every v ∈W , we define CW,L(v) = {u ∈ V : v ∈ BW,L(u)}.

We slightly generalize Theorem 3.1 of Thorup-Zwick [16] (proof in full
version):

Lemma 1. Given a graph G = (V,E), size parameter s and base set W ⊆
V , one can construct in polynomial time a landmark set L such that for every
vertex u of G, |BW,L(u)| � 4|W |/s, |CW,L(u)| � 4|V |/s, and, in expectation,
|L| � 4s log |V |.
The key property of Lemma 1 is that all CW,L’s balls are bounded by O(|V |/s),
and not only in expectation. In the remaining of this section, we will choose
W = V , and for convenience, we will drop subscript V from B’s and C’s balls.
So, BL(u) = BV,L(u), and CL(v) = CV,L(u). An important observation is that
u ∈ CL(v) if and only if v ∈ BL(u).

We apply Lemma 1, so with W = V , and with s = (n2/ logn)1/3, so that
|L| = O((n log n)2/3) and |BL(u)|, |CL(u)| = O((n log n)1/3).

Storage for Vertex u. It stores in its labels the set of vertices:

I(u) = L ∪BL(u) ∪
⎛⎝ ⋃

v∈BL(u)

CL(v)

⎞⎠ .

It also stores the distances from u to each vertex v ∈ I(u), and its closest
landmark, say 	(u) (breaking ties arbitrary). We easily check that |I(u)| =
O((n log n)2/3). Thus the label length is O(n2/3 log5/3 n) bits. The labeling
scheme is clearly polynomially constructible.
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Querying between s and t.

If t ∈ I(s), then returns d(s, t), else
returns min {d(s, 	(s)) + d(	(s), t), d(t, 	(t)) + d(	(t), s)}.

The query can be solved using the labels of s and t only. It takes constant time
to determine if t ∈ I(s) using linear size and worst-case constant time static
membership data-structures. Then, a linear size hashing tables can extract from
I(s) in constant time d(s, w) for any vertex w ∈ I(s) (see [17] for further details).
So answering query (s, t) is done in constant time.

Stretch Analysis. If t ∈ I(s), then the returned value is indeed the distance
d(s, t). Assume t /∈ I(s). We observe that BL(s) and BL(t) must be disjoint in
that case. If not, say v ∈ BL(s)∩BL(t), then v ∈ BL(t) implies t ∈ CL(v). Since
v ∈ BL(s) too, then CL(v) ⊂ I(s). Therefore, t ∈ I(s): a contradiction.

Let d = d(s, t), and let d̂ = min {d(s, 	(s)) + d(	(s), t), d(t, 	(t)) + d(	(t), s)}
be the value returned by the oracle. Without loss of generality, assume that
d(s, 	(s)) � d(t, 	(t)). Using the triangle inequality between 	(s) and t, we have:

d̂ � d(s, 	(s)) + d(	(s), t) � d(s, 	(s)) + (d(	(s), s) + d(s, t)) = 2d(s, 	(s)) + d .

Consider a shortest path P from s to t. Let x ∈ P ∩BL(s) be the farthest from
s, and, similarly, let y ∈ P ∩BL(t) be the farthest from t. Note that, since BL(s)
and BL(t) are disjoint, d(x, y) � 1. Because x, y are on P , we have:

d = d(s, x) + d(x, y) + d(y, t) � d(s, x) + d(y, t) + 1 . (1)

By definition of x, the neighbor of x on P at distance d(s, x)+1 from s is not in
BL(s). So its distance to s is d(s, x)+1 � d(s, 	(s)). The same argument applies
to y and t, so that d(t, y) + 1 � d(t, 	(t)).

Plugging in Eq. (1), and combining with the assumption d(s, 	(s)) � d(t, 	(t)),
we obtain:

d � d(s, 	(s)) + d(t, 	(t))− 1 � 2d(s, 	(s))− 1

In other words, d(s, 	(s)) � �(d+ 1)/2� = �d/2. Since, d̂ � 2d(s, 	(s)) + d, we
have proved that d̂ � d+ 2 �d/2.

General Construction: k � 2. For the general case, we will make the use of
k levels of landmark sets: L0, L1, . . . , Lk−1 where L0 = V for convenience. We
denote by 	i(u) the closest landmark from u in Li (breaking ties arbitrary). Note
that 	0(u) = u. The notations 	(u) and L for case k = 2 simply denotes here
	1(u) and L1 respectively.

The collection of landmark sets is constructed by applying k − 1 times
Lemma 1. The first time, we apply it with base setW1 = L0 = V and size param-
eter s1 = n1−1/(2k−1) so |BL1(u)|, |CL1(u)| = O(n/s1) = Õ(n1/(2k−1)). Then, for
each i ∈ [2, k−1], we fix the base set Wi = Li−1 and si = n1−(2i−1)/(2k−1). Note
that sk−1 = n2/(2k−1), and that si−1/si = n2/(2k−1) for all i � 1.
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Storage for Vertex u. It stores in its labels the set of vertices:

I(u) = Lk−1 ∪
(

k−1⋃
i=1

BLi−1,Li(u)

)
∪
⎛⎝ ⋃

v∈BL1(u)

CL1(v)

⎞⎠ .

It also stores in its label the distances from u to each vertex v ∈ I(u), and its
sequence of closest landmarks 	0(u), . . . , 	k−1(u). Note that the distance to each
landmark 	i(u) is already in the label of u.

Applying Lemma 1, the size of I(u) is (details in the full version): |I(u)| =
Õ(sk−1) + Õ

(∑k−1
i=2 (si−1/si)

)
+O(n/s1)2 = Õ(n2/(2k−1)) .

Querying between s and t.

1. If d(s, 	1(s)) > d(t, 	1(t)), exchange the role of s and t in the next two steps.
2. Compute the smallest index i0 such that 	2i0(t) ∈ I(s) or 	2i0+1(s) ∈ I(t).
3. If 	2i0(t) ∈ I(s) returns d(s, 	2i0(t))+d(	2i0 (t), t), else returns d(s, 	2i0+1(s))+
d(	2i0+1(s), t).

Intuitively, the answering algorithm tries to approximate the distance succes-
sively thanks to the sequence of landmarks 	0(t), 	1(s), 	2(t), 	3(s), . . . , respec-
tively with the paths s→ 	i(t)→ t for even i, and s→ 	i(s)→ t for odd i. The
query can be solved using the labels of s and t only. It takes O(k) to determine
i0 using static dictionary. Then, it takes constant time to return the distance
using hash table.

Stretch Analysis for k � 2. Appears in the full version.

3 Compact Routing

Theorem 2. Given an unweighted connected graph with n vertices and an in-
tegral parameter k � 2, there exists a polynomial algorithm that produces a
labeled routing scheme which requires Õ(n3/(3k−2))-bit routing tables per vertex,
o(k log2 n) labels, and o(log2 n) headers, that performs routing decisions in O(k)
time and routes along paths of affine stretch at most (4k − 7)d + 2 �d/2 �
(4k − 6)d+ 1.

To prove Theorem 2, we need to introduce a third kind of ball, defined by
volume. For a vertex u, set L, and parameter t, let EL(u, t) be the subset of L
that consists of the t closest vertices to u (breaking ties with any uniform policy).
We can check that B,C,E balls share the following monotonicity property which
is important for routing:

Property 1. Let X(·) denote one type of ball among BL(·), CL(·), and EL(·, t),
for a given set L ⊆ V and parameter t. Then, if t ∈ X(s) and u is on a shortest
path from s to t, then t ∈ X(u).
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A key technique in the proof of Theorem 2 is to spread routing information using
a commonly known hash function. This idea is standard in Name-Independent
routing (see for example [1]). To the best of our knowledge this is the first use of
such technique for Labeled routing (where vertices are given poly-log size labels).

We also make use of the following labeled routing scheme for trees:

Lemma 2. [9,16] Every spanning tree T of a graph with n vertices has a labeled
routing scheme that, given any destination label, routes optimally on T from any
source to the destination. The storage per vertex, the label size, and the header
size are O(log2 n/ log logn) bits. Given the stored information of a vertex and
the label of the destination, routing decisions take constant time.

For a tree T containing a vertex v, let μ(T, v) denote the routing information
stored at vertex v and λ(T, v) denote the destination label of v in T as defined
by the labeled routing scheme of Lemma 2.

For the sake of the presentation, we present first the basic construction for
k = 2. Then, we present the construction for k = 3 which introduces new tools
needed for k > 2.

Proof of Theorem 2 for k = 2. The routing tables in this case have size Õ(n3/4),
and the routing scheme has affine stretch d+ 2 �d/2 � 2d+ 1.

Let L be a set of landmarks such that for all u ∈ V , |BL(u)|, |CL(u)| =
Õ(n1/4). Such a set can be obtained with |L| = Õ(n3/4), by choosing in Lemma 1
s = (n log n)3/4 and W = V .

Let E(u) = EV (u, 2n2/4 log n) and let e(u) = max {d(u, v) : v ∈ E(u)} be the
radius of the ball E(u). Let 	(u) be the closest vertex in L to u (this vertex
defines the radius of BL(u)). Let c : V → [1, n1/4] be a hash function that maps
vertices into n1/4 colors, with the following two properties:

(1) ∀u ∈ V and j ∈ [1, n1/4], E(u) contains a vertex 	 ∈ L such that c(	) = j;
(2) ∀j ∈ [1, n1/4], the number of vertices with c(u) = j is at most 2n3/4.

Clearly a O(log n)-wise independent hash function has this property but known
constructions of such functions require non-constant time (poly-log) to evaluate
c(u). To get constant time, we use the construction of [1] to obtain a hash
function that can be represented using O(n3/4) bits and allows computing c(u)
is constant time.

For every x ∈ V , let T (x) be a spanning shortest path tree rooted at x.

High Level Idea. Given a source u and target v there will be three cases. First,
if E(u) ∩ B(v) �= ∅ then we will route with affine stretch d (shortest path).
Otherwise the balls E(u) and B(v) are disjoint. If the radius of B(v) is smaller
than the one of E(u) then we route on shortest path to the closest landmark to
v and then on a shortest path to v, so the affine stretch is 2d + 1. Otherwise,
to get affine stretch 2d+ 1 we need to route on shortest path to some landmark
w ∈ E(u) and then on shortest path from w to v. The problem is that w needs
to know the label of v on T (w). The label of v cannot store this information
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because there are too many landmarks. So this information must be stored in w.
So the landmarks in E(u) need to collectively store labels of all n destinations.
By using a random hash function c we speared this Õ(n) bits of information
over the O(n1/4) landmarks in E(u) so that each landmark in E(u) stores only
Õ(n3/4) bits of information.

Label for a vertex v is 〈v, 	(v), d(v, 	(v)), λ(T (	(v)), v)〉 of O(log2 n/ log logn)
bits from Lemma 2.

Storage for a Vertex u:

(1) For every x ∈ E(u), store routing information μ(T (x), u) of the tree T (x).
Also store e(u).

(2) For every v ∈ CL(w) such that w ∈ E(u) and w is on the shortest path from
u to v, store 〈v, w, λ(T (w), v)〉.

(3) For every vertex 	 ∈ L, store routing information μ(T (	), u) of the tree T (	).
(4) If u ∈ L, then for every vertex v such that c(v) = c(u), store λ(T (u), v).

Storing (1) requires Õ(n2/4) space since |E(u)| = Õ(n2/4). (2) requires Õ(n3/4)
space since |CL(w)| = Õ(n1/4) for each w ∈ E(u). (3) requires Õ(n3/4) space
since |L| = Õ(n3/4). (4) requires Õ(n3/4) space from the second property of c.
Overall, the storage for u is Õ(n3/4).

Routing from u to v. Given the label of v, routing from u to v at distance d is
done in the following manner:

1. If exists w ∈ E(u) such that w ∈ BL(v) (this can be checked using (2) and
in constant time using a static dictionary), then route to w using (1) and
from w to v using (2). The affine stretch is d. Otherwise, it must be that
E(u) and BL(v) are disjoint (here we use x ∈ BL(v) implies y ∈ BL(v) for
all d(v, y) � d(v, x) - note that this is not necessary true for E(u)). Since
the graph is unweighted then min {e(u), d(v, 	(v))} � �d/2.

2. If e(u) > d(v, 	(v)) (checked using (1) and v’s label) then route to 	(v)
using (3). Then route from 	(v) to v using (3) and the label of v (that
contains λ(T (	(v)), v)). From the triangle inequality, the affine stretch is
d+ 2 �d/2.

3. Otherwise e(s) � d(v, 	(v)) then route to some 	 ∈ L ∩ E(u) such that
c(	) = c(v) (using (3)) then using (4) on 	 route to v. From the triangle
inequality, the affine stretch is d+ 2 �d/2.

Note that such an 	 exists from the first property of c.

In all the cases, the affine stretch is d + 2 �d/2 � 2d + 1 as required. Using
standard dictionary and hashing techniques, each of the routing decisions above
can be done in constant time.

Proof of Theorem 2 for k = 3. Let L1 be a set of landmarks such that for all
u ∈ V , |BL1(u)|, |CL1(u)| = Õ(n1/7). Such a set can be obtained with |L1| =
Õ(n6/7), by choosing in Lemma 1 s = (n logn)6/7 and W = V .
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Using Lemma 1 with W = L1 and s = (n logn)3/7 let L2 ⊂ L1 be a set of
super landmarks such that: (1) |L2| = Õ(n3/7); (2) for all u ∈ V , |BL1,L2(u)| =
Õ(n3/7); (3) for all 	 ∈ L1, |CL1,L2(	)| = O(n4/7).

Let 	1(u) be the closest node in L1 to u. Let 	2(u) be the closest node in L2

to u. Let E1(u) = EV (u, 2n2/7 logn) and e1(u) = max {d(u, v) : v ∈ E1(u)}. Let
E2(u) = EL1(u, 2n3/7 logn) and e2(u) = max {d(u, v) : v ∈ E2(u)}. Let c : V →
[1, n1/7] be a random coloring that maps vertex into n1/7 colors. We need the
following properties:

(1) ∀u ∈ V and j ∈ [1, n1/7], E1(u) contains a vertex 	 ∈ L1 such that c(	) = j;
(2) ∀u ∈ L1 and j ∈ [1, n1/7], |{w ∈ V ∩ CL1,L2(u) : c(w) = j}| � 2n3/7 logn.

Again we use a similar construction to that of [1] to obtain c with the above
properties that requires Õ(n3/7) bits and can be evaluated in constant time.

High Level Idea. Given a source u and target v there will again be three main
cases. First, if E1(u) ∩ BL1(v) �= ∅ then we will route with affine stretch d
(shortest path). Otherwise the balls E1(u) and BL1(v) are disjoint. If BL1(v)
is smaller than E1(u) then we try to route using 	1(v) and get affine stretch of
2d + 1, but if u does not know about 	1(v) then we use 	2(v). As in [16] each
time we move from 	i(v) to 	i+1(v) we apply the triangle inequality an loose 4d
each step. For k = 3 we do this once to obtain affine stretch of 6d+ 1.

Otherwise, (as in the k = 2 case) we route to the 	 ∈ L1 ∩ E1(u) such that
c(	) = c(v). If 	 knows about v then get affine stretch of 2d + 1. Otherwise we
route back to u (and pay 2d+ 1). We show that d(v, 	2(v)) � d+ (d + 1)/2. So
we try to route using 	2(v) to get affine stretch of (2d+1)+(4d+1) � 6d+1. In
the general case, if u does not know about 	i(v), then we test if u knows about
	i+1(v). As in [16] each time we move from 	i(v) to 	i+1(v) we apply the triangle
inequality and loose 4d in each such iteration.

Label for a vertex v is 〈v, 	1(v), d(v, 	1(v)), λ(T (	1(v)), v), 	2(v), λ(T (	2(v)), v)〉,
which is O(log2 n/ log logn) bits from Lemma 2.

Storage for a Vertex u:

(1) For every vertex x ∈ E1(u), store routing information μ(T (x), u) of the tree
T (x). Also store e1(u).

(2) For every v ∈ CL1(w) such that w ∈ E1(u) and w is on the shortest path
from u to v, store 〈v, w, λ(T (w), v)〉. This is Õ(n3/7) storage since |E1(u)| ·
max |CL1(w)| = Õ(n3/7).

(3) For every vertex 	 ∈ E2(u), store routing information μ(T (	), u) of the tree
T (	). This is Õ(n3/7) storage since |E2(u)| = Õ(n3/7).

(4) If u ∈ L1 then for every vertex v ∈ CL1,L2(u) such that c(v) = c(u) store
λ(T (u), v). This is Õ(n3/7) storage by the property of c.

(5) For every vertex 	 ∈ L2, store routing information μ(T (	), u) of the tree
T (	). This is Õ(n3/7) storage since |L2| = Õ(n3/7).



414 I. Abraham and C. Gavoille

Routing from u to v. Given the label of v, routing from u to v at distance d is
done in the following manner:

1. If exists w ∈ E1(u) such that w ∈ BL1(v) then route to w using (1) and
from w to v using (2). The routing has affine stretch of d (shortest path).
Otherwise it must be that E(u) and BL(v) are disjoint. Since the graph is
unweighted then min {e(u), d(v, 	(v))} � �d/2.

2. If e1(u) > d(v, 	1(v)) (this can be checked using (1) and v’s label) then:
(a) If 	1(v) ∈ E2(u) then route to 	1(v) using (3) and from 	1(v) to v using (3)

and the label of v. From the triangle inequality, the affine stretch is
d+ 2 �d/2.

(b) Otherwise from the triangle inequity it must be that e2(u) � d + �d/2
and since |E2(u)| = Θ(n3/7) it follows that d(u, L2) � e2(u). So from
the triangle inequality d(v, L2) � 2d+ �d/2. So using (5) route from u
to 	2(v) and from 	2(v) to v using (5) and using v’s label that contains
λ(T (	2(v)), v)). From the triangle inequality, the affine stretch is at most
(3d+ �d/2) + (2d+ �d/2) � 5d+ 2 �d/2 � 6d+ 1 as required.

3. Otherwise e1(u) � d(v, 	1(v)) then:
(a) Route to some 	 ∈ L1 ∩ E1(u) such that c(	) = c(v) (using (3)). Note

that such a 	 must exist from the properties of c. If v ∈ CL1,L2(	) then
using (4), route on T (	) to v. From the triangle inequality, the affine
stretch is d+ 2 �d/2.

(b) Otherwise, 	 /∈ BL1,L2(v) hence from the triangle inequality, d(v, 	2(v)) �
2d + �d/2. So route from 	 back to u on T (	) using (3) and u’s label.
From u route to 	2(v) and from 	2(v) to v using (5) and since v’s label
contains λ(T (	2(v)), v)). The affine stretch of going to 	 and back to u is
at most d+ �d/2. The affine stretch of going from u to 	2(v) and then
to v is at most (2d + �d/2) + (d + �d/2) � 3d + 2 �d/2. So the total
affine stretch is 4d+ 3 �d/2 � 5d+ 1 + �d/2 � 5d+ 2 �d/2 � 6d+ 1.

In all the cases, the affine stretch is 5d+2 �d/2 � 6d+1 as required. Again using
standard dictionary and hashing techniques all routing decision can be made in
constant time.

4 Conclusion

We have provided new distance label and compact routing schemes that provide
affine stretch guarantees for unweighted graphs. Our results obtain new space-
stretch trade-offs that neither dominate or are dominated by the best known
previous constructions. So there exist restrictions on either the space or the
stretch, for which our results provide improved bounds.

There are several questions that remain open. We believe the most intriguing
problem we leave open is:

Design a constant time (or poly-log time) approximate distance oracle
for unweighted graphs with affine stretch 3d + 2 and space o(n3/2), or
show that such construction is not possible.
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Note that it is easy to construct a spanner with O(n4/3) edges and affine stretch
3d+ 2, for instance using the construction of [5] for k = 3 with size O(n1+1/k)
and stretch kd+ k − 1.

When focusing just on affine stretch of αd+1, the natural question is whether
the memory requirements of our schemes can be improved. Specifically the cur-
rent state of upper bounds indicates four different bounds: for spanners, distance
oracles, fast query labels, and routing schemes.

For this abstract we did not optimize the time construction and poly-log
factors in the label or routing table size. We also plan to extend our result to
weighted sparse graphs using the same approach as [14].
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Abstract. We study problems of data aggregation, such as approximate counting
and computing the minimum input value, in synchronous directed networks with
bounded message bandwidth B = Ω(log n). In undirected networks of diameter
D, many such problems can easily be solved in O(D) rounds, using O(log n)-
size messages. We show that for directed networks this is not the case: when the
bandwidth B is small, several classical data aggregation problems have a time
complexity that depends polynomially on the size of the network, even when the
diameter of the network is constant. We show that computing an ε-approximation
to the size n of the network requires Ω(min

{
n, 1/ε2

}
/B) rounds, even in net-

works of diameter 2. We also show that computing a sensitive function (e.g.,
minimum and maximum) requires Ω(

√
n/B) rounds in networks of diameter

2, provided that the diameter is not known in advance to be o(
√

n/B). Our
lower bounds are established by reduction from several well-known problems
in communication complexity. On the positive side, we give a nearly optimal
Õ(D +

√
n/B)-round algorithm for computing simple sensitive functions using

messages of size B = Ω(log N), where N is a loose upper bound on the size of
the network and D is the diameter.

1 Introduction

Consider a wireless network comprising two base stations, transmitting at high power,
and an unknown number of client devices which communicate only with the base sta-
tions. The base stations are received at all devices, and each client device is received by
at least one base station. However, due to power constraints, the clients are not necessar-
ily received at both stations. The bandwidth of each base station is limited, allowing it to
send only a certain numberB of bits per timeslot. How many timeslots are required for
the base stations to determine the approximate number of clients? We study this prob-
lem and other data aggregation problems in directed networks, where communication
is not necessarily bidirectional.

Data aggregation tasks are central to many distributed systems; for example, a peer-
to-peer network might require information about the number of clients that have a local
copy of a file, and a sensor network might need to verify that an anomalous reading
was detected by a certain percentage of sensors before reporting it. With the increasing
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availability of dynamic, large-scale distributed systems, efficient data aggregation has
become a particularly interesting challenge.

Classically, data aggregation has been studied in networks with bidirectional com-
munication links. In this setting the method of choice is to first construct a spanning
tree of the network graph, and then perform distributed data aggregation “up the tree”.
In a synchronous undirected network, if computation is initiated by some node, a global
broadcast starting at the initiating node induces a breadth-first search spanning tree of
the network. Basic aggregation functions, such as the minimum, maximum, sum, or
average of values distributed across the nodes of the system, can then efficiently be
computed by a simple convergecast on the tree. Even when the message bandwidth is
quite restricted (e.g., if only a constant number of data items can be sent in a single mes-
sage), this method allows any of the functions above to be computed in O(D) rounds
in networks of diameter D. Network properties such as the size of the network and the
diameter D itself can also be determined in O(D) time using small messages. In fact,
in [1] Awerbuch observes that computing certain aggregation functions and computing
a spanning tree are intimately related problems, whose time and message complexities
are within constant factors of each other. This makes the spanning-tree/convergecast
approach a canonical solution of sorts.

The situation changes significantly when communication is not necessarily bidirec-
tional. Constructing a rooted directed spanning tree becomes much more challenging,
as it is much harder for the sender of a message to obtain feedback from the recipients,
or even to determine who are the recipients. In this paper we show that in contrast to
undirected networks, in directed networks with restricted bandwidth it is not always de-
sirable to aggregate data by first computing a rooted spanning tree; for some functions,
such as minimum and maximum, it is faster to compute the aggregate by other means.
Moreover, we show that the time complexity of computing an aggregate with restricted
bandwidth is not governed by the diameter of the network alone; for small-diameter
networks, the time complexity of computing certain aggregates is dominated by a fac-
tor polynomial in n, the size of the network. We are particularly interested in the effect
of initial knowledge, i.e., whether or not the problem becomes easier if parameters such
as the size or diameter of the network are known in advance.

The paper is organized as follows. In Section 2 we discuss related work. In Section 3
we introduce the model and problems studied in the paper, and review several results
in communication complexity that form the basis for our lower bounds. In Section 4
we consider the problems of exact and approximate counting, when the diameter of
the network is known to be 2; we show that computing an ε-approximate count with
constant probability requires Ω(min

{
n, 1/ε2

}
/B) rounds where B is the message

bandwidth. Our lower bound implies that computing a rooted spanning tree in networks
of diameter 2 requiresΩ(n/B) rounds.

In Section 5 we turn our attention to computing sensitive functions in networks of
unknown diameter. Informally, a function is globally sensitive if its value depends on
all the inputs, and ε-sensitive if its value depends on an ε-fraction of inputs. In undi-
rected networks, or even in directed networks of known diameter D, some globally-
sensitive functions can be computed in O(D) time with only single-bit messages. We
show that for directed networks of unknown diameter the picture is quite different:
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Ω(
√
n/B) rounds are required, even when the diameter of the network is 2 (but this

fact is not known in advance). This lower bounds holds for randomized computation
of any globally-sensitive function and for deterministic computation of any ε-sensitive
function where ε ∈ (0, 1/2). The lower bound holds even when the size n of the net-
work is known in advance and the UID space is 1, . . . , n.

Finally, in Section 5.2 we give a randomized algorithm for the problem of determin-
ing when a node has been causally influenced by all nodes in the graph. This condition
is necessary to compute a globally-sensitive function, and sufficient to compute sim-
ple functions such as minimum or maximum. The algorithm requires D + Õ(

√
n/B)

rounds w.h.p., nearly matching our lower bound. For lack of space, some of the proofs
are omitted here, and appear in the full version of this paper.

2 Background and Related Work

Distributed data aggregation and spanning tree computation. Early work on these
problems was concerned with their message complexity, that is, the total number of
messages sent by all processes, as well as their time complexity. Awerbuch observed
in [1] that in undirected networks, the message and time complexity of leader election,
computing a distributive sensitive function (e.g., minimum or maximum) and count-
ing are all within a constant factor of the complexity of finding a spanning tree in the
network. It is also shown in, e.g., [1,3] that the time complexity of these problems in
undirected networks is Θ(n) and the message complexity is Θ(m + n logn) in net-
works of size n with m edges. However, theΩ(n) lower bound is obtained in networks
of diameterΩ(n), and the message complexity lower bound does not yield a non-trivial
bound in our model. In a synchronous undirected network of diameter D edges, it is
possible to construct a breadth-first search spanning tree in O(D) rounds, even if the
diameter and size of the network are not known in advance. Using such a tree, functions
such as minimum, maximum, sum, or average can all be computed in timeO(D). Based
on a pre-computed spanning tree, researchers have also considered the computation of
more complicated functions such as the median or the mode [7,8,12,13,15,16,17].

Communication complexity. A two-player communication game involves two players,
Alice and Bob, which are given private inputs x, y and must compute some joint func-
tion of their inputs, f(x, y). In order to compute f the players communicate over sev-
eral rounds, and are charged for the total number of bits exchanged. The deterministic
communication complexity of f is the worst-case number of bits exchanged in any de-
terministic protocol for computing f . The randomized communication complexity is
defined similarly; in the current paper we are interested in randomized algorithms that
err with constant probability.

Communication complexity lower bounds have often been used to obtain lower
bounds in distributed computing. The classical reduction technique (see, e.g., [10]) par-
titions the network into two parts, with each player simulating the nodes on one side of
the cut. The input to each player is reflected in the structure of its part of the network
or in the input to the network nodes it simulates, and the output or behavior of the dis-
tributed algorithm is used , and the communication-complexity lower bound then shows
that a certain amount of information must cross the cut. For example, this technique is
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used in [13] to obtain a lower bound on the complexity of computing the number of
distinct elements in the input.

The reductions we give here are quite different in nature. Instead of partitioning the
network, the players simulate non-disjoint sets of nodes. Care must be taken to ensure
that information about one player’s private input does not “leak” to the other player
through nodes that both players simulate; this aspect of our reductions strongly relies
on the fact that the network is directed.

3 Preliminaries

Network model. We model a synchronous directed network as a strongly connected di-
rected graph G = (V,E), where E ⊆ V 2. We use Nd(v) = {u ∈ V | dist(u, v) ≤ d}
to denote the d-in-neighborhood of v, that is, the set of nodes whose distance to v is at
most d. Nodes communicate by local broadcast: in each round, every node u sends a
single message of size at most B, where B = Ω(log n), and this message is delivered
to all nodes v such that (u, v) ∈ E. (Each node does not know which nodes receive
its message, i.e., it does not know its set of out-neighbors.) We assume that nodes and
communication links are reliable and do not fail during an execution.

In the sequel we often refer to algorithms whose correctness is only guaranteed in
networks that satisfy some fixed bound on the size or diameter of the network. In this
case we say that the bound is known a priori (or known in advance). Our lower bounds
assume that each node has a unique identifier (UID) drawn from some UID space
1, . . . , N , where N is an upper bound on the size of the network that is known in ad-
vance. For convenience, we assume the existence of two distinguished UIDs a, b �∈ [N ];
our reductions “embed” the two players in the graph as nodes a and b respectively. Some
of our lower bounds allow for the case whereN = n, i.e., the exact size of the network
is known to all nodes and the UID space is 1, . . . , n. In contrast, the algorithm in Sec-
tion 5.2 requires only a loose upper boundN ≥ n and does not use UIDs at all.

