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Preface

This volume collects the papers accepted for presentation at the International
Conference on Image Analysis and Processing (ICIAP 2011), held in Ravenna,
Italy, September 14–16, 2011. ICIAP 2011 was the 16th event in a series of con-
ferences organized biennially by the Italian Member Society of the International
Association for Pattern Recognition (IAPR). The aim of these conferences is to
bring together international researchers for the presentation and discussion of
the most recent advances in the fields of pattern recognition, image analysis, and
image processing. Following the successful 2009 conference in Vietri sul Mare,
ICIAP 2011 was held in the magnificent city of Ravenna, an historical city famous
for its artistic and cultural heritage. The 16th ICIAP conference was organized
jointly by the Faculty of Preservation of Cultural Heritage of the University of
Bologna and the Department of Mathematics and Computer Science (DIMI) of
the University of Udine.

Topics for ICIAP 2011 included Image Analysis and Processing, Pattern
Recognition and Vision, Multimodal Interaction and Multimedia Processing,
Cultural Heritage, and Applications.

There were 175 submissions. Each submission was reviewed by two Program
Committee members. The committee decided to accept 121 papers, divided into
10 oral sessions (44 papers) and three poster sessions (77 papers).

The program included a special session on “Low Level Color Image Pro-
cessing” (organized by M. Emre Celebi, Bogdan Smolka, Gerald Schaefer, and
Raimondo Schettini), a demo session, and four invited talks by Jake K. Aggar-
wal (University of Texas, Department of Electrical and Computer Engineering,
USA) on Recognition of Human Activities, Horst Bunke (University of Bern, In-
stitute of Computer Science and Applied Mathematics, Switzerland) on Bridging
the Gap between Structural and Statistical Pattern Recognition, Roberto Cipolla
(University of Cambridge, Department of Engineering, UK), on Novel Applica-
tions of 3D Shape from Uncalibrated Images, and Kevin Karplus (University of
California, Santa Cruz, Department of Biomolecular Engineering, USA) on Pro-
tein Structure and Genome Assembly Tools. These lectures survey established
approaches, recent results and directions of future works of different topics of
recognition of human activities, structural and statistical pattern recognition,
computational vision, bioinformatics, and biomolecular engineering.

Three tutorials were offered, on “Image and Video Descriptors” (by Abdenour
Hadid), on “Beyond Features: Similarity-Based Pattern Analysis and Recogni-
tion” (by Edwin R. Hancock, Vittorio Murino, and Marcello Pelillo), and on
“Video Analytics on Reactive Camera Networks” (by Christian Micheloni).

ICIAP 2011 will also host the First International Workshop on Pattern Recog-
nition in Proteomics, Structural Biology and Bioinformatics, PR PS BB 2011,
organized by Virginio Cantoni and Giuseppe Maino.



VI Preface

During the conference, the Caianiello Prize, in memory of Prof. E. Caianiello,
was awarded to the best paper by a young author, as at previous events. Also,
a prize was awarded to the best paper presented to the conference.

We wish to thank the Italian group of researchers affiliated to the Interna-
tional Association for Pattern Recognition (GIRPR) for giving us the oppor-
tunity to organize this conference. We also thank the International Association
for Pattern Recognition for the endorsement of ICIAP 2011. A special word
of thanks goes to the Program Chairs, to the members of the Program Com-
mittee and to the reviewers, who contributed with their work to ensuring the
high-quality standard of the papers accepted to ICIAP 2011.

Special thanks go to Claudio Piciarelli, who made a fundamental contribution
to this conference, helping in managing, working on, and resolving those many
problems that a large event like this presents.

Local organization for events and accommodation was managed by Carla
Rossi of the Fondazione Flaminia and Daniela Raule of the NEREA-AIDA spin-
off. We are indebted to the Fondazione Flaminia for financial and organization
support. A special thanks goes to the members of the Local Organizing Commit-
tee, Roberta Menghi and Mariapaola Monti, who also took care of the graphic
aspects of the event, Elena Nencini, Lorenza Roversi, and Lisa Volpe for their
indispensable contribution to the organization and their help and availability
to solve the many practical problems arising during the preparation of ICIAP
2011. Finally, Sara Armaroli, Donatella Lombardo, Mariapaola Monti, and Liu
Wan are the young artists that have lent themselves to realize the Vision&Art
exhibition accompanying ICIAP 2011.

September 2011 Giuseppe Maino
Gian Luca Foresti
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Abstract. We formulate the problem of high order structural matching by ap-
plying dominant cluster analysis (DCA) to a direct product hypergraph (DPH).
For brevity we refer to the resulting algorithm as DPH-DCA. The DPH-DCA can
be considered as an extension of the game theoretic algorithms presented in [8]
from clustering to matching, and also as a reduced version of reduced version of
the method of ensembles of affinity relations presented in [6]. The starting point
for our method is to construct a K-uniform direct product hypergraph for the two
sets of higher-order features to be matched. Each vertex in the direct product hy-
pergraph represents a potential correspondence and the weight on each hyperedge
represents the agreement between two K-tuples drawn from the two feature sets.
Vertices representing correct assignment tend to form a strongly intra-connected
cluster, i.e. a dominant cluster. We evaluate the association of each vertex belong-
ing to the dominant cluster by maximizing an objective function which maintains
the K-tuple agreements. The potential correspondences with nonzero association
weights are more likely to belong to the dominant cluster than the remaining zero-
weighted ones. They are thus selected as correct matchings subject to the one-
to-one correspondence constraint. Furthermore, we present a route to improving
the matching accuracy by invoking prior knowledge. An experimental evalua-
tion shows that our method outperforms the state-of-the-art high order structural
matching methods[10][3].

1 Introduction

Many problems in computer vision and machine learning can be posed as that of estab-
lishing the consistent correspondences between two sets of features. Traditional match-
ing approaches are usually confined to structures with pairwise relations. Recently, a
number of researchers have attempted to extend the matching process to incorporate
higher order relations. Zass et al. [10] are among the first to investigate this problem
by introducing a probabilistic hypergraph matching framework, in which higher order
relationships are marginalized to unary order. It has already been pointed out in [1] that
this graph approximation is just a low pass representation of the original hypergraph
and causes information loss and inaccuracy. On other hand, Duchenne et al. [3] have
developed the spectral technique for graph matching [4] into a higher order matching
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2 P. Ren, R.C. Wilson, and E.R. Hancock

framework using the so called tensor power iteration. Although they adopt an L1 norm
constraint in computation, the original objective function is subject to an L2 norm and
does not satisfy the basic probabilistic properties.

We present a framework based on applying dominant cluster analysis (DCA) to a
direct product hypergraph (DPH). The idea is to extend the main cluster method of
Leordeanu and Hebert [4] for graphs and its generalization for higher order matching
[3], using dominant cluster analysis. Furthermore, we present a method for initializing
our algorithm that can be used to suppress outliers. This improves the matching perfor-
mance of our method, and comparable results can not be achieved by using alternative
high order matching algorithms [3][10]. Similar ideas have recently been presented in
[6]. Our method however, generalises the methods descrbibed in [3][10] from graphs to
hypergraphs, and is more pricipled in its formulation.

2 Problem Formulation

We represent the set of Kth order feature relationships by a K-uniform hypergraph
HG(V, E), whose hyperedges have identical cardinality K . Each vertex vi ∈ V in
the K-uniform hypergraph HG(V, E) represents one element in the feature set. Each
hyperedge ei ∈ E represents one K-tuple {vi1 , · · · , viK} ∈ V and the weight attached
to each hyperedge represents the similarity measure on the K-tuple encompassed by
the hyperedge. For simplicity, we denote a vertex vi by its index i in the remainder of
our work. The K-uniform hypergraph HG(V, E) can be represented as a Kth order
tensor H, whose element Hi1,··· ,iK is the hyperedge weight if there is a hyperedge
encompassing the vertex subset {i1, · · · , iK} ∈ V , and zero otherwise. The problem
of matching two feature sets both constituted by Kth order relationships can then be
transformed to that of matching the two associated K-uniform hypergraphs HG(V, E)
and HG′(V ′, E′). To this end, we establish the high order compatibility matrix C, i.e.
compatibility tensor, for HG(V, E) and HG′(V ′, E′). The elements of the Kth order
compatibility tensor C are defined as follows

Ci1i′1,··· ,iK i′K =

{
0 if Hi1,··· ,iK = 0 or H ′

i′1,··· ,i′K = 0;
s(Hi1,··· ,iK , H ′

i′1,··· ,i′K ) otherwise; (1)

where s(·, ·) is a function that measures hyperedge similarity. We define the hyper-
edge similarity using a Gaussian kernel s(Hi1,··· ,iK , H ′

i′1,··· ,i′K ) = exp(−‖Hi1,··· ,iK −
H ′

i′1,··· ,i′K‖
2
2/σ1) where σ1 is a scaling parameter. Many alternative similarity mea-

sures can be used instead. Each element of the compatibility tensor C represents a
similarity measure between the two corresponding hyperedges. The hyperedge pair
{i1, · · · , iK} and {i′1, · · · , i′K} with a large similarity measure has a large probabil-
ity Pr({i1, · · · , iK} ↔ {i′1, · · · , i′K}|H, H ′) for matching. Here the notation ↔ de-
notes a possible matching between a pair of hyperedges or a pair of vertices. Under
the conditional independence assumption of the matching process [10], the hyperedge
matching probability can be factorized over the associated vertices of the hypergraphs as
Pr({i1, · · · , iK} ↔ {i′1, · · · , i′K}|HG, HG′) =

∏K
n=1 Pr(in ↔ i′n|HG, HG′) where

Pr(in ↔ i′n|HG, HG′) denotes the probability for the possible matching in ↔ i′n



High Order Structural Matching Using Dominant Cluster Analysis 3

to be correct. For two hypergraphs HG(V, E) and HG(V ′, E′) with |V | = N and
|V ′| = N ′ respectively, we denote their N × N ′ matching matrix by P with entries
Pii′ = Pr(i ↔ i′|HG, HG′). High order matching problems can be formulated as
locating the matching probability that most closely accords with the elements of the
compatibility tensor, i.e. seeking the optimal P by maximizing the objective function

f(P)=
N∑

i1=1

N ′∑
i′1=1

· · ·
N∑

iK=1

N ′∑
i′K=1

Ci1i′1,··· ,iKi′K Pr({i1, · · · , iK}↔{i′1, · · · , i′K}|HG, HG′)

=
N∑

i1=1

N ′∑
i′1=1

· · ·
N∑

iK=1

N ′∑
i′K=1

Ci1i′1,··· ,iKi′K

K∏
n=1

Pini′n (2)

subject to ∀i, j, Pii ≥ 0 and
∑N

i=1

∑N ′

i′=1 Pii′ = 1. Let P̂r(i ↔ i′|HG, HG′) = P̂ii′

where P̂ii′ is the (i, i′)th entry of P̂. We refer to P̂r(i ↔ i′|HG, HG′) as the match-
ing probability for vertex i and i′, and the set of matching probabilities {P̂r(i ↔
i′|HG, HG′)|i ∈ V ; i′ ∈ V ′} obtained by maximizing (2) reveal how likely it is that
each correspondence is correct according to structural similarity between the two hyper-
graphs HG and HG′. This formulation has also been adopted in tensor power iteration
for higher order matching [3]. However, the difference between our method and the
existing algorithms is that we restrict the solution of (2) to obey the the fundamental
axioms of probability, i.e. positiveness and unit total probability mass. This constraint
not only provides an alternative probabilistic perspective for hypergraph matching, but
also proves convenient for optimization.

Once the set of matching probabilities satisfying (2) are computed, correspondences
between vertices drawn from HG and HG′ can be established. Matchings with a zero
probability are the least likely correspondences, and matchings with nonzero probabil-
ities tend to be those with significant similarity between their structural contexts. Our
aim is to seek the subset of possible matchings with nonzero probabilities which satisfy
(2) and that are subject to the one-to-one matching constraint.

3 High Order Matching as Dominant Cluster Analysis on a Direct
Product Hypergraph

In this section we pose the high order relational matching problem formulated in (2)
as one of dominant cluster analysis on a direct product hypergraph. We commence
by establishing a direct product hypergraph for the two hypergraphs to be matched.
Optimal matching can be achieved by extracting the dominant cluster of vertices from
the direct product hypergraph.

3.1 Direct Product Hypergraph

The construction of a direct product hypergraph for two K-uniform hypergraphs is a
generalization of that of the direct product graph [9], which can be used to construct
kernels for graph classification. We extend the concept of a direct product graph to
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encapsulate high order relations residing in a hypergraph and apply this generaliza-
tion to hypergraph matching problems. For two K-uniform hypergraphs HG(V, E)
and HG′(V ′, E′), the direct product HG× is a hypergraph with vertex set

V× = {(i, i′)|i ∈ V, i′ ∈ V ′}; (3)

and edge set

E× = {{(i1, i′1) · · · (iK , i′K)}|{i1, · · · , iK} ∈ E, {i′1, · · · , i′K} ∈ E′}. (4)

The vertex set of the direct product hypergraph HG× consists of Cartesian pairs of
vertices drawn from HG and HG′ separately. Thus the cardinality of the vertex set of
HG× is |V×| = |V ||V ′| = NN ′. The direct product hypergraph HG× is K-uniform,
and each K-tuple of vertices in HG× is encompassed in a hyperedge if and only if the
corresponding vertices in HG and HG′ are both encompassed by a hyperedge in the
relevant hypergraph. Each hyperedge in a direct product hypergraph is weighted by the
similarity between the two associated hyperedges from HG and HG′.

Furthermore, from our definition of direct product hypergraph, it is clear that the
compatibility tensor C defined in (1) is in fact the tensor C× associated with the direct
product hypergraph HG× for HG and HG′. Every possible matching i ↔ i′ is asso-
ciated with the vertex (i, i′) in HG×. For simplicity we let α denote a vertex in HG×
instead of (i, i′), and let D denote the subset of vertices in HG× which represent the
correct vertex matching for HG and HG′. We denote the probability for the vertex α
belonging to D by Pr(α ∈ D|HG×). For a direct product hypergraph with N× vertices,
we establish a N××1 vector p with its αth element pα = Pr(α ∈ D|HG×). With these
ingredients the optimal model satisfying the condition (2) reduces to

p̂ = argmax
p

N×∑
α1=1

· · ·
N×∑

αK=1

Cα1,··· ,αK

K∏
n=1

pαn (5)

subject to the constraints ∀α, pα ≥ 0 and
∑N×

α=1 pα = 1. Following the construction
of a direct product hypergraph, the objective function (5) is a natural extension of that
in [8] from clustering to matching. It is also a reduced version of the objective function
of ensembles of affinity relations [6], with no manual threshold on the optimization.

According to (5), zero probability will be assigned to the vertices that do not belong
to D. We refer to the probability P̂r(α ∈ D|HG×) = p̂α where p̂α is the αth element of
the vector p̂ satisfying the optimality condition in (5) as the association probability for
the vertex α. Therefore, the matching problem can be solved by extracting the cluster
of vertices with nonzero association probabilities in the direct product hypergraph.

3.2 Dominant Cluster Analysis

In this subsection, we formulate the problem of high order structural matching by apply-
ing dominant cluster analysis (DCA) to a direct product hypergraph (DPH). A dominant
cluster of a hypergraph is the subset of vertices with the greatest average similarity, i.e.
average similarity will decrease subject to any vertex deletion from or vertex addition to
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the subset. Drawing on the concept of the dominant set in a graph [7] and its game the-
oretic generalization [8], we can easily perform DPH-DCA by applying the following
update until convergence is reached [2]

pnewα =
pα

∑N×
α2=1 · · ·

∑N×
αK=1 Cα,α2,··· ,αK

∏K
n=2 pαn∑N×

β=1 pβ

∑N×
β2=1 · · ·

∑N×
βK=1 Cβ,β2,··· ,βK

∏K
n=2 pβn

(6)

At convergence the weight p̂α is equal to the association probability P̂r(α ∈ D|HG×),
i.e. the probability for the corresponding potential matching i ↔ i′ to be correct.

4 Matching with Prior Rejections

The high order structural matching algorithm described in Section 3 is a unsupervised
process. The weight of each vertex in the direct product hypergraph can be initialized
by using a uniform distribution of probability. However, if two vertices in a hypergraph
have the same structural context, i.e. their interchange does not change the hypergraph
structure, they can cause ambiguity when matching is attempted. Two alternative state-
of-the-art methods, namely probabilistic hypergraph matching [10] and tensor power
iteration [3], also suffer from this shortcoming.

However, if prior knowledge about outliers (i.e. hypergraph vertices for which no
match exists) is available, we can to a certain extent avoid the ambiguity and improve
matching accuracy by using a different weight initialization strategy. We refer to the
vertex subset V o× ⊆ V× (i.e. possible correspondences) associated with available out-
liers as prior rejections, and the adopted initialization in the light of prior rejections is
as follows

w(α) =
{

0 if α ∈ V o
×;

1/(N× −No×) otherwise; (7)

where No
× is the cardinality of V o

×.
The initialization scheme (7) improves the matching accuracy within the DPH-DCA

framework because the vertex weight w(α) in the numerator of the update formula (6)
plays an important role in maintaining the initial rejection. It enables the prior rejec-
tions to maintain a zero weight and does not affect the matching scores for other possi-
ble correspondences at each update until converged. The extent to which the matching
accuracy can be improved depends on the amount of prior rejections available. The
more prior knowledge concerning the outliers that is available, the more accurate the
matching that can be obtained. This will be verified in our experimental section.

In [6], the authors have described the same initialization step as a disadvantage. On
the other hand, we argue that the initialization scheme (7) does not apply to the al-
ternative methods[10][3] even when identified outliers are available. The probabilistic
hypergraph matching method [10] initializes a matching score by a fixed value obtained
from the marginalization of the compatibility tensor, and thus can not accommodate the
prior rejections by using (7). The tensor power iteration method [3], though manually
initialized, converges to a fixed matching score for different initializations.
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5 Experiments

We test our algorithm for high order structural matching on two types of data. Firstly,
we test our method on synthetic data to evaluate its robustness to noise and outliers.
Secondly, we conduct experiments to match features extracted from images. Prior re-
jections are considered for both types of data to improve the matching accuracy. We
compare our method with two state-of-the-art methods, i.e. probabilistic hypergraph
matching (PHM) [10] and tensor power iteration (TPI) [3].

5.1 Matching Synthetic Data

We commence with the random generation of a structural prototype with 15 vertices.
The distance dij between each pair of vertices i and j of the prototype is randomly
distributed subject to the Gaussian distribution N(1, 0.5). We test our method by es-
tablishing correspondences between the prototype structure and a modified structure.
The alternative modifications include a) noise addition, b) vertex deletion, c) rescaling
and d) rotation. Since neither the probabilistic hypergraph matching method nor the
tensor power iteration method relies upon a specific initialization, we test our DPH-
DCA matching method without prior rejections to make a fair comparison with these
two alternative methods. To test the performance of different methods for hypergraph
matching we re-scaled the distance between each of vertex pairs by a random factor
and rotate the structure by a random angle. In this case, the pairwise relationships no
longer holds for the matching task. We use the sum of polar sines presented in [5] as
a high order similarity measure for point tuples. We measure the similarity of every
3-tuple within the vertex set and thus establish a weighted 3-uniform hypergraph for
the structure. The compatibility tensor C for two structures is computed according to
(1) with σ1 = 0.1. Figure 1(a) illustrates the results of the matching accuracy as a
function of noise level. It is clear that our DPH-DCA framework outperforms the two
alternative methods at each noise level. To take the investigation one step further, we
study the performance of our method for matching structures of different vertex cardi-
nality. To this end, we extract a substructure from a prototype and slightly perturb the
distance between each vertex pair by adding random noise normally distributed accord-
ing to N(0, 0.04) . The cardinality of the vertex set of the substructure varies from 14
down to 5. Vertices not in the substructure are outliers for the matching process. For
each vertex cardinality of a substructure, 100 trials are performed. Figure 1(b) illus-
trates the matching accuracy as a function of outlier number for the three methods. It is
clear that our DPH-DCA framework outperforms the two alternative methods at each
number of outliers. We have also evaluated the matching accuracy of our DPH-DCA
framework at different levels of available prior rejection. To this end, we have extracted
a 5-vertex substructure from a prototype and slightly perturb the distance between each
vertex pair by adding random noise normally distributed according to N(0, 0.04). We
involve prior rejections by rejecting the matchings associated with a varying number
of outliers. Figure 1(c) illustrates the matching accuracy as a function of the number
of rejected outliers. It is clear that the matching accuracy grows monotonically as the
number of rejected outliers increases.
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(c) Prior rejections.

Fig. 1. Matching performance

5.2 Image Correspondences

To visualize the matching for real world images we test the alternative methods on
frames of video1. We use the Harris detector to extract corner points from the first and
30th frames. We use the sum of polar sines presented in [5] to measure the similar-
ity of every 3-tuple within the corner points and thus establish a weighted 3-uniform
hypergraph for each image. Figure 2 illustrates the matching performances for alterna-
tive methods. The matching results for the two comparison methods are visualized in
Figures 2(a) and 2(b), where 11 correct correspondences and 4 incorrect ones are

(a) PHM. (b) TPI.

(c) DPH-DCA. (d) DPH-DCA with two prior rejec-
tions.

Fig. 2. Image correspondences

1 http://www.suri.it.okayama-u.ac.jp/e-program-separate.html
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obtained by using the tensor power iteration, and 12 correct correspondences and 3
incorrect ones by the probabilistic hypergraph matching. For DCA without prior re-
jections (visualized in Figure 2(c)), we obtain 14 correct correspondences and 1 incor-
rect ones. Figure 2(d) visualizes the matching result by rejecting two outliers (green
marked). It is clear that the false matching is eliminated by incorporating the proper
prior rejections.

6 Conclusion and Future Work

We have presented a novel approach to high order structural matching. We have trans-
formed the matching problem to that of extracting the dominant cluster from the direct
product hypergraph for two feature sets with high order relationships. Prior knowledge
about outliers can be easily involved in our framework by initializing the matchings
associated with the outliers by a zero weight. Experiments have shown that our method
outperforms the state-of-the-art methods.
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Abstract. The aim of this article is to introduce a computationally tractable 
mathematical model of the relation between the complex wavelet coefficients of 
two different images of the same scene. Because the two images are acquisi-
tioned at distinct times, from distinct viewpoints, or by distinct sensors, the rela-
tion between the wavelet coefficients is far too complex to handle it in a deter-
ministic fashion. This is why we consider adequate and present a probabilistic 
model for this relation. We further integrate this probabilistic framework in the 
construction of a new image registration algorithm. This algorithm has sub-
pixel accuracy, and is robust to noise and to a large class of local variations like 
changes in illumination and even occlusions. We empirically prove the proper-
ties of this algorithm using synthetic and real data. 

Keywords: Image registration, probabilistic similarity measure, complex wavelet 
transform. 

1   Introduction 

In Visual Computing, next to the problem of analyzing a single image, one often en-
counters the problem of combining information contained in more images [1]. The 
first step in integrating the information comprised in a set of images is the registration 
of each pair of images from that set. 

Image registration is the process of geometrically overlapping two images of the 
same scene, obtained at different moments in time, or from different view angles, or 
with different sensors [2]. The two images involved in the process of registration are 
the reference image and the target image or the sensed image. With this terminology, 
the registration can be defined as the process of finding a transformation such that the 
target image becomes similar with the reference image [3]. 

Largely speaking there are two kinds of registration methods: parametric and non-
parametric. In the case of the parametric registration, the transformation is parametric, 
i.e. can be expanded in terms of some basis functions. In the case of non-parametric 
registration, the transformation is no longer restricted to a parametrizable set. As the 
algorithm that we propose is from the category of parametric image registration, we 
will no further insist on the non-parametric image registration. Parametric image reg-
istration can be divided into: landmark based parametric image registration, principal 
axes-based registration, and optimal parametric registration [1].  

Landmark based parametric registration is a type of registration based on the fea-
tures extracted at an initial stage in the process of registration. Those features can be 
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lines intersections, road crossings, inflection points of curves, corners [2], local ex-
tremes of wavelet transform [4], etc. The quality of landmark-based registration is 
highly dependent on the performances of the feature detector that is used. If the fea-
ture detector is not reliable enough, the registration will be low quality. 

This is why sometimes is better to use a registration method that relays on features 
that can be automatically deduced from the image. Such intrinsic features are for  
example the principal axes [5]. Although principal axes registration is fast and neces-
sitates very few parameters, it needs the moment matrix and the eigenvalue decompo-
sition of two large matrixes, it is not suitable for multimodal registration, and its  
results can be ambiguous [1]. 

The disadvantages of the landmark-based registration and principal axes registra-
tion led to the emergence of a more general and flexible class of parametric image 
registration. This category consists of optimal parametric registration algorithms. 

The basic idea of optimal parametric registration is to define a distance (similarity) 
measure between the reference image and the target image, and then to find the pa-
rameters of the transformation that optimize this similarity measure. The most known 
similarity measures are the sum of squared differences, the correlation, and the mutual 
information [6]. The domain of these similarity measures is either the intensity space 
like in [7], or another feature space like the wavelet coefficients with a magnitude 
above a certain threshold [4], the energy map [8], and the wavelet coefficients from 
the first decomposition level [9]. 

The algorithm that we introduce is an optimal registration algorithm. The similarity 
measure that we use is defined on the complex wavelet coefficients space. This makes 
our similarity measure more robust to noise than the similarity measures defined on 
the intensity space. The later mentioned similarity functions are affected by the noise, 
that usually corrupts the image intensities.  

This article is structured as following. In section 2 we present an introduction to 
the dual-tree complex wavelet transform. In section 3 we expose the probabilistic 
model underlying the registration algorithm. In section 4 we present the registration 
algorithm and introduce different modalities to integrate it into real world registration 
systems. In section 5 we justify the necessity for our mathematical model in the pre-
sent context, which is that of the existence of a related well-known probabilistic 
model in the intensity domain. In section 6 we present experimental results on artifi-
cial data as well as on real data. In section 7 we present our conclusions. 

2   Complex Wavelet Transform 

Discrete wavelet transform (DWT) is a modality to project a signal onto an orthogo-
nal wavelet basis. By using the DWT one can obtain local information about a signal 
both in the spatial domain and in the frequency domain. For a 2-D signal the DWT 
coefficients are obtained by passing the signal through a cascade of orthogonal high 
pass and low pass filters. The original image is decomposed at any scale j, into 4 
components: HHj (contains the diagonal details), HLj (contains the horizontal details), 
LHj (comprised of vertical details), and LLj (contains the approximation coefficients). 
For more information on DWT see [10]. 
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Any signal f(x, y) can be reconstructed via the inverse discrete wavelet transform 
from its detail and approximation coefficients as in (1) 

 
0

0

0 , ,

3

, ,
1

1
( , ) ( , , ) ( , )

1
( , , ) ( , )

j m n
m n

k k
j m n

k j j m n

f x y W j m n x y
MN

W j m n x y
MN

ϕ

ψ

ϕ

ψ
∞

= =

=

+

∑∑

∑∑∑∑
  (1) 

In (1) φj,m,n represents the scaling function scaled with a factor of j and translated with 
m and n, ψk

j,m,n represents k-th mother wavelet function, scaled with a factor of j and 
translated with m on Ox, and n on Oy, Wφ(., .) represents the aproximation coeffi-
cients, and Wψ

k(., .) represents the detail coefficients. 
For the 2-D DWT there are 3 mother wavelet functions: one that permits the ex-

traction of horizontal details, one for the vertical details, and one for the diagonal de-
tails. So we can say that Wφ(j, ., .) corresponds to LLj(., .) and that, for example, 
Wψ

1(j, ., .) corresponds to HLj(., .), Wψ
2(j, ., .) corresponds to LHj(., .), and that  

Wψ
3(j, ., .) corresponds to HHj(., .). 
Unfortunately, the DWT has some major drawbacks that make it less appropriate 

for registration. Among those drawbacks, we mention poor directional selectivity, as 
the HH coefficients cannot differentiate between edges at 45 degrees and edges at 135 
degrees and rotation and translation variance. Complex wavelet transform constitutes 
a remedy for these problems. 

One can observe that by taking in (1), instead of a real scaling function and real 
wavelet functions, a complex scaling function, and complex wavelet functions, for 
which the real and the imaginary part form a Hilbert pair, the drawbacks of the DWT 
are eliminated [11]. 

In our article, we employed dual tree complex wavelet transform to obtain the 
complex wavelet decomposition for our images. The dual tree complex wavelet trans-
form uses 6 complex mother wavelets that distinguish spectral features oriented at 
{75˚, 45˚, 15˚, -75˚, -45˚, -15˚}. By projecting the image onto the 6 complex wavelet 
functions, we obtain 6 complex wavelet coefficients for each scale and translation. 

To facilitate the presentation, from now on, every time we mention wavelet trans-
form, we refer to the dual tree complex wavelet transform. 

3   Construction of the Probabilistic Framework 

The research underlying this article is driven by the desire to understand the relation 
between corresponding complex wavelet coefficients of two images of the same 
scene. What happens with the complex wavelet coefficients when the two images are 
captured at different times, from different viewpoints, or with different sensors? In the 
following, we propose a mathematical model for this relation. 

The intuition behind this model is that for each level of wavelet decomposition, the 
layers of magnitudes of the coefficients from one image, should have the same con-
figuration as the layers of magnitudes of the coefficients from the other image. (For  
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every image, each level of decomposition has 6 layers of coefficient magnitudes, one 
for each of the 6 mother wavelets.) This means that if a layer, from one image, has a 
certain area with large (or small) coefficient magnitudes, the corresponding layer 
from the other image has the same area (i.e. the area located at identical coordinates) 
populated with large (or small) coefficient magnitudes. More than that, we expect this 
to happen even at the finest granularity level, i.e. we expect that large (or small) coef-
ficient magnitudes from one image correspond to large (or small) coefficient magni-
tudes from the other image. We base our expectations on the fact that wavelet coeffi-
cients are “the wavelet’s response” to the structures from the image. If two images 
depict the same scene, then the wavelet response should be similar. This observation 
is sustained by a known property of this type of wavelet transform. That property says 
that the coefficient magnitudes should be large for wavelets that overlap singularities 
and should be small on smooth regions [11]. 

Let us denote by Mj,k,ψ(m, n) the magnitude of the coefficient Wψ
k(j, m, n). Then, 

by denoting M1
j,k,ψ, and M2

j,k,ψ. the coefficient magnitudes for the two images, we 
propose the following mathematical model for their relation: 

 2 1
, , , , ,( , ) ( , ) (0, ), , , ,j k j k j kM m n M m n N k j m nψ ψ σ= + ∀   (2)

,(0, )j kN σ  is a Gaussian random variable of mean 0 and variance σj,k, and can be 

viewed as an admissible difference between 2 magnitudes of coefficients, that contain 
information about the same scene structures. Those differences can be thought to be 
organized in layers and levels, in the same way in which the associated magnitudes 
are organized. We use this model to define a probabilistic similarity measure between 
two images of the same scene, that differ one from another by a parametric coordinate 
transformation, described by the set of parameters θ. From now on, we mention that 
transformation as Tθ. We define the probability that a coefficient from image 1 con-
tains information about the same scene structures as a coefficient from image 2, when 
image 2 is transformed with Tθ: 
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We assume that the differences, between the magnitudes of 2 correspondent layers, 
(i.e. of any layer of differences) are independent. We define the probability that one 
layer of coefficients, from one image, has the same configuration as the correspondent 
layer of coefficients from the other image, when this image is transformed by Tθ: 

 ( )2, 1
, , , , , , ,

,

, ,j k j k j k m n
m n

p M M p j kθ θ
ψ ψ≈ = ∀∏   (4) 

We also assume that every 2 layers of differences from a level and every 2 levels of 
differences are independent. We obtain the probability that the coefficient magnitude 
of image 1 represent the same structures of the scene as the coefficients of the image 
2, when image 2 is transformed by Tθ: 
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Since any image can be reconstructed from its wavelet coefficients, (5) can be thought 
as the probability that image 1 is similar with image 2, when image 2 is transformed 
with Tθ.  

It can be shown as in [12] that the maximization of (4), ,j k∀  is equivalent to the 

maximization of the cross-correlation (6) between the coefficients of the layer k from 
level j, ,j k∀ . 
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where 2,
, ,j kM θ

ψ  is the mean of the layer 2,
, ,j kM θ

ψ  and 1
, ,j kM ψ  is the mean of the 

layer 1
, ,j kM ψ .  

More, it can be shown that the probability, that the 2 layers are equivalent, in-

creases with the increase of ,j kCCθ . This means that ,j kCCθ  can be considered an in-

dicator for the probability of equivalence between the 2 layers. Because of that and 

because ,j kCCθ  can be negative, we make the following approximation, and define 

the similarity between image 1 and image 2, when image 2 is transformed by Tθ: 
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In the definition for dj,k from (7), c is a large real number. 
We name the similarity measure from (7) wavelet layers correlation. 

4   Registration Algorithm 

The registration algorithm consists in finding ( )1 0
,..., n n

θ θ θ
>

=  such that pθ is 

maximized. To avoid that the algorithm outputs a local maximum instead of a global 
maximum, we used simulated annealing [7]. 
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We have used this algorithm to register images that differ by an affine transform or 
by a similarity transform (n is 6 respectively 4 ). For these images, the search space of 
the parameters is quite large. Fortunately, pθ allows us to find the optimizing parame-
ters, not by searching on the Cartesian product of the spaces of all parameters, but by 
searching, in turn, on the space of each parameter. This process necessitates several 
iterations, depending how far the solution is from the initial guess. 

We have empirically found that it is sometimes better not to use, in (7), all the lev-
els of decomposition. Actually the number of levels it is dependent on the type (for 
example retinal or outdoor) of images to register. 

For high temperature the generation function, for our variant of the simulated an-
nealing algorithm, is the product between a Gaussian centered in the current value, x, 
and the function h from (8). For smaller temperatures, the generation function is sim-
ply a Gaussian centered in x. 

1,  r  0.5
( )   , where r (0,1) is a uniform random number 

-1,  r 0.5
h x

<⎧
= ∈⎨ ≥⎩

(8) 

The speed of our algorithm depends on three factors. The first is the initial value for 
the set of parameters θ. The second is the stopping criterion. We have used as the 
stopping criterion the value of pθ as long as a number of iterations is not reached. The 
third speed factor is the number of parameters from the set θ. If this number is large, 
then the algorithm is more time costly. 

Our algorithm can be used in many situations: 
 

1. One can use it to estimate the vector θ, starting from a random value for this vec-
tor. When the vector θ has a single parameter, for example the rotation angle, the 
speed is reasonable and the algorithm can be considered even for time dependent 
applications. If the registration task consists in finding a transformation with a 
large number of parameters, we recommend our algorithm when the time is not 
crucial, but instead the registration accuracy is. This recommendation is supported 
by the fact that our algorithm permits the finding of a solution with high accuracy. 

2. One can use the algorithm for tuning the solution vector θ. This assumes of course 
that a less accurate solution was already found by a different method. For example 
as in [13], one can find a first alignment from low frequency components. In this 
situation, the speed of convergence to a highly accurate solution is reasonable for 
time dependent applications even when the number of parameters is large. 

5   Wavelet Layers Correlation versus Classical Cross-Correlation 

We have arrived at wavelet layers correlation by imposing the condition (2) on corre-
sponding wavelet coefficients. If one imposes a similar condition on the intensity val-
ues of corresponding pixels, then one obtains as a similarity measure the normalized 
cross-correlation. The question is why should anyone impose a condition of type (2) 
on wavelets coefficients rather than on intensities? Therefore, why should anyone use  
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wavelet layers correlation rather than use the classical cross-correlation? We will en-
deavor to answer this question in the current section. 

There are two major reasons for which wavelet layers correlation is superior to 
classical correlation: 

 

1. A relation of type (2) is, in general, non-realistic for image intensities, as most of 
the times the noise is non-Gaussian. In exchange, because we imposed a different 
relation of type (2) for every layer of wavelet coefficients, our model can tackle a 
more general and realistic type of noise than the Gaussian noise. This phenomenon 
is more obvious in the case of multimodal images. Fig. 2 shows cross-correlation 
and wavelet layer correlation as functions of the shift on Ox-axis, for a multimodal 
retina pair of images. One can see in Fig. 2 that wavelet layers correlation attains 
the maximum around the correct value, which is 1.03, while cross correlation loses 
the right solution completely. 
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Fig. 1. The cross correlation (left) and the wavelet layers correlation (right) as functions of the 
5-th parameter of the set θ = (a1, a2, a3, a4, a5, a6). θ describes the affine transform that regis-
ters a pair of multimodal retina images. The values of the other five parameters are fixed to 
their correct values. These correct values are computed from the ground truth. 

2. Even when a model of type (2) can be applied to intensities, cross-correlation is a 
flatter similarity function than the wavelet layers correlation. This means that the 
classical correlation has more local maxima than the wavelet layers correlation. It 
also means that in the case of classical cross-correlation, the global maximum is 
less conspicuous than in the case of wavelet layers correlation (see Fig. 3). This in-
creases, for an optimization method, the risk of being caught in a local maximum. 
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Fig. 2. The cross correlation (left) and the wavelet layers correlation (right) as functions of the 
5-th parameter of the set θ = (a1, a2, a3, a4, a5, a6). θ describes the affine transform that regis-
ters a pair of single modality retina images. The values of the other five parameters are fixed to 
their correct values. These correct values are computed from the ground truth. 
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6   Experimental Results 

6.1   Synthetic Data 

In order to test the algorithm on synthetic data we have performed two kinds of tests: 
 

1. We took some images and transformed them randomly by a single parameter trans-
form (i.e. either by a rotation, with a random angle between -90˚ and 90˚, either by 
a random translation between 0 pixels and half the image size, and either by a scal-
ing with a random scaling factor between 0.1 and 3). For every pair of images we 
chose randomly the type of the transform. We have produced 100 pairs of images. 
Fig. 3 (left) shows an example of such a pair. The inaccuracy for this pair, as de-
fined in (9), is 0.21 pixels. 

           

Fig. 3. Example of artificial image pairs. The second image from the left pair is the first image 
from the left, rotated with -9.84˚. The first image from the right side is the second image from 
the right, transformed by a similarity transform. 

2. We took the same images and transformed them randomly by a similarity trans-
form. This consists in scaling, together with translation and rotation. The scaling 
factor is between 0.2 and 2, the rotation angle is between -75˚ and 75 ˚, and the 
translation is between 0 and half the image size. We obtained 50 pairs. You can see 
in Fig. 3 (right) an example of such a pair. The inaccuracy for this pair, computed 
accordingly to (9), is 0.32 pixels. 
 

If we denote, for a pair of images, (I1, I2), by Tθt the real transform (the transform that 
is used to obtain I2 from I1) and by Tθa the transform outputted by the algorithm, then 
the inaccuracy for that pair is given in (9): 

 ( )2
11,

1

( , ) ( , )
, ,  are random points in I

P
t i i a i i

i i i P
i

T x y T x y
x y

P

θ θ
=

=

−
∑   (9) 

Table 1. The results of the tests on synthetic data 

Type of the 
artificial transform 

Percent of image pairs registered by wavelet 
layers correlation with an inaccuracy < 1 
pixel 

Single parameter 100% 
Multiple parameter 98% 
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6.2   Real Data 

We have used three categories of real world images: single modality retina images, 
multimodal retina images, and outdoor images. The retinal images are considered to 
differ by an affine transform and the outdoor images by a similarity transform. 

The left side of Fig. 4 represents an example of outdoor pair on which we tested 
the algorithm. The right side of Fig. 4 shows the overlap of the two images from the 
left side, before registration, and after registration, by means of our registration algo-
rithm. From Fig. 4 we can see that the algorithm is robust to small occlusions, as  
the man in front of the exit door from the second image, from the left side, is absent in 
the first image. This visual satisfactory behavior of the algorithm is supported by the 
accuracy test, which outputs for this pair an inaccuracy of 3.96 pixels. 

    

Fig. 4. The first two images from the left side represent an example of outdoor pair of images 
that we employed to test the algorithm. The second image from the right side represents the two 
images, from the left side, overlapped without registration. The first image from the right side 
represents the two images, from the left side, overlapped after registration with our algorithm. 

In order to test the accuracy on a pair of real images, we employed the formula (9) 
in which Tθt (the true transform) is computed from the ground truth (i.e. some corre-
spondent manual chosen points in every pair of images). We used in our tests 2000 
random points (i.e. P = 2000 in formula (9)) in order to probe the accuracy. 

We tested the algorithm on 50 outdoor image pairs, on 50 single modality image 
pairs, and on 30 multimodal image pairs. The outdoor images were captured with an 
Olympus Camedia C-500 Zoom camera. The retina images were provided by OD-OS 
GmbH. 

We implemented the algorithm in MATLAB on a Intel(R) Core (TM) 2 CPU 
T5300, 1.73 GHz processor. We obtained the results summarized in Table 2. 

Table 2. Results of the tests on real data 

Image cathegory Percent of image pairs registered by 
wavelet layers correlation with an 
inaccuracy < 5 pixels 

Oudoor  98% 
Single modality retinal  94% 
Multimodal retinal 93.3% 
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7   Conclusions 

In this paper we have proposed a probabilistic framework for modeling the relation 
between correspondent wavelet coefficients. We have used this framework for 
creating a new registration algorithm. The main qualities of this algorithm are: large 
applicability (can be employed for a variety of images ( as section 6 shows), and in 
many situations (described in section 4), robustness to small occlusions (as the tests 
on outdoor images show), robustness to a large category of noise (as can be seen from 
the tests on single modality and multiple modality image), the ellimination of any 
neccesity for preprocessing like for example noise reduction (this can be seen from all 
our tests since we have used no preprocessing), and sub-pixel accuracy (this was 
proved only on synthetic images since the accuracy on real images (as is outputed by 
the tests) depends on the limited precision of the human individuals that created the 
ground truth).  
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Abstract. We present a kernel based approach for image de-noising
in the spatial domain. The crux of evaluation for the kernel weights is
addressed by a Bayesian regression. This approach introduces an adap-
tive filter, well preserving edges and thin structures in the image. The
hyper-parameters in the model as well as the predictive distribution func-
tions are estimated through an efficient iterative scheme. We evaluate our
method on common test images, contaminated by white Gaussian noise.
Qualitative results show the capability of our method to smooth out the
noise while preserving the edges and fine texture. Quantitative compari-
son with the celebrated total variation (TV) and several wavelet methods
ranks our approach among state-of-the-art denoising algorithms. Further
advantages of our method include the capability of direct and simple in-
tegration of the noise PDF into the de-noising framework. The suggested
method is fully automatic and can equally be applied to other regression
problems.

Keywords: Image de-noising, Bayesian regression, Adaptive filtering.

1 Introduction

The need for efficient image restoration methods has grown with the massive pro-
duction of digital images and movies of all kinds, often taken in poor conditions.
No matter how good cameras are, an image improvement is always desirable to
extend their range of action. The valid challenge of denoising methods is remov-
ing the noise without creating artifacts, while preserving the image edges and
fine structures. Such denoising attempts are referred as adaptive filtering.

Many methods have been suggested in the past for image adaptive denoising.
One class of methods filters the image via the frequency domain using wavelets
[17,4,6,12]. Although yielding excellent results in terms of PSNR, yet these meth-
ods often produce particular visual artifacts such as ringing.

Another approach performs the filtering in the spatial domain, known as steer-
able filters. In the domain of PDE and diffusion methods the inhomogeneous (i.e.
shift variant yet isotropic) and anisotropic diffusion approaches gained popular-
ity for their desired properties on edge preserving [9,11,13]. In this framework the
so called Total Variation regularization (TV) attracted special attention [9,5,13].
These PDE based approaches among other non-linear methods can be approxi-
mated by a kernel based filtering where the kernel is shift variant [15]. However,
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in these methods the adjustment of the model to the noise distribution is highly
non-trivial and practically hidden under the distance measure (norm) used in
the model. Furthermore, these methods often need a tuning parameter, adjusted
by the user, in order to obtain adequate performance.

Non-deterministic modeling approaches [2,7,16] rely on the data for adap-
tively varying the kernel. Our method belongs to this latter approach, where the
noise PDF is an explicit part of our statistical model. The key ingredient of our
approach is the use of simple but efficient Bayesian estimation model. Bayesian
estimation seeks a predictive probability distribution function (PPDF), i.e pre-
diction is done through model averaging. We view the image denoising as a
regression problem in the spirit shown by Tipping [10]. While in [10] a Taylor
expansion (to the second degree) is used to obtain an exact solution, we avoid
this approximation by utilizing an efficient iterative procedure for solution of the
regression problem.

Often measurement models are considered to be linear in the unknown image.
Yet, more successful methods have taken a nonlinear estimation approach to this
inverse problem [2,16]. In this work, we perform our regression on a transformed
domain by Radial Basis Functions (RBF) [3] and impose a prior on the RBF’s
weights in order to avoid over fitting.

Experiments show that the proposed approach can reduce noise from cor-
rupted images while preserving edge components efficiently. Despite the simplic-
ity of our method both in its concept and implementation, the denoising results
are among the best reported in the literature. It is further executed without any
parameter setting or user intervention. The suggested regression scheme is not
limited to image de-noising and can be employed for other regression problems.

2 Problem Formulation

Usually in a data-model matching procedure, one tries to optimize the likelihood
of the data, i.e, the probability of the data given the model p(D|M). We assume
the model has parameters (a.k.a weights) arranged in the vector w and con-
sider the method of Maximum a-posterior probability (MAP) with automatic
inference of the regularization parameters. We then deduce the probability of
the model given the data, i.e. p(M |D) and use it to construct the predictive
distribution.

2.1 Bayesian Regression

In this work, we assume that image pixels are corrupted by additive white Gaus-
sian noise with an unknown variance σ2:

yi − ti ∼ N(0, σ2) (1)

where, ti denotes the targets namely, the observed intensities and yi the output
of a regression method. The likelihood of the data under identically independent
distribution (i.i.d) is given by:
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p(D|M) =
K∏

i=1

1√
2πσ

exp
(
− (yi − ti)2

2σ2

)
(2)

where K denotes the kernel size. The first stage of the restoration is based on
regression of a pixel value based on the data in a kernel. To this end often linear
regression model is employed. However, a linear model imposes a severe limi-
tation on the allowed relation between the pixels in the kernel. We therefore
consider a set of non-linear functions φi(x) mapping the input vector (observa-
tions) to a new space, allowing a more flexible model:

y(x;w) =
K∑

i=1

wiφi(x) + w0 = wT φ(x) + w0, (3)

where w := [w1, w2, ..., wK ]T is the parameter vector of the model to estimate
in a certain kernel and K denotes the kernel size (number of training samples).
We hereby describe a new Bayesian probabilistic approach for learning p(M |D),
where D in this case presents the corrupted image. As the basis functions φ(x) :=
[φ1(x), φ2(x), ..., φK (x)] we choose the following RBF:

φi(x) := exp(−||x− ti||2
2r2

). (4)

In the context of image de-noising, we define a regressor imposed on a training
sample set at the size of the kernel. For a kernel size k × k the regressor will
therefore have a training sample size of K = k2. The width of the Gaussian
functions, r, depends on the size k. We set this width to be r = k/2.5. Note that
the regression (3) produces a model for prediction of the intensities for all the
pixels in the kernel domain.

Estimation of the weights (model) is the crux of the proposed denoising algo-
rithm. It is well known that that maximum likelihood estimation of w and σ2

from (3) will lead to severe over-fitting [1]. To avoid this, we impose an additional
constraint on the parameters, through the addition of ”complexity” penalty term
to the likelihood or error function. Here, though, we adopt a Bayesian perspec-
tive, and ”constrain” the parameters to obey a prior probability distribution.
The preference for smoother (less complex) functions is made by the popular
choice of zero mean Gaussian prior distribution over the weights w. Note that
when w = 0, then w0 will obtain the mean intensity value in the kernel. We
also apply a prior on w0 as normal distribution around the mean value m, i.e.
w0 ∼ N(m, σ2

0) and define the corresponding precision parameter as α0 = 1/σ2
0 .

Assuming conditional independence in w components and characterization by
individual precisions αk = 1/σ2

k, namely hyper-parameters (with corresponding
std σk), yields the following prior probability function:

p(M) =
1

(2π)K

K∏
i=1

α
1/2
i exp

(
−αiw

2
i

2

)
· α1/2

0 exp
(
−α0(w0 −m)2

2

)
(5)
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Importantly, there is an individual hyper-parameter associated with every weight.
This mechanism moderates the strength of the prior in space, adaptively.

Having defined the prior, Bayesian inference proceeds by computing, from
Bayes’ rule, the posterior over all unknowns given the data. To this end, we wish
to optimize the posterior probability for model parameters M given the data D:

M∗ = arg max
M

p(M |D) = arg max
M

p(D|M)p(M) (6)

This condition is equivalent to maximization of the corresponding log term sub-
stituting Eq. (2) and Eq. (5) in Eq. (6), ignoring the constants:

L(w, α, w0, α0, σ) = −K ln(σ) −
K∑

i=1

(yi − ti)2

2σ2
−

K∑
i=1

w2
i αi/2 +

K∑
i=1

1/2 ln(αi)

(7)

− (w0 −m)2

2
α0 +

1
2

ln(α0).

The optimal model is then a result of maximization of (7). Note that when a
certain point in the kernel obtains a high mismatch value (e.g. (yi−ti)

2

2σ2 
 1),
then the associated weight will reduce significantly due to the maximization
process. This effectively ”switches off” the influence of the corresponding input
in regression, as desired. Nevertheless, in areas where the image is nearly constant
(in sense of local mean), a limited data discrepancy is expected and maximization
of (7) yields weights with homogeneous distribution (i.e. w → 0, and w0 �= 0).
This is a highly effective mechanism for preserving the image structure in the
restoration process while filtering out the noise, and it is a direct by product
of our Bayesian formulation. Note that the suggested regression scheme doesn’t
make any use of spatial relations between points. Therefore this model is not
limited to images and can be used for other regression problems.

Maximization of L is pendent to the following necessary conditions:

∂L

∂wk
= −

∑K
i=1(yi − ti)φk(ti)

σ2
− wkαk (8)

∂L

∂w0
= −

∑K
i=1(yi − ti)

σ2
− (w0 −m)α0 (9)

∂L

∂αi
=
−w2

i

2
+

1
2αi

= 0 (10)

∂L

∂α0
=

1
2α0

− (w0 −m)2

2
= 0 (11)

As for estimation of the noise std σ we use the none biased estimate as follows:

σ2 =
∑K

i=1(yi − ti)2

K − 1
(12)
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The unknown values of wi, αi, w0, α0, σ which satisfy Eq. (8-12) cannot be ob-
tained in a closed form, and hereby we suggest an iterative scheme for their
estimation. Each iteration step is composed of three stages. The conjugate gra-
dient [8] scheme is used for estimation of wk in Eq.(8). This step is followed by
evaluation of w0 in (9) and the precision parameters αi and α0 in Eq. (10,11).
The next iteration step is then applied after updating the noise std in (12). At
each phase only one set of variables are updated to satisfy the equation, while
the others are kept constant. The algorithm flow is then:

Algorithm Flow:

1) Initialization

2) Estimate w from Eq.(8).

3) Estimate w0 from Eq.(9).

4) Update precision values αk and α0 using Eqs.(10) and (11).

5) Update noise std evaluation σ by Eq.(12).

6) Repeat steps 1-5 until convergence.

We experienced convergence of the scheme in just two iterations. The above
model now can be used to produce a set of hypotheses for Bayesian inference as
described in the following section.

2.2 Bayesian Inference

In this work we consider a set of K hypotheses for each data point, governed from
the kernel centralized on the considered point and another K − 1 overlapping
kernels. We seek to compute the expected value E(t̂|x̂) associated with a new
test point x̂ mapped to the target t̂. In Bayesian framework this is conducted by
calculation of the predictive distribution [1]:

E(t̂|x̂) =
∫

t̂ · p(t̂, m|x̂, D)dm =
∫

t̂ · p(t̂|m, x̂, D)p(m|D)dm, (13)

where m presents the model, in this case the regressor outcome. Evaluation
p(m|D) is based on computation of the marginal probability (see (6)). Since the
the posterior p(t̂|m, x̂, D) can not be directly computed we use the following
decomposition [1,10]:

p(t̂|m, x̂, D) =
∫

p(t̂, w|x̂, m, D)dw =
∫

p(t̂|w, x̂, m) · p(w|m, D)dw, (14)

The term p(t̂|w, x̂, m) has a normal distribution where the distance is measured
by absolute difference in intensity values. As for p(w|m, D), the distribution is
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also normal having the posterior mean obtained from Eq.(8-11) as its mode.
Thus the expression under the integral sign in (14) presents convolution of two
Gaussian distributions resulting in a new Gaussian characterized by the param-
eters of the distributions it was composed of 1. Note however that our prediction
is based on several hypotheses, obtained here from neighbouring kernels. This
paradigm is inferred from Bias-Variance decomposition concept. Since the error
is composed from bias and variance, Bayesian model averaging significantly im-
proves the prediction by coping in fact, with the notorious variance part of the
error.

3 Results

In this section, we will demonstrate the performance of the proposed approach on
popular test images, contaminated with white Gaussian noise. Our data set in-
corporates images with different characteristics, from piecewise smooth to highly
textured images with fine structures. Figure 1 shows our test bed comprised of
the celebrated ”Barbara”, ”Lena”, ”Boat” and ”Pepper” images all 512×512 in
size. For sake of illustration, the insets were corrupted with noise having standard
deviation of 10, 20 and 30 grey levels. Figure 2 shows the restoration results for
the Barbara and Pepper test cases with two different kernel sizes and noise level
of 30 std. The high quality of restorations in both of these disparate cases, the
piecewise smooth Pepper image and the fine textured Barbara, demonstrate the
high capability of the proposed approach. Despite the excessive noise level, the
denoised images are visually appealing. There are slight artifacts in the Barbara
result when restored with a small kernel size of 3 × 3. This effect is vanished
when the kernel is enlarged to 5 × 5, but yields a slightly lower PSNR. The
larger kernel size produces visually improved denoising in both cases and higher
PSNR for the Pepper image having a subtle texture. One can observe carefully
the restoration of the delicate texture pattern in Barbara image, shown in the

Fig. 1. The test data set prior to noise contamination. From left to right: Barbara,
Lena, Boat and Peppers.

1 The interested reader is referred to [1] for details in the derivation.
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PSNR 27.65 27.24

PSNR 28.23 29.23

Fig. 2. Image denoising results for Barbara (top) and Pepper (down) images. Left:
Image corrupted with 30 std Gaussian noise. Middle: Restored image with kernel size
3 × 3. Right: Restored image with kernel size 5 × 5. subfigures indicate PSNR values
in dB.

Fig. 3. Barbara zoomed in. Left: Original patch. Middle: Input image with 30 std noise.
Right: Restoration result with the proposed method, kernel size 3.

cropped patches in Figure 3. We further evaluate our method quantitatively by
the common PSNR measure:

PSNR = 20 log10

(
255√

Mean Square Error

)
. (15)
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For comparison we present results from 5 methods in the literature, comprised of
two popular and three recently published methods based on wavelet transforms.
The PSNR values of the restored images are listed in Table 1 2. From this table
it is clear that published algorithms [12,14,17] all substantially outperform the
TV and the hard-threshold (HT) methods, with the MVM presenting the best
results. The suggested Bayesian method shows comparable results and performs
superiorly under high noise levels.

Table 1. Comparison of performance for image denoising using different algorithms in
terms of PSNR. Methods: TV: Total Variation minimization in variational approach
[13], HT: Hard Threshold, BS: Bivariate Shrinkage [14], GSM: Gaussian Scale Mixtures
[12], MVM: Multivariate Statistical Model [17], Bayes.: Our Bayesian approach with
3 × 3 kernel size. Best results are in bold. Note: HT, GSM and MVM act in wavelet
transform domain.

Method Barbara Lena Boat Pepper

10 20 30 10 20 30 10 20 30 10 20 30

TV 30.28 26.54 24.60 33.00 30.26 28.35 32.30 29.23 27.36 32.24 29.84 28.05

HT 31.99 27.68 25.43 34.48 31.29 29.31 32.63 29.31 27.42 33.59 29.73 27.55

BS 32.73 28.73 26.51 34.51 31.38 29.54 32.62 29.30 27.48 32.95 29.21 27.01

GSM 33.11 29.18 27.02 34.85 31.65 29.82 33.02 29.62 27.78 33.16 29.50 27.40

MVM 33.25 29.40 27.23 34.95 31.83 29.97 33.01 29.75 27.84 33.20 29.47 27.32

Bayes. 32.70 29.67 27.65 34.35 31.52 29.71 32.90 29.71 27.98 33.37 31.11 28.23

The complexity of our method is dominated by the kernel size and the scheme
used for approaching the solution of the linear system (8-11). Considering the
Conjugate Gradient method used the complexity of our scheme is O(K ·n) when
K indicates the size of the kernel and n the image size.

4 Summary

We hereby present a Bayesian approach for image de-noising in the spatial do-
main. The proposed method is based on kernel estimation, while the kernel
weights are evaluated by regression using radial basis functions allowing a more
flexible data modeling. The kernel weights are imposed with a prior probabil-
ity distribution with individual hyper-parameters, moderating adaptively the
strength of the prior (regularization), in space. The model unknowns are then
evaluated efficiently through an iterative procedure. Finally, the intensity values

2 Results for HT, GSM and MVM correspond to orthonormal wavelet transform as
reported in [17].
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are restored by Bayesian inference over hypotheses obtained from neighboring
kernels.

The suggested method was illustrated on 4 popular test images contaminated
with white additive Gaussian noise. Comparison to several recently published
methods show comparative results, and introduces superior performance in the
presence of large noise levels. Another advantage of the proposed approach is
in the capability to explicitly incorporate the noise PDF in the model. It is
therefore able to cope with non-Gaussian noise distributions e.g, a Poissonian
PDF model obtained in SPECT medical images.

Finally, the proposed Bayesian approach is simple, generic, free of adjusting
parameters and can be used in other regression based applications.
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Abstract. A color image segmentation technique which exploits a novel
definition of rough fuzzy sets and the rough–fuzzy product operation is
presented. The segmentation is performed by partitioning each block in
multiple rough fuzzy sets that are used to build a lower and a upper
histogram in the HSV color space. For each bin of the lower and upper
histograms a measure, called τ index, is computed to find the best seg-
mentation of the image. Experimental results show that the proposed
method retains the structure of the color images leading to an effective
segmentation.

Keywords: Image segmentation, Color Image Histogram, Rough Sets,
Fuzzy Sets.

1 Introduction

Color image segmentation is one of the most challenging tasks in image process-
ing, being the basic pre-processing step of many computer vision and pattern
recognition problems.

Among the others, the most used approaches are represented by histogram
based techniques due to the fact they need no a–priori information about the
image. The task consists in finding clusters corresponding to regions of uni-
form colors, identified by peaks in the histogram. The task is complicated in
color images, being characterized by three dimensional scatterograms, that make
more difficult the search for peaks, either in the whole histogram or in each
color channel independently. Also, typically they do not take into account the
spatial correlation between adjacent pixels, while images usually show this
property.

The approach reported here bases its rationale on Granular Computing, based
on the concept of information granule, that is a set of similar objects that can be
considered as indistinguishable. Partition of an universe in granules gives a coarse
view of the universe where concepts, represented as subsets, can be approximated
by means of granules. In this framework, rough set theory can be regarded to as
a family of methodologies and techniques that make use of granules [8,9]. The
focus of rough set theory is on the ambiguity caused by limited discernibility of
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objects in the domain of discourse. Granules are formed as objects and are drawn
together by the limited discernibility among them. Granulation is of particular
interest when a problem involves incomplete, uncertain or vague information.
In such cases, precise solutions can be difficult to obtain and hence the use of
techniques based on granules can lead to a simplification of the problem at hand.

At the same time, multivalued logic can be applied to handle uncertainty and
vagueness in information system, the most famous of which is fuzzy sets theory
[16]. In this framework, uncertainty is modelled by means of functions that define
the degree of belonginess of an object to a given concept. Hence membership
functions of fuzzy sets enable efficient handling of overlapping classes.

Some researches already follow this approach. Cheng et al. [2] employed a
fuzzy homogeneity approach to extract homogeneous regions in a color image.
The proposed method introduces the concept of homogram built considering in-
tensity variation in pixel neighborhood. In [5] the concept of encrustation of the
histogram (histon), which is a contour plotted on the top of each primary color
histogram, is presented. In a rough-set theoretic sense, the histon represents the
upper approximation of the color regions, that is a collection of pixels possibly
belonging to the same region, while the histogram represents the lower approx-
imation. An histogram-based technique is employed on the histon to obtain the
final segmentation. Mushrif and Ray [6] presented a segmentation scheme, based
on the concept of histon [5], which employs the roughness index. Roughness is
large when the boundary contains a large number of elements, hence it will be
smaller in the boundary between two objects and larger in region with uniform
color.

The novelty of our approach resides on the hybrid notion of rough fuzzy sets
that comes from the combination of these two models of uncertainty (fuzzy and
rough) to exploit, at the same time, properties like coarseness, by handling rough
sets [8], and vagueness, by handling fuzzy sets [16]. In this framework, rough sets
embody the idea of indiscernibility between objects in a set, while fuzzy sets
model the ill-definition of the boundary of a sub class of this set. Marrying both
notions leads to consider, as instance, approximation of sets by means of simi-
larity relations or fuzzy partitions. The rough fuzzy synergy is hence adopted to
better represent the uncertainty in granular computation. Specifically, we present
a histogram based technique tat exploits a generalized definition of rough–fuzzy
sets, i.e. an hybridization of rough sets and fuzzy sets, and a particular operation
called rough–fuzzy product in the HSV color space.

2 Rough Fuzzy Color Histogram

Let us consider an image I defined over a set U = [0, ..., H − 1] × [0, ...W − 1]
of picture elements, i.e. I : u = (ux, uy) ∈ U → [h(u), s(u), v(u)]. We shall
introduce the Image Partition as
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Definition 1. Let us consider a grid, superimposed on the image, whose cells Yi

are of dimension w×w. Given a pixel u, whose coordinates are ux and uy, and
a cell Yi of the grid, whose coordinates of its upper left point are x(Yi) and y(Yi),
u belongs to Yi if x(Yi) ≤ ux ≤ x(Yi) + w − 1 and y(Yi) ≤ uy ≤ y(Yi) + w − 1.

The set of all Yi constitutes an Image Partition, Y, over I.

Different values of w yield different partitions Y of the same image. For instance,
given a partition Yi, other partitions can be obtained by a rigid translation in
the directions of 0o, 45o and 90o degrees of w−1 pixels, so that for each partition
a pixel belongs to a shifted version of the same cell Y i

j .
If we consider four cells, Y 1

j , Y 2
j , Y 3

j and Y 4
j belonging to four partitions Y1

Y2 Y3 Y4, then there exists a pixel u with coordinates (ux, uy) such that u
belongs to the intersection of Y 1

j , Y 2
j , Y 3

j and Y 4
j [11].

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j (1)

The image is firstly partitioned in non–overlapping k blocks Xh of dimension
m × m, such that m ≥ w, that is X = {X1, . . . , Xk} and k = H/m + K/m.
Considering each image block Xh, a pixel in the block can be characterized by
two values hinf(u) and hsup(u) computed, for each pixel u belonging to a block
Xh, as

hsup(u) = sup{h1
m(u), h2

m(u), h3
m(u), h4

m(u)}
hinf(u) = inf{h1

M (u), h2
M (u), h3

M (u), h4
M (u)}

where hi
m(u) i = 2, 3, 4 are obtained by translating h1

m(u) in the direction of 0,
45 and 90 degrees. For instance, for w = 2 and a generic j − th cell of the i− th
partition, we have:

hi
m(u) = inf{(ux + a, uy + b)|a, b = 0, 1}

hi
M (u) = sup{(ux + a, uy + b)|a, b = 0, 1}

Let us now consider the HSV color space represented by a cone and a segment
[θ, θ +Δθ−1] on the maximum circumference, where 0 ≤ θ ≤ 359 and [Δθmin ≤
Δθ ≤ Δθmax] is the segment dimension. This interval contains a certain amount
of colors. In particular, if we imagine to cut the HSV cone in wedges, each one
contains all the possible combination of saturation and value given a portion of
hue. Our goal is to describe each wedge using the blocks of the image, under the
assumption that blocks with similar colors will fall in the same wedge.

Definition 2. Each block Xh, of dimension m×m, is characterized by a min-
imum and a maximum hue value
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hm = min{hsup(u)|u ∈ Xh}
hM = max{hinf(u)|u ∈ Xh}

defining a hue Interval [hm, hM ] that can be:

1. totally contained into a wedge of dimension Δθ (i.e. θ ≤ hm ≤ hM < Δθ+θ),
2. partially contained into a wedge (i.e. θ ≤ hm or hM < Δθ + θ),
3. not contained at all.

Hence, we can describe the wedge by means of two sets of blocks.

Definition 3. The L–set is the set of blocks whose interval [hm, hM ] are totally
contained into the wedge. The U–set is the set of blocks whose [hm, hM ] are
partially contained into the wedge.

Now consider a wedge of dimension [θi, θi + Δθ − 1], i = 0, . . . , 359 moving on
the hue circle towards increasing hue values, starting from θ1 = 0. At each step
the wedge is shifted by an offset x, i.e. θi+1 = θi+ x, and the L–set and L–set
of the wedge are computed. This procedure, shown in Algorithm 1, yields two
histograms, the L–Histogram and the U–Histogram of the image.

Algorithm 1. Procedure to build L–Histogram and U–Histogram
1: for all θ by step x do
2: for all blocks Xh do
3: compute hm and hM

4: if θ ≤ hm ≤ hM ≤ θ + Δθ then
5: L–Histogram[θ] = L–Histogram[θ] +1
6: U–Histogram[θ] = U–Histogram[θ] +1
7: else if θ ≤ hm ≤ θ + Δθ OR θ ≤ hM ≤ θ + Δθ then
8: U–Histogram[θ] = U–Histogram[θ] +1
9: end if

10: end for
11: end for

Repeating the same procedure for each wedge dimension θmin ≤ θ ≤ θmax,
many histograms are produced according to the possible values of θ. Figure 1
and 2 depict respectively the L–Histogram and the U–Histogram of Figure 1.

It should be reminded that, if for a given pixel the saturation equals 0, the
hue component is undefined and the pixel is characterized only by the value
component, i.e. only by its gray level intensity. To overcome this problem, it
is possible to exclude all the pixels with a saturation value lower than a given
threshold ε and segment them separately (for instance employing a segmentation
algorithm for gray scale images).
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Fig. 1. Example image

(a) (b)

Fig. 2. a) L–Histogram and b) U–Histogram

3 Image Segmentation by Rough Fuzzy Color Histogram

The segmentation of a color image is performed in the HSV color space by
choosing the wedges that are better represented employing the blocks of the
image. The choice is guided by the accuracy of the wedge, i.e. the i-th wedge gets
an accuracy computed by means of the corresponding bin in the L–Histogram
and U–Histogram

αi =
L–Histogram(i)
U–Histogram(i)

(2)

Clearly, this can not be the only discriminant index to obtain a good segmenta-
tion. First of all due to the accuracy, as computed in eq. 2, that does not take
into account the number of blocks, and hence the number of pixels contained
into the wedge, but only their ratio. Moreover, using only the accuracy does not
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take into account saturation and value of each pixel. The first problem is tackled
by weighting the accuracy of each wedge by the fraction of pixels whose hue
value belongs to the wedge, i.e.

γi = 1− Nwedge(i)
Ntot(I)

(3)

where Nwedge(i) represents the number of pixels whose hue value belongs to the
wedge and Ntot(I) represents the number of pixels of the image I.

Provided that regions of uniform colors are searched into the image, we need
an index to measure the color uniformity of the pixels belonging to the the
wedge and then use this index to weight the accuracy. To this aim we propose to
employ a measure of the dispersion of the pixels falling into a wedge with respect
to saturation and value. A region characterized by uniform color will present a
narrow scatter, while a region characterized by non uniform colors will have a
sparse scatter. To compute the compactness of saturation and value into the i-th
wedge, we propose the following index

δi =
1

Nwedge(i)
×
√ ∑

x∈i−thwedge

(x− μi)T (x− μi) (4)

where x = [xsaturation, xvalue]. This index can be considered as the weighted
squared root of the track of the covariance matrix. The final index, τi, is com-
puted by composing αi, γi and δI indices (eqs. 2, 3 and 4)

τi = αi × (w1 × γi + w2 × δi) (5)

where w1 and w2, with w1 + w2 = 1, are parameters used to weight the fraction
of pixels falling into a wedge and the saturation–value dispersion, respectively.
A higher value for w1 will lead to wedges comprising few pixels characterized
by a low saturation–value dispersion, whilst a higher value for w2 will produce
wider wedges, with a larger number of pixels presenting a lower saturation–
value dispersion. The index τ , computed for all the wedges, is used to segment
the image. Firstly, the wedge with the highest τ value is selected as the region
better represented into the image. Next, all the wedges that intersect the first
one are removed to avoid overlapping regions. For instance, consider si the wedge
with the highest τ value corresponding to the hue segment qsi , qsi + qt− 1, then
all the wedges sj such that qsi ≤ qsj + q̃t − 1 < qsi + qt − 1, with q̃t varying
in [qtmin, qtmax], are removed. Next, the wedge with the highest τ value, among
those not removed in the previous step, is selected, and so on until no more
wedges are left.

4 Experimental Results

To assess the performance of the proposed method, we employed the Proba-
bilistic Rand Index (PRI) [15] that counts the fraction of pairs of pixels whose
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labellings are consistent between the computed segmentation and the ground
truth, averaging across multiple ground truth segmentations to account for scale
variation in human perception. For each image, the quality of the segmentation
is evaluated by comparing it with all the available segmentations of the same
image.

The performance of the proposed algorithm were tested on the 100 color test
images of “The Berkeley Segmentation Dataset” [4]. Threshold has been fixed
to ε = 0.2; all the pixels presenting a saturation value lower than ε have been
segmented by employing another threshold η = 0.5, i.e., pixels are labelled as
“white” if their value component is greater than η, as “black” otherwise. A larger
granule dimension allows to produce wedges able to enclose more similar hues
so to suppress small hue variations, while smaller granule dimension tends to
better differentiate between similar hues. A larger granule size can be useful
to segment images that show larger hue variance and hence obtain better PRI.
Parameters w1 and w2 can be used to obtain distinct segmentations by weight-
ing the importance of the number of pixels into the wedge with respect to the
saturation–value dispersion. Higher values of w1 mean that wedges enclosing few
pixels are privileged, while higher values of w2 privilege wedges characterized by
higher saturation–value dispersion.

Figure 3 shows an example of segmentation of two test images of the BSD.
Segmentation in Figure 3(a), obtained with parameters w1 = 0.6 w2 = 0.4

(a)

(b)

Fig. 3. Segmentation for images 113044 (a) and 118035 (b)
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and granule dimension w = 2, produces PRI = 0.774117. Segmentation in
Figure 3(b), obtained with parameters w1 = 0.7 w2 = 0.3 and granule dimension
w = 2, produces PRI = 0.870635.

Table 1 summarizes results obtained with different parameter configurations
in terms of mean PRI computed over the 100 color images adopted for testing
the algorithm. It turns out that best results are obtained using small granule
dimensions and giving importance to the number of pixels over the saturation–
value dispersion. Here we want to point out that, although this configuration
gives the best results on average, this does not imply that good results could not
be obtained for single images employing different values.

Table 1. Mean PRI values for the 100 test images of the BSD

Granule dimension w w1 = 0.8, w2 = 0.2 w1 = 0.6, w2 = 0.4 w1 = 0.5, w2 = 0.5

2 0.678028 0.663410 0.654179

4 0.661959 0.636016 0.624948

8 0.640885 0.621997 0.619233

16 0.623986 0.613345 0.609314

32 0.618413 0.601521 0.590546

5 Conclusions

Color image segmentation is of particular interest because the huge amount of
information held by colors can make the task very difficult to perform, although
it can give fundamental information about the image to be analyzed. In this
paper we have presented a segmentation technique, performed in the HSV color
space, that exploits peculiarities of rough–fuzzy sets and, in particular, a feature
extraction operation called rough–fuzzy product. The proposed method, tested
against a typical human hand made segmentation dataset, have shown good seg-
mentation capabilities although more research is needed to obtain good average
performance. Ongoing work is devoted to consider spatial relationship between
blocks to increase the performance of the algorithm.
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Abstract. We present two novel contributions to the problem of re-
gion classification in scenery/landscape images. The first is a model that
incorporates local cues with global layout cues, following the statisti-
cal characteristics recently suggested in [1]. The observation that back-
ground regions in scenery images tend to horizontally span the image
allows us to represent the contextual dependencies between background
region labels with a simple graphical model, on which exact inference
is possible. While background is traditionally classified using only local
color and textural features, we show that using new layout cues signif-
icantly improves background region classification. Our second contribu-
tion addresses the problem of correct results being considered as errors
in cases where the ground truth provides the structural class of a land
region (e.g., mountain), while the classifier provides its coverage class
(e.g., grass), or vice versa. We suggest an alternative labeling method
that, while trained using ground truth that describes each region with
one label, assigns both a structural and a coverage label for each land re-
gion in the validation set. By suggesting multiple labels, each describing
a different aspect of the region, the method provides more information
than that available in the ground truth.

Keywords: region annotation, multiple categorization, exact inference,
scenery/landcape, boundary shape, contextual scene understanding.

1 Introduction

The incorporation of context into object detection and region labeling has re-
cently come into the mainstream of computer vision (e.g., [2,3,4,5,6,7]). In these
methods the identity of an image region depends both on its local properties
and on the labels and appearance of the neighboring regions. To solve the region
labeling problem generally, approximation methods (e.g., loopy belief propaga-
tion) are required. In our work we focus on context based region annotation for
scenery images. It turns out that this more simple problem can be modeled by
a rather simple graphical model on which exact inference is possible.

We follow [1], where statistical properties of scenery images were analyzed.
It was observed that background regions in scenery images tend to horizontally
span the image, making it possible to define a one-dimensional top-bottom or-
der of the background regions. Moreover, it was observed that the label of a
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background region correlates with the shape of the upper part of its boundary.
It was shown that by using only those two layout properties, it is possible to
capture the general appearance variability of scenery images: those cues enabled
the generation of semantic sketches of scenes. However, [1] left an open question
about whether those cues can assist in region annotation. In the first part of
this work we answer this question; see Fig. 1(a). We suggest an exact inference
model for annotating background regions that combines layout cues with texture
and color cues. We show that this combination significantly improves classifica-
tion over methods that rely only on local color and texture, as each type of cue
contributes to a different dichotomy.

The second part of this paper considers a related but different problem. We
observe that results counted as errors are not always wrong. Often, regions are
associated with different labels which correspond to different aspects of them,
while annotators usually provide only one label corresponding to one of these
aspects. For instance, a mountain with trees may be classified by the ground
truth as mountain and classified by our algorithm as trees, or vice versa. That
is, a land region’s annotation can either describe its structure (mountain, plain,
valley) or the overlying land-cover (trees, grass, sand, rocks, etc.)

This relates to recent work on problems with large numbers of categories [8,9].
In order to get a more informative accuracy score, it was suggested that the cost
of misclassification be associated with the relative location of the true classifi-
cation and the estimated classification in the wordnet tree [10]. This solution
is good for foreground objects for which the categorization can be for different
semantic details (e.g., crow, bird or animal). However, we found this method
unsuitable for background categories, as the structural descriptors and the cov-
erage descriptors do not appear in close wordnet sub-trees. Another recent re-
lated work [11] suggests that data can be organized by several non-redundant
clustering solutions, each providing a different facet.

To support multiple categorization of land regions, we suggest an alternative
labeling method that, while trained using ground truth that describes each region
with one label, assigns two types of annotation for test data; see examples in
Fig. 3. The annotations in the training data allow us to generalize both the
appearance of land coverage categories (using the regions in the training set that
are labeled by their coverage) and to generalize the appearance of land structure
categories (learning from regions labeled by their structure). Given a new test
image, each of its land regions can now be classified by both characteristics.

Sec. 2 overviews background region classification cues. Sec. 3&4 discuss the
region classification algorithm and its results. Sec. 5&6 discuss the multiple la-
beling algorithm and its results. Sec. 7 concludes.

2 Cues for Background Region Classification

2.1 Color and Texture

The most natural choice for classifying a background region is by its color and
textural attributes. In [12], such attributes were used for classifying patches
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Fig. 1. (a) Demonstrating the contribution of ‘layout’: given this general image layout
(without the texture), we can easily decide between the two suggested annotations.
(b) The image is divided into n horizontal background regions, R = (R1, ..., Rn). Each
region Ri = (Hi, Ti, Si, Oi) is described by its average height Hi, its texture&color
descriptor Ti, by the curve separating it from the region above it, Si, and by its relative
location (order), Oi = i. (c) the HMM (Hidden Markov Model) representing the ORC
model. The regions’ labels, l1, ..., ln, are the hidden variables/states. The observed
variables are H1, ..., Hn, T1, ..., Tn, and S2, ..., Sn.

of images, as a first step in a method for scene categorization. We adapt the
description suggested there and describe each region by: 1. Color histograms: a
histogram for each of the components of the HSV color representation (36, 32,
16 bins for H, S, and V, respectively). 2. Edge direction histograms: we apply a
Canny edge detector and collect the gradient directions in the edge locations (72
bins). 3. GLCM (Gray Level Co-occurrence Matrix [13]): the region is quantized
to 32 gray levels. A GLCM is computed for 4 offsets (-1,1), (0,1), (1,1) and
(1,0). For each, we compute the contrast, energy, entropy, homogeneity, inverse
difference moment, and the correlation, for a total of 24 additional components.

2.2 Relative Location Statistics

In [1] it was shown that types of background regions tend to have typical relative
locations. For example, a sand region will usually appear below a sea region,
mountains are usually higher in the image than fields, and of course the sky
is usually above all. These top-bottom relations were modeled by a Markov
network. Let {L1, ..., Lm} be the possible background labels. The network has
m + 2 nodes. The first m are associated with the m labels. In addition, there is
a starting status denoted ‘top’ and a sink status denoted ‘bottom’. M(Li, Lj)
is the probability that a region labeled Li appears above a region labeled Lj in
an image. M(‘top’, Li) and M(Li, ‘bottom’) are the probabilities that a region
with label Li is at the top/bottom of an image, respectively. The transition
probabilities are estimated from the training image set 1.

1 We specify the top-bottom order by the height of the highest pixel in each region.
Therefore, the background regions do not always have to horizontally span the image.
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2.3 Boundary Shape Characteristics

In [1], the characteristics of a contour separating two background regions were
shown to correlate with the lower region’s identity. The boundary on top of
a sea, grass or field region is usually smooth and horizontal, resembling a DC
signal. The boundary on top of a region of trees or plants can be considered as
a high frequency 1D signal. The boundary on top of a mountain region usually
resembles 1D signals of rather low frequency and high amplitude.

Following this observation, it was suggested that a signal representation be
adopted. For each background labeled region, the upper part of its contour is
extracted and cut to chunks of 64-pixel length. Each such chunk is actually a
descriptor vector of length 64. In the model described in Sec. 3 we use these
descriptor vectors as cues for region annotation, and use an SVM that provides
probability estimates [14]. Let Si describe the boundary above a region indexed
i with identity l ∈ {L1, ..., Lm}. Si is cut to Ki chunks, Si1 , ..., SiKi

. Ki = � |Si|
64 �.

When the region belongs to a training image, the Ki chunks, each labeled l,
are members of the training set. When the region is being classified, the SVM
classifier returns a probability estimate for each of the Ki chunks, p(l = Lj |Sik

),
k = 1, ..., Ki, j = 1, ..., m. The class probability for the whole signal (boundary)
is then p(l = Lj|Si) = 1

z1

∏Ki

k=1 p(l = Lj|Sik
), where z1 is a normalizing factor.

3 Background Region Classification: The ORC Algorithm

In [1], it was shown that it is possible to capture the general appearance variabil-
ity of scenery images using only the cues described in sections 2.2&2.3. Those
cues enabled the generation of semantic sketches of scenes. However, [1] left an
open question about whether those cues can assist in region annotation. In this
section we answer this question by proposing a mechanism for combining all the
cues described in Sec. 2: the ORC (Ordered Region Classification) algorithm.

Let R = (R1, ..., Rn) be n background regions in an image I, ordered by their
top-bottom location. Each Ri = (Hi, Si, Ti, Oi) is characterized by its size, Hi

2,
its color&texture, Ti, the ‘1D signal’ Si describing the boundary separating it
from Ri−1 (S1 = ∅), and by its order in the image, Oi = i; see Fig. 1(b).

Taking a contextual approach, the identity li of region Ri depends on its
appearance, its location, and on the appearance and relative location of the other
image regions. Therefore, the probability for li to be Lj is a marginalization over
all joint assignments (l1, ..., ln) in which li = Lj:

pORC(i, Lj)=p(li =Lj |R)=
∑

(k1,...ki−1,ki+1,...,kn)

∈{1,...,m}n−1

p(l1 = Lk1 , ..., li = Lj , ..., ln = Lkn |R) .

We use the Markovian property described in Sec. 2.2, i.e., the identity of region
Ri directly depends only on the identity of region Ri−1. Also, we ignore the
2 Since we are discussing horizontal patches that usually span the image from side to

side, their size is described only by their average height.
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direct dependency between the color, texture, and height of the different regions
inside an image, and between the appearance of separating boundaries inside an
image. The probability for a joint assignment is then

p(l1 = Lk1 , ..., ln = Lkn |R) = p(l1 = Lk1 |R1)
n∏

i=2

p(li = Lki |li−1 = Lki−1 , Ri) .

(1)
Assuming Ti, Si, Hi, and Oi are independent, and that Ti, Si, Hi are independent
in Ri−1, every term in the product can be expressed as

p(li = Lki |li−1 = Lki−1 , Ri) =
pTipSipHip(li = Lki |li−1 = Lki−1 , Oi)

p(Ti, Si, Hi)
= (2)

p(li = Lki |Ti)p(li = Lki |Si)pHip(li = Lki |li−1 = Lki−1 , Oi)

z2[p(li = Lki)]
2

,

where pTi = p(Ti|li = Lki), pSi = p(Si|li = Lki), pHi = p(Hi|li = Lki) and z2 =
p(Ti,Si,Hi)
p(Ti)p(Si)

. Since z2 is not a function of the labels, we can infer it by normalization.
Given a label, the distribution p(Hi|li = Lki) is modeled by a simple Gaussian

distribution (as suggested in [1]). For modeling the dependency of the label in
the color and texture, p(li = Lki |Ti), and in the boundary shape, p(li = Lki |Si), we
use an extension of SVM that provides probability estimates [14] (the SVMs used
for color&texture and for boundary shapes are separate). The prior probability
p(li = Lki) is computed from the occurrences of labels in the training set. Finally,

p(li = Lki |li−1 = Lki−1 , Oi) =

⎧⎪⎨⎪⎩
M(‘top’, li) i = 1

M(li−1, li) 1 < i < n

M(li−1, li)M(li, ‘bottom’) i = n ,

(3)

where M is the transition matrix described in Sec. 2.2.
Eqs. (1)-(3) are equivalent to describing the problem of estimating the class

probabilities for the region labels as the problem of calculating the (multi-class)
marginals in the HMM (Hidden Markov Model) in Fig. 1(c). We estimate the
class probabilities by the sum product algorithm [15]. ORC classifies each land
region by ORC(i) = argmaxLj

pORC(i, Lj).

4 Experiments: ORC

We experiment on the coast, mountain, and open country datasets from La-
belme [16] presented in [17]. This provides a set of 1144 256X256 images of
natural scenery. With the Labelme toolbox, a Web user marks polygons in the
image and freely provides a textual annotation for each. This freedom encour-
ages the use of synonyms and spelling mistakes. Following [16], synonyms were
grouped together and spelling mistakes were corrected.

In this work we do not deal with automatic segmentations and rely on manual
ones provided with the dataset. We select all regions whose annotation describes
background. This gives us 4979 regions annotated by 19 background labels: sky
(1120), mountain (1489), sea (401), trees (622), field (366), river (150), sand
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Table 1. Left: Accuracy of ORC using different combinations of cues. A significant
improvement from 61.5% to 68.2% is achieved by utilizing the new cues. Right: Accu-
racy of M-ORC demonstrating its ability to recognize separately and simultaneously
structural categories and coverage categories of land regions.

Cue Accuracy

Color&Texture 0.615

Relative Location 0.503

Boundary Shape 0.452

Relative Loc. + Boundary Shape 0.573

Color&Texture + Relative Loc. 0.676

Color&Texture + Boundary Shape 0.641

All (ORC) 0.682

cue Acc. Sky-Water-Land Acc. Land Structure Acc. Land Cover

Color&Texture 0.865 0.849 0.570

Relative Location 0.862 0.750 0.468

Boundary Shape 0.866 0.836 0.517

Relative Loc. + Boundary Shape 0.881 0.835 0.530

Color&Texture + Relative Loc. 0.905 0.860 0.612

Color&Texture + Boundary Shape 0.887 0.862 0.567

All (M-ORC) 0.909 0.876 0.605

(182), ground (94), grass (36), land (41), rocks (201), plants (143), snow (50),
plateau (28), valley (20), bank (20), lake (9), beach (3), and cliff (4).

For extracting the color&textural features describing a background region, we
first compute a mask that includes all its parts that do not intersect with other
annotated regions (e.g., foreground objects that occlude part of it). We compute
the descriptors described in Sec. 2.1 over the pixels inside this mask.

To compute the probability estimates from color&textural features and bound-
ary appearance, we use SVM with an RBF kernel (using LIBSVM [18]). To test
ORC we perform a 5-fold cross-validation at the image level. Each iteration
starts with a parameter selection stage (c and γ; see [18]) in which the training
set is split into a training and validation test (also at image level).

We found that the height cue is noninformative and report results without
using it. Fig. 2 demonstrates ORC results using each cue alone and all cues
together. We can clearly see that the incorporation of new cues gives better
results than using only color&texture. For instance, colored sky that is misclas-
sified using only color&textural features is classified correctly using the relative
location cue. Sea and mountain regions that are sometimes misclassified us-
ing color&texture, are correctly classified using the boundary shape cue. In the
bottommost example, a narrow sea region that is missed in the ground truth is
recognized. A region is sometimes misclassified when each cue is used separately,
but classified correctly when all cues act as a committee. The total accuracies
are reported in Table 1(a). A significant improvement from 61.5% to 68.2% is
achieved by utilizing the new cues. The color&texture cues are better for classi-
fying trees, field, rocks, plants, and snow. The new cues alone give more accurate
results for sky, mountain, sea, and sand. The performance for the other classes
is low for all cues due to their low occurrences in the dataset.

5 Multiple Categorization: The M-ORC Algorithm

In the second part of this work we examine the causes for errors. It turns out that
results counted as errors are not always wrong. Some ambiguities are a matter
of synonyms. A mountain is sometimes annotated as a cliff and vice versa. Other
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Fig. 2. Demonstrating region classification results using each cue alone and all cues
together, using the ORC algorithm
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ambiguities, however, are created by annotations that refer to different aspects
of the labeled object. In particular, it seems that land regions are sometimes
annotated with a description of the land structure (mountain, plain, valley) and
sometimes annotated with a description of the overlying coverage (trees, grass,
sand, rocks, etc.). For instance, a mountain with trees may be classified by the
ground truth as mountain and classified by ORC as trees, or vice versa. A snowy
plain can be correctly labeled both as ‘snow’ and as ‘field’ or ‘plateau’.

These observations lead us to suggest an alternative labeling method, denoted
M-ORC (Multiple Categorization Ordered Region Classifier). With this method,
the correct labeling for land regions is multi-valued. Each region is first classified
into one of the three categories SKY, WATER or LAND. Each region classified
as LAND is further classified by a structural category and a coverage category.

More formally, M-ORC(i) = {ci1 , ci2 , ci3}, where ci1 ∈ {‘SKY’, ‘WATER’, ‘LAND’},
ci2 ∈ Cstruct = {‘MOUNTAIN’, ‘PLAIN’, ‘VALLEY’, ‘BANK’, ∅}, and ci3 ∈ Ccover, where
Ccover = {‘SAND’, ‘GROUND’, ‘ROCKS’, ‘PLANTS’, ‘TREES’, ‘GRASS’, ‘SNOW’, ∅}.
When ci1 ∈ {‘SKY’, ‘WATER’}, ci2 , ci3 = ∅. To assign ci1 a score rmain is defined:
rmain(i, ‘SKY’) = pORC(i, ‘sky’), rmain(i, ‘WATER’) = pORC(i, ‘sea’)+pORC(i, ‘lake’)+
pORC(i, ‘river’), and rmain(i, ‘LAND’) = 1− rmain(i, ‘SKY’)− rmain(i, ‘WATER’). The
selection of ci1 is according to the maximal rmain. For regions for which ci1 =
’LAND’, ci2 and ci3 are set. A score rstruct is defined for c ∈ Cstruct: rstruct(i, c) =∑

l∈Gc
pORC(i, l), where Gc = {‘mountain’, ‘cliff’} for c = ‘MOUNTAIN’, Gc =

{‘land’, ‘field’, ‘plateau’} for c = ‘PLAIN’, Gc = {‘valley’} for c = ‘VALLEY’, and
Gc = {‘bank’, ‘beach’} for c = ‘BANK’. The selection of ci2 is according to the
maximal rstruct. For c ∈ Ccover, rcover(i, c) = pORC(i, lc), where lc = lowercase(c).
The selection of ci3 is according to the maximal rcover.

6 Experiments: M-ORC

Each land region training example is provided with ground-truth (human label-
ing) of one type of label, structural or coverage. Nevertheless, by the categoriza-
tion scheme suggested here, each test region, if recognized as a land region, is
assigned with both a coverage and a structural label, as can be seen in Fig. 3.

When evaluating the categorization accuracy, we can only check if the avail-
able label is correct. Out of the total of 4979 regions, 1120 are annotated sky,
560 are annotated by a word describing water, and 3299 by words describing
land. Out of the 3299 land regions, 1328 are described by their cover and 1971
by their structure. For land regions that are hand labeled with a structural label,
we check whether it matches the structural label assigned by M-ORC, and for
land regions hand labeled with a coverage label, we check whether it matches
the coverage label assigned by M-ORC; see Table 1(b). Again we see the advan-
tage of incorporating the new cues in comparison to using color&texture alone.
The accuracy for the SKY-WATER-LAND categorization grows from 86% to
91%. The accuracy for classifying land structure grows from 85% to 88%, and
the accuracy for classifying land coverage grows from 57% to 60%. The lower
accuracy of the latter is probably due to the larger number of cover categories.
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Fig. 3. Demonstrating M-ORC results: land regions are assigned with both a coverage
and a structural label, while the ground-truth provides only one label for each region

7 Discussion

This paper presents: 1. A new model for contextual background region classifica-
tion that uses statistical characteristics of scenery images and suggests an exact
inference solution. 2. A novel method for categorizing land regions separately by
their structural and their coverage categories, while learning from a training set
in which each region is annotated only by one label type.

Note that an alternative solution for this scheme would be to use mixed class
labels covering all combinations (e.g., ”tree covered mountain”) . However, this
will lead to a quadratic number of classes, which implies lower performance and
much greater efforts to label the training set.

One may argue that the images dealt with here are rather simple, and that
modeling more complex images (street scenes, indoor scenes) is a more appropri-
ate challenge. We agree. However, while computer vision has taken major steps
forward in object detection and recognition also in complex scenes (e.g., vehicle
and pedestrian detection), computer vision still has a long way to go before it can
provide full interpretation and understanding of scenes. Our focus on scenery/
landscape images can be considered a step backwards to deal with the tasks that
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occupied the human vision system in the early stages of its evolution. Only after
the visual system was able to cope with such scenery did it gradually evolve to
cope with more complex scenes. Nevertheless, it is of course desirable to extend
the models suggested here to more complex image classes and objects.

In this work we used pre-segmented images. In future work we intend to check
our model’s stability given automatic segmentation results, and to investigate
the usability of the layout cues for the task of semantic segmentation.
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Abstract. Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE-MRI) could be helpful in screening high-risk women and in staging
newly diagnosed breast cancer patients. Selection of suspicious regions of
interest (ROIs) is a critical pre-processing step in DCE-MRI data evalu-
ation. The aim of this work is to develop and evaluate a method for au-
tomatic selection of suspicious ROIs for breast DCE-MRI. The proposed
algorithm includes three steps: (i) breast mask segmentation via inten-
sity threshold estimation; (ii) morphological operations for hole-filling
and leakage removal; (iii) suspicious ROIs extraction. The proposed ap-
proach has been evaluated, using adequate metrics, with respect to man-
ual ROI selection performed, on ten patients, by an expert radiologist.

Keywords: DCE-MRI, Breast, ROI selection, segmentation.

1 Introduction

Breast cancer is the most common cancer type among women in the Western
world. It is the second leading cause of cancer death in women today (after lung
cancer) and is estimated to cause 15 % of cancer deaths [1].

The currently widespread screening method is RX mammography [2]; how-
ever, Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)
has demonstrated a potential in screening of high-risk women, in staging newly
diagnosed breast cancer patients and in assessing therapy effects [1] thanks to its
minimal invasiveness and to the possibility to visualize functional information
not available with conventional imaging.

Breast DCE-MRI examination involves the imaging of the breast before and
after the injection of a contrast agent (a commonly used tracer is Gd-DTPA,
administered intravenously). DCE-MRI data consist in one pre-contrast series
of T1-weighted images (images with greater signal intensity from fat-containing
tissues and where most of the contrast between tissues is due to differences in
the Spin-lattice relaxation time known as T1 value [3]) spanning both breasts,
followed by a fixed number of post-contrast series.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 48–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Highly vascularised regions, such as tumors, exhibit typical patterns of sig-
nal enhancement vs. time as described in [4]: typically, a quick tracer uptake
(III,IV,V), is followed by a plateau (IV) or washout (V) (Fig.1); normal or be-
nign tissues are characterised by either no enhancement (I) (especially in pre-
dominantly adipose regions) or slower enhancement with delayed washout (II).

By analyzing signal intensity-time curves, it is possible to characterize each
voxel and detect abnormalities within the breast [5].

Fig. 1. Types of dynamic signal enhancement curves

Manual selection of suspicious regions of interest (ROIs), which is the critical
first step in lesion detection and evaluation, is operator-dependent and time
consuming. Moreover, given the vast quantity and multidimensionality of data
to be analysed in a DCE MRI data set, the possibility exists that diagnostically
significant regions of enhancement may be overlooked [6,7].

Therefore, lesion detection for breast DCE-MRI is a difficult task that can be
supported by automatic procedures for identification of suspicious ROIs.

For example, while the main objective of Tzacheva et al. [8] was classification
of malignant breast lesions, they used a very simple ROI selection procedure
based only on high signal intensity but they did not specify how the correspond-
ing threshold has been chosen; moreover in their study only static features were
used without taking advantage of the whole dynamic information.

As another example, Lucht et al. [9] used pharmacokinetic modelling to pro-
duce parametric maps which were used for manual ROI selection; however, the
computation of tracer kinetic parameters is still a lengthy task when performed
on entire images.
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Gal et al. [7] proposed a region growing approach based both on original
image intensity values and fitted pharmacokinetic parameters. This approach
involves the automatic identification of a seed voxel. Their results indicate a
high sensitivity. However, ROI selection using kinetic parameters only (e.g. via
thresholding) is an improper approach because tumor heterogeneity, which has
been shown to be an important factor to be accounted for, could be missed.

From previous considerations, it emerges that an optimal automatic algo-
rithm for selection of suspicious ROIs should have the following characteristics:
it should take advantage of the whole dynamic information (not only static im-
ages), it should not miss tumor heterogenity and it should be fast enough to be
applied as a first step to more sophisticated classification procedures.

The aim of this work is to propose an automatic method for suspicious ROI
selection within the breast using dynamic-derived information from DCE-MRI
data.

Our approach is different from the previous ones because it does not involve
the lengthy computation of pharmacokinetic parameters but at the same time it
exploits the whole dynamic information contained in the time-intensity curves
by means of simple dynamic-derived characteristics.

In this study we evaluated the performances of the proposed method using
the results of manual segmentation (gold standard) performed by an expert ra-
diologists on ten histologically proven breast lesions (5 benign and 5 malignant).
The results of the proposed method were compared to the gold standard using
opportune metrics of segmentation accuracy.

The paper is organized as follows. In Section 2 we describe the characteristics
of recruited patients, the breast DCE-MRI data acquisition protocol and the
proposed automatic suspicious ROI selection algorithm. The obtained results
are presented in Section 3 and discussed in Section 4, where we also draw some
conclusions.

2 Materials and Methods

2.1 Patient Selection

Ten women (average age 40 years) with benign or malignant lesions histopatho-
logically proven were enrolled (Table 1). Five cases were malignant (2 ductal
carcinoma in situ, DCIS; 2 invasive ductal carcinoma, IDC; 1 invasive lobular
carcinoma, ILC) and five cases were benign (4 fibroadenomata, 1 atypical ductal
hyperplasia).

2.2 Data Acquisition

The patients underwent imaging with a 1.5 T scanner (Magnetom Symphony,
Siemens Medical System, Erlangen, Germany) equipped with a phased-array
body coil. DCE T1-weighted FLASH 3-D coronal images were acquired (TR/TE:
9.8/4.76 ms; flip angle: 25 degrees; field of view 330x247 mmxmm; matrix:
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Table 1. Patients characteristics

Patient ID Age Pathology Cancer Type

1 37 Malignant IDC
2 39 Benign Fibroadenomata
3 47 Malignant ILC
4 67 Malignant DCIS
5 27 Malignant DCIS
6 37 Benign Fibroadenomata
7 41 Benign Fibroadenomata
8 36 Benign ADH
9 33 Benign Fibroadenomata
10 40 Malignant IDC

256x128; thickness: 2 mm; gap: 0; acquisition time: 56 s; 80 slices spanning entire
breast volume). One series was acquired before and 9 series after intra-venous
injection of 2 ml/kg body weight of a positive paramagnetic contrast medium
(Gd-DOTA, Dotarem, Guerbet, Roissy CdG Cedex, France). Automatic injec-
tion system was used (Spectris Solaris EP MR, MEDRAD, Inc.,Indianola, PA)
and injection flow rate was set to 2 ml/s followed by a flush of 10 ml saline
solution at the same rate.

2.3 Manual Segmentation

The manual segmentation was performed by an expert radiologist on the fat-
suppressed image obtained subtracting the basal pre-contrast image from the
5th post-contrast image. Per each patient all the slices including the lesion have
been used. The segmentation was performed by means of the OsiriX v.3.8.1 3
software 3.

2.4 ROI Selection

The proposed algorithm includes three steps.
The first step involves Breast Mask (BM) extraction by means of automatic

intensity threshold estimation (Otsu Thresholding) [10] on the parametric map
obtained considering the sum of intensity differences (SOD) calculated pixel by
pixel. In fact, this parameter describes the dynamic information of the whole
curve and reflects the history of contrast agent enhancement with time [11]:

SODp = Prep +
T∑

i=1

|Postp(i)− Postp(i− 1)| (1)

where SODp is the SOD for the p pixel; Prep is the pre-contrast intensity;
Postp(i) is i-th post-contrast scan and T is the total number of scans.

The second step includes hole-filling and leakage removal by means of mor-
phological operators: ‘closing’ is required to fill the holes on the boundaries of
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breast mask; ‘filling’ is required to fill the holes within the breasts; ‘erosion’ is
required to reduce the dilation obtained by the closing operation [12].

The third step includes suspicious ROIs extraction. The dynamical features
of each pixel are analysed. A pixel is assigned to suspicious ROI if it satisfies
two conditions: the maximum of its normalized time-intensity curve (as Figure
2 shows) should be grater than 0.3 and the maximum signal intensity should be
reached before the end of the scan time. The first condition assures that the pixels
within the ROI have a significant contrast agent uptake (thus excluding type I
and type II curves) and the second condition is required for the time-intensity
pattern to be of type IV or V (thus excluding type III curves) [13,14,15].

The choice of the threshold 0.3 was based on the findings by [16]: in fact, in
their study lesions with TIC enhancement less than 50% above the baseline were
considered non-tumoral; they also noticed that lowering the threshold to 40%
improved the accuracy of diagnosis. We proposed a threshold of 30% in order to
reduce the number of false negatives.

All procedures were implemented in Matlab R2008a using Image toolbox.
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Fig. 2. Time Intensity Curve vs Normalized Time Intensity Curve: an example of a
time intensity curve was reported on the left, while an example of a normalized time
intensity curve with respect to the maximum signal intensity was reported on the right

2.5 Evaluation

According to the approach proposed by [17] the accuracy of a segmentation
method can be evaluated calculating the following quantities (BM is the Breast
Mask): the Overlap (O) and the Union (U) between the ground truth Sm and the
automatic segmentation Sc; the true positive fraction (TPF); the false negative
fraction (FNF); the true negative fraction (TNF); the false positive fraction
(FPF); the accuracy (ACC):
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O = Sm

⋂
Sc

U = Sm

⋃
Sc

TPF =
O

Sm

TNF =
BM − U

BM − Sm

FNF =
Sm − Sc

Sm
= 1− TPF

FPF =
Sm −O

BM − Sm
= 1− TNF

ACC =
TPF + TNF

TPF + TNF + FPF + FNF

It is clear that only two measures are independent and are required to quantify
the accuracy of the method.

3 Experimental Results

Figure 3 shows the result of a manual ROI lesion selection onto a fat-suppressed
image.

Figure 4 (a) shows the results of the first step, Breast mask selection after
Otsu thresholding on SOD feature. Figure 4 (b) shows the breast mask after
morphological operators (closing, filling and erosion). Figure 4 (c) shows the
result of automatic suspicious ROI selection.

Table 2 reports the results of the evaluation study. Per each patient the TPF,
TNF and ACC have been reported.

Fig. 3. Manual selection of suspicious ROI
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(a)

(b)

(c)

Fig. 4. Results of automatic ROI selection: (a) breast mask selection via Otsu thresh-
olding on SOD; (b) breast mask after morphological operators (closing, filling and
erosion); (c) automatic suspicious ROI selection
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Table 2. ROI selection results

Patient ID TPF TNF ACC [%]

1 0.887 0.999 93.8
2 0.799 0.999 90.0
3 0.750 0.999 87.7
4 0.670 0.999 83.0
5 0.750 0.999 87.6
6 0.580 0.999 78.8
7 0.750 0.999 87.0
8 0.827 0.999 90.9
9 0.730 0.999 86.9
10 0.879 0.990 93.0

Average 0.762 0.998 87.9

4 Discussion and Conclusions

In this study we have proposed an algorithm for selection of suspicious ROIs
on breast DCE-MRI data. The proposed algorithm is based on dynamic-derived
features. The performances of the proposed method have been evaluated with
respect to manual selection of an expert radiologist on a dataset of ten breast
lesions.

It is worth noting that previous studies [18,19,20] have also performed the
breast DCE-MRI segmentation on restricted population (from thirteen to four
patients) because of the difficulty to enroll patients with the same data acquisi-
tion protocol and the absence of a public database.

Our results indicate that the TPF of our automatic selection varied in the
range 0.580 to 0.887 (average 0.762) and then the accuracy of authomatic sus-
picious ROI selection increases when invasive lobular o ductal cancer are con-
sidered. In fact, in those cases the lesion is larger with a greater contrast agent
uptake: this determines a lower number of misclassified pixels (suspicious or not
suspicious). On the contrary, the accuracy decreases when ductal carcinoma in
situ (because of their size) and benign lesion are considered (because of their
lower contrast agent uptake).

Selection of suspicious ROIs is to be considered as a preliminary step in tu-
mour evaluation before more sophisticated algorithms for tissue malignancy clas-
sification. Our preliminary results show that selection of suspicious ROIs in the
breast is feasible using a simple and fast algorithm based on the whole dynamic
information contained in DCE-MRI. While the fraction of false positives is al-
most zero, further investigation is required in order to reduce the number of lost
pixels potentially suspicious: this could be accomplished, for example, introduc-
ing the analysis of non-dynamic images. In the future, our preliminary study
will be extended on a larger number of patients and manual segmentation will
be done by multiple readers.
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Abstract. In this paper, we propose an approach based on the level
set method for segmenting SAR (Synthetic Aperture Radar) images. In
particular, the segmentation process presented consists in the evolution
of an initial curve, including the interested region, until it reaches the
boundary of the area to be extracted. The procedure proposed allows
to obtain the same result of segmentation independently of the initial
position of the curve. The results are shown on both synthetic and real
images. The analyzed images are SAR PRI (Precise Images), acquired
during the mission ERS2.

Keywords: Level set, Image segmentation, SAR, Speckle noise.

1 Introduction

Image segmentation plays a fundamental role in the SAR image interpretation.
The segmentation of SAR images is usually recognized as a complex problem,
because of multiplicative noise, called speckle, which produces grainy images.
Recently, a number of methods based on curve evolution have been proposed
for segmentation of SAR images. In this paper we present a procedure based on
the evolution of curves, described by the level set method, to extract distinct
regions from SAR images. This method, proposed by Osher and Sethian [1,2,3],
is based on the identification of an area of interest as the zero level set of an
implicit function that evolves according to a PDE (partial differential equation)
model with an appropriate speed function.

SAR images present advantages and disadvantages; the acquired images pro-
vide information under varied weather conditions, during night as well as day.
On the other hand SAR images present a granular effect due to the presence of
the speckle noise.

The segmentation methods based on edge detection filters, often show edges
which may not form a set of closed curves surrounding connected regions. The
traditional techniques of histogram thresholding and region-based need a pre-
processing based on speckle reduction. Moreover, the region-growing techniques
have the limit of depending on the selection of the starting points.

The segmentation process proposed starts from an initial curve (zero level set)
defined on the image that evolves until it stops at the contour of the interest ob-
ject. The evolution of the initial curve is determined by a speed function, which
is a fundamental choice to achieve a good segmentation.
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In this paper two different speed functions are introduced and their results
compared with a series of tests on synthetic SAR images. In particular a first
approach developed is based on the assumption that each region to segment
through level set is modeled by a Gamma distribution. In this case an expression
of propagation speed of the front is obtained by computing intensity averages of
the regions; the method does not need to reduce speckle noise [5].

In the second approach developed the speed function is based on the compu-
tation of image gradient and takes into account the problem of filtering speckle
noise in the image, which was faced with the application of the SRAD (Speckle
Reducing Anisotropic Diffusion) technique to SAR image [6] [7] [8].

Finally we propose a combined speed, based on the contributes of the pre-
vious speeds functions. In this case the proposed procedure has the important
peculiarity to extract the same contour from an image also starting from differ-
ent initial contours. Our approach is validated and compared using a series of
tests on synthetic SAR images. These tests demonstrate our method allows to
obtain the same result of segmentation independently of the initial position of
the curve.

The SAR PRI image here segmented has been acquired during ERS2 mission.
ERS2 SAR system is capable of 25 m. resolution from an altitude of 800 km, at
radar wavelength of 5.7 cm.

The paper is organized as follows. In Section 2, the level set method is briefly
described. In Section 3, speed computation related to level set method and noise
reducing are presented. In Section 4 experimental results and applications to
SAR image are shown. Some conclusions are drawn in Section 5.

2 Level Set Approach

It should be mentioned that the segmentation through the level set method
has become very popular over the last decades. In particular, this methodology
describes the evolution of an initial curve, including the interested region, until
it reaches the boundary of the area to be extracted.

Let I : Ω → �n be the intensity image function where Ω ⊂ �2.
The goal of image segmentation is to partition Ω, moving from image I, in

order to extract disjoint regions covering Ω.
The boundary of the region of interest may be considered as a curve belonging

to a family in which the time evolution is described by the following level set
equation

∂Φ(x(t))
∂t

+ F (x(t))|∇Φ(x(t))| = 0 (1)

where F (x, t), representing the curve speed in the normal direction, is related to
the image features. The main advantages of using the level set is that complex
shaped regions can be detected and handled implicitly. The initial curve (zero
level set) evolves until it stops at the contour of the interest object.
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For the numerical approximation of the level set equation in a domain Ω ⊂ �2

we introduce the computational domain Ω∗ obtained by considering a uniform
partition of Ω in (N −1)× (M −1) disjoint rectangles Ωij with edges Δx = Δy,
usually in an image Δx = Δy = 1. Let Pi,j ≡ P (xi, yj) i = 1, ..., N ; j = 1, ..., M
a point in Ω∗ and φn

i,j the value of the function φ(x(t)) at Pi,j at time tn. Let
v(x(t)) be the speed function: the algorithm starts by initializing φ(x(t)) as a
signed distance function

φ(x(0)) = ±d

where
d(x̄) = min

x̄γ∈γ
|x̄− x̄γ |.

Now, known the value of φn
i,j , the value φn+1

i,j is computed by a 2-order ENO
scheme with the TVD (Total Variation Diminishing) Runge Kutta scheme for
the time integration.

We underline that the definition of φ(x(t)) as a signed distance function is
crucial. In fact, during the evolution the level set function does not remain a
signed distance function; so that it is necessary to re-initialize the algorithm at
regular intervals in order to limit numerical dissipation. Moreover the choice of
speed function is a fundamental task for this segmentation approach.

3 Combined Speed

As mentioned above, the level set method starts from the definition of an initial
curve in the domain of the image. In our case, the initial curve on the SAR images
is placed in the background zone, so that it surrounds the object of interest. The
evolution of the initial curve is determined by a speed function, of fundamental
importance to achieve a good segmentation.

In this section we present an combined speed obtained by the contributes of
the two speed functions, here introduced and compared. The first, called average-
based speed, is a function based on modeling the intensity of image by a Gamma
distribution. The second, called gradient-based speed, is a function based on the
computation of image gradient.

In this work the goal of the segmentation process is to extract two types of
regions Ri i ∈ {1, 2}) representing objects and background.

Let be I(x(t)) the SAR image intensity which we model by a Gamma distri-
bution. After some probabilistic considerations and algebraic manipulations we
obtain the average-based speed given

v(x(t)) =
dγ

dt
= −

(
log μR1 +

I(x(t))
μR1

− log μR2 −
I(x(t))

μR2

+ λk

)
(2)
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where a λk is a regularization term, with λ a positive real constant and k the
mean curvature function, μRi is the mean intensity given

μRi =

∫
Ri

I(x(t))dx

aRi

(3)

and where the area aRi is given

aRi =
∫

Ri

dx

The implementation of the level set method with the speed based on regions
means detects the object with more precision in terms of pixels than the next
one since the image is not dealt with filters for noise reduction. We observed
that the best result is obtained by locating the initial curve as nearly as possible
to the region of interest, so that the final result depends on the position of the
starting curve.

It is well known that in images corrupted by strong noise, the computation
of gradient could detect false edges. Because the SAR images are affected by
speckle noise, they are pre-processed by means of the SRAD algorithm which is
an extension of Perona-Malik algorithm [6,7]⎧⎨⎩

∂I(x(t))
∂t = ∇ · [c(q)∇I(x(t))]

I(x(0)) = I0
(4)

where the diffusion coefficient is

c(q) =
1

1 + [q2(x(t)) − q2
0(t)]/[q2

0(t)(1 + q2
0(t))]

or
c(q) = exp

{
−[q2(x(t))− q2

0(t)]/[q2
0(t)(1 + q2

0(t))]}

and q(x(t)) is named instantaneous coefficient of variation and q0(t) is the speckle
scale function. The speckle scale function q0(t) effectively controls the amount
of smoothing applied to the image by SRAD.
We observe that in the case of N -looks SAR image, we can assume q0 = 1√

N
.

The gradient-based speed is computed on the filtered image

v(x(t)) = − 1
1 + |∇I ′(x(t))|2 − λk

where I ′(x(t)) is the image I(x(t)) filtered by SRAD, k is the curvature and
λ ∈ (0, 1) is a constant. So, the speed term is defined in such a way that the
curve proceeds rather fast in low gradient zones, while it wades through to high
gradient ones. This strategy allows the contour to propagate until it achieves the
limits of the object of interest in the image and then goes slowly close to those
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limits. The implementation obtained by the speed based on image gradient is less
accurate in terms of pixels than the previous one, because it works on the filtered
image and not on the original one. However, this last approach is independent
from the position of the initial curve.

The new velocity is constituted by the mean of the two terms corresponding to
the average-based speed and gradient based speed and it is given by a following
expression:

v(x(t)) = −1
2

(
log

μR2

μR1

+ I(x(t))
μR1 − μR2

μR1μR2

)
− 1

2

(
1

1 + |∇I ′(x(t))|2

)
−λk. (5)

As it is possible to see in the (5) the second term is computed on the image fil-
tered by SRAD I

′
(x(t)), while the first term is computed on the original image

I(x(t)).
The procedure developed by using the combined speed improves the results

obtained by the two speeds separately and it saves the property to be indepen-
dent of the position of the initial curve.

4 Experimental Results

To validate the efficiency of the proposed approach, the results obtained apply-
ing the combined procedure are compared with ones obtained employing the
segmentation process based on the two single speed functions. We tested the
procedure on synthetic SAR images to have an exact reference of the contours
to detect. Since the location of the edges is not known in the real images and
moreover there are not benchmark ones, tests have been synthesized from an
original image without noise copying SAR patterns. These tests (150× 150 pix-
els) are shown in Figures 1 (a), (b) and (c).

Fig. 1. Test images

Figures 2 (a), (b), (c), (d) show the initial curves and the corresponding re-
sults obtained applying the procedure, using the average-based speed, to the test
of Figure 1 (b). We obtain different results starting from different initial con-
tours. In Figures 2 (e), (g) we show the initial contours and the corresponding
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results in (f) and (h), based on the gradient-based speed. In this case the seg-
mentation results do not depend on the initial contours. The final results have
been obtained applying the procedure to the smoothed images, by SRAD filter.
However, results obtained from both these processes are wrong.

Fig. 2. Subplot(a-d) Average-based speed segmentation. Subplot(e-h) Gradient-based
speed segmentation. Subplot(i-l) Combined speed segmentation.

The last four Figures show the results, based on the combined speed. In these
images the final contours of (j), (l) have been computed starting by both in-
ternal and external initial contours of (j), (k). An important peculiarity of this
procedure is that different initial contours lead to the same results.

Analogously, Figure 3 underlines the results obtained applying the segmenta-
tion to the image in Figure 1 (c). In particular, Figures 3 (a), (b), (c), (d) show
the initial curves and the corresponding results, using the average-based speed.
In this case different initial contours lead to different results. Initial contours
and the corresponding results, obtained by the gradient-based speed, are shown
in Figures 3 (e), (g) and (f), (h) respectively. Here the segmentation result is the
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Fig. 3. Subplot(a-d) Average-based speed segmentation. Subplot(e-h) Gradient-based
speed segmentation. Subplot(i-l) Combined speed segmentation.

same even starting from different initial contours. The final results have been ob-
tained applying the procedure to the filtered images. However, results obtained
from both these processes are wrong. The last line of Figure 3 shows the re-
sults, based on the combined speed. In these images the final contours of (j), (l)
have been computed starting from both internal and external initial contours of
(j), (k). In this case the same results are obtained starting from different initial
contours.

In Figure 4 we present the final contours in (b) and (d) obtained applying
segmentation, based on the combined speed, to synthetic images, constituted by
disjoint regions, characterized by the same gray levels in (a) and different gray
levels in (c).

The segmentation process has also been applied to real images, acquired dur-
ing ERS2 mission, to extract the contours of the coastlines. In particular, Fig-
ure 5 (a) shows the coastline obtained by a 500 × 700 pixels SAR image rep-
resenting the Capraia Island. The convergence is achieved after 3340 iterations.
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(a) Initial curve (b) Final curve

(c) Initial curve (d) Final curve

Fig. 4. Synthetic image constituted by regions of same gray level (a), regions of different
gray level (c), results (b) (d)

(a) Coast detection from image of
Capraia island

(b) Coast of the Tuscan region

Fig. 5. Original images
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(a) Image of Capraia is-
land smoothed by SRAD

(b) Thresholding tech-
nique

(c) Edge detection tech-
nique

Fig. 6. Visual and qualitative comparison with result of Figure 5 (a)

Figure 5 (b) shows the the coastline obtained by a 750× 750 pixels SAR image
representing part of the coast of Tuscany. The result shown is obtained after
6500 iterations.

Now we present a visual and qualitative comparison of the results obtained
by using segmentation traditional methods. In Figure 6 we show the images
produced by applying the technique of segmentation based on the Otzu algorithm
and one of edge detection based on the algorithm of Canny. The used images
have been smoothed by the SRAD technique.

5 Conclusions

In this paper, an approach for SAR image segmentation based on the level set
method has been proposed. The procedure has been applied on both synthetic
and real SAR images. Segmentation process proposed by us allows the obtained
result is independent of the initial location of the curve and moreover, it automat-
ically stops when the curve achieves the boundary. Two distinct speed evolution
functions have been examined. The first, based on the mean intensities of the
regions, does not need to reduce speckle noise; the second, based on the image
gradient, takes into account the problem to filter speckle noise by the SRAD
technique. Finally our proposal combining the previous functions improves the
results obtained by two individual approaches.

In the future we plan to apply the proposed methodology to images obtained
from the constellation of satellites Cosmo Sky-Med. These satellites are useful in
monitoring changes in the Earth surface with a very high time resolution, because
they can observe the same area several times a day in all weather conditions.
Moreover we are interested to extend the procedure to detect the components
of the cryosphere such as frozen soil, snow, sea ice, ice sheets from SAR images.
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Abstract. This paper presents a specific algorithm for foreground object extrac-
tion in complex scenes where the background varies unpredictably over time. The
background and foreground models are first constructed by using an adaptive
mixture of Gaussians in a joint spatio-color feature space. A dynamic decision
framework, which is able to take advantages of the spatial coherency of object,
is then introduced for classifying background/foreground pixels. The proposed
method was tested on a dataset coming from a real surveillance system includ-
ing different sensors installed on board a moving train. The experimental results
show that the proposed algorithm is robust in the real complex scenarios.

Keywords: Background subtraction, foreground segmentation, mixture of
Gaussians, spatio-color feature space.

1 Introduction

Detecting foreground objects from a video sequence is a critical task in many computer-
vision applications. It can be considered as the basic level of processing to achieve
higher level vision tasks. Even though there exist numerous algorithms in the literature,
foreground object detection in complex environments, including non-stationary back-
ground motion, illumination variations, and camera vibration, is still far from being
completely solved.

As surveyed in [1], there exists a vast literature on background subtraction. Most
proposed methods are based on the pixel-level background model, which construct a
background representation for each pixel location. One of the simplest approaches con-
sists in modeling each pixel intensity with a single Gaussian distribution [2]. However,
such a model is unsuitable for noisy sequences and multi-modal scenes. More com-
plex models are based on a mixture of Gaussians [3], or a probability density function
estimated by kernel function [4]. The background can also be modeled by a group of
clusters which represent a compressed form of background model [5].

In contrast to pixel-wise approach, interest has grown recently in region-level meth-
ods which employ regional models representing spatial relationships between pixels.
Sheikh et al. [6] used Kernel Density Estimation to build full background model as a sin-
gle distribution, in conjunction with a MAP-MRF decision framework. In [7], Heikkila
et al. used a group of weighed adaptive local binary pattern histograms to capture the
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background statistics of each image block, and produced a coarse detection of fore-
ground object. Chen et al. [8] extended this idea to obtain more detailed foreground by
using a contrast histogram to describe each block. More recently, Dickinson et al. [9]
modeled the background as an adaptive mixture of Gaussians in color and space, and
used this model to probabilistically classify new pixels observations.

In this article, we consider the problem of foreground object detection in a com-
plex environment where the background varies unpredictably over time. This work is
carried out in the framework of the BOSS European project (on BOard wireless Se-
cured video Surveillance), whose objective is to set up an onboard surveillance sys-
tem. Indeed, the complex environments inside a moving train make the detection task
extremely difficult. Therefore, in order to deal with such particular problems, we pro-
pose an approach based on an adaptive spatio-colorimetric background and foreground
model coupled with a dynamic decision framework. The proposed method has three
novel contributions. Firstly, in order to handle multi-modal uncertainties of the back-
ground, a joint spatio-colorimetric region based representation is employed to model
the observed scene. The statistical regions of the background, which share common
homogeneity properties, are modeled by using an adaptive mixture of Gaussians in
a five-dimensional spatio-colorimetric feature space. Secondly, both background and
foreground are modelized in order to better distinguish foreground and background pix-
els. Thirdly, instead of directly applying a threshold to classify background/foreground
pixels, we propose a dynamic decision framework based on cellular automata which
enforces the spatio-colorimetric context in the detection process.

The outline of the paper is as follows: after this introduction, we present in Sec-
tion 2 the proposed approach to extract foreground objects. Section 3 presents global
performances of the proposed system on different real datasets. Finally, in Section 4,
conclusions and important short-term perspectives are given.

2 The Proposed Approach

2.1 Modeling the Background

The initial representation of the background is constructed from the first frame of the
sequence by using a region merging technique [10] coupled with an adaptive mixture
of Gaussians. The homogeneous regions of the observed scene are first extracted by
iteratively combining smaller pixels or regions sharing homogeneous color properties.

Let I be the observed image containing N pixels; (p, p′) be a couple of adjacent
pixels in 4-connexity and AI be the set of these couples. We first compute the local
gradient between each couple of pixels defined as:

g (p, p′) = max
c∈{R,G,B}

∣∣∣Rp(p′)c −Rp′(p)c

∣∣∣ (1)

where Rp (p′) is the set of neighborhood pixels of p′ which satisfies the condition:
Rp (p′) = {q ∈ I : ‖q − p′‖1 < δ & ‖q − p′‖1 < ‖q − p‖1} (δ is a predefined radius
depending on the noise corruption of images; it is set to δ = 5 in our experimentations),
Rp(p′)c is the mean color value of channel c of all pixels belonging to Rp (p′). The
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principle of region merging process is that the couples of AI are first sorted in increasing
order of g (p, p′). For each couple of pixels (p, p′) ∈ AI , let r (p) and r (p′) be the
current regions to which pixels p and p′ belong respectively. These two regions are
merged if the following condition is verified:

∣∣∣r(p′)c − r(p)c

∣∣∣ ≤ κ

√
1

Nr(p)
+

1
Nr(p′)

, ∀c ∈ {R, G, B} (2)

where r(p)c is the mean color value of the channel c of region r (p), Nr(p) is the number
of pixels of region r (p) and κ is a parameter defined as:

κ = C

√
2 log (N)

Φ
(3)

where C is the maximum value of color space, N is the number of pixels of the observed
image and Φ is a parameter modifying the coarseness of the segmentation.

The region merging process is resumed in Algorithm 1.

Algorithm 1. Region merging algorithm

Initialization: the set AI and the local gradient value of each couple g (p, p′).1

Sorting the couples of AI in increasing order of g (p, p′)2

for each couple (p, p′) ∈ AI , r (p) �= r (p′) do3

if
∣∣∣r(p′)c − r(p)c

∣∣∣ ≤ κ

√
1

Nr(p)
+

1
Nr(p′)

∀c ∈ {R, G, B} then
4

merging r (p) and r (p′)5

After this region merging procedure, the observed scene is segmented into KB ho-
mogeneous regions. Each region is now modeled by a Gaussian distribution in the joint
spatio-colorimetric feature space x = [x, y, R, G, B]T where x and y are spatial coor-
dinates in the two-dimensional image and R, G, B are color coordinates:

η (x|μ, Σ) =
exp

(
− 1

2 (x− μ)T
Σ−1 (x− μ)

)
√

(2π)5 |Σ|
(4)

Here μ and Σ are the mean vector and covariance matrix estimated on the pixels be-
longing to the current region. The background model is finally defined by:

f (x|BG) =
KB∑
i=1

wiη (x|μi, Σi) (5)

where wi = Ni/N is the weight of the ith component, Ni is the number of pixels of
the region i.
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2.2 Modeling the Foreground

Since foreground objects tend to have smooth motion from frame to frame, the temporal
persistence property is a powerful tool to increase the accuracy of object detection.
Here, we propose to model the foreground objects in order to employ simultaneously
background and foreground models to improve the detection.

The foreground model is initialized as a uniform function. Once a foreground region
is detected, the foreground model is constructed in the same manner as the background
one and is expressed by:

f (x|FG) = α + (1− α)
KF∑
i=1

wF
i η

(
x|μF

i , ΣF
i

)
(6)

where α is a constant which yields robustness when foreground is not observed (α <
0.5), KF is the number of components of the foreground model.

2.3 Foreground Object Segmentation

In this section, we propose a particular algorithm for foreground object segmentation
based on the principle of cellular automata introduced by von Neumann [11]. The idea
of this algorithm is that each pixel p is considered as a cellular automaton characterized
by a triplet (lp, Np, Δ), where lp and Np are respectively the label and the set of neigh-
borhood pixels of the current pixel p, Δ is the local transition function. The pixel label
at instant k + 1 is estimated based on the states of the neighborhood pixels at instant k
and the local transition rule.

Each pixel p of the new captured frame is first classified into one of three
classes (foreground, background or undefined) based on the likelihood ratio Γ =

− log
f (xp|BG)
f (xp|FG)

. The label of pixel p is defined as:

lp =

⎧⎨⎩
−1 (BG) if Γ < TBG

1 (FG) if Γ > TFG

0 otherwise
(7)

where TBG and TFG are two parameters a priori defined for classifying foreground and
background pixels.

The confidence score of each pixel is also estimated by using the probability of
observing a background/foreground pixel:⎧⎨⎩Cp = f (xp|BG) if lp = −1

Cp = f (xp|FG) if lp = 1
Cp = 0 if lp = 0

(8)
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Algorithm 2 describes the foreground object segmentation procedure.

Algorithm 2. Foreground object segmentation

k = 0: l0p = lp and C0
p = Cp for all p ∈ I1

while not converged do2

for each pixel p ∈ I do3

lk+1
p = lkp , Ck+1

p = Ck
p4

for each pixel q ∈ N (p) do5

if Δ (p, q) .Ck
q > Ck

p then6

lk+1
p = lkq7

Ck+1
p = Δ (p, q) .Ck

q8

k = k + 19

Here, the local transition function Δ is defined as:

Δ (p, q) = 1− exp
(

−β

ε + ‖Ip − Iq‖2

)
(9)

where β and ε are the predefined parameters, Ip and Iq are the color vectors of pixels p
and q.

Thus, instead of applying a single threshold to classify background/foreground pix-
els, we try to exploit the spatial coherency of object in order to obtain an optimal seg-
mentation. Each pixel is represented by its confidence score. The higher the confidence
score Cp, the stronger the influence on the neighborhood pixels. If two neighbor pix-
els have similar color, Δ (p, q) is big and the label of pixel with lower score will be
replaced.

2.4 Updating the Background Model

The background model is updated by first assigning the new background pixels to
their corresponding components, and then re-estimating the component parameters. The
pixel x is assigned to component C if:

C = argmaxi {η (x|μi, Σi)} (10)

Let μ∗
i and Σ∗

i be the mean vector and covariance matrix estimated from the N∗
i new

pixels assigned to component i. The parameters of component i are re-estimated with:

wt
i =

w
(t−1)
i N + N∗

i

N + N∗

μt
i =

w
(t−1)
i Nμ

(t−1)
i + N∗

i μ∗
i

Nw
(t−1)
i + N∗

i

Σt
i =

w
(t−1)
i NΣ

(t−1)
i +N∗

i Σ∗
i

Nw
(t−1)
i + N∗

i

− μt
i[μ

t
i]

T +
w

(t−1)
i Nμ

(t−1)
i

[
μ

(t−1)
i

]T

+ N∗
i μ∗

i [μ
∗
i ]

T

Nw
(t−1)
i + N∗

i

(11)
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Unlike the background, the foreground model is reconstructed by using the new ex-
tracted foreground objects in the same manner as initializing the background model.
Thus, the foreground model adapts rapidly from frame to frame, which makes the de-
tection task in the next frame more robust.

Figure 1 presents the detection results for an image of the sequence. Images 1(b)
and 1(c) represent the likelihood maps for both background and foreground while im-
age 1(f) is the final result of detection.

(a) Original image. (b) Background negative log-likelihood
map.

(c) Foreground likelihood map. (d) Log-likelihood ratio values.
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(f) Final result.

Fig. 1. Different steps of the proposed algorithm for foreground object extraction



74 D.-N. Truong Cong et al.

3 Results and Discussion

The performance of the proposed method is evaluated using the real dataset collected by
the cameras installed on board a moving train in the framework of the BOSS European
project [12]. This dataset is really difficult, since the captured video is influenced by
many factors including fast illumination variations and non-static background due to
the movement of the train, reflections, vibrations of the cameras. . .

Figure 2 illustrates the effectiveness of the proposed method in comparison with the
well-known Mixture of Gaussians method (GMM). The first row is the original images,
the second row shows the results obtained by GMM method, and the third row presents
the results obtained by the proposed method. Note that no post-processing is used in the
results.

Fig. 2. Foreground object extraction results. Top to bottom: original images, GMM method, pro-
posed algorithm.

Figure 3 presents the comparative results obtained by the proposed method and two
other approaches of the literature: a pixel-based approach using GMM and a region-
based method proposed by Sheikh and Shah [6]. We can notice that the results obtained
by GMM are very noisy due to sudden illumination changes of the scene, while the
detection accuracy of two region-based methods is still high.
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Fig. 3. Foreground object extraction results. Left to right: original images, GMM method, method
proposed by Sheikh and Shah, our proposed algorithm.
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In order to perform a quantitative analysis of the proposed approach, we have manu-
ally segmented 700 frames of a long sequence illustrated in Figure 3. The performances
of the system are evaluated by using recall and precision measurements, where

recall =
number of true foreground pixels detected

number of true foreground pixels

precision =
number of true foreground pixels detected

number of foreground pixels detected

Table 1 presents the evaluation results in terms of recall and precision of three meth-
ods: the GMM algorithm with optimal parameters, the method proposed by Sheikh and
Shah, and our proposed approach. In order to make a fair comparison, morphologi-
cal operations are also used in the tests of standard GMM method. Clearly, the results
demonstrate that the proposed approach obtains best performance in both terms of recall
and precision.

Table 1. Comparative results in terms of recall and precision

GMM SS05 Proposed approach

Recall 0.54 0.91 0.95

Precision 0.73 0.91 0.94

Figure 4 shows the per-frame detection accuracy in terms of recall and precision.
One can notice that our method is slightly more robust than the method proposed by
Sheikh and Shah, and the extraction accuracies of the two region-based approaches are
consistently higher than the standard GMM method.
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Fig. 4. Recall and precision curves obtained from the tested sequence
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4 Conclusion

In this paper, we have presented a specific algorithm for foreground object extraction in
complex scenes with non-stationary background. Several originalities are introduced to
manage this difficult problem. A region-wise model of background and foreground is
first proposed by using an adaptive mixture of Gaussians in a joint spatio-colorimetric
feature space. A great robustness is introduced thanks to the simultaneous exploitation
of background and foreground models. A dynamic decision framework, which is able
to take advantages of both spatial and temporal coherency of object, is introduced for
classifying background and foreground pixels. The proposed method was tested on a
dataset coming from a real surveillance system including different sensors installed on
board a moving train. The experimental results show that the proposed algorithm is
robust in these real difficult scenarios.

In order to further improve the performance of the system and to reduce false detec-
tions caused by shadows, a normalized color space could be used instead of the RGB
space. Moreover, several features (texture, edge,. . . ) should be considered and inte-
grated to the system to manage the cases where foreground and background colors are
very similar.
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Abstract. Time-of-flight (TOF) cameras are primarily used for range
estimation by illuminating the scene through a TOF infrared source.
However, additional background sources of illumination of the scene are
also captured in the measurement process. This paper uses radiomet-
ric modelling of the signals emitted from the camera and a Lambertian
reflectance model to develop a shadow segmentation algorithm. The pro-
posed model is robust and is experimentally verified using real data.

Keywords: Time-of-flight, Radiometric Modelling, Shadow Segmenta-
tion, Reflectance Modelling.

1 Introduction

The presence of shadows due to lighting conditions complicates the process of
shape and behaviour estimation of objects, especially where there is a significant
association between the non-background points and shadow. Shadow segmenta-
tion algorithms are an important component in solutions to many computer
vision scenarios such as video surveillance, people tracking and traffic monitor-
ing [3, 19]. Background subtraction methods and colour space techniques are
widely exploited for shadow segmentation [4, 8]. The drawback with such tech-
niques is that they tend to under perform when there is insufficient colour in-
formation or when the scene is dynamic. Similarly, model based adaptive and
Bayesian methods [1] suffer from same problems.

Conventional CCD camera are susceptible to dynamic range and illumination
conditions. On the other hand, research in imaging devices in recent years has
lead to development of range sensing cameras, especially 3D time-of-flight (TOF)
[12] cameras, and is used in a number of fields; such as; for example, detection
and recognition [5], 3D environment reconstruction [11] and tracking [15], etc.
In general, 3D TOF cameras work on the principle of measuring time of flight
of a modulated infrared light signal as phase offset after reflection from the
environment and provide range and intensity data over a full image array at
video frame rate [9].

This paper presents a novel algorithm for shadow detection using TOF camera
technology by exploiting the additional measurement capability of a TOF cam-
era compared to a standard CCD camera. The proposed algorithm is based on a
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c© Springer-Verlag Berlin Heidelberg 2011
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radiometric range model derived from TOF measurements and the background
light source. We assume a statistical noise model of TOF measurements [16]
and a Lambertian reflectance model to derive a radiometric range model that
is independent of the coefficient of diffuse reflectivity of the environment. The
radiometric range model is used to formulate a criterion to identify shadows and
highlights using TOF camera data. For the purpose of this conference paper, we
restrict our attention to the case of planar surfaces. More complex environment
models are straight forward to develop based on the proposed approach. How-
ever, experiments show that the planar environment model is sufficient to obtain
robust results for typical non-planar environments.

This paper is organised as follows: Section 2 describes TOF signal measure-
ment, Section 3 describes Lambertian reflectance modelling from TOF perspec-
tive by exploiting TOF measurement and background light sources. In Section 4,
the dependencies between measurement parameters of amplitude, range and in-
tensity are used along with the reflectance model for sensor response to derive ra-
diometric range model. Section 5 provides details of shadow segmentation based
on radiometric range model using real data and is followed by its experimental
verification.

2 Time-of-Flight Signal Measurement

Time-of-flight (TOF) sensors estimate distance to a target using the time of flight
of a modulated infrared (IR) wave between the target and the camera. The sensor
illuminates/irradiates the scene with a modulated signal of amplitude A (exi-
tance) and receives back a signal (radiosity) after reflection from the scene with
background signal offset Io that includes non-modulated DC offset generated by
TOF camera as well as ambient light reflected from the scene. The amplitude,
intensity offset I and phase of a modulated signal can be extracted by demodu-
lating the incoming signal Ai = A cos(ωti + ϕ) + I; (ti = i · π

2ω , i = 0, . . . 3) [9],

A : =

√
(A3 −A1)2 + (A0 −A2)2

2
,

I : =
A0 + A1 + A2 + A3

4
,

ϕ : = tan−1

(
A3 − A1

A0 − A2

)
.

With known phase ϕ, modulation frequency fmod and knowledge of speed of light
c, it is possible to measure the un-ambiguous distance r from the camera [17].

3 Reflectance Model

The measurement parameters of amplitude A, intensity I, and range r are not
independent but depend on the reflectance characteristics of the scene [17]. In
the following discussion we consider a near-field IR point source for the camera’s
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active LED array, a far-field source for background illumination and ambient
illumination. The primary source of illumination in TOF cameras is an IR source
that produces a modulated IR signal offset and a non-modulated DC signal.
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Fig. 1. Geometry of reflectance model for time-of-camera. Note that although the LED
source and receiver of a physical TOF camera are co-located, it is difficult to provide
a visualisation of this geometry. Here the source is shown separately to make is easier
to see notation. However, in practice the directional vectors r and xp are equal. Note
that time variation (discussed in Section 2) of A(s) does not need to be modelled as
only the relative magnitude of A(s) is of interest.

Let P be a Lambertian surface in space with np denoting the normal to
each point p ∈ P on the surface as shown in Figure. 1. Following the laws of
radiometry [18] the amplitude of total radiance = A(p) (called radiosity) leaving
point p due to illumination by the modulated signal A(s) is proportional to the
diffuse reflectance or albedo ρd(p) scaled by the cosine of arrival angle θp. In the
present analysis, the LED point sources of the camera are part of the compact IR
array of the TOF camera, and can be approximated by a single virtual modulated
point source [7, p. 78] with the centre of illumination aligned with the optical
axis of the camera [11]. In this case, the integration for illuminating sources can
be written as a function of the exitance of a single point source at S as [7, p.
77] [17]

A(p) :=
1
π

ρd(p)
A(s) cos θp cos θs

r2
, (1)

where θs is the angle between the normal to the source point s ∈ S and the ray
of the modulated IR signal reaching point p and r is the distance between source
and the point p.

The irradiance of an image point x is obtained as

A(x) = ΥA(p), (2)

where Υ := Υ (x) is the lens function [18] representing the vignetting due to
aperture size and irradiance fall-off with cosine-fourth law.
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The TOF camera IR source produces a DC signal from the same IR source
LEDs. This signal will have the same reflectance model as has been derived for
the modulated IR source (see (1)). The received signal Ic(x) is given by [17]

Ic(x) = ΥIc(p). (3)

The effect of this signal is an added offset to the modulated signal that provides
better illumination of the scene.

For a point source q ∈ Q that is far away compared to the area of the target
surface, the exitance Ib(q), does not depend on the distance from the source or
the direction in which the light is emitted. Such a point source can be treated
as constant [7, p. 76]. The radiosity perceived by a TOF image plane as a result
of this IR source is given by [17]

Ib(x) =
Υ

π
ρd(p)Ib(q) cos θq

= ΥIb(p). (4)

where θq is the angle between normal to the surface point p.
Now consider an ambient background illumination of the scene i.e an illumi-

nation that is constant for the environment [7, p. 79] and produces a diffuse
uniform lighting over the object [6, p. 273]. Let Ia be the intensity (called exi-
tance) of the ambient illumination, then the received intensity Ia(p) from a point
p is expressed in an image plane as [17]

Ia(x) =
Υ

π
ρa(p)Ia

= ΥIa(p), (5)

where ρa is the ambient reflection coefficient which is often estimated empirically
instead of relating it to the properties of a real material [6, p. 723]. Since it is
an empirical convenience, for all practical purposes ρa ≈ ρd.

4 Radiometric Range Model

From the principles of TOF camera (see Section 2) signals one knows that inten-
sity component of TOF carries information for both, amplitude of the modulated
signal and the background offset Io [12]. The radiometric intensity of TOF cam-
era is then

I := A + Io. (6)

The background offset Io is composed of a DC offset Ic, due to the DC component
of the illumination by the TOF camera LED array and background illumination
that are modelled by an ambient illumination Ia and a background illumination
Ib due to an infrared far field source present in the environment such as the Sun
or other light source. Indexing the point p in the scene by the TOF receiving
pixel x, one has

Io(x) = Ic(x) + Ia(x) + Ib(x). (7)
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Dividing (6) by A(x) and using the local shading model for IR signal and the
illumination of point sources (2), (3), (4), (5), after substituting (7), one obtains

I(x)
A(x)

= 1 +
Ic(s)
A(s)

+
Iar2(x)

A(s) cos θp cos θs
+

Ib(q) cos θqr
2(x)

A(s) cos θp cos θs
, (8)

where θs := θs(x) is a known function of pixel.
Define κa as the ratio of background ambient light Ia to modulated TOF IR

source A(s). Observe that κa does not depend upon scene or camera geometry
and hence is a constant parameter over the full image array. Similarly, define
κb as a constant ratio of far-field illumination Ib to the TOF IR source A(s).
Finally define κc as the ratio of TOF non-modulated IR source Ic(s) and TOF
modulated IR source A(s). Since the two sources of illumination originating from
the TOF camera IR LED source have the same ray geometry, then κc(x) is a
pixel dependent [17].

Thus, using the parameters (κa, κb, κc, θp, θq) of sources, one obtains the ra-
diometric relationship as

I(x)
A(x)

= 1 + κc(x) + κa
r2(x)

cos θp cos θs
+ κb

cos θqr
2(x)

cos θp cos θs
. (9)

Note that θs, is the angle measured from the camera, is stored in a look up table
(projected angle of the IR beam of TOF camera with respect to each camera
pixel) and angle θp is measurable from camera data. For any surface patch1, it
is possible to numerically compute an estimate of the angle θp := θp(x) from the
set of range measurements r(xi) associated with that patch based on an estimate
of the normal vector to the surface [10].

The radiometric range model for a far-field point source of illumination de-
pends upon the angle θq that is the angle between the normal to the surface
and the direction of the far-field source. Hence, an estimate of the direction of
background IR source (in terms of azimuth and elevation) is required and is a
problem of source estimation in computer vision [2].

A specialized case of considerable practical interest is that of a planar surface.
For a single planar surface it follows that θq is constant, while θp is nearly con-
stant for a small field of TOF optical sensor over the surface, and the parameters
(κa, κb) are constant over the image plane. As a result several parameters can be
combined into a single constant κo. An approximate model is presented in [17]
as

κo :=
κa

cos θp
+

κb cos θq

cos θp
≈ constant. (10)

As a consequence of (10), a pixel measurement of κo is given by

κo(x) =
(

I(x)
A(x)

− κc(x)− 1
)

cos θs

r2(x)
. (11)

1 The surface patch must be sufficiently large to be imaged by a small window of
pixels.
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A detailed analysis of κo provides a statistical distribution of κo(x) for a planar
surface [17] shown in Figure
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Fig. 2. Normalized histogram of κ̌o(x) of a flat surface. Pixels with κ̌o(x) → ∞ (due
to amplitude and phase) have been scaled down to finite values. The heavy tail is
associated with noisy data.

5 Shadow Segmentation

Shadow segmentation based on radiometric range data is a natural outcome of
the radiometric framework proposed in Section 4. An important contribution of
performing shadow segmentation using TOF cameras is the ability to provide
an algorithm that can be used in dynamic scenes as well as for surfaces with in-
sufficient colour information. A close examination of (2) and (6) reveals that an
object in shadow does not effect the amplitude value received by the TOF cam-
era. However the intensity varies with the background illumination or shadowing
of the object. Based on this fact, it is possible to segment the scene into shadow
and highlights. The proposed shadow segmentation model is derived from the ra-
diometric model (9) using far-field background illumination parameter κb. Thus,
one obtains a new κb(x) for this application as

κb(x) :=
(

I(x)
A(x)

− κc(x) − 1
)

cos θs cos θp

r2(x) cos θq
− κa(x)

cos θq
. (12)

In terms of the measured value, one defines a measured value of κ̌b(x) as

κ̌b(x) :=
(

I(x)
A(x)

− κ̂c(x) − 1
)

cos θs cos θp

ř2(x) cos θq
− κ̌a(x)

cos θq
, (13)

where κ̂c(x) ∈ R2 is an estimate of camera based pixel parameter for an entire
image, since κc(x) is scene independent and can be measured offline in a set
of calibration experiments. The proposed algorithm uses a k -means clustering
algorithm [14] on the full set of measured κ̌b(x) obtained for a full frame. Here
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the term involving κ̌a(x) is a scalar value for ambient illumination and is com-
puted empirically assuming constant angle θq for a planar surface. The objective
function Ψ := Ψ(c) for c = {c1, · · · , ck} is defined as

Ψ(c) :=
k∑

i=1

∑
xn∈Si

|κ̌b(xn)− ci|. (14)

The ci values are the geometric centroids of the data points Si, where xn is a vec-
tor representing nth data point from radiometric range model κ̌b and |κ̌b(xn)−ci|
is the L1 norm. The minimisation of this problem for segmentation (partitions)
of n data points into k disjoint subset Si containing ni data points is given by ĉ

ĉ = argmin
c

(Ψ). (15)

The proposed shadow segmentation based on κb(x) value represents the ratio of
background source of illumination to the camera source. The angle θq is assumed
constant for planar cases and θp is relatively constant for the small field of view
of a TOF camera. Under these assumption the probability distribution of κ̌b

behaves like κ̌o (11).

Remark: When shadow segmentation due to the Sun is considered then ge-
ographical knowledge of the camera pose and the Sun position can be used to
estimate θp and θq given an estimate of the scene geometry [13].

Fig. 3. CCD image of the setup taken from a 2D camera with TOF camera positioned
in the lower left corner of the image

Experiments: A TOF camera was placed to capture an environment with
object (flat floor) in sunlight and the remaining background appeared shadowed
compared to bright light coming from the window (see Figure 3). The intensity
image captured by the TOF camera is shown in Figure. 5(a). A histogram of
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κ̆b(x) with three marked regions is shown in Figure 4. The central blue region
corresponds to the highlighted area in image space. The region on the right hand
side (in a red rectangle) corresponds to noisy values. Both the highlighted and the
noisy regions produced significantly higher κ̆b(x) values compared to shadowed
regions (higher numerator of the right hand side of (13) either due to I → ∞
or noisy signal where A → 0). The values on the left side (in a red elliptical)
have two peaks. These two regions are associated with the angle approximation
θq when applied over an entire frame including non-planar regions and θp (sharp
corners and bends in scene with respect to camera viewing direction).

0 5 10 15 20 25 30 35 40 45
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50
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150

200

250

300

κ̆b(x)

Fig. 4. Histogram of a κ̆b(x) for a single frame

In the initial experiment the algorithm was applied to a single planar sur-
face. The shadow segmentation was performed using the k -means clustering.
The κ̆b(x) data is segmented into two clusters of highlights and shadows and
shows quite precise segmentation (see Figure 5(c)) with a precision of 99%. The
proposed algorithm was also applied to an entire single frame and observed that
the segmentation works reasonably well even when applied to a non-planar scene
(see Figure 5(b)). However, there were certain regions of false positive due to
failure of planar assumption (precision factor of 75%). These regions can either
be segmented using more that two clusters or eliminated using further noise fil-
tering [17] based on signal-to-noise ratio (SNR) estimation. Since in the case of
highlight areas the estimated ŜNR value is high while the noisy regions have a
lower ŜNR value, the image was further refined, using this two step approach as
illustrated in Figure 5(d) and achieved a precision of 96%. The algorithm, when
implemented in MATLAB on an Intel Core2 Duo 2.2GHz machine with 4GB
RAM, performs region segmentation of a complete frame in less than a second.

A precise modelling of scene geometry (discussed in Section 4) for angle θq in
the model (13) would result into a single region of shadow in a single step. Despite
this simplification, the algorithm is effective in region segmentation based on
illumination condition and unlike background subtraction and color cues, this
method is independent of scene movement and works equally well on gray scale
and range image data.
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Fig. 5. (a) Intensity image observed from a TOF camera (b) segmentation of shadow
and highlighted regions (non shadow) of a complete frame (c) shadow segmentation of
a planar surface only. (d) Refined shadow segmentation after two step approach.

6 Summary

Time-of-flight (TOF) cameras are primarily used for range estimation by illumi-
nating the scene through a TOF IR source. Unlike conventional cameras where
only a single parameter is measured as intensity, TOF camera’s additional mea-
surement facilitate in deriving a radiometric range model for the TOF camera.
The model comprising light sources and scene geometry is independent of reflec-
tivity for all practical purposes. Despite the fact that the radiometric model is
based on much simpler assumption, the framework proved robust and effective.
Experimental results prove the effectiveness of this model for TOF cameras in
vision based algorithms.

References

1. Benedek, C., Sziranyi, T.: Bayesian foreground and shadow detection in uncertain
frame rate surveillance videos. IEEE Trans. Image Process. 17(4), 608–621 (2008)

2. Cao, X., Shah, M.: Camera calibration and light source estimation from images
with shadows. In: Proc. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition CVPR 2005, vol. 2, pp. 918–923 (2005)



Shadow Segmentation Using Time-of-Flight Cameras 87

3. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts,
and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10),
1337–1342 (2003)

4. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and fore-
ground modeling using nonparametric kernel density estimation for visual surveil-
lance. Proc. IEEE 90(7), 1151–1163 (2002)

5. Fardi, B., Dousa, J., Wanielik, G., Elias, B., Barke, A.: Obstacle detection and
pedestrian recognition using a 3D PMD camera. In: Proc. IEEE Intell. Vehicles
Symp., pp. 225–230 (2006)

6. Foley, J.D., Da, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles
and Practices. Addison-Wesley Publishing Company, Inc., Reading (1997)

7. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall,
Englewood Cliffs (2003)

8. Jacques, J., Jung, C., Musse, S.: Background subtraction and shadow detection
in grayscale video sequences. In: Proc. 18th Brazilian Symposium on Computer
Graphics and Image Processing SIBGRAPI 2005, pp. 189–196 (2005)

9. Kahlmann, T., Remondino, F., Guillaume, S.: Range imaging technology: new
developments and applications for people identification and tracking. In: Proc.
SPIE-IS&T Electronic Imaging, San Jose, CA, USA, vol. 6491 (January 2007)

10. Klasing, K., Althoff, D., Wollherr, D., Buss, M.: Comparison of surface normal
estimation methods for range sensing applications. In: Proc. IEEE International
Conference on Robotics and Automation, ICRA 2009, May 12-17, pp. 3206–3211
(2009)

11. Kuhnert, K.D., Stommel, M.: Fusion of stereo-camera and PMD-camera data for
real-time suited precise 3D environment reconstruction. In: Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Systs. (2006)

12. Lange, R., Seitz, P.: Solid-state time-of-flight range camera. IEEE J. Quantum
Electron. 37, 390–397 (2001)

13. Leroy, M., Roujean, J.L.: Sun and view angle corrections on reflectances derived
from NOAA/AVHRR data. IEEE Trans. Geosci. Remote Sens. 32(3), 684–697
(1994)

14. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp.
281–297. Univ. of Calif. Press (1967)

15. Meier, E., Ade, F.: Tracking cars in range image sequnces. In: Proc. IEEE Int.
Conf. Intell. Trans. Systs., pp. 105–110 (1997)

16. Mufti, F., Mahony, R.: Statistical analysis of measurement processes for time-of-
flight cameras. In: Proc. SPIE Videometrics, Range Imaging, and Applications X,
vol. 7447-21 (2009)

17. Mufti, F., Mahony, R.: Radiometric range image filtering for time-of-flight cameras.
In: Proc. Int. Conf. on Computer Vision Theory and Applications (VISAPP 2010),
Angers, France, vol. 1, pp. 143–152 (May 2010)

18. Sillion, F.X., Puech, C.: Radiosity and Global Illumination. Morgan Kaufmann,
San Francisco (1994)

19. Tsai, V.: A comparative study on shadow compensation of color aerial images in
invariant color models. IEEE Trans. Geosci. Remote Sens. 44(6), 1661–1671 (2006)



Uni-orthogonal Nonnegative Tucker

Decomposition for Supervised Image
Classification

Rafal Zdunek

Institute of Telecommunications, Teleinformatics and Acoustics,
Wroclaw University of Technology, Wybrzeze Wyspianskiego 27,

50-370 Wroclaw, Poland
rafal.zdunek@pwr.wroc.pl

Abstract. The Tucker model with orthogonality constraints (often re-
ferred to as the HOSVD) assumes decomposition of a multi-way array
into a core tensor and orthogonal factor matrices corresponding to each
mode. Nonnegative Tucker Decomposition (NTD) model imposes non-
negativity constraints onto both core tensor and factor matrices. In this
paper, we discuss a mixed version of the models, i.e. where one factor
matrix is orthogonal and the remaining factor matrices are nonnegative.
Moreover, the nonnegative factor matrices are updated with the modi-
fied Barzilai-Borwein gradient projection method that belongs to a class
of quasi-Newton methods. The discussed model is efficiently applied to
supervised classification of facial images, hand-written digits, and spec-
trograms of musical instrument sounds.

1 Introduction

The Tucker model [1] decomposes a multi-way array into a core tensor multiplied
by a factor matrix along each mode. When orthogonality constraints are imposed
onto all the factor matrices, the model is referred to as Higher-Order Singular
Value Decomposition (HOSVD), and can be regarded as a multi-linear exten-
sion to SVD [2]. When factor matrices and a core tensor are nonnegatively con-
strained, the model is referred to as Nonnegative Tucker Decomposition (NTD),
and it can be considered as a generalization to Nonnegative Tensor Factoriza-
tion (NTF) or nonnegativity constrained PARAFAC model [3, 4]. In Semi-NTD
(SNTD) models, nonnegativity constraints are relaxed for a core tensor or se-
lected factor matrices [5].

In this paper, we assume a special case of SNTD, where one factor matrix
is orthogonal, the others are nonnegative, and a core tensor is unsigned. This
approach combines NTD with HOSVD, which is particularly useful when the
model is applied to image classification. Assuming the images to be classified
are arranged to form a three-way array, the orthogonality constraint should be
imposed onto the factor matrix that corresponds to the mode along which the
images are stacked. The orthogonal column vectors in that factor can be regarded
as discriminant vectors, especially as there are as many vectors as classes. The
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core tensor multiplied along all but that mode contains lateral slices that can be
considered as feature images.

There are many applications of the Tucker-based models. A survey of the ap-
plications can be found, e.g. in [5, 6, 7]. Vasilescu and Terzopoulos [8] applied
the Tucker model to extract TensorFaces in computer vision. Feature represen-
tations in TensorFaces are considerably more accurate than in EigenFaces that
can be obtained from the standard PCA technique. The Tucker model has been
also used for analyzing facial images by Wang and Ahuja [9], and Vlasic et al
[10]. Savas and Elden [11] applied the HOSVD for identifying handwritten digits.
NTD has been applied to image feature extraction [12], image clustering [5], and
supervised image segmentation [13, 14].

The Tucker decomposition can be obtained with many numerical algorithms.
The factor matrices in HOSVD are typically estimated by finding leading left
singular vectors of a given data tensor unfolded along each mode. However, a
number of algorithms for estimating NTD is considerably greater. Similarly as
for Nonnegative Matrix Factorization (NMF) [15], NTD can be estimated with
multiplicative updates, projected gradient descent, projected least squares, and
active set methods [5, 7, 12, 13, 14, 16].

In this paper, we attempt to estimate the nonnegatively constrained factor
matrices with the modified GPSR-BB method that was originally proposed by
Figueiredo, Nowak, and Wright [17] for reconstruction of sparse signals. The
GPSR-BB is based on a similar approximation to the inverse Hessian as in
the Barzilai-Borwein gradient projection method [18, 19]. This method has been
extended in [5, 20] to efficiently solve nonnegatively constrained systems of linear
equations with multiple right-hand sides, and then applied for NMF problems.

The paper is organized as follows: the next section reviews the selected Tucker
models and the related basic algorithms. The uni-orthogonal NTD is discussed
in Section 3. Section 4 is concerned with the modified GPSR-BB method for
estimating nonnegative factor matrices. The classification results are presented
in Section 5. Finally, the conclusions are given in the last section.

2 Tucker Models

Given a N-way tensor Y ∈ RI1×I2×...×IN , the Tucker model has the following
form:

Y = G ×1 U (1) ×2 U (2) ×3 . . .×N U (N)

=
J1∑

j1=1

J2∑
j2=1

· · ·
JN∑

jN =1

gj1,j2,...,jN u
(1)
j1
◦ u

(2)
j2
◦ . . . ◦ u

(N)
jN

, (1)

where G = [gj1,j2,...,jN ] ∈ RJ1×J2×...×JN is the core tensor of rank-(J1, J2, . . . , JN )
with Jn ≤ In for all n = 1, . . . , N and 1 ≤ jn ≤ Jn. The matrices U (1) =
[u(1)

1 , . . . , u
(1)
J1

] = [ui1,j1 ] ∈ RI1×J1 , U (2) = [u(2)
1 , . . . , u

(2)
J2

] = [ui2,j2 ] ∈ RI2×J2 ,

U (N) = [u(N)
1 , . . . , u

(N)
JN

] = [uiN ,jN ] ∈ RIN×JN are factor matrices, where
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in = 1, . . . , In, jn = 1, . . . , Jn, and n = 1, . . . , N . The symbol ×n denotes the n-
mode tensor product, and u(k) ◦u(l) = u(k)(u(l))T ∈ RM×N is the outer product
of the vectors u(k) ∈ RM and u(l) ∈ RN .

In the original Tucker model [1] and in HOSVD [2], the factor matrices
are column-wise orthogonal, i.e. (U (1))T U (1) = IJ1 , (U (2))T U (2) = IJ2 , . . .,
(U (N))T U (N) = IJN , where IJ1 ∈ RJ1×J1 , IJ2 ∈ RJ2×J2 , IJN ∈ RJN×JN are
identity matrices. In contrary to SVD of a matrix, the core tensor G in HOSVD is
not a super diagonal tensor but it is rather a dense tensor. For all n = 1, . . . , N ,
the column-wise orthogonal factor U (n) can be computed from the SVD of the
n-mode unfolded tensor Y. Let Y (n) ∈ R

In×∏p �=n Ip be a matrix that is obtained
from the tensor Y by unfolding it along n-mode. Thus U (n) = [u(n)

1 , . . . , u
(n)
Jn

] ∈
RIn×Jn , where u

(n)
j is the j-th left singular vector of Y (n) or the j-th lead-

ing eigenvector of the symmetric semi-positive defined matrix Y (n)(Y (n))T ∈
RIn×In . Having the factor matrices {U (n)}, the core tensor can be readily up-
dated with the formula G ← Y ×1 (U (1))T ×2 (U (2))T ×3 . . .×N (U (N))T .

In NTD [3, 4], the core tensor and factor matrices are all nonnegative, i.e.
gj1,j2,...,jN ≥ 0 and uin,jn ≥ 0 for in = 1, . . . , In, jn = 1, . . . , Jn, and n =
1, . . . , N . The nonnegative factor matrices U (n) are updated alternatingly – simi-
larly as the factors in NMF [15]. To apply the alternating optimization procedure,
note that the mode-n unfolding of the model (1) is as follows:

Y (n) = U (n)G(n)

(
U (N) ⊗ . . .⊗U (n+1) ⊗U (n−1) ⊗ . . .⊗U (1)

)T

(2)

= U (n)Z(n),

where G(n) ∈ R
Jn×∏p �=n Jp is the unfolded tensor G along the n-mode, and the

symbol⊗ denotes the Kronecker product. Applying the projected ALS algorithm
to (2), we have:

U (n) =
[
Y (n)(Z

(n))T (Z(n)(Z(n))T )−1
]
+

, n = 1, . . . , N, (3)

where [ξ]+ = max{0, ξ} is the projection of ξ onto the nonnegative orthant of
R. The core tensor G can be updated with the formula:

G ←
[
Y ×1 (U (1))† ×2 (U (2))† ×3 . . .×N (U (N))†

]
+

, (4)

where (U (n))† =
(
(U (n))T (U (n))

)−1

(U (n))T ∈ RJn×In is the Moore-Penrose

pseudoinverse of U (n) for n = 1, . . . , N . The columns of the nonnegative factor

matrices U (n) are often normalized to the unit lp norm, i.e. u
(n)
l ← u(n)

l

||u(n)
l ||p

,

where p = 1 or p = 2, and l = 1, . . . , Jn, n = 1, . . . , N .

3 Uni-orthogonal NTD

We assume that the training and testing images have the same resolution (I1 ×
I2), and the training images arranged along the mode-3 form the 3-way tensor
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Y ∈ RI1×I2×I3 , where I3 is the number of training images. Thus N = 3, and the
N-way Tucker model (1) simplifies to the Tucker3 model [6].

In our approach, we have the following model:

Y = G ×1 U (1) ×2 U (2) ×3 U (3), (5)

where G ∈ RJ1×J2×J3 is the core tensor, the factor matrices U (1) = [u(1)
i1,j1

] ∈
RI1×J1 and U (2) = [u(2)

i2,j2
] ∈ RI2×J2 are nonnegative (u(1)

i1,j1
, u

(2)
i2,j2

≥ 0), and the
factor matrix U (3) ∈ RI3×J3 is column-wise orthogonal, i.e. (U (3))T U (3) = IJ3 .
The number J3 should be equal to the number of classes, and the numbers J1

and J2 should satisfy the conditions: 1 ≤ J1 << I1 and 1 ≤ J2 << I2. Thus,
our Uni-Orthogonal NTD (UO-NTD) is given by Algorithm 1.

Algorithm 1. UO-NTD
Input : Y ∈ R

I1×I2×I3 , J1, J2, J3 - lower ranks, kmax - number of inner
iterations

Output: Factor matrices U (1) ∈ R
I1×J1 , U (2) ∈ R

I2×J2 and U (3) ∈ R
I3×J3 ,

G ∈ R
J1×J2×J3 - core tensor

Initialize (randomly) U (1) and U (2) with positive numbers, and U (3) and G1

with real numbers ;
repeat2

Z (1) = G(1)(U
(3) ⊗ U (2))T ;3

U (1) ← gpsrbb(Y (1), Z
(1), U (1), kmax) ; // Update for U (1)

4

u
(1)
l ← u(1)

l

||u(1)
l

||2
, where l = 1, . . . , J1 ; // Normalization of U (1)

5

Z (2) = G(2)(U
(3) ⊗ U (1))T ;6

U (2) ← gpsrbb(Y (2), Z
(2), U (2), kmax) ; // Update for U (2)

7

u
(2)
l ← u(2)

l

||u(2)
l

||2
, where l = 1, . . . , J2 ; // Normalization of U (2)

8

Z (3) = G(3)(U
(2) ⊗ U (1))T ;9

U (3) = Y (3)(Z
(3))T (Z (3)(Z(3))T )−1 ; // Update for U (3)

10

u
(3)
l ← u(3)

l

||u(3)
l

||2
, where l = 1, . . . , J3 ; // Normalization of U (3)

11

U (3) ← U (3)
(
(U (3))T U (3)

)−1/2

; // Column-wise orthogonalization12

G ← Y ×1 (U (1))† ×2 (U (2))† ×3 (U (3))T ; // Update for G13

until Stop criterion is satisfied ;14

The GPSR-BB algorithm given in Steps 4 and 7 in Algorithm 1 is described in
Section 4. The stop criterion in Algorithm 1 can be determined with many rules.
It might be a fixed number of iterations (usually less than 50) or the truncation
of iterations when the normalized residual error drops below a certain threshold.

Each lateral slice (along mode-3) of the tensor G ×1 U (1)×2 U (2) ∈ RI1×I2×J3

can be considered as a basis image that has rather holistic nature (similarly as in
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PCA) than a part-based representation. For classification of handwritten digits,
each base image is expected to represent each digit. Each lateral image in the
tensor Y is therefore a linear combination of the basis images. The coefficients
of that linear combination are given by row vectors of the factor matrix U (3)

that can be regarded as encoding vectors. Classification can be performed in the
low-dimensional space of encoding vectors.

Unsupervised classification can be obtained by clustering the encoding vec-
tors. For supervised classification the encoding vectors for testing images should
be computed using the basis images that have been already estimated for train-
ing images. Then, each testing image can be classified according to the highest
similarity in the space of encoding vectors.

The algorithm of supervised classification is given by Algorithm 2. The testing
images are collected in the tensor T ∈ RI1×I2×R in the similar way as training
images in Y, where R is the number of testing images. The unfolded tensor T
with respect to the mode-3 is given by the matrix T (3). Indices of the classes to
which training images belong are given in the vector c(train) ∈ RI3 . Algorithm 2
returns the vector c(test) ∈ RR that contains the classes of testing images.

Algorithm 2. Supervised classification

Input : G ∈ R
J1×J2×J3 , U (1) ∈ R

I1×J1 , U (2) ∈ R
I2×J2 and U (3) ∈ R

I3×J3 ,
c(train) ∈ R

I3 - classes of training images, T ∈ R
I1×I2×R - testing

images
Output: c(test) ∈ R

R - classes of testing images

Initialize (randomly) U (1) and U (2) with positive numbers, and U (3) and G1

with real numbers ;
Z (3) = G(3)(U

(2) ⊗ U (1))T ;2

U (test) = T (3)(Z
(3))T (Z(3)(Z (3))T )−1 ; // Encoding vectors3

u
(test)
l ← u(test)

l

||u(test)
l

||2
, where l = 1, . . . , J3 ; // Normalization of U (test)

4

c(test) ← knnclassify(U (test), U (3), c(train), 1, ′cosine′) ; // Matlab function5

The knnclassify function in Step 5 of Algorithm 2 comes from the Bioinfor-
matics Toolbox in Matlab 2008. It uses the nearest-neighbor method for classifi-
cation of the rows in the matrix U (test) into one of the classes of the the matrix
U (3). We used only one nearest neighbor, and the cosine measure to determine
the similarity between samples (row vectors).

4 Modified GPSR-BB Algorithm

To solve the system (2) with respect to the nonnegativity constrained U (n), we
formulate the Nonnegative Least Squares (NNLS) problem:

min
U(n)≥0

Ψ(U (n)), where Ψ(U (n)) =
1
2
||Y (n) −U (n)Z(n)||2F (6)



Uni-orthogonal NTD for Supervised Image Classification 93

which can be solved with the modified GPSR-BB method [17] that is based on
the Spectral Projected Gradient (SPG) method [21]. For (6), the SPG takes the
form of the following updates:

U (n) ← U (n) − diag{λ(n)}D(n), (7)

with the search direction defined by

D(n) =
[
U (n) − diag{α(n)}∇U(n)Ψ(U (n))

]
+
−U (n), (8)

where the step length λ(n) ∈ [0, 1]In minimizes Ψ(U (n) − diag{λ(n)}D(n)) and
α(n) ∈ RIn should be selected such that the matrix H(n) = diag{α(n)} approx-
imates the inverse to the Hessian of Ψ(U (n)). This approach comes from the
Barzilai-Borwein gradient projection method [18, 19], thus the updates for the
search direction (8) have the quasi-Newton nature.

The factors α(n) can be computed from the secant equation which for the
quasi-Newton update in (8) takes the form: H

(n)
k+1S

(n)
k = W

(n)
k , where S

(n)
k =

U
(n)
k+1−U

(n)
k and W

(n)
k = ∇U(n)Ψ(U (n)

k+1)−∇U(n)Ψ(U (n)
k ) = − diag{λ(n)}D(n),

and k is the number of an iterative step. From the secant equation, we have:

ᾱ
(n)
k+1 =

diag
{
W

(n)
k (S(n)

k )T
}

diag
{
S

(n)
k (S(n)

k )T
} =

diag
{

S
(n)
k Z(n)(Z(n))T (S(n)

k )T
}

diag
{
S

(n)
k (S(n)

k )T
}

=
diag

{
D(n)Z(n)(Z(n))T (D(n))T

}
diag

{
D(n)(D(n))T

}
=

[
D(n) � (D(n)Z(n)(Z(n))T )

]
1Jn[

D(n) � D(n)
]
1Jn

, (9)

where the symbol � denotes the Hadamard multiplication, diag{X} is a vector
created from main diagonal entries of the matrix X, and 1Jn = [1, . . . , 1]T ∈ RJn .

Inserting (7) to (6), and from ∂

∂λ(n) Ψ(U (n)) � 0, we get the update for λ(n)

in the closed-form:

λ̄
(n) ←

[
D(n) �∇U(n)Ψ(U (n))

]
1Jn[

D(n) � (D(n)Z(n)(Z(n))T )
]
1Jn

. (10)

The final form of the modified GPSR-BB algorithm is given by Algorithm 3.

5 Classification Results

The proposed UO-NTD algorithm has been tested for various supervised image
classification problems. For the reference, the ALS-NTD algorithm that updates
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Algorithm 3. GPSR-BB Algorithm

Input : Y (n), Z(n), U (n) - initial guess, kmax, αmin, αmax

Output: U (n) - mode-n factor matrix,
for k = 1, 2, . . . , kmax do1

F (n) = ∇U(n)Ψ(U (n)) = (U (n)Z(n) − Y (n))(Z
(n))T ; // Gradient2

D(n) =
[
U (n) − diag{α(n)}F (n)

]
+
− U (n) ; // Search direction

3

λ(n) ← max{0, min{1, λ̄
(n)}} ; // where λ̄

(n)
is given by (10)4

U (n) ← U (n) − diag{λ(n)}D(n);5

α(n) ← max{αmin, min{αmax, ᾱ(n)}} ; // where ᾱ(n) is given by (9)6

the factor matrices with the rule (3) and the core tensor with the update (4)
is chosen. We analyze three classification problems of: (A) musical instruments,
(B) hand-written digits, (C) facial images.

For analyzing the problem A, the audio recordings of 6 musical instruments
(cello, soprano saxophone, violin, bassoon, flute, and piano) are selected from
the MIS database1 of the University of Iowa. Each audio recording at the sam-
pling rate of 44.1kHz is restricted to contain meaningful information of about 4
sec long. The training and testing sets contain totally 56 and 12 samples, respec-
tively. All the samples are transformed to log-magnitude spectrograms into the
frequency range from 86Hz to 10.9kHz, and the time window from 0 do 4 seconds.
Then, the spectrogram are downsampled to 64 frequencies × 128 time intervals.
Thus Y ∈ R64×128×56 and T ∈ R64×128×12. For this case, we set J1 = J2 = 20,
and J3 = 6. The spectrograms of the testing samples are depicted in Fig. 1(a).

The samples for the problem B are images of hand-written digits. Each class
in the training set is represented by 8 images of the resolution downsampled
to 64 × 64 pixels. This gives Y ∈ R64×64×80 for 10 digits from 0 to 9. The
testing set consists of 20 images (2 by each class) - thus T ∈ R64×64×20. We set
J1 = J2 = 20, and J3 = 10. The testing samples are illustrated in Fig. 1(b).

The problem C is concerned with classification of facial images from the ORL
database 2 that contains 400 frontal face images of 40 people (10 pictures per
person). The images were taken at different times (between April 1992 and April
1994 at the AT&T Laboratories Cambridge), varying the lighting, facial expres-
sions (open / closed eyes, smiling / not smiling) and facial details (glasses / no
glasses). All the images have a dark homogeneous background with the subjects
in an upright, frontal position. The whole set is randomly divided into 320 train-
ing images containing all the classes and 80 testing images. The resolution of the
images is 112 × 92 pixels. Despite the number of classes is 40, we noticed that
setting J1 = J2 = J3 = 20 gives nearly the same recognition rate as for J3 = 40
but in a considerably shorter time.

1 http://theremin.music.uiowa.edu
2 http://people.cs.uchicago.edu/∼dinoj/vis/orl/
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cello cello soprano saxophone soprano saxophone

violin violin bassoon bassoon

flute flute piano piano

(a) (b)

Fig. 1. Testing samples: (a) spectrograms for the problem C; (b) hand-written digits
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Fig. 2. Confusion matrices: (a) ALS-NTD: 6 musical instruments; (b) ALS-NTD: 10
hand-written digits; (c) ALS-NTD: 40 facial images; (d) UO-NTD: 6 musical instru-
ments; (e) UO-NTD: 10 hand-written digits; (f) UO-NTD: 40 facial images
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Each tested algorithm is initiated 100 times, starting from a random initial
guess for factor matrices and a core tensor. Both algorithms are run for 20
iterations, and the GPSR-BB algorithm is executed with the settings: kmax = 2,
αmin = 10−8, αmax = 1. The averaged results of supervised classification are
illustrated in Fig. 2 with the Hinton graph of the confusion matrix. Both the
Hinton graph and the confusion matrix are obtained with the Matlab functions
from the Neural Network Toolbox. Furthermore, the recognition rates and elapsed
time averaged over 100 trials are presented in Table 1.

Table 1. Mean recognition rates, standard deviations, and 20 iteration elapsed time
averaged over 100 runs of the tested algorithms for problems A, B, and C

Problem ALS-NTD UO-NTD
Rec. rate [%] Std. [%] Time [sec] Rec. rate [%] Std. [%] Time [sec]

Problem A 91.92 8.41 3.67 99.67 1.64 3.27
Problem B 86.35 6.85 2.57 98.25 2.86 2.34
Problem C 92.5 2 20.8 97.36 0.39 19.8

6 Conclusions

The UO-NTD algorithm classifies all the tested images more accurately and with
a lower variation of the results than the standard ALS-NTD algorithm. The
elapsed time for the UO-NTD is only slightly shorter than for the others. When
an outer-class correlation is very strong both algorithms are not able to classify
such results. This occurs, e.g. between the subjects 34 and 35 in the problem C
(see Figs. 2(c,f)) or the digits 6 and 4 in the problem B (see Figs. 2(b,e)). To
tackle this problem, one may incorporate, e.g. Fisher discriminant information
to the training process, however, this results in difficulty in determining inner-
and outer-class correlations. The underlying iterative algorithms (GPSR-BB or
ALS) update the factors with inconsistent and usually ill-posed training data,
especially as the clusters are partially overlapping, and hence regularization by
truncated iterations is essential. We set up 20 iterations and a considerable
increase in this number may lead to over-training behavior.
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Abstract. We investigate the implementation of multi-label classifica-
tion algorithms with a reject option, as a mean to reduce the time re-
quired to human annotators and to attain a higher classification accuracy
on automatically classified samples than the one which can be obtained
without a reject option. Based on a recently proposed model of man-
ual annotation time, we identify two approaches to implement a reject
option, related to the two main manual annotation methods: browsing
and tagging. In this paper we focus on the approach suitable to tagging,
which consists in withholding either all or none of the category assign-
ments of a given sample. We develop classification reliability measures
to decide whether rejecting or not a sample, aimed at maximising classi-
fication accuracy on non-rejected ones. We finally evaluate the trade-off
between classification accuracy and rejection rate that can be attained by
our method, on three benchmark data sets related to text categorisation
and image annotation tasks.

Keywords: Multi-label classification, Reject option.

1 Introduction

In a multi-label classification problem each sample can belong to more than one
class, contrary to traditional, single-label problems. Multi-label problems occur
in several applications related to retrieval tasks [13], notably text categorisation
[12] and scene categorization [2], and are receiving an increasing interest in the
pattern recognition and machine learning literature. Nevertheless, in many tasks
automatic classification techniques do not achieve a satisfactory performance
yet [14]. As an example in a text categorisation task, the best results obtained
through the automatic “Medical Text Indexer” tool at the U.S. National Library
of Medicine database (MEDLINE), is a recall of about 0.53 and a precision of
about 0.30 [1]. In the recent ImageCLEF 2010 image annotation contest, the
best automatic system attained a mean average precision of 0.45 [9]. Therefore,
manual categorisation remains the only reliable solutions for many practical
applications, although it is a tedious and labour-intensive procedure. This is also
confirmed by the proliferation of manual image annotation tools [14], and by the
use of “Medical Text Indexer” only as a recommendation tool by MEDLINE’s
human indexers [11].
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Based on the above premises, in this paper we investigate a hybrid manual–
automatic annotation approach inspired by the reject option used in single-label
classifiers. The reject option consists in withholding the automatic classification
of a sample, if the decision is not considered reliable enough. It is a mean to limit
excessive misclassifications, at the expense either of a manual post-processing of
rejections, or of their automatic handling by a more accurate but also compu-
tationally more costly classifier, and requires therefore a trade-off between the
accuracy attainable on non-rejected samples and the amount (cost) of rejec-
tions [4,10]. Analogously, in multi-label problems a classifier with a reject option
could automatically take decisions on category assignments deemed reliable for a
given sample, and could withheld and leave to a manual annotator only the ones
deemed unreliable. This could allow a classifier to attain a high classification
performance on non-withheld decisions, which should be traded for the cost of
manual annotation of withheld decisions.

However, the theory and implementations of the reject option proposed so far
in the pattern recognition literature have been developed only for single-label
classifiers and only under the framework of the minimum risk theory. They can
not be applied to multi-label classifiers, whose performance measures are based
on precision and recall, and do not take into account the cost of correct/incorrect
decisions. Therefore, in this paper we will first discuss how a reject option can be
implemented in multi-label classifiers, based on the analysis of the cost (time) of
manual labelling given in [14]. In Sect. 2 we show that this analysis suggests two
possible implementations: rejecting all the category assignments of a sample, or
only a subset of them. The latter option has already been proposed in previ-
ous works by the authors, although it was not not rigorously motivated [6,7].
Therefore, in this paper we focus on the former option. In Sect. 3 we discuss
how classification accuracy on non-rejected samples can be measured in terms
of precisions and recall, and in Sect. 4 we derive two methods to maximise such
accuracy for a given fraction of rejected samples, namely a given cost of manual
annotation. The trade-off between classification accuracy and the fraction of re-
jected samples is experimentally evaluated in Sect. 5 on three benchmark data
sets related to a text categorisation and to an image annotation task.

2 Rejection Criteria for Multi-label Problems

Single-label classification problems with a reject option were formalized under
the framework of the minimum risk theory in [4]. Denoting the costs of correct
classifications, rejections, and misclassifications respectively as λC , λR and λE

(with λC < λR < λE), the expected classification cost is minimized by assign-
ing a sample to the class with the maximum a posteriori probability, if such
probability is higher than (λE − λR)/(λE − λC), and otherwise in rejecting it.
This framework does not fit multi-label problems, whose performance measures
are given in terms of precision and recall, which are not related to classification
costs (see Sect. 3). To devise an implementation of a reject option in multi-label
problems, one issue to address is how to evaluate the cost of manually handling
withheld category assignments.
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The cost of manual annotation clearly depends on the annotation time. A
model of the annotation time has been proposed in [14], for two possible anno-
tation procedures: tagging, which consists in labelling a sample according to a
given set of categories (keywords or “tags”), and browsing, in which the relevance
has to be decided for a whole set of samples to one category at a time. According
to [14], the annotation time of tagging and browsing is:

ttagging = M · (K · tf + ts), tbrowsing =
∑

k=1...N

(Mk
p · tp + Mk

n · tn) ,

where N is the number of categories, M is the number of samples, ts is the so
called “initial setup” time to analyse a sample, tf is the time to assign one label,
K is the average number of labels per sample, Mk

p and Mk
n are respectively the

number of samples which belong and do not belong to the k-th category, while tp
and tn are the time for deciding whether or not a sample belongs to a category.
The most efficient procedure among tagging and browsing can be made on the
basis of the values of the above parameters, according to the task at hand [14].

The above model of manual annotation time suggests two main approaches
to implement a reject option in multi-label classifiers, aimed at trading the clas-
sification accuracy on automatically assigned labels for the cost of manually
processing category assignments withheld by a classifier:

1. In tasks where tagging is used, the manual annotation time of withheld
category assignments can be directly controlled by setting a constraint to the
number of samples which contain withheld assignments, which corresponds
to the term M . Accordingly, in this case it make sense to reject either all or
none of the assignments of a sample, rather than only a subset of them.

2. In tasks where browsing is used, the manual annotation time of withheld
category assignments can be controlled by setting a constraint on the num-
ber of samples which contain withheld assignments, independently for each
category, which correspond to Mk

p and Mk
n . In this case it makes sense to

withheld for each sample only a subset of its category assignments (not nec-
essarily all of them), obviously the most unreliable ones.

In the former approach, the objective is clearly to maximise classification ac-
curacy on non-rejected samples, with a constraint on the maximum fraction of
rejected samples. In the latter approach, the objective is instead to maximise
classification accuracy on non-withheld decisions, with a constraint on the max-
imum fraction of withheld decisions for each individual category. In both cases,
the effectiveness of a reject option has to be evaluated in terms of the attainable
trade-off between the accuracy of the classifier on non-withheld category assign-
ments, and the cost (annotation time) of withheld ones, taking into account the
application requirements of the task at hand.

An implementation of the latter approach has already been investigated by
the authors in [6,7], although it was not motivated by the above arguments.
Therefore, in this paper we focus on the former implementation.
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3 Accuracy of Multi-label Classifiers with a Reject
Option

In this section we discuss how to evaluate the accuracy of a multi-label classifier
in presence of withheld category assignments. To this aim we first introduce
accuracy measures based on precision and recall.

In the field of information retrieval, precision is the probability that a retrieved
document is relevant to a given query or topic, while recall is the probability
that a relevant document is retrieved. In a multi-label classification problem,
each class corresponds to a distinct topic. Denoting the set of categories as
Ω = {ω1, . . . , ωN}, and the feature vector of a sample as x ∈ X ⊆ Rn, where n
is the size of the feature space X , a multi-label classifier implements a decision
function f : X → {+1,−1}N , where the value +1 (−1) in the k-th element of
f(x) means that the sample x is labelled as (not) belonging to ωk. Accordingly,
precision for the k-th class, denoted as pk, is the probability that a sample
belongs to ωk, given that it is labelled as such: pk = P(x ∈ ωk | fk(x) = 1).
Recall (rk) is the probability that a sample is correctly labelled as belonging to
ωk: rk = P(fk(x) = 1 | x ∈ ωk). Ideally, both precision and recall should equal
1. However, in practice a higher precision can be attained only at the expense of
a lower recall, and vice versa. As limit cases, labelling all samples as belonging
to ωk leads to pk = 0 and rk = 1, why labelling all samples as not belonging to
ωk leads to pk = 1 and rk = 0.

To obtain a scalar performance measure, the Van Rijsbergen’s F measure is
often used. For a class ωk it is defined as:

Fβ,k =
1 + β2

β2/pk + 1/rk
, (1)

where the parameter β ∈ [0, +∞] weigh the relative importance of precision and
recall: β < 1 gives a higher weight to recall, while the opposite happens for
β > 1.

Precision and recall can be estimated from a multi-label data set as:

p̂k = TPk

TPk+FPk
, r̂k = TPk

TPk+FNk
, (2)

where TPk (true positive) and FPk (false positive) are respectively the number
of samples correctly and erroneously labelled as belonging to ωk, while FNk

(false negative) is the number of samples erroneously labelled as not belonging
to ωk. The F measure can be estimated by replacing the estimates of precision
and recall of eq. (2) into eq. (1).

For a multi-label classifier, the global precision and recall over all categories
can be computed either by macro- or micro-averaging the class-related values,
depending on application requirements [12]. We will denote macro- and micro-
averaged values respectively with the superscripts ‘M’ and ‘m’. Macro- and
micro-averaged precision and recall are defined as:
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p̂M =
1
N

∑
k=1...N

p̂k, r̂M =
1
N

∑
k=1...N

r̂k, (3)

p̂m =
∑

k=1...N TPk∑
k=1...N (TPk + FPk)

, r̂m =
∑

k=1...N TPk∑
k=1...N (TPk + FNk)

. (4)

The corresponding F measure is defined as [15]:

F̂M
β =

1
N

∑
k=1...N

F̂β,k =
1
N

∑
k=1...N

(1 + β2)/
(

(1 + β2) +
FPk + β2FNk

TPk

)
, (5)

F̂m
β =

1 + β2

β2/p̂m + 1/r̂m
= (1 + β2)/

(
(1 + β2) +

∑N
k=1(FPk + β2FNk)∑N

k=1 TPk

)
. (6)

Let us now consider how to extend the above performance measures to a multi-
label classifier with a reject option. A withheld decision for a sample x and a
category ωk can be denoted with the value 0 as the output of fk(k). In single-label
problems the accuracy attained by a classifier with a reject option is evaluated as
the conditional probability that a pattern is correctly classified, given that it has
not been rejected. Analogously, precision and recall for a given category, when a
reject option is used, can be defined only with respect to non-withheld decisions.
It is easy to see that their corresponding probabilistic definition remains the
standard one given at the beginning of this section, which only considers the
case fk(k) = 1, thus excluding withheld assignments (namely, the case when
fk(k) = 0). Consequently, also the F measure can still be defined as in Eq. (1).
The estimate of these measures on a given data set can be obtained using again
Eq. (2), but taking into account only non-withheld category assignments in the
computation of TPk, FNk and FPk. The micro- and macro-averaged values can
be computed in the same way using Eqs. (3)–(6).

In the rest of this paper we will consider only the F measure (both macro-
and micro-averaged), as it is widely used in multi-label tasks, is easier to handle
being a scalar measure, and can be used to find a trade-off between precision
and recall [15].

4 Maximising the F Measure for a Given Cost of
Rejections

In this section we address the issue of how to define a decision function f(x) =
{f1(x), . . . , fN(x)} ∈ {−1, 0, +1}N for a N -category multi-label classifier with a
reject option, with the constraint that either each or none of the fk(x) equals
0, according to the approach discussed in Sect. 2. As explained in Sect. 2, the
goal is to maximise the classification accuracy on non-rejected samples, with the
constraint that up to a given fraction of samples can be rejected. We will denote
such fraction as rmax.

To decide whether a given sample x has to be rejected or not, by analogy
with approaches widely used in single-label problems we would like to define a
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measure of “classification reliability” R(x) and a rejection threshold T , such that
a sample x is rejected if R(x) < T , and is automatically classified otherwise. The
value of T has to be set according to the desired rejection rate rmax, usually from
validation data. To define a classification reliability measure, one could estimate
the effect of rejecting a sample on the F measure: intuitively, the higher is the
F measure obtained after rejecting a given sample x belonging to any set of
samples S, the less reliable is its automatic classification. Formally, the sample
x∗ ∈ S which is classified with the lowest reliability is given by:

x∗ = argmax
x∈S

F̂β(S − {x}) , (7)

where F̂β(A) denotes the value of the F measure (either macro- or micro-
averaged) evaluated on the set of samples A. Accordingly, R(x) could be defined
as a monotonic decreasing function of (an estimate of) F̂β(S − {x}): the higher
F̂β(S − {x}), the less reliable the classification of x.

Consider first the micro-averaged F measure of Eq. (6). Maximising F̂m
β (S −

{x}) amounts to maximise the term

TP (S)− TP (x)
(FP (S) + β2FN(S))− (FP (x) + β2FN(x))

, (8)

where FP (Z) denotes the number of false positive errors made by the classifier
on the set of samples Z, while the meaning of TP (Z) and FN(Z) is similar. Un-
fortunately, while in single-label problems the contribution of the classification
outcome (either correct or wrong) of a given sample to the expected risk does
not depend on the outcome of the other samples, it turns out that this does not
hold for multi-label problems when classification performance is evaluated using
the F measure. Indeed, it is easy to see that the value of Eq. (8) depends not
only on the rejected sample x, but also on all the other samples.

Nevertheless, the analysis of Eq. (8) reveals that, under some conditions on
the values of its terms, the contribution of a sample x does not depend on the
other samples. In particular, under such conditions it can be shown that the
individual sample x∗ whose rejection maximises F̂m can be found as follows:

x∗ = min
x∈S

TP (x) + A

FP (x) + β2FN(x) + B
, (9)

where A and B are two arbitrary positive constants.1 Whether or not the condi-
tions mentioned above hold is however unknown in practice. Therefore, (9) can
be used to define only a suboptimal classification reliability measure to be used
for any x. In this paper we define R(x) exactly as the right-hand side of (9):

R(x) =
TP (x) + A

FP (x) + β2FN(x) + B
. (10)

1 Due to lack of space, the proof of these properties is reported here, and can be found
at http://prag.diee.unica.it/pra/bib/pillai_iciap2011_rj.

http://prag.diee.unica.it/pra/bib/pillai_iciap2011_rj
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As explained above, any pair of values A > 0 and B > 0 can be used, if the
conditions mentioned above hold. To take into account the cases when they
do not hold, we can set A and B such that R(x) approximates the value of
expression (8). Namely, we can set A = ˆTP (S), B = F̂P (S) + β2 ˆFN(S),
where ˆTP (S), F̂P (S) and ˆFN(S) are estimated from validation data. The val-
ues TP (x), FP (x) and FN(x) can be estimated from validation data as well.
For instance, TP (x) (true positives) can be estimated as the number of correct
category assignments on the subset of the K validation samples nearest to x, for
some K. An alternative method can be used for classifiers which provide a score
sk(x) ∈ R for each class ωk, as many multi-label classifiers do: one can consider
for each class ωk the K validation samples whose scores are closest to sk(x).

Consider now the macro-averaged F measure of Eq. (5). It is not difficult to
see that using the criterion (7) to define a classification reliability measure, the
contribution of a sample x is not independent on the other samples, similarly to
the case of the micro-averaged F measure. However, note that FM

β is defined as
the mean of Fβ,k of the N classes. It turns out that under some conditions on
TPk(x), FPk(x) and FNk(x), the analogous of Eq. (9) holds for the individual
Fβ,k, for any Ak, Bk > 0. As a suboptimal classification reliability measure we
chose therefore to use:

R(x) =
1
N

∑
k=1...N

TPk(x) + Ak

FPk(x) + β2FNk(x) + Bk
, (11)

where the values Ak, Bk, FPk(x), FNk(x) and TPk(x) can be estimated form
validation data as explained above, independently for each category ωk.

5 Experimental Evaluation

The aim of our experiments was to evaluate the trade-off between automatic
classification accuracy and the fraction of rejected samples that can be attained
by a multi-label classifier using the approach proposed in this paper.

The experiments were carried out on three widely used benchmark data sets,
related to two text categorisation and one image annotation task: the “ModApte”
version of “Reuters 21578”,2 the Heart Disease subset of the Ohsumed data set
[8], and the Scene data set3. Their main characteristics are reported in Table 1.

The bag-of-words feature model with the term frequency–inverse document
frequency (tf-idf) features [12] was used for Reuters and Ohsumed. A feature
selection pre-processing step was carried out for Reuters and Ohsumed, through
a four-fold cross-validation on training samples, by applying stemming, stop-
word removal and the information gain criterion. This lead to the selection of
15, 000 features for both data sets.

To implement a N -class multi-label classifier we used the well known binary
relevance approach. It consists in independently constructing N two-class classi-
fiers using the one-vs-all strategy [12,13]. We used as the base two-class classifier
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/
3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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Table 1. Characteristics of the three data sets used in the experiments

Data set Reuters Ohsumed Scene

N. of training samples 7769 12775 1211
N. of testing samples 3019 3750 1196
Feature set size 18157 17341 295
N. of classes 90 99 6
Distinct sets of classes 365 1392 14
N. of labels per sample (avg./max.) 1.23 / 15 1.492 / 11 1.06 / 3
N. of samples per class (min./max.) 1.3E-4 / 0.37 2.4E-4 / 0.25 0.136 / 0.229

a support vector machine (SVM) implemented by the libsvm software [3]. A
SVM linear kernel was used for Reuters and Ohsumed, as it is considered the
state of the art classifier for text categorisation tasks. A radial-basis function
(RBF) kernel was used for Scene instead. The C parameter of the SVM learning
algorithm was set to the libsvm default value of 1. The σ parameter of the RBF
kernel, defined as K(x,y) = exp

(
−||x− y||2/2σ

)
, was estimated by a four-fold

cross-validation on training samples.
Since the output of a SVM is a real number, a threshold has to be set to decide

whether labelling or not an input sample as belonging to the corresponding class.
The N threshold values can be chosen as the ones which optimise the considered
performance measure. In these experiments we used the F measure with β = 1.
To maximise the macro-averaged F measure of Eq. (5), it is known that the
threshold can be set by independently maximising the individual F measure of
each class, Eq. (1) [15]. No optimal algorithm exists for maximising the micro-
averaged F measure instead. We used the suboptimal iterative maximisation
algorithm recently proposed in [5]. In both cases the thresholds were estimated
through a five-fold cross-validation on training data.

In the experiments several values of the rejection rate rmax were considered,
ranging in [0, 0.3] with a step of 0.05. For each rmax value, we implemented
a decision rule with the reject option by using the reliability measures R(x)
of Eq. (10) and Eq. (11), respectively when the micro- and macro-averaged F
measure was used. For any input sample x, the values of TP , FP and FN
in R(x) were estimated using the scores sk(x), k = 1 . . .N of the SVMs, as
described in Sect. 4. To this aim, we estimated the score distribution for each
class on training samples, using 20 bins histograms, where the bins correspond
to disjoint intervals of the score range. The rejection threshold T was set to the
value that lead to the desired rejection rate rmax on training samples. Note that
for rmax = 0 we obtain a standard multi-label classifier without a reject option.

For each data set ten runs of the experiments were carried out, using 80% of
the patterns of the original training set. To this aim, ten different training sets
were obtained by randomly partitioning the original one into ten disjoint subsets
of identical size, and using at each run only eight partitions as the training set.
The original test set was used at each run.
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Fig. 1. Test set averaged F m
1 (left) and F M

1 (right) versus the rejection rate on the
three data sets. The standard deviation is denoted by vertical bars.

In Fig. 1 we report the average micro- and macro-averaged F measure over
the ten runs, as a function of rmax. The standard deviation is also reported as
vertical bars. Note that the decision thresholds of the N two-class SVM classifiers
were computed by optimising the same performance measure (either the micro-
or macro-averaged F measure) used to evaluate the classifier performance.

The results in Fig. 1 show that the classification accuracy attained on non-
rejected samples always increases as the rejection rate increases. In particular,
rejecting up to 30% of the samples, the accuracy improvements are quite re-
markable for the micro-averaged F measure, and also for the macro-averaged
one in the Scene data set, taking also into account the small standard deviation.
Another relevant result is that the rejection rate observed in the test set was
always very close to the desired rejection rate (rmax = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0),
which was set on training samples through the choice of the threshold T . This
can be seen in Fig. 1, where the rejection rates correspond to the position of the
standard deviation bars.

6 Conclusions

We proposed two approaches to implement a reject option in multi-label classi-
fiers, aimed at reducing the manual annotation time in tasks like text categori-
sation and image annotation (either by using the tagging or browsing approach),
attaining at the same time a higher classification accuracy on automatically clas-
sified samples than the one which can be obtained without a reject option. We
also derived a classification reliability measure to decide whether a sample has to
be rejected or not, for the case when the tagging approach is used, with the aim
of maximising both the macro- and micro-averaged F measure on non-rejected
samples. Reported experimental results related to text categorisation and im-
age annotation tasks provided evidence that the proposed approach can allow
to significantly improve the accuracy of an automatic classifier, even when only
30% of samples are rejected and must be manually labelled.
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We mention two issues to be further investigated. One is the definition of more
accurate reliability measures, especially for the macro-averaged F measure. The
other one stems from the novel manual annotation approach proposed in [14],
which combines tagging and browsing, and is more efficient than both of them
for some applications. Accordingly, a hybrid rejection approach obtained as the
combination of the two ones identified in Sect. 2 can be devised for this hybrid
tagging-browsing approach.
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Abstract. Image categorization is a challenging problem when a label
is provided for the entire training image only instead of the object re-
gion. To eliminate labeling ambiguity, image categorization and object
localization should be performed simultaneously. Discriminative Multi-
ple Instance Learning (MIL) can be used for this task by regarding each
image as a bag and sub-windows in the image as instances. Learning a
discriminative MI classifier requires an iterative solution. In each round,
positive sub-windows for the next round should be selected. With stan-
dard approaches, selecting only one positive sub-window per positive
bag may limit the search space for global optimum; meanwhile, selecting
all temporal positive sub-windows may add noise into learning. We se-
lect a subset of sub-windows per positive bag to avoid those limitations.
Spatial relations between sub-windows are used as clues for selection. Ex-
perimental results demonstrate that our approach outperforms previous
discriminative MIL approaches and standard categorization approaches.

Keywords: Image Categorization, Multiple Instance Learning, Spatial
Relation.

1 Introduction

We investigated image categorization using Multiple Instance Learning (MIL).
Image categorization is a challenging problem especially when a label is provided
for a training image only instead of the object region. Low categorization ac-
curacy may result because the object region and background region within one
training image share the same object label. To eliminate labeling ambiguity, im-
age categorization and object localization should be simultaneously performed.
In order to do that, one can use MIL, which is a generalization of standard
supervised learning. Unlike standard supervised learning in which the training
instances are definitely labeled, in the MIL setting, labels are only available
for groups of instances called bags. A bag is positive if it contains at least one
positive instance. Meanwhile, all instances in negative bags must be negative.
Given training bags and instances that satisfy MIL labeling constraints, MIL
approaches can learn to classify unlabeled bags as well as unlabeled instances

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 108–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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in the bags. Thus, if we regard each image as a bag and sub-windows in im-
ages as instances, we can perform image categorization and object localization
simultaneously using MIL.

Several MIL approaches have been proposed [1,2,3,4,5,6,7]. Empirical studies
[2,4,7] demonstrate that generative MIL approaches perform worse than discrim-
inative MIL approaches on benchmark datasets, because of their strict assump-
tion on compact clusters of positive instances in the feature space. Thus, it is
more appealing to tackle image categorization by using discriminative MIL ap-
proaches. In a brief overview, discriminative MIL approaches can be found in
[5,4,6,7]. Andrews et al. [5] introduce a framework in which MIL is considered
in different maximum margin formulations. A similar formulation of [5] can be
found in [9]. DD-SVM presented in [4] trains an SVM for bags in a new feature
space constructed from a mapping model defined by the local extremums of the
Diverse Density function on instances of positive bags. In contrast, MILES [6]
uses all instances in all training bags to construct the mapping model without
applying any instance selection method explicitly. IS-MIL [7] then propose an
instance selection method to tackle large-scale MIL problems. Because [4,6,7]
heavily rely on bag-instance mapping process which is out of scope, we address
our work to the framework proposed in [5].

In this paper, we extend the framework in [5] using spatial relations between
sub-windows. Although spatial relation information have shown their important
role in computer vision tasks [10,11,13,14], there is a few of MIL works utilizing
such information. Zha et al. [12] introduced a MIL approach which captures the
spatial configuration of the region labels. However, their work target to multi-
label MIL problem and spatial relations between segmented regions. Instead of
that, we investigate single-label MIL problem and overlapping relations between
sub-windows. In the framework [5], learning a discriminative MI classifier is for-
mulated as a non-convex problem and requires an iterative solution. In each
round, positive training sub-windows (i.e. instances) for the next round should
be selected with certain criteria. With original criteria, selecting only one positive
sub-window per positive bag may limit the search space for the global optimum;
meanwhile, selecting all temporal positive sub-windows may add noise into learn-
ing. We propose to select a subset of sub-windows per positive bag to avoid those
limitations. Spatial relations between sub-windows are used as clues for selec-
tion. We directly enforce sub-windows spatial relations into learning by selecting
sub-windows of the subset based on their overlapping degree with the most dis-
criminative sub-window. Experimental results demonstrate the effectiveness of
our approach.

2 Support Vector Machine for Multiple Instance
Learning

In statistical pattern recognition, given a set of labeled training instances coupled
with manual labels (xi, yi) ∈ Rd × Y, the problem is how to obtain a classifi-
cation function going from instances to labels f : Rd → Y. In the binary case,
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Y = {−1, 1} indicates positive or negative labels associated with instances. MIL
generalizes this problem by relaxing the assumption on instance labeling. Labels
are given for bags, which are groups of instances. A bag is assigned a positive
label if and only if at least one instance of the bag is positive. Meanwhile, a
bag is negative if all instances of the bag are negative. Formally, given a set of
input instances x1, . . . , xn grouped into non-overlapping bags B1, . . . , Bm, with
BI = {xi : i ∈ I} and index sets I ⊆ {1, . . . , n}. Each bag BI is then given
a label YI . Labels of bags are constrained to express the relation between bag
and instances in the bag as follows: if YI = 1 then at least one instance xi ∈ BI

has label yi = 1, otherwise, if YI = −1 then all instances xi ∈ BI are negative:
yi = −1. A set of linear constraints can be used to formulate the relation between
bag labels YI and instance labels yi:∑

i∈I

yi + 1
2

≥ 1, ∀I : YI = 1 and yi = −1, ∀I : YI = −1, (1)

or compactly represented as: YI = maxi∈I yi.
Learning the discriminative classifiers entails finding a function f : X → R

for a multiple-instance dataset with the constraint YI = sgnmaxi∈I f(xi).

3 The Former Approaches of SVM-Based Multiple
Instance Learning

Andrews et al. [5] proposed two learning approaches based on SVM with dif-
ferent margin notions. The first approach, called mi-SVM, aims at maximizing
the instance margin. Meanwhile, the second approach, called MI-SVM, tries to
maximize the bag margin. Both mi-SVM and MI-SVM can be formed as mixed
integer quadratic programs and need heuristic algorithms to be solved. The al-
gorithms have an outer loop and an inner loop. The outer loop sets the values
for the integer variables. Meanwhile, the inner loop trains a standard SVM. The
outer loop stops if none of the integer variables changes in consecutive rounds.

The mixed integer formulation of mi-SVM based on the generalized soft-
margin SVM can be presented as:

min
{yi}

min
{w,b,ξ}

1
2
‖w‖2 + C

∑
i

ξi

subject to ∀i : yi (〈w, xi〉+ b) ≥ 1− ξi , ξi ≥ 0 ,

yi ∈ {−1, 1} , and (1) hold.

(2)

In (2), labels yi of instances xi not belonging to any negative bag are treated as
unknown integer variables. The target here is to find a linear discriminative MI-
separating that satisfies the constraint wherein at least one positive instance from
each positive bag lies in the positive half-space, while all instances belonging to
all negative bags are in the negative half-space.

In MI-SVM, Andrews et al. introduce an alternative approach to the MIL
problem. The notion of a margin is extended from individual instances to bags.
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The margin of a positive bag is defined as the margin of ”the most positive”
instance of the bag. Meanwhile, the margin of a negative bag is defined by the
margin of ”the least negative” instance of the bag. Let xmm(I) be the instance
of bag BI and has maximum margin to the hyper-plane. Then, MI-SVM can be
formulated as follows:

min
{yi}

min
{w,b,ξ}

1
2
‖w‖2 + C

∑
I

ξI

subject to ∀I : YI = −1 ∧ −〈w, xi〉 − b ≥ 1− ξI , ∀i ∈ I ,

or YI = 1 ∧ 〈w, xmm(I)〉+ b ≥ 1− ξI , and ξI ≥ 0

(3)

4 Support Vector Machine with Spatial Relation for
Multiple Instance Learning

MI-SVM and mi-SVM can be applied to image categorization by regarding each
image as a bag and sub-windows in images as instances. However, their formu-
lations and heuristic solutions do not involve spatial relations of sub-windows
despite such information being extremely meaningful. Surrounding sub-windows
always contain highly related information with respect to visual perception. If
a sub-window in image is classified as a positive instance, it is supposed to be
associated with the object label given to the class. In that sense, its neighboring
sub-windows should be positive also. For example, if a sub-window tightly covers
an object, its slightly surrounding sub-windows also contain that object.

Moreover, in terms of learning, the original approaches require a heuristic
iterative solution to obtain the final discriminative classifier. In each learning
round, candidate positive instances must be selected for the next round. Thus,
positive instance selection criterion is the key step in the learning process. With
mi-SVM, selecting all positive instances in the current round may add noisy
instances to learning. Meanwhile, selecting only the most positive instance which
has largest margin in the current round, as in MI-SVM, may limit the search
space for the global optimum. To avoid such limitations, we propose to select a
subset of instances as candidate positive instances for the next learning round.
Spatial relations between instances (i.e. sub-windows) can be used as clues for
selection. Therefore, we extend the framework proposed by Andrews et al. to
take the spatial relation between sub-windows into account. Positive candidate
selection criteria of the approaches are illustrated in Figure 1 .

In our extension, the notion of a bag margin is used as in the MI-SVM for-
mulation. This means the margin of a positive bag is defined as the margin of
”the most positive” instance of the bag. However, we directly enforce the spa-
tial relations between ”the most positive” instance with its spatially surround-
ing instances by adding constraints to the optimization formulation. Here, let
xmm(I) be the instance of bag BI has maximum margin with respect to the
hyper-plane, and SR(xmm(I), T ) denotes the set of xmm(I) and instances that
surround xmm(I) with respect to the overlap parameter T . An instance belongs
to SR(xmm(I), T ) if its overlap degree with xmm(I) is greater or equal to T , where
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0 < T ≤ 1. The overlap degree between two instances (i.e. sub-windows) is the
fraction of their overlap area over their union area. To this end, our formulation
can be expressed as follows:

Fig. 1. Illustration of positive candidate selection for the next learning round by dif-
ferent approaches. mi-SVM selects all temporal positive instances (orange). MI-SVM
selects only the most positive instance per positive bag (dash-purple). Meanwhile, our
approach selects a subset of spatially related instances (green) per positive bag based
on their overlap degree with the most positive instance of the bag.

min
{yi}

min
{w,b,ξ}

1
2
‖w‖2 + C

∑
I

ξI

subject to ∀I : YI = −1 ∧ −〈w, xi〉 − b ≥ 1− ξI , ∀i ∈ I ,

or YI = 1 ∧ 〈w, x∗〉+ b ≥ 1− ξI ,

∀x∗ ∈ SR(xmm(I), T ) , 0 < T ≤ 1, and ξI ≥ 0

(4)

This formulation can be cast as a mixed integer program in which integer vari-
ables are the selectors of xmm(I) and instances in SR(xmm(I), T ). This problem
is hard to solve for the global optimum. However, we exploit the fact that if
integer variables are given, the problem reduces to a quadratic programming
(QP) that can be solved. Based on that insight, our solution is as follows.

Pseudo code for heuristic algorithm

Initialize: for every positive bag BI

Compute xI =
∑

i∈ I xi/|I|.
SRI = xI.

REPEAT
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- Compute QP solution w, b for dataset with positive
samples {SRI : YI = 1} and negative samples {xi : YI = −1}.

- Compute outputs fi = 〈w, xi 〉+ b for all xi in positive bags.
- FOR (every positive bag BI)

Set xI = xmm(I), mm(I) = argmaxi∈ I fi

SRI = FindSurround(xI , T )
- END

WHILE ({mm(I)} have changed)
OUTPUT (w, b)

In our pseudo code, FindSurround(xI , T ) is the function to find instances (i.e.
sub-windows) surrounding xI and have an overlap degree with xI greater than
or equal to T . The greater T is chosen, the fewer instances (i.e. sub-windows)
surrounding xI are selected. Thus, T can be considered as a trade-off parameter
for expanding the search space as well. T is a predefined number and is fixed
throughout learning iteration. The optimal T is obtained automatically by cross
validating on the training set. Additionally, negative candidates of all learning
rounds are instances of the negative bags.

5 Experiments

5.1 Dataset

We perform experiments on Caltech benchmark datasets.

– Caltech 4 contains images of 4 object categories: airplanes (1,075 images),
cars brad (1,155 images), faces (451 images), motorbikes (827 images), and
a set of 900 clutter background images.

– Caltech 101 consists of images in 101 object categories and a set of clut-
ter background images [8]. Each object category contains about 40 to 800
images.

Ground-truth annotations indicating object’s locations in images are available
for all object categories (but cars brad category in Caltech 4). These are chal-
lenging datasets because of their large variations in object appearance and back-
ground. Some example images are shown in Figure 2.

We evaluate the performance of the approaches on binary categorization tasks
which are distinguishing images of each object category from background images.
On the Caltech 101 dataset, with each binary classification task, a set of 15
positive images taken from one object category and 15 negative images from the
background category are given for training; 30 other images from both categories
are used for testing. The correlative numbers of positive images, negative images
and testing images on Caltech 4 dataset are 100, 100 and 200 respectively. All
images are randomly selected.
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Fig. 2. Example images taken from Caltech 101. From top to bottom are images of
airplanes, cellphones, faces and motorbikes respectively.

5.2 Bag and Instance Representation

In order to apply the MIL approaches, we treat bags as images and instances
of a bag as sub-windows in the image. We employ the standard Bag-of-Word
(BoW) approach for feature representation. First, on each image, we sample a
set of points using a grid. The sampling grid has an 8-pixel distance between
adjacent points. Then, we use the SIFT descriptor to extract SIFT feature at
each point. The SIFT descriptor frame has a 16-pixel width. All descriptors
are then quantized using a visual codebook with 100 visual words obtained by
applying K-Means to 100,000 training descriptors. Finally, the sub-windows of
the image are represented by using a histogram of visual words appearing inside
the sub-window region.

5.3 Evaluated Approaches

We compare our approach with the original SVM-based MIL approaches - mi-
SVM and MI-SVM - and two other standard approaches called GH and MA. GH
denotes a traditional approach in which SVM is used to classify images repre-
sented by a histogram of visual words on the whole image region (GH stands for
Global Histogram). Meanwhile, MA is an approach that uses tight object rectan-
gles given manually as positive examples and a set of randomly selected windows
from negative images - ten windows per negative image - as negative examples
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for training (MA stands for Manual Annotation). The measure for comparison
is the accuracy ratio with respect to image classification performance. To obtain
the best performance of the approaches for fairness, all parameters are opti-
mized. Kernel parameters for SVM and overlap threshold T of our approach are
automatically obtained by using the grid-search approach together with 5-fold
cross validation.

5.4 Experimental Results

Table 1 and Table 2 list the classification performances of the approaches on
Caltech 4 and Caltech 101. Our proposed approach is superior to the others in
most object classes. This means the most discriminative instances found by our
approach are more meaningful than the one selected by MI-SVM and is also more
discriminative than the object regions classified by MA. Moreover, these results
prove that our arguments on the effectiveness of using the spatial relation and the
limitations of the instance selection criteria of mi/MI-SVM are valid. Because of
adding all possible positive instances, mi-SVM also adds more noise to learning
and its performance consequently suffers. MI-SVM has a better accuracy than
mi-SVM, but it is still worse than ours because of its limited search space.

Table 1. Average classification accuracy of the evaluated approaches on Caltech 4.
MA: trains SVM using manual annotation of object region in images. GH: trains SVM
using global histogram of images. mi/MI-SVM: MIL approaches proposed by Andrews
et al [5]. Note that the performance of MA is computed on 3 categories (airplanes, faces
and motorbikes) due to the lack of ground-truth object box of the category cars brad.

Approaches Average Classification Rate(%)

MA 90.73
GH 94.46
mi-SVM 72.54
MI-SVM 95.74
Ours 96.28

Table 2. Average classification accuracy of the evaluated approaches on Caltech 101

Approaches Average Classification Rate(%)

MA 78.32
GH 83.37
mi-SVM 60.49
MI-SVM 84.25
Ours 86.89
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Table 3. Average classification accuracy of the evaluated approaches on 10 categories
of Caltech 101

MA GH mi-SVM MI-SVM Ours

Butterfly 76.7 76.7 53.3 86.7 93.3
Camera 70.0 80.0 53.3 73.3 86.7
Ceiling fan 70.0 80.0 53.3 66.7 80.0
Cellphone 80.0 90.0 63.3 83.3 90.0
Laptop 80.0 76.7 66.7 76.7 86.7
Motorbikes 73.3 93.3 63.3 80.0 90.0
Platypus 83.3 90.0 53.3 86.7 100.0
Pyramid 90.0 90.0 63.3 76.7 90.0
Tick 76.7 83.3 56.7 80.0 90.0
Watch 80.0 80.0 53.3 73.3 80.0

6 Conclusion and Future Work

We proposed an extension of the SVM-based Multiple Instance Learning frame-
work for image categorization by integrating spatial relations between instances
into the learning process. Experimental results on the benchmark dataset show
that our approach outperforms state-of-the-art SVM-based MIL approaches as
well as standard categorization approaches. To the best of our knowledge, this
is the first MIL approach that considers sub-window overlapping relations on
image space rather than feature space only. For future work, we want to extend
our MIL framework so it can be applied to weakly supervised object localization
and recognition.
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Abstract. A common approach in many classification tasks consists in
reducing the costs by turning as many errors as possible into rejects. This
can be accomplished by introducing a reject rule which, working on the
reliability of the decision, aims at increasing the performance of the clas-
sification system. When facing multiclass classification, Error Correcting
Output Coding is a diffused and successful technique to implement a
system by decomposing the original problem into a set of two class prob-
lems. The novelty in this paper is to consider different levels where the
reject can be applied in the ECOC systems. A study for the behavior of
such rules in terms of Error-Reject curves is also proposed and tested on
several benchmark datasets.

Keywords: Error-Reject Curve, reject option, multiclass problem,
Error Correcting Output Coding.

1 Introduction

The reduction of misclassification errors is a key point in Pattern Recognition.
Such errors, in fact, can have a heavy impact on the applications accomplished
by a classification system and can lead to serious consequences. Typically, error
costs are defined and are helpful in defining which kind of error is convenient
to avoid. However, those costs can be so high that the best choice could be an
abstention from the decision so as to demand the last decision to a further and
more efficient test. Since even the decision to abstain brings along some costs
(e.g. the intervention of a human expert), the best approach is to find the optimal
trade off between the numbers of errors and rejects.

The reject option in a classification system was introduced by Chow in [4]
which demonstrated how the optimality could be reached when the prior proba-
bilities and the conditional densities for each class were known. Since then, many
approaches have been tried to introduce a reject rule for tuning the performance
of a classification scheme. For neural networks a criteria to evaluate the relia-
bility of the decision can be fixed as shown in [5,11]. Similar approaches were
followed for Support Vector Machines as proposed in [12,3]. Thus, depending
on the implementation of the system a criterion has to be found to evaluate
the reliability of the decision and to fix a threshold for the application of the
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reject rule. A profitable instrument to assess the performance of the reject rule
independently from the classification costs is the Error-Reject curve that plots
the percentage of errors versus rejects for each decision threshold.

Our work focuses on the application of a rejection rule in a system which face
a multiple class problem through a pool of dichotomizers arranged according to
an Error Correcting Output Coding (ECOC). Such technique was introduced by
[6] to split a multiclass problem in many binary subproblems and has proved to
be an efficient way to increase the performance attainable by a single monolithic
classifier able to produce multiple outputs. The rationale lies on the capability
of the code to correct errors and on the stronger theoretical roots and the better
comprehension which characterize popular dichotomizers like Decision Trees or
Support Vector Machines. Moreover, ECOC systems have been currently used
as a starting point to extend boosting techniques to multiclass problems [7].

An analysis of reject for ECOC systems has been analyzed in our previous
paper [10] where a reject rule evaluating the reliability of the final decision was
proposed. In this paper to improve the performance of the classification system
two consecutive thresholds are applied to focus more on the reliability of each
level of the system. Each classifier, in fact, has an internal decision level where
a first reject can be applied; then, in the decoding stage, an external reject
threshold can be fixed uniquely based on the observation of the output of the
ensemble of classifiers. Meanwhile, since each internal threshold induces an Error-
Reject curve plotted according to an external threshold, we also show how to
obtain a proper description of the system from this range of curves by using the
Error-Reject curve given by their convex hull.

The paper is organized as follows: in section 2 we briefly analyze ECOC frame-
work while in section 3 we introduce the two proposed reject rules. An extended
analysis on how such rule modifies the Error-Reject curve is done in 4. Exper-
imental results on many benchmarks data are reported in section 5 while the
final section 6 presents some conclusions and some possible future developments.

2 The ECOC Classification System

Several multiclass classification systems use a decomposition of the original prob-
lem in many binary subproblems. Among them ECOC has been proved to be
one of the more efficient and flexible to the application needs. Each original class
ωi with i = 1, . . . , n is associated to a codeword of length L. The collection of
these codewords in a matrix, as shown in table 1, represents a coding matrix
C = {chk} where chk ∈ {−1, +1}. Such matrix maps the original multiple class
classification task in n different binary tasks defined by the matrix columns.
Binary classifiers can be trained on each of these new binary data sets.

The classification is then performed by feeding each sample x to all the di-
chotomizers and collecting their outputs in a vector o (output vector) that is
compared with the original coding matrix words. Several decoding rules have
been proposed in literature and it has been largely proved that a loss decoding
rule is the most sensitive and outperforming one [1]. Such rule takes into account
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Table 1. Example of a coding matrix of length 15 for a 4 classes problem

classes codewords

ω1 +1 +1 +1 +1+1+1+1

ω2 −1 −1 −1 −1+1+1+1

ω3 −1 −1 +1 +1−1−1+1

ω4 −1 +1 −1 +1−1+1−1

the reliability of the decision evaluating the loss function on the margin of the
classifier. For ECOC the margins related to a particular codeword ci are given
by cihfh(x) with h = 1, . . . , L. If we know the original loss function L(·) of the
employed dichotomizers, a global loss-based distance can be evaluated as:

DL(ci, f) =
L∑

h=1

L(cihfh(x)). (1)

and thus, the following rule can be defined to predict the k -th class:

ωk = arg min
i

DL(ci, f). (2)

3 Two Levels of Rejection for ECOC System

In the description of ECOC technique, it is possible to observe that there are two
different levels where a reliability parameter can be evaluated and thus a reject
applied. The first simple option is at the output of the classification system where
a threshold can be externally set on the output value without any assumption
neither on the dichotomizers nor on the coding matrix. We already analyzed this
approach [10] by applying a reject option for a loss decoding technique which
proved to work sensibly better than other traditional decoding techniques, like
ones based on Hamming distance. If we assume a loss value normalized in the
range [0, 1], such a criterion (indicated as Loss Decoding) can be formalized as:

r(f , tl) =

{
ωk if DL(ck, f) < tl,
reject if DL(ck, f) ≥ tl.

(3)

where ωk is the class chosen according to eq. (2) and tl ∈ [0, 1].
A second level of decision can be, instead, localized for each single dichotomizer

before grouping the outcomes in the output vector. In fact, each dichotomizer
outcome fh(x) is tipically compared with a threshold τh to decide to which of
the two classes the sample belongs. This means that x is assigned to class +1 if
fh(x) ≥ τh and to class −1 otherwise.

Independently from the choice of each threshold the most unreliable outcomes
will be on its proximity and thus, it could be convenient to reject those samples on
each dichotomizer. This can be accomplished by choosing two different thresholds
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τh1 and τh2 (with τh1 ≤ τh2) and defining a reject rule on each binary classifier
as:

r(fh, τh1, τh2) =

⎧⎪⎨⎪⎩
+1 if fh(x) > τh2,
−1 if fh(x) < τh1,
reject if fh(x) ∈ [τh1, τh2].

(4)

It is worth remarking that the choice of the thresholds should be made so as to
encapsulate the class overlap region into the reject interval [τh1, τh2] and turn
most of the errors into rejects. However, to avoid the bias that can occur because
of the high differences between each classifier outcomes, instead of choosing the
same pair of thresholds for all the dichotomizers, we chose to let all dichotomiz-
ers work at the same level of reliability by fixing a common rejection rate ρ.
Accordingly, the ROC curve of each dichotomizer has been used to evaluate the
pair of thresholds (τh1, τh2) such that fh abstains for no more than ρ samples at
the lowest possible error rate [9].

Therefore, considering that the value produced by the classifier in the case of
a reject is assumed to be 0, we can apply a reject rule defined as:

f
(ρ)
h (x, τh1, τh2) =

{
0 if fh(x) ∈ [τh1, τh2]
fh(x) otherwise

. (5)

It is worth noting that the null value is a possible outcome also for the di-
chotomizer without the reject option. It corresponds to the particular case when
the sample falls on the decision boundary and thus it is assigned neither to the
positive nor to the negative label. In this case, the loss calculated on the margin
is L(cihf(x)) = L(0), whichever the value of cih, while it is higher or lower than
the “don’t care” loss value L(0) if fh(x) �= 0 (depending on whether cihf(x)
is positive or negative). The reject option actually extends such behavior to all
the samples whose outcome fh(x) falls within the reject interval [τh1, τh2]. In
this way, a part of the values assumed by the loss is not considered in the final
decision procedure, which we indicate as Trimmed Loss Decoding.

Loss distance is now modified by the presence of the zero values in the output
word f (ρ) and it is given by:

DL(ci, f (ρ)) =
∑

h∈Inz

L(cihfh(x)) + |Iz| · L(0) (6)

where Inz and Iz are the sets of indexes of the nonzero values and zero values in
the output word, respectively. In practice the loss is given by two contributions,
where the second one is independent from the codeword that is compared to the
output word. Through this new loss distance, a rejection rule can be immediately
applied at the output of the ECOC system by choosing a threshold value tl:

r(f (ρ), tl) =

{
ωk if DL(ck, f (ρ)) < tl,
reject if DL(ck, f (ρ)) ≥ tl.

(7)

where ωk is the class chosen according to eq. (2).
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4 How to Evaluate the Reject Rule

Generally speaking, a reject option is accomplished by evaluating the reliability
of the decision taken by the classifier and rejecting such decision if it is lower
than some given threshold. A complete description of the classification system
with the reject option is given by the Error-Reject (ER) curve which plots the
error rate E(t) against the reject rate R(t) when varying the threshold t on the
reliability estimate. In the ECOC approach when the threshold is applied at
the output of the classification system as in eq. (3), it is very simple to build
the error-reject curve by varying the threshold tl and observing the errors and
rejects obtained (see fig. 1).

Fig. 1. A typical Error-Reject curve for an external reject rule. E0 is the error at
0-reject while the error rate becomes null for a reject rate equal to 1.0.

Some remarks have, instead, to be done on the resulting decision rule which
depends on two different thresholds (ρ and tl) while the previously described
rules depend only on one parameter. In the previous cases the reject option
generates a unique curve where each point is function of only one threshold,
while now we have a family of ER curves, each produced by a particular value
of ρ. There is thus some ambiguity in defining the ER-curve representative of
the performance of the whole system. To solve this problem, let us consider two
ER-curves corresponding to two different values ρ1 and ρ2 of the internal reject
threshold. They can be arranged into two different ways: one of the curve can be
completely below the other one (see fig. 2.a) or they can intersect (see fig. 2.b).
In the first case, the lower curve (and the corresponding ρ) must be preferred
because it achieves a better error rate at the same reject rate (and vice versa).
The second case shows different regions in which one of the curves is better than
the other one and thus, there is not a curve (and an internal reject threshold
value) definitely optimal. Therefore, to obtain an optimal ECOC system under
all circumstances, the ER-curve should include the locally optimal parts of the
two curves. This is obtained if we assume as ER-curve of the ECOC system the
convex hull of the two curves (see fig. 2.c).
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(a) (b)

convex hull

(c)

Fig. 2. Different cases for two ER-curves produced by two rejection rates ρ1 and ρ2

when varying the external threshold tl. (a) The ER-curve produced by ρ1 dominates
the curve produced by ρ2. (b) There is no dominating ER-curve. (c) The convex hull
of the ER-curves shown in (b) including the locally optimal parts of the two curves.

This can be easily extended to the curves related to all the values considered
for ρ so as to assume as the ER-curve of the ECOC system the convex hull of
all the curves (see fig. 3).

Fig. 3. The ER-curves generated for different ρ and their convex hull assumed as the
ER-curve of the ECOC system
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5 Experiments

To test the performance of the proposed reject rules, six multiclass data sets
publicly available at the UCI machine learning repository [2] have been used.
To avoid any bias in the comparison, 12 runs of a multiple hold out procedure
have been performed on all the data sets. In each run, the data set has been
split into three subsets: a training set (containing the 70% of the samples of
each class), a validation set and a test set (each containing the 15% of the
samples of each class). The training set is used to train the base classifiers, the
validation set to normalize the outputs into the range [−1, 1] and to calculate
the thresholds (τh1, τh2) and the test set to evaluate the performance of the
classification system. A short description of the data sets is given in table 2. In
the same table we also report the number of columns of the coding matrix chosen
for each data set according to [6]. As base dichotomizer Support Vector Machines
(SVM) have been implemented through the SVMLight [8] software library using
a linear kernel and an RBF kernel with σ = 1. In both cases the C parameter
has been set to the default value calculated by the learning procedure and the
“hinge” loss L(z) = max{1− z, 0} has been adopted.

We show in fig. 4 and fig. 5 the results obtained for the two classifiers in
terms of the Error-Reject curves calculated by averaging the Error-Reject curves
obtained in the 12 runs of the multiple hold out procedure. The range for the
reject rate on the x-axis has been limited to [0, 0.30] since higher reject rates are
typically not of interest in real applications. Both figures reports a comparison
of the two considered reject rules: Loss Decoding (LD) and TLD (Trimmed Loss
Decoding). For the LD the loss output was normalized in the range [0, 1] and
consequently the thresholds were varied in this interval with the step 0.01. In
the case of TLD we have varied the parameter ρ from 0 to 1 with step 0.05 and,
as in the LD case, the loss output has been normalized in the range [0, 1] and
the external threshold varied with step 0.01 into the same range.

In the majority of the analyzed cases, the two figures show that the ER-
curves generated by the TLD method dominate those of LD. Only in two cases,
i.e., Abalone and Vowel with an SVM with RBF kernel, there is a complete
equivalence of the two curves. Consequently, we can say that TLD approach

Table 2. Data sets used in the experiments

Data Set Classes Features Length (L) Samples

Abalone 29 8 30 4177

Ecoli 8 7 62 341

Glass 6 9 31 214

Letter 26 16 63 5003

Vowel 11 10 14 435

Yeast 10 8 31 1484
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Fig. 4. Error-Reject curves obtained on Abalone (a), Ecoli (b), Glass (c), Letter, (d),
Vowel (e) and Yeast (f) with linear SVM

is superior than LD since it allows us to control the individual errors of the
base classifiers. Thus, the use of an internal reject rule can be profitably used
to improve the performance of the ECOC systems. In conclusion, knowing the
architectural details of the base classifiers (i.e. the nature of their outputs and
their loss functions), the system has the possibility to face the uncertainty of
wrong predictions in a more precise and effective way than a simple external
technique.
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Fig. 5. Error-Reject curves obtained on Abalone (a), Ecoli (b), Glass (c), Letter, (d),
Vowel (e) and Yeast (f) with RBF SVM

6 Conclusions

In this paper we have analyzed two different techniques to enrich an ECOC
classification system with a reject option. The main difference is in the simplicity
of the external approach that only requires an intervention on the decoding stage
of the ECOC system while the Trimmed Loss Decoding requires to manage more
parameters. However, the geometrical method described for the Error-Reject
curve simplifies the use of the internal technique and this can be particularly
useful in improving the error/reject trade-off, as shown by the experiments. A
possible development of this work can be focused on the investigation of the
relation between the rejection rule with the characteristics of the coding matrix.
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Abstract. Amplitude spectra of natural images look surprisingly alike.
Their shape is governed by the famous 1/f power law. In this work we
propose a novel low parameter model for describing these spectra. The
Sum-of-Superellipses conserves their common falloff behavior while si-
multaneously capturing the dimensions of variation—concavity, isotropy,
slope, main orientation—in a small set of meaningful illustrative param-
eters. We demonstrate its general usefulness in standard computer vision
tasks like scene recognition and image compression.

Keywords: Natural images, image statistics, amplitude spectrum, Lamé
curve, superellipse, image retrieval.

1 Introduction

Because the world is highly structured, natural images constitute only a small
subset of all possible images. Their pixel statistics exhibit several properties
which distinguish them from artificially generated images, and which lead to a
number of statistical redundancies ([BM87], [RB94], [HBS92], [TO03] ). Our vi-
sual system is shaped to make use of these regularities ([Fie87], [OF96], [HS98]).
Therefore, it is important to study these characteristics to enhance understand-
ing of its functioning. Additionally, new insights about the manifold inhabited by
natural images within the set of all images can lead to more efficient image com-
pression schemes ([BS02]), improve computer graphics algorithms ([RSAT04])
or serve as priors for image enhancing tasks ([LSK+07], [KK10]). More recently,
links were proposed that connect natural image statistics with aesthetic princi-
ples in artworks ([Red07]).
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Probably the best known statistical regularity of natural images is the similar-
ity between their Fourier amplitude spectra. As an example, consider the images
in figure 1, which shows four images in a), with their corresponding amplitude
spectra in b) and c). Although clear differences between the spectra are visible,
these differences appear to be highly systematic, and there are also some notable
similarities. All four spectra are strongly dominated by low spatial frequencies,
with spectral energy falling off following the well-known 1/f power law. The
spectra also tend to have only a few dominant orientations, with a characteristic
shape between the dominant orientations, which varies from concave to convex.
In this work we propose a novel empirical model designed to capture these vari-
ations across natural amplitude spectra in a small set of meaningful parameters,
while identifying key common shape features.

The main contributions of our work are twofold. First, we describe our simple
low parameter model for natural image spectra that preserves sufficient detail to
reconstruct images and recognize scenes. Second, we demonstrate the feasibility
of an image compression scheme based on the model. We also show how our
model can be used to successfully recognize different scene categories with just a
few parameters, and that it can describe the scale invariant property of natural
images by also being an appropriate model for image patches.

The rest of the paper is structured as follows. First we review earlier work on
modeling approaches for amplitude spectra of natural images. Then we develop
and discuss our Sum-of-Superellipses model S� guided by empirical data, show
its general usefulness in standard computer vision tasks and summarize our work
in the conclusion.

2 Previous Work

For many decades the 1/f falloff behavior of amplitude spectra of natural images
has been well known ([MCCN77], [BM87], [TTC92], [RB94]). [Rud97] investi-
gated the reason for this and concluded that it is caused by the distribution of
statistically independent objects that typically occur in real world scenes. How-
ever, individual images often vary substantially from the average [TTC92]. Ad-
ditional, image specific, parameters α and A were introduced (A/fα [Rud97])
to capture this. The spectral energy is also often anisotropically distributed.
[SH96] proposed an orientation specific variation from the postulated 1/fα slope
by taking samples at orientations θ ∈ [0...π] of both slope and spectral energy.
[TO03] summarize the final model. Let the spectral decomposition of image i be
I(fx, fy) =

∣∣∣∑M−1
x=0

∑N−1
y=0 i (x, y) e−j2π((fxx/M+fyy/N))

∣∣∣. I can be indexed either
by the spatial frequency (fx, fy) or polar coordinates (f, θ) (f = ||(fx fy)||2 and
θ = arctan(fy/fx)). Then

I (f, θ) � A(θ)
fα(θ)

(1)

where A(θ) is an orientation dependent amplitude scaling factor that repre-
sents the energy of the spectral components in a certain direction and α(θ) de-
scribes the descent in each direction. The jagged lines in figure 1g) and h) show
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log (A (θ)) and α(θ) for an orientation sampling of 180 samples between −π/2
and π/2. Increasing the sampling resolution of the orientations improves the ac-
curacy of the orientation information, but at the same time, it also increases the
number of parameters required.

Amplitude spectra can also be described model free. A popular method is
the usage of cumulative statistics to summarize the amplitude spectrum, which
can be done in either frequency or space domain. The homogeneous texture
descriptor—as defined in the MPEG 7 standard [MSS02]—constitutes a fre-
quency domain representation. Mean energy and deviation from a set of 30
frequency band channels are summarized into a feature vector with 60 elements.

By contrast, [OT01] use a set of oriented Gabor-like bandpass filters Gθ,f as
a wavelet basis. To capture the spectral content in space domain for orientation
θ and frequency f they filter an image with Gθ,f and take the mean over the
filter responses. Both of the latter approaches can describe arbitrary images but
lack intuitive descriptive power for the similarities and differences between the
amplitude spectra of natural images.

3 The Sum-of-Superellipses Model

The aim of our work was to create an empirically based model that (i) incor-
porates the A(θ)/fα(θ) behavior in a closed formula, (ii) is parameterized with
a small set of intuitive parameters and (iii) captures orientation related image
structure. Consider the similarities between the spectra in figure 1b) and c). As,
mentioned earlier, the spectra are dominated by low frequencies and a small
number of dominant directions. Inspection of large numbers of natural spectra
such as these reveals that the shape of the function spanning the regions between
the dominant orientations tends to vary systematically. Specifically, the shape
ranges from highly concave, like a sharply pointed star, through isotropic to con-
vex. We are seeking a function that behaves in this way, so that we can capture
intuitively the variations between spectra. One such function is the superellipse,
or as it is sometimes known, a Lamé curve.

S(fx, fy) =
∣∣∣∣fx

vx

∣∣∣∣n +
∣∣∣∣fy

vy

∣∣∣∣n S : R2 → R (2)

vx and vy reflect scaling along the cardinal axis and n < 0 denotes the isotropic
falloff behavior. When we fix S to particular values, we can find parameter values
for vx, vy and n that produce isolines like shown in figure 2a) to d).

However, we are not yet able to describe rotated spectra. Therefore we intro-
duce a rotation matrix Rφ with parameter φ.(

f ′
x

f ′
y

)
= Rφ

(
fx

fy

)
R =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
(3)

Furthermore we want to be able to describe anisotropic falloff behavior and
therefore make a distinction between nx and ny. Due to the spectrum’s ex-
ponential nature—having extremely large values close to the origin and small
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a) b) c) d) e) f) g) h)

Fig. 1. a) Example images from our image database ([Tor11]. Resolution: 256×256). b)
Associated log (I (fx, fy)) as 2D color map and c) contour plot with isolines displayed
at 20, 60, 90, 95, 99 and 99.9 percent of spectral image energy (I slightly smoothed to
reduce clutter). d) and e) Superellipse S fit with 6 parameters as color map and contour
plot. f) Quadratic pixel-wise difference between b) and d) (Color table scaled by factor
6 to enhance error visibility with respect to b) and d)). g) Jagged line corresponds to
α(θ) for b) and c) in eq. 1. Smooth line corresponds to α(θ) for fitted S in d) and e).
h) Jagged line corresponds to log(A(θ)) in b) and c) in eq. 1. Smooth line corresponds
to log (A (θ)) for fitted S model in d) and e).

values at its periphery—fitting the original amplitude spectrum is a numerically
ill-conditioned problem. When visualizing spectra it is usual to take the loga-
rithm. To stabilize the subsequent fitting procedure we integrate the logarithm
function into our model and achieve a model that describes the logarithm of the
amplitude spectrum of natural images. Additionally, we restrict the scope of the
|.| function to the nominator in order to decouple the scaling parameters vx|y
and slope parameters nx|y.

Finally we want to couple the dominant directions with more than a simple
sum. We introduce an exponent m that leads to mixed terms of fx and fy along
oblique directions. This is expressed as a multiplicative factor preceding the
logarithm.

S(fx, fy) = m log

(
|f ′

x|
nx

vx
+

∣∣f ′
y

∣∣ny

vy

)
(4)

Visualizations of the influences of different parameter combinations are shown in
figure 2. This simple model with 6 parameters offers sufficient modes of variation
to describe the images in figure 1 and the patches in figure 6. The interpreta-
tion of the parameters is straightforward. The ratio between vx/vy indicates
anisotropy and the dominant direction. The values n1 and n2 describe convexity
of the spectrum and m reflects the spectral energy.
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Fig. 2. Degrees of freedom that the superellipse offers for describing amplitude spectra.
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Fig. 3. Sum-of-Superellipses results for NS� ≥ 1. Ia) example image. Ib) associated
amplitude spectrum as color coded plot and IIb) isoline plot. Columns c), d) and e)
depict the associated Sum-of-Superellipses with N� = 1, 2 and 3 as color map and
isoline plot. IIa) shows the mean model error per spatial frequency component (fx, fy).

The smooth lines in figure 1g) and h) show the corresponding α(θ) and A(θ)
(see eq. 1) to our superellipse. Note how well they interpolate the orientation
dependent scaling and slope of the ”real” images’ amplitude spectra even though
the fitting procedure of S did not take equation 1 into account but was solely
based on I.

However, eq. 4 only serves well for spectra with two dominant directions.
Figure 3.Ia) shows a more complex example. Observe how its amplitude spectrum
can be described by adding different superellipses in 3c), d) and e) together. A
comparison of the average model error (shown in figure 3.IIa)) for increasing
NS� supports the intuitive impression one has when looking at the isoline plots.
As expected, the mean error per estimated spatial frequency component (fx, fy)
decreases. We conclude this section with the final formulation of the Sum-of-
Superellipses model function.

S�(fx, fy)NS� =
NS�∑
i=1

mi log

(
|f ′

x|
nx,i

vx,i
+

∣∣f ′
y

∣∣ny,i

vy,i

)
(5)

NS� is chosen on an image per image basis at the elbow of the mean error curve
shown in figure 3.IIa). Hence, the final model complexity equals 6NS� .
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3.1 Fitting of Our Model

We fit a superellipse S to the amplitude spectrum I(fx, fy) of image i(x, y) x, y ∈
Ω ⊂ R2 using the Levenberg-Marquardt optimization algorithm included in the
Matlab Optimization ToolboxTM and used finite differences as gradient approx-
imizations. We ignore I(0, 0) during the fitting process because it only reflects
an image’s global brightness offset and carries no meaning for the frequency dis-
tribution. The spectrum is point symmetric if i∀x, y : i(x, y) ∈ R so we need
to include only half of the spectrum’s values for the fitting procedure. We also
experienced that the fitting stays stable if as few as 10% of all availabe values
of I are used.

For NS� = 1 we initialize φ to the direction that includes the maximum spec-
tral energy. vx|y and nx|y were set to 1 and m to −1. If NS� is chosen larger than
1 then first a superellipse S1 with 6 parameters is fitted. Subsequently S2 is fitted
to I ′ = I − S1. After an additional optimization run over vx|y,1|2, nx|y,1|2, m1,2

and φ1|2 we get S�
2 . This procedure runs iteratively until the user selected S�

NS�

is defined.

4 Applications

The parameters of the Sum-of-Superellipses model describe properties of images
that become apparent in their amplitude spectra. Hence, it should become useful
in applications that make use of these characteristics. Lossy image compression
for example tries to identify properties that are shared by the images that are
to be compressed. Only discriminative differences are encoded. This procedure
mimics the approach we followed when defining our model—that is we analyzed
the spectra of natural images, identified similarities and designed model param-
eters to encode the differences.

Scene recognition is largely guided by the image signal’s spectral amplitude
values ([GCP+04]). We trained a Support Vector Machine on a standard scene
database using our parameters as feature values to show that our model suc-
cessfully captures scene specific information. Additionally, we thereby present
evidence that our model reflects the scale invariance property of natural images
since it also works for image patches.

4.1 Image Compression

We have found that the Sum-of-Superellipses model can often reconstruct an
image to a recognizable level with only 6 fitted parameters. We support this
statement by showing reconstruction results using the original phase spectrum
combined with our fitted model. Additionally, we compare our model with a
data-driven approach. We applied PCA to all amplitude spectra in our image
database ([Tor11]) and reconstruct the amplitude spectrum from 6 coefficients.

We follow the naming conventions from [TO03]. Let

I(fx, fy) = μ +
P∑

n=1

unSPCn(fx, fy) (6)
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SPC1 SPC2

μ SPC3 SPC4

SPC5 SPC6

Fig. 4. Mean μ and first 6 SPCs of all
amplitude spectra in the given image
dataset.

I

II

a) b) c)

Fig. 5. Two reconstruction examples
(I+II) using original phase and a)
original amplitude spectrum, b) am-
plitude spectrum reconstructed using
SPC1...SPC6 and c) our fitted model
superellipse with 6 parameters. Dark
borders result from applying the Hann
window function before performing the
Fourier transformation.

be the reconstruction of I from P decorrelated principle components (Spectral
Principle Components) and the sample mean μ. For a visualization of SPC1...
SPC6 and μ see figure 4. Figure 5 shows the reconstruction results using the
image’s original phase information. 5a) combines original phase with the original
amplitude spectrum. The dark borders result from applying the Hann window
function before performing the Fourier transformation. 5b) and c) compare re-
construction results using equation 6 with P = 6 and equation 4.

We only describe the amplitude spectra with 6 parameters thus state-of-the-
art results like [TMR02] cannot be expected. Also the phase spectrum reflects
much of the image’s detail content and meaning. However, our approach produces
identifiable reconstructions and the compression rate is enormous compared to
the alternative where the SPCs and μ must be saved. Importantly, we believe
that an analysis of the distribution of the Sum-of-Superellipses model parameters
can contribute useful insights into the causes of the regularities in natural images,
something that PCA and other data-driven approaches cannot.

4.2 Scene Recognition

[TO99] demonstrated that certain shape characteristics of amplitude spectra cor-
respond to different scene categories. In [OTDH99] the same authors identified 5
distinct characteristics that distinguish amplitude spectra of natural images. 1.
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coast mean spectra forest mean spectra highway mean spectra insidecity mean spectra mountain mean spectra opencountry mean spectra street mean spectra tallbuilding mean spectra

coast mean superellipse forest mean superellipse highway mean superellipse insidecity mean superellipse mountain mean superellipse opencountry mean superellipse street mean superellipse tallbuilding mean superellipse

Fig. 6. First row shows mean local amplitude spectra for each image patch for each
class. Second row shows mean superellipse estimations.

Horizontal shape, 2. Cross shape, 3. Vertical shape, 4. Oblique shape, 5. Circular
shape. Note, that the Sum-of-Superellipses model can capture these character-
istics in only 6 easily comprehensible parameter values. In addition [GCP+04]
provides experimental evidence that although phase is vital for image details the
amplitude properties alone provide ample cues for rapid scene categorization.

[OT01] extend this finding to the spatial layout of natural images. Their Gist
descriptor applies Gabor-like filters to image patches that divide the image into
equally sized areas. The filter responses describe each patch’s frequency and
orientation content. The union of all patch descriptors form an image’s spatial
envelope. The first row of figure 6 shows the mean amplitude spectra of 16
image patches sorted by scene category. It indicates that the spatial layout of
the frequency distribution can serve as an effective scene descriptor. We found
that our model also serves as an appropriate descriptor for patch amplitude
spectra. Row two of figure 6 shows the mean of all superellipses that were fitted
to the image patches.

We tested the model’s ability to capture scene specific information in a stan-
dard classification task, using a publicly available standard database. [Tor11]
provides 8 scene categorization labels (see figure 7) and classification benchmark
results. We used the quadratic difference between the parameter values of the
superellipses that were fitted to the image patches as a distance measure. Figure
8 presents our classification results as a confusion table 8a) and recall values 8b).
Due to the fact that we tried to distinguish 8 classes the chance recall level would
be at 12.5%. The results show that we are far above chance level. Even though
the results are somewhat below those of state-of-the-art scene descriptors like
the Gist it proves that our model parameters capture scene specific information
with few feature values (No patches × 6 = 96 compared to 512).

Another often reported phenomenon of natural images is their apparent invari-
ance regarding the similarity of visual information on different scales ([RB94],
[Rud97]). Our classification results indicate that our model—by also suitably
describing image patches—reflects this prominent quality on global and local
image scale.
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1 tall building 2 inside city 3 street 4 highway

5 coast 6 open country 7 mountain 8 forest

Fig. 7. Examples for each scene classes.
n ≥ 330 images per class.

a) b)

Fig. 8. Classification results as a) con-
fusion matrix and b) recall rate for
each class

5 Conclusion

In this work we proposed a novel empirically derived low parameter model for
amplitude spectra of natural images. We believe it to be superior to older models
because it represents characteristic properties in a closed formula with a set
of intuitive parameters. It also proved adequate for describing local patches of
natural images.

We demonstrated its usefulness in two application scenarios. We classified
scene categories with recall results far above chance and we can reconstruct
images using only 6 fitted parameter values to a recognizable level. The auto-
matic deduction of an image’s tilt angle for horizon estimation could be another
useful use case. The Sum-of-Superellipses was already successfully employed for
clustering paintings according to their visual appearance ([SWF09]).

Further research must be conducted how measures like the Akaike- or Bayesian-
information-criterion could be used to automatically restrict the necessary model
complexity governed by N� for an image. Additionally, we plan to investigate if
the model parameters can serve as low level image descriptors for more sophis-
ticated image retrieval tasks.

The research was financed by the DFG SPP 1335 project ”The Zoomable Cell”.
Please send inquires per email to marcel.spehr@tu-dresden.de.
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Abstract. In this paper we propose a novel approach to combine in-
formation form multiple high-dimensional feature spaces, which allows
reducing the computational time required for image retrieval tasks. Each
image is represented in a “(dis)similarity space”, where each component
is computed in one of the low-level feature spaces as the (dis)similarity
of the image from one reference image. This new representation allows
the distances between images belonging to the same class being smaller
than in the original feature spaces. In addition, it allows computing sim-
ilarities between images by taking into account multiple characteristics
of the images, and thus obtaining more accurate retrieval results. Re-
ported results show that the proposed technique allows attaining good
performances not only in terms of precision and recall, but also in terms
of the execution time, if compared to techniques that combine retrieval
results from different feature spaces.

1 Introduction

One of the peculiarities of content-based image retrieval is its suitability to a huge
number of applications. Image retrieval and categorization is used to organize
professional and home photos, in the field of fashion, for retrieving paintings
from a booklet of a picture gallery, for retrieving images from the Internet, and
the number of applications is growing every day. The increasing use of images in
digital format causes the size of visual archives of becoming bigger and bigger,
thus increasing the difficulty of image retrieval tasks. In particular, the main
difficulties are related to the increase of the computational load, and to the
reduction of the separation between different image categories. In fact, a larger
number of images belonging to different categories may be represented as close
points in each one of the low-level feature spaces that can be used to represent
the visual content.

The combination of multiple image representations (colors, shapes, textures,
etc.) has been proposed to effectively cope with the reduced inter-class variation.
As a drawback, the use of multiple image representations with a high number
of components increases the computational cost of retrieval techniques. As a
consequence, the response time of the system might become an issue for inter-
active applications (e.g., web searching). Over the years, the pattern recognition
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community proposed a number of solutions for combining the output of different
sources of information [10]. The most popular and effective techniques for output
combination are based on fusion techniques, such as the mean rule, the maxi-
mum rule, the minimum rule, and weighted means. In the field of content-based
image retrieval, similar approaches can be employed by considering the value of
similarity between images as the output of a classifier. In particular, combina-
tion approaches have been proposed for fusing different feature representations,
where the appropriate similarity metric is computed in each feature space, and
then all the similarities are fused through a weighted sum [15]. Another approach
to combine different image representations is to stack all the available feature
vectors into a single feature vector, and then computing the similarity between
images by using this high-dimensional representation. As the computational cost
increases with the size of the database and the size of the feature space, it is
easy to see that the use of a unique feature vector made up by stacking different
feature representations might not be a feasible solution.

The issue of combining different feature representations is also relevant when
relevance feedback mechanisms are used. In this case, at each iteration, simi-
larities have to be computed by exploiting relevance feedback information, for
example by resorting to Nearest-Neighbor or Support Vector Machine [17] tech-
niques. In particular, when the combination is attained by computing a weighted
sum of distances, the cost of the estimation of the weights related to relevance
feedback information have to be also taken into account. It is easy to see that
the effectiveness of a given representation of the images is strictly related to
the retrieval method employed. In this viewpoint, an approach that has been
recently proposed in the pattern recognition field is the so called “dissimilarity
space”. This approach is based on the creation of a new space where patterns are
represented in terms of their (dis)similarities to some reference prototypes. Thus
the dimension of this space does not depend on the dimensions of the low-level
features employed, but it is equal to the number of reference prototypes used
to compute the dissimilarities This technique has been used recently to exploit
Relevance feedback in content-based image retrieval field [5,12], where relevant
images play the role of reference prototypes. In addition, dissimilarity spaces
have been also proposed for image retrieval to exploit information from different
multi-modal characteristic [2].

In this paper we propose a novel use of the dissimilarity representation for im-
proving relevance feedback based on the Nearest-Neighbor approach [4]. Instead
of computing (dis)similarities by using different prototypes (e.g., the relevant
images) and a single feature space, we propose to compute similarities by us-
ing just one prototype, and multiple feature representations. Each image is thus
represented by a very compact vector that summarizes different low-level charac-
teristics, and allows images that are relevant to the user’s goals to be represented
as near points. The resulting retrieval system is both accurate and fast, because,
at each relevance feedback iteration, retrieval performances can be significantly
improved with a low computational time compared to the number of low-level
features considered.
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The rest of the paper is organized as follows. Section 2 briefly reviews the dis-
similarity space approach, and introduces the technique proposed in this paper.
Section 3 shows the integration of the proposed approach in the learning process
of a relevance feedback mechanism based on the Nearest-Neighbor paradigm.
Section 4 illustrates some approaches proposed in the literature to combine dif-
ferent feature spaces. Experimental results are reported in Section 5. Reported
results show that the proposed approach allows outperforming other methods of
feature combination both in terms of performances and execution time. Conclu-
sions are drawn in Section 6.

2 From Multi-spaces to Dissimilarity Spaces

Dissimilarity spaces are defined as follows [13]. For a given classification task,
let us consider a set P = {p1, . . . ,pL} made up of L patterns selected as proto-
types, and let us compute the distances d (·) between each pattern and the set of
prototypes. These distances can be computed in a low-level feature space. Each
pattern is then represented in terms of a L-dimensional vector, where each com-
ponent is the distance between the pattern itself and one of the L prototypes. If
we denote with d (Ii,pj) the distance between pattern Ii and the prototype pj ,
the representation of pattern Ii in the dissimilarity space will be:

IP
i = [d (Ii, p1) , . . . , d (Ii,pP )] . (1)

It should be quite clear that the performances depend on the choice of the pro-
totypes, especially when this technique is used to transform a high-dimensional
feature space into a lower dimensional feature space. The literature clearly shows
that the choice of the most suitable prototypes is not a trivial task [13]. In this
paper we use the basic idea of dissimilarity spaces to produce a new vector from
different feature spaces.

Before entering into the details of the proposed technique, let us recall that the
goal is to produce an effective way of combining different feature representations
of images in the context of a Nearest-Neighbor relevance feedback approach
for content-based image retrieval [4]. Relevance feedback provides the systems
a number of images that are relevant to the user’s needs at each iteration. It
is quite easy to see that if we consider different image representations, usually
different sets of images are found in the nearest neighborhood of relevant images.
Which strategy can be employed to assess which of the images can be considered
as relevant? One solution can be the use of combination mechanisms based on
the weighted fusion of similarity measures computed in different feature spaces.
As an alternative, strategies based on the computation of the max, or the min
similarity measure can be employed. Finally, the computation of similarity can be
carried out using a vector where the components from different representations
are stacked. The fusion of similarities requires some heuristics to compute the
weights of the combination, while the max and min rules can be more sensitive
to “semantic” errors in the evaluation of similarity due to the so-called semantic
gap [9]. Finally, the use of stacked vectors can be computationally expensive,
and can suffer from the so-called “curse of dimensionality”, as the dimension
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of the resulting space may be too large compared to the number of available
samples of relevant images.

In order to provide a solution to the computation of the relevance of an image
with respect to the user’s goal by exploiting information from different image
representations, we propose to construct a dissimilarity space by computing the
dissimilarities from a single prototype using multiple feature representations.
This approach results in a very compact feature space, as the dimension is equal
to the number of feature representations. In order to formalize the proposed
technique, let F = {f1, . . . , fM} be the set of low-level feature spaces extracted
from the images, and let dfm

(
Ifm

i , Ifm

j

)
be the distance between the images Ii

and Ij evaluated in the feature space fm. Given a reference image q, the new
representation of a generic image Ii in the dissimilarity multi-space is

I′i =
[
df1

(
qf1 , If1

i

)
, . . . , dfM

(
qfM , IfM

i

)]
. (2)

Summing up, while dissimilarity space are usually constructed by stacking dis-
similarities from multiple prototypes, we propose to stack multiple dissimilarities
originated by considering a single reference point, and measuring the distances
from this point in different feature representations.

Let us have a close look on the choice of the reference image to be used in
equation (2). When the first round of retrieval is performed, i.e., no feedback is
available, we use the query image as the reference point. At each round of rele-
vance feedback, the reference point is computed according to a “query shifting
mechanisms”, i.e., a mechanism designed to exploit relevance feedback by com-
puting a new vector in the feature space such that its neighborhood contains
relevant images with high probability [15]. In particular, we used a modified
Rocchio formula, that has been proposed in the framework of the Bayes decision
theory, namely Bayes Query Shifting (BQS) [6].

qBQS = mr +
σ

‖mr −mn‖

(
1 − r − n

max (r, n)

)
(mr − mn) (3)

where mr and mn are the mean vectors, in each feature space, of relevant and
non-relevant images respectively, σ is the standard deviation of the images be-
longing to the neighborhood of the original query, and r and n are the number of
relevant and non relevant images retrieved after the latter iteration, respectively.

The choice of the query, and the BQS as the reference prototypes is twofold.
First of all, as we are taking into account retrieval tasks in which the user
performs a “query by example” search, and the BQS technique is aimed to
represent the concept that the user is searching for by definition. On the other
hand, the use of multiple images as prototypes can introduce some kind of “noise”
because not all the images may exhibit the same “degree” of relevance to the
user’s needs. The second reason is that the use of a single prototype makes the
search independent from the number of images in the database that are relevant
to the user’s query.

In the literature of content-based image retrieval, few works addressed the
use of dissimilarity spaces to provide for a more effective representation. Some
of the approaches proposed so far employed the original definition of dissimi-
larity space, where dissimilarities are computed by taking into account multiple
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prototypes of relevant images [12,5]. Other authors have proposed to use the
“dissimilarity space” technique for combining different feature space representa-
tions [2]. However, their approach is based on the computation of dissimilarity
relationships between all the patterns in the dataset. Then, a number of proto-
types are selected in each feature space, and the resulting dissimilarity spaces
are then combined to attain a new multi-modal dissimilarity space. Thus the
components of the resulting space are not related to the number of the original
feature spaces, but they are related to the number of patterns used as prototypes
to create the different dissimilarity spaces.

3 Nearest-Neighbor Relevance Feedback in the
Dissimilarity Multi-space

The generation of the dissimilarity space is strictly related to the use of a Nearest-
Neighbor approach to exploit relevance feedback in multiple feature spaces. In
fact, the new space provides for a compact representation of patterns that ease
the computation of nearest-neighbor relationships in multiple low-level feature
representations. The dissimilarity representation computed with respect to a set
of prototypes basically assumes that patterns belonging to the same category
are represented as close points. Analogously, we expect that relevant images are
represented as close points in the space made up of dissimilarities computed
with respect to one reference point in multiple low-level feature spaces. The
Nearest-Neighbor technique employed to exploit relevance feedback is based on
the computation of a relevance score for each image according to its distance
from the nearest relevant image, and the distance from the nearest non relevant
image [4]. This score is further combined to a score related to the distance
of the image from the point computed according to the BQS (Eq. 3), that is
the likelihood that the image is relevant according to the users’ feedback. The
combined relevance score is computed as follows:

rel(I′i)stab =

(
n/k

1 + n/k

)
· relBQS(I′i) +

(
1

1 + n/k

)
· relNN (I′i) (4)

where n and k are the number of non-relevant images, and the whole number
of images retrieved after the latter iteration, respectively. The two terms relNN

and relBQS are computed as follows:

relNN (I′i) =
‖I′i − NNnr (I′i)‖

‖I′i − NNr (I′i)‖ + ‖I′i − NNnr (I′i)‖
(5)

where NN(I′i) denotes the Nearest-Neighbor of I′i, and ‖ · ‖ is the Euclidean
distance,

relBQS(I′i) =
1 − e

1−
(

d′(q′
BQS ,I′i) / max

i
d′(q′

BQS ,I′i)
)

1 − e
(6)

where i is the index of all images in the database and d′
(
q′

BQS , I′i
)

is the distance
of image I′i from the point computed according to Eq. 3.

The dissimilarity multi-space is included in a content-based retrieval system
with Nearest-Neighbor relevance-feedback according to the following algorithm:
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i) the user submits a query image q. The distances dfm

(
qfm , Ifm

i

)
, m =

1, . . . , M , and i = 1, . . .N are computed, where M is the number of low-level
features used to represent the images, and N is the number of the images in the
database;

ii) in each feature space these distances are normalized between 0 and 1 and
they are used to create, for each image Ii, the new dissimilarity representation
I′i, i = 1, . . .N , according to Eq. 2;

iii) the Euclidean distances d′ (q′, I′i) between the dissimilarity representation
of the query, and the dissimilarity representation of all the images are computed,
and then sorted from the smallest to the largest;

iv) the first k images are labelled by the user as being relevant or not;
v) after the relevance feedback, the new reference point qBQS is computed

according to Eq. 3 in each feature space;
vi) the distances dfm

(
qfm

BQS , Ifm

i

)
are computed and normalized in each low-

level feature space analogously to steps i) and ii), where the query q is sub-
stituted with the new point qBQS . These distances are then used to create a
new dissimilarity representation according to Eq. 2 where, again, the query q is
substituted with the new point qBQS ;

vii) in this new space, a score for all the images in the dataset is evaluated
according to Eq. 4, where all the distances are computed according to the dis-
similarity representation;

viii) all the images are sorted according to the value of the relevance score,
and the first k images are labelled by the user as in step iv);

ix) the algorithm starts again from step iv) until the user is satisfied.

4 Techniques for Combining Different Feature Spaces

In the previous sections we have mentioned a number of techniques that can be
used to combine different image representations. In the following we will briefly
review the six combination techniques that have been used in the experimental
section for comparison purposes. Four combination methods aims to combine the
relevance scores computed after relevance feedback, while the other two methods
aim at combining distances.

The four techniques used to combine the relevance scores computed separately
in each of the available feature spaces are the following:

scoreMAX (Ii) = max
f∈F

(scoref (Ii)) (7)

scoreMIN (Ii) = min
f∈F

(scoref (Ii)) (8)

scoreMEAN (Ii) =
∑

f∈F scoref (Ii)

|F | (9)

where F is the set of the feature spaces and scoref (Ii) is the relevance score
evaluated in the feature space f . RR weight is the weighted sum of the relevance
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scores, where the Relevance Rank Weights are obtained as in the following equa-
tion [7]

wRRf =

∑
j∈R

1
rankf (Ij)∑

f ′∈F

∑
j∈R

1
rankf′ (Ij )

(10)

and
scoreRRW (Ii) =

∑
f∈F

wRRf · scoref (Ii) (11)

where f ∈ F , scoref (Ii) is the relevance score evaluated in the feature space f ,
rankf (Ij) is the rank of the image Ij according to scoref , and R is the set of
the relevant images.

The other two combination methods are used to combine the distances com-
puted in different feature spaces. One method computes the sum of the nor-
malized distances (SUM), while the other method computes a “Nearest-Based”
weighted sum (NBW) where the weights are computed in a similar way as in [14]:

wf =

∑
i∈R

∑
j∈R

df (Ii, Ij)∑
i∈R

∑
j∈R

df (Ii, Ij) +
∑
i∈R

∑
h∈N

df (Ii, Ih)
(12)

where f ∈ F , df (·) is a function that returns the distance between two images
measured in the feature space f , and R, and N are respectively the set of the
relevant and non-relevant images.