Problem statements. We are interested in the following distributed problems.
– ε-approximate counting: nodes are initially provided with some loose upper bound
N on the size n of the network, and each node v must eventually output an approx-
imate count ñv satisfying |ñv − n| ≤ ε · n.

– Computing globally-sensitive functions of the input: a function is said to be glob-
ally sensitive if there exists an input assignment x such that changing any single
coordinate of x yields a different function value. For example, the all-one input
assignment witnesses the global sensitivity of computing a minimum.

– Computing ε-sensitive functions of the input: a function is ε-sensitive if there is an
input assignment x such that changing any �εn coordinates of x yields a different
function value. For example, the function that returns 1 iff at least 25% of the inputs
are 1 is (1/4)-sensitive, as witnessed by the all-zero input assignment.

Communication complexity lower bounds. Our results rely on several celebrated lower
bounds in communication complexity. Perhaps the best known lower bound concerns
the Set Disjointness problem, DISJn, in which the players are given sets X,Y ⊆ [n]
(respectively) and must determine whether X ∩ Y = ∅.
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Theorem 1 ([5,14]). The randomized communication complexity of DISJn is Ω(n).

We are also interested in a relaxed variant called Gap Set Disjointness, GAP-DISJn,g:
here the players are given sets X,Y ⊆ [n], with the promise that either X ∩ Y = ∅ or
|X ∩ Y | ≥ g. The players must determine which of these cases holds. When the gap
g is large with respect to n, GAP-DISJn,g is quite easy for randomized algorithms (one
can use random sampling to find an element of the intersection if it is large). However,
for deterministic protocols the problem remains hard even with a linear gap. (This fact
appears to be folklore in the communication complexity community; we include a proof
in the full version of this paper.)

Theorem 2. For any constant ε ∈ (0, 1/2), the deterministic communication complex-
ity of GAP-DISJn,(1/2−ε)n is Ω(n).

The final problem is GAP-HAMMING-DISTANCE, denoted GHDn,g, where the players
receive vectors x, y ∈ {0, 1}n and must determine whether the Hamming distance
Δ(x, y) satisfies Δ(x, y) > n/2 + g or whether Δ(x, y) ≤ n/2− g. (If neither holds,
any answer is allowed.) Characterizing the randomized communication complexity of
GHD remained an open problem for a long time after its introduction in [4] (for the case
g =

√
n, which is in some sense the most interesting setting), until in [2], Chakrabarti

and Regev proved the following lower bound.

Theorem 3 ([2]). For any g ≤ n, the randomized communication complexity of GHDn,g

is Ω(min
{
n, n2/g2

}
).

The reductions in this paper are public-coin protocols: they assume that Alice and Bob
have access to a shared random string (of unbounded length). The lower bounds above
are stated for private-coin protocols, where each player has its own private randomness.
However, any public-coin protocol can be transformed into a private-coin protocol at
the cost of O(log n) additional bits [10], so the distinction is mostly immaterial for our
purposes.

4 Approximate and Exact Counting

We begin by describing a lower bound for ε-approximate counting or exact counting. In
this setting we assume that nodes know some loose upper boundN ≥ n on the size of
the network, and must determine the exact or approximate size. Since exact counting is
a special case of approximate counting, we describe the lower bound for approximate
counting, and later discuss exact counting.

The lower bound is obtained by reduction from GHDN,εN . Suppose we are given
an ε-approximate counting algorithm A. Given an instance (x, y) of GHDN,εN , we
construct a network Gx,y, in which Alice and Bob jointly simulate the execution of A.
WhenA terminates, Alice and Bob use the output ofA to determine the correct answer
to GHD on the instance (x, y). Since Alice knows only her input x and Bob knows only
y, neither player knows the complete topology of the network Gx,y, which depends on
both x and y. The players therefore cooperate to simulate the execution of A in Gx,y.

Let X,Y ⊆ [N ] be the sets whose characteristic vectors are x and y, respectively.
The networkGx,y is given by Gx,y = (Vx,y, Ex,y), where Vx,y = X ∪ Y ∪ {a, b} (for
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1 2 4 7 9

a b

Fig. 1. The network Gx,y for x = 110000100, y = 010100101 (i.e., X = {1, 2, 7} , Y =
{2, 4, 7, 9})

a, b �∈ [N ]), and Ex,y = ({a} × Vx,y) ∪ ({b} × Vx,y) ∪ (X × {a}) ∪ (Y × {b}) (see
Fig. 1).

The Hamming distance Δ(x, y) is closely related to the size ofGx,y:

Lemma 1. For all (x, y) ∈ ({0, 1}N )2, the graphGx,y is strongly connected, its diam-
eter is 2, and its size is |Vx,y| = (‖x‖1 + ‖y‖1 +Δ(x, y))/2 + 2.

Next we show that an efficient algorithm for approximating the size of diameter 2 net-
works leads to an efficient protocol for GHDN,εN .

Lemma 2. Given an ε-approximate counting algorithm A which outputs a correct an-
swer after t rounds with probability at least 1 − δ, one can construct a public-coin
protocol for GHDN,εN which exchanges a total of O(Bt + logN) bits and succeeds
with probability 1− δ.

Proof. Given an instance (x, y), Alice and Bob simulate the execution of A in Gx,y

as follows. Alice locally simulates the nodes in X ∪ {a}, and Bob locally simulates
the nodes in Y ∪ {b}. The shared random string is used to provide the randomness
of all nodes in the network. (Since Alice and Bob do not initially know which of the
nodes {1, . . . , N} are present, we interpret the shared random string as containing the
randomness of each node 1, . . . , N regardless of whether or not the node is in X ∪ Y .)
Notice that there can be some overlap, X ∩ Y , which is simulated by both players
independently.

The initial states of all nodes inX ∪{a} and in Y ∪{b} are known to Alice and Bob,
respectively, because they depend only on the UIDs of these nodes and on the shared
randomness. Each round of A is simulated as follows:

– Based on the states of their local simulations, Alice and Bob compute the messages
sent by the nodes in X ∪ {a} and in Y ∪ {b}, respectively.

– Alice sends to Bob the message sent by node a, and Bob sends to Alice the message
sent by b. Following this exchange, Alice and Bob have all the messages received
by each node they need to simulate.

– The players update the states of their local simulations by feeding to each node the
messages it receives in Gx,y: the nodes of X ∪ Y receive the messages sent by a
and b; node a receives the messages sent by nodes in X ∪ {b}; and node b receives
the messages sent by nodes in Y ∪ {a}. (Note that Alice knows X and Bob knows
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Y , so the two players know which messages are supposed to be received by nodes
a, b, respectively.)

Although Alice and Bob do not directly exchange information about the states of nodes
inX∩Y — indeed, they do not know which nodes are inX∩Y , and this is what makes
the problem difficult — still their local simulations agree on the states of these nodes.

With probability at least 1 − δ, after t rounds of the simulation node a halts and
outputs an approximate count ñ which satisfies |ñ − n| ≤ εn. When node a halts,
Alice sends ñ to Bob, and in addition Alice and Bob send each other |X | = ‖x‖1 and
|Y | = ‖y‖1 (respectively). Let Δ̃ = 2(ñ− 2)− ‖x‖1 − ‖y‖1. Both players output 0 if
Δ̃ < N/2, and 1 if Δ̃ ≥ N/2. (If node a fails to halt after t rounds, the players output
an arbitrary answer.)

If |ñ − n| ≤ εn then Lemma 1 shows that |Δ̃ − Δ(x, y)| = 2|ñ − n| ≤ 2εn ≤
2εN . Hence, with probability at least 1 − δ, the players output the correct answer: if
Δ(x, y) ≥ N/2 + 2εN then Δ̃ ≥ N/2, and if Δ(x, y) < N/2− 2εN then Δ̃ < N/2.

The total number of bits sent during the protocol is 2Bt+ 2 log(N). In addition, to
transform the protocol into a private-coin protocol we requireO(logN) additional bits.
The communication complexity is therefore O(Bt+ logN). ��

Although our reduction is stated in terms of the upper bound N (we reduce from
GHDN,εN ), the “hard” instances are the ones where n is roughly linear in N ; it is
always possible to solve GHD by exchanging the coordinates of indices i such that
xi = 1 or yi = 1, and hence when |X ∪ Y | = n the problem can easily be solved in
O(n logN) bits. It is therefore more informative to state our lower bound in terms of
the actual size n of the network. From Theorem 3 and the reduction above, we obtain
the following lower bound.

Theorem 4. If B = Ω(logN), a randomized algorithm for computing an
ε-approximate count requires Ω((min

{
n, 1/ε2

}
/B) rounds to succeed with proba-

bility 2/3 in networks of diameter 2.

Remarks. The deterministic communication complexity of GHDN,g is Ω(N) even
when g = c · N for a sufficiently small constant c [2]; therefore deterministically
computing an ε-approximate count for ε a sufficiently small constant requiresΩ(n/B)
rounds. As for exact counting (deterministic or randomized), computing the exact count
is as hard as computing a (1/n)-approximate count, so Ω(n/B) rounds are required.

The lower bound of Theorem 4 is nearly tight if the diameter of the network is
known. An algorithm for ε-approximate counting is given in [11]; the algorithm of [11]
sends messages containing real numbers, but using a rounding scheme to bound the size
of messages (see [9]), one obtains an Õ(D + min

{
n, 1/ε2

}
/B)-round algorithm for

networks of known diameterD. For the case where the diameter is unknown, we obtain
a stronger lower bound in the next section.

Finally, the reduction from Lemma 2 also shows that finding a rooted spanning tree
in directed networks is hard even when the diameter of the network is known a priori to
be 2. In the networkGx,y , the nodes ofX∪Y are not connected to each other; therefore
any rooted spanning tree ofGx,y has diameter at most 3, as each node ofX ∪ Y except
possibly the root must have either a or b as its parent in the tree. If one can find a
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rooted spanning tree of Gx,y in t rounds, then an exact count can be computed in t+ 3
rounds by finding such a tree and then “summing up the tree” (convergecast). Since
exact counting requires Ω(n/B) rounds, so does computing a rooted spanning tree. In
the full version of this paper we show that this lower bound continues to hold when the
size of the network is known a priori, provided that the UID space is of size at least
(1 + ε)n for some arbitrarily small constant ε.

5 Computing Sensitive Functions

In this section we study the complexity of computing sensitive functions, such as the
minimum or maximum input value. In contrast to the previous section, here we are
interested in instances where the diameter of the network is not known a priori to be
small, but the algorithm is deployed in a network that does in practice have a small
diameter. We will show that in such cases it is not possible to exploit the small diameter
of the network; the worst-case running time of the algorithm must be Ω(D +

√
n/B).

We also give a nearly-matching algorithm for computing simple sensitive functions.
Let f be a globally-sensitive function, and let x̄ be an input assignment under which

changing any node’s input changes the value of f (i.e., for all ȳ �= x̄ we have f(x̄) �=
f(ȳ)). In any execution where the input is x̄, at time t, a node v can only know the value
of f if N t(v) = V , that is, if t rounds are sufficient for a message from any node in
the network to reach node v; otherwise there is some node whose input node v cannot
know at time t, and this node’s input may determine the value of f . Similarly, if f is
ε-sensitive, there exists an input assignment under which no node can know the value
of f at time t unless |N t(v)| > (1 − ε)n. This motivates us to study the following
problem:

Definition 1 (Hearing from m nodes). In the Hear-from-m-nodes problem, denoted
HFm, each node v in the network must halt at some time t such that |N t(v)| ≥ m.

The worst-case time complexity of computing a globally-sensitive function is at least
the worst-case time complexity of solving HFn, and similarly for ε-sensitive functions
and HF(1−ε)n. (In fact, computing an ε-sensitive function can require hearing from
strictly more than (1 − ε)n nodes.) Of course, HFn can easily be solved by having all
nodes wait until time n−1; however, we are interested here in efficient solutions, which
terminate faster in networks with smaller diameter (recall, however, that the diameter is
not known in advance).

5.1 Lower Bounds on Computing a Sensitive Function

In this section we show that even when the diameter of the network is 2, learning that
the diameter is 2 requiresΩ(

√
n/B) rounds in the worst case. More formally, we show

that when the size of the network is known, the UID space is 1, . . . , n, and no a priori
bound on the diameter is known,

(a) Any randomized algorithm for HFn requires Ω(
√
n/B) rounds to succeed with

constant probability, even when executed in a network of diameter 2; and
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(b) For any ε ∈ (0, 1/2), any deterministic algorithm for HF(1−ε)n requiresΩ(
√
n/B)

rounds, again when executed in networks of diameter 2.

(Of course, in networks of diameter 2 we have |N2(v)| = n for all nodes v, so t = 2 is
sufficient; however, this fact is not known to the algorithm in advance.)

Fix an algorithm A for HFm and a network size n ≥ m. We describe a reduction
from Set Disjointness or Gap Set Disjointness, which we will use to show both the hard-
ness of HFn for randomized algorithms and the hardness of HF(1−ε)n for deterministic
algorithms.

As in Section 4, in the reduction we construct a network G based on the instance of
Set Disjointness given to Alice and Bob. The two players then simulate the execution
ofA inG, and output an answer to Set Disjointness (or Gap Set Disjointness) based on
the behavior of A in G — in this case, based on the time when A terminates. We now
describe the construction of the network and the simulation used by Alice and Bob.

The construction has several parameters. First, let tA be the number of rounds such
that whenA is executed in a network of size n with node UIDs 1, . . . , n, a, b (as before
we add UIDs a, b for convenience), with probability at least 2/3 all nodes halt by time
tA. Based on tA and onm, we choose a segment length s ≥ tA + 1 which will be fixed
later. Informally, in the reduction nodes must distinguish diameter 2 networks from
diameter s+ 2, and we will show that this requiresΩ(n/s) rounds in the worst-case.

Assume for simplicity that s divides n. We divide the nodes 1, . . . , n into segments
S1, . . . , Sn/s, each of size s, where Si := {(i− 1) · s+ 1, (i− 1) · s+ 2, . . . , i · s}.
Each segment Si is further subdivided into two parts: a back end SB

i containing nodes
(i − 1) · · · + 1, . . . , i · s − tA, and a front-end SF

i containing the remaining nodes,
i · s − tA + 1, . . . , i · s. In the sequel we implicitly use wrap-around (i.e., mod n
arithmetic) for node indices, so that −1 ≡ n, −2 ≡ n− 1, and so on.

We are now ready to describe the reduction itself. The reduction is from DISJn/s,
that is, Set Disjointness (or Gap Set Disjointness) with a universe of n/s elements;
each segment Si represents a single element of the universe. Given an instance (x, y) of
DISJn/s, we define a networkGs,x,y := ({1, . . . , n, a, b} , Es,x,y) (see Fig. 2), where

– Nodes a, b have edges to all nodes of the graph.
– Nodes 1, . . . , n are connected in a directed cycle: for each i ∈ [n] we have (i, i +

1) ∈ Es,x,y .
– In each segment Si, the last node (node i · s) is connected to node a. (This is to

ensure strong connectivity and a bound of s+ 2 on the diameter.)
– For all i �∈ X and for all v ∈ Si we have (v, a) ∈ Es,x,y; similarly, for all i �∈ Y

and for all v ∈ Si we have (v, b) ∈ Es,x,y .

Here, X and Y are the sets whose characteristic vectors are x, y respectively.
With the exception of the last node in each segment (which is always connected to

node a), the nodes in segment Si are connected to node a iff Alice did not receive i
in her input, and connected to node b iff Bob did not receive i in his input. Therefore,

if there exists an element i in the intersection X ∩ Y = X ∪ Y , the nodes of the
corresponding segment Si, with the exception of the last node, will not be connected to
either node a or node b. These nodes are only connected to the rest of the graph by the
cycle edges (i− 1) · s+ 1 → (i− 1) · s+ 2 → . . .→ i · s. Consequently the diameter
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1 4 7 10

2 5 8 11

3 6 9 12

a b

S1 S2 S3 S4

Fig. 2. The network Gs,x,y from Thm. 5, with n = 12, tA = 2, s = tA +1 = 3. Edges from a, b
to nodes 1, . . . , 12 are omitted for clarity. The DISJ4 instance shown here is X = {2, 4} , Y =
{1, 2, 3}. Since 2 ∈ X ∩ Y , all S2 nodes except the last (node 6) are not connected to a or to b.
Therefore 4 �∈ N tA(a), i.e., two rounds are not sufficient for node a to hear from node 4.

of the graph is s+ 2 > tA in this case. In tA rounds, nodes a and b can only hear from
the last tA nodes of segment Si, i.e., only from the front-end SF

i ; for each segment Si

such that i ∈ X ∩ Y , |SB
i | = s− tA nodes are missing fromN tA(a).

On the other hand, ifX ∩Y = ∅ (or equivalently,X ∪Y = {1, . . . , n/s}), all nodes
in all segments are connected to either node a or node b, and the diameter of the graph
is 2.

Lemma 3. For any x, y ∈ {0, 1}n,
(a) The graphGs,x,y is strongly connected,
(b) For all i ∈ X ∩ Y and for all v ∈ SB

i we have v �∈ N tA(a) and v �∈ N tA(b),
(c) If X ∩ Y = ∅, the diameter of Gs,x,y is 2, and
(d) |N tA(a)| ≤ n− |X ∩ Y | · (s− tA) (and similarly for b).

Alice and Bob simulate the execution of A in Gs,x,y in a slightly different manner than
in Lemma 2; here both players simulate nodes 1, . . . , n regardless of the input instance,
and in addition Alice simulates node a and Bob simulates node b. The remainder of the
simulation is the same as in Lemma 2, and we omit the details here.

Proposition 1. Given inputs x and y respectively, and a shared string representing
the randomness of all nodes, Alice and Bob can each simulate nodes {a, 1, . . . , n} and
{b, 1, . . . , n} (respectively) throughout rounds 1, . . . , tA of the execution ofA inGs,x,y .

It remains only to put the pieces together to obtain the following lower bounds.

Theorem 5. If the diameter of the network is not known initially, any randomized al-
gorithm for computing a globally-sensitive function requires Ω(

√
n/B) rounds with

probability at least 2/3 when executed in networks of diameter 2.
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Proof. As explained above, it is sufficient to show the corresponding bound for HFn.
Fix an algorithm A, and let tA be defined as above. Fix a segment length of s :=

tA + 1 (so that the back-end of each segment contains exactly one node).
Given an instance (x, y) of DISJn/s, Alice and Bob jointly simulate the first tA

rounds in the execution of A in Gs,x,y as in Proposition 1. After tA rounds, Alice
informs Bob whether or not node a has halted in the simulation. If node a has halted,
the players output “X ∩ Y = ∅”; otherwise they output “X ∩ Y �= ∅”.

As we saw in Lemma 3, if X ∩ Y = ∅ then the diameter of GtA+1,x,y is 2, so
with probability at least 2/3 all nodes halt after tA rounds and Alice and Bob output
“X ∩ Y = ∅”. On the other hand, if X ∩ Y �= ∅, then by time tA node a has not heard
from all nodes, as Lemma 3 shows that at least (s− tA) · |X ∩Y | = |X ∩Y | > 0 nodes
are missing from N tA(a). Consequently, with probability at least 2/3, node a does not
halt by time tA and the players output “X ∩ Y �= ∅”.

The total number of bits exchanged by the players in the protocol above is 2B ·tA+1,
because Alice and Bob only send each other the messages output by nodes a and b,
plus one bit needed for Alice to inform Bob whether node a has halted. An additional
O(log(n/tA)) bits are required to obtain a private-coin protocol. Since the randomized
communication complexity of DISJ�n/(tA+1)� isΩ(n/tA), we must have 2B ·tA+1 =
Ω(n/tA), or in other words, tA = Ω(

√
n/B). ��

Theorem 6. If the diameter of the network is initially unknown, any deterministic al-
gorithm for computing an ε-sensitive function, where ε ∈ (0, 1/2) is constant, requires
Ω(

√
n/B) rounds when executed in networks of diameter 2.

Proof (sketch). We prove thatΩ(
√
n/B) rounds are required to solve HF(1−ε)n deter-

ministically for any ε ∈ (0, 1/2), even in networks of diameter 2. The proof is similar to
that of Thm. 5, except that we now reduce from GAP-DISJ�n/s�,ε′�n/s� for an appropri-
ately chosen constant ε′ ∈ (0, 1/2), and the segment length s is also chosen differently.

Fix a deterministic algorithm A for HF(1−ε)n, and let tA be the maximal time at
which the algorithm halts in any network of diameter 2. We must now choose a segment
length s = Θ(tA) so that the following conditions hold:
(a) IfX ∩Y = ∅, then the diameter ofGs,x,y is 2. This ensures that in “yes” instances,

all nodes halt by time tA.
(b) If |X ∩ Y | ≥ ε′�n/s� then we have |N tA(a)| < (1 − ε)(n+ 2). This ensures that

in “no” instances, node a cannot halt by time tA.
These conditions suffice for the protocol from Thm. 5 to solve GAP-DISJ�n/s�,ε′�n/s�
as well. From Lemma 3 we see that condition (a) holds regardless of our choice of s.
As for condition (b), from part (d) of Lemma 3, it is sufficient to choose s := αtA, ε

′

so that

n− ε′
⌊
n

αtA

⌋
· (α− 1)tA < (1 − ε)(n+ 2).

There exist constants α > 1, ε′ ∈ (0, 1/2) satisfying this constraint (we omit the details
for lack of space). For this choice of s, ε′, the reduction from Thm. 5 yields a protocol
with communication complexity 2BtA + 1 for GAP-DISJn′,ε′n′ , where n′ = �n/s� =
O(n/tA). Because GAP-DISJ is linearly hard for deterministic protocols even when the
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gap is linear in the universe size (Theorem 2), we must have 2BtA + 1 = Ω(n/tA),
i.e., tA = Ω(

√
n/B). ��

Remarks. The construction in this section can be modified to show a few related results.
In Theorems 5 and 6 we assumed that no upper bound on the diameter of the network

is known in advance. Suppose now that some upper bound D̄ on the diameter is known
in advance. We can show that any randomized algorithm for computing a globally-
sensitive function, and any deterministic algorithm for computing an ε-sensitive func-

tion for ε ∈ (0, 1/2), requiresΩ(min
{
D̄,

√
n/B

}
) rounds when executed in networks

of diameter 2.
To see this, observe that the diameter ofGs,x,y never exceeds s+2. Suppose that D̄ =

o(
√
n/B) and we are given an HFn-algorithm (or similarly, a deterministic HF(1−ε)n-

algorithm) A with tA < D̄ − 2. If we use a segment length of s = tA + 1 ≤ D̄ − 2,
as in Thm. 5, the diameter upper bound is not violated in Gs,x,y. For this choice of s,
the reduction from Thm. 5 allows us to solve DISJ�n/s�, where �n/s� ≥ �n/(D̄− 2)�,
using less than 2(D̄− 2)B + 1 bits. We must have 2(D̄− 2)B + 1 = Ω(n/D̄), that is,
D̄ = Ω(

√
n/B), contradicting our assumption that D̄ = o(

√
n/B).

Next, consider the problem of finding an approximate count when the diameter is not
known in advance. (Our lower bound from Section 4 allows the diameter to be known
in advance, but the following requires it to be unknown.) LetN be the best upper bound
known in advance on the count. We will show that in order to distinguish a network of
size n from a network of size N , nodes a, b must solve a Set Disjointness instance of
size O(n/tA), so that again tA = Ω(

√
n/B) rounds are required.

Recall that in Gs,x,y , the distance from any node (i − 1) · s + 1 where i ∈ X ∩ Y
to nodes a and b is s > tA. Thus, when X ∩ Y �= ∅, we can choose a node v :=
(i−1) · s+1 where i ∈ X ∩Y , and “hide” nodes n+1, . . . , N behind it, adding edges
from nodes n + 1, . . . , N to v and from nodes a, b to nodes n + 1, . . . , N . Let G′

s,x,y

be the resulting network. Since the distance from node v to nodes a, b exceeds tA, and
the new nodes n + 1, . . . , N are connected only to node v, tA rounds are insufficient
for nodes a, b to distinguishGs,x,y fromG′

s,x,y . Therefore, ifX ∩ Y �= ∅, an algorithm
for distinguishing networks of size n + 2 from networks of size N cannot terminate
by time tA in Gs,x,y (except with small probability). This is sufficient to carry out the
reduction from Thm. 5 exactly as before, obtaining an Ω(

√
n/B) lower bound on any

non-trivial approximation of the count.

5.2 A (D + Õ(
√

n/B))-Round Algorithm for HFn

We now give an algorithm that solves HFn in nearly-optimal time. If, for example, the
minimum input value heard so far is forwarded alongside the messages of our algorithm,
this allows nodes to compute the global minimum. The algorithm does not use UIDs,
and it only requires an polynomially loose upper boundN ≥ n on the count.

High-level overview of the algorithm. Initially, each node computes a sequence of in-
dependent Bernoulli variables, and stores the indices of the variables that turned up one.
These indices are called tokens. The tokens are then forwarded throughout the network
by all nodes. If a node does not receive any new tokens for a sufficiently long period of
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time, it concludes that it has heard from all nodes, and halts. The waiting period is long
enough so that if at the end t of the period we do not have N t(v) = V , then during the
waiting period the tokens of many new nodes are received by v, and the probability that
none of these nodes generated a token that was not previously known is very small.

for k = �log log N�, �log log N�+ 1, . . . , �log N� do
Compute independent X1

k , . . . , X
�k
k ∼ Bernoulli(2−(k+2))

last updatek ← 0

Tokens ← {
(k, i) ∈ N2 |Xi

k = 1
}

, Sent ← ∅
for r = 1, 2, . . . do

X ← select the β smallest tokens in Tokens \ Sent
broadcast X and set Sent ← Sent ∪X
receive tokens Y from neighbors
for all y = (k, i) ∈ Y \ Tokens do ∀k′ ≥ k : last updatek′ ← r
Tokens ← Tokens ∪ Y
if ∃k : (| {(k, i) ∈ Tokens} | ≤ 2k/3) ∧ (r − last updatek ≥ 2τk) then halt

Algorithm 1. A (D + Õ(
√

n/B))-round algorithm for HFn

Detailed description. Since nodes do not know the exact size n, we use exponentially-
increasing guesses 2k for k = �log logN, . . . , �logN. We refer to each value of k
as a level. On level k, each node computes 	k independent Bernoulli variables X i

k with
Pr[Xi = 1] = 1/2k+2, where 	k = Θ̃(

√
2kB) (the exact value will be fixed later). We

denote by Lk :=
∑k

i=1 	i the total number of variables computed on levels k′ ≤ k.
At the beginning of the algorithm, the indices of the variables that turned up one on

each level are collected in a set Tokens =
{
(k, i) |X i

k = 1
}

. The tokens are ordered
lexicographically — first by level and then by index. Each token can be represented
using logn + log logN bits; for simplicity we assume that each message can fit β
tokens, that is, B = β(log n + log logN) where β is an integer. Pseudocode for the
algorithm is given by Algorithm 1. In the sequel, let τk := �Lk/β.

After generating an initial set of tokens, the tokens are disseminated in batches of β
tokens each, with lower-level tokens taking precedence over higher-level tokens. Each
node halts as soon as on some level k, fewer than 2	k/3 tokens have been received in
total, and in the past 2τk = 2�Lk/β rounds no new token was received.

The algorithm relies on pipelining [18] to quickly disseminate small tokens through-
out the network. Because we forward small tokens before large ones, the progress of a
token (k, i) can only be impeded by tokens on its own level (k) or lower levels (k′ < k);
there are at most Lk =

∑k
i=1 	i such tokens, and β of them can be sent per message.

Thus the “latency” of token (k, i) is at most �Lk/β = τk. More formally, for a set
S ⊆ V of nodes, let Ak(S) :=

⋃
v∈S {(k, i) | (k, i) ∈ Tokensv(0)} be the level-k

tokens generated by the nodes of S. Let Tokensv(t) stand for the value of the local
variable Tokens at node v and time t. The latency of level-k tokens is bounded by the
following lemma.
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Lemma 4. For all v ∈ V and t ≥ τk, Ak(N t−τk(v)) ⊆ Tokensv(t) ⊆ A(N t(v)).

We can now bound the round complexity of the algorithm in terms of the “correct”
value of k, which is roughly log(n).

Lemma 5. Let k̂ := min {�log logN, �logn}. In graphs of diameter D, the algo-
rithm terminates in D + 3�Lk̂/β rounds with probability at least 1− e−�k̂/9.

Proof (sketch). It is not difficult to show that the expected number of level-k tokens
generated by all the nodes together is at most 	k̂/3. A Chernoff bound shows that w.h.p.,
the total number of level-k tokens does not exceed (2/3)	k̂, so the second part of the
termination condition is satisfied for k = k̂. For the first part of the condition we rely on
pipelining: Lemma 4 shows thatAk̂(ND(v)) ⊆ Tokensv(D+τk) for all nodes v; since
ND(v) = V , at time D + τk, each node v has already received all tokens generated
anywhere in the network. After this time no node can receive any new tokens, so all
nodes halt no later than time D + 3τk. ��

Next we show that w.h.p., nodes do not halt before they have heard from all n nodes.