5 Experimental Results

5.1 Datasets

Experiments have been carried out using the Caltech-256 dataset, from the Cal-
ifornia Institute of Technology1, that consists of 30607 images subdivided into
257 semantic classes [8]. Five different features have been extracted, namely
the Tamura features [16] (18 components), the Scalable Color (64 components),
Edge Histogram (80 components), Color Layout descriptors (12 components) [1],
and the Color and Edge Directivity Descriptor (Cedd, 144 components) [3]. The
open source library LIRE (Lucene Image REtrieval) has been used for feature
extraction [11].

5.2 Experimental Set-Up

In order to test the performances, 500 query images have been randomly ex-
tracted from the dataset, covering all the semantic classes. The top twenty best-
scored images for each query are returned to the user. Relevance feedback is

1 http://www.vision.caltech.edu/Image Datasets/Caltech256/
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performed by marking images belonging to the same class of the query as rele-
vant, and all other images in the top twenty as non-relevant. Performances are
evaluated in terms of retrieval precision, and recall.

In order to evaluate the improvement attained by the proposed method in
the next sub-section we will show the results attained separately in each feature
space, and the performance related to the six combination techniques described
in Section 4.

5.3 Results

Figures 1(a) and 1(b) show the performance of the proposed dissimilarity space
representation compared to the six combination techniques described in Sec-
tion 4, and the performance attained separately in each feature space.

By inspecting the behavior of the precision reported in Fig. 1(a), it can be
easily seen that the highest performances are provided by the proposed dissim-
ilarity (DS) based technique, and by the MEAN of the relevance scores. The
combination of the relevance scores by the MAX and RR Weight rules allows
attaining higher precision results than those attained by four out of the five
features considered. This result is quite reasonable as typically the goal of the
combination is to avoid choosing the worst problem formulation. In addition, it
can be seen that the weighted combination (RR Weight) provides a lower result
compared to the arithmetic MEAN, thus confirming the difficulty in providing
an effective estimation of the weights. Finally, the worst result is attained by
the MIN rule, that represents the logical AND function. Thus, we can conclude
that, at least for the considered data set, the fusion of information from multiple
feature spaces is more effective than the selection of one feature space. In addi-
tion, the results attained by the proposed DS space and the MEAN rule confirm
that an unweighted combination can be more effective than weighted combina-
tion or selection. If we consider the two techniques based on the combination of
the distances, namely the SUM rule and the NBW rule, we can see that their
performances are lower than those of the techniques based on the combination
of scores.

If we consider the recall (Fig. 1(b)), we can see that MEAN rule, and the DS
approaches are still the best technique. It is worth noting that all the combination
techniques, except for the MIN, provide an improvement in recall with respect
to the performance attained in the individual feature spaces. In particular the
fusion techniques working at the distance level provided good results, quite close
to those attained by the RR Weight rule.

The proposed approach based on dissimilarity spaces not only allows attaining
good performances in terms of precision and recall, but also requires a low effort
in terms of computational time if compared to other combination techniques
(Fig. 2). This effect can be explained by considering that all the distances from
each image to the query are computed only once, during the first retrieval itera-
tion. All the following iterations can exploit this result, and all the computation
are made in the low-dimensional dissimilarity space.
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Fig. 1. Caltech-256 Dataset - Precision and Recall for 5 rounds of relevance feedback
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6 Conclusion

In this paper we proposed a technique that addresses the problem of the combina-
tion of multiple-features for image retrieval with relevance feedback. We showed
that a dissimilarity representation of images allows to combine nicely and effec-
tively a number of feature spaces. In particular, reported results show that the
proposed technique allows outperforming other combination methods, both in
terms of performances and computational time. In addition, this method scales
well with the number of features, as the addition of one feature space adds one
component to the dissimilarity vector, and the distances in the original feature
spaces from the query needs to be computed only once.
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Abstract. Document analysis often starts with robust signatures, for
instance for document lookup from low-quality photographs, or similar-
ity analysis between scanned books. Signatures based on OCR typically
work well, but require good quality OCR, which is not always available
and can be very costly. In this paper we describe a novel scheme for ex-
tracting discrete signatures from document images. It operates on points
that describe the position of words, typically the centroid. Each point is
extracted using one of several techniques and assigned a signature based
on its relation to the nearest neighbors. We will discuss the benefits of
this approach, and demonstrate its application to multiple problems in-
cluding fast image similarity calculation and document lookup.

Keywords: image processing, feature extraction, image lookup.

1 Introduction

Over the past decade vast amounts of digitalized documents have become avail-
able. Projects like Google Books and Internet Archive have brought millions
of books online, extremely diverse in form and content. Such a corpus requires
fast and robust document image analysis. This starts with image morphology
techniques, which are very effective for various image processing tasks such as
extraction of word bounding boxes, de-skewing, connected component analysis,
and page segmentation into text, graphics and pictures [1].

Image feature extraction is a well studied problem. Many techniques like SURF
[2] and SIFT [3], [4], FIT [5] perform well at point matching across images, and
image lookup from a database. However these techniques do not fare as well on
repetitive patterns, such as text in document images. In addition, both SURF and
SIFT extract thousands of key features per image, and features are matched by
nearest neighbor search in the feature space which requires sophisticated index-
ing mechanisms. Unlike images of 3D objects, document images are projections
of 2D image (paper) on the 3D scene (with significant warping caused by camera
proximity and paper curvature). Locally Likely Arrangement Hashing (LLAH) [6]
exploits this by making signatures from affine invariant features. This was shown
to work well and achieves high precision in document page retrieval from a cor-
pus of 10k pages. LLAH uses discrete features which are directly used for indexing,
thus simplifying the process. Other retrieval techniques use word shape coding [7],

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 149–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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which should be robust to image deformation, but still suffer significant degrada-
tion in performance on non-synthetic document images.

In this paper we describe a novel method for extracting signatures based solely
on the pixels of the page, and show how it can be applied to a range of problems
in document matching. Our signatures are created from either centroids of the
words, or centers of word bounding boxes. Because of this, we can use them to
match documents for which we only have word bounding box information. The
number of signatures extracted per page is the same as the number of words,
which results in an order of magnitude less features than previous techniques.

We will demonstrate the use of these signatures in two applications: page
similarity detection and image lookup from a database of indexed images. This
work complements similar techniques based on OCR’d text to find similar pages
or similar regions between two books, but works independently of language. In
particular it can be applied to documents where OCR usually performs poorly
(Chinese text, old text, etc.).

2 Algorithm Overview

In this section we cover point cloud extraction from the raw image and creation
of signatures. We also describe two possible improvements: filtering high-risk
signatures and superposition for ambiguous signatures.

2.1 Word Position Extraction

In order to perform signature extraction on a point cloud, the first step is to ex-
tract word centroids from the document image. For this, we use an open source
image processing library named Leptonica [8]. We use a number of steps, includ-
ing conversion of the raw image (Fig. 1a) to grayscale, background normalization
(Fig. 1b), binarization (Fig. 1c), deskewing (Fig. 1d), and a series of morpho-
logical operations to extract the connected components representing words (Fig.
1e). The final step is to extract the centroids (Fig. 1f). This approach assumes
that the document image has either vertical or horizontal text lines, which is
typically the case in printed material and digital books (or we can correct for).

The benefit of operating on word positions is that it only requires the word
bounding boxes, not the image. This way we can use, PDF or OCR word bound-
ing box information as a source of points, which greatly reduces the cost of
computing signatures when working with a large number of pages.

2.2 Signature Calculation from Point Cloud

An overview of signature extraction is shown in Algorithm 1. The basic idea
is, for each point, to select kNNCount nearest neighbors, sort them in radial
distance order, and compute the angle between the selected and neighbor point.
The angle is discretized based on how many bits we decide to use. Discretized
angles (sub-signatures) are concatenated together in order of radial distance,
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(a) Raw (b) Background normalized
gray

(c) Binary

(d) Deskew (e) Word-like connected
components

(f) Word-like connected
components centroids

Fig. 1. Examples of image processing steps while extracting the word centroids

creating the final signature. An illustration of this process is shown on Fig. 2. In
this paper a single angle is represented by 4 bits, i.e. using buckets of 22.5◦.

Distortions such as skew are corrected for during word extraction. Other
types of distortion like severe warping due to lens distortion or paper curvature
are more challenging to deal with. However, the signature extraction algorithm
achieves a reasonable degree of robustness to those. The main failure mode for
matching signatures is actually word segmentation errors leading to changes in
the neighborhood of a point. For example the merging of two words into one
causes a word centroid to be shifted and another one to be missing. Flips in
discretized values of the angle or reordering of the radial distances can also
modify the signature. However in practice, such failures have limited impact on
the result since they only affect small regions.

2.3 Signature Filtering Based on Estimated Risk

The idea is to only keep signatures that are stable with high confidence. We filter
out signatures with high probability of bits shifting or flipping. Each signature
S is composed of smaller sub-signatures S = [s(0)][s(1)]..[s(N)]. We consider
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Algorithm 1. Signature calculation from point cloud
1: kNNCount ← 8 � How many nearest neighbors we care about
2: kBitPerAngle ← 4 � How many bits per neighbor to neighbor we dedicate
3: kMask ← 1 << kBitPerAngle
4: points � Word positions for a given image (image or word box based)
5: signatures ← ∅
6: for all point ∈ points do
7: nn points ← NearestNeighbors(point, kNNCount)
8: nn points ← SortByRadiusInIncreasingOrder(point, nn points)
9: signature ← 0

10: for all neighbor ∈ nn points do
11: alpha ← CalculateAngle(point, neighbor)
12: alpha discrete ← floor(kMask × alpha/2 PI)
13: signature ← signature << kBitPerAngle
14: signature ← signature | alpha discrete
15: end for
16: signatures.push back(signature)
17: end for
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Fig. 2. Overview of signature creation from word centroids

signature variations that comes from slight shifts of word positions. Small shifts
may lead to changes in discretized angle value, e.g. s(0) flipping from 13 to 14
due to small word position shifts, or in the order of sub-signatures, e.g. s(0) and
s(1) swapping as they had almost same radial distance. If we can estimate the
confidence of a given signature, we can filter out weaker ones.

Let’s consider the probability of a discretized angle flipping. If we have angle
α and its discrete value a, where for example a ≤ α < a + 1 then we can say
that distance of from the edge is ε = | α − (a + 0.5) | assuming that a + 0.5 is
edge of discretization. One can easily see that if ε = 0 a random perturbation of
points will lead to a flip in 50% of the cases. If we say that probability of flip is
p(ε), then the probability that the entire signature changes due to at least one
sub signature flipping can be expressed as:

Pflip = 1−
N∏

i=1

(1 − p(εi)) (1)
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Similarly we can estimate the probability of two neighboring points swapping as
p(δr) where δr = | r1 − r2 | / (1

2 (| r1 | + | r2 |)) is the relative radial distance
between consecutive neighbor points from the choosen point. The probability
that the signature changes can be expressed as:

Pswap = 1−
N−1∏
i=1

(1 − p(
| ri − ri+1 |

1
2 (| ri | + | ri+1 |)

)) (2)

Finally the chance of a signature changing due to swap or flip is Pflip or swap =
1− (1− Pflip)× (1 − Pswap).

In this paper we naively modeled the probability distribution as p(x, w) =
0.5 × (w − x) if x ∈ [0, w) and 0 otherwise. x is variable, while w is a thresh-
old parameter. For angular discretization wangle = 0.05, and for radius risk
wradius = 0.01. In experiments where we use signature filtering, signatures with
Pflip or swap > 0.6 are filtered out.

2.4 Superposition of Ambiguous Signatures

Let us consider the problem of angle discretization. We often end up on one side
or the other side an edge in the discretization function. One option is to use both
values when composing the signature. We can consider a signature to be a super-
position of states (angles), and by calculating the signature we project mixtures
to their discrete values. But we can also create all possible projections; i.e. the set
of all signatures. For example if the 1st and 3rd sub-signatures have two possible
states then we have 4 possible signatures. For example [{s1, s

′
1}][s2][{s3, s

′
3}][s4]

would lead to {[s1][s2][s3][s4], [s1][s2][s′3][s4], [s′1][s2][s3][s4], [s′1][s2][s′3][s4]}. In
the following, superposition was used only where indicated for angles within
ε < 0.05 of a discretization edge.

3 Evaluation on Synthetic Data

In this section we evaluate precision and recall of signatures for the task of
matching two pages. The evaluation is done on synthetic data. All the signatures
used were 32bit (generated based on 8 nearest neighbors). We start from an
‘original’ point cloud and a ’copy’ point cloud derived from the original with
some added distortions. All points are within H = 1200 pixels, W = 1600 pixels,
and we use a fixed number of points per page for the original page (Noriginal =
300) (on average one point per 80 × 80 pixel square). The ‘copy’ page then
has (Ncopy = Noriginal × (1 − Cdrop) points where Noriginal × Cdrop points are
randomly be dropped to simulate word segmentation errors. Each copy point is
also moved from its original position as follows:

(xcopy, ycopy) = (xoriginal + rand()× Cdrift, yoriginal + rand() × Cdrift) (3)

where rand() is random float from [0 , 1). In this way we try to emulate realistic
differences that may occur between two sets of point clouds.
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Fig. 3. Signature precision/recall evaluation for the random (3a, 3b) and grid (3c, 3c)
point cloud distribution. Four scenarios: (A) original signatures, (B) risky signatures
filtered, (C) superposition of ambiguous signatures, (D) only using unique signatures.

We experimented first with randomly distributed point clouds, and then with
points aligned on a square grid (e.g. Chinese texts) with small x and y variations
(less than 5 pixels). These two sets are called random and grid set.

Random Distribution: On Fig. 3a, 3b we see that precision for this set remains
100% even as the amount of drop increases. This is expected, because signatures
in this case are fairly unique and can withstand some amount of perturbations.
For variable drop at Cdrop = 10% recall is 40% (Fig. 3a), while for variable drift
(drop fixed at 4%) at Cdrift = 5% pixels recall recall is 20% (Fig. 3b). In both
cases recall shows a steep drop, but there is significant robustness to points being
dropped and shifted around. Also it’s interesting to note that there is practically
no difference in results between scenarios A-D.
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Grid Distribution: This is probably the hardest type of distribution for our
algorithm. It is so regular that unrelated signatures are likely to collide since
neighborhoods all look similar. This is verified in Fig. 3d, where starting preci-
sion is 50% (curve A). This means that many unrelated signatures match across
two identical point clouds. Note that precision is constant as we randomly drop
points, and it seems to perform best in the case where we filter out weak sig-
natures, but also pretty well when we filter out signatures that occur multiple
times on one page. However in Fig. 3d, 3c we see that increased precision when
filtering comes at the expense of recall.

4 Document Image Similarity Application

A common application of analysis is the detection of similar pages. For instance,
one may want to cluster duplicate pages when merging multiple scans of a doc-
ument, or find corresponding pages between 2 different versions. This can be
done based on OCR text, but OCR is an expensive operation, which does not
work well on all scripts. Document digitization is typically done using sheetfed
scanners or other techniques in which acquired images have little warping, mod-
erate skew (±3◦), no scale difference, and small translation variation. These are
optimal conditions for our signatures, although we have shown how we could cor-
rect for imperfect conditions. Jaccard J similarity is used to estimate document
image similarity. The similarity between two pages is calculated as:

Js(p1, p2) =
| S(p1) ∩ S(p2) |
| S(p1) ∪ S(p2) |

(4)

where S(p) is the set of extracted signatures from page p. Depending on image
distortion and word segmentation discrepancy between pages, the number of
matching signatures may be low compared to the total number of signatures.
We can get better estimate using matching signatures to calculate an affine
transform from one image to another, and then use that transform to align
word bounding boxes between pages. We declare that boxes match when their
centroid is close after transformation and they have roughly the same size. From
the matching box count we calculate similarity Jb as:

Jb(p1, p2) =
| MatchCount(p1, p2) |

| BoxCount(p1) + BoxCount(p2)−MatchCount(p1, p2) |
(5)

In Fig. 4 we show both signature matches and box matches. The two example
pages we use are in Chinese and Arabic. Initially few signatures match (Fig.
4a, 4c), but the number improves significantly after alignment. Similarities were
initially 19% for Chinese, and 5% for Arabic. After alignment and similarity
recalculation, we measured 93% for Chinese and 37% for Arabic. Note that in
Arabic we still fail to align many boxes due to inconsistent word segmentation,
but we align enough to have confidence in the measurement. With Chinese,
similarity is high because segmentation is consistent despite being wrong.
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(a) Matching signatures (Chinese text) (b) Matching boxes (Chi-
nese text)

(c) Matching signatures (Arabic text) (d) Matching boxes (Arabic
text)

Fig. 4. Examples of matching signatures and aligned boxes in the page similarity
calculation. Shown on example of Chinnese (4a, 4b), and Arabic (4c, 4d) scripts.

5 Document Image Lookup Application

Document retrieval based on a photograph of a page is another common appli-
cation. For example, a user takes a photo with his mobile phone, sends it to a
server, and the digital reference to the page is returned. We ran two experiments.
The first with a small set of English language classics for a total of 4.1K pages.
The second with a much wider variety of books, totalling 1M pages. In both
cases, we queried for 120 photographs of book pages taken with a NexusOne
Phone camera (5MP). Our server runs on a 2.2GHz PC with 8GB of RAM.
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Fig. 5. Examples of image lookups

Table 1. Image lookup results

Index Size Accuracy Signature size [bits]

4.1K 0.966 16

4.1K 0.949 32

1M 0.871 32

The pipeline is straightforward. We built an index based on OCR bounding
boxes since we had them available (instead of running the image processing).
The signature calculation and indexing takes on average 8.6ms per page (for
32bit signatures, for the 4.1K set). The index maps the signature to a list of
< book, page, position > tuples. At query time, we first process the input image
using Leptonica to extract word centroids from which we generate signatures.
We look up each signature in the index and bucket hits per book page. Finally
we pick the page with the largest number of matching signatures. We only need
to look up around 200 signatures, so queries run very quickly.

Overall accuracy exceeds 95% on the 4.1K set, as shown in Table 1. We
tried various signature sizes and found that they had little impact on the results
themselves. The downside of small signatures is that lookup takes longer because
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we run into many more false positives. Lookup times are sub-millisecond, once
we have the list of query signatures.

We then ran the same experiment on a set of 1M pages, which is orders of
magnitude larger than other sets that we know of, e.g [6],[5]. Accuracy degraded
only a little to 87%, demonstrating that this technique works well with tens of
thousands of books worth of data in the index. The index is also compact: 1M
pages resulted in about 386M signatures, allowing us to store the entire index
in memory on a single machine (< 4GB). We filtered out 0.8% of signatures,
which were shared by over 1000 pages, to prevent false positives. On average
each query results in about 2000 candidate matches, most of which agree.

6 Conclusion

We have presented a method for extracting signatures from document pages,
that works using bounding boxes found from either OCR, or image process-
ing independent of either language or the age of the document. We showed the
robustness of this technique on synthetic data, including post-processing to im-
prove the results in various cases. We then presented two simple applications of
these signatures: one related to page similarity measurement, and the other to
the retrieval of documents from camera pictures on a large corpus. The latter
was shown to be efficient on a large corpus of 1M pages.
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Abstract. In spite of many advantages, multi-modal biometric recog-
nition systems are vulnerable to spoof attacks, which can decrease their
level of security. Thus, it is fundamental to understand and analyse the
effects of spoof attacks and propose new methods to design robust sys-
tems against them. To this aim, we are developing a method based on
simulating the fake score distributions of individual matchers, to evalu-
ate the relative robustness of different score fusion rules. We model the
score distribution of fake traits by assuming it lies between the one of
genuine and impostor scores, and parametrize it by a measure of the
relative distance to the latter, named attack strength. Different values of
the attack strength account for the many different factors which can af-
fect the distribution of fake scores. In this paper we present preliminary
results aimed at evaluating the capability of our model to approximate
realistic fake score distributions. To this aim we use a data set made up
of faces and fingerprints, including realistic spoof attacks traits.

Keywords: Biometric systems, Performance evaluation, Spoof attacks,
Adversarial pattern recognition.

1 Introduction

Biometrics are biological or behavioural characteristics that are unique for
each individual. In order to combat growing security risks in information era,
academies, governments and industries have largely encouraged research and
adoption of biometric identification systems. The main advantage of biometric
technologies compared to conventional identification methods is replacing “what
you have” and “what you know” paradigms with “who you are” one, thus pre-
venting identity fraud by using biometrics patterns that are claimed to be hard
to forge.

However, several researches have shown that some biometrics, such as face
and fingerprint, can be stolen, copied and replicated to attack biometric systems
[1,2]. This attack is known as spoof attack, and also named as direct attack. It
is carried out by presenting replicated biometric trait to the biometric sensor.
“Liveness” testing (vitality detection) methods have been suggested among fea-
sible counteractions against spoof attacks. Liveness testing, which aims to detect
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whether the submitted biometric trait is live or artificial, is performed by either
software module based on signal processing or hardware module embedded into
the input device itself [2,3]. But, so far, the literature review states that no ef-
fective method exists yet. Moreover, the collateral effect when biometric systems
are coupled with liveness detection methods is the increase of false rejection rate.

In our opinion, it is pivotal to develop also methods, beside liveness detection
ones, to design secure biometric systems. A straightforward approach could be to
fabricate fake traits to evaluate the security of the system under design. However,
constructing reliable fake replicas and simulating all possible ways in which they
can be realised, is impractical [1]. A potential alternative is to develop methods
based on simulating the distribution of fake biometric traits. To the best of
our knowledge, no systematic research effort has been carried out toward this
direction yet. The only works which addressed this issue are [5,14,15], where the
fake distribution is simulated by assuming that attacker is able to replicating
exactly the targeted biometric (worst-case scenario): in other words, the fake
score distribution coincides with that of genuine users.

Based on above motivation, we are currently developing a method for evaluat-
ing the robustness of multi-modal systems to spoof attacks, based on simulating
the score distribution produced by fake traits at the matchers output, and then
on evaluating the relative robustness of different score fusion rules. Due to the un-
known impact of several factors, such as particular biometric trait being spoofed,
forgery techniques and skills used by the attackers, etc., on position and shape
of score distribution, we make substantive assumptions on the potential form
and shape it can get. In particular, we argue that the fake score distribution
generated by comparing fake replica of a given subject with the corresponding
template of that subject, is between impostor and genuine distributions. On the
basis of these considerations, as starting point of our research, we model fake
scores as a combination of the genuine and impostor ones, on the basis of a single
parameter, that we call “attack strength”. This parameter controls the degree
of similarity of the fake and genuine scores, with respect to the impostor scores.
The attack strength quantifies the effect of several factors mentioned above, and
allow to figure out more possible scenarios that the only worst-case one [5,14,15].
To evaluate the robustness of a given multi-modal system under spoof attacks
using our method, the testing impostor scores of the matcher under attack have
to be replaced with simulated fake scores generated as mentioned above. The
system designer can also evaluate the robustness of the system by repeating the
above procedure for different values of attack strength parameter. In this paper,
we present preliminary results aimed at evaluating the capability of our model
to approximate realistic fake score distributions.

Our model of the fake score distribution is presented in Sect. 2. In Sect. 3 we
describe its preliminary experimental validation on two data sets of faces and
fingerprints including real spoof attacks.
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2 A Model of the Match Score Distribution Produced by
Spoof Attacks

We denote the output score of a given biometric matcher as random variable s,
and denote with G and I the event that the input biometric trait comes respec-
tively from a genuine or an impostor user. The respective score distributions will
be denoted as p(s|G) and p(s|I). In the standard design phase of a multi-modal
biometric verification systems, the score of the individual matchers s1, s2, . . . are
combined using some fusion rule, and a decision threshold t is set on the fused
matching score sf = f(s1, s2, . . .), so that a user is accepted as genuine if sf ≥ t,
and is rejected as an impostor otherwise. The threshold t is usually set according
to applications requirements, like a desired false acceptance rate (FAR) or gen-
uine acceptance rate (GAR) value. This defines the so-called operational point
of the biometric system. The FAR and GAR values are estimated from training
data made up of a set Gtr of genuine scores and a set Itr of impostor scores.

A straightforward way to analyse the performance of biometric system under
spoof attacks is to fabricate fake biometric traits and present them to the system.
However, this can be a lengthy and cumbersome task [4]. An alternative solution
for multi-modal systems is to simulate the effects of spoof attacks on the match-
ing score of the corresponding biometric trait. This is the approach followed in
[5,14,15]. In these works, the robustness of multi-modal systems against spoof
attacks was evaluated in a worst-case scenario, assuming that the matching score
produced by a spoofed trait is identical to the score produced by the original
trait of the corresponding genuine user. Accordingly, the score distribution of
spoofed traits was assumed to be identical to the genuine score distribution.

However, when a fake trait is presented to the biometric sensor, many fac-
tors can influence the resulting output score distribution, such as the particular
biometric trait spoofed, the forgery approach, the ability of the attacker in pro-
viding a “good” biometric trait of the targeted subject as model for his replica,
the specific matching algorithm used by the system, the degree of “robustness”
of the representation and matcher themselves to noisy patterns, etc. In practice
it can be very difficult, if not impossible, to systematically construct fake bio-
metric traits with different degrees of similarity to the original traits. Due to
the current very little knowledge on how aforesaid factors affect the fake score
distribution, we argue that the only feasible way is to simulate their effect.

A different scenario than the worst-case one considered in [5,14,15] could be
modelled by considering a score distribution of fake traits lying between the
genuine and impostor distributions. For example, in the case of fingerprint, its
“similarity” to the impostors distribution will be caused by several factors as
artefacts in the replica, the image distortion from the mould to the cast, the
good/bad pressure of the attacker on the sensor surface when placing the spoofed
fingerprint, whilst its “similarity” to the genuine users one is given by the fact
that several important features, as the ridge texture and minutiae locations, will
be the same of the correspondent subject. In absence of more specific information
on the possible shapes that the fake score distribution may exhibit, we propose
to simulate the one of any individual matcher as follows: denoting the event that



162 Z. Akhtar et al.

the input biometric trait comes from a spoof attack as F, and the corresponding
score distribution as p(s|F), we replace each impostor score sI with a fictitious
score sF given by

sF = (1− α)sI + αsG , (1)

where sG is a randomly drawn genuine score, and α ∈ [0, 1] is a parameter
which controls the degree of similarity of the distribution of fake scores to the
one of genuine scores. The resulting distribution of fictitious fake scores p(s|F)
is thus “intermediate” between the ones of p(s|I) and p(s|G). By using different
values of α, one gets different possible distributions: the higher the α value, the
closer p(s|F) to the genuine score distribution p(s|G). Accordingly, we name α
“attack strength”. This parameter, α, and related Eq. (1), are aimed not to model
the physical fake generation process, but only its effect on the corresponding
distribution p(s|F), which depends on several causes like the ones mentioned
above. In this paper, we want to investigate if the above model allows us to
obtain a reasonable approximation of realistic fake score distributions.

Since the designer has no a priori information about the possible character-
istics of the attacks the system may be subject to, he should consider several,
hypothetical distributions corresponding to different α, and evaluate the robust-
ness of the score fusion rules of interest against each of them.

Accordingly, Algorithm 1 details the proposed procedure. First, the decision
threshold t on the combined score sf has to be estimated from training data made
up of a set of genuine and impostor scores, Gtr and Itr, as described above. In the
standard performance evaluation procedure, the performance is then evaluated
on a distinct test set of genuine and impostor scores, denoted as Gts and Its. To
evaluate the performance under a spoof attack, we propose instead to replace
the impostor scores Its corresponding to the matcher under attack with a set
of fictitious fake scores Fts, obtained from Eq. (1). This can be done several
times, using different α values to evaluate the performance under spoof attacks
of different strength.

Note that using Eq. (1), if the randomly chosen genuine score sG is higher
than the impostor score sI, then the latter is replaced by a greater fictitious
fake score sF. Therefore, for any threshold value t the FAR evaluated under a
simulated spoof attack is likely to be higher than the FAR evaluated in the stan-
dard way, without spoof attacks. The GAR remains unchanged instead, as spoof
attacks do not affect genuine scores. Accordingly, as the value of α increases, the
corresponding FAR is likely to increase from the values attained for α = 0, cor-
responding to the absence of attacks, to the worst-case corresponding to α = 1.
Hence, the above procedure allows one to evaluate how the system’s performance
degrades for different potential fake score distributions characterised by a differ-
ent attack strength. In particular, it can be useful to check the amount of the
relative “shift” (the corresponding α value) of the impostor score distribution
toward the genuine one, such that the system’s performance (the FAR) drops
below some given value. The more gracefully the performance degrades (namely,
the higher the α value for which the FAR drops below some value of interest),
the more robust a system is.
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Algorithm 1. Procedure for evaluating the performance of a multi-modal bio-
metric system under a simulated spoof attack
Inputs:

– A training set (Gtr, Itr) and a testing set (Gts, Its) made up of N vectors of match-
ing scores coming from genuine and impostor users;

– α: the attack strength value for the matcher under attack.

Output: The system’s performance under a simulated spoof attack with attack
strength α.

1: Set the threshold t from training data (Gtr, Itr), according to given performance
requirements.

2: Replace the scores Its of the matcher under attack with a same number of fictitious
fake scores Fts generated by Eq. (1).

3: Evaluate the performance of the multi-modal system on the scores (Gts, Fts)

3 Experimental Results

In this section, we report a preliminary validation of our model of the fake score
distribution of a single matcher, using two data sets including realistic spoof
attacks. More precisely, our aim is to investigate whether realistic fake score
distributions can be reasonably approximated by our model, for some α values.

3.1 Data Sets

Since no biometric data sets including spoof attack samples are available publicly,
we collected two sets of face and fingerprint images and created spoof attacks.
The collected data set contains face and fingerprint images of 40 individuals,
with 40 genuine samples and 40 fake samples (spoof attacks) per individual.

Face images were collected under different facial expressions and illumination.
Spoofed face images were created with a “photo attack” [11]: we put in front of
the camera the photo of each individual displayed on a laptop screen. For each
individual, we created 40 spoofed images.

Fingerprint images were collected using Biometrika FX2000 optical sensor.
Fake fingers were created by the consensual method with liquid silicon as carried
out in [6,7,8]. We fabricated fake fingerprint using plasticine-like material as the
mould while two-compound mixture of liquid silicon and a catalyst as cast. The
main property of the material utilised as the cast is high flexibility silicon resin
(SILGUM HF) with a very low linear shrinkage. Further details on fingerprint
spoof production can be found in [12].

The fingerprint and the face recognition systems used in the experiments were
implemented using the minutiae-based Neurotechnologs VeriFinger 6.0 and the
elastic bunch graph matching (EBGM) [9], respectively.



164 Z. Akhtar et al.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

score

F
re
q
u
en
cy

 

 
Genuine
Impostor
Fake

0.49 0.5 0.51 0.52 0.53 0.54 0.55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

score

F
re
q
u
en
cy

 

 
Genuine
Impostor
Fake

Fig. 1. Histograms of genuine, impostor and fake scores computed with the collected
face (left) and fingerprint (right) image data sets

3.2 Results

In Fig. 1 the histograms of genuine, impostor and fake scores computed with the
above data sets are shown. It is worth noting that these distributions exhibit
two very different degrees of “attack strength”: the fake score distribution of
fingerprints is close to the impostor distribution, while the one of faces is much
close to the genuine distribution. This provides a first, qualitative support to the
assumption behind our model, namely that different, realistic fake score distri-
butions can lie at different relative “distances” from the genuine and impostor
ones.

To investigate whether the realistic fake scores distributions of Fig. 1 can be
reasonably approximated by our model, for some α value, we evaluated the dis-
similarity between them and the ones provided by our model, as a function of
the attack strength α, and empirically computed the α value that minimised the
dissimilarity between the two distributions. The fictitious fake scores were ob-
tained as described in Algorithm 1. To assess the dissimilarity between the two
distributions, we used the L1-norm Hellinger distance [13], also called Class Sep-
aration Statistic [10]. The L1-norm Hellinger distance between two probability
distribution functions f(x) and g(x), x ∈ X can be measured as:∫

X
|f(x)− g(x)|dx.

Since this is a non-parametric class separation statistic, it can be used for all
possible distributions.

The α values which minimise the dissimilarity between the fake score distri-
bution obtained by our method and the real one is reported in Table 1. The
corresponding distributions are depicted in Fig. 2.

Fig. 2 and Table 1 show that our approximation is rather good for the face
data set. It is less good for the fingerprint data set instead, but it could be
still acceptable to the aim of evaluating the relative robustness of different score
fusion rules in a multi-modal system, which is the final aim of this model. Let
us better explain this point. Obviously, in practice the designer of a biometric
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Table 1. Minimum values of the Hellinger distance between the real distribution of
fake scores and the one obtained by our model, as a function of α, for the face and
fingerprint data sets. The corresponding α value is also shown.

Data set Hellinger distance α

Face 0.0939 0.9144
Fingerprint 0.4397 0.0522
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Fig. 2. Probability distributions of the scores of fake faces (left) and of fake fingerprints
(right) obtained from our data sets (blue), and obtained by our method for fake score
simulation (green), for the α value of Table 1

system can not not know in advance what shapes the fake score distributions
will exhibit, if the system will be subject to a spoof attack. Accordingly, the
robustness of a multi-modal system must be evaluated for several α values. What
the above results show is a preliminary evidence that the simulated distributions
one obtains using our model, for different α values, can actually give reasonable
approximations of possible, realistic distributions.

For the sake of completeness, we also evaluated the accuracy of our model
of fake score distribution in approximating the performance of the individual
matcher under attack, for the α values of Table 1 that give the best approxi-
mation of the fake score distribution, although this is not the final aim of this
model as explained above.

When the system is under a spoof attack, only the False Acceptance Rate
(FAR) value changes, while the genuine acceptance rate (GAR) remains un-
changed, since it does not depend on the matching scores of the impostors. To
check the accuracy of the FAR approximated by our model, we compared the
FAR of the mono-modal system attained under real spoof attacks with the FAR
provided by our model, for all possible values of the threshold.

Fig. 3 shows the FAR as a function of the threshold for the uni-modal bio-
metric system when no spoof attack is included in the data set (i.e., using only
the genuine and impostor data; the “no attack” curve), under a real spoof at-
tack against the face (fingerprint) matcher (using the fake biometric traits of
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Fig. 3. FAR of the uni-modal biometric systems as a function of the threshold applied
to the score, when the data set does not contain spoof attacks (“no attack” curve),
under a real spoof attack against the face (left) or fingerprint (right) matcher (“real
spoof attack” curve), and under a spoof attack simulated with our method (“simulated
attack” curve)

our data set; the “real spoof attack” curve), and by a simulated spoof attack
(using the fake scores provided by our method with the α values of Table 1; the
“simulated attack” curve). It can be seen from Fig. 3 that our model provides
a quite accurate approximation of the FAR in the case of face spoofing (Fig. 3,
left): the maximum absolute difference between the real and the approximated
FAR is 0.02. In the case of fingerprint spoofing (Fig. 3, right), our model over-
estimates the FAR by an amount of up to 0.03 for threshold values lower than
0.502, while it underestimates the FAR up to a larger amount for threshold
values greater than 0.502. This is due to the positive skewness of the real fake
fingerprint scores, as can bee seen in Fig. 2. Note however that the threshold t
corresponding to the zeroFAR operational point is 0.500, as can be seen from
Fig. 1 (right). It is worth remarking that zeroFAR is the operational point such
that the threshold leads to a zero FAR value on training data, and maximises
the correspondent GAR value. Therefore, threshold values more than this one
are out of the designer interest and can be neglected. This means that threshold
values where the real FAR is underestimated by our model can be neglected as
well, since they are localised for threshold values higher than 0.502.

Accordingly, let us focus in particular on high security operational points like
the zeroFAR and 1% FAR, which are very crucial in order to assess the sys-
tem robustness. The corresponding FAR attained by the fake score distribution
in our data set (“Real FAR”) and the approximated FAR using our model is
reported in Table 2. We also report for comparison the approximated FAR ob-
tained using the worst-case assumption of [5,14,15]. The reported results show
that our method provides a good approximation of the performance of the two
considered uni-modal systems under spoof attacks, at these operational points.
The overestimation of the values for the fingerprint system is in some sense ben-
eficial, since it puts the designer in the position to expect a performance decrease
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Table 2. Comparison between the FAR attained at the zeroFAR and 1% FAR op-
erational points by the uni-modal biometric system under a real spoof attack (“real
FAR”) and the FAR approximated by our model (“approximated FAR”)

Operational Real Approximated Approximated
point FAR FAR FAR

(our model) (worst-case assumption)

Face zeroFAR 0.048 0.042 0.114
System 1%FAR 0.235 0.233 0.243

Fingerprint zeroFAR 0.506 0.625 0.948
System 1%FAR 0.600 0.808 0.951

higher than that occurring in the real case. In addition, it can be seen that our
model is more flexible and appropriate for fake score distributions quite far from
the worst-case one, as happens for fingerprints.

To sum up, our preliminary results provide some evidence that our model
is able to reasonably approximate realistic distributions of the matching scores
produced by spoof attacks.

4 Conclusions

Assessing the robustness of multi-modal biometric verification systems under
spoof attacks is a crucial issue, do to the fact that replicating biometrics is a
real menace. The state-of-the-art solves this problem by simulating the effect of
a spoof attacks in terms of fake score distribution modelling, for each individual
matcher. In particular, the fake score distribution is assumed to be coincident
to the genuine users one, thus drawing a worst-case scenario.

However, a more realistic modelling should take into account a larger set of
cases. Unfortunately, the approach of fabricating fake biometric traits to evaluate
the performance of a biometric system under spoof attacks is impractical. Hence,
we are developing a method for evaluating the robustness of multi-modal systems
against spoof attacks, based on simulating the corresponding score distribution.

In this work we proposed a model of the fake score distribution that accounts
for different possible realistic scenarios characterised by factors like different
spoofing techniques, resulting in different degrees of similarity between the gen-
uine and the fake score distribution. Such factors are summarised in our model
in a single parameter associated to the degree of similarity of the fake score dis-
tribution to the genuine one, which is named accordingly “attack strength”. A
designer may use this method to generate several fake distributions for different
α values, to analyse the robustness of the multi-modal system under design.

Preliminary experimental results provided some evidence that our model is
capable to give reasonable approximations of realistic fake score distributions,
and also to be a good alternative to the model based on the worst-case scenario
adopted so far. Currently, we are working on constructing data sets containing
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spoofing attacks of different biometric traits, spoofing techniques, matchers, etc.,
to give a more extensive validation of our model, and to evaluate the effectiveness
of our method for robustness evaluation of multi-modal systems under spoof
attacks.
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Abstract. Thermal faceprint has been paramount in the last years.
Since we can handle with face recognition using images acquired in
the infrared spectrum, an unique individual’s signature can be obtained
through the blood vessels network of the face. In this work, we propose
a novel framework for thermal faceprint extraction using a collection of
graph-based techniques, which were never used to this task up to date.
A robust method of thermal face segmentation is also presented. The
experiments, which were conducted over the UND Collection C dataset,
have showed promising results.

Keywords: Faceprint, Image Foresting Transform, Optimum-Path
Forest, Thermal Face Recognition.

1 Introduction

Biometric identification systems, which are based on physical, behavioral and
physiological features of a given person, have been widely used in the last years
as an alternative to increase the security level or replace the traditional identi-
fication systems, which are mainly based on possession or knowledge.

Although fingerprint recognition still remains the most used biometric tech-
nique, such approach is very sensitive to fingers’ imperfections, which can be
congenital or acquired over time. Other alternatives have been extensively pur-
sued, such as iris and face recognition in visible spectrum. While the former has
prohibitive costs, the latter is extremely dependent on the environment illumi-
nation and is not straightforward to distinguish twins or similar people.

Therefore, aiming to get deeper with face recognition, thermal face imagery
has been used, since the temperature in the different regions of the human face
allow its characterization. This thermal map is directly related to the blood
vessels network of the face, which is unique for each individual [5].

Keeping up this in mind, several works have proposed new approaches for
face recognition in infrared spectrum using physiological features. Akhloufi and
Bendada [1], for instance, introduced the concept of faceprint, in which the
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physiological features of the face are extracted by identifying the boundaries of
isothermal regions. The final result looks like a traditional fingerprint, with the
crests representing the vessels and the valleys the isothermal regions.

Buddharaju et al. [5] provided a comprehensive study on physiological-based
face recognition. Their work proposed a methodology to segment the blood ves-
sels network and extract the thermal minutia points in order to compare the
faces of a given database. Later, Buddharaju and Pavlidis [3] proposed a new
methodology to correct the problems of false acceptance ratio in their previous
work, mainly because of the methodological weakness in the feature extraction
and face matching algorithms. Thus, the main contributions of their work were
twofold: (i) the first one is related with the blood vessels segmentation step,
which was improved in order to remove false contours of the vascular network,
and (ii) the second one concerns with the development of a novel face matching
algorithm, which considers pose deformations and face expression changes.

Chel et al. [6] evaluated the application of PCA technique in infrared images,
and also reported its impact over images acquired with different conditions of
illumination, expression and appearance. Finally, Buddharaju et al. [4] proposed
a feature-based approach that characterizes the shape of isothermal regions, for
further face recognition.

This paper proposes a framework to compute the faceprint using a set of
graph-based tools provided by the Image Foresting Transform (IFT) [9] and by
Optimum Path Forest (OPF) [11]. While the former addresses image processing
techniques, the latter handles unsupervised classification. To the best of our
knowledge, this is the first time that IFT and OPF are used to this purpose.
The remainder of this paper is organized as follows. Section 2 describes IFT and
OPF. The proposed methodology is presented in Section 3. Finally, conclusions
and future works are stated in Section 4.

2 Background Theory

In this section we introduce some basic concepts about the Image Foresting
Transform and the Optimum-Path Forest.

2.1 Image Foresting Transform

The Image Foresting Transform proposed by Falcão et al. [9] is a graph-based
tool to the design of image processing operators. Each pixel is modeled as a
node, and a predefined adjacency relation originates a graph over the image.
After that, the IFT algorithm begins a competition process between some key
samples (seeds) in order to partition the graph into optimum-path trees (OPTs),
which are rooted at the seeds.

The competition process is ruled by a path-cost function that needs to be con-
strained under some restrictions [9], and may simulate a region growing process
in the graph. As one can see, by selecting a proper adjacency relation, seeds esti-
mation methodology and path-cost function, one can design an image processing
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operator based on the IFT paradigm. Actually, the IFT can be seen as a gener-
alization of the Dijkstra’s algorithm to compute shortest paths, in the sense that
IFT allows to use different path-cost functions and with multiple source nodes.

One can find several implementations of IFT-based segmentation. In this
work, we used the IFT-WT (IFT-Watershed) approach [9], which works similar
to the Watershed algorithm [12]. More details about IFT can be found in [9].

2.2 Optimum-Path Forest

Keeping in mind the idea of IFT, the Optimum-Path Forest is a framework to
the design of pattern classifiers based on discrete optimal partitions of the fea-
ture space. In this case, each dataset sample is represented by its corresponding
feature vector in a node, which originates a graph together with a predefined
adjacency relation. Both nodes and arcs can be weighted with density values
and the distance between feature vectors, respectively.

Given some key samples (prototypes), which work similar to the seeds in
the IFT algorithm, the OPF tries to partition the graph in OPTs, which may
represent clusters (unsupervised classification) or labeled trees (supervised clas-
sification). In this work, we applied the unsupervised OPF, also known as OPF
clustering, in order to group isothermal regions of the face.

In this case, the prototypes are chosen as the samples that fall in the regions
with highest density. The OPF clustering uses a k-nn adjacency, in which the
best value of k is chosen as the one the minimizes a minimum cut over the
graph [11], and it is bounded by kmax. This parameter is chosen by user, and
is responsible to allow a wider search range for OPF to compute the density of
each node, which is calculated over its k-neighborhood.

3 Graph-Based Framework

Facial images obtained through infrared devices contain thermal information
about the blood vessels network, which originates regions with different temper-
atures (Figure 3a). This thermal map produces an unique thermal faceprint for
each individual [1].

In this work, we propose a novel framework to obtain faceprints from thermal
images composed by four steps, as described by Figure 1. Each one of these
steps is modeled to be conducted with the graph-based framework described in
the previous section. These steps will be further detailed in the next sections.
In order to validate the proposed method, we used images obtained from UND
Collection C dataset [7].

3.1 Pre-processing

In infrared images, a set of possible face transformations (rotation, scaling and
translation) and sensor-dependent variations (e.g., automatic gain control cal-
ibration and bad sensor points) could undermine the recognition performance.
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Fig. 1. General pipeline for the proposed methodology: the blue boxes denote the four
main steps, while the red ones mean the input and output to the system

This impact can be minimized by performing some pre-processing operations,
as follows:

1. Integer to float conversion to proceed with pixel-based operations at the
image;

2. Pixel normalization to compensate brightness and contrast variations and
3. Histogram equalization in order to reduce image variation due to lighting

and sensor differences.

3.2 Face Segmentation

The image segmentation concerns with to divide an image in regions that share
certain features, aiming to separate the object of interest from its background.
In our proposed approach, we divide the segmentation process in several steps
in order to minimize errors in the face extraction procedure. These steps provide
the basis for the proposed face extraction methodology. Figure 2 displays the
detailed pipeline for the face segmentation schema adopted here.

Fig. 2. Proposed face segmentation pipeline composed by five main steps: image thresh-
olding, morphological filtering, ellipse location, markers finding and post-processing

Image thresholding. This first step attempts to separate the individual’s face
from its background. Given that thermal face images are characterized by high
contrast between background and foreground, we applied the Otsu threshold [10]
in order to obtain a binary image. Figures 3a and 3b display the original and
thresholded images, respectively.
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Morphological Filtering. Although the thresholding process may achieve
good results, some images still could contain imperfections, such as face pix-
els disconnected from the foreground and holes inside the region of interest.
In order to circumvent such problems, we performed morphological closing and
opening operations at the images of the database, as shown in Figure 3c.

Ellipse Location. Given that a human face has quite similarity with the geo-
metric figure defined by an ellipse, this step consists in finding the biggest ellipse
contained at the image’s background. Such task was accomplished by using an
IFT-based method to find ellipses proposed by Andaló et al. [2]. The idea is to
find the biggest ellipse within a homogeneous region with a center in a point
that belongs to this region (Figure 3d).

Markers. The next step consists in to execute the segmentation process using
the IFT-WT, which requires the use of both internal (foreground) and external
(background) markers. In order to automatically find them, we propose here to
use the ellipse found in the previous step as the basis to compute the internal
and external markers. Since we have the ellipse (Section 3.2), we may execute
erosion and dilation operations on that in order to find the internal and external
ellipses (Figure 3e), that are used as internal and external markers, respectively.
This eliminates the need of markers manually selected by user.

The segmentation is then performed using the markers at gradient image
(Figure 3f). The result of the segmentation is shown in Figure 3g.

3.3 Post-processing

The last step consists in to post-process the segmented face, since some im-
ages still have some imperfections (Figure 3g). The idea is to obtain the binary
mask of the segmented image and then run the ellipse location step again (Sec-
tion 3.2). The final result is obtained by applying the ellipse’s mask to the
original image (Figure 3a). Figure 3h displays the resulting face extracted after
the post-processing procedure.

3.4 Isothermal Regions Identification

This step comprises with the identification of the isothermal regions, that is,
regions that have homogeneous temperature, which are related to the pixels’s
brightness. We propose to handle the isothermal regions identification using the
OPF clustering algorithm introduced by Rocha et al [11]. For that, we used
kmax = 100.

The value used for kmax was chosen after several experiments, and seemed to
be the best option in our case. Low values of kmax lead us to an over clustering,
whereas high values tend to merge regions. The reason for that relies on the fact
that the best k value is chosen as the one that minimizes a minimum cut over
the graph [11], and its search range is bounded by kmax.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. Proposed methodology for faceprint extraction: (a) original thermal image in
grayscale (8 bits/pixel), (b) thresholded image according to Section 3.2, (c) image after
morphological filtering (Section 3.2), (d) ellipse location at face (Section 3.2), (e) in-
ternal and external markers defined by the eroded and dilated ellipses, respectively,
(f) gradient image, (g) segmented image with some imperfections, (h) face extracted
at the final of the segmentation process described in Figure 2, (i) face with isother-
mal regions grouped by OPF clustering and (j) faceprint obtained at the final of the
proposed methodology depicted in Figure 1
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4. Proposed methodology applied to two images of the UND Collection C
dataset [7]: (a)-(b) infrared images, (c)-(d) face extracted according to Section 3.2,
(e)-(f) isothermal regions identified (Section 3.4), and skeletons obtained with γ = 1
in (g)-(h) and γ = 3 in (i)-(j)
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3.5 Face Skeletonization

The last step consists in the characterization of the isothermal regions through
the face skeletonization. The edge representation of the objects by their internal
and external skeletons has been studied for several years, since them are compact
representations and allow to rebuild the object. In this work, we carried out this
phase with an IFT-based algorithm proposed by Falcão et al. [8].

The main idea is to use each border pixel as a seed, and then label it with a
consecutive integer value. Further, IFT propagates the contour and the pixel’s
labels, using a path-cost function based on the Euclidean distance. This process
outputs three images: (i) contour label map, (ii) pixel label map and (iii) an
image filtered with the Euclidean Distance Transform. By filtering the contour
label map image with a procedure described in [8], one can obtain its internal
skeletons.

However, the main drawback of such image representation concerns with the
irrelevant branches produced during the image skeletonization. Thus, one need to
consider a threshold γ in order to prune them. Figure 4 displays the methodology
applied to different individuals of UND Collection C dataset. Figures 4g, 4h, 4i
and 4j show the thermal faceprint obtained with different values of pruning
thresholds.

4 Conclusions

In this paper we deal with the problem of face characterization in infrared
imagery. Since that images acquired in the visible spectrum can be affected
by distortions in illumination, thermal images may appear to overcome such
problems.

Some recent works have proposed to build a faceprint of individuals, instead
of carrying out with holistic methods for thermal face recognition. The faceprint
is based on the blood vessels network of the face, which is unique for each
individual, even for twins. Thus, we propose here a novel graph-based framework
to obtain such faceprints, composed by the IFT and OPF methods. To the best
of our knowledge, this is the first time that both techniques are applied to tackle
this problem. We also presented a robust procedure to extract faces from thermal
images. Nowadays, our ongoing research has been guided to extract information
about faceprints in order to associated them to the individuals of the dataset.
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Abstract. In this paper we present a method removing reflection of people on
shiny floors in the context of people detection for video analysis applications.
The method exploits chromatic properties of the reflections and does not require
a geometric model of the objects. An experimental evaluation of the proposed
method, performed on a significant database containing several publicly available
videos, demonstrates its effectiveness. The proposed technique also favorably
compares with respect to other state of the art algorithms for reflection removal.

1 Introduction

Correct segmentation of foreground objects is important in video surveillance and other
video analysis applications. In order to achieve an accurate segmentation, artifacts re-
lated to lighting issues such as shadows and reflections must be detected and properly
removed. In fact, if a shadow or a reflection is mistakenly included as part of a detected
foreground object, several problems may severely impact the accuracy of the subse-
quent phases of the application.

While many papers have been devoted to shadow removal [4,6], the problem of re-
flections has received comparatively much less attention; however, in some environ-
ments, reflections can be more likely than shadows, and usually they are harder to deal
with. Examples are indoor scenes when the floor is smooth and shiny, or outdoor scenes
in rainy weather conditions. Shadows and reflections differ under several respects; the
most important differences are in position and color. The position of a shadow depends
on the light sources, while reflections (assuming that the reflecting surface is a hori-
zontal floor) are always located below the corresponding object. As regards the color, a
shadow depends only on the color of the background and on the light sources (it has a
darker shade of the same color of the background); on the other hand, the color of a re-
flection also depends on the color of the object. As a consequence of these differences,
methods for shadow removal cannot be effectively applied for removing reflections.

One of the earliest work is the paper by Teschioni and Regazzoni [7], following an
approach very similar to the techniques commonly used for shadow removal. In particu-
lar, a model of the color properties of a reflection is assumed; the pixels consistent with
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this model are grouped using a region growing technique, and then discarded from the
foreground. The method makes the assumption that the pixels of the foreground objects
are significantly different (in the RGB space) from both the ones in the background and
the ones in the reflections; when this assumption is not satisfied, it is likely that parts
of the objects will be mistaken as reflections, even if their position would make this
unplausible.

A completely different approach is proposed by Zhao and Nevatia in [8]. Their al-
gorithm is based on the hypothesis that the foreground object is a person, and uses a
geometrical model of a person to recognize those parts of the foreground that have to
be labeled as reflections. Unfortunately this method does not work if the scene includes
other kinds of objects, or even people carrying large objects such as backpacks, suit-
cases or umbrellas.

The recent paper by Karaman et al. [5] presents a more sophisticated method that
takes into account both geometric and chromatic information to remove the reflections.
The method is based on the “generate and test” approach, where for each detected
foreground region several hypotheses are made on the vertical position of the object
baseline. For each position, the algorithm generates a synthetic reflection by combining
the pixels of the background and of the part of the region that lies above the baseline,
adding a blur effect to take into account the imperfect smoothness of the floor surface.
Then, the baseline for which the synthetic reflection is most similar to the observed
one, is selected, and all the pixels below this baseline are removed from the foreground
object. This method is fairly general and robust, since it does not require an a priori
knowledge of the shape of the objects. On the other hand, the “generate and test” process
is computationally expensive, because for each hypothesis an image has to be generated
and matched with the observed region. Furthermore, the pixel combination and blurring
require parameters depending on the characteristics of the floor, implicitly assuming
that the floor smoothness and reflectivity are uniform.

In this paper we propose a reflection removal technique that is similarly based on the
evaluation of multiple hypotheses for the object baseline. The proposed method does
not make assumptions on the characteristics of the floor surface, and so can easily work
with heterogeneous floors. Furthermore, it is extremely efficient because it does not
involve the actual generation of a synthetic reflection, and the test phase exploits an
incremental scheme of computation to evaluate each baseline very quickly.

2 The Proposed Method

We assume that our algorithm is applied to the output of a foreground detection system
based on background subtraction. It does not require a specific background subtrac-
tion technique and can be used as a postprocessing phase of any existing foreground
detection module.

We briefly recall that a foreground detection system compares the current frame to a
background reference image (suitably created and updated), and finds the frame pixels
whose color is significantly different from the corresponding background pixels, using
some sort of thresholding technique. Such pixels are grouped into connected compo-
nents called foreground regions. Our method assumes that each foreground region con-
tains either a single object or a group of objects at the same distance from the camera
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a) b) c) d)

Fig. 1. a) a portion of the input image, containing a person whose height is h with its relative
reflection hr on the floor. The horizontal line represents the ideal cut separating the person from
its background; b) the background reference image B(.); c) The foreground mask F(.) obtained
by using a standard detection algorithm and d) the foreground mask after the removal of the
reflection.

(e.g. a person with his/her luggage); hence the object can be separated from its reflec-
tion using a single horizontal line that we call the cut line. Note that the actual shape of
the object does not need to be known in advance, so the method can be used even when
the scene contains several kinds of objects. The method exploits the following property
of the pixels belonging to a reflection: they are, on the average, much more similar in
color to the background than the other foreground pixels are, although they are not so
similar as to be considered part of the background. This happens because part of the
color of the floor gets blended with the color of the reflected object to form the reflec-
tion color. Figure 1 presents an example of a person with a reflection on the floor, and
the corresponding output of the foreground detection. The figure also shows the ideal
cut line for this image, and the background reference image.

The proposed method, on the basis of these assumptions, determines the ideal cut
line as the row of the foreground detected object that:

– minimizes the average difference in color between the detected object and the back-
ground for all the rows below it;

– on the contrary, maximizes the average difference in color between the detected
object and the background for all the rows above it;

In order to quantitatively evaluate the difference in color, we introduce the following
notations: F (x, y) is the color of the pixel at position (x, y) in the foreground region,
B(x, y) the color of the corresponding pixel in the background image, and r(k) the
set of pixels belonging to the generic row k of the foreground region; we measure the
average difference of color, along the row r(k) of the detected foreground object, the
following quantity:

d(k) =

∑
(x,y)∈r(k)

‖F (x, y)−B(x, y)‖

|r(k)|
(1)

where ‖.‖ is the Euclidean norm in the color space, and |.| is the cardinality of a set.
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Figure 2c reports the graph representing d(k) for any row k of the detected fore-
ground image. The actual determination of the ideal cut line is obtained on the basis of
the values of d(k), by considering for each candidate cut line k, the difference Δ(k)
between the integral of d(i) for the set of the rows above k, and the one of d(j) of the
set of the rows below. By denoting with Ra(k) and Rb(k), respectively the set of the
rows above and below k, we define:

Δ(k) =
1

|Ra(k)| ·
∑

i∈Ra(k)

d(i)− 1
|Rb(k)| ·

∑
j∈Rb(k)

d(j) (2)

According to this definition, Δ(k) represents the difference between the average
foreground–background dissimilarity above the candidate cut line k and the average
dissimilarity below k. It is simple to verify that, if d(i) is greater for the rows belong-
ing to the object than for those of the reflection, starting from the top of the detected
foreground object, Δ(k) increases, reaching its maximum in correspondence with the
ideal cut line, and then it decreases as k approaches the bottom of the reflection. The
ideal cut line σ can be consequently determined by searching for the relative maximum
of Δ(k):

σ = k : Δ(k) ≥ Δ(j), j ∈ [0, h + hr] (3)

Figure 2d reports the graph representing Δ(k) for any row k of the detected foreground
image.

Fig. 2. a) a portion of an image and b) the corresponding background; c) the function d(k) for
each row of the image (k is on the vertical axis, the value of d(k) on the horizontal one); d) the
function Δ(k) for each row of the image (k is on the vertical axis, the value of Δ(k) on the
horizontal one)

In real cases, the Δ(k) function is not as well-behaved as in the ideal case, showing
a few spurious maxima in addition to the one corresponding to the ideal cut line. These
spurious maxima are due to the effect of noise and to dishomogeneity in the color of
the foreground object, which may be locally very similar to the background color. To
filter out the spurious maxima, we have introduced the following criteria, based on
geometrical and physical considerations:
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a. the maximum is discarded if it is too isolated, i.e. the average value of Δ(k) in a
neighborhood of the maximum differs from the maximum by more than a threshold
(both the width of the neighborhood and the threshold are parameters of the algo-
rithm); the rationale of this criterion is that an isolated maximum is more likely due
to noise than to the underlying trend of the function;

b. the maximum is discarded if its position is below the middle of the detected fore-
ground region; in fact, it is geometrically unlikely that a reflection is larger than
the actual object, if the floor surface is horizontal and the object is not significantly
inclined with respect to the vertical;

c. the maximum is discarded, if its value is negative; a negative value of Δ(k) would
mean that the object is more similar to the background that its reflection, and this
is incompatible with the assumptions of the method.

On the basis of these considerations, the method operates according to Algorithm 1.
From a computational complexity point of view, a naive computation of Δ(k) would

require for each value of k the scanning of the whole detected region, in order to com-
pute the average difference from the background above and below row k. Since this
process would have to be repeated for each row, the resulting complexity would be
O(w · h2) (w and h are respectively the width and the height of the region).

The method described by Algorithm 1 computes the function much more efficiently,
using two improvements with respect to a naive implementation:

– the algorithm keeps the values of d(i) in a data structure, so that each d(i) is only
computed once; this would reduce the computational complexity to O(w · h + h2),
where the first term is due to the computation of d(i) and the second term to the
computation of Δ(k) given the d(i) values;

– while iterating over the rows for computing Δ(k), the algorithm keeps in two vari-
ables the sum of the d(i) above and below row k; these variables can be updated
in O(1) at each step, and avoid the need to iterate over d(i) for computing the two
sums of equation 2; hence the overall complexity is reduced to O(w · h + h) =
O(w · h).

Thus the proposed algorithm is very efficient even on large foreground regions, requir-
ing a time that is negligible with respect to the overall processing of a frame.

3 Experimental Evaluation

Experiments were carried out using the object detection algorithm described in [3],
characterized by a good trade-off between the detection performance and the computa-
tional complexity. The dataset used for the tests is composed by four real-world videos.
All refer to indoor scenarios with reflecting floorings. The first and the second video se-
quences (hereinafter referred to as V1 and V2), belonging to the PETS2006 dataset [1],
were taken in the hall of a railway station. Both videos show the same scene but from
different view angles. The third video (hereinafter referred to as V3), was acquired by
the authors nearby a subway platform. Finally, also the last video refers to a subway
platform, and it belongs to the AVSS2007 dataset [2]. In all videos the reflections are
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Algorithm 1. The pseudo-code of the algorithm.
{ Compute d(.) and its sum }
Sum ← 0
for i = 0 to height − 1 do

d(i) ←
∑

(x,y)∈r(i) ‖F (x, y) − B(x, y)‖/|r(i)|
Sum ← Sum + d(i)

end for

{ Compute Δ(.) }
SumAbove ← d(0)
SumBelow ← Sum − d(0)
for row = 1 to height − 1 do

Δ(row) ← SumAbove

row
− SumBelow

height − row
SumAbove ← SumAbove + d(row)
SumBelow ← SumBelow − d(row)

end for

{Compute the best local maximum among the ones satisfying the criteria of feasibility}
BestMax ← −1
BestCut ← −1
for row = height/2 to height − 1 do

if Δ(row) is a local maximum AND Δ(row) > 0 AND Δ(row) is not isolated then
if Δ(row) > BestMax then

BestMax ← Δ(row)
BestCut ← row

end if
end if

end for
if BestMax > 0 then

RETURN BestCut
else

RETURN Nothing
end if

mainly generated by persons in the scene. For each video, a ground truth has been pro-
duced by inspecting the objects detected at each frame and choosing by hand the most
appropriate cutting line, on the basis of the visual appearance. Of course, the objects
missed by the used detection algorithm, as well as the wrongly detected ones (those
corresponding to partial detections of the persons) have been discarded: the method
cannot recover from such errors due to the previous detection phase. Table 1 reports the
main characteristics of the used video sequences, and for each of them the total number
of considered objects. For experimental purposes, the detected objects have been classi-
fied into two classes, reflected objects and unreflected objects: we considered an object
as affected by reflection when hr/(hr + h) ≥ 0.15, i.e. when its reflection is at least
15% of its apparent height.
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Table 1. Dataset main characteristics. All videos were acquired at 4CIF resolution and 25 fps.

ID Dataset / Video sequence Number of frames Type of objects Total objects

V1 PETS2006 / S1-T1-C (view 1) 3021
unreflected 117
reflected 1528

V2 PETS2006 / S1-T1-C (view 3) 3021
unreflected 2375
reflected 556

V3 sequence acquired by the authors 880
unreflected 214
reflected 955

V4 AVSS2007 / AB Easy 5474
unreflected 1206
reflected 1326

In order to measure the effectiveness of the proposed system, we have to consider
that there can be two kinds of errors:

– the algorithm fails to remove completely the reflection of a detected object;
– the algorithm remove completely the reflection, but also cuts away part of the ob-

ject; we call this situation an overcut.

The following indices have been defined to provide a quantitative evaluation of the two
errors for a single object i:

RH(i) =
hr(i)

hr(i) + h(i)
, OE(i) =

ho(i)
h(i)

where ho(i) is the height of the portion of the object that is erroneously removed by the
algorithm in case of an overcut error.

RH(i) is the height of the reflection normalized on the total height of the i-th bound-
ing box; if the algorithm manages to completely remove the reflection, RH(i) should
become 0. More generally, it is expected that the value of RH(i) is reduced by the
application of the algorithm. We call RH(i) the reflection error.

OE(i) is a measure of the overcut relative to the true height of the object; in the ideal
case, if the algorithm does not cut away a part of the object, the value of OE(i) after
the removal is 0. We call OE(i) the overcut error. Notice that, before the application of
the algorithm, OE(i) = 0, since no part of the detected region has been removed.

It is evident that only one of the two indices can be greater than 0; in fact, RH is
meaningful when part of the reflection still remains after the cut, while OE must be
considered when the cut removes the whole reflection and (possibly) part of the actual
object. If we denote with N and M the cardinality of the two disjoint sets of boxes
on which the proposed cut line is respectively below or above the ideal cut line, then
the performance of the system over all the objects can be expressed in terms of the
following two indices:

MRH =
1
N
·

∑
i:RH(i)>0

RH(i)

MOE =
1
M
·

∑
i:OE(i)>0

OE(i)

which are the average reflection and overcut errors.
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Table 2. Performance of the proposed reflection removal method

Video
Method

Type of Reflection Error Overcut Error
ID objects MRH (before) MRH (after) Δ% MOE

V1
proposed method

unreflected 0.082 0.057 31.0% 0.031
reflected 0.436 0.391 10.3% 0.030

Karaman
unreflected 0.080 0.068 15.4% 0.071

reflected 0.417 0.304 27.2% 0.027

V2
proposed method

unreflected 0.095 0.037 61.1% 0.026
reflected 0.206 0.070 66.0% 0.057

Karaman
unreflected 0.089 0.053 40.4% 0.026

reflected 0.241 0.133 44.8% 0.106

V3
proposed method

unreflected 0.127 0.068 46.6% 0.064
reflected 0.294 0.075 74.4% 0.039

Karaman
unreflected 0.135 0.035 74.3% 0.063

reflected 0.320 0.217 32.0% 0.220

V4
proposed method

unreflected 0.057 0.023 59.6% 0.040
reflected 0.202 0.065 67.8% 0.031

Karaman
unreflected 0.060 0.042 30.0% 0.103

reflected 0.203 0.095 53.2% 0.063

The experimental results are reported in Table 2. For comparison, the table also
reports the performance of another recent reflection removal algorithm by Karaman
et al. [5] for which we have provided our own implementation. The motivation behind
the choice of Karaman’s algorithm is twofold: first, it is a very recent approach pre-
sented in the literature that was tested also on standard datasets, where it has shown a
very interesting performance; second, our proposed approach is similar to Karaman’s
one as they are both based on the evaluation of multiple hypotheses for the object base-
line, even if the two methods make different assumptions about the properties of the
reflections. Table 2 reports in the fourth, fifth and sixth columns the reflection removal
performance expressed in terms of the MRH index. This analysis was done consid-
ering only the objects with no overcut, comparing the reflection error before and after
the reflection removal. The sixth column shows the relative improvement in the MRH
index. Finally, the rightmost column of the table shows the MOE index.

Considering the non-overcut objects, the results show a consistent reduction of the
reflection error, which is decreased in most cases by more than 50%. Notice that the
error is reduced also for unreflected objects. As evident from the last column in Table 2,
the algorithm does not introduce appreciable overcut errors: less than 5% in the aver-
age on both the unreflected and the reflected objects. It should be also considered that
on reflected objects, an overcut means that the whole reflection has been eliminated;
thus for the reflected samples reported in this table, the algorithm yields a significant
improvement in the height estimation. In comparison with the algorithm by Karaman,
the proposed method performs better on some video sequences (V2 and V4), and has
similar results on the others (V1 and V3).
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Finally, it is important to highlight that, as already anticipated in a previous section,
the proposed reflection removal method has a negligible impact on the overall process-
ing time. In fact, we have experimentally verified that the adoption of the reflection
removal procedure produces an increase of 1.5% of the processing time with respect to
the original foreground detection algorithm.

4 Conclusions

In this paper we have presented a novel algorithm for reflection removal, based on fairly
general assumptions and computationally efficient.

The algorithm has been experimentally validated on a significant database of real
videos, using quantitative measurements to assess its effectiveness. The experiments
have shown that the proposed algorithm significantly reduce the error in the estima-
tion of the actual height for objects with a reflection, while unreflected objects are left
substantially unchanged. The method has been also experimentally compared with the
algorithm by another recent approach for reflection removal by Karaman et al, showing
in almost cases significant performance improvements.

As a future work, a more extensive experimentation will be performed, adding other
algorithms to the comparison and enlarging the video database to provide a better char-
acterization of the advantages of the proposed approach.
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Abstract. The ability to predict, given an image or a video, where a
human might fixate elements of a viewed scene has long been of interest
in the vision community.

In this note we propose a different view of the gaze-shift mechanism
as that of a motor system implementation of an active random sampling
strategy that the Human Visual System has evolved in order to efficiently
and effectively infer properties of the surrounding world. We show how
it can be exploited to carry on an attentive analysis of dynamic scenes.

Keywords: active vision, visual attention, video analysis.

1 Introduction

Gaze shifts are eye movements that play an important role: the Human Visual
System (HVS) achieves highest resolution in the fovea and the succession of
rapid eye movements (saccades) compensates the loss of visual acuity in the
periphery when looking at an object or a scene that spans more than several
degrees in the observer’s field of view. Thus, the brain directs saccades to actively
reposition the center of gaze on circumscribed regions of interest, the so called
“focus of attention” (FOA), to sample in detail the most relevant features of a
scene, while spending only limited processing resources elsewhere. An average of
three eye fixations per second generally occurs, intercalated by saccades, during
which vision is suppressed. Frequent saccades, thus, avoid to build enduring and
detailed models of the whole scene. Apparently evolution has achieved efficient
eye movement strategies with minimal neural resources devoted to memory [13].

In order to take into account these issues, much research has been devoted
specially in the fields of computational vision (see, for instance, [9,10,22]).

Interestingly enough, one point that is not addressed by most models is the
“noisy”, idiosyncratic variation of the random exploration exhibited by differ-
ent observers when viewing the same scene, or even by the same subject along
different trials [15]. Such variations speak of the stochastic nature of scanpaths.
Indeed, at the most general level one can assume any scanpath to be the result
of a random walk performed to visually sample the environment under the con-
straints of both the physical information provided by the stimuli (saliency or
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conspicuity) and the internal state of the observer, shaped by cognitive (goals,
task being involved) and emotional factors. Under this assumption, the very
issue is how to model such “biased” random walk.

In a seminal paper [6], Brockmann and Geisel have shown that a visual system
producing Lévy flights implements an efficient strategy of shifting gaze in a
random visual environment than any strategy employing a typical scale in gaze
shift magnitudes. Lévy flights provide a model of diffusion characterized by the
occurrence of long jumps interleaved with local walk.

To fully exploit diffusion dynamics, in [3], a gaze-shift model (the Con-
strained Lévy Exploration, CLE) was proposed where the scanpath is guided
by a Langevin equation,

dx
dt

= −U(x) + ξ, (1)

on a potential U(x) modelled as a function of the saliency (landscape) and where
the stochastic component ξ represents random vector sampled from a Lévy dis-
tribution (refer to [3] for a detailed discussion, and to [11,12] for application
to robot vision relying on Stochastic Attention Selection mechanisms). The ba-
sic assumption was the “foraging metaphor”, namely that Lévy-like diffusive
property of scanpath behavior mirrors Lévy-like patterns of foraging behavior
in many animal species [24]. In this perspective, the Lévy flight, as opposed,
for instance, to Gaussian walk, is assumed to be essential for optimal search,
where optimality is related to efficiency, that is the ratio of the number of sites
visited to the total distance traversed by forager [24]. An example depicting
the difference between Gaussian and Lévy walks is provided in Fig. 1. In [4] a
new method, the Lévy Hybrid Monte Carlo (LHMC) algorithm was presented,
in which gaze exploration is obtained as a sampling sequence generated via a
dynamic Monte Carlo technique. Interestingly enough the method described in
[3] can be recovered as a special case of [4] .

Fig. 1. Different walk patterns obtained through the method described in [7] (defined
in the next section). Top: Gaussian walk (characteristic exponent or index of stability
α = 2); bottom: Lévy walk (α = 1.2). Horizontal and vertical axes represent (X, Y )
coordinates; note the different scale at which the flight lenghts are obtained.
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This perspective suggested a different and intriguing view of the saccadic
mechanism: that of a motor system implementation of an active random sampling
strategy that the HVS has evolved in order to efficiently and effectively infer
properties of the surrounding world. In this note we further develop this view,
showing how it can be exploited to carry on an attentive analysis of dynamic
scenes.

2 Background

The fact that a visual system producing Lévy flights implements an efficient
strategy of shifting gaze in a visual environment should not be surprizing [6,3].
Indeed, movements of some biological organisms can be represented as a tra-
jectory constructed as a Random Walk Model (a simplified version of Eq. 1),

xt+1 = xt + ξ, (2)

where ξ is a random vector representing the displacement xt → xt+1 occur-
ring at time t. In other terms, a discrete-time continuous-space Lévy flight is
a Markovian Random Walk process controlled by the conditional probability
P (xt+1|xt)dxt+1dxt for the walker to be in the region xt+1 +dxt+1 at time t+1,
if he was in the region xt + dxt at time t. We restrict ourselves to

P (xt+1|xt) ≈ P (xt+1 − xt) = P (ξ) ∼ |ξ|−(1+α), (3)

for large |ξ|, namely the lenght of the single diplacement ξ. The nature of the
walk is determined by the asymptotic properties of such conditional probability
(see, for instance, [5]): for the characteristic exponent α ≥ 2 the usual random
walk (brownian motion) occurs; if α < 2 , the distribution of length jump is
“broad” and the so called Lévy flights or Lévy walks take place1.

Intuitively, Lévy flights (walks) consist of many short flights and occasional
long flights: sample trajectories of an object undergoing ordinary random walk
and Lévy flights, are presented in Fig. 1.

Coming back to Eq. 2, one can simulate a Brownian walk (e.g. , α = 2) by
sampling ξ from a Normal distribution at each time step t; for what concerns
Lévy motion, one could choose, for instance, to sample from a Cauchy distri-
bution (α = 1). However, this constrains to specific values of the characteristic
exponent α, which might become a limit for the analysis of natural phenomena.
At the most general level we can choose P (ξ) = f(α, β, γ, δ) to be an alpha-stable
distribution [14] of characteristic exponent (index of stability), skewness, scale
and location parameters α, β, γ, δ, respectively. In general there exists no sim-
ple closed form for the probability density function of stable distributions: they
1 The Lévy Flight and the Lévy Walk are trajectories constructed in the same way

spatially but differ with respect to time. The Lévy Flight displaces in space with
one unit of time being spent for each element between turning points. It could be
considered a discrete version of the Lévy Walk. The Lévy Walk on the other hand
is a continuous trajectory and has a velocity vector.
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admit explicit representation of the density function only in the following cases:
the Gaussian distribution P (2, 0, γ, δ), the Cauchy distribution P (1, 0, γ, δ) and
the Lévy distribution P (1/2, 1, γ, δ). Nevertheless, there are efficient numerical
methods to generate samples ξ ∼ f(α, β, γ, δ) ([8], cfr. the Simulation Section).

Examples of Lévy flights and walks have been found in many instance of
animal mouvement such as spider monkey [16], albatrosses [23], jackals [1] and in
general such dynamics have been found to be be essential for optimal exploration
in random searches [24].

It is also becoming apparent that other complex models can be subsumed
within a Lévy flight paradigm [18]. For example, in the composite Brownian
walk (CBW ), taking into account search patterns within a landscape of patchily
distributed resources, a searcher moves in a straight-line between patches and
adopts more localized Brownian movements within a patch. The search pattern
is therefore adaptive because detection of a food item triggers switching from
an extensive mode of searching for clusters of food to intensive within-cluster
searching for individual prey items. Benhamou [2] showed that this CBW out-
performs any Lévy-flight searching strategy with constant μ. The CBW can,
however, be interpreted as an adaptive Lévy-flight searching pattern in which
the inter-patch straight-line motions correspond to Lévy flights with μ → 1 and
where the intra-patch motion corresponds to a Lévy flight with μ = 3. This
adaptive Lévy flight is an optimal strategy because μ → 1 is optimal for the
location of randomly, sparsely distributed patches that once visited are depleted
and because μ = 3 flights are optimal for the location of densely but random
distributed within-patch resources [17]. In complex environments a mixed strat-
egy could be an advantage. For instance Reynolds and Frye [19], by analizing
how fruit flies (Drosophila melanogaster) explore their landscape have reported
that once the animals approach the odor, the freely roaming Lévy search strat-
egy is abandoned in favour of a more localized (Brownian) flight pattern. Such
mixed-type motion behavior is indeed the one taken into account in our active
sampling strategy.

3 The Active Sampling Strategy

Denote xFOA(t) = xt the oculomotor state which results, at time t, in a gaze
fixation at a certain point of the world. The state of the world at time t is
then observed as “filtered” by the attentional focus set xt, and producing an
observation likelihood P (wt|xt).

The observation likelihood is obtained as follows. Given a fixation point at
time t the current frame is blurred with respect to a Gaussian function centered
at xt in order to simulate foveation of the scene. Then, relying on motion features,
a Bayesian surprise map SM(t) = {SM(t)i}N

i=1 at each site i ∈  ,  being the
spatial support of current frame (see Itti and Baldi [9] for detailed discussion).
Based on such map we sample a subset  s of salient interest points {S̃M(t)s}Ns

s=1,
where Ns = | s| < N , through a weighted random sampling:
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1. Sample:
s ∼ Unif(Ω). (4)

2. Sample:
us ∼ Unif(0, 1). (5)

3. Accept, s̃t
s with probability Ps = S̃M(t)s

SM(t)max
, if us < Ps.

Then, we subdivide the image into L windows and let P (ws
t ) be the probability

that the s-th point falls in the window wt when t → ∞, in other words P (ws
t )

is the asymptotic probability distribution. Subregion partitioning of the image,
which performs a coarse-graining of the saliency map, is justified by the fact that
gaze-shift relevance is determined according to the clustering of salient points
that occur in a certain region of the image, rather than by single points. Thus, the
image is partitioned into Nw rectangular windows. For all Ns sampled points,
each point occurring at site s, is assigned to the corresponding window, and
probability P (wt = l|xt), l = 1 · · ·Nw is empirically estimated as

P (wt = l|xt) �
1

Ns

Ns∑
k=1

χk,l, (6)

where χk,l = 1 if S̃M(t)k ∈ wt = l and 0 otherwise.
Under a sampled observation wt ∼ P (wt = l|xt) , the observer has to de-

termine the joint probability P (xt+1, at|xt, wt) of taking an action at and of
achieving the next state xt+1. We can rewrite such joint probability as:

P (xt+1, at|xt, wt) = P (xt+1|xt, at)P (at|xt, wt). (7)

The term P (xt+1|xt, at) represents the dynamics, given action at, while
P (at|xt, wt) is the probability of undertaking such action at given the current
state of affairs (xt, wt).

We can represent the action as the pair at = (zt, θt), where zt is a discrete
random variable zt = {zt = k}K

k=1, K being the number of possible actions,
θt = {θt = k}K

k=1 representer the parameters related to the action. Under the
hypotheses motivated in the previous section, zt = {1, 2}, for foraging and ex-
ploratory behaviors, then

P (at|xt, wt) = P (zt, θt|xt, wt) = P (zt|θt)P (θt|at, bt), (8)

where at, bt are the hyperparameters for the prior P (θt|at, bt) on parameters θt.
Since in our case the motor behavior is chosen among two possible kinds,

p(z = k|θ) = θk is a Binomial distribution whose conjugate prior is the Beta
distribution, p(θ) = Beta(θ; at, bt).

Coming back to Eq.7, we write that oculomotor flight will be governed by a
Binomial distribution,

P (xt+1|xt, at) =
∏
zt

[P (xt+1|xt, η)]zt , (9)
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where P (xt+1|xt, zt = k) = P (xt+1|xt, ηk) is the flight generated according to
motor behavior zt = k and regulated by parameters ηk. Here P (xt+1|xt, ηk), is
the probabilistic representation of the jump

xt+1 = xt + ξk, (10)

where ξk ∼ f(ηk), f(ηk) = f(αk, βk, γk, δk) being an alpha-stable distribution of
characteristic exponent, skewness, scale and location parameters αk, βk, γk, δk,
respectively.

The last thing we have to take into account are the hyperparameters at, bt of
the Beta distribution that govern the choice of motor behavior regime.

Following the discussion in the previous Section, here we assume that at each
time t these are “tuned” as a function of the order/disorder of the scene: intu-
itively, a completely ordered or disordered scenario will lead to longer flights so
as to gather more information, whilst at the edge of order/disorder enough infor-
mation can be gathered via localized exploration. This insight can be formalized
as follows.

Consider again the probability distribution P (wt = l|xt). The corresponding
Boltzmann-Gibbs-Shannon entropy is S = −kB

∑N
i=1 P (wt = i|xt) log P (wt =

i|xt), where kB is the Boltzmann’s constant; in the sequel, since dealing with
images we set kB = 1. The supremum of S is obviously Ssup = lnN and it
is associated to a completely unconstrained process, that is a process where
S =const, since with reflecting boundary conditions the asymptotic distribution
is uniform.

Following Shiner et al. [20] it is possible to define a disorder parameter Δ as
Δ ≡ S/Ssup and an order parameter Ω as Ω = 1−Δ can be defined. Note that by
virtue of our motion features and related Bayesian surprise, a disordered frame
event will occur when either no motion (static scene) or extreme motion (many
objects moving in the scene) is detected. Thus, the hyperparameter update can
be written as

a(t) = a(0) + fa(Ωt),
b(t) = b(0) + fb(Δt), (11)

and is simply computed as a counter of the events “ordered frame”, “disordered
frame”, occurred up to time t, namely, fa(Ωt) = NΩt and fb(Δt) = NΔt .

4 Simulation

Simulation has been performed on the publicly available datasets, the BEHAVE
Interactions Test Case (http://homepages.inf.ed.ac.uk/rbf/BEHAVE), the
CAVIAR data set (http://homepages.inf.ed.ac.uk/rbf/CAVIAR/), the UCF
Crowd Data set (http://server.cs.ucf.edu/ vision/) The first comprises
videos of people acting out various interactions, under varying illumination
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Fig. 2. Examples of videos used in the simulation. Left: video with no dynamic events
happening from the CAVIAR data set; center: a video from the BEHAVE test set
showing a few significative and temporally ordered dynamic events (one man cycling
across the scene followed by a group of people interacting); right: a crowded scene from
the UCF dataset.

conditions and spurious reflections due to camera fixed behind a window; the
second include people walking alone, meeting with others, window shopping,
entering and exiting shops; the third contains videos of crowds and other high
density moving objects. The rationale behind the choice of these data sets stems
from the possibility of dealing with scenes with a number of moving objects at a
different level of complexity (in terms of order/disorder parameters as defined in
the previous Section). At a glance, three representative examples are provided
in Fig. 2.

Given a fixation point xt at time t (the frame center is chosen for t = 1), the
current RGB frame of the input sequence is blurred with respect to a Gaussian
function centered at xt and down-sampled via a 3-level Gaussian pyramid. At
the pre-attentive stage, optical flow features vn,t are estimated on the lowest
level of the pyramid following [21].

The related motion energy map is the input to the Bayesian surprise step,
where the surprise map SM(t) is computed [9]. Then, through weighted random
sampling, the set of salient interest points {S̃M(t)s}Ns

s=1 is generated and P (wt =
l|xt) is estimated; for this purpose Ns = 50 interest points are sampled and
we use Nw = 16 windows/bins, their size depending on the frame size | |, to
compute Eq.6.

At this point we can compute the order/disorder parameters, and in turn
the hyperparameters of the Beta distribution are updated via Eq. 11. This is
sufficient to set the bias of the “behavioral coin” (Eq.8) and the coin is tossed
(Eq. 9). This allows to choose parameters αk, βk, γk, δk and to sample the flight
vector ξ. For the examples shown here the Brownian regime is characterized
by α1 = 2, β1 = 0, γ1 = |FOA|, δ1 = 0 and the Lévy one by α2 = 1.3, β2 =
0, γ2 = |FOA|, δ2 = 0. Here |FOA| indicates approximately the radius of a
FOA, |FOA| ≈ 1/8 min[w, h], w, h being the horizontal and vertical dimensions
of the frame.
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Fig. 3. An excerpt of typical results obtained along the simulation. Left and right
columns shows that gaze samples the scene by principally resorting to a Lévy strategy
as a result of no interesting dynamic events or too many dynamic events occurring in
the scene. In the middle column a complex behavior is generated: a Brownian regime is
maintained during an interesting event (resulting in bicyclist tracking), followed by a
Lévy exploration to search for a new interesting event, ended by backing to a Brownian
dynamics for sampling the new event of interest (people discussing).
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Given the parameters, an alpha-stable random vector ξ can be sampled in
several ways[8]. The one applied here [7] is the following.

1. Generate a value Z from a standard stable f(α, β, 0, 1):

V ∼ U
[
−π

2
,
π

2

]
; (12)

W ∼ exp(1). (13)

2. If α �= 1:

Z = Sα,β
sin(α(V + Bα,β))

cos(V )1/α

(
cos(V − α(V + Bα,β))

W

) 1−α
α

, (14)

where Sα,β = arctan(β tan(πα/2))
α and Bα,β =

(
1 + β2 tan2(πα/2)

)1/2α.
3. If α = 1, then

Z =
2
π

[(π

2
+ βV

)
tan(V )− β log

(
W cos(V )

π
2 + βV

)]
. (15)

Once a value Z from a standard stable f(α, β, 0; 1) has been simulated, in order to
obtain a value ξ from a stable distribution with scale parameter γ and location
parameter δ , the following transformation is required: ξ = Z + δ if α �= 1;
ξ = γZ + 2

π βγ log(γ) + δ, if α = 1.
Eventually, the new FOA xt+1 is determined via Eq. 2.
An illustrative example, which is representative of results achieved on such

data-set, is provided in Fig. 3, where the change of motor behavior regime is
readily apparent as a function of the complexity of scene dynamics.

The system is currently implemented in plain MATLAB code, with no specific
optimizations and running on a 2 GHz Intel Core Duo processor, 2 GB RAM,
under Mac OS X 10.5.8. As regards actual performance, most of the execution
time is spent to compute the saliency map, which takes an average elapsed time
of 0.8 secs per frame, whilst only 0.1 sec per frame is devoted to the FOA
sampling. Clearly, the speed-up in this phase is due to the fact that once the
set of salient interest points {S̃M(t)s}Ns

s=1 has been sampled, then subsequent
computations only deal with Ns = 50| points, a rather sparse representation of
the original frame.
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Abstract. We propose a new simplified 3D body model (called SARC3D)
for surveillance application, which can be created, updated and com-
pared in real-time. People are detected and tracked in each calibrated
camera, with their silhouette, appearance, position and orientation ex-
tracted and used to place, scale and orientate a 3D body model. For each
vertex of the model a signature (color features, reliability and saliency) is
computed from 2D appearance images and exploited for matching. This
approach achieves robustness against partial occlusions, pose and view-
point changes. The complete proposal and a full experimental evaluation
are presented, using a new benchmark suite and the PETS2009 dataset.

Keywords: 3D human model, People Re-identification.

1 Introduction and Related Work

People Re-identification is a fundamental task for the analysis of long-term activ-
ities and behaviors of specific people. Algorithms have to be robust in challeng-
ing situations, like widely varying camera viewpoints and orientations, varying
poses, rapid changes in part of clothes appearance, occlusions, and varying light-
ing conditions. Moreover, people re-identification requires elaborate methods in
order to cope with the widely varying degrees of freedom of a person’s appear-
ance. Various algorithms have been proposed in the past, based on the kind of
data available: a first category of person re-identification methods rely on bio-
metric techniques, such as face [1] or gait, where high resolution or PTZ cameras
are required in this case. Other approaches suppose well constrained operative
conditions, calibrated cameras and precise knowledge of the scene geometry; the
problem is then simplified by adding spatial and/or temporal constraints, in
order to greatly reduce the candidate set [2,3,4]. Finally, most re-identification
methods purely rely on appearance-based features; a comparison and evaluation
of some of them is reported in [5,6]. For example, Farenzena et el [6] proposed
to divide the person appearance into five parts using rule based approaches to
detect head, torso, legs and image symmetries to split torso and leg regions
into left and right ones. For each region, a set of color and texture features are
collected for the matching step. Alahi et al [7] proposed a general framework
for simultaneous tracking and re-detection by means of a grid cascade of dense
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(a) (b) (c) (d)

Fig. 1. (a) a human 3d model, (b) average silhouettes used for the model creation, (c)
our simplified human model, (d) the vertices sampling used in our tests

region descriptors. Various descriptors have been evaluated, like SIFT, SURF
and covariance matrices, and the latter are shown to outperform the formers.
Finally, [8] proposed the concept of Panoramic Appearance Map to perform
re-identification. This map is a compact signature of the appearance informa-
tion of a person extracted from multiple cameras, and can be thought of as the
projection of a person appearance on the surface of a cylinder.

In this paper we present the complete design of a method for people re-
identification based on 3D body models. The adoption of 3D body models is new
for re-identification, differently from other computer vision fields, such as motion
capture and posture estimation [9,10]. The challenges connected with 3D models
rely on the need for precise people detection, segmentation and estimation of the
3D orientation for a correct model to image alignment. However, our proposal
has several benefits; first of all, we provide an approximate 3D body model with
a single shape parameter, which can be learned and used for comparing people
from very few images (even only one). Due to the precise 3D feature mapping,
the comparison allows to look for details, and not only to global features, it also
allows to cope with partial data and occluded views; finally, the main advantage
of a 3D approach is to be intrinsically independent from point of views. Our
approximate body model (called SARC3D) is not only fast, but also suitable for
low resolution images as the ones typically acquired by surveillance cameras. A
preliminary version of this work was presented in [11], while in this paper we
present the complete proposal together with a comprehensive set of experiments,
both on a new benchmark suite, available with the corresponding annotation,
and on real scenarios using the PETS2009 dataset.

2 The SARC3D Model

First of all the generic body model of a person must be defined. Differently from
motion capture or action recognition systems, we are not interested in the precise
location and pose of each body part, but we need to correctly map and store the
person’s appearance. Instead of an articulated body model (as in fig. 1(a)), we
propose a new monolithic 3d model, called ”SARC3D”. The model construction
has been driven by real data: side, frontal and top views of generic people, which
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were extracted from various surveillance videos; thus, an average silhouette has
been computed for each view, and has been used for the creation of a graphical
3d body model (see fig. 1(b)), producing a sarcophagus-like (fig. 1(c)) body hull.
The final body model is a set of vertices regularly sampled from the sarcophagus
surface. The number of sampled vertices could be selected accordingly to the
required resolution. In our tests on real surveillance setups, we used from 153 to
628 vertices (fig. 1(d)). Other sampling densities of the same surface have been
tested, but the selected ones outperformed the others on specificity and precision
tests, and are a good trade-off between speed and efficacy. As a representative
signature, we created an instance Γ p of the generic model for each detected
person p-th, characterized by a scale factor (to cope with different body builds)
and relating appearance information (i.e., color and texture) for each vertex,
defined as:

Γ p = {hp, {vp
i }} , p ∈ [1 . . . P ], i ∈ [1 . . .M ] (1)

where hp is the person height, as extracted by the tracking module, and used as
the scale factor for the 3D model; vp

i is the vertex set; P is the number of people
in the gallery and M is the number of vertices. For each vertex the following five
features are computed and stored:

– ni: the normal vector of the 3D surface computed at the i-th vertex location;
this feature is pre-computed during the sampling of the model surface;

– ci: the average color;
– Hi: a local HSV histogram describing the color appearance of the vertex

neighbor; it is a normalized histogram with 8 bins for the hue channel and
4 bins for the saturation and value channels respectively;

– θi: the optical reliability value of the vertex, which takes into account how
well and precisely the vertex color and histogram have been captured from
the data.

– si: the saliency of the vertex, which indicates its uniqueness with respect to
the other models; i.e., the saliency of a vertex will be higher in correspon-
dence to a distinctive logo and lower on a common jeans patch.

2.1 Positioning and Orientation

The 3D placement of the model in the real scene is obtained from the output
of a common 2D surveillance system working on a set of calibrated cameras.
Assuming a vertical standing position of the person, the challenging problem to
solve is the estimation of his horizontal orientation. To this aim, we consider that
people move forward and thus we exploit the trajectory on the ground plane to
give a first approximation using a sliding window approach. Given a detected
person, we consider a window of N frames and the corresponding trajectory on
the ground plane. A quadratic curve is then fitted on the trajectory and the fit
score is used as orientation reliability. If it is above a predefined threshold, the
final orientation is generated from the curve tangent.

In fig.2(a) and 2(b) a sample frame of the corresponding model placement
and orientation is provided. In particular, the sample positions used for the
curve fitting and orientation estimation are highlighted.
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2.2 Model Creation

Given the 3D placement and orientation, the appearance part of the model can
be recovered from the 2D frames. Projecting each vertex vi to the camera image
plane, the corresponding nearest pixel x(vi), y(vi) is obtained. The vertex color
ci is initialized directly using the image pixel:

ci = I (x(vi), y(vi)) ; (2)

where I is the analyzed frame, x(vi) and y(vi) are the image coordinates of the
projection of the vertex vi. The histogram Hi is computed on a squared image
patch centered around (x(vi), y(vi)). The size of the patch is selected taking into
account the sampling density of the 3D model surface and the medium size of
the blobs items. In our experiments, we used 10x10 blocks. Finally, the optical
reliability value is initialized as θi = ni · p, where p is the normal to the image
plane (equal to the inverted direction vector of the camera). The reason behind
the adoption of the dot product is that data from front-viewed vertices and their
surrounding surface are more reliable than that from lateral viewed vertices. The
vertices belonging to the occluded side of the person are also projected onto the
image, but their reliability has a negative value, due to the opposite directions of
ni and p. Thus each vertex of the model is initialized even with a single image:
from a real view if available or using a sort of symmetry-based hypothesis in
absence of information. The vertices having no match with the current image (i.e.
the vertices projected outside of the person silhouette) are also initialized with
a copy of the feature vector of the nearest initialized vertex and their reliability
values set to zero. By means of the reliability value, vertices directly seen at
least once (θ > 0), vertices initialized using a mirroring hypothesis (−1 ≤ θ < 0)
and vertices initialized from its neighborhood (θ = 0) are distinguishable. The
described steps of the initialization phase are depicted in Fig. 2(c).

(a) (b) (c)

Fig. 2. (a) A frame from a video, (b) Automatic 3D positioning and orientation (c)
Initialization of the 3D model of a person: model to image alignment, projection of the
model vertex to the image plane, vertex initialization or update

If multiple cameras are available or if the short-term tracking system provides
more detections for the same object, the 3D model could integrate all the avail-
able frames. For each of them, after the alignment step, a new feature vector
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is computed for each vertex successfully projected inside the silhouette of the
person. The previously stored feature vector is then merged or overwritten with
the new one, depending on the signs of the reliabilities. In particular, direct
measures (θ > 0) always overwrite forecasts (θ < 0), otherwise they are merged,
as in the following equations:

ĉp
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The normal vector np
i does not change in the merging operation, since it is

constantly obtained during the model generation, while the saliency sp
i is recom-

puted after the merging. Figure 3 shows some sample models created from one
or more images.

2.3 Occlusion Management and View Selection

Not all views should be used for the initialization and update of the model.
Errors in the tracking step, noise and bad calibration could lead to degradation
of the model. To this aim a rule based approach is proposed to select and exploit
for the model initialization and update the best views only.

Occlusion Check: In addition to 2D occlusion detection algorithms [12], a
computer graphic based generative approach is used: for the selected camera
view and for each person p visible from that camera, a binary image mask Îp is
rendered. Each time two model masks are overlapping or connected an occlusion
is detected. To avoid false pixel to model assignments, both the occluding and
the occluded models are not updated. A visual example of the 3D occlusion
detection is shown in Fig. 4.

Model to Foreground Overlapping: The reliability of the model positioning
could be evaluated considering the overlapping area between the 2D foreground
mask and the rendered images Îp. For each person, the overlapping score Rp

is computed as the ratio between the number of foreground pixels that overlap
with Îp with respect to the total number of silhouette pixels. If Rp is higher than
a strong threshold (e.g., 95% in our experiments) the selected view is marked
as good. Otherwise the alignment is not precise enough or the person is not
assuming a standing position compliant with the sarcophagus model.

(a) (b) (c) (d) (e)

Fig. 3. Various models created with the corresponding source images
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(a) (b) (c)

Fig. 4. Occlusion detection: (a) the input frame, (b) the aligned 3D models and (c)
the mask generated by the rendering system. Since the blue and green objects are
connected, the corresponding models are frozen and not updated during the occlusion.

Orientation Reliability: As mentioned before, the reliability of the orientation
estimation could be evaluated considering the fitting score of the quadratic curve
as described in Section 2.1. A similar check could be performed considering
the sequence of the estimated orientations: if the distribution of the differences
between consecutive orientations has a high variance, the trajectory is not stable
and the orientation becomes unreliable.

If all the above conditions hold true, the estimated orientation and position
is considered reliable and the selected view could be exploited to initialize (or
update) the model.

3 People Re-identification

One of the main applications of the SARC3D model is people re-identification.
The goal of the task is to find possible matches among couples of models from
a given set of SARC3D items. First, we define the distance between two fea-
ture vectors. Using the optical reliability θi and the saliency si as weighting
parameters, the Hellinger distance between histograms is used:

d(vp
i , vq

i ) = dHe (Hp
i ,Hq

i ) =
√

1−
∑
h,s,v

√
Hp

i (h, s, v) ·Hq
i (h, s, v). (4)

The distance DH(Γ p, Γ q) between two models Γ p and Γ q is the weighted average
of the vertex-wise distances, using the product of the reliabilities as weight.

DH(Γ p, Γ t) =
∑

i=1...M (wi · d(vp
i , vq

i ))∑
i=1...M (wi)

(5)

where
wi = f(θp

i ) · f(θq
i ) (6)

This generic global distance assumes that each vertex has the same importance
and the weights wi are based only on optical properties of the projections or
the reliability of the data. We believe that global features are useful to reduce
the number of candidates or if the resolution is low. However, the final decision



SARC3D: A New 3D Body Model for People Tracking and Re-identification 203

should be guided by original patterns and details, as humans normally do to
recognize people without biometric information (e.g., a logo in a specific position
of the shirt). To this aim we have enriched the vertex feature vector vp

i with a
saliency measure sp

i ∈ [0 . . . 1]. Given a set of body models, the saliency of each
vertex is related to its minimum distance from all the corresponding vertices
belonging to the other models:

sp
i ∝ min

t

(
dH(Hp

i ,Ht
i )
)

+ s0,
∑

sp
i = 1 (7)

where s0 is a fixed parameter to give a minimum saliency to each vertex. If
s is low, the vertex appearance is not distinctive; otherwise, the vertex has
completely original properties and it could be used as a specific identifier of the
person. The corresponding saliency-based distance DS can be formulated based
on new weights by substituting w′

i to wi in eq.6.

w′
i = f(θp

i ) · f(θq
i ) · s

p
i · s

q
i (8)

This saliency-based distance DS cannot be used instead of Eq. 5, since it focuses
on details discarding global information and then leading to macroscopic errors;
the re-identification should be based on both global (DH) and local (DS) sim-
ilarities. Thus, the final distance measure DHS used for re-identification is the
product of the two contributions DHS = DH ·DS.

4 Experimental Results

Many experiments have been carried out on real videos and on our bench-
marking suite. From its introduction, ViPER [5] is the reference dataset for
re-identification problems. Unfortunately, it contains two images for each target
only. Thus we propose a suitable benchmark dataset1 with 50 people, consisting
of short video clips captured with a calibrated camera. The annotated data set
is composed by four views for each person, 200 snapshots in total. Some exam-
ples are shown in Fig. 5(a), where the output of the foreground segmentation is
reported.

For each testing item we ranked the training gallery using the distance met-
rics defined in the previous section. The summarized performance results are
reported using the cumulative matching characteristic (CMC) curve [5]. Each
test was replicated exhaustively choosing different combinations of images.

In fig.6 we report the performance obtained using the proposed distances on
SARC3D models. Two different images for each person were chosen as training
set (i.e. for the model creation) while the remaining formed the test set. Each
test was replicated six times using different split of the images into training and
testing sets. For each testing image, the ranking score was obtained considering
the model-to-model matching schema using the histogram based distance DH

and the saliency-based one DHS . For comparison sake, we have evaluated the
1 Available here: http:\imagelab.ing.unimore.it\sarc3d

http:\imagelab.ing.unimore.it\ sarc3d
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(a) (b)

Fig. 5. (a) Selected images from the benchmarking suite, (b) distance matrix obtained
from three very similar people: the three images used for the model creation (rows)
and the test images (columns) are also shown

results obtained using the Euclidean distance between image pixels and the ver-
tex mean color ci instead of the histogram-based one of Eq. 4. In Fig. 6(b) some
key values extracted from our experiments are reported, showing the perfor-
mance improvements obtained using 3D-3D model matching, instead of 3D-2D
measures and, in the last row, adopting the saliency measure.

In this paper we assumed to have a sufficiently accurate tracking system,
which gives the 2D foreground images used for the model alignment. However,
the proposed method is reliable and robust enough, even in case of approxi-
mated alignments. The use of a generic sarcophagus-like model and local color
histograms instead of detailed 3D models and point-wise colors goes precisely in
this direction and allows to cope with small alignment errors. In addition, the
introduction of the normal vector to the 3D surface assign strong weights to the
central points of the people and very low weights to lateral points, which are the
most hit by misalignments.

In table 1 the system performance in presence of random perturbations of the
correct alignment is reported; both errors on the ground plane localization and
on the orientation have been introduced. The performance reported on the table

(a)

Test Rank-1 Rank-2 Rank-5

3D-2D (1 image, DH ) 50.0% 70.0% 85.0%
3D-2D (2 images, DH ) 60.3% 73.2% 86.6%
3D-2D (3 images, DH ) 68.0% 78.5% 90.5%
3D-3D (2 images, DH ) 74.0% 82.0% 91.0%
3D-3D (2 images, DHS) 80.0% 85.0% 93.0%

(b)

Fig. 6. (a) Experimental results of the 2 image model-to-model test with the DHS

distance, (b) Performance evaluation of the system using 1,2 or 3 images to create the
model. The last row shows the improvements using the saliency based distance.
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Table 1. Performance evaluation of the system using random perturbation of the 3D
model localization and orientation (3D-2D matching)

Correct With noise on localization With noise on orientation
Alignment 2 px 4 px 6 px 12 px 16 px 5◦ 10◦ 15◦ 30◦ 40◦ 60◦ 90◦

Rank (15%) (30%) (45%) (75%) (90%)

1 0.68 0.63 0.60 0.58 0.51 0.45 0.61 0.60 0.58 0.55 0.54 0.53 0.50
2 0.78 0.75 0.73 0.72 0.65 0.60 0.74 0.75 0.76 0.70 0.69 0.69 0.66
3 0.83 0.83 0.81 0.80 0.74 0.68 0.80 0.81 0.81 0.77 0.75 0.81 0.75
4 0.85 0.86 0.85 0.84 0.76 0.75 0.85 0.84 0.83 0.81 0.79 0.85 0.80
5 0.90 0.88 0.86 0.85 0.78 0.78 0.89 0.87 0.88 0.86 0.82 0.87 0.84
10 0.96 0.96 0.97 0.95 0.94 0.90 0.96 0.96 0.96 0.94 0.95 0.96 0.95

(a) (b) (c) (d)

Fig. 7. (a) PETS dataset, sample frame from camera 1, (b,c,d) system output super-
imposed to camera 1, 2 and 3 frames

shows that our system is still reliable, even in the case of non precise model
alignment and orientation, keeping good results with localization precision up
to 6 pixels (45% overlap between the projected bounding box of the model and
the image blob) and orientation up to 30 degrees.

We also tested the system on the PETS 2009 dataset [13] to evaluate the
proposed method in real life conditions. The City center sequence, with three
overlapping camera views, was selected. A 12.2m × 14.9m ROI was choosen,
which is visible from all cameras. The proposed method was added on top of a
previously developed tracking system [14], the goal of our method was to repair
broken track and re-identify people that enter and exit the rectangular ROI.
The DH distance is used, together with the 153-vertices model, since the low
resolution. Fig. 7 shows some sample frames from the system in action. The
obtained precision and recall are 80.2% and 88.7

5 Conclusions

We proposed a new and effective method for people re-identification. Differently
from currently available solutions we exploited a 3D body model to spatially
localize the identifying patterns and colors on the model vertices. In this way,
occlusion and view dependencies are intrinsically solved. Results both in real
surveillance videos and in a proposed benchmark dataset are very promising. In
this dataset, standard approaches based on 2D models fail, since the points of
view are very different and the automatic segmentation is not precise enough.
We believe that this new explored way based on 3D body models could be the
starting point for future innovative solutions.
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Abstract. We present a novel non-object centric approach for discovering ac-
tivity patterns in dynamic scenes. We build on previous works on video scene
understanding. We first compute simple visual cues and individuate elementary
activities. Then we divide the video into clips, compute clip histograms and clus-
ter them to discover spatio-temporal patterns. A recently proposed clustering al-
gorithm, which uses as objective function the Earth Mover’s Distance (EMD),
is adopted. In this way the similarity among elementary activities is taken into
account. This paper presents three crucial improvements with respect to previ-
ous works: (i) we consider a variant of EMD with a robust ground distance, (ii)
clips are represented with circular histograms and an optimal bin order, reflecting
the atomic activities’similarity, is automatically computed, (iii) the temporal dy-
namics of elementary activities is considered when clustering clips. Experimental
results on publicly available datasets show that our method compares favorably
with state-of-the-art approaches.

Keywords: Dynamic scene understanding, Earth Mover’s Distance, Linear
Programming, Dynamic Time Warping, Traveling Salesman Problem.

1 Introduction

State-of-the-art video surveillance systems are currently based on an object centric
perspective [1,2], i.e. first interesting objects in the scene are detected and classified
according to their nature (e.g. pedestrians, cars), then tracking algorithms are used to
follow their paths. However these approaches are suboptimal when monitoring wide
and complex scenes and it is essential to take into account the presence of several oc-
clusions and the spatial and temporal correlations between many objects. Therefore, un-
supervised non-object centric approaches for dynamic scene understanding have gained
popularity in the last few years [3,4,5,6]. These methods use low level features (such
as position, size and motion of pixels or blobs) to individuate elementary activities.
Then, by analyzing the co-occurrences of events, high level activity patterns are dis-
covered. Most of the recent approaches for complex scene analysis are based on Prob-
abilistic Topic Models [3,4,5]. It has been shown that these methods are particularly

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 207–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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effective to discover activity patterns and to model other interesting aspects such as the
behaviors’correlation over time and space. However, since they rely on the traditional
word-document paradigm for representing atomic activity distributions into clips, they
discard any information about the similarity among elementary activities. To overcome
this drawback recently Zen et al. [6] proposed a different approach. By optimizing a
cross-bin distance function (i.e. EMD) rather than a bin-to-bin one, they showed that
the problem of discovering high-level activity patterns in dynamic scenes can be mod-
eled as a simple Linear Programming (LP) problem. To achieve scalability on large
datasets they also propose a simplification of the optimization problem by establishing
a words’order and considering only the similarity among adjacent words. However in
[6] the order of atomic activities is chosen based on heuristics. In this paper, we propose
a more rigorous strategy to sort atomic activities relying on the adaptation of the trav-
eling salesman problem (TSP) to the task at hand. We also adopt a circular histogram
representation for clips and optimize a variant of EMD with a robust ground distance.
This allows us to improve the accuracy of clustering results at the expenses of a modest
increase of the computational cost with respect to [6]. Here, as in many previous works
[3,4,5,6], clips are represented by histograms. This has a beneficial effect in terms of
filtering out noise. On the other hand any information about the temporal dynamics of
atomic activities inside a clip is ignored. To compensate for this fact in this paper we
propose to compute a dynamic time warping (DTW) similarity score between pairs of
clips and to construct a nearest neighbor graph which is used to bias clips assignment
toward appropriate clusters. The paper is organized as follows. In Section 2 the work in
[6] is briefly summarized. Section 3 presents our approach for ordering atomic activities
and the resulting LP problem. The proposed strategy for incorporating temporal infor-
mation into the learning algorithm is also discussed. Experimental results are presented
in Section 4. Finally, in Section 5 the conclusions are drawn.

2 Discovering Patterns with Earth Mover’s Prototypes

The approach proposed in [6] is articulated in two phases. In the first phase simple mo-
tion features are extracted from the video and used to individuate elementary activities.
In the second phase the video is divided into short clips and for each clip c an histogram
hc counting the occurrences of the elementary activities is computed. Then the clips
are grouped according to their similarity and a small set of histogram prototypes repre-
senting typical activity patterns occurring in the scene are extracted. The Earth Mover’s
Prototypes learning algorithm in [6] amounts into solving the following optimization
problem:

min
pi≥0,

∑
q pq

i =1

N∑
i=1

DE(hi, pi) + λ
∑
i	=j

ηij max
q=1...D

|pq
i − pq

j | (1)

where {h1, . . . , hN}, hi ∈ IRD , are the original clip histograms, {p1, . . . , pN}, pi

∈ IRD, are the computed prototypes and DE(h, p) is the EMD [7]. The EMD among
two normalized histograms (i.e.

∑
q pq = 1 and

∑
t ht = 1) is defined as:
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DE(h, p) = min
fqt≥0

D∑
q,t=1

dqtfqt s.t.
D∑

q=1

fqt = ht,

D∑
t=1

fqt = pq (2)

Solving (1) the prototypes pi are computed in order to maximize their similarity with
respect to the original histograms hi. At the same time the number of different proto-
types is imposed to be small by minimizing their reciprocal differences. The relative
importance of the two requirements is controlled by the positive coefficient λ. The co-
efficients ηij ∈ {0, 1} are fixed and are used to select the pairs of histograms which
must be merged. In practice, by substituting the definition (2) into (1), the following LP
is obtained:

minpq
i ,fi

qt,ζij≥0

N∑
i=1

D∑
q,t=1

dqtf
i
qt + λ

∑
i	=j

ηijζij (3)

s.t. −ζij ≤ pq
i − pq

j ≤ ζij , ∀q, ∀i, j = 1 . . .N, i �= j

D∑
q=1

f i
qt = ht

i, ∀t, ∀i = 1 . . .N

D∑
t=1

f i
qt = pq

i , ∀q, ∀i = 1 . . . N

where the slack variables ζij are introduced.
A nice characteristic of (3) is that the ground distances dqt can encode information

about the similarity between atomic activities. However this flexibility comes at the
expenses of a considerable computational cost. This cost is especially high due to the
large number of flow variables f i

qt, which is quadratic in the size of histograms D.
Therefore, in order to speed up calculations, a modification of (3) which adopts EMD
with L1 distance over bins as ground distance (i.e. dqt = |q − t|) is proposed in [6]. In
this case, referred as EMD-L1, the optimization problem simplifies and the number of
flow variables reduces from O(ND2) to O(ND) [8]. The idea is that similar atomic
activities should correspond to neighboring bins in activity histograms. To this aim the
atomic activities are sorted according to the associated location and motion information.
However in [6] simple heuristics are used in this phase. In the following section we
present a more rigorous approach to sort atomic activities.

3 Circular Earth Mover’s Prototypes

In this Section we present the main phases of our approach, starting from low level
features extraction to high-level activity patterns discovery by computing Circular Earth
Mover’s Prototypes.

3.1 Computing Atomic Activities

Given an input video, first low level features are extracted. We apply a background
subtraction algorithm [9] to extract pixels of foreground. For these pixels we also com-
pute the optical flow vectors using the Lucas-Kanade algorithm. By thresholding the
magnitude of the optical flow vectors, foreground pixels are classified into static and
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(a) (b)

Fig. 1. (Best viewed in color.) (a) An example of the flow network associated to (4). Two circular
histograms with D = 8 bins are compared. The green node is the transhipment vertex. Ingoing
edge (green) cost is the threshold (2 in this case) and outgoing edge (blue) cost is 0. Red edges
have cost 0. The black edges are 1-cost edges. (b) The importance of considering the temporal
dynamics of atomic activities when comparing clips. For three clips (A,B,C) the sequences of
frame histograms (left) and the associated average clip histograms (right) are shown. While all
the average histograms are similar, only clip A and clip B should be assigned to the same cluster.
In fact the temporal dynamics of atomic activities is very different in clip C.

moving pixels. Moving foreground pixels are also classified based on the direction of
the optical flow vector. We consider 8 possible directions. Then we divide the scene
into p × q patches. For each patch a descriptor vector v = [x y fg d̄of m̄of ] is com-
puted where (x, y) denotes the coordinates of the patch center in the image plane, fg

represents the percentage of foreground pixels and d̄of and m̄of are respectively the
mode of the orientations distribution and the average magnitude of optical flow vectors.
For patches of static pixels we set d̄of = m̄of = 0. Valid patches are only those with
fg ≥ Tfg. Then the K-medoids algorithm is applied to the set of valid patch descriptors
w = [x y d̄of m̄of ] and a dictionary of atomic activities is constructed.

3.2 Ordering Atomic Activities

The K-medoids algorithm provides a set of D centroids cd = [xd yd d̄d
of m̄d

of ] repre-
senting typical elementary activities. However elementary activities are not independent
and it is desirable to take into account their correlation when learning activity proto-
types. To this aim in [6] the authors proposed to order atomic activities in a way that
neighboring activities correspond to similar ones. While in [6] the order is determined
based on simple heuristics, in this paper we propose to adopt a TSP strategy to sort
atomic activities. The TSP [10] is a well known combinatorial optimization problem.
The goal is to find the shortest closed tour connecting a given set of cities, subject to
the constraint that each city must be visited only once. In this paper we model the task
of computing the optimal order of atomic activities as the problem of computing the
optimal city tour.

Formally, the TSP can be stated as follows. A distance matrix D with elements dqt,
q, t = 1, . . . , D and dqq = 0 is given. The value dqt represents the distance between
the q-th and the t-th city. A city tour can be represented by a cyclic permutation π of
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{1, 2, . . . , D} where π(q) represents the city that follows the city q on the tour. The
TSP is the problem of finding a permutation π that minimizes the length of the tour
� =

∑D
q=1 dqπ(q). In this paper we consider the symmetric TSP (i.e. dqt = dtq) and a

metric as intercity distance, i.e. we set dqt = D(cq, ct) =
√

(xq − xt)2 + (yq − yt)2+

γ
√

(d̄q
of − d̄t

of )2 + (m̄q
of − m̄t

of)2. The parameter γ is used to balance the importance

of the position and the motion information.
The TSP can also be formulated as a graph theoretic problem. Given a complete

graph G = (V, E) the cities correspond to the node set V = {1, 2, . . . , D} and each
edge eqt ∈ E has an associated weight dqt. The TSP amounts to find a Hamiltonian
cycle, i.e. a cycle which visits each node in the graph exactly once, with the least weight
in the graph. For this task, the tour length of (D − 1)! permutation vectors have to be
compared. This results in a problem which is known to be NP-complete. However there
are several heuristic algorithms for solving the symmetric TSP. In this paper we use
a combination of the Christofides heuristic [11] for tour construction and simulated
annealing for tour improvement.

3.3 Discovering Circular Earth Mover’s Prototypes

To discover activity prototypes the video is divided into short clips and for each clip c a
circular histogram hc is created with bin orders obtained by solving the TSP. Finally, the
clips are grouped according to their similarity and a set of circular histogram prototypes
pi is computed. They represent the salient activities occurring in the scene.

To this aim we solve (3). However, in this paper we use as ground distance a thresh-
olded modulo L1 distance [12] i.e. we set dqt = min(min(|q− t|, D− |q− t|), 2). The
adoption of this ground distance with respect to the L1 distance proposed in [6] allows
us to deal in a principled way with circular histograms at the expenses of a modest
increase of the computational cost. In fact, as shown [13], the adoption of a thresh-
olded distance implies the introduction of a transhipment vertex, with slight increase of
the number of flow variables. Moreover, it has been shown that saturated distances are
beneficial in terms of accuracy results in several applications. With thresholded ground
distance, the EMD (2) assumes the form:

min
fq,q+1,fq,q−1,fq,D+1≥0

D∑
q=1

fq,q+1 +
D∑

q=1

fq,q−1 + 2
D∑

q=1

fq,D+1 (4)

s.t. fq,q+1 − fq+1,q + fq,q−1 − fq−1,q + fq,D+1 = hq − pq ∀q

where the flow variables fq,D+1 correspond to the links connecting sources to the tran-
shipment vertex. Figure 1.a depicts the associated flow network. In practice with respect
to (2), in (4) only flows between neighbor bins and flows between sources and the tran-
shipment vertex are considered. The number of flow variables is still O(D). Note also
that since histograms are circular q + 1 = 1 if q = D and q − 1 = D if q = 1.
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The proposed prototype learning algorithm is obtained substituting the EMD defini-
tion (4) into (1), i.e. solving:

min
N∑

i=1

D∑
q=1

f i
q,q+1 +

N∑
i=1

D∑
q=1

f i
q,q−1 + 2

N∑
i=1

D∑
q=1

f i
q,D+1 + λ

∑
i	=j

ηijζij (5)

s.t. −ζij ≤ pq
i − pq

j ≤ ζij , ∀q, ∀i, j, i �= j

f i
q,q+1 − f i

q+1,q + f i
q,q−1 − f i

q−1,q + f i
q,D+1 = hq

i − pq
i , ∀q, i

pq
i , f

i
q,q+1, f

i
q,q−1, f

i
q,D+1, ζij ≥ 0

The resulting optimization problem is a LP with nvar = 4ND + 1
2N(N − 1) variables

if we impose each prototype to be close to each other, i.e. ηij = 1 ∀i �= j. Therefore
the number of variables is slightly larger than in EMD-L1 [6] where nvar = 2N(D −
1)+ND + 1

2N(N − 1). However (5) allows us to deal with circular histograms and to
consider an optimal order of atomic activities. This provides more accurate clustering
results as shown in the experimental section.

3.4 Embedding Temporal Information into Clustering

A nice characteristic of (5) is that, thanks to the introduction of the binary coefficients
ηij ∈ {0, 1}, it is possible to select the pairs of histograms which must be merged.
Generally a comparison among all possible pairs {pi, pj}, i �= j, is required, imposing
all prototypes to be close to each other. However by choosing only few ηij = 1 it
is possible to embed into the clustering algorithm some a-priori knowledge about the
subset of histograms which must be fused. For example in [6], for each histogram hi the
set of P nearest neighbors is identified and ηij = 1 if hj is a neighbor of hi. This has
the effect of producing a biased clustering assignment which is imposed to reflect the
structure of the nearest neighbor graph. Moreover it greatly reduces the computational
cost of solving (2) since the number of slack variables (i.e. constraints) is limited.

While in [6] a simple Euclidean distance is adopted, in this paper we present a better
strategy to create a nearest neighbor graph. We propose to compute the distance among
clips by taking into account the temporal dynamics of atomic activities inside the clip.
More specifically for each clip c we consider not only the average histogram hc but also
the sequence of histograms Hc = {h1

c , . . . hM
c }where hi

c is the histogram of elementary
activities computed on the i-th frame. Then, to construct the nearest neighbor graph,
we propose to adopt a function which measures the distance between two histogram
sequences considering the match of their alignment. This allows us to account for small
shifts inside a clip and to consider two clips as similar only if the activity patterns
inside them have a similar temporal structure. This concept is exemplified in Fig.1.b.
In particular in this paper we consider the dynamic time warping and longest common
subsequence (LCSS) distances [14].

DTW. Given two clips Ha and Hb and the set A of all possible alignments ρ between
them, the DTW distance is defined as:

DDTW (Ha, Hb) = min
ρ∈A(Ha,Hb)

|ρ|∑
i=1

κ(hρ(i)
a , hρ(i)

b )
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Fig. 2. APIDIS dataset: typical activities automatically discovered solving (5)

where κ(·) is the L1 distance between histograms. Dynamic programming is used to
compute the DTW distance, i.e. the optimal alignment between the two sequences of
histograms.

LCSS. LCSS is also an alignment tool but is more robust to noise and outliers than DTW
because not all points need to be matched. Instead of a one-to-one mapping between
points, a point with no good match can be ignored to prevent unfair biasing. The LCSS
distance is defined as:

DLCSS(Ha, Hb) = 1− LCSS(Ha, Hb)
M

As for DTW, dynamic programming can be used to compute LCSS, i.e. :

LCSS(Ha, Hb)=

=

⎧⎨⎩
0, m = 0 | n = 0
1 + LCSS(Hm−1

a , Hn−1
b ), κ(hm

a , hn
b ) ≤ ε, |n−m| < δ;

max(LCSS(Hm−1
a , Hn

b ), LCSS(Hm
a , Hn−1

b )), otherwise

4 Experimental Results

We tested the proposed approach on two publicly available datasets. Our method is
fully implemented in C++ using the libraries OpenCV and GLPK 4.2.1 (GNU Linear
Programming Kit) as the backend linear programming solver.

The first dataset is taken from APIDIS1 and consists in a video sequence where play-
ers involved in a basketball match are depicted. A sequence of 3000 frames is chosen.
The patch size is set to 16× 16 pixels and each clip contains 60 frames, corresponding

1 http://www.apidis.org/Dataset/
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(a) (b) (c)

Fig. 3. APIDIS dataset: different orders of atomic activities. (a) Heuristics. (b) TSP (only posi-
tion). (c) TSP (position and motion).

Table 1. APIDIS dataset: clustering accuracy (%) of the proposed approach with different orders
of atomic activities

Random Heuristics TSP TSP
(only position) (position and motion)

78 80 80 88

to a time interval of about 3 sec. The number of atomic activities is fixed to 16. Solving
(5) we automatically identify the five main activities occurring in the scene. Figure 2
shows a representative frame for each of them: (i) the blue team is attacking while the
yellow team is on defence (green), (ii) the players are moving away from the yellow
team’s court side (blue), (iii) the blue team is on the defence (yellow), (iv) the players
are moving back towards the yellow team’s side (violet) and (v) the players of the blue
team are shooting free throws (orange). Similar activities were also discovered in [6].
Table 1 shows some results of a quantitative evaluation of our method. Here the cluster
assignments obtained solving (5) are compared with the ground truth build as in [6],
based on the event annotation taken from the APIDIS website. The clustering perfor-
mance corresponding to different ways of ordering atomic activities are compared. It
is straightforward to observe that the TSP method outperforms other strategies. More-
over both motion and position information are crucial for obtaining accurate results (γ
is set to 0.5). Figure 3 depicts an example of different orders of atomic activities. In
this case the order based on the heuristics corresponds to sort activities considering first
static ones ordered according to their position along the x axis, then those with motion
different from zero.

The second dataset2 [3] depicts a complex traffic scenes with cars moving in proxim-
ity of a Roundabout. It corresponds to a video of about 1 hour duration (93500 frames,
25 Hz framerate). In our experiment we consider only the first 30 minutes in order to
compare quantitatively our results with those provided in [6,15]. In this case the patch
size is set to 12 × 12 pixels while histograms of activities have 16 bins. Fig. 4 depicts
an example of the typical activities discovered for this dataset, corresponding mainly to
a horizontal and a vertical flow of vehicles. Table 2 shows the results of a quantitative
evaluation. The proposed algorithm outperforms state-of-the-art approaches e.g. EMD-
L1 and L1 methods [6] and PLSA and hierarchical PLSA [15]. The associated color

2 http://www.eecs.qmul.ac.uk/∼jianli/Roundabout.html
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Fig. 4. Roundabout dataset. (top) Typical activities automatically discovered solving (5). (bottom)
Temporal segmentation: (a) Ground truth, (b) Hierarchical PLSA [15], (c) Standard PLSA [15],
(d) Our appraoch (5) - LCSS (TSP), (e) EMD-L1 [6].

Table 2. Roundabout dataset: Clustering performance

method accuracy (%)

L1 [6] 86.4
EMD-L1 (random) [6] 72.3
EMD-L1 (heuristics) [6] 86.4
(5) - DTW (random) 81.63
(5) - LCSS (random) 83
(5) - DTW (TSP) 87.75
(5) - LCSS (TSP) 87.75
Standard PLSA [15] 84.46
Hierarchical PLSA [15] 72.30

bars depicting the results of temporal segmentation are shown in Fig. 4 (bottom). As ob-
served for the APIDIS dataset, choosing a suitable order of atomic activities is crucial:
using a random order the performance decrease significantly. Moreover a TSP strategy
is also desirable with respect to an approach based on heuristics. Finally the adoption of
DTW and LCSS distances for setting the coefficient ηij further improves the clustering
results. In fact, a better nearest neighbor graph drives the clustering algorithm towards
more accurate solutions. Some videos showing the results of our experiments can be
found at http://tev.fbk.eu/people/ricci/iciap2011.html.

5 Conclusions

We presented a novel method for discovering spatio-temporal patterns in dynamic
scenes. Differently from most of the previous works on non-object centric dynamic
scene analysis, our approach provides a principled way to deal with similarity of ele-
mentary activities while learning high-level activity prototypes. It relies on an automat-
ical way to compute the optimal order of atomic activities and to an adaptation of the
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clustering algorithm in [6] to take into account the temporal dynamics of atomic ac-
tivities inside the clips. Many interesting aspects still deserve study. For example more
sophisticated mechanisms to filter out the noise of low level features must be exploited.
On a theoretical side, we are currently investigating an approach for learning the ground
distances.
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Abstract. This paper describes a method to detect and extract pedes-
trians trajectories in proximity of a sliding door access in order to au-
tomatically open the doors: if a pedestrian walks towards the door, the
system opens the door. On the other hand if the pedestrian trajectory
is parallel to the door, the system does not open. The sensor is able to
self-adjust according to changes in weather conditions and environment.
The robustness of this system is provided by a new method for disparity
image extraction.

The rationale behind this work is that the device developed in this
paper avoids unwanted openings in order to decrease needs for main-
tenance, and increase building efficiency in terms of temperature (i.e.
heating and air conditioning). The algorithm has been tested in real
conditions to measure its capabilities and estimate its performance.

Keywords: safety sensor, sliding doors, obstacle detection, pedestrian
detection, trajectory planning, stereo vision.

1 Introduction

Current access control systems for automatic door control require a sensor able to
detect a moving object or a pedestrian crossing the gate. This approach does not
take into account the trajectory of pedestrians, and therefore can not estimate
movements. As an example, if a pedestrian crosses the area in front of the door
but does not want to cross the gate, the control access board detects his/her
presence and anyway opens the door. In this case, the system is not efficient,
since it leads to a waste of energy in terms of electricity, air conditioning, or
heating and decrease the system lifetime with unnecessary open/close actions.

The sensor presented in this paper solves the problem of unwanted openings
exploiting a stereo vision system based on a 3D reconstruction: CMOS cameras
with fish-eye optics placed over the sliding doors are used to acquire stereo
images.

A very general setup has been studied to fit different kinds of automatic door
accesses. Another feature of this system is that it can be integrated or adapted
to a wide range of existing doors and customer requirements.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 217–226, 2011.
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(a) (b)

Fig. 1. (a) An image acquired by a single camera installed on an sliding doors access.
(b) The cameras system (green) is placed on the door access and can replace usual
sensor (red). The area monitored by the new vision-based system (green plane) is
larger than the one covered by infrared sensors (red line) (b) and therefore allows the
detection of pedestrian trajectories.

A pair of low-cost cameras are installed on the top of the door, overlooking the
crossing area (fig. 1.a). The cameras are connected to an embedded computer
that processes images using a stereo vision based algorithm. The computer is
connected to the access control board and therefore can open or close the door
as required.

This paper is organized as follows: in Section 2 the algorithm structured is
sketched; Section 3 shows a the new method for the computation of the disparity
image; results, final considerations, and ideas for future developments are then
presented in Section 4.

2 The Algorithm

This section presents the overview and implementation of the algorithm used in
the system. Figure 2 shows the flowchart of the man algorithm steps.

Given two stereo images, the direction of objects moving in the scene is de-
tected and analyzed to trigger the doors opening.

The algorithm does not require calibration: the IPM images (Inverse Per-
spective Mapping) [1,2] of the scene are generated by a Look Up Table (LUT)
computed off-line (see Section 3).

The images obtained so far are used to create the reference background thanks
to a standard background algorithm generation using a circular buffer of the
last N images [4]. The two background images are compared against input im-
ages performing a difference: binarized images (masks) are then generated after
thresholding and dilating the difference images.
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Fig. 2. Flowchart of the proposed algorithm

Fig. 3. From top: background, current, difference, and binarized images for left and
right cameras
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A Sobel filter is used to reduce the changing light conditions problem and to
produce an edges map that is used to generate Disparity Space Image (DSI) [3].
Thanks to the preliminary use of the IPM, the resulting DSI has to be interpreted
using a specific approach (see Section 3)

The DSI image is filtered using the two masks previously calculated, therefore
considering only the points of the first mask and validating only the points that
match in the other mask. This approach reduces false positives and errors in DSI
computation, such as the ones due to repetitive patterns and reflections.

The obtained images are used by the obstacle detector to find each obstacle in
the scene. In fact, the DSI image is clustered using the contiguity of points in the
image and their location in the world as constraints (see Section 3). The result
of this step is a list of blobs that belong to the obstacles in the framed scene
(fig. 4.a). Each blob allows the computation of the 3D transformation related to
the corresponding obstacle. And, specifically, the size and position with respect
to the ground. The obstacles with a small size and an height lower than 20 cm
are discarded. The detected size and position of the remaining blobs are then
used to track obstacles. The trajectory of each obstacle is computed through a
linear regression of the past positions (fig. 4.b). The system triggers the door
opening (fig. 4.c) if the trajectory is aimed towards the door for two successive
frames or if the object is close to the door.

For safety reasons a small proximity area near the door is considered as well;
the door will be opened if any obstacle is detected inside this area, independently
from its direction of movement.

(a) (b)

(c) (d)

Fig. 4. (a) A cluster DSI Blob, (b) the computed trajectory crosses the doorstep (de-
limited by the two white markers, (c) output, (d) 3D-reconstruction
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3 Disparity and DSI from Stereo IPM Transformation

In this section a novel method to compute the disparity on IPM images is pre-
sented. Initially, the formulas to generate the IPM images are analyzed, then the
concept of disparity on these images to create the DSI will be introduced.

3.1 Inverse Perspective Mapping

The Inverse Perspective Mapping (IPM) is a geometric transformation that al-
lows to remove the perspective effect from images acquired by a camera [1,2]. It
resamples the source image mapping each pixel in a different position and creat-
ing a new image (IPM image) which represents an bird-eye view of the observed
scene.

Unfortunately is not possible to correctly remap all pixels of the source image
but only those that belong to a known plane (usually the ground, Z = 0). The
points that do not belong to this plane are remapped in an incorrect mode that
depends on their position in the world and the position of the cameras.

An off-line LUT is used for the generation of the IPM, that can be defined
from the intrinsic and extrinsic parameters of the vision system or, as in this
case, through a manual mapping of points of a calibration grid and a subsequent
interpolation. The LUT allows to remove the perspective effect and the distortion
of the source image all together [5,6,7].

A point not belonging to the Z = 0 plane is remapped on the IPM image in a
specific way that can be understood by studying the process of generation of the
IPM. The IPM image is the result of two perspective transformations: a direct
one and a reverse one. The world points are mapped into a perspective image
through a perspective transformation and then in an IPM image assuming all
pixels belonging to the ground.

The equation of a perspective transformation can be expressed in three-
dimensional homogeneous coordinates:⎡⎣uv

1

⎤⎦ = AR

⎛⎝⎡⎣XY
Z

⎤⎦−
⎡⎣x0

y0

z0

⎤⎦⎞⎠ . (1)

where (X,Y, Z) are the coordinates of the points in the world, (x0, y0, z0) are the
coordinates of the camera position in the world, and (u, v) are the coordinates
in the perspective image. A, and R are the matrices (3× 3) of the intrinsic and
rotation parameters, respectively.

The IPM transformation can be defined as:⎛⎝⎡⎣X ′

Y ′

Z ′

⎤⎦−
⎡⎣x0

y0

z0

⎤⎦⎞⎠ = R−1A−1

⎡⎣uv
1

⎤⎦ . (2)

With Z ′ the height from ground of the point to remap. Without additional
information and assuming Z ′ = 0, equations (1) and (2) lead to:
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which, since the homogeneous coordinates are defined up to a proportionality
factor λ, gives the final expression:⎡⎣X ′ − x0

Y ′ − y0

−z0

⎤⎦ =

⎡⎣X − x0

Y − y0

Z − z0

⎤⎦λ . (4)

λ can be obtained thanks to the Z ′ = 0 assumption:

λ =
−z0

Z − z0
. (5)

and, can be substituted in eq.(4), allowing X ′, Y ′ computation:

X ′ = −z0
X − x0

(Z − z0)
+ x0 Y ′ = −z0

Y − y0

(Z − z0)
+ y0 . (6)

It can be noticed that equations (6) do not depend on the lens distortion, intrinsic
parameters and orientation of the cameras, but only on their position in the
world. Therefore, the IPM can be easily computed using a LUT and not requiring
a complex calibration step.

From these results, it is evident that the same point in the world (X,Y, Z)
is remapped on different IPM coordinates (X ′, Y ′) depending on the camera
position in the world. Only if the world point belongs to the ground, Z = 0, the
equations are reduced at X ′ = X and Y ′ = Y .

Equations (6) can be merged together, to obtain the important result:

X ′ − x0

X − x0
=

Y ′ − y0

Y − y0
. (7)

A vertical obstacle features constant X and Y , therefore equation (7) can be
written as:

X ′ − x0 = m′(Y ′ − y0) (8)

where the line slope m′ is defined as:

m′ =
X − x0

Y − y0
. (9)

All the world points that belong to a vertical obstacle are then remapped into
IPM image on the line connecting the pin-hole and the the base position of the
obstacle. This line depends on the coordinates (X,Y ) of the world point and
on camera location (x0, y0, z0). Since the dependence from Z has been removed,
eq. (7), the z0 coordinate does not influence the line equation on which the
vertical obstacles are mapped, but only their size in the IPM image.
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(a) (b)

Fig. 5. (a) Right IPM images, (b) DSI

3.2 The Disparity and the 3D Reconstruction on IPM Images

Let us consider a system with two stereo cameras aligned on a line parallel to Y -
axis, with the same height h and with baseline b. The right camera coordinates
are (x0,−br, h), while the left ones are (x0, bl, h).

Using equations (6), the IPM coordinates of a generic world point P (X,Y, Z)
can be computed. The point is then remapped applying the IPM to the images
captured by the cameras:

X ′
r = X ′

l = −hX − x0

Z − h
+ x0 . (10)

Y ′
r = −hY + br

Z − h
− br Y ′

l = −hY − bl
Z − h

+ bl (11)

Solving the coordinates Y ′
r as a function of the coordinate Y ′

l :

Y ′
r = Y ′

l − b

(
h

Z − h
+ 1

)
= Y ′

l + b
Z

h− Z
. (12)

and given that the coordinates X ′
r and X ′

l are the same for the two images,
(X ′

r = X ′
l), the concept of disparity is defined as:

The disparity of a world point with coordinate (X,Y, Z) projected onto
two IPM images is equal to:

Δ = Y ′
r − Y ′

l = b
Z

h− Z
. (13)

This definition of disparity leads to the following considerations:

– Since in the IPM image only points of the world with a height less than
the height of the camera, Z < h, can be remapped, the disparity is always
positive.

– The disparity of points does not depend on coordinates (X,Y ) of the points
in the world, but only on their coordinate Z. This implies that all points
placed at the same height Z in the world have the same disparity Δ in the
IPM image. The ground, having no height (Z = 0), has zero disparity Δ = 0.
In addition, the disparity of features has an upper limit of h.
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– The disparity proportionally depends on the distance between the two cam-
eras (baseline).

– The disparity position does not depend on the x0 coordinate of the cameras.

The knowledge of the disparity of an IPM image allows a three-dimensional
reconstruction of the scene. The formulas to estimate the word coordinates of
a IPM point derive from the previous definition of disparity; in fact, the Z
coordinate can be directly obtained from eq.(13):

Z = h

(
1− b

Δ+ b

)
= h

Δ

Δ+ b
. (14)

with h being the height from ground and b the cameras baseline.
Replacing this value for Z in eq.( 6), it can be obtained:

X ′
r = −h X − x0(

h Δ
Δ+b − h

) + x0 Y ′
r = −h Y + br(

h Δ
Δ+b − h

) − br . (15)

Therefore allowing to compute the world coordinates (X,Y ) as function of dis-
parity:

X = X ′
r

(
b

Δ+ b

)
+ x0

(
Δ

Δ+ b

)
Y = Y ′

r

(
b

Δ+ b

)
− br

(
Δ

Δ+ b

)
. (16)

3.3 DSI on IPM Images

The Disparity Space Image computation is traditionally used on standard stereo
images, but it can be efficiently used for IPM images too (see fig. 5.b). In fact
the algorithm for the implementation of DSI [3] requires to search for each pixel
of the right image the corresponding pixel on the left image (homologous pixel).
In IPM images, the homologous pixels are searched for in the same row in each
images. In fact, equation 13, shows that the coordinates X ′ of a world point only
depends on its height and is the same in the two images, therefore easing DSI
computation.

In addiction it can further noticed for DSI on IPM images that:

– The disparity of pixels is always positive.
– The ground has zero disparity.
– The disparity of vertical object increases with its height, featuring a gradient

along the line defined by eq. (7).
– Given that the same obstacle is differently deformed by the IPM depend-

ing on camera position, the search of homologous points has to cope with
differences when computing the matches.

– If the best correlation between two homologous point is under a given thresh-
old, the DSI value is undefined, indicating that the pixel has not been found
in the other image.

– The size of the IPM images is a parameter that highly influences the compu-
tation time of the DSI. More precisely the time needed for DSI computations
is cubically proportional to the IPM image size.
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4 Results and Conclusions

The system was tested in real conditions to measure its capabilities and evaluate
its performance, using as computing architecture a SmallPC industrial computer
with a processor Intel Core 2 Duo 2.5GHz and 2G DDR DRAM. The system was
developed using Linux operating system and C++ programming language. Two
cameras were installed over a public area door acquiring many image sequences.
The format video was set to 752 × 480 pixel at 15 Hz, but it was reduced to
240 × 120 pixel in IPM images to reduce the computational load. The images
have been analyzed in laboratory and the algorithm has been tested in a lot of
situations.

The system has proven to work correctly and reach good results in different
situations (fig. 6). The most critical situation that affects the system performance
is the presence of an excessive number of obstacles in the scene. In such a case,
the objects trajectory is not correctly detected, due to difficulties in tracking
all objects, and therefore generating some false positives leading to unwanted
openings. Anyway, the system always assures the door opening when a person
really wants to cross the gate thanks to the implementation of the proximity
area attention (fig. 6.c).

(a) (b)

(c) (d)

Fig. 6. (a) Algorithm output in a multi-pedestrian scenario, (b) 3D-reconstruction,
(c) a pedestrian detected in proximity area, (d) 3D-reconstruction

The stereo system presented in this paper has a great advantage with respects
to classic disparity obstacle detectors, in fact it uses a calibration based on a
LUT. The LUT for the removal of the perspective effect and camera distortion
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is computed with a simple grid positioned in the area of interest during the
first installation. This area is easily tunable acting on software parameters and
therefore enabling the use of the system for different doors and environments.
An automatic calibration application is currently under development: it will ease
the installation and reduce the installation time, making easier the work of the
installers.

A new installation and testing in a shopping center is scheduled to compare
and tune the system performance against a classic infrared approach. An exten-
sion of the system for monitoring bus doors also for safety purposes and not only
for optimization is currently under development.

A patent [10] was filed to cover this approach that might turn into a product.
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Abstract. The automatic processing and estimation of view direction
and head pose in interactive scenarios is an actively investigated research
topic in the development of advanced human-computer or human-robot
interfaces. Still, current state of the art approaches often make rigid
assumptions concerning the scene illumination and viewing distance in
order to achieve stable results. In addition, there is a lack of rigorous
evaluation criteria to compare different computational vision approaches
and to judge their flexibility. In this work, we make a step towards the
employment of robust computational vision mechanisms to estimate the
actor’s head pose and thus the direction of his focus of attention. We pro-
pose a domain specific mechanism based on learning to estimate stereo
correspondences of image pairs. Furthermore, in order to facilitate the
evaluation of computational vision results, we present a data generation
framework capable of image synthesis under controlled pose conditions
using an arbitrary camera setup with a free number of cameras. We
show some computational results of our proposed mechanism as well as
an evaluation based on the available reference data.

Keywords: head pose estimation, stereo image processing, human com-
puter interaction.

1 Introduction

Human-centered computing has paved the ground for the integration of new tech-
nologies into the development of natural and intuitive-to-use interfaces for ad-
vanced human-computer interaction (HCI). The visual modality is an important
channel for non-verbal communication transmitting social signals which contain
rich behavioral cues concerning attention, communicative initiative, empathy,
etc. (Pentland 2007; Vinciarelli et al. 2008). Such cues are conveyed through
various behavioral signals and combinations thereof which allow their automatic
analysis by computers (Corso et al. 2008; Jacob 1996; Turk 2004). These social
signals can be interpreted to reason about the user state or intention in a context-
dependent fashion to launch differentiated communicative or social reactions in
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next generation HCI systems. Here we focus on one of the most meaningful cues
concerning the user’s focus of attention relative to the observer’s (camera’s) view
direction which can be derived from an actor’s head pose direction. Vision-based
estimation of the human head pose received more and more attention over the
last decade and a wealth of methods and mechanisms have been proposed. An
overview is presented in (Murphy-Chutorian & Trivedi 2009). Still, the robust-
ness of many of these approaches suffer from large errors and redundancies in the
feature extraction and matching mechanisms, variations in illumination condi-
tions, or size changes due to variable camera-actor distances. Here, we propose a
new stereo matching approach that operates on features derived from hierarchi-
cal processing of images pairs in a biologically inspired architecture of static form
processing. Stereo matching is subsequently driven by learned intermediate-level
image features which allow robust matching and fast false targets reduction.

Considering the evaluation of methods, a large number of different approaches
entail numerous different training and test data sets. For example, Murphy-
Chutorian & Trivedi (2009) quote no less than 14 different databases. However,
such data sets are often somehow adapted to support the particular research
focus of a given approach which leads to restrictions in the variation of free
parameters. This makes it virtually impossible to compare fundamentally dif-
ferent computational methods for estimating head poses using only one of the
currently available datasets. In addition to our newly developed method for pose
estimation, we propose a data generation framework that enables us to gener-
ate input for any kind of head pose estimation approach and thus allowing a
comprehensive comparison.

The rest of the paper is structured as follows. In Section 2 we introduce a new
stereo matching mechanism for robust head pose estimation. Section 3 details
the suggested approach for the development of an evaluation framework. In Sec-
tion 4 we demonstrate the functional significance of the proposed computational
method in conjunction with the evaluation framework.

2 Stereo Head Pose Estimation

We propose a robust approach to estimate the 3-dimensional (3D) head pose
from stereoscopic image pairs. The approach mainly consists of three processing
stages. First, the images of a stereo pair are initially processed to detect and
localize facial features of different complexity and at different image scales. The
processing scheme employed here follows a biologically inspired model architec-
ture of the cortical ventral pathway in the primate visual system (Riesenhuber &
Poggio 1999). Second, the different features detected in the left and right image
frames of a stereo pair are subsequently matched. Our approach is inspired by
recent findings that visual features with intermediate size and complexity are su-
perior in terms of their specificity and their misclassification probability (Ullman
et al. 2002). Following this observation we propose making use of intermediate
level features as learned by the previously mentioned processing hierarchy. Using
such complex features reduces the numbers of false targets in the stereo corre-
spondence problem and thus quickly resolves the matching ambiguities. At the
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same time the features used still allow spatial resolutions of sufficient detail.
Correspondence is established by using a simple correlation-based matching ap-
proach. Third, the facial feature localization and the subsequent calculation of
disparity values between each pair of corresponding features allow to reconstruct
the 3D location of a patch of matched image regions. The estimated 3D surface
information in world coordinates is then used to fit a so-called facial plane (de-
fined by the eyes and the mouth) to estimate the pose angle. In the following,
we briefly describe the object recognition framework used for the localization of
the face and the enclosed features. Subsequently, we address the issue of how
the positions of the features can be used for an efficient and robust estimation
of the head pose.

2.1 Hierarchical Feature Extraction

For the detection of the head and the facial features, we implemented a slightly
modified version of the biologically inspired object-recognition model proposed
by Mutch & Lowe (2008). It is based on a model by Serre et al. (2005), which
in turn extends the above-mentioned “HMAX” model proposed by Riesenhuber
& Poggio (1999). The proposed model architecture utilizes alternating layers of
so-called simple (S) and complex (C) cells. In a nutshell, simple cells perform a
local linear filtering operation, i.e. a convolution, and combine spatially adjacent
elements into a high-order feature. Complex cells, on the other hand, increase
position and scale invariance by a nonlinear pooling operation. As sketched in
Fig. 1, our model variant consists of five different layers of processing. The in-
put layer transforms the original image (Iin) into a pyramidal representation
of different spatial scales (Iscale) through proper low-pass filtering and down-
sampling,

Iscale(x, y) = (Iin(x, y) �
1

2πσ2
exp(−x

2 + y2

2σ2
)) · IIIΔx,Δy(x, y) (1)

where � denotes the spatial convolution operator, σ denotes the width of the
Gaussian low-pass filter (for reducing the signal frequency content), and III(·)

Fig. 1. In the first processing step, a face and its correspondent are detected in a stereo
image pair. The same object-recognition framework is then used to localize both eyes
and the mouth corners within the two facial regions. Over all, the framework has to be
trained on four different kinds of features (faces, eyes, left and right mouth corners).
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is the down-sampling function (Shah function, Bracewell 1978) with Δx,Δy
denoting the sampling width on a rectangular grid. Each scale representation is
then convolved with 2D Gabor filters of four orientations. These filters resemble
the shape of receptive field profiles of cells in the mammalian visual cortex
(Hubel & Wiesel 1959). The Gabor filter kernels are generated by Gaussian
window functions modulated by oriented sinusoidal wavefronts

gσ,ω(x, y) = exp(−x
2 + y2

2σ2
) · fwave(ω0

T · (x, y)) (2)

with fwave(x) = cos(x) or fwave(x) = sin(x) (even and odd modulation func-
tions), σ again denotes the width of the Gaussian, and ω0 = (ωx0, ωy0) denotes
the modulating wave of a given frequency and orientation. Convolution of these
kernels from the bank of filters with orientations and scales,

Iσ,ω(x, y) = Iscale(x, y) � gσ,ω(x, y) (3)

generates output activations in layer S1 leading to a 4D feature representation
(position, scale and orientation). Unlike Serre et al. (2005) receptive fields of
different sizes are modeled here through the image pyramid instead of Gabor
filters tuned to different spatial frequencies. Consequently, the number of neces-
sary convolution operations is reduced. Layer C1 cells pool the activities of S1
cells in the same orientation channel over a small local neighborhood. This leads
to a locally increasing scale, position, and size invariance, while decreasing the
spatial extent of the representation. The intermediate feature layer S2 performs
a simple template matching of patches of C1 units and a number of learned pro-
totypes utilizing a sliding window approach (following the suggestion by Mutch
& Lowe 2008). In a nutshell, the learning algorithm selects the most descriptive
and discriminative prototypes among an exhaustive number of C1 patches that
were randomly sampled during the learning process. Disregarding the learning
process the prototypes resemble spatial filters of higher feature complexity con-
cerning their response selectivity. The correlation responses of the prototypes
with the input patterns generate a feature vector of corresponding response am-
plitudes. In the last layer the S2 prototype responses are pooled over all positions
and scales by choosing the maximum value for each prototype to yield a single
feature vector as C2 response. These vectors finally serve as input to a linear
support vector machine (SVM) that is used for the classification of faces, as well
as the associated facial features.

2.2 Stereo Matching

Input images of a stereo pair are processed individually by using the hierarchi-
cal processing architecture sketched above. Using pairs of stereo images with
slightly different views on the scene the next step is to automatically determine
the matching points from one image with the corresponding points in the second
image of the pair. The feature sets available from the preprocessing stage range
from small localized features at the finest resolution to intermediate size patches
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Fig. 2. Disparity values are calculated for all four facial features (a). The infered in-
formation about the 3D-positions of the features is used to determine the orientation
of the facial plane (b).

up to the full image at the coarsest resolution level of the pyramid. Most tra-
ditional stereo matching approaches operate on fine resolutions utilizing certain
similarity measures for initial correspondence findings. Pyramid matching ap-
proaches using a coarse-to-fine scheme make use of differently filtered versions of
the input (compare, e.g., Szeliski 2011). Unlike these approaches, we make use
of the findings of Ullman et al. (2002) that intermediate level image fragments
are most distinctive in providing structural information about the presence of
features. More precisely, a face fragment of intermediate size provides reliable
indicators of face presence and locality. For the increase in reliability one has to
pay the price that the likelihood of appearance of the same pattern in a new face
image is low. A small fragment, corresponding to a local filter response, increases
the likelihood but at the same time reduces the specificity (increase of uncer-
tainty). This property is also reflected in the auto-correlation surface EAC using
a sum-of-squared-distance measure: For a small fragment of low complexity the
correlation surface is noisy and rather unspecific while for intermediate com-
plexity it becomes more pronounced and less error-prone due to the noise. The
intermediate-size fragments still allow localization in the image such that, e.g.,
the left and right eye can be distinguished (results not shown). Considering the
correspondence finding in stereo images these intermediate-level fragments help
to improve the stability of finding candidate matches and reduce the false-targets
uncertainty.

Our matching approach makes use of a simple correlation-based similarity
measure using image fragments of intermediate complexity. The correlation mea-
sure is maximized starting with the reference template fragment and using a
search window along epipolar lines in the left and right image (Barnard & Fis-
chler 1982; Hannah 1988). It is important to stress, that we do not need to
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estimate a dense disparity map. Instead, we need to take into account only few
facial features (namely the eyes and the mouth corners) and their stereo cor-
respondence to subsequently estimate the spatial head orientation (see Fig. 2).
This considerably reduces the computational costs of the correspondence finding
and pose estimation process.

2.3 Estimating 3D Head Pose Orientation

Given the disparity values of the left and right eye and the corners of the mouth,
as well as the focal length and the baseline of the stereo camera system, we are
able to estimate a plane that fits the four spatial points of eye and mouth in 3D.
The plane is fitted using a least-squares approach minimizing the distance of the
projections of the four 3D coordinates. The orientation of the resulting plane is
then used as an estimation of the head pose (see Fig. 2b).

3 Data Generation Framework

For the generation of image sequences as training and testing data we use a
textured generic 3-D model. Based on three key points, i.e. left and right eye plus
upper lip point, the generic model is adapted to a specific face. The key points
are gathered from a frontal face image of a given subject using the Viola & Jones
(2004) Haar-like feature detection algorithm with cascades provided by Santana
(2005). Based on the actual inter-ocular distance (which must be provided) and
the ratio of face width and height estimated from the detected image points,
i.e. eye distance and distance between eye axis and mouth, the generic 3-D
model is scaled. The texture is assigned to the frontal image of the face. The
availability of textured 3-D models enables quick OpenGL rendering of images
under controlled pose conditions (see Fig.3) using an arbitrary camera setup
with a free number of cameras. This way image material can be generated for
accuracy testing of pose estimation methods. Also training data can be created
for holistic pose estimation approaches. An example for a two camera setup is
given in Figure 3. For the parameterization of the virtual cameras we chose to
emulate a real camera setup in our vision lab. This has two advantages; on the
one hand we determined the camera viewing parameters through calibration of
the real cameras. On the other hand, after simulation and accuracy testing, we
can directly turn our method into real application, using the same camera setup.

4 Estimation Results

The proposed stereo head pose estimation approach was tested under two dif-
ferent conditions. At first we used a local head pose database in combination
with the framework described in Section 3 to generate test data with known
ground truth. In Fig. 3 an exemplary picture of the database, as well as the
resulting stereo image pairs for different head poses are shown. The estimated
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Fig. 3. A local database in which head poses were systematically w.r.t. yaw
and pan angle served as input for the generation of artificial images of dif-
ferent head poses (as described in Section 3; the database is available via
http://www.uni-ulm.de/in/neuroinformatik/mitarbeiter/g-layher; Weidenbacher et al.
2007). The virtual camera setup was adjusted to the specification of the BumblebeeR©2
Stereo Vision Camera System (Point Grey Research Inc.) which was used in a real
world testing scenario (Fig. 4b). The artificially generated stereo images were used to
evaluate the head pose estimation approach as described in Section 2.

head pose is displayed in Fig. 4a. For the test data shown in Fig. 3, the estima-
tion error increases for larger yaw angles, but never exceeds 3◦ over head poses
in the range of [−20◦,20◦]. Secondly, we used a sequence of real world images
to test the accuracy of the estimated head pose under unrestricted conditions.
The actual head pose within the sequence was unknown, but the subject was
told to systematically rotate his head from left to right. As shown in Fig. 4b, the
estimated head pose reflects that fact. Note that the underlying classifiers used
for the localization of the head and the facial features were all trained using the
FERET Database (Phillips et al. 2000) and thus have no association to the test
data at all. Fig. 4c shows the capability of the proposed approach under varying
camera-actor distances.

5 Discussion and Conclusion

In this study we have demonstrated that online stereo head pose estimation can
be achieved by utilizing features of intermediate complexity. Stereoscopic head
pose estimation is simplified by matching only significant facial features, thus
keeping the disparity map sparse. The use of intermediately complex templates
for matching left and right image pairs allows to use a simple correlation-based
criterion as similarity measure. The distinctiveness of the features used greatly
reduces the matching ambiguities to improve the reliability of the correspondence
estimation. While many previous approaches assume that the observer keeps his
viewing distance in a restricted range, the approach here allows large changes
in viewing distance (or scale) while at the same time continuously varying the
view direction (yaw and pitch) and changing the facial mimics. The approach
meets several design criteria that were suggested by Murphy-Chutorian & Trivedi
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Fig. 4. Head pose estimation results. (a) An artificially generated sequence of stereo
images (using the 3D face model desribed in Section 3) contains pictures of horizontal
head poses in a range of −20◦ to +20◦, in steps of 5◦ (yaw angle) used as input (ground
truth). The resulting head pose estimates lead to an error that is less than 3◦ (with
large yaw angles producing larger errors). (b) A sequence of real world stereo images
was obtained using the BumblebeeR©2 Camera System. The subject was instructed to
rotate his head continuously from left to right, thus yielding different yaw angles for
head poses. Even though no ground truth data is available, it can be seen that the
estimated head pose follows the pose characteristic of the head. (c) The capability of
the proposed approach under varying camera-actor distances was tested using two real
world sequences with different but constant yaw angles (as shown above and below
the plot). As can be seen, there is only a little change in the estimated head poses for
differing distances. Note that the apparently large differences of the estimated head
poses in the left half of the plot are caused by a mere difference of one pixel in the
disparity values. This reflects the fact, that with an increasing camera-actor distance,
the pixel resolution is more and more restricting the number of distinguishable head
poses.

(2009), namely accuracy (achieving pose estimates with less than 3◦ mean abso-
lute error for yaw/pitch angles below +/- 40◦), autonomy of processing without
manual initialization or feature localization, invariance against person identity
and illumination, and independence of the spatial resolution and viewer distance.
Apart from the technical approach of pose estimation, we also suggested a strat-
egy to evaluate the method by using a textured 3D model to flexibly generate
synthetic ground truth data for arbitrary camera views.
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In all, we suggest that the approach makes a valuable contribution to build
more flexible vision-based conversational systems in human-computer interac-
tion and affective communication. For example, the approach presented here
allows continuous and reliable head pose estimation and the recognition of head
gestures analyzing social signals in communication (Morency & Darrell 2004;
Vinciarelli et al. 2008; Pentland 2007). Other approaches also used stereo-based
head pose estimation. For example, Voit et al. (2006) estimate head poses in
meeting room scenarios using multiple cameras, while Morency et al. (2006)
estimate pose information to detect conversational turns for an embodied con-
versational agent. In these scenarios the variation of viewer distance and thus
image resolution can be assumed to change only within a limited range and
that the luminance conditions can be controlled. Furthermore the precision of
the focus of attention (as estimated from the head pose direction) was not eval-
uated in detail. Here, we suggest an approach that successfully handles these
variable conditions and allows further applications in interactive scenarios. For
example, we are interested to already set an interactive companion system into
an alert condition when a person approaches. During the course of approaching
the person could be analyzed in terms of communicative social signals and the
vision-based system might properly react ahead of the first interaction. We will
address this in future investigations.
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Abstract. This paper presents a novel approach for the automatic gen-
eration of image slideshows. Counter to standard cross-fading, the idea
is to operate the image transitions keeping the subject focused in the in-
termediate frames by automatically identifying him/her and preserving
face and facial features alignment. This is done by using a novel Active
Shape Model and time-series Image Registration. The final result is an
aesthetically appealing slideshow which emphasizes the subject. The re-
sults have been evaluated with a users’ response survey. The outcomes
show that the proposed slideshow concept is widely preferred by final
users w.r.t. standard image transitions.

Keywords: Face processing, image morphing, image registration.

1 Introduction

In recent years, the diffusion of digital image acquisition devices (e.g., mobile
phones, compact digital cameras, smartphones) encouraged people to take more
and more pictures. However, the more pictures are stored the more users need
automatic tools to manage them. In particular, personal photo libraries show pe-
culiar characteristics as compared to generic image collection. Personal photos
are usually captured on the occasion of real-life events (e.g., birthdays, wed-
dings, trips), so that it is common the presence of people in most of the images.
Moreover a relatively small number of different individuals (i.e., the family) is
usually shown across the whole library and this allows to achieve reliable results
with automatic approaches.

Many methods for photo collection management were proposed focusing on
users’ request for accessing a subset of stored data according to some particular
picture properties.

In this work we address the scenario where the user wants to manage its own
photo collection according to who is depicted in each photo. Starting from a
collection of personal images, we propose a tool for the automatic slideshow of a
sequence of pictures depicting the same individual. Firstly the whole collection is
searched for faces, while face identities are assigned with an automatic approach
[1]. Then each face is processed for automatically finding the position of some
facial feature points. Finally, image sequences that contain the same person are
animated by applying a morphing approach.
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The problem of the automatic morphing of pairs of digital images has been
investigated since the early ’90s. More recentlty, several techniques have been
focused on face morphing. In [2] and [3] two systems are proposed for the auto-
matic replacement of faces in photographs using Active Shape Models (ASMs).
Both of them use standard ASMs on simple images, i.e., high-quality frontal
faces, thus it seems that such approaches are not robust enough to be used with
faces captured “in the wild”. This is a strong limitation since even if a number
of features detection techniques are available in literature, their performances
signitificaly drop when such methods are applied on real-life images.

Some commercial systems, such as Fantamorph [4], allows users to create
face animation. Although its latest version provides support for face and facial
features detection, user intervention is often needed to aid the detection process
and no face identification is available.

The paper is arranged as follows: a description of the system will be given
in Sect. 2. The Sect. 2.1 will give an overview of the face processing techniques
we developed, while the image alignment methods are described in Sect. 2.2.
Experimental results will be shown and discussed in Sect. 3. Conclusions will
follow in Sect. 4.

To better evaluate the results of the proposed work, sample videos of produced
slideshows are available at http://www.dinfo.unipa.it/~cvip/pps/.

2 Methods

The whole system realizing the image animation can be subdivided into two
main blocks (see Fig. 1): face processing and image alignment modules. The
first is responsible of detecting and identifying the subject, the second operates
the spatial transformation across the transitions.

Face Processing Image Alignment

Face
detection

Feature
detection 

Image
registration

Blending and 
motion easing

SlideshowPhoto
collection

Person
identification

Fig. 1. Block diagram of the proposed system

2.1 Face Processing

Face processing is considered nowadays as one of the most important application
of image analysis and understanding.

Face detection, i.e., determine if and where there is a face in the image, is
usually the first step of face processing techniques. A number of challenges are
associated with face detection due to several factors. For example, face appear-
ance may heavily change according to the relative camera-face pose, to the pres-
ence of facial hair, or on the occurrence of lighting variations. All these factors
are further stressed in real-life photo collections.

http://www.dinfo.unipa.it/~cvip/pps/
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Many face detection techniques [5] have been proposed and even if face de-
tection is not a solved problem, some methods have reached a certain level of
maturity. In this work we used the state of the art approach to face detection,
i.e., the framework proposed by Viola and Jones [6], due to its efficiency and
classification rate.

When making the animation of two subsequent pictures, as much local infor-
mation as possible is needed to preserve the appearance of face regions. Thus,
the corners of the bounding box obtained from the face detection step are not
sufficient and local facial features need to be detected.

Early approaches for facial feature detection focused on template matching to
detect eyes and mouth [7], but these features are not suitable for noisy images
such as real-life photos. More recent models, i.e., ASM, AFM, AAM, offer more
robustness and reliability working on local feature points position. Active Shape
Model (ASM) [8] extends Active Contour Model [9] using a flexible statistical
model to find feature points position consistently with the training set. Active
Appearance Model (AAM) [10] combines shapes with gray-level face appearance.

Due to their time efficiency, ASMs are one of the most used approach both
for face detection and real time face tracking. However the efficiency of this
approach is heavily dependent on the training data used to build the model,
that in most cases consists of face databases (e.g., FERET, Color FERET, PIE,
Yale, AR, ORL, BioID) acquired under constrained conditions. Such collections
of faces looks very different from those acquired in everyday life, thus in the
considered scenario this approach is unsatisfactory. For this reason we used per-
sonal collections both for training and testing. The training set is a collection of
faces detected in a private personal collection, while the whole system has been
tested on a publicly available dataset [11] enabling future comparison.

Once faces have been detected, we focused on using ASMs to find a pre-
defined set of fiducial points in face images. Considering a training set of 400
size-normalized faces (200x200 pixels) detected in a private photo collection, we
developed three models, shown in Fig. 2, using 45, 30 and 23 landmarks respec-
tively. The first model, Fig. 2(a), is composed of five shapes, i.e., right eye, left
eye, mouth, nose-eyebrows and face profile. This model is frequently used in
ASMs-based works, however we performed some tests on real-life pictures notic-
ing that in most cases, due to lighting variations, face profile and internal shapes
(mouth and eyes) are misplaced while the nose-eyebrow contour appears as the
most robust to pose changes. For this reason the first model has been refined
as shown in Fig. 2(b). In this case we considered a single shape by removing
the tip of the nose and linking mouth and eyes contours. However we discovered
that the tip of the nose is fundamental for the right positioning of surrounding
features, moreover the areas around the eyes are frequently noisy due to hard
intensity changes caused by occlusions (e.g., glasses). Consequently, the contours
of the eyes are not reliable enough.



240 E. Ardizzone et al.

Taking into account such considerations, our final model (Fig. 2(c)) consists
of a single shape that follows the top contour of the eyebrows and the bottom
contour of nose and mouth. A comparison of the feature detected with the three
models is shown in Fig. 2.

Fig. 2. The three developed models. In leftmost column red points represent the first
and last landmark for each shape. Other columns depict examples of features detection.
Each row shows the shapes obtained by using the first, second and third face model
respectively.

The 23 detected points are used as input of the morphing algorithm. These
points, in conjunction with information about who is in the picture (i.e., the face
identity) allow to perform the automatic animation of the photo sequence.

Organizing the collection based on who is in the photo generally requires
much work from the user that, in the worst case, has to manually annotate
all the photos in the collection. Here we used a data association framework for
people re-identification [1] that takes advantage of an important constraint: a
person can not be present two times in the same photo and if a face is associated
to an identity, the remaining faces in the same photo must be associated to
other identities. The problem is modeled as the search for probable associations
between faces detected in subsequent photos using face and clothing descriptions.
In particular, a two level architecture is adopted: at the first level, associations
are computed within meaningful temporal windows (events); at the second level,
the resulting clusters are re-processed to find associations across events.

The output of the re-identification process is a set of identities associated to
each face detected in the collection.

2.2 Image Alignment and Photo Transitions

Given the correspondences between two consecutives images, the next task to
be performed is the smooth transition bringing the first images onto the second,
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keeping the main object (i.e., the face of the considered person) aligned. Such
problem can be regarded as a time-series registration task, or more specifically, a
morphing problem. Some issues need to be considered for this purpose: choosing
the registration function for the alignment, the easing function for the transition
and the motion function for the feature points.

Registration Function. During the whole transition, in order to mantain
spatial coherence, the feature points need to be kept in alignment. Such problem
is defined image registration. It can be considered as the geometric function to
apply to the image I (input image), to bring it in correspondence with the image
R (reference image). Many approaches exist for such purpose, in this work we
adopted two strategies. The first one is based on region-wise affine registration,
the latter leverages onto thin-plate spline transforms.

In the case of region-wise multi-affine transformation, the main idea is to
subdivide the images in sub-regions, each one defined by three feature points,
resulting corresponding triangles are aligned using affine transformations. Points
triangulation in I and R is obtained using the classic Delaunay triangulation.

Since the vertices of the obtained triangles tessellation and their respective
displacements are known, for each triangle is possible to recover the mapping
function for all the points belonging to it. Each 2d affine transformation requires
six parameters, so writing down the transformation (both x and y coordinates)
for three points, produces a system of six equations, sufficient for its complete
determination, as stated in (1).

⎡⎣ x
y
1

⎤⎦ =

⎡⎣a b c
d e f
0 0 1

⎤⎦⎡⎣ x0

y0

1

⎤⎦ =

⎡⎣ ax0 + by0 + c
dx0 + ey0 + f

1

⎤⎦ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = ax0,1 + by0,1 + c
y1 = dx0,1 + ey0,1 + f
x2 = ax0,2 + by0,2 + c
y2 = dx0,2 + ey0,2 + f
x3 = ax0,3 + by0,3 + c
y3 = dx0,3 + ey0,3 + f

(1)

Each transformation is recovered from a triangle pair correspondence, and the
composition of all the transformations allows the full reconstruction of the image.
In addition, to avoid crisp edge across triangles edges, the fuzzy kernel regression
approach [12] was used for transformation smoothing.

The second approach is based on thin-plate spline transformations (TPS) [13].
The TPS is a parametric interpolation function which is defined by D(K + 3)
parameters, where D is the number of spatial dimensions of the datasets and K
is the number of the given landmark points where the displacement values are
known. The function is a composition of an affine part, defined by 3 parameters,
and K radial basis functions, defined by an equal number of parameters. Its
analytic form is defined as:

g (p) = ax+ by + d+
k∑

i=1

ρ
(
‖p− ci‖2

)
wi; p =

[
xp

yp

]
, ci =

[
xci

yci

]
(2)
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where p is the input point, ci are the landmark points and the radial basis
function ρ (r) is given by:

ρ (r) =
1
2
r2 log r (3)

All of the TPS parameters are computed solving a linear system defined by a
closed-form minimization of the bending energy functional. Such functional is
given by:

Etps =
k∑

i=1

‖yi − g (pi)‖+λ

∫ ∫ [(
∂2g

∂x2

)2

+ 2
(
∂2g

∂xy

)2

+
(
∂2g

∂y2

)2
]
dxdy. (4)

The functional is composed by two terms: the data term and the regulariza-
tion term. The former minimizes the difference between known and recovered
displacements at landmark points, the latter minimizes the bending energy of
the recovered function, i.e., maximises its smoothness and it is weighted by the
parameter λ. As mentioned before, for this expression a closed-form analyti-
cal solution exists, from which is possible to recover all of the required spline
function parameters. The main characteristic of this function is that it exhibits
minimum curvature properties.

Notwithstanding the used deformation function, for the morphing animation
purposes, at each time step both the two images A and B involved in the transi-
tion need to be registered to an intermediate image defined by the current frame
considered, whose feature points lie onto the path connecting their corresponding
feature points (Fig. 3).

Frame A Intermediate frame Frame B

A1

A2

A3

B1 B2

B3

M1

M2

M3

Fig. 3. When transitioning from frame A to frame B, both feature points of A and B,
need to move to intermediate feature points to reconstruct intermediate image M

Easing Function. The visual transition between the two images is realized
through a blending of the two images registered to the intermediate images.
Such blending is produced as the weighted sum of the intensity level of the
images, where the weighting factor is defined by a blending paramter b. Varying
the parameter in function of the time during the animation, produces an easing
visual effect. The easiest variation criterion is to adjust it linearly with the time
variation. However, linear easing is equivalent to no easing at all, this is quite
unaesthetic since the variation occurs instantly, resulting in a crisp bad-looking
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mechanical effect. For this reason, for determining b(t), several non-linear easing
functions based on Penner’s formula [14] have been implemented.

Basically, three types of easing are used, ease-in (slow start with instantaeous
stop), ease-out (instantaneous start and slow stop) and ease-in-out (slow start
and stop), using four function shapes, quadratic, cubic, sinusoidal and exponen-
tial. In Fig.4 are reported the 12 resulting different easing functions.

Fig. 4. Easing functions used for the determination of the blending parameter b(t)
and the position parameter p(t). From left to right: quadratic, cubic, sinusoidal and
exponential easing. From top to bottom: ease-in, ease-out, ease-in-out functions.

Motion Function. As for blending, an easing factor for the path followed by
the feature points during the transition is introduced too. Such parameter p(t),
determines the equation of motion of the points as a combination of feature posi-
tions in image A and B. The same functions in Fig.4 are used for computing p(t).

3 Results and Discussion

For the proposed approach, a quantitative evaluation is neither possible nor re-
quired, since the purpose of the project is to produce aesthetically appealing
animations for subject-based slideshows. Thus, the evaluation was just quali-
tative. However, statistics of people opinions about the images were collected.
In particular, we created a benchmark of videos and conducted a user study to
compare our method to standard slideshows. Then, we present an analysis of
users’ responses, finding an agreement on the evaluation of the results.

3.1 Video Benchmarks

We created a benchmark of videos based on the images in the Gallagher Collec-
tion Person Dataset [11]. The videos were realized using 24 frames per second
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and 5 image transitions with a running time of 1 second each. For each test
case two videos were generated, one using our slideshow approach, and one us-
ing standard cross-fading. In Fig.5 some frames of a video are shown. Top and
bottom rows depict the videos generated with the proposed and the standard
approach respectively. In particular frame 1, 7, 13, 19 and 24 are illustrated.

To better evaluate the results of the proposed work, sample videos of produced
slideshows are available at http://www.dinfo.unipa.it/~cvip/pps/.

Fig. 5. Frame 1, 7, 13, 19 and 24 of an example of benchmark video for the proposed
slideshow (top row), and the standard cross-fading slideshow (bottom row)

3.2 Users’ Evaluation

In order to accomplish user evaluation, a user’s reponse analysis system was de-
veloped, relying onto the web-based survey system provided by the RetargetMe
framework [15]. Once the system is set up, the survey is taken by 113 people
with different background in image analysis spanning from no experience to ad-
vanced. For each survey 10 test cases are submitted. For each test case two videos
are presented and the person is requested to choose which one is the preferred.
Alternatively only one video can be presented and the person is requested to
give an absolute evaluation with a vote between 1 and 5.

In Fig. 6 the outcome of the survey is reported: averagely about the 80% of
the people preferred the proposed version of the transition, while this percentage
increase for people very familiar with image analysis and processing concepts.
Fig.7 illustrates statistics of the votes given from an absolute point of view. The
boxplot diagram shows that the mean vote for the proposed slideshow (≈ 4.33)
is higher than the vote for the standard one (≈ 3.32). The motivation given
when preferring the standard slideshow is generally related to the presence of

http://www.dinfo.unipa.it/~cvip/pps/
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Background People Proposed Standard
No-exp. 45 373 (82.89%) 77 (17.11%)
Base 33 269 (81.52%) 61 (18.48%)
Intermediate 23 203 (88.26%) 27 (11.74%)
Advanced 12 114 (95.00%) 6 (05.00%)
Total 113 959 (84.87%) 171 (15.13%)

Fig. 6. Statistics of users preferences about the proposed slideshow and the cross-fading
slideshow. Stacked bars are used to express the different backgrounds of people who
took the survey.

1 1.5 2 2.5 3 3.5 4 4.5 5

Proposed

Standard

 

 

Fig. 7. Boxplot diagrams of absolute evaluation, expressing the votes assigned to the
videos created with the proposed slideshow (bottom row), and the standard cross-fading
effect (top row)

deformations in non-subject regions of the images, which are needed to preserve
alignment of subject regions. However, this should not be considered a system
fault, since this issue is inherent to the system design itself.

4 Conclusion and Future Works

A novel method for fully automatic subject-based slideshow generation was pre-
sented. The method is aimed to realize a cross-fade image transition which keep
focused the person representing the main subject of the pictures. This is achieved
by means of aligning and morphing the subject face (along facial features) while
realizing the transition. This allows to keep the attention of the user onto the
subject, attaining a pleasant and aesthetically attractive visual result. Given
a set of images, the system recognizes and locates the subject, then performs
a time-varying registration (i.e., a morphing) to mantain it aligned during the
animation. Such alignment is realized using a deformation function based on tri-
angles mesh with locally affine transformations or thin plate spline surfaces. In
addition easing functions are used to give a more natural and pleasant aesthetic
look to the transitions and object movement.

The system was evaluated using a web-based framework submitted to het-
erogeneous audience, which judged the videos according to the visual appealing,
both through comparisons and absolute assessment. The survey response was
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that the proposed slideshows are more appealing, providing a nice effect that
can be implemented as a feature in personal photo management software.

The project can be further extended in order to consider more than one per-
son, in addition other warping effects can be realized, building a whole set of
transition plugins.

References

1. Lo Presti, L., Morana, M., La Cascia, M.: A data association algorithm for people
re-identification in photo sequences. In: 2010 IEEE International Symposium on
Multimedia (ISM), pp. 318–323 (2010)

2. Min, F., Lu, T., Zhang, Y.: Automatic face replacement in photographs based on
active shape models. In: Asia-Pacific Conference on Computational Intelligence
and Industrial Applications, PACIIA 2009, vol. 1, pp. 170–173 (2009)

3. Terada, T., Fukui, T., Igarashi, T., Nakao, K., Kashimoto, A.: Yen-Wei Chen.
Automatic facial image manipulation system and facial texture analysis. In: Fifth
International Conference on Natural Computation, ICNC 2009, vol. 6, pp. 8–12
(2009)

4. Fantamorph. Abrosoft (2010), http://www.fantamorph.com
5. Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)
6. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vi-

sion 57(2), 137–154 (2004)
7. Yuille, A.L., Cohen, D.S., Hallinan, P.W.: Feature extraction from faces using de-

formable templates. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Proceedings CVPR 1989, pp. 104–109 (June 1989)

8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their
training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision V1(4), 321–331 (1988)

10. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In:
Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 484. Springer,
Heidelberg (1998)

11. Gallagher, A., Chen, T.: Clothing cosegmentation for recognizing people. In: Proc.
CVPR (2008)

12. Gallea, R., Ardizzone, E., Gambino, O., Pirrone, R.: Multi-modal image registra-
tion using fuzzy kernel regression. In: ICIP 2009, pp. 193–196 (2009)

13. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of de-
formations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11,
567–585 (1989)

14. Penner, R.: Programming Macromedia Flash MX. McGraw-Hill, New York (2002)
15. Rubinstein, M., Gutierrez, D., Sorkine, O., Shamir, A.: A comparative study of

image retargeting. ACM Transactions on Graphics (SIGGRAPH) 29(5) (2010)

http://www.fantamorph.com


Learning Neighborhood Discriminative

Manifolds for Video-Based Face Recognition

John See1 and Mohammad Faizal Ahmad Fauzi2

1 Faculty of Information Technology, Multimedia University,
Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia

2 Faculty of Engineering, Multimedia University,
Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia

{johnsee,faizal1}@mmu.edu.my

Abstract. In this paper, we propose a new supervised Neighborhood
Discriminative Manifold Projection (NDMP) method for feature extrac-
tion in video-based face recognition. The abundance of data in videos
often result in highly nonlinear appearance manifolds. In order to ex-
tract good discriminative features, an optimal low-dimensional projec-
tion is learned from selected face exemplars by solving a constrained
least-squares objective function based on both local neighborhood geom-
etry and global manifold structure. The discriminative ability is enhanced
through the use of intra-class and inter-class neighborhood information.
Experimental results on standard video databases and comparisons with
state-of-art methods demonstrate the capability of NDMP in achieving
high recognition accuracy.

Keywords: Manifold learning, feature extraction, video-based face
recognition.

1 Introduction

Recently, manifold learning has become an increasingly growing area of research
in computer vision and pattern recognition. With the rapid development in imag-
ing technology today, it plays an important role in many applications such as
face recognition in video, human activity analysis and multimodal biometrics,
where the abundance of data often demands better representation.

Typically, an image can be represented as a point in a high-dimensional im-
age space. However, it is common presumption that the perceptually meaningful
structure of the data lies on or near a low-dimensional manifold space [1]. The
mapping between high- and low-dimensional spaces is accomplished through
dimensionality reduction. This remains a challenging problem for face data in
video, where large complex variations between face images can be better repre-
sented by extracting good features in the low-dimensional space.

In this paper, we propose a novel supervised manifold learning method called
Neighborhood Discriminative Manifold Projection (NDMP) for feature extrac-
tion in video-based face recognition. NDMP builds a discriminative eigenspace
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projection of the face manifold based on the intrinsic geometry of both intra-
class and inter-class neighborhoods. For each training video, a set of face rep-
resentative exemplars are automatically selected through clustering. With these
exemplars, an optimal low-dimensional projection is learned by solving a con-
strained least-squares (quadratic) objective function using local neighborhood
and global structural constraints. A compact generalized eigenvalue problem is
formulated, where new face data can be linearly projected to the feature space.
Finally, the test video sequences are classified using a probabilistic classifier.

2 Related Work

Classical linear dimensionality reduction methods such as Principal Component
Analysis (PCA) [2], Multidimensional scaling (MDS) [3] and Linear Discriminant
Analysis (LDA) [4] are the most popular techniques used in many applications.
These linear methods are clearly effective in learning data in simple Euclidean
structure. PCA learns a projection that maximizes its variance while MDS pre-
serves pairwise distances between data points in the new projected space. With
additional class information, LDA learns a linear projection that maximizes the
ratio of the between-class scatter to the within-class scatter. The biggest draw-
back of these methods is that they fail to discover the intrinsic dimension of the
image space due to its assumption of linear manifolds. Also, overfitting remains
a common problem in these methods.

The emergence of nonlinear dimensionality reduction methods such as Locally
Linear Embedding (LLE) [5] and Isomap [6] signalled the beginning of a new
paradigm of manifold learning. These methods are able to discover the underly-
ing high-dimensional nonlinear structure of the manifold in a lower dimensional
space. LLE seeks to learn the global structure of a nonlinear manifold through
a linear reconstruction that preserves its local neighborhood structure. Isomap
is similar in nature, but geodesic distances between points are computed before
reducing the dimensionality of space with MDS.

The main disadvantage of these methods is that they cannot deal with the
out-of-sample problem – where new data points cannot be projected onto the
embedded space. This limits their potential usage for classification and recogni-
tion tasks. Several works [7,8] reported good recognition rates in a video-based
face recognition setting by using LLE to build a view-based low-dimensional
embedding for exemplar selection, but stops short of utilizing it for feature rep-
resentation.

In recent developments, various manifold learning methods such as Local-
ity Preserving Projections (LPP) [9], Marginal Fisher Analysis (MFA) [10] and
Neighborhood Preserving Embedding (NPE) [11] have been proposed to solve
the out-of-sample problem. These methods resolve this limitation by deriving
optimal linear approximations to the embedding using neighborhood informa-
tion in the form of neighborhood adjacency graphs (with simple binary or heat
kernel functions). While these methods can be performed in supervised mode
with additional class information, their discriminative ability is only limited to
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neighborhood point relationships by graph embedding. It does not distinguished
between neighborhood structures created by intra-class and inter-class groups of
points within the same manifold, which can be very disparate in nature.

The major contribution of this paper centers upon the novel formulation of a
neighborhood discriminative manifold learning method that exploits the intrinsic
local geometry of both intra-class and inter-class neighborhoods while preserving
its global manifold structure.

3 NDMP Algorithm

In this section, we give some motivations behind our work, followed by an
overview of the Locally Linear Embedding (LLE) algorithm and a detailed de-
scription of the proposed NDMP method. Brief remarks on some closely-related
techniques are also provided.

3.1 Motivations

The rich literature of manifold learning methods offers many potential avenues
for improving existing shortcomings. With this, we want to highlight two main
motivations behind our work.

1. While recent works [9,10,11] have addressed the out-of-sample problem with
added discriminative properties, they do not discriminate between within-
class and between-class neighborhood structures while keeping the global
manifold fitted. Although similar to the NPE [11] in terms of its theoretical
foundation (based on LLE [5]), our final objective function is different.

2. Most works reported impressive results on data sets with limited face vari-
ations such as ORL, Yale and UMIST datasets [12]. In video sequences, the
large amount of face variations may prove to be a challenging task due to
the difficulty in finding good meaningful features.

3.2 Locally Linear Embedding (LLE)

Assume X =
{
xi ∈ �D|i = 1, . . . , N

}
represent the input data in Euclidean

space consisting of N face samples in D dimensions, belonging to one of C
classes {c|c ∈ {1, . . . , C}}. The LLE algorithm can be summarized into 3 main
steps:

Step 1: For each point xi, compute its k nearest neighbors.

Step 2: Compute the reconstruction weights W that best reconstruct each point
xi from its neighbors by minimizing the cost function

εrec(W ) =
N∑

i=1

∥∥∥∥∥∥xi −
k∑

j=1

Wijxj

∥∥∥∥∥∥
2

, (1)
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where Wij is the reconstruction weight vector, subject to constraints
∑N

i=1 Wij =
1 and Wij = 0 if xi and xj are not neighbors.

Step 3: Compute the embedding coordinates yi best reconstructed by the op-
timal reconstruction weight W by minimizing the cost function

εemb(y) =
N∑

i=1

∥∥∥∥∥∥yi −
k∑

j=1

Wijyj

∥∥∥∥∥∥
2

, (2)

subject to constraints
∑N

i=1 yi = 1 and
∑N

i=1 yiy
T
i /N = I where I is an identity

matrix. The new coordinates in embedded space, Y =
{
yi ∈ �d|i = 1, . . . , N

}
is

a d×N matrix, where the dimensionality of the new embedded points, d < D.

3.3 Neighborhood Discriminative Manifold Projection (NDMP)

Considering the large amount of face variations in each training video sequence,
we first apply LLE to reduce the dimensionality of the data. Then, faces in each
training video sequence are grouped into clusters using hierarchical agglomera-
tive clustering (HAC) [13]. For each cluster, the face that is nearest to the cluster
mean is selected as an exemplar, or a representative image of the cluster. Similar
to these approaches [7,8], the subject in each training video is represented by
a set of M exemplars, which are automatically extracted from the video. Fea-
tures will be extracted from the exemplar sets using the NDMP method. Finally,
subjects in the test video sequences are identified using a probabilistic classifier.

In the proposed NDMP method, we first construct two sets of reconstruc-
tion weights – one each for the intra-class and inter-class neighborhoods, unlike
the NPE which uses only one set of weights. The optimal projection is then
formulated as a constrained minimization problem.

Construction of Intra-class and Inter-class Neighborhood Subsets. For
clarity, the exemplars are also regarded as data points in most part of the paper.
Let all data points in a local neighborhood Ψ comprise of two disjointed neigh-
borhood subsets – intra-class subset {ψp|p = 1, . . . , k} and inter-class subset{
ψ′

q|q = 1, . . . , k′
}
. Compute the k nearest intra-class neighbors and k′ nearest

inter-class neighbors of each point xi. A point xj is an intra-class neighbor of
point xi if they belong to the same class (ci = cj). Similarly, point xj is an
inter-class neighbor of point xi if they do not belong to the same class (ci �= cj).

It is possible for a local neighborhood to have unequal number of intra-class
and inter-class nearest neighbors. However, for the sake of uniformity of weight
matrices, we fix k = k′. Due to class set limitation, the number of intra-class
and inter-class neighbors is restricted to a maximum of M − 1, where M is the
number of exemplars in a class.
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Formulation of Neighborhood Reconstruction Weights. Based on Eq.
(1), we formulate two reconstruction cost functions to obtain neighborhood re-
constrution weights that best reconstruct each point xi based on its type of
neighbors. Both intra-class reconstruction weight matrix W r and inter-class re-
construction weight matrix W e can be computed by minimizing the respective
cost functions:

εrec(W r) =
N∑

i=1

∥∥∥∥∥∥xi −
k∑

j=1

W r
ijxj

∥∥∥∥∥∥
2

, (3)

εrec(W e) =
N∑

i=1

∥∥∥∥∥∥xi −
k′∑

j=1

W e
ijxj

∥∥∥∥∥∥
2

. (4)

Both Eqs. (3) and (4) can be computed in closed form by determining the optimal
weights through the local covariance matrix [5]. Alternatively, it can also be
solved using a linear system of equations.

Formulation of Optimal Projection. In this step, an optimal projection is
learned to enable new data points to be linearly embedded in the NDMP feature
space. Typically, a linear subspace projection

Y = ATX (5)

maps the original data points X to the projected coordinates in embedded space
Y by a linear transformation matrix A =

{
ai ∈ �D|i = 1, ..., d

}
.

Similar to NPE algorithm [11], the intra-class cost function can be formulated
by expanding the least-squares term:

εremb(Y ) =
N∑

i=1

∥∥∥∥∥∥yi −
k∑

j=1

W r
ijyj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Y −
N∑

i=1

k∑
j=1

W r
ijyj

∥∥∥∥∥∥
2

= Tr
(
Y

[
δij − 2W r + ‖W r‖2

]
Y T

)
= Tr

(
Y (I −W r)T (I −W r)Y T

)
= Tr

(
YM rY T

)
, (6)

where Tr{.} refers to the trace of the matrix and the orthogonal intra-class
weight matrix

M r = (I −W r)T (I −W r) . (7)
Likewise, the inter-class cost function and its orthogonal inter-class weight ma-
trix is derived as

εeemb(Y ) = Tr(YMeY T ) , (8)
where M e = (I −W e)T (I −W e) . (9)
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Substituting Eq. (5) to both cost functions yields:

εremb(X) = Tr(ATXM rXTA) (10)
εeemb(X) = Tr(ATXM eXTA) . (11)

Motivated by Fisher’s discrimination criterion [4], the objective function can be
formulated to incorporate discriminative property that enables the compaction
of intra-class neighborhood and the dispersion of inter-class neighborhood (see
Fig. 1 for illustration). The intra-class cost function, εremb can be minimized
so that the overall weighted pairwise distances between intra-class neighbors in
embedded space are reduced.

Since the total sum of weights is subjected to
∑N

i=1 Wij = 1 or Tr(W ) = I,
the inter-class cost function can be formulated as a local constraint,

ATXM eXTA = I . (12)

In order to maintain global rotational invariance within the embedding structure,
another constraint is used for further optimization. From Step 3 of the LLE
algorithm, rotational invariance is achieved by subjecting

∑N
i=1 yiy

T
i /N = I or

Y Y T /N = I, resulting in a global constraint,

ATXXTA = NI . (13)

Modeling a constrained optimization problem involving two constraints results
in the following Lagrangians:

L�(λ�, A) = ATXM rXTA+ λ�(I −ATXM eXTA) (14)
Lg(λg, A) = ATXM rXTA+ λg(NI −ATXXTA) . (15)

By forming two equations from their derivatives w.r.t. A and solving them si-
multaneously, it can be easily shown that λ� = λg = λ based on the constraints
in Eqs. (12) and (13). Thus, the corresponding unified Lagrangian,

L′(λ,A) = ATSA+ λ((N + 1)I −ATC�A−ATCgA) , (16)

where S = XM rXT , C� = XM eXT and Cg = XXT .
Setting its gradient to zero,

∂L′

∂A
= 0 ⇒ 2SA− λ [2C�A+ 2CgA] , (17)

we can then rewrite it as a generalized eigenvalue problem,

SA = λ [C� + Cg]A . (18)

Note that matrices S, C� and Cg are all symmetric and semi-positive definite.
The optimal embedding A is solved by taking d eigenvectors associated with the
d smallest eigenvalues (λ1 < . . . < λd), where d < D.

In a generalized case, a constraint tuning parameter β = {β| 0 ≤ β ≤ 1} can
be introduced to allow both local and global constraints to be adjusted according
to importance,

SA = λ [βC� + (1 − β)Cg]A . (19)

For equal contribution from both constraints, we can fix β = 0.5.
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Fig. 1. A data point (black) is embedded in NDMP-space using weights from intra-
class (blue) and inter-class (red) neighborhoods. Solving the constrained minimization
problem leads to distinction between intra-class and inter-class structures.

4 Experimental Results

The proposed NDMP method was tested on two standard video face datasets:
Honda/UCSD [14] and CMU MoBo [15] in order to ensure a comprehensive eval-
uation was conducted. The first dataset, Honda/UCSD, which was collected for
video-based face recognition, consists of 59 video sequences of 20 different people
(each person has at least 2 videos). Each video contains about 300-600 frames,
comprising of large pose and expression variations and significant head rota-
tions. The second dataset, CMU MoBo is a commonly used benchmark dataset
for video-based face recognition consisting of 96 sequences of 24 different sub-
jects (each person has 4 videos). Each video contains about 300 frames. For both
datasets, faces were extracted using the Viola-Jones cascaded face detector [16],
resized to grayscale images of 32 × 32 pixels, followed by histogram equalization
to remove illumination effects. Some sample images are shown in Fig. 2.

For each subject, one video sequence is used for training, and the remain-
ing video sequences for testing. To ensure extensive evaluation on the datasets,
we construct our test set by randomly sampling 20 sub-sequences consisting of
100 frames from each test video sequence. The test sequences are evaluated us-
ing a probabilistic Bayes classifier where the class with the maximum posterior
probability, c∗ = arg max P (c|x1, . . . , xN ) is the identified subject.

We use 7 exemplars for Honda/UCSD and 6 exemplars for MoBo1, while
intra-class and inter-class neighbors are fixed at k = k′ = M − 1. The tun-
ing parameter is set at β = 0.75 for all our experiments. It should be noted
that the optimal number of feature dimensions for all methods were determined
empirically through experiments.

1 The number of exemplars selected from each video is heuristically determined from
the residual error curve of clustering distance criterion [13].
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(a) Honda/UCSD (b) CMU MoBo

Fig. 2. Sample images extracted from a video sequence of different datasets

4.1 Comparative Evaluation

The proposed NDMP method is compared against other classical (PCA, LDA)
and recent state-of-art methods (LPP, MFA, NPE). The overall recognition per-
formance on both Honda/UCSD and CMU MoBo datasets is summarized in
Table 1, which shows that the NDMP method can outperform other methods in
recognizing faces in video sequences. The strength and robustness of NDMP over
the rest is more apparent in the Honda/UCSD data set, where video sequences
possess a wide range of complex face poses and head rotations. Interestingly,
LPP and MFA performed rather poorly in this dataset. The constraint tuning
parameter, β in the generalized NDMP (see Eq. (19)) can be tuned to values
between 0 and 1 to adjust the contribution of the local neighborhood constraint
and global invariance constraint. From Fig. 3, we can observe that while both
constraints seemed equally important, slightly better results can be expected by
imposing more influence towards constraining the local neighborhood structure.

4.2 Rank-Based Identification Setting

To further evaluate the reliability of the NDMP method in a rank-based iden-
tification setting, we present its performance using a cumulative match curve
(CMC). To accommodate this evaluation setting, we adopt a probabilistic vot-
ing strategy where the top n matches based on posterior probability scores are
given a vote at each frame. The class with the majority vote is identified as the
subject in the test sequence.

The CMCs of various methods evaluated on both datasets in Fig. 4 showed
that NDMP consistently yielded better recognition rates throughout rank-n
top matches for the Honda/UCSD. It also achieved a perfect recognition score
(100%) for the CMU MoBo dataset with the top 3 matches. In contrast, global
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Table 1. Recognition rates (%) of various manifold learning methods on the evaluated
datasets

Datasets Methods
PCA LDA LPP MFA NPE NDMP

Honda/UCSD 60.7 68.9 56.8 57.4 71.7 86.9
CMU MoBo 86.6 92.6 89.3 91.4 96.3 97.7
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Fig. 4. Comparison of cumulative match curves of various methods

methods such as PCA and LDA performed poorly due to their inability to learn
the nonlinear manifold of appearance variations that is inherent in videos. It
can be observed that the performance of other local neighborhood-preserving
methods (MFA, LPP, NPE) tend to improve rapidly as the rank increases.
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5 Conclusion

In this paper, we present a novel supervised manifold learning method called
Neighborhood Discriminative Manifold Projection (NDMP) for video-based face
recognition. The NDMP method constructs a discriminative eigenspace projec-
tion from nonlinear face manifolds based on both local neighborhood geometry
and global manifold structure. Extensive experiments on standard video face
datasets demonstrated the robustness and effectiveness of the proposed method
compared to classical and recent state-of-art methods. In the future, the NDMP
method can be further generalized to a nonlinear form in kernel feature space.
Its potential usage in practical real-world applications is also worth exploring.

Acknowledgments. The authors wish to thank all who had provided invalu-
able suggestions throughout the development of this work. The authors also pay
tribute to Sam Roweis, co-author of LLE, on his passing away in early 2010.
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Abstract. Over the past several decades, pattern classification based on
subspace methodology is one of the most attractive research topics in the
field of computer vision. In this paper, a novel probabilistic linear sub-
space approach is proposed, which utilizes hybrid way to capture multi-
dimensional data extracting maximum discriminative information and
circumventing small eigenvalues by minimizing statistical dependence
between components. During features extraction process, local region is
emphasized for crucial patterns representation, and also statistic tech-
nique is used to regularize these unreliable information for both reducing
computational cost and maintaining accuracy purposes. Our approach is
validated with a high degree of accuracy with various face applications
using challenging databases containing different variations.

Keywords: probabilistic analysis, linear subspace, face application.

1 Introduction

The ultimate goal of pattern recognition is to discriminate the class of observed
objects with the minimum misclassification rate. Thus, in the discriminating
process, a pattern recognition system intrinsically utilizes low dimensionality
to represent the input data. Subspace analysis is a powerful tool of seeking
low-dimensional manifolds which models continuous variations in patterns, and
new image can be embedded into these manifolds for classification. Among the
numerous techniques published in the past few years, ways directly solves the
classification and clustering problems, such as sparse representation [1] and sub-
space arrangements [2]. Another category emphasizes on feature extraction, like
Laplacian Eigenmaps (LE) [3], locality preserving projections (LPP) [4], and
marginal Fisher analysis (MFA) [5]. The superiority of subspace method can be
concluded as aiming at reducing the computational complexity of the classifica-
tion with minimum loss of discriminative information [6]. This can be done by
maximizing the information carried by the data in the extracted low-dimensional
subspace, and as evidenced by the fact that vast majority of the proposed ap-
proaches are based on ”most discriminative” criteria which extract maximum
discriminative information in the form of reduced low-dimensional space from

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 257–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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large scale, such as LE, LPP, and MFA. While the other objectives are to circum-
vent the over-fitting problem of the classification and enhance the accuracy and
robustness. Curse of dimensionality, small sample size, or noise removal effect
are some problematic and harmful situations for robust classification. One way
is to regularize these unreliable statistic or remove corresponding dimensions.
Although various regularization techniques are proposed, they are supposed to
be applied before dimensionality reduction because regularization in classifica-
tion stage cannot recover the improperly removed dimensions in dimensionality
stage. Based on the understanding of the roles of subspace method, we can find
most top performers of the state-of-art subspace-based approaches adopt either
various regularized discriminative analysis or two-stage approaches to realize
superiorities and also boost the classification accuracy.

According the principles behind the subspace analysis, here, we propose a
novel probabilistic approach for pattern classification. Basically, it adopts mul-
tiple linear subspace methods to capture multi-dimensional data which extracts
maximum discriminative information and circumventing small eigenvalues by
minimizing the statistical dependence between components. During the features
extraction process, local region is emphasized for crucial patterns representation,
and also statistic technique is used to regularize these unreliable information
for both reducing computational cost and maintaining accuracy purposes. Our
discussion in this paper is limited on face applications which involves two- and
multi-class classification problems, and proposed approach can be also developed
for other general pattern recognition tasks.

The remainder of this paper is structured as follows: Section 2 analyzes the
proposed probabilistic linear subspace approach. Performances of different face
applications and conclusion will be presented in section 3 and 4, respectively.

2 Probabilistic Linear Subspace Approach

As one of the most popular subspace methods, PCA yields the projection di-
rections that maximize the data structure information in the principal space
across all classes, and hence is optimal for data reconstruction. Although PCA-
based classification approaches reduce computational complexity by capturing
low-dimensional data, the dimensionality utilized is chosen according to the dif-
ferent targets which means the performance utilizing extracted feature cannot
be guaranteed in case of the data with large deviation from training samples.
Unfortunately, unwanted variations like lighting, facial expression, or other real-
ity factors always exist. Some work suggests to discard several most significant
principal components and better clustering of projected samples can be achieved.
Yet, it is unlikely that these principal components correspond solely to varia-
tions, as a consequence, information that is useful for discrimination may also
lose. On the other hand, PCA-feature only analyzes the first- and second-order
statistics information capturing amplitude spectrum of images, since PCA seeks
directions that are most independent from each other. High-order statistics con-
taining phase spectrum hold important information which can be transformed be
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variation immunity. Thus, these information should be well modeled for boosting
the classification accuracy and robustness.

Classification is to assign a given pattern to one of the categories. The min-
imum probability of misclassification is achieved by assigning pattern to class
that has maximum probability after pattern has been observed, thus the Bayes
theory can be utilized to evaluate the discriminant function,

fi(x) = lnP (x|Ci) + ai (1)

where x and ai represent the input and the threshold for class i, respectively.
For further analysis, data usually is modeled by an analytical form, such like
multivariate Gaussian distribution. As the most natural distribution, it is an
appropriate second-order statistics model for many situations [6]. After eigen-
decomposition, Eq. 1 is simplified as,

fi(x) = −1
2
(x− X̄i)TΣ−1

i (x− X̄i) + bi

= −1
2

∑
j

(wj − W̄j)2

λj
+ bi (2)

where X̄i and Σi are the mean and covariance distribution, and wj and W̄j are
the projections of x and X̄i on the orthonormal eigenvectors corresponding to
the eigenvalue λj of Σi.

Moghaddam [7] and Jiang [8] suggested to separate the discriminant function
into two parts and replace small eigenvalues by a constant,

fi(x) = −1
2
[

m∑
j=1

(wj − W̄j)2

λj
+

n∑
j=m+1

(wj − W̄j)2

ρ
] + bi (3)

where ρ is computed as a fixed percentage of corresponding eigenvalues or an
upper bound of small eigenvalues. All these adding a constant to all eigenvalues
or replacing the unreliable eigenvalues by a constant are reported with better
classification performances. These PCA variants still adopt single model to ex-
tract discriminate feature and decreased large deviation effect caused by small
eigenvalues. However these ”unreliable” small eigenvalues actually do contain
high-order statistic information which contributes for classification and cannot
be simply replaced by a constant instead of completely modeling. One more is-
sue is all these modeling is based on Gaussian distribution assumption, which
can not completely describe the reality cases. Inspired from it, we propose our
subspace-based two-stage model.

2.1 Proposed Approach

Considering the outstanding performance for both dimensionality reduction and
discriminative information representation, PCA feature is competent for mod-
eling the first- and second-order statistics. The rest small eigenvalues, as the
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second part decomposed in Eq. 3, can be described by independent component
analysis (ICA) [9]. Although ICA is a generalization of linear subspace approach,
unlike PCA, it searches for a transformation that minimizes the statistical de-
pendence between components, and thus provides a good representation of data
by virtue of exploiting the entire data space. However, ICA loses merit when
dealing Gaussian distributed data [10] while showing the superiority in encoding
non-Gaussian distribution. As the reasons stated for building up multivariate
Gaussian distribution, the existence of non-Gaussian distribution cannot be ig-
nored, such as geometrical variation, which here can be compensated by ICA.

Our strategy is to use PCA to isolate low-order statistical information model-
ing Gaussian distribution, simultaneously, ICA is applied to represent high-order
data which is more superior to model non-Gaussian distribution. Thus, each
reconstructed image x̂ can be written as,

x̂ = (ΦmΦn) ∗ (ΦmΦn)T ∗ x
= ΦmΦ

T
m ∗ x+ ΦnΦ

T
n ∗ x

= ΦmWm + Un(WT
invt)

−1ΦT
n ∗ x

= ΦmWm + Un(ΦnW
−1
invt)

T ∗ x
= ΦmWm + UnBn (4)

where Φm and Φn are the first m and residual n principle components in the
eigenvector matrix Φ, respectively; Wm represents the projection in the PCA
space; Un and Bn denote the independent basis image and coefficient in the
residual ICA space, respectively.

Generally, subspace methods encode the gray scale correlation among every
pixel position statistically, and any variation can cause severe changes of infor-
mation representation. However, pattern recognition based on local regions are
reported having a demonstrably superior performance to those which exploit
global information [10,11,12]. Firstly, as local region exhibiting less statistical
complexity, method using local space will be more robust to illumination change.
Also, local pattern might vary less under pose changes than global one. Lastly,
local feature is more robust against partial occlusions since local region recogni-
tion is little affected. So Eq. 4 can be further rewritten according to the specific
subregions defined containing important and meaningful local features,

x̂s = (Φs)m(Φs)T
m ∗ xs + (Φs)n(Φs)T

n ∗ xs

= (Φs)m(Ws)m + (Us)n(Bs)n (5)

Having derived the principal and independent components, each local component
is projected onto PCA and ICA spaces, respectively. Thus the statistic analysis
is applied to regularize PCA projection weight Wm and ICA coefficient Bn. Be-
cause data usually has divergent and complicated distributions in reality case,
instead of a single multivariate Gaussian model, a weighted mixture of multivari-
ate Gaussian (GMM) distribution is adopted here to increase modeling precision
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and reduce misclassification rate. The likelihood probability of the jth local
region xj

s can be written as,

P (xj
s|Ci) =

exp[− 1
2 (xj

s − X̄j
s )T (Σj

s)−1(xj
s − X̄j

s)]

(2π)L/2|Σj
s |1/2

=
exp[− 1

2d(x
j
s)]

(2π)L/2|Σj
s |1/2

=
exp{− 1

2d[(xs)
j
PCA]− 1

2d[(xs)
j
ICA]}

(2π)(m+n)/2|(Σs)
j
m(Σs)

j
n|1/2

= P ((xs)
j
PCA|Ci) ∗ P ((xs)

j
ICA|Ci)

=
aj∑

k=1

P [(Ws)
j
k|Ω

j
k] ∗

bj∑
l=1

P [(Bs)
j
l |Γ

j
l ] (6)

where aj and bj are the GMM cluster numbers for PCA and ICA spaces of
class i, where

∑
aj = 1 and

∑
bj = 1; d(xj) is the corresponding Mahalanobis

distance; Ωj
k = (πj

k, μ
j
k, Φ

j
k) and Γ j

l = (ϕj
l , ν

j
l , Ψ

j
l ) are the kth and lth Gaussian

parameter sets containing likelihood probability weights πj
k and ϕj

l , mean vectors
μj

k and νj
l , covariance matrixes Φj

k and Ψ j
l in PCA and ICA spaces, respectively.

For estimating parameter sets Ωj
k and Γ j

l , the initial values of mean μj
k and

νj
l , and covariance Φj

k and Ψ j
l of cluster j in class i can be calculated by being

partitioned by modified k-means clustering, which uses the likelihood probability
of multivariate Gaussian model as the measure of the nearest neighbor rule. The
corresponding initial weights aj and bj are defined as the ratio of subspace
data number in cluster j to the total training number. Then the expectation
maximization (EM) algorithm iteratively optimizes Ωj

k and Γ j
l to local maximum

in the total likelihood of the training set. During the integration procedure [11],
likelihood probability of the entire image x can be expressed as,

P (x|Ci) =
Q∏

j=1

P (xj
s|Ci) (7)

where Q is the subregion number. Therefore, the discriminant function Eq 1
becomes,

fi(x) = ln[
Q∏

j=1

P (xj
s|Ci)] + ai =

Q∑
j=1

ln[P (xj
s|Ci)] + ai (8)

and x is classified to the class with maximum probability.
The outline of the proposed probabilistic subspace approach for both training

and testing procedures is shown in Fig. 1.
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Fig. 1. Flowcharts of proposed approach: (a) training, and (b)testing process

3 Experiment

3.1 Multi-view Face Detection

Similar to the work [13], the experiment platform adopted here comprises prepro-
cessing, detection, and postprocessing modules. After geometric normalization
and lighting correction utilized in the preprocessing, three view-based face detec-
tors are trained by the proposed approach using canonical facial data, which con-
tinuously cover the whole out-of-plane rotation. Postprocessing including group-
ing, averaging, and filtering is used to solve multi-resolution issue, and gives
unambiguous location and scale of face without information loss.

Experiment data includes FacePix [14,15], PIE, Pointing04 [16], and CMU
profile [11] datasets as face images; Caltech background dataset, Caltech and
Pasadena Entrances 2000 dataset, Caltech Houses dataset and Fifteen Scene Cat-
egories dataset as nonface images. FacePix provides multi-view faces with contin-
uous pose changing, PIE and Pointing04 have discrete pose changing faces, and
CMU datasets contain faces with unestimated poses under complex background.
Canonical images, subregions, PCA reconstructed subregions, and residual sub-
regions defined for different face views are illustrated in Fig. 2. It can be seen
that reconstructed subregions are similar to their low-pass filtered equivalents
and the residual ones which are characterized by high-frequency components
are less sensitive to illumination variations, which is equivalent to the low- and
high-order statistics separation.

The proposed subspace model, designated as “PCA+ICA”, is compared with
other two approaches, namely “PCA” and “ICA”, in which PCA and ICA are
employed solely to model data respectively. The current “PCA+ICA” model
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Fig. 2. (a) Original images; (b) subregions; (c) PCA reconstructed subregions; and (d)
residual subregions

yields the best performance which demonstrates information distributed in the
low- and high-frequency components are appropriately preserved by PCA and
ICA, respectively, see Fig. 3a. Another experiment is conducted between cur-
rent local subspace face detector, designated as “Local+PCA+ICA”, and the
“Global+PCA+ICA” detector in which the input is the entire patch. Fig. 3b
plots the corresponding ROC curves, in which the “Local+PCA+ICA” yields
better result than the global one.
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Fig. 3. ROC for multi-view face detection based on different approaches

Besides the evaluations conducted for showing the superiority of the pro-
posed approach, quantitative experiment also is done and comparison with other
outstanding methods are summarized in Table 1. Results using FacePix, PIE,
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Pointing’04, and CMU profile data averagely achieve around 90% detection rates.
Especially for CMU profile, compared to other methods, the proposed method
obtains an acceptable detection rate with reasonable false alarm. Meanwhile, the
pose of detected face is coarsely estimated according to the detector from which
the patch survives. Some typical examples detected by the proposed method are
shown in Fig. 4.

Table 1. Performance of multi-view face detection and comparison between proposed
method and others

Database Method Detection Rate False Positive Number

FacePix our 94.13% 281

PIE our 88.76% 1348

Pointing’04 our 91.52% 537

CMU profile

Schneiderman [11] 92.7% 700
Jones [17] 83.1% 700
Wu [18] 91.3% 415

our 86.17% 715

(a) FacePix dataset

(b) PIE dataset

Tile: -30 Tile: -15 Tile: 0 Tile: +15 Tile: +30
(c) Pointing’04 dataset

(d) CMU profile dataset

Fig. 4. Results for multi-view face detection application tested on different databases;
for CMU profile dataset, red, green, and blue rectangles present results detected by
left, frontal, and right detectors, respectively
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Fig. 5. Top recognition error rate for the number of selected basis components

3.2 Face Recognition

The proposed method is applied for face recognition and satisfied performance is
achieved. The evaluation performance is conducted based on AR database [19],
including frontal view faces with different facial expressions, illumination condi-
tions, and partial occlusions. For each subject, 20 images are randomly chosen
and treated as gallery, and the left 6 images are for testing. “Local+PCA+ICA”,
“Global+PCA+ICA”, “Local+PCA”, and “Local+ICA” curves are shown in
Fig. 5, which clearly prove that our model has advantage over other ones.

The two- and multi-class pattern classification applications demonstrated
above consistently show the classification ability of our probabilistic subspace
approach. Based on the PCA work, the ICA model representing the residual
high-order statistic information reveals the ability of describing non-Gaussian
distribution. Especially with the local component emphasizing, the robustness
and accuracy are both boosted since partial occlusion, illumination, geometry
variations are alleviated to different extent.

4 Conclusion

This paper proposes a probabilistic two-stage linear subspace method for pattern
classification. Besides the principal dimension statistics extracted by PCA, high-
order information is analyzed by ICA model by projecting the corresponding
coefficient to its feature space. Not only this, non-Gaussian distribution mod-
eled by ICA feature shows the same importance as Gaussian assumption for
pattern recognition. On the other hand, feature within subregions shows strong
robustness against variations, e.g. lighting, geometry, and occlusion, since fea-
tures are selectively emphasized. The weighted GMM probabilistic model also
makes data representation more completely. ICA model, local feature, and prob-
abilistic analysis all contribute to classification accuracy boosting, while being
exempted from ICA-reconstruction helps to keep from the reconstruction cost.
It can be concluded from experiments that the performances of our method in
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both face detection and recognition experiments are satisfactory with images
characterized by a wide variety.
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Refractive Index Estimation of Naturally Occurring
Surfaces Using Photometric Stereo

Gule Saman and Edwin R. Hancock�

Department of Computer Science, University of York, YO10 5GH, UK

Abstract. This paper describes a novel approach to the computation of refrac-
tive index from polarisation information. Specifically, we use the refractive index
measurements to gauge the quality of fruits and vegetables. We commence by
using the method of moments to estimate the components of the polarisation im-
age computed from intensity images acquired by employing multiple polariser
angles. The method uses photometric stereo to estimate surface normals and then
uses the estimates of surface normal, zenith angle and polarisation measurements
to estimate the refractive index. The method is applied to surface inspection prob-
lems. Experiments on fruits and vegetables at different stages of decay illustrate
the utility of the method in assessing surface quality.

Keywords: Refractive index estimation, Photometric stereo, Polarisation Infor-
mation, Fresnel Theory.

1 Introduction

The physics of light has been widely exploited for surface inspection problems. Al-
though the majority of methods make use of images in the visble, infra-red or ultravi-
olet ranges, there is a wealth of additional information that can be exploited including
the pattern of light scattering, multispectral signatures and polarisation. In fact, the op-
tical properties of surfaces prove to be particularly useful for assessing the quality of
changes in naturally occurring surfaces. Here the scattering properties of visible light
have been explioted for acquiring morphological information about the tissues. The two
factors that effect the scattering of light from biological surfaces are, tissue morphology
and biochemistry. Morphology affects the distribution of the scattered light, while the
refractive index is determined by the biochemical composition of the tissue [1]. The
refractive index is the ratio of the speed of light in vacuum to that in the material, and it
hence determines the light transmission properties of a material. To understand the de-
tailed propagation in biological tissue consisting of cells, the Mie theory has been used
for approximating the scattering of light assuming that the cells are unifomrly sized
homogeneous spheres [2]. A more complex approach is provied by the finite-difference
time-domain (FDTD) model where Maxwell’s equations are used for modelling the
scattering of light from biological cells [3].

Refractive index therefore plays an important role in characterising the properties
of biological tissue. One way of measuring refractive index is to turn to the Fresnel
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theorty and to use polarisation measurements. Polarisation information has been used
for developing algorithms for a diverse set of problems in computer vision ranging from
surface inspection to surface reconstruction. The Fresnel theory is used to determine the
parallel and perpendicular components of the electric field for incident light in order to,
model the transmission and reflection of these components [4]. The Fresnel theory of
light has been used by Wolff [5] for developing a polarisation based method for iden-
tifying metal surfaces and dielectrics. It can be applied at a smooth boundary between
two media as a quantitative measure of reflection and refraction of incident light [4,6].
Generally speaking, modeling dielectrics is straightforward as compared to modeling
metals, since in the latter case the incident electromagnetic field induces surface cur-
rents for which the Fresnel theory alone is insufficient. When dealing with dielectrics,
it is convenient to distinguish between the specular and diffuse polarisation. In specular
polarisation, polarised incident light is reflected from the reflecting surface where the
orientation of the surface determines the plane of polarisation. In diffuse polarisation,
unpolarised incident light is subjected to subsurface scattering before being re-emitted
hence spontaneously acquiring polarisation[5].

A polaroid filter can be used as an analyser for measuring the degree of polarisation
and phase of both diffuse and specular polarisation. The refractive index and the degree
of polarisation can be physically determined by the zenith angle between the remitted
light and the surface where the phase angle is determined by the azimuth angle of the
remitted light to the surface. The surface orientation of a reflecting surface can be deter-
mined for a constant refractive index and vice versa by using the Fresnel theory of light,
which is dictated by the polarisation nature of the incident light and the geometry of the
scattering process. Polarisation information proves to be very useful for determining
the surface quality by using refractive index estimation or surface shape for surfaces of
constant refractive index.

The aim of this paper is mainly the computation of the refractive index of a material
by using the Fresnel theory. Firstly, the method of moments is used which was proposed
in [7] for moments estimates from multiple polarisation images. Secondly, photometric
stereo is used for images taken with three different light source directions in order to
determine the surface normals and consequently the angle of incidence for the incident
light. Finally, the Fresnel theory for diffuse reflectance is used for estimating the re-
fractive index. We use samples of fruits and vegetables at different stages of decay and
surface texture to explore how effectively can the method be used for revealing local
variations in refractive index.

2 Polarisation Image

For computing the components of the polarisation image, we follow the method that
was proposed in [7] for diffuse reflectance using robust moment estimators, where light
undergoes subsurface reflections before being re-emitted. The Fresnel theory gives the
relationship between the degree of polarisation and the angle of reflection of the re-
flected light.
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2.1 Data Collection

We collect a succession of images of the subject with different orientations of the anal-
yser polaroid for measuring the polarisation state using the geodesic light dome[8]. The
object is placed in the center of the geodesic light dome for image acquisition. We used
a Nikon D200 digital SLR camera, with fixed exposure and aperture settings for obtain-
ing the data set. An unpolarised light source has been used for the experiments where
the images have been captured with the analyser angle being changed by increments of
10 ◦ to give 19 images per object.

Since the light source locations have been carefully calibrated, the use of the geodesic
light dome gives accurate measures for the angle of incidence of the incident light
source as shown in Figure (1) for a wrinkled apple, Figure (2) for an orange and Figure
(3) for a tomato. The experiments are conducted in a dark room with matte-black walls
hence, leading to minimal refelctions from the surroundings.

2.2 Robust Moments Estimators for Polarisation Image

The conventional way of estimating the components of the polarisation image, i.e. mean
intensity, I0, degree of polarisation, ρ, and phase, φ, has been to use the least-squares
fitting of 3 images [9]. As has been mentioned earlier, we use the robust moments
estimators for computing the components of the polarisation image from a larger set of
data [7]. The method is explained as follows:

If the angle of the analyser is taken as βi, where the index of the analyser angle is i.
At the pixel indexed p with the analyser angle indexed i, the predicted brightness is

Ii
p = Îp

{
1 + ρp cos(2βi − 2φp)

}
. (1)

where Îp, ρp and φp are the mean intensity, polarisation and phase at the pixel indexed p.
We take N equally spaced polarisation images, where the polariser angle index is

i = 1, 2, ..., N . To compute the polarisation parameters, we commence by normalising
the pixel brightness values. Therefore,

xi
p = (II

p − x̂p)/x̂p, (2)

where

x̂p = 1/N
N∑

i=1

xi
p. (3)

At the pixel p the normalised brightness has variance: σ2
p = 1/N

∑N
i=1(x

i
p− x̂p)2. The

moments estimators of the three components of the polarisation image are as follows:

Îp = 1/N
N∑

i=1

II
p , ρp =

√
2/πσp (4)

and
φp = 1/2 cos−1(〈x̂p cos(2βi)〉/πρp). (5)
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3 Surface Normal Estimation

Photometric stereo has been used for estimating the angle of incidence for images ac-
quired for three light source directions as has been proposed in [10] and further used in
[11]. The mean-intensity component of the polarisation image has been used as input
to the photometric stereo for computing the surface normals.

Let Sm = (S1|S2|S3) be the matrix with the three light source vectors as columns,
Np the surface normal at the pixel indexed p and Ĵp = (Î1p, Î2p, Î3p)T be the vector of
the three mean brightness values recorded at the pixel indexed p with the three different
light source directions. Under the assumption of Lambertian reflectance, at pixel p we
have

Ĵp = SmN. (6)

The surface normal can be calculated from the vector of brightness values Jp and the
inverse of the source matrix Sm. The reflectance factor, R, is calculated by taking the
magnitude of the right side of equation (7) because the surface normal, N, is assumed
to have unit length

Rp = |[Sm]−1Ĵp|. (7)

The unit normal vector is calculated as follows:

N = (1/R) ∗ [Sm]−1Ĵp. (8)

The images taken across the polarizer angles are reconstructed using the following
equation:

J i
p = Sm.N(1 + ρpcos(2βi − 2φp)). (9)

The surface normal information is used to compute the angle of incidence of the incident
light, which is given by the dot product of the source vector and the surface normal.

4 Refractive Index Estimation

Fresnel theory of light predicts that light incident on a surface is partially polarised and
refracted while penetrating the surface. Scattering due to the structure of the reflecting
surface depolarises the incident light. The remitted light is refracted into the air and
hence is refracted and partially polarised in the process. From the Fresnel theory of
light, the relationship between the degree of diffuse polarisation, the angle between the
surface normal and the remitted light θ and the refractive index n is given as follows:

ρ=
(n− 1

n )2 sin2 θ

2+2n2−(n+ 1
n )2 sin2 θ+4 cosθ

√
n2−sin2 θ

. (10)

If ρ and θ are known then the above equation can be solved for the refractive index n.
The refractive index is given by the roots of quartic equation:

A2n4 + (2AC − 1)n3 + (2AB + C2 + sin2 θ)n2 + 2BCn+B2 = 0. (11)

where A = ((1+ρ) sin2 θ− 2ρ
4ρ cos θ ), B = ( (1+ρ) sin2 θ+ρ

4ρ cos θ ) and C = − 2((1−ρ) sin2 θ+ρ)
4ρ cos θ .

In practice, we find that only one root falls within the physical range of refractive index
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encountered for biological tissue, i.e. 1 < n < 2.5. For specular polarisation, there
is a similar equation but its solution requires only the solution of a cubic equation in
refractive index [12]. We have used the Newton-Raphson method to compute the roots
of the equation (11), 10 iterations have been used to get the final value for the refractive
index.

There are other methods that have been proposed for estimating the refractive index,
which are as follows: multi-spectral polarisation imagery from a single viewpoint [13],
the spectral dependence of the refractive index has been studied in [14], [15], [16].
Our method differs from these as we have used the Fresnel theory in conjunction with
photometric stereo and estimates of the polarisation image from the robust moments
estimator for estimating the refractive indices.

5 Experiments

As has been already mentioned the images were acquired in a dark room. The objects
and the camera are positioned on the same axis while the LED (light sources) are po-
sitioned at different angles in the geodesic light dome designed by Cooper et al. for
controlling the light sources while the camera operation is manual [8]. A linear polaris-
ing filter is placed in front of the camera lens where the orientation is changed manually.
The experiments were carried out on a wrinkled apple, orange and tomato. The orange

Fig. 1. The scene for a wrinkled apple using three different light source directions

Fig. 2. The scene for an orange using three different light source directions
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Fig. 3. The scene for a tomato using three different light source directions

Fig. 4. The refractive index images for an orange, tomato and apple, respectively

Fig. 5. The histograms for an orange, tomato and apple, respectively

has been chosen in order to test the method due to presence of natural indentations in the
surface. We have placed lumps of blu-tac on the surface of the apple. The aim here is to
detect whether the method can deal with local variations of shape and refractive index.
For the three objects the values for the refractive indices fall in the range 1 < n < 2.5.
There are some outliers which have been filtered. These mainly correspond to non-
physical values of the refractive index, which are less than unity. The refractive index
images for the different objects are shown in Figure (4). From the images it is clear that
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Fig. 6. [Top to Bottom]The top, centre and bottom profiles of an orange, tomato and apple, re-
spectively

the blu-tac on the apple can be detected as both changes in shape and refractive index.
Also, regions of specularity have refractive index ′0′ since, we use the Fresnel equation
for the diffuse reflectance. Figure (5) shows histograms of the refractive indices for the
apple, tomato and an orange. The modal values are consistent with tabulated values
for the refractive index, and the non physical outliers are well separated from the main
distribution. Figure. (6) shows refractive index profiles across the physical top, centre
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and bottom for each object. For the apple and tomato, the profiles are flat, showing that
there is no residual shape-bias in the estimation of refractive index. However, the pro-
files for the orange shows significant variation near the object boundary, and this may
be attributable to its indented surface and the boundary effects of roughness. However,
the profiles are quite stable in the centre of the object. Infact the profiles of all of the
object, show more variation near the boundaries and also where there is a change of
material (e.g. the blu-tac lumps). In the case of the apple where the surface is wrinkled
due to loss of water content and rotting, there is variation in refractive index.

It is worth mentioning that there are potential sources of error in the computation of
the refractive indices because the surface for the apple is wrinkled. This has resulted
in inter-reflections and these in turn lead to unrealistic values. On the other hand, the
tomato is smooth apart from where there is a change of material where the blue-tac
lumps have been added. This change of composition is enhanced in the refractive index
image. For the orange the dents in the skin appear as refractive index variations, prob-
ably due to inter-reflections and sub-surface reflections. There is also the possibility of
error due to noise and camera jitter. Also, the degree of polarisation computations might
not be accurate due to misalignment of the polariser angles.

6 Conclusions

In this paper we have exploited the information that is acquired from the Fresnel theory
and polarisation information for refractive index estimation. Our approach has been to
use information from the polarisation image computed using robust moments estimation
and surface normal estimation using photometric stereo. These results are used as inputs
to the Fresnel equation for diffuse reflectance, in order to compute the refractive index
of the material. The computation is considered to be effective since the refractive indices
vary with the change in material and do not exhibit significant shape bias.
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Abstract. Indirect reflection component degrades the preciseness of 3-D mea-
surement with structured light projection. In this paper, we propose a method to
suppress the indirect reflection components by spatial synchronous detection of
structured light modulated with MLS (Maximum Length Sequence, M-sequence).
Our method exploits two properties of indirect components; one is the high spa-
tial frequency component which is attenuated through the scattering of projected
light, and the other is the geometric constraint between projected light and its
corresponding pixel of camera.

Several experimental results of measuring translucent or concave objects show
the advantage of our method.

Keywords: Subsurface Scattering, Interreflection, Shape Measurement.

1 Introduction

In this paper, we present a novel method to precisely measure the 3-D shape of object by
suppressing subsurface scattering and interreflection which disturb the correct detection
of structured light projected on the object.

In principle, triangulation method using structured light projection detects the point
of reflection where the incoming light firstly reaches to the surface of the object. In other
words, the method assumes that the directly illuminated part only is brightly shining,
or otherwise dark. However, in general, the luminance of the scene consists of not only
direct but also indirect reflection component (Figure 1). Direct reflection component is
the ideal light for 3-D measurement because the line of sight intersects with the incom-
ing light beam exactly on the object surface. On the other hand, indirect component
does not directly correspond to the shape of the object and may cause errors.

Indirect component can be classified to subsurface scattering and interreflection.
Subsurface scattering is the reflection observed as blurring of light on the surface. In-
coming light penetrates into a translucent object, and scattered by particles such as
pigments. Therefore, the light exits the surface at a point different from the entrance,
and introduces error to measured shape as shown in Figure 1. Interreflection is a phe-
nomenon that the light reflected on the object act as a second light source illuminating
the other surface, and produces spurious shape apart from the true surface.
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Projector camera

Subsurface
Scattering

Interreflection

Direct 
component

Fig. 1. Error caused by subsurface scattering and interreflection. Subsurface scattering introduces
a displacement of measured shape (red dot). Interreflection also generates a spurious shape (green
dot) apart from the true surface.

In general, more precisely we want to measure the detail of object, the more strong
influence we have via subsurface scattering and interreflecion, even if the object seems
opaque in macroscopic scale. For example, a material which attenuates the light by half
in 1mm on its pathway does not affect to the measurement whose resolution is 10mm,
but may have an influence for the case of requirement of 0.1mm resolution. Most non-
metallic objects such as plastic, cloth, paper and wood have more or less subsurface
scattering. Similarly, the intensity of interreflection gets higher if the distance between
two interacting surfaces is small. Therefore, suppression of such indirect components
is important for precise shape measurement in industry and digital archives.

1.1 Related Works

Subsurface scattering have been well addressed in computer graphics area. Jensen et
al. [6] proposed a mathematical model of subsurface scattering to represent BSSRDF
(Bidirectional Surface Scattering Reflectance Distribution Function) with parametric
function, and many techniques to render photorealistic images of such objects have
been proposed.

In recent years, 3-D measurement of non-lambertian object such as transparent,
translucent or specular object have extensively attacked [4]. As described before, sub-
surface scattering is the main issue to measure the translucent object using structured
light. Godin et al. [2] analyzed the defocus and noise of penetrating light by projecting
spot light onto a marble stone, because statues made of marble stones are need to be
measured in digital archiving area [7] . Goesele et al. [3] measured the shape of translu-
cent object by using laser light and HDR (High Dynamic Range) camera. However,
it takes very long time to measure the whole object because it is based on spot light
projection method.

Methods for suppressing the influence of indirect components have been proposed.
T.Chen et al. [1] improved the phase shifting method by using polarization filter to sup-
press indirect components. Contrary, Nayar et al. [10] proposed a method to separate
direct and indirect reflection component by projecting high spatial frequency pattern
onto the object. Since intensity via indirect component receives contributions from var-
ious part of projected light, high spatial frequency components tend to be attenuated
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through the light transport of indirect reflection. Using this principle, Mukaigawa et
al. [9] analyzed the light transport in homogeneous scattering media using similar high
spatial frequency stripe pattern.

Our method is basically based on Nayar’s method, but their method is not effective
for specular interreflection caused by smooth surface. Therefore we extend the method
with MLS (Maximum Length Sequence, M-sequence) which is used for checking the
geometric constraint (epipolar constraint) between projector and camera. Generally, ob-
served light via specular interreflection does not satisfy the geometric constraint, and
synchronous detection effectively suppress the component.

Synchronous detection techniques are widely used in control engineering, commu-
nication technologies and weak signal detection. For example, CDMA (Code Division
Multiple Access) uses pseudorandom sequence such as MLS to separate multiplexed
signals or suppressing multi-path fading effect caused by reflected signals in temporal
domain. The principle of proposed method is similar from the mathematical point of
view, but ours is not temporal but spatial (or geometric).

2 Surpression of Indirect Component Using Spatially Modulated
Light

In this section, we will describe the method to suppress the indirect component of pro-
jected light using spatially modulated light. Firstly we will start from an extension of slit
light projection method, then apply the principle to the Gray-code projection method.

2.1 Spatially Modulated Slit Light

MLS (Maximum Length Sequence, M-sequence) is a pseudorandom binary sequence
which has three advantages for our purpose. Firstly, MLS contains high frequency com-
ponent which is more likely to be attenuated through indirect light transport. The sec-
ond advantage is that MLS has high autocorrelation value only if the phase difference is
zero. MLS is also easy to implement because it has only two binary values, therefore no
photometric calibration is necessary for projector. To suppress the indirect component
of projected light, we spatially modulate the light along the slit direction using MLS as
shown in Figure 2. The intensity distribution of projected patternL(xp, yp, t) is denoted
as

L(xp, yp, t) =
{
M((t− xp) mod T ) yp = ȳp

0 yp �= ȳp
(1)

where T is the cycle of MLS function M(t), and (xp, yp) is the coordinate on the
projector image. The slit light is parallel to the axis xp, and the position of the slit is
determined by ȳp. The MLS pattern is shifted along the slit light for one cycle, therefore
T different pattern is projected for each slit position.

The image of the scene is captured by the camera as shown in Figure 2. In prior to the
measurement, the geometric relationships between projector and camera are calibrated
using a reference object. This process is common to the calibration of quantitative 3-
D measurement, therefore this process does not lose the feasibility at all. From the



Synchronous Detection for Robust 3-D Shape Measurement 279

Projector Camera

Projector Image
Camera Image

Object

M-Sequence : 
modulated projection 
pattern at each pixel

epipolar line

Camera Image

t

Projected pattern

t

Subsurface Scattering
and diffuse Interreflection

t

Direct Component

t

Specular 
Interreflection

(a)

(b)(d)

(c)

yp

xp

t

Projector Images
yc

xc

t

Camera Images

(xc,yc)

Fig. 2. Schematic illustration of proposed method. Slit light is modulated with MLS code, and
captured by a camera. The amplitude of intensity by subsurface scattering is very low, and the
phase of the intensity sequence by interreflection is shifted.

calibration parameters of camera and projector, we can derive the following epipolar
constraint equation, (

xp yp 1
)
F

⎛⎝xc

yc

1

⎞⎠ = 0 (2)

where F is called fundamental matrix [8]. Using this equation, we can calculate the
epipolar line on the projector image for each pixel (xc, yc) on camera image. The epipo-
lar line has a intersection with the slit light, and we can decide the corresponding phase
of MLS of projected light for each point on the image. More specifically, we can deter-
mine the corresponding coordinate (xp, ȳp) on the projector image by
xp = − e2ȳp+e3

e1
where ⎛⎝e1

e2
e3

⎞⎠ = F

⎛⎝xc

yc

1

⎞⎠ . (3)

The process of synchronous detection of modulated slit light is illustrated in Figure 3.
We simply calculate the correlation between binary value of projected MLS pattern
and intensity sequence from the camera image, then use the correlation value for slit
detection instead of the raw intensity on the image.

As described in the paper [10], high spatial component in projected light is more
likely to be attenuated by the propagation of subsurface scattering or diffuse interreflec-
tion. However, specular interreflection preserves the structure of projected light, there-
fore, frequency analysis is not sufficient to suppress the effect. Fortunately, specular
interreflection can be assumed as a light projected from the other point, therefore, the
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Fig. 3. Synchronous detection of captured intensity using geometric constraint

epipolar constraint is no longer satisfied. In the next section, we will show the faster
method based on Gray code projection.

2.2 Modulation of Gray Code Pattern

As shown in the experimental results below, proposed method with synchronous detec-
tion using modulated slit light is effective for suppressing indirect component. However,
it takes much time to measure the whole shape of the object. The number of projection
pattern and corresponding image capture is T · N where T is the cycle of MLS and
N is the number of slit planes which corresponds to the depth resolution. Actually in
our experiment, we used parameters of T = 31 and N = 1024 which take around 18
minutes if the frame rate of projection and acquisition is 30 frames/sec.

Fortunately, several methods to accelerate the range measurement using structured
light have been proposed, and the temporal space coding [5,11] is one of the most
successful method using Gray-code. If we use complementary pattern projection1, it
only needs 2 log2 N patterns for measuring the whole object. Therefore we combine
our synchronous detection framework with temporal space coding method.

The projection patterns which consist of Gray-code and MLS are illustrated in Fig-
ure 4. The geometric synchronous detection requires that the phase of MLS should be
uniquely determined by the coordinate on the image plane (xc, yc). In the case of slit
light projection method, the phase of MLS can be uniquely determined because the
cross section of slit light and epipolar line is a single point. Contrary to the case of
slit-code projection, the bright part in projection pattern has certain width, therefore we
should align the lines of MLS code parallel to epipolar lines as shown in Figure 5. This
arrangement make the phase corresponds to a epipolar line unique, therefore we can
use the same synchronous detection method again.

1 For each bit plane, positive and its inverted pattern are projected, and sign of subtraction of
two images is used for binarized image.
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Fig. 4. Modulated Gray-code pattern for temporal space coding method with synchronous
detection
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Fig. 5. Arrangement of MLS code in the projection pattern. Arrangement of camera and projector.
If the image plane of the projector is parallel to the baseline, all epipolar line on the projector
image is parallel.

IF the epipolar lines are not parallel each other, the density of the code is not ho-
mogeneous. However, the density of the pattern decides the performance of eliminating
indirect component. Therefore, we arrange the image plane of the projector parallel to
the baseline as shown in Figure 5. In this case, the all epipolar lines on the projector
image are parallel. Contrary, the epipolar lines on the camera image are not necessary
to be aligned parallel.

By using the temporal space coding method with synchronous detection, the total
number of projected pattern is 2T log2 N . The condition of T = 31 and N = 1024
takes only 21 seconds with frame rate of 30 frames/sec. This is not only 50 times faster
than the case of slit light projection method with synchronous detection, but also even
faster than simple slit light projection.

3 Experiments

The appearance of experimental setup is shown in Figure 7. We used a liquid crystal
projector (EPSON EMP-1710, resolution : 1024× 768pixel) with a convex lens which
focal length is 330mm. The convex lens is used to adjust the focus on the object at short
distance. The cycle of used MLS code is T = 31, and the calibration of the system is
done in prior to the measurement using a reference object.
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Fig. 6. Observed slit light under subsurface scattering

(a)Experimental setup and arrangement of objects for evaluation

(b)Intensity

A

A’

(c)Correlation value

 0

 50

 100

 150

 200

 250

 300

 160  180  200  220  240  260  280  300

In
te

ns
ity

In
te

ns
ity

pixelpixel

(d)Intensity

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 160  180  200  220  240  260  280  300

In
te

ns
ity

In
te

ns
ity

pixelpixel

(e)Correlation value

Fig. 7. Observed slit light under interreflection

3.1 Suppression of Indirect Component

In prior to showing the performance of shape measurement, we will show the result
of suppressing indirect component in this section. Figure 6 is a result of suppressing
subsurface scattering using an opalescent acrylic plate. Figure 6(a) and (b) show the
intensity distribution of normal and synchronous detection respectively. The intensity
on a vertical line at the center of Figure (a) and (b) are shown in Figure 6(c) and (d)
respectively. The half-value widths of slit light, 21.2 and 6.7 pixels respectively, show
that the subsurface scattering is effectively suppressed by our method.

Figure 7 shows the result of suppressing specular interreflection. The object is a
stack of zirconia ceramic blocks shown in Figure 7(a). Figure 7(d) and (e) are the in-
tensity distribution on the line A-A’ in Figure 7(b) and (c) respectively. False slit is well
eliminated by synchronous detection though it is clearly visible in raw intensity image.

3.2 Shape Measurement with Slit Light Projection

The results of shape measurements are shown in the last 2 pages. Figure 8 is the result
with suppressed interreflection. The object (small figure of a house, width is around
40mm) is measured from the front side of the house. Interreflection causes a false shape
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(a)Measured object (b)Conventional method (c)Proposed method

(d)Magnified view of (b) (e)Magnified view of (c)

Fig. 8. Experimental result 1 (slit light projection)

(a)Measured object (b)Conventional method (c)Proposed method

(d)Magnified view of (b) (e)Magnified view of (c)

Fig. 9. Experimental result 2 (slit light projection)

(indicated by a red circle) with conventional method, and it is well suppressed by the
proposed method.

The result with translucent object with subsurface scattering is shown in Figure 9.
Since the figure is so small (height is around 38mm), some details of the figure are lost
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(a)Measured object (b)Conventional method (c)Proposed method

(d)Magnified view of (b) (e)Magnified view of (c)

Fig. 10. Experimental result 1 (temporal space coding)

(a)Measured object (b)Conventional method (c)Proposed method

Fig. 11. Experimental result 2 (temporal space coding)

with conventional method. As shown in Figure 9(d), the edges around the mouse and
eyes are almost lost, but the proposed method well preserves the edge.

3.3 Shape Measurement with Gray-Code Projection

Indirect component of structured light causes not only displacement of measured shape
but also spurious shape by decoding error for temporal space coding method. Figure 10
shows the result of measuring a figure of a ship made of flosted glass. Figure 10(b) - (e)
shows the color map of measured height of obliquely placed object. At the edges of flat
part, false step shape is observed with conventional method shown in Figure 10(b) and
(d). Contrary, the shape measured with proposed method has no false step shape around
the edge as shown in Figure 10(c) and (e).

To show the result of suppressing specular interreflection, we used a stack of ceramic
blocks again as shown in Figure 11. Figure 11(b) shows that conventional method pro-
duces a spurious shape around the concave edge of the object, and the shape of the edge
is not acute but rounded. Contrary, with our proposed method, the shape of the object
is properly measured as shown in Figure 11(c).

The main contribution of our method is to suppress the erroneous result caused by
indirect components. The amount of error much depends on the shape and material of
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the object, and the other conditions such as the angle of incident light also heavily affect
to the result. Therefore, it is not adequate to show a quantitive comparison between
conventional and proposed method with measured shape. Instead, we showed the effect
of our method with the difference of intensity distribution in section 3.1.

4 Conclusion

We proposed the 3-D shape measurement method robust against both interreflection and
subsurface scattering. MLS pattern is very useful to combine two suppression principles
based on geometric constraint and transfer characteristics in spatial frequency. Exper-
imental results showed the practicality of our method for translucent or shiny object
with fine details.

Since the false image caused by the interreflection sometimes has exactly same phase
as the true one, multiple cameras or projectors should be effective to verify the true im-
age using multiple epipolar lines. Synchronous detection technique will be also useful
for disambiguating simultaneous projections from multiple projectors.
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Abstract. In the last years, the 3D reconstruction of surfaces which rep-
resent objects photographed by simple digital cameras has become more
and more necessary to the scientific community. Through the most vari-
ous mathematical and engineering methods, scientists continue to study
the Shape-from-shading problem, using the photometric stereo technique
which allows the use of several light sources, but keeps the camera at the
same point of view. Several studies, through different advances on the
problem, have checked that in the applications, the smallest number of
photos that have to be considered is three. In this article we analyze the
possibility to determine the objects’ surface using two images only.

Keywords: Shape-from-shading, photometric stereo, normals integra-
tion, PDE numerical analysis, boundary conditions.

1 Introduction

Many articles have been written about the impossibility to solve the Shape-
from-shading problem (SFS) considering only one picture [1], even if a recent
perspective SFS model exploiting the attenuation of the lighting with respect to
the distance to the light source has been shown to yield to a well-posed problem,
if complemented by reasonable assumptions [2]. This impossibility, from the
PDEs point of view, comes out from the difficulty we meet in differentiating
the concave surfaces from the convex ones. The most natural way to solve the
problem is to use more than one picture. First introduced by Woodham [3],
photometric stereo (PS) consists in using several images which portray the object
photographed always from the same point of view, but with different light source
positions [4].

There are two main approaches to solve the SFS-PS problem. The first one
aims at computing in each point the normal to the surface to be reconstructed.
If the albedo is supposed to be known, this approach has the drawback to be
well-posed only if a minimum of three images of a differentiable surface are used
(we emphasize that the required regularity of the surface, in real applications,
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can be seen as a supplementary disadvantage). Its vantage is that, even if only
two images are used, the number of solutions of the problem (for a differentiable
surface) is a priori predictable through the study that we propose in this work.

The second approach, which is more recent, aims at solving the PDE model.
If we still suppose the albedo to be known, it has the advantage of admitting
only one solution even if only two images are used. It is also possible to approx-
imate the solution even if the surface is Lipschitzian (that is, almost everywhere
differentiable). The drawback is that it is well-posed only if we preliminary know
the height of the surface on the boundary of the image (i.e. only if we know the
boundary condition of the differential problem).

The main idea of this paper is to approximate the boundary condition by
integrating the normal field only on the boundary of the image, and then to
solve the PS problem anywhere else using the PDE approach. In Section 2, we
recall the differential and non-differential formulations of SFS-PS. In Section
3, we show that in some points, two images are enough to deduce the normal
univocally. Section 4 is dedicated to the tests and Section 5 to conclusion and
perspectives.

2 Main Features of the Photometric Stereo Technique

2.1 Shape-from-Shading

We start by giving a brief outline of the SFS problem and introducing the basic
assumptions. We attach to the camera a 3D Cartesian coordinate system xyz,
such that xy coincides with the image plane and z with the optical axis. Under
the assumption of orthographic projection, the visible part of the surface is a
graph z = u(x, y). For a Lambertian surface of uniform albedo equal to 1, lighted
by a unique light source located at infinity in a direction indicated by the unitary
vector ω = (ω1, ω2, ω3) = (ω̃, ω3) ∈ R3, the SFS problem can be modeled by the
following “image irradiance equation” [5]:

n(x, y) · ω = I(x, y) ∀(x, y) ∈ Ω (1)

where I(x, y) is the greylevel at the image point (x, y) and n(x, y) is the unitary
outgoing normal to the surface at the scene point (x, y, u(x, y)). The greylevel I,
which is the datum in the model, is assumed to take real values in the interval
[0, 1]. The height u, which is the unknown, has to be reconstructed on a compact
domain Ω = Ω ∪ ∂Ω ⊂ R2 called the “reconstruction domain”. It does not
explicitely appear in Eq. (1), but implicitely through the normal n(x, y), since
this vector can be written:

n(x, y) =
1√

1 + |∇u(x, y)|2
[−∇u(x, y), 1]� (2)

Combining Eqs. (1) and (2), we arrive to the following differential formulation
of the SFS problem:

−∇u(x, y) · ω̃ + ω3√
1 + |∇u(x, y)|2

= I(x, y) ∀(x, y) ∈ Ω (3)
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which is a first order non-linear PDE of the Hamilton-Jacobi type. Eq. (3) with
the add of a Dirichlet boundary condition u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω, do not
admit a unique solution if the brightness function I reaches its maximum i.e., if
there are points (x, y) ∈ Ω such that I(x, y) = 1. In this case, we cannot distin-
guish whether a surface is concave or convex (“concave/convexity ambiguity”,
see [5]).

With the purpose to prove the existence of a unique solution, we increase the
information about the surface considering the photometric stereo technique.

2.2 Photometric Stereo: Differential Approach

The first approach to PS is based on the differential formulation (3) of the SFS
problem, that is, using two images we have:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∇u(x, y) · ω̃ + ω3√
1 + |∇u(x, y)|2

= I(x, y) a.e. (x, y) ∈ Ω

−∇u(x, y) · ω̃′ + ω′
3√

1 + |∇u(x, y)|2
= I ′(x, y) a.e. (x, y) ∈ Ω

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω

(4)

It is a PDEs non-linear system with the add of a Dirichlet boundary condition
that admits a unique solution in the space of Lipschitzian functions. This means
that, even if a surface is differentiable for almost every (x, y) ∈ Ω it is possible
to approximate it using a convergent numerical scheme [6]. The only drawback
of this formulation concerns the boundary condition knowledge. In fact, beyond
the image data (I, I ′) and the light vectors (ω, ω′), g(x, y) (taken in the space
of the Lipschitz functions W 1,∞(∂Ω)) represents an additional information that
we must know to make this approach work.

Let us explain how the differential approach works. To arrive to the final PDE
formulation, we simplify the system (4) eliminating its non-linearity, supposing
that 1 ≥ I(x, y) > 0 everywhere. That is, we consider for example the following
equality from the first equation:√

1 + |∇u(x, y)|2 =
−∇u(x, y) · ω̃ + ω3

I(x, y)
(5)

and replacing (5) into the other equation we obtain a linear equation, ∀(x, y) ∈ Ω:

[I ′(x, y)ω1 − I(x, y)ω′
1]
∂u

∂x
+ [I ′(x, y)ω2 − I(x, y)ω′

2]
∂u

∂y
= I ′(x, y)ω3 − I(x, y)ω′

3

(6)
Considering also the same boundary condition as that of (4), it is possible to
arrive to the following linear problem:{

b(x, y) · ∇u(x, y) = f(x, y) a.e. (x, y) ∈ Ω

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω
(7)
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where {
b(x, y) = [I ′(x, y)ω1 − I(x, y)ω′

1, I
′(x, y)ω2 − I(x, y)ω′

2]
�

f(x, y) = I ′(x, y)ω3 − I(x, y)ω′
3

(8)

With these elements it is possible to enunciate the following result [6]:

Theorem 1. Let b(x, y) and f(x, y) be both bounded functions defined by (8),
where I and I ′ are two greylevel functions such that 1 ≥ I, I ′ > 0, with a jump
discontinuity on the piecewise regular curve γ(s) and g(x, y) ∈ W 1,∞(∂Ω). If
γ(s) is not a characteristic curve of the problem (7) then it admits a unique
Lipschitzian solution u(x, y).

2.3 Photometric Stereo: Non-differential Approach

The other approach is based on the local estimation of the outgoing unitary
normal to the surface. With the same data as before, Eq. (1) gives the following
non-linear system in the coordinates of the normal, in each point (x, y) ∈ Ω:⎧⎪⎨⎪⎩

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1
ω1n1(x, y) + ω2n2(x, y) + ω3n3(x, y) = I(x, y)
ω′

1n1(x, y) + ω′
2n2(x, y) + ω′

3n3(x, y) = I ′(x, y)
(9)

This approach goes on with the integration of the normal field using Eq. (2), all
over the domain Ω [7]. Its drawback is that the non-linear system (9) has not a
unique solution in general.

The purpose of our work is to find and, in particular, characterize the zones
of the images where the solution to (9) is unique. This permits us to understand,
before the integration of the gradient field, the number of possible surfaces ap-
proximated by this approach. With the aim to combine both approaches, we
study in detail the problem (9) giving information about all possible solutions.
We advance that there are two local solutions at the most, but the problem is
that they can globally generate much more than two surfaces.

3 Photometric Stereo with 2 Images: Normal Uniqueness

3.1 General Study of the Problem

We now focus on the problem of normal estimation, emphasizing one more time
that it is based on a local study of the images. For each pixel we want to estimate
the unitary vector which represents the outgoing normal to the surface. We can
determine the set of visible normals as the superior part of a sphere centered at
the origin and with radius one, that is the Northern hemisphere of the so-called
Gaussian sphere S (see Fig. 1). Referring to the 3D Cartesian coordinate system
xyz, these vectors n = [n1, n2, n3]� are those such that n3 > 0. We now consider
the two light vectors ω and ω′ and the sets of lighted normals, that is those such
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that ω · n > 0 and ω′ · n > 0. On S, these sets are limited by the two planes
π and π′ passing through the origin and orthogonal to ω and ω′. Now, we can
determine the set of possible normals for each twice-lighted point (x, y), which
can be summed up in the following non-linear system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1
ω1n1(x, y) + ω2n2(x, y) + ω3n3(x, y) ≥ 0
ω′

1n1(x, y) + ω′
2n2(x, y) + ω′

3n3(x, y) ≥ 0
n3(x, y) ≥ 0

(10)

On the other hand, in each twice-lighted point (x, y), the linear system (9)
usually admits two solutions. An important study is carried out on the straight
line Δ = π′ ∩ π′′, which is supported by the vector r = ω×ω′. This allows us to
establish a direct connection between the solutions of (9). For each twice-lighted
point (x, y) such that (9) admits two solutions n̂ and ˆ̂n, the locations of these
normals on S define a straight line which is parallel to Δ since, according to the
Lambertian model, n̂ and ˆ̂n form the same angles with ω and ω′ (see Fig. 1).

3.2 Normal Uniqueness Obtained by Visibility or by Coincidence

The first case in which normal uniqueness using two images we can be proved is
explainable geometrically, considering the set obtained changing the sign of the
last inequality of the system (10) (which represents the condition of visibility)
and then projecting it, according to the direction r, on the other side of the
sphere. Therefore, in order to determine these points in the images, the first
step is to determine the set ΩG ⊂ Ω of points (x, y) such that there exists a
solution n̂ to the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1
ω1n1(x, y) + ω2n2(x, y) + ω3n3(x, y) ≥ 0
ω′

1n1(x, y) + ω′
2n2(x, y) + ω′

3n3(x, y) ≥ 0
n3(x, y) < 0

(11)

Clearly, these normals n̂ cannot be considered as possible candidates for the
normal field of the surface taken into consideration, because they are located on
the non-visible part of S (see the yellow part SY of S in Fig. 1). The normals
which could be candidate for the normal field are those in the set in biunique
correspondence with SY with respect to the direction r (see the green part SG

of S in Fig. 1). Note that, if ω or ω′ is vertical i.e., equal to [0, 0, 1]�, then r is
horizontal and, therefore, the set ΩG is empty.

The second way of obtaining normal uniqueness corresponds to the limit case
where the two solutions n̂ and ˆ̂n of (9) coincide. The set ΩR ⊂ Ω thus contains
the points (x, y) where the normal is orthogonal to the direction r (see the red
line SR on S in Fig. 2), which is a geodesic line on S between two extreme points
P̂ and P̂ ′.

Looking at Figs. 1 and 2, it is obvious that SR ∩ SG = ∅ as soon as ω3 > 0
and ω′

3 > 0, which implies that ΩG ∩ΩR = ∅ as well.
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SY

π

E

S
π′

ω′

n̂

Δ

ˆ̂n
ω

z

SG

Fig. 1. The planes π and π′ are orthogonal, respectively, to the light vectors ω and
ω′. The intersection between π and π′ is denoted as Δ. Each normal ˆ̂n pointing to the
green area SG is known without ambiguity, since the second possible normal n̂ points
to the yellow area SY , which is a twice lighted but non-visible part of S (because it
lies under the equator E).

n̂ ≡ ˆ̂n

π

E

S
π′

ω′

Δ

ω

z

P̂ ′
SR

P̂

Fig. 2. The geodesic SR in red is a part of the intersection between S and the plane
supported by ω and ω′, limited by P̂ and P̂ ′. Each normal pointing to SR is known
without ambiguity, since both normals n̂ and ˆ̂n coincide in this case.
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3.3 Finding the Sets ΩG and ΩR

Here we describe how to find the sets ΩG and ΩR in the reconstruction domain
Ω. For each normal ñ = [ñ1, ñ2, ñ3]� ∈ SG ∪ SR, we have to calculate the
correspondent couple of greylevels (Ĩ , Ĩ ′) using (1), i.e.:{

Ĩ = ω1ñ1 + ω2ñ2 + ω3ñ3

Ĩ ′ = ω′
1ñ1 + ω′

2ñ2 + ω′
3ñ3

(12)

and check if, for each pixel (i, j) ∈ Ω, the greylevels (Ii,j , I ′i,j) are such that:{
|Ii,j − Ĩ| < ε

|I ′i,j − Ĩ ′| < ε
(13)

for a small fixed value of ε (ε = 0.001 is used in the tests).

Definition 2. Given a pair of images, we call Ωp
G and Ωp

R the sets of pixels of
Ω which belong to ΩG and ΩR and are determined using the criterion (13).

As we will see in the numerical tests, the sets Ωp
G and Ωp

R, depending on the
shape of the surface, can be made of several disjoint parts, that is Ωp

G = Ωp
G(1)∪

. . . ∪Ωp
G(nG) and Ωp

R = Ωp
R(1) ∪ . . . ∪Ωp

R(nR).

3.4 Predictability of the Number of Global Solutions

Let us suppose that the system (9) always admits two solutions n̂ and ˆ̂n. In fact,
(9) could have no solution in some points where the greylevels do not perfectly
match the Lambertian model. Nevertheless, we know under this assumption that
there exist either one or two possible normals in each twice-lighted point (x, y) ∈
Ω. If moreover the surface to be reconstructed is supposed to be differentiable
everywhere, then the number of global normal fields is predictable. For example,
if Ωp

R is empty while Ωp
G is not empty, then the normal field is unique, since all

the normals point toward the twice-lighted part SU of S which lies between SG

and SR (see Figs. 1 and 2). More generally, this analysis of the problem allows
us to predict the number of global solutions.

Another interesting advantage one can take from the study of the sets Ωp
G and

Ωp
R is related to the PDE approach (7). For example, let us suppose that no pixel

lying on the boundary ∂Ω belongs to Ωp
R. This means that there are two different

normal fields along the boundary i.e., two different values for ∇u according to
(2), and finally two boundary conditions u(x, y) = g(x, y) considering:

g(β(t)) = g1(β(0)) +
∫ t

0

∇u(β(s))β′(s)ds (14)

where β(t) is a parametrization of ∂Ω. Then, according to Theorem 1, we can
approximate the height of the surface with two values in this case (supposing
one more time that the surface is differentiable on the boundary ∂Ω).
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4 Numerical Tests

Here we present some numerical tests on the synthetic surfaces shown in Fig. 3:
the surface on the left is differentiable everywhere, whereas that on the right is
only Lipschitzian (differentiable almost everywhere).

Fig. 3. Surfaces SRegular (left) and SLipschitz (right) used in the numerical tests

4.1 Let’s Count the Solutions!

A first example uses the pair of images of SRegular shown in Fig. 4, over which
the two sets Ωp

G and Ωp
R are superimposed. Below each image, the spherical

coordinates (ϕ, θ) of the light vector, such that ω = (sinϕ cos θ, sinϕ sin θ, cosϕ),
are given.

In order to understand how to count the solutions, let us introduce the sets
SU and SD, which are the subsets of the Gaussian sphere lying, respectively,
upon and below the geodesic SR.

Ωp
G

Ωp
R(1)

Ωp
R(2)

(ϕ, θ) = (0.15, π) (ϕ′, θ′) = (0.15, π/2)

Fig. 4. Pair of synthetic images of the surface SRegular (400×400 pixels) used to count
the solutions. Note that all the pixels are twice-lighted.

Now, taking into account that these sets can be mapped to the reconstruction
domain Ω (namely Ωp

U = Ωp
U (1)∪. . .∪Ωp

U (nU ) and Ωp
D = Σp

D(1)∪. . .∪Ωp
D(nD)),

we show in Fig. 5 the four solutions deduced from the sets previously described.
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Ωp
G

Ωp
R(1)

Ωp
R(2)

Ωp
D(1)

Ωp
D(2)

Ωp
U

Ωp
G

Ωp
R(1)

Ωp
R(2)

Ωp
U (1)

Ωp
U (2)

Ωp
D Ωp

G

Ωp
R(1)

Ωp
R(2)

Ωp
D

Ωp
U (1)

Ωp
U (2)

Ωp
G

Ωp
R(1)

Ωp
R(2)

Ωp
U (1)

Ωp
U (2)

Ωp
U (3)

Fig. 5. All possible combinations that allow us to predict the number of solutions

4.2 Combining the Differential and Non-differential Approaches

A second example uses the pair of images of SLipschitz shown in Fig. 6, over
which the set of points where the surface is not differentiable is superimposed
in blue. A problem that we want to avoid is the presence of pixels of Ωp

R on the
boundary ∂Ω, since this would give rise to an ambiguity. In fact, in each pixel of
Ωp

R, the normal can cross the geodesic SR, passing from SD to SU (or vice versa)
or remain on the same side of SR. With this aim we choose the light vectors ω
and ω′ very close to each other, in order to reduce the sizes of SG and SR, and
therefore to reduce those of Ωp

G and Ωp
R. As in the first test, if some pixels of

∂Ω belong to Ωp
R, then we are able to count the different boundary conditions.

In our example, we find that Ωp
G = ∅ and Ωp

R = ∅. This means that there are
only two possible boundary conditions, but only one is admissible for a correct
approximation of the surface. The remaining question is thus: is it possible to
find the correct boundary condition?

Once the two possible normal fields are computed along ∂Ω, we can integrate
them using a very simple method which consists in fixing the height in some
reference pixel and then computing the height along ∂Ω as Strat did (see [8]). It
is well-known that the integration of an irrotational field along a closed contour
is equal to zero [7]. Therefore, it is possible to decide which boundary condition is
the right one, just comparing both integrals. In our example, we find an L∞(∂Ω)

(ϕ, θ) = (0.15, π + 0.2) (ϕ′, θ′) = (0.1, π)

Fig. 6. Pair of synthetic images of the surface SLipschitz (400×400 pixels) used for the
approximation of the boundary condition. In blue is emphasized the set of points where
the surface is not differentiable.
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norm error on ∂Ω between the real and the predicted boundary conditions equal
to 5.38× 10−3 for SRegular and to 3.325× 10−2 for SLipschitz. Unfortunately, due
to the lack of space, we cannot show here the whole 3D-reconstructions obtained
using the PDE approach (7).

5 Conclusion and Perspectives

In this paper, we addressed photometric stereo using two images only. This par-
ticular situation is rarely studied because using more than three images usually
suffices to render the problem well-posed. Nevertheless, there are at least two
reasons which can validate our work. First, the situation where all the light vec-
tors are coplanar is known to be ill-posed, and reduces to the case with two lights
only. Note that this is exactly the case of an outdoors scene lighted by the Sun.
Second, the “standard” PS technique supposes that the albedo of the scene is
unknown, in order to linearize the problem, but this is not always necessary and
can moreover give rise to inaccuracies in the reconstructions. From that point of
view, our work is an interesting insight in the non-linear PS problem.

Our main result is to show that the number of solutions of PS using two images
is predictable, thanks to particular points where the normal can be estimated
without ambiguity. More tests have to be performed in order to more clearly
show the accuracy of our approach, since this work was rather theoretical. In
addition, it must be questionned to which extent our results could be useful to
standard PS, since n images induce Cn

2 pairs of images!
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Abstract. Planckian illuminants and von Kries diagonal model are com-
monly assumed by many computer vision algorithms for modeling the
color variations between two images of a same scene captured under two
different illuminants. Here we present a method to estimate a von Kries
transform approximating a Planckian illuminant change and we show
that the Planckian assumption constraints the von Kries coefficients to
belong to a ruled surface, that depends on physical cues of the lights.
Moreover, we provide an approximated parametric representation of such
a surface, making evident the dependence of the von Kries transform on
the light color temperature and on the intensity.

1 Introduction

A same scene captured under two different lights produces different colors. This
is because the color of an image recorded by a camera depends on the spectral
power of the light illuminating the scene, on the geometrical and physical condi-
tions of the scene and on the characteristics of the device used for the acquisition.
Understanding the relation between the colors of two scenes imaged under dif-
ferent light is a crucial task for its many applications, like image retrieval and
indexing [18], image segmentation [16], and shadow removal [2].

The von Kries diagonal model and/or Planckian illuminants are two common
assumptions for modeling the color variations due to light changes. In this paper
we investigate the relation between these two hypotheses.