Lemma 6. If the level-k termination condition holds at node v at time t, then with
probability at least 1− e−�2k/(3·2k+3β) we have N t(v) = V .

Proof (sketch). The level-k termination condition asserts that no new level-k tokens
are received during the time interval [t − 2τk, t]. Assume that N t(v) �= V , and set
S := N t−2τk(v), S′ := N t−τk(v). From Lemma 4 we see that
(a) Ak(S′) ⊆ Tokensv(t), that is, all tokens generated by the nodes of S′ are known

to v at time t; and
(b) Tokensv(t−2τk) ⊆ Ak(S), i.e., at time t−2τk node v only knows tokens generated

by the nodes of S.
Since no new tokens were added to Tokensv between time t− 2τk and time t, we must
have Ak(S′) = Ak(S); in other words, the nodes of S′ \ S did not generate any tokens
that were not already generated by the nodes of S. We will show that this is unlikely.

From the level-k termination criterion, at least 	k/3 tokens were not generated by
the nodes of S. Each of these tokens is generated by each node of S′ \ S with proba-
bility 1/2k+2. Because we assumed that N t(v) �= V and the graph is strongly con-
nected, |S′ \ S| ≥ τk. Hence, for each token (k, i) �∈ Ak(S), we can show that
Pr [(k, i) ∈ Ak(S′ \ S)] ≥ τk/2k+3 independently of the other tokens. It follows that

Pr [Ak(S′) = Ak(S)] ≤ (
1− τk/2k−3

)�k/3 ≤ e−�2k/(3·2k+3β). ��

Combining the two lemmas, we see that choosing 	k as Θ(
√

2kβ lnN) yields a poly-
nomially small probability of any node not halting at time D + O(Lk̂/β) = D +
Õ(

√
n/B), or halting before it has heard from all n nodes.

Theorem 7. For any constant c, if 	k ≥
√

3(c+ 2)β · 2k+3 lnN , then with probability
at least 1 − 1/N c each node v halts at a time t = D + O(Lk/β) = Õ(D +

√
n/B)

such thatN t(v) = V .
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6 Conclusion

Data aggregation problems are traditionally studied in models that feature symmetric
point-to-point communication. However, wireless networks can have asymmetric com-
munication topologies, due to the effects of local interference and heterogeneous power
assignments. This motivates our interest in directed networks with communication by
local broadcast.

Our results show that the traditional strategy of first computing a spanning tree,
and then solving various distributed tasks using the tree, is not always optimal for
directed networks; for example, while computing a rooted spanning tree can require
Ω(D + n/B) rounds (as we saw in Section 4), certain data aggregates can be com-
puted or approximated in Õ(D +

√
n/B) rounds. Our lower bounds also imply that

it is not possible to quickly compute a small-diameter symmetric spanning subgraph
of a directed network with diameter 2. In general it seems that “topology-oblivious”
algorithms, such as the algorithm in Section 5.2 and gossip algorithms [6,11], may be
better suited for directed networks.

We leave open the question of finding a tight bound on the deterministic time com-
plexity of computing a sensitive function; is there a deterministic algorithm that matches
theΩ(D+

√
n/B) lower bound, or can the lower bound be strengthened? For technical

reasons, it seems unlikely that a two-party reduction of the style we used in this paper
will yield a stronger lower bound, but perhaps multi-party communication complexity
lower bounds could be used.
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Abstract. We consider the problem of locating a black hole in syn-
chronous anonymous networks using finite state agents. A black hole
is a harmful node in the network that destroys any agent visiting that
node without leaving any trace. The objective is to locate the black hole
without destroying too many agents. This is difficult to achieve when
the agents are initially scattered in the network and are unaware of the
location of each other. In contrast to previous results, we solve the prob-
lem using a small team of finite-state agents each carrying a constant
number of identical tokens that could be placed on the nodes of the net-
work. Thus, all resources used in our algorithms are independent of the
network size.

We restrict our attention to oriented torus networks and first show
that no finite team of finite state agents can solve the problem in such
networks, when the tokens are not movable, i.e., they cannot be moved
by the agents once they have been released on a node. In case the agents
are equipped with movable tokens, we determine lower bounds on the
number of agents and tokens required for solving the problem in torus
networks of arbitrary size. Further, we present a deterministic solution
to the black hole search problem for oriented torus networks, using the
minimum number of agents and tokens, thus providing matching upper
bounds for the problem.

1 Introduction

The exploration of an unknown graph by one or more mobile agents is a classical
problem initially formulated in 1951 by Shannon [27] and it has been extensively
studied since then (e.g., see [1,8,20]). Recently, the exploration problem has
also been studied in unsafe networks which contain malicious hosts of a highly
harmful nature, called black holes. A black hole is a node which contains a
stationary process destroying all mobile agents visiting this node, without leaving
any trace. In the Black Hole Search problem the goal for the agents is to locate
the black hole within finite time. In particular, at least one agent has to survive
knowing all edges leading to the black hole. The only way of locating a black
hole is to have at least one agent visiting it. However, since any agent visiting a
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c© Springer-Verlag Berlin Heidelberg 2011



Black Hole Search with Finite Automata Scattered in a Synchronous Torus 433

black hole is destroyed without leaving any trace, the location of the black hole
must be deduced by some communication mechanism employed by the agents.
Four such mechanisms have been proposed in the literature: a) the whiteboard
model in which there is a whiteboard at each node of the network where the
agents can leave messages, b) the ‘pure’ token model where the agents carry
tokens which they can leave at nodes, c) the ‘enhanced’ token model in which
the agents can leave tokens at nodes or edges, and d) the time-out mechanism
(only for synchronous networks) in which one agent explores a new node while
another agent waits for it at a safe node.

The most powerful inter-agent communication mechanism is having white-
boards at all nodes. Since access to a whiteboard is provided in mutual exclu-
sion, this model could also provide the agents a symmetry-breaking mechanism:
If the agents start at the same node, they can get distinct identities and then the
distinct agents can assign different labels to all nodes. Hence in this model, if the
agents are initially co-located, both the agents and the nodes can be assumed to
be non-anonymous without any loss of generality.

In asynchronous networks and given that all agents initially start at the same
safe node, the Black Hole Search problem has been studied under the whiteboard
model (e.g., [9,12,13,14]), the ‘enhanced’ token model (e.g., [10,15,28]) and the
‘pure’ token model in [18]. It has been proved that the problem can be solved
with a minimal number of agents performing a polynomial number of moves.
Notice that in an asynchronous network the number of the nodes of the network
must be known to the agents otherwise the problem is unsolvable ([13]). If the
graph topology is unknown, at least Δ + 1 agents are needed, where Δ is the
maximum node degree in the graph ([12]). Furthermore the network should be
2-connected. It is also not possible to answer the question of whether a black
hole exists in the network.

In asynchronous networks, with scattered agents (not initially located at the
same node), the problem has been investigated for the ring topology ([11,13]) and
for arbitrary topologies ([4,19]) in the whiteboard model while in the ‘enhanced’
token model it has been studied for rings ([16,17]) and for some interconnected
networks ([28]).

The consideration of synchronous networks makes a dramatic change to the
problem. Now two co-located distinct agents can discover one black hole in any
graph by using the time-out mechanism, without the need of whiteboards or
tokens. Moreover, it is now possible to answer the question of whether a black
hole actually exists or not in the network. No knowledge about the number of
nodes is needed. Hence, with co-located distinct agents, the issue is not the
feasibility but the time efficiency of black hole search. The issue of efficient black
hole search has been studied in synchronous networks without whiteboards or
tokens (only using the time-out mechanism) in [5,7,22,23,24] under the condition
that all distinct agents start at the same node. However when the agents are
scattered in the network, the time-out mechanism is not sufficient anymore.

Indeed the problem seems to be much more difficult in the case of scattered
agents and there are very few known results for this scenario. In this paper we
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study this version of the problem using very simple agents that can be modeled as
finite state automata. Our objective is to determine the minimum resources, such
as number of agents and tokens, necessary and sufficient to solve the problem in
a given class of networks. For the class of ring networks, recent results [3] show
that having constant-size memory is not a limitation for the agents when solving
this problem. We consider here the more challenging scenario of anonymous torus
networks of arbitrary size. We show that even in this case, finite state agents
are capable of locating the black hole in all oriented torus networks using only a
few tokens. Note that the exploration of anonymous oriented torus networks is
a challenging problem in itself, in the presence of multiple identical agents [26].
Since the tokens used by the agents are identical, an agent cannot distinguish
its tokens from those of another agent.

While the token model has been mostly used in the exploration of safe net-
works, the whiteboard model is commonly used in unsafe networks. The ‘pure’
token model can be implemented with O(1)-bit whiteboards, for a constant num-
ber of agents and a constant number of tokens, while the ‘enhanced’ token model
can be implemented having a O(log d)-bit whiteboard on a node with degree d.
In the whiteboard model, the capacity of each whiteboard is always assumed to
be of at least Ω(log n) bits, where n is the number of nodes of the network. In all
previous papers studying the Black Hole Search problem under a token model
apart from [18] and [3], the authors have used the ‘enhanced’ token model with
agents having non-constant memory. The weakest ‘pure’ token model has been
used in [18] for co-located non-constant memory agents equipped with a map in
asynchronous networks.

The Black Hole Search problem has also been studied for co-located agents
in asynchronous and synchronous directed graphs with whiteboards in [6,24].
In [21] they study the problem in asynchronous networks with whiteboards and
co-located agents without the knowledge of incoming link. A different dangerous
behavior is studied for co-located agents in [25], where the authors consider a ring
and assume black holes with Byzantine behavior, which do not always destroy
a visiting agent.

Our Contributions: We consider the problem of locating the black hole in an
anonymous but oriented torus containing exactly one black hole, using a team of
identical agents that are initially scattered within the torus. Henceforth we will
refer to this problem as the BHS problem. We focus our attention on very simple
mobile agents. The agents have constant-size memory, they can communicate
with other agents only when they meet at the same node and they carry a
constant number of identical tokens which can be placed at nodes. The tokens
may be movable (i.e. they can be released and picked up later) or unmovable (i.e.
they cannot be moved by the agents once they have been released on a node).
We prove the following results:

– No finite team of agents can solve the BHS problem in all oriented torus
networks using a finite number of unmovable tokens.

– For agents carrying any finite number of movable tokens, at least three agents
are required to solve the problem.
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– Any algorithm for solving BHS using 3 agents requires more than one mov-
able token per agent.

– The BHS problem can be solved using three agents and only two movable
tokens per agent, thus matching both the lower bounds mentioned above.

In Section 2, we formally describe our model, giving the capabilities of the agents.
In Section 3, we prove lower bound on the number of agents and tokens needed
to solve the BHS problem in the torus. In Section 4, we present deterministic
algorithms for BHS: (i) using k ≥ 3 agents carrying 3 movable tokens per agents,
and (ii) using k ≥ 4 agents carrying 2 movable tokens per agent. We also present
a more involved algorithm that uses exactly 3 agents and 2 tokens per agent
thus meeting the lower bounds. All our algorithms are time-optimal and since
they do not require any knowledge about the dimensions of the torus, they work
in any synchronous oriented torus, using only a finite number of agents having
constant-size memory. Due to space limitations, proofs of some of theorems and
formal descriptions of the algorithms are omitted and can be found in [2].

2 Our Model

Our model consists of k ≥ 2 anonymous and identical mobile agents that are
initially placed at distinct nodes of an anonymous, synchronous torus network
of size n×m, n ≥ 3, m ≥ 3. We assume that the torus is oriented, i.e., at each
node, the four incident edges are consistently marked as North, East, South and
West. Each mobile agent owns a constant number of t identical tokens which
can be placed at any node visited by the agent. In all our protocols a node may
contain at most three tokens at the same time and an agent carries at most three
tokens at any time. A token or an agent at a given node is visible to all agents
on the same node, but is not visible to any other agent. The agents follow the
same deterministic algorithm and begin execution at the same time and being
at the same initial state.

At any single time unit, a mobile agent occupies a node u of the network and
may 1) detect the presence of one or more tokens and/or agents at node u, 2)
release/take one or more tokens to/from the node u, and 3) decide to stay at
the same node or move to an adjacent node. We call a token movable if it can
be moved by any mobile agent to any node of the network, otherwise we call the
token unmovable in the sense that, once released, it can occupy only the node
in which it has been released.

Formally we consider a mobile agent as a finite Moore automaton A =
(S, S0, Σ, Λ, δ, φ), where S is a set of σ ≥ 2 states; S0 is the initial state; Σ is the
set of possible configurations an agent can see when it enters a node; δ : S×Σ →
S is the transition function; and φ : S → Λ is the output function. Elements
of Σ are quadruplets (D,x, y, b) where D ∈ {North, South, East, West, none}
is the direction through which the agent has arrived at the node, x is the
number of tokens (at most 3) at that node, y is number of tokens (at most
3) carried by the agent and b ∈ {true, false} indicates whether there is
at least another agent at the node or not. Elements of Λ are quadruplets
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(P, s,X,M) where P ∈ {put, pick} is the action performed by the agent on
the tokens, s ∈ {0, 1, 2, 3} is the number of tokens concerned by the action A,
X ∈ {North, South, East, West,none} is the edge marked as dangerous by the
agent, and M ∈ {North, South, East, West, none} is the move performed by the
agent. Note that the agent always performs the action before the marking and
the marking before the move.

Note that all computations by the agents are independent of the size n×m of
the network since the agents have no knowledge of n or m. There is exactly one
black hole in the network. An agent can start from any node other than the black
hole and no two agents are initially co-located. Once an agent detects a link to
the black hole, it marks the link permanently as dangerous (i.e., disables this
link). Since the agents do not have enough memory to remember the location of
the black hole, we require that at the end of a black hole search scheme, all links
incident to the black hole (and only those links) are marked dangerous and that
there is at least one surviving agent. Thus, our definition of a successful BHS
scheme is slightly different from the original definition. The time complexity of
a BHS scheme is the number of time units needed for completion of the scheme,
assuming the worst-case location of the black hole and the worst-case initial
placement of the scattered agents.

3 Impossibility Results

In this section we give lower bounds on the number of agents and the number
and type of tokens needed for solving the BHS problem in any anonymous,
synchronous and oriented torus.

3.1 Agents with Unmovable Tokens

We will prove that any constant number of agents carrying a constant number
of unmovable tokens each, can not solve the BHS problem in an oriented torus.
The idea of the proof is the following: We show that an adversary (by looking
at the transition function of an agent) can always select a big enough torus and
initially place the agents so that no agent visits nodes which contain tokens left
by another agent, or meets with another agent. Moreover there are nodes on the
torus never visited by any agent. Hence the adversary may place the black hole
at a node not visited by any of the agents to make the algorithm fail. This result
is based on ideas presented earlier in [26].

Theorem 1. For any constant numbers k, t, there exists no algorithm that
solves BHS in all oriented tori containing one black hole and k scattered agents,
where each agent has a constant memory and t unmovable tokens.

3.2 Agents with Movable Tokens

We show the following impossibility results.
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Lemma 1. Two agents carrying any number of movable tokens cannot solve the
BHS problem in an oriented torus even if the agents have unlimited memory.

Proof. Assume w.l.o.g. that the first move of the agents is going East. Suppose
that the black hole has been placed by an adversary at the East neighbor of an
agent. This agent vanishes into the black hole after its first move. The adversary
places the second agent such that it vanishes into the black hole after its first
vertical move, or it places the agent in a horizontal ring not containing the black
hole if the agent never performs vertical moves. Observe that the trajectories of
the two agents intersect only at the black hole and neither can see any token left
by the other agent. Neither of the agents will ever visit the East neighbor of the
black hole and thus, they will not be able to correctly mark all links incident to
the black hole.

Thus, at least three agents are needed to solve the problem. We now determine
a lower bound on the number of tokens needed by three scattered agents to solve
BHS.

Lemma 2. There exists no algorithm that could solve the BHS problem in all
oriented tori using three agents with constant memory and one movable token
each.

Proof. (Sketch) Clearly, in view of Theorem 1, an algorithm which does not
instruct an agent to leave its token at a node, cannot solve the BHS problem.
Hence any potentially correct algorithm should instruct an agent to leave its
token down. Moreover this decision has to be taken after a finite number of
steps (due to agents’ constant memory). After that the agents visit new nodes
until they see a token. We can show that if the agents visit only a constant
number of nodes before returning to meet their tokens they cannot visit all
nodes of the torus. If they move their tokens each time they see them and repeat
the previous procedure (i.e., visit a constant number of nodes and return to meet
their tokens), we can show that they will find themselves back at their initial
locations and initial states without having met with other agents and leaving
some nodes unvisited. An adversary may place the black hole at an unvisited
node to make the algorithm fail. Now consider the case that at some point an
algorithm instructs the agents to visit a non-constant number of nodes until they
see a token (e.g., leave your token down and go east until you see a token). Again
we can show that an adversary may initially place the agents and the black hole,
and select the size of the torus so that two of the agents enter the black hole
without leaving their tokens close to it: The agent (say A) that enters first into
the black hole has been initially placed by an adversary so that it left its token
more than a constant number of nodes away from the black hole. The adversary
initially places another agent B so that it enters the black hole before it meets
A’s token. Furthermore B leaves its token more than a constant number of nodes
away from the black hole. Hence the third agent, even if it meets the tokens left
by A or B, it could not decide the exact location of the black hole.



438 J. Chalopin et al.

Theorem 2. At least three agents are necessary to solve the BHS problem in an
oriented torus of arbitrary size. Any algorithm solving this problem using three
agents requires at least two movable tokens per agent.

4 Algorithms for BHS in a Torus using Movable Tokens

Due to the impossibility result from the previous section, we know that unmov-
able tokens are not sufficient to solve BHS in a torus. In the following, we will
use only movable tokens. To explore the torus an agent uses the Cautious-Walk
technique [13] using movable tokens. In our algorithms, a Cautious-Walk in di-
rection D with x tokens means the following (see Procedure 1): (i) the agent
releases a sufficient number of tokens such that there are exactly x tokens at
the current node, (ii) the agent moves one step in direction D and if it survives,
the agent immediately returns to the previous node, (iii) the agent picks up the
tokens released in step (i) and again goes one step in direction D. If an agent
vanishes during step (ii), any other agent arriving at the same location sees x to-
kens and realizes a potential danger in direction D. Depending on the algorithm
an agent may use 1, 2, or 3 tokens to implement the Cautious-Walk.

Procedure Cautious-walk(Direction D, integer x)
/* Procedure used by the agent to explore the nodes */

Put tokens until there are x tokens;1

Go one step along D and then go back;2

/* test if the node in direction D is the black hole */

Pick up the tokens released in the first step;3

Go one step along D;4

4.1 Solving BHS Using k ≥ 3 Agents and 3 Tokens

We show that three agents suffice to locate the black hole if the agents are
provided with three tokens using the algorithm presented below.

Algorithm BHS-torus-33
An agent explores one horizontal ring at a time and then moves one step South
to the next horizontal ring and so on. When exploring a horizontal ring, the
agent leaves one token on the starting node. This node is called the homebase
of the agent and the token left (called homebase token) is used by the agent to
decide when to proceed to the next ring. The agent then uses the two remaining
tokens to repeat Cautious-Walk in the East direction until it has seen twice a
node containing one token. Any node containing one token is a homebase either
of this agent or of another agent. The agent moves to the next horizontal ring
below after encountering two homebases. However before moving to the next
ring, it does a cautious walk in the South direction with three tokens (the two
tokens it carries plus the homebase token). If the agent survives and the node
reached by the agent has one token, the agent repeats a cautious walk in the East
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direction (with two tokens) until it reaches an empty node. The agent can now
use this empty node as its new homebase. It then repeats the same exploration
process for this new ring leaving one token at its new homebase.

Whenever the agent sees two or three tokens at the end of a cautious-walk,
the agent has detected the location of the black hole: If there are two (resp.
three) tokens at the current node, the black hole is the neighboring node w to
the East (resp. South). In this case, the agent stops its normal execution and
then traverses a cycle around node w, visiting all neighbors of w and marking
all the links leading to w as dangerous.

Theorem 3. Algorithm BHS-torus-33 correctly solves the BHS problem with 3
or more agents.

Proof. An agent may visit an unexplored node only while going East or South. If
one agent enters the black hole going East (resp. South), there will be two (resp.
three) tokens on the previous node and thus, no other agent would enter the
black hole through the same link. This implies that at least one agent always
survives. Whenever an agent encounters two or three tokens at the end of a
Cautious-Walk, the agent is certain of the location of the black hole since any
alive agent would have picked up its Cautious-Walk tokens in the second step of
the cautious walk (The agents move synchronously always using cautious walk
and taking three steps for each move).

4.2 BHS Using k ≥ 4 Agents and 2 Tokens Each

We now present an algorithm that uses only two tokens per agent, but requires
at least 4 agents to solve BHS.

During the algorithm, the agents put two tokens on a node u to signal that
either the black hole is on the South or the East of node u. Eventually, both
the North neighbor and the West neighbor of the black hole are marked with
two tokens. Whenever there is a node v such that there are exactly two tokens
at both the West neighbor of v and the North neighbor of v, then we say that
there exists a Black-Hole-Configuration (BHC) at v.

Algorithm BHS-torus-42
The agent puts two tokens on its starting node (homebase). It then performs a
Cautious-Walk in the East direction. If the agent survives, it returns, picks up
one token and repeats the Cautious-Walk with one token in the East direction
(leaving the other token on the homebase) until it reaches a node containing one
or two tokens.

– If the agent reaches a node u containing two tokens, then the black hole is
the next node on the East or on the South (See Property C of Proposition 1).
The agent stops its exploration and checks whether the black hole is the East
neighbor or the South neighbor.

– Whenever an agent reaches a node containing one token, it performs a
Cautious-Walk in East direction with two tokens and then continues the
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Cautious-Walk in the same direction with one token. If the agent encounters
three times1 a node containing one token, it moves to the next horizontal
ring below. To do that it first performs a Cautious-Walk with two tokens
in the South direction. If the agent survives and reaches the ring below, it
can start exploring this horizontal ring. If the current node is not empty, the
agent repeats a cautious walk with two token in the East direction until it
reaches an empty node. Now the agent repeats the same exploration process
using the empty node as its new homebase. Whenever the agent encounter a
node with two tokens, it stops its exploration and checks whether the black
hole is the East or South neighbor.

In order to check if the black hole is the East neighbor v or the South neighbor w
of the current node u (containing two tokens), the agent performs the following
actions: The agent reaches the West neighbor x of w in exactly three time units
by going West and South (and waiting one step in between). If there are two
tokens on this node x then w is the black hole. Otherwise, the agent performs a
cautious walk in the East direction with one token (or with two tokens if there
is already one token on node x). If it safely reaches node w, then the black hole
is the other node v. Otherwise the agent would have fallen into the black hole
leaving a BHC at node w. An agent that discovers the black hole, traverses a
cycle around the black hole visiting all its neighbors and marking all the links
leading to it as dangerous.

Proposition 1. During an execution of BHS-torus-42 with k ≥ 4 agents, the
following properties hold:

A When an agent checks the number of tokens at a node, all surviving agents
have picked up their cautious-walk token.

B At most three agents can enter the black hole:
(a) at most one agent going South leaving two tokens at the previous node.
(b) at most two agents going East, each leaving one of its tokens at the pre-

vious node.
C When an agent checks the number of tokens at a node, if there are two tokens

then the black hole is either the East or the South neighbor of the current
node.

D After an agent starts exploring a horizontal ring, one of the following even-
tually occurs:
(a) If this ring is safe, the agent eventually moves to the next horizontal ring

below.
(b) Otherwise, either all agents on this ring fall into the black hole or one of

these agents marks all links to the black hole.

Theorem 4. Algorithm BHS-torus-42 correctly solves the black hole search
problem with k ≥ 4 agents, each having two tokens.
1 The agent may encounter homebases of two agents which have both fallen into the

black hole. (In this case it must continue in the same direction until it locates the
black hole).
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Proof. Property B of Proposition 1 guarantees that at least one agent never
enters the black hole. Property D ensures that one of the surviving agents will
identify the black hole. Property C shows that if the links incident to a node w
are marked as dangerous by the algorithm, then node w is the black hole.

4.3 BHS with 3 Agents and 2 Movable Tokens

Using the techniques presented so far, we now present the algorithm that uses
exactly 3 agents and two tokens per agent. The algorithm is quite involved and
we present here only the main ideas of the algorithm. The complete algorithm
along with a proof of correctness can be found in [2]. Notice first that we can
not prevent two of the three agents from falling into the black hole (see proof
of Lemma 1). To ensure that no more than two agents enter the black hole,
the algorithm should allow the agent to move only in two of the possible four
directions (when visiting unexplored nodes). When exploring the first horizontal
ring, an agent always moves in the East direction, using a Cautious-Walk as
before and keeping one token on the starting node (homebase). This is called
procedure First-Ring. Once an agent has completely explored one horizontal
ring, it explores the ring below, using procedure Next-Ring. During procedure
Next-Ring, an agent traverses the already explored ring and at each node u of
this ring, the agent puts one token, traverses one edge South (to check the node
just below node u), and then immediately returns to node u and picks up the
token. Note that an agent may fall into the black hole only when going South
during procedure Next-Ring or when going East during procedure First-Ring.
We ensure that at most one agent falls into the black hole from each of these
two directions. The surviving agent must then identify the black hole from the
tokens left by the other agents.

Algorithm 2. BHS-Torus-32

/* Algorithm for BHS in Oriented Torus (3 agents, 2 tokens) */

First-Ring;1

repeat2

Init-Next-Ring;3

Next-Ring;4

until until black hole is found ;5

For this algorithm, we redefine the Black-Hole-Configuration (BHC) as fol-
lows: If there is a node v such that there is one or two tokens at both the West
neighbor of v and the North neighbor of v, then we say that a BHC exists at
v. The algorithm should avoid forming a black hole configuration at any other
node except the black hole. In particular, when the agents put tokens on their
homebase, these tokens should not form a BHC. This requires coordination be-
tween any two agents that are operating close to each other (e.g. in adjacent
rings of the torus) and it is not always possible to ensure that a BHC is never
formed at a safe node.
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The main idea of the algorithm is to make two agents meet whenever they
are close to each other (this requires a complicated synchronization and check-
ing procedure). If any two agents manage to gather at a node, we can easily
solve BHS using the standard procedure for colocated agents2 with the time-out
mechanism (see [3,5]) . On the other hand, if the agents are always far away
from each other (i.e. more than a constant distance) then they do not interfere
with the operations of each other until one of them falls into the black hole. The
agents explore each ring, other than the first ring, using procedure Next-Ring.
We have another procedure called Init-Next-Ring that is always executed at the
beginning of Next-Ring, where the agents check for certain special configura-
tions and take appropriate action. If the tokens on the potential homebases of
two agents would form a BHC on a safe node, then we ensure two agents meet.

Synchronization
During the algorithm, we ensure that two agents meet if they start the procedure
Init-Next-Ring from nearby locations. We achieve this by keeping the agents
synchronized to each other, in the sense that they start executing the procedure
at the same time, in each iteration. More precisely, we ensure the following
property:

Property 1. When one agent starts procedure Init-Next-Ring, any other surviv-
ing agent either (i) starts procedure Init-Next-Ring at exactly the same time, or
(ii) waits in its current homebase along with both its tokens during the time the
other agent is executing the procedure or, (iii) has not placed any tokens at its
homebase.

Notice that if there are more than one agent initially located at distinct nodes
within the same horizontal ring, an agent cannot distinguish its homebase from
the homebase of another agent, and thus an agent would not know when to stop
traversing this ring and go down to the next one. We get around this problem
by making each agent traverse the ring a sufficient number of times to ensure
that every node in this ring is explored at least once by this agent. To be more
precise, each agent will traverse the ring until it has encountered a homebase
node six times (recall that there can be either one, two or three agents on the
same ring). This implies that in reality the agent may traverse the same ring
either twice, or thrice, or six times. If either all agents start in distinct rings or
if all start in the same ring then, the agents would always be synchronized with
each other (i.e. each agent would start the next iteration of Next-Ring at the
same time). The only problem occurs when two agents start on the same ring
and the third agent is on a different ring. In this case, the first two agents will
be twice as fast as the third agent. We introduce waiting periods appropriately
to ensure that Property 1 holds.

For both the procedures First-Ring and Next-Ring, we define one big-step to
be the period between when an agent arrives at a node v from the West with
2 Note that the agents meeting at a node can be assigned distinct identifiers since they

would arrive from different directions.
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its token(s) and when it has left node v to the East with its token(s). During a
big-step, the agent would move to an unsafe node (East or South), come back
to pick its token, wait for some time at v before moving to the next node with
its token. The waiting period is adjusted so that an agent can execute the whole
procedure Init-Next-Ring during this time. Thus, the actual number of time
units for each big-step is a fixed constant D.