The von Kries model approximates an illuminant change by a linear diagonal
map that rescales independently the camera responses. The diagonal elements
of the matrix representing this map are named von Kries coefficients and they
completely determine the color transform. Despite its simplicity, the von Kries
model has been proved to be a good approximation for color variations due to a
photometric change [4], [5], [1].

Planckian illuminants are lights whose spectral power can be expressed by
Planck’s law, i.e. they behave like a black body radiator. Many natural lights
such as the sunlight and fluorescent lamps satisfy Planck’s approximation. This
hypothesis is used in many recent works for removing shadows from pictures [8],
[7]. Changes of Planckian illuminants are commonly modeled by a linear map,
called Bradford transform and defined on the XYZ color space [11], [20].

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 296–305, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The contributions of our work are three:

1. given a Bradford transform τ relating two Planckian illuminants, we estimate
its diagonal approximationK by a least square based method, that computes
the von Kries coefficients of K by minimizing a L1 distance from images re-
illuminated by τ and K; according to the work [4], we empirically show that
a linear diagonal map suffices for describing a Planckian illuminant change;

2. we show that under the Planckian assumption the von Kries coefficients are
not independent each to other but they form a ruled surface parametrized
by the physical cues of the varying illuminants;

3. finally, we derive an approximated equation for the von Kries surface and we
show how it can be used for computing the color temperature and intensity
of an illuminant.

Our empirical analysis has been carried out on two public real-world datasets
[15],[3] and on some synthetic data generated from them.

Section 2 describes the von Kries model; Section 3 defines the Planckian lights
and illustrates the Bradford model. Section 4 reports our experimental analysis
and conclusions.

2 The von Kries Model

Hereafter we assume that the response of a camera to the light reflected from a
point x in a scene is coded in a triplet pT (x) = (p0(x), p1(x), p2(x)), where

pi(x) =
∫

Ω

E(λ)S(λ, x)Fi(λ) dλ, i = 0, 1, 2. (1)

λ is the wavelength of the light illuminating the scene, E its spectral power
distribution, S the reflectance of the surface to which the point belongs, and Fi

is the spectral sensitivity function of the sensor. The integral ranges over the
visible spectrum, i.e. Ω = [380, 780] nm.

The von Kries diagonal model approximates the spectral sensitivity of the
camera sensor by a delta function, i.e. it assumes that each sensor responds only
to a single wavelength of light: Fi(λ) = δ(λ−λi), for each i = 0, 1, 2. With this
assumption, the responses p(x) and p(x) at x taken by the same camera under
two different illuminants are linearly related by the following Equation:

(p0(x), p1(x), p2(x)) =
( E(λ0)
E′(λ0)

p′0(x),
E(λ1)
E′(λ1)

p′1(x),
E(λ2)
E′(λ2)

p′2(x)
)

(2)

i.e. the von Kries diagonal model approximates the change of illuminant map-
ping p onto p′ by a linear transform that rescales each channel independently.

In the following, for each i = 0, 1, 2, we set αi := E(λi)[E′(λi)]−1 and we
refer to the parameters α0, α1 and α2 as the von Kries coefficients.
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3 Planckian Illuminants and Bradford Transform

An illuminant is said Planckian if its spectral power is given by the Planck law

E(λ, T, I) = Ic1λ
−5

(
e

c2
T λ − 1

)−1

. (3)

In this Equation, variables λ, I and T denote respectively the wavelength, the
intensity and the color temperature of the illuminant, while the terms c1 and c2
are constants, more precisely c1 = 3.74183 · 10−16 W m2 and c2 = 1.4388 · 10−2

K m (W = Watt, m = meter, K = Degree Kelvin). The intensity of the light
describes its brightness and the color temperature is a measurement in Degrees
Kelvin of its hue. For instance, the color temperature of a candle flame ranges
over [1850, 1930] K, while the sun light at sunrise or at sunset has a color
temperature between 2000 and 3000 K.

The color of a Planckian light is often codified by the 2D vector χ of its
chromaticities in the CIE XYZ color space. The computation of the color tem-
perature of a light source is not easy because it differs from light to light upon
the physical nature of the light. The chromaticities of the most Planckian illu-
minants have been tabulated empirically [10], [9]. Approximated formulas are
also available [14].

A color change due to a variation of Planckian illuminants is modeled by the
Bradford transform [11], [20]. This relates the XYZ coordinates [X,Y, Z] and
[X ′, Y ′, Z ′] of the RGB responses p and p′ by the linear transform

[X ′, Y ′, Z ′]T = MDM−1[X,Y, Z]T , (4)

where M is the Bradford matrix and D is a diagonal matrix representing the
relation between the colorimetric properties (color temperatures and intensities)
of σ and σ′.

Bradford matrix has been obtained empirically from Lam’s experiments de-
scribed in [11]:

M =

[
0.8951 0.2664 −0.1614
−0.7502 1.7135 0.0367
0.0389 −0.0685 1.0296

]
and D =

Yσ

Yσ′

⎡⎣ xσ
yσ

yσ′
xσ′ 0 0

0 1 0
0 0 1−xσ−yσ

yσ

yσ′
1−xσ′−yσ′

⎤⎦
where [xσ, yσ] and [xσ′ , yσ′ ] are the chromaticities of the color temperatures of
σ and σ′ respectively. Yσ and Yσ′ are the Y coordinates of the white reference
of the illuminants σ and σ′ respectively.

In the RGB space, the Bradford transform can be re-written as follows:

p′T = CMDM−1C−1pT := BpT , (5)

where C is the 3×3 matrix mapping the XYZ coordinates into the RGB coordi-
nates and B indicates the product CMDM−1C−1.
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4 Von Kries Coefficients under Planckian Illuminants

Here we analyze the relation between the von Kries model and the Planckian
assumption. The Section is organized as follows. In Subsection 4.1 we provide a
method for approximating a Planckian illuminant change by a von Kries trans-
form. In Subsection 4.2 we measure the goodness of the proposed approxima-
tion. In Subsection 4.3 we show how the von Kries coefficients are constrained by
Planckian illuminants and how this fact can be used for determining the physical
cues of the illuminant of an image. Finally, in Subsection 4.4, we summarize the
results we obtained and we outlines our future work.

The experiments we describe here, have been carried out on the public
databases Outex [15] and UEA dataset [3]. Both these databases consist of im-
ages taken under three different Planckian illuminants.

The Outex database collects different image sets for empirical evaluation of
texture classification and segmentation algorithms. In this work we consider the
test set named Outex TC 00014, which consists of three sets of 1360 texture
images viewed under the illuminants INCA, TL84 and HORIZON with color
temperature 2856 K, 4100 K and 2300 K respectively. Figure 1 shows an image
of Outex taken under these illuminants.

Fig. 1. Outex: a texture image taken under the Planckian illuminants INCA, TL84
and HORIZON (from left to right)

The UEA dataset comprises 28 design patterns, each one captured under 3
illuminants with 4 different cameras. The illuminants are indicated by Ill A
(tungsten filament light, 2856 K), Ill D65 (simulated daylight, 6500 K), and
TL84 (fluorescent tube, 4100 K). An example is shown in Figure 2.

Fig. 2. UEA dataset: an image taken by Camera 1 under the Planckian illuminants Ill
A, TL84 and Ill D65 (from left to right)
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4.1 Estimating the von Kries Approximation

The algorithm we propose for estimating the von Kries approximation does not
consider possible affine distortions between the re-illuminated images, like for in-
stance change of scales or of in-plane orientation. For affine transformed images,
other methods can be used, as for instance [12], [13].

Given an image A taken under a source illuminant σ and a Planckian illumi-
nant change τ modeled by the Bradford transform (5), we define the von Kries
approximation K of τ as the diagonal linear map whose coefficients α0, α1, α2

minimize the following distance:

d(α0, α1, α2) :=
∑
x∈A

‖ (B −K)p(x)T ‖2 . (6)

Here B and K are the matrices associated (with respect to the canonical basis
of R3) to τ and K respectively. The ith diagonal element Kii of K is the ith von
Kries coefficient αi. The sum is computed over all the pixels x of the image A.

The ith von Kries coefficient minimizing (6) is thus given by

αi =

∑
x

∑2
j=0 bijpi(x)pj(x)∑

x pi(x)2
(7)

Hereafter we indicate by τ(A) and K(A) the images obtained by re-illuminating
A by τ and K respectively.

(a) (b) (c)

Fig. 3. Outex: The image (a) has been re-illuminated by a transform τ mapping the
color temperature of INCA (2856 K) onto 6500 K and rescaling its intensity by 0.5.
The result is the picture (b). Image (c) is the image (a) remapped by our estimate K.
Images (b) and (c) look very similar.

4.2 Evaluation of the von Kries Approximation

For each source illuminant σ ∈ I = {INCA/ILL A, TL84, HORIZON/ILL D65}
of the datasets Outex and UEA, we defined a set T of 40 Bradford transforms
(Equation (5)), mapping σ onto an other Planckian illuminant σ′, with color
temperature Tσ′ = (2000+1000 t)K and intensity Iσ′ = (0.5+0.25 m) with t =
0, . . . , 8, m = 0, . . . , 4. For the considered datasets, no information about the
intensity of the source illuminants are provided. Therefore, each transform of T
rescales the intensity Iσ of the source illuminant by 0.5, 0.75, 1.0, 1.25 and 1.5.
Figure 3 shows an example of such a transform.
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We re-illuminated each image of Outex and UEA captured under the illu-
minant σ by these transforms and for each of them we estimate the von Kries
approximation.

First of all, we note that the von Kries coefficients α0, α1 and α2 do not
depend on the image A used in Equation (6). In fact, let αA

i , i = 0, 1, 2, be
the von Kries coefficients of the transform K approximating τ for the image
A. Indicated by NDB the number of images in the database viewed under the
illuminant σ, we computed the mean values

αi =
1

NDB

∑
A

αA
i , i = 0, 1, 2. (8)

and we observed that the standard deviations from these values are very small,
being them 0.03 on average, that is the 3 % of the measure.

For each pair of images (τ(A),K(A)), we measure the goodness of the estimate
of K on A by the L1 RGB distance between the images τ(A) and K(A):

dτ(A),K(A) =
1
N

∑
x

|p(x)τ(A) − p(x)K(A)|, (9)

where N is the number of pixels of A. Distance (9) has been normalized to range
over [0, 1]. Closer to zero dτ,K is, more accurate the von Kries approximation
is. Then, we measure the accuracy of the approximation K by the mean value
dτ,K of dτ(A),K(A) averaged on the number of database images (1360 for Outex,
28 for each camera of UEA). To measure how much a transform τ modifies the
image, we compute the RGB distance dA,A′ : we expected that the mean value
of dA,A′ is much greater than dτ,K .

Figure 4 shows the results for Outex database, for which the accuracy dτ,K
varies from 0.0 to 0.057 and is 0.022 on average. Similar results are obtained for
UEA, where the mean value of dA,A′ varies from 0.002 to 0.052 and its average is
0.014. The value of the mean RGB distance dA,A′ ranges over [0.005, 0.333] with
average 0.177 for Outex, and over [0.012, 0.284] with average 0.176 for UEA.

According to [4], we found that the von Kries model is a good approximation
for a Planckian illuminant change. However, the approximation accuracy de-
creases by increasing the intensity and the color temperature of the illuminant,
i.e. by increasing the number of saturated pixels, whose percentage is particu-
larly high (greater than 50%) for the transforms with a color temperature gap
of 4000 K and intensity 1.25 times greater than that of the original image. Fig-
ure 3 shows an example of color correction provided by our estimate. We got
analogous accuracies for the estimate of the von Kries map that approximates
the changes between two illuminants σ and σ′ of I on the real-world images of
Outex and UEA.

4.3 Constraints on the von Kries Coefficients

Our experiments show that the von Kries coefficients we estimated are not inde-
pendent each to other. We claim that the Planckian assumption constraints the
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Fig. 4. Outex: INCA (top), TL84 (bottom, left), and HORIZON (bottom, right). L1

RGB distance between the images re-illuminated by the Planckian model and the
images re-illuminated by our von Kries approximation. The L1 RGB distance varies
from 0.0 to 0.06.

triplets (α0, α1, α2) to belong to a ruled surface S (that we name von Kries sur-
face) dependent on the color temperatures and on the variation of the illuminant
intensities.

Each source illuminant σ with color temperature Tσ and intensity Iσ defines
a von Kries surface S given by

αi = αi(Tσ′ , Iσ′) i = 0, 1, 2, (10)

where the αi’s are the von Kries coefficients of the map K that approximates
the change moving σ onto a Planckian illuminant σ′ with color temperature Tσ′

and intensity Iσ′ .
From Equations (5) and (7), we have that each von Kries coefficient can be

re-written as αi = Yσ

Yσ′ α
∗
i (Tσ′), where α∗

i is the ith von Kries coefficient of the
linear map K that approximates the Bradford transform τ∗ mapping Tσ onto
Tσ′ and leaving unchanged the light intensity Iσ . By observing that Yσ

Yσ′ = Iσ

Iσ′ ,
we have that αi = Iσ

Iσ′ α
∗
i (Tσ′). Let K and B∗ be the matrices representing K

and τ∗ in the canonical basis of R3. Since K is an approximation of τ∗, there
exists a matrix H such that K = HB and the difference K −HB is close to the
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Fig. 5. UEA dataset: von Kries surfaces of cameras 1 (top) and 4 (bottom) for the
illuminant σ = ILL A

identity matrix. Therefore, α∗
i (Tσ′) =

∑2
j=0 hijb

∗
ji(Tσ′), where i = 0, 1, 2, and

hij is the ij-th element of H and b∗ji is the ij-th element of B∗. We have that

αi(Iσ′ , Tσ′) =
Iσ
Iσ′

2∑
j=0

hijb
∗
ii(Tσ′). (11)

Equation (11) makes evident the relation between the von Kries coefficients
and the photometric properties of the illuminants σ and σ′: it describes a ruled
surface depending on the intensity and on the color temperature of σ′. By varying
discretely the intensity and the color temperature of the source illuminant σ, we
obtain a sheaves of such surfaces.

As a consequence, we have that von Kries surface S is completely determined
by the Equation of the 3D curve α∗(T ′

σ) = (α∗
0(T

′
σ), α∗

1(T
′
σ), α∗

2(T
′
σ)), because

each point on S is a rescaled version of a point onto α∗(T ′
σ). Thus, the von Kries

maps that approximates Planckian variations of the color temperature but not
of the intensity suffices for determining the von Kries surface.

We remark that for each fixed source illuminant σ there exists a von Kries
surface, that differs from device to device. This is because the values of the von
Kries coefficients depend on the acquisition device (see for instance, Figure 5).

Finally, we briefly discuss a possible usage of the von Kries surfaces for recov-
ering the color temperature and the intensity of an illuminant, a crucial task for
many imaging applications [17], [19].

Let σ be a Planckian illuminant with known color temperature Tσ and inten-
sity Iσ and let S the von Kries surface of a camera C computed with respect to
the source illuminant σ. Let A and A′ be two images of the same scene taken by
C under the illuminants σ and σ′ respectively. Of course we suppose σ and σ′ to
be Planckian. We employ the von Kries surface S to determine the color tem-
perature Tσ′ and the intensity Iσ′ of σ′ as follows: (1) we estimate the von Kries
coefficients β0, β1, β2 of the von Kries map relating A and A′; (2) we compute
the triplet (α0, α1, α2) on the von Kries map that has the minimum Euclidean
distance from (β0, β1, β2) and we return the color temperature and intensity
correspondent to (α0, α1, α2).
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Here we report the results obtained on the database Outex for the source
illuminant TL84. In this case, we considered the image pairs (A,A′) where A is
an Outex picture imaged under TL84 and A′ is the same picture under INCA
or HORIZON. We choose this case among the others because for it we got the
most accurate estimates of the von Kries coefficients. Figures 6(a) and (b) show
the von Kries surface S for TL84 with the estimates of the von Kries coefficients
of the transforms mapping (a) TL84 onto INCA and (b) TL84 onto HORIZON,
respectively. The estimates we obtain determine a range of color temperatures
and intensities. In particular, the color temperature of INCA varies over [3000,
4000] K, but the 70% about of the estimates are closer to 3000 K than to 4000 K.
For HORIZON the color temperature ranges over [2000, 4000] K with the most
part of the data (about the 90 %) in [2000 K, 3000 K]. Similarly, we obtained
a variability range for the intensity, with the 99% of the estimates between 1.0
and 1.25 for INCA and between 0.75 and 1.0 for HORIZON.

The results can be further refined, by considering a finer von Kries surface and
by restricting the search for the triplet realizing the minimum distance to the
ranges found before. Nevertheless, in general, obtaining an accurate estimate
of these photometric parameters is a hard problem [19], also when calibrated
images are used [6].

4.4 Conclusions and Future Directions

In this work we show empirically that the von Kries model approximates well
a change of Planck’s illuminants. The main consequence is that under Planck’s
hypothesis, the von Kries coefficients are the points of a ruled surface, whose
mathematical expression highlights their dependency on the physical properties
of the light and on the camera cues. Here we used the von Kries surfaces for
estimating the color temperature and intensity of the illuminant under which
an image has been captured. Our future work will be focus on other possible
applications of this results, as for instance the development of device-independent
approaches for the estimation of scene illuminants.

Fig. 6. Outex: color temperature and intensity estimates for illuminant INCA (on left)
and HORIZON (on right) by using the von Kries surface with respect to TL84
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Abstract. We present and evaluate a novel idea for scalable lossy colour
image coding with Matching Pursuit (MP) performed in a transform
domain. The idea is to exploit correlations in RGB colour space between
image subbands after wavelet transformation rather than in the spatial
domain. We propose a simple quantisation and coding scheme of colour
MP decomposition based on Run Length Encoding (RLE) which can
achieve comparable performance to JPEG 2000 even though the latter
utilises careful data modelling at the coding stage. Thus, the obtained
image representation has the potential to outperform JPEG 2000 with a
more sophisticated coding algorithm.

Keywords: Colour image coding, Matching Pursuit, Wavelets, Run
Length Encoding.

1 Introduction

1.1 Colour Image Coding

Due to the large size of raw image and video data files there is great demand for
lossy compression methods. Most still image and video data are in colour and
are represented for display in RGB colour space thus tripling the raw file size
comparing to grayscale. Nevertheless, most of the research effort in algorithms
for lossy colour image compression is focused on single-channel methods which
are then extended to exploit inter-colour redundancies by applying decorrelating
transforms. The current coding standard JPEG 2000 utilises the YCbCr trans-
form which attempts to separate luminance (Y) from chrominance (C). Coarser
quantisation of C channels improves coding performance without significant vi-
sual degradation [2]. JPEG 2000 also utilises the concept of transform coding us-
ing discrete wavelets and supports the generation of scalable bit-streams. Sparse
approximation techniques that raised interest in the field of image and video
compression in the late 90s [1,14] could potentially be the next step in scal-
able image coding. Moreover they provide new options to exploit inter-channel
redundancies in colour images [5,9].

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 306–317, 2011.
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Algorithm 1. Single channel Matching Pursuit [11].
Initialisation: Rf1 = f .
for n = 1 to N do

Find atom gγn ∈ D such that:
|〈Rfn, gγn〉| = maxgγ∈D (|〈Rfn, gγ〉|) .
Update residual:
Rfn+1 = Rfn − 〈Rfn, gγn〉gγn .

end for

1.2 Matching Pursuit

Mallat and Zhang proposed in 1993 [11] a simple greedy technique to obtain a
sparse approximation of a given signal f from a Hilbert space H. The algorithm,
called Matching Pursuit (MP), finds the approximation of f by a sum of N
atoms gγn selected from a dictionary D:

f ≈
N∑

n=1

〈Rfn, gγn〉gγn . (1)

The dictionary is a set of functions from H normalised to have unit norm. For
any dictionary that spans H a decomposition given by Eq. 1 converges to f as
N →∞ [11]. Full Search MP, used in image and video compression applications
[3,4] for single channel signals, is summarised by Alg. 1. At each iteration the
atom most correlated with the actual signal residual Rfn is selected and removed
from Rfn.

1.3 Multi-channel Matching Pursuit

MP can be extended to decompose vector signals without losing the convergence
property [9]. The atom that, according to some criterion, best matches all the
components of the input signal is selected. Multi-channel MP for RGB images
is summarised by Alg. 2.

Algorithm 2. Multi-channel Matching Pursuit for RGB images.

Initialisation: Rfr
1 = fr , Rfg

1 = fg , Rfb
1 = fb.

for n = 1 to N do
Find atom gγn ∈ D that maximises the L2-norm:

γn = maxγ∈Γ

√
〈Rfr

n, gγ〉2 + 〈Rfg
n, gγ〉2 + 〈Rfb

n, gγ〉2.
Update residuals:
Rfr

n+1 = Rfr
n − 〈Rfr

n, gγn〉gγn .
Rfg

n+1 = Rfg
n − 〈Rfg

n, gγn〉gγn .

Rfb
n+1 = Rfb

n − 〈Rfb
n, gγn〉gγn .

end for
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This algorithm was applied in image space (i. e. to raw RGB values) to colour
image coding in [5]. The idea was to explore inter-channel correlations and depen-
dencies of a typical image directly in RGB colour space. In the spatio-frequency
domain the dependencies between corresponding subbands of R, G and B chan-
nels can be even stronger [6]. In this paper we explain the idea of MP performed
in the transform domain and apply it for the first time to colour image coding.
The first time MP was performed in the wavelet transform domain for grayscale
image coding in [19] and for grayscale video coding in [18]. It was shown in
[19] that MP with wavelets can achieve a coding performance comparable to
JPEG 2000 for grayscale images. We extend the ideas from [19] to colour coding
proposing a new method of coding coefficients.

The next section discusses details of our implementation of MP. Section 3
analyses MP performed in the transform domain. Section 4 describes quanti-
sation and coding of the MP data into bit-stream. Section 5 presents coding
results and compares performance with JPEG 2000. Finally, Section 6 concludes
the paper and gives the ideas for the performance improvement.

2 Implementation of Matching Pursuit

The main shortcoming of MP is high computational complexity of encoder (atom
finding process). On the other side decoding (composing an image back) requires
just summing up the atoms which makes MP suitable for asymmetric application
in which one encodes the stream once and decodes many times. We argue here
that using short support separable filters and performing search in a transform
domain keeps also the computational complexity of encoder tractable. Separa-
bility refers to the property that each 2D dictionary entry is a tensor product of
two 1D vectors. The dictionary is fully specified by a typically small set of 1D fil-
ters (mother functions). This reduces number of multiply-accumulate operations
when calculating convolutions [14].

The MP algorithm is implemented similarly to the full 2D separable inner
product search from [20]. The maximal inner products and the corresponding
atom indexes are stored for each location in the image. At each iteration, inner
products have to be recomputed only on a sub-area of the image. For colour
coding it has to be done for all channels and requires approximately three times
more multiply-accumulate operations than for grayscale. The overall complexity
of our MP implementation can be summarised as:

τ (sep) = τ
(sep)
init +

N∑
n=1

(
τ

(sep)
updaten

+ τ
(sep)
searchn

)
. (2)

If W denotes the maximum length of bases in the dictionary, Sx the width and
Sy the height of the image then, following [20], the overall complexity can be
estimated as:

τ (sep) = Oinit(SxSyK
2W )+

Oupdate(NK2W 3) +Osearch(NSxSy). (3)
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Eq. 3 shows that the size of the dictionary and lengths of bases are critical for
complexity of the general MP algorithm with maximum length of basis more
important than the number of bases. Moreover, when MP is performed in a
transform domain we typically have: K2W 3 > SxSy. This implies that recalcu-
lation of the inner products is the most demanding part of the algorithm.

3 Matching Pursuit in Transform Domain

MP has been found to be useful for residual video coding [14]. For still image
coding the use of non-separable filters of footprint up to quarter of the image
size to represent image features at different scales and Fast Fourier Transform
(FFT) has been proposed in [4]. The coding performance was comparable to
JPEG 2000 at low bit rates. However, matching of long and non-separable filters
makes the method from [4] computationally extremely demanding. For practical
image coding, as concluded in Sec. 2, one should prefer a dictionary with short
filters. When the filters are shorter than 64 samples the FFT slows down the
calculation of convolutions. To preserve low complexity and a dictionary capable
of capturing image features at different scales the use of the 2D Discrete Wavelet
Transform (2D-DWT) has been proposed in [19]. MP decomposition was per-
formed for wavelet subbands. Like the codec in [4] the method proposed in [19] is
comparable in coding performance to the JPEG 2000 standard but additionally
has a tractable computational complexity.

In this work we present and analyse in more detail the idea of performing
MP in transform domain. Performing MP after transformation like DCT or
DWT reduces complexity and improves coding performance. Let us start with
the simple observation that applying an orthonormal linear transform T does
not change the output of MP. If the transform T is linear and preserves inner
product,

〈f, g〉 = 〈T {f}, T {g}〉 for all f, g ∈ H, (4)

then the MP decomposition of signal f (see Eq. 1) obtained in the transform
domain is:

T {f} ≈
N∑

n=1

〈T {Rfn}, T {gγn}〉T {gγn}. (5)

In practice it can be computationally easier to match filters in the spatio-
frequency domain. To give an example for the discrete case, consider a dictionary
entry with support W : g(t) = 1/

√
W for t = 1, 2, . . . ,W . Its DCT or DFT is

the Dirac delta g(ω) = 1 with support 1. Performing an inner product with such
a short signal requires only one multiplication. It is known that for transforms
like DCT, DFT or DWT the filters applied locally in the transform domain
correspond to some global structures in the image domain. Therefore MP can
be more efficient when performed in the transform domain. In principle, a very
similar idea was used indirectly in [4] where convolutions with filters in a dic-
tionary were performed in the Fourier domain. In [19] filters designed for video
coding in the image domain were applied to wavelet subbands after performing
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Fig. 1. Percentage of the image en-
ergy (y-axis) represented by a given
number of atoms (x-axis) using dif-
ferent numbers of wavelet scales
(grayscale Goldhill)

Fig. 2. PSNR performance in dB (y-
axis) for a given number of atoms
(x-axis) using different numbers of
wavelet scales (grayscale Goldhill)

2D-DWT with CDF 9/7 filters from lossy mode of JPEG 2000. As the wavelet
transform does not change a signal dimension, the overall size of a dictionary in
the image domain remains the same. Thanks to the energy compaction property
of DWT, the atoms found in the wavelet domain in initial iterations have high
amplitudes. Hence, they contribute more to the whole image energy as shown in
Fig. 1. In Fig. 2 we see corresponding values of PSNR. The dictionary applied
for wavelet subbands is capable of giving a few orders of magnitude sparser rep-
resentation than the same dictionary applied in the image domain. Moreover at
initial steps of MP there are usually more atoms found in lower frequencies what
gives a potential for more efficient coding. The dictionaries we use in this study
for colour and grayscale coding were trained using Basis Picking method from
[12] on colour and grayscale (i. e. luminance only) Goldhill image respectively.
Both dictionaries contain 16 1D bases of maximal footprint 9.

4 Quantisation and Coding

4.1 Quantisation

For data compression applications MP decomposition has to be encoded into a
bit-stream. The values an = 〈Rfn, gγn〉 have to be quantised (e. g. rounded) to
the values An. Quantisation is performed inside the MP loop [14] with the aim
of correcting the introduced quantisation error during later iterations. For the
MP decomposition given by Eq. 1 the Parseval-like equality is satisfied [11]:

||f ||2 =
N∑

n=1

a2
n + ||RfN+1||2. (6)

Eq. 6 is a direct consequence of the update step from Alg. 1. If we replace an by
An in the update step to reflect in-loop quantisation then, for real values, Eq. 6
will change to:
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||f ||2 =
N∑

n=1

An(2an − An) + ||RfN+1||2. (7)

To preserve convergence of the algorithm the energy of residual Rfn has to
keep decreasing [11]. Therefore we may use any quantisation method for which
An(2an −An) > 0 which is equivalent to an, An having the same sign and their
absolute values to follow Eq. 8 [15].

0 < |An| < 2|an|. (8)

Our grayscale implementation utilises Precision Limit Quantisation (PLQ) [13].
The original idea of PLQ is to keep only the most significant bit of an and some
refinement bits governed by the parameter PL. Then the value |an| is quantised
to: |An| = r2k, where k indicates bitplane and r refinement. The value of the
parameter PL is taken to be PL = 2, as advised in [19], which in our case means
that r ∈ {1.25, 1.75}.

The colour codec uses PLQ and Uniform Quantisation. The amplitude with
maximal value over the three colour channels (amax

n ) is quantised using PLQ and
serves as a base for grouping atoms. The atoms with the same quantised absolute
value of maximal amplitude (|Amax

n |) compose one group. We record the channel
cn for which the maximal value occurred. The remaining two amplitudes for the
other two colours are quantised using dead-zone uniform scalar quantisation with
L bins [7]. The value of L has been experimentally chosen to be as low as L = 2 in
order to maximally reduce the number of bits required. The two numbers d1

n and
d2

n, sent to the encoder, represent either dead-zone or the quantised amplitude
with its sign.

4.2 Atom Encoding

After MP decomposition and quantisation, the data to be encoded form a matrix
in which rows represent atoms. There are 8 columns containing the following
variables for colour coding:

1 : sn, sign of the maximal amplitude, sn ∈ {−1, 1},
2− 3 : d1

n, d
2
n, quantised amplitude differences, d∗n ∈ {1, 2, . . . , 2L+ 1},

4 : cn, maximum amplitude colour channel, cn ∈ {1, 2, 3},
5 : wn, sub-band index, wn ∈ {1, 2, . . . , 3S + 1},
6 : λn, 2D dictionary entry, λn ∈ {1, 2, . . . , 256},

7− 8 : xn, yn, atom location inside the sub-band wn, xn ∈ {1, . . . ,Wxn}, yn ∈
{1, . . . ,Wyn}.

For grayscale coding there are only 5 columns: sn,wn,λn,xn and yn from which
only 3 are being reordered. Data from columns 1-6 (or 1-3 for grayscale) are
encoded group by group using Alg. 3 based on Run Length Encoding (RLE). The
rows are ordered in a lexicographical order recommended for databases indexes
[8]. Encoding inside each group is done calling recursively column by column
the Alg. 3. The coding performance depends on the column order (see Sec. 5).
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Algorithm 3. One stage of encoding.
input: {vs}s=1,2,...,n with s < s′ ⇒ vs ≤ vs′

s = 1
while s < n do

if there are 2 times more symbols than alphabet entries remaining then
encode all zero lengths (if any) and one non-zero run length l
s = s + l

else
encode symbol vs directly
s = s + 1

end if
end while

Therefore a fixed permutation of columns π is applied prior to the sorting. For
each stage of encoding the input of Alg. 3 is the sorted sequence {vs} from
an alphabet of the size determined by the column number. At each iteration a
decision is made whether to encode the symbol vs directly or to signal its run
length. RLE is used when the run length of 2 or more symbols is expected. An
expected run length is indicated by the ratio of the remaining symbols count to
the size of the alphabet they can come from. The atom locations (the last two
columns) are always encoded as the two raw values xn and yn from the ranges
1 . . .Wxn and 1 . . .Wyn respectively, where Wxn×Wyn is a dimension of the sub-
band wn. All the symbols are sent to the arithmetic coder [17] that uses models
which assume uniform distributions for each column. Arithmetic coding allows,
knowing the probability distribution of data, to achieve compression ratio close
to a theoretical bound given by the Shannon’s entropy [17]. Uniform distribution
has the highest entropy among the discrete distributions. Therefore the results
shown here can serve as the upper bound for the sizes of encoded streams. 1

5 Coding Performance

As evaluation metric we use PSNR. For colour images it is averaged over RGB
channels:

PSNR = 10 log10

(
3 · 2552

MSEr +MSEg +MSEb

)
, (9)

where MSEr, MSEg, MSEb are mean squared errors calculated for R, G and
B channels respectively. Although PSNR is known to correlate poorly with hu-
man visual perception, especially in the case of colour images, it measures the
mathematical properties of the algorithms used. Comparisons with JPEG 2000
are done using the same wavelet filters and the same number of scales S = 5.
For fair comparison of colour codecs an option of JPEG 2000 which minimises
mean squared error (i. e no_weights switch for Kakadu implementation [16])
was used.
1 More details about implementation of the whole coding system and its evaluation

can be found in [10].



Colour Image Coding with Matching Pursuit 313

Table 1. Number of bits required for 6000 grayscale atoms for different column orders

image the best order the worst order sub-optimal (πg)
2 · worst−best

worst+best(2,3,1)
Barbara, 720 × 576 105699 (2,1,3) 115314 (1,3,2) 106577 8.70%
Goldhill, 720 × 576 102978 (2,3,1) 111453 (3,1,2) 102978 7.90%

Lena, 512 × 512 102321 (2,3,1) 110012 (3,1,2) 102321 7.24%
Lighthouse, 768 × 512 104441 (2,1,3) 112076 (1,3,2) 104905 7.05%

Parrots, 768 × 512 107218 (2,3,1) 113520 (3,1,2) 107218 5.71%
Peppers, 512 × 512 102222 (2,3,1) 108971 (3,1,2) 102222 6.39%

Table 2. Number of bits required for 6000 colour atoms for different column orders

image the best order the worst order sub-optimal (πc) 2 · worst−best
worst+best(5,2,3,4,6,1)

Barbara, 720 × 576 126937 (5,2,3,4,6,1) 148111 (6,1,4,5,3,2) 126937 15.40%
Goldhill, 720 × 576 124938 (5,3,2,4,6,1) 142009 (1,6,4,5,3,2) 124971 12.79%

Lena, 512 × 512 127077 (5,3,2,4,6,1) 142753 (6,1,4,5,2,3) 127113 11.62%
Lighthouse, 768 × 512 121129 (5,2,3,4,6,1) 147995 (1,6,4,5,3,2) 121129 19.97%

Parrots, 768 × 512 130512 (5,3,2,6,1,4) 145187 (6,4,1,5,3,2) 130739 10.65%
Peppers, 512 × 512 128686 (5,3,2,4,6,1) 138515 (6,1,4,5,2,3) 128803 7.36%

At first, a set of experiments for standard test images of different sizes has
been done to find an optimal column order to apply Alg. 3. Each permutation was
tried for 6 grayscale (see Tab. 1) and colour images (see Tab. 2). The differences
in the size of a bit-stream for the different column orders are significant. For
grayscale, where there are only 6 possible column permutations, the differences
between maximum and minimum bit-stream sizes are less than 10% (Tab. 1).
However, for colour, where we have 720 orders, the differences can be up to 20%
(Tab. 2). In the proposed coding scheme the best or close to the best performance
is achieved when atoms are sorted by wavelet scale first. Atom indexes and signs
of the amplitudes are the last sorting criteria for both grayscale and colour. The
column permutations that perform close to optimal for all tested images are:
πg = (2, 3, 1) for grayscale and πc = (5, 2, 3, 4, 6, 1) for colours.

R-D performance plots are shown in Fig. 4 including PSNR results for a de-
fault mode of Kakadu. Fig. 3 presents a visual comparison example. In general
both grayscale and colour codecs are comparable to JPEG 2000, often outper-
forming the latter at low bit rates. However for many standard test images like
Parrots (Fig. 4c and 4f) or Lighthouse a coding performance is still significantly
worse. On average (see Tab. 3) MP performs better than the standard at 0.1 bpp
but for the higher rates the average performance is worse. We believe that mod-
elling the distributions of wavelet scale indexes and run lengths for arithmetic
coding could give a significant improvement. For example, as mentioned in Sec. 3,
in initial iterations the atoms are more likely to be found in low frequencies.
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(a) Original image (b) MP, 6086 atoms, 29.95 dB

(c) J2K, default, 29.60 dB (d) J2K, no-weights, 29.93 dB

Fig. 3. Visual comparison at 0.30 bpp against JPEG 2000 for Goldhill, 720 × 576

Table 3. Coding performance comparisons against JPEG 2000 at fixed bit-rates

0.1 bpp 0.3 bpp 0.5 bpp
grayscale image J2K MP-Gray J2K MP-Gray J2K MP-Gray

Barbara, 720 × 576 25.21 26.02 30.21 30.44 33.35 33.09
Goldhill, 720 × 576 28.90 29.12 32.30 32.38 34.25 34.11

Lena, 512 × 512 29.90 29.83 34.94 34.58 37.32 36.85
Lighthouse, 768 × 512 25.77 25.81 29.57 29.28 32.11 31.49

Parrots, 768 × 512 33.62 33.43 39.04 38.43 41.61 40.95
Peppers, 512 × 512 29.66 29.44 34.16 33.74 35.84 35.46

Average 28.84 28.94 33.37 33.14 35.75 35.33
colour image J2K MP-RGB J2K MP-RGB J2K MP-RGB

Barbara, 720 × 576 23.89 24.23 28.03 28.04 30.33 30.20
Goldhill, 720 × 576 27.24 27.22 29.93 29.95 31.46 31.38

Lena, 512 × 512 27.68 27.64 31.31 31.25 32.97 32.95
Lighthouse, 768 × 512 25.18 25.00 28.68 28.18 30.95 30.19

Parrots, 768 × 512 30.72 30.40 35.92 35.23 38.54 37.73
Peppers, 512 × 512 25.57 25.80 29.61 29.68 31.17 31.24

Average 26.71 26.72 30.58 30.39 32.57 32.28
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(a) Grayscale Lena, 512 ×
512

(b) Grayscale Barbara,
720 × 576

(c) Grayscale Parrots, 768×
512

(d) Colour Lena, 512 × 512 (e) Colour Barbara, 720 ×
576

(f) Colour Parrots, 768 ×
512

Fig. 4. R-D performance comparisons between the proposed MP coding and Kakadu
implementation of the JPEG 2000 standard (y-axis: PSNR [dB], x-axis: bit-rate [bpp])

Our current C++ implementation encodes 8000 colour atoms (this corre-
sponds to a bit-rate of 0.40 bpp for Goldhill image) under Linux on PC with
Intel Core 2 Duo in less than 0.2 s which is negligible comparing to finding these
atoms by MP algorithm that takes around 80 seconds for the dictionary used in
this work and images of dimension 720× 576.

6 Conclusions

We have presented a novel approach of decomposing and encoding images
that has shown comparable R-D performance to the current coding standard
JPEG 2000 at low bit rates. Our idea of encoding atoms is especially promis-
ing for colour images. MP is performed after the discrete wavelet transform to
reduce complexity and improve sparsity [19]. MP decomposition of an image is
represented as a matrix of rows. These rows are sorted in lexicographical order
after permutation of columns and encoded using run length and then arithmetic
coding with simple data model that assumes equal probabilities of each type of
symbol (each column). The optimal column orders were found for both grayscale
and colour data. The open questions that are currently under our investigation
include: more sophisticated data modelling for coding and finding the optimal
dictionary.
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Abstract. Color line extraction is an important part of the segmentation process.
The proposed method is the generalization of the Gradient Line Detector (GLD)
to color images. The method relies on the computation of a color gradient field.
Existing color gradient are not “oriented”: the gradient vector direction is defined
up to π, and not up to 2π as it is for a grey-level image. An oriented color gradient
which makes use of an ordering of colors is proposed. Although this ordering is
arbitrary, the color gradient orientation changes from one to the other side of a
line; this change is captured by the GLD. The oriented color gradient is derived
from a generalization from scalar to vector: the components of the gradient are
defined as a “signed” distance between weighted average colors, the sign being
related to their respective order. An efficient averaging method inspired by the
Gaussian gradient brings a scale parameter to the line detector. For the distance,
the simplest choice is the Euclidean distance, but the best choice depends on the
application. As for any feature extraction process, a post-processing is necessary:
local maxima should be extracted and linked into curvilinear segments. Some
preliminary results using the Euclidean distance are shown on a few images.

Keywords: color line, color edge, color ordering, Gaussian gradient.

1 Introduction

Feature extraction is important for Computer Vision. The argument to use color infor-
mation for line detection is the same as for color edge detection: some linear features
have a much better contrast in the colored than in the luminance image.

Color edge detection has largely been addressed and effective methods are avail-
able (see [1], [2] for an overview). Other features such as corners, interest points and
lines have mainly been addressed on luminance images, although some of them include
color or multi-band information [3], [4], [5]. Lines deserve specific attention because
they are important cues that edge detectors often fail to detect. The methods proposed
to detect color edges could be simply transposed to line detection, thus edge and lines
(dis)similarities are worth summarizing. In grey-level, an edge orientation and direc-
tion are defined by an angle in the range ] − π π] and ] − π/2 π/2] respectively (see
Figure 1), the orientation pointing towards higher intensity values. Although edges have
an orientation, this information is hardly used to build contours. On the other hand, in
grey-level images the orientation leads to two types of line: “dark” or “bright”. Line de-
tection in grey-level image thus usually involves ridge (bright) and/or valley (dark) de-
tection. Note that “plateau-like” lines are ignored. Both edge and line detection involve

� This study is funded by the Belgian Ministry of Defense.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 318–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. The edge orientations in (a) and (b) are opposite while their directions shown in (c) and
(d) are the same

a “resolution” or “scale” parameter. The resolution is linked to the minimum distance
between the extracted features, but also to the level of noise in the input or smoothness
desired for the output. The performance issues concerning edge and line detection are
similar [6]: position precision, robustness to noise and computational complexity.

The proposed method for color line detection is made of three modules: the first one
computes an “oriented” color gradient field including a smoothing parameter to cope
with noise and an efficient implementation to address the computational complexity,
the second produces a line strength and direction, and the last one — out of the scope
of this article– extracts local maxima and links them into lines.

In Section 2 several strategies for color line detection are analyzed and our choice
motivated. Section 3 presents an “oriented” color gradient field. Section 4 explains how
the oriented color gradient is used to derive a line strength and direction. Results are
shown and discussed in Section 5. Further discussion is provided in Section 6. Conclu-
sions are summarized in Section 7.

2 Choice for a Color Line Detection Strategy

Our choice of strategy for color line detection is motivated by exploring several tracks
and analyzing their drawbacks.

Color Lines from color edges: if edges may be detected, detecting lines involves only
detecting edges at both sides of the line. In practice, two problems occur. First, the edge
detection on very thin lines (one pixel wide) may often miss an edge at one side of the
line, the edge model assuming some uniformity at each side of the edge. Second, as the
aim of line detection is to locate the axis of the line, a necessary non-trivial process is
required to match edges at each side of the line.

Color Line Template: masks similar to the generalized Sobel and Prewitt operator on
a 3×3 window or on a 5×5 in color, could be designed and combined as they are for the
GVDG [2]. Such an option would convey the same drawbacks as the ones they bring in
color edge detection: their sensitivity to noise.

Transform color information to grey-level: a simple approach is to transform the
multi-band information into a grey-level image and perform line detection on this image
(on the first component of a PCA for example). In Remote Sensing where road detection
on high resolution images may rely on line detection, the “spectral-angle difference”
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between the pixel radiance with respect to some reference has been used at this aim
[5]. A black line detection is then performed so that the linear structures having the
most similar signature as the reference are extracted. The choice of the reference is
a critical issue: an almost optimal choice will produce a double response instead of a
unique response if the color at each side of the line are closer to the reference than the
color of the line itself. Moreover, as many as reference signatures are needed to detect
all “types” of curvilinear structures.

Combining line detection in each plane: detecting lines in each band, then merging
the information seems the most straightforward method; see Figure 2 for an example
of edge and line norm fusion. Such an approach would however miss a yellow line at
the interface of a red and green surface (see Figure 3 (left)) unless it is sought on the
Value or Luminance plane, implying a transformation in another space. Which transfor-
mations, which planes to consider and how to combine the outputs? A generic but time
consuming solution is proposed in [7].

Fig. 2. (a) Original Image (b) Edge Fusion: (R,G,B)= scaled Edge Norm in (R,G,B) (c) Line
Fusion: scaled Line Norm in (R,G,B) with grey: no line, brighter: bright line, darker: dark line
(GLD computation) [8]

Line detection exploiting local color variation: pixels located on the center of a line
are characterized by low color variation along the line and a high variation in the per-
pendicular direction. If the line lies on a uniform background the color variation seen as
a vector in the 3D color space at each side of the line will have opposite orientation; in
the case of a colored line at the interface of two other colors, the orientation will not be
opposite, but will vary significantly. Exploring the color variation in a 8-neighborhood
will thus give an indication of the presence of a line. Color variation is captured by the
color gradient field, but existing color gradient [1], [2], [9], [10] are not “oriented” as
they cannot distinguish the passage from a color c1 to a color c2, from its symmetrical
(see Figure 3 (right)); we thus introduce an “oriented” color gradient in the next section.
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Input image

R

Color Gradient

R
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G

G

Red plane:no line Green plane:no line R and G Gradients 

G

Fig. 3. Left: input image on which marginal line output fusion fails; right: an oriented color gra-
dient on two input images and their gradients on Red and Green planes

3 Oriented Color Gradient Field

A color image is seen as a mapping from Z2 → Z3 where each point p = (i, j) of the
plane is mapped on a three dimensional vector cp = (rp, gp, bp) where rp, gp, and bp
represent the red, green and blue values at the coordinates (i, j). The vector may also
be seen as a point (in a three-dimensional space), namely, a “color” point.

IrIl

Iu

Id

(a) (b) (c)

x

y

p

Fig. 4. (a) local window at p (b) x component of the gradient: Îr − Îl (c) y component of the
gradient: Îd − Îu

In grey-level images, the intensity variation is captured by G = (Gx, Gy), the Gra-
dient of the Intensity: at each point, the gradient direction, its norm and its orientation
provide the direction of the greatest intensity variation, the amount of variation and
the direction of higher intensities respectively; it is the perfect candidate to describe an
edge as displayed in Figure 1 (a–b). Each component of the gradient may be seen as the
difference between two average intensities [11] or as the Euclidean distance between
two averages intensities multiplied by a sign representing their respective mathematical
order, as seen in Figure 4 where Îr, Îl, Îu, Îd represent the average of the intensity in
the zones at the right, left, up and down of the pixel respectively. Thus,

Gx(i, j) = s d(Îr , Îl) ≡ s drl and Gy(i, j) = s d(Îd, Îu) ≡ s ddu (1)

where d(a, b) is the Euclidean distance and s = 1 if a > b, s = 0 if a = b and s = −1
if a < b. The norm of the gradient may then be rewritten as:

N(i, j) =
√
d(Îr , Îl)2 + d(Îd, Îu)2 ≡

√
d2

rl + d2
du
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An oriented color gradient field may thus be obtained by a generalization of Equation 3
from a scalar function I (grey-level) to a vector function A (color):

Gx(i, j) = s d(Âr, Âl) ≡ s drl and Gy(i, j) = s d(Âd, Âu) ≡ s ddu (2)

where d(a, b) is the considered distance and s = 1 if a > b, s = 0 if a = b and s = −1
if a < b, according to some order relationship. This order is arbitrary (unique if n = 1)
but all orders will generate similar gradient direction up to π, as the same rule applies
to both directions. The lexicographical order is the most natural one. Given a vector
a = (a1, . . . , an) and a vector b = (b1, . . . , bn),

a = b iff ai = bi for i = 1, . . . , n.
a < b iff a1 < b1 or ai = bi for i = 1, . . . , j − 1 < n and aj < bj
a > b iff a1 > b1 or ai = bi for i = 1, . . . , j − 1 < n and aj > bj

Other ordering can be found in literature: color edge detectors based on vector order
statistics require an ordering scheme [1]; morphological color edge detectors [10] are
a special case of such detectors. However, to our knowledge, none of them uses an
absolute ordering: in [10], the concept of “extremum” exists but there is no minimum
nor maximum; in more general vector order statistics schemes, the concept of “rank”
holds, but without privileged orientation.

If the intensity I(i, j) is given by the norm of the vector ||A||, such as in the RGB
representation of an image (i.e. I(i, j) =

√
A2

R +A2
G +A2

B), a multi-spectral or hyper-
spectral representation, performing an ordering on the norm basis first, and then on each
coordinates would be more appropriate.

In the generalization of the norm of the gradient, the orientation disappears:

N(i, j) =
√
d(Âr, Âl)2 + d(Âd, Âu)2 ≡

√
d2

rl + d2
du (3)

If d is the Euclidean distance, it is easily seen that N in Equation 3 is the square root of
the marginal squared gradients (i.e. gradient in red, green and blue planes) as already
proposed in literature (see [2]). If color perception is an issue, the average intensities
Îr, Îl, Îu, Îd may be converted in the CIE-L*a*b* space (referred as CIE-Lab in the
following), and, when the Euclidean distance is small, other distances such as CIE1994,
CIE2000, or CMC could be used [12]. Although there is still no consensus on the best
perceptual distance to use [13], it is recognized that the Euclidean distance in CIE-Lab
is not correct for small distances (in [3] the contrary is assumed). Indeed, similar colors
do not hold in spheres in the CIE-Lab space, but rather in ellipsoids, which shapes
depend on the color position in the space and on the observer [14].

A two-dimensional color gradient field is thus available on each pixel p, its norm
being defined by Equation 2, its direction (including an orientation) defined by the gra-
dient vector in Equation 3. For an efficient computation of the averages, we recommend
the weighting factors involved in the Gaussian gradient computation: on each color
plane, for the x component of the gradient, a smoothing in the y direction using a Gaus-
sian is performed first (details on the size of the window and the best way to compute
the coefficients are given in [8]), then, instead of convolving the resulting image with
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the derivative of the same Gaussian along x direction as it done for the Gaussian gra-
dient, the derivative mask is divided in a left and right mask, in order to compute a left
and right average with all positive coefficients, as the “difference” between the aver-
ages is taken out of the computation. The average vector at left and at right may then
be obtained by collecting the averages on each color plane. The y component is com-
puted similarly. The scale parameter of the line detector is thus related to the σ of the
Gaussian used in this averaging process.

4 Gradient Color Line Detection

The grey-level Gradient Line Detector [8] (GLD) exploits the gradient orientation
change at each side of the line axis. At each pixel, pairs of opposite pixels in the
8-neighborhood (see Figure 5) producing a negative dot product — the guarantee of
an orientation change— are considered, and the square root of the maximum absolute
value is taken as line strength. The projection of each gradient along the line joining the
pairs enables to distinguish dark lines (lines darker than the background) from bright
ones; the method as such cannot detect “plateau” lines.

The oriented color gradient is thus used as input of the GLD, from which “bright”
lines or “dark” lines are extracted. In the color context, “bright” and “dark” have to be
interpreted with respect to the color order introduced: a line will be detected as bright if
its color cl > cb, where cl and cb are the color of line and the background respectively.
More precisely, at each pixel p, the oriented color gradient is computed according to
Equation 2. In the 8-neighborhood of the pixel the 4 pairs of symmetrical pixels are
considered (see Figure 5). In order to have a line at p, the projection of the oriented
color gradient along the line joining some of such pairs should be of different sign.
Thus let d = (dx, dy) be the vector joining p to q, where (q, r) is the considered pair.
Compute Pq = Gx(q)dx +Gy(q)dy and Pr = −Gx(r)dx −Gy(r)dy . Then if Pq and
Pr have the same sign, compute D, the dot product of G(q) and G(r):

D = Gx(q)Gx(r) +Gy(q)Gy(r)

D should be negative, as the orientation of the gradient should change at each side of
the line. If Pq and Pr are positive (negative), pixel p is a candidate for a dark (bright)
line. Thus if Pq < 0 and Pr < 0, Dbright = |D| else Dbright = 0; if Pq > 0 and
Pr > 0, Ddark = |D|, else Ddark = 0. A pixel may be both candidate for a bright

Gr

p p p p

Gq

(a) (b)

rq

Fig. 5. (a) pixels pairs at p (b) gradient vectors configuration for a dark line at p
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line in some direction (i.e. for some pair (q, r)) and dark in another one. Compute
Dbright and Ddark for each of the 4 pairs and compute respectively Lb and Ld, the
maximum of both values. The “bright” and “dark” line strength at p is then

√
Lb and√

Ld respectively. For display purpose, it is convenient to define the “line strength”
output at p as L(p) =

√
Lb if Lb > Ld or L(p) = −

√
Ld if Ld ≥ Lb. The direction

of the line is given by the direction of the difference of the gradient vectors of the pairs
providing the corresponding line strength.

5 Results

The color line filter is characterized by 3 parameters: the smoothing factor σ, the type of
distance, and the ordering scheme. It has been applied to two images shown in Figure 6
with slightly different parameters. For the upper image σ = 1 while for the lower image
a value of σ = 0.5 was necessary to separate some lines. This value is convenient for the
upper image: note how the noise in the orange line is smooth out. On the lower image,
despite the low value of σ, some lines cannot be separated so that a more precise line

(b) (c)(a)

Fig. 6. (a) 512×512 color images; (b) Color line filter outputs : grey:0, whiter: “bright” line
output, darker: “dark” line output. Filter parameters up: (1, dE , Orgb) down: (0.5, dE , Orgb) (c)
zooms on part of the image.
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detector should be used at some places. All other parameters are similar: the Euclidean
distance (dE) and the lexicographical order (Orgb) were used. The curvilinear structures
are well detected in both images.

6 Discussion

A potential undesirable effect of the introduction of an order in the color space is the
instability of the edge orientation at the interface of some colors that have a similar color
component although their distance is large. Consider the example shown in Figure 7,
where one side has the uniform color a, and the other side includes some noise: one
pixel has a color b, another one a color b′, with b very close to b′ and a far away from b.
If the red components of the noisy pixels on the red axis are respectively just lower and
greater than the component of a and if the ordering is made on the red component first,
then the edge orientation will be inverted as shown in (b). Note that if another ordering
is used (for example starting by the green component first) as in (c), the instability
vanishes.

A solution might thus be to detect these specific cases i.e. when Âr and Âl or Âu

and Âd are distant while sharing a similar color component, and use a different ordering
scheme for the latter. Not more than three ordering scheme are necessary. Of course,
the meaning of “dark” and “bright” will change accordingly.

b

b’
a

(c)(b)
a

b b’

R
(a)

G b

b’
a

Fig. 7. Gradient orientation instability: (a) 3 colors in Color Space having 0 blue components (b)
Oriented Gradient using Orgb (c) Oriented Gradient using Ogrb

7 Conclusions

The introduction of an arbitrary order in the color space enables to produce an oriented
color gradient which in turn may be used for color line detection. The proposed color
gradient field includes a scale parameter and an efficient implementation based on the
Gaussian gradient is proposed. The color gradient computation enables to use other
color distances at the price of an additional cost in computer time. The line detection
computation is straightforward as it involves computing a few dot products at each pixel.
“Bright” and “dark” line strength output are produced, they should be interpreted with
respect to the color ordering introduced. The results on some images are encouraging.
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Esther Antúnez, Rebeca Marfil, and Antonio Bandera
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Abstract. This paper presents a bottom-up approach for perceptual
segmentation of natural images. The segmentation algorithm consists
of two consecutive stages: firstly, the input image is partitioned into a
set of blobs of uniform colour (pre-segmentation stage) and then, using
a more complex distance which integrates edge and region descriptors,
these blobs are hierarchically merged (perceptual grouping). Both stages
are addressed using the Combinatorial Pyramid, a hierarchical structure
which can correctly encode relationships among image regions at upper
levels. Thus, unlike other methods, the topology of the image is pre-
served. The performance of the proposed approach has been initially eval-
uated with respect to groundtruth segmentation data using the Berkeley
Segmentation Dataset and Benchmark. Although additional descriptors
must be added to deal with textured surfaces, experimental results reveal
that the proposed perceptual grouping provides satisfactory scores.

Keywords: perceptual grouping, irregular pyramids, combinatorial
pyramids.

1 Introduction

Image segmentation is the process of decomposing an image into a set of re-
gions which have some similar visual characteristics. These visual characteristics
can be based on pixel properties as color, brightness or intensity or on other
more general properties as texture or motion. Segmentation in regions may be
achieved using pyramidal methods that provide hierarchical partitions of the
original image. These pyramidal structures help in reducing the computational
load associated to the segmentation process and allows to have a same object
in different levels of representation. Basically, a pyramid represents an image at
different resolution levels. Each pyramid level is recursively obtained by process-
ing its underlying level. In this hierarchy, the bottom level contains the image
to be processed. The main advantage of the pyramidal structure is that the
parent-child relationships defined between nodes in adjacent levels can be used
to reduce the time required to analyze an image. Besides, among the inherent
properties of pyramids are [3]: reduction of noise and computational cost, resolu-
tion independent processing, processing with local and global features within the
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same frame. Moreover, irregular pyramids adapt their structure to the data. A
detailed explanation of pyramidal structures can be found in [12]. Combinatorial
Pyramids are irregular pyramids in which each level of the pyramid is defined
by a combinatorial map. A combinatorial map is a mathematical model describ-
ing the subdivision of a space. It encodes all the vertices which compound this
subdivision and all the incidence and adjacency relationships among them. In
this way, the topology of the space is fully described.

On the other hand, natural images are generally composed of physically dis-
joint objects whose associated groups of image pixels may not be visually uni-
form. Hence, it is very difficult to formulate a priori what should be recovered as
a region from an image or to separate complex objects from a natural scene [10].
To achieve this goal several authors have proposed generic segmentation meth-
ods called ’perceptual segmentations’, which try to divide the input image in
a manner similar to human beings. Therefore, perceptual grouping can be de-
fined as the process which allows to organize low-level image features into higher
level relational structures. Handling such high-level features instead of image
pixels offers several advantages such as the reduction of computational com-
plexity of further processes. It also provides an intermediate level of description
(shape, spatial relationships) for data, which is more suitable for object recog-
nition tasks [16].

As the process to group pixels into higher level structures can be compu-
tationally complex, perceptual segmentation approaches typically combine a
pre-segmentation stage with a subsequent perceptual grouping stage [1]. The
pre-segmentation stage conducts the low-level definition of segmentation as a
process of grouping pixels into homogeneous clusters, meanwhile the perceptual
grouping stage performs a domain-independent grouping which is mainly based
on properties such as the proximity, similarity, closure or continuity. It must be
noted that the aim of these approaches is providing a mid-level segmentation
which is more coherent with the human-based image decomposition. That is, it
could be usual that the final regions obtained by these bottom-up approaches
do not always correspond to the natural image objects [8,13].

This paper presents a hierarchical perceptual segmentation approach which
accomplishes these two aforementioned stages. The pre-segmentation stage uses
a colour-based distance to divide the image into a set of regions whole spatial
distribution is physically representative of the image content. The aim of this
stage is to represent the image by means of a set of blobs (superpixels) whose
number will be commonly very much less than the original number of image
pixels. Besides, these blobs will preserve the image geometric structure as each
significant feature contain at least one blob. Next, the perceptual grouping stage
groups this set of homogeneous blobs into a smaller set of regions taking into ac-
count not only the internal visual coherence of the obtained regions but also the
external relationships among them. Both stages are addressed using the Combi-
natorial Pyramid. It can be noted that this framework is closely related to the
previous works of Arbeláez and Cohen [1,2], Huart and Bertolino [8] and Marfil
and Bandera [11]. In all these proposals, a pre-segmentation stage precedes the
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perceptual grouping stage: Arbeláez and Cohen propose to employ the extrema
mosaic technique [2], Huart and Bertolino use the Localized Pyramid [8] and
Marfil and Bandera employ the Bounded Irregular Pyramid (BIP) [11]. The re-
sult of this first grouping is considered in all these works as a graph, and the
perceptual grouping is then achieved by means of a hierarchical process whose
aim is to reduce the number of vertices of this graph. Vertices of the uppermost
level will define a partition of the input image into a set of perceptually rele-
vant regions. Different metrics and strategies have been proposed to address this
second stage, but all of the previously proposed methods rely on the use of a
simple graph (i.e., a region adjacency graph (RAG)) to represent each level of
the hierarchy. RAGs have two main drawbacks for image processing tasks: (i)
they do not permit to know if two adjacent regions have one or more common
boundaries, and (ii) they do not allow to differentiate an adjacency relationship
between two regions from an inclusion relationship. That is, the use of this graph
encoding avoids that the topology will be preserved at upper levels of the hier-
archies. Taking into account that objects are not only characterized by features
or parts, but also by the spatial relationships among these features or parts [15],
this limitation constitutes a severe disadvantage. Instead of simple graphs, each
level of the hierarchy could be represented using a dual graph. Dual graphs
preserve the topology information at upper levels representing each level of the
pyramid as a dual pair of graphs and computing contraction and removal oper-
ations within them [9]. Thus, they solve the drawbacks of the RAG approach.
The problem of this structure is the high increase of memory requirements and
execution times since two data structures need now to be stored and processed.
Combinatorial maps can be seen as an efficient representation of dual graphs in
which the orientation of edges around the graph vertices is explicitly encoded
using only one structure. Thus, the use of this structure reduces the memory
requirements and execution times.

The rest of the paper is organized as follows: Section 2 describes the pro-
posed approach. It briefly explains the main aspects of the pre-segmentation
and perceptual grouping processes which are achieved using the Combinatorial
Pyramid. Experimental results revealing the efficiency of the proposed method
are presented in Section 3. Finally, the paper concludes along with discussions
and future work in Section 4.

2 Segmentation Algorithm

As we aforementioned, the perceptual segmentation algorithm is divided in two
stages: pre-segmentation and perceptual grouping stages. Moreover, in both
stages the combinatorial map is employed as the data structure to represent
each level of the pyramid. Combinatorial maps define a general framework,
which allows to encode any subdivision of nD topological spaces orientable or
non-orientable with or without boundaries. Formally speaking, a n-dimensional
combinatorial map is described as a (n + 1)-tuple M = (D, β1, β2, ..., βn) such
that D is the set of abstract elements called darts, β1 is a permutation on D
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Fig. 1. a) Example of combinatorial map; and b) values of α and σ for the combinatorial
map in a)

and the other βi are involutions on D. An involution is a permutation whose
cycle has the length of two or less.

In the case of 2D, combinatorial maps may be defined with the triplet G =
(D,α, σ), where D is the set of darts, σ is a permutation in D encoding the set
of darts encountered when turning (counter) clockwise around a vertex, and α
is an involution in D connecting two darts belonging to the same edge:

∀d ∈ D,α2(d) = d (1)

Fig. 1.a) shows an example of combinatorial map. In Fig. 1.b) the values of α and
σ for such a combinatorial map can be found. In our approach, counter-clockwise
orientation (ccw) for σ is chosen.

The symbols σ∗(d) and α∗(d) stand, respectively, the σ and α orbits of the
dart d. The orbit of a permutation is obtained applying successively such a
permutation over the element that is defined. In this case, the orbit σ∗ encodes
the set of darts encountered when turning counter-clockwise around the vertex
encoded by the dart d. The orbit α∗ encode the darts that belong to the same
edge. Therefore, the orbits of σ encode the vertices of the graph and the orbits
of α define the edges of the graph. In the example of Fig. 1, α∗(1) = {1,−1}
and σ∗(1) = {1, 5, 2}.

Given a combinatorial map, its dual is defined by Ḡ = (D,ϕ, α) with ϕ = σ◦α.
The orbits of ϕ encode the faces of the combinatorial map. Thus, the orbit ϕ∗

can be seen as the set of darts obtained when turning-clockwise a face of the
map. In the example of Fig. 1, φ∗(1) = {1,−3,−2}.

Thus, 2D combinatorial maps encode a subdivision of a 2D space into vertices
(V = σ∗(D)), edges (E = α∗(D)) and faces(F = ϕ∗(D)).

When a combinatorial map is built from an image, the vertices of such a map
G could be used to represent the pixels (regions) of the image. Then, in its dual
Ḡ, instead of vertices, faces are used to represent pixels (regions). Both maps
store the same information and there is not so much difference in working with
G or Ḡ. However, as the base entity of the combinatorial map is the dart, it is
not possible that this map contains only one vertex and no edges. Therefore,
if we choose to work with G, and taking into account that the map could be
composed by an unique region, it is necessary to add special darts to represent
the infinite region which surrounds the image (the background). Adding these
darts, it is avoided that the map will contain only one vertex. On the other hand,
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when Ḡ is chosen, the background also exists but there is no need to add special
darts to represent it. In this case, a map with only one region (face) would be
made out of two darts related by α and σ.

In our case, the base level of the pyramid will be a combinatorial map where
each face represent a pixel of the image as an homogeneous region. The combi-
natorial pyramid is build reducing this initial combinatorial map successively by
a sequence of contraction or removal operations [5,9].

In the following subsections, the application of the Combinatorial Pyramid to
the pre-segmentation and perceptual grouping stages is explained in detail.

2.1 Pre-segmentation Stage

Let G0 = (D0, σ0, α0) be a given attributed combinatorial map with the vertex
set V0 = σ∗(D), the edge set E0 = α∗(D) and face set F0 = ϕ∗(D) on the
base level (level 0) of the pyramid. In the same way, the combinatorial map on
level k of the pyramid is denoted by Gk = (Dk, σk, αk). As we aforementioned,
each face of the base level represent a pixel of the image. Thus, faces are at-
tributed with the colour of the corresponding pixel. The colour space used in
our approach is the HSV space. The edges of the map are also attributed with
the difference of colour of the regions separated by each edge. The hierarchy of
graphs is built using the algorithm proposed by Haxhimusa et al [7,6], which is
based on a spanning tree of the initial graph obtained using the algorithm of
Borůvka [4]. Building the spanning tree allows to find the region borders quickly
and effortlessly based on local differences in a color space. For each face f ∈ Fk

Borůvka’s algorithm marks the edge e ∈ Ek with the smallest attribute value to
be removed. Now, unlike [7,6], two regions (faces) are merged if the difference of
colour between them is smaller than a given threshold Up. That is, the attribute
of each edge marked to be removed for the Borůvka’s algorithm is compared with
the threshold Up and if its value is smaller, that edge if added to a removal kernel
(RKk,k+1). In a second step, hanging edges are removed. Finally, a contraction
kernel (CKk,k+1) is applied to remove parallel edges, obtaining the new level of
the pyramid. After a contraction step, the attributes of the surviving edges have
to be updated with the colour distance of the faces that the new edge separates.
This process is iteratively repeated until no more removal/contraction operation
is possible. This stage results in an over-segmentation of the image into a set of
regions with homogeneous colour. These homogeneous regions will be the input
of the perceptual grouping stage.

2.2 Perceptual Grouping Stage

After the pre-segmentation stage, the perceptual grouping stage aims for sim-
plifying the content of the obtained colour-based image partition. To achieve
an efficient grouping process, the Combinatorial Pyramid ensures that two con-
straints are respected: (i) although all groupings are tested, only the best group-
ings are locally retained; and (ii) all the groupings are spread on the image so
that no part of the image is advantaged. To join pre-segmentation and perceptual
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grouping stages, the last level of the Combinatorial Pyramid associated to the
pre-segmentation stage will constitute the first level of the pyramid associated
to the perceptual grouping stage. Next, successive levels will be built using the
decimation scheme described in Section 2.1. However, in order to accomplish the
perceptual grouping process, a distance which integrates boundary and region
descriptors has been defined as a criteria to merge two faces of the combinatorial
map.

The distance has two main components: the colour contrast between image
blobs and the boundaries of the original image computed using the Canny detec-
tor. In order to speed up the process, a global contrast measure is used instead
of a local one. It allows to work with the faces of the current working level, in-
creasing the computational speed. This contrast measure is complemented with
internal region properties and with attributes of the boundary shared by both re-
gions. The distance between two regions (faces) fi ∈ Fk and fj ∈ Fk, ψα,β(fi, fj),
is defined as

ψα,β(fi, fj) =
d(fi, fj) · bfi

α · (cfifj ) + (β · (bfifj − cfifj ))
(2)

where d(fi, fj) is the colour distance between fi and fj . bfi is the perimeter of
fi, bfifj is the number of pixels in the common boundary between fi and fj and
cfifj is the set of pixels in the common boundary which corresponds to pixels of
the boundary detected by the Canny detector. α and β are two constant values
used to control the influence of the Canny boundaries in the grouping process.
Two regions (faces) will be merged if that distance, ψα,β(·, ·), is smaller than a
given threshold Us. It must be noted that the distance ψα,β(·, ·) between two
regions (faces) is proportional to its colour distance. However, it must be also
noted that this distance decreases if the most of the boundary pixels of one of
the regions is in contact with the boundary pixels of the other one. Besides, the
distance value will decrease if these shared boundary pixels are not detected by
the Canny detector.

3 Experimental Results

In order to evaluate the performance of the proposed colour image segmenta-
tion approach, the Berkeley Segmentation Dataset and Benchmark (BSDB) has
been employed1 [14]. In this dataset, the ground-truth data is provided by a
large database of natural images, manually segmented by human subjects. The
methodology for evaluating the performance of segmentation techniques is based
in the comparison of machine detected boundaries with respect to human-marked
boundaries using the Precision-Recall framework [13]. This technique considers
two quality measures: precision and recall. The precision (P ) is defined as the
fraction of boundary detections that are true positives rather than false posi-
tives. Thus, it quantifies the amount of noise in the output of the boundaries
detector approach. On the other hand, the recall (R) is defined by the frac-
tion of true positives that are detected rather than missed. Then, it quantifies
1 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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the amount of ground truth detected. Measuring these descriptors over a set of
images for different thresholds of the approach provides a parametric Precision-
Recall curve. The F -measure combines these two quality measures into a single
one. It is defined as their harmonic mean:

F (P,R) =
2PR
P +R

(3)

Then, the maximal F -measure on the curve is used as a summary statistic for
the quality of the detector on the set of images. The current public version of the
data set is divided in a training set of 200 images and a test set of 100 images. In
order to ensure the integrity of the evaluation, only the images and segmentation
results from the training set can be accessed during the optimization phase. In
our case, these images have been employed to choose the parameters of the

Fig. 2. a) Original images; b) boundaries of human segmentations; c) boundaries of pre-
segmentation images; and d) boundaries of the regions obtained after the perceptual
grouping
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Table 1. Values of F for the images in Figure 2

#62096 #69020 #167062

NoPG 0.85 0.63 0.41

PG 0.95 0.77 0.73

Table 2. Required time for each image in seconds

#62096 #69020 #167062

Pre − segmentation 41.2 39.5 41.9

Perceptual Grouping 34.7 27.8 163.9

Total time 75.9 67.3 205.8

algorithm (i.e., the threshold Up (see Section 2.1), the threshold Us, α and β
(see Section 2.2)). The optimal training parameters have been chosen. Fig. 2
shows the set of boundaries obtained in different segmentations of the original
images as well as the ones marked by human subjects. It can be noted that the
proposed approach is able to group perceptually important regions in spite of
the large intensity variability presented on several areas of the input images.
The pre-segmentation stage provides an over-segmentation of the image which
overcomes the problem of noisy pixels [11], although bigger details are preserved
in the final segmentation results.

The F -measure associated to each image in Fig. 2 can be seen in the Table
1. This Table shows the F -measure for the perceptual grouping stage (PG) as
well as for the pre-segmentation stage (NoPG). These values of F reflect that
adding a perceptual grouping stage improve significantly the results obtained in
the segmentation.

On the other hand, Fig. 3 shows several images which have associated a low
F -measure value. The main problems of the proposed approach are due to its
inability to deal with textured regions which are defined at high natural scales.
Thus, the tiger or the leopard in Fig. 3 are divided into a set of different regions.
These regions do not usually appear in the human segmentations. The maxi-
mal F -measure obtained from the whole test set is 0.65. To improve it, other
descriptors, such as the region area or shape, must be added to the distance
ψα,β(·, ·).

Regarding the execution times, the Table 2 summarize the processing time
required for each of the images in Fig. 2. These times correspond to run the
algorithm in a 1.60GHz Pentium PC, i.e. a sequential processor. It have to be
noted that the proposed algorithm is mainly designed for parallel computing.
Thus, it will run more efficiently in a parallel computer.
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Fig. 3. a) Original images; b) example of segmented image; and c) set of obtained
boundaries

4 Conclusions and Future Work

This paper presents a new perception-based segmentation approach which con-
sists of two stages: a pre-segmentation stage and a perceptual grouping stage.
In our proposal, both stages are conducted in the framework of a hierarchy of
successively reduced combinatorial maps. The pre-segmentation is achieved us-
ing a color-based distance and it provides a mid-level representation which is
more effective than the pixel-based representation of the original image. The
combinatorial map which constitutes the top level of the hierarchy defined by
the pre-segmentation stage is the first level of the hierarchy associated to the
perceptual grouping stage. This second stage employs a distance which is also
based on the colour difference between regions, but it includes information of
the boundary of each region, and information provided by the Canny detector.
Thus, this approach provides an efficient perceptual segmentation of the input
image where the topological relationships among the regions are preserved.

Future work will be focused on adding other descriptors to the distance
ψα,β(·, ·), studying its repercussion in the efficiency of the method. Besides, it
is necessary that the perceptual grouping stage also takes into account a tex-
ture measure defined at different natural scales to characterize the image pixels.
This texture information could be locally estimated at the higher levels of the
hierarchy.
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Abstract. A main issue in the archaeological research is the identification of 
colored surfaces and soils through the application of Munsell system. This 
method widely used also in other fields, like geology and anthropology, is 
based on the subjective matching between the real color and its standardized 
version on Munsell chart. For preventing many possible errors caused by the 
subjectivity of the system itself, in this paper an automatic method of color 
detection on selected regions of digital images of archaeological pottery is 
presented.  

Keywords: Archeological artifacts, color matching, Munsell color space. 

1   Introduction 

“What is color? It’s a sensation, like hunger or fatigue, that exists only in our minds. 
Like hunger and fatigue, it’s caused by external factors that we can measure and 
quantify, but measuring those external factors is no more measuring  color than 
counting calorie intake tells us how hungry we are, or measuring exercise tells us how 
fatigued” [4].  

Every observer perceives color differently. A major obstacle encountered when 
comparing colors is the choice of descriptive words. Color also varies in its 
appearance due to changes in the light source and the distance of the light source. The 
color identification as any other cognitive process can also be seriously influenced by 
cultural and linguistic background as well as psychological state [2]. Furthermore, it 
must also be taken into account that colors can only be described unequivocally as 
long as all the interlocutors can actually see them. If, however, one scholar receives 
the information exclusively from the oral or written reports of one of the others, she 
or he must try to picture a particular color without having perceived it herself or 
himself. The mental image thus created will thereby only in the rarest cases 
correspond to the visual impression which the other person was stimulated to 
communicate. 
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Since color can only inadequately be described by verbal means, nowadays 
whenever one wants to make unequivocal systematically, constructed color chart are 
used. 

At the beginning of the 20th century, Albert H. Munsell [5] brought clarity to color 
communication by establishing an orderly system for accurately identifying every 
color that exists. The Munsell color system is a way of precisely specifying colors and 
showing the relationship among colors. Every color has three qualities or attributes: 
hue, value and chroma. Munsell established numerical scales with visually uniform 
steps for each of these attributes.  

Hue is that attribute of a color by which we distinguish red from green, blue from 
yellow, and so on. There is a natural order of hues: red, yellow, green, blue, purple. 
Then five intermediate hues were inserted: yellow-red, green-yellow, blue-green, 
purple-blue and red-purple, making ten hues in all. Paints of adjacent colors in this 
series can be mixed to obtain a continuous variation from one color to the other. For 
simplicity, the initials as symbols to designate the ten hue sectors are used: R, YR, Y, 
GY, G, BG, B, PB, P and RP. 

Value indicates the lightness of a color. The scale of value ranges from 0 for pure 
black to 10 for pure white. Black, white and the grays between them are called 
“neutral colors”, because they have no hue like the other “chromatic colors”, that have 
it. 

Chroma is the degree of departure of a color from the neutral color of the same 
value. The scale starts at zero, for neutral colors, but there is no arbitrary end to the 
scale, as new pigments gradually become available. 

The Munsell color-order system has gained international acceptance. It is 
recognized in standard Z138.2 of the American National Standards Institute; Japanese 
Industrial Standard for Color, JIS Z 872; the German Standard Color System, DIN 
6164; and several British national standards. 

The reliability of Munsell’s color scheme has been recently stressed by specific 
neurobiological researches which demonstrated how that system has successfully 
standardized color in order to match the reflectance spectra of Munsell’s color chips 
with the sensitivity of the cells in the lateral geniculate nucleus (LGN cells), 
responsible for color identification. This statement makes Munsell charts appropriate 
for almost all jobs that require manual color identification by human agent [3]. 

In archaeology Munsell charts are widely used as the standard for color 
identification of soil profiles, organic materials, rock materials, colored glasses, 
metals, paintings, textiles and mainly pottery. 

For which regards the interpretation of pottery the precise color identification of 
such parts like clay body, treated surfaces, core, and outer layers like slip and 
painting, it is fundamental for defining its stylistic and technical features. 

As a coding framework, the charts both mediate perceptual access to the colored 
object being classified, and provide a color reference standard. This tool does not 
stand alone as a self-explicating artifact; instead its proper use is embedded within a 
set of systematic work practices, varying from community to community. As 
demonstrated in application in fields of archaeology, anthropology, these practices 
can contribute to misclassification of colors [2]. In fact, Munsell notations are not 
always unequivocal and the limits of their use are well known since decades [1]. 
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Besides the above mentioned cultural, linguistic and psychological background, 
several other factors can misled the observer in the task of color identification of 
pottery. The most common are surface homogeneity of the material, state of color 
surface, color type, test condition, accuracy of assertion, color blindness, quality and 
type of the Munsell charts. 

While Munsell system is ideally shaped for smoothed surfaces no displaying 
disturbing textures, the pottery surfaces are just in rarest cases homogenous both in 
relation in their color and their texture, often altered by cracks and superficial voids. 
Decorative techniques aimed to smooth, coat or glaze can also modify the real 
chromatic value of the surface. Some kind of patina and incrustation can cause 
misinterpretation of the color as well as artificial light sources, different than natural 
daylight must be avoided. Finally, an additional human error can be determined by the 
inaccuracy caused by tasks involving thousands of checks and by problems coming 
from quite common deficiencies in color perception [1]. In this perspective, the 
development of an automatic system for classification of colors in archaeology, and in 
particular in the field of pottery research, must be considered crucial for providing a 
solution to all the above mentioned problems.  

In this paper, we propose an algorithm to extract an objective Munsell definition of 
colored selected regions of digital image. The method corrects the illumination 
defects in the picture in order to create the ideal illumination that permits one to 
extract the color information. 

The rest of the paper is organized as follows. In Section 2 the proposed technique 
is described; the next Section reports a series of experiments devoted to assess the 
effectiveness of the method. Finally, some conclusions are given together with a few 
hints for the future work. 

2   Proposed System 

The proposed system is a semi-automatic algorithm aiming to find the best match 
between a user selected color in an archeological sherd with a color in the Munsell 
charts  [5]. Focusing on a particular color in the sherd, the system must provide the 
color in the Munsell table that best matches it. There are several problems to 
overcome: first of all, the acquisition process is not usually obtained in good 
illumination conditions. Pictures are often acquired in artificially illuminated rooms, 
with uncontrolled light sources. It means that the color correction of the camera is not 
always able to compensate correctly for the illuminant. This problem, known as 
“white balance”, is a main issue to deal with [6]. Secondly, the patch that the user is 
asked to point should be representative of the region. Noises (especially for low 
illuminated acquisitions) and dirty spots can make really difficult this process. Lastly, 
also the matching is not a minor problem, since the colors cannot be simply 
represented in the Munsell table; hence a different data space must be used. We define 
a system and a pipeline to overcome all these problems. A database has also been set 
up to make the tests and it is available in [7] to let the reader use and/or extend it for 
further research. 
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The proposed pipeline (Figure 1) is composed by a color correction module, a 
patch extraction, and a color matching. In the next sub-sections each block is analyzed 
in detail. 

 

Fig. 1. Block scheme of the proposed algorithm pipeline 

2.1   Color Correction 

In the color correction module, the image is compensated for the illuminant. This 
problem is known as “white balance” and there are lots of algorithms in literature to 
reduce the problem in a fully automatic way [6, 8, 9, 10]. Unfortunately, a zero failure 
algorithm does not exist, since the white balance is an ill-posed problem and all the 
methods available are based on assumptions. Whenever, when the assumptions are 
not verified, the algorithm fails [11]. Moreover there is another problem: the pictures 
are obtained from a camera and the white balance is already applied (like other 
algorithms, e.g., color matrix, gamma correction, etc.). It may produce problems in 
color reproduction. In order to control these problems, we started taking pictures with 
a color checker chart acquired in the same image: first to obtain the best correction (to 
validate all the other steps of the algorithm); and second to create a ground truth to 
validate further methodologies. 

 

  
(a) (b) 

  
(c) (d) 

 
Fig. 2. Examples from the dataset with different illuminants; the effect of the illumination 
conditions is evident 
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Fig. 3. Histogram of the Macbeth chart ‘light skin’ patch in the four images in Figure 2. The 
RGB mean values are, respectively (from top to bottom, from left to right): (177-116-93), 
(157,143,133), (217,135,110), (181,133,116). 

In the Figure 2 some pictures of the dataset are shown. They were acquired in 
different illumination conditions. In Figure 3 the related histograms of the ‘light skin’ 
patch (the second patch of the Macbeth chart) are shown. It is evident the effect of the 
illuminant on the color rendition: without any post-processing correction, the color 
matching is impossible. 

The algorithm proposed supposes that images are acquired with the Macbeth chart 
and the correction is performed compensating some patches of the chart. 

It is supposed to compensate for the illuminant according to the von Kries–Ives 
adaptation [12], i.e., the correction can be obtained by multiplying every color 
component with an amplification coefficient: 
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Where (Rin,Gin,Bin) is the original triplet, (Rout,Gout,Bout) is the corrected value and 
(gr,gg,gb) are the gains. 

The weights can be found in different ways. Taking into account the Macbeth 
chart, the weights could be retrieved by constraining one of the patch to be same (e.g., 
in the sRGB color space) to the real value (since all the patches are completely 
characterized).  
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Where (Rt,Gt,Bt) is the target sRGB triplet of the used patch (201,201,201) for the grey 
patch highlighted in the Figure 2. 

A better way is to obtain the coefficients by using more patches. In this case a set 
of redundant equations are obtained, hence optimization techniques, e.g. Least 
Squares Method, can be used to obtain the gains. The error function to be minimized 
is the following: 

∑
=

=
p

i
ieE

1

2
                                                (3)  

Where E is the error function, p is the number of selected patches; ei is the error 
contribution of each patch: 

( ) ( ) ( ) tinbtingtinri BBgGGgRRge −⋅+−⋅+−⋅=                   (4) 

This formula provided good results in terms of visual quality. Other error measures 
can be used, e.g., in a more perceptually uniform color space. 

In our system we started using the six gray patches in the bottom of the chart. Of 
course, in order to reduce the noise, the patch color is obtained as mean of a patch 
crop. The entire process is shown in Figures 4 and 5. 

 

 

Fig. 4. Color correction module using one neutral patch 

 

Fig. 5. Color correction module using six neutral patches 

In the ‘Patch extraction’, user has to select the patches and the system retrieves the 
mean value of the patch. In the ‘wb coeffs’ block the system computes the gains 
according to the formulas shown above. 
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2.2   Patch Extraction 

After the color correction, the user has also to choose the color to be matched in the 
Munsell table. A ‘point and click’ is the best user friendly way to do it. In order to 
reduce difficulties due to noises or scratches in the archeological finds, when the user 
points over a colored surface, a homogeneous patch is shown. The color of the patch 
is obtained, for the generic pointed pixel at position (p, q), as median of a square 
window: 
 

( );,...,,/, npnpjiCmedianC ji +−==                            (5) 

 
Where C=R, G, or B; n=10 in the actual implementation. The use of the median 
instead of the mean value allows reducing the influences of impulsive noises and 
scratches in the patch extraction. In the Figure 6 is shown a snapshot of the software. 

 

 

Fig. 6. A snapshot of our system 

2.3   Color Matching 

The color matching block aims to obtain the color in the Munsell table most similar to 
the patch chosen by the user. Each color is represented by three components: hue (H), 
value (V) and chroma (C). The representation is "H V/C". As example, 10YR 6/4 
means that the hue is 10YR, i.e., a combination of yellow and red (note that the 
defined colors are R=Red, Y=Yellow, G=Green, B=Blue, and P=Purple); the value is 
6 and the chroma is 4. 

The main problem is that there is no direct formula to convert from Munsell 
patches to a representation in other color spaces. It also means that there is no way to 
work directly in the Munsell space, since it is quite difficult to define a distance 
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measure to find the best fit. The earliest Munsell based difference formulae is 
Nickerson’s “index of fading” [13] defined as: 

C3 + V6 + HC
5

2 ΔΔΔ=ΔE                                  (6) 

Where H, V, and C are Munsell coordinates. 
It is a very old measure and authors decided to use also another measure using a 

perceptive uniform color representation. The DeltaE94 in the L*a*b* color space has 
been chosen. It is approximately perceptually uniform, i.e. a change of the same 
amount in a color value produces a change of about the same visual importance. 

All the patches in the Munsell table were represented in the Lab color space. The 
block based scheme of the color matching phase is shown in Figure 7. 

 

 
 

Fig. 7. Color matching block based scheme 

 

Basically the patch is converted in the L*a*b* color space using the following: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∗

∗

∗

nn

nn

n

Z

Z
f

Y

Y
fb

Y

Y
f

X

X
fa

Y

Y
fL

200

500

16116
                                  (7) 

 
All the patches of the Munsell table are also considered in the same color space. The 
best matching is performed using the minimum Euclidean distance between the patch 
and all the Munsell colors. The matched color is hence converted in the Munsell space 
and is provided to the user. 

3   Experimental Results 

First of all, we have tested that the proposed methods work correctly. To test this, we 
have acquired the image of the Munsell charts with the Macbeth color checker (Figure 8). 
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In this way, the algorithm of color correction works well if the single patch has the 
correct color as shown in the Munsell table, in 90% of the experiments. 

In order to test our proposed method, in Table 1 some results using the image of 
archaeological sherds [7] are presented. The second column shows the color 
suggested by the archaeologist. This attributed color is very subjective. The third 
column reports the more representative color in the sherd computed in the input image 
without any corrections. In the fourth and fifth columns the results of our techniques 
are shown. 

Even if they are different from the human suggestion, they are very close to this. 
Hence, this means that the system works in the right direction. 

We have observed that experimental results are close to the archaeologist 
suggestions with a success rate of 85% when the images are compensated instead of 
the original 73% for the uncorrected images. 

 

   

Fig. 8. Example of image used to validate the color matching  block 

Table 1. Some examples of color measures. The subjective archaeologist suggested color is 
compared with the algorithm results. 

Image Human 
identification 

Without 
correction 

I method II method 

9570 7.5 YR 7/4 10 YR 6/4 7.5 YR 6/4 5 YR 7/4 
9579 10 R 7/6 5 YR 6/6 2.5YR 7/4 5 YR 7/3 
9584 5 YR 6/2 10 YR 4/2 7.5 YR 6/2 5 YR 7/4 
9591 5 YR 6/1 7.5 YR 5/2 10 YR 5/1 7.5 YR 5/2 

4   Conclusions 

A complete system to define the predominant color in archaeological sherds has been 
presented. It is an attempt to automate a manual methodology usually used by 
archeologists based on visual inspection and color matching of sherds (with Munsell 
table). Also a database has been created and it is available in [7]. 

The system aims to detect, starting from a single photo acquired with a common 
digital still camera, the real color of a patch pointed by the user and to retrieve the 
patch (in Munsell coordinates) with the best match. Color accuracy is important, but it 
cannot be ensured by the camera due to the critical illumination condition usually 
where the images are captured. The paper shows all the criticalities of the problem 
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and proposes a methodology to overcome such problems. Particular attention has 
been used to select the proper color space and perceptive distance measures. Next 
steps will be focused on increase the reliability of the color correction, e.g., by using 
all the patches of the Macbeth chart or increasing the color accuracy for the patches 
nearer to the color of the find.  

Next steps will be focused on increase the reliability of the color correction, e.g., 
by using a more perceptually uniform color space for the error measure shown in 
equation (4), or by using all the patches of the Macbeth chart or increasing the color 
accuracy for the patches nearer to the color of the find. 
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Abstract. The paper focuses on the possibilities of color image retrieval of the
images sharing the similar location of particular color or set of colors present in
the depicted scene. The main idea of the proposed solution is based on treating im-
age as a multispectral object, where each of its spectral channels shows locations
of pixels of 11 basis colors within the image. Thus, each of the analyzed images
has associated signature, which is constructed on the basis of the mixture approx-
imation of its spectral components. The ability of determining of highly similar
images, in terms of one or more basic colors, reveals that the proposed method
provides useful and efficient tool for robust to impulse distortions image retrieval.

Keywords: color image retrieval, color composition, Gaussian mixture.

1 Introduction

The rapid growth in number of images acquired and available via World Wide Web
creates a need for constant improvement of existing methods of efficient management
and analysis of the vast amount of data.

Therefore, analyzing this huge amount of visual information for retrieval purposes,
especially when a very specific retrieval criterion is set, still remains a challenging task
and therefore there are many attempts to address it [1,2].

One of the fields intensively explored in this area is image retrieval, providing tools
and methods addressing users needs concerning finding the images which are the re-
trieval of images which are considered similar taking into the account the spatial loca-
tion of the colors within the depicted scene.

Spatial organization of colors has been recently explored in form of spatial statistics
between color pixels, such as correlograms [3] or some filter outputs [4,5,6,7]. Related
approaches use points of interest similarly to classic object recognition methods [8]
and many other retrieval methods rely on segmentation as a basis for image indexing
[9,10,11,12]. Mutual arrangements of regions in images are also the basis of the re-
trieval, however the representation of the relationship can be non-symbolic [13].

Thus, the problem addressed in this paper is as follows. Given a color image (query),
the user expects to be provided with a set of candidate images sharing the same color
arrangement as the query image, i.e. the same chosen color should be present in the

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 347–355, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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same location within the query image and the candidate images. Moreover, the user can
decide whether the color similarity is analyzed in terms of the occurrence of one or
more basic colors.

Although, many approaches explored the idea of the image similarity, expressed by
color localization within the scene depicted by the image, the solution proposed in this
paper provides a method which is robust to color outliers i.e. isolated pixels or small
groups of pixels of color significantly different than that of their neighborhood. Such an
approach provides a possibility of the construction of a compact structure of the image
signature, which is, in case of the analyzed solution, the set of Gaussian Mixture Model
(GMM) parameters, [14,15].

Therefore, the color image is represented as multispectral image formed of 11 binary
images, representing the occurrence of certain base colors in particular locations. Each
spectral image is then approximated by a Gaussian Mixture Model.

This approach offers the advantage of robustness to some pixel distortions, e.g. im-
pulse noise or compression artifacts. This is obtained due to smoothing properties of
Gaussian Mixture modeling. Moreover, when the model complexity is not unreason-
ably excessive, it can be assured that all redundant information is not modeled, i.e. is
not introduced into retrieval and comparison process.

The analysis of the parameters of the evaluated models for the images for the images
from the database of Wang [9] (of 1000 color images) enables to indicate the most
similar pictures, sharing the same colors in the same spatial locations within the image.

The paper is organized as follows. Firstly, color categorization and the construction
the spectral images are presented. Secondly, the modeling of the binary spectral im-
ages by mixtures of Gaussians is presented. Then, the evaluated results are shown and
discussed. Finally, conclusions along with the remarks on future work are drawn.

2 Color Categorization and Spectral Image Formation

The first problem related with the color similarity among the image regions is bounded
with the definition of the color similarity i.e. whether two colors are enough percep-
tually similar for human spectator to be considered as being the same. This problem
is addressed by the approach based on the FEED[16] color categorization technique.
This empirical categorization model enables to express each of HSI colors as one of 11
basic colors: red, green, blue, yellow, brown, orange, violet, pink, black, white or gray.
This color space segmentation method is based on the Fast Exact Euclidean Distance
(FEED) transform on the color markers placed on 2D projections of HSI color space.
These color markers were a result of the empirical experiments, where human subjects
were asked to categorize color stimuli into mentioned the 11 color categories.

Thus, the first step of the proposed solution is the categorization of the colors present
in the given image. Therefore, each possible image is represented in terms of maximum
11 colors, as shown in Fig 1.

Having the image palette decreased, the analyzed image can be seen as a multispec-
tral object i.e. each spectral image, related to the one of the basic colors, is the binary
image representing the spatial occurrence of pixels of this color. Moreover, each spec-
tral image indicates the set of color pixels, which were recognized by the FEED model
as as belonging to the same color class.
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Fig. 1. Exemplary results (right) of the original color image (left) categorization based on FEED
technique for 11 base colors evaluated for 3 images of the database of Wang [9]

3 Mixture Modeling of Spectral Data

The next step of the proposed technique is the modeling of each of the spectral images
using the Gaussian Mixture Model [14,15] and Expectation-Maximization algorithm
(EM), [17].

In order to apply the proposed technique, each of binary spectral images are treated
as histogramΦ(x, y), where x and y denotes the image size. This histogram is subjected
then to mixture modeling. This approach describes color regions (in specified channel),
present in depicted scene, using combination of ’blobs’ (Gaussians).

However, to apply the proposed technique, and thus to assure the comparability of the
evaluated results, the multispectral images, representing images stored in the analyzed
database, should be resized using a method which does not introduce any new colors
into a depicted scene during the resizing process.

For the need of this work the used Gaussian Mixture Model is obtained running 75
times the EM procedure for 7 model components. The choice of the model complexity
and number of iterations is in general a trade-off between accuracy of the evaluated
model and the obtained visual similarity, when some data should be excluded from
further consideration. However, in the methodology proposed in this work, the main
reasoning for such a choice of modeling parameters is the fact that the exact modeling of
spectral data is not desirable, because of the fact that there can be data which should not
be incorporated in further analysis, e.g. noise or small insignificant homogenous color
regions, which do not convey any useful information. Thus, any possibly irrelevant data
will be not considered, [18,19,20,21].

At this stage of the algorithm each image can be seen as set of spectral images, which
are modeled using Gaussian Mixture Model, forming it signature, as shown in Fig 2 .

The evaluation of the GMM of the spectral image is illustrated by Fig. 3. Each spec-
tral image, which is binary image conveying information about the spatial location of
certain color, is approximated by GMM, reflecting the main structure of the spectral
image content.

4 Image Retrieval

Having the spectral images modeled, the user can decide which color or colors reflects
the similarity among the images. Therefore, the set of colors which will be taken into
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Fig. 2. The construction of the set of GMM models which is a basis for the proposed image re-
trieval. The original image (left) was subjected to color categorization technique based on FEED
model (middle) and each of the spectral images corresponding to 11 basic colors are modeled
using GMM approach (right).

Fig. 3. The evaluation of the mixture model of spectral image corresponding to a chosen color
(left) for original image shown in Fig. 2. The 2D (middle) and 3D (right) visualization of GMM
are the basis for the retrieval.

account should be chosen. The mixture models of spectral images, corresponding to the
user choice, are compared to GMM of respective spectral images of a given query.

For the user choice of colors, the index η, representing each database image, is con-
structed in relation to query image. The evaluated index also depends on the number of
chosen colors, according to:

ηi =
m∑

k=1

d(Qk, Ii,k) (1)

where m denotes the number of spectral images (colors) taken into account during re-
trieval process, Q and I represent query and analyzed image from the database, indexed
by i respectively. The distance between the spectral images Qk and Ii,k can be defined
as Minkowski distance (e.g. L1) or Earth Mover’s Distance (EMD), [11]. The EMD
is based on the assumption that one of the histograms reflects ”hills” and the second
represents ”holes” in the ground of a histogram. The measured distance is defined as
a minimum amount of work needed to transform one histogram into the other using a
”soil” of the first histogram. As this method operates on signatures and their weights
using GMM, we assigned as signature values the mean of each component and for the
signature weight the weighting coefficient of each Gaussian in the model.



Image Retrieval Based on Gaussian Mixture Approach to Color Localization 351

In details, let us assume that a user is interested in retrieval of images similar to
a given query, having regions of the perceptually similar colors in corresponding lo-
cations. All images are subjected to the color categorization, mixture modeling, and
similarity-to-query index construction. The exact value of the image index is bounded
to the number of chosen colors, in terms of which, images are being compared. For
each pair of the corresponding spectral images (of the query and the analyzed images)
their mutual similarity is evaluated. Knowing that each spectral image is represented
by a mixture model, the similarity evaluation resolves to the calculation of the simi-
larity between evaluated GMM’s for a corresponding color. The similarity indices for
each spectral level are then combined to create the overall similarity-to-query index η
for each image in the analyzed database. On the basis of those indexes the candidate
images the most similar to given query are selected.

Let us note that when only a small set of basis color are chosen, the retrieved images
will be similar only in terms of those colors, that can lead to the perceptual sensation
that candidate images are in fact dissimilar when the overall image composition is taken
into account. Moreover, not only the the undesirable data (as noise) can be omitted in the
modeling process, but also the relatively small regions, in comparison to overall image
size, can be not included into the mixture model. The ratio of data which is modeled
to overall image data depends on the complexity of the used mixture model. Thus,
increasing the model complexity, on the one hand, leads to more accurate reflection of
the given data, but on the other hand, there is a possibility that redundant data will be
taken into consideration.

5 Retrieval Results

The presented experiments were evaluated in two steps. Firstly, the color similarity was
tested for a single color, i.e. images were retrieved only on the basis of the similarity of
one chosen spectral image corresponding to a single chosen color (Fig. 4). The second
part of the experiment was concentrated on the retrieval based on the combination of
colors (see Figs. 5 and 6).

Let us note, that when the retrieval process is based only on a single color there
is a chance that the overall similarity sensation can be different that those suggested
by single color comparisons. However, these experiments prove the efficiency of the
proposed methodology.

Moreover, the evaluated results for single color comparison for L1 and EMD mea-
sures produce still accurate but slightly different sets of candidate images, because the
first of the similarity measures does not take into account any, even slight spatial shift, of
the location of the color regions in spectral image. The second of the similarity measures
EMD, due to its inherent properties, allows small changes in color spatial location to
claim similarity. However, this phenomenon does not occurs when multiple colors are
analyzed simultaneously (as illustrated by Fig. 5 and 6), because when the numerous
criteria are applied, only a smaller subset of images are capable to satisfy those condi-
tions. In case of analyzed databases, chosen for the experiments described in this paper,
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Red
(L1D)

Red
(EMD)

White
(L1D)

White
(EMD)

Green
(L1D)

Green
(EMD)

Pink
(L1D)

Pink
(EMD)

Yellow
(L1D)

Yellow
(EMD)

Fig. 4. The results of the retrieval evaluated on the basis of the mixture approximation of spectral
images corresponding to the single color chosen by user, evaluated for the database of Wang [9].
For the similarity measure for each color the L1 or EMD methods we used.

the possible differences in evaluated results are unnoticeable. When the database of
significantly larger size would be taken into account, these differences would be visible.

There is open question which of the similarity measure is more accurate. To address
this problem, also the other aspects should be considered, such as the fact that for the
EMD similarity measure the evaluation of the image signature, which need to be stored
for further analysis, is reduced to set of GMM parameters. In case of pixel by pixel
comparisons (as forL1 measure), the completely evaluated model of 11 mixtures should
be stored, which not always is acceptable.
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W+G

W+G+Y

Br+G+Y

G+R

R+B+W

R+Br+Y

G+Y+Br+W

Br+Y+K+R

R+Y+K

Fig. 5. The results of the retrieval evaluated on the basis of the mixture approximations of a set
spectral images corresponding to the colors chosen by user. The experiments tested the efficiency
of proposed method for the combination of the following colors, where: white, green, yellow,
brown, red, blue and black are denoted by letters W, G, Y, Br, R, B and K.

Y+B

R+K

G+B

G+B+Or+K

Fig. 6. The results of the retrieval evaluated on the basis of the proposed method for the images
of database of Webmuseum (http://www.ibiblio.org/wm/). The experiments tested the efficiency
of proposed method for the combination of the following colors, where: yellow, blue, red, black,
green and orange are denoted by letters Y,B,R,K,G and Z. The results evaluated for L1 and EMD
similarity measures provide the equivalent results.
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6 Conclusions and Future Work

In this paper we present a novel method operating on color images treated as multi-
spectral images, combined of the set of the binary images representing each of 11 basic
colors. The experiments evaluated on images of database of Wang tested the effective-
ness of the proposed method when only one color was taken as the similarity criterion,
as long as when image similarity was based on the set of colors.

As illustrated by Figs. 4, 5 and 6 the technique described in this paper, utilizing the
Gaussian mixture modeling approach to spatial location of color pixel within the color
image, offers satisfactory retrieval results. Moreover, proposed technique is robust, due
to the approximating nature of GMM, to any impulse noise or redundant information.

Future work will be based on the exploration of the robustness of the proposed tech-
nique to possible image deteriorations, along with the comparison of the effectiveness
of the retrieval process in comparison to other existing methods, taking into account the
spatial location of the analyzed colors. Moreover, these experiment will be evaluated on
more numerous databases that that of Wang.
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Abstract. In the paper the first stage of the approach for automatic
identification of football players is presented. It is based on the numbers
placed on their shirts. The method works with video frames extracted
during a television sport broadcast. The element of the system described
in this paper is devoted to the localisation of the numbers and their
extraction for future recognition. It is simple, yet efficient and it is based
on the use of appropriate ranges in various colour spaces. Four colour
spaces were experimentally evaluated for this purpose. Thanks to this,
the ranges could be established for particular kits. Firstly, the part of an
image with a shirt was localised, and later, within this area, a number
was found.

Keywords: players identification, feature localisation, colour spaces.

1 Introduction

Automatic identification of football players (or other sport disciplines) during a
TV broadcast is a difficult and challenging task. However, the possible benefits
arising from the use of a system realising such a function, especially taking into
account the popularity of this sport, are providing researchers with constant
work in this field. The aim is the identification of a sportsman (in real time)
during a TV transmission, performed automatically, without (or in small level,
semi-automatically) human interaction.

Many approaches, and even complete systems have been proposed so far (e.g.
MATRIS [1], TRACAB [2], MELISA [3]), but in many cases they are not com-
pletely automatic or are limited to the problem of tracking. The most common
approach is the use of a human operator of the broadcast, supported by a com-
puter application. Usually a computer is only used to make the broadcast more
attractive. In case of automatic systems employing image analysis and recogni-
tion algorithms and based on video sequence (or single frames extracted from it),
two approaches are especially interesting. The first one is more popular and has
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c© Springer-Verlag Berlin Heidelberg 2011
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been explored for a longer period of time. It is based on the extraction and iden-
tification of numbers placed on the back of players’ shirts. The second approach
makes use of the most popular biometric feature — the face.

An example of the first approach is a method presented in [4], where the
tracking of players and identification based on numbers was performed. The
method used watersheds and Region Adjacency Graphs for feature localisation
and extraction, and n-tuple, Hidden Markov Models and Neural Networks for
classification. In [5] a simple descriptor was used for finding a white region on
red-black stripes. The candidate regions were merged by means of graphs. The
extracted numbers were identified with the use of the Principal Component
Analysis (PCA).

An example of the second approach was presented in [6]. The identification
described there was based on the players’ faces. Firstly, scene change detection
was carried out by means of the image histogram. Secondly, close-up detection
was performed, which made the appearance of a face in a scene more probable.
The next stage was the face localisation through searching for skin colour pixels
in YCbCr and HSV spaces, followed by template matching. The identification
stage involved Discrete Fourier Transform for feature extraction and PCA+LDA
(Linear Discriminant Analysis) for feature reduction. This approach is strongly
similar to [7], where some general biometric problems were explored and solved.

Sometimes, only the location of players is explored, e.g. for that purpose in [8]
so-called mosaic images were used, and in [9] approximation of players’ location
(points in image) according to the play field model.

It is worth to mention that not only players are localised (and sometimes —
tracked or identified). In [10] particular events (e.g. shot on goal, penalty, free
kick) were detected, basing on fast camera movement (with the use of MPEG
vectors). Similarly, in [11] ‘highlights’ were detected with the use of template
matching, finding of play field zones and Finite State Machines. In [12] only
the ball was detected by means of Support Vector Machines. Unfortunately, this
approach was developed for traditional black and white football, therefore it is
less practical nowadays.

The decision to grant the hosting of the 2012 UEFA European Football Cham-
pionship to Poland and Ukraine has resulted in the significant increase of inter-
est in those countries in the automatic analysis of video sequences coming from
football matches. Identification of players in order to make the broadcast more
attractive is the first obvious application. However, some other areas can be eas-
ily pointed out, e.g. analysis of the crowd connected to required standards of
safety and security measures or an automatic analysis of exposure or visibility
time of the advertising banners.

In this paper a method for automatic localisation of football players’ kits and
numbers is presented. It is the first stage of the algorithm for automatic identi-
fication of players basing on their numbers. The approach was tested on video
sequences recorded during the World Cup in Germany in 2006 and partially
presented in [13]. In the previous publication the entire proposed approach was
outlined, but emphasis was placed on the localisation of shirts. However, it only
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constitutes the first part of the process. Since the goal is the automatic identifi-
cation of players, the subsequent stage is more important, namely the extraction
of the numbers placed on them. Hence, it constitutes the main topic of this pa-
per — the approach and experimental results for this stage are presented. The
extraction of a number from a shirt is described in Section 3. Earlier, in Section 2
the localisation of a shirt is briefly recalled.

2 Localisation of Players Based on Information about
Their Kits Colour

The first step in the proposed approach is the localisation of pixels in a frame
that belongs to a player on the play field. It is carried out by using information
about the colours of sport kits assigned to teams. It is known that according
to certain sports laws the kits of the two playing teams (and referees) have to
be clearly different. Therefore, all football teams (not only national) have to
use two (so called ”home” and ”away” colours), and sometimes even three kits.
After the localisation of a shirt we are looking for numbers placed on it. In both
cases (shirts and numbers) the appropriate ranges of values in colour spaces were
experimentally established. Such an approach was applied with success in face
localisation based on the skin colour ([7]).

A football player’s kit is composed of three elements: a shirt, shorts (goalkeep-
ers are allowed to wear tracksuit bottoms instead) and socks. In the proposed
approach the first from the listed elements is especially important, because it
constitutes the largest part of a kit and, what is more important, the numbers
to be recognised are placed on it. However, if the colour of shorts and socks is
the same as the colour of the shirts, they will be localised as well. It is not a
problem, because the only difference is the larger area to explore in the next
stage.

Four colour models were tested, namely: RGB, HSV, YCbCr and CIE L*a*b.
Amongst them the best results were obtained when using YCbCr and HSV.
It was caused by the characteristics of these colour spaces. Most important is
the presence of a component more general from the other in particular model,
e.g. Hue in HSV and luma in YUV. In the second case blue-difference and red-
difference chroma components were even more helpful.

The process of establishing the appropriate ranges within the particular colour
model components was based on the exploration of several dozens of shots for
each colour of a kit (this number was different and depended on the ’uniqueness’
of a colour) taken from various football matches. In some cases the localisation
was successful in various spaces (for example the yellow colour was easy to extract
in each explored model). If so, the one which separated a shirt from the rest of
an image best was chosen. The achieved ranges for each colour class appearing
during the World Cup 2006 are provided in Table 1 ([13]). For the purpose of the
experiments the image sequences recorded from analogue TV during the FIFA
World Cup 2006 in Germany (AVI, 720× 576, interlaced video, MPEG-2) have
been used. Some examples are provided in Fig. 1.
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Fig. 1. Examples of the experimental data — frames for one class (white numbers on
blue shirts, [13])

Table 1. The experimentally established ranges within the colour models for the lo-
calisation of players’ shirts

white red yellow white-
red

white-
blue

orange green blue maroon navy-
blue

Y >90 — — <85 or
>140

— — — — <85 —

Cb 120-
150

90-130 30-80 90-150 120-
145

— 95-120 135-
190

115-
135

—

Cr — >145 130-
170

<125
or
>160

110-
135

— 100-
122

95-125 135-
165

—

H — — — — — 0.045-
0.1

— — — 0.4-0.7

S — — — — — >0.7 — — — 0.22-
0.8

V — — — — — — — — — —

In the achieved image we have to reject some small undesirable objects that
can appear as a result of various image or video distortions. In the proposed
approach this was performed on the basis of the analysis of the boundary length
of an object. The performed experiments gave the appropriate threshold — the
length of the boundary has to exceed 200 points.

Unfortunately, in some cases the abovementioned method did not prove suc-
cessful. This concerns the situations in which some other visible objects with
the same colour as the requested shirt (e.g. banners) can be extracted as well
(see Fig. 1). Hence, in order to remove them, it was assumed (basing on the ex-
periments) that the product of both sizes of a rectangle enclosing the candidate
object has to be higher than 0.65 and lower than 1.75 ([13]).
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Fig. 2. The result of the localisation of a shirt

3 Extraction of a Number Placed on a Shirt

After performing the localisation of a shirt — the second problem concerned
localisation of numbers placed on them. Unfortunately, the ranges established in
the previous stage could not be applied again. This problem was mainly caused
by the influence of the colour of the shirt on the colour of the number, e.g. blue
digits enclosed by a red colour should be localised using other ranges than by
white ones. Hence, new ranges in colour spaces were experimentally established.
They are provided in Table 2 ([13]).

Table 2. The experimentally established ranges within the colour models for the lo-
calisation of numbers within the previously extracted frame area belonging to a shirt

white white white yellow black black green blue blue
(red) (blue) (green) (blue-

white)
(orange) (white-

blue)
(white)

Y >110 >130 >95 — 45-130 105-130 — — —
Cb 125-155 125-160 115-145 65-105 120-140 125-175 60-95 — —
Cr — — — 135-155 — — 110-140 — —
H — — — — — — — 0.45-0.6 0.3-0.8
S — — — — — — — — 0.22-

0.57
V — — — — — — — 0.19-0.6 0.3-0.75

The extracted numbers can be recognised with the help of shape descriptors.
In case of international competitions employing national teams, such as The
World Cup, The Confederations Cup, continental tournaments governed by par-
ticular football associations (e.g. The UEFA European Football Championship,
The AFC Asian Cup, The Africa Cup of Nations, Copa America) usually the
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Fig. 3. Examples of numbers on sports shirts extracted by means of the approach
described in the paper

problem of recognition of numbers can be made easier. It results from the strict
regulations assumed, e.g. the limitations for possible numbers — from 1 to 23.
It is different than in the case of football clubs, where those numbers are more
inconstant.

The recognition of particular numbers can be more facilitated when taking
into consideration only the players present on the play field at the moment.
That gives at the most eleven possible numbers for one team. Moreover, the
whole numbers can be treated as shapes for recognition, not the single digits.
The small number of template classes enables it. However, in this case we have
to combine the digits for two-digit numbers. It is simple, because if there are two
‘candidates for digits’ close to each other we can assume that they can produce
a number. In the experiment this task was carried out through calculating the
centroids of localised objects within the area of a shirt. If they were close in
vertical and horizontal directions and the ’candidates’ were sufficiently large,
they were merged.

The last step in the approach is the rejection of small localised objects. Usually
those are some undesirable objects that should not be taken into consideration.
On the other hand, if those objects are numbers and are small it is still less
probable to perform successful recognition using them. Therefore, they can be
rejected without any influence on the overall efficiency of the approach. Some
examples of the extracted using the described approach numbers are provided in
Fig. 2. As can be seen the shape of extracted numbers can be strongly distorted,
e.g. by creases in the shirts or imaging and weather conditions. It will strongly
hamper the later recognition of numbers.

In order to estimate the efficiency of the proposed approach the experiment
was performed, using 20 video sequences, lasting from 2 to 3 minutes, from var-
ious matches played during the 2006 World Cup. For each of them single frames
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were extracted, 30 per minute. A frame was taken for the later processing if it
contained at least one player with a visible number. An algorithm for the lo-
calisation of a shirt, described in Section 2, was applied for it. The frames with
properly extracted shirts were subjected to the method of number localisation,
presented in this section. Then, the obtained result was compared with the an-
swers provided by humans. The obtained statistics — the percentage of artificial
results accepted by the human operator are presented in Table 3.

Table 3. The experimental results of localisation of numbers obtained for particular
colours of shirts

No. of frames 52 63 31 67 47 19 29 38 49
No. of correct results 33 42 25 36 20 15 12 13 21
Efficiency 64% 67% 81% 54% 43% 79% 41% 34% 63%

The obtained results are far from ideal. The average efficiency was equal to
58% (227 from 395 investigated frames were properly processed). However, the
very difficult nature of the investigated problem has to be emphasised. Apart
from the mentioned strong distortions of the numbers there are many other
problems to consider. Some of them were obvious even before starting the ex-
periments. First of all, not every camera shot can be explored. For instance, it
is useless to work with shots taken from long distance. In that case the player’s
number is not visible. Secondly, the grass’s green colour is especially difficult in
the method. During the World Cup 2006 three teams, namely Togo, Ireland and
Ivory Coast, had green shirts. It is obvious that in some cases (e.g. depending
on lighting conditions) the result of the extraction will cover a larger area, in-
cluding some parts of the play field as well. The kit of a goalkeeper constitutes
another problem. Usually it strongly differs from the original national kit. The
same problem is related to a referee, but he does not lie in the area of interest
as far as the proposed application is concerned. The very difficult problem is
caused by some distortions of clothes, due to rain, dirt, tearing, etc. Those can
significantly change the overall colour of a shirt.

Another interesting issue is the use of numbers strictly designed and prepared
for a team. They are designed by the sports apparel manufacturers for particular
national teams (sometimes more than one) and are used for some time (usually,
at least one year) by them. This is helpful in the preparation of the templates
for a particular football match.

4 Conclusions

In the paper an approach for the extraction of the numbers placed on sport shirts
during the TV broadcast was proposed. This is the first step in the automatic
system for identification of players basing on their numbers and is composed
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of two main stages: localisation of kits and later — numbers within the pre-
viously selected image area. The research was limited to the football matches.
The experimentally established ranges in various colour spaces were used for the
localisation.

Future works will be concentrated on the second stage — the recognition of
the extracted numbers. Several shape description algorithms will be used for
this purpose and the template matching approach will be applied. Firstly, the
algorithms based on the transformation of points from Cartesian to polar co-
ordinates will be investigated, since they obtained very promising results in the
problem of shape recognition (e.g. [14], [15]).

Acknowledgments. The author of this paper wishes to thank gratefully MSc
W. Batniczak for significant help in developing and exploring the presented
approach.
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Abstract. This paper presents a real-time hand gesture recognizer based
on a color glove. The recognizer is formed by three modules. The first
module, fed by the frame acquired by a webcam, identifies the hand
image in the scene. The second module, a feature extractor, represents
the image by a nine-dimensional feature vector. The third module, the
classifier, is performed by means of Learning Vector Quantization. The
recognizer, tested on a dataset of 907 hand gestures, has shown very high
recognition rate.

1 Introduction

Gesture is one of the means that humans use to send informations. According
to Kendon’s gesture continuum [1] the information amount conveyed by gesture
increases when the information quantity sent by the human voice decreases.
Moreover, the hand gesture for some people, e.g. the disabled people, is one of
main means, sometimes the most relevant, to send information.

The aim of this work is the development of a real-time hand gesture recognizer
that can also run on devices that have moderate computational resources, e.g.
netbooks. The real-time requirement is motivated by associating to the gesture
recognition the carrying out of an action, for instance the opening of a multime-
dia presentation, the starting of an internet browser and other similar actions.
The latter requirement, namely the recognizer can run on a netbook, is desirable
in order that the system can be used extensively in classrooms of schools as tool
for teachers or disabled students.

The paper presents a real-time hand gesture recognition system based on a
color glove that can work on a netbook. The system is formed by three modules.
The first module, fed by the frame acquired by a webcam, identifies the hand
image in the scene. The second module, a feature extractor, represents the image
by means of a nine-dimensional feature vector. The third module, the classifier,
is performed by Learning Vector Quantization.
� Corresponding author.
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The paper is organized as follows: Section 2 describes the approach used;
Section 3 gives an account of the segmentation module; the feature extraction
process is discussed in Section 4; a review of Learning Vector Quantization is
provided in Section 5; Section 6 reports some experimental results; in Section 7
some conclusions are drawn.

2 The Approach

Several approaches were proposed for gesture recognition [2]. Our approach was
inspired by Virtual Reality [3] applications where the movements of the hands of
people are tracked asking them to wear data gloves [4]. A data glove is a partic-
ular glove that has fiber-optic sensors inside that allow the track the movement
of the fingers of hand. Our approach is similar to the Virtual Reality’s one. We
ask the person, whose gesture has to be recognized, to wear a glove or more
precisely, a color glove. A color glove was recently used by Wang and Popovic
[5] for the real-time hand tracking. Their color glove was formed by patches of
several different colors1. In our system we use a wool glove2 where three differ-
ent colors are used for the parts of the glove corresponding to the palm and the
fingers, whereas the rest of glove is black. One color is used to dye the palm,
the remaining two to color differently adjacent fingers, as shown in figure 1. We

Fig. 1. The Color Glove used in our approach

1 In the figure reported in [5] the glove seems to have at least seven different colors.
2 Wool is not obviously compulsory, clearly cotton or other fabrics can be used.
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have chosen to color the palm by magenta and the fingers by cyan and yellow.
Further investigations seem to show that the abovementioned choice does not
affect remarkably the performances of the recognizer.

Finally, we conclude the section with a cost analysis. In terms of costs, our
glove compares favourably with data gloves. Our glove costs some euro, whereas
the cost of effective data gloves can exceed several hundreds euro.

3 Segmentation Module

The gesture recognizer has three modules. The first one is the segmentation
module. The module receives as input the RGB color frame acquired by the we-
bcam and performs the segmentation process identifying the hand image. The
segmentation process can be divided in four steps. The first step consists in rep-
resenting the frame in Hue-Saturation-Intensity (HSI ) color space [6]. We tested
experimentally several color spaces, i.e. RGB, HSI, CIE XYZ, L*ab, L*uv and
some others [7]. We chose HSI since it was the most suitable color space to
be used in our segmentation process. Several algorithms were proposed [8] to
segment color images. Our choice was to use the least expensive computation-
ally segmentation strategy, i.e. a thresholding-based method. During the second
step, the pixels of the image are divided in seven categories: ”Cyan Pixels” (C),
”Probable Cyan Pixels” (PC), ”Yellow Pixels” (Y), ”Probable Yellow Pixels”
(PY), ”Magenta Pixels” (M), ”Probable Magenta Pixels” (PM), ”Black Pixels”
(B). A pixel, represented as a triple P=(H,S,I), is classified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ∈ C if H ∈ [Θ1, Θ2] ∧ S > Θ3 ∧ I > Θ4

P ∈ PC if H ∈ [Θ1r, Θ2r ] ∧ S > Θ3r ∧ I > Θ4r

P ∈ Y if H ∈ [Θ5, Θ6] ∧ S > Θ7 ∧ I > Θ8

P ∈ PY if H ∈ [Θ5r, Θ6r ] ∧ S > Θ7r ∧ I > Θ8r

P ∈M if H ∈ [Θ9, Θ10] ∧ S > Θ11 ∧ I > Θ12

P ∈ PM if H ∈ [Θ9r, Θ10r ] ∧ S > Θ11r ∧ I > Θ12r

P ∈ B otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (1)

(a) (b)

Fig. 2. The original image (a). The image after the segmentation process (b).
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where Θir is a relaxed value of the respective threshold Θi and Θi, (i = 1, . . . , 12)
are thresholds that were set up in a proper way.

In the third step only the pixels belonging to PC, PY and PM categories are
considered. Given a pixel P and denoting with N(P ) its neighborhood, using the
8-connectivity [6], the following rules are applied:⎧⎨⎩ If P ∈ PC ∧ ∃Q∈N(P )Q ∈ C then P ∈ C else P ∈ B

If P ∈ PY ∧ ∃Q∈N(P )Q ∈ Y then P ∈ Y else P ∈ B
If P ∈ PM ∧ ∃Q∈N(P )Q ∈M then P ∈M else P ∈ B

⎫⎬⎭ , (2)

In a nutshell, pixels belonging to PC, PY and PM categories are upgraded re-
spectively to C,Y and M, respectively if in their neighborhood exists at least
one pixel belonging to the respective superior class. The remaining pixels are
degraded to black pixels. At the end of this phase only four categories, i.e. C, Y,
M, and B, remain.

In the last step the connected components for the color pixels, i.e. the one
belonging to the Cyan, Yellow and Magenta categories, are computed. Finally,
each connected component is undergone to a morphological opening followed by
a morphological closure [6]. In both steps the structuring element is a circle of
radius of three pixels.

4 Feature Extraction

After the segmentation process, the image of the hand is represented by a vector
of nine numerical features. The feature extraction process has the following steps.
The first step consists in individuating the region formed by magenta pixels, that
corrisponds to the palm of the hand. Then it is computed the centroid and the
major axis of the region. In the second step the five centroids of yellow and
cyan regions, corresponding to the fingers are individuated. Then, for each of
the five regions, the angle θi(i = 1, . . . , 5) between the main axe of the palm
and the line connecting the centroids of the palm and the finger, is computed
(see figure 3). In the last step the hand image is represented by a vector of
nine normalized numerical features. As shown in figure 3, the feature vector is
formed by nine numerical values that represent five distances di(i = 1, . . . , 5) and
four angles βi(i = 1, . . . , 4), respectively. Each distance measures the Euclidean
distance between the centroid of the palm and the respective finger. The four
angles between the fingers are easily computed by subtraction having computed
before the angles θi. The extracted features are invariant, by construction, w.r.t.
rotation and translation in the plane of the image.

Finally, all features are normalized. The distances are normalized, dividing
them by the maximum value that they can assume [9]. The angles are normalized,
dividing them by π

2 radians, assuming that it is the maximum angle that can be
measured by the fingers.

In the description above we have implicitly supposed that exists only one
region for the palm and five fingers. If the regions for the palm and the finger
are not unique, the system uses a different strategy depending on it is already
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(a) (b)

Fig. 3. (a) The angles Θ between the main axe of the palm and the line connecting
the centroids of the palm and each finger, are computed. (b) The feature vector is
formed by five distances di(i = 1, . . . , 5) and four angles βi(i = 1, . . . , 4), obtained by
subtraction, from angles Θ.

trained. If the system is not trained yet, i.e. it is in training the system takes for
the palm and for each finger the largest region, in terms of area. If the system
is trained it selects for each finger up to the top three largest regions, if they
exist; whereas for the palm up the top two largest regions are picked. The chosen
regions are combined in all possible ways yielding different possible hypotheses
for the hand. Finally, the system selects the hypothesis whose feature vector is
evaluated with the highest score by the classifier.

5 Learning Vector Quantization

We use Learning Vector Quantization (LVQ) as classifier since LVQ requires
moderate computational resources compared with other machine learning clas-
sifiers (e.g. SVM [10]). We pass to describe LVQ. We first fix the notation; let
D = {xi}


i=1 be a data set with xi ∈ RN . We call codebook the set W = {wk}K
k=1

with wk ∈ RN and K � �. Vector quantization aims to yield codebooks that
represent as much as possible the input data D. LVQ is a supervised version
of vector quantization and generates codebook vectors (codevectors) to produce
near-optimal decision boundaries [11]. LVQ consists of the application of a few
different learning techniques, namely LVQ1, LVQ2 and LVQ3. LVQ1 uses for clas-
sification the nearest-neighbour decision rule; it chooses the class of the nearest
codebook vector. LVQ1 learning is performed in the following way: if mc

t
3 is

the nearest codevector to the input vector x, then
3 mc

t stands for the value of mc at time t.
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mc
t+1 = mc

t + αt[x−mc
t ] if x is classified correctly

mc
t+1 = mc

t − αt[x−mc
t ] if x is classified incorrectly

mi
t+1 = mi

t i �= c
(3)

where αt is the learning rate at time t.
In our experiments, we used a particular version of LVQ1, that is Optimized

Learning Vector Quantization (OLVQ1) [11], a version of the model that provides
a different learning rate for each codebook vector. Since LVQ1 tends to push
codevectors away from the decision surfaces of the Bayes rule [12], it is necessary
to apply to the codebook generated a successive learning technique called LVQ2.
LVQ2 tries harder to approximate the Bayes rule by pairwise adjustments of
codevectors belonging to adjacent classes. If ms and mp are nearest neighbours
of different classes and the input vector x, belonging to the ms class, is closer to
mp and falls into a zone of values called window 4, the following rule is applied:

ms
t+1 = ms

t + αt[x−ms
t ]

mp
t+1 = mp

t − αt[x−mp
t ]

(4)

It can be shown [13] that the LVQ2 rule produces an instable dynamics. To
prevent this behavior as far as possible, the window w within the adaptation
rule takes place must be chosen carefully.

In order to overcome the LVQ2 stability problems, Kohonen proposed a fur-
ther algorithm (LVQ3). If mi and mj are the two closest codevectors to input
x and x falls in the window, the following rule is applied5:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi
t+1 = mi

t if C(mi) �= C(x) ∧ C(mj) �= C(x)
mj

t+1 = mj
t if C(mi) �= C(x) ∧ C(mj) �= C(x)

mi
t+1 = mi

t − αt[xt −mi
t] if C(mi) �= C(x) ∧ C(mj) = C(x)

mj
t+1 = mj

t + αt[xt −mj
t ] if C(mi) �= C(x) ∧ C(mj) = C(x)

mi
t+1 = mi

t + αt[xt −mi
t] if C(mi) = C(x) ∧ C(mj) �= C(x)

mj
t+1 = mj

t − αt[xt −mj
t ] if C(mi) = C(x) ∧ C(mj) �= C(x)

mi
t+1 = mi

t + εαt[xt −mi
t] if C(mi) = C(mj) = C(x)

mj
t+1 = mj

t + εαt[xt −mj
t ] if C(mi) = C(mj) = C(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (5)

where ε ∈ [0, 1] is a fixed parameter.

6 Experimental Result

To validate the recognizer we selected 13 gestures, invariant by rotation and
translation. We associated to each gesture a symbol, a letter or a digit, as shown
in figure 4. We collected a database of 1541 gestures, performed by people of
different gender and physique. The database was splitted with a random process
into training and test set containing respectively 634 and 907 gesture. The num-
ber of classes used in the experiments was 13, namely the number of the different
gestures in our database. In our experiments the three learning techniques, i.e.
4 The window is defined around the midplane of ms and mp.
5 C(q) stands for the class of q.
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Fig. 4. Gestures represented in the database

Fig. 5. Gesture distribution in the test set

LVQ1, LVQ2 and LVQ3, were applied. We trained several LVQ nets by speci-
fying different combinations of learning parameters, i.e. different learning rates
for LVQ1, LVQ2, LVQ3 and various total number of codevectors. The best LVQ
net was selected by means of crossvalidation [14]. LVQ trials were performed
using LVQ-pak [15] software package. Figure 5 shows the gesture distribution
in the test set. In Table 1, for different classifiers, the performances on the test
set, measured in terms of recognition rate in absence of rejection, are reported.
Our best result in terms of recognition rate is 97.79 %. The recognition rates

for each class are shown in figure 6.
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Fig. 6. Recognition rates, for each class, in the test set

Table 1. Recognition rates on the test set, in absence of rejection, for several LVQ
classifiers

Algorithm Correct Classification Rate

knn 85.67 %

LVQ1 96.36 %

LVQ1 + LVQ2 97.57 %

LVQ1 + LVQ3 97.79 %

The system, implemented in C++ under Windows XP Microsoft and .NET
Framework 3.5 on a Netbook with 32bit ”Atom N280” 1.66 Ghz, Front Side Bus
a 667 Mhz and 1 GB di RAM, requires 140 CPU msec to recognize a single
gesture.

Finally, a version of the gesture recognition system where the recognition of
a given gesture is associated the carrying out of a Powerpoint6 command is
actually in use at Istituto Tecnico Industriale ”Enrico Medi” helping the first
author in his teaching activity.

7 Conclusions

In this paper we have described real-time hand gesture recognition system based
a color Glove. The system is formed by three modules. The first module identifies
the hand image in the scene. The second module performs the feature extrac-
tion and represents the image by a nine-dimensional feature vector. The third
module, the classifier, is performed by means of Learning Vector Quantization.
The recognition system, tested on a dataset of 907 hand gestures, has shown a

6 Powerpoint, .NET and Windows XP are registered trademarks by Microsoft Corp.
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recognition rate close to 98%. The system implemented on a netbook requires
an average time of 140 CPU msec to recognize a hand gesture. A version of the
system where the recognition of a given gesture is associated the carrying out of
a multimedia presentation command is actually used by the first author in his
teaching duties. Since our system compares favourably, in terms of costs, with
data glove, in the next future we plan to investigate its usage in virtual reality
applications.

Acknowledgments. First the author wish to thank the anonymous reviewer
for his valuable comments. The work was developed by L. Lamberti, under the
supervision of F. Camastra, as final dissertation project for B. Sc. in Computer
Science at University of Naples Parthenope.
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Abstract. Achieving a high fidelity triangle mesh from 3D digital re-
constructions is still a challenge, mainly due to the harmful effects of
outliers in the range data. In this work, we discuss these artifacts and sug-
gest improvements for two widely used volumetric integration techniques:
VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid ap-
proach, named IMAGO Volumetric Integration Algorithm (IVIA), which
combines strengths from both VRIP and CS while adds new ideas that
greatly improve the detection and elimination of artifacts. We show that
IVIA leads to superior results when applied in different scenarios. In addi-
tion, IVIA cooperates with the hole filling process, improving the overall
quality of the generated 3D models. We also compare IVIA to Poisson
Surface Reconstruction, a state-of-the-art method with good reconstruc-
tion results and high performance both in terms of memory usage and
processing time.

Keywords: range data, 3D reconstruction, cultural heritage.

1 Introduction

The preservation of natural and cutural assets is one of the most challenging
applications for digital reconstruction. It requires high fidelity results at the
cost of high-resolution range acquisition devices, along with a set of algorithms
capable of dealing with noise and other artifacts present in range data.

Several stages compose a complete 3D reconstruction pipeline, [1], [2], [3].
In this work, we focus on mesh integration within the pipeline proposed in [3].
Several approaches perform this task; we categorize them as presented in [1].
Delaunay-based methods [10] work on point clouds, but they are usually sensi-
tive to noise and outliers since they interpolate the data points. Surface-based
methods [11], [12] create surfaces directly, but some of them can catastrophically
fail when applied on high curvature regions [6]. Also, topologically incorrect
solutions can occur due to outliers in the input views.

Parametric surfaces methods [13], [14], [15] deform an initial approximation
of the object through the use of external forces and internal reactions and con-
straints. Kazhdan et al. [9] calculate locally supported basis functions by solving

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 374–383, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.imago.ufpr.br


Improving 3D Reconstruction for Digital Art Preservation 375

sparse linear systems that represent a Poisson problem. A parallel and an out-of-
core implementations of [9] are proposed in [16], [17]. One limitation of such al-
gorithms is finding a balance between over smoothing effect and non-elimination
of noisy surfaces. These methods may also fill holes incorrectly.

Volumetric methods [22], [23] create an implicit volumetric representation of
the final model, which is also called a SDF (Signed Distance Field). The object
surface is defined by the isosurface at distance value 0, that is usually extracted
with the MC (Marching Cubes) [18]. Curless and Levoy [6] calculate the distance
function according to the line-of-sight of the scanner and uses weights to assess
the reliability of each measurement. Wheeler et al. [7] discard outliers through
the calculation of a consensus surface. Volumetric methods use all available infor-
mation and ensure the generation of manifold topologies [6]. The main limitation
is their performance, both in terms of memory usage and processing time.

All integration approaches have their limitations. We have chosen volumetric
methods because they impose fewer restrictions to the reconstructed objects;
offer an easy way to change the precision of the output; can easily support the
space carving technique [6], and can work in the presence of noisy input data.
We implemented, tested and modified VRIP [6], [4] and Consensus Surface (CS)
[7], [5]. So, in the attempt to solve their limitations, we developed a novel hybrid
integration method, named IMAGO Volumetric Integration Algorithm (IVIA),
which improves the fidelity of the generated 3D models. The first pass of our
method approximate normals and eliminate outliers based on a modified VRIP.
Then, a second pass reconstruct a bias-free surface using CS with our suggested
improvements, and fully cooperates with the hole filling algorithm of [8].

IVIA was developed to handle with artifacts present on range data, such
as noise, occlusions and false data. We show how it overcomes these problems
and generates more accurate results. We also compare it to the Poisson Surface
Reconstruction (PSR) [9]. Although PSR is not a volumetric approach, it is
considered the state-of-the-art method for 3D reconstruction. Also, PSR presents
superior results when compared to other methods and good performance both
in terms of memory usage and processing time.

The remainder of this paper is organized as follows: first we brief analyze
the artifacts present on range data in section 2. Then, in section 3 we suggest
improvements for VRIP [6] and CS [7]. In section 4, we present our novel hybrid
volumetric method, named IVIA. We discuss our results compared to VRIP, CS
and PSR in section 5, followed by conclusions in section 6.

2 Range Data Analysis

To better understand the challenges of building a high quality integration algo-
rithm, we analyzed the types of artifacts that appear in the input range data. In
this section, we discussed data captured with a laser triangulation 3D scanner
(e.g. Vivid 910 from Konica Minolta).

This analysis is important because those artifacts are complex and harder to
automatically detect and discard. For instance, noise on the object surface is one
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of the most common artifact on range data. Even for very smooth objects, the
captured data is usually rough. Another common artifact is data returned by
the scanner that do not exist in the object. They usually appear as small groups
of triangles in regions that should be empty. It is hard to eliminate this type
of artifact without leading to the elimination of valid data. In [6] the authors
proposed the space carving technique that was used to fill holes. However, they
do not eliminate outliers as we do in our proposed approach.

Deformed surfaces is a more serious and relatively common artifact of difficult
detection because they consist of large areas, usually connected to valid data,
but completely wrong compared to the original object. Automatic detection
and elimination of such artifacts is particularly difficult. Our IVIA approach
successfully discards most of these artifacts, as discussed in section 5.

Another problem is due to the triangulation of the point cloud captured by
the scanner. That introduces false internal and external silhouettes surfaces.
Our solution is to check the angle between the face normal and the line-of-sight
from the scanner position to the center of the face. If this angle is above some
threshold, the face should be discarded. By using a threshold of 75◦ we achieved
good results in all of our experiments.

Impossible to be captured data is a problem caused due to occlusions. For
many applications, such holes are unacceptable and hole filling techniques com-
plement the captured data [8]. The more information we can extract from the
captured data, the better the completed surface will be. While other integration
techniques usually discard helpful data that could be used in the hole filling
process, IVIA was designed to fully cooperate with the hole filling stage.

3 VRIP, CS and PSR Approaches

As our hybrid method was developed to overcome the limitations of the VRIP
and the CS, to better understand it, we assess them and suggest some improve-
ments. As we compared our IVIA to PSR we shortly discuss this approach too.

3.1 Volumetric Range Image Processing (VRIP)

Like all volumetric integration methods, the goal of VRIP (Curless and Levoy [6])
is to calculate the signed distance from each voxel of the volume to the integrated
surface. VRIP performs fast and allows incremental addition of views. Besides,
it generates a smoother integrated surface, reduces noise and does not require
all views being loaded in memory simultaneously.

The main limitation of VRIP is not comprise any specific process to discard
outliers. It is even difficult to reduce their weight as each view is processed
individually. It also integrates metrics from different viewpoints, resulting the
SDF to be non-uniform. In addition, a flaw causes artifacts in corners and thin
surfaces, as pointed by the authors [6]. As the algorithm combines positive and
negative values in order to find the average surface, it creates creases on thin
surfaces where one side would interfere with the other, increasing the thickness.
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To reduce both the influence of outliers and the flaw near corners and thin
surfaces, we propose a new weight attenuation curve according to the value of
the signed distance. Instead of using a linear reduction from half of the range,
as originally suggested in [6], we adopted a non-symmetric curve, giving more
weight to measurements we are sure of (i.e. outside voxels). Although better
visual results are obtained, this “trick” is not yet a definitive solution for a high
fidelity reconstruction; however, it will be useful to our IVIA approach later.

3.2 Consensus Surface (CS)

Wheeler et al. [7] proposed to use consensual distances averaged to create the
signed distance to the surface from the current voxel. Therefore, in consensual re-
gions from several views, CS eliminates outliers and provides a relatively smooth
integrated surface. However, it performs slowly, their magnitude and sign of the
distance may be incorrectly calculated around the borders of views and when it
automatically fills holes, the results may present inconsistencies.

The majority of the visible artifacts on CS result from incorrect signs being
calculated for the distance values, as pointed by Sagawa et al. [20], [21]. How-
ever, they assumed that the consensus criterion successfully removes all outliers.
We noticed in our experiments that even if the SDF signs are repaired, their
magnitudes can still be wrong, and we cannot guarantee that the reconstruction
will have high fidelity.

Trying to address the main limitations of CS, we propose modifications on
it. First, we choose to use equal sized voxels to achieve the highest possible
precision. As CS calculates distance measurements incorrectly when the nearest
point in the view is on a mesh border, we choose to discard all of them. After the
integration, we also perform an additional data validation by discarding voxels
whose distances are not compatible with their neighbors. This process removes
any eventual incorrect remaining data after the previous stages. Our modified CS
still bears some limitations of the original algorithm such as: difficulty in choosing
thresholds, the necessity to have all views loaded in memory simultaneously and
outliers may appear on the integrated results. Our new IVIA algorithm combines
the strengths of both the VRIP and our modified CS to overcome these problems
aiming the generation of more accurate results.

3.3 Poisson Surface Reconstruction (PSR)

Kazhdan et al. [9] express surface reconstruction as the solution to a Poisson
equation. Their idea is to compute a function χ that has value one inside the
surface and zero outside (i.e. indicator function), and by extracting an appropri-
ated isosurface they reconstruct the object surface. The oriented point set can be
viewed as samples of the gradient from that function. They solve the indicator
function by finding the scalar function whose gradient best matches the vector
field −→V , a variational problem of a standard Poisson equation.

PSR performs good both in terms of memory usage and processing time, and
has the benefit to increase the resolution by increasing the octree depth. However,
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whenever resolution is increased the time performance becomes lower. It is also
difficult finding a balance between over smoothing effect and non-elimination
of noisy surfaces (see section 5). Besides, PSR does not ensure the generation
of manifold topologies or when it creates manifold meshes it may occurs that
outliers as vertices appear on the final model (see section 5). In additional, PSR
does not use all available information as well (e.g. line-of-sight information) what
may cause incorrectly connections of some regions, a problem pointed out by the
authors [9].

4 The Proposed IVIA Approach

The greatest challenge to develop a high quality reconstruction is detecting and
discarding several types of artifacts that usually appear on range data. We de-
veloped the a novel approach, named IMAGO Volumetric Integration Algorithm
(IVIA), that automatically detects and eliminates most of them. We perform the
integration in two passes. The first one creates a volumetric representation of
the integrated model by using our modified version of the VRIP algorithm; the
second one uses the representation created to detect and discard outliers during
the generation of the final volumetric integration.

The goal of the first pass is to build an approximated volumetric represen-
tation through the modified VRIP presented in section 3.1. Besides, a binary
volume empty is created to represent the space carving operation [6]. For each
voxel there is a corresponding bit in empty; if the bit is set, the corresponding
voxel is considered empty (i.e. outside the object). As the distance calculated is
over the line-of-sight of the scanner, any negative values are considered “empty”
and the corresponding bit of empty is set. It is important to notice that we use
our modified distance weight curve, to help eliminate surface outliers.

After all views are processed, we apply a 3D mathematical morphology ero-
sion operation on the binary volume empty. This is necessary for two reasons:
first, to prevent any incorrect measurement “dig holes” in the object. Though
unusual, we already noticed this type of error on some range images. The other
reason is that empty is obtained through the union of empty spaces of all views.
Therefore, it tends to represent the lowest measurement for each surface point,
and not an average measurement. When reducing the empty space by a distance
+Dmax we set aside a space near the surface to integrate the measurements from
several views, and at the same time we keep an empty space representation to
eliminate outliers far from the surface. Several artifacts presented in section 2
are eliminated by using empty.

Finishing the first pass, we smoothen the values of the volumetric representa-
tion, using a 3 x 3 x 3 filter with larger weights to central voxels on the mask (i.e.
2D smoothing filter). This smoothing completes individual voxels with plausible
values and attenuate noise and surface outliers. This attenuation is important
because this volumetric representation will be used to estimate the integrated
object normals in the second pass. After that, the volumetric representation
created is saved.
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The second pass of the algorithm does the definitive integration, discarding
outliers. This pass possesses elements from CS, like the Euclidian distance cal-
culation. We used them to prevent the biased surfaces generated when VRIP
distances are used. Besides, Euclidian distances improve the hole filling algo-
rithm we used [8]. Only voxels near the view surfaces and not set in empty are
evaluated. To find these voxels, we loop on each vertex of the view marking
the voxels near them. This second pass has linear complexity on the number of
views, instead of original CS, which is quadratic.

We calculate an estimated normal n for the current voxel v from the volumet-
ric representation generated in the first pass. This normal will be used to validate
the view data, discarding incorrect measurements and outliers. The normal n is
calculated from the (x, y, z) gradients of volumetric representation. If the voxel
does not have valid neighbors, n cannot be estimated. There are two possibilities
in this case: if the boolean parameter flagDiscardNoNormal is true, the voxel
is skipped; otherwise, this voxel will not be validated by the normal n, which
can lead to outliers being accepted on this voxel. The rare cases that require
flagDiscardNoNormal to be false are when there are very thin surfaces com-
pared to the voxel size. In these cases, if flagDiscardNoNormal is true, holes
are usually created in the reconstructed surface.

Next, the nearest point p′, its normal n′, weight w and signed distance d are
evaluated. These values are calculated as in CS by using a kd-tree of view i to find
the nearest vertex. The search for the nearest point is done on the faces incident
on this vertex by calculating point to triangle distances. This process also tells
us if the nearest point belongs to the border of view i. If p′ is located on a
border, this measurement is discarded to avoid the problem discussed on section
3.2. Measurements larger than +Dmax are also discarded. Finally, if an estimated
normal n was calculated, the angle between n and n′ is calculated. If this angle is
larger than the threshold consensusAngle, the measurement is discarded. In our
experiments, a value from 30◦ to 45◦ for the threshold consensusAngle returned
good results. This procedure solves the flaw of VRIP presented in section 3.1.
Besides, most of the deformed surfaces presented in section 2 are eliminated.

Following, the basic reliability w of the measurement (which depends on the
angle between the scanner line-of-sight and the normal n′) is altered by other 3
factors. The first one is the border weight wborder, where measurements near the
borders of the view have lower weights than interior measurements. This weight
is used to discard p′ if it is too small. The second factor is wangle, due to the angle
between n and n′. This factor, ranging from 0.0 to 1.0, therefore 1.0 ≥ (n.n′) ≥
cos(consensusAngle). The third factor wdistance varies according to the signed
distance d, like the weight curves from VRIP. Our IVIA approach uses a new
weight curve as described in section 3.1. This curve allows a smooth and unbiased
integration of the distance values. Finally, we integrate the measurements of all
views through a weighted sum using the VRIP formula [6].

After the integration is completed, we have a last error elimination step.
Neighboring voxels should have similar distance measurements because of the
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use of Euclidian distances. Therefore, two neighbor voxels should have a max-
imum distance difference equivalent to the distance between the voxel centers.
Using 26-neighborhood, the distances between voxel centers can be voxelSize,√

2∗ voxelSize or
√

3∗ voxelSize. However, we cannot be so restrictive, because
the integration slightly violates this condition, due to the several weights used.
Nevertheless, neighboring voxels with excessively different values should be dis-
carded to avoid the generation of bad surfaces on the final model. Therefore, we
use a threshold compatibleFactor (usually 1.5), which multiplied by the voxel
center distance gives us the maximum allowed difference between neighboring
voxels. An important detail is that this elimination cannot be done in a single
pass, because a “wrong” voxel ends up spoiling its neighbors, since their differ-
ence would be too large. Because of that, we first gather all the “suspect” voxels,
and sort them (using bucketsort) by the number of wrong neighbors (which can
be 26 at maximum). Next, we eliminate the “most suspect” candidate, updating
the suspect list to ignore neighborhood to voxels already eliminated. Therefore,
the elimination is more selective, discarding only the really incompatible voxels.
These voxels are tagged as unknown (distance value of +Dmax and weight 0).

Our IVIA algorithm deals with noise and outliers in several ways. With space
carving, outliers far from the surface are eliminated. Both outliers near the sur-
face and measurements out of consensus with the first pass are also eliminated.
Measurements have their reliability assessed through several parameters to help
decrease the influence of any outliers that had not been removed previously.
Finally, after integration we eliminate the remaining incompatible data.

5 Experimental Results

We performed several experiments to assess the effectiveness of our method
for applications that demand high fidelity 3D reconstructions, such as digital
preservation of natural and cultural assets. The dataset used in the experiments
is composed of art objects (from the Metropolitan Museum of Curitiba), fossils
(from the Natural Science Museum of UFPR), insects (from the Biological Col-
lections of UFPR), Baroque masterpieces (Aleijadinho’s sculptures) and personal
objects. The results show how our method deals with difficult situations.

The ability of IVIA to detect and discard outliers can be seen in Fig. 1. The
captured views have several artifacts because the statue material (marble) is not
optically cooperative. Fig. 1b shows false data and deformed surfaces. In Fig. 1c
we show the influence of the space carving on the view data, and the successful
detection and discarding of artifacts. Fig. 1a shows result without hole filling.

In Fig. 2 we show a comparison of results from the three volumetric algo-
rithms when applied in a difficult case. IVIA generated the most reliable result.
VRIP and our modified CS returned outliers on the final result, even after a
postprocessing step that discarded disconnected geometries. We disabled this
post-processing on IVIA to show its robustness in removing artifacts. The result
from our modified CS (see section 3.2) is similar to the ones from IVIA; however,
the result from the original CS has lots of outliers on the final result. VRIP result
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is good, except from the connected outliers and the biased surfaces, as well as
the artifacts near corners and thin surfaces. In our IVIA result, the surface is as
smooth as the VRIP one, but without the problems previously mentioned. The
price we pay is slightly larger holes on regions of unreliable data.

(a) (b) (c)

Fig. 1. Outlier removal of the IVIA: (a) statue integrated with IVIA; (b) one of the
views, with several types of bad data; (c) space carving technique where red/green as
influenced regions by the wangle, and purple as discarded regions

(a) (b) (c)

Fig. 2. Comparision of 3 integrations: (a) VRIP; (b) our modified CS; (c) IVIA. Several
artifacts can be seen in (a) and (b) (arrows). In (c) IVIA eliminates almost all incorrect
data and kept the surface smooth.

As mentioned IVIA was developed to cooperate with the holefilling algorithm
of [8]. For that, IVIA performs a more effective outlier removal, uses Euclidian
distances and space carving technique, producing more accurate results. In Fig. 3
we activate holefilling aiming to compare our results to PSR (original authors’).
The IVIA’s reconstructed model of Aleijadinho’s Prophet Joel is showed in Fig
3a. Fig 3b shows the legs of Joel in details, where we can see that PSR recon-
structed model (Fig 3b down) is over smoothed compared to our IVIA (Fig 3b
up), we also noticed in the highlighted rectangle area that PSR creates outliers
as vertices (see section 3.3). In Fig 3c we can see two detailed regions, Joel’s hat
(Fig 3c up) and Joel’s vestment (3c down). We also tested IVIA on objects with
smaller data sizes and two of them are shown in Fig 3d.

The computer used in all experiments was a 2.20GHz Core2 Duo PC, with
2 GB of RAM. Duck model had 67,772 faces, Wolf model had 206,627 faces,
the marble statue (Fig 2) had approximately 1,300,300 faces and Joel model
had 3,487,652 faces. To reconstruct Joel PSR took 3002s, VRIP took 2718s
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(a) (b) (c) (d)

Fig. 3. Reconstructed models: (a) Prophet Joel; (b) comparison between IVIA and
Poisson reconstructions of Joel’s legs; (c) details of IVIA reconstruction of Joel’s hat
(up) and vestment (down); (d) Duck and Wolf models

and IVIA 11265s. However, the time performance of IVIA, can still be further
optimized using 3D scan conversion on the space carving stage, the stage when
the algorithm spends most of its execution time.

6 Final Remarks

Despite the good experimental results, IVIA may still be improved. Its use of
VRIP on the first pass can lead to outliers being accepted later, since outliers can
survive the first pass. What we did was to reduce the outlier influence by mixing
them with good measurements. However, in very noisy regions, this methodology
may fail. One possibility is to use feedback and more passes to improve outlier
detection and removal between passes. An alternative is to combine parametric
surfaces [14] with a volumetric representation and our outlier detection and
removal techniques. Our work shows that more research is needed to guarantee
high quality digital reconstruction results. We showed that real input range
data has complex types of artifacts, and that widely used volumetric integration
methods may still have major limitations. We proposed enhancements to both
VRIP and CS, besides presenting our novel IVIA algorithm, which achieved
precise reconstruction results even when compared to PSR.

Acknowledgments. The authors would like to thanks to CNPq, CAPES, UN-
ESCO and IPHAN for supporting this research.
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Abstract. The conventional approach to the detection of microcalci-
fications on mammographies is to employ a sliding window technique.
This consists in applying a classifier function to all the subwindows con-
tained in an image and taking each local maximum of the classifier as
a possible position of a microcalcification. Although effective such an
approach suffers from the high computational burden due to the huge
number of subwindows contained in an image. The aim of this paper is
to experimentally verify if such problem can be alleviated by a detec-
tion system which employs a cascade-based localization coupled with a
clustering algorithm which exploits both the spatial coordinates of the
localized regions and a confidence degree estimated on them by the final
stage of the cascade. The first results obtained on a publicly available
set of mammograms show that the method is promising and has large
possibility of improvement.

Keywords: Microcalcifications, mammography, computer aided detec-
tion, Adaboost, cascade of classifiers, clustering.

1 Introduction

Mammography is a radiological screening technique which makes it possible to
detect lesions in the breast using low doses of radiation. At present, it rep-
resents the only not invasive diagnostic technique allowing the diagnosis of a
breast cancer at a very early stage, when it is still possible to successfully at-
tack the disease with a suitable therapy. For this reason, programs of wide mass
screening via mammography for the female population at risk have been carried
out in many countries. A particularly meaningful visual clue of breast cancer is
the presence of clusters of microcalcifications (MC), tiny granule-like deposits
of calcium that appear on the mammogram as small bright spots. Their size
ranges from about 0.1 mm to 0.7 mm, while their shape is sometimes irregular.
Isolated MCs are not, in most cases, clinically significant. However, the low qual-
ity of mammograms and the intrinsic difficulty in detecting likely cancer signs
make the analysis particularly fatiguing, especially in a mass screening where
a high number of mammograms must be examined by a radiologist in a day.
In this case, a Computer Aided Detection (CADe) could be very useful to the
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radiologist both for prompting suspect cases and for helping in the diagnostic
decision as a “second reading”. The goal is twofold: to improve both the sen-
sitivity of the diagnosis, i.e. the accuracy in recognizing all the actual clusters
and its specificity, i.e. the ability to avoid erroneous detections. The approach
followed by the traditional CADe systems [1,2] entails a MC localization phase
after that a successive clustering phase the localized regions are clustered with
very simple rules based exclusively on their proximity, in order to individuate
those clusters that are worth to be prompted. A widespread approach for ac-
complishing the localization step entails the application of statistical techniques
directly to the image data [3]. To this aim, several statistical classifiers have been
applied such as artificial neural network [4], support vector machine [1] or rele-
vance vector machine [5]. All such methods rely on the sliding window technique
that accomplishes the localization task by applying a classifier function on all
the subwindows contained in an image and taking each local maximum of the
classifier output as a pointer to a possible microcalcification. Although effective,
the problem of such approaches is the computational burden involved by the
huge number of subwindows typically contained in a whole image on which the
classifier function (typically not very simple) should be applied.

In the Computer Vision field a very similar problem is the detection of human
faces on images. In this framework, the approach presented by Viola and Jones
in [6] has been particularly successful and nowadays it represents a reference
solution for face detection tasks because of its fast execution and good perfor-
mance. The most prominent characteristic of this algorithm is that it is still
based on the sliding window technique, but the classifier function is structured
as a “cascade” of simple classifiers. This allows background regions of the image
to be quickly discarded while spending more computation on promising regions.

In this paper we present a method employing the cascade-based approach for
detecting clustered microcalcifications. The difference with the original Viola-
Jones approach is that the cascade does not make the final decision, but merely
localizes on the mammogram the regions of interest (ROIs) most probable to
contain a MC. The decision on the single ROI is postponed until the clustering
phase, i.e. the confidence degree estimated for each ROI by the cascade is con-
sidered as an input feature for the clustering algorithm together with the spatial
coordinates of the ROIs. In this way, we finally obtain a reliable partition of the
ROIs in clusters of microcalcifications.

We performed several experiments on a publicly available set of mammograms
and, according to the first results, the method is promising and shows large
possibility of improvement.

2 The Cascade-Based Localization Method

The idea is to employ a cascade of classifiers, i.e., a sequence of base classifiers, to
build a detector with both high specificity and sensitivity and low computational
complexity. To this aim, the features employed should be both effective and
simple to evaluate.
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In particular, the input pattern to the detector is made of a set of rectangular
features evaluated on the sliding subwindow. Figure 1 shows the features we have
used for our implementation. In addition to the features employed in the original
method [6] (fig. 1 a-e), we have added a further feature (fig. 1 f) more suitable for
the shape of the microcalcifications. The value for each feature is calculated by
subtracting the sum of the white rectangles from the sum of the black rectangles.
Each of the feature types are scaled and shifted across all possible combinations
on the subwindow. Since the subwindows we consider are 12x12, there are about
11000 possible features. For each of them, the evaluation can be performed very
quickly thanks to a particular intermediate representation of the image, the
integral image [6].

Fig. 1. The features used

Each stage of the cascade is built by means of a modified Adaboost learning
algorithm that embeds a feature selection mechanism. In few words, Adaboost

builds a “strong classifier” as linear combination H(x) =
T∑

t=1
αtht (x) of “weak

classifiers” ht (x). In the Viola-Jones approach, the weak classifier is a simple
decision stump using a single feature; the peculiarity is that the features are
chosen on the basis of their performance. In other words, each new weak classifier
involves finding the best performing feature on all the samples of the training
set: in this way, the best T features are selected and the decision about the
nature of a subwindow (MC or background) can be rapidly taken.

If a given subwindow is recognized as a MC, it is passed on to the next
stage, otherwise discard it is immediately discarded (see fig. 2). In this way, the
majority of subwindows containing easily detectable background are rejected by
the early stages of the detector, while the most MC-like regions go through the
entire cascade. This aims at reducing the number of false positives produced by
the detector.

Accordingly, the classifier Hi(x) at a given stage is built using the samples
passed through all the previous stages. While the performance desired for the
whole detector is very high, the learning target for each base classifier is rea-
sonable since each stage should guarantee a high true positive ti rate and a
sufficiently low false positive rate fi. The performance of the whole detector

with K stages will thus be given by TPR =
K∏

i=1

ti and FPR =
K∏

i=1

fi. A new

stage is added to the cascade until the required performance is reached. As an
example, to build a detector having TPR = 0.990 and FPR = 0.001 with base
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Fig. 2. The structure of the cascade

classifiers with ti = 0.999 and fi = 0.5, 10 stages will be needed. To this purpose,
the training phase for the cascade requires a set of samples to train the single
stages and a separated validation set for tuning each stage on the desired ti and
fi. This is simply made by estimating on the validation set a threshold γi to be
imposed on the value of Hi(x).

It is worth noting that the cascade we employ is different from the scheme
adopted in [6] which, in the final stage, provides a final decision about the ROI. In
our approach, instead, the final stage produces a soft output which is a confidence
degree about the presence of a MC in the ROI. In this way, the decision on the
single ROI is postponed until the clustering phase so as to use for the final
decision about the presence of a cluster both the estimated confidence degree
and the spatial coordinates of the ROIs.

3 The Clustering Algorithm

Clustering is a well known topic in the image processing field. Roughly speaking,
the goal of clustering is to achieve the best partition over a set of objects in
terms of similarity. In particular, we consider a sequential clustering. Such kind
of algorithm constructs the clusters on the basis of the order in which the points
are brought and thus the final result is, usually, dependent on such order. In
our system the ROIs are considered according to their confidence degrees (the
largest value first) so that the clustering starts with the regions most likely to be
microcalcifications. To this aim we have devised the Moving Leader Clustering
(MLC) algorithm, which is a variation of the leader follower clustering [7]. It
assumes as the centroid of the cluster the weighted centroid of mass of the ROIs
belonging to the cluster. The centroid has to be calculated each time a new
region is added to the cluster. The weight used for the ROIs is the respective
confidence degree.

More formally, let us consider n − 1 ROIs p1, . . . ,pn−1 with n > 2 and con-
fidence degree respectively s1, . . . sn−1 grouped in a cluster C1; its centroid is

given by c1 =
n−1∑

1
sipi

/
n−1∑

1
si. Let us call pn the next ROI to be considered

by the algorithm and let sn be its confidence degree. It will be added to C1 if
its distance with respect to the centroid c1 is less than a threshold R; in this
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case, the new centre of mass of C1 will be c1 =
n∑
1
sipi

/
n−1∑

1
si. A new cluster

C2 will be created with centroid c1 = pn in the case the ROI is too far from the
centroid of C1. An example of result of the algorithm is shown in fig. 3

In this way, the centroid of the cluster moves towards the direction where
the points are more dense and with higher confidence degree and therefore,
where there is a higher probability of finding new microcalcifications. When the
clustering algorithm has considered all the ROIs, a post-processing operation
is performed aimed at better grouping the ROIs. This consists in merging two
clusters that share at least one ROI (see fig. 4). This approach has been called
Moving Leader Clustering with Merge (MLCwM) [8] and avoids an excessive
number of clusters that does not correspond to the real distributions.

c1 = p1

p1

p2

c1

p1

p2

c1

C1
C1 C1

(a) (b) (c)

Fig. 3. The ROI p1 with highest confidence degree is the centroid c1 of a new cluster
C1 (a), when p2 is added to the cluster, the centroid moves accordingly (b) and the
shape of the cluster is the union of the two circles (c)

p1

p4

c1

C1

C2

c2

p3

p2 p5

C = C1 ∪ C2
p1

c

p4

p3

p2 p5

Fig. 4. When two different clusters share a ROI, they are merged and the shape of the
cluster is the union of the two shapes

4 Experimental Results

The method has been tested on 145 images extracted from a publicly available
database, the Digital Database for Screening Mammography (DDSM) [9]. The



Exploring Cascade Classifiers for Detecting Clusters of Microcalcifications 389

employed images are relative to 58 malignant cases and contain 119 clusters and
2849 microcalcifications.

In order to build a training set for the cascade classifier, several regions cor-
responding to positive and negative classes have been extracted from 100 im-
ages. In particular, the positive set consisted of 186 hand labeled microcalcifica-
tions scaled and aligned to a base resolution of 12 by 12 pixels while the nega-
tive set consisted of randomly extracted images with the same base resolution.
Figure 5 shows an example of such regions for both positive and negative classes.
The data set so obtained has then been equally parted into a training and a val-
idation set respectively used to train each stage of the cascade and to verify its
performance. During the test phase the remaining 45 images (containing 812
microcalcifications) have been used to evaluate the performance of the proposed
approach.

Fig. 5. An example of images used as training set: (a) positive class (microcalcifica-
tions), (b) negative class (non microcalcifications)

The cascade detector has been buit by choosing a target FPR equal to 0.001
with ti = 0.99 and fi = 0.5. The model employed almost 6000 regions for the
negative classes in training set. For the validation set, instead, the number of
negative elements in the validation set was increased till almost 230000 with
the aim to increase the specificity of the detector, i.e., to reduce the number of
false positive at the output of the cascade classifier. The cascade we obtained
consisted of 12 layers using respectively 3, 2, 2, 50, 11, 18, 7, 50, 14, 21 and 24
features. The features used in the first three layers of the cascade are shown in
fig. 6. Differently from what expected, the feature shown in fig. 1.f is never used
in the first three layer of the cascade, i.e., it is less discriminant than the other
features in the detection of the MC regions. This is probably due to the different
size of the MC that varies from image to image (as shown by the images of the
positive class reported in fig. 5). The other features, instead, are able to take
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(a)

(b)

(c)

Fig. 6. The features used in the first 3 layers of the cascade

advantage of the brightness gradient in the MC training images independently
of its size.

To have a comparison with other similar methods we have implemented a
model of a monolithic AdaBoost classifier trained using a pixel-based approach
with a 12x12 sliding window. In such case a CART decision tree with maximum
depth equal to 3 and decision stumps as nodes functions has been used as weak
learner. The number of boosting steps has been chosen equal to 10 while in this
case the employed training set is the union of the starting training and validation
set used for the cascade model.

The performance of the different proposed models have been evaluated in
terms of Free-response Receiver Operating Characteristics (FROC) curve that
plots the True Positive Rate (TPR), i.e., the number of regions correctly detected
in the whole test set, versus the False Positive per image, i.e., the number of
regions per image incorrectly classified as microcalcifications, when varying an
opportune threshold. The results of the comparison are reported in fig. 7 where a
threshold has been varied on the confidence degree obtained with the considered
classifiers.

From this figure we can evince that the cascade approach is definitely superior
to the pixel-based Adaboost in terms of both the performance measures. To
remark this superiority we can note that the cascade reaches the 100% of detected
clusters for 5.68 false positive per image while it is at 96% for 0.68 false positive
per image. AdaBoost, instead, never reaches this performance in terms of TPR.
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Fig. 7. The FROC curves obtained with the two compared approaches

It is also worth noting that another important advantage of the cascade approach
is the considerable reduction of the elaboration time that is in terms of 64% with
respect to the pixel-based AdaBoost detector.

5 Discussion and Conclusions

In this paper we have verified if the Viola-Jones approach can be profitably used
in the case of detection of microcalcifications. Accordingly, we have modified this
method in order to obtain as output a confidence degree that can be successively
used in the clustering phase. From the first experiments, we can conclude that
such approach gives good performance in both true positive rate and false pos-
itive per image. A closer look to the algorithm leads us to believe that there is
still room for a significant improvement of the method performance. In fact, a
critical point is the weighted accuracy used as performance measure to build the
weak learners in each stage. This is not a good choice because the problem at
hand is highly skewed (the number of negative samples is much greater than the
positive ones) and thus a more appropriate performance index should be used
(e.g. the area under the ROC curve). Another point to be considered is that,
in the training phase, the boosting approach tries to improve its performance
focusing on the most difficult samples and this implies a significant possibility
of overfitting when dealing with very difficult samples [10]. In our case this is
not very critical for the negative samples since the required FPR for each stage
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is not so demanding, but it remains a problem in presence of difficult positive
samples because of the high TPR to be reached. A mechanism is thus required
to moderate the influence of particularly difficult positive samples which could
appear during the construction of the stage. The next steps of this work will
aim at modifying the original Viola-Jones approach in order to better fit the
requirements for MC detection. In particular, we will focus on new features and
a different tuning method for the base classifiers.
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Abstract. In the framework of Palaeography, the use of digital image
processing techniques has received increasing attention in recent years,
resulting in a new research field commonly denoted as “digital palaeog-
raphy”. In such a field, a key role is played by both pattern recognition
and feature extraction methods, which provide quantitative arguments
for supporting expert deductions. In this paper, we present a pattern
recognition system which tries to solve a typical palaeographic prob-
lem: to distinguish the different scribes who have worked together to the
transcription of a single medieval book. In the specific case of a high stan-
dardized book typology (the so called Latin “Giant Bible”), we wished
to verify if the extraction of certain specifically devised features, con-
cerning the layout of the page, allowed to obtain satisfactory results. To
this aim, we have also performed a statistical analysis of the considered
features in order to characterize their discriminant power. The experi-
ments, performed on a large dataset of digital images from the so called
“Avila Bible” - a giant Latin copy of the whole Bible produced during
the XII century between Italy and Spain - confirmed the effectiveness of
the proposed method.

1 Introduction

In the context of palaeographic studies, there has been in the last years a grow-
ing scientific interest in the use of computer-based techniques of analysis, whose
aim is that of providing new and more objective ways of characterizing medieval
handwritings and distinguishing between scribal hands [3,4]. The application of
such techniques, originally developed in the field of forensic analysis, originated a
new research field generally known as digital palaeography. At a simpler level, the
digital approach can be used to replace qualitative measurements with quantita-
tive ones, for instance for the evaluation of parameters such as the angle and the
width of strokes, or the comparison among digital examples of letter-forms. In
the above mentioned cases, technology is employed to perform “traditional” ob-
servations more rapidly and systematically than in the past. In contrast to this,
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there are some entirely new approaches emerged in the last few years, which have
been made possible by the combination of powerful computers and high-quality
digital images. These new approaches include the development of systems for
supporting the experts’ decisions during the analysis of ancient handwritings.

All the above approaches require the gathering of information from selected
corpora of pre-processed digital images, aimed at the generation of quantitative
measurements: these will contribute to the creation of a statistical profile of
each sample, to be used for finding similarities and differences between writing
styles and individual hands. In the treatment of the graphic sequence, possible
methodologies range from the automatic recognition and characterization of sin-
gle words and signs, to the reduction of the ductus to its basic profile, to the
extraction of a more global set of “texture” features, depending on the detec-
tion of recurrent forms on the surface of the page. However promising, all these
approaches haven’t yet produced widely accepted results, both because of the
immaturity in the use of these new technologies, and of the lack of real inter-
disciplinary research: palaeographers often missing a proper understanding of
rather complex image analysis procedures, and scientists being unaware of the
specificity of medieval writing and tending to extrapolate software and methods
already developed for modern writings. However, the results of digital palaeogra-
phy look promising and ought to be further developed. This is particularly true
for what concerns “extra-graphic” features, such as those related to the layout of
the page, which are more easily extracted and quantified. For instance, in case of
highly standardized handwriting and book typologies, the comparison of some
basic layout features, regarding the organization of the page and its exploitation
by the scribe, may give precious clues for distinguishing very similar hands even
without recourse to palaeographical analysis.

Moving from these considerations, we propose a pattern recognition system for
distinguishing the different scribes who have worked together to the transcrip-
tion of a single medieval book. The proposed system considers a set of features
typically used by palaeographers, which are directly derived from the analysis
of the page layout. The classification is performed by using a standard Multi
Layer Perceptron (MLP) network, trained with the Back Propagation algorithm
[10]. We have chosen MLP classifiers for two main reasons: on the one hand
MLP classifiers are very simple, quite effective and exhibit a good generalization
capability; on the other hand the main goal of our study is not that of building
a top performing recognition system, but rather to verify that the use of page
layout features allows obtaining satisfactory results. Finally, we have also per-
formed a statistical analysis of the considered features in order to characterize
the discriminating power of each of them. The results reported in Section 4 con-
firmed that the proposed method allowed us to select the feature subset which
maximizes classification results.

A particularly favorable situation to test the effectiveness of this approach
is represented by the so-called “Giant Bibles”, a hundred or more of serially
produced Latin manuscripts each containing the whole sacred text in a single
volume of very large size (up to 600 x 400 mm and over). The Bibles originated
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in Central Italy (initially in Rome) in the mid-11th century, as part of the po-
litical program of the “Gregorian Reform”, dealing with the moral integrity and
independence of the clergy and its relation to the Holy Roman Emperor. Very
similar in shape, material features, decoration and script, the Bibles were pro-
duced by groups of several scribes, organizing their common work according to
criteria which still have to be deeply understood. The distinction among their
hands often requires very long and patient palaeographical comparisons.

In this context, we have used for our experiments the specimen known as
“Avila Bible”, which was written in Italy by at least nine scribes within the third
decade of the 12h century and soon sent (for unknown reasons) to Spain, where
its text and decoration were completed by local scribes; in a third phase (during
the 15th century) additions were made by another copyist, in order to adapt the
textual sequence to new liturgical needs [8]. The Bible offers an “anthology” of
contemporary and not contemporary scribal hands, thus representing a severe
test for evaluating the effectiveness and the potentialities of our approach to the
distinction of scribal hands.

The remainder of the paper is organized as follows: Section 2 presents the
architecture of the system, Section 3 illustrates the method used for feature
analysis, while in Section 4 the experimental results are illustrated and discussed.
Finally, Section 5 is devoted to some conclusions.

2 The System Architecture

The proposed system receives as input RGB images of single pages of the
manuscript to be processed, and performs for each page the following steps:
pre-processing, segmentation, feature extraction, and scribe distinction.

In the pre-processing step noisy pixels, such as those corresponding to stains
or holes onto the page or those included in the frame of the image, are detected
and removed. Red out-scaling capital letters are also removed since they might
be all written by a single scribe, specialized for this task. Finally, the RGB image
is transformed into a grey level one and then in a binary black and white image.

In the segmentation step, columns and rows in each page are detected. The
Bible we have studied is a two column manuscript, with each column composed
by a slightly variable number of rows. The detection of both columns and rows is
performed by computing pixel projection histograms on the horizontal and the
vertical axis, respectively.

The feature extraction step is the most relevant and original part of our work
and it has been developed in collaboration with experts in palaeography and
following the suggestion reported in [11]. We have considered three main sets of
features, mainly concerning the layout of the page. The first set relates to prop-
erties of the whole page and includes the upper margin and the lower margin
of the page and the intercolumnar distance. Such features are not very distinc-
tive for an individual copyist, but they may be very useful to highlight chrono-
logical and/or typological differences. The second set of features concerns the
columns: we have considered the number of rows in the column and the column
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Fig. 1. The number of peaks in the horizontal projection histogram of a row

exploitation coefficient [2]. The exploitation coefficient is a measure of how much
the column is filled with ink, and is computed as:

exploitation coefficient =
NBP (C)
NP (C)

(1)

where the functions NBP (C) and NP (C) return the number of black pixels
and the total number of pixels in the column C, respectively. Both features vary
according to different factors, among which the expertise of the writer. In the case
of very standardized handwritings, such as the “carolingian minuscule” shown
by the Bible of Avila, the regularity in the values assumed by such features
may be considered as a measure of the skill of the writer and may be very
helpful for scribe distinction. The third set of features characterizes the rows,
and includes the following features: weight, modular ratio, interlinear spacing,
modular ratio/interlinear spacing ratio and peaks. The weight is the analogous
of the exploitation coefficient applied to rows, i.e. it is a measure of how much a
row is filled with ink. It is computed as in (1) but considering row pixels instead
of column pixels. The modular ratio is a typical palaeographic feature, which
estimates the dimension of handwriting characters. According to our definition,
this feature is computed for each row measuring the height of the “centre zone” of
the words in that row. Once the centre zone has been estimated, the interlinear
spacing is the distance in pixels between two rows. Modular ratio, interlinear
spacing and modular ratio/interlinear spacing ratio characterize not only the
way of writing of a single scribe, but may also hint to geographical and/or
chronological distinctions. In [8], for instance, the distance among layout lines in
rows and the dimension of letters significantly differentiate Spanish and Italian
minuscule. Highly discriminating features, such as the inter-character space and
the number of characters in a row, imply the very difficult task of extracting the
single characters contained in each word, which is far to be solved in the general
case. Therefore, we have chosen to estimate the number of characters in a row
by counting the number of peaks in the horizontal projection histogram of that
row (see Fig. 1). The whole set of considered features is summarized in Table 1
reporting, for each of them, the associated identification number.

The last block performs the recognition task, which has the effect of iden-
tifying the rows in each page written by the same copyist. In our study, we
have assumed that the manuscript has been produced by N different copyists,
previously identified through the traditional palaeographical analysis. We have
also assumed that each single pattern to be classified is formed by a group of
M consecutive rows, described by using the previously defined features. More
specifically, patterns belonging to the same page share the same features of both
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Table 1. The considered features and the corresponding identification number (id)

1 intercolumnar distance 6 modular ratio

2 upper margin 7 interlinear spacing

3 lower margin 8 weight

4 exploitation 9 peak number

5 row number 10 modular ratio/interlinear spacing

the first and the second set, while feature values of the third set are averaged
over the M rows forming each group. Summarizing, each pattern is represented
by a feature vector containing 10 values. Finally, each pattern is attributed to
one of the N copyist by using a Neural Network classifier: in particular we used
a MLP trained with the Back Propagation algorithm [10].

3 Features Analysis

In order to identify the set of features having the highest discriminant power, we
have used five standard univariate measures. Each of them ranks the available
features according to a measure which evaluates the effectiveness in discriminat-
ing samples belonging to different classes. The final ranking of all the features
has been obtained by using the Borda Count rule. According to such a rule,
a feature receives a certain number of points corresponding to the position in
which it has been ranked by each univariate measure. In our study, we have con-
sidered the following univariate measures: Chi-square [7], Relief [6], Gain ratio,
Information Gain and Symmetrical uncertainty [5].

The Chi-Square measure estimates feature merit by using a discretization
algorithm: if a feature can be discretized to a single value, then it can safely
be removed from the data. The discretization algorithm, adopts a supervised
heuristic method based on the χ2 statistic. The range of values of each feature
is initially discretized by considering a certain number of intervals (heuristically
determined). Then, the χ2 statistic is used to determine whether the relative
frequencies of the classes in adjacent intervals are similar enough to justify the
merging of such intervals. The formula for computing the χ2 value for two adja-
cent intervals is the following:

χ2 =
2∑

i=1

C∑
j=1

(Aij − Eij)2

Eij
(2)

where C is the number of classes, Aij is the number of instances of the j-th
class in the i-th interval and Eij is the expected frequency of Aij given by the
formula Eij = RiCj/NT where Ri is the number of instances in the i-th interval
and Cj and NT are the number of instances of the j-th class and total number
of instances, respectively, in both intervals. The extent of the merging process is
controlled by a threshold, whose value represent the maximum admissible differ-
ence among the occurrence frequencies of the samples in adjacent intervals. The
value of this threshold has been heuristically set during preliminary experiments.
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The second considered measure is the Relief, which uses instance based learn-
ing to assign a relevance weight to each feature. The assigned weights reflects the
feature ability to distinguish among the different classes at hand. The algorithm
works by randomly sampling instances from the training data. For each sampled
instance, the nearest instance of the same class (nearest hit) and different class
(nearest miss) are found. A feature weight is updated according to how well its
values distinguish the sampled instance from its nearest hit and nearest miss.
A feature will receive a high weight if it differentiates between instances from
different classes and has the same value for instances of the same class.

Before introducing the last three considered univariate measures, let us briefly
recall the well known information-theory concept of entropy. Given a discrete
variable X , which can assume the values {x1, x2, . . . , xn}, its entropy H(X) is
defined as:

H(X) = −
n∑

i=1

p(xi) log2(xi) (3)

where p(xi) is the probability mass function of the value xi. The quantity H(X)
represent an estimate of the uncertainty of the random variable X . The entropy
concept can be used to define the conditional entropy of two random variables
X and Y taking values xi and yj respectively, as:

H(X |Y ) = −
∑
i,j

p(xi, yj) log
p(yj)

p(xi, yj)
(4)

where p(xi, yj) is the probability that X = xi and Y = yj . The quantity in (4)
represents the amount of randomness in the random variable X when the value
of Y is known.

The above defined quantities can be used to estimate the usefulness of a
feature X to predict the class C of unknown samples. More specifically, such
quantities can be used to define the information gain (IG) concept [9]:

IG = H(C)−H(C|X) (5)

IG represents the amount by which the entropy of C decreases when X is given,
and reflects additional information about C provided by the feature X .

The last three considered univariate measures uses the information gain de-
fined in (5). The first one is the information Gain itself. The second one, called
Gain Ratio (IR), is defined as the ratio between the information gain and the
entropy of the feature X to be evaluated:

IR =
IG

H(X)
. (6)

Finally, the third univariate measure taken into account, called Symmetrical
Uncertainty (IS), compensates for information gain bias toward attributes with
more values and normalizes its value to the range [0, 1]:

IS = 2.0× IG
H(C) +H(X)

(7)
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4 Experimental Results

As anticipated in the Introduction, we have tested our system on a large dataset
of digital images obtained from a giant Latin copy of the whole Bible, called
“Avila Bible”. The palaeographic analysis of such a manuscript has individuated
the presence of 13 scribal hands. Since the rubricated letters might be all the
work of a single scribe, they have been removed during the pre-processing step;
we have therefore considered only 12 copyists to be identified. The pages written
by each copyist are not equally numerous and there are cases in which parts of
the same page are written by different copyists.

The aim of the classification step is that of associating each pattern, corre-
sponding to a group of M consecutive rows, to one of the N = 12 copyists: in
our experiments we have assumed M = 4, thus obtaining a database of 20867
samples extracted from the set of the 800 pages which are in two column for-
mat (the total number of pages in the Bible is 870). The database has been
normalized, by using the Z-normalization method1, and divided in two subsets:
the first one, containing 10430 samples, has been used as training set for the
neural network classifier, while the second one, containing the remaining 10437
samples, has been used for testing the system. For each class, the samples have
been randomly extracted from the database in such a way to ensure that, ap-
proximately, each class has the same number of samples in both training and test
set. Preliminary experiments have been performed for setting MLP parameter
values: in particular, we have obtained the best results with 100 hidden neurons
and 1000 learning cycles.

The accuracy achieved by using the whole set of features on training and
test set, averaged over 20 runs, is 95.57% and 92.46% respectively. These results
are very interesting since they have been obtained by considering only page
layout features, without using more complex information relative to the shape
of each sign: such information would be typically analyzed by palaeographers,
but the process for automatically extracting them from the original images is
very complex and not easy to generalize.

Table 2 reports the recognition rates obtained on the test set for each of the
12 copyists, together with the corresponding number of samples. The third and
the fourth row of the table respectively report the average recognition rate and
the variance obtained for each scribe over the 20 runs. Similarly, the fifth and the
sixth row report the best and the worst recognition rate, respectively, over the
20 runs. The data in the table show that the worst performance is obtained for
copyists represented by a reduced number of samples (the number of samples for
each copyist is reported in the second row): in these cases, in fact, it is difficult to
adequately train the MLP classifier. This happens, for instance, for the copyists
B and W. In particular, the copyist B, for which only 5 samples are included
in the training set, is completely confused with other copyists represented by a

1 Note that the Z-normalization transforms the distribution of the original data into
standard normal distribution (the mean is 0.0 and standard deviation is 1.0).
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Table 2. Test accuracies obtained for each scribe

Scribe A B C D E F G H I W X Y

Samples 4286 5 103 352 1095 1961 446 519 831 44 522 266

Av. Acc. 97.10 24.00 65.60 83.50 93.00 90.40 85.90 83.40 94.80 49.90 93.70 79.90

Variance 0.01 16.71 0.86 0.61 0.03 0.04 0.14 0.05 0.00 5.46 0.03 0.03

max Acc. 99.00 100.00 87.00 98.00 96.00 94.00 91.00 86.00 95.00 100.00 96.00 84.00

min Acc. 95.00 0.00 57.00 69.00 90.00 88.00 82.00 80.00 94.00 27.00 90.00 78.00

higher number of samples. On the contrary, the best performance is obtained for
the copyist A, which has the highest number of samples in the training set.

Further experiments have been performed in order to evaluate the discrim-
inant power of each feature and to find the feature subset which maximizes
classification results. As discussed in Section 3, we have considered five univari-
ate measures, each providing a ranked list of the considered features. The results
of this analysis are reported in Table 3, which shows the ranking relative to each
measures. Although the different measures produced quite different results, they
give a good insight about the best and worst features.

In order to compute the overall ranking of the features, we used the Borda
count rule [1]. According to such rule, the overall score of each feature is obtained
by using the formula:

Osi =
5∑

j=1

10− posij (8)

where Osi is the overall score of the i–th feature, while posij is the position of
the i–th feature in the j–ranking. Table 4 displays the overall ranking of the
features obtained by using the Borda count rule.

Figure 2 shows the plot of the test set accuracy as a function of the number of
features: for each number of features ni, the first ni features in the overall ranking
have been considered, and 20 runs have been performed. Note that the most right
bar refers to the results obtained considering the whole feature set. In the plot,
for each number of features, the first and the third bar report the worst and
the best recognition rate, respectively, while the second one reports the average

Table 3. Feature ranking according to the five considered measures. For each row, the
most left numeric value indicates the best feature, while the most right value denotes
the worst one.

Measure Ranking

Chi Squared (CS) 4 3 2 1 5 9 7 6 10 8
Relief (RF ) 5 4 1 9 3 7 6 10 8 2
Gain Ratio (IR) 4 5 1 3 2 9 7 6 10 8
Information Gain (IG) 4 3 2 1 5 9 7 6 10 8
Symmetrical Uncertainty (IS) 4 3 5 1 2 9 7 6 10 8
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Table 4. Overall ranking of the features

id feature score

4 exploitation 44
3 lower margin 35
5 row number 34
1 intercolumnar distance 32
2 upper margin 24
9 peak number 22
7 interlinear spacing 16
8 weight 16
6 modular ratio 11
10 modular ratio/interlinear spacing 6

Fig. 2. Test set accuracy (averaged over 20 runs) vs feature number

recognition rate together with the corresponding variance. The results obtained
by using one feature and two features have been omitted because they are too
low (less than 60%). The data in the plot show that satisfactory results can be
obtained considering at least the first six features in the overall ranking, while the
best result has been obtained by using the first 8 features (95%), i.e. discarding
the features representing the modular ratio and the “modular ratio/interlinear
spacing”. It is worth noting that while the performance difference between the
use of eight and nine features is very small, the performance difference between
the use of nine and ten features is more relevant. This means that the feature
“modular ratio/interlinear spacing” is misleading.
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5 Conclusion

We presented a novel approach for automatic scribe identification in medieval
manuscripts. The task has been accomplished considering features suggested by
paleograpy experts, which are directly derived from the analysis of the page lay-
out. The experimental investigation has regarded two main aspects. The first one
was intended to test the effectiveness of the considered features in discriminating
different scribes. The second one was aimed at characterizing the discriminant
power of each feature in order to find the best feature subset. The experimental
results confirmed the effectiveness of the proposed approach.

Future work will include exploiting the information about the classification
reliability. Such kind of information would allow palaeographers to find further
confirmation of their hypothesis and to concentrate their attention on those
sections of the manuscript which have not been reliably classified.
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Abstract. We describe a methodology for exploring the parameter
spaces of rigid-body registrations in 3-D. It serves as a tool for guiding
and assisting a user in an interactive registration process. An exhaus-
tive search is performed over all positions and rotations of the template,
resulting in a 6-D volume, or fitness landscape. This is explored by the
user, who selects and views suitable 3-D projections of the data, visu-
alized using volume rendering. The 3-D projections demonstrated here
are the maximum and average intensity projections of the rotation pa-
rameters and a projection of the rotation parameter for fixed translation
parameters. This allows the user to jointly visualize projections of the
parameter space, the local behaviour of the similarity score, and the cor-
responding registration of the two volumes in 3-D space for a chosen
point in the parameter space. The procedure is intended to be used with
haptic exploration and interaction. We demonstrate the methodology on
a synthetic test case and on real molecular electron tomography data
using normalized cross correlation as similarity score.

Keywords: volumetric registration, template matching, normalized
cross correlation, molecular electron tomography.

1 Introduction

Optimization in high dimensional spaces is a difficult problem for any com-
plex function. For simpler functions, e.g. monotonically increasing, exploitation
schemes based on gradients can yield good results, but when more emphasis
needs to be put on exploration due to local optima, the process can become too
slow or the methods still easily get stuck in local optima. Both rigid and non-rigid
registration are problems where the search space often is high dimensional. Here
we describe a methodology for how rigid body registration parameter spaces can
be presented and investigated to let the user guide the optimization process and
simultaneously analyze the registration result.
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The application in this paper concerns Molecular Electron Tomography (MET)
data, which is cryo electron microscopy combined with 3-D reconstruction tech-
niques to create detailed tomograms of biological samples at the nanometer scale.
MET allows for studying the structure, flexibility and interactions of molecules
and macromolecules in solution (in vitro) as well as in tissue samples (in situ).
A characteristic feature of MET volumes is however a very low signal to noise
ratio. Registration is a very important process when analyzing this kind of data
as it is very difficult to visually identify the objects or regions of interest in the
very cluttered and complex volume images, and it is also difficult to analyze
interactions and relations between different objects only based on vision.

Registration is usually performed with crystallographic data. The software
Situs published in 1999 [12] has become a popular tool for this. It originally fea-
tured rigid body registration based on cross correlation. Shortly after, non-rigid
registration was introduced by, e.g., Wriggers [10], who used a vector quanti-
zation registration scheme using restraints between vectors as a model for the
structure flexibility. Birmanns introduced the use of haptics [2] to explore this
landscape interactively and our approach is along the same lines.

The fitness landscape of rigid registration is defined by a scalar similarity
function defined in the 6-D parameter space. We introduce projections of the
fitness landscape into 3-D score volumes, visualized using a volume renderer,
which allows the user to explore and navigate this high-dimensional space in
search for relevant matches. This process is explained in Figure 1. It allows the
user to simultaneously explore both the ordinary 3-D spatial domain, in which
the registration is performed, and projections of the 6-D parameter space of
rigid registration. In our application domain, the visualization and analysis of
MET biological data, this methodology will be used in conjunction with haptic
rendering and interaction, where a “3-D pen” with force feedback will be used
to position and rotate the template image in the search image.

Rotation /
Translation

Score functionPreprocessed
original

Projection
to 3-D

Volume
renderer

User
interaction
parameters6-D parameter

space

Preprocessed
template

Fig. 1. Flowchart for the methodology
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2 Methodology

Rigid-body registration involves six degrees of freedom: three degrees for trans-
lation, t ∈ R3, and three for rotation, A ∈ SO(3). The special orthogonal group
SO(3) is the set of all rotation matrices.

To compute the total score volume, s : R3 × SO(3)→ R, we start by prepro-
cessing the image data. Voxel values below a user set level, corresponding to the
background noise level, are removed. An exhaustive registration search is then
performed. We match the template with the original image volume using rota-
tions and translations of the template evenly distributed in the image volume
(see Sections 2.1 and 2.2).

The similarity function s, defined in the total parameter space, cannot be
visualized in one 3-D view. For this reason, some kind of dimensionality reduc-
tion is required. We have taken two approaches in this paper to collapse this
function which both provide 3-D volumetric projections suitable for exploring
the parameter space of rigid registration:

– Mapping s : R3×SO(3)→ R to f : R3 → R, by summarizing the information
over the rotation subspace (see Section 2.3). The result is a rectangular 3-D
score volume, with the same dimensions as the original image, which provides
an overview of the fitness landscape.

– Mapping s : R3 × SO(3) → R to g : SO(3) → R, by keeping a particular
translation fixed (see Section 2.4). The result is a scalar function defined in
a ball in 3-D, which provides a view of the fitness landscape of all rotations
when a particular translation is fixed.

2.1 Distribution of Rotation Angles

Uniform sampling of the set of all rotations, SO(3), is a non-trivial problem,
which has been addressed in many publications, see e.g., [13]. Random sampling
of SO(3) is easier to facilitate, since rotations may be described by the set of
unit quaternions (with antipodal points identified). Thus, random sampling of
SO(3) is equivalent to random sampling of the unit sphere in R4. However, ran-
dom sampling introduces noise in the sampling, which makes the representation
inefficient. To fix this, a relaxation procedure was devised to make the sampling
more uniform.

1. Randomly sample N points on a unit 3-sphere in R4, store as rows in a N×4
matrix X̃(0).

2. Double the dataset by mirroring, X(0) = [X̃(0);−X̃(0)].
3. Compute all pairwise Euclidean distances, store in a 2N × 2N matrix D.
4. Compute a weighted Laplacian matrix, W, with coefficients: Wij =
−1/(Dij + 1)α, when i �= j, and Wii = −

∑
k 	=i Wik.

5. Relax points X(m+1) = (I + W)X(m).
6. Normalize each row in X to unit length.
7. If not converged, go to 3.
8. Remove the mirrored half of the points.
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Running this scheme, it was observed that the average distance from a point to
its closest neighbor increased with around 80%, for N = 1000, α = 20 after 50
relaxation iterations. This indicates that the sampling becomes more uniform
and thus also more efficient. By the use of a mirrored set of points, we ensured
that the sampling was uniformly sampled from the set of antipodally identified
points on the sphere in R4.

2.2 Similarity Measure

Choosing an appropriate scoring function is to a large extent a trade-off be-
tween accuracy and implementation speed. A thorough investigation of this sub-
ject was done by Wriggers [11]. Mutual information is an alternative similarity
measure that was not covered by Wriggers. It is an established scoring function
for many (medical) imaging modalities and has been found to work well also
for this kind of data [9]. However, the extra generality of this measure, such as
handling non-linear differences, was not needed in this case. Here, normalized
cross-correlation [3] was chosen:

s(u) =

∑
x

(I(x) − Iu)(T (x− u)− T )(∑
x

(I(x) − Iu)2
∑
x

(T (x− u)− T )2
)1/2

(1)

where T is the mean of the template and Iu is the mean of the region under
the template. The computation of normalized correlation was performed in the
Fourier domain for computational efficiency [5].

2.3 Summarizing over the Rotation Subspace

We use the p-norm to summarize a scalar function over SO(3). For any transla-
tion t ∈ R3, we define

f(t) =

⎛⎝ ∑
A∈SO(3)

s(t,A)p

⎞⎠1/p

, (2)

where p ∈ [1,∞[. Cases of particular interest are:

– maximum projection, p = ∞, and
– average projection, p = 1.

To obtain a strong response with the average projection, the object needs to be
rotationally symmetric, which is quite often the case for biological molecules.
The combined analysis of the average and maximum projections is useful for
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identifying good registration positions for symmetric objects. They will have
strong responses at good registration positions in both projections. It is simi-
larly useful for discarding false positions for non symmetrical objects since, for
good/correct positions, they will only have a strong response in the maximum
projection. An alternative to simultaneously analyzing two projection volumes is
to look at one projection using a different p-norm, which corresponds to mixing
the maximum and average projection.

For analyzing and interpreting the score volumes the position of the center
point of the template need to be considered. For symmetrical objects to generate
strong and focused responses in the score volumes the rotation center of the
template needs to be positioned midway on the symmetry axis/axes. If not, it
will lead to multiple or smeared out and less pronounced maxima around the
correct positions in the score volumes. If, for example, an object is relatively
rotationally symmetric around one axis and the rotation center is positioned on
that symmetry axis but not midway it will give rise to double maxima in the
translation score volumes. Picture a vertical stick with the center point on the
stick but somewhat offset from half of the length of the stick. One maximum
will then correspond to the ”correct” match and one to the upside down match.

2.4 Fixing the Translation in R3

For a particular translation t ∈ R3, selected by the user, we define

g(A) = s(t,A) (3)

Via Euler’s theorem, g(A) may then be visualized as a scalar function defined in a
ball with radius π in R3. In this ball, the identity rotation is placed at the center.
Points within the ball specify an additional rotation around the vector from the
center to the point itself, where the euclidean norm of the vector specifies the
rotation angle.

Euler’s theorem states that any rotation in 3-D can be described by a rotation
around a particular axis, i.e., parameterized by the set of unit vectors, ||n̂|| = 1,
and a rotation angle, α ∈ (0, π). The mapping h : SO(3) → R3, y = h(n̂, α) =
αn̂ provides a convenient coordinate system for visualizing the set of all rotations
as a volume. In this mapping, every rotation is mapped to a point inside a ball
with radius π. In order to place the maximum of g(A) in the center of the sphere,
ĝ(A) = g(AA−1

max) is visualized where Amax is the rotation with the maximum
value of g(A).

3 Experiments

The proposed methodology is illustrated on three different types of volumes and
templates: a synthetic volume, a MET volume of antibodies in solution, and a
MET volume of in situ skin cells. For each image type the original volume, trans-
lation score volumes, a rotation score volume, and registrations corresponding
to different optima in the parameter spaces are shown.
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3.1 Synthetic Data Set

For a first assessment, a synthetic volume image was generated, which is shown
in Figure 2 (a). It consists of one structure with three perpendicular arms of
different lengths, and is not intended to be a replica of real data, but a suitable
test structure to highlight features of the methodology. It is not symmetrical
around any axis and the inner parts of the structure have higher intensity. In the
search, we used a spatially identical template with linearly mapped intensities.

Figure 2 (b)–(d) show three different translation score volumes corresponding
to p = 1 (average projection), p = 8, and p = ∞ (maximum projection). For
this artificial example with flat background and only one object all three projec-
tions clearly show a maximum for the correct translation parameters and lower
scores (intensities) for positions when the template partly overlaps the object.
Figure 2 (e) shows the rotation projection for translation parameters interac-
tively picked from the maximum in the p = ∞ translation projection. The cen-
ter in that particular volume has the highest matching value and corresponds to
the correct registration shown in Figure 2 (f). The two second highest optima in
Figure 2 (e), correspond to the two rotations of the template where the directions
of all the arms coincide with the directions of the object arms. The registration
corresponding to one such rotation is shown in Figure 2 (g). The six slightly
lower optima (two on vertical ”line” and four ”dots”) correspond to rotations
of the template where only two of the arms overlap with the object arms. One
such registration is shown in Figure 2 (h).

3.2 IgG Data Set

The second test case, is illustrated in Figure 3. It consists of a part of a volume
of proteins (antibodies) in solution, where a single Immunoglobulin G, IgG,
antibody (seen in the center of Figure 3 (a)), has been identified [8]. The IgG
molecule has three subgroups connected at one joint. In the test volume, the
three parts and the center joint are roughly spanning a plane. The antibody
template was created from the protein’s atom positions deposited in the protein
data bank (PDB) [1,6,4]. A volume image where intensity represents density is
constructed by placing a Gauss-kernel, with standard deviation 1 nm, at each
atom position weighted by the atom mass, giving a resolution of 2 nm. The
intensity in each voxel in the image is generated by adding contributions from
all Gauss-kernels in the vicinity of that voxel [7].

Figure 3 (b)-(d) show the translation score volumes for, p = 1 (average pro-
jection), p = 8, and p = ∞ (maximum projection). For this image with lots of
small objects the benefit of studying different projections is especially large. The
correct position is not a pronounced maximum in the average projection but it
is in the p = 8 and maximum projections. In fact it is the only pronounced
optimum in the maximum projection score volume.

Figure 3 (e) shows the rotation score volume for a set of translational param-
eters interactively picked from the maximum in Figure 3 (d). In the rotational
subspace for the best translational position, Figure 3 (e), different local maxima
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(a) Test volume (b) Score vol, p = 1 (c) p = 8 (d) p = ∞

(e) Rotational score vol. (f) Best reg. (g) Local max (h) Local max

Fig. 2. The synthetic test volume (a), translation score volumes (b)–(d), rotation score
volume (e), and different registration results with the image volume structure in red
and search template in blue (f)–(h). The score volumes have been rendered using an
isosurface for low scores seen in low intensity, and a higher intensity isosurface for
higher scores.

are visible that correspond to different orientations yielding a fairly good match.
The arms and stem of the IgG are similar so if they are matched to each other
in the wrong way, a high score is still acquired. Antipodal points (on the oppo-
site side of the ball surface) refer to the same orientation. For a tri-symmetrical
planar object, a total of eleven pronounced local maxima (central maximum
plus five × 2 antipodal maxima) would be seen in the rotation score volume.
In this case with IgG which is relatively symmetrical and relatively planar only
nine pronounced local maxima (central maximum plus four × two antipodal
maxima) are seen with the isosurface rendering levels chosen in Figure 3 (e).

One maxima is connected to two other maxima through a path of slightly
higher intensities in the rotation score volume. Although not visible in this ren-
dering such connecting paths can be seen for all the maxima. These paths of
slightly higher match scores correspond to rotating the template while one com-
ponent is fixed and overlapping one of the object components. Figure 3 (f) shows
the registration corresponding to the center maximum in (e) and Fig. 3 (g) shows
the registration corresponding to one of the other matches seen as non-central
local maxima in (e).
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(a) Test volume (b) Score vol, p = 1 (c) p = 8 (d) p = ∞

(e) Rot. score vol. (f) Best reg. (g) Local max

Fig. 3. The IgG test volume (a), translation score volumes with (b) – (d), rotation
score volume (e), and different registration results (f)–(g). Since the IgG is rotationally
asymmetric, the average projection yields a weak response for the correct position
(marked with arrow), but as p is increased towards maximum projection, the correct
position becomes clearer.

3.3 Desmosome Data Set

The third investigated data set, which can be seen in Figure 4, concerns a MET
volume from a skin sample. The structures of interest in these volumes are
chains of two corneodesmosin antibodies linked to a very bright and spherical
gold particle. In Figure 4 (a) four such chains are visible as bright and slightly
elongated structures. The template used is one of the chains cut from the volume
and the task is to identify the three other chains.

The antibody chains in this volume are elongated structures, which are rel-
atively rotationally symmetric around one axis. This implies mainly two things
when interpreting the score volumes. Firstly that significant responses for the
correct positions in average translation score volume would be expected. Sec-
ondly that, due to imperfectly positioned rotation point, the local maxima might
be rather blurry in the average projection and multiple local maxima might be
found for the correct position in all score volumes but especially in the maxi-
mum projection score volume. These phenomena can indeed be seen in the score
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(a) Test volume (b) p = 1 (c) p = 8 (d) p = ∞

(e) Rot. score volume (f) Local max

Fig. 4. The desmosome test volume (a). Rotation score volume for a correct translation
position (b). Translation score volumes (c) – (e) One registration result (f).

volumes. For the maximum projection case, Figure 4 (d), double maxima can be
found for each antibody chain, one correct above the gold particle and one below
corresponding to the ”upside down” match. The average projection, Figure 4 (b),
gives a strong but rather blurred response, centered at the gold particle, which is
a displacement to the correct position. The rotation score volume for the correct
translation position for one of the three antibody chains searched for has a clear
cylinder shape, corresponding to rotations around the chain axis.

4 Conclusion and Future Work

We have presented a methodology for semi-automatic registration of MET data.
The maximum projection has proven to be the overall best technique to sum-
marize the non-spatial dimensions in the parameter space. The exploration of
the rotational subspace, keeping the translation fixed, has also proven to be a
valuable tool to understand the nature of a particular local maximum of the
score function in the 6-D parameter space. In particular it reveals the maxima
caused by symmetries, which are common in biological molecules.

In future work, we will include haptic rendering to give the user even stronger
cues on the local fitting of the template volume. The projection from 6-D to 3-D,
through p-norms, looks different depending on the choice of this center. Different
ways of automatically determining this center is a possible future topic. We also
aim to explore more ways to summarize the 6-D parameter space. In particular,
the p-norms used in this paper does not take the shape of the local maxima and
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the local fitness landscape into account when it summarizes the score function
over all rotations.
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1 ETH Zürich, Department of Computer Science, Zürich, Switzerland
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Abstract. We consider a Multiple Kernel Learning (MKL) framework
for nuclei classification in tissue microarray images of renal cell carci-
noma. Several features are extracted from the automatically segmented
nuclei and MKL is applied for classification. We compare our results with
an incremental version of MKL, support vector machines with single ker-
nel (SVM) and voting. We demonstrate that MKL inherently combines
information from different input spaces and creates statistically signif-
icantly more accurate classifiers than SVMs and voting for renal cell
carcinoma detection.

Keywords: MKL, renal cell carcinoma, SVM.

1 Introduction

Cancer tissue analysis consists of several consecutive estimation and classifica-
tion steps which require intensive labor practice. The tissue microarray (TMA)
technology enables studies associating molecular changes with clinical endpoints
[7]. In this technique, 0.6mm tissue cylinders are extracted from primary tumor
blocks of hundreds of different patients, and are subsequently embedded into a
recipient paraffin block. Such array blocks can then be used for simultaneous
analysis of primary tumors on DNA, RNA, and protein level.

In this work, we consider the computer based classification of tissue from renal
cell carcinoma (RCC) after such a workflow has been applied. The tissue has been
transferred to an array and stained to make the morphology of cells and cell
nuclei visible. Current image analysis software for TMAs requires extensive user
interaction to properly identify cell populations on the TMA images, to select
regions of interest for scoring, to optimize analysis parameters and to organize
the resulting raw data. Because of these drawbacks, pathologists typically collect
tissue microarray data by manually assigning a composite staining score for each
spot. Such manual scoring can result in serious inconsistencies between data
collected during different microscopy sessions. Manual scoring also introduces a
significant bottleneck that limits the use of tissue microarrays in high-throughput
analysis.
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Fig. 1. One keypoint in the automatic TMA analysis for renal cell carcinoma is the
nucleus classification. Nuclei are eosin stained and visible in the TMA image as dark
blue spots. We want to simulate the classification of cell nuclei into cancerous or be-
nign, which is recently done by trained pathologists by eye. The automatic approach
comprises nucleus detection on the image, the segmentation of the nuclei and the clas-
sification, all based on training data labeled by two human experts.

The manual rating and assessment of TMAs under the microscope by pathol-
ogists is quite unconsistent due to the high variability of cancerous tissue and
the subjective experience of humans, as shown in [4]. Therefore, decisions for
grading and/or cancer therapy might be inconsistent among pathologists. With
this work, we want to contribute to a more generalized and reproducible system
that automatically processes TMA images and thus helps pathologists in their
daily work.

For various classification tasks, SVM formulations involve using one data set
and maximizing the margin between different classes. This poses a restriction
on some problems, where different data representations are used. Combining
the contribution of different properties is important in discriminating between
cancerous and healthy cells. Multiple Kernel Learning (MKL) is a recent and
promising paradigm, where the decisions of multiple kernels are combined to
achieve better accuracies [1]. The advantage of this idea is to be able to utilize
data from multiple sources. In MKL, multiple kernels are combined (see Sec-
tion 3) globally. We also compare this idea with the usual classifier combination
where outputs of multiple classifiers are combined [8,10].

In previous work, an automated pipeline of TMA processing was already pro-
posed, concentrating on the investigation of various image features and associ-
ated kernels on the performance of a support vector machine classifier for can-
cerous cells [13]. In this work, we follow this workflow and extend the nucleus
classification (Figure 1) by using MKL that combines information from multi-
ple sources (in our case different representations). By considering different types
of features, we show in Section 4 the importance of using shape features; our
results show that MKL reaches significantly better accuracies than SVM and
voting (VOTE) using the combination of multiple kernels.
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Our contribution is to show how information from different representations
can make this classification task easier: the MKL algorithm inherently combines
data from different representations to get better classification accuracies. Instead
of combining outputs of multiple classifiers, MKL uses an optimization procedure
where data from all sources are seen during training and optimization is done
accordingly. Our experiments demonstrate that although it is more costly to use
MKL, the increase in accuracy is worth its cost.

The paper is organized as follows: in Section 2, we introduce the data set
used in this study. We explain the methods applied in Section 3, and show our
experiments in Section 4. We conclude in Section 5.

2 Data Set

2.1 Tissue Micro Arrays

Small round tissue spots of cancerous tissue are attached to TMA glass plate.
The diameter of the spots is 1mm and the thickness corresponds to one cell
layer. Eosin staining made the morphological structure of the cells visible, so
that cell nuclei appear bluish in the TMAs. Immunohistochemical staining for
the proliferation protein MIB-1 (Ki-67 antigen) makes nuclei in cell division
status appear brown.

For computer processing, the TMA slides were scanned with a magnification
of 40x, resulting in a per pixel resolution of 0.23μm. The final spots of single pa-
tients are separately extracted as three channel color images of size 3000x3000px.

In this study, we used the top left quarter of eight tissue spots from eight
patients. Therefore, each image shows a quarter of the whole spot, i.e. 100-200
cells per image (see Figure 2).

For training our models, the TMA images were independently labeled by
two pathologists [4]. From such eight labeled TMA images, we extracted 1633
nuclei-patches of size 80x80 pixels. Each patch shows a cell nucleus in the center
(see Figure 3). 1273 (78 %) from the nuclei form our datase, where the two
pathologists agree on the label: 891 (70 %) benign and 382 (30 %) malignant
nuclei.

2.2 Image Normalization and Patching

The eight images were adjusted in contrast to minimize illumination variances
among the scans. To classify the nuclei individually, we extracted patches from
the whole image such that each 80x80px patch has one nucleus in the center
(see Figure 3). The locations of the nuclei were known from the labels of the
pathologists. Both procedures drastically improved the following segmentation
of cell nuclei.
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Fig. 2. Left: One 1500x1500px quadrant of a TMA spot from a RCC patient. Right:
A pathologist exhaustively labeled all cell nuclei and classified them into malignant
(black) and benign (red).

2.3 Segmentation

The segmentation of cell nuclei was performed with graphcut [3]. The gray inten-
sities were used as unary potentials. The binary potentials were linearly weighted
based on their distance to the center to prefer roundish objects lying in the cen-
ter of the patch (see Figure 3). The contour of the segmented object was used
to calculate several shape features as described in the following section.

Fig. 3. Two examples of nucleus segmentation. The original 80x80 pixel patch are
shown, each with the corresponding nucleus shape found with graphcut.

2.4 Feature Extraction

For training and testing the various classifiers we extracted several histogram-like
features from the patches (see Table 1).
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Table 1. Features extracted from patch images for training and testing. Except the
Prop feature, all features are histograms normalized to sum up to one.

Shortcut Feature Description

ALL Patch Intensity: A 16-bin histogram of gray scaled patch

FG Foreground Intensity: A 16-bin histogram of nucleus

BG Background Intensity: A 16-bin histogram of background

Lbp Local Binary Patterns: This local feature has been shown to bring con-
siderable performance in face recognition tasks. It benefits from the fact
that it is illumination invariant.

Col Color feature: The only feature comprising color information. The colored
patch (RGB) is rescaled to size 5x5. The 3x25 channel intensities are then
concatenated to feature vector of size 75.

Fcc Freeman Chain Code: The FCC describes the nucleus’ boundary as a
string of numbers from 1 to 8, representing the direction of the boundary
line at that point ([6]). The boundary is discretized by subsampling with
grid size 2. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.

Sig 1D-signature: Lines are considered from the object center to each bound-
ary pixel. The angles between these lines form the signature of the shape
([6]). As feature, a 16-bin histogram of the signature is generated.

Phog Pyramid histograms of oriented gradients: PHOGs are calculated
over a level 2 pyramid on the gray-scaled patches ([2]).

Prop Shape descriptors derived from MATLAB’s regionprops func-
tion: Area BoundingBox(3:4), MajorAxisLength, MinorAxisLength,
ConvexArea, Eccentricity, EquivDiameter, Solidity, Extent,
Perimeter, MeanIntensity, MinIntensity, MaxIntensity;

3 Methodology

In this section, we summarize the MKL framework behind our experiments. The
main idea behind support vector machines [15] is to transform the input feature
space to another space (possibly with a greater dimension) where the classes are
linearly separable. After training, the discriminant function of SVM becomes
f(x) = 〈w, Φ(x)〉 + b, where w are the weights, b is the threshold and Φ(x) is
the mapping function. Using dual formulation and the kernels one does not have
to define this mapping function Φ(x) explicitly and the discriminant becomes as
in (1) where K(xi,x) is the kernel.

f(x) =
N∑

i=1

αiyiK(x,xi) + b . (1)

Using SVM with a single kernel would restrict us to use one feature set (or a
concatenation of all feature sets) and complicates the possibility to exploit the
information coming from different sources. As in classifier combination [8], we
can combine multiple kernels using different feature sets and use this information
to come up with more accurate classifiers [10]. The simplest way for this is to use



418 P. Schüffler et al.

an unweighted sum of kernel functions [11]. Lanckriet et al. [9] have formulated
this semidefinite programming problem which allows finding the combination
weights and support vector coefficients together. Bach et al. [1] reformulated the
problem and proposed an efficient algorithm using sequential minimal optimiza-
tion (SMO). Using Bach’s formulation, with P kernels, the discriminant function
becomes as in (2) where m indexes the kernel:

f(x) =
P∑

m=1

ηm

N∑
i=1

αiyiKm(x,xi) + b . (2)

This allows us to combine different kernels in different feature spaces and this
is the formulation we apply in this work. Here, kernels are combined globally,
namely the kernels are assigned the same weights for the whole input space.

It has been shown by many researchers that using a subset of given classifi-
cation algorithms increases accuracy rather than using all the classifiers [12,14].
Keeping this in mind, we apply the same idea to incrementally adding kernels
to the MKL framework and compare the results.

The incremental algorithm works as follows: It starts with the most accurate
kernel (classifier) on the validation folds (leave-the-other-fold-out), and adds
kernels (classifiers) to the combination one by one. This procedure continues
until all kernels (classifiers) are used or the average validation accuracy does not
increase [14]. The algorithm starts with E0 ← ∅, then at each step t, all the
kernels (classifiers) Mj �∈ E(t−1) are combined with E(t−1) to form St

j (St
j =

E(t−1) ∪Mj). We select St
j∗ which is the ensemble with the highest accuracy. If

accuracy of St
j∗ is higher than E(t−1), we set Et ← St

j∗ and continue, else the
algorithm stops and returns E(t−1).

4 Experiments

4.1 Experiment Setup

The data of 1273 nuclei samples is divided into ten folds (with stratification).
We then train support vector machines (svl, sv2, svg, see below) and MKL us-
ing these folds. We also combine the support vector machines using voting and
report average accuracies using 10-fold CV. For the Gaussian kernel, σ is cho-
sen using a rule of thumb:

√
D where D is the number of features of the data

representation. We compare our results using 10-fold CV t-test at p = 0.05. In
the incremental learning part, we apply leave-the-other-fold-out cross validation
(used for validation) to estimate which kernel and classifier should be added.

As a summary, we have 9 representations (All, Bg, Col, Fcc, Fg, Lbp,

Phog, Sig and Prop), three different kernels (linear kernel: svl, polynomial
kernel with degree 2: sv2, and Gaussian kernel: svg), and two combination algo-
rithms (MKL, VOTE).

The SVM accuracies with each individual kernel are reported in Table 2. The
best accuracy using a single SVM is 76.9 %. For most representations (except
Phog and Col), the accuracies of different kernels are comparable.



MKL for Renal Cell Carcinoma Detection 419

Table 2. Single support vector accuracies (± std) in %

svl sv2 svg

All 70.0±0.2 71.6±2.9 72.0±3.2
Bg 70.0±0.2 71.2±2.6 68.9±2.3
Col 70.1±0.2 63.6±3.5 66.2±2.3
Fcc 70.0±0.2 70.0±0.2 67.4±1.6
Fg 70.0±0.2 70.0±3.2 70.5±3.5
Lbp 70.0±0.2 66.9±3.0 68.7±4.4
Phog 76.5±3.7 72.0±3.3 76.9±3.6
Sig 70.0±0.2 68.6±2.5 66.6±2.6
Prop 75.7±2.3 75.6±2.6 74.1±1.8

Next, we use the same kernel and combine all the feature sets we extracted.
As shown in Table 3 (top), we can achieve an accuracy of 81.3 % using the lin-
ear kernel, by combining all representations. This shows that the combination of
information from multiple sources might be important and, by using MKL, the
accuracy can be increased around 5 %. We observe from the table also that when
we use all kernels with sv2, we have a decrease in accuracy compared to the sin-
gle best support vector machine. This is analogous to combining all classifiers in
classifier combination. If one has relatively inaccurate classifiers, combining all
may decrease accuracy. Instead, it might be better to choose a subset. This also
shows that medically, all the information is complementary and should be used
to achieve better accuracy. In Figure 4, we plotted the weights of MKL when we
use the linear kernel. As expected, the two best representations Phog and Prop

have high weights. But the representation Lbp that has very low accuracy when
considered as a single classifier increases the accuracy when considered in com-
bination. This shows that when considering combinations, even a representation
which is not very accurate alone may contribute to the combination accuracy.
From this, we also deduce that these three features are useful in discriminating
between healthy and cancerous cells and we may focus our attention on these
properties.

On the bottom part of Table 3, the results using the incremental algorithm are
shown. We can see that we do not have an increase in accuracy compared to the
best single support vector machine. In fact, the incremental algorithm cannot
find a second complementary kernel which will increase accuracy when added to
the single best. In principle, we expect the incremental algorithm to have better
accuracies than combining all classifiers. We see this behavior for sv2. When we
consider svl, combining all kernels seems to be better than the subset selection
strategy. This might partially result from the fact that the incremental algorithm
could not find a complementary kernel, and partially from the optimization
formulation of MKL. In the incremental search, we discard kernels which do
not improve the overall accuracy. On the other hand, in MKL, every kernel is
given a weight and all kernels contribute to the solution of the problem. From
this, we can say that it is better to use MKL instead of combining outputs of
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Fig. 4. Combination weights in MKL using the linear kernel

support vector machines using voting. We can also see the support of this claim
in Table 3. When we use voting, combining all classifiers is always worse than
the single best and always worse than MKL because the optimization procedure
does not see the data, but only combines outputs of all classifiers. On the other
hand, when we apply the incremental paradigm on classifier combination, we
achieve better results than MKL because there are complementary classifiers
which increase the accuracy.

Table 3. MKL accuracies (in %). Top: accuracy (± std) of combining all kernels.
Bottom: accuracies calculated using the incremental algorithm, the number of ker-
nels/classifiers selected.

svl sv2 svg

MKL 81.3±3.6 72.0±3.3 76.9±3.6
VOTE 70.0±0.2 71.3±1.7 72.4±1.2

MKL 76.9±3.6, 1
VOTE 78.9±2.5, 4

4.2 Discussion

We have seen that MKL performs better than VOTE and SVMs with single
kernel, when all kernels are combined. This is because the optimization proce-
dure takes into account all data and gives weights to all kernels, so it can use all
representations. On the other hand, when we apply the incremental algorithm,
classifier combination achieves better accuracies than combining all classifiers.
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MKL combines the underlying feature sets to make a better combination. In this
work, we used three different kernels and two combination schemes to see how
the change of each parameter effects the classification accuracy. We see that,
when we use single support vector machines, all the kernels have comparable
accuracies. The importance of each kernel function increases when the combi-
nation is considered, and combining outputs is less effective than combining the
kernels themselves using optimization.

Also, we have seen that when we use the multiple kernel learning algorithm,
we gain 5 % in accuracy compared to SVMs with single kernel. Combining all
kernels here comes with a drawback. We have to use all kernels and extract all
the features when we have to use this model but the increase in accuracy might
be worth the cost. We see that when we use the incremental algorithm, we cannot
add any kernels, so we are stuck in a local minimum. When we combine classifiers
on the other hand, the incremental algorithm achieves more accurate results.
Nevertheless, the best results are obtained when we use all representations using
svl and this accuracy is the best result we have reached so far.

5 Conclusion

In this paper, we propose the use of the multiple kernel learning paradigm for
the classification of nuclei in TMA images of renal clear cell carcinoma. We
used support vector machines extensively through different feature sets in our
previous work. This study extends those works by using several feature sets in a
multiple kernel learning paradigm and compares the results with single support
vector machines and combining outputs of support vector machines using voting.

We have seen that MKL performs better than SVMs and VOTE in most of
the experiments. MKL exploits the underlying contribution of each feature set
and heterogeneity of the problem, and by using multiple kernels, achieves better
results than single kernels and voting of classifiers.

In this work, we used image based feature sets for creating multiple features.
In a further application of this scenario, the use of other modalities or other
features (e.g. SIFT) extracted from these images, as well as the incorporation of
complementary information of different modalities to achieve better classification
accuracy is possible. The incremental algorithm as implemented in this scenario
does not work as well as combining all kernels using MKL. As a future work,
we would like to implement other heuristics (decremental search, two step look-
ahead incremental search, floating search etc.) so that we can achieve better
accuracies without imposing too much cost on the system and using only a
few kernel combinations. We also would like to apply a local multiple kernel
combination framework [5] which is analogous to classifier selection in ensemble
framework where the combination also depends on the input which puts forward
the inherent localities of the data sets and automatically divides the data set
into subsets within the optimization procedure.
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Abstract. Nanotechnology tools, such as Atomic Force Microscopy (AFM), are 
now becoming widely used in life sciences and biomedicine. AFM is a versatile 
technique that allows studying at the nanoscale the morphological, dynamic, 
and mechanical properties of biological samples, such as living cells, 
biomolecules, and tissues in their native state under physiological conditions. In 
this article, an overview of the principles of AFM will be first presented and 
this will be followed by discussion of some of our own recent work on the 
applications of AFM imaging to biomedicine.  

Keywords: Atomic Force Microscopy, AFM, AFM imaging, elastic images, 
elastic modulus, biomedicine, cells, yeasts, biomolecules.  

1   Introduction 

Atomic force microscopy (AFM) was invented by Binning, Quate and Gerber in 1986 
[1] and since then its use as a surface characterization tool has increased dramatically. 
In particular, in the last ten years AFM has become one of the most powerful 
nanotools in biology [2,3]. This success is due to the ability of the AFM to allow 
studying the structure, function, properties, and interaction of biological samples in 
their native state under physiological buffer conditions. Moreover, the excellent 
signal-to-noise ratio of the AFM allows obtaining images with sub-nanometer (< 1 
nm) resolution which permits to investigate the ultrastructure of a broad range of 
samples ranging from cells (micrometer sized) to DNA and proteins (a few 
nanometers in size) [4]. Another advantage of AFM lies in minimal sample 
preparation requirements that preserve the real features of the specimens without 
damaging them or introducing any artifacts, thereby making AFM a very attractive 
and versatile nano-imaging tool in biological sciences [5]. 

The ability of AFM to visualize nanoscale topography and morphology of tissues, 
cells, and biomolecules permits a direct observation of the fine structural details of, 
e.g. cell surfaces, surface proteins, and DNA coiling. Processing of AFM images 
permits one to measure at the nanoscale, the surface roughness, texture, dimensions, 
and volumes of biological systems. This capability along with the ability of AFM to 
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detect pico-Newton force interactions between cells (cell-cell interaction), proteins 
(protein-protein interaction), a cell and a functionalized substrate (cell-substrate 
interaction), or a receptor and a ligand (lock-and-key interaction) has opened up 
completely new areas for investigating the mechanical and microrheological 
properties of biological samples, such as their adhesion, elasticity (property of a 
material which causes it to be restored to its original shape after applying a 
mechanical stress), viscosity (resistance of a fluid to deform under shear stress), and 
viscoelasticity (when materials change with time they respond to stress as if they are a 
combination of elastic solids and viscous fluids) [3].   

In this paper, some of the relevant results by AFM obtained by the authors in the 
biomedical field will be presented. The computational processing of AFM images to 
obtain multiparameter analysis of cells and biomolecule functions will also be 
discussed.      

2   Principles of AFM 

The operating principle of an AFM is based upon scanning a fine tipped probe (called 
cantilever) just above a sample surface (Fig. 1) and monitoring the interaction force 
between the probe and the surface [3]. The cantilever obeys the Hooke’s law, F = k⋅x, 
where F is the force on the cantilever, k its spring constant, and x its deflection. This 
relationship permits one to obtain the tip-sample interaction force, provided that the 
spring constant of the cantilever is known and its deflection measured. To measure 
the cantilever deflection a laser beam is reflected off the back side of a reflective 
(gold- or aluminium-coated) cantilever towards a position sensitive detector which 
can measure both normal bending and torsion of the cantilever, corresponding to 
normal and lateral forces. 

 

Fig. 1. Sketch of the operational principle of AFM 
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2.1   Application Modes of AFM 

Imaging. During scanning of the sample surface, the deflection of the cantilever is 
measured and used as an input signal for the feedback circuitry to maintain constant 
the tip-sample distance. By recording the displacements of the tip along the z-axis it 
becomes possible to build the topographic (height) image of the sample surface. A 
variety of operational modes, such as contact mode, and intermittent-contact tapping 
mode are available to image a sample surface [3]. 

Force Spectroscopy. The main outcome of a force spectroscopy experiment is the 
force-distance (F-d) curve, which shows the force experienced by the cantilever both 
when the AFM probe is brought in contact with the sample surface (trace/approach) 
and separated from it (retrace/retract) (Fig. 2). Analysis of the F-d curves with 
suitable theoretical models can give information on the elastic and adhesive properties 
of the sample. In particular, the maximum adhesive force of the sample to the tip 
(Fmax), the energy of adhesion (Wadh), and the Young’s modulus (E) can be measured 
(Fig. 2). 

 

Fig. 2. (a) Sketch of the stages of a force spectroscopy experiment. Contact between the AFM 
probe and the sample surface and cantilever bending with AFM probe indentation occurs 
during the trace (approach) cycle of the AFM experiment.  On the retrace (retract) cycle, the 
sample surface is stretched until the point of detachment. An example of a typical experimental 
F-d curve for a trace and retrace cycle is also presented; the stages are identified by the arrows. 
The meanings of Fmax, dmax, and Wadh are also identified. 

Force Mapping. It combines force measurements and imaging [6,7]. A force 
mapping data set contains an array of force curves and a sample image as well. It can 
be used to obtain a 2D map of the nanomechanical properties (e.g. elasticity) of the 
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sample surface (Fig. 3). It is worth noting that force spectroscopy and force mapping 
can be done only in contact mode. 

 

Fig. 3. AFM force mapping on a red blood cell (RBC). (a) AFM image of RBC (typical 
biconcave shape) on glass. (b) AFM elastic image of the RBC shown in (a). The difference in 
elasticity of the substrate and the cell surface allow obtaining an elastic map of the sample. 

3   Processing of AFM Images 

AFM experiments generate a wealth of data very quickly. In order to extract useful 
information from the data, each AFM image has to be carefully processed to remove 
sample tilt, scanner and probe geometry artifacts, and obtain correct image contrast 
and scaling. In addition, statistical evaluation of cross-sectional and surface texture 
analyses can be performed on AFM images to gain knowledge on the dimensions, 
surface roughness and texture, topographical profile and nanomechanical properties 
of the samples.  

Image Enhancement. It is the first step in image processing and it mainly consists in: 
(i) leveling the raw image to take care of any tilt and bow that may be introduced to 
the image by the AFM scanner. This is achieved via background subtraction such as 
line-by-line or plane leveling; (ii) sharpening the raw image with high-pass filters to 
enhance the finest details of the sample surface topography; and (iii) smoothing the 
raw image to remove any background noise from the image. Here we wish to add a 
word of caution for the novice to be extremely careful because image enhancement, if 
not done properly, can introduce additional artifacts in the image. 

Section Analysis. AFM images can be analysed by section analysis to determine the 
dimensions (e.g. length, width), and peak-to-valley heights of the sample (Fig. 4). In 
AFM images, horizontal dimensions of objects are usually greatly overestimated due 
to the well-known effect of tip convolution. Therefore, statistical methods should be 
used to correct the tip-convolution effects in AFM images in order to measure the real 
lateral dimension of the sample [8]. 
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Fig. 4. (a) Section analysis on the AFM image of a living human urothelial cell (HUC) under 
physiological conditions, and (b) measure of the peak-to-valley height of the cell from cross-
section analysis 

Roughness Analysis. The roughness of the surface of a sample can be analysed by 
measuring the root mean square roughness, Rrms, on a height image, defined as the 
standard deviation from the mean data plane of the h (height) values of the AFM 
images within a selected region on the cell surface, 
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In Eq. (1), hi is the current height value, h , the height of the mean data plane, and N, 
the number of points within the selected region of a given area. Roughness analysis is 
usually carried out on raw AFM images, i.e., images that are neither flattened nor 
elaborated with any filter (e.g., low pass or high pass filter).    

4   Applications of AFM to Imaging of Biological Systems 

Over the past 10 years, we have extensively used AFM in both imaging and force 
spectroscopy modes to investigate the ultrastructural and nanomechanical properties 
of different biological systems [9-11]. Some of our recent results on cells and 
biomolecules will be presented in the next sections.   

4.1   Discrimination between Candida albicans and Candida dubliniensis Cells 
under Normal and Pathological Conditions 

Candida albicans is a diploid fungus and a causal agent of opportunistic oral and 
genital infections in humans. Candida dubliniensis is commonly isolated from oral 
cavities and it is very closely related to C. albicans because both these yeasts are  
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dimorphic. Dimorphism is defined as the switching between two cell-types. Both C. 
albicans and C. dubliniensis when they infect host tissues, switch from the usual 
unicellular yeast-like form into an invasive, multicellular filamentous form. Due to 
their dimorphic nature it is sometimes difficult for clinicians to distinguish between 
the two Candida and therefore to prescribe the more appropriate antifungal drug.  

We used AFM imaging to investigate the ultrastructures of C. albicans and C. 
dubliniensis (isolated and sub-cultured from patients) after growing them in normal 
(30°C) and pathogenic (39°C) conditions. As shown in Figs. 5a and 5b, at 30ºC C. 
albicans and C. dubliniensis cells remained non-pathogenic and they grouped together 
in colonies. However, increase in temperature led to the appearance of pathogenic 
cells for both strains of Candida (Figs. 5c and 5d) with the typical formation of 
hyphae.  

 

Fig. 5. AFM images of living C. albicans (Left) and C. dubliniensis (Right) yeast cells under 
physiological conditions, grown in non-pathogenic conditions at 30°C (upper row) and in 
pathogenic conditions at 39°C (bottom row). Height ranges in µm: (a) 0 - 4.3, (b) 0 - 3.2, (c) 0 - 
5.0, (d) 0 - 4.3 

 
Section analysis on the AFM images of the two types of Candida showed that for 

both C. albicans and C. dubliniensis, non-pathogenic cells were smaller than 
pathogenic cells. This difference could probably be due to the beginning of the 
process of extrusion of hyphae from the pathogenic yeast cells that resulted in an 
increase in their sizes. The main difference between C. albicans and C. dubliniensis 
revealed by the section analysis concerned their sizes. C. dubliniensis cells were  
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found to be smaller than C. albicans. Moreover, the morphological structures of the 
hyphae of these two strains of Candida were quite different. In pathogenic C. albicans 
cells the hyphae were short (21.2 ± 3.1)µm, and they were divided in segments with 
well defined secta formed between the segments. On the contrary, in pathogenic C. 
dubliniensis the hyphae were long (52.1 ± 8.4)µm, and the secta dividing the 
segments were not as evident as in C. albicans. 

4.2   Determination of Elasticity of Human Embryonic Stem Cells  

Human embryonic stem cells (hESCs) are pluripotent, and they represent a promising 
source of cells for regenerative medicine. In a real clinical setting, the patient will 
receive mature, differentiated cells after they have been subjected to an appropriate 
differentiation protocol. However, most protocols result in a mixture of cells enriched 
for the desired population, but containing subpopulations of other cell types. 

Separation and purification methods scalable to quantities of cells suitable for 
human cell replacement therapy are a major problem for stem cell therapy. Extensive 
biochemical and biomechanical characterisation of hESCs would be of great utility 
since such features might provide options for cell separation without requiring the use 
of antibodies as specific lineage markers. Cell elasticity is an important 
biomechanical parameter, which is primarily determined by the presence, number and 
distribution of specific organelles (e.g. nucleus, mitochondria) and the character and 
organisation of cytoskeletal elements (e.g. microfilaments, microtubules and 
intermediate filaments). It is well known that cell elasticity varies with cell function. 
Particular elasticities can also be associated with specific phenotypes. We employed 
AFM to determine the Young’s (or elastic) modulus of hESCs. Single cell surfaces 
were mapped by performing AFM mapping experiments which allowed local 
variations due to cell structure to be identified.  

AFM images showed the presence of two different phenotypes in the hESCs cell 
lines: (i) small and round (Fig. 6a) and (ii) large and spread (Fig. 6b). This difference 
could suggest that one phenotype corresponded to differentiated hESCs while the 
other to undifferentiated hESCs, but which one corresponded to what phenotype? A 
possible answer to this question was given by the Young’s modulus values obtained 
from the AFM force mapping experiments. It was observed that the elasticity of 
hESCs varied at different points on the cell surface, reflecting their heterogeneous 
nature. In addition, variations in elasticity between cells that were larger than the 
variations on the individual cells were also observed. Such large variation in elasticity 
within hESCs of a particular cell line when compared to the variation across a single 
cell suggested significant structural differences between these cells. In particular, it 
was found that cells corresponding to phenotype (i) had higher Young’s moduli, (8.16 
± 6.18) kPa, and thus they were stiff. However, cells corresponding to phenotype (ii) 
had lower Young’s moduli, (0.0485 ± 0.0239) kPa, indicating that these cells were 
softer. These results seemed to suggest that stiffer cells might be differentiated while 
the softer ones might be undifferentiated, indicating a potential strategy for separation 
of differentiated and undifferentiated embryonic stem cells. 
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Fig. 6. AFM images of living hESCs in physiological conditions of probably (a) 
undifferentiated (0 - 4.9µm height range) and (b) differentiated (0 – 2.4µm height range) hESC 
cells 

4.3   The Effects of Ionising Radiation on the Nanostructure of Pericardium 
Tissues 

The pericardium is a protective membrane that surrounds the heart and it is composed 
of collagen and elastin fibres. Its functions are related to the mechanical and structural 
properties of the heart. The effects of ionising radiation, with respect to cardiac doses 
received in breast radiotherapy, on the nanostructure of fibrous pericardium tissue 
were investigated by AFM imaging. 40Gy is the dose limit placed on 100% of the 
heart volume in a clinical radiotherapy department, and it is considered to be the 
threshold at which pericarditis occurs. Therefore, a range of doses lower than 40Gy, 
as well as one of 80Gy was chosen to examine any structural changes of the 
pericardium under extreme conditions. 

The control sample clearly showed (Fig. 7) that collagen fibrils bunched together 
and run parallel to one another. Fibrils had a distinct banding pattern, consisting of 
peaks and grooves, known as D-staggered configuration. Although, the AFM images 
do not seem to highlight a huge difference in the nanostructure of fibrils after 
exposure to ionising radiation, the section analysis carried out on the images showed 
that mean fibril width increases with radiation dose, with 80Gy having the largest 
mean fibril thickness by far, i.e., (111.2 ± 4.3) nm, compared with (88.1 ± 2.8) nm for 
the control tissue. Quite surprisingly, no threshold at 40Gy was found. The higher the 
radiation dose, the larger the amount of fibres that became affected and the more 
swollen the affected fibres became, ultimately increasing the mean collagen fibre 
width for that sample. In addition, the D-period of the fibrils in both the un-irradiated 
and irradiated tissues was found to be remarkably consistent over the range of doses, 
indicating that the banding period, and hence axial molecular arrangement, was 
unaffected by irradiation.  
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Fig. 7. AFM images of fibrous pericardial tissues exposed to (a) 0 Gy radiation (0-400nm); (b) 
5 Gy radiation (0-450nm); (c) 40 Gy radiation (0-525nm); (d) 80 Gy radiation (0- 650nm) with 
– height ranges of AFM images given within brackets 

These results showed that ionising radiation caused the collagen fibrils to increase 
in diameter, with the number of fibrils affected and the extent of swelling increasing 
with the radiation dose. Moreover, because one of the main mechanisms by which 
radiation interacts with proteins is through the formation of cross-links, it is very 
likely that the increased fibril width observed in the AFM images of pericardium 
tissue was due to the formation of cross-links within the collagen fibrils. The 
formation of cross-linking in fibrils could possibly account for the fact that the D-
period value was retained for most of the irradiated samples, indicating that when 
cross-links were formed in fibrils, the molecules followed the regular arrangement of 
the natural collagen. 

5   Conclusions 

AFM has emerged as a very powerful technique in biomedicine for investigating the 
ultrastructural and nanomechanical properties of cells and biomolecules. This success 
is mainly due to the ability of AFM to provide high-resolution images without causing 
any damage during sample preparation and scanning. In addition, the multivariate 
array of image processing tools allow making direct measurements of the dimensions, 
profiles, surface roughness, volumes, and nanomechanics (e.g. elasticity and 
adhesion) of the samples. Recent developments in the technology to produce higher 
scan rates (e.g. collection of images in less than 1s) have pushed forward the design of 
control software [12] with new and very user-friendly user interfaces. These new 
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developments of AFM will certainly boost even further its use in clinical settings as a 
tool for disease screening and diagnosis.   

References 

1. Binning, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56, 930–
933 (1986) 

2. Ikai, A.: A Review on: Atomic Force Microscopy applied to Nano-Mechanics of the Cell. 
Adv. Biochem. Eng. Biotechnol. 119, 47–61 (2010) 

3. Canetta, E., Adya, A.K.: Atomic Force Microscopy: Applications to Nanobiotechnology. J. 
Indian Chem. Soc. 82, 1147–1172 (2005) 

4. Francis, L.W., Lewis, P.D., Wright, C.J., Conlan, R.S.: Atomic Force Microscopy comes 
of age. Biol. Cell, 133–143 (2010) 

5. Fletcher, D.A., Mullins, R.D.: Cell Mechanics and Cytoskeleton. Nature 463, 485–492 
(2010) 

6. Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., Sambongi, T.: Elasticity Mapping 
of Living Fibroblasts by AFM and Immunofluorescence Observation of the Cytoskeleton. 
Ultramicroscopy 82, 253–258 (2000) 

7. Jung, Y.J., Park, Y.S., Yoon, K.J., Kong, Y.Y., Park, J.W., Nam, H.G.: Molecule-Level 
Imaging of Pax6 mRNA Distribution in Mouse Embryonic Neocortex by Molecular 
Interaction Force Microscopy. Nucl. Acids Res. 37, e10 (2009) 

8. Schiffmann, K., Fryda, M., Goerigk, G., Lauer, R., Hinze, P.: Correction of STM Tip 
Convolution Effects in Particle Size and Distance Determination of Metal-C:H Films. 
Fresenius J. Anal. Chem. 358, 341–344 (1997) 

9. Canetta, E., Walker, G.M., Adya, A.: Nanoscopic Morphological Changes in Yeast Cell 
Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study. J. Microbiol. 
Biotechn. 19, 547–555 (2009) 

10. Krysmann, M.J., Funari, S., Canetta, E., Hamley, I.W.: The Effect of PEG Crystallization 
on the Morphology of PEG-peptide Block Copolymers Containing Amyloid β Peptide 
Fragments. Macromol. Chem. Physic. 209, 883–889 (2008) 

11. Canetta, E., Duperray, A., Leyrat, A., Verdier, C.: Measuring Cell Viscoelastic Properties 
Using a Force-Spectrometer: Influence of Protein Cytoplasm Interactions. Biorheology 42, 
321–333 (2005) 

12. Carberry, D.M., Picco, L., Dunton, P.G., Miles, M.J.: Mappifn Real-Time Images of High-
Speed AFM Using Multitouch Control. Nanotechnology 20, 434018–434023 (2009) 



IDEA: Intrinsic Dimension Estimation Algorithm

Alessandro Rozza, Gabriele Lombardi, Marco Rosa,
Elena Casiraghi, and Paola Campadelli

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano,
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Abstract. The high dimensionality of some real life signals makes the
usage of the most common signal processing and pattern recognition
methods unfeasible. For this reason, in literature a great deal of research
work has been devoted to the development of algorithms performing di-
mensionality reduction. To this aim, an useful help could be provided
by the estimation of the intrinsic dimensionality of a given dataset, that
is the minimum number of parameters needed to capture, and describe,
all the information carried by the data. Although many techniques have
been proposed, most of them fail in case of noisy data or when the intrin-
sic dimensionality is too high. In this paper we propose a local intrinsic
dimension estimator exploiting the statistical properties of data neigh-
borhoods. The algorithm evaluation on both synthetic and real datasets,
and the comparison with state of the art algorithms, proves that the
proposed technique is promising.

Keywords: Intrinsic dimension estimation, feature reduction, manifold
learning.

1 Introduction

The high dimensionality of some real life signals, such as images, genome se-
quences, or EEG data, makes the usage of the most common signal processing
and pattern recognition methods unfeasible. Nevertheless, many of these sig-
nals can be fully characterized by few degrees of freedom, represented by low
dimensional feature vectors. In this case the feature vectors can be viewed as
points constrained to lie on a low-dimensional manifold embedded in a higher
dimensional space. The dimensionality of these manifolds is generally referred
as intrinsic dimensionality. In more general terms, according to [8], a dataset is
said to have intrinsic dimensionality equal to d (1 ≤ d ≤ D) if its elements lie
entirely within a d-dimensional subspace of �D.

Intrinsic dimension estimation is important to discover structures, to perform
dimensionality reduction and classification tasks. For this reason, in literature
many techniques that estimate the intrinsic dimensionality have been proposed,
which can be divided into two main groups: global approaches exploit the prop-
erties of the whole dataset to estimate the intrinsic dimensionality, whilst local
approaches analyze the local behavior in the data neighborhoods.
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The most cited example of global method is the Principal Component Analysis
(PCA, [12]). Since it is the easiest way to reduce dimensionality, provided that a
linear dependence exists, it is often used to pre-process the data. To this aim, PCA
projects the points on the directions of their maximum variance, estimated by
performing the eigen-decomposition on the data covariance matrix. Exploiting
PCA, d can be estimated by counting the number of normalized eigenvalues that
are higher than the threshold value ρ. Another interesting global approach is
described in [3]; the authors exploit entropic graphs, such as the geodesic minimal
spanning tree (GMST [2]) or the kNN-graph (kNNG), to estimate both the intrinsic
dimensionality of a manifold, and the intrinsic entropy of the manifold random
samples. Finally, we recall a well-known global intrinsic dimensionality estimator,
which is the packing number method [13]. Unfortunately, global approaches often
fail dealing with non-linearly embedded manifolds or noisy data, and they are
usually computationally too expensive on high dimensional datasets.

Local intrinsic dimensionality estimators, such as LLE [17], TVF [16], and Hes-
sian eigenmaps [5], are based on properties related to neighboring points in the
given dataset. Most of these techniques consider hyperspheres with sufficiently
small radius and centered on the dataset points, and they estimate some statis-
tics by considering the neighboring points, included into the hypersphere; these
statistics are expressed as functions of the intrinsic dimension of the manifold
from which the points have been drawn. One of these techniques is the Correla-
tion Dimension (CD) estimator [9]; it is based on the assumption that the volume
of a d-dimensional set scales with its size r as rd, which implies that also the num-
ber of samples covered by a hypersphere with radius r grows proportionally to rd.
Another well known technique is the Maximum Likelihood Estimator (MLE) [15]
(and its regularization [10]), that applies the principle of maximum likelihood
to the distances between close neighbors, and derive the estimator by a Poisson
process approximation. To our knowledge, local estimators are more robust to
noisy data than global ones, but most of them generally underestimate d when
its value is sufficiently high. To address this problem few techniques have been
proposed, among which the method described in [1] introduces a correction of
the estimated intrinsic dimension based on the estimation of the errors obtained
on synthetically produced datasets of known dimensionality.

In this work we present a local intrinsic dimension estimator, called IDEA,
exploiting the statistical properties of manifold neighborhoods. Moreover, we
compare our technique with state of the art algorithms. In Section 2 we describe
our theoretical results, our base consistent estimator, and an asymptotic correc-
tion technique; in Section 3 experimental settings and results are reported; in
Section 4 conclusions and future works are presented.

2 The Algorithm

In this section we present our theoretical results (see Section 2.1), our base
algorithm (see Section 2.2), and an asymptotic estimation correction technique
(see Section 2.3).
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2.1 Theoretical Results

Suppose to have a manifold M ≡ B(0, 1), where B(0, 1) is a d-dimensional
centered open ball with unitary radius, and choose ψ as the identity map. To
estimate the dimensionality d of B(0, 1) we need to identify a measurable charac-
teristic of the hypersphere depending only on d. To achieve this goal, we consider
that a d dimensional vector randomly sampled from a d dimensional hypersphere
according to the uniform probability density function (pdf), can be generated by
drawing a point ẑ from a standard normal distribution N (·|0, 1) and by scaling
its norm (see Section 3.29 of [7]):

z =
u

1
d

‖ẑ‖ ẑ, ẑ ∼ N (·|0, 1) (1)

where u is a random sample drawn from the uniform distribution U(0, 1).
Notice that, since u is uniformly distributed, the quantities 1− u1/d are dis-

tributed according to the beta pdf β1,d with expectation Eu∼U(0,1)

[
1− u1/d

]
=

1
1+d . Therefore, the intrinsic dimensionality of the hypersphere is computed as:

Ez∼Bd
[1− ‖z‖] = Ez∼Bd

[
1− u

1
d

]
=

1
1 + d

⇒ d =
Ez∼Bd

[‖z‖]
1− Ez∼Bd

[‖z‖] (2)

where Bd is the uniform pdf in the unit d-dimensional sphere. Notice that,
embedding the hypersphere in a higher dimensional space �D by means of a
map ψ that applies only a rotation, does not change this result.

More generally, we now consider points uniformly drawn from a d-dimensional
manifold M ≡ �d embedded in �D through a smooth map ψ : M → �D; under
these assumptions their norms may be not distributed as u

1
d . Nevertheless, being

ψ a smooth map, close neighbors of M are mapped to close neighbors of �D.
Moreover, choosing a d-dimensional open ball Bd(c, ε) with center c ∈ M and
radius ε > 0, as long as ψ preserves distances in Bd, then for z uniformly drawn
from Bd, the distances 1

ε‖ψ(c)−ψ(z)‖ = 1
ε‖c−z‖ are distributed as u

1
d , so that

the result reported in Equation (2) is still valid and we obtain:

d =
Ez∼Bd(c,ε)

[
1
ε‖ψ(c)− ψ(z)‖

]
1− Ez∼Bd(c,ε)

[
1
ε ‖ψ(c)− ψ(z)‖

] (3)

where, Bd(c, ε) is the uniform distribution in the ball Bd(c, ε).
To further generalize our theoretical results, we consider a locally isometric

smooth map ψ : M → �D, and samples drawn from M ≡ �d by means of a
non-uniform smooth pdf f : M → �+. Notice that, being ψ a local isometry,
it induces a distance function dψ (·, ·) representing the metric on ψ(M). Under
these assumptions Equations (2,3) do not hold. However, without loss of gen-
erality, we consider c = 0d ∈ �d and ψ(c) = 0D ∈ �D, and we show that any
smooth pdf f is locally uniform where the probability is not zero. To this aim,
assuming f(0d) > 0 and z ∈ �d, we denote with fε the pdf obtained by setting
fε(z) = 0 when ‖z‖ > 1, and fε(z) ∝ f(εz) when ‖z‖ ≤ 1. More precisely,
denoting with χBd(0,1) the indicator function on the ball Bd(0, 1), we obtain:

fε(z) =
f(εz)χBd(0,1)(z)∫
t∈Bd(0,1) f(εt)dt

(4)
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Theorem 1. Given {εi} → 0+, Equation (4) describes a sequence of pdf having
the unit d-dimensional ball as support; such sequence converges uniformly to the
uniform distribution Bd in the ball Bd(0, 1).

Proof. Evaluating the limit for ε→ 0+ of the distance between fε and Bd in the
supremum norm we get:

lim
ε→0+

‖fε(z) − Bd(z)‖sup = lim
ε→0+

∥∥∥∥∥ f(εz)χBd(0,1)∫
Bd(0,1)

f(εt)dt
− χBd(0,1)∫

Bd(0,1)
dt

∥∥∥∥∥
sup

{just notation} = lim
ε→0+

∥∥∥∥∥ f(εz)∫
Bd(0,1)

f(εt)dt
− 1∫

Bd(0,1)
dt

∥∥∥∥∥
sup Bd(0,1){

setting V =

∫
Bd(0,1)

dt

}
= lim

ε→0+

∥∥∥∥∥V f(εz) −
∫

Bd(0,1)
f(εt)dt

V
∫

Bd(0,1)
f(εt)dt

∥∥∥∥∥
sup Bd(0,1){

0 < lim
ε→0+

V

∫
Bd(0,1)

f(εt)dt < ∞
}

= lim
ε→0+

∥∥∥∥∥V f(εz) −
∫

Bd(0,1)

f(εt)dt

∥∥∥∥∥
sup Bd(0,1)

Defining:
min(ε) = min

Bd(0,1)
f(εz) max(ε) = max

Bd(0,1)
f(εz)

and noting that min(ε) > 0 definitely since f(0d) > 0, we have:

V ·min(ε) ≤ V f(εz) ≤ V ·max(ε)
V ·min(ε) ≤

∫
Bd(0,1)

f(εt)dt ≤ V ·max(ε)

thus their difference is bounded by V (max(ε) −min(ε)) −−−−→
ε→0+

0+. �

Theorem 1 proves that the convergence of fε to Bd is uniform, so that in the limit
(ε→ 0+) Equation (2) holds both for d-dimensional nonlinear manifolds embed-
ded in �D, and for points drawn by means of a non-uniform density function f .
More precisely, for the smoothness and for the local isometry of ψ:

Ez∼fε [dψ (ψ(z), ψ(0d))] = Ez∼fε [‖z‖] −−−−→
ε→0+

Ez∼Bd
[‖z‖] = m (5)

2.2 The Base Algorithm

Consider a d-dimensional manifold M ≡ �d non-linearly embedded in �D

through a smooth locally isometric map ψ : M → �D. Given a sample set
XN = {xi}N

i=1 = {ψ(zi)}N
i=1 ⊂ �D, where zi ∈ �d are independent identically

distributed points drawn from M according to a smooth pdf f : M→ �+, our
aim is to exploit our theoretical results to estimate the intrinsic dimensionality
of M by means of the points in the set XN .

More precisely, the expectation of distances 1
εdψ (ψ(c),x) for infinitesimal

balls BD(ψ(c), ε) with c ∈ M must be estimated. To this aim, for each point
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xi ∈ XN we find the set of k + 1 (1 ≤ k ≤ N − 1) nearest neighbors X̂N
k+1 =

X̂N
k+1(xi) = {xj}k+1

j=1 ⊂ XN . Call x̂ = x̂N
k+1(xi) ∈ X̂N

k+1 the most distant point
from xi, and denote XN

k = XN
k (xi) = X̂N

k+1\{x̂}. Notice that, when xi is fixed,
almost surely (a.s.) we have ‖x− xi‖ < ‖x̂ − xi‖ ∀x ∈ XN

k ; therefore, we can
consider points in XN

k as drawn from the open ball BD(xi, ‖x̂−xi‖). Exploiting
this fact, in order to estimate the intrinsic dimension d of M, we estimate the
expectation of distances as follows:

m � 1
k

∑
x∈XN

k

‖xi − x‖
‖x̂− x‖

Note that m depends only upon the intrinsic dimensionality d of M and does
not depend on the chosen center xi.

Corollary 1. Given two sequences {kj} and {Nj} such that for j → +∞:

kj → +∞, Nj → +∞,
kj

Nj
→ 0 (6)

We have the limit:

lim
j→+∞

1
kj

∑
x∈X

Nj
kj

‖xi − x‖
‖x̂− x‖ = m a.s. (7)

Proof. Considering the sequences {kj} and {Nj}, the conditions reported in
Equation (6) ensure that ε = ‖x̂− xi‖ → 0+ when j → +∞1. Theorem 4 in [4]
ensures that geodetic distances in the infinitesimal ball converge to Euclidean dis-
tances with probability 1; furthermore, the sample mean is an unbiased estimator
for the expectation (law of large numbers); moreover, Theorem 1 guarantees that
the underlying pdf converges to the uniform one. We have:

lim
j→+∞

1

kj

∑
x∈X

Nj
kj

‖xi − x‖
‖x̂− x‖ = lim

j→+∞
1

kjε

∑
x∈X

Nj
kj

dψ (xi,x) + o(ε) =

lim
ε→0+

Ez∼fε

[
1

ε
dψ (ψ(z), ψ(0d))

]
= lim

ε→0+
Ez∼Bd(0,ε)

[
1

ε
dψ (ψ(z), ψ(0d))

]
=

lim
ε→0+

1

ε
ε Ez∼Bd(0,1) [dψ (ψ(z), ψ(0d))] = Ez∼Bd(0,1) [‖z‖] = m

(8)
�

By employing Equation (2) and Corollary 1, we get a consistent estimator d̂ for
the intrinsic dimensionality d of M as follows:

m � m̂ =
1
Nk

N∑
i=1

∑
x∈XN

k

‖xi − x‖
‖x̂− x‖

d =
m

1−m
� m̂

1− m̂
= d̂ (9)

1 See proof of Theorem 4 in [4] where k must be substituted by o(n).
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2.3 Asymptotic Correction

Although the algorithm described in Section 2.2 proposes a consistent estimator
of the intrinsic dimension, when the dimensionality is too high, the number of
sample points becomes insufficient to compute an acceptable estimation. This is
due to the fact that, as shown in [6], the number of sample points required to
perform dimensionality estimation with acceptable results, grows exponentially
with the value of the intrinsic dimensionality (“curse of dimensionality”).

In literature, some methods have been proposed to reduce this effect. For in-
stance, in [1] the authors propose a correction of the estimated intrinsic dimen-
sion based on the estimation of the errors obtained on synthetically produced
datasets of known dimensionality (hypercubes). Another interesting approach
has been proposed in [3], where the authors propose a non parametric least
square strategy based on re-sampling from the point population XN .

Similarly, in our work we propose a method that allows to study the asymp-
totic behavior described by the available data. To this aim, we adopt a Monte
Carlo approach performing R runs of the algorithm reported in Section 2.2. We
extract from the given dataset XN random subsets RR

r=1 with different car-
dinalities RR

r=1. The cardinalities Rr are randomly generated by means of the
binomial distribution Binom(N, p), where the value of p spans a fixed range2.
The intrinsic dimensionality, estimated during each run, becomes a sample from
a “trend curve”; moreover, for each subsample we choose the kNN parameter
kr =

⌈
k
√
p
⌉
, trying to emulate a sequence {kr} such that kr → +∞, Rr → +∞,

and kr

Rr
→ 0, thus fulfilling the conditions reported in Equation (6).

We noticed that, when the base algorithm proposed in Section 2.2 underes-
timates the intrinsic dimensionality, its application to point subsets RR

r=1 with
increasing cardinality produces increasing estimations of the intrinsic dimension
d̂ = d̂(Rr). As demonstrated in Section 2.2, these estimates converge to the real
intrinsic dimensionality for j → +∞ (see conditions reported in Equation (6)).
Our assumption, based on this empirical observation, is that the function d̂(N)
has a horizontal asymptote. Therefore, we fit the pairs

(
log(Rr), d̂(Rr)

)
by

means of the parametric function3 g described below:

d̂(Rr) � g (Rr) = a0 −
a1

log2(
Rr

a2
+ a3)

(10)

where {ai}3i=0 are fitting parameters controlling translation and scaling on both
axes; their values are computed by a non-linear least squares fitting algorithm.
Notice that, since limRr→+∞ g (Rr) = a0 then the asymptote of Equation (10)
is d̂ = a0. Moreover, the derivate g′ = D[g(Rr)] shows that the parameter
a1 controls the increasing/decreasing behavior of the function g. For these rea-
sons, when the estimated parameter a1 > 0 (increasing function), we use the

2 In our tests p ∈ {0.1, · · · , 0.9}.
3 The choice of using 2 as the log base does not affect the results, being the change of

base just a change of scale in the y axis.
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Table 1. Brief description of the synthetic and real datasets, where d is the intrinsic
dimension, and D is the embedding space dimension. In the second column of the
synthetic data, the number in the subscript refers to the dataset name used by the
generator proposed in [11].

Dataset Name d D Description

Syntethic

M1 10 11 Uniformly sampled sphere linearly embedded.
M2 3 5 Affine space.
M3 4 6 Concentrated figure, easy to confuse with a 3d one.
M4 4 8 Non-linear manifold.
M5 2 3 2-d Helix
M6 6 36 Non-linear manifold.
M7 2 3 Swiss-Roll.
M8 12 72 Non-linear manifold.
M9 20 20 Affine space.

M10a 10 11 Uniformly sampled hypercube.
M10b 17 18 Uniformly sampled hypercube.
M10c 24 25 Uniformly sampled hypercube.
M11 2 3 Möebius band 10-times twisted.
M12 20 20 Isotropic multivariate Gaussian.
M13 1 13 Curve.

Real
MF aces 3 4096 ISOMAP face dataset.

MMNIST1 8 − 11 784 MNIST database (digit 1).
MMNIST3 12 − 14 784 MNIST database (digit 3).

parameter a0 as the final estimate for d; otherwise, we use the estimation ob-
tained by the base algorithm applied to the whole dataset.

To obtain a stable estimation of the intrinsic dimension we execute the asymp-
totic correction algorithm 20 times and we average the obtained results.

3 Algorithm Evaluation

In this section we describe the datasets employed in our experiments (see Sec-
tion 3.1), we summarize the adopted experimental settings (see Section 3.2), and
we report the achieved results (see Section 3.3).

3.1 Dataset Description

To evaluate our algorithm, we have performed experiments on both synthetic and
real datasets (see Table 1). To generate the synthetic datasets we have employed
the tool proposed in [11]. The real datasets are the ISOMAP face database [18]
and the MNIST database [14]. The ISOMAP face dataset consists in 698 gray-
level images of size 64 × 64 depicting the face of a sculpture. This dataset has
three degrees of freedom: two for the pose and one for the lighting direction.
The MNIST database consists in 70000 gray-level images of size 28× 28 of hand-
written digits; in our tests we have used the 6742 training points representing
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Table 2. Parameter settings for the different estimators: k represents the number of
neighbors, γ the edge weighting factor for kNN, M the number of Least Square (LS)
runs, and N the number of resampling trials per LS iterations

Method Synthetic Real

PCA Threshold = 0.025 Threshold = 0.0025
CD None None
MLE k1 = 6 k2 = 20 k1 = 3 k2 = 8
kNNG1 k1 = 6, k2 = 20, γ = 1, M = 1, N = 10 k1 = 3, k2 = 8, γ = 1, M = 1, N = 10
kNNG2 k1 = 6, k2 = 20, γ = 1, M = 10, N = 1 k1 = 3, k2 = 8, γ = 1, M = 10, N = 1
IDEA k = 20 k = 8

the digit 1 and the 6131 training points representing the digit 3. The intrinsic
dimension of the datasets extracted from the MNIST database is not actually
known, but some works have proposed similar estimations [11,4] for the different
digits. More precisely, these works report an estimation in the range d ∈ {8..11}
for digit 1, and between 12 and 14 for the digit 3.

3.2 Experimental Setting

We have compared our method with well-known global (PCA, kNNG) and local (CD,
MLE) intrinsic dimension estimators. For kNNG and MLE4, we have used the au-
thors’ Matlab implementation, and we have employed the version in the toolbox
of dimensionality reduction for the other algorithms5.

We have used the synthetic dataset generator [11] to create 20 instances of
each dataset reported in Table 1, each of which was composed by 2000 ran-
domly sampled points. To execute multiple tests on MMNIST1 and MMNIST3,
we have extracted 5 random subsets per dataset containing 2000 points each.
To obtain a stable estimation, for each technique we have averaged the results
achieved on the different subsets. Table 2 summarizes the employed configura-
tion parameters. To relax the dependency of kNNG from the selection of k, we
performed multiple runs with k1 ≤ k ≤ k2 and we averaged the achieved results.

3.3 Experimental Results

In this subsection results achieved on both real and synthetic datasets are re-
ported. On synthetic datasets (see Table 3) our method has computed good
approximations both on low and high intrinsic dimensional datasets, achieving
results always comparable with those that better approximate the real intrinsic
dimension. We further note that IDEA has generally outperformed global meth-
ods on strongly non-linearly embedded manifolds obtaining good estimations on

4 http://www.eecs.umich.edu/∼hero/IntrinsicDim/,
http://www.stat.lsa.umich.edu/∼elevina/mledim.m

5 http://cseweb.ucsd.edu/∼lvdmaaten/dr/download.php
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Table 3. Results achieved on synthetic datasets by global and local approaches. In
bold the best approximations achieved both by global and by local techniques.

Dataset Int. Dim PCA kNNG1 kNNG2 CD MLE IDEA

M13 1 4 1.00 1.01 1.07 1.00 1.12
M5 2 3 1.96 2.00 1.98 1.96 2.07
M7 2 3 1.93 1.98 1.94 1.97 1.97
M11 2 3 1.96 2.01 2.23 2.30 1.98
M2 3 3 2.85 2.93 2.88 2.87 3.07
M3 4 4 3.80 4.22 3.16 3.82 4.01
M4 4 8 4.08 4.06 3.85 3.98 4.07
M6 6 12 6.53 13.99 5.91 6.45 6.79
M1 10 11 9.07 9.39 9.09 9.06 10.35

M10a 10 10 8.35 9.00 8.04 8.22 10.07
M8 12 24 14.19 8.29 10.91 13.69 14.45

M10b 17 17 12.85 15.58 12.09 12.77 16.78
M9 20 20 14.87 17.07 13.60 14.54 16.81
M12 20 20 16.50 14.58 11.24 15.67 21.08
M10c 24 24 17.26 23.68 15.48 16.80 23.94

Table 4. Results achieved on real datasets by global and local approaches. In bold the
best approximations achieved both by global and by local techniques.

Dataset Int. Dim PCA kNNG1 kNNG2 CD MLE IDEA

MF aces 3 21 3.60 4.32 3.37 4.05 3.73
MMNIST1 8-11 11.80 10.37 9.58 6.96 10.29 11.06
MMNIST3 12-14 9.80 37.70 16.16 10.16 15.67 14.98

high intrinsic dimensional datasets where local techniques have usually under-
estimated the correct value. These behaviors have confirmed the quality of the
asymptotic correction algorithm.

In Table 4 the results achieved on real datasets have been summarized; notice
that, using real data that are often noisy, IDEA has obtained either the best
approximation of the intrinsic dimension or stable results comparable with those
achieved by the best performing technique.