Algorithm BHS-Torus-32

Procedure First-Ring
During this procedure the agent explores the horizontal ring that contains its
starting location. The agent puts one token on its homebase and uses the other
token to perform cautious-walk in the direction East, until it enters a node with
some tokens. If it finds a node with two tokens then the next node is the black
hole. Thus, the agent has solved BHS. Otherwise, if the agent finds a node with
a single token this is the homebase of some agent (maybe itself). The agent puts
the second token on this node and continues the walk without any token (i.e. it
imitates the cautious-walk). If it again encounters a node with a single token,
then the next node is the black hole and the algorithm terminates. Otherwise,
the agent keeps a counter initialized to one and increments the counter whenever
it encounters a node containing two tokens. When the counter reaches a value
of six, the procedure terminates. At this point the agent is on a node with two
tokens (which it can use for the next procedure).

Unless an agent enters or locates the black hole, the procedure First-Ring
requires exactly 6nD time units for an agent that is alone in the ring, 3nD for
two agents that start on the same ring, and 2nD if all the three agents start on
the same ring.

Procedure Init-Next-Ring
An agent executes this procedure at the start of procedure Next-Ring in order
to choose its new homebase for exploring the next ring. The general idea is that
the agent checks the node u on the South of its current location, move its two
tokens to the East, and then goes back to u. If there is another agent that has
started Next-Ring on the West of u (i.e., without this Procedure, the homebases
of the two agents would have formed a BHC), the agents can detect it, and Init-
Next-Ring is designed in such a way that the two agents meet. More precisely,
when an agent executes Init-Next-Ring on horizontal ring i without falling into
the black hole, we ensure that either (i) it meets another agent, or (ii) it locates
the black hole, or (iii) it detects that the black hole is on ring i + 2, or (iv)
the token it leaves on its homebase does not form a BHC with a token on ring
i + 1. In case (iii), the agent executes Black-Hole-in-Next-Ring; in case (iv), it
continues the execution of Next-Ring.

Procedure Next-Ring
The agent keeps one token on the homebase and with the other token performs
a special cautious-walk during which it traverses the safe ring and at each node
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it puts a token, goes South to check the node below, returns back and moves
the token to the East. The agent keeps a counter initialized to zero, which it
increments whenever it sees a node with a token on the safe ring. When the agent
sees a token on the safe ring, it does not go South, since this may be dangerous.
Instead, the agent goes West and South, and if it does not see any token there,
it puts a token and goes East. If the agent enters the black hole, it has left a
BHC. When the counter reaches a value of six, the procedure terminates.

During the procedure, an agent keeps track of how many (1 or 2) tokens it
sees in the safe ring and the ring below. This information is stored as a sequence
(of length at most 24). At the end of the procedure, using this sequence, an
agent in the horizontal ring i can detect whether (i) the Black hole lies in the
horizontal ring i+ 1 or i+ 2, or, (ii) there are two other agents in the ring i and
ring i+ 1 respectively, or, (iii) the ring i+ 1 does not contain the black hole. In
scenario (i), the agent executes procedure Black-Hole-in-Next-Ring; in scenario
(ii), the agent meets with the other agent in the same ring; in scenario (iii),
the agent moves to the next horizontal ring (i.e. ring i + 1) to start procedure
Init-Next-Ring again.

Procedure Black-Hole-in-Next-Ring
The agent executes this procedure only when it is certain that the black hole lies
in the ring below its current position. The procedure is similar to Next-Ring ; the
main difference being that the agent does not leave a homebase token. During the
procedure, either (i) the agent detects the location of the black hole and marks
all links to the black hole or (ii) the agent falls into the black hole, forming a
BHC at the black hole.

Theorem 5. Algorithm BHS-Torus-32 correctly solves the BHS problem in any
oriented torus with exactly three agents carrying two tokens each.

5 Conclusions

We showed that at least three agents are needed to solve BHS in oriented torus
networks and these three agents must carry at least two movable tokens each
for marking the nodes. The algorithm BHS-Torus-32 uses the smallest possible
team of agents (i.e., 3) carrying the minimum number of tokens (i.e., 2) and
thus, it is optimal in terms of resource requirements. However, on the downside
this algorithm works only for k = 3 agents. In combination with algorithm BHS-
Torus-42 (which solves the problem for any k ≥ 4 agents carrying 2 tokens each),
these algorithms can solve the black hole search problem for any k ≥ 3, if the
value of k is known. Unfortunately, algorithms BHS-Torus-32 and BHS-Torus-42
cannot be combined to give an algorithm for solving the BHS problem for any
k ≥ 3 agents without the knowledge of k: Algorithm BHS-Torus-32 for 3 agents
will not correctly locate the black hole if the agents are more than 3, while in
the algorithm BHS-Torus-42, 3 of the agents may fall into the black hole. Hence,
whether the problem can be solved for k ≥ 3 agents equipped with 2 tokens,
without any knowledge of k, remains an interesting (and we believe challenging)
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open question. Another interesting open problem is to determine the minimum
size of a team of agents carrying one token each, that can solve the BHS problem.
Note that the impossibility result for three agents carrying one token each, does
not immediately generalize to the case of 4 or more agents, as in those cases, we
cannot exclude the possibility that two surviving agents manage to meet.

It is interesting to compare our results with the situation in a synchronous,
oriented, anonymous ring, which can be seen as a one dimensional torus ([3]):
The minimum trade-offs between the number of agents and the number of tokens,
in this case, are 4 agents with 2 unmovable tokens or 3 agents with 1 movable
token each. Additionally, in an unoriented ring the minimum trade-offs are 5
agents with 2 unmovable tokens or 3 agents with 1 movable token each whereas
the situation in an unoriented torus has not been studied. Hence another open
problem is solving the BHS problem in a d-dimensional torus, d > 3, as well as
in other network topologies.
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Abstract. We study rendezvous of two anonymous agents, where each agent
knows its own initial position in the environment. Their task is to meet each other
as quickly as possible. The time of the rendezvous is measured by the number of
synchronous rounds that agents need to use in the worst case in order to meet.
In each round, an agent may make a simple move or it may stay motionless.
We consider two types of environments, finite or infinite graphs and Euclidean
spaces. A simple move traverses a single edge (in a graph) or at most a unit
distance (in Euclidean space). The rendezvous consists in visiting by both agents
the same point of the environment simultaneously (in the same round).

In this paper, we propose several asymptotically optimal rendezvous algo-
rithms. In particular, we show that in the line and trees as well as in multi-
dimensional Euclidean spaces and grids the agents can rendezvous in timeO(d),
where d is the distance between the initial positions of the agents.

The problem of location-aware rendezvous was studied before in the asyn-
chronous model for Euclidean spaces and multi-dimensional grids, where the
emphasis was on the length of the adopted rendezvous trajectory. We point out
that, contrary to the asynchronous case, where the cost of rendezvous is domi-
nated by the size of potentially large neighborhoods, the agents are able to meet
in all graphs of at most n nodes in time almost linear in d, namely, O(d log2 n).
We also determine an infinite family of graphs in which synchronized rendezvous
takes time Ω(d).

1 Introduction

In the rendezvous problem two mobile agents have to meet, starting at different locations
of the environment. Each agent is unaware of the location of the other, hence it must
use some procedure to explore (a part of) the environment in order to find the other
agent. We consider rendezvous setting in which the main goal is to minimize the time
required by the agents to meet as a function of their initial distance. The rendezvous
problem has been extensively studied in the literature. For example, two comprehensive
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surveys by Alpern [1,3] and the book by Alpern and Gal [4] present numerous efficient
randomized rendezvous strategies. The rendezvous process can be presented as a search
game, when two agents collaborate against an adversary, which tries to prevent or delay
their meeting. The rendezvous problem can be also seen a version of the consensus
problem in which agents have to agree on the meeting point and time [27].

In general, the results in the domain can be classified as those adopting some geo-
metric setting, e.g., rendezvous in the line [9,10,22], or in the plane [5,6,29,28]), and
those considering rendezvous in graphs, e.g., [1,2]. In the case of unlabeled graphs, a
deterministic solution to the rendezvous problem requires breaking symmetry, which
may be done by marking the nodes of the graph using pebbles or whiteboards (e.g., see
[10,25,26]), using labeled agents (e.g. [17,23]) or exploring asymmetric positions of the
agents in the graph (e.g., [14]).

In this paper we use yet another method of breaking symmetry by providing to each
agent information about its own position in the environment (this implies that the envi-
ronment may not be unknown to the agent). The assumption that the distributed agents
know their initial location in the geometric environment was considered in the past in
the context of geometric routing, e.g., [24], where it was assumed that the agent knows
its own position as well as the position of the destination, or broadcasting, (cf. [19,20]),
where the position awareness of the broadcasting node only was admitted. Such as-
sumption, partly fueled by the availability and the expansion of the Global Positioning
System (GPS), is sometimes called location awareness of agents or nodes of the net-
work.

In [13,8] the authors study the rendezvous problem of location-aware agents in the
asynchronous case. Previously, the asynchronous rendezvous was studied in [16] for
lines and rings, while for arbitrary graphs [16] gave the exponential-time rendezvous
procedure, under the condition that the bound on the size of the graph is known to the
agent. This condition was suppressed in [15], where feasibility of asynchronous ren-
dezvous was settled for arbitrary (even infinite) graphs and geometric environments.
Both approaches in [16] and [15]) lead to very inefficient, exponential-time rendezvous
algorithms for labeled agents. However, the authors of [13] introduced the concept of
covering sequences that permitted location aware agents to meet along the route of
polynomial length in d in multi-dimensional grids. Their result was further advanced
in [8], where the proposed algorithm provides a route, leading to rendezvous, of length
being only a polylogarithmic factor away from the optimal rendezvous trajectory. The
inherent bottleneck, however, in asynchronous location-aware rendezvous is in poten-
tially large volume of local neighborhoods. In the worst case, every agent must search
through its entire neighborhood of radius d when, e.g., the other agent is immobilized
by the adversary that controls the actions of both agents.

The main emphasis in this paper is on local rendezvous, i.e., the agents are expected
to meet without visiting remote parts of the network. In this setting the rendezvous
cost tends to be proportional to d, where d is the distance between the initial positions
of the two agents or, in the case of gathering, d refers to the diameter of the ball that
covers all agents prompted to meet. Some local rendezvous strategies were studied in
the geometric setting where the agents have either a complete or limited visibility [28].
E.g., in [7] Ando et al. studied convergence stability of multiple agents represented as
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points on the plane. In a similar geometric setting Cohen and Peleg considered con-
vergence properties of gravitational algorithms including scenarios populated by crash
faults [12].

The synchronous deterministic rendezvous for labeled agents in graphs was first
studied in [17], where the main result was a polynomial-time rendezvous algorithm.
The authors of [23] and [30] independently extended the approach of [17] to the case
of agents starting their movement at arbitrary delay. However the algorithms from
[17,23,30] are highly polynomial in the size of the network. Thanks to the location-
awareness assumption, the approach used in our paper results in very efficient algo-
rithms, linear or slightly super-linear in the initial distance d between the agents, work-
ing, in some cases, also for infinite graphs and multi-dimensional grids and spaces.

The Model. In this paper we assume that the network environment is represented by
a graph (finite or infinite) in which mobile agents visit nodes by traversing edges in
both directions. The approach is also extended to the continuous, geometric setting. It
is assumed that all agents move with the uniform speed. More precisely, a mobile agent
requires a unit of time to traverse an edge of the graph, or a segment of length 1 in the
geometric setting. Each agent can access its clock and agents’ clocks are synchronized
to tick at the same time moments. An agent can count the number of rounds (clock
ticks) and use this information to plan its actions. We assume that both agents start their
actions simultaneously, i.e., both clocks indicate the same time. Agents are anonymous.
However, each agent is aware of its initial location that can be adopted as its unique
label. We also assume that the agents are fully aware of the network topology. The
agents can meet each other on vertices of the graph, and they can pass through each
other without meeting, while traversing an edge in opposite directions. We focus on
deterministic rendezvous procedures (i.e., no randomization is allowed). The movement
of an agent is determined by its current location and the time on its clock.

Please note that due to space restrictions several proofs are omitted in this version of
the paper.

2 Linear Time Rendezvous on the Infinite Line

The first case we consider here refers to the infinite line L = (−∞,+∞). Recall that
the mobile agents are aware of their initial location on the line and a sense of (positive or
negative) direction. Note that in this setting it is easy to meet agents at, say, the origin
of the line. This, however, will not guarantee local rendezvous. I.e., the agents may
have to traverse a very long distance, much longer than the distance d that separates the
initial positions of the agents. Instead, the agents travel in a zig-zag fashion at increasing
distances. For agents starting at distance d, this guarantees rendezvous in time O(d).

We first assume that all agents are initially situated at integer points on the line, and
all begin the rendezvous procedure at time t = 0. Later, we also discuss the case of
non-integer starting points.

The rendezvous proceeds in a series of iterations. Each iteration with index i ≥ 1
consists of two stages: stage 1 and stage 2. We set 	i = 2i−2, for i ≥ 2. Informally
speaking, during iteration i, the agents are initially divided into odd and even groups
located at a distance of 2	i from each other. The odd agents move to the right a distance
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of 	i (stage 1), then to the left a distance of 2	i (stage 2). The even agents move left a
distance of 	i (stage 1), then right a distance of 2	i (stage 2). Thus, groups of agents
meet both of their neighboring groups, and then some of the groups will merge at the
end of the iteration.

More formally, let us define F c
1 (k) = {k} for each integer k. We demonstrate the

following invariant. During each iteration i = 1, 2, 3, . . ., the agents are partitioned
according to their initial positions on the line into the following groups at the end of
stages 1 and 2:

1. Fh
i (k) = {k · 2i− 2i−1, k · 2i − 2i−1 + 1, . . . , k · 2i + 2i−1− 1} for k ∈ Z, on the

conclusion of stage 1.
2. F c

i (k) = {k · 2i, k · 2i + 1, . . . , k · 2i + 2i − 1} for k ∈ Z, on the conclusion of
stage 2.

We also have two more invariants, namely:

3. label(a) = k for all agents a ∈ F c
i (k), for all i > 0, k ∈ Z.

4. At the end of iteration i ≥ 1, the agents in group F c
i (k) are located at position

k · 2i + 1
2 (2i − 1) on the line.

Algorithm 1. Rendezvous on the infinite line

set  = 1
2

foreach agent a do
set label(a) = position of a on the line

for i = 1, 2, 3, . . . do
foreach agent a do

stage 1: /* form the groups F h
i (k) */

if odd(label(a)) then move right distance 
else move left distance 

stage 2: /* form the groups F c
i (k) */

if odd(label(a)) then move left distance 2
else move right distance 2

set  = 2 · 
set label(a) =

⌊
label(a)

2

⌋

Theorem 1. For two agents a1, a2 starting at distance d (and at integer points) on the
line L, Algorithm 1 permits rendezvous within at most 6d synchronized rounds.

Proof. The four invariants mentioned above are easy to establish by induction.
We first note using the definitions of the sets Fh

i (k) and F c
i (k) above that for all i ≥ 1

and k ∈ Z, we have:

Fh
i (k) = F c

i−1(2k − 1) ∪ F c
i−1(2k),

F c
i (k) = F c

i−1(2k) ∪ F c
i−1(2k + 1).
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We start with sets F c
1 (k) = {2k, 2k + 1} for all integers k. Before iteration with

index 2, we note that each F c
1 (k) is located at position 2k.

Inductively, the agents in the group F c
i (2k) (with label 2k, by assumption) will first

meet those in group F c
i (2k − 1) (with label 2k − 1, again by assumption) in stage 1 of

iteration i+1, and will then meet those in group F c
i (2k+1) (with label 2k+1) in stage

2 of iteration i+ 1. Now, since label(F c
i (2k)) = 2k (i.e. label(a) = 2k ∀a ∈ F c

i (2k))
and label(F c

i (2k + 1)) = 2k + 1, we find that all agents in F c
i+1(k) = F c

i (2k) ∪
F c

i (2k + 1) will have label k at the end of iteration i + 1. Further, by assumption, the
group F c

i (2k) begins iteration i+ 1 at location 2k · 2i + 1
2 (2i − 1) on the line. During

iteration i+ 1, this group first moves left a distance of 2i−1, then right for a distance of
2i. Hence, this group ends iteration i+ 1 at location

2k · 2i + 1
2 (2i − 1)− 2i−1 + 2i = k · 2i+1 + 1

2 (2i+1 − 1).

In a similar manner, we can show that group F c
i (2k+1) ends iteration i+1 at the exact

same location as group F c
i (2k), the pair of them together comprising F c

i+1(k).
Finally, by the end of iteration i ≥ 2, each agent has met all other agents that began

the rendezvous procedure at distance at most 2i−1, and each agent has moved a distance
of 3

∑i
j=1 	j , where 	j = 2j−2, as before.

Consider two agents that begin the rendezvous at positions a1 < a2. Then, let i be
the integer such that 2i−1 < d = a2 − a1 ≤ 2i. From the claim above, a1 and a2 have
met by the end of iteration i+ 1. Thus, this process takes time

2 + 3
i+1∑
j=2

	j = 2 + 3
i+1∑
j=2

2j−2 = 2 + 3
i∑

j=1

2j−1 = 2 + 3 · (2i − 1)

= 6 · 2i−1 − 1 < 6d.

We now consider non-integer starting positions of the agents. For a real number d > 1,
let us define the function T (d) = 6 ·2i−1−1, where i is the integer that satisfies 2i−1 <
d ≤ 2i. From Theorem 1, agents starting on integer points at distance d rendezvous in
time at most 6d. This can be carried over to arbitrary (non-integer) starting points and
distances, at least in the case when d ≥ 1.

Lemma 2. Suppose two agents a1, a2 are placed on line L at distance d ≥ 1. Then, we
can adapt Algorithm 1 so that a1 and a2 rendezvous within T (�d) < 6d synchronous
rounds.

Proof. The adaptation of Algorithm 1 is a natural one to consider. An agent not begin-
ning at an integer point initially adopts as its first move a contiguous final segment of
the first move of a close by (possibly hypothetical) agent that did begin at an integer
point. If the starting location of a is not an integer, then consider a− �a� and �a − a.
Either one of these two quantities is smaller than the other, or they are equal, i.e. a
is closer to one of two integers, or a = �a� + 1

2 . In the first case, a adopts the final
segment of the first move of the (hypothetical) agent at �a� or �a, and then adopts the
label of that agent and its behavior for the remaining part of the rendezvous procedure.
(If a = �a�+ 1

2 , we arbitrarily have a adopt the label and procedure of �a.)



452 A. Collins et al.

Let us assume that d > 1. (The case of d = 1 is easily handled by a special analysis
very similar to the one given below.) Assume that a1 < a2 and, as before, let d =
a2 − a1. Let us write d = d∗ + ε, where d∗ = �d� and ε < 1.

There are integers x < y such that d∗ = y − x

x− 1 < a1 ≤ x < y ≤ a2 < y + 1.

Since ε = (x − a1) + (a2 − y) < 1, either x − a1 or a2 − y is strictly smaller than 1
2 .

Assume that x− a1 <
1
2 . (The other case is similar.)

In this case, by the end of iteration 1, a1 has adopted the behavior of (the hypotheti-
cal) agent x. Similarly, a2 has adopted the behavior of either agent y or y+1 (depending
upon a2’s exact location in the interval [y, y+ 1)). This means that a1 and a2 will meet
in the same time that it takes the agents at positions x and x + �d� or x and x + �d to
meet. In particular, this means that a1 and a2 will meet in time (at most) T (�d).

As before, let i be the integer such that 2i−1 < d ≤ 2i. Then we also note that
2i−1 < �d ≤ 2i. We have noted that a1 and a2 will meet in time T (�d) and since

T (�d)
�d ≤ T (�d)

d
<

6 · 2i−1 − 1
2i−1

< 6,

this establishes the bound of the lemma.

In general, it is impossible to define a deterministic rendezvous procedures for agents
that start at arbitrarily small distance d > 0 and to guarantee that they will meet in time
O(d). In the case where the agents are located very close to each other our algorithm
guarantees rendezvous on the conclusion of iteration 2, i.e., in time 4.

3 Linear Time Rendezvous in Trees

We show here that the time complexity of rendezvous in trees is O(d). We first show
that the two agents can meet in time < 12d in the half-line [0,+∞), where they are
allowed to move only in one direction towards the location 0. Later we show how to
adopt this algorithm to obtainO(d) time rendezvous in trees.

3.1 One-Way Rendezvous in the Half-Line

Consider a half-line L′ = [0,+∞) where the agents a1 and a2 are labeled by their
initial integer positions p1 and p2 respectively. Assume also that this time the agents
can move only in one direction towards the closed end (0) of L′.

The algorithm is executed in iterations formed of stages 1 and 2. The following
invariant is used. During each iteration i = 2, 3, ... the agents are partitioned according
to their labels into groups:

1. Fh
i (k) = {(k + 1)2i − 2i−1 − 1, ..., (k + 1)2i + 2i−1 − 2}, for k > 0, and
Fh

i (0) = {0, ..., 2i + 2i−1 − 2} on the conclusion of stage 1,
2. F c

i (k) = {(k + 1)2i − 1, ..., (k + 2)2i − 2}, for k > 0, and
F c

i (0) = {0, ..., 2i+1 − 2} on the conclusion of stage 2.
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Furthermore, we assume that the agents with labels in Fh
i (k) and Fh

i (k) are aligned
at position k · 2i on the conclusion of respective stages. For the completeness of the
argument we observe that before the rendezvous algorithm is executed, F c

0 (k) contains
the agent with label k located at position k ≥ 0. Also on the conclusion of iteration 1
each F c

1 (k) contains agents with label 2k + 1 and 2k + 2 located at position 2k on the
line.

Algorithm 2. One-way rendezvous

foreach agent a do
set label(a) = position of a on the line

for i = 1, 2, 3, ... do
stage 1:
form F h

i (k) = F c
i−1(2k) ∪ F c

i−1(2k + 1)
by moving agents grouped in F c

i−1(2k + 1) by 2i−1 positions towards 0

stage 2:
if k > 0 then

form F c
i (k) = F c

i−1(2k + 1) ∪ F c
i−1(2k + 2)

else
form F c

i (k) = F h
i (k) ∪ F c

i−1(2k + 2)
by moving agents grouped in F c

i−1(2k + 2) by 2i positions towards 0

Corollary 3. Algorithm 2 has the enclosure property, i.e., for any three agents a1, a2

and a3 located initially at positions 0 ≤ p1 < p2 < p3 when agents a1 and a3 meet
they also meet a2.

Proof. The enclosure property is a straightforward consequence of the fact that groups
of agents formed on the conclusion of stages 1 and 2 form partitions in which each
group is a contiguous segment of positions in L′.

Using reasoning similar to the proof of Theorem 1 we obtain the following.

Theorem 4. Two agents a1, a2 executing Algorithm 2 and initially located at distance
d on integer points in the half-line L′ = [0,+∞) require at most 12d synchronized
rounds to rendezvous.

3.2 Rendezvous in trees

In this section we assume that the agents a1 and a2 are located at some two nodes p1
and p2 in a finite tree T . The nodes in the tree are uniquely identified and the agents
are aware of the topology of the tree. This allows the agents to select independently a
unique node in T that becomes the root r of T. Assume that d1 and d2 are respective
distances from p1 and p2 to r. W.l.o.g., assume that d2 ≤ d1. Let x be the lowest
common ancestor (LCA) for p1 and p2 in T with respect to the root r, where dx is the
distance separating x from r. For the purpose of rendezvous, the nodes in the tree adopt
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their distances to r as their labels. For example, the root r adopts the label 0 and node
x adopts the label dx. The new labels d1 and d2 of nodes p1 and p2 are also adopted by
agents a1 and a2, respectively. In order to rendezvous, the agents execute Algorithm 2
designed for the half-line L′ = [0,+∞) moving gradually towards the root r with the
label 0.

Note that if x = p2, i.e., node p2 is located on the route from p1 to r, the distance
between p1 and p2 is d = d1− dx, and according to Theorem 4 the rendezvous process
will be completed in time 12d. Otherwise, the initial distance between p1 and p2 in T
is d = d1 + d2 − 2dx.

Let a node p′2 located on the path from p1 to r, at distance d2 from r, be the starting
position of a hypothetical agent a′2. Note that during execution of Algorithm 2 agent a′2
acts the same way as a2, And in particular the distances between r and a2 as well as r
and a′2 are always the same. Assume also that node x is a starting position of another
hypothetical agent ax.

Due to enclosure property, see Corollary 3, during execution of Algorithm 2 when
agents ax and a1 meet they also meet a′2. But since the moves of a2 and a′2 are identical
and all agents move only towards the root r, when agents ax and a1 meet, they also meet
a2. Thus according to Theorem 4 agents a1 and a2 rendezvous in time 12(d1 − dx) <
12(d1 + d2 − 2dx) = 12d. The following theorem follows.

Theorem 5. Two agents a1, a2 executing Algorithm 2 initially located at distance d on
nodes of a rooted tree T can rendezvous in ≤ 12d synchronous rounds.

4 Rendezvous in the Higher-Dimensional Space

In this section we present an algorithm producing the paths of two mobile agents, placed
in δ-dimensional grid, which achieve rendezvous in optimalO(d) time, where d denotes
the rectilinear (i.e., 	1) distance between the original positions of the agents. We observe
that this result may be used to achieve rendezvous for agents starting at arbitrary initial
positions in the δ-dimensional space.

In order to give an efficient synchronous rendezvous algorithm we recall, follow-
ing [8], the concept of the sequence of central space partitions Π = π1, π2, . . . . Each
πi is

1. A partition of δ-dimensional space into hypercubes of side length 2i.
2. The hypercubes are aligned with the axis of the space so they form a δ-dimensional

grid.
3. One of these hypercubes is the central hypercube, having as its center the origin of

the δ-dimensional Cartesian space.

Observe that the corners of hypercubes in πi are points u = (u1, u2, . . . , uδ) such that
∀r ∈ {1, 2, . . . , δ}, ur = 2i−1 + k2i for some integer k. Note that all the (δ − 1)-
dimensional hyperplanes used in all the partitions of Π are different. To assure that
each πi forms an exact partition, we assume that each hypercube H contains, besides
its interior points, the corner v having maximum coordinates, as well as all open f -faces
incident to v, for f = 1, 2, . . . , δ − 1.
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The idea of the rendezvous algorithm is to direct each agent through a sequence
of some potential meeting points. These meeting points are the centers of hypercubes
of increasing sizes belonging to the successive partitions π1, π2, . . . . The hypercubes
are chosen in such a way that the path traversed by each agent is not too long, and
eventually both agents reach the same meeting point. Since the agents will traverse,
in general, different distances to reach the successive meeting points, their movements
will be synchronized with aid of some waiting periods. A couple of lemmas will serve
to prove the correctness and the time complexity of our approach.

Lemma 6. Any hypercube H located in partition πi intersects the set S of 3δ hyper-
cubes belonging to partition πi−1. A center of any hypercube from set S is at distance
at most δ · 2i−1 from the center of H .

Proof. We can assume, by symmetry, thatH is the central hypercube of partition πi and
s is any of its sides. Observe that the middle point of side s coincides with the center of
some hypercube ofπi−1. Since the side length of each hypercube ofπi equals 2i, which is
twice the side length of hypercubes ofπi−1, s intersects exactly three hypercubes ofπi−1.
By induction on dimension, all hypercubes of πi−1 intersected by H form a hypercube
G of side length 3 · 2i, i.e. a hypercube whose volume is 3δ · 2δi. HenceG is a union of
3δ hypercubes of the partition πi−1, each one of the volume of 2δi.

To prove the second part of the claim, note that the center of each hypercube of πi−1

which intersects H belongs to the closure of H . The shortest rectilinear path from the
boundary of H to its center is maximized when the path starts at a vertex of H . Since
the length of the side of H equals 2i, one of its vertices has all δ Cartesian coordinates
equal to 2i−1. A mobile agent, moving along the shortest rectilinear path from such
vertex to the center ofH , in each synchronous round moves from a point x to a point y,
such that y has the same coordinates as x, except one coordinate which is reduced by
one (with respect to this coordinate for point x). Hence δ · 2i−1 rounds are needed in
order to reach the origin (the center of H).

The following lemma can be derived from Lemma 3 in [8].

Lemma 7. For any pair of points p1, p2, initially placed at rectilinear distance d in the
δ-dimensional grid, such that d ≤ 2i, for some i = 1, 2, . . . there exists a hypercubeH
of size at most 2i+δ+1 belonging to the hierarchy of partitionsΠ , such thatH contains
both points p1, p2.

Now we give an algorithm which achieves rendezvous in linear time of the original
distance between the two agents.

Algorithm 3. Rendezvous in the δ-dimensional grid

repeat for i = 1, 2, 3, ....
set H = hypercube of πi containing your initial position p
move to the center of H
wait until δ · 2i−1 rounds are completed since the start of the current iteration

until rendezvous



456 A. Collins et al.

We prove that the agent’s trajectory produced by Algorithm 3 is in O(d), when d
is original distance between the agents, i.e. that Algorithm 3 is optimal (up to a multi-
plicative constant).

Theorem 8. Suppose that two location-aware agents are placed at rectilinear distance
d in the δ-dimensional grid and the agents simultaneously start their movements pro-
duced by Algorithm 3. Then the rendezvous of both agents is achieved within d · δ ·2δ+2

synchronous rounds.