4 Conclusions and Future Works

In this work we have presented a consistent local intrinsic dimension estimator
that exploits the statistical properties of manifold neighborhoods. Moreover, we
have proposed an asymptotic correction of our algorithm to reduce the under-
estimate behavior that affects most of the local intrinsic dimension estimation
methods. The promising results achieved, and the comparison with state of the
art techniques, have confirmed the quality of the proposed technique. Moreover,
in our tests, only IDEA has obtained good estimations both on low and high
intrinsic dimensional datasets, and both on linear and non-linear embeddings.
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In future works we want to focus on the asymptotic correction algorithm to
improve the theoretical background about the fitting function.
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Abstract. In this paper we present a novel dynamic programming al-
gorithm to synthesize an optimal decision tree from OR-decision tables,
an extension of standard decision tables, which allow to choose between
several alternative actions in the same rule. Experiments are reported,
showing the computational time improvements over state of the art im-
plementations of connected components labeling, using this modelling
technique.
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1 Introduction

A decision table is a tabular form that presents a set of conditions which must
be tested and a list of corresponding actions to be performed. Each combination
of condition entries (condition outcomes) is paired to an action entry. In the
action entries, a column is marked, for example with a “1”, to specify whether
the corresponding action is to be performed. The interpretation of a decision
table is straightforward: all actions marked with 1s in the action entries vector
should be performed if the corresponding outcome is obtained when testing the
conditions [8]. In general, decision tables are used to describe the behavior of a
system whose state can be represented as a vector, i.e. the outcome of testing
certain conditions. Given a particular state, the system evolves by performing a
set of actions that depend on the given state of the system. The state is described
by a particular rule, the action by the corresponding row of the table.

Even if decision tables are easy to read and understand, their straightforward
use might not be efficient. In fact, decision tables require all conditions to be
tested in order to select the corresponding actions to be executed, and testing
the conditions of the decision table has a cost which is related to the number
of conditions and to the computational cost of each test. There are a number
of cases in which not all conditions must be tested in order to decide which
action has to be performed, because the specific values assumed by a subset of
conditions might be enough to pick a decision. This observation suggests that

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 443–452, 2011.
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the order with which the conditions are verified impacts on the number of tests
required, thus on the total cost of testing. Moreover, after selecting the first
condition to be tested, the second condition to test might vary according to the
outcome of the first test. What is thus obtained is a decision tree, a tree that
specifies the order in which to test the conditions, given the outcome of previous
tests. Changing the order in which conditions are tested might lead to more or
less tests to be performed, and hence to a higher or lower execution cost. The
optimal decision tree is the one that requires, on average, the minimum cost
when deciding which actions to execute.

In a large class of image processing algorithms the output value for each image
pixel is obtained from the value of the pixel itself and some of its neighbors. We
can refer to these as local or neighborhood algorithms. In particular, for binary
images, we can model local algorithms by means of a limited entry decision table,
in which the pixels values are conditions to be tested and the output is chosen
by the action corresponding to the conditions outcome.

In this paper we will address the recently introduced OR-decision tables [2],
providing a dynamic programming algorithm to derive optimal decision trees for
such decision tables. The algorithm is applied to the currently fastest connected
components labeling algorithm, showing how the proposed optimal synthesis
improves, in terms of efficiency, the previous approaches.

2 Decision Tables and Decision Trees

Given a set of conditions and the corresponding actions to be performed accord-
ing to the outcome of these testing conditions, we can arrange them in a tabular
form T called a decision table: each row corresponds to a particular outcome for
the conditions and is called rule, each column corresponds to a particular action
to be performed. A given entry T [i, j] of the table is set to one if the action
corresponding to column j must be performed given the outcome of the testing
condition as in row i; the entry is set to zero otherwise. Different rules might
have different probability to occur and testing conditions might be more o less
expensive to test. The order in which conditions are tested might be influent or
not.

There are different kind of decision tables, according to the system they de-
scribe: a table is said to be a limited entry decision table [6] if the outcome of
the testing conditions is binary; it is called extended entry otherwise. A table in
which there is a row for every possible rule is said to be an expanded decision
table, and compressed otherwise. We will call a decision table an AND -decision
table if all the actions in a row must be executed when the corresponding rule
occurs, instead we will call it an OR-decision table if any of the actions in a
row might be executed when the corresponding rule occurs. In particular, OR-
decision tables were firstly introduced by Grana et al. [2].

There are two main approaches to derive decision trees from decision tables:
a top-down approach, in which a rule of the table is selected to be the root of
the tree and the subtrees are build by recursively solving the problem on the
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two portions of the table that are obtained by removing the rule that has been
placed in the root; a bottom-up approach, in which rules are grouped together if
the associated actions can be decided by testing a common subset of conditions.
We adopt the second approach, mainly because it has been shown to be able to
handle tables having a larger number of conditions (hence, rules).

Schumacher et al. [8] proposed a bottom-up Dynamic Programming technique
which guarantees to find the optimal decision tree given an expanded limited
entry decision table, in which each row contains only one non-zero value. This
strategy can be extended also to limited entry AND -decision tables. Lew [5] gives
a Dynamic Programming approach for the case of extended entry and/or com-
pressed AND -decision tables. In this paper, we extend Schumacher’s approach
to OR-decision tables.

2.1 Preliminaries and Notation

An OR-decision table is described by the following sets and parameters:

– C = {c1, . . . , cL} boolean conditions; the cost of testing condition ci is given
by wi > 0;

– R = {r1, . . . , r2L} rules; each rule is a boolean vector of L elements, element
i corresponding to the outcome of condition ci; the probability that rule r
occurs is given by pr ≥ 0;

– A = {a1, . . . , aM} actions; rule ri is associated to a non empty subset A(i) ⊆
A to be executed when the outcome of conditions cj identifies rule ri.

We wish to determine an efficient way to test conditions c1, . . . , cL in order to de-
cide as soon as possible which action should be executed according to the values
of conditions cj . In particular, we wish to determine in which order conditions ci
have to be checked, so that the minimum number of tests are performed. Such
information are given in the form of a tree, called decision tree, and here we will
give an algorithm to find the optimal one, intuitively the one that stores these
information in the most succinte way.

In the following we will call set K ⊆ R a k-cube if it is a subset of rules in
which the value of L− k conditions is fixed. It will be represented as a L-vector
of k dashes (−) and L − k values 0’s and 1’s. The set of positions containing
dashes will be denoted as DK . We associate to cube K a set of rules, denoted by
AK , that contains the intersection of the sets of actions associated to the rules
in K (might be an empty set). The occurrence probability of the k-cube K is
the probability PK of any rule in K to occur, i.e. PK =

∑
r∈K pr. Finally, we

will denote with Kk the set of the k-cubes, for k = 0, . . . , L.
A Decision Tree for K is a binary tree T with the following properties:

1. Each leaf � corresponds to a k-cube of rules, denoted by K
, that is a subset
of K. Each leaf � is associated to the set of actions AK�

associated to cube
K
. Each internal node is labeled with a testing condition ci ∈ C such that
there is a dash at position i in the vector representation of K. Left (resp.
right) outgoing edges are labeled with 0 (resp. 1).
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2. Two distinct nodes on the same root-leaf path can not be labeled with the
same testing condition. Root-leaf paths univocally identify, by means of node
and edges labels, the set of rules associated to leaves: conditions labeling
nodes on the path must be set to the value of the label on the corresponding
outgoing edges, the remaining conditions are set to a dash.

The cost of making a specific decision, is the cost of testing the conditions on a
root-leaf path, in order to execute one of the actions associated to the leaf. On
average, the cost of making decisions is given by the sum of the root-leaf paths
weighted by the probabilty that the rules associated to leaves occur; i.e. the
average cost of a decision tree is a measure of the cost of testing the conditions
that we need to check in order to decide which actions to take when rules occur,
weighted by the probability that rules occur.

We formally define the notions of cost and gain of decision trees on cubes,
that will be used in the following.

Definition 1 (Cost and Gain of a Decision Tree). Given a k-cube K, with
dashes in positions DK , and a decision tree T for K, cost and gain of T are
defined in the following way:

cost(T ) =
∑

∈L

⎛⎝P


∑
ci∈path(
)

wi

⎞⎠ , (1)

where L is the set of leaves of the tree and the wis are the costs of the testing
conditions on the root-leaf path leading to � ∈ L, denoted by path(�);

gain(T ) = PK

∑
i∈DK

wi − cost(T ), (2)

where PK

∑
i∈DK

wi is the maximum possibile cost for a decision tree for K.
An Optimal Decision Tree for k-cube K is a decision tree for the cube with

minimum cost (might not be unique) or, equivalently, with maximum gain.

Observe that, when the probabilities of the rules in the leaves of the tree sum up
to one, the cost defined in equation (1) is exaclty the quantity that we wish to
minimize in order to find a decision tree of minimum average cost for the L-cube
that describes a given OR-Decision table.

A simple algorithm to derive a decision tree for a k-cube K works recursively
in the following way: select a condition index i that is set to a dash and make
the root of the tree a node labeled with condition ci. Partition the cube K into
two cubes Ki,0 and Ki,1 such that condition ci is set to zero in Ki,0 and to one
in Ki,1. Recursively build decision trees for the two cubes of the partition, then
make them the left and right children of the root, respectively. Recursion stops
when all the rules in the cube have at least one associated action in common.

The cost of the outcoming tree is strongly affected by the order used to select
the index that determines the cube partition. In the next section we give a
dynamic programming algorithm that determines a selection order that produces
a tree with maximum gain.
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2.2 Dynamic Programming Algorithm

An optimal decision tree can be computed using a generalization of the Dynamic
Programming strategy introduced by [8], with a bottom-up approach: staring
from 0-cubes and for increasing dimension of cubes, the algorithm computes the
gain of all possible trees for all cubes and keeps track of only the ones having
maximum gain. The trick that allows to choose the best action to execute is to
keep track of the intersection of actions sets of all the rules in the k-cube. It is
possible to formally prove both the correctness and optimality of the algorithm.

1: for K ∈ R do � Inizialization of 0-cubes in R ∈ K0

2: Gain∗
K ← 0

3: AK ← set of actions associated to rule in K
4: end for
5: for n ∈ [1, L] do � for all possible cube dimentions > 0
6: for K ∈ Kn do � for all possible cubes with n dashes

� compute current cube probability and set of actions
7: PK ← PKj,0 + PKj,1 � where j is any index in DK

8: AK ← AKj,0 ∩AKj,1

� compute gains obtained by ignoring one condition at the time
9: for i ∈ DK do � for all positions set to a dash

10: if AK �= ∅ then
11: GainK(i)← wiPK +Gain∗

Ki,0
+Gain∗

Ki,1

12: else
13: GainK(i)← Gain∗

Ki,0
+Gain∗

Ki,1

14: end if
15: end for

� keep the best gain and its index
16: i∗K ← argmaxi∈DK

GainK(i)
17: Gain∗

K ← GainK(i∗K)
18: end for
19: end for
20: BuildTree(K ∈ KL) � Recursively build tree on entire set of rules

21: procedure BuildTree(K)
22: if AK �= ∅ then
23: CreateLeaf(AK )
24: else
25: left← BuildTree(Ki∗

K
,0)

26: right← BuildTree(Ki∗K ,1)
27: CreateNode(ci∗K , left, right)
28: end if
29: end procedure

Figure 1 reports two examples of the algorithm steps with L = 3. order is
the number of dashes in the cubes under consideration; the portion of a table
characterized by the same order referes to one run of the for cycle in lines 5 - 19.
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order a b c A P G1 G2 G3
0 0 0 0 1 0,125

0 0 1 3 0,125
0 1 0 1,3 0,125
0 1 1 3 0,125
1 0 0 2 0,125
1 0 1 3 0,125
1 1 0 2,4 0,125
1 1 1 4 0,125

1 0 0 0 0,250 0,000
0 1 3 0,250 0,250
1 0 0 0,250 0,000
1 1 0 0,250 0,000

0 0 1 0,250 0,250
0 1 3 0,250 0,250
1 0 2 0,250 0,250
1 1 0 0,250 0,000
0 0 0 0,250 0,000
0 1 3 0,250 0,250
1 0 0 0,250 0,000
1 1 4 0,250 0,250

2 0 0 0,500 0,500 0,000
1 0 0,500 0,250 0,250

0 0 0,500 0,000 0,250
1 0 0,500 0,500 0,000

0 0 0,500 0,250 0,500
1 0 0,500 0,250 0,250

3 0 1,000 0,750 0,750 0,750

(a)

order a b c A P G1 G2 G3
0 0 0 0 1 0,100

0 0 1 3 0,100
0 1 0 1,3 0,100
0 1 1 3 0,100
1 0 0 2 0,100
1 0 1 3 0,200
1 1 0 2,4 0,100
1 1 1 4 0,200

1 0 0 0 0,200 0,000
0 1 3 0,300 0,300
1 0 0 0,200 0,000
1 1 0 0,300 0,000

0 0 1 0,200 0,200
0 1 3 0,200 0,200
1 0 2 0,200 0,200
1 1 0 0,400 0,000
0 0 0 0,200 0,000
0 1 3 0,200 0,200
1 0 0 0,300 0,000
1 1 4 0,300 0,300

2 0 0 0,500 0,400 0,000
1 0 0,500 0,200 0,300

0 0 0,400 0,000 0,300
1 0 0,600 0,500 0,000

0 0 0,400 0,200 0,400
1 0 0,600 0,300 0,200

3 0 1,000 0,700 0,800 0,700

(b)

Fig. 1. Tabular format listing of the algorithm steps

a,b and c are the testing conditions, A (resp. P ) the set of actions (resp. prob-
ability occurrence) associated to the cube identified by the values assumed by
conditions on a particular row of the table. Gi, with i = 1, 2, 3, are the gains
computed by the successive runs of the for cycle in lines 9 - 15. The highlighted
values are those leading to the optimal solution (line 17). In case (a), a set of
actions and alternatives with uniform probabilities is shown. The action sets get
progressively reduced up to empty set, while the probabilities increase up to
unity. While the n-cube order increases, different dashes can be selected (thus
different conditions may be chosen) and the corresponding gain is computed. In
this particular case, any choice of the first condition to be checked is equivalent
(we conventionally choose the leftmost one). When the probability distribution
of the rules changes, as in case (b), the gains change accordingly and, in the
depicted case, a single tree (rooted with condition b) is the optimal one.

2.3 Computational Time

The total number of cubes that are analyzed by the algorithm is 3L, one for all
possible words of length L on the three letter alphabet {0, 1,−}. For each cube
K of dimension n it computes: (1) the intersection of the actions associated to
the cubes in one partition (line 8); this task that can be accomplished, in the
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Fig. 2. The standard mask used for raster scan connected components labeling since
original’s Rosenfeld approach (a), and the 2 × 2 block based mask used in our novel
approach. In both masks, non-bold letters identify pixels which are not employed in
the algorithm.

worst case, in time linear with the number of actions. (2) The gain of n ≤ L
trees, one for each dash (lines 9 - 15), each in constant time. Hence, as the
recursive cosntruction of the tree adds only a non dominant additive cost, the
computational time of the algortihm is upper bounded by:

3L · (|A|+ L) ≤ (22)L · (|A|+ L) ∈ O(|R|2 ·max{|A|, |C|}), (3)

where C is the set of conditions (and |C| = L), R the set of rules (and |R| = 2L),
and A is the set of actions.

3 Optimizing Connected Components Labeling

A Connected Components Labeling algorithm assigns a unique identifier (an
integer value, namely label) to every connected component of the image, in order
to give the possibility to refer to it in the next processing steps. Usually, labeling
algorithms deal with binary images.

The majority of images are stored in raster scan order, so the most common
technique for connected components labeling applies sequential local operations
in that order, as firstly introduced by Rosenfeld et al. [7]. This is classically
performed in 3 steps, described in the following.

During the first step, each pixel label is evaluated locally by only looking at the
labels of its already processed neighbors. When using 8-connectivity, these pixels
belong to the scanning mask shown in Fig. 2(a). During the scanning procedure,
pixels belonging to the same connected component can be assigned different
(provisional) labels, which at some point will be marked as equivalent. In the
second step, all the equivalent provisional labels must be merged into a single
class. Modern algorithms process equivalences as soon as they are discovered
(online equivalent labels resolution, as in [1]). Most of the recent optimizations
techniques aim at increasing the efficiency of this step. Once the equivalences
have been eventually solved, in the third step a second pass over the image is
performed in order to assign to each foreground pixel the representative label of
its equivalence class. Usually, the class representative is unique and it is set to
be the minimum label value in the class.
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The procedure of collecting labels and solving equivalences may be described
by a command execution metaphor : the current and neighboring pixels provide
a binary command word, interpreting foreground pixels as 1s and background
pixels as 0s. A different action must be executed based on the command received.
We may identify four different types of actions: no action is performed if the
current pixel does not belong to the foreground, a new label is created when the
neighborhood is only composed of background pixels, an assign action gives the
current pixel the label of a neighbor when no conflict occurs (either only one
pixel is foreground or all pixels share the same label), and finally a merge action
is performed to solve an equivalence between two or more classes and a repre-
sentative is assigned to the current pixel. The relation between the commands
and the corresponding actions may be conveniently described by means of an
OR-decision table.

As shown by Grana et al. [2], we can notice that, in algorithms with online
equivalences resolution, already processed 8-connected foreground pixels can-
not have different labels. This allows to remove merge operations between 8-
connected pixels, substituting them with assignments of either of the involved
pixels labels (many equivalent actions are possible, leading to the same result).
It is also possible to enlarge the neighborhood exploration window, with the aim
to speed up the connected components labeling process. The key idea comes
from two very straightforward observations: when using 8-connection, the pixels
of a 2×2 square are all connected to each other and a 2×2 square is the largest
set of pixels in which this property holds. This implies that all foreground pixels
in a the block will share the same label at the end of the computation. For this
reason we propose to scan the image moving on a 2 × 2 pixel grid applying,
instead of the classical neighborhood of Fig. 2(a), an extended mask of five 2×2
blocks, as shown in Fig. 2(b).

Employing all necessary pixels in the new mask of Fig. 2(b), we deal with
L = 16 pixels (thus conditions), for a total amount of 216 possible combinations.
Grana et al. [2] employed the original Schumacher’s algorithm, which required
the conversion of the OR-decision table to a single entry decision table. This
was performed with an heuristic technique, which led to producing a decision
tree containing 210 nodes sparse over 14 levels, assuming all patterns occurred
with the same probability and unitary cost for testing conditions. By using the
algorithm proposed in this work, under the same assumptions, we obtain a much
more compressed tree with 136 nodes sparse over 14 levels: the complexity in
terms of levels is the same, but the code footprint is much lighter.

To push the algorithm performances to its limits, we further propose to add
an occurrence probability for each pattern (pr), which can be computed offline
as a preprocessing stage on a subset of the dataset to be used, or the whole
of it. The subset used for the probability computation obviously affects the
algorithm performance (since we obtain a more or less optimal decision tree
given those values), but the idea we want to carry out is that this optimization
can be considered the upper bound of the performance we can obtain with this
method.
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Fig. 3. The direct comparison between the He’s approach (He08 ) with the three evo-
lutions of block based decision tree approach, from the initial proposal with heuristic
selection between alternative rules (BBHDT ), further improved with the optimal de-
cision tree generation (BBOUDT ) and finally enhanced with a probabilistic weight of
the rules (BBOPDT )

4 Experimental Results

In order to propose a valuable comparison with the state of the art, we used
a dataset of Otsu-binarized versions of 615 high resolution document images.
This dataset gives us the possibility to test the connected components label-
ing capabilities with very complex patterns at different sizes, with an average
resolution of 10.4 megapixels and 35,359 labels, providing a challenging dataset
which heavily stresses the algorithms. We performed a comparison between the
following approaches:

– He’s approach (He07 ), which highlights the benefits of the Union-Find al-
gorithm for labels resolution implemented with the set of three arrays as in
[3] and with the use of a decision tree to optimize the memory access with
the mask of Fig. 2(a).

– The block based approach with decision tree generated with heuristic selec-
tion between alternatives as previously proposed by Grana et al. [2] (BB-
HDT )

– The block based approach with optimal decision tree generated with the pro-
cedure as proposed in this work, assuming uniform distribution of patterns
( BBOUDT)

– The block based approach with optimal decision tree generated with the
procedure weighted with the pattern probabilities (BBOPDT )

For each of these algorithms, the median time over five runs is kept in order to
remove possible outliers due to other tasks performed by the operating system.
All algorithms of course produced the same labeling on all images, and a unitary
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cost is assumed for condition testing. The tests have been performed on a Intel
Core 2 Duo E6420 processor, using a single core for the processing. The code is
written in C++ and compiled on Windows 7 using Visual Studio 2008.

As reported in Fig. 3, we confirm the significant performance speedup pre-
sented by Grana et al. [2], which shows a gain of roughly 29% over the previous
state-of-the-art approach of He et al. [4]. The optimal solution proposed in this
work (BBODT) just slightly improves the performance of the algorithm. With
the use of the probabilistic weight of the rules, in this case computed on the en-
tire dataset, we can push the performance of the algorithm to its upper bound,
showing that the optimal solution gains up to 3.4% of speedup over the original
proposal. This last result, suggests that information about pattern occurrences
should be used whenever available, or produced if possible.

5 Conclusions

In this paper we proposed a dynamic programming algorithm to generate an op-
timal decision tree from OR-decision tables. This decision tree represents the op-
timal arrangement of conditions to verify, and for this reason provides the fastest
processing code to solve the neighborhood problem. The experimental section
evidence how our approach can lead to faster results than other techniques pro-
posed in literature. This suggests how this methodology can be considered a
general modeling approach for many local image processing problems.
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Abstract. In image processing, convolution is a frequently used oper-
ation. It is an important tool for performing basic image enhancement
as well as sophisticated analysis. Naturally, due to its necessity and still
continually increasing size of processed image data there is a great de-
mand for its efficient implementation. The fact is that the slowest algo-
rithms (that cannot be practically used) implementing the convolution
are capable of handling the data of arbitrary dimension and size. On
the other hand, the fastest algorithms have huge memory requirements
and hence impose image size limits. Regarding the convolution of huge
images, which might be the subtask of some more sophisticated algo-
rithm, fast and correct solution is essential. In this paper, we propose
a fast algorithm implementing exact computation of the shift invariant
convolution over huge multi-dimensional image data.

Keywords: Convolution, Fast Fourier Transform, Divide-et-Impera.

1 Introduction

Convolution is a very important mathematical tool in the field of image pro-
cessing. It is employed in edge detection [1], correlation [2], optical flow [3],
deconvolution [4], simulation [5], etc. Each time the convolution is called plenty
of primitive instructions (addition and multiplication) have to be computed. As
the amount of processed image data still raises, there is considerable request
for fast manipulation with huge image data. This means that the current image
processing algorithms have to be capable of handling large blocks of image data
in short time. As a lot of image processing methods is based on convolution,
we will focus on this mathematical tool and its modifications that bring some
acceleration or memory saving.

The basic convolution algorithm traces the individual pixel positions in the
input image. In each position, it evaluates inner product of current pixel neigh-
bourhood and flipped kernel. Although the time complexity of the algorithms
based on this approach is polynomial [6] this solution is very slow. This is true
namely for large kernels. There exist some improvements that guarantee lower
complexity, however always with some limitations.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 453–462, 2011.
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Separable convolution. The higher dimensional convolution with so called separa-
ble [7] kernels can be simply decomposed into several lower dimensional (cheaper)
convolutions. Gaussian, DoG, and Sobel [1] are the representatives of such group
of kernels. However, the deconvolution or template matching algorithms based
on correlation methods [2] typically use general kernels, which cannot be char-
acterized by special properties like separability.

Recursive filtering. The convolution is a process where the inner product, whose
size corresponds to kernel size, is computed again and again in each individual
pixel position. One of the vectors, that enter this operation, is always the same.
Hence, we can evaluate the whole inner product only in one position while the
neighbouring position can be computed as a slightly modified difference with
respect to the first position. Analogously, the same is valid for all the follow-
ing positions. The computation of the convolution using this approach is called
recursive filtering [7]. Also this method has its drawbacks. The conversion of gen-
eral convolution kernel into its recursive version is a nontrivial task. Moreover,
the recursive filtering often suffers from inaccuracy and instability [8].

Fast convolution. While the convolution in time domain performs an inner prod-
uct in each pixel position, all we have to do in Fourier domain is point-wise mul-
tiplication. Due to this convolution property we can evaluate the convolution
in time O(N logN). This approach is known as a fast convolution [9]. Another
advantage is that no restrictions are imposed on the kernel. Unfortunately, the
excessive space requirements make this approach not very popular.

In this paper, we designed a fast algorithm capable of performing the convo-
lution over huge image data. We considered both the image and the kernel of
large size and the dimensions up to 3D. For the simplicity, all the statements
will be explained for 1D space. The extension to higher dimensions will be either
straightforward or we will explicitly focus on it. We did not impose any restric-
tions on the convolution kernel, i.e. the kernel neither was separable nor could
be simply represented as a recursive filter.

2 Problem Analysis

In the following, we will focus on the efficient implementation that does not im-
pose any special conditions on convolution kernels. Hence, the fast convolution
will be under the scope. We will provide the analysis of time and space complex-
ity. Regarding the former one we will focus on the number of complex additions
and multiplications needed for the computation of studied algorithms.

Utilizing the convolution theorem and the fast Fourier transform the 1D con-
volution of two signals f and g requires

(M+N)
[
9
2

log2(M+N) + 1
]

(1)
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steps. Here size(f) = M , size(g) = N , and the term (M +N) means that the
processed image f was zero padded1 to prevent the overlap effect caused by cir-
cular convolution. The kernel was modified in the same way. Another advantage
of using Fourier transform stems from its separability. When convolving two 3D
images f3d and g3d, where size(f3d) = M×M×M and size(g3d) = N×N×N ,
we need only

(M+N)3
[
9
2

log2(M+N)3 + 1
]

(2)

steps in total. Up to now, this method seemed to be optimal. Before we proceed,
let us have a look at the space complexity of this approach.

If we do not take into account buffers for the input/output images and serialize
both Fourier transforms, we need space for two equally aligned Fourier images
and some negligible Fourier transform workspace. In total, it is

(M +N) · C (3)

bytes, where (M+N) is a size of one padded image and C is a constant dependent
on the required algorithm precision (single, double or long double). If the double
precision is required, for example, then C = 2·sizeof(double), which corresponds
to two Fourier images used by real-valued FFT. In 3D case, when size(f3d) =
M×M×M and size(g3d) = N×N×N the space needed by the aligned image
data is proportionally higher: (M +N)3 · C bytes.

For better insight, let us consider the complex simulation process, in which the
convolution of two relatively small images 500×500×224 voxels and 128×128×100
voxels is called. In this example, the filtered image was a fraction of some larger
3D microscopic image and the kernel was an empirically measured point spread
function (PSF). The convolution was one of image processing algorithm called
from our simulation toolbox2. When this convolution was performed in double
precision on Intel Xeon QuadCore 2.83 GHz computer it took 41 seconds using
fast convolution while it lasted cca for 4 days when asked for the computation
based on the basic approach. Although the FFT based approach seemed to be
very promising, it disappointed regarding the memory requirements. Here are
the reasons:

– For the computation of fast convolution, both the image and the kernel must
be aligned (typically padded) to the same size.

– If not padded with sufficiently large zero area, the result may differ from
that of basic approach due to the periodicity of discrete FT.

– In order to minimize the numerical inaccuracy, FFT over large memory
blocks must be computed at least in double precision. In the example above,
2GB of physical memory was required.

It is clear that using this method the memory overhead is very high. In the
following, we will try to reduce the memory requirements while keeping the
efficiency of the whole convolution process.
1 The size of padded image should be exactly (M + N − 1). For the sake of simplicity,

we reduced this term to (M + N) as we suppose M �1 and N �1.
2 CytoPacq – a simulation toolbox: http://cbia.fi.muni.cz/simulator/
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3 Method

Keeping in mind that due to the lack of available memory, direct computation
of fast convolution is not realizable using common computers we will try to split
the whole task into several subtasks. This means that the image and kernel will
be split into smaller pieces, so called tiles that need not be of the same size.

3.1 Image Tiling

Splitting the convolved image f into smaller tiles f1, f2, . . . , fm, then perform-
ing m smaller convolutions fi⊗g, i = {1, . . . ,m} and finally merging the results
together with discarding the overlaps is a well known algorithm in digital sig-
nal processing. The implementation is commonly known as the overlap-save
method [9].

Let us inspect the memory requirements for this approach. Again, let
size(f) = M and size(g) = N . As the filtered image f is split into m pieces,
the respective memory requirements are lowered to(

M

m
+N

)
· C (4)

bytes (compare to Eq. (3)). Hence, a slight improvement was reached. Concerning
the time complexity, the fast convolution of two 1D signals of length M and N
required (M+N)(9

2 log2(M+N) + 1) steps. If the image is split into m tiles, we
need to perform

(M+mN)
[
9
2

log2

(
M

m
+N

)
+ 1

]
(5)

steps in total. If there is no division (m=1) we get the time complexity of the
fast approach. If the division is total (m=M) we get even worse complexity than
the basic convolution has. The higher the level of splitting is required the worse
the complexity is. Therefore, we can conclude that splitting only the image into
tiles does not help.

3.2 Kernel Tiling

From the previous text, we recognize that splitting only the image f might be
inefficient. It may even happen that the kernel g is so large that splitting of
only the image f does not reduce the memory requirements sufficiently. As the
convolution belongs to commutative operators one could recommend swapping
the image and the kernel. This may help, namely when the image is small and
the kernel is very large. As soon as the image and the kernel are swapped, we
can simply apply the overlap-save method. However, this approach fails when
both the image and the kernel are too large.

Let us decompose the kernel g as well. Keeping in mind that the image f has
already been decomposed into m tiles, we can focus on the manipulation with
just one image tile fi, i ∈ {1, . . . ,m}. For the evaluation of convolution of the
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1: (f , g) ← (input image, kernel)
2: f → f1, f2, . . . , fm {split ’f ’ into tiles according to overlap-save scheme}
3: g → g1, g2, . . . , gn {split ’g’ into tiles according to overlap-add scheme}
4: h ← 0 {create the output image ’h’ and fill it with zeros}
5: for i = 1 to m do
6: for j = 1 to n do
7: hij ← convolve(fi, gj)

{use fast convolution}
8: hij ← discard overruns(hij)

{discard hij overruns following overlap-save output rules}
9: h ← h + shift(hij)

{add hij to h following overlap-add output rules}
10: end for
11: end for
12: Output ← h

Algorithm 1. Divide-et-impera approach applied to the convolution over large
image data.

selected image tile fi and the large kernel g we will employ so called overlap-
add method [9]. This method splits the kernel g into n pieces, then it performs
n smaller convolutions fi⊗ gj, j = {1, . . . , n}, and finally it adds the partial
solutions together preserving the appropriate overruns. This way, we obtain the
Algorithm 1. For the detailed description of this algorithm see Figure 1.

3.3 Efficiency

Let us suppose the image f is split into m tiles and kernel g is decomposed into
n tiles. The time complexity of the fast convolution fi⊗gj is(

M

m
+
N

n

)[
9
2

log2

(
M

m
+
N

n

)
+ 1

]
. (6)

We have m image tiles and n kernel tiles. In order to perform the complete
convolution f⊗g we have to perform m×n convolutions (see the nested loops
in Algorithm 1) of the individual image and kernel tiles. In total, we have to
complete

(Mn+Nm)
[
9
2

log2

(
M

m
+
N

n

)
+ 1

]
(7)

steps. One can clearly see that without any division (m = n = 1) we get the
complexity of fast convolution, i.e. the class O((M+N) log(M+N)). For total
division (m = M and n = N) we obtain basic convolution, i.e. the complexity
class O(MN). Concerning the space occupied by our convolution algorithm, we
need (

M

m
+
N

n

)
· C (8)
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Fig. 1. Convolution of image tile fi and kernel tile gj : (A,B) The tiles fi and gj are
selected. Remember the shift of these tiles with respect to the image they belong to.
These shifts will be used later. (C) The tile fi is extended and cropped. In this way,
we obtain f i. (D) The tile gj is cropped (redundant zeros are removed) and padded
with zeros in order to get g̃j . (E) The area of size size(fi)+size(gj) with the distance

shift(gj) from the right border is cropped. In this way, we get f̃i. (F,G) The image
buffers are aligned to the same size. They are ready for convolution. (H) The convolu-
tion is performed. (I) The solution hij is cut out and shifted to the correct position.
Finally, it is added to the output image h. Take note of the light-gray background of
some frames. In this way, we distinguish between input/output images (gray frames)
and intermediate results (white frames).
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bytes, where C is again the precision dependent constant and m,n are the levels
of division of image f and kernel g, respectively.

All the previous statements are related only to 1D signal. Provided both
image and kernel are D-dimensional cubes and the tiling proces is regular, we
can combine Eq. (2) and Eq. (7) in order to get:

(Mn+Nm)D
[

9
2

log2

(
M

m
+
N

n

)D

+ 1

]
(9)

This statement can be further generalized, i.e. the image and the kernel do not
have be in the shape of cube and the tiling does not have to be identical in all the
axes. It can be simply derived from the separability of multidimensional Fourier
transform, which guarantees that the time complexity of the higher dimensional
Fourier transform depends on the amount of processed voxels only. There is no
difference in the time complexity if the higher-dimensional image is elongated or
in the shape of cube.

4 Results

The proposed algorithm was compared to other freely available implementations
of fast convolution – see Figure 2. For the computation of Fourier transform all
three packages used FFTW library [10]. It can be clearly seen that the speed of
our new approach is comparable with those implemented in the most common
image processing toolkits and mostly it outperforms them. Unlike other toolkits,
if the computer has less memory than required our new approach does not fail.
It splits the task into subtasks and delegates the computing to the loop that
successively executes the individual subtasks.

In the previous section, an algorithm of splitting the image f into m tiles
and the kernel g into n tiles was proposed. Now we will answer the question
regarding the optimal way of splitting the image and the kernel. We still assume
that size(f) = M and size(g) = N . As M andN are constants let us focus only
on the relationship between m and n. Let us define the following substitution:
x = M

m and y = N
n . Here x and y stand for the sizes of the image and the kernel

tiles, respectively. Applying this substitution to Eq. (7) and simplifying, we get

MN

(
1
x

+
1
y

)[
9
2

log2(x + y) + 1
]

(10)

The plot of this function is depicted in Figure 3. The minimum of this function
is reached if and only if x=y and both variables x and y are maximized, i.e. the
image and the kernel tiles should be of the same size and they should be as large
as possible. In order to reach the optimal solution, the size of the tile should be
the power of small primes [11]. In this sense, it is recommended to fulfill both
criteria put on the tile size: the maximality (as stated above) and the capability
of simple decomposition into small primes.
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Fig. 2. A graph offering the comparison of the most common implementations of con-
volution and the new approach. Evaluated over two 3D images of identical size on
Intel Xeon QuadCore 2.83 GHz computer with 32 GB RAM. Take note, that ITK and
Matlab plots finish earlier as the computation for the images of large dimensions failed
due to the lack of memory.

5 Application

Convolution is a core part of many image processing algorithms. In our group we
employ the convolution in the process of simulation of fluorescence microscopy
images [12]. The simulation process usually consists of three consecutive stages:
generation of digital phantoms [13], simulation of optical system, and simulation
of acquisition device. We use the convolution in the first two stages:

5.1 Generation of Digital Phantoms

A digital phantom is an image of an estimated model of studied object. As soon
as the model is properly defined, a generation of the phantom is straightforward.
However, if we want to generate more phantoms we have to solve the problem
of collisions as it is reasonable to require the generation of non-overlapping ob-
jects only. For this purpose we utilized a correlation. Here, the input image is
usually a large image with previously generated phantoms inside and the kernel
is a smaller image with a newly generated phantom that should be added to
the input image. The output correlated image contains zeros in the positions,
where the new phantom will not overlap any of the already existing objects. As
the only difference between correlation and convolution stems in the flipping of
convolution kernel, the algorithm responsible for the correct placement of newly
generated phantoms was substituted with the convolution with flipped kernel.
The volume of the image to be correlated was set to the size 55×55×12 microns
which corresponded to 1024×1024×224 voxels for the selected optical system3.
3 Optical system configuration: microscope Zeiss 200M, objective Zeiss Plan-

Apochromat (100×/1.40 Oil), confocal unit Yokogawa CSU-10, and camera Andor
iXon DU888E (EM CCD 1024×1024 with pixel size 13 microns)
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The kernel size corresponded to the bounding box volume of simulated object.
In our case its was in average 10×10×10 microns (= 187×187×187 voxels). In
this example, the correlation memory requirements rose to 9.6 GB.

As long as we generated large complex cell structures we avoided the lack of
memory because the computer we used was equipped with 32 GB RAM. The
problem came out when the multiple spots within a large area were under the
scope. Due to low default image resolution, the size of each spot was almost
the same as one voxel. However, while the spot is expected to be of spherical
shape, the voxel is always rectangular. The remedy was to sufficiently up-sample
the image and the kernel. When we asked for n-tuple subpixel precision the size
of both image and kernel rose n-times along each axis! The excessive memory
requirements made the standard fast convolution approach unusable. For this
purpose we used our new approach that can handle the data of any size.

5.2 Simulation of Optical System

The simulation of optical system is a next step that directly follows up on the
generation of digital phantoms. The optical system is characterized by its PSF,
that describes how the infinitely small impulse is transformed when passing
through this system. This transform is usually modelled as a convolution, where
the image to be convolved is the image containing digital phantoms and the con-
volution kernel is represented by the PSF. In this task we used the same optical
system configuration and the same input image as in the example above. The
kernel size, which was an empirically measured PSF (prepared by SVI Huygens R©

Pro software), was fixed to the size of 128×128×100 voxels. The memory re-
quirements for the convolution started at about 6.8 GB and they accordingly
rose when asked for higher level of subpixel precision. Therefore, we again used
our new approach capable of working with large image data.

6 Conclusion

We designed a fast algorithm for the computation of the convolution. While all
the current methods impose some restrictions on the input data (size of the data,
separable kernel, size of kernel and image should be powers of small primes), we
do not require any. Prior to the computation, our algorithm verifies the amount
of available memory. If there is not enough memory the principle of divide-et-
impera is applied. Therefore, the unsolvable huge problem is split into several
smaller subproblems. In our approach we split the input data (the image and the
kernel). The efficiency of the computation highly depends on the level of division.
If no division is realized, the time complexity is equal to the complexity of the
fast convolution. On the other hand, if we were forced to split the image and the
kernel into individual pixels the time complexity of the algorithm would belong
to the same class as the basic approach. Following the graph in Fig. 3 one can
clearly see that all the other cases belong to the complexity classes in between. In
practice, we apply only a small level of division which leads nearly to the optimal
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Fig. 3. A graph of a function that represents the time complexity of tiled convolution.
The evident minimum occurs in the location, where both variables (size of the tiles)
are maximized and equal at the same time.

solution (fast convolution). The implementation of this convolution algorithm is
part of image processing library which is under GNU GPL and is available at:
http://cbia.fi.muni.cz/projects/i3dlibs.html. The algorithm has been
successfully used in the simulation toolbox developed in our group.
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Abstract. This paper presents an algorithm of half ellipse detection
from color images. Additionally the algorithm detects two color average
values along the both sides of a half ellipse. In contrast to standard
methods the new one finds not only parameters of the entire ellipse but
also the end points of a half ellipse. The paper introduces a new way
of edge and line detection. The new detector of edges in color images
was designed to extract color on the both sides of an edge. The new line
detector is designed to optimize the detection of endpoints of a line.

Keywords: Edge detection, line detection, ellipse detection.

1 Introduction

In the literature there can be found several methods of ellipse detection e.g.
[Tsuji and Matsumoto, 1978, H.K. Yuen, 1988]. Most of them use Hough trans-
formation [Hough, 1962].

The new object recognition system introduced in [Sergeev and Palm, 2011]
uses half ellipses. In other words not only ellipse parameters but also end points
of an ellipse segment are needed. For that reason a new half ellipse detection
algorithm was developed.

The algorithm consists of four steps: edge detection, line detection, combi-
nation of lines to chains, detection of half ellipses in line chains. These will be
consecutively described in the paper.

The first step is one of the best discussed topics in the literature. Unfortu-
nately such edge detectors as [Canny, 1986, Prewitt, 1970] work with grayscale
images and do not extract color on the both sides of an edge. On this account a
new edge detector was developed.

Hough transformation is normally used to detect lines. As the original Hough
transformation is not quite suitable to locate endpoints of a line a new algorithm
was designed.

2 Edge Detection

At first the new concept of an edge will be introduced. A pixel corner will
be denoted as a vertex. An edge is a pair of neighbored vertexes. There are
horizontal and vertical edges.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 463–472, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(1,1,1)
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(1,1,1)

(0,0,0)

Fig. 1. A 3 × 3 pixel grid. One black pixel with RGB values (0, 0, 0) at the center.
Other pixels are white and have RGB value (1, 1, 1).

Fig. 2. The set of vertexes of the pixel grid

Fig. 3. Horizontal and vertical edges
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Fig. 4. Good(left) and bad(right) transition of the red RGB component in a line

Now it will be described how vertical contrast edges are detected. The hori-
zontal ones are getting detected in exactly the same way after having transposed
the pixel grid. Each line is getting processed separately. A line of pixels is a se-
quence of RGB vectors (pi)i∈{1,...,n} ⊆ R3. For 1 ≤ i < j ≤ n contrast intensity
CI(i, j) is defined as

CI(i, j) =
‖pj − pi‖
j − i + 2

−
(

j−1∑
k=i

‖pk+1 − pk‖ − ‖pj − pi‖
)
. (1)

The first term ‖pj−pi‖
j−i+2 says the contrast intensity is the higher the bigger the

difference and shorter transition is. Number 2 or generally j − i + 2 is chosen
heuristically. This choice is due to adapt the edge detection to human visual
perception. The second term

∑j−1
k=i ‖pk+1 − pk‖ − ‖pj − pi‖ is due to diminish

the contrast intensity in case of a ”bad” transition as showed in Fig. 4. In case
of a ”good” transition the term is equal zero otherwise it is positive.

The first step of edge detection is to find 1 ≤ i < j ≤ n pairs with

i ≤ k < l ≤ j ⇒ CI(k, l) ≤ CI(i, j) (2)

In other words contrast intensity of (i, j)-transition should be bigger than con-
trast intensity of any inner transition. An (i, j)-transition satisfying 2 will be
denoted as (i, j)-true transition. In the second step such (i, j)-true transitions
have to be excluded for which a (k, l)-transition exists with

k < i < j ≤ l ∨ k ≤ i < j < l. (3)

In the next step a central edge has to be extracted from an (i, j)-transition as
Fig.5 shows. In the last step each side of the extracted edge gets a RGB value.
An edge is defined as an ordered pair of vertexes. Having the first and the second
vertex an edge gets the left and the right side. As Fig.6 shows the left side of the
edge gets the RGB value of the left outer pixel of a transition. The right side -
that of the right outer one.
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Fig. 5. An edge at the center of a transition

first vertex

second vertex
left
pixel

right
pixel

Fig. 6. Color extraction for an edge

3 Line Detection

At first a heuristic way to check if three discrete points ”build” a line will be
introduced. For the well known Manhattan norm ‖ · ‖M defined as

‖a‖M =
2∑

i=1

|ai| (4)

three vertexes a, b, c build a line or line(a, b, c) = 1 if

‖c− a‖M = ‖c− b‖M + ‖b− a‖M (5)

and ∣∣∣∣‖b− a‖M

‖c− a‖M
|c.x− a.x| − |b.x− a.x|

∣∣∣∣ ≤ 1. (6)

The last term can be formulated as integer multiplication

||c.x− a.x|‖b− a‖M − |b.x− a.x|‖c− a‖M | ≤ ‖c− a‖M . (7)

A line is defined as an ordered sequence of edges (vi
1, v

i
2)i∈{1,...,n} ∈∏

i∈{1,...,n} R2 × R2. To checks if point p lies on a line the algorithm takes
the first point of the line first and tests for every vertex vi

j of every edge if
line(first, vi

j, p) = 1. To check if an edge (p, q) lies on a line (vi
1, v

i
2)i∈{1,...,n}

both vertexes p, q of the edge get tested if they lie on the line. Finally
line(begin, p, q) = 1 has to be true.
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The process of line detection is the process of line proceeding. A typical sit-
uation is: A line is given. It has to be checked if there is an edge in direct
neighborhood of the last point of the line which lies on the line in the sense
defined above. If so a new edge gets added to the line. Initially a line consists of
a single edge. The purpose is to proceed it maximally.

good
edge

bad
edge

edge
candidates

Fig. 7. Two edge candidates to proceed line. The bad one offends the first condition
(5) of the line test.

4 Making Line Chains

Last section delivers a set of lines. The purpose of this section is to combine
them to chains. Surely there are a lot of possible ways. To avoid the unnecessary
details the most trivial one will be described.

To initialize a chain one line has to be selected randomly. The chain now
consists of this one line. One of the endpoints of the initial line gets chosen
arbitrarily. Let it be denoted as p. Than a set of all lines with one endpoint in
some neighborhood of p has to be built. If the set is not empty a line l̃ has to be
selected with for example the angle between l and l̃ closest to 180◦. The selected
line l̃ should be added to the chain and the procedure should be repeated for the
remaining endpoint of l̃. The procedure must be iterated until the chain can not
be proceeded any more. The entire process has to be replicated for the remaining
end point of the initial line l.

One line can be part of only one chain. After having been chosen a line gets
tagged as a used one and can not be used any more. It is due to reduce the
number of produced chains and therefore run time.

The next chain should be initialized with a line untagged as a used one.

5 Definition, Representation and Detection of a Half
Ellipse with Color

5.1 Definition of a Half Ellipse

For C = R2 and P (C) standing for power set of C a half ellipse is defined as a
pair (e,B) ∈ C2 × P (C) with e1 �= e2 for which (a, b, t0, δ) ∈ [0,∞) × [0,∞) ×
R× {−1, 1} as well as (c, β) ∈ C× R exist so that
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B =

⎧⎨⎩TcRβ

(
a cos t
b sin t

) ∣∣∣∣∣∣t ∈
[t0, t0 + δπ]

∪
[t0 + δπ, t0]

⎫⎬⎭ (8)

and

e1 = TcRβ

(
a cos t0
b sin t0

)
, (9)

e2 = TcRβ

(
a cos(t0 + π)
b sin(t0 + π)

)
. (10)

Tc, Rβ stand for translation, scaling and rotation respectively. The set of half
ellipses will be denoted with HE. In other words a half ellipse consists of end-
points e1, e2 ∈ C and of a set of bow points B ∈ P (C). There are mainly two
reasons to use half ellipses. An affine transformation A �= 0 always maps a half
ellipse onto another half ellipse. The second reason is the variety of half ellipses
as Figure 8 shows.

Fig. 8. Examples of half ellipses

5.2 Rotation, Translation and Scaling Invariant Representation of a
Half Ellipse

Now a unique rotation, translation and scaling invariant representation of a half
ellipse will be introduced. At first two preliminary definitions are needed. For
x, y ∈ C with x �= y the function F 1

x,y is defined as

F 1
x,y :

{
C → C

z #→ z−x
y−x

. (11)

Figure 9 shows the geometric meaning of the mapping. F 1
x,y is an affine trans-

formation with F 1
x,y(x) = 0 and F 1

x,y(y) = 1. The second function F 2 : HE → C

is defined as

F 2(e,B) =

⎛⎜⎜⎜⎜⎝
maxx∈B

∣∣∣∣(F 1
e1+e2

2 , e1
(x)

)
1

∣∣∣∣
maxx∈B

∣∣∣∣(F 1
e1+e2

2 , e1
(x)

)
2

∣∣∣∣

⎞⎟⎟⎟⎟⎠ . (12)
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Fig. 9. Geometric meaning of F 1
x,y(z)

Finally the invariant representation F 3 : HE → C is defined in such a way that
for always existent x, y ∈ B with

F 2(e,B) =

⎛⎜⎜⎜⎜⎝
∣∣∣∣(F 1

e1+e2
2 , e1

(x)
)

1

∣∣∣∣∣∣∣∣(F 1
e1+e2

2 , e1
(y)

)
2

∣∣∣∣

⎞⎟⎟⎟⎟⎠ (13)

F 3(e,B) =

(
z − SIGNUM(z)(
F 1

e1+e2
2 , e1

(y)
)

2

)
(14)

with
z =

(
F 1

e1+e2
2 , e1

(x)
)

1
. (15)

For (e,B) in Figure 10

F 3(e,B) =
(
M1 − 1
M2

)
. (16)

It can be shown that for each x ∈ C a half ellipse (e,B) ∈ HE exists with
F 3(e,B) = x. Additionally for two half ellipses (e,B), (ẽ, B̃) ∈ HE with F 3(e,B) =
F 3(ẽ, B̃) it can be shown that they can be transformed in each other through
translation, rotation and scaling. On the other side F 3(e,B) is invariant to trans-
lation, rotation and scaling of (e,B).

Fig. 10. Representation of a half ellipse
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5.3 Extraction of a Half Ellipse from a Sequence of Lines

This section shows how to check whether a chain of lines is a half ellipse. The
chain should be interpreted as a pair (e,B) ∈ C2×P (C). e1, e2 are the endpoints
of the line chain. B ⊆ C consists of all points of the chain.

Now (a, b, t0, δ) ∈ [0,∞)×[0,∞)×R×{−1, 1} and (c, β) ∈ C×R must be found
for which the corresponding half ellipse (e, B̃) would have F 3(e, B̃) = F 3(e,B)
At first F 2(e,B) = M ∈ C has to be determined. It is trivial to calculate as
x ∈ B just have to be inserted in F 1

e1+e2
2 , e1

(·). For

c =

√
(M2

1 +M2
2 ) +

√
(M2

1 +M2
2 )2 − 4M2

2

2
(17)

and

d =

√
(M2

1 +M2
2 )−

√
(M2

1 +M2
2 )2 − 4M2

2

2
(18)

it can be shown that a can be chosen as ‖e1−e2‖
2 c, b as ‖e1−e2‖

2 d. It is known that

cos2 t0 =
1− d2

c2 − d2
. (19)

For t = arctan(sin t0/ cos t0) set t0 = −t if F 3
1/2(e,B) ≥ 0 or F 3

1/2(e,B) ≤ 0.
Otherwise set t0 = t. If F 3

2 (e,B) ≥ 0 than δ = 1 otherwise δ = −1.
The system says (e,B) is a half ellipse if all x ∈ B lay in some ε-neighborhood

of (ẽ, B̃) with respect to maximum norm, which can be analytically determined
as (a, b, t0, δ) are known and only intersection points of four lines with the half
ellipse are to be found Fig.11.

Fig. 11. Checking if a point is in an ε-neighborhood of a half ellipse with respect to
maximum norm

5.4 Color Extraction

Similarly to an edge a half ellipse has the first and the last point. Hence it also
has the left and the right site. A half ellipse is a sequence of lines. A line is
a sequence of edges. The color of the right side of a half ellipse is set as the
arithmetic mean of the right side RGB values of all edges belonging to the half
ellipse. The color of the left site is set correspondingly.
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6 Experimental Results

This paper describes the most important components of a half ellipse detector.
Some details had to be omitted to spare space. The experimental results de-
scribed below are valid for one implementation of the algorithm The half ellipse
detector was developed for a new object recognition system. To evaluate the
system the well known database COIL-100 (Columbia Object Image Library)
was used. The data set is described in [Nene et al., 1996]. It contains 7200 color
images of 100 3D objects. One image is taken per 5◦ of rotation.

The computer used in the experiments has a processor Intel(R) Core(TM)2
Duo CPU P8600 @2.40 GHz 2.40 GHz and 4.00 GB RAM. The system is im-
plemented in Java.

There were made 2 experiments with slightly different parameter settings. In
the first experiment 18 views(1 per 20◦) were used to learn each object. The
remaining 5400 images were analyzed. A recognition rate of 99.2% was reached.
In the second experiment 8 views(1 per 45◦) were used to learn an object. The
other 6400 were analyzed. A recognition rate of 96.3% was reached.

Average time demand to extract half ellipses from one COIL-100 image is 95
milliseconds.

The Table 1 compares the system with alternative methods. It is based
on the results described in [Obdrzalek and Matas, 2011],[Yang et al., 2000] and
[Caputo et al., 2000].

Table 1. Comparison with alternative results

Method 18 views 8 views

LAFs 99.9% 99.4%

Sergeev and Palm 99.2% 96.3%

SNoW / edges 94.1% 89.2%

SNoW / intensity 92.3% 85.1%

Linear SVM 91.3% 84.8%

Spin-Glass MRF 96.8% 88.2%

Nearest Neighbor 87.5% 79.5%

7 Conclusion and Future Work

There have been mainly two reasons to develop the algorithm described in this
paper. First of all the endpoints of half ellipses are very important for the object
representation used in the new system [Sergeev and Palm, 2011]. Secondly the
color on the both sides of a half ellipse has to be extracted.

This paper does not deliver a complete description of a half ellipse detector. As
the space is limited it only contains a terse depiction of the principle elements
of the algorithm. Nevertheless the remaining trivial details can be elaborated
easily.



472 N. Sergeev and S. Tschechne

The running time as well as the quality of the detector still have to be im-
proved significantly. The are probably a variety of equivalent heuristic means to
upgrade the quality. At the same time only one way of running time optimization
appears to be realistic: parallelization.
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Abstract. The distribution of digital images with the classic and newest
technologies available on Internet (e.g., emails, social networks, digital
repositories) has induced a growing interest on systems able to protect the
visual content against malicious manipulations that could be performed
during their transmission. One of the main problems addressed in this
context is the authentication of the image received in a communication.
This task is usually performed by localizing the regions of the image which
have been tampered. To this aim the received image should be first reg-
istered with the one at the sender by exploiting the information provided
by a specific component of the forensic hash associated with the image. In
this paper we propose a robust alignment method which makes use of an
image hash component based on the Bag of Visual Words paradigm. The
proposed signature is attached to the image before transmission and then
analyzed at destination to recover the geometric transformations which
have been applied to the received image. The estimator is based on a vot-
ing procedure in the parameter space of the geometric model used to re-
cover the transformation occurred to the received image. Experiments
show that the proposed approach obtains good margin in terms of per-
formances with respect to state-of-the art methods.

Keywords: Image forensics, Forensic hash, Bag of Visual Word, Tam-
pering, Geometric transformations, Image validation and authentication.

1 Introduction and Motivations

The growing demand of techniques useful to protect digital visual data against
malicious manipulations is induced by different episodes that make questionable
the use of visual content as evidence material [1]. Methods useful to establish the
validity and authenticity of a received image are needed in the context of Internet
communications. To this aim different solutions have been recently proposed in
literature [2,3,4,5,6]. Most of them share the same basic scheme: i) a hash code
based on the visual content is attached to the image to be sent; ii) the hash is
analyzed at destination to verify the reliability of the received image.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 473–483, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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An image hash is a distinctive signature which represents the visual content of
the image in a compact way (usually just few bytes). The image hash should be
robust against allowed operations and at the same time it should differ from the
one computed on a different/tampered image. Image hashing techniques are con-
sidered extremely useful to validate the authenticity of an image received through
the Internet. Although the importance of the binary decision task related to the
image authentication, this is not always sufficient. In the application context of
Forensic Science is fundamental to provide scientific evidences through the his-
tory of the possible manipulations applied to the original image to obtain the one
under analysis. In many cases, the source image is unknown, and, as in the ap-
plication context of this paper, all the information about the manipulation of the
image should be recovered through the short image hash signature, making more
challenging the final task. The list of manipulations provides to the end user the
information needed to decide whether the image can be trusted or not.

In order to perform tampering localization1, the receiver should be able to
filter out all the geometric transformations (e.g., rotation, scaling) added to the
tampered image by aligning the received image with the one at the sender [6].
The alignment should be done in a semi-blind way: at destination one can use
only the received image and the image hash to deal with the alignment problem
since the reference image is not available. The challenging task of recovering
the geometric transformations occurred on a received image from its signature
motivates this paper.

Despite different robust alignment techniques have been proposed by com-
puter vision researchers [7], these techniques are unsuitable in the context of
forensic hashing, since a fundamental requirement is that the image signature
should be as “compact” as possible to reduce the overhead of the network com-
munications. To fit the underlying requirements, authors of [5] have proposed to
exploit information extracted through Radon transform and scale space theory
in order to estimate the parameters of the geometric transformations. To make
more robust the alignment phase with respect to manipulations such as crop-
ping and tampering, an image hash based on robust invariant features has been
proposed in [6]. The latter technique extended the idea previously proposed in
[4] by employing the Bag of Visual Words (BOVW) model to represent the fea-
tures to be used as image hash. The exploitation of the BOVW representation
is useful to reduce the space needed for the image signature, by maintaining the
performances of the alignment component.

Building on the technique described in [6], we propose a new method to detect
the geometric manipulations occurred on an image starting from the hash com-
puted on the original one. Differently than [6], we exploit replicated visual words
and a voting procedure in the parameter space of the transformation model em-
ployed to establish the geometric parameters (i.e., rotation, scale, translation).
As pointed out by the experimental results, the proposed approach obtains the

1 Tampering localization is the process of localizing the regions of the image that have
been manipulated for malicious purposes to change the semantic meaning of the
visual message.
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Fig. 1. Schema of the proposed approach.

best results with a significant margin in terms of estimation accuracy with re-
spect to the approach proposed in [6].

The remainder of the paper is organized as follows: Section 2 presents the
proposed framework. Section 3 reports the experiments and discusses the results.
Finally, Section 4 concludes the paper with avenues for further research.

2 Proposed Approach

As stated in the previous section, one of the common steps of tampering detection
systems is the alignment of the received image. Image registration is crucial since
all the other tasks (e.g., tampering localization) usually assume that the received
image is aligned with the original one, and hence could fail if the registration
is not properly done. Classical registration approaches [7] cannot be directly
employed in the considered context due the limited information that can be
used (i.e., original image is not available and the image hash should be as short
as possible).

The schema of the overall system is shown in Fig. 1. As in [6], we adopt a Bag
of Visual Words based representations [8] to reduce the dimensionality of the
feature descriptors to be used as hash component for the alignment. A codebook
is generated by clustering the set of SIFT [9] extracted on training images. The
pre-computed codebook is shared between sender and receiver. It should be noted
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that the codebook is built only once, and then used for all the communications
between a sender and a receiver (i.e., no extra overhead for each communication).
Sender extracts SIFT features and sorts them in descending order with respect
to their contrast values. Afterward, the top n SIFT are selected and associated
to the id label corresponding to the closest visual word belonging to the shared
codebook. Hence, the final signature for the alignment component is created by
considering the id label, the dominant direction θ, and the keypoint coordinates
x and y for each selected SIFT (Fig. 1). The source image and the corresponding
hash component (hs) are sent to the destination. The system assumes that the
image is sent over a network consisting of possibly untrusted nodes, whereas the
signature is sent upon request through a trusted authentication server which
encrypts the hash in order to guarantee its integrity [3]. The image could be
manipulated for malicious purposes during the untrusted communication.

Once the image reaches the destination, the receiver generates the related hash
signature (hr) by using the same procedure employed by the sender. Then, the
entries of the hashes hs and hr are matched by considering the id values (see Fig.
1). The alignment is hence performed by employing a similarity transformation
of the keypoint pairs corresponding to matched hashes entries:

xr = xsλ cosα− ysλ sinα + Tx (1)

yr = xsλ sinα+ ysλ cosα + Ty (2)

The above transformation is used to model the geometrical manipulations which
have been done on the source image during the untrusted communication. The
model assumes that a point (xs, ys) in the source image Is is transformed in
a point (xr , yr) in the image Ir at destination with a combination of rota-
tion (α), scaling (λ) and translation (Tx, Ty). The aim of the alignment phase
is the estimation of the quadruple (λ̂, α̂, T̂x, T̂y) by exploiting the correspon-
dences ((xs, ys), (xr , yr)) related to matchings between hs and hr. We propose
to use a cascade approach to perform the parameter estimation. First the estima-
tion of (α̂, T̂x, T̂y) is accomplished through a voting procedure in the parameter
space (α, Tx, Ty). Such procedure is performed after filtering outlier matchings
by taking into account the differences between dominant orientations of matched
entries. Then the scaling parameter λ̂ is estimated by considering the parame-
ters (α̂, T̂x, T̂y) which have been previously estimated on the reliable information
obtained through the filtering. The proposed method is detailed in the following.

Moving Tx and Ty on the left side and making the ratio of (1) and (2) the
following equation is obtained:

xr − Tx

yr − Ty
=

xs cosα− ys sinα
xs sinα + ys cosα

(3)

Solving (3) with respect to Tx we get the formula to be used in the voting
procedure:

Tx =
(
xs cosα− ys sinα
xs sinα + ys cosα

)
(Ty − yr) + xr (4)
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Each pair of coordinates (xs, ys) and (xr , yr) in (4) represents a line in the
parameter space (α, Tx, Ty). An initial estimation of (α̂, T̂x, T̂y) is obtained by
considering the densest bin of a 3D histogram in the quantized parameter space.
This means that the initial estimation of (α̂, T̂x, T̂y) is accomplished in corre-
spondence of the maximum number of intersections between lines generated by
matched keypoints (Fig. 2).

Ty

T x

3D histogram slice for 

Fig. 2. A slices of the 3D histogram in correspondence of α = 3, obtained considering
an image manipulated with parameters (λ, α, Tx, Ty) = (1, 3, 0, 0). For a fixed rotational
angle α, each pair of coordinates (xs, ys) and (xr, yr) votes for a line in the quantized
2D parameter space (Tx, Ty). Lines corresponding to inliers (blue) intersect in the bin
(Tx, Ty) = (0, 0), whereas the remaining lines (red) are related to outliers.

As said before, to discard outliers (i.e., wrong matchings) the information
coming from the dominant directions (θ) of the SIFT are used during the voting
procedure. In particular Δθ = θr−θs is a rough estimation of the rotational angle
α. Hence, for each fixed triplet (α, Tx, Ty) of the quantized parameter space, the
voting procedure considers only the matchings between hs and hr such that
|Δθ−α| < tα. The threshold value tα is chosen to consider only matchings with
a rough estimation Δθ which is closer to the considered α (e.g., consider just
matchings with a small initial error of ±3.5 degree). The proposed approach is
summarized in Algorithm 1.

The proposed method gives an estimation of rotation angle α̂, and translation
vector (T̂x, T̂y) by taking into account the quantized values used to build the 3D
histogram into the parameter space. To refine the estimation we can use the
m matchings which have been generated by the m lines which intersect in the
selected bin. Specifically, for each pair (xs,i, ys,i), (xr,i, yr,i) corresponding to the

selected bin, we consider (T̂x,i, T̂y,i) =
((

xs cos α−ys sin α
xs sin α+ys cos α

)
(Ty − yr) + xr, Ty

)
,
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Algorithm 1. Parameters estimation through voting procedure.
Input: The set M of matching pairs ((xs, ys), (xr, yr))

Output: The estimated parameter (α̂, T̂x, T̂y)
begin

Initialize V otes(i, j, k) := 0 ∀i, j, k;
for α = −180,−179, . . . , 0 . . . , 179, 180 do

Vα = {((xs, ys), (xr, yr)) | |(θr − θs) − α| < tα};
foreach ((xs, ys), (xr, yr)) ∈ Vα do

for Ty = minTy , minTy − 1, . . . , maxTy − 1, maxTy do

Tx :=
(

xs cos α−ys sin α
xs sin α+ys cos α

)
(Ty − yr) + xr;

Tx := Quantize(Tx);
(i, j, k) := QuantizedV aluesToBin(α, Tx, Ty);
V otes(i, j, k) := V otes(i, j, k) + 1;

(imax, jmax, kmax) = SelectBin(V otes);

(α̂, T̂x, T̂y) := BinToQuantizedV alues(imax, jmax, kmax);
end

with (α, Ty) obtained through the voting procedure (see Algorithm 1), and use
the equations (5) and (6).

xr,i = xs,iλi cosαi − ys,iλi sinαi + T̂x,i (5)

yr,i = xs,iλi sinαi + ys,iλi cosαi + T̂y,i (6)

Solving (5) and (6) with respect to ai = λi cosαi and bi = λi sinαi we obtain

âi =
yr,iys,i + xr,ixs,i − xs,iT̂x,i − ys,iT̂y,i

x2
s,i + y2

s,i

(7)

b̂i =
xs,iyr,i − xr,iys,i + ys,iT̂x,i − xs,iT̂y,i

x2
s,i + y2

s,i

(8)

Since the ratio b̂i/âi is by definition equals to tanαi, we can estimate α̂i with
the following formula:

α̂i = arctan

(
xs,iyr,i − xr,iys,i + ys,iT̂x,i − xs,iT̂y,i

yr,iys,i + xr,ixs,i − xs,iT̂x,i − ys,iT̂y,i

)
(9)

Once α̂i is obtained, the following equation derived from (5) and (6) is used to
estimate λ̂i

λ̂i =
1
2

(
xr,i − T̂x,i

xs,i cos α̂i − ys,i sin α̂i
+

yr,i − T̂y,i

xs,i sin α̂i + ys,i cos α̂i

)
(10)
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The above method produce a quadruple (λ̂i, α̂i, T̂x,i, T̂y,i) for each matching pair
(xs,i, ys,i), (xr,i, yr,i) corresponding to the bin selected with the voting procedure.
The final transformation parameters (λ̂, α̂, T̂x, T̂y) to be used for the alignment
are computed by averaging over all the m produced quadruple:

T̂x =
1
m

m∑
i

T̂x,i T̂y =
1
m

m∑
i=1

T̂y,i α̂ =
1
m

m∑
i=1

α̂i λ̂ =
1
m

m∑
i=1

λ̂i (11)

It should be noted that some id values may appear more than once in hs and/or
in hr. For example, it is possible that a selected SIFT has no unique dominant
direction [9]; in this case the different directions are coupled with the same
descriptor, and hence will be considered more than once by the selection process
which generates many instance of the same id with different dominant directions.

As experimentally demonstrated in the next section, by retaining the repli-
cated visual words the accuracy of the estimation increases, and the number
of “unmatched” images decreases (i.e., image pairs that the algorithm is not
able to process because there are no matchings between hs and hr). Differently
than [6], the described approach considers all the possible matchings in order to
preserve the useful information. The correct matchings are hence retained but
other wrong pairs could be generated. Since the noise introduced by considering
correct and incorrect pairs can badly influence the final estimation results, the
presence of possible wrong matchings should be considered during the estima-
tion process. The approach described in this paper deals with the problem of
wrong matchings combining in cascade a filtering strategy based on the SIFT
dominant direction (θ) with a robust estimator based on a voting strategy on the
parameters’ space. In this way the information of spatial position of keypoints
and their dominant orientations are jointly considered. The scale factor is esti-
mated only at the end of the cascade on reliable information. As shown in the
experiments reported in the following section, replicated matchings help to bet-
ter estimate the rotational parameter, whereas the introduced cascade approach
allows robustness in estimating the scale factor.

3 Experimental Results

This section reports a number of experiments on which the proposed approach
has been tested and compared with respect to [6]. The tests have been performed
considering a subset of the fifteen scene category benchmark dataset [10]. The
training set used in the experiments is built through a random selection of 150
images from the scene dataset. Specifically, ten images have been randomly sam-
pled from each scene category. The test set consists of 5250 images generated
through the application of different transformations on the training images2. Ac-
cordingly with [6], the following image manipulations have been applied (Tab. 1):

2 Training and test sets used for the experiments are available at
http://iplab.dmi.unict.it/download/ICIAP_2011/Dataset.rar

http://iplab.dmi.unict.it/download/ICIAP_2011/Dataset.rar
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Table 1. Image transformations

Operations Parameters
Rotation ( ) 3, 5, 10, 30, 45 degrees
Scaling ( ) factor= 0.5, 0.7, 0.9, 1.2, 1.5
Cropping 19%, 28%, 36%, of entire image

Tampering block size 50x50
Compression JPEG Q=10

Various combinations of above operations

cropping, rotation, scaling, tampering, JPEG compression. The considered trans-
formations are typically available on image manipulation software. Tampering
has been performed through the swapping of blocks (50× 50) between two im-
ages randomly selected from the training set. Images obtained through various
combinations of the basic transformations have been also included to make more
challenging the task to be addressed. Taking into account the different param-
eter settings, for each training image there are 35 corresponding manipulated
images into the test set.

To demonstrate the effectiveness of the proposed approach, and to highlight
the contribution of the replicated visual words during the estimation, the com-
parative tests have been performed by considering our method and the approach
proposed in [6]. Although Lu et al. [6] claim that further refinements are per-
formed using the points that occur more than once, actually they do not provide
any implementation detail. In our test we have hence considered two versions
of [6] with and without replicated matchings. The approach proposed in [6] has
been reimplemented. The Ransac thresholds used in [6] to perform the geometric
parameter estimation have been set to 3.5 degrees for the rotational model and
to 0.025 for the scaling one. These thresholds values have been obtained through
data analysis (inliers and outliers distributions). In order to perform a fair com-
parison, the threshold tα used in our approach to filter the correspondences
(see Section 2) has been set with the same value of the threshold employed by
Ransac to estimate the rotational parameter in [6]. The value Ty needed to eval-
uate (4) has been quantized considering a step of 2.5 pixels (see Fig. 2). Finally,
a codebook with 1000 visual words has been employed to compare the different
approaches. The codebook has been learned through k-means clustering on the
overall SIFT descriptors extracted on training images.

First, let us examine the typically cases in which the considered approaches
are not able to work. Two cases can be distinguished: i) no matchings are found
between the hash built at the sender (hs) and the one computed by the re-
ceiver (hr); ii) all the matchings are replicated. The first problem can be miti-
gated considering a higher number of features (SIFT). The second one is solved
only allowing the replicated matchings (see Section 2). As reported in Tab. 2, by
increasing the number of SIFT there is a decreasing of the number of unmatched
images for both approaches. In all cases the percentage of images on which our
algorithm is not able to work is lower than the one of [6].

Tab. 3 shows the results obtained in terms of rotational and scale estimation
through mean error. To properly compare the methods, the results have been
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Table 2. Comparison with respect to unmatched images

Number of SIFT 15 30 45 60
Lu et al. [6] 11.73% 3.60% 1.64% 0.91%

Proposed approach 4.44% 1.26% 0.57% 0.46%

Unmatched Images

Table 3. Average rotational and scaling error

Number of SIFT 15 30 45 60 15 30 45 60
Lu et al. [6] 12.8135 13.7127 13.2921 13.5840 0.1133 0.1082 0.1086 0.1124

Lu et al. [6] with replicated matchings 6.7000 4.1444 3.3647 2.8677 0.1522 0.1783 0.1981 0.2169
Proposed approach 2.2747 1.2987 0.6514 0.5413 0.0710 0.0393 0.0230 0.0183

Mean Error Mean Error 
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Fig. 4. Comparison on single transformation (60 SIFT). (a) Average rotation error at
varying of the rotation angle. (b) Average scaling error at varying of the scale factor.

computed taking into account only the images on which all approaches are able
to work. Our approach outperforms [6] obtaining a considerable gain both in
terms of rotational and scaling accuracy (Tab. 3). Moreover, the performance of
our approach significantly improves with the increasing of the extracted feature
points (SIFT). On the contrary, the technique in [6] is not able to exploit the
additional information coming from the higher number of extracted points.
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To further study the contribution of the replicated matchings we performed
tests by considering the modified version of [6] in which replicated matchings
have been allowed (Tab. 3). Although the modified approach obtains better
performance with respect to the original one in terms of rotational accuracy, it
is not able to obtain satisfactory results in terms of scaling estimation. The wrong
pairs introduced by the replicated matchings cannot be handled by the method.
Our approach deals with the problem of wrong pairs combining a filtering based
on the SIFT dominant direction (θ) with a robust estimator based on voting.

To better compare the methods, the Regression Error Characteristic Curves
(REC) have been employed (Fig. 3). The area over the curve is an estimation of
the expected error of a model. The proposed approach obtains the best results.

Additional experiments have been performed to examine the dependence of
the average rotational and scaling error with respect to the rotation and scale
transformation parameters respectively. Results in Fig. 4(a) show that the ro-
tational estimation error increases with the rotation angle. For the scale trans-
formation, the error has lower values in the proximity of one (no scale change)
and increases considering scale factors higher or lower than one (Fig. 4(b)). It
should be noted that our approach obtains the best performances in all cases.

4 Conclusions and Future Works

The assessment of the reliability of an image received through the Internet is an
important issue in nowadays society. This paper addressed the image alignment
task in the context of distributed forensic systems. Specifically, a robust image
alignment component which exploits an image signature based on the Bag of
Visual Words paradigm has been introduced. The proposed approach has been
experimentally tested on a representative dataset of scenes obtaining effective
results in terms of estimation accuracy. Future works will concern the extension
of the system to allow tampering detection. Moreover, a selection step able to
takes into account the spatial distribution of SIFT will be addressed in order to
avoid their concentration on high textured regions.
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Abstract. The Focus of Expansion (FoE) sums up all the available in-
formation on translational ego-motion for monocular systems. It has also
been shown to present interesting features in cognitive research. As such,
its localization bears great importance, either for robotic applications,
as well as for attention fixation research. It will be shown that the so-
called C-Velocity framework can be inversed in order to extract the FoE
position from a rough scene structure estimation. This method rely on
robust cumulative framework and only exploit the optical flow field rela-
tive norm as such, it is robust to angular noise and bias on the absolute
optical flow norm.

1 Introduction – State of the Art

The Focus of Expansion holds a particular importance for monocular vision
systems. Its position contains all the available information on the translational

ego-motion T =

∣∣∣∣∣∣
TX

TY

TZ

:

FoE =

∣∣∣∣∣xFoE = f TX

TZ

yFoE = f TY

TZ

(1)

Knowing its position is useful for a wide variety of problems, such as path plan-
ification or collision avoidance [2][3]. The importance of the FoE is not limited
to computer vision or robotics. Indeed, it has been shown that the FoE holds
a strong importance in the study of behaviour, cognition, and more specifically,
visual attention [4].

As such, the localization of the FoE has always been an active research topic.
Early methods [5][6] relied on the extraction and matching of image primitives.
Such a discrete approach was dictated by the computational costs and reliability
of early optical flow implementation. As such, those were not very robust due to
the fact that they used only partial information.

With the emergence of efficient optical flow algorithms, global methods were
introduced. Most methods rely on the fact that the Focus of Expansion is point
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of convergence of all optical flow field lines. For example, the authors of [7] use
a voting scheme in order to locate it. In a similar manner, the work presented
in [8] presents a matched filter that exploits the change of sign of the optical
flow component around the FoE to detect it. An interesting approach, based on
vector calculus, was unveiled in [9]. However, due to the fact that it exploits
the computation of divergence and curl of the optical flow, it is highly sensi-
tive to noise. Finally, methods based purely on geometric concerns used to be
prohibitive, due to their computational costs, authors of [10] present a novel
way to take geometric constraints into account, but the computation cost is still
unfitted to real-time applications.

All these methods make use of both the angular and the radial components
of the optical flow, at least implicitly. However, as it will be shown in this study,
this is not necessary. Radial component only is sufficient to extract the position
of the FoE. Actually, the radial component is only needed up to a scale factor.
This makes the proposed method insensitive to noise on the angular component
and to bias on the radial component. The former being the prominent one in
most real-time capable algorithms, especially on image discontinuities [11], the
later being a common pitfall of local optical flow estimation methods.

Contrary to previous works, the method presented here stems from a scene
structure estimation method. As such, the method proposed here is the second
step toward an integrated monocular system allowing to determine both scene
structure and translational ego-motion without relying on feature extraction or
additional hardware.

In the following section, the basic hypothesis will be detailed, the initial Direct
C-Velocity framework will be shortly described. Then the proposed method,
Inverse C-Velocity , will be unveiled. Results obtained on simulated and real
data will the be presented. Finally, these results will be discussed and some
future developments will be presented.

2 C-Velocity Reminder

2.1 Basis – Notations

A vision sensor, attached to a mobile (e.g. a car) is moving in a world consisting
of dynamic and static objects.

The sensor is represented by the pinhole model, its focal length is denoted f .
Between t = t0 and t = t1 the sensor undergoes an arbitrary translational

motion
−→
T =

∣∣∣∣∣∣
TX

TY

TZ

. A static world point M is located (in a sensor-centered frame

of reference) in

∣∣∣∣∣∣
XM

YM

ZM

a t = t0. At t = t1, its coordinates are

∣∣∣∣∣∣
XM − TX

YM − TY

ZM − TZ

. Its

image at t = t0 being m =
∣∣∣∣xy , the optical flow in m can be expressed as:
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μ = ∂
dt (f

XM

ZM
) ≈ f(ΔXM

ZM
−XM

ΔZM

ZM
2 )

ν = ∂
dt (f

YM

ZM
) ≈ f(ΔYM

ZM
− YM

ΔZM

ZM
2 )

(2)

Where ΔA = A(t1)−A(T0).

Under classical assumptions, the optical flow, at a point m =
∣∣∣∣xy can then be

written: {
μ = xTZ−fTX

Z

ν = yTZ−fTZ

Z

(3)

Let us now consider a planar surface of equation:

nP = d (4)

with n =

∣∣∣∣∣∣
nx

ny

nz

its normal vector, P the position vector of a particular world

point and d the distance between the plane and the origin. The motion field, for
this particular plane is given by, when combining 1 and 2:{

μ = 1
fd

(
a1x

2 + a2xy + a3fx+ a4fy + a5f
2
)

ν = 1
fd

(
a1xy + a2y

2 + a6fy + a7fx+ a8f
2
) (5)

where:

a1 = TZnx a2 = TZny a3 = TZnz − TXnx a4 = TXny

a5 = TXnz a6 = TZnz − TY ny a7 = TY nx a8 = TY nz

2.2 Direct C-Velocity

Direct C-Velocity is a method that aims at detecting particular scene planes1,
representative of an urban environment through an analysis of motion, especially,
optical flow:

Plane Type n Distance to Origin
Road [0, 1, 0]T dr

Building [1, 0, 0]T db

In the following, a Building plane will be taken as an example, generalization
is immediate.

From Equation 5: {
μ = x

fd (x− xFoE)
ν = x

fd (y − yFoE) (6)

The two equations 6 can be combined by writing: w =
√
μ2 + ν2

w =
TZ |x|
fd

‖m− FoE‖ (7)

1 The original C-Velocity work consider a third plane type ’Obstacle’, however, it is
not relevant for this study.
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At this point, so-called c-values can be defined, each being specific of a particular
plane hypothesis.

Plane Hypothesis C-Value Notation
Building |x| ‖m− FoE‖ cbuilding

Road |y| ‖m− FoE‖ croad

These c-values depend only on the coordinates of the studied point and on
the coordinate of the FoE.

It is noticeable that, in the case of a point that actually belongs to a building
plane:

w ∝ cBuilding (8)
Direct C-Velocity uses this relation in order to establish a generalized hough
transform in which, every image point would vote for a set of curves able to
enforce its w value. A further processing step (clustering, Hough-Transform)
would later on be used in order to extract dominant lines, which represent scene
planes in the corresponding C-Velocity voting space. This whole method was
based on prior knowledge of the position of the FoE. It is worth noting that, due
to numerical constraints (c − values can typically be in the range of hundreds
of thousands), the actual relation to be used is:

w ∝ κ2 (9)

with κ =
√
c.

Fig. 1. Direct C-Velocity Workflow

Figure 1 illustrates this. The starting point is a computed optical flow and a
known FoE. From these information, voting spaces are populated. In the pre-
sented case, only one road plane is present, in the road voting space, it will form
a perfect parabola, when in the building voting space, it will generate incoherent
noise. Coherent parabolas can then be extracted in order to detect and locate
scene planes.

One can refer to [1] for further details.
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3 Inverse C-Velocity

Inverse C-Velocity objective is the exact opposite. Instead of using ego-motion
prior information to extract scene structure information, scene structure prior
information will be used in order to extract translational ego-motion. First,
the scene structure information will be briefly discussed, then, the method for
localizing the FoE will be exposed.

3.1 Scene Structure Evaluation

This system relies on the identification of sets of coplanar points (at least one)
and on the knowledge of their relative normal vectors.The actual plane equations
are not needed, neither are the distance from the planes to the sensor. The basic
requirement for a useful scene structure evaluation system is that it provides a
set of label, their corresponding plane types and a map of these labels in the
image space. Not all image points need to be labelled, and not all plane categories
need to be represented.

Several systems could fulfil these requirements, just to cite a few: a calibrated
LIDAR system [12], a stereo-system [13], or the original C-Velocity Framework
[14]. For practical reasons, in this study, a stereo-system will be used. Both
V-Disparity [15] and a Generalized Hough Transform, very close to the one
presented in [13] will be used in order to detect, respectively, the road plane and
building planes.

However, it is important to note that, in this study, stereo-vision was only
used as a plane detector, the actual depth of individual pixels was not used.
Furthermore, in future developments, a purely monocular version of this system,
that uses Direct C-Velocity in order to extract scene structure and Inverse C-
Velocity in order to compute the ego-motion will be investigated.

Fig. 2 presents the results of such an extraction. Results, especially on the
road plane, might appear sparse. Indeed, the poorly textured nature of the road
plane leads to mismatches in the disparity maps. It is important to note that

Fig. 2. Image Extracted from a
real sequence. Overlays: Red - the
building plane ; Green - the road
plane.

Fig. 3. Image extracted from a
Sivic-generated sequence. Over-
lays: Red - the building plane ;
Green - the road plane.
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it is not relevant, for this study, to strictly identify a plane. What is relevant
however, is to ensure that all points sharing the same label (e.g. red or green in
the above example) belong to the same plane and that this plane validates one
of the basic hypothesis (e.g. road or building). This drives the setup of the plane
detection system toward reliability and not exhaustiveness.

3.2 Focus of Expansion Extraction

The key idea of Inverse C-Velocity is to find a metric that reflects the quality
of a given FoE candidate, based on the representation exposed in the Direct
C-Velocity formulation. Ideally, such a metric would be convex, allowing the
use of traditional optimization techniques. In the following presentation of this
evaluation metric, it will be assumed that the observed scene consists of one
plane Π of type T ∈ {Building,Road}. However, generalization to multiple
planes of multiple types is immediate.

For a given FoE candidate, Direct C-Velocity representation of Π can be
computed2. If the FoE candidate is the actual FoE, the representation of Π will
be a perfect parabola. On the other hand, the further the candidate will be
from the actual FoE, the less points from Π will accumulate, thus forming a
degenerate paraboloid.

It has been exhibited in [14] that the standard deviation of a given plane in the
C-Velocity voting space is a function of the distance between the FoE candidate
and the actual FoE:

σΠ = d(‖FoEcandidate − FoEactual‖ (10)

and that this function d is monotonically increasing, Fig. 4 and 5 illustrate this
dispersion.

Knowing that the quality of the candidate FoE is directly related to the repre-
sentation of Π in the C-Velocity voting space, the dispersion of the point cloud
representing Π will then be used as an energy function:

ε2 =
∑

m∈Π

(Cobserved − Cavg)2 (11)

Where Cobserved is the observed C-value, and Cavg is the average c-value, for a
given w. Given the fact that dispersion is convex with respect to the relative
position between the candidate and the actual FoE, this metric is also convex.

In this case, the error function is strictly convex with respect to the distance
between the candidate and the actual FoE. As such, the problem of localizing
the FoE becomes a simple energy minimization problem, for which traditional
techniques can be used.

2 In the multi-plane case, a separate voting per plane is used in order to eliminate
cross-talk perturbation.
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Fig. 4. Building plane voting spaces.
Left: FoE hypothesis is located at the
center of the image ; Right: FoE hy-
pothesis is the one extracted. Parabo-
las are the best fit ones, horizontal line
only indicates the origin of the c-values.

Fig. 5. Normalized dispersion inside
the voting space with respect to the dis-
tance between the actual and the can-
didate FoE (synthetic data)

4 Results

Two sets of experiments were conducted. In the first one, the Sivic simulator
[16] was used in order to accurately simulate a monocular system, attached to
a car. In a second part, real image sequences were used. Those images are from
the french ANR project Logiciel d’Observation des Vulnérables (LoVE).

The experiments were conducted using optical flow provided by the FOLKI
[17] method.

The FoE search was conducted using a simple Gradient-Descent approach.

4.1 Simulated Data

The Sivic simulator was used to generate a sequence of 250 640x480 images pairs,
presenting a urban environment with moderate traffic. Along this sequence, the
trajectory of the vehicle was mostly translational.

Fig. 3 presents one image extracted from this sequence, as well as the planes
(overlays) extracted using the procedure described in 3.1.

For the same image, Fig. 6 presents the computed optical flow and the ex-
tracted Focus of Expansion, it is important to note that the extracted FoE lies
on the line of horizon, which is consistent with the known motion of the cam-
era. More specifically, for this particular image, the error between the estimated
Focus of Expansion and the actual FoE was 2.2 pixels.

Over this sequence, the maximum positioning error was 15.6 pixels and the
average positioning error was 5.2 pixels. This error can appear large, however,
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with the simulated optical system (a focal length of 10mm and a pixel size of
10μm), an error of one pixel in the localization of the FoE translates to an

error of 10−3 on the ratio ‖T‖
TZ

, with: T =
∣∣∣∣TX

TY
, for an order of magnitude, this

represents a lateral translation of 0.6mm for a car moving at 50km.h−1.
The measured error can then be translated to an error on the estimation of

the ratio ‖T‖
TZ

of 0.8%.
As a comparison, for the same image sequence a standard cumulative approach

[7] leads to the following results: a maximum positioning error of 14 pixels and
an average positioning error of 10.6 pixels, this can be translated to an error of
1.1% on the estimation of the ratio ‖T‖

TZ
.

4.2 Real Data

Unfortunately, for the real data evaluation, ground-truth results are not avail-
able. As a consequence, quantitative results can not be produced. However, it is
possible to qualitatively assess the validity of those results. For instance, Fig. 4
presents a visualization of the building voting space for an arbitrary FoE candi-
date, and the extracted FoE. This figure particularly illustrates the geometrical
sense of the presented metric. The closer the candidate is to the actual FoE, the
more the C-Velocity curve will fit the expected parabola.

Fig. 7, Fig.8 and Fig.9 present computed optical flows along with the extracted
Focus of Expansion. Fig. 4 illustrates the building voting space for (respectively),
the best extracted FoE and the initial candidate, located at the center of the
frame. Particularly, it is interesting to note that, in both cases, the extracted
FoE is coherent with the motion of the car. Optical Flow field lines can also be
used as a visual cue to evaluate the position of the FoE.

Fig. 6. Image extracted from a Sivic se-
quence, including the computed Opti-
cal Flow and the extracted FoE

Fig. 7. Image Extracted from a real se-
quence, including the computed Opti-
cal Flow and the extracted FoE
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Fig. 8. Image Extracted from a differ-
ent sequence, including the computed
Optical Flow and the extracted FoE

Fig. 9. Image Extracted from a differ-
ent sequence, including the computed
Optical Flow and the extracted FoE

5 Discussion – Prospective

Through this work, a method for computing the translational ego-motion of a
monocular system has been unveiled. This method rely only on relative norm
of the optical flow and so, it is insensitive to noisy estimation of its angular
component and to bias on its norm. Furthermore, it uses robust cumulative
methods which makes it robust toward punctual noise.

As it stems from a method for extraction scene structure information from
motion, it will allow the definition of a single, iterative and cumulative framework
for scene structure and ego-motion estimation in future developments.

Preliminary results are encouraging, however, some effort should be put into
the study of the impact of noise as well as on the development of an absolute eval-
uation method for real data sets. Furthermore, rotations are currently neglected
and should be taken into account.

Finally, the presented system could benefit from a fine analysis of the disper-
sion in the C-Velocity spaces, due to a shift of the FoE. This will be presented
in future works.
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for research in new technologies Digiteo for its funding and support to their
projects.
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Abstract. Analysis of the retinal photoreceptor mosaic can provide vital 
information in the assessment of retinal disease. However, visual analysis of 
photoreceptor cones can be both difficult and time consuming. The use of 
image processing techniques to automatically count and analyse these 
photoreceptor cones would be beneficial. This paper proposes the use of multi-
scale modelling and normalized cross-correlation to identify retinal cones in 
image data obtained from a modified commercially available confocal scanning 
laser ophthalmoscope (CSLO). The paper also illustrates a process of synthetic 
data generation to create images similar to those obtained from the CSLO. 
Comparisons between synthetic and manually labelled images and the 
automated algorithm are also presented.  

Keywords: Modelling, Cross Correlation, Multi-Scale, Retinal Cones. 

1   Introduction 

A number of diseases can affect specific components of the eye, including retinitis 
pigmentosa, cone/cone-rod dystrophy, glaucoma, age-related macular degeneration 
and many more. Some of these can be visually detected and early treatment, where 
available, is applied. However those that affect the retina at the back of the eye, such 
as cone/cone-rod dystrophy and age-related macular degeneration are significantly 
harder to detect as it is very difficult to obtain images of the photoreceptor mosaic in 
vivo.  

Previously, to view the retinal photoreceptor mosaic a post-mortem donor eye had 
to be placed under a microscope and cones were then counted. However, with recent 
advances in technology it is now possible to view the photoreceptor cones through the 
use of a modified confocal scanning laser ophthalmoscope (CSLO) or adaptive optics 
(AO) [1] in conjunction with a CSLO. The analysis of such images though can prove 
time consuming with regard to counting and calculating the density of the retinal 
cones. 
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In previous work in this area Li and Roorda [2-5] have used AO in conjunction with 
a CSLO to capture images of the retinal photoreceptor. The images obtained using this 
technique clearly shows a hexagonal layout of the photoreceptor cones, however the 
method does not capture images of the rods as they are significantly smaller than the 
photoreceptor cones. The images that are produced from their approach clearly illustrate 
that cone brightness can vary across the entire retina. Images that are obtained from a 
modified CSLO are substantially different from those captured using Li and Roorda’s 
method in both magnification and pixel resolution. Li and Roorda reported a 93-97% 
accuracy of correct photoreceptor cone identification on AO images. 

Algorithms created for automated identification of photoreceptor cones on AO or 
post-mortem images may not perform as accurately when applied to images captured 
from a modified CSLO. Wojtas et al [6]achieved an accuracy of 97% on images 
obtained from a post-mortem donor eye (where the definition of accuracy is the 
percentage of the total number of cones correctly identified by the algorithm). They 
applied background removal and local maxima detection to identify the bright points in 
each image. The use of directional light was applied at 137° which in turn was then used 
to approximate the distance to the cone centre from the local maxima co-ordinate. 

Curcio et al [7] studied the topography of the photoreceptor mosaic in post-mortem 
donor eyes.  They found that the density of the human photoreceptor mosaic reduced 
when moving away from the fovea.  Curcio reported a peak foveal density of 199,000 
cones/mm².  

Nicholson and Glaeser [8] have illustrated an approach of normalized cross-
correlation to detect particles in cryo-electron microscopy images. Although this 
technique is applied to a different type of image, it may be possible to adapt this 
approach to retinal photoreceptor images. This process has the potential to be used if a 
model or series of models were created to mimic the shape and size of the 
photoreceptor cones. 

The remained of this paper is organised as follows. Section 2 provides details of the 
technologies and methodologies used in this research. Section 3 illustrates the design 
implementation of our algorithms. Section 4 describes a process of synthetic data 
generation. Section 5 illustrates experimental results against synthetic and real image data 
and finally Section 6 provides conclusions and outlines further work to be carried out. 

2   Technologies and Methodology 

2.1   Technologies Available 

The two main technologies that can capture images of the photoreceptor mosaic in 
vivo are adaptive optics (AO) and the use of a modified CSLO. AO was originally  
designed to correct for atmospheric distortions in telescope images and has 
subsequently been developed to correct for ocular distortions [9]. Such a system is  
large and requires a unique setup for each individual subject that is being imaged. 
This makes the system expensive and a commercial model has yet to be developed. 
However, the use of a CSLO such as the Heidelberg Retina Tomorgraph (HRT) [10] 
is widely available and relatively inexpensive.  
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The standard HRT uses a helium neon diode laser with a wavelength of 670nm. It 
has a depth resolution of 20-80um and a scanning window of between 10º and 20º 
field of view (FoV) with a resolution of 256x256 pixels. With these parameters the 
standard HRT cannot discriminate between the retinal layers and is mostly used to 
evaluate the optic nerve head and nerve fibre layer. Fig. 1 shows a standard HRT 
image at 10ºx10º FoV. Using the current 10ºx10º FoV scan window setting, the pixel 
size corresponds to around 10um. However, with significant modification of the HRT 
involving a reduction in the FoV to a 1ºx1º scan area, minimizing the scan depth to 
cover 0.5mm and accurate fine focusing it is possible to capture enface images of the 
cone photoreceptors. Using these settings the pixel size is reduced to close to 1-2μm 
and successive scan planes are 0.0156mm apart. Fig. 2 shows an image captured with 
the modified HRT at 1ºx1º FoV. In this image the retinal cones are clearly visible as 
small, bright circular regions. We can also see retinal blood vessels which appear in 
the image as the dark region passing from top right to bottom left. The HRT used in 
this research has been modified with these setting and is located in the Vision 
Sciences Research labratory at the University of Ulster.  

 

  

Fig. 1. A standard HRT image captured at 
10°x10° FoV 

Fig. 2. An example image of retinal cones 
captured from a modified HRT at 1°x1° FoV 

 
2.2   Methodology 

The overall aim of this research is to automatically analyze and detect photoreceptor 
cones in an image obtained from a modified CSLO. We aim to achieve this by 
initially modeling the size and shape of the retinal cones using a Gaussian based 
model. Normalized cross-correlation is then used to apply the Gaussian model to the 
retinal images. The output of this approach should highlight all the regions of the 
image that are similar to the shape of the Gaussian.  We then apply local maxima 
detection to identify the highest points of similarity found in the normalized cross-
correlation results. To validate our results across a large number of images we have 
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also generated synthetic data through the use of Gaussian modelling and filtering to 
replicate the density, size and shape of the retinal cones. A small number of real 
images have also been manually labeled to act as ground truth data for evaluation 
purposes. Other approaches such as simple thresholding or applying local maxima 
detection were implemented however these produced poor results due to the low pixel 
magnification. We therefore decided to use an approach of Gaussian modelling and 
normalized cross-correlation to identify similarities in the intensity profiles of the 
images. 

3   Implementation 

3.1   Cone Modelling 

The first step in our process is to generate a series of multi-scale Gaussian models that 
simulate the average shape, size and height of the retinal cones found in the real 
image data.  After extensive analysis of the images we found that the majority of 
photoreceptor cones can be classified into one of three different types, small and 
bright, medium size and brightness or large and dull. Fig. 3 shows an example for 
each of these groups and Fig. 4 illustrates these cones displayed as a 3D surface. 

               

                                              (a)                             (b)                          (c) 

Fig. 3. Three different types of retinal cones, (a) dull and large, (b) medium size and brightness, 
(c) bright and small 

We can generate a family of Gaussian models to approximate these cone shapes 
and sizes. A 2D Gaussian model can be defined using equation 1. 

2

22

2),( σ
yx

eyxG

+
−

=  . 
(1) 

where x and y are the size of the model and σ controls the spread of the model.  The 
‘sclaing’ value that would usually be found in this standard Gaussian formula has  
been omitted as we wish the values in our models to be always between 0 and 1. The 
spread determines if the model with be bright with a sharp decrease or dull and flat. 
The value of σ is specified based on a calculation of the half-height width of the 
model and is illustrated in equation 2. 
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(a)         (b) 

 

(c) 

Fig. 4. The example retinal cones from Fig. 3 displayed as 3D surfaces 

  

 (a)    (b) 

 

(c) 

Fig. 5. Gaussian models for each cone type, (a) dull and large, (b) medium size and brightness, 
(c) bright and small 
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This formula determines the half-height width of the model given a mask size m and a 
spread γ. After experimenting with a variety of different sizes and spreads a series of 
Gaussian models were created, and these are illustrated in Fig. 5. 

3.2   Normalized Cross-Correlation 

Normalized cross-correlation compares a model (illustrated above) to each underlying 
neighbourhood of an image and returns a value between -1 and 1 at each point in the 
image. This value illustrates how similar the underlying neighbourhood of the image 
is when applied with a model. The more similar the underlying neighbourhood is to 
the model the closer the result will be 1. If the underlying neighbourhood is inverted 
with respect to the model, the results will be closer to -1. The standard normalized 
cross-correlation equation is illustrated in equation 3. 
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where f is the image, t is the mask, t is the mean of the mask and fu,v is the mean of the 
region under the mask. As our approach uses multi-scale models we apply each model 
in turn. This produces three sets of normalized cross-correlation results from which 
we identify pixels with the highest similarity in each set of results.  

3.3   Centre Identification 

To identify the potential photoreceptor cone centres, we analyze the three normalized 
cross-correlation results. A local maxima detection algorithm is applied to the 
normalized cross-correlation results. This identifies all the local maximum pixel 
values in a neighbourhood of a specified size. The size of this neighbourhood is set to 
the size of the current Gaussian model. As the local maxima algorithm is applied to 
the three cross-correlation results, we are presented with three lists of co-ordinates.  
These three lists are then combined by checking the Euclidian distance of each co-
ordinate. If two or more co-ordinates are within a Euclidian distance of 2 then the 
average position of these cones is taken. Also, the co-ordinates that are within the 
Euclidian distance are also marked as used so that they cannot be counted by any 
further iterations of the algorithm. 

3.4   Post-processing 

After the three lists of co-ordinates have been combined there is stil the possibility that 
some cone positions have been falsely identified and we must then analyse the co-
ordinate set to remove those co-ordinates which do not correspond to real cone centres. 
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To achieve this we firstly average the three normalized cross-correlation results. From 
this we analyze the co-ordinates in the averaged cross-correlation results, if this co-
ordinate is below a defined threshold the co-ordinate is then removed from the list. This 
threshold has been chosen emperically and is currently set to 0.3. 

4   Synthetic Data Generation 

The manually labeling of real image data is both difficult and time consuming, 
therefore a process of synthetic data generation could be very beneficial. This process 
is applied as an extension of the modelling process.  After analysis of the real image 
data it was found that most images at 1°x1° FoV contain between 600 – 1000 
photoreceptor cones varying in size, shape and height. Also there is a degree of noise 
in the real image data caused during image capture. In our approach to generating 
synthetic data we randomly place Gaussian models on a 256x256 pixel image 
ensuring that no two are overlapping. The size and spread of the models are randomly 
selected at 5, 7 or 9 and 4, 6 or 8 respectively. These random selections are of equal 
probability and inevitably there are a large number of different cones across the image 
with varying densities.  

The background in real image data also varies. To generate a synthetic background, 
a 5x5 average filter was passed across a real image a large number of times (typically 
100) in order to produce a smoothed image with varying background. The cones are 
then randomly placed onto this synthetic background. Fig. 6 illustrates 3 images with 
cone densities of 600, 800 and 1000. 

   

Fig. 6. Three synthetic images with varying densities of 600, 800 and 1000 simulated retinal 
cones 

Using this process of generating ideal images a degree of noise can be applied to 
simulate real image data. For this we choose two different approaches; the first is to 
apply a 3x3 Gaussian smoothing algorithm to 70% of the image. When capturing the 
images, there can be significant eye movement in any direction. To simulate this we 
implement a process that applies a 3x3 pixel mask to the entire image. This mask will 
shift the centre pixel either up, down, left, right or not at all. Each pixel in the image 
has a 20% chance it will be shifted in a direction or not at all. Fig. 7 shows an 
example of each of these noise filters. 
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5   Experimental Results 

For our experimentation we generated 30 synthetic images, 10 of which are ideal, 10 
have a Gaussian smoothing filter and 10 have a random weighted filtering applied.  
Also three real images have been manually labeled to compare our results against. 
Fig. 8 illustrates a manually labeled and automatically identified real image. The 
retinal cones have been identified with a black or white ‘+’ symbol to allow for 
contrast in the image. 

   

Fig. 7. Two example types of degradation applied to the synthetic images 

   

Fig. 8. A manually labelled and an automatically identified real image 

Table 1 illustrates the results of our algorithms applied to the synthetic data 
generated earlier.  These results have been separated into three sets, one for each of 
the synthetic data sets (ideal, Gaussian smoothed and random pixel shifted images). 
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Table 1. Results of our algorithm against the different types of synthetic data 

 Ideal Gaussian Smoothed Randomly Shifted 

Manual Cone No Cone Cone No Cone Cone No Cone 

Algorithm Detected Detected Detected Detected Detected Detected 

Cone Detected 8425 1 8664 135 8201 882 

No Cone Detected 390 ----- 422 ----- 466 ----- 
 

This gives an average accuracy of 96.2% for correct cone identificaton. A 
relatively low percentage of 3.9% of the total number of photoreceptor cones were 
missed in our synthetic data. Also 4.8% of the total cones identified were false 
positives.  

Table 2 illustrates the combined results of our algorithms when applied to the three 
real images (which have been manaually analysed). 

Table 2. Results of our algorithm against real image data 

Manual Cone No Cone 

Algorithm Detected Detected 

Cone Detected 2364 145 

No Cone Detected 172 ----- 

 

When this is applied to our real image data we correctly identified 94.2% of 
photoreceptor cones and missed 5.7%. Of the total cones identified 6.8% were false 
positives. These results clearly illustrate a good foundation for automatic retinal cone 
identification.  

6   Conclusions 

We have illustrated a process of automated photoreceptor cone identification using 
modelling and normalized cross-correlation.  We have also presented a process for 
synthetic image data generation imitating the images obtained from a modified CSLO 
such as a HRT. This process has produced an accuracy of 95.2% on synthetic data and 
93.2% on real image data.  

Further work in this area would include modification of the modelling process in 
an attempt to increase the number of true positives found. Also the expansion of post-
processing algorithms to reduce the number of false positives would be required. The 
automated identification and masking of retinal blood vessels can also be 
implemented. With the identification of retinal blood vessels, the ability to 
automatically align these images on top of a high-resolution Fundus image should be 
possible. This provides a visual tool to identify how far away from the fovea the 
image has been captured. Further development of synthetic data may include the 
random placement of retinal blood vessels and the increased implementation of noise 
to simulate poor images. 
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Abstract. Traditionally feature extraction is focussed on edge and corner 
detection, however, more recently points of interest and blob like features have 
also become prominent in the field of computer vision and are typically used to 
determine correspondences between two images of the same scene.  We present 
a new approach to a Hessian blob detector, designed within the finite element 
framework, which is similar to the multi-scale approach applied in the SURF 
detector. We present performance evaluation that demonstrates the accuracy of 
our approach in comparison to well known existing algorithms. 

Keywords: blob detector, finite element framework. 

1   Introduction 

Standard corner detectors such as the Harris and Stephens corner detector [4] find 
corners in an image at one particular scale, but corner points within an image may 
occur at many natural scales depending on what they represent [7]. To deal with the 
many natural scales at which features may be present, corner detectors have been 
developed to work on multiple scales, thereby having the ability to detect all corners. 
Many of these corner detectors do not only detect actual corner points but also other 
"interesting points" that may not strictly be recognized as corners [8, 13]. For some 
particular applications the ability to detect interesting points that are robust to changes 
within the image is seen as a more desirable characteristic than specifically detection 
of real corner points. Blobs are interesting features prominent in images. Generally 
blobs can be thought of as regions in an image that are brighter or darker than the 
surrounding regions. Blob-type features provide complementary information not 
obtained from corner detectors [11]. 

The Laplacian of Gaussian [9] is a popular blob detector, where the image is 
convolved with a combined Laplacian and Gaussian kernel. However, the main 
limitation of this detector is that the detector operates at only one particular scale, but 
features within an image may appear at many different scales. A multi-scale 
Laplacian of Gaussian detector may be achieved by appropriately adjusting the size of 
the Gaussian and Laplacian kernels to obtain a set of kernels that are then applied to 
the image. Thus, a set of features may be detected at multiple scales. However, 
applying a detector at multiple scales may introduce other issues, as the same feature 
may be present over a range of scales within the detector’s range [10], and by 
representing the same feature at many scales we increase the difficulty of matching 
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the detected features. Hence, a scale invariant approach is more appropriate, where 
the characteristic scale of the feature is identified. This characteristic scale is the scale 
at which the feature is most strongly represented, and it is not related to the resolution 
of the image, but rather the underlying structure of the detected feature [10]. By using 
an operator to measure the response of the same interest point at different scales, the 
scale at which the peak response is obtained can be identified. The Hessian-Laplace 
blob detector [11] is based on an approach analogous to this, where second order 
Gaussian smoothed image derivatives are used to compute the Hessian matrix. This 
matrix captures the important properties of the image structure. Using a multi-scale 
approach where kernel sizes are increased, the trace and the determinant of the 
Hessian matrix are thresholded and blob features detected.   

In this paper we present a finite element based Hessian blob detector (FEH) based 
on techniques borrowed from our own FESID detector [6] and ideas from the SURF 
[2] and CenSurE detectors [1]. Performance is evaluated with respect to repeatability 
and feature matching using the evaluation techniques presented in [10], highlighting 
improvements when compared with other well known interest point detectors and 
descriptors.  

2   Hessian Blob Detector Design 

The finite element hessian blob detector for robust features uses second order 
derivative operators to detect blob-like features that are robust to various 
transformations.  

For the propose of operator design and development, we consider an image to be 
represented by a rectangular m×n array of samples of a continuous function u(x,y) of 
image intensity on a domain Ω . The most refined level of finite element 
discretisation of the image domain Ω is based on considering the image as a 
rectangular array of pixels.  Nodes are placed at the pixel centres, and lines joining 
these form edges of elements in the domain discretisation. The near-circular operators 
presented in [12] were based on the use of a "virtual mesh", illustrated in Figure 1, 
consisting of regular triangular elements, which overlays a regular rectangular pixel 
array.  

 
 
 

 

Fig. 1. Virtual mesh of triangular elements 
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With any node in a mesh, say node i, with co-ordinates ),( ii yx  we associate a 

piecewise linear basis function ),( yxiφ which has the properties 
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=
ji

ji
yx jji   if0

  if1
),(φ   

  
(1) 

where ),( jj yx  are the co-ordinates of the nodal point j. ),( yxiφ is thus a "tent-

shaped" function with support restricted to a small neighbourhood centred on node i 
consisting of only those elements that have node i as a vertex. For any scale parameter 

σ, we may define a neighbourhood σ
iΩ  centred on the node i at ),( ii yx  and 

consisting of a compact subset of elements. If the set of nodes contained in or on the 

border of σ
iΩ is denoted as σ

iD , then we may approximately represent the image u 

over the neighbourhood σ
iΩ  by a function  
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in which the parameters }{ jU are mapped from the sampled image intensity values. 

The approximate image representation is therefore a simple piecewise linear function 

on each element in the neighbourhood σ
iΩ  and has the sampled intensity value Uj at 

node j. 
To formulate operators involving a weak form of the second order directional 

derivative in the finite element method, it is required that the image function 
),( yxuu ≡  be once differentiable in the sense of belonging to the Hilbert space 

)(1 ΩH ; i.e. the integral ( ) Ω+∇∫
Ω

duu 22
 is finite, where u∇  is the vector 

( )Tyuxu ∂∂∂∂ /,/ . To obtain a weak form of the second directional derivative, 

( )u∇⋅∇− B , the respective derivative term is multiplied by a test function 1Hv ∈ and 

the result is integrated on the domain Ω to give 

( )∫
Ω

Ω∇⋅∇−= vduuZ B)( . 
 

(3) 

Here Tbb=B  and ( )θθ sin,cos=b  is the unit direction vector. Integrated directional 

derivative operators have been used in [15], though not based on the weak forms 
introduced above. 

Since we are focusing on the development of operators that can explicitly embrace 

the concept of scale, a finite-dimensional test space 1HT h ⊂σ is employed that 

explicitly embodies a scale parameter σ. In our design procedure the test space hTσ  

comprises a set of Gaussian basis functions ),( yxi
σψ , i=1,…, N of the form  
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Each test function ),( yxi
σψ  is restricted to have support over a neighbourhood σ

iΩ  

centred on the node i at ),( ii yx . The size of the neighbourhood σ
iΩ  to which the 

support of ),( yxi
σψ  is restricted is also explicitly related to the scale parameter σ [3].  

We construct three operators σ
ijDxx , σ

ijDyy ,  and σ
ijDxy , representing the second order 

x- y- and mixed  xy- derivatives respectively: 
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and 
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The integrals are computed as sums of the element integrals and are computed only 

over the neighbourhood σ
iΩ , rather than the entire image domain Ω  as σψ i  has 

support restricted to σ
iΩ . 

3   Blob Detection 

For efficient implementation, we have adopted the use of integral images introduced 
by Viola and Jones [14]; more recently integral images have been a key aspect of the 
SURF detector and we have previously successfully used integral images with the 
FESID detector [6] as integral images provide a means of fast computation using 
small convolution filters. 

If an intensity image is represented by an array of  nm ×  samples of a continuous 
function ( )yxu ,  of image intensity on a domain Ω , then the integral image value 

( )xI∑  at a pixel location ( )yx,=x  is the sum of all pixel values in the original image 

I  within a rectangular area formed by the origin of the image and location x: 

( ) ( )∑∑
≤

=

≤

=
∑ =
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jiII
0 0
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            (8) 
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The time and number of operations required to compute any rectangular area of the 
integral image is independent of the size of that region, as four memory reads and 
three additions are required to compute any region, 

Using the same multi-scale approach as the SURF detector we select the first filter 
size of a 99 × pixel region. In our approach we partition the 99 × pixel region slightly 
differently as illustrated in Figure 2.  

 

      

(a)                                                (b) 

Fig. 2. 99×  filter partitioning for (a) SURF and (b) FEH detector 

Our approach differs from the SURF detector in that we need to compute 9-regions 
for each operator, rather than the 3 or 4 regions that are computed with the SURF 
detector. The filter partitioning allows the operator values to be simply mapped to the 

appropriate 33×  region on the 99 ×  filter. The operator values, σ
ijDxx , σ

ijDyy , and 
σ
ijDxy  , (equations 5-7) mapped to the 99 ×  regions are then convolved with the sum 

of the pixel intensities from each of the areas illustrated in Figure 2(b) to form the 
Hessian matrix 

⎥
⎦

⎤
⎢
⎣

⎡
=

DyyDxy

DxyDxx
H   

            
            (9) 

The Hessian matrix captures the important properties of the local image structure by 
describing how the underlying shape varies [11].  

The normalised determinant of the Hessian matrix is computed using the formula 

( ) ( )281.0det DxyDyyDxxH ×+×=   
            
          (10) 

where the constant term 0.81 is determined by the size of the filter, i.e., 99 × . This 
approximated determinant of the Hessian represents the blob response in the image at 
that particular location.  

Similarly, blob responses are computed over further scales by increasing the overall 
size of the filter, but maintaining the 9 regions. For example, within the first octave filter 
sizes of  99× , 1515× , 2121× , and  2727 ×  are used, and each of these filters has 9 
individual regions of size 33× , 55× , 77 × , and 99×  respectively. The blob response 
is computed over a total of 4 octaves that each contain 4 scale ranges. Blob responses 
that are not maxima or minima in the immediate neighbourhood of the selected blob are 
rejected by examining a 333 ××  neighbourhood (in the x- and y- spatial dimensions, 
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and the scale dimension) around the selected blob.  For the remaining blobs that give 
responses above a specified threshold, these blobs are interpolated in 3D (two spatial 
dimensions, and scale) to accurately localise the blob [6]. 

4   Experimental Results 

We present results of comparative performance evaluation for our proposed FEH blob 
detector and other well-known blob detectors, the SURF detector and the Hessian 
Laplace detector; the detectors used for comparison are limited to those that are most 
similar to FEH in terms of operation. A full evaluation of various detectors using the 
same software and images has been carried out in [11], and the reader is referred to 
this work for full details.  

Evaluation of FEH was performed using the set of test images and software 
provided from the collaborative work between Katholieke Universiteit Leuven, Inria 
Rhone-Alpes, Visual Geometry Group and the Center for Machine Perception  
( available for download at [16]). Using the repeatability metric we explicitly compare 
the geometrical stability of detected points of interest between different images of a 
scene under different viewing conditions. The test image set consists of real structured 
and textured images of various scenes, with different geometric and photometric 
transformations such as viewpoint change, image blur, illumination change, scale and 
rotation and image compression. For the detectors presented here we describe a 
circular region with a diameter that is 3× the detected scale of the point of interest, 
similar to the approach in [10, 11]. The overlap of the circular regions corresponding 
to an interest point pair in a set of images is measured based on the ratio of 
intersection and union of the circular regions. Thus, where the error in pixel location 
is less than 1.5 pixels and the overlap error is below 60%, similar to the evaluation of 
the SURF detector [2], the points of interest are deemed to correspond. Example 
images are shown in Figure 3. 

 

     

        (a) Viewpoint angle 0°         (b) Viewpoint angle 30°              (c) Viewpoint angle 60° 

Fig. 3. Viewpoint change - example image sequence [5] 

In Figure 4(a) and 4(b) we present comparative evaluation of the detectors using the 
illumination change scene. The repeatability rate for the FEH detector is consistently 
better than either SURF or the Hessian-Laplace operators, and generally the number of 
correspondences is also greater. Figures 4(c) – 4(f) present the evaluation results using 
the viewpoint change scenes.  In Figures 4(c) and 4(d), using the structured viewpoint 
change, the Hessian-Laplace operator has the best percentage repeatability, and the 
proposed FEH operator performs similarly to the SURF operator; the FEH has a slightly 
higher number of correspondences than the Hessian-Laplace operator.   
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(a) Repeatability score (b) # Corresponding region 

(c) Repeatability score (structured) (d) # Corresponding region (sturctured) 

(e) Repeatability score (textured) (f) # Corresponding region (textured) 

Fig. 4. Repeatability score and number of corresponding regions for image sequences 
containing illumination change (a)-(b); viewpoint change (c)-(f) 
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(a) Repeatability score (structured) 

 

(b) # Corresponding region (sturctured) 

 

(c) Repeatability score (textured) 

 

(d) # Corresponding region (textured) 

Fig. 5. Repeatability score and number of corresponding regions for image sequences 
containing scale change 

However, in Figure 4(e), using the textured viewpoint change, the proposed FEH 
operator has the best percentage repeatability, with the Hessian-Laplace operator 
having the poorest performance; in Figure 4(f), we see that FEH has a significantly 
larger number of correspondences compared to either the SURF or Hessian-Laplace 
operators, which possibly leads to the improved repeatability rate. 

Figure 5 presents results for the three detectors on image sequences containing 
scale change.  In these images sequences, the Hessian-Laplace operator outperforms 
the other two operators with respect to repeatability score.  However, Figures 5(a) and 
5(c) illustrate that the performance of the proposed FEH operator is similar to the 
SURF operator; the performance of FEH is slightly poorer than SURF in Figure 5(a) 
and slightly better than SURF in Figure 5(c).  Figures 5(b) and 5(d) again illustrate 
that the number of correspondences is high for the FEH operator.   Figure 6 presents 
results for the three detectors on image sequences containing blur change, and here 
we see that the FEH and SURF operators perform similarly and better than the 
Hessian-Laplace operator. In addition to the performance evaluation, we include  
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run-time for the three algorithms in Table 1 where it can be seen that FEH is faster 
than the Hessian-Laplace approach. 
 

(a) Repeatability score (structured) (b) # Corresponding region (sturctured) 

(c) Repeatability score (textured) (d) # Corresponding region (textured) 

Fig. 6. Repeatability score and number of corresponding regions for image sequences 
containing blur change 

Table 1. Algorithmic run-times 

Blob Detector Run-time(secs) 
Hessian-Laplace 0.871 
SURF (including SURF-E descriptors 0.636 
FEH (including SURF-E descriptors)      0.809 
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5   Conclusions and Future Work 

The results of our comparative performance evaluation indicate that the FEH detector 
performs better than the SURF detector on most sequences. In some sequences such 
as the structured viewpoint change the Hessian-Laplace detector performs better than 
the FEH detector. This is most likely due to the fact that the Hessian-Laplace detector 
uses large Gaussian derivatives to compute the Hessian matrix rather than the cruder 
approximations used in the SURF and FEH detectors; however this also makes the 
Hessian-Laplace operator relatively computationally expensive. 
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Abstract. Support Vector Machines are excellent binary classifiers. In
case of multi–class classification problems individual classifiers can be
collected into a directed acyclic graph structure DAGSVM. Such struc-
ture implements One-Against-One strategy. In this strategy a split is
created for each pair of classes, but, because of hierarchical structure,
only a part of them is used in the single classification process.

The number of classifiers may be reduced if their classification tasks
will be changed from separation of individual classes into separation of
groups of classes. The proposed method is based on the similarity of
classes. For near classes the structure of DAG stays immutable. For the
distant classes more than one is separated with a single classifier. This
solution reduces the classification cost. At the same time the recognition
accuracy is not reduced in a significant way. Moreover, a number of SV,
which influences on the learning time will not grow rapidly.

Keywords: Classification, Directed Acyclic Graph, Support Vector Ma-
chines, One–Against–One.

1 Introduction

Support Vector Machines [11] are excellent binary classifiers, which can also
be applied to multi–class problems. One–step solutions [4] are mainly theoreti-
cal [6]. Instead, an ensemble of SVMs is used. There are two main strategies for
that [6,1].

The first, One–Against–All [3] creates a classifier for each recognized class. The
classifier splits a data space between the class and the rest of classes. In the n–
classes case the method needs n classifiers. The method can also be implemented
in the form of a decision tree [2]. Then, on each level of the tree one class is
separated with the rest. This implementation requires only n− 1 classifiers and
the average decision process uses n− 1/2 classifiers.

The second method is One–Against–One [7]. The method creates a classifier
for each pair of classes. In comparison to the One–Against–All strategy the
recognition rate grows, the same as the number of created classifiers. In the
case of nclasses the method needs n(n − 1)/2 classifiers. The method can also

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 514–523, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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be implemented in the form of a directed acyclic graph [8]. Then only n − 1
classifiers have to be used in the classification process. However, this number is
constant and independent of a recognizing class. The problem of decrease of the
average classification cost is discussed in the section 2.

The aim of this paper is to propose a method for a reduction of classifiers used
by the DAGSVM without a significant decrease of the recognition rate. For that
the classifiers for a pair of classes will be only created for the similar classes. If
the class is separated from the rest of classes then the One–Against–All strategy
will be used instead. The creation of the graph with reduced number of classifiers
is presented in the section 3.

The graph created in the proposed way will be tested on the handwritten
digits recognition task. The results will be compared with the One–Against–All
and One–Against–One strategies. The test and its results are presented in the
section 4.

2 DAGSVM and Reduction of Classifiers

The DAGSVM has proved it’s advantages in many tests [6,2]. The DAGSVM
implements the One–Against–One strategy. The SVM classifier is created for
each pair of recognized classes. In each step of the classification algorithm one
class is rejected. The second one is compared with a next class. The algorithm
terminates when the single remaining class is not rejected. In the case of n–
classes recognition task, such classification path needs n−1 classifiers. For the n
possible results the global number of classifiers, without repetition, is n(n−1)/2.

Because a part of classifiers will be the same for different classification paths
and the order of comparison in the fixed path is not important, the classifiers
can be collected in a directed acyclic graph. Then, a single classification process
needs only n− 1 classifiers, but this number is constant.

The average number of used classifiers can be reduced when the degenerated
tree structure is used. Then the One–Against–All strategy is applied. Despite of
reduction of trained classifiers the learning time may grow, because each single
classifier solves now a more complex problem [1].

The solution, which lies somewhere between is an Adaptive Directed Acyclic
Graph [5]. ADAG uses a tournament tree to reduce the number of classifiers by
half on each level of the tree. For that purpose some of the classifiers splits the
space between groups of classes instead of single classes.

A different approach is presented in the paper [13], where the gravity of the
classifiers is estimated on the base of the probability of positive samples, while
the trivial classifiers are ignored.

In this paper the reduced number of classifiers will be achieved by replacing
of the splits between classes by the splits between groups. However, the replaced
classifiers will be selected on the base of the similarity between classes. Details
are given in the next section.
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3 Reduction Based on Class Similarity

For the reduction of the number of used classifiers a new structure will be pro-
posed. The structure will also be a directed acyclic graph, therefore some def-
inition about graphs [12] will be formed in the section 3.1. The graph will be
based on a similarity. Various definition of the similarity based on a distance
are presented in the section 3.2. A structure of the graph is created by group-
ing of the nearest classes. An algorithm, which builds the graph is presented in
the section 3.3. Finally, all nodes of the graph, which are not leaves, have to
be connected with the classifiers. In the section 3.4, classification tasks for the
individual classifiers are defined.

3.1 Preliminaries

In the presented concept a directed acyclic graph G, which is given by the set of
nodes V (G) and the set of edges E(G), is equated with the set of classes. The
graph with a single node is an equivalent of a single class Ci, where i = 1 . . . n
is an index of recognized classes. When two classes Ci and Cj , from different
nodes, are joined as leaves of the same tree then the tree is equated with the
set {Ci, Cj}. The tree, which groups all equivalents of recognized classes as the
leaves is equated with the set

⋃n
i=1 Ci.

A directed acyclic graphs can be presented as a tree. In such case the number
of leaves exceeds n, but some of them will represent the same class. The higher
number of leaves increases also the number of nodes on higher levels. Still, those
nodes will also be duplicated. For a simplification, in the subsequent deliberation,
such tree will be describes as a graph with the leaves L(G) defined as a set of
nodes without successors

L(G) = {vl ∈ V (G) : ∀v∈V (G)(vl, v) /∈ E(G)}. (1)

In a similar way the root R(G) can be described as a single node without pre-
decessors

∃!R(G)R(G) ∈ V (G) ∧ ∀v∈V (G)(v,R(G)) /∈ E(G). (2)

The graph, which collects all recognized classes can be used as an ensemble of
classifiers. Each node, which is not a leaf v /∈ L(G), is connected with a classifier.
The decision of classifier shows the next node in the graph c(v) = u. Finally, the
decision determines a leaf. When the process starts at the root then the final leaf
determines the recognized class c(v) = Ci. The decision process can be given as
a recursive function

C(v) =

{
C(u), if v /∈ L(G) ∧ c(v) = u

Ci, if v ∈ L(G) ∧ c(v) = Ci

. (3)

The set of classes Ci , which is equated with the graph G, can be described as

C(G) = {Ci : c(vl) = i ∧ vl ∈ L(G)}. (4)
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3.2 Similarity

A similarity between classes is estimated on the base of a distance. The distance
between classes d(CX , CY ) depends on the distance between elements of those
classes d(x, y) and can be defined as the distance between nearest elements

d(CX , CY ) = min
x∈CX
y∈CY

d(x, y), (5)

furthest elements
d(CX , CY ) = max

x∈CX
y∈CY

d(x, y) (6)

or as the average distance between all pair of elements in the two different classes

d(CX , CY ) =
1

nCXnCY

∑
x∈CX
y∈CY

d(x, y). (7)

All those methods need calculation of the distance between all pair of elements.
When the classes have too many members the distance may be approximated as
the distance between centroids (the centers of gravity for the classes)

d(CX , CY ) = d

⎛⎝ 1
nCX

∑
x∈CX

x,
1

nCY

∑
y∈CY

y

⎞⎠ . (8)

In a similar, way a distance between groups of classes can be calculated. If a
group is an union of classes CX =

⋃k
i=1 Ci then all members of classes Ci, where

i = 1 . . . k, are treated as members of CX . The distance between such groups
can be calculated as (5), (6), (7) or (8). A single class may be compared with a
group of classes in the same way.

The distance between an individual elements of the data space d(x, y) depends
on the selected metric. Usually it is the Euclidean metric

d(x, y) =

√√√√ n∑
i=1

(xi − yi)
2
. (9)

However, if the recognized elements are described by some specific features it is
sometime better to select a different measure.

Two potential candidates are Manhattan and Chebyshev metrics. the Man-
hattan distance

d(x, y) =
n∑

i=1

|xi − yi| (10)

should be calculated when individual features are independent, but their sum
may be reated as a rational measure of the similarity. In the Chebyshev distance

d(x, y) = max
i∈{1,...,n}

|xi − yi| (11)

the similarity will depend on the maximal difference among features.
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3.3 Structure

The graph for the n–classes classification task has to group n leaves. The algo-
rithm for creating such graph starts with the set SG of n graphs with only one
node

SG = {Gi : C(Gi) = {Ci} ∧ i = 1 . . . n}. (12)

In each step a pair (Gi, Gj) of graphs equivalent with the nearest sets of classes
is found

(Gi, Gj) = arg min
Gi,Gj∈SG

d(C(Gi), C(Gj)). (13)

Both, C(Gi) and C(Gj) are sets of classes and the distance d(C(Gi), C(Gj)) can
be calculated as (5), (6), (7) or (8).

The graphs Gi and Gj are joined into a single graph G. In the joining process
a new node v is added as the root (2) for the new graph. The roots of joined
graphs become successors of the new node and the new graph G is given by the
set of nodes

V (G) = {v} ∪ V (Gi) ∪ V (Gj) (14)

and the set of edges

E(G) = {(v,R(Gi)), (v,R(Gj))} ∪ E(Gi) ∪ E(Gj). (15)

The newly created graph G is added to the set of graphs

SG = SG ∪ {G}. (16)

The component graphs Gi and Gj are not removed from the set SG. The graphs
are equivalent to classes Ci and Cj respectively. However, on the base of (4)
and (14), (15), the graph G is equated with the set {Ci, Cj}. For that reason
the condition (13) has to choose (Gi, G) or (G,Gj) as the nearest graphs. To
avoid such situation possibilities of joining have to be limited. Two graphs can
be joined if and only if the set of classes represented by one of them (4) is not a
subset of the other

C(Gi) � C(Gj) ∧C(Gj) � C(Gi). (17)

.
If the new created graph will not be one of the nearest graphs then graphs Gi

and Gj are still the nearest ones. In such situation the algorithm will not stop.
For that an additional condition has to be formed. The two graphs can be joined
if and only if the union of classes represented by them is not represented by any
existed graph

∀G∈SGC(G) �= C(Gi) ∪ C(Gj). (18)

.
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Both conditions (17) and (18) can be used to create a limited set of allowed pairs
of graphs

SP = {(Gi, Gj) : Gi, Gj ∈ SG

∧ C(Gi) � C(Gj) ∧ C(Gj) � C(Gi) (19)
∧ ∀G∈SGC(G) �= C(Gi) ∪C(Gj)}.

Moreover, the common part of classes is ignored when the distance is calculated
and the final form of the formula (13) is

(Gi, Gj) = arg min
Gi,Gj∈SP

d(C(Gi) \ C(Gi ∩Gj), Gj \ C(Gi ∩Gj)), (20)

where
C(Gi ∩Gj) = C(Gi) ∩ C(Gj). (21)

In each step of the algorithm, the two allowed graphs Gi, Gj are joined. The
algorithm stops when no join can be made

∀Gi∈SG∃Gj∈SGC(Gi) ⊆ C(Gj) ∨ C(Gj) ⊆ C(Gi). (22)

In such case, the set contains one graph G, which collects all recognized classes

C(G) = {Ci : i = 1 . . . n}. (23)

In the final graph G some of nodes may be repeated. However, such nodes are
leaves or have the same branches and they can be treated as the one. An example
of the structure creation process is presented in Fig 1.

Fig. 1. An example of the creation of the graph structure

3.4 Classifiers

In the DAGSVM each classifier rejects one from the recognized classes. In created
structure the number of classifiers may be reduced. For that reason the classifier
may reject more than one class.
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When a classifier is connected with the node v the function c(v) has to choose
one of the successors u,w. Each of them is a root of a graph. When the node u
is the root of the graph Gu then the classification function (3) can only reach
classes from the set C(Gu). The same with the node w, which represents classes
from the set C(Gw). So, the classifier will reject classes

Reject(v) =

{
C(Gu), if c(v) = w

C(Gw), if c(v) = u
. (24)

The classifier connected with the node v will be trained to separate members of
the classes includes in the set C(Gu) from those belonging to the set C(Gw).

However, in the directed acyclic graph, two different nodes can have the same
successors. In such case, the function (24) has to be modified to avoid discrim-
ination between members of the same class. The new formula of the rejection
function will be

Reject(v) =

{
C(Gu) \ C(Gu ∩Gw), if c(v) = w

C(Gw) \ C(Gu ∩Gw), if c(v) = u
. (25)

Now, the classifier connected with the node v will be trained to separate members
of classes from the set C(Gu) \ C(Gu ∩ Gw) with the members of classes from
the set C(Gw) \ C(Gu ∩ Gw) and the problem with discrimination of the same
classes will be prevented.

3.5 Discussion

The reduced graph may be compared with the DAGSVM in three aspects. The
first one is the recognition accuracy. An increase of the accuracy, when the
number of the classifiers is reduced, should not be expected. However, it can
stay on the similar level, because of limitation of reduction to the classifiers for
the distant classes.

Main expectations lie in the reduction of costs. There are two types of the
costs: the learning time and the classification time. The classification time is a
function of the average number of classifiers. For the DAGSVM this number is
constant and equals n − 1 for n–recognized classes. If at least one classifier is
removed then the classification cost will be reduced for at least one class. Then
the average cost will also be reduced.

The aspect of the learning time is a little more complicated. The number
of classifiers, which have to be created is reduced. However, the classification
task for a single classifier becomes complex, when the split between groups is
examined. The optimization function [11], which calculates coefficients of the
discriminant plane, depends on the number of support vectors. Then the number
of used SV may be used as an estimator of the learning cost.

The learning process will be faster if the number of the support vectors, which
have been used by the rejected classifiers is greater than the number of additional
vectors for the new discrimination task. It has to be also noticed that the number
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of the support vectors does not influence the classification time, which will be
constant for each SVM classifier.