Proof. Let i∗ be an integer, such that 2i∗−1 < d ≤ 2i∗ .
Observe that, in the first iteration of the loop of Algorithm 3, the center of the hyper-

cube of side length 2 belonging to π1 is reached from the initial position of the agent
contained within this hypercube in at most δ rounds. By Lemma 6, within the i-th it-
eration of Algorithm 3, δ · 2i−1 synchronous rounds are sufficient to reach the center
of the hypercube H . Therefore the waiting time is sufficiently long, so that at round
number δ · 2i−1 of the i-th iteration, both agents are mutually present at the centers of
the corresponding hypercubes (despite the fact that the original distance to the center
was different for each of them). Hence if two agents aim for the center of the same
hypercube at the i-th iteration, they have to meet there before the completion of the
iteration. By induction on the iteration number, both of the agents are synchronized so
they start and finish their movement of each subsequent iteration at the same moments
of time. By Lemma 7, both of the agents eventually aim for the center of the same
hypercube H , whose side length equals at most 2i∗+δ+1, and they meet there. Such
hypercubeH belongs to partition πi∗+δ+1, hence its center is reached by the agents in
iteration i∗ + δ + 1. The number of rounds spent by each agent until the end of iteration
i∗ + δ + 1 equals∑

1≤i≤i∗+δ+1 δ · 2i−1 < δ · 2i∗+δ+1 < d · δ · 2δ+2 .

Algorithm 3 may be adapted to achieve rendezvous in δ-dimensional space. It is suffi-
cient that the agents construct a common grid, each agent moves first to the closest grid
position and then they continue their movements according to Algorithm 3. The cost of
such algorithm becomes d · δ · 2δ+2 + δ, where δ extra rounds are used first by each
agent to reach the closest grid position.

Corollary 9. Suppose that two location-aware agents are placed at rectilinear distance
d in the δ-dimensional space. The rendezvous of the agents may be achieved within
δ(d · 2δ+2 + 1) synchronous rounds.

For the Euclidean distance case, when the agents do not need to walk along the axis
of the δ-dimensional space, a finer grid may be constructed, so each agent may reach a
grid point in a single step and the time given by Corollary 9 reduces to δ · d · 2δ+2 + 1.
For this purpose it is sufficient to scale down the grid by at least a factor of

√
δ

2 .

5 Rendezvous in Arbitrary Graphs

In this section we assume that the agents a1 and a2 are located at some two nodes of a
finite graph. In the same discrete model as for the earlier-studied case of trees, the agents



Synchronous Rendezvous for Location-Aware Agents 457

are aware of the topology of the graph and all nodes are uniquely identified. We start by
showing that, unlike in all the cases discussed so far, there exist graph instances which
require Ω(d) time to achieve rendezvous. In fact, rendezvous time of Ω(d log n

log log n ) is
required for graphs of extremal girth, with logarithmic average degree. In the following,
all logarithms are assumed to be base 2.

Theorem 10. Let ε be arbitrarily fixed. For any integers N > 8 and d > 0, such that
d < min{N1−ε, N/8}, there exists a graph of order N , such that for any rendezvous
algorithm A there is a pair of starting locations at distance d such that rendezvous us-
ing algorithm A requires at least ε

4
d log N

log log N rounds, even when assuming simultaneous
start.

Proof. From ([11], Theorem III.1.1) it follows that for any integer k > 3, there exists a
graphG = (V,E) with n = 2k vertices, having m = 1

2nk edges, whose shortest cycle
is of length g > k/ log k+1. LetA be any algorithm defining the behavior of an agent.
We will first show that there exists a pair of neighboring vertices inG such that the time
required for rendezvous of agents starting from this pair of vertices (with d = 1), using
algorithmA, is at least equal to min{(g− 1)/2, k/2}. Suppose, to the contrary, that for
all possible initial locations of the agents inG, the agents rendezvous within some time
t < min{(g − 1)/2, k/2}. For all v ∈ V , let Av ⊆ G be the subgraph spanned by the
edges visited by an agent following algorithmA, starting from vertex v, during the first
t rounds, under the assumption that the agent does not meet the other agent. Each graph
Av has at most t edges. For any pair of adjacent vertices u, v of G, the intersection
of graphs Au and Av must contain at least one vertex w; otherwise, no vertex will
be visited by both of the agents starting at u and v, hence such agents cannot meet.
Both of the graphs Au and Av are connected and of diameter at most t < (g − 1)/2.
Consequently, we must have w ∈ {u, v}, since otherwise G would contain a cycle of
length less than g, obtained by traversing the shortest path from v to w inAv, traversing
the shortest path from w to u in Au, and finally traversing the edge {u, v}. It follows
that u is a vertex of Av , or v is a vertex of Au; without loss of generality, assume the
former case. Then, the edge {u, v} belongs to Av , since otherwise the shortest path
connecting u and v in Av would form a cycle with edge {u, v} of length less than g.
Since u and v were arbitrarily chosen, it follows that each edge e ∈ E belongs to some
graph Av, i.e., e ∈ ⋃

v∈V E(Av). Consequently,
∑

v∈V |E(Av)| ≥ m, and so, there
must exist a vertex v such that |E(Av)| ≥ m/n ≥ k/2. However, this is a contradiction
with |E(Av)| ≤ t < k/2. It follows that t ≥ min{(g − 1)/2, k/2} ≥ k/(2 log k).
Given a value ofN , we consider an input graph onN vertices consisting of graphG for
k = �logN� (with n = 2k), and N − n additional vertices, attached with single edges
to an arbitrarily chosen vertex of G. Since this modification does not affect rendezvous
time, we obtain for any value of N a lower-bound of 1

2
�log N�

log�log N� on rendezvous time
for agents starting from neighboring vertices, i.e., for d = 1.

To prove the claim of the theorem for larger values of d, we construct a graph
G′ = (V ′, E′) from G = (V,E) by inserting a path of d − 1 vertices on each edge
of G. Graph G′ has n′ = n + m(d − 1) vertices and m′ = md edges. Let A be a
fixed algorithm for an agent which always reaches rendezvous in G′ in time at most
t < dmin{(g − 1)/2, k/2}, and let A′

v ⊆ G′, for v ∈ V , be defined as the subgraphs
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spanned by the edges visited by an agent following algorithm A, starting from vertex
v during the first t rounds, under the assumption that the agent does not meet the other
agent. By an argument similar to that for the case of d = 1, we have that for all e′ ∈ E′,
e′ ∈ ⋃

v∈V E(A′
v), and consequently, there exists a vertex v ∈ V such that |E(A′

v)| ≥
m′/n = dm/n ≥ dk/2. This is a contradiction with |E(A′

v)| ≤ t < dk/2. In this way
we obtain a lower-bound of dk/(2 log k) on rendezvous time inG′. Given a value ofN ,
we consider an input graph on N vertices consisting of graph G′ for k = �log(N/d)�
(with n′ = d2k), and N − n′ additional vertices, attached with single edges to an arbi-
trarily chosen vertex ofG′. Since this modification does not affect rendezvous time, we
obtain for any value of N a lower-bound of 1

2
d�log(N/d)�

log�log(N/d)� >
ε
4

d log N
log log N on rendezvous

time for agents starting at distance d, where we have taken into account that d < N1−ε.

In conclusion, we point out that a poly-logarithmic overhead in n is sufficient to achieve
rendezvous, assuming simultaneous start of the agents.

Theorem 11. Suppose that two location-aware agents are placed at a distance of d in
a known arbitrary graph G = (V,E) of order n. Then agents with simultaneous start
can rendezvous within O(d log2 n) synchronous rounds.

Theorem 12. Suppose that two location-aware agents are placed at a distance of d in a
known graphG = (V,E) of order n. Then the rendezvous of agents with simultaneous
start is achieved within O(d) synchronous rounds if G is a circular-arc graph, and
within O(d log n) synchronous rounds if G is a chordal graph or a cocomparability
graph.
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Abstract. Deterministic parallelism has become an increasingly attrac-
tive concept: a deterministic parallel program may be easier to construct,
debug, understand, and maintain. However, there exist many different def-
initions of “determinism” for parallel programming. Many existing def-
initions have not yet been fully formalized, and the relationships among
these definitions are still unclear. We argue that formalism is needed, and
that history-based semantics—as used, for example, to define the Java
and C++ memory models—provides a useful lens through which to view
the notion of determinism. As a first step, we suggest several history-
based definitions of determinism. We discuss some of their comparative
advantages, prove containment relationships among them, and identify
programming idioms that ensure them. We also propose directions for
future work.

1 Introduction

Determinism, loosely defined, is increasingly touted as a way to simplify the design,
verification, testing, and debugging of parallel programs—in effect, as a way to make
it easier to understand what a parallel program does. Parallel functional languages have
long enjoyed the benefits of determinism [18]. Recent workshops have brought together
members of the architecture, programming languages, and systems communities to dis-
cuss determinism in more general languages and systems [13,1]. Determinism has also
featured prominently in recent workshops on pedagogy for concurrency [23, 28, 30].

At the very least, determinism suggests that a given parallel program—like a se-
quential program under most semantic models—should always produce the same out-
put when run with the same input. We believe, however, that it needs to mean more than
this—that runs of a deterministic program on a given input should not only produce the
same output: they should produce it in the same way. By analogy to automata theory, a
deterministic Turing machine doesn’t just compute a single-valued function: it takes a
uniquely determined action at every step along the way.

For real-world parallel programs, computing “in the same way” may be defined in
many ways. Depending on context, we may expect that repeated runs of a deterministic
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program will consume (more or less) the same amount of time and space; that they
will display the same observable intermediate states to a debugger; that the behavior of
distributed replicas will not diverge; that the number of code paths requiring separate
testing will be linear in the number of threads (rather than exponential); or that the
programmer will be able to straightforwardly predict the impact of source code changes
on output or on time and space consumption.

History-based semantics has proven to be one of the most useful ways to model the
behavior of parallel programs. Among other things, it has been used to explain the seri-
alizability of transactions [27], the linearizability of concurrent data structures [19], and
the memory model that determines the values seen by reads in a language like Java [22]
or C++ [11]. Memory models typically distinguish between ordinary and synchroniz-
ing accesses, and use these to build a cross-thread partial order among operations of the
program as a whole. Recently we have proposed that the various sorts of synchronizing
accesses be unified under the single notion of an atomic action [29, 15].

Informally, the parallel semantics of a given program on a given input is a set of
abstract executions. Each execution comprises a set of thread histories, each of which
in turn comprises a totally ordered sequence of reads, writes, and other operations—
notably external actions like input and output. The history of a given thread is deter-
mined by the program text, the language’s (separately specified, typically operational)
sequential semantics, the program’s input, and the values returned by reads (which may
have been set by writes in other threads). An execution is said to be sequentially con-
sistent if there exists a total order on reads and writes, consistent with program order in
every thread, such that each read returns the value written by the most recent preced-
ing write to the same location. Under relaxed memory models, a program is said to be
data-race free if the model’s partial order covers all pairs of conflicting operations.

An implementation maps source programs to sets of low-level target executions on
some real or virtual machine. The implementation is correct only if, for every target ex-
ecution, there exists a corresponding abstract execution that performs the same external
actions, in the same order. (The extent to which shorter sequences of target-level opera-
tions must correspond to operations of the abstract execution is related to, but separate
from, the subject of this paper; we do not address it further here.)

In the strictest sense of the word, a deterministic parallel program would be one
whose semantics, on any given input, consists of only a single abstract execution, to
which any legal target execution would have to correspond. In practice, this definition
may prove too restrictive. Suppose, for example, that I have chosen, as a programmer,
to “roll my own” shared allocator for objects of some heavily used data type, and that I
am willing to ignore the possibility of running out of memory. Suppose further that my
allocator keeps free blocks on a simple lock-free stack. Because they access a common
top-of-stack pointer, allocation and deallocation operations must synchronize with one
another, and will thus be ordered in any given execution. Since I presumably don’t care
what the order is, I may wish to allow arbitrary executions that differ only in the order
realized, while still saying that my program is deterministic.

In general, we suggest, it makes sense to say that a program is deterministic if all
of its abstract executions on a given input are equivalent in some well-defined sense.
A language may be said to be deterministic if all its programs are deterministic. An
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implementation may be said to be deterministic (for a given, not-necessarily-deterministic
language) if all the target executions of a given program on a given input correspond to
abstract executions that are mutually equivalent. For all these purposes, the definition of
determinism amounts to an equivalence relation on abstract executions.

We contend that history-based semantics provides a valuable lens through which to
view determinism. By specifying semantics in terms of executions, we capture the no-
tion of “computing in the same way”—not just computing the same result. We also
accommodate programs (e.g., servers) that are not intended to terminate—executions
need not be finite. By separating semantics (source-to-abstract-execution) from imple-
mentation (source-to-target-execution), we fix the level of abstraction at which deter-
minism is expected, and, with an appropriate definition of “equivalence,” we codify
what determinism means at that level.

For examples like the memory allocator mentioned above, history-based semantics
highlights the importance of language definition. If my favorite memory management
mechanism were a built-in facility, with no implied ordering among allocation and deal-
location operations of different objects, then a program containing uses of that facility
might still have a single abstract execution. Other potential sources of nondeterminism
that might be hidden inside the language definition include parallel iterators, bag-of-
task work queues, and container data types (sets, bags, mappings). Whether all such
sources can reasonably be shifted from semantics to implementation remains an open
question (but we doubt it).

In a similar vein, an implementation may be deterministic for only a subset of some
standard programming language—i.e., for a smaller language. MIT’s Kendo system, for
example, provides determinism for only those 〈program, input〉 pairs that are data-race
free—a property the authors call weak determinism [26].

From an implementation perspective, history-based semantics differentiates between
things that are required to be deterministic and things that an implementation might
choose to make deterministic. This perspective draws a sharp distinction between
projects like DPJ [10], Prometheus [3], and CnC [12], which can be seen as constrain-
ing the set of abstract executions, and projects like Kendo, DMP [16], CoreDet [5],
and Grace [8], which can provide deterministic execution even for (some) pthread-ed
programs in C. (Additional projects, such as Rerun [20], DeLorean [24], and Double-
Play [31], are intended to provide deterministic replay of a program whose initial run is
more arbitrary.)

If we assume that an implementation is correct, history-based semantics identifies
the set of executions that an application-level test harness might aspire to cover. For
purposes of debugging, it also bounds the set of global states that might be visible at a
breakpoint—namely, those that correspond to a consistent cut through the partial order
of a legal abstract execution.

We believe the pursuit of deterministic parallel programming will benefit from care-
ful formalization in history-based semantics. Toward that end, we present a basic system
model in Section 2, followed by several possible definitions of equivalence for abstract
executions in Section 3. We discuss the comparative advantages of these definitions in
Section 4. We also prove containment relationships among the definitions, and iden-
tify programming idioms that ensure them. Many other definitions of equivalence are
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possible, and many additional questions seem worth pursuing in future work; we list a
few of these in Section 5.

2 System Model

In a manner consistent with standard practice and with our recent work on atomicity-
based semantics [15], we define an execution of a program P , written in a language L,
to be a 3-tupleEP,L : (OP, <p, <s), where OP is a set of operations, and<p (program
order) and <s (synchronization order) are irreflexive partial orders on OP. When we
can do so without confusion, we omit P and L from our notation.

Each operation in OP takes one of six forms: (read, name, val, tid, uid), (write,
name, val, tid, uid), (input, val, tid, uid), (output, val, tid, uid), (begin atomic, tid, uid),
or (end atomic, tid, uid). In each of these, tid identifies the executing thread. Uid is an
arbitrary unique identifier; it serves to make every operation distinct and to allow the
set OP to contain multiple operations that are otherwise identical. In read and write
operations, name identifies a program variable; in read, write, input, and output opera-
tions, val identifies a value read from a variable or from the program’s input, or written
to a variable or to the program’s output. The domains from which thread ids, variable
names, and values are chosen are defined by the semantics of L. These domains are
assumed to be countable, but not necessarily finite.

Program order,<p, is a union of disjoint total orders, one per thread. Specifically, if
o1 = (. . . , t1, u1) and o2 = (. . . , t2, u2) are distinct operations of the same execution (i.e.,
u1 �= u2), then (t1 = t2)→ (o1 <p o2 ∨ o2 <p o1) and (t1 �= t2)→ (o1 �<p o2∧o2 �<p

o1). (Here ∨ is exclusive or.)
For any given thread ti, OP|ti or E|ti represents ti’s thread history—its (totally or-

dered) sequence of operations. We use OP|s orE|s to represent an execution’s synchro-
nization operations: begin atomic, end atomic, input, and output. We use OP|e orE|e to
represent the execution’s external operations: input and output. Clearly OP|e ⊂ OP|s.
(We assume that I/O races are always unacceptable.)

Synchronization order, <s, is a total order on OP|s. It does not relate reads and
writes, but it is consistent with program order. That is, for o1 = (. . . , t1, u1) and o2 =
(. . . , t2, u2), (o1 <s o2 ∧ t1 = t2)→ (o1 <p o2).

For convenience, we define vin and vout, for a given executionE, to be the execution’s
input and output vectors—the (possibly infinite) sequences of values contained, in order
of <s, in E’s input and output operations, respectively. For any given execution E, we
use ext(E) to represent the pair 〈vin, vout〉.

We use begin atomic and end atomic operations in our model to capture the synchro-
nization operations ofL, whatever those may be—thread fork and join, lock acquire and
release, monitor entry and exit, volatile variable read and write, etc. For this reason, we
require that begin atomic and end atomic operations appear in disjoint, unnested pairs,
and never bracket input or output operations. That is, for every b = (begin atomic, t, u1)
there exists an e = (end atomic, t, u2) such that b <s e and ∀m ∈ OP|s � {b, e}, m <s

b ∨ e <s m; likewise for every e = (end atomic, t, u2) there exists a b = (begin atomic,
t, u1) such that b <s e and ∀m ∈ OP|s � {b, e}, m <s b ∨ e <s m. We use OP|a or
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E|a to represent the execution’s atomic actions: the union ofE|e and the set of minimal
sequences of operations in each thread beginning with begin atomic and ending with
end atomic.

Continuing with standard practice, we assume that the semantics of L defines, for
any given execution, a synchronizes-with order, <sw, that is a subset of <s—that is, a
partial order on OP|s. In a lock-based language, for example, the release method for
lock L might be modeled as (begin atomic, t1, u1), (write, L, 0, t1, u2), (end atomic, t1,
u3);1 an acquire might be (begin atomic, t2, u4), (read, L, 0, t2, u5), (write, L, 1, t2, u6),
(end atomic, t2, u7). If operation u3 precedes operation u4 in <s, we might require that
it do so in <sw as well (since they operate on the same lock), but operations used to
model methods of different locks might be unrelated by <sw.

Given <sw, we define happens-before order, <hb, to be the irreflexive transitive
closure of<p and<sw. Finally, we assume thatL defines, given<hb, a reads-see-writes
function W that specifies, for any given read operation r, the set of write operations
{wi} whose values r is permitted to return. In most languages, r will be allowed to see
w if w is the most recent previous write to the same variable on some happens-before
path. In some languages (e.g., Java), r may be allowed to see w if the two operations are
incomparable under <hb. Languages may also differ as to whether atomic actions are
strongly atomic—that is, whether nonatomic reads can see inside them, or nonatomic
writes be seen within them [9] [15, TR version appendix].

In any consistent cut across <hb, we define the program state to be (1) the prefixes
of vin and vout that have been input and output prior to the cut, and (2) the most recent
values written to the program’s variables according to <hb. If a variable has not yet
been written, its value is undefined (⊥); in a program with a data race, the most recent
write may not be unique, in which case the variable’s value is indeterminate.

Two operations (read or write) conflict if they access the same variable and at least
one of them writes it. An execution is data-race free if all conflicting operations are
ordered by <hb.

In this paper, we consider only well-formed executions. An execution E is well
formed if and only if it satisfies the following three requirements.

Adherence to per-thread semantics: Given the code for thread t and the values re-
turned by read and input operations, L’s (independently specified) sequential se-
mantics determine the set of legal histories for t; E|t must be among them. More-
over, begin atomic and end atomic operations inE|t must occur in disjoint matched
pairs, with only read or write operations between them (as ordered by <p).

Consistent ordering: For all t, operations ofE|t are totally ordered by<p. Operations
with different tids are unordered by <p. E|s is totally ordered by <s, which is
consistent with <p. Reads and writes do not participate in <s. Paired begin atomic
and end atomic operations are contiguous in <s.

Adherence to memory model: All values read are permitted by W, the reads-see-
writes function induced by <p, <s, <sw, and <hb, according to L’s semantics.

1 The release sequence must be bracketed with begin atomic. . . end atomic, even though
there is only one operation inside, in order to induce cross-thread ordering.
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3 Example Definitions of Equivalence

In this section we suggest several possible definitions of equivalence for abstract ex-
ecutions. Two—Singleton and ExternalEvents—are intended to be extreme cases: the
strictest and loosest definitions that strike us as plausible. Another—FinalState—is sim-
ilar to ExternalEvents, restricted to programs that terminate. The other two—Dataflow
and SyncOrder—are two of many possible in-between options.

Singleton. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to be
equivalent if and only if they differ only in the uids of their operations; that is, there
exists a one-one mapping (bijection) between OP1 and OP2 that preserves <p,<s, and
the content other than uid in every operation.

Singleton uses the strictest possible definition of determinism: there must be only
one possible execution for a given program and input.

Dataflow. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to be
equivalent if and only if ext(E1) = ext(E2) and there is a one-one mapping between
OP1 and OP2 that preserves (1) the content other than tid and uid in every operation,
and (2) the reads-see-writes functionW induced, underL’s semantics, by<p,<s,<sw,
and <hb.

Informally, Dataflow requires that reads see the same writes in both executions, and
that the values in both reads and writes (including the input and output operations that
“read” and “write” elements of vin and vout) be the same in both executions. Note that
we do not require that the bijection preserve <p or <s, nor do we require that the
executions be data-race free.

SyncOrder. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to
be equivalent if and only if there is a one-one mapping between E1|a and E2|a that
preserves (1) <s, and (2) the content other than uid in every synchronization operation
and in every read or write within an atomic action.

SyncOrder requires that there be a fixed pattern of synchronization among threads
in E1 and E2, with atomic actions reading and writing the same values in the same
variables. Note that if executions are data-race free (something that SyncOrder does not
require), then they are also sequentially consistent [2], soE1 ≡SyncOrder E2 ∧ E1, E2 ∈
DRF → E1 ≡Dataflow E2.

ExternalEvents. ExecutionsE1 : (OP1, <p1, <s1) andE2 : (OP2, <p2, <s2) are said
to be equivalent if and only if ext(E1) = ext(E2).

ExternalEvents is the most widely accepted language-level definition of determin-
ism. It guarantees that abstract executions on the same input look “the same” from the
perspective of the outside world.

FinalState. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to
be equivalent if and only if they both terminate and their program states at termination
(values of variables and of vin and vout) are the same.

Like ExternalEvents, FinalState says nothing about how E1 and E2 compute. It re-
quires only that final values be the same. Unlike ExternalEvents, FinalState requires
agreement on variables other than output.
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4 Discussion

Singleton is the strictest definition of equivalence, and thus of determinism. It is a
common notion in the literature—corresponding, for example, to what Emrath and
Padua called “internally determinate” [17] and Netzer and Miller “internally determin-
istic” [25]. It requires a single execution for any given source program and input. In-
terestingly, while we have not insisted that such executions be sequentially consistent,
they seem likely to be so in practice: a language that admits non-sequentially consis-
tent executions (e.g., via data races) seems likely (unless it is designed in some highly
artificial way) to admit multiple executions for some 〈program, input〉 pairs.

By requiring abstract executions to be identical in every detail, Singleton rules out
“benign” differences of any kind. It may therefore preclude a variety of language fea-
tures and programming idioms that users might still like to think of as “deterministic.”

Dataflow relaxes Singleton by loosening the requirements on control flow. Equivalent
executions must still have the same operation sets (ignoring tid and uid), but the syn-
chronization and program orders can be different, so long as values flow from the same
writes to the same reads. In the literature, Dataflow is essentially equivalent to Karp and
Miller’s 1966 definition of “determinacy” [21], which was based on a dataflow model
of computation. Intuitively, Dataflow can be thought of as an attempt to accommodate
programming languages and idioms in which the work of the program is fixed from run
to run, but may be partitioned and allocated differently among the program’s threads.

SyncOrder also relaxes Singleton, but by admitting benign changes in data flow,
rather than control flow. Specifically, SyncOrder requires equivalent executions to con-
tain the exact same synchronization operations, executed by the same threads in the
same order. It does not require that a read see the same write in both executions, but it
does require that any disagreement have no effect on synchronization order (including
output).

ExternalEvents is also a common notion in the literature. It corresponds to what Em-
rath and Padua called “externally determinate” [17] and, more recently, to the working
definition of determinism adopted by Bocchino et al. [10]. The appeal of the defini-
tion lies in its generality. If output is all one cares about, ExternalEvents affords the
language designer and implementor maximum flexibility. From a practical perspective,
knowing that a parallel program will always generate the same output from the same
input, regardless of scheduling idiosyncrasies, is a major step forward from the status
quo. For users with a strong interest in predictable performance and resource usage,
debugability, and maintainability, however, ExternalEvents may not be enough.

FinalState is essentially a variant of ExternalEvents restricted to programs that ter-
minate (and whose internal variables end up with the same values in every execution).
It corresponds to what Netzer and Miller called “externally deterministic” [25].

In the remainder of this section, we explore additional ramifications of our example
definitions. In Section 4.1 we formalize containment properties: which definitions of
equivalence, if they hold between a given pair of executions, imply which other defi-
nitions? Which definitions are incomparable? In Section 4.2 we identify programming
languages and idioms that illustrate these containments. Finally, in Sections 4.3 and 4.4,
we consider the practical issues of repetitive debugging and of deterministic implemen-
tation for nondeterministic languages.
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Fig. 1. Containment relationships among definitions of determinism, or, equivalently, abstract
execution equivalence. Names of equivalence definitions correspond to ovals. Outlined numbers
label the light, medium, and dark shaded regions. Bold letters show the locations of programming
idioms discussed in Section 4.2.

4.1 Containment Properties

Figure 1 posits containment relationships among the definitions of determinism given
in Section 3. The space as a whole is populated by sets {Xi} of executions of some
given program on a given input, with some given semantics. If region S is contained in
region L, then all executions that are equivalent under definition S are equivalent under
definitionL as well; that is, S is a stricter andL a looser definition. (The regions can also
be thought of as containing languages or executions: a language [execution] is in region
R if for every program and input, all abstract executions generated by the language
semantics [or corresponding to target executions generated by the implementation] are
equivalent under definition R.) We justify the illustrated relationships as follows.

Theorem 1. Singleton is contained in Dataflow, SyncOrder, and ExternalEvents.

Proof : SupposeE1 andE2 are arbitrary equivalent executions under Singleton. By def-
inition, E1 and E2 are identical in every respect other than the uids of their operations.
None of the definitions of Dataflow, SyncOrder, or ExternalEvents speaks to uids. Each
requires certain other portions of E1 and E2 (or entities derived from them) to be the
same; Singleton trivially ensures this. ��
Theorem 2. Singleton, Dataflow, SyncOrder, and FinalState are all contained in Exter-
nalEvents.

Proof : For Singleton, this is proved in Theorem 1. For Dataflow, it follows from the
definition: if E1 and E2 are Dataflow equivalent, then ext(E1) = ext(E2).

For SyncOrder, suppose E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are arbi-
trary equivalent executions under SyncOrder. This means there is a bijection between
OP1 and OP2 that preserves (among other things) both <s and the content other than
uid in each input and output operation. Since input and output operations are totally or-
dered by <s, and since vin and vout are defined to be the values in an execution’s input
and output operations, in order of <s, we have ext(E1) = ext(E2).
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For FinalState, suppose E1 and E2 are equivalent under FinalState. Then E1 and
E2 both terminate, and with the same state. Their input and output vectors, included in
their terminating states, must therefore be the same: ext(E1) = ext(E2). ��

Theorem 3. There are sets of executions that are equivalent under Dataflow but not
under SyncOrder.

Proof : This is the light gray region, labeled “1” in Figure 1. It corresponds to pro-
grams with benign synchronization races. Consider a program in which two threads
each increment a variable under protection of a lock: acquire(L); x++; release(L). Un-
der plausible semantics, one possible execution looks as follows (ignoring uids), where
<p orders the operations of each thread as shown, and <s orders the atomic actions of
thread 1 before those of thread 2:

(begin atomic, t1) (read, L, 0, t1) (write, L, 1, t1) (end atomic, t1)
(read, x, 0, t1) (write, x, 1, t1) (begin atomic, t1) (write, L, 0, t1) (end atomic t1)

(begin atomic, t2) (read, L, 0, t2) (write, L, 1, t2) (end atomic, t2)
(read, x, 1, t2) (write, x, 2, t2) (begin atomic, t2) (write, L, 0, t2) (end atomic t2)

Call this execution E1. Another execution (call it E2) looks the same, except that the
tids in various operations are reversed: thread 2 changes x from 0 to 1; thread 1 changes
it from 1 to 2. For Dataflow, the obvious bijection swaps the tids, and the executions
are equivalent. For SyncOrder, there is clearly no bijection that preserves both synchro-
nization order and the tids in each begin atomic and end atomic operation. ��

Theorem 4. There are sets of executions that are equivalent under SyncOrder but not
under Dataflow.

Proof : This is the medium gray region, labeled
“2” in Figure 1. It corresponds to programs with
benign data races. An example is shown at
right. This is a racy program: neither the write
nor the read of flag in t2 is ordered by <hb with
the write in t1. Two abstract executions, E1 and
E2 (not shown), may thus have different data
flow: in E1, the read of flag in t2

Initially flag == 0

t1: t2:
flag = 1 flag = 2

if (flag > 0)
print ”flag > 0”
print ”end”

returns the value 1, while in E2 it returns the value 2. However, these two execu-
tions have the same synchronization order: in both, only the two outputs are ordered
by <s, and they are ordered the same in both executions. Thus E1 ≡SyncOrder E2 but
E1 �≡Dataflow E2. ��

Theorem 5. Singleton, Dataflow, and SyncOrder all have nontrivial intersections with
FinalState.

Proof : Singleton, Dataflow, and SyncOrder clearly all contain sets of terminating ex-
ecutions that have the same final state. However, equivalent executions in Singleton,
Dataflow or SyncOrder do not necessarily terminate. Suppose E1 and E2 are arbitrary
equivalent executions under Singleton, Dataflow or SyncOrder, and also under Final-
State. We can make both executions nonterminating by adding an additional thread to
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each that executes an infinite but harmless loop (it might, for example, read an otherwise
unused variable over and over). The modified executions will no longer be in FinalState
since they do not terminate, but they will still be in Singleton, Dataflow, or SyncOrder,
since the loop will neither race nor synchronize with any other part of the program.

Conversely, there are executions that have different data flows or synchronization
orders, but terminate with the same state. Examples in FinalState ∩ (Dataflow � Sync-
Order) and FinalState ∩ (SyncOrder � Dataflow) appear in the proofs of Theorems 3
and 4, respectively, and an example for FinalState � (SyncOrder ∪ Dataflow) is easy to
construct (imagine, for example, a program that has chaotic data flow and synchroniza-
tion, but eventually writes a zero to every program variable before terminating). ��

4.2 Programming Languages and Idioms

While equivalence relations and their relationships, seen from a theoretical perspective,
may be interesting in their own right, they probably need to correspond to some intu-
itively appealing programming language or idiom in order to be of practical interest. As
illustrations, we describe five programming idioms in this section, corresponding to the
dots labeled A, B, C, D, and E in Figure 1.

Independent Split-Merge. (Point A ∈ Singleton in Figure 1.) Consider a language
providing parallel iterators or cobegin, with the requirement (enforced through the type
system or run-time checks) that concurrent tasks access disjoint sets of variables. If every
task is modeled as a separate thread, then there will be no synchronization or data races,
and the execution of a given program on a given input will be uniquely determined.

Bag of Independent Tasks. (Point B ∈Dataflow � SyncOrder in Figure 1.) Consider a
programming idiom in which “worker” threads dynamically self-schedule independent
tasks from a shared bag. The resulting executions will have isomorphic data flow (all
that will vary is the tids in the corresponding reads and writes), but their synchronization
orders will vary with the order in which they access the bag of tasks.

Significantly, this idiom remains in Dataflow � SyncOrder even if we require that
tasks be added to the bag in groups, and all of them completed before any new tasks
can be added. One might consider such a restricted model to be an alternative charac-
terization of the Independent Split-Merge idiom, but we prefer to consider it a separate
language—one in which the maximum degree of concurrency in the abstract execution
is limited to the number of worker threads.

One might also expect that a program with deterministic sequential semantics, no
data races, and no synchronization races would have only a single abstract execution for
a given input—that is, that Dataflow∩ SyncOrder would equal Singleton. We speculate,
however, that there may be cases—e.g., uses of rand()—that are easiest to model with
more than one execution (i.e., with classically nondeterministic sequential semantics),
but that we might still wish to think of as “deterministic parallel programming.” We
have left a region in Figure 1 (the dark gray area labeled “3”) to suggest this possibility.

Parallel Iterator with Reduction. (Point C ∈ ExternalEvents � (Dataflow ∪ Sync-
Order) in Figure 1.) Consider a language with explicit support for reduction by a com-
mutative, associative function. The order in which such a function is applied to a set of
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operands need not be fixed, leading to executions with different synchronization orders
and data flows, but only a single result. It seems plausible that we might wish to call
programs in such a language “deterministic.”

Parallel Atomic Commutative Methods. (Point D ∈ ExternalEvents � (Dataflow ∪
SyncOrder) in Figure 1.) In the split-merge and bag-of-tasks idioms above, we required
that parallel tasks be independent. We may relax this requirement by allowing tasks to
call methods of some shared objectO, so long as the calls are atomic and (semantically)
commutative. The memory allocator mentioned in Section 1 is an example of this idiom,
as long as we ignore the possibility of running out of memory. Another example would
be a memoization table that caches outputs of some expensive function.

If a program contains atomic, commutative method calls in otherwise independent
tasks, the synchronization order for these calls may be different in different runs of the
program on the same input. Data flow may also be different, because the internal state of
the shared object may change with the synchronization order. Even the final state may be
different, since commutativity is defined at a level of abstraction above that of individ-
ual variables. A given finite sequence of calls is guaranteed to lead to the same output,
however, regardless of permutation, because the calls are atomic and commutative.

Chaotic Relaxation. (Point E ∈ SyncOrder � Dataflow in Figure 1.)
Certain spatially partitioned, iterative computations can be proven to converge even
if iterations are unsynchronized, allowing local computations to sometimes work with
stale data [14]. Execution typically halts once all threads have verified that the error in
their local values is less than some threshold ε.

Imagine a language that is specially designed for programs of this kind. Program-
mers can specify an ε for the convergence condition, then design an iterative algorithm
for an array of data. Different executions may have different data flows, because the
program is full of data races. For chaotic relaxation, however, these data races do not
change the limit toward which the computation converges. If final results are rounded to
a level of significance determined by ε before being output, the results will be determin-
istic despite the uncertainty of data flow. And as long as the output operations (which
constitute the only synchronization in the program) are strictly ordered, the program
will be deterministic according to SyncOrder.

4.3 Repetitive Debugging

One of the principal goals of deterministic parallel programming is to facilitate repet-
itive debugging. The definitions in Section 3 vary significantly in the extent to which
they achieve this goal.

In a Singleton system, a debugger that works at the level of abstract executions will
be guaranteed, at any breakpoint, to see a state that corresponds to some consistent
cut across the happens-before order of the single execution. This guarantee facilitates
repetitive debugging, though it may not make it trivial: a breakpoint in one thread may
participate in an arbitrary number of cross-thread consistent cuts; global state is not
uniquely determined by the state of a single thread. If we allow all other threads to con-
tinue running, however, until they wait for a stopped thread or hit a breakpoint of their
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own, then global state will be deterministic. Moreover (assuming a relatively fine-grain
correspondence between target and abstract executions), monitored variables’ values
will change deterministically, since Singleton requires all runs of a program on a given
input to correspond to the same abstract execution. This should simplify both debugging
and program understanding.

Under Dataflow, monitored variables will still change values deterministically, but
two executions may not reach the same global state when a breakpoint is triggered, even
if threads are allowed to “coast to a stop.” A program state encountered in one execution
may never arise in an equivalent execution.

Consider the code fragment shown at right (written in a hypo-
thetical language). Assume that f() is known to be a pure function,
and that the code fragment is embedded in a program that cre-
ates two worker threads for the purpose of executing parallel itera-
tors. In one plausible semantics, the elements of a parallel iteration
space are placed in a synchronous queue, from which workers de-
queue them atomically.

parfor i in [0, 1]
A[i] = f(i)

print A[0]
print A[1]

Even in this trivial example, there are four possible executions, in which dequeue op-
erations in threads 0 and 1, respectively, return {0,⊥} and {1,⊥}, {1,⊥} and {0,⊥},
{0, 1,⊥} and {⊥}, or {⊥} and {0, 1,⊥}. These executions will contain exactly the
same operations, except for thread ids. They will have different program and synchro-
nization orders. Dataflow will say they are equivalent; Singleton will say they are not.
If we insist that our programming model be deterministic, Dataflow will clearly afford
the programmer significantly greater expressive power. On the other hand, a breakpoint
inserted at the call to f() in thread 0 may see very different global states in different
executions; this could cause significant confusion.

Like Dataflow, SyncOrder fails to guarantee deterministic global state at breakpoints,
but we hypothesize that the variability will be significantly milder in practice: benign
data flow changes, which do not impact synchronization or program output, seem much
less potentially disruptive than benign synchronization races, which can change the
allocation of work among threads.

ExternalEvents and FinalState, for their part, offer significant flexibility to the lan-
guage designer and implementor, but with potentially arbitrary differences in internal
behavior across program runs. This would seem to make them problematic for repetitive
debugging.

4.4 Deterministic Implementations

Generally speaking, given a deterministic parallel programming language, it should be
straightforward to construct an implementation that achieves most of the concurrency
that a programmer might expect on a given machine. This expectation is essentially
an issue of liveness, and may be difficult to formalize, but the intuition is clear: if the
language is capable of expressing only deterministic programs, then an implementation
that captures the concurrency explicit in such programs will remain deterministic. In In-
dependent Split-Merge programs, for example, an implementation is assured that syn-
chronization (<s) edges enter a task only at the beginning, and leave it only at the end,
so scheduling decisions within a split-merge group can never violate happens-before.
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The more interesting question is: in a language that admits nonequivalent abstract
executions, how hard is it likely to be (how much run-time cost are we likely to in-
cur) to construct an implementation that achieves a high degree of concurrency (scal-
ability) while still guaranteeing that all target executions will correspond to equivalent
abstract executions? Here the answer may depend on just how much nondeterminism
the language itself allows. As noted in Section 1, Kendo [26] provides determinism (of
roughly the SyncOrder variety) only for programs written in the data-race-free subset
of C. Specifically, it resolves each synchronization race deterministically, given that de-
terministic resolution of prior synchronization races and the lack of data races uniquely
determines program order in each thread, up to the next synchronization operation.
While still too slow for production use (reported overheads are on the order of 1.6×),
this is fast enough for convenient repetitive debugging.

For programs with data races, there is no known way to achieve any of our definitions
of deterministic implementation without special-purpose hardware or very high worst-
case overhead (one can, of course, serialize the execution—we count that as “very high
overhead”). CoreDet [5], dOS [6], and Determinator [4] all achieve roughly Single-
ton semantics on conventional hardware, by executing threads in coarse-grain lockstep
“epochs,” with memory updates applied in deterministic order at epoch boundaries. Un-
fortunately, all impose common-case overheads of roughly 10×, making them unsuit-
able for production use and undesirable for debugging. Recent work on the DoublePlay
system [31] suggests that it may be possible to execute arbitrary programs determin-
istically while limiting overhead to a relatively modest amount (comparable to that of
Kendo) for executions whose behavior does not depend on data races. (For a brief sur-
vey of implementation techniques for deterministic execution, see the recent paper by
Bergan et al. [7].)

5 Conclusions and Future Work

Deterministic parallel programming needs a formal definition (or set of definitions).
Without this, we will really have no way to tell whether the implementation of a de-
terministic language is correct. History-based semantics seems like an excellent frame-
work in which to create definitions, for all the reasons mentioned in Section 1. We see
a wide range of topics for future research:

– Existing projects need to be placed within the framework. What are their definitions
of execution equivalence?

– Additional definitions need to be considered, evaluated, and connected to the lan-
guages and programming idioms that might ensure them.

– We need to accommodate condition synchronization, and source-level spinning in
particular. Even in Singleton, executions that differ only in the number of times a
thread checks a condition before finding it to be true should almost certainly be
considered to be equivalent.

– We need to decide how to handle operations (e.g., rand()) that compromise the
determinism of sequential semantics. Should these in fact be violations? Should
they be considered inputs? Should they perhaps be permitted only if they do not
alter output?
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– Languages embodying the more attractive definitions of determinism should be
carefully implemented, and any losses in expressiveness or scalability relative to
other definitions carefully assessed.

– We need to examine more thoroughly the issues involved in deterministic imple-
mentation of nondeterministic languages.

This final issue seems intriguing. While it may be easy to build an implementation in
which all realizable target executions (of a given program and input) correspond to
the same abstract execution, such an implementation may be unacceptably slow (e.g.,
sequential). It may be substantially more difficult to build an implementation that im-
proves performance by exploiting the freedom to realize target executions correspond-
ing to different but nonetheless equivalent abstract executions. This is in essence a
question of liveness rather than safety, and it raises a host of new questions: Which
executions can be realized by a given implementation? Are certain executions funda-
mentally more difficult to realize (without also realizing other executions that aren’t
safe)? What is the appropriate boundary between language- and implementation-level
determinism? Progress on these questions, we believe, could significantly enhance the
convenience, correctness, and performance of programming in the multicore era.
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Peixotto, D., Sarkar, V., Schlimbach, F., Taşirlar, S.: Concurrent Collections. Journal of
Scientific Programming 18(3–4) (August 2010)

[13] Ceze, L., Adve, V.: Organizers. In: Workshop on Deterministic Multiprocessing and Parallel
Programming, Seattle, WA (November-December 2009)

[14] Chazan, C., Miranker, W.: Chaotic Relaxation. Linear Algebra and Its Applications 2,
199–222 (1969)

[15] Dalessandro, L., Scott, M.L., Spear, M.F.: Transactions as the Foundation of a Mem-
ory Consistency Model. In: 24th Intl. Symp. on Distributed Computing, Cambridge, MA
(September 2010); Previously Computer Science TR 959, Univ. of Rochester (July 2010)

[16] Devietti, J., Lucia, B., Ceze, L., Oskin, M.: DMP: Deterministic Shared Memory Multi-
processing. In: 14th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, Washington, DC (March 2009)

[17] Emrath, P.A., Padua, D.A.: Automatic Detection of Nondeterminacy in Parallel Programs.
In: ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, Madison,
WI (May 1988)

[18] Halstead Jr, R.H.: Multilisp: A Language for Concurrent Symbolic Computation. ACM
Trans. on Programming Languages and Systems 7(4), 501–538 (1985)

[19] Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects.
ACM Trans. on Programming Languages and Systems 12(3), 463–492 (1990)

[20] Hower, D.R., Hill, M.D.: Rerun: Exploiting Episodes for Lightweight Memory Race
Recording. In: 35th Intl. Symp. on Computer Architecture, Beijing, China (June 2008)

[21] Karp, R.M., Miller, R.E.: Properties of a Model for Parallel Computations: Determinacy,
Termination, Queueing. SIAM Journal on Applied Mathematics 14(6), 1390–1411 (1966)

[22] Manson, J., Pugh, W., Adve, S.: The Java Memory Model. In: 32nd ACM Symp. on Princi-
ples of Programming Languages, Long Beach, CA (January 2005)

[23] Midkiff, S., Pai, V., Bennett, D.: Organizers. In: Workshop on Integrating Parallelism
Throughout the Undergraduate Computing Curriculum, San Antonio, TX (February 2011)

[24] Montesinos, P., Ceze, L., Torrellas, J.: DeLorean: Recording and Deterministically Replay-
ing Shared-Memory Multiprocessor Execution Efficiently. In: 35th Intl. Symp. on Computer
Architecture, Beijing, China (June 2008)

[25] Netzer, R.H.B., Miller, B.P.: What Are Race Conditions? Some Issues and Formalizations.
ACM Letters on Programming Languages and Systems 1(1), 74–88 (1992)

[26] Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: Efficient Deterministic Multithreading
in Software. In: 14th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, Washington, DC (March 2009)

[27] Papadimitriou, C.H.: The Serializability of Concurrent Database Updates. Journal of the
ACM 26(4), 631–653 (1979)

[28] Shavit, N.: Organizer. In: Workshop on Directions in Multicore Programming Education,
Washington, DC (March 2009)

[29] Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: Ordering-Based Semantics for
Software Transactional Memory. In: 12th Intl. Conf. on Principles of Distributed Systems,
Luxor, Egypt (December 2008)

[30] Steele Jr., G.L., Saraswat, V.A.: Organizers. In: Workshop on Curricula for Concurrency,
Orlando, FL (October 2009)

[31] Veeraraghavan, K., Lee, D., Wester, B., Ouyang, J., Chen, P., Flinn, J., Narayanasamy, S.:
DoublePlay: Parallelizing Sequential Logging and Replay. In: 16th Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems, Newport Beach, CA
(March 2011)
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Abstract. Task pools have many important applications in distributed and paral-
lel computing. Pools are typically implemented using concurrent queues, which
limits their scalability. We introduce CAFÉ, Contention and Fairness Explorer,
a scalable and wait-free task pool which allows users to control the trade-off be-
tween fairness and contention. The main idea behind CAFÉ is to maintain a list of
TreeContainers, a novel tree-based data structure providing efficient task inserts
and retrievals. TreeContainers don’t guarantee FIFO ordering on task retrievals.
But by varying the size of the trees, CAFÉ can provide any type of pool, from
ones using large trees with low contention but less fairness, to ones using small
trees with higher contention but also greater fairness.

We demonstrate the scalability of TreeContainer by proving an O(log2 N)
bound on the step complexity of insert operations when there are N inserts, as
compared to an average of Ω(N) steps in a queue based implementation. We fur-
ther prove that get operations are wait-free. Evaluations of CAFÉ show that it out-
performs the Java SDK implementation of the Michael-Scott queue by a factor of
30, and is over three times faster than other state-of-the-art non-FIFO task pools.

1 Introduction

A task pool is a data structure consisting of an unordered collection of objects, a put
operation to add an object to the collection, and a get operation to remove an object1.
Pools have a number of important applications in multiprocessor computing, such as
maintaining the set of pending tasks in a parallel computation. A key challenge in such
an application is to ensure the pool does not become a bottleneck when it is concur-
rently accessed by a large number of threads. Another challenge is to ensure fairness —
although strict FIFO ordering is not necessary, we nevertheless want to avoid starvation
and limit the number of overtakings2.

In this paper, we present CAFÉ (Contention And Fairness Explorer), an efficient
randomized wait-free3 task pool algorithm. CAFÉ maintains a list of scalable bounded

� This work was partially supported by Hasso Plattner Institute.
1 We sometimes refer to task pools as producer-consumer pools; producers do puts, and con-

sumers do gets.
2 One task overtakes another task if it is inserted after the other task, but retrieved before it.
3 A randomized algorithm is wait-free if each thread executing an operation performs a finite

number of steps with probability 1.
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pools called TreeContainers. When one TreeContainer becomes full, a new TreeCon-
tainer is appended to the end of the list. Retrievals follow the FIFO order of the TreeCon-
tainers, but each TreeContainer can return its tasks in any order. This way, the tree size
is a system parameter controlling the trade-off between fairness and contention. Using
smaller trees, the system provides better fairness but also has more contention.

A TreeContainer stores jobs in a complete binary tree, in which every node can store
one task. Each node keeps presence bits indicating whether its child subtrees contain
tasks. This allows get operations to find tasks by walking down the tree from the root,
following a trail of presence bits. At the same time, the bits do not change frequently,
even when there are a large number of concurrent puts and gets, so they do not cause
much contention. We show that TreeContainers are dense: a tree with height h contains
at least 2(1−ε)h tasks with high probability, for any ε > 0. We also show that TreeCon-
tainers perform well under contention. When there areN concurrent put operations and
an arbitrary number of gets, each put finishes in O(log2N) steps, whp.

CAFÉ combines TreeContainers in a FIFO linked list, to provide the following prop-
erties. 1) The number of overtaken tasks in CAFÉ is bounded by the size of a tree.
2) In most workloads, producers and consumers operate on different TreeContainers,
which decreases contention and improves performance. 3) Puts are wait-free with
probability 1, and gets are deterministically wait-free.

Our algorithm offers some significant advantages over other approaches for task
pools. The most common approach to implement pools is using FIFO queues (e.g., Java
ThreadPoolExecutor). However, non-blocking queue-based algorithms suffer Ω(N)
contention at the head and tail, while our algorithm has O(log2N) contention for puts,
whp. Other queue-based algorithms are blocking, and require puts and gets to wait for
each other. In contrast, all operations in our algorithm are wait-free. The recent ED
pools in [1] also use trees, but in a different way. Unlike our algorithm, [1] does not
provide any upper bounds on step complexity, nor on the number of times a task can be
overtaken.

We have implemented CAFÉ in Java, and tested its performance on a 32-core ma-
chine4. Our results show that CAFÉ is over 30 times faster than a pool based on Java’s
implementation of the Michael-Scott queue, and over three times faster than a pool us-
ing Java’s state-of-the-art blocking queue (even though CAFÉ does not block). Also,
CAFÉ is over three times faster than ED pools, while providing stronger fairness guar-
antees.

The remainder of the paper is organized as follows. In Section 2, we describe related
work. We present CAFÉ in Section 3, and analyze its theoretical properties in Section 4.
We discuss our experimental results in Section 5. Finally, we conclude in Section 6.

2 Related Work

A common approach to implementing concurrent task pools is to use FIFO queues for
task management. However, due to their strong ordering guarantees, such implementa-
tions are not scalable, suffering from Ω(N) contention in the worst case. CAFÉ makes

4 The code is publicly available at http://code.google.com/p/cafe-pool/

http://code.google.com/p/cafe-pool/
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the observation that strict FIFO ordering is not necessary for a task pool, and thereby
achieves a much more scalable algorithm.

Another approach for reducing contention is using elimination, as proposed by Moir
et al. [8]. Here, producers and consumers can “eliminate” each other at predefined ren-
dezvous points. This approach best suits workloads in which there are more consumers
than producers. Elimination is less useful if the queue remains non-empty most of the
time, or when concurrency is low. In contrast, CAFÉ performs well under both high and
low concurrency, and regardless of the ratio between producers and consumers5.

Afek et al. [1] also propose a task pool foregoing FIFO ordering for scalability.
Their Elimination Diffraction (ED) pools yield significantly better results than FIFO
implementations. ED pools use a fixed number of queues along with elimination for
reducing contention. However, as we show in Section 5.2, ED pools do not scale well
on multi-chip architectures. In addition, unlike CAFÉ , ED pools are not wait-free, and
offer no fairness guarantees between puts and gets.

The idea of using concurrent tree-based data structures for reducing contention has
appeared in previous works not related to task pools [4,3]. Unlike these works, we prove
formal bounds on the worst case step complexity of our TreeContainer algorithm.

3 CAFÉ: A Task Pool with Adjustable Fairness

In this section, we describe CAFÉ, a wait-free, scalable task pool algorithm, whose
fairness can be adjusted arbitrarily by the user. The main idea behind CAFÉ is to keep
a linked list of scalable task pools called TreeContainers, each with bounded size. The
algorithm for a single TreeContainer is given in Section 3.1. Tasks are stored at tree
nodes, which can be occupied at most once. When a tree becomes full, a new tree is
added to the list. The algorithm for combining TreeContainers in a FIFO list is described
in Section 3.2.

3.1 TreeContainer

A TreeContainer consists of a bounded complete binary tree, in which each node can
store one task. A node with a task is occupied, and otherwise it is free. Each node can
be occupied at most once, as indicated by an isDirty flag. In addition, the node keeps a
presence bit for each child subtree; the bit is zero when all the nodes in the respective
subtree are free. Presence bits allow get operations to find a task in the tree by walking
down from the root following a trail of non-zero bits. Since presence bits summarize the
occupancy of an entire subtree, they change infrequently even under highly concurrent
workloads, which allows our algorithm to achieve low step complexity.

TreeContainer is shown in Algorithm 1. Level i of the tree is implemented using an
array tree[i], which allowsO(1) access to any node in a level. The root is the only node
at level 0. Each node also keeps pointers to its father and children, as well as a bit side,
indicating whether it is the left or right child of its father.

5 Due to space limitations, evaluations of CAFÉ on different workloads is deferred to the full
paper [2].
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Algorithm 1. TreesContainer, a scalable bounded task pool algorithm

1: TreeNode data structure:
� ver: version of the metadata
� p indicates presence of tasks in left/right subtrees
� 〈ver, p〉 is kept by a single AtomicInteger in Java

2: [〈ver, p〉, 〈ver, p〉]: meta
3: int: pending
4: boolean: isDirty � true if has been already used
5: Data: task
6: int: side � 0 for the left child, 1 for the right child
7: Tree data structure:

� tree[i] keeps an array with the nodes of level i
8: TreeNode[][]: tree

9: Function hasTasks(node):
10: if (node.meta[0].p ∨ node.meta[1].p)
11: then return 1
12: else return (node.task �= ⊥) ? 1 : 0

13: Function put(task):
14: node ← findNodeForPut(task)
15: if (node = ⊥) then return false
16: updateNodeMetadata(node, 1)
17: return true

18: Function findNodeForPut(task):
19: for level = 0, 1, . . . do
20: trials ← (level < height(root)) ? 1 : k
21: for i = 1, . . . , trials do
22: node ← random node in tree[level]
23: reserved ← putInNode(node,task)
24: if (reserved �= ⊥) return reserved
25: return ⊥ � did not succeed in this tree

26: Function putInNode(node, task)
27: if (node.father �= ⊥∧ node.father.task = ⊥)
28: return putInNode(node.father, task)
29: if (node.isDirty.CAS(false, true))
30: node.task ← task; return node
31: else return ⊥

32: Function get()
33: while(true):
34: if (hasTasks(root) = 0) return ⊥
35: node ← findNodeForGet()
36: task ← node.task
37: if (task �= ⊥ ∧

node.task.CAS(task, ⊥) = false) continue
38: updateNodeMetadata(node, 0)
39: if (task �= ⊥) return task

40: Function findNodeForGet()
41: node ← root
42: while(true)
43: if(node.task�=⊥∨

node.meta[0].p=node.meta[1].p=0)
44: return node
45: node ← random child among those with p = 1

46: Function updateNodeMetadata(node, myVal)
47: trials ← 0;
48: while(node.father �= ⊥)

� check if my operation has been eliminated
49: if (myVal �= hasTasks(node)) return
50: fk ← father.meta[node.side].p
51: if (fk �= hasTasks(node) ∨ node.pending > 0)
52: trials ← trials +1
53: if (updateFather(node) �= success ∧

trials < 2) continue � try again
54: node ← node.father; trials ← 0

55: Function updateFather(node)
56: node.pending.FetchAndInc()
57: new ← old ← father.meta[node.side]
58: new.ver ← new.ver +1; new.p ← hasTasks(node)
59: success ← father.meta[node.side].CAS(old, new)
60: node.pending.FetchAndDec()
61: return success

Task Insertion. Tasks are inserted in a tree using the put() operation. First, put finds
a free node to insert the task. Then it updates the presence bits of the node’s ancestors.
Because a tree has bounded size, task insertions can fail if they do not find a free node
in the tree. Below, we describe the main steps in a put.

Finding an unoccupied node. Function findNodeForPut() finds a free tree node for task
insertion. It iterates over the tree levels starting from the root (lines 19–24). At each
level, a random node x is chosen, and the algorithm tries to put the task in the highest
free node on the path from x to the root. This is done using the recursive function
putInNode() (lines 27–31). Nodes are reserved by CASing the isDirty flag. Having
nodes search for a free ancestor increases put’s step complexity from O(h) to O(h2)
for a tree with height h (proved in [2]). However, it also creates denser trees with a more
balanced node occupation, as we show in Section 4.2 and prove in [2].

If neither x nor its ancestors can be reserved, another random node is checked. At
each level except the last one, a single node is checked. The number of nodes checked
at the last level is defined by a parameter k, with higher k’s resulting in denser trees. We
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show in Section 4.2 and prove in [2] that in a tree with height h, at least 2
k+2
k+3 h nodes

are occupied before a put operation fails, whp.

Updating ancestors’ metadata. After a task is inserted in node x, function updateN-
odeMetadata() updates the presence bits of x’s ancestors (lines 48–54). At each node
the function checks that the metadata of the father is correct. Contention remains low
because in the common case, the presence bits of upper level nodes are not updated
when a new task is inserted or removed.

Though the general outline of the algorithm is simple, ensuring linearizability, wait-
freedom and low contention require special care, as we describe below.

1. Ensuring linearizability. A naı̈ve approach to update x’s father’s metadata could
be to first read the old presence bit of x’s father (line 50), then calculate whether x’s
subtree contains tasks (line 57), and finally CAS a new metadata value if the old value
is incorrect (line 59). If the CAS fails, the updater retries. Version numbers are attached
to the presence bits in order to avoid ABA problems.

Unfortunately, this simple approach can violate linearizability. Consider nodes x, y
and z, where y is the right child of x and z is the right child of y. Node y has a task,
so that x.meta[1].p = 1. There are two concurrent threads, a consumer tc that removes
the task from y and a producer tp that inserts a task in z. tc starts updating the metadata
of y’s father. It reads the right presence bit at x, which is 1, and decides to update it to
0. We then suspend tc right before it performs its CAS operation. At this time, tp starts
updating the ancestors of z. It first changes y.meta[1].p from 0 to 1, and then checks the
right presence bit at x. Since tc is paused, x.meta[1].p is still 1, and so tp decides this
value is correct, and terminates. Now tc resumes, and successfully changes x.meta[1].p
to 0. This makes future gets think the tree is empty, so that no get will retrieve tp’s task,
violating linearizability.

We solve this problem by letting other threads know about concurrent pending up-
daters. Whenever a thread t plans to change the metadata of x’s father, it increments a
pending counter at x (line 56); after the update, it decrements the counter (line 60). If a
concurrent updater sees x.pending > 0, it will update x’s father’s metadata, regardless
of its current value (line 51). This, along with the use of version numbers, will cause
the pending thread’s CAS to later fail.

2. Limiting the number of CAS failures. In the simple algorithm described earlier,
an updater thread t that fails to CAS the metadata of x’s father will retry the update.
This makes t’s worst case step complexity linear in the tree size, since every thread that
successfully performed an operation in x’s subtree can cause t’s CAS to fail. However,
as we show in the full version of the paper [2], it suffices for t to only try to update x’s
father’s metadata twice (line 53). The idea is that if t fails two CASes, then some other
thread will have already updated x’s father’s metadata to the correct value.

3. Producer/consumer elimination. We have also adopted the elimination technique
used in [8] and [1]. Consider a thread t that inserted a new task at a node, and started
updating the node’s ancestors. Let x and y be two such ancestors, where y is the father
of x. In the function updateNodeMetadata, t updated y’s metadata (on x’s side) to 1
while t was still at x. Thus, if t later arrives at y and sees y’s x-side metadata is now 0, it
means there has been consumer thread that already removed the task t inserted. In this
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case, t doesn’t need to update any more ancestors, and can terminate early (line 49).
This optimization improves performance in scenarios where multiple producers and
consumers are working on the same tree.

We show in Section 4.2 and prove in [2] that put operations in TreeContainer are
wait-free. Intuitively, this is because the tree is bounded, and because a thread only tries
two updates per node. If the tree has height h, the put performs O(h2) steps. We show
in Section 4.2 that our insertions create a balanced tree, whp. Hence, when the tree
containsN tasks, the complexity of a put is O(log2N).

Task Retrieval. The get() function in TreeContainer runs in a loop (lines 33–39). If
there are no tasks in the tree, as indicated by the presence bits at the root, the function
returns ⊥ (line 34). get() first finds a task at a random node to retrieve from using
findNodeForGet(), and then updates the metadata of the node’s ancestors.

Function findNodeForGet() searches for a node to get a task from. When it reaches
an unoccupied node, it randomly chooses a nonempty subtree to go down. The random-
ization reduces contention.

A task T is removed from node x by CASing x.task from T to ⊥ (line 37). If the
CAS succeeds, then the metadata of x’s ancestors need to be updated. Otherwise, the
algorithm starts a new retrieval attempt. Note that if findNodeForGet() finds a node x
with x.task = ⊥, it means that another consumer tc removed x’s task but still hasn’t
updated x’s ancestors. In order to be wait-free, a consumer needs to make sure that
it will not arrive to this empty node infinitely many times. Hence, a consumer that
arrives at an empty node x updates x’s ancestors even though it did not take x’s task
(line 38). Updating the ancestors is done the same way as after a task insertion, using
updateNodeMetadata().

We show in Section 4.2 and prove in [2] that get operations are wait-free. Intuitively,
this is because a get thread tc can only fail to take a task from a previously occupied
node x if some other thread took x’s task. Then, tc updates the metadata on the path
to the root, so that tc does not go down the same path again. The bounded number of
nodes in a tree then limits the number of unsuccessful get attempts.

3.2 Combining TreeContainers in a FIFO List

As stated earlier, CAFÉ maintains a linked list of TreeContainers, adding new trees as
old ones become full (see Figure 1). Tasks are returned in FIFO order, up to the tree they
are inserted into. This guarantees that the maximum number of overtakers in CAFÉ is
bounded by the tree size. Therefore, the tree size is a parameter that determines the
trade-off between fairness and contention. Using bigger trees, CAFÉ performs more
like a TreeContainer, and so has low contention but less fairness. Using smaller trees,
CAFÉ performs more like a FIFO list, so there is higher contention but greater fairness.

Basic approach. A simple way to manage a linked list of trees is to keep one pointer
(PT ) for producers, which references the tree for puts, and another (GT ) for consumers,
referencing the tree for gets. Whenever the current insertion tree becomes full, PT is
moved forward. Whenever no tasks are left in the retrieval tree, GT is moved forward.
Old trees are garbage collected automatically in managed memory systems as they be-
come unreachable.
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Fig. 1. CAFÉ keeps a linked list of scalable task trees. The tree height defines the fairness of the
protocol.

This straightforward approach, however, violates correctness, as we now demon-
strate. Consider the following scenario. tp inserts a task in tree T and pauses before
changing the metadata of T ’s root. Consumers assume that T is empty and increment
GT to continue to later trees. When tp finally resumes, we have GT > PT , and no
consumer will ever retrieve tp’s task.

One way to solve this problem is to reinsert the task in a later tree whenever tp notices
its task may be lost. However, this approach might lead to livelocks, in which produc-
ers constantly chase consumers, never finishing their operations. Another method is to
maintain a non-zero indicator on each tree (e.g., using SNZI [3]) indicating whether
there are concurrent producers working on the tree. But this approach incurs high over-
head, for managing both indicators and lists of “pending and active” trees. Our solution
is instead based on the idea of moving the consumer pointerGT backwards when a task
is added in an old tree.

Managing the list of trees. The pseudo-code for the list of trees pool is shown in Al-
gorithm 2. A put operation tries to insert the task into the tree pointed to by PT (call
this tree T ). If the insert fails, the algorithm moves to the next tree in the list by incre-
menting PT (lines 16–17). New trees are created and appended to the end of the list
as needed. For reasons we explain later, the pointer for consumers GT actually points
to two consecutive trees,GT.cur andGT.prev. When an insert succeeds, the producer
checks that its task will be retrievable in the future. To this end, it checks that GT.cur
does not point to a tree that succeeds T in the linked list (line 13). If it does, the GT
pair is moved backwards to 〈⊥, T 〉 in the functionmoveGTBack.

InmoveGTBack, a producer repeatedly tries to CASGT to T until a CAS succeeds,
or it reads GT.cur ≤ T . As we want producers to be wait-free, we need to ensure this
loop eventually terminates. Thus, we do not allow the GT pointers to move forward
while there are pending producers that want to move GT backwards. We increment a
counter oldProducers at the start of moveGTBack, and decrement it at the end. If a
consumer does not find a task in theGT trees, but sees oldProducers > 0, it advances
to a later tree, but does not incrementGT (line 44).

A consumer tries to retrieve a task from the trees pointed to byGT.prev andGT.cur
(lines 36–37). If both trees are empty, and if PT points to a later tree thanGT.cur, then
GT is updated to 〈GT.cur,GT.cur.next〉. This update is performed by first creating a
pair with the new tuple values (line 40), and then CASing GT from the old pair to the
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Algorithm 2. CAFÉ algorithm for adjustable fairness and contention

1: Data structures:
2: Node:
3: int: id
4: ScalableTree: tree

Node: next

5: Global variables:
6: Node: PT � tree for producers
7: 〈prev, cur〉: GT � tree for consumers
8: int: oldProducers � for moving GT backwards

9: Function put(task)
10: while(true)
11: latest ← PT
12: if (latest.tree.put(task) = true) then
13: if (GT.cur.id > latest.id)

moveGTBack(latest)
14: return
15: else
16: if(latest.next = ⊥) insertNewTree()
17: PT.CAS(latest, latest.next)

18: insertNewTree()
19: newNode ← Node()
20: cur ← PT � go to the end of the list
21: for(; cur.next �= ⊥; cur ← cur.next);
22: newNode.id ← cur.id +1
23: cur.next.CAS(⊥, newNode) � return even if CAS

fails

24: Function moveGTBack(Node: prodTree)
25: oldProducers.FetchAndInc()
26: while(true)
27: gtVal ← GT
28: if (gtVal.cur.id ≤ prodTree.id) break
29: newGT ← 〈⊥, prodTree〉
30: if (GT.CAS(gtVal, newGT) = true) break
31: oldProducers.FetchAndDec()

32: Function get()
33: ptVal ← PT
34: gtVal ← GT
35: while(true)
36: task ← gtVal.prev.getTask()

if (task �= ⊥) return task

37: task ← gtVal.cur.getTask()
if (task �= ⊥) return task

� could not find a task in the tree
38: if (ptVal.id ≤ gtVal.cur.id) return ⊥
39: if (oldProducers = 0) then
40: newGT ← 〈gtVal.cur, gtVal.cur.next〉
41: GT.CAS(gtVal, newGT)
42: gtVal ← GT
43: else
44: gtVal ← 〈gtVal.cur, gtVal.cur.next〉

new one (line 41). Note that the ABA problem does not occur during the CAS, because
every newly created pair is a new object whose address is different from the addresses
of any old pairs, which are not deallocated throughout the function’s execution.

Finally, we explain the reason for using two consumer pointers,GT.curandGT.prev.
SupposeGT only pointed to one tree, and consider the following situation.GT and PT
both point to a tree T . Producer tp inserts a new task in T and pauses. Meanwhile, other
producers insert new tasks, append new trees and move PT . Suppose a consumer tc
comes to retrieve a task, does not find any tasks in T , and pauses right before changing
GT to T.next. When tp resumes, it inserts its task to T , checks thatGT is still pointing
to T and terminates. When tc resumes, it changesGT to T.next. Now, tp’s task is lost.
As we show in the next section, keeping two pointers allows us to solve this problem in
a simple and efficient way.

In the next section, we show that both put and get operations in CAFÉ terminate
within a finite number of steps with probability 1. Thus, CAFÉ is wait-free.

4 CAFÉ’s Properties

In this section, we present the correctness and performance properties of CAFÉ. Due
to space limitations, we only state the main results and describe the ideas behind them,
deferring the full proofs to the full paper [2]. For all the results we assume that an
adversary controls thread scheduling but cannot influence the randomness threads use.
We let h denote the height of a TreeContainer, and k denote the number of insertion
attempts in the last layer of TreeContainer (line 20 in Algorithm 1).
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4.1 Safety Properties

In this section we present safety proof outline. We start by showing that CAFÉ imple-
ments a linearizable job pool. Intuitively, if the job pool is nonempty, then a get must
be able to find a job. We prove a theorem showing that after any put operation finishes,
no subsequent get operation will return⊥, until the put’s task has been returned.

Theorem 1. Suppose a get operation g in CAFÉ returns ⊥ at a time t. Then for every
put operation p that completed before the start of g, p’s task was removed by some get
operation before t.

The Theorem 1 proof consists of two parts. First, we prove that each TreeContainer
CAFÉ uses is itself a linearizable job pool. We formalize this in Lemma 1.

Lemma 1. TreeContainer implements a linearizable producer-consumer pool.

Second, we prove that after a put inserts a task in some TreeContainer, subsequent get
operations will not skip this TreeContainer when looking for a job. We formalize this
in Lemma 2.

Lemma 2. Let p be a completed put operation that inserted a task in TreeContainer T .
Suppose at some time τ , p’s task has not been removed. Then GT.cur.id ≤ T.id + 1
at τ .

The key to proving Lemma 1 is Lemma 3.

Lemma 3. Consider any TreeContainer T , and let p be a completed put operation that
inserted a task in node x0 ∈ T . Suppose that by some time τ , no get operation has
removed the task from x0, i.e. line 37 with node = x0 has not occurred (Algorithm 1).
Then for every node x on the path from x0 to the root of T , hasTasks(x) = 1 at τ .

The lemma proves that after a put operation has inserted a task in some node of a
TreeContainer, hasTasks(x) = 1 for every node x on the path from that node to
the root of the TreeContainer, until the node’s task is removed. We say that the nodes
on the path are marked. Get operations follow a path of marked nodes, and so will
always find a job as long they have not all been removed. We briefly describe the
proof of Lemma 3. Let x and y be two nodes a put operation p passes through dur-
ing updateNodeMetadata, where y is the father of x. The invariant we maintain is
that the value of hasTasks(x) has been fixed to 1 by the time p starts updating y’s
metadata. Since p tries to set y’s metadata to hasTasks(x), then hasTasks(y) will
also be fixed to 1 after p finishes processing y. Thus, all the hasTasks values on the
path from p’s insertion node to the root will be fixed to 1 inductively.

Next, we briefly describe the proof of Lemma 2. After a put operation has inserted a
task in a tree T , it does moveGTBack to ensure the value of GT is at most T . There are
two ways the put checks this condition. Either it successfully CASed the value 〈⊥, T 〉
into GT , or it read that GT.cur is at most T . Because the CASes on GT can be lin-
earized, we can show in the first case that later gets see T (or a smaller value) when
they read GT . In the second case, we need to be careful that while the put is check-
ing GT.cur is at most T , there may be a paused get operation, which then increases
GT as soon as the put’s check finishes. However, even if this happens, GT.cur only
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moves forward by 1. Since a get operation checks both GT.cur and its preceding tree
GT.prev, the get will still see the tree that the put inserted into.

The last correctness property we show is that gets return jobs in FIFO order, up to
the TreeContainer they were inserted into. This follows simply because jobs are inserted
and removed based on the linked list order of the TreeContainers.

4.2 Performance Properties

We first show that our trees are dense: by choosing an appropriate k we can guarantee
that a tree with height h is populated with at least 2(1−ε)h tasks for an arbitrary 0 < ε <
1, with high probability. In the full paper [2], we also show that this density is higher
than that achieved by a simple random walk based insertion. More formally, we prove
the following lemma.

Lemma 4. In a TreeContainer of height h, if a put operation fails, then the tree contains

at least 2
k+2
k+3 ·h tasks with probability at least 1− 1

2
(3− 7

k+3 )h+k+1
.

In addition, we prove that TreeContainer has a bound on put operation step complexity:

Lemma 5. Every put() operation of TreeContainer makes at most O(h2) steps.

We further demonstrate that TreeContainer performs well under contention. ForN con-
current put operations and an arbitrary number of get operations, each put finishes in
O(log2N) steps, whp:

Lemma 6. Consider a TreeContainer after N successful put operations. Then each of
these operations has taken O(log2N) steps with probability at least 1− 1

2(N+1)
4
3

.

We next intuitively demonstrate the wait-freedom of CAFÉ. We first show that put
operations are wait-free with probability 1, and then argue that get operations are deter-
ministically wait-free.

A put operation traverses the linked list of TreeContainers until it successfully inserts
a task in one of them; new TreeContainers are appended if the insertions keep failing.
Intuitively, it might seem that this traversal could go on forever. For example, a slow
thread tp could repeatedly try to insert a task in some tree, then pause until all other
producers proceed to a new tree, fail its current insert, and have to retry in a new tree.
Fortunately, this situation does not happen. Due to the randomness in the algorithm,
other threads are likely to have left unoccupied nodes in tp’s tree, which tp can acquire
once it resumes. We formalize this intuition in the following lemma.

Lemma 7. If P producer threads and any number of consumer threads use CAFÉ, then
any TreeContainer’s put operation succeeds with probability at least (1 − 1

2h )k(P−1) ·
[1− (1− 1

2h )k].

Using Lemma 7, we prove the following. Note that CAFÉ using TreeContainers of
height 0 is equivalent to a linked list.
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Lemma 8. If the height of TreeContainer is greater than zero, then CAFÉ’s put opera-
tions are wait-free with probability 1.

In order to show CAFÉ ’s get operations are wait-free, we need to show that a consumer
does not need to traverse an unbounded number of trees when looking for a task. This
is true because each get operation keeps a pointer to the latest TreeContainer when it
starts (line 33 in Algorithm 2), and subsequently only checks trees that had tasks before
it started. In a linearizable execution, the get is allowed to return⊥ when all these trees
are empty (in line 38), as all their tasks will have been taken by other gets concurrent
with or preceding the current get. We conclude with the following lemma.

Lemma 9. Every get operation of CAFÉ terminates in a finite number of steps.

5 Evaluation

In this section we evaluate the performance of Java implementation of CAFÉ. Due to
space limitations, we only describe the highlights of our evaluation. More comprehen-
sive experimental results may be found in the full paper [2].

5.1 Experiment Setup

We compare the following task pool implementations:

– CAFÉ-h – CAFÉ with height h for each tree. Unless stated otherwise, we use
h = 12.

– CLQ – The standard Java 6 implementation of a (FIFO) non-blocking queue by
Michael and Scott [7] (class java.util.concurrent.ConcurrentLink-
edQueue, which is considered to be one of the most efficient non-blocking algo-
rithms in the literature [5,6].

– LBQ – The standard Java 6 implementation of a (FIFO) blocking queue that uses
a global reader-writer lock (class java.util.concurrent.LinkedBloc-
kingQueue).

– ED – The original elimination-diffraction tree implementation [1] (downloaded
from the web page of the project), in its default configuration. Tasks are inserted
into a diffraction tree with FIFO queues attached to each leaf. The queues are im-
plemented using Java LinkedBlockingQueues. Every tree node contains an elimi-
nation array where producers can pass tasks directly to consumers. Changing the
tree depth, pool size and spinning behavior did not have a significant effect on the
pool’s performance. Note that ED trees, like CAFÉ , do not enforce FIFO ordering.

We use a synthetic benchmark for the performance evaluation, in which producer threads
work in loops inserting dummy items, and consumer threads work in loops retrieving
dummy items.

Unless stated otherwise, tests are run on a dedicated shared memory NUMA server
with 8 Quad Core AMD 2.3GHz processors and 16GB of memory attached to each
processor. JVM is run with the AggressiveHeap flag on. We run up to 64 threads on the
32 cores. The influence of garbage collection was negligible for all algorithm6.

6 This was checked using the verbose:gc flag in JVM.
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We analyze system performance in Section 5.2 and study the influence of tree heights
in Section 5.3.

5.2 System Throughput

In Figure 2 we show the average insertion and retrieval rates in a system with an equal
number of producers and consumers. Both graphs demonstrate the same behavior. The
throughput of CAFÉ increases up to 32 threads, the number of hardware threads in our
architecture. At this point, the throughput of CAFÉ is ×30 higher than the Michael-
Scott queue or the ED pool. It is also over three times higher than the blocking queue.
When the number of working threads exceeds the number of hardware threads in the
system, the throughput of CAFÉ decreases moderately, but still outperforms the other
algorithms.
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Fig. 2. Task insertion and retrieval rates (equal numbers of producers and consumers). The through-
put of CAFÉ-13 increases up to 32 threads (the number of hardware threads in the system). In this
configuration it is×30 faster than the Michael-Scott ConcurrentLinkedQueue and over three times
higher than all other implementations, including the ones not providing FIFO. CAFÉ continues
demonstrating high throughput even when the number of threads increases up to 64.
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Fig. 3. Throughput on different hardware archi-
tectures, normalized by the throughput of LBQ.
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threads.

As we can see in Figure 2, the re-
sults of both the Michael-Scott concur-
rent queue and ED pools are lower than
those of other algorithms. This differs
from the results demonstrated by Afek et
al. [1], where ED pools were shown to
clearly outperform standard Java queues.
This discrepancy seems to follow from
differences in the hardware architectures
used in our experiments. Afek et al. use
a Sun UltraSPARC T2 machine with 2
processors of 64 hardware threads each,
while in our system there are 8 quad-
cores. The difference in architecture is
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significant due to the non-uniform memory access time in multi-processor systems: ac-
cessing a memory location from multiple processors is significantly slower than access-
ing it from multiple hardware threads on the same chip, which usually share a last-level
cache. We now show how the non-uniformity of memory accesses influences perfor-
mance.

Figure 3 demonstrates the throughput of the algorithms in three different config-
urations: a single Nehalem chip with 6 hyper-thread cores, two Nehalem chips with
6 hyper-thread cores and three AMD quad-cores with no hyper-threading. The algo-
rithms are run with 6 producers and 6 consumers (corresponding to the number of hard-
ware threads available in a single Nehalem chip); the throughput is normalized by the
throughput of the Java LinkedBlockingQueue.

We observe that, consistent with the findings of Afek et al., both ED pools and MS
non-blocking queue perform twice as well as Java’s linked blocking queue when run-
ning on a single chip. However, their performances decrease significantly in systems
with two or more chips, when memory sharing becomes more expensive. We point out
that CAFÉ continues to outperform all the other algorithms even in the single-chip case,
which is the best setting for ED pools and the MS queue. Nevertheless, it is worth men-
tioning that in [1], ED pools achieved the best results when run on many threads (up to
64) on the same core. We were unable to reproduce these results as we do not have a
machine with more than 12 HW threads per chip.

5.3 Choosing the Tree Height

In Figure 4 we demonstrate CAFÉ’s performance for 16 producers and 16 consumers
as a function of tree height. Figure 4(a) shows the average number of CAS failures per
insertion / removal operation. For height = 0, CAFÉ is equivalent to the Michael-Scott
concurrent queue, and there are 4 CAS failures per operation. The rate of CAS failures
drops quickly for larger trees, becoming less than 0.1 for CAFÉ-8.
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Fig. 4. CAS failures and system throughput as a function of CAFÉ’s tree height for 16 produc-
ers and 16 consumers. Small trees induce high contention because of linked list manipulations
and reduced tree randomization. Excessively large trees induce contention among producers and
consumers operating in the same tree.
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The statistics of CAS failures match the throughput graph shown in Figure 4(b).
Increasing the tree height improves throughput up to a certain point (12 in our work-
load), but beyond this performance plateaus. This is because for intermediate tree sizes,
producers and consumers usually find themselves in different trees (the latter lagging
behind the former), while for heights larger than 13, most of the threads operate in the
same tree, which increases contention and decreases performance.

6 Conclusions

We presented CAFÉ, an efficient wait-free task pool with adjustable fairness and con-
tention. CAFÉ uses a scalable TreeContainer building block, which greatly improves
on the performance of queue-based alternatives and provides polylogarithmic step com-
plexity for its put operations. Our evaluations show that CAFÉ significantly outperforms
both FIFO and non-FIFO task pool algorithms in multi-chip architectures. As we’ve
seen, existing task pools make different trade-offs between fairness and contention. We
believe an interesting theoretical question is whether this trade-off is inherent.
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Abstract. We introduce oblivious protocols, a new framework for dis-
tributed computation with limited communication. Within this model we
consider the musical chairs task MC(n, m), involving n players (proces-
sors) and m chairs. Initially, players occupy arbitrary chairs. Two players
are in conflict if they both occupy the same chair. The task terminates
when there are no conflicts and each player occupies a different chair.
Our oblivious protocols use only limited communication, and do so in an
asynchronous fashion. Essentially, a player can only observe whether the
player itself is in conflict or not, and nothing else. A player observing no
conflict halts and never changes its chair, whereas a player observing a
conflict changes its chair according to its deterministic program. Known
results imply that even with more general communication primitives, no
strategy of the players can guarantee termination if m < 2n−1. We show
that even with this minimal communication termination can be guaran-
teed with only m = 2n−1 chairs. Our oblivious protocol can be extended
to the well-known Adaptive Renaming problem, using a name-space that
is as small as that of the optimal nonoblivious protocol.

We also make substantial progress in optimizing other parameters
(such as program length) for our protocols, though many interesting
questions remain open.

1 Introduction

In every distributed algorithm each processor must occasionally observe the
activities of other processors. This can be realized by explicit communication
primitives (such as by reading the messages that other processors send, or by
inspecting some publicly accessible memory cell into which they write), or by
sensing an effect on the environment due to the actions of other processors. Ex-
amples for the latter case are collision detection based algorithms for sharing
Multi-Access broadcast media [19]. In our work, in analogy to the collision de-
tection setting, we consider two severe limitations on the processors’ behavior
and ask how this affects the system’s computational power: (i) A processor can
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only post a proposal for its own output, (ii) Each processor is “blindfolded”
and is only occasionally provided with the least possible amount of information,
namely a single bit that indicates whether its current state is “good” or “bad”.
Here “bad/good” stands for whether or not this state conflicts with the global-
state desired by the processor. Moreover, we also impose the requirement that
algorithms are deterministic (use no randomization). This new minimalist model,
properly defined, is called the oblivious model. This model might appear to be
significantly weaker than other (deterministic) models studied in distributed
computing. Yet, we show that two variants of the renaming problem, adaptive
renaming (AR) (defined in [2]) and musical chairs (MC) (introduced in here)
can be solved optimally within the oblivious model. Furthermore, we discuss the
efficiency of oblivious solutions to these problems and the relations between the
oblivious model and the wait-free asynchronous shared memory model with only
reads and writes.

The current paper defines the oblivious model in general, but presents results
only for the tasks MC and AR, and only with the collision predicate (which is
natural for these tasks). We believe that the study of other tasks within the
oblivious model can lead to additional interesting insights about the role of
communication in distributed computing, though this is left to future work.

The oblivious model limits the operations available to individual processors.
We find it convenient to model these limitations via a fictitious oracle. Associated
with every state of a participating processor is a proposed output, though there
could be several different states with the same proposed output. The state at
which a processor halts thus defines its final output. The only way a processor
can sense its environment is by querying the oracle about a single predicate on
the current vector of outputs of the processors. Based on the single bit answer
the processor needs to either halt with its current output, or proceed with its
computation and propose a new output. But how can a processor’s computation
proceed? It has no information about the state of other processors (beyond the
one bit that tells it that it must proceed), and we are forbidding randomization.
Consequently, a processor’s proposed output can depend only on its current
state, and therefore the sequence of states that processor pi traverses is simply an
infinite word πi over the alphabet of possible outputs. Upon receiving a negative
answer from the oracle, processor pi in state πi[k] moves to state πi[k+1]. Given
the definition of a computational task, it is up to the programmer to design the
words πi and the query that each processor poses to the oracle under which that
task is always realized properly. Our only assumption is that the oracle correctly
answers the queries, and a processor eventually halts/proceeds to the next state
in his word upon a bad/good response from the oracle.

The Musical Chairs, MC(n,m) task involves n processors p1, . . . , pn and, m
chairs numbered 1, . . . ,m. Each processor pi starts in an arbitrary chair, dictated
by the input. If the input chairs are all different, all processors are good and the
input is the output. Otherwise, the task calls for each processor to capture a
chair that differs from the chair captured by any other processor.
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The AdaptiveRenaming(n,m) (AR(n,m)) task is a close relative ofMC(n,m).
There are m slots (chairs) numbered 1, . . . ,m and each participant has to cap-
ture a different slot. The processors have no input. If only k < n processors
participate, then each has to capture (output) a different slot from the first
min (2k − 1,m) slots. If all the n processors participate then each captures a
different slot from the m slots.

In Section 2 we define the oblivious model in detail. For the MC and the AR
problems we use the collision query – a processor is good iff it is the only one to
propose the current chair. We show that in this case the general oblivious model
simplifies considerably. These simplifications later help us produce an optimal
solution. The infinite words (programs) considered here are an infinite repetition
of a finite word.

Remarkably, for each processor we produce a program which is a single cyclic
word (an infinite repetition of that word) on an alphabet of chairs. Furthermore,
for the MC task the program can be started at any location in the word. This
provides for self stabilization [11,12]. Namely, consider a system configuration
where each processor occupies a different chair and there are no conflicts. Sup-
pose that the system gets perturbed, and program counters change arbitrarily.
This may create conflicts, but the system will nevertheless resettle obliviously
in finite time into a conflict-free safe configuration.

Here are the main results presented in the current paper:

1. The introduction of the general oblivious model and its specialization to the
problems at hand.

2. A proof that there are tasks that are solvable in a wait-free asynchronous
shared memory model with only reads and writes, but not solvable oblivi-
ously.

3. The characterization of the minimal m for which there is an oblivious
MC(n,m) algorithm:

Theorem 1. There is an oblivious MC(n,m) algorithm if and only if m ≥
2n− 1.

Moreover, for all N > n there exist N words on m chairs such that any n
out of the N words constitute an oblivious MC(n, 2n− 1) algorithm.

4. The characterization of the minimal m for which there is an oblivious AR(n,
m) algorithm:

Theorem 2. There is an oblivious AR(n,m) algorithm if and only if m ≥
2n− 1.

5. The words in Theorem 1 use the least number of chairs, namely m = 2n−1.
However, the length of these words is doubly exponential in n. Are there
oblivious MC algorithms with much shorter words? Even length O(n)? Per-
haps even length m? How long can the scheduler survive? Here we consider
systems with N ≥ n words (programs) and any n out of the N should con-
stitute a solution of MC. We call these MC(n,m) systems with N words.
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Theorem 3. For every N ≥ n, almost every choice of N random words of
length cn logN in an alphabet of m = 7n letters is an MC(n,m) system
with N full words (words that contain every letter in 1, . . . ,m). Moreover,
every schedule on these words terminates in O(n logN) steps. Here c is an
absolute constant.

6. Since we are dealing with full words (words that contain every letter in
1, . . . ,m) and we seek to make them short, we are ultimately led to con-
sider the case where each word is a permutation on [m]. At the moment
the main reason to study this question is its aesthetic appeal. We can de-
sign permutation-based oblivious MC(n, 2n − 1) algorithms for very small
n (provably for n = 3, computer assisted proof for n = 4). We suspect that
no such constructions are possible for large values of n, but we are unable
at present to show this. We do know, though that

Theorem 4. For every integer d ≥ 1 there is a collection of N = nd permu-
tations on m = cn symbols such that every n of these permutations constitute
an oblivious MC(n,m) algorithm. The constant c depends only on d. In fact,
this holds for almost every choice of N random permutations on [m].

We should stress that our proofs of Theorems 3 and 4 are purely existential.
The explicit construction of such systems of words remains largely open,
though we do have some results in this direction, e.g.,

Theorem 5. For every integer d ≥ 1 there is an explicitly constructed col-
lection of N = nd permutations on m = O(d2n2) symbols such that every n
of these permutations constitute an oblivious MC(n,m) algorithm.

1.1 Related Work

Two variations of the renaming problem were introduced in [2], Weak Renaming
and Adaptive Renaming (AR). In the former, there is an unbounded universe of
processor ids of which n wake up and have to each select a different name in
the range {1, . . .M(n)}. In the AR(n,M(n)) problem, which is one of the two
problems solved obliviously in this paper, the universe consists of n processors,
{p1, . . . , pn} and again they have to each capture a different integer in the range
{1, . . .M(n)}. Yet in AR, if the size of the participating set is k < n, outputs
are restricted to be in {1, . . . , 2k − 1} (hence the algorithm is adaptive to the
number of processors participating). The renaming algorithm presented in [2]
solves both variants with M(n) = 2n− 1.

Weak renaming is solvable withM(n) = 2n−2 for infinitely many different n’s,
called “exceptional” [10]. For AR(n,M(n)), M(n) = 2n− 1 is a lower bound as
shown in [15]. The proof of this lower bound builds upon previous impossibility
results for set consensus (see [9,18,20]), by showing that given a hypothetical
algorithm for AR(n, 2n− 2) in addition to read-write registers one can solve set
consensus in a wait-free manner.
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Both weak and adaptive renaming algorithms have been extensively studied
over the last two and a half decades, but aside from the above mentioned works
concerning solvability, all the studies are about complexity, which is not the
subject of this paper.

The musical chairs problem is weakly related to the Musical Benches (MB)
[16] problem. In MB there are n benches and n + 1 players. Each bench has
two seats. Every player needs to occupy a seat, and more than one player can
occupy the same seat. An output is legal if in every bench at most one seat is
occupied. Initially, players occupy arbitrary seats. If the initial configuration is
legal, it has to be the output. However, if the initial configuration is not legal,
then players can move and must return a legal output. In [16] it is shown, using
the Bursuk-Ulam Theorem, that the task for n = 2 has no wait-free solution in
an asynchronous shared memory model with only reads and writes. MC shares
with MB the flavor of the game of “jumping” from seat to seat. However, MC is
about separating players from each other, whereas MB is about getting players
on a bench to arrive at consensus.

There are other contexts in which algorithms of an oblivious nature were
considered. An algorithm in which each process is assigned a permutation which
specifies the order it is to do work is presented in [3]. Algorithms to compute
a maximal independent set with only carrier sensing with or without collision
detection are provided in this volume [6]. Among all work on algorithms with
an oblivious nature, we find it most instructive to compare our work with work
on universal traversal sequences (UTS) for covering graphs. A word over the
alphabet {0, 1, . . . d − 1} can guide a walk on an n-vertex d-regular undirected
graph: in each step the walk selects its next out-going edge according to the
respective symbol of the word. Such a word is a UTS if for every connected n-
vertex d-regular graph, regardless of how each vertex labels its out-going edge,
the corresponding walk visits all vertices of the graph. In [1] it is shown that
a sufficiently long random word (say, of length n5) is almost surely a UTS.
In analogy, our proof of Theorem 3 shows that sufficiently long random words
almost surely form MC algorithms. However, in our case the proof needs to
overcome an obstacle not present in the UTS case. The difference is that in MC,
as words get longer, the scheduler also gets more choices of how to schedule them,
whereas for UTS the number of graphs is fixed independently of the length of
the words. As a consequence, for some range of parameters (e.g., provably when
m < 2n− 1, as Theorem 1 shows), the statement is simply not true. There are
no analogous forbidden ranges of parameters for universal traversal sequences.

1.2 Discussion

Due to space limitations, large parts (including most proofs) are omitted from
the current version of this paper. The reader interested in more details is referred
to [5].

A number of simple observations follow from the requirement that oblivious
algorithms are deterministic. (i) An oblivious MC(n,m) algorithm cannot in-
clude any two identical words. Otherwise the corresponding players might move
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together in lock-step, constantly being in collision. Hence it is essential that no
two processors have the same program. (ii) For every oblivious MC(n,m) algo-
rithm with cyclic words, there is a finite upper bound on the number of moves
a processor can make before termination. This is because there are only finitely
many system configurations (a system configuration is determined by one state
for each processor, and the number of possible states of a processor is equal to
the length of the cycle in its cyclic word, and hence finite), and in a terminating
sequence of moves no system configuration can be visited twice. (iii) In fact,
for every collection of finite words there is a directed graph whose vertices are
all the system configurations. Edges correspond to the possible transitions. The
collection of words constitute an oblivious MC protocol iff this graph is acyclic.

Not all aspects of oblivious protocols are required for the purpose of the lower
bound m ≥ 2n − 1. The two crucial aspects are the asynchrony of the model,
and the fact that our algorithms are deterministic (no randomization). In a
synchronous setting (where in every time step, every processor involved in a
collision moves to its next state), m = n suffices even for oblivious protocols.
(This can be proven using the techniques of Theorem 3. Details are in [5].) Like-
wise, m = n suffice if randomization is allowed – with probability 1 eventually
there are no collisions. However, no specific upper bound on the number of steps
can be guaranteed in this case. Moreover, if the randomized algorithms are run
using pseudorandom generators (rather than true randomness) the argument
breaks. For any fixed seed of a pseudorandom generator, the algorithm becomes
deterministic and the lower bound m ≥ 2n− 1 holds.

The lower bound of m ≥ 2n− 1 uses some benign-looking aspects of the MC
task, so further discussion is called for. Recall that each processor starts in an
arbitrary chair, dictated by the input. In the absence of an external input speci-
fying the starting chair, a trivial oblivious MC algorithm (with m = n) contains
n distinct single-letter words. Another requirement is that if the input chairs are
all different, all processors are good and the input is the output. Without such a
requirement, the processors might simply ignore the initial input and the trivial
oblivious MC algorithm would still apply. Hence the lower bound of m ≥ 2n− 1
depends on requirements beyond the need for each processor to capture a dif-
ferent chair. Here this extra requirement is the possibility to dictate an output.
This particular requirement makes it easy to transfer previously existing lower
bounds to our MC problem.

Our present proof for the lower bound of m ≥ 2n− 1 leaves something to be
desired. It relies on previous nontrivial work in distributed computing. What’s
worse is that we prove a lower bound for a simple oblivious model via a reduction
to a lower bound proved in a more complicated model. This roundabout approach
obscures the essential properties that make the lower bound work. Indeed, in a
companion manuscript (in preparation), we present a self contained proof for the
lower bound of m ≥ 2n−1. That presentation clarifies the minimal requirements
that are needed in order to make the lower bound work. In particular, it is not
necessary that one can dictate an arbitrary starting chair for each processor –
dictating one of two chairs suffices.
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As noted, we design oblivious MC(n,m) protocols with m = 2n− 1. Part of
our work also concerns analyzing what ratios between m and n one can obtain
using collections of randomly chosen words as in Theorem 3. As explained in
the introduction, this allows us to present more efficient deterministic oblivious
programs – though random words seem to need more chairs, they can reach
conflict free configurations more quickly. Moreover, the use of random words is a
design principle that can be applied to design oblivious algorithms for other tasks
as well. Developing an understanding of what they can achieve and techniques
for their analysis is likely to pay off in the long run. One of the major questions
that remain open in our work is whether randomly chosen words can be used to
design deterministic oblivious MC protocols with m = 2n− 1.

2 The Oblivious Model

The Oblivious model (formally defined in [5]) is an asynchronous distributed
computing model in which each processor, at each point of time, exposes an out-
put value it currently proposes, and may receive at most one bit of information.
This bit indicates whether its proposed output is legal with respect to the other
currently proposed outputs (and hence the processor may halt) or not (and then
the processor should continue the computation). If a processor decides to halt
at the current state, then its proposed output is its final output. We denote the
set of possible output values by O. A system configuration (or configuration for
short) is a vector of n elements, one per processor, whose entries come from the
set O ∪ {⊥}. Here ⊥ represents a processor that has not yet proposed any out-
put, either because it is not participating, or because it was not scheduled yet
to propose an output (these two cases are indistinguishable to other processors).
An entry from O represents the output a corresponding processor proposes in
the configuration. In an oblivious algorithm correctly designed for a given task,
eventually all participating processors must halt, and the final configuration
must be a legal output vector in the task specification.

The defining feature of the oblivious model is that each processor may receive
only one bit of information about the system configuration in each computation
step. Namely, for each processor there is a predicate that maps configurations
to one of two values, one dictating that the processor will change its state, the
other dictating that it should halt in its current state. In the most general setting
the predicate provided for each processor may depend on its input. However,
throughout an execution one predicate is used for each processor. A necessary
(but not sufficient) condition for correct oblivious algorithms is that in every
illegal configuration at least one processor’s predicate dictates a change of state.
Our formal model does not exclude the use of arbitrary complex predicates (as
long as they depend only on the current configuration), but oblivious algorithms
have greater appeal when the predicates involved are simple and natural. For
the two tasks considered in this paper, the same collision predicate is used by
all the processors.

Initially, and as a function of its input, each processor pi selects a word πi

over O, and a predicate predi on the set of of all configurations. The first letter
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in πi is pi’s input, i.e., πi[1] = inputi ∈ O. For tasks such as AR in which a
processor need not have any input, the first letter is set to be an output that is
valid if no other processor participates (hence for AR the first letter is 1).

We describe the system using the notion of an omnipotent know-all sched-
uler called asynchronous (other schedulers with different names are described
in the sequel). Execution under the control of the asynchronous scheduler pro-
ceeds in rounds. The scheduler maintains a set P of participating processors, a
set E ⊂ P of enabled processors, and a set DONE (disjoint from P ) of pro-
cessors that have already halted. These sets are initially empty. In each round
the scheduler performs the following sequence of operations. It may add some
not yet participating processors to P . It may evaluate the predicate predi for
some subset of processors in P \ E. If predi evaluates to true, the scheduler
adds processor pi to the set E. Otherwise, if it evaluates to false, it removes pi

from P and adds it to the set DONE. Finally, the scheduler selects a subset
SE ⊆ E, removes it from E, and moves each pi ∈ SE to its next letter in πi.
I.e., the current output of pi is replaced by the next one in its program, πi. This
completes the round.

An oblivious algorithm solves a task if for every input vector, the scheduler
is forced to eventually place all participating processors in the DONE set. At
that point it can no longer continue, and the final configuration is such that
(vinp, vout) ∈ Δ, the relation that defines the task.

The asynchronous scheduler for oblivious algorithms mimics the behavior of
a wait-free algorithm in an asynchronous shared memory model with only reads
and writes, on configurations. Theorem 6 below is proved in [5] simply by having
each processor emulate the scheduler through reads (snapshots) and writes of
its newly proposed output in shared memory.

Theorem 6. Every task that is solvable obliviously has a wait-free solution in
an asynchronous shared memory model with only reads and writes.

Thus the oblivious model is subsumed by the wait-free asynchronous shared
memory model with only reads and writes. Is this a proper inclusion? To clar-
ify the answer we introduce an intermediate class of tasks that we call Output
Negotiation, or ON . It includes those tasks that have a wait-free solution in
an asynchronous shared memory model with only reads and writes in a sys-
tem where writing is in the oblivious model (processors can only expose their
proposed outputs), whereas reading is as in the general wait-free asynchronous
shared memory model with only reads and writes (a processor can read all
exposed information rather than only a single predicate). By definition, every
obliviously solvable task is ON solvable.

Corollary 7. Every obliviously solvable task is in ON .

Obviously, ON is a subset of the wait-free asynchronous shared memory model
with only reads and writes, and in Theorem 8 below whose proof is in [5] we show
that this inclusion is proper. In the proof we consider the task AntiMC which is
a variation on epsilon agreement [13] and show that AntiMC is not solvable just
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by communicating outputs. AntiMC is a task with 3 processors whose input and
output are each a number in {1, . . . , 5}. A processor running alone must output
its input. If more than one processor participates, all the outputs must lie within
two consecutive numbers.

Theorem 8. There exists a task, AntiMC, that has a wait-free solution in an
asynchronous shared memory model with only reads and writes but does not
belong to ON .

2.1 Impossibility of MC(n, 2n − 2)

In Sections 3 and 4 we show that MC(n, 2n− 1) and AR(n, 2n− 1) are solvable
obliviously. AR(n, 2n − 2) has no wait-free solution in an asynchronous shared
memory model with only reads and writes [14,15], and hence not solvable oblivi-
ously either. Theorem 9 whose proof is in [5] shows a reduction from AR(n, 2n−2)
to MC(n, 2n− 2). This implies that MC(n, 2n− 2) has no wait-free solution in
an asynchronous shared memory model with only reads and writes, and hence
also not solvable obliviously.

Theorem 9. AR(n, 2n− 2) is wait-free reducible to MC(n, 2n− 2) in an asyn-
chronous shared memory model with only reads and writes.

2.2 Cyclic Finite Programs or Words

For the AR task, processors have no input (or alternatively, are assumed to al-
ways have the input 1), and hence each processor has only one sequence. Our
constructions of oblivious algorithms all have the property that the same se-
quence is used for all inputs. Moreover, we consider finite sequences over which
the processor goes cyclically. In the MC task one can designate m locations in
the word, each corresponding to a possible output that has been dictated by
the input to the processor and each processor advances cyclically on the word
starting from that designated location.

2.3 Simplified Oblivious Model for MC and AR

The use of the collision predicate can be shown to imply that for the AR and MC
problems it is sufficient to consider a much simpler scheduler, the Pairwise Im-
mediate scheduler: In each round this scheduler selects two processors that are
currently colliding with each other, and moves either one or both of them, c’est
tout. Suppose that every processor has an associated word. We show that given
an initial configuration (starting positions on the words), the oblivious asyn-
chronous scheduler runs to infinity iff the pairwise immediate scheduler does.
This scheduler is then used in constructions in Sections 3 and 4. The construc-
tions in Section 5 use an even more restrictive scheduler, the Canonical sched-
uler. Like the pairwise immediate scheduler, the canonical scheduler can move
only one or both of two currently colliding processors, but unlike the pairwise
immediate scheduler, the choice of which two colliding processors to consider is
not made by the scheduler, but rather dictated to it. For formal definitions of
these schedulers and the proof of their equivalence, see [5].
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3 An Oblivious MC Algorithm with 2n − 1 Chairs

This section is dedicated to the upper bound that is stated in Theorem 1. The
proof of this theorem is inductive and rather technical. For lack of space, the full
text with all proofs is given in [5]. In what follows we attempt to give the reader
a sense of the main ingredients of the construction and how they come together
in the proof.

3.1 Preliminaries

The length of a word w is denoted by |w|. The concatenation of words is denoted
by ◦. The r-th power of w is denoted by wr = w ◦ w . . . ◦ w (r times). Given
a word π and a letter c, we denote by c ⊗ π the word in which the letters are
alternately c and a letter from π in consecutive order. For example if π = 2343
and c = 1 then c ⊗ π = 12131413. A collection of words π1, π2, ..., πn is called
terminal if no schedule can fully traverse even one of the πi. Note that we can
construct a terminal collection from anyMC algorithm just by raising each word
to a high enough power.

We now introduce some of our basic machinery in this area. A key tool is a
method to extend terminal sets of words.

Proposition 1. Let n,m,N be integers with 1 < n < m. Let Π = {π1, . . . πN}
be a collection of m-full words such that

every n of these words form an oblivious MC(n,m) algorithm. (1)

Then Π can be extended to a set of N+1 m-full words that satisfy condition (1).

proof. Suppose that for every choice of n words from Π and for every initial
configuration no schedule lasts more than t steps. (By the pigeonhole principle
t ≤ Ln, where L is the length of the longest word in Π). For a word π, let π′ be
defined as follows: If |π| ≥ t, then π′ = π. Otherwise it consists of the first t letters
in πr where r > |π|/t. The new word that we introduce is πN+1 = π′1◦π′2◦. . .◦π′n.
It is a full word, since it contains the full word π1 as a sub-word.

We need to show that every set Π ′ of n − 1 words from Π together with
πN+1 constitute an oblivious MC(n,m) algorithm. Observe that in any infinite
schedule involving these words, the word πN+1 must move infinitely often. Oth-
erwise, if it remains on a letter c from some point on, replace the word πN+1

by an arbitrary word from Π − Π ′ and stay put on the letter c in this word.
This contradicts our assumption concerning Π . (Note that this word contains
the letter c by our fullness assumption.) But πN+1 moves infinitely often, and it
is a concatenation of n words whereas Π ′ contains only n− 1 words. Therefore
eventually πN+1 must reach the beginning of a word πα for some πα �∈ Π ′. From
this point onward, πN+1 cannot proceed for t additional steps, contrary to our
assumption. ��
Note that by repeated application of Proposition 1, we can construct an arbi-
trarily large collection of m-full words that satisfy condition (1).
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We next deal with the following situation: Suppose that π1, π2, ..., πm is a
terminal collection, and we concatenate an arbitrary word σ to one of the words
πi. We show that by raising all words to a high enough power we again have a
terminal collection in our hands.

Lemma 1. Let π1, π2, ..., πp be a terminal collection of full words over some
alphabet. Let σ be an arbitrary full word over the same alphabet. Then the col-
lection

(π1)k, (π2)k, ..., (πi−1)k, (πi ◦ σ)2, (πi+1)k, ..., (πp)k

is terminal as well, for every 1 ≤ i ≤ p, and every k ≥ |πi|+ |σ|.
Lemma 1 yields immediately:

Corollary 10. Let π1, π2, ..., πp be a terminal collection of full words over some
alphabet, and let πp+1, πp+2, ..., πn be arbitrary full words over the same alphabet.
Then the collection

(π1 ◦ π2 ◦ ... ◦ πn)2, (π1)k, (π2)k, ..., (πi−1)k, (πi+1)k, ..., (πp)k

is terminal as well. This holds for every 1 ≤ i ≤ p and k ≥∑n
i=1 |πi|.

3.2 The MC(n, 2n − 1) Upper Bound

Our proof shows somewhat more than Theorem 1 says (see Proposition 2). We
do this, since the scheduler can “trade” a player P for a chair c. Namely, he can
keep P constantly on chair c. This allows the scheduler to move any other player
past c-chairs. In other words this effectively means the elimination of chair c
from all other words. This suggests the following definition: If π is a word over
alphabet C and B ⊆ C, we denote by π(B) the word obtained from π by deleting
from it the letters from C \B.

Our construction is recursive. An inductive step should add one player (i.e.,
a word) and two chairs. We carry out this step in two installments: In the first
we add a single chair and in the second one we add a chair and a player. Both
steps are accompanied by conditions that counter the above-mentioned trading
option.

Proposition 2. For every integer n ≥ 1
– There exist full words s1, s2, ..., sn over the alphabet {1, 2, ..., 2n − 1} such

that
s1(A), s2(A), ..., sp(A) is a terminal collection for every p ≤ n and for every
subset
A ⊆ {1, 2, ..., 2n− 1} of cardinality |A| = 2p− 1.

– There exist full words w1, w2, ..., wn over alphabet {1, 2..., 2n}, such that
w1(B), w2(B), ..., wp(B) is a terminal collection for every p ≤ n and for
every subset
B ⊆ {1, 2, ..., 2n} of cardinality |B| = 2p− 1.

The words s1, s2, ..., sn in Proposition 2 constitute a terminal collection and are
hence an oblivious MC(n, 2n− 1) algorithm that proves the upper bound part
of Theorem 1. The proof of Proposition 2 is given in [5].
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4 The Oblivious AR(n, 2n − 1) Algorithm

The ideas developed to solve the musical chairs problem and prove Theorem 1
turn out to yield as well an answer to the oblivious AR problem and a proof
of Theorem 2. The rules are the same as in the MC problem, except that the
scheduler cannot select the initial positions, and every word is started at its first
letter. In order to prove Theorem 2 we should construct a collection of full words
ΠN = {s1, s2, ..., sN} over the alphabet [2N − 1] such that for every n ≤ N and
for every set of n words from ΠN the following holds: Every schedule that starts
from the first letter in each of these words reaches a safe configuration and all
players only visits chairs from the set {1, . . . , 2n− 1}.

We note that our construction yields very long words - triply exponential in
N . It is an interesting challenge to accomplish this with substantially shorter
words.

proof (Theorem 2). By Proposition 1 and Theorem 1, we can construct for each
1 ≤ i, n ≤ N a word πi,n that is [2n− 1]-full such that every set of n words in
the set {πi,n|i = 1, . . . , N} constitute an oblivious MC(n, 2n− 1) protocol.

We show that with a proper choice of the exponents l1, . . . , lN , the Theorem
holds with the words si = πl1

i,1 ◦ πl2
i,2 ◦ . . . ◦ πlN

i,N .
The theorem follows if we can show that for every 1 ≤ n ≤ N and every subset

J ⊆ [N ] of cardinality |J | = n the following holds: In every possible schedule
that starts each word in {sj|j ∈ J} from its first letter, no player reaches a
position beyond the subword πln

j,n. Consider any point in such a schedule. Say
that player Pj (for some j ∈ J) is leading if it currently resides in the stretch πln

j,n

of sj . Otherwise, we say that j is trailing. We observe that during a period of
time in which no trailing player changes position, no leading player can traverse
a complete copy of πj,n. To see this, consider an arbitrary MC schedule with
the words {πj,n|j ∈ J}. We start this schedule as follows: Every leading player
maintains his position from the original AR schedule and every trailing player
stays put on the same chair that he is currently occupying. (Such a chair can be
found in the word πj,n since it is [2n−1]-full). The claim follows since the words
{πj,n|j ∈ J} constitute an oblivious MC(n, 2n− 1) protocol.

It follows that no leading player Pj can traverse more than
∑

ν<n,i∈J\{j} |πi,ν |lν
copies of πj,n in sj. Our claim follows if we choose lj that is larger than this in-
teger. ��

5 Oblivious MC Algorithms by the Probabilistic Method

Remark 11. It is important to note that the protocols that are presented in
this section are deterministic. The constructions are, however, inexplicit and
the existence of good protocols is proved by using a probabilistic argument. It is
an intriguing open problem to find equally good explicit constructions.

For lack of space, the full text with all proofs is given in [5]. In what follows we
attempt to sketch the results.
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Theorem 3 can be thought of as a (nonconstructive) derandomization of the
randomized MC algorithm in which players choose their next chair at random
(and future random decisions of players are not accessible to the scheduler).
Standard techniques for derandomizing random processes involve taking a union
bound over all possible bad events, which in our case corresponds to a union
bound over all possible schedules. The asynchronous scheduler has too many op-
tions (and so does the immediate scheduler), making a union bound too wasteful.
For this reason, in the analysis of this protocol we consider the canonical sched-
uler, which is as powerful as the asynchronous scheduler (see Section 2.3). In
every unsafe configuration, a canonical pair of players in conflict is dictated
to the canonical scheduler, and the canonical scheduler has only three possible
moves to choose from. This makes it viable to use a union bound.

In this construction each of the N words is chosen independently at random as
a sequence of L chairs, where each chair in the sequence is chosen independently
at random. Our proof shows that with high probability (probability tending to 1
as the value of the constant c grows), this choice satisfies Theorem 3.

A simple union bound shows that in this random construction, with high
probability, all words are full. Proving termination is more of a challenge. We
keep track of all possible schedules. To this end we use “a logbook” that is the
complete ternary tree T of depth L rooted at r. Associated with every node v of
T is a random variable Xv. The values taken by Xv are system configurations.
For a given choice of words and an initial system configuration we define the
value of Xr to be the chosen initial configuration. Every node v has three chil-
dren corresponding to the three possible next configurations that are available
to the canonical scheduler at configurationXv (and to an “empty” configuration
if the scheduler cannot move). The proof uses a potential function that maps a
configuration with i occupied chairs to xn−i, where x > 1 is a constant opti-
mized within the proof. In a nonempty configuration the potential is at least 1.
Associated with every node of T is a nonnegative random variable P = Pv that
is the potential of the (random) configuration Xv. The main step of the proof is
to show that if v1, v2, v3 are the three children of v, then

∑3
i=1 E(Pvi) ≤ rE(Pv)

for some constant r ≤ 0.99. This exponential drop implies that

E(
∑

v is a leaf of T

(Pv)) =
∑

v is a leaf of T

E(Pv) = o(1)

provided that L is large enough. This implies that with probability 1−o(1) (over
the choice of random words) all leaves of T correspond to an empty configuration.
In other words every schedule terminates in fewer than L steps.

5.1 Permutations over O(n) Chairs

The argument that proves Theorem 3 is inappropriate for the proof of Theorem 4.
Theorem 4 deals with random permutations, whereas in the proof of Theorem 3
we use words of length Ω(n log n). (Longer words are crucial there for two main
reasons: To guarantee that words are full and to avoid wrap-around. The latter
property is needed to guarantee independence.) Indeed in proving Theorem 4
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our arguments are substantially different. In particular, we work with a pairwise
immediate scheduler, and unlike the proof of Theorem 3, there does not appear
to be any significant benefit (e.g., no significant reduction in the ratio m

n ) if a
canonical scheduler is used instead.

Here are some of the main ingredients of the proof of Theorem 4 for the special
case N = n (a slight extension of these ideas proves the general case). We show
that with high probability, a set of random permutations π1, . . . , πn has the
property that in every possible schedule the players visit at most L = O(m logm)
chairs. Our analysis uses the approach of deferring random decisions until they
are actually needed. For each of themn possible initial configuration, we consider
all possible sequences of L locations. For each such sequence we fill in the chairs
in the locations in the sequence at random, and prove that the probability that
this sequence represents a possible schedule is extremely small – so small that
even if we take a union bound over all initial configurations and over all sequences
of length L, we are left with a probability much smaller than 1.

The main difficulty in the proof is that since L. m some players may com-
pletely traverse their permutation (even more than once) and therefore the chairs
in these locations are no longer random. To address this, we partition the se-
quence of moves into L/t blocks, where in each block players visit a total of
t = δm locations for some sufficiently small constant δ. Also n = εm, where
ε is a constant much smaller than δ. This choice of parameters implies that
within a block, chairs are essentially random and independent. To deal with de-
pendencies among different blocks, we classify players (and their corresponding
permutations) as light or heavy. A player is light if during the whole schedule (of
length L) it visits at most t/ logm = o(t) locations. A player that visits more
than t/ logm locations during the whole sequence is heavy. For light players, the
probability of encountering a particular chair in some given location is at most

1
m−o(t) ≤ 1+o(1)

m . Hence, the chairs encountered by light players are essentially
random and independent (up to negligible error terms). Thus it is the heavy
players that introduce dependencies among blocks. Every heavy player visits at
least t/ logm locations. Hence the number nh of heavy players does not exceed
(L logm)/t = O(log2m). The fact that the number of heavy players is small is
used in our proof to limit the dependencies among blocks.

6 Open Problems

Our MC algorithms involve very long words. An interesting question is to find
explicit constructions with m = 2n− 1 chairs and substantially shorter words.

In other ranges of the problem we can show, using the probabilistic method,
that oblivious MC(n,m) algorithms exist with m = O(n) and relatively short
full words. We still do not have explicit constructions of such protocols. We
would also like to determine lim inf m

n such that n random words over an m
letter alphabet tend to constitute an oblivious MC(n,m) algorithm.



Oblivious Collaboration 503

Computer simulations strongly suggest that for random permutations, a value
of m = 2n − 1 does not suffice. On the other hand, we have constructed (de-
tails omitted from this manuscript) oblivious MC(n, 2n − 1) algorithms using
permutations for n = 3 and n = 4 (for the latter the proof of correctness is
computer-assisted). For n ≥ 5 we have neither been able to find such systems
(not even in a fairly extensive computer search) nor to rule out their existence.

A self contained proof of the m ≥ 2n− 1 lower bound will appear in a subse-
quent paper. The following question remains open: What is the smallest m for
which there are collections of N = m+ 1 (not necessarily full) words such that
every min[n,N ] of them form an oblivious MC algorithm when starting at the
initial chair of each word. Our proof that m ≥ 2n−1 assumes that the scheduler
is allowed to pick an arbitrary initial state on each word.

We do not know how hard it is to recognize whether a given collection of
words constitute an oblivious MC algorithm. This can be viewed as the problem
whether some digraph contains a directed cycle or not. The point is that the
digraph is presented in a very compact form. It is not hard to place this problem
in PSPACE, but is it in a lower complexity class, such as co-NP or P?

There are interesting foundational questions related to different models in dis-
tributed computing. We have defined here the Output Negotiation (ON) model,
and showed that it is properly included in the read/write model. It follows by
definition that the oblivious model is included in the ON model. It would be
interesting to know whether this last inclusion is proper.
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