4 Classification of Digits Using Grouping Trees

The digits recognition task was chosen for testing. Handwritten digits were de-
scribed with 197 features. The feature set is based on a set of projections, his-
tograms and other fast computed features [9]. The feature vectors create ten
classes. The sizes of classes are unbalanced. Nearly 30 percent of the whole data
set is represented by the class 3. This follows from a specific character of the
collected data. The digits were extracted from control points on the geodetic
maps [10] dominated by thirties. From 7081 collected digits, 5291 were used as
a learning probe. The rest, 1790, were used for the tests.

The results for the reduced graph was compared to the results of the One–
Against–One strategy. A similar classification error (a percentage of mistaken
cases) was expected. Also, the learning time as well as classification time were
compared. Those two aspect were estimated by a number of support vectors and
the number of binary classifiers respectively.

An additional test was for the One–Against–All strategy. This strategy uses
a minimal number of classifiers and it should give a reference to the reduction
effects. The method was implemented by a tree. The tree, which was created by
adding the nearest class to the existing tree. The tree is initiated by two nearest
classes.

In all tests SVMs with linear kernels, were chosen. The distances between
elements were calculated in the Euclidean metric (9). The tree was built on the
base of the average distance (7) and in case of the reduced DAG, the distance
between centroids (8) was used.

Table 1. Comparison of methods

Number Average Number Average Classification
Classifier of SVM No. of SVM of SV No. of SV error

DAGSVM 45 9 2176 48 4.25

Reduced graph 26 7 1600 62 4.75

OAA 9 5 1414 157 6.65

The results are presented in the Table 1. For each method, the number of
used classifier is given as well as the average number of classifiers used in the
single classification process. This value allows to estimate the classification time.
For the estimation of the learning time a number of support vector is given.
The average number of SV is calculated for the single classifier. Finally, the
classification error is presented.
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The One–Against–One strategy needs 45 classifiers. When the classifiers are
grouped in the DAGSVM the average number of used classifiers is 9 for each data
distribution. The classification rate, calculated as a percent of positive recognized
elements is 95.75 percent.

The One–Against–All strategy requires only 9 classifiers. The average number
of used classifiers is about 5 for the balanced case (the number of elements among
classes is similar). The method produces a lower classification rate, 93.35 percent
of positive recognized elements. However, the method is relatively fast even in
the learning process. The effect of increasing of the average number of support
vectors is mitigated by the reduce in the number of created classifiers.

Fig. 2. The reduced DAGSVM for the digits recognition task

The reduced graph (Fig.2) needs 26 classifiers. The average number of used
classifiers is 7 in the balanced case. However, some classes, such as 2, could be
reached with 3 classification decisions. The maximal number of used classifiers
is 8. The classification process will be definitely faster than for the DAGSVM.
At the same time the classification rate is 95.25 percent of positive recognized
cases, which is nearly the same as for the One–Against–One strategy.

The last aspect is the learning time. In the reduced graph the global number of
support vectors is lower than in the DAGSVM. The average number of SV grows,
but many classifiers are eliminated. The increase of SV is not significant, because
most of the classifiers split only two classes as in the case of the DSGSVM.

As a conclusion of the test it can be said that the fastest method is One–
Against–All (in both the learning time and the classification time). However,
the classification error for this method grows in comparison to the One–Against–
One strategy. Yet, the One–Against–One strategy is not the best method. The
reduced graph has a similar classification rate, but the learning and classification
costs are significantly lower.
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5 Summary

In this paper a new method, which creates the ensemble of the SVM was pre-
sented. The method is based on the DAGSVM. However, it allows to reduce a
number of created classifiers. The classifiers, which discriminate distant classes
are replaced by the classifiers, which separate groups of classes. The algorithm
for creating a new graph structure, was presented.

The algorithm was tested on the handwritten digits recognition task. The
recognition rate stays similar to the DAGSVM method, while the reduction of
the classifiers was significant. The reduction of the average number of classifiers
decreases the classification time. Moreover, the learning time should not be in-
creased despite of increase of the average number of support vectors used by the
classifiers.
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Abstract. In this paper new error measures to evaluate image features
in 3D scenes are proposed and reviewed. The proposed error measures
are designed to take into account feature shapes, and ground truth data
can be easily estimated. As other approaches, they are not error-free
and a quantitative evaluation is given according to the number of wrong
matches and mismatches in order to assess their validity.
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1 Introduction

Feature-based computer vision applications have been widely used in the last
decade [12]. Their spread has increased the focus on feature detectors [8] and
feature descriptors [7], as well as sparse matching algorithms [3,13]. Besides,
different evaluation strategies to assess their properties have been proposed
in [8,7,10,5,4].

The repeatability index introduced in [11] and the matching score [8] are
common measures used for comparison. They have been adopted in well-known
extensive comparisons for detectors [8], while precision-recall curves have been
used for descriptors [7]. Both the error measures described above have been
applied to the Oxford dataset [9] which has become a standard de facto. The
principal drawback of these approaches is to require a priori knowledge of all the
possible correct matches between corresponding points in images. In the case of
the planar scenes the Oxford dataset is made of, this can be trivially obtained
by computing the planar homography from an exiguous number of hand-taken
correspondences [6].

However, the use of features on 3D scenes is the most attractive and interest-
ing topic for which nowadays new features are designed, so a relevant interest
has risen in order to understand how they behave and their properties in a fully
3D environment. A strategy to overcome this issue was proposed in [5], where
only two further image sequences, which contain fully 3D objects, are added to
to extend the Oxford dataset. The trifocal tensor [6] is computed by an interme-
diate image and ground truth matches are recovered by using a dense matching
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strategy [12]. However, no information can be extracted for homogeneous regions
or when occlusions are present, which can compromise the evaluation. Moreover,
the complexity of the approach increases, which becomes less suitable for adding
further image sequences to obtain a better evaluation.

A further evaluation of feature detectors and descriptors on 3D objects is
reported in [10]. Differently from the other approaches, triplets of images are used
leading to triplets of image correspondences instead of pairs. Correspondences
are evaluated by epipolar geometry constrains [6] to build ROC curves used to
analyse data and draw out conclusions. Though fundamental matrices [6] used
to constrain triplets can be easily obtain by a relative low number of hand-take
correspondences, the method is not completely error-free. A relevant number of
correct matches can be discarded due to occlusions or by detector failures (about
50-70%), while a few wrong matches can be incorrectly retained, especially when
corresponding epipolar lines are near parallel (less than 10%). Moreover this
approach does not take into account the feature shapes, but it only considers
the distance between the feature centres.

A last method described in [4] uses the pole-polar relationship to build an
overlap error measure on segments lying on corresponding feature pairs. Only
the fundamental matrix is required to compute the ground truth, but wrong
matches can be accepted. According to the authors, this can happen with a low
probability they did not experimentally measured.

In this paper new error measures to evaluate image features in 3D scenes are
proposed and reviewed, also employing strategies which use image triplets as
in [10]. The proposed measures are designed to take into account the feature
shapes and, moreover, ground truth data can be easily estimated for 3D scenes.
As other approaches, they are not error-free and in order to assess their validity,
a quantitative evaluation is given according to the number of wrong matches and
mismatches. Moreover, the method described in [4] has been included. The re-
sulting quantitative analysis also provides clues on the possible number of wrong
matches retained when these measures are employed to validate matching algo-
rithms. In Sect. 2, the proposed error measures are introduced, while in Sect. 3
the experimental setup to assess their validity and the results are described.
Finally, in Sect. 4 conclusions and future works are discussed.

2 The New Error Measures

2.1 Definition

Given a stereo image pair (I1, I2) and corresponding points x1 ∈ I1, x2 ∈ I2

in homogeneous coordinates, the fundamental matrix F determines the relation
xT

2 Fx1 = 0. Geometrically the point x1 is constrained to lie on the epipolar line
l1 = xT

2 F, and in similar way x2 on l2 = xT
1 FT in the corresponding image.

Epipolar lines pass through the epipoles e1 ∈ I1, e2 ∈ I2, which are respectively
the right, left null-space of F. The ground truth fundamental matrix F can be
extracted by an exiguous number of hand-taken correspondences by using a
method described in [6].
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Let R1 ∈ I1, R2 ∈ I2 be two feature patches centred in x1, x2. Their shapes are
elliptical disks, as commonly defined by feature detectors, with minor and major
axes respectively αmini , αmaxi , i ∈ {1, 2}. Let also d(·, ·) define the Euclidean
distance between points or between a point and a line according to its arguments.
The first error measure in the image Ii, i ∈ {1, 2}, for the a feature pair (R1,R2)
is defined as

ξi = min
(

d(xi, li)
αmini

, 1
)

(1)

that is, the epipolar distance between the feature centre and its epipolar line
computed by using the corresponding point in the other image is normalized by
the minor axis of the feature ellipse (see Fig. 1(a)). The error ξ on both the
images is

ξ = max
i

ξi i ∈ {1, 2} (2)

In similar way the error κi in the image Ii is defined as

κi = min
(

d(xi, li)
2 d(xi,pi)

, 1
)

(3)

where pi is the intersection between the feature elliptical boundary and the line
perpendicular to the epipolar line li through xi (see Fig. 1(b)). Analogously, the
error κ on both the image is

κ = max
i

κi i ∈ {1, 2} (4)

Both the error measures ξ and κ take into account the shape of the feature patch,
but the former, by considering only the maximum circle inside the feature ellipse,
makes a more pessimistic assumption about the correctness of the features as
extracted by the feature detector (see Fig. 1(a-b)). The error for both ξ and
κ achieves the maximal value of 1 roughly when the reprojected feature ellipse
would not touch the considered feature ellipse (see Fig. 1(a-b)). Moreover, the
maximal error between the two images is retained instead of their average, as it
is the symmetric error, because the former solution is more constraining.

The last error measure extends that introduced in [4] which will be described
for clarity. The tangency relation is preserved by perspective projection, which
retains incidence relations. Let lti

1
, lti

2
be the epipolar lines in the image Ii,

i ∈ {1, 2} corresponding respectively to the tangent points ti
1, ti

2 in Ii through
the epipole e i to the feature ellipse R i, where i = 3 − i (i.e. Ii and Ii are the
complementary images of the stereo pair). Let qi be the line through the tangent
points ti

1, ti
2. The intersection points ri

1, ri
2 of lti

1
, lti

2
with the line qi are used

to define a linear overlap error εli in the image Ii (see Fig. 1(c)) as follows

εli = 1 −
max

(
0, min

(
tih, ri

h

)
− max

(
til , r

i
l

))
max

(
tih, ri

h

)
− min

(
til , r

i
l

) (5)

where ri
h and ri

l are the higher and lower linear coordinates of ri
1 and ri

2 on the
line qi respectively, according to a defined direction, and in similar way tih and
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til for ti
1 and ti

2 respectively (ri
h ≡ ri

1, tih ≡ ti
1, ri

l ≡ ri
2, tih ≡ ti

2 in the example
of Fig. 1(c)). The final error on both the images is defined as the average error

εlavg =
ε1 + ε2

2
(6)

In particular the authors consider a match correct if εlavg < 0.2 [4]. In the next,
for the same motivation described above the follow definition of linear overlap
error εl will be used instead

εl = max
i

εli i ∈ {1, 2} (7)

An extension to the linear overlap error measure εl is proposed, by observing
that not only the correspondence between epipoles is available, but also fixed
correspondences

(
wk

1 ,wk
2

)
, with k = {1, . . . , m} and wk

i ∈ Ii, provided by further
hand-taken points used to compute the fundamental matrix. By combining their
tangent lines to the feature ellipse it is possible to obtain an inscribed and
a circumscribed quadrilaterals, which can be used to approximate the feature
ellipse (see Fig. 1(d)). Both the quadrilaterals can be approximately projected
through the fundamental matrix, thus an approximate overlap error εq between
the feature patches can be computed, similar to the standard definition of overlap
error ε between surface patches used in [8]

ε (R1,R2) = 1 − R1 ∩R2

R1 ∪R2
(8)

In detail, for two pairs of fixed corresponding points
(
wk

1 ,wk
2

)
and (ws

1,w
s
2),

k, s ∈ {1, . . . , m}, k �= s, on the image Ii, one can obtain the quadrilateral Qi

circumscribed to the feature ellipse Ri by intersecting the tangent lines to Ri

through the fixed points wk
i , ws

i (see Fig. 1(d)). The corresponding tangent
points are used instead to get the quadrilateral Q�

i inscribed to the ellipse Ri

(see Fig. 1(d)). With an abuse of notation the area of the ellipse Ri can be
roughly approximated by the average area between the two quadrilaterals Qi

and Q�
i

Ri ≈
Qi + Q�

i

2
(9)

Reprojected tangent points vz
i , z ∈ {1, . . . , 4} from the feature Ri of the com-

plementary image Ii can be approximated as done for ri
1, ri

2 in Equ. 5. The
epipole is substituted in turn with the fixed points wk

i
in the definition of the

linear overlap error εlavg . An approximate reprojection P�
i in Ii of the inscribed

quadrilateral Q�
i

is obtained by connecting the points vz
i (see Fig. 1(d)). The in-

tersection points of lines through vz
i and the corresponding fixed points wk

i , ws
i

form instead an approximate reprojection Pi of the circumscribed quadrilateral
Qi (see Fig. 1(d)).

By taking into account the formula to evaluate the approximated area (see
Equ. 9), a further approximated overlap error εqi in the image Ii is defined as

εqi =
ε (Qi,Pi) + ε (Q�

i ,P�
i )

2
(10)
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and the corresponding approximate overlap error εq on both the image is

εq = max
i

εqi i ∈ {1, 2} (11)

The approximated overlap error εq strictly depends on the choice of the two
corresponding matches with indexes k, s, and the computation can suffer of nu-
merical instability because the projected tangent points vz

i are derived by using
epipolar lines which are close together and almost parallel, especially when the
epipoles are far away from the image centres. This issue can be alleviated empiri-
cally by using only index pairs (k, s) for which the diagonals of the quadrilaterals
Qi, Q�

i , Pi, P�
i form a minimum angle of at least π/3. Moreover, in order to ob-

tain tangent lines which are not almost parallel, the fixed points wk
i , ws

i are
considered if they are three times the semi-major axis of the feature ellipse Ri

far away from the centre xi. Finally, for each feature pair (R1,R2) the minimum
approximated overlap error εq among all the admissible pairs of indexes (k, s) is
retained.

2.2 Extension to Image Triplets

All the described error measures ξ, κ, εl and εq depend on the epipolar constrain,
thus they cannot characterize wrong matches when they lie close to the epipolar
line of the true corresponding image feature. This however does not happen
frequently, as it has been observed in the experimental valuation.

In order to alleviate this issue, three strategies similar to that proposed in [10]
have been considered, which make use of triplet of images Ii, i ∈ {1, 2, 3}. Let
(I1, I2), (I1, I3), (I2, I3) be the three stereo pairs, and γ ∈ {ξ, κ, εl, εq} an error
measure. Consistent chains of features between the stereo pairs are defined by
the chain error γδt , according to different strategies δt, t ∈ {1, 2, 3}. This error
is associated back to features pair, so that feature chains and pairs are accepted
if their respective error is γδt < 1.

The first strategy δ1 acts as follows. If (Rk1 ,Rk2 ,Rk3) is the k-th triplet
among all the possible triplets of feature points , with Rki ∈ Ii, let γ (zi, zj)
be the error corresponding to the z-th feature pair

(
Rzi ,Rzj

)
belonging to the

stereo pair (Ii, Ij), i, j = {1, 2, 3}. Clearly, γ (zi, zj) = γ (zj , zi) and γ (zi, zi) =
γ (zj, zj) = 0. The maximum among all the errors of the feature pairs inside the
triplet, is associated back to the triplet

γδ1 (Rk1 ,Rk2 ,Rk3) = max
zi,zj∈{k1,k2,k3}

γ
(
Rzi ,Rzj

)
(12)

The triplet forms a consistent virtual chain if γδ1 < 1. A pair of features is
retained if it belongs to a consistent virtual chain. That is, the relation γδ1 < 1
holds for the pair, defined as

γδ1

(
Rzi ,Rzj

)
= min

zi,zj∈{k1,k2,k3}
γδ1 (Rk1 ,Rk2 ,Rk3) (13)

In similar way two further match selection strategies δ2, δ3 are defined, but
clues about the correctness of the matches provided by the feature detector and
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descriptor are used instead to provide more insight. In details, let
[
Rki ,Rkj

]
be

the k-th match between two features to be evaluated in the stereo pair (Ii, Ij)
(e.g. the features have been ranked according to the feature descriptor similarity
and a threshold was applied to retain the putative correct ones). Define the error
associated to a pair of matches, which form a partial chain, as

γδ2

([
Rki ,Rkj

]
,
[
Rkj

,Rkw

])
= max

zp,zq∈{ki,kj ,kj ,kw}
γ
(
Rzp ,Rzq

)
(14)

To be noted that virtual matches are considered, e.g. the pair
(
Rki ,Rkj

)
. A

partial chain is consistent if γδ2 < 1. A generic pair
(
Rzp ,Rzq

)
is retained if it

belongs to a consistent partial chain, that is γδ2 < 1 for the pair, where

γδ2

(
Rzp ,Rzq

)
= min

zp,zq∈{ki,kj ,kj ,kw}
γδ2

([
Rki ,Rkj

]
,
[
Rkj

,Rkw

])
(15)

In the last strategy γδ3 triplets of matches are used instead of pairs to form a
full chain of matches, i.e. triplets of the form([

Rki ,Rkj

]
,
[
Rkj

,Rkw

]
,
[
Rkw

,Rki

])
(16)

The relation γδ3 for both triplets of matches and pair of features is defined
analogously.

The proposed strategies δi are only used to remove putative wrong matches,
they are not used as actual error measures, because they provide very high error
values. In particular only matches belonging to consistent chains, i.e γδi < 1,
are retained and scored according to γ. Though these strategies can increase the
quality of the matches classification, it should be noted that when large portions
of the images are affected by occlusions, a relevant fraction of good matches can
be discarded because consistent chain cannot be formed.

3 Measure Assessment

3.1 Experimental Setup

In order to compare the robustness of proposed error measures γ ∈ {ξ, κ, εl, εq} a
set of 10 sequences, consisting of three images of a 3D scene taken from different
points of view, have been used, for a total of 30 stereo image pairs. Different
degrees of image transformations are present and their final effect, which depends
on different degrees of occlusion, baseline distances and camera orientations, is
not quantitatively computable. However the average behaviour of the proposed
error measures could be deduced.

The Sampson and the epipolar error measures are not included in this eval-
uation because they cannot provide an error estimation relative to the feature
shape. However, while ξ and κ are normalized forms of the epipolar error, in the
case of the Sampson error a straight normalization cannot be deduced.
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The ground truth fundamental matrix for each stereo pair was computed
using the normalized eight-point algorithms [6] on hand-taken correspondences.
Three different users provided each more than 50 homogeneously distributed
correspondences for every stereo pair, which have been merged together in order
to get a more stable fundamental matrix.

To estimate a ground truth in order to assess the goodness of the error mea-
sures γ and of the selection strategies δi, i ∈ {1, 2, 3}, features extracted by
the HarrisZ detector [2] have been ranked using the sGLOH descriptor [1] and
matches have been supervised by an user, so that if corresponding features in
a match share a minimal region then the match is considered correct. Accord-
ing to this match classification and by taking into account the error measure
definitions, every match with γ < 1 should be classified as correct.

The HarrisZ detector is a corner-based feature detector while the sGLOH
descriptor is based on gradient histograms, they both have proven to be robust
and stable [2,1]. To be noted that misclassified matches should depend on the
inherent structure of stereo pair, not on the detector and the descriptor used in
the assessment. In order to validate this statement, the use of further feature
detectors and descriptors is planned.

Precision-recall curves have been computed for each stereo pairs. The recall is
defined as the fraction of correct matches discarded by γ < 1, while the precision
is the fraction of correct classified matches. In order to draw the curve, matches
have been ranked according to increasing error values. A marker underlines an
error increase by a step of 0.1 for each curve. To be observed that not only the
precision is critical to evaluate features detectors and descriptors as underlined
in [10], but also the recall should be taken into consideration.

Moreover, while the denominator in the recall ratio is fixed to the number of
ground truth correct matches, the denominator of the precision ratio varies as the
error value γ increases. To be noted that the recall monotonically increases as the
error threshold increases while this does not hold for the precision which varies
in [0, 1]. This can give rise to quasi-horizontal oscillations in the precision-recall
curves, mostly noticeable for low values of the error threshold, which provide an
indicator of the stability of the error measures.

The plots have been computed for the different errors γ, along with selection
strategies δi. Any combination εq, δi was omitted, because it requires to compute
the error value εq for each feature pair combination, not only for matched pairs.
This is not feasible due to the huge computational time required.

3.2 Results

Plots are shown in Fig. 2, more detailed results can be found online1 due to
lack of space. A summarizing plot for each error measure on the whole image
sequences is not shown, since it would be misleading due to the different and not
comparable transformations it should average. According to the plots, all the
proposed error measures reach a precision of about 80-95% for a recall around

1 http://www.math.unipa.it/~fbellavia/plots.zip

http://www.math.unipa.it/~fbellavia/plots.zip
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85-95% on average, from where the curve is stabilized and slowly increases the
recall, but also decreases the precision. This point is achieved for error values
ξ, κ, εl ≈ 0.5, and εq ≈ 0.9 respectively, which means that the surface error εq

better approximates the overlap error ε, while for the other linear errors ξ, κ, εl

normalization to semi-axes instead of axes is a better choice.
It can also be noted that the plots for the error measures εq, εl slighty increase

faster than ξ, κ. Only for the kermit sequence (see Fig. 2, middle row) a very low
precision is achieved, however it happens for a high point view change (about
π/2). Moreover, it seems that εl measure degrades when the epipoles are inside
the images, as it can be noted in the corridor sequence (see Fig. 2, top row),
while this does not occur for the analogous error εq.

About the application of the different selection strategies δi, the error mea-
sures ξ, κ take more benefits with respect to εl in terms of faster curve increment,
but also in terms of stability. The threshold at 0.5 for the error measures ξ, κ,
εl is no more requested in order to achieve good precision values, which means
that the filtering is effective. As more constrains are added increasing the in-
dex i, better precision is achieved. However the decrease of the recall is usually
greater and can reach about 50% for i = 3 in the experiments. According to
these observations, the partial chain strategy δ2 seems to provide a reasonable
compromise.

As further remarks, the two measures ξ, κ are very similar in results, so ξ
should be preferred because faster. Also εl and εq obtain similar results, however
while the former is faster, the latter can better handle some epipolar stereo
configurations and it seems to provide better values in terms of overlap error
approximation. Both ξ, κ are faster than εl, εq, however the last two error
measures provide better results in terms of curve increase.

Though the precision can be relatively low for accurate comparison, qualita-
tive evaluation can be drawn out using the proposed error measures. Moreover
it must be remembered that in the experiments a match is correct if a mini-
mum overlap is present, which means that in common test requirements, i.e. an
overlap error ε ≈ 0.5, the precision is higher with a good recall.

4 Conclusion and Future Works

In this paper new error measures for evaluation of features on 3D scenes have
been presented. They make use of the feature shape and ground truth data can
be easily estimated. Their robustness have been evaluated according to precision-
recall curves, which have shown their effectiveness. Though not error-free, qual-
itative evaluations can be carried out according to them. Moreover, the analysis
of the plots of the proposed error measures can be used as a flexible guideline
for their application, which mainly depends on the particular evaluation task.

While the linear overlap approximation εl presented in [4] and its proposed
extension to surface εq provide relatively better approximation of the overlap
error ε, the normalized version of the epipolar error κ and ξ are faster, in partic-
ular ξ. Furthermore an increase in precision can be obtained by using triplets,
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however with a lost in recall. The strategy δ2, which makes use of partial chain
of features, seems a good compromise.

Future works will include further experiments using other feature detectors
and descriptors to assess the results, as well as the use of finer match ground
truth, i.e. instead of consider matches correct if they have a minimal overlap
ε < 1, different overlap error could be applied. Moreover, the error measure ξ is
very fast and could be applied to retrieve inliers in a RANSAC framework, as it
done by MSAC [13], but by taking into account also the feature shape.
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Fig. 1. Error measures ξ (a), κ (b), εl (c) and εq (d)

Fig. 2. Precision-recall curves (left) for some image sequences (right). The intermediate
image to compute the strategies δi is in the corresponding middle row.



G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 534–543, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Optimal Choice of Regularization Parameter in Image 
Denoising 

Mirko Lucchese, Iuri Frosio, and N. Alberto Borghese 

Applied Intelligent System Laboratory 
Computer Science Dept., University of Milan 

Via Comelico 39/41 – 20135 Milan Italy 
{mirko.lucchese,iuri.frosio,alberto.borghese}@unimi.it  

Abstract. The Bayesian approach applied to image denoising gives rise to a 
regularization problem. Total variation regularizers have been introduced with 
the motivation of being edge preserving. However we show here that this may 
not always be the best choice in images with low/medium frequency content 
like digital radiographs. We also draw the attention on the metric used to 
evaluate the distance between two images and how this can influence the choice 
of the regularization parameter. Lastly, we show that hyper-surface 
regularization parameter has little effect on the filtering quality. 

Keywords: Denoising, Total Variation Regularization, Bayesian Filtering, 
Digital Radiography. 

1   Introduction 

Poisson data-noise models naturally arise in image processing where CCD cameras 
are often used to measure image luminance counting the number of incident photons. 
Photon counting process is known to have a measurement error that is modeled by a 
Poisson distribution [1]. Radiographic imaging, where the number of counted photons 
is low (e.g. a maximum count of about 10,000 photons per pixel in panoramic 
radiographies [2]) is one of the domains in which Poisson noise model has been 
largely adopted. 

The characteristics of this kind of noise can be taken into account inside the 
Bayesian filtering framework, developing an adequate likelihood function which is, 
apart from a constant term, equivalent to the Kullback–Leibler (KL) divergence [3, 4]. 
Assuming the a-priori distribution of the solution image of Gibbs type and 
considering the negative logarithm of the a-posteriori distribution, the estimate 
problem is equivalent to a regularization problem [5, 6]. The resulting cost function, 
J(.), is a weighted sum of a negative log-likelihood (data-fit, JL(.)) and a 
regularization term (associated to the a-priori knowledge on the solution, JR(.)). 
Tikhonov-like (quadratic) regularization often leads to over-smoothed images and 
Total Variation (TV) regularizers, proposed by [7] to better preserve edges, are 
nowadays widely adopted. As the resulting cost-function is non-linear, iterative 
optimization algorithms have been developed to determine the solution [3, 8]. To get 
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a differentiable cost function, a parameter, δ, has been introduced into the TV term 
(known in this case as “hyper-surface regularizer” [11]). The regularization 
parameter, β, weights the two terms JL(.) and JR(.) in J(.) and it strongly influences the 
characteristics of the filtered image. Some attempts to set its optimal value have been 
proposed resorting to various forms of the discrepancy principle [9, 10], but the 
results are not always satisfying. 

Aim of this paper is to investigate the adequacy of TV regularization in filtering 
radiographs and in general images with low photon counts. Results show that when 
low frequency components are dominant the optimal solution is obtained after a few 
iterations, while increasing the number of iterations the cost function further 
decreases but the distance between the true and the filtered image increases. We also 
investigated how the value of parameters β and δ affects the filtered image and we 
show that the optimal value of β is influenced by both the signal level and the 
frequency content of the image; on the other hand, δ has little impact: it slightly 
increases the regularization effect only when photon count is very low.  

2   Denoising Framework 

2.1   Definition of the Cost Function 

Let gn,j and gj indicate respectively the gray level of the noisy and noise-free image at 
pixel j. Aim of any denoising algorithm is to estimate the true image, g={gj}j=1..M, 
from the measured, noisy one, gn={gn,j}j=1..M, where M is the number of image pixels. 
In the Bayesian framework, the filtered image is obtained maximizing the a-posteriori 
probability of the image, given by the product of the likelihood of the noisy image 
given the filtered one, and the a-priori probability of the filtered image. Assuming that 
each pixel is independent from the others, and without considering the constant terms, 
the negative log–likelihood function can be written as: 

( ) ( )∑
=

−=
M

j
jjnj

L gggJ
1

, logg
ng

 , (1) 

which, apart from constant terms, is equivalent to the KL divergence between gn and 
g. In the TV approach the regularization term is represented by the image TV norm, 
defined as: 

( ) ( )∑
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where xg j ∂∂ and yg j ∂∂  are respectively the horizontal and the vertical derivative of 

the image g in position j. To get a differentiable cost function even if the image 
gradient is equal to zero, an additional parameter, δ, is introduced and the regularizer 
becomes: 
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222 δg  . (3) 
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For δ = 1 the sum in (3) is equivalent to the area of the surface defined by the image 
values in each pixel; therefore, this is also called Hyper-surface regularization [9]. 
Combining eqs. (1) and (3), the following cost function is obtained: 

 ( ) ( ) ( ) ( )[ ] ( ) ( )∑∑
==

+∂∂+∂∂+−=+=
M

j
jj

N

j
jjnj

RL ygxggggJJJ
1

222

1
, log δββ ggg

nn gg
 (4) 

where β is the so called regularization parameter. In the context of digital image 
processing, the derivatives in eq. (4) are replaced by the discrete differences between 
each pixel and its neighbors. In this respect, a parallel between eq. (3) and the 
potential function in a Markov Random Field has been drawn in [11]. In particular, let 
N8(j) be the set of indices of the eight first neighbors of jth pixel; eq. (4) becomes: 
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ng

 , 
(5) 

where ρi,j is a normalization factor introduced to take into account the different 
distance between the j-th pixel and its neighbors: 

⎩
⎨
⎧

=
otherwise1

neighbors diagonal are  and  if2
,

ji
jiρ . (6) 

2.2   Minimization of the Cost Function 

The cost function in eq. (5) is strongly non linear and iterative optimization 
algorithms are used to minimize it. Since second order methods require the 
computation and inversion of the Hessian of Jgn(g), and since these operations are 
computationally intensive, minimization is usually performed via first order methods. 
We use here the recently proposed Scaled Gradient Projection method [4] that has 
shown fast convergence rate. At each step, the solution is updated as:  

k
k

kk dgg λ+=+1  , (10) 

where dk is a descent direction derived from the Karush – Kuhn – Tucker  conditions, 
and λk is determined such that the decrease of the solution is guaranteed to be large 
along that direction. The procedure is stopped when the normalized variation of the 
cost function goes below a given threshold τ, that is: 

( ) ( )[ ] ( ) τ≤− ++ 11 kkk JJJ ggg
nnn ggg

 , (11) 

or when the maximum number of iterations is achieved. 

3   Experimental Setup 

We have created a set of simulated digital radiographs of 512×512 pixels as follows. 
First, an absorption coefficients map was created, with coefficients increasing from 
0% for the left-most pixels to 100% for the right-most ones. Then, 50 different 
geometrical figures (circles and rectangles) were randomly positioned inside the 
image. The radius of the circles and the rectangle sides had length randomly chosen 
between 1 and 512 pixels. Each time a circle or a rectangle was added to the map, all 
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the absorption coefficients covered by the figure were modified: either they were 
substituted by their complements with respect to 100%, or they were multiplied by a 
random value between 0 and 1, or a random value between 0% and 100% was added 
to them. In the latter case, the resulting absorption coefficients were always clipped to 
100%. The choice among the three modalities was random. To control the frequency 
content, these images were filtered with different moving average filters with size of 
41×41, 23×23 and 9×9 pixels to generate respectively low (LF), medium (MF) and 
high frequency (HF) simulated radiographs. Three sets of images were considered 
each with a different maximum number of photons reaching the sensor: 10,000, 1,000 
and 100 photons. For each image, we considered five realizations of Poisson noise; 
we explicitly notice that the images with low photon count have noise with a lower 
standard deviation (and lower signal to noise ratio, SNR) than those at high photon 
count due to the nature of Poisson noise. Three typical images are shown in Fig. 1. 

We filtered the noisy images with the method in Section 2 and we measured the 
difference between each filtered image and the true one using three different quality 
indices. The first one is the Root Mean Squared Error (RMSE), which is widely 
adopted in signal and image processing as it is related to the power of the error: 
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The second index is the Structural Similarity (SSIM) proposed in [12]. This index 
compares local patterns of pixel intensities that have been normalized for luminance 
and contrast and it evaluates the similarity by comparing structural information from 
processed images. It is defined as: 

( ) ∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
+

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
+⋅

=
M

j cjj

cj

cjj

cjj

M 1 2
22

2,

1
22

1
21 )()(

)(cov2

)()(

)()(21
,SSIM

21

21

21

21

gg

gg

gg

gggg
σσμμ

μμ  , 
(13) 

where μg(j) is the local mean of g in the neighborhood of the j-th pixel, covg1,g2(j) is 
the local covariance between g1 and g2, σ2

g(j) is the local variance of the image g and 
the constants c1 and c2 are defined as c1=(k1L)2 and c2=(k2L)2 where L is the maximum 
image gray level (e.g. 255 for 8 bit images) and k1 and k2 are user defined constants 
set equal to 0.01 and 0.03 according to [12].  

The last index is the Features Similarity (FSIM) proposed in [13]. This index, 
based on the phase congruency (PC) model of the Human Visual System (HVS), 
takes into account the local phase of the Fourier components of the image and the 
local gradient magnitude. It is defined as: 
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where PCg is the phase congruency term and Gg is the gradient magnitude in j, 
computed here by Scharr operator. T1 and T2 are user defined constants and, for 8-bit 
images, they are equal to 0.85 and 160 respectively [13]. In our case T2 was linearly 
rescaled proportionally to the maximum gray levels. The weights w(j) are computed 
to assign a higher weight to the position with high phase congruency [13]: 
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 , (15) 

where PCm(j) = max{PCg1(j), PCg2(j)}. 
The difference between the filtered and true image has been evaluated for different 

values of β (in the range from 0.01 to 0.9) and for δ = {0, eps = 2.2204×10-16, 0.01, 
0.05, 0.1, 0.5, 1}. To avoid singular derivatives of JR(g) for δ = 0, ∂JR(g)/∂gj was 
assumed equal to zero for all the pixels j whose gradient norm was equal to zero. 

 

 

Fig. 1. Panels (a-c) show a LF, MF and HF simulated radiograph whose expected maximum 
number of photons is equal to, respectively, 10,000, 1,000 and 100 

4   Results and Discussion 

Figs. 2, 3 and 4 represent the mean value of RMSE, SSIM and FSIM respectively, 
averaged over five filtered images, as a function of β and δ. The optimal value of β is 
higher for LF images and lower for MF and HF images (Fig. 5): in practice, when the 
structures (edges) in the image become sharper, the regularizer should be more edge-
preserving. This effect is obtained lowering the value of β in the cost function (5), and 
therefore increasing the probability of observing high gradients (associated to edges) 
in the filtered image. The same figures show that the optimal value of β increases 
when the number of photons decreases. In fact, according to Poisson statistics, the 
SNR is low when the number of counted photons is low: in this case, the low 
reliability of the measured data has to be counterbalanced by a high regularization and 
therefore it calls for high values of β.  

Figs. 2-4 also show also that RMSE generally leads to an optimal value of β lower 
than that suggested by SSIM and FSIM, although the values provided by FSIM and 
by RMSE are very similar in almost all cases. This reflects different capacities of the 
indices to quantify the image quality. More in detail, the visual inspection of the 
images filtered with the optimal β value suggested by different indices reveals that the 
SSIM generally provides a too regular image, especially when the photon count is low 
(Fig 6). Overall, although SSIM has been proposed as a principled evaluation metric 
based on the properties of the HVS, RMSE generally provides a less regularized 
image with lower noise and more visible edges. In case of low photon count images, 
FSIM shows a higher capability of identifying the optimal value of β than SSIM 
(curves in Fig. 4g-i have higher curvature than those in Fig. 3h-i), providing results 
similar to RMSE. Visual inspection of filtered images with low photons count reveals 
that images suggested as optimal by RMSE and FSIM definitely appear more similar 
to the ground truth than the image obtained with SSIM (Fig. 6).  
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Fig. 2. Mean RMSE as a function of the regularization parameter β. Here, eps = 2.2204×10-16. 
The title of each graph reports the frequency content of the images and the number of photons. 

The similarity indices in figs. 2, 3 and 4 also indicate that the parameter δ has little 
or even no influence on the quality of the filtered image for medium and high photon 
counts as far as it assumes a very small value; in fact, the curves reported in these 
figures show low dependency on the value of δ. For a low number of photons, better 
results are obtained with small values of δ (0 or eps). This fact is explained 
considering that, for low counts, the term [(gi - gi)/ρi,j]

2 in the TV norm in eq. (5) is 
low and therefore δ may strongly influence the value of the TV norm. 

For LF and MF images, optimization exhibits semi-convergence: the similarity 
between the filtered image and the ground truth increases in the first iterations, 
reaches a maximum and then decreases (Fig. 7a-b). This is not the case of HF images, 
at least up to the 800th iteration (Fig. 7c-d). This fact can be explained considering that 
TV regularization implicitly assumes that images are composed by flat areas 
separated by sharp edges. However LF and MF images, that are somehow similar to 
digital radiographies, are not coherent with such hypothesis. As a result, the filter cuts 
the image valleys and ridges introducing spurious plateaus in the high photon count 
areas; the cost function is actually minimized but the image is over-smoothed  
(Fig. 8b). This phenomenon becomes evident only in the last iterations and it is less 
evident in the low photon count regions. To analytically explain it, let us consider the 
derivative of the likelihood term in eq. (1): 
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( ) jjnj
L gggJ ,1−=∂∂ g

ng  . (16) 

Defining Δgj = gj - gn,j, eq. (16) becomes: 

( ) ( )jjnjnj
L ggggJ Δ+−=∂∂ ,,1g

ng
 . (17) 

 

 

 

 

Fig. 3. Mean SSIM index varying the regularization parameter β.  Here, eps = 2.2204×10-16. 
The title of each graph reports the frequency content of the images and the number of photons. 

Since gn,j is fixed, eq. (17) approximately expresses the variation of the likelihood 
as a function of Δgj. If the noisy gray level, gn,j is high, ( ) j

L gJ ∂∂ g
ng

 is close to zero for 

large intervals of |Δgj|. In other words, the jth element of the likelihood in (5) slightly 
differs from its minimum even if the filtered image significantly differs from the 
noisy one. In these regions, the filtering effect depends mainly on the regularization 
term, which tends to suppress the edges, introducing a plateau where a ridge (or a 
valley) is present (Fig. 8b). On the other hand, if gn,j is small, a high value of |Δgj| 
produces a significant increase of ( )g

ng
LJ . In this case, the variation of the cost 

function is mainly influenced by the likelihood which constrains the solution to be 
close to the noisy image, thus retaining noise oscillations (Fig. 8d). This further 
explains the need of a higher value of β for low-photon count images: in this case the 
SNR is low, the measured values are less reliable, ( ) j

L gJ ∂∂ g
ng

 increases significantly 

for small |Δgj| and more regularization is necessary to get the denoising effect. 
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Fig. 4. Mean FSIM index varying the regularization parameter β.  Here, eps = 2.2204×10-16. 
The title of each graph reports the frequency content of the images and the number of photons. 

 

Fig. 5. Optimal values of β associated to the optimal value of SSIM (a), RMSE (b) and FSIM 
(c) as a function of photon count and image frequency content 

 
 

Fig. 6. Filtered LF 100 image with δ = eps and β = 0.3 (a) and β = 0.95 (c), corresponding to 
the optimal value suggested by RMSE and SSIM respectively. Panels (b) and (d) show the 
absolute difference between the filtered image and the ground truth. 
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Fig. 7. In (a) and (b), SSIM and RMSE are reported for a LF 10,000 image versus the iteration 
number. The same indexes are reported for a HF 10,000 image in (c) and (d), for τ =10-14. Panel 
(a) includes a zoom of the area where SSIM stops increasing (semi-convergence). Numbers in 
the panels show the index value at the iteration indicated by the corresponding arrow. 

 

Fig. 8. The true profile of one row of a LF 10,000 image is shown in green in panel (a); the blue 
line is the filtered (β = 0.03 and τ = 10-10) profile, the red line represents the noisy one. Panels 
(b) and (d) show zooms of ridges with high and low photon counts. Panels (c) and (e) show the 
same areas of (b) and (d), when the filtered image has been obtained with β = 0.64 and τ = 10-4, 
corresponding to only four iterations. 

Plateau introduction in LF and MF images is prevented by small number of 
iterations (e.g. τ = 10-4) and high value of β. The ridges in high photon counts areas 
are preserved by the low number of iterations; the high value of β gives the proper 
weight to the regularization term in the low photon count areas. This definitely 
produces an image with effective denoise in the low count regions (Fig. 8e) without 
cutting ridges and valleys (Fig. 8c) in the high count areas. 
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5   Conclusion 

Image denoising through TV regularization is nowadays widely diffused as a “Holy 
Graal” of image filtering. However, as shown here, it may not be the best choice, at 
least for digital radiographs. In fact, the semi-convergence property observed for MF 
and LF images suggests the need for developing a better model for a-priori term, at 
least for this kind of images. On the other hand, also the definition of a general, 
reliable image quality index remains an open issue, as demonstrated by the difference 
in the optimal value of β obtained when RMSE, SSIM or FSIM measure were used to 
evaluate the difference between the filtered and the true image. 
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Abstract. Variations in pose, illumination and expression in faces make
face recognition a difficult problem. Several researchers have shown that
faces of the same individual, despite all these variations, lie on a com-
plex manifold in a higher dimensional space. Several methods have been
proposed to exploit this fact to build better recognition systems, but
have not succeeded to a satisfactory extent. We propose a new method
to model this higher dimensional manifold with available data, and use
a reconstruction technique to approximate unavailable data points. The
proposed method is tested on Sheffield (previously UMIST) database,
Extended Yale Face database B and AT&T (previously ORL) database
of faces. Our method outperforms other manifold based methods such as
Nearest Manifold and other methods such as PCA, LDA Modular PCA,
Generalized 2D PCA and super-resolution method for face recognition
using nonlinear mappings on coherent features.

Keywords: Face Recognition, Manifold Learning, Nonlinear Embed-
ding.

1 Introduction

Face recognition is a challenging problem in computer vision. Variations in face
images make this a difficult task. Pose, illumination, expression, occlusion etc are
different factors that influence recognition accuracy. Different approaches such
as PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis),
ICA (Independent Component Analysis), Modular PCA and several manifold
based approaches have evolved over time to deal with this issue. None of the
methods offers a complete solution. Many a times, the recognition of frontal face
achieves a better recognition rate, but as the pose varies, it becomes difficult to
effectively identify faces.

The main objective of the current research is to improve the recognition accu-
racy in varying facial poses, illumination, expression variations and occlusions.
Though PCA is a very popular method, it does not offer high accuracy with
the variations in pose and illumination. Modular PCA approach is better than
PCA with pose and illumination invariance [1]. However, Modular PCA is a
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linear approach. This affects testing accuracy and can introduce false alarms.
Many studies have proved that faces of a particular person tend to lie on a non-
linear manifold in a higher dimensional space [2]. But methods like PCA and
LDA use only Euclidean distance and hence fail to see the nonlinear structure
[3]. An alternative is to use Locally Linear Embedding (LLE) [4], which allows
data to be handled as lying on a linear neighborhood. This is a piecewise linear
approach. The rationale behind this method is that every curve can be repre-
sented as a connection of linear segments. Generalizing this concept, a higher
dimensional manifold can be represented as a combination of hyper-planes. The
linear approach of LLE is not enough to yield good results, as the data points
have non-linear relationships between them. Although many other methods such
as Nearest Manifold, Locally Linear Embedded Eigenspace analysis, Discrimi-
native manifolds, and 2D PCA evolved over time [5-8], recognizing faces under
variations is still an open problem.

The proposed algorithm, Neighborhood Dependent Approximation by Non-
linear Embedding (NDANE), aims at addressing this issue and offers a novel
method for an effective representation of a manifold. The method is developed
from the Hopfield network, LLE and non-linear attractor theories [9].

The Hopfield network is a recurrent network invented by John Hopfield in
early 1980s. In Hopfield network, the output of one node is computed as the
linear combination of the other inputs. Hopfield suggested that any input can
be best approximated as the weighted combination of other related inputs. The
Hopfield network supports only linear relationships.

In [4], Locally Linear Embedding is introduced as a dimensionality reduction
technique. The approach provides a novel method for nonlinear dimensionality
reduction. The method is considered one of the best for nonlinear dimensionality
reduction, which is not effectively handled by component analysis methods. In
LLE, the inputs are considered as data points in higher dimensional space. All
the data points with the same characteristics form a geometric structure called
the manifold. As all data points in the manifold belong to a particular class, any
data point in the manifold can be redefined as a reconstruction of other data
points in the same manifold. In the proposed method, the same observation is
used for effective reconstruction of the data points.

In [9], a nonlinear attractor was proposed for learning the relationships in a
manifold. This is a variation of the Hopfield network in which a higher dimen-
sional relationship is defined between an input and its neighbors (represented by
the other inputs). It is proposed that a higher dimensional polynomial defines
the relationship of each image with its neighborhood. This, together with LLE
resulted in the development of our method, in which a manifold is represented by
a nonlinear approximation. As the manifolds are complex, a nonlinear approach
can yield a better representation than a piecewise linear approach.
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2 Theoretical Background

The proposed supervised learning algorithm is based on the fact that facial
images are data points in a higher dimensional space, whose dimension is deter-
mined by the number of pixels in the image. The data points that correspond to
the face of a particular person are observed to lie on a single nonlinear manifold.
As the images in a manifold belong to the same person, there is a relationship
between these images. A relationship can be modeled as proposed by Hopfield
and as established by Seow and Asari [9]. In this paper, the same idea is extended
so that it can be used to represent closely related points in terms of the neighbor-
hood points. In other words, each image can be represented as the relationship
of a few images in the manifold to which it belongs. Since manifolds can have
a broad set of images of the same person, we do not consider all the images in
the manifold to reconstruct an image. The nearest neighbors to each image are
identified using Euclidean distance as the distance measure. Thus we construct
small neighborhoods within the same manifold. Each image can be represented
as the relationship of the neighborhood images. This relationship is defined as
a nonlinear relationship, as it is observed that a nonlinear relationship offers a
better representation of the manifold than any piece wise linear approach.

2.1 Architecture

A simple schematic diagram of the proposed algorithm is provided in this section
(Fig. 1 and Fig. 2). We have a pipeline approach with two pipelines for handling
training and testing phases.

The algorithm is supervised and hence the training input will already be di-
vided into classes. In the training phase, there are two separate stages. The first
stage identifies the k nearest neighbors of an input image from the class to which
the input image belongs. The nearest neighbors are the neighbors with the min-
imum Euclidean distances. The set of the nearest neighbors is also called the
Proximity set. This step also models a higher dimensional polynomial relation-
ship to represent the data point under consideration, using the nearest neighbors
identified. The coefficients of the terms in the polynomial are called the weights.
This stage is called the Relationship Modeling stage. The polynomial relation-
ship that is used in this stage is described in more detail in section 2.2. The
second stage is the Reconstruction stage, where the actual reconstruction of the
data points is done using the neighbors and the weights. As the outcome of this
stage, we obtain a reconstructed image. The process is repeated for all images in
the training set. A set of reconstructed inputs are generated at the end of this
stage.

In the Relationship Modeling stage of the testing phase, for each test image,
we find the k nearest neighbors from each class. These neighbors are identi-
fied from the reconstructed training set inputs. Thus corresponding to each test
input image, there are as many neighborhood sets as there are classes. In the
Reconstruction stage, the test images are reconstructed based on the neighbors
from all classes. The best reconstruction of the test image comes from the class
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to which the test image should belong. This concept is used for classification.
The testing procedure is described in section 2.3. The geometric foundation of
the method is described in section 2.4.

Fig. 1. The schematic represents the stages in training. The inputs are reconstructed
as the relationship of the nearest neighbors.

Fig. 2. The schematic represents the stages in testing. The test inputs are reconstructed
as the relationship of the nearest neighbors from each class ‘i’, to get TestInput i’. The
best representation is given by the class to which the test image should ideally belong.
The best representation is identified and is represented as ‘j’.

2.2 Training Algorithm

In the training process, the inputs are first grouped into different classes based on
the labels, such that there is one class corresponding to each person. Each class is
identified as a manifold and the aim of the training phase is to best approximate
a manifold. If the images in a class have a high variance, instead of considering
each class as a manifold, the class has to be partitioned into sub manifolds before
processing. This partitioning can be repeated several times before the variances
with in a sub-manifold are sufficiently low. This can result in a tree like structure
of repeated partitioning of the manifolds. However, in this paper, our focus is on
the basic framework. Once the classes are identified, the k nearest neighbors of
each training inputs in their respective classes are found. This forms a proximity
set. Each training input is represented as the weighted sum of elements in the
proximity set as given by equation (1).
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Xi =
k∑

j=1

d∑
m=1

WmjiXj
m + L. (1)

where k is the number of neighbors and d, the degree of the polynomial.
The degree d can be any positive integer, depending on the nonlinear relation-

ship. If d=2, the resulting polynomial relationship is a second degree equation.
We have used d=2 in our experiments. L is a constant term. Since this representa-
tion is an approximation, we need to estimate the error in such a representation.
The deviation of a representation from the actual data point can be character-
ized as a squared error given by equation (2).

E = (Xi −
k∑

j=1

d∑
m=1

WmjiXj
m + L)2. (2)

The weights corresponding to each term are found by minimizing the mean
square error given by equation (2). The original training images are replaced
with the form given in equation (1). Intuitively, this process incorporates the
characteristics of its neighborhood into an image point.

2.3 Testing Algorithm

The first step in the testing algorithm is to find the k nearest neighbors in each
class. This gives as many nearest neighbor sets as there are classes. The weights
corresponding to each representation are found by minimizing E in equation (2).
Each test image is represented as the weighted sum of elements in its proximity
set. This gives as many representations as there are classes. Redefining each of
the test image as the weighted sum of the neighborhood images gives as many
representations as there are classes. The Euclidean distance, Dclass , of each
representation to the test image is computed. The class corresponding to the
representation whose Euclidean distance is minimum, is taken as the class to
which the test data belongs. This is given by equation (3).

j = min[Dclass]. (3)

Here, j is the class which gives the minimum distance. The best reconstruction
can only be provided by the set of neighborhood images in the class to which
the image can belong. This is because the relationship in equation (1) can model
only related images. If the test image belongs to a class, then the images in that
particular class are only related to the test image and images from other classes
have little or no relationship. So the reconstruction produced by the right class
is a better approximation than the ones produced by other classes. Thus the
reconstruction that results in minimum Euclidean distance is the one that is
produced by the class to which the test image should belong.
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2.4 Why NDANE Works?

Fig.3 illustrates two manifolds, M1 and M2, and a data point T. The geometric
foundation of the method can be understood by analyzing such a topology. As
there are only a few points on the manifold, the manifold is not fully defined.
The distance d1 between the data point T and M1 is less than d2, the distance
between the data point and the closest data point on M2. In a Euclidean distance
based algorithm, the distances d3 (distance between T and the closest data point
on M1) and d2 are taken into consideration. This gives an incorrect classification
of T as belonging to M2, although the actual distance of T to M1 (d1) is smaller
than all other distances. Interpolating the manifold with available data points
produces the point P on M1, whose distance to T is less than that to any point
on M2. In our method, we complete the manifold by modeling it as a hyper-
surface in image space. This completion process allows the calculation of the
actual distance of the point to the closest manifold.

Fig. 3. Embedding a test data point on a manifold

3 Experiments

The proposed algorithm was tested using the pre-cropped images in the Ex-
tended Yale Face database B [10][11] , the AT&T ( previously ORL) database
[12] and Sheffield (previously UMIST) database [13].

3.1 Experiments on Extended Yale Face Database B

The Extended Yale Face Database B has 16128 images of 28 human subjects
under 9 poses and 64 illumination conditions [10][11]. Our experiments were
conducted on a subset of the database. Images of 5 different people were used
for testing and training. 10 images of each person were randomly chosen for
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training. Another set of 10 images were chosen for testing. The training and
testing images do not overlap. In this experiment d = 2 and k=5 in equation
(1). This is a five class classification problem. We achieved a 100% recognition
in this subset of the Extended Yale Face Database.

3.2 Experiments on AT&T (Previously ORL) Database of Faces

The AT&T database has a collection of 400 images of different people in various
illumination conditions, pose and expression variations. The database is divided
into 8 subsets. Each subset included 5 classes corresponding to the 5 individuals
in the database. Out of the 10 available images per person, 5 were chosen for
training and rest 5 for testing. In this experiment d=2 and k=2 in equation (1).
The experimental results are given in Fig.4.

Fig. 4. Recognition rates on each subset of the AT&T database

3.3 Experiments on Sheffield (Previously UMIST) Database

The Sheffield (previously UMIST) database consists of 575 images of 20 indi-
viduals. There are images from different races, gender and poses. A sample data
set is provided in Fig.5. It shows the reconstructed images which we obtained
on reconstructing each image as relationship of its k nearest neighbors. In this
experiment, d = 2 and k=5 in equation (1). A sample test set and the corre-
sponding reconstructions are shown in Fig.6. It can be seen that the test image
reconstructions are almost the same as the original images.In this database, num-
ber of images per person differs, so we have chosen half of the available number
for training and the other half for testing. We have trained the system with 290
images and have tested the system with the remaining 285 images.

In all the three databases on which we conducted the experiments, our algo-
rithm yielded a better result than other methods (Table 1 and Fig.7). We have
achieved 95.44% recognition for the complete set of UMIST database. These
results are better than the best results in [6], [7] and [14].
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Fig. 5. Sample training set on left and the reconstructed images on right

Fig. 6. Sample test set on left and the reconstructed images on right

Table 1. Comparison of Recognition rates (Other methods Vs Proposed method)

Algorithm %recognition on Sheffield database

PCA [7] 86.87

KPCA [7] 87.64

LDA [7] 90.87

2DPCA [7] 92.9

DCV [7] 91.51

B2DPCA [7] 93.38

K2DPCA [7] 94.77

MLA+NN [6] 94.29

Super Resolution Method [14] 93

Proposed Method 95.44

Fig. 7. Recognition rate comparison (Other methods Vs Proposed method)
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4 Conclusion

We have proposed a robust mathematical model for representing complex mani-
folds formed by face images and a method to map test images to these manifolds.
Our method outperforms conventional methods like PCA, Modular PCA, LDA
and the methods in [6], [7] and [14]. All the experiments in this paper were con-
ducted on the Sheffield (previously UMIST) database, AT&T (previously ORL)
database and the Extended Yale Face Database B. The results obtained on these
databases substantiate the mathematical foundation of our concept. Further ex-
periments on larger databases such as FRGC database and FERET database
are progressing. Research is also in progress to find a method to parameterize
the value of k used in equation (1) depending on the data set variance and the
data availability.

Acknowledgments. The authors acknowledge the creators of cropped Sheffield
(previously UMIST) Face Database, Extended Yale Face Database B and AT&T
ORL database for making these databases available for face recognition research.
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Abstract. In this work we propose an efficient and original method for
ellipse detection which relies on a recent contour representation based on
arcs and line segments [1]. The first step of such a detection is to locate
ellipse candidate with a grouping process exploiting geometric properties
of adjacent arcs and lines. Then, for each ellipse candidate we extract
a compact and significant representation defined from the segment and
arc extremities together with the arc middle points. This representation
allows then a fast ellipse detection by using a simple least square tech-
nique. Finally some first comparisons with other robust approaches are
proposed.

1 Introduction

Shape identification is an important task in image analysis. Ellipse is a basic
shape that can appear naturally in images from 3D environment. Therefore,
ellipse detection is a key problem in many applications in the field of computer
vision or pattern recognition.

In general, we can group existing methods into three main approaches. The
first one relies on the Hough transform [2, 3, 4, 5, 6]. These methods transform
image into parametric space and then take the peaks in this space as candidate
of ellipse. Generally, it requires a parameter space that has five dimensions -
contrariwise to two for straight line detection and three for circle detection, so
it needs more execution time and memory space than the two last approaches.
Some modifications [4,5,6] of Hough transform have been proposed to minimize
storage space and computation complexity. Daul et al. [4] reduce the problem
to two dimensional parametric space. Later, Chia et al. [5] introduced a method
based on Hough transform in one dimensional parametric space. Lu et al. [6]
proposed an iterative randomized Hough transform (IRHT) for ellipse detection
with strong noise.

The second one uses least square fitting technique [7, 8, 9, 10] that minimizes
the sum of square error. There are two main types of least square fitting (see [10])
that are characterized by the definition of error distances: algebraic fitting and
geometric fitting. Concerning the first type, the error distance is defined by
considering the deviation at each point to the expected ellipse described by
implicit equation F (x, a) = 0 where a is vector of parameters. Contrariwise, for

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 554–564, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the second type, the error distance is defined as orthogonal distance from each
point to the fitting ellipse.

The third group of approach detects ellipse candidates by using their moment
[11, 12, 13, 14, 15].

We propose a new method for ellipse detection based on the decomposition of
an edge image into arc and line primitives. The main contribution of this paper
is to propose a pre-processing step that allows to speed up the detection of ellipse
based on a linear scanning process on the sequence of arc and line primitives. The
rest of this paper is organized as follows. The following section recalls a method
for the representation of a digital curve by arcs and line segments. Section 3
presents the proposed method for ellipse detection before experimentation.

2 Descriptor Based on Arc and Line Primitives

In this section, we recall a linear method [1] for the decomposition of a digital
curve into circular arcs and line segments.

2.1 Tangent Space Representation and Properties of Arc in the
Tangent Space

Nguyen and Debled-Rennesson proposed in [16] some properties of arcs in tan-
gent space representation that are inspired from Latecki [17]. Let C = {Ci}n

i=0

be a polygon, li - length of segment CiCi+1 and αi = ∠(
−−−−→
Ci−1Ci,

−−−−→
CiCi+1). If

Ci+1 is on the right of
−−−−→
Ci−1Ci then αi > 0, otherwise αi < 0 (see illustration of

Fig. 1(a)).
Let us consider the transformation that associates a polygon C of Z2 to a

polygon of R2 constituted by segments Ti2T(i+1)1, T(i+1)1T(i+1)2, 0 ≤ i < n (see
Fig. 1(b)) with:

T02 = (0, 0),
Ti1 = (T(i−1)2.x + li−1, T(i−1)2.y), i from 1 to n,
Ti2 = (Ti1.x, Ti1.y + αi), i from 1 to n − 1.
Nguyen et al. also proposed in [16] some properties of a set of sequential

chords of a circle in the tangent space. They are resumed by proposition 1 (see
also Fig. 2).

α1

α2
α3

C0

C1

C2
C3

C4

(a) Input polygonal curve

0

y

x
α2

α3

T32 T41

T02 T11 T22 T31

T12 T21

α1

(b) Tangent space representation

Fig. 1. Tangent space representation
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Proposition 1. [16] Let C = {Ci}n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1)

such that αi ≤ αmax ≤ π
4 . The length of CiCi+1 is li, for i ∈ {1, . . . , n}. We

consider the polygon T (C), that corresponds to its representation in the modified
tangent space, constituted by the segments Ti2T(i+1)1, T(i+1)1T(i+1)2 for i from
0 to n − 1. MpC = {Mi}n−1

i=0 is the midpoint set of {Ti2T(i+1)1}n−1
i=0 . So, C is

a polygon whose vertices are on a real arc only if MpC = {Mi}n−1
i=0 is a set of

quasi collinear points.

From now on, MpC is called the midpoint curve.

O

C2
C3

H0

H1

C0
C5

C4

C1
α1

H

(a) A set of sequential
chords of an arc.

x

y

0

T(i+2)1

Mi+1T(i+1)2

Ti2
Mi

T(i+1)1

T(i−1)2

Mi−1 Ti1

(b) Its property in tangent
space representation.

Fig. 2. The chords in tangent space

2.2 Arc Line Decomposition

Proposition 1 can be used to decide if a digital curve is a circular circle by
detecting straight line segment in the tangent space. Moreover, it is also used
for the decomposition of a curve into arcs and line segments. Nguyen introduced
the definition below.

Definition 1. In the curve of midpoints in the tangent space, an isolated
point is a midpoint satisfying that the differences of ordinate values between
it and one of its 2 neighboring midpoints on this curve is higher than the thresh-
old αmax. If this condition is satisfied with all 2 neighboring midpoints, it is
called a full isolated point

Let us consider Fig. 3. In this example, there are all basic configurations among
the primitive arc and line: arc-arc, arc-line and line-line. Fig. 4 presents these
configurations in detail in the tangent space. Concerning the midpoint curve
(MpC) in the tangent space, Nguyen et al. [1] introduced several remarks below.

– An isolated point in MpC corresponds to an extremity among two adjacent
primitives in C.

– A full isolated point in MpC corresponds to an line segment in C.
– An isolated point in MpC can be co-linear with a set of co-linear points that

corresponds to an arc.
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(a) Input curve (b) DP detection 0
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Fig. 3. An example of curve
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Fig. 4. Configurations on tangent space

In [1], Nguyen et al. proposed an algorithm (see1 algo. 1) to decompose a curve
C into arcs and straight line segments. First, the sequence of dominant points
(DpC) of C is computed by using an algorithm presented in [18]. DpC is then
transform in the tangent space and the MpC curve is constructed. An incre-
mental process is then used and each point of MpC is tested: if it is not an
isolated point (in this case, it corresponds to an arc segment in C), the blurred
segment recognition algorithm [19] permits to test if it can be added to the cur-
rent blurred segment (which corresponds to an arc in C). If it is not possible, a
new blurred segment starts with this point.

3 Ellipse Detection

We present hereafter a new method for ellipse extraction from edge map of an
image. It is based on three steps:

– Construction of a representation based on arc and line primitive of the edge
map of input image.

1 Note this algorithm includes some corrections of algo. 3 of [1].
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Algorithm 1. [1] Curve decomposition into arcs and lines 1.

Data: C = {C1, . . . , Cn}-a digital curve, αmax- maximal angle, ν-width of
blurred segments

Result: ARCs- set of arcs, LINEs- set of lines
begin

Use [18] to detect the set of dominant points: DpC = {D0, . . . , Dm};
BS = ∅;
Transform DpC in the tangent space as T (DpC);
Construct the midpoint curve MpC = {Mi}m−1

i=0 of horizontal segments of
T (DpC);
for i=0 to m-1 do

{Ci}ei
bi

- part of C wich corresponds to Mi;
if (BS ∪ Mi is a blurred segment of width ν [19]) and
(|Mi.y − Mi−1.y| < αmax) then

BS = BS ∪ Mi;

else

C
′
- part of C corresponding to BS;

Push C
′

to ARCs;
BS = {Mi};
if (|Mi.y − Mi+1.y| > αmax) then

Push CbiCei to LINEs;
BS = {∅} ;

end

– Grouping of arcs and lines for detection of ellipse candidate based on geo-
metric properties.

– Fitting of ellipse candidate based on least square fitting.

The first step is done by applying the decomposition of a curve into arcs and
lines presented in the above section. We construct the corresponding edge image
from input image by using Canny filter. This edge image is considered as a
list of digital curves. Thanks to above technique [1], we can obtain a compact
representation of this edge image based on arc and line primitives.

z

BA

T

O1
T

O1
O2

A

B C

(a) Arc-line (b) Arc-arc (c) Line-line

Fig. 5. Arc and line grouping based on geometric property
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Grouping of Arcs and Lines Based on Geometric Property. In this
step, ellipse candidate is detected by grouping adjacent arcs and lines based on
geometric property. Its main idea is to group the adjacent primitives that have a
same tangent vector at the common extremity. In practice it is done by verifying
the angle between two adjacent primitives.

Let us consider two adjacent primitives. There are three possible configura-
tions: arc-arc, arc-line and line-line. We define the angle among two primitives
that depends on its configuration as follows.

– Arc-line: Let us see Fig. 5.a. The arc has its center O1. Two primitives share
a common point T. Tz is perpendicular with TB. The angle among two
primitives is define as ∠O1Tz.

– Arc-arc: Let us see figure 5.b. Two adjacent arcs whose centers are O1 and
O2 share common point T. The angle among these arcs is define as ∠O1TO2.

– Line-line: Let us see figure 5.c. The angle between two line segments AB
and BC is π − ∠ABC.

Thanks to the notion of angle among two adjacent primitives and sequential
property of the representation based on arcs and line segments, a linear scan-
ning process is used for grouping adjacent primitives satisfying that the angle
among two adjacent primitives does not exceed a fixed threshold. A such group
of primitives that contains at least one primitive of arc is called an ellipse candi-
date. To avoid false positive with small detected ellipse, we use two constraints
about the arcs in each group of primitives: the maximal radius of arc must be
greater than 5 and the total subtending angle of arcs must be greater than π

5 .

Fitting of Ellipse Candidate. For each ellipse candidate constructed from the
extracted arcs and lines, we try to fit it by using least square fitting. Contrariwise
to existing techniques based on least square fitting, we need a very small set of
extracted points for fitting.

This good property is given by the repre-

A

B

C

D

E

M1

M2

Fig. 6. Ellipse fitting based on least
square fitting

sentation of the curve by arc and line prim-
itives. The set of extracted points for ellipse
fitting is constituted from extremities of arcs
and lines. Moreover, it contains also mid-
points of arcs to reduce the approximated
error between the fitting ellipse and the curve
reconstructed by arcs and lines. Fig. 6 illus-
trates this strategy. The ellipse candidate is
composed of segments AB, BC and arcs ĈD,
D̂E. The data set contains A, B, C, D, E the
extremities of arc and line primitives, M1,
M2 the midpoints of arcs ĈD and D̂E.

Concerning least square fitting, there are two main categories: algebraic fitting
and geometric fitting (see [10]). Let us consider a general conic described by this
implicit function: F (A, X) = A · X = ax2 + bxy + cy2 + dx + ey + f = 0 where
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Algorithm 2. Ellipse detection

Data: Img- a digital image, αmax- maximal angle, ν-width of blurred segments,
βmax threshold of angle 2

Result: E - set of ellipses
begin

Use Canny to detect edgeImg as edge image;
Consider edgeImg as a list of digital curves;
Use algorithm 1 to represent edgeImg by Primitives - a sequence of arcs
and lines; i=-1; E = ∅;
while i < sizeof(Primitives) do

i++; id=i; numArc=0;
while determineAngle(Primitives[i],Primitive[i+1])< βmax do

if Primitives[i] is an arc then numArc++; id++;

if (numArc > 0) & (id > i) & (maximal radius > 5) &
(total substending angle > π

5
) then

Collect {Primitives[j]}id
j=i as an ellipse candidate; ES = ∅;

for j=i to id do
Add the first point of Primitives[j] to ES;
if Primitive[i] is an arc then Add the middle point of
Primitives[j] to ES;

Add the last point of Primitives[id] to ES;
Use least square technique to fit ES by a conic curve ζ [20];
if ζ is an ellipse then Add ζ to E;

end

A = [a, b, c, d, e, f ]t, X = [x2, xy, y2, x, y]t. F (A, Xi) is defined as algebraic (resp.
geometric) distance to the conic F (A, X) = 0. The least square fitting is used

to minimize the sum of squared error distance:
m∑

i=0

F (A, Xi)2 with none trivial

solution A �= [0, 0, 0, 0, 0, 0]t. Many works have been proposed for minimizing
this sum of square error. In our work, the ellipse is fitted from the extracted set
of points by using the code of ellipse fitting proposed by Ohad Gal [20].

Proposed Algorithm. Algorithm 2 describes the ellipse detection based on
the representation of an edge image by arc and line primitives. The scanning
process is applied for the detection of ellipse candidates by grouping adjacent
arcs and lines which have their adjacent angles smaller than a threshold (βmax).
For each ellipse candidate, the algorithm tries to construct an approximated
conic by using least square fitting on a small set of points constructed from
extremities of arcs and lines and middle points of arcs. If the conic is an ellipse,
it is considered as a detected ellipse. In practice, the threshold of angle is set
from π

8 to π
5 .

2 By default, αmax = π
4
, ν = 1, βmax = π

5
(see algo. 2).
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4 Experimentations

We have experimented the proposed method on a 2.26 GHz CPU linux com-
puter, with a 4Go of RAM. The results are illustrated in Fig. 7 and Fig. 8. From
the input image (a), the edge image (b) is computed. Then, the detected arcs
and lines from algorithm 1 are represented in (c). Afterwards, a scanning pro-
cess is applied to group arc and line primitives to detect the ellipse candidate
(d) by verifying the angle between adjacent primitives. Finally, for each ellipse
candidate, the technique of least square fitting is applied to construct the fitting
conic on the small set of extracted points (marked points in detected ellipses in
figures Fig. 7.e and Fig. 8.e). Fig. 7.f and Fig. 8.f present the results obtained by
other methods [21], [22].

Table 1 shows some information about processing of ellipse detection from
the previous experiments. Thanks to the representation based on arcs and lines,
the number of primitives for processing is reduced from 13699 (resp. 7778) to
308 (resp. 261) for image in Fig. 7 (resp. Fig. 8). In addition, the scanning pro-
cess on the sequence of primitives is done in linear time due to its sequen-
tial property. After applying this process, the number of ellipse candidates is
reduced to 27 (resp. 6) for image in Fig. 7 (resp. Fig. 8). Moreover, the av-
erage number of extracted points for ellipse fitting of each candidate is only
11.18 and 8.17.

The proposed method has two main advantages that guarantees its fastness:

– An efficient pre-processing step for the detection of ellipse candidates. It is
based on a fast method to represent the edge image by arcs and line segments
and a linear scanning process for the detection of ellipse candidates.

– A small set of extracted points for ellipse fitting. Thanks to the representation
based on arcs and lines, we don’t need all of points corresponding to ellipse
candidate for ellipse fitting. We only use extremity points of the primitives
(arcs, lines) and midpoints of arcs for this task.

Table 1. Ellipse detection in images in figures 7, 8

Figure Image size No of points
in edge image

No of
primitives

No of can-
didates

No of el-
lipses

No of points
per candidate

Times
(ms)

7 584x440 13699 308 27 23 11.18 880

8 508x417 7778 261 6 5 8.17 520
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(a) Input image [21] (b) Edge image (c) Arc line decomposition

(d) Arc line grouping (e) Proposed result (f) Wu’s method

Fig. 7. Comparison with Wu’s method [21]

(a) Input image [22] (b) Edge image (c) Arc line decomposition

(d) Arc line grouping (e) Proposed result (f) Libuda’s method

Fig. 8. Comparison with Libuda’s method [22]

5 Conclusions

We have presented a promising new method for ellipse detection in images.
The scanning process for detection of ellipse candidate is efficient because the
representation based on arcs and lines allows us to work with a small number
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of primitives in relation with the number of points in edge image. In addition,
this process is done in linear time. Moreover, for each ellipse candidate, the
least square fitting is not directly applied on all the points of the candidate. In
future work we plane to perform other comparisons with different approaches
and include a recent noise detection defined through the concept of meaningful
scale [23].
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Abstract. We consider the problem of extracting the morphology of a
terrain discretized as a triangle mesh. We discuss first how to transpose
Morse theory to the discrete case in order to describe the morphology
of triangulated terrains. We review algorithms for computing Morse de-
compositions, that we have adapted and implemented for triangulated
terrains. We compare the the Morse decompositions produced by them,
by considering two different metrics.

1 Introduction

Modeling the morphology of a real terrain is a relevant issue in several appli-
cation domains, including terrain analysis and understanding, knowledge-based
reasoning, and hydrological simulation. Morphology consists of feature points
(pits, peaks and passes), feature lines (like ridges and ravines), or segmentation
of the terrain in regions of influence of minima and maxima or in regions of uni-
form gradient field. Morphological models of terrains are rooted in Morse theory
[26]. Based on Morse theory cellular decompositions of the graph of a scalar
field defined on a manifold, called Morse complexes, are defined by considering
the critical points of the field and the integral lines. The same mathematical
and algorithmic tools apply for segmenting 3D shapes based on a scalar field
defined over the shape, such as curvature [22,23,24]. Unfortunately, the results
from Morse theory apply only to smooth functions, while the most common
terrain and shape models are piece-wise linear functions defined over a triangle
mesh. Current approaches [4,6] try to simulate Morse complexes in the discrete
case, but pose constraints (i.e., flat edges are not allowed), that are usually not
satisfied by real terrains or 3D shapes.

The purpose of this work is to review, analyze and compare algorithms for
computing Morse complexes on triangulated surfaces built on real data sets. We
focus our attention on terrains modeled as piece-wise linear triangulated sur-
faces with vertices at the sample points, called Triangulated Irregular Networks
(TINs). First, we discuss how to overcome the limitations of current discrete
approaches by dealing with flat edges effectively. We classify flat edges and then
discuss how to eliminate singularities from TINs through a process of edge col-
lapse which may generate new critical points.

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 565–574, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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In the literature, two major approaches exist for computing Morse decompo-
sitions of discrete terrain models: region-based algorithms compute the 2-cells of
the Morse complexes while boundary-based algorithms compute the lines form-
ing their boundaries. We compare results on real datasets, and we consider both
noisy data and data after a smoothing process and elimination of the singular-
ities. We compare the segmentations produced by the various algorithms using
two metrics.

The remainder of the paper is organized as follows. In Section 2, we present
background notions on Morse theory. In Section 3, we present discrete approaches
to Morse theory and our new characterization of Morse functions in the discrete,
that we call extended Piecewise Linear (ePL)-Morse functions. In Section 4,
we review algorithms to decompose a terrain into Morse complexes. In Section
5 we discuss the metrics, used in Section 6 to compare the Morse decomposi-
tions produced by the different algorithms. Finally, in Section 7, we draw some
concluding remarks, and discuss future developments.

2 Background Notions

Let us consider a domain M in the three-dimensional Euclidean space and a
smooth real-valued function f defined over M . A point p of M is a critical point
of f if the gradient of f at p is null. Critical points of f are minima, saddles and
maxima. All other points are called regular. A critical point p is degenerate if
the determinant of the Hessian matrix of f at p is zero. A function f is called a
Morse function [26], if all its critical points are not degenerate. A Morse function
admits only finitely many isolated critical points.

An integral line of f is a maximal path which is everywhere tangent to the
gradient of f . Integral lines that converge to a minimum [saddle, maximum] p
form a 0-cell [1-cell, 2-cell] called the stable cell of p. Similarly, integral lines
that originate from a minimum [saddles, maximum] p form a 2-cell [1-cell, 0-cell]
called the unstable cell of p. The stable (unstable) cells decompose M into a
Euclidean cell complex, called a stable (unstable) Morse complex. If the unstable
and the stable cells intersect transversally, function f is said to satisfy the Smale
condition. If f satisfies the Smale condition, the overlay of stable and unstable
Morse complexes is called a Morse-Smale complex.

A Morse complex is also related with the concept of watershed transform [29],
which provides a decomposition of the domain of a smooth function f into open
regions of influence associated with the minima of f , called catchment basins.
Catchment basins correspond to the cells of the stable Morse complex defined
on the same domain. The regions of influence related to the saddles form the
watershed lines.

3 Discrete Approaches to Morse Theory

In the literature there are two extensions of Morse Theory to a discrete domain.
The discrete Morse theory proposed by Forman [18] presents an adaptation of
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Morse theory that can be applied to any simplicial or cell complex. Forman
assumes to have a function value associated with each cell of the complex (not
just the vertices). Thus, it is not directly useful in our case. The piecewise linear
Morse theory by Banchoff [4] extends Morse theory to piecewise-linear functions
defined on triangulated surfaces, under the assumption is that every pair of
points of the triangulated surface have distinct field values. In order to define
the conditions for a vertex v to be critical, the polyhedral surface made by the
triangles incident in v is considered, and the number I of intersections between
such surface and the plane parallel to the x-y-plane, which is passing through v,
is counted. If there are no intersections, v is a maximum or a minimum. If there
are two intersections, v is a regular vertex. Otherwise v is a saddle: a simple
saddle if I = 4, or a multiple saddle if I > 4. Note that I is always even. The
multiplicity of a saddle is equal I/2.

Banchoff’s assumption on piece-wise linear Morse functions is quite strong,
and thus it is often replaced by the weaker condition that each pair of adjacent
vertices (i.e., connected by an edge) have different elevation values [6]. Such
condition ensures a decomposition of the domain, which has the same properties
as a Morse complex, called a Piece-wise Linear Morse Complex (PLMC). The
above condition is still too strong for real data sets. In [15], we have defined
a classification of an isolated flat edge e based on the value fe of function f
on e, and on the values fC and fD of f at the other vertices of the triangles
incident into e. If fC < fe < fD or fD < fe < fC , then e is a regular edge. If
fe < min(fC , fD) or fe > max(fC , fD) then e is a critical edge. We say that
the elevation function defined at the vertices of a TIN is an extended PL (ePL)-
Morse function if it does not contain critical edges or flat triangles. TINs that
present only isolated flat edges can be reduced to TINs for ePL-Morse functions
by collapsing such edges.

4 Algorithms for Computing Morse Decompositions

In the literature several approaches have been proposed for providing an approx-
imation of the Morse and Morse-Smale complexes in the discrete.

Boundary-based algorithms (see Section 4.1) extract the Morse-Smale complex
by tracing the integral lines, or their approximations, starting from saddle points
and converging to minima and maxima. Region based algorithms compute the
2-cells of the Morse complexes by growing the neighborhood of minima and
maxima (see Section 4.2). Watershed algorithms compute the Morse complexes
based on the discrete watershed transform (see Section 4.3).

4.1 Boundary-Based Algorithms

Boundary-based algorithms [31,3,8,17,27,31] compute the 2-cells of the Morse-
Smale complex on a TIN indirectly by computing the 1-cells, i.e., the boundaries
of the 2-cells. They first extract the critical points, and then trace the separatrix
lines, that are the 1-cells of the Morse-Smale complex.



568 M. Vitali, L. De Floriani, and P. Magillo

The basic idea is due to Takahashi et al [31]. According to Banchoff [4],
critical vertices are identified by considering the incident triangles in them. Let
us consider the radially sorted list of neighbors of a saddle s. Within such sorted
list, we consider the maximal sublists formed by vertices with higher (lower)
value than s and call them upper (lower) sequences. Starting from each saddle
p, with multiplicity k, 2k path are computed. Given p, we consider the upper
sequences and the lower sequences. We select the first point of each path by
choosing the highest (lowest) vertex from each upper (lower) sequence. Then,
the ascending (descending) paths are computed by choosing, at each step, the
highest (lowest) adjacent vertex until a critical point is reached. Saddles play a
key role in this algorithm.

Edelsbrunner et al. [17,16] extend the approach by Takahashi et al. [31]. Func-
tion f is required to be a piecewise linear Morse function, according to Banchoff’s
definition, i.e., vertices must have distinct function values. Likewise, ridges and
valleys are computed by starting from saddles, but at each step the point with
the maximum slope is selected. The Smale condition is simulated a-posteriori by
extending the path beyond each saddle, and forcing the path of the critical net
not to intersect. The technique is rather complex, it requires edge duplications,
and can lead to degenerated 2-cells (see [17] for more details).

4.2 Region-Growing Algorithms

Region growing algorithms [9,12,20] mimic, in the discrete case, the definition
of 2-cell for a Morse complex, which is the set of the integral lines that origi-
nate or converge to a critical point. We discuss here how the algorithms extract
the unstable Morse complex. The computation of the stable one is done in a
completely symmetric way.

We review here three region growing methods proposed in our previous work.
The algorithm in [12], denoted here as DIS, is based on the elevation values at
the TIN vertices, while the one in [11], denoted as GRD, is based on the gradient
associated with the triangles. The algorithms sort the vertices according to their
elevation and process them in decreasing elevation order. Let p be p the vertex at
the highest elevation among unprocessed vertices. The unstable 2-cell associated
with p, that we denote with γ, is initialized with all the triangles incident in p,
which have not yet been assigned to any 2-cell. The 2-cell γ is grown by following
a predefined criterion until it cannot be extended any more. If the vertex p lies
on the boundary of another 2-cell γ′, then p is not a local maximum, and thus
γ and γ′ are merged.

The region growing criterion, according to which a triangle is added to the
2-cell γ, is different in the two algorithms. In the DIS algorithm, the current
2-cell γ is extended by including the triangle t = ABC, adjacent to γ along an
edge AB, if C is the vertex f t with lowest elevation. Instead, the GRD algorithm
incluses t if the gradient of t has the same orientation as the gradient of t′, where
t′ = ABD is the triangle in γ sharing edge AB with t.

In the growing algorithm in [20], denoted here as STD, the region growing
criterion plays the most important role. Initially, the algorithm labels the highest,
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middle, and lowest vertex in each triangle t as source (S), through (T), and drain
(D), respectively. Then, the minima are found as those vertices labeled D in all
their incident triangles. For each minimum m, the 2-cell γ associated with m
is initialized with all triangles incident in m. A loop follows, in which, at each
iteration, the algorithm selects a set of triangles to be included from an edge e
of the boundary of the current 2-cell γ, based on vertex classification.

4.3 Watershed Algorithms

The watershed transform has been first introduced in image processing for gray-
scale images. Several definitions, and related algorithms, exist in the discrete
case [5,7,21,25,30,32] to compute the watershed transform (see [29] for a survey).
Here, we extended and implemented the two major approaches proposed in the
literature, based on simulated immersion [32], and on the discretization of the
topographic distance [25], to deal with TINs, and in general triangle meshes in 3D
space having a scalar value associated with each vertex. We denote the simulated
immersion algorithm for TINs as WVS and as the one using topographic distance
as WTD.

5 Metrics for Comparison

In this Section, we describe the metrics we use to compare the decompositions of
the same TIN produced by different algorithms. Such metrics provide a number
between 0 and 1, where 0 indicates that two decompositions Γ1 and Γ2 are
completely different, and 1 indicates that they are identical [10].

The first metric, called Rand index (RI) [28,10], measures the likelihood that
a pair of triangles is either in the same region or in different regions in both
decompositions. For each pair of triangles, we mark 1 either if they belong to
one region in both decompositions, or if they belong to two different regions
in both decomposition. Otherwise, we mark 0. Then, we divide the sum of the
values by the number triangle pairs. RI metric assesses the similarity among
decompositions even in case in which number of regions is widely different and
region matching is problematic.

The second metric is a variant of the Hamming distance defined in [19,10].
The general idea is to find a best corresponding 2-cell in decomposition Γ1 for
each 2-cell in decomposition Γ2, and measure the difference area between the re-
gions. In the original definition, region matching is performed by considering the
maximun common area. In our case, we say that two regions (2-cells) are corre-
sponding if they have the same critical point associated. We define as Hamming
distance (HD) the ratio between the number of the triangles that are assigned to
corresponding 2-cells in the two decompositions, and the total number of trian-
gles. The HD metric heavily relies on region matching, and is strongly affected
even in case of a few mismatches.
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6 Experimental Results

We have applied the algorithms presented in Section 4 both on synthetic and
real datasets, and compared the Morse decompositions by using the metrics
described in Section 5. Real data are affected by sampling errors, and, in most
cases, contain flat areas (plains, lakes etc.); thus, real TINs do not correspond
to Morse functions.

6.1 Input Data

We have experimented on three groups of real terrain data sets. The datasets of
the first group are TINs over subsets of data from the CGIAR-CSI GeoPortal,
[1]. Such TINs are composed of vertices distributed on a regular square grid and
isosceles right triangles all of the same size. In the following, we refer to them as
regular TINs. These TINs are available on the Aim@Shape repository [2]. The
TINs of second group are extracted from a regular data set but triangulated in a
nested triangle structure, called a hierarchy of diamonds [34]. The resulting TINs
are crack-free triangle meshes extracted from the hierarchy and are composed
by isosceles right triangles of different sizes. In the following, we refer to them
as diamonds TINs. The third group contains irregular triangle meshes, that we
call irregular TINs.

Table 1. Datasets used in the experiments

Name #Vertices #Triangles ePL

R
eg

u
la

r

MontBlanc 14 400 28 322 reducible
MontBlanc-ePL 14 394 28 310 yes
Elba 36 036 70 220 reducible
Elba-ePL 35 365 69 059 yes
Monviso 160 000 318 402 reducible
Monviso-ePL 159 606 317 623 yes

D
ia

m
o
n
d
s

San Bern. 8 022 15 610 reducible
San Bern-ePL 7 854 15 286 yes
Marcy0003 214 287 427 242 no
Marcy003 14 089 27 502 reducible
Marcy003-ePL 13 722 26 867 yes
Hawaii0003 120 456 240 840 no
Hawaii001 15 196 29 599 no

Ir
re

g
u
la

r

Vobbia 6 095 11 838 yes
Zqn 57 865 114 765 reducible
Zqn-ePL 57 816 114 695 yes
Dolomiti 10 004 19 800 reducible
Dolomiti-ePL 9 983 19 759 yes
Marcy50 50 004 99 345 no
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(a) (b)

Fig. 1. Unstable decompositions of Vobbia, produced by TKH (a) and BBD (b)

(a) (b)

Fig. 2. Comparison between stable decompositions of Monviso (a) and Monviso ePL
(b), produced by WVS and WTD. Red areas represent mismatching

We classify those meshes into (i) ePL-Morse meshes, i.e., meshes that have no
critical flat edges, (ii) meshes which can be reduced to ePL-Morse meshes, and
(iii) meshes not reducible to ePL-Morse ones. For meshes that are reducible to
ePL-Morse meshes, we consider both the original mesh and the mesh obtained
by replacing each critical flat component with a component that is not flat, but
has the same critical features. We denote those meshes with -ePL suffix. Table
1 shows the list of our test TINs. Figure 1 shows unstable decompositions of
Vobbia TIN produced by TKH (a) and BBD (b).

6.2 Results

On ePL-meshes, all algorithms find the same number of regions in both the stable
and the unstable decompositions. We have compared the algorithms pairwise,
according to the Rand-Index (RI) and Hamming-Distance (HD) metrics. RI has,
for each pair of algorithms, very high values, almost always in the top 2%. For
regular or diamonds ePL-meshes, HD is in the range 80%–99%. In particular,
TKH, WVS and STD algorithmd give very similar decompositions (HD is higher
than 95%). As soon as the shape of triangles become less regular, decompositions
computed by TKH, WVS and STD algorithms start diverging, and HD becomes
as low as 50%. GRD, WTD and BBD, that simulate the differentiability by
considering in some way the slope of triangles, give always pretty similar results,
with HD from 80% to 90%.

Decompositions obtained from non-ePL-meshes can be quite different, even
if the number of critical edges is small. Figure 2 shows mismatching between
WVS and WTD for a non-ePL-meshe and its ePL version. When we have a
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large number of critical edges, or wide flat areas, the mesh cannot be reduced
to ePL-Morse, and both metrics show very low values. For the Hawaii dataset
RI is in the range 57-82%, and HD is in the range 21-43%, mainly due to the
fact that the dataset is an island, and the boundary is a minimum composed
by a long chain of edges. On Marcy dataset, RI is the range 89-95%, and HD
is in the range 20-42%, due to a large flat area representing a river with small
islands inside. For full details on the metrics comparing decomposition algorithm
pairwise, please refer to [33].

7 Concluding Remarks

We have considered the problem of computing the morphology of triangulated
terrains and we have presented and analyzed the various approaches for com-
puting it. In Table 2, we summarize the main properties of the algorithms. GRD
and WVS sort vertices and detect maxima and minima during computation,
while STD, WTD, TKH and BBD use Banchoff’s characterization (see Section
3) to find maxima and minima in a preprocessing step. STD, WVS and TKH are
fully discrete and consider only the elevation values at the vertices. Decomposi-
tions of regular grid are similar for all fully discrete algorithms. GRD, WTD and
BBD, take edge slope into account, but simulate the differentiability in various
ways. Decompositions resulting from regular TINs are quite similar. Resulting
decompositions on irregular TINs are different, but GRD, WTD and BBD that
simulate the differentiability (even if in different ways), give results more similar
among them than STD, WVS and TKH algorithms.

GRD and WVS can deal with higher dimensional data. WTD can be extended
quite easily, while STD in higher dimension requires handling of a large number of
local configurations. BBS and TKH are not extensible to higher dimensions, since
they compute separatrix lines, while in higher dimensions we should compute
hypersurfaces. See [33] for further details.

Table 2. Main properties of the algorithms

Extraction of Simulation of Scale easily to

critical points Differentiability higher dimension

GRD Sort vertices Gradient Yes

STD Banchoff Fully Discrete No

WTD Banchoff Top. Distance No

WVS Sort vertices Fully Discrete Yes

TKH Sort vertices Fully Discrete No

BBD Sort vertices Diff. Quotient No
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The size of a morphological representation can be large for common models,
which may consist of several millions of triangles. To deal with problem, we have
been focusing on a multiresolution representation of the terrain morphology (see
[13]), that allows concentrating on the areas of interest and producing approx-
imate representations of the morphology at uniform and variable resolution. In
our current work, we are developing a multiresolution model that combines the
geometrical and morphological representations, where the morphological repre-
sentation as an index on the geometrical model [14].
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Abstract. One of the most recurrent problem in digital image process-
ing applications is segmentation. Segmentation is the separation of com-
ponents in the image: the ability to identify and to separate objects from
the background. Depending on the application, this activity can be very
difficult and segmentation accuracy is crucial in order to obtain reliable
results. In this paper we propose an approach for spot detection in im-
ages with noisy background. The overall approach can be divided in three
main steps: image segmentation, region labeling and selection. Three seg-
mentation algorithms, based on global or local thresholding technique,
are developed and tested in a real-world petroleum geology industrial
application. To assess algorithm accuracy we use a simple voting tech-
nique: by a visual comparison of the results, three domain experts vote
for the best algorithms. Results are encouraging, in terms of accuracy and
time reduction, especially for the algorithm based on local thresholding
technique.

Keywords: image segmentation, local thresholding, spot detection,
petroleum geology application.

1 Introduction

In digital image processing a common task is partitioning an image into multiple
areas that collectively cover the entire image. Segmentation subdivides an image
into its constituent regions or objects. The level of detail to which the subdi-
vision is carried depends on the problem being solved. That is, segmentation
should stop when the objects or regions of interest in an application have been
detected[1].

The goal of segmentation is to simplify and/or change the representation of
an image into something that is more meaningful and easier to analyse. More
precisely, image segmentation is the process of assigning a label to every pixel in
an image such that pixels with the same label share certain visual characteristics.
Each of the pixels in a region are similar with respect to some characteristic or
computed property, such as color, intensity, or texture. Adjacent regions are
significantly different with respect to the same characteristics[2].
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Segmentation of non trivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure of
computerized analysis procedures. For this reason, considerable care should be
taken to improve the probability of accurate segmentation.

In this paper we propose and experiment three algorithms, based on global
and local thresholding techniques, for spot detection in noisy images. Algorithms
take as input an image and give as result all the informations (such as position,
perimeter and color) about small round areas in contrast with the backgorund,
according to some visual criteria. We test the algorithms in a petroleum geology
application using digital images provided by a borehole logging tool called FMI1.
An interpretation of these acquired images (image logs) is usually made, by the
petroleum geologist, to locate and quantify potential depth zones containing oil
and gas. In this context the segmentation accuracy in spot detection is very
important in order to produce reliable evaluation of the studied reservoir.

To assess algorithms accuracy we use a simple voting technique: by the direct
observation of the output of chosen images at different depths of the well, three
domain experts choose the best algorithm.

The paper is organized as follows: segmentation basic concepts and related
work are outlined in Section 3.1. Three developed algorithms for spot detection
are introduced in Section 3. A detailed explanation of experimental results over
different images is given in Section 4. Finally, section 5 concludes the paper.

2 Segmentation Algorithms

In image analysis, one of the most recurrent problem is the separation of com-
ponents in the image: the ability to identify and to separate objects from the
background. This activity is called image segmentation. Segmentation algorithms
are based on one of two basic properties of intensity values: discontinuity and
similarity. In the first category, the approach is to partition an image based on
abrupt changes in intensity, such as edges (i.e. Canny edge detector[15]). The
principal approaches in the second category are based on partitioning an image
into regions that are similar according to a set of predefined criteria. Threshold-
ing, region growing (i.e. [17]), and region splitting and merging are examples of
methods in this category.

Other proposed recent approaches[3] are segmentation based on the mean
shift procedure[4], multiresolution segmentation of low-depth-of-field images[5],
a Bayesian-framework-based segmentation involving the Markov chain Monte
Carlo technique[6], and an EM-algorithm-based segmentation using a Gaussian
mixture model[7]. A sequential segmentation approach that starts with tex-
ture features and refines segmentation using color features is explored in[8].
An unsupervised approach for segmentation of images containing homogeneous
color/texture regions has been proposed in[9].

1 FMI (Fullbore Formation MicroImager) is the name of the tool used to acquire image
logs based on resistivity measures within the borehole.
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In our work we focus on segmentation obtained by threshold operations. Let
f(x, y) be the function that describes our image. The image consists of a white
object on a dark background. The extraction of the object can be achieved by
defining a threshold T and then comparing each pixel value with it. If the pixel
value exceeds the threshold, the pixel is classified as an object pixel, if the value
is lower than the threshold, the pixel is classified as a background pixel. The
result is typically a binary image, where object pixels are represented in white
and background pixel are represented in black.

Thresholding is a well known and straightforward technique and can be de-
fined as an operation that involves a test against a T function, which has the
following form: T = T [x, y, p(x, y), f(x, y)] where f(x, y) is the function that
describes the gray-level intensity for each pixel in the image; p(x, y) describes
some local properties for each pixel in the image; (x, y) represents the position
of pixels in the image. Depending on T , there are different types of threshold.

Global Threshold. It’s the simplest operation: the threshold value T is com-
puted once for the whole image, and the image is thresholded by comparing each
pixel value with T , as described above. The result depends on the shape of the
image histogram. Many techniques have been proposed for the automatic com-
putation of the threshold value. Otsu’s method[10], for example, produces the
threshold value that minimizes the intra-classes variance, defined as the weighted
sum of the variance of the classes. The class weight correspond to the probability
that a pixel belongs to that class.

Local Threshold. A global value for T may not be enough in order to obtain
good results in segmentation: the local approach, instead, computes a different
threshold value for each pixel in the image, based on local statistical features. A
neighbourhood is defined for each pixel: in this neighbourhood some statistical
parameters are calculated (i.e.: mean, variance and median), which are used to
calculate the threshold value T (x, y). Niblack’s algorithm[11] is an example of
this type of thresholding.

The simple global threshold method can only be successful if the separation
between the two classes (object vs. background) is clear. In real images, this
assumption is typically not true. The local threshold method attempts to solve
this issue, because the threshold value is not fixed, but calculated for each pixel
on the basis of the local image features.

3 Methodology

The overall approach of spot detection in noisy background images can be di-
vided in three steps: segmentation, labeling and selection. Segmentation identi-
fies a set of interesting regions that are eligible to spots. Labeling provides the
regions connected components in order to then select only those that are actual
objects.
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3.1 Image Segmentation

We developed three different segmentation algorithms starting from two main
methods. Our algorithms are made by the combinations of modified versions of
well known image processing techniques such as image smoothing and thresh-
olding. The first method uses a particular convolution mask and a global thresh-
olding technique. In order to remove noise and unnecessary details, the image is
first smoothed with a median filter. The convolution of this image with a circular
derivative mask provides a new image where round areas or circular structures,
approximately of the same size of the mask, are highlighted. The new image
is then thresholded, using two global threshold values: Tlow and Thigh. All the
(x, y) pixel where f(x, y) <= Tlow or f(x, y) >= Thigh are considered object
pixels, others are background pixels. Using two different threshold is possible to
find two types of spots: dark spots in light background and vice versa. Generally
we use a percentile value to define two thresholds: Tlow is the 20th percentile
and Thigh the 80th. In order to remove isolated pixels a opening morphological
operator[16] is then applied. This method lead to the implementation of two
different algorithm. The difference between these two implementations is in how
the convolution manage the image background. In some cases (see Section 4)
images can have zones with non-relevant or missing information. Our first al-
gorithm considers these zones as background pixels, conversely in the second
algorithm these pixels are considered null values (zones with no image).

The second method uses the approach based on local threshold. The first step
is the application of a low-pass filter to the image. The purpose of the filter
is to reduce the noise in the image. Then, once defined the size of the neigh-
bourhood, intensity mean (μ) and variance (σ) are computed for each pixel. For
the calculation of the threshold value, the Niblack’s algorithm[11] is applied:
T (x, y) = μ(x, y) + kσ(x, y) Mean and variance are calculated in the neighbour-
hood of each pixel. Here, we are assuming that the image contains white objects
on dark background. 2

In practice, two new images are built, starting from the original: in the first
image, the pixel value is replaced with the mean value in the neighbourhood. In
the second image, the pixel value is replaced with the variance calculated in the
neighbourhood. To apply the Niblack’s algorithm to the pixel (x, y) is sufficient
to get the pixel value from the original image, and its mean and variance from the
new images. The Niblack’s algorithm is reinforced with an additional constraint,
based on the absolute value of the variance. Variance is related to the image
contrast. A small value corresponds to an area fairly uniform in the image. To
avoid the detection of false positives, a pixel must belong to a non uniform area:
this means that the variance is to assume a high enough value. Hence a threshold
value is needed to compare the variance. First the variance image histogram is
built, then the threshold is selected as the value corresponding to an arbitrary
percentile (for example, the 20th percentile). The pixel for which the variance is
2 The detection of dark objects on light background can be achieved by inverting the

original image (doing this causes that dark pixels turn into light pixels and vice
versa) and then applying the same algorithm.
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lower than this value are automatically classified as background pixel. Niblack’s
algorithm is applied only to pixels that pass this test.

In order to detect light and dark objects, the method is applied to the original
image and to the inverted image. As before, the opening morphological operator
is then applied to the binary images, in order to smooth the contours of the
regions identified.

3.2 Image Labeling and Region Selection

The second step in the proposed approach is aimed at identifying and labeling
the connected components resulting from the segmentation process. Once we
obtain a binary image a labeling algorithm is applied to detect all the image
regions. The labeling algorithm identifies the connected components in an image
and assigns each component a unique label. The algorithm runs an image scan
and groups its pixels into regions, based on pixel connectivity. This procedure
is often applied to binary images, resulting from segmentation. Once complete,
the procedure returns a list of connected regions that were found in the image.
Each region should represent an image object.

Finally in the last step, for each identified region a test is applied on the size
and shape. In particular, the tested parameters might be: area, roundness and
ratio (ratio between maximum height and maximum width). These tests prevent
the algorithm from detecting regions which do not correspond to actual objects.

4 Experimental Results

We test our approach in a real-world petroleum geology application: the poros-
ity evaluation of a rock formation in oil and gas reservoir. Image logs are digital
images acquired by a special logging tool (FMI tool) within a borehole. They
represent resistivity measurements of the rock formation taken by the wellbore
surface. Image logs supply fundamental information on the characteristics of the
reservoir sections explored and hold important information on the structural,
lithological, textural and petrophysical properties of the rocks. Resistivity mea-
surements are converted into gray-level intensity values, and each measurement
corresponds to a pixel in the FMI image. This image is the unrolled version of
the well surface and it is made by six vertical strips of measurement. There is a
strip for each pad of sensors in the FMI tool, see Figure 2(a) for an example.

To estimate the porosity of the rocks from the image, we are interested in
the detection of roughly circular areas, in contrast with the background. These
spots are called vugs or vacuoles (see Figure 1 for an example).

Three different algorithms were implemented: the first two (algorithm 1 and
2) are very similar, and use the approach based on convolution. The third (al-
gorithm 3) is an implementation of the local threshold method described in 3.1.
All the algorithms are written in JAVA. To determine which method is most
suitable for this task, a test was performed on an entire well FMI image. The
analysis is carried out through a sliding window technique. From the main im-
age, 300 pixel height windows are extracted, and algorithms are applied directly
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Fig. 1. Dark vug in a light background (on the left) and vice versa (on the right)

to them. Windows are partially overlapping: this is designed to improve the ac-
curacy detection near the edges of the windows. Once completed the analysis on
the entire well, in order to evaluate the results, about ten windows, considered
significant, have been taken: windows, namely, showing the most common situa-
tions in which the geologist is interested. For example, a window containing a lot
of small sized vugs was selected, rather than a window with a few large vacuoles.
The chosen windows, and the three results for each of them, were shown to three
geologists: it was asked them, for each window, to vote the algorithm (or the
algorithms) that produced best results. At the end of the procedure, all votes
were collected and a ranking was produced.

In our experiment algorithm 1 and 2 have a 7x7 pixel smoothing filter and
a 9x9 pixel circular derivative convolution mask. Algorithm 3 runs with a 5x5
pixel smoothing filter; the radius of the neighbourhood is 13 pixel and k = 0.5
in the Niblack’s algorithm. Once each image region is labeled, a test is applied
on the size and shape. In our work the total area of each region must be in the
range 25 - 500 pixel. Roundness is defined as roundness = 4πA

p2 where A is the
region area and p is the perimeter. All the regions with a roundness lower than
0.25 pass the test and can be considered as vugs. The last test is based on the
width-height ratio: for each region the maximum width and height are computed
and only if the ratios width/height and height/width are greater than 1.8, the
region pass the test. Details on the vote are shown in Table 1.

Table 1. Each geologist votes for the best algorithms (algorithm 1, 2 or 3) for each
well depth. Cells contains geologist choice.

Geologist A Geologist B Geologist C
depth1 1,3 2,3 1
depth2 2,3 2 3
depth3 2,3 2 3
depth4 3 3 3
depth5 2 n.d. 3
depth6 3 3 2
depth7 2,3 2 3
depth8 2 2 3
depth9 3 n.d. 3
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(a) Input image. (b) Algorithm 1 detected spots.

(c) Algorithm 2 detected spots. (d) Algorithm 3 detected spots.

Fig. 2. Example of gray-level image input (a) and output (b,c,d) at depth1. In output
images, detected vugs are round grey area with black thin border.
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(a) Input image. (b) Algorithm 1 detected spots.

(c) Algorithm 2 detected spots. (d) Algorithm 3 detected spots.

Fig. 3. Example of gray-level image input (a) and output (b,c,d) at depth2. In output
images, detected vugs are round grey area with black thin border.
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Final ranking is algorithm 1 has 2 votes, algorithm 2 has 11 votes and algo-
rithm 3 receives 17 votes.

In Figure 2 the input image (depth1 ) shows a lots of small vugs, with a low
contrast with respect to the background; two strips in the middle are very dark
due to a measurement error 3. The geologist choice is algorithm 3 with two votes.
Although this algorithm detects less vugs than the others, this was preferred
because of it provides better results (no false positive) in the dark strips.

Figure 3 shows the image input and output for each algorithm at depth2. In
this case the input image shows few big vugs and algorithm 2 and 3 give best
results, both gaining 2 votes. It is important to note that algorithm 3 shows, in
general, a clear output and best accuracy, with a lower number of false positive.
Detailed image results can be found in [12]. The algorithm that produced the
best overall results was the one based on the local threshold method. The second
choice was the algorithm 2. This indicates that, regardless the image shape, the
convolution operator gives best results if it considers only actual image zones.

5 Conclusions

An approach for spot detection in images with noisy background has been pro-
posed and tested in a real-world application. It consists of three main steps:
image segmentation, image labeling and regions selection. We develop three dif-
ferent algorithms for image segmentation starting from well known techniques.
The first and the second are based on convolution with a derivative circular mask
and then a global thresholding technique is applied; the third algorithm uses a
local threshold. To find actual objects we finally test some parameters (such as
size and shape) of the identified regions. The approach was tested detecting vugs
(spots in contrast with the noisy background) in a borehole image log. We evalu-
ate our algorithms by a visual comparison of the obtained results, three domain
experts then vote for the best algorithms. Results show that the algorithm 3,
that uses a local threshold, was preferred by the domain expert. In general it
detects less vugs than other algorithms, but it seems to be most suitable in all
that cases with a low contrast between spots and background. Vugs detection is
very important for the geologist who wants to evaluate the porosity of a rock,
in order to quantify potential depth zones containing oil and gas. Our approach
helps the geologist reducing the time for detection of vugs in the image logs
and improving the detection accuracy. Outcomes from our algorithms can be
considered as good starting points for porosity analysis, on which the geologist
build his interpretation work.

Acknowledgements. This work has been partially supported by Camera di
Commercio, Industria, Artigianato e Agricoltura di Ferrara, under the project
“Image Processing and Artificial Vision for Image Classifications in Industrial
Applications”.
3 This is an unavoidable error and can happens often in these type of image. Due to

the complexity and the cost of the image acquisition, it is not possible to repeat the
measurement. The final image is made by a single run over the entire well.
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Abstract. Research in automatic facial expression recognition has per-
mitted the development of systems discriminating between the six pro-
totypical expressions, i.e. anger, disgust, fear, happiness, sadness and
surprise, in frontal video sequences. Achieving high recognition rate of-
ten implies high computational costs that are not compatible with real
time applications on limited-resource platforms. In order to have high
recognition rate as well as computational efficiency, we propose an auto-
matic facial expression recognition system using a set of novel features
inspired by statistical moments. Such descriptors, named as statistical-
like moments extract high order statistic from texture descriptors such as
local binary patterns. The approach has been successfully tested on the
second edition of Cohn-Kanade database, showing a computational ad-
vantage and achieving a performance recognition rate comparable than
methods based on different descriptors.

1 Introduction

Nowadays reliable and intuitive interfaces are one of the major factor influencing
acceptance of technological devices. Indeed some researches aim at developing
smart human computer interfaces (HCIs) that even could understand user emo-
tion. One way to achieve this goal consists in recognizing facial expressions, one
of the most important human communication modality.

The study of facial expressions, started with Darwin and led to a facial expres-
sions encoding by Ekman and Friesen in the 1971. They described elementary
facial movements (AUs) roughly corresponding to movement of facial muscles
and represented all possible faced expressions as a combination of such AUs.
They also proposed six prototypical expressions that are the same among all
ethnicity, i.e. anger, disgust, fear, happiness, sadness and surprise.

Facial expression recognition has long been competence of medical doctors
and anthropologists but, the necessity of intuitive HCIs stimulate researches on
automatic facial expression recognition (AFER) in computer vision and pattern
recognition areas.

Researches efforts have been finalized to find the best descriptors and clas-
sifiers to recognize facial expressions in images and videos. In this area Gabor

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 585–594, 2011.
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energy filters (GEFs) and local binary patterns (LBPs) provide the best per-
formance. Since the development of real time AFER systems on resource lim-
ited devices, i.e. mobile devices, requires that features extraction, selection and
classification are characterized by low computation costs, a trade-off between
computation costs and recognition rate is an issue still open.

This work presents an AFER system classifying facial expressions into six
prototypical expressions. We define a set of features which effectively describes
facial expression in frontal view video sequences. They are based on statistical-
like moments computed on LBP transformed images. These descriptors reduce
the amount of data conveying expressive information and the classification time.

The paper is organized as follow: next section presents an overview of most
significant works on AFER. Section 3 discusses system architecture, whereas
section 4 present the experimental protocol. I section 5 we discuss the results,
and section 6 provides concluding remarks.

2 Background

Reviews of researches carried out until 2009 presented the fundamental ap-
proaches for AFER systems development, pointing out research targets and
limits [1,2,3]. First systems were inadequate to face real problems due to the
exiguous amount of images and videos available to train the classifiers. More
recently, the availability of larger databases of facial spontaneous expressions
has permitted to develop AFER systems which may be applied to real world
situations.

We present now a review of most important AFER systems providing best
performance among existing literature. As described below, such systems are
based on different methods for both features extraction and selection as well as
sample classification.

In [4] the authors present an automatic system which detects faces, normalizes
facial images and recognizes 20 facial actions. In the recognition step, features
are the outputs of a bank of Gabor energy filters and classifiers are SVM or an
Adaboost algorithm.

In [5] different features are tested, i.e. GEFs, box filter (BF), hedge orienta-
tion histogram (EOH), BF+EOH and LBPs. In order to test the performance
achieved with such descriptors, GentelBoost and SVM are employed as classifi-
cation methods. Results show that GEFs provides good performance with SVM.

In [6] the authors present a framework for facial expression recognition based
on encoded dynamic features. In the first step the system detects faces in each
frame, normalize them and computes Haar-like features. Dynamic features units
are calculated as a set of Haar-like features located at the same position along
a temporal window. The second step consists in a coding phase which analyses
each dynamic features distribution generating the corresponding codebook. Such
a codebook is used to map a dynamic features into a binary pattern. The last
step applies a classifier based on the AdaBoost algorithm.

The system presented in [7] carries out a preprocessing step in which images
alignment is manually performed to realign the common regions of the face by
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the identification of mouth and eyes’s coordinates. Then, images are scaled and
the first frame of each input sequence is subtracted from the following frames
to analyse the changes in facial expression over time. Such an image is named
as delta image. The system extracts local features from delta images applying
Independent component analysis (ICA) over the PCs space. Then, the features
classes are separated by fisher linear discriminant analysis. Finally, each local
feature is compared with a vector belonging to a codebook generated by a vector
quantization algorithm from features of training set samples.

In [8] the authors present a comprehensive study for AFER applications in-
vestigating LBP-based features for low resolution facial expression recognition.
Furthermore, they propose Boosted-LBP as the most discriminative LBP his-
tograms selected by AdaBoost, reducing the number of features processed in the
classification stage.

In [9] the authors use LBP-based features computed using spatio-temporal
information, which are named as LBP-TOP. Boosted Haar features are used
for automatic coarse face detection and 2D Cascade AdaBoost is applied for
localizing eyes in detected faces. The positions of the two eyes, determined in
the first frame of each sequence, define the facial area used for further analy-
sis in the whole video sequence. Authors try to achieve real-time performance
proposing multi-resolution features, computed from different sized blocks, differ-
ent neighbouring samplings and different sampling scales of LBPs. AdaBoost is
used for features selection, whose training is performed either by one-against-one
or all-against-all classes strategies.

In [10] the authors combine the strengths of two-dimensional principal compo-
nent analysis (2DPCA) and LBP operators for feature extraction. Before LBP
computation, authors apply a filter for edge detection aiming at lowering the
sensitivity to noise or changes in light conditions of LBP operators, although
such operators have proven their robustness to those issue [11]. Finally, the con-
catenated features are passed as input to a decision direct acyclic graph based
multi-class SVM classifier.

In [12] the authors test LBP-based features, histogram of oriented gradient
and scale invariant feature transform to characterize facial expressions over 5
yaw rotations angle from frontal to profile views.

In [13] the prototypical expressions are classified at 5 different poses using
multi-scale LBP and local gabor binary patterns (LGBP). LGBPs utilize multi-
resolution spatial histogram combined with local intensity distributions and spa-
tial information. A SVM is used as classifier. Experiments suggest, that facial
expressions recognition is largely consistent across all poses, but the optimal
view is dependent on the data and features used.

This review shows that considerable effort has been devoted to find the best
combinations of preprocessing steps, descriptors, and classifier to achieve the
task of discriminate between the six prototypical expressions. Nevertheless the
issue is still open, especially if high recognition performance must be obtained
respecting real time and computational constraints.
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3 System Architecture

This section first presents an overview of the proposed system, and then focuses
on the feature vectors we tested.

The system can be divided into four blocks performing: face and eye detection,
image normalization, features extraction, and sample classification (Fig.1).

In the first module each frame of the input video sequence is processed by
Haar-like features cascades to find a region of interest containing the face. Then
the frame is cropped obtaining the facial image. Next, employing appropriate
Haar-cascades, we locate eyes and compute morphological information, such as
the distance between the eyes and the degree of head rotation. Since subjects
often close their eyes while are showing the facial expressions, an eye tracking
algorithm is used to estimate current eyes positions using information on eyes
position and speed in previous frames.

In the normalization module the facial image is converted into grey-scale and
its histogram is equalized to make the system more robust to light variation. To
reduce the computational complexity each facial image is rescaled to 96x96 pixels
maintaining a distance between the eyes of 48 pixels. Furthermore to improve
system’s performance the rescaled facial images are aligned on the basis of eyes
position in each frame.

The third module processes facial image with LBP operators and extracts
several descriptors, such as histograms and statistical-like moments, used to
built the feature vector of the sample (in subsection 3.1).

The fourth module classifies the samples as discussed in section 4.

Fig. 1. System architecture

3.1 Feature Vectors

The following two paragraphs describe features commonly used in the literature,
whereas the third paragraph presents the novel set of features applied to this
work.
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ILBP Histograms. LBP operators are grey-scale invariant statistical prim-
itives showing good performance in texture classification [11]. Defining gc the
grey value of the central pixel of the neighbourhood and gp the grey value of
the equally spaced pixels on a circle of radius R (with p = 1, 2, ..., P − 1), LBP
operators are defined as:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (1)

where s(gp − gc) is 1 if gp − gc ≥ 0 and 0 otherwise. In our work we use P = 8
and R = 1. In the following we denoted as ILBP the LBP transformed image
computed applying the LBP operators to a grey scale image I.

Features vectors from ILBP are generally obtained collecting several his-
tograms Hwi

LBP, each one computed on a region wi of ILBP . Dividing ILBP

into n regions, the corresponding feature vector of ILBP is given by:

FLBP = {Hwi

LBP}n
i=1 (2)

Since, Hwi

LBP is composed of 256 bins [11], FLBP is composed of (256 × n)
elements.

ILBP u2 Histograms. A more compact way to describe texture information
of an image is to use LBPu2 operators. Indeed, information, on about 90%, of
the vast majority of all 3x3 patterns obtained when R = 1 is captured by a
limited number of patterns. LBPsu2 work as templates for microstructures such
as bright and dark spots, flat areas, and edges. Formally, they are defined by a
uniformity measure U corresponding to the number of pattern spatial transitions
i.e. bitwise 0/1 changes in binary code. Considering only patterns having U value
of at most 2, the following descriptors may be introduced:

LBPu2
P,R =

{∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(3)

LBPu2 can be effectively described by histograms with 59 bins [11]. Hence, the
corresponding feature vector is composed of (59 × n) elements:

FLBP u2 = {Hwi

LBPu2}n
i=1 (4)

Statistical-like moments. A larger feature vector requires larger time to ex-
tract features, to train the classifier and to label test samples. For these reasons,
we propose to represent LBP transformed images using very few descriptors.
Given ILBP histograms, we may extract statistical descriptors since they are
able to catch texture information [14]. In this respect, we consider the mean
(m), the variance (σ2), the skewness (ς), the kurtosis (χ), and the energy (ε).

Note that skewness and kurtosis are defined only if σ2 �= 0.
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As reported above, features may be extracted not only from the whole ILBP ,
but also from subregions wi. In this case, we may find regions with a uniform
pixel value, where σ2 = 0 and, hence, skewness and kurtosis cannot be computed.
In order to overcome this limitation, we introduce in the following a new set of
descriptors, named as statistical-like moments, inspired by statistical descriptors.
To this aim, let us introduce the following notations:

– w is a subregion of ILBP ;
– nk is the number of pixels having grey value k in ILBP ;
– nk(w) is the number of pixels having grey value k in w;
– S is the number of pixels in ILBP ;
– S(w) is the number of pixels in w.
– μn(w) is the nth statistical moments of w.

We first introduce the following descriptor named as local mean and denoted by
ml(w):

ml(w) �
L−1∑
k=0

rk
nk(w)

S
(5)

where r denote a discrete variable representing pixel value in the range [0, L−1].
Similarly, we define the nth local moments as:

μln(w) �
L−1∑
k=0

(rk − ml(w))n nk(w)
S

n = 0, 1, . . . (6)

The following relationship between our local moments and the conventional sta-
tistical moments computed in w holds:

μln(w) =
n∑

i=0

(
n

i

)
μn−i(w)(m(w) − ml(w))n−iφ(w) ifn > 0 (7)

where μn(w) is the nth conventional statistical moment and m(w) is the con-
ventional mean, both in subregion w, and φ(w) = S(w)/S.

Using such quantities we define two further descriptors inspired to skewness
and kurtosis and respectively denoted as ςl(w) and χl(w). They are given by:

ςl(w) =
μl3(w)
σ3

l (w)
, χl(w) =

μl4(w)
σ4

l (w)
(8)

where σl(w) is: √√√√L−1∑
k=0

(rk − ml(w))2
nk(w)

S
=

√
μl2(w) (9)

Since it can be easily shown that σl(w) is different from zero providing that
pixels in region w are not all 0, ςl(w) and χl(w) are always defined.
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Using previous descriptors, the features vector is built computing from each
subregion the following quantities:

fwi

l = {ml(wi), σl(wi), ςl(wi), χl(wi), ε} i = 1, . . . , n ∀w ∈ I (10)

and collecting them into the final vector which is composed of (5 × n) elements
only:

Fl = {fwi

l }n
i=1

(11)

4 Experimental Protocol

For our experiment we used the second edition of Cohn-Kanade database (CK+)
[15] arranging the sequences in two different sets.

One set is composed of 282 video sequences corresponding to 876 images of
95 different subjects containing prototype expressions. According to a general
practice reported in the literature, we select the last three frame of each video
sequence corresponding to the peak of expression. In the following this set is
referred to Dp.

The second set is composed of 4409 images obtained selecting in the 282 video
sequences all the frames except the first three ones. In the follow we referred to
this set as Ds.

While Dp permits to test the capability of our system to detect expressions
at the maximum of the expressions intensity, Ds permits to test our system
in a scenario near to the real situation where people rarely show expression of
maximum intensity.

As already mentioned, features extraction approaches based on both FLBP

and FLBP u2 as well as the proposed statistical-like moments Fl divide facial
image into regions. In the literature, a common approach divides the image
into n non-overlapping regions [8,9,10]. Hence, we extract FLBP , FLBP u2 and
Fl dividing facial image into 9, 16, 25, 36, 49 and 64 non overlapping squared
regions. An alternative method may use a shifting window providing partially
overlapped subregions. Although this approach cannot be applied to FLBP and
FLBP u2 since their long feature vectors would greatly increase the computational
load, the reduced size of our Fl descriptors enable us to test the shifting window
approach. In this case tested windows sizes are 12, 14,16, 20, 24 and 32 pixels.
In the rest of paper, the computation of Fl using a shifting window is denoted
as Flw .

All feature vectors are given to a SVM classifier with an RBF kernel, per-
forming 10-fold cross validation and averaging out the results. We performed a
grid search on SVM parameter space, where C ranges from 1 up to 104, and γ
ranges from 10−1 up to 10−5.

Image processing and features extraction stages have been implemented in
C++, while classifier training and testing have been performed using Weka-3.0
[16]. Experiments have ran on Hp xw8600 workstation with 8-core 3.00 GHz
Intel(R) Xeon(R) CPU and 8.00 GB RAM.
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Table 1. Recognition rate (%) measured considering only peak of expression (Dp)
and the whole video sequence (Ds). FLBP , FLBP u2 , Fstat and Fl were computed on
non overlapping regions. Flw was computed on shifting window.

Dp Ds

Features Side in pixels of squared regions Side in pixels of squared regions

32 24 20 16 14 12 32 24 20 16 14 12

FLBP 98.2 99.1 99.1 99.3 99.1 99.1 95.5 96.2 96.6 96.7 96.6 97.3

FLBPu2 97.9 99.1 99.1 99.4 99.1 99.2 95.4 96.1 96.5 97.0 97.3 97.3

Fl 97.5 97.7 97.1 97.3 97.9 96.0 95.1 96.8 96.8 97.0 96.6 96.5

Flw 98.7 99.1 99.2 98.9 98.7 94.5 97.7 98.2 98.0 97.5 97.7 96.6

5 Results and Discussion

Table 1 shows the recognition rates achieved using different features on both
Dp, and Ds, whereas table 2 shows elapsed time to train and test the classifier
on each sample of Dp (times concerning Ds convey equivalent information and
are not reported for the sake of brevity). As reported above FLBP , FLBP u2

and Fl are computed from squared, non-overlapping subregions whereas Flw are
computed using a shifting window. To provide a deeper insight into recognition
results, table 3 reports the confusion matrices corresponding to the best and the
worst accuracy of Flw on Dp. Such best and worst results are achieved using the
shifting window with side of 20px and 12px wich are reported in each tabular
as the first and second entry, respectively. Other confusion matrices are omitted
for brevity.

Turning our attention to results achieved on Dp (i.e. expression recognition
in peak condition) we notice that Fl descriptors require lower training and test
times than LBP-based descriptors (Table 2), whereas their performance is only
slightly penalized (Table 1). In particular, focusing on test times, which are the
most relevant in real time scenarios, Fl is 15 and 10 times faster than FLBP ,
FLBP u2 , respectively. Nevertheless, if shifting windows are used, i.e. Flw , a better
trade-off is reached. With respect of LBP-based descriptors, on the one hand,
performance are completely comparable and, on the other hand, training and
test times are still remarkably low. Indeed, Flw is 4 and 3 times faster than
FLBP and FLBP u2 , respectively.

Turning our attention on expressions recognition on Ds (i.e. the whole video
sequences) we observe that Fl performance are comparable with those achieved
using FLBP and FLBP u2 . Furthermore, best performance among all tested con-
figurations are achieved by Flw descriptors, attaining a recognition rate equal to
99.2%.

This analysis reveals that the introduction of more compact descriptors in-
creases the flexibility in choosing the trade-off between classification performance
and computational costs. In particular, our statistical-like moments computed
using a shifting window remarkably reduce the computation time and improve
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classification performance when expressions vary in intensity during a video se-
quences. This observation suggests that our descriptors may be a good solution
for real problems where it is likely to be difficult to isolate peak expression
frames.

Table 2. Training and testing time of different descriptors on Dp

Features Time
Side of squared regions

32 24 20 16 14 12

FLBP
train(s)
test(ms)

9.2 12.6 13.6 18.1 18.7 22.6
11.0 16.9 17.2 23.8 24.4 29.2

FLBP u2
train(s)
test(ms)

4.5 9.1 11.7 12.4 15.1 17.4
6.1 9.3 14.8 15.3 18.7 21.9

Fl
train(s)
test(ms)

0.2 0.6 1.4 2.4 3.6 3.4
0.4 1.7 2.1 1.4 1.4 1.9

Flw

train(s)
test(ms)

2.1 3.6 3.6 5.6 6.8 14.5
3.5 2.1 3.4 7.3 8.8 12.2

Table 3. Confusion matrix corresponding to the best and the worst accuracy of Flw

on Dp reported in each tabular as the first and second value, respectively

Anger Disgust Fear Happiness Sadness Surprise

Anger 125-114 0-0 0-0 0-0 0-0 1-12

Disgust 0-1 161-147 1-0 0-0 0-0 0-14

Fear 1-0 0 - 0 65-60 0-2 0-0 0-4

Happiness 0-0 0-0 1-0 197-188 0-0 0-10

Sadness 0-0 2-1 0-0 0-0 76-73 0-4

Surprise 1-0 0-0 0-0 0-0 0-0 245-246

6 Conclusions

In this paper we have presented an automatic facial expression recognition sys-
tem able to conveying facial expression information using a compact set of de-
scriptors based on statistical properties of LBP transformed images histograms.
The small number of elements composing the resulting feature vectors permits us
to significantly reduce the classification times making our system suited to real
time applications on resource-limited platforms, such as mobile devices. Perfor-
mance of our descriptors has been compared with that achieved by LBP-based
descriptors in their basic configuration. Future works will be directed towards
the use of features selection algorithms, such as Adaboost. This will permit us to
compare performance of our selected feature vectors with performance achieved
by boosted-descriptors known in literature and employed in person-independent
system.
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Abstract. Self-update and co-update algorithms are aimed at gradu-
ally adapting biometric templates to the intra-class variations. These
update techniques have been claimed to be effective in capturing varia-
tions occurring in medium time period but no experimental evaluations
have been done in the literature to clearly show this fact. The aim of
this paper is the analysis and comparison of these update techniques
on the sequence of input batch of samples as available over time, specifi-
cally, in the time-span of 1.5 years. Effectiveness of these techniques have
been compared in terms of capability to capture significant intra-class
variations and the attained performance improvement, over time. Exper-
iments are carried out on DIEE multi-modal dataset, explicitly collected
for this aim. This dataset is publicly available by contacting the authors.

Keywords: Biometrics, Face, Fingerprint, Self-update,Co-update.

1 Introduction

A personal biometric verification system consists of two main processes; enrol-
ment and matching. In enrolment, individual’s biometric samples are captured,
processed and features extracted. These extracted features are labelled with
user’s ID and is referred to as “template”. Matching mode verifies claimed iden-
tity by comparing input sample(s) to the enrolled template(s) [1] [2].

The enrolment process typically acquires very few samples, usually a single
image, captured under controlled conditions. On the other hand, real time oper-
ation in uncontrolled environment encounters large variations in the input data,
called “intra-class” variations. These variations can be attributed to factors like
human-sensor interaction, illumination conditions, changes in sensor, seasonal
variations, occlusions due to user’s accessories etc.. These factors causes “tempo-
rary variations” in the biometric data. In addition, biometric traits also undergo
gradual ageing process as a result of time lapse [3]. Accordingly, changes in
the biometric over time can be termed as “temporal changes” occurring in the
medium-long term.

As a consequence of these temporary and temporal variations, enrolled tem-
plates becomes “un-representative”. In this paper, we refer to representative
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templates as templates with the capability to correctly recognize significant intra-
class and inter-class variations (impostor samples).

Recently, template update procedures have been introduced aiming to solve
the issue of unrepresentative templates by constantly adapting themselves to
the intra-class variations of the input data. Most of the existing template update
techniques are based on self-update and co-update algorithms [4]. In self-update,
biometric system adapts itself on the basis of highly confidently classified input
data [5]. Template co-update utilizes the mutual and complementary help of
multiple biometric traits to adapt the templates to the variation of the input
data [6].

Reference [7] performs experimental comparison of self-update and co-update
proving the efficacy of co-update, on utilizing the help of multi-modalities, in
capturing intra-class variations available over short-term period (e.g. face ex-
pression variations), over the former. However, the experimental analysis and
comparison is performed [7] over a limited data set containing only temporary
variations.

Till date, no analysis have been done for self and co-update techniques with
respect to :

– the dependence of their performances on the representativeness of initial
templates,over time;

– their efficiency in capturing intra-class variations as available over time;
– their resulting performance improvement over dataset containing both tem-

porary as well as temporal variations.

To this end, the aim of this paper is to advance the state-of-the-art by a tempo-
ral analysis of self and co-update algorithm by using input batches of samples
available at different time intervals. In particular, in this paper :

– we propose a conceptual representation of performance of self-update and
co-update with respect to representativeness of the initial captured enrolled
templates; this representation is supported by the experimental evidence.

– The capability to capture temporal intra-class variations and the obtained
performances improvement have been analyzed over time.

– Experiments are conducted on DIEE multimodal dataset,explicitly collected
for this aim, containing both temporary as well as temporal variations.

In section II, self-update and co-update techniques are discussed. Experimental
evaluations are presented in Section III. Section IV concludes the paper.

2 Self-update and Co-update Algorithms

In this section, we elaborate on self-update and co-update algorithms together
with the possible conceptual explanation of their operation.
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2.1 Self-updating

In self-updating procedure, matcher is trained on a initial set of enrolled tem-
plates, named T . A batch of samples, U , is collected during system’s operations
over a certain time [5]. Among all the samples in U , only those samples whose
match score against the available templates exceeds a given updating threshold
(i.e., highly confidently classified samples), thr∗, are used for the adaptation
process. This is done to reduce the probability of impostor introduction (false
acceptance) into the updated gallery set. This procedure is presented in Algo-
rithm 1.

However, using only highly confident samples may lead to inefficiency in cap-
turing samples representing substantial variations [4]. Thus, the efficiency is
dependent on the representativeness of the initial enrolled templates. On the
other hand, by relaxing the updating threshold, the system may become prone
to classification errors (updating using impostor samples) [4] [7].

Algorithm 1. Self updating algorithm
1. Given:

– T = {t1, ..., tM} is the template set.
– U = {u1, ..., uN}
– U∗ = φ is an empty set.

2. Estimate thr∗ on T
3. For h = 1, ..., N

(a) sh = matchscore(uh, T )
(b) If (sh > thr∗), then U∗ = U ∗ ∪{uh}

4. end For
5. T = T ∪ U∗

For the conceptual representation of self-update’s operation, let us consider a
sample space of a specific user for a given biometric b0.

If this user-specific sample space is represented in the form of a directed re-
lational graph G where nodes are the samples and the edges are labelled with
the related matching score between any two samples. On removing the edges la-
belled with the matching score below thr∗. The sample space may be partitioned
into n sub-graphs Gb0

1 , ..., Gb0
n . Each of these subgraphs Gb0

i , contains only those
nodes (samples) connected to other nodes with edges labelled with matching
score above thr∗.

On the availability of input batch U , consisting of random samples forming
the part of different subgraphs Gb0

1 , ..., Gb0
n in a user-specific sample space. Let

us suppose for simplicity that only single initial enrolled template, t, is available,
and belongs to subgraph Gb0

1 . Considering the self-update behaviour (Algorithm
1), may be only subset UGb0

1
= {u ∈ U : u ∈ Gb0

1 } of samples belonging to
subgraph Gb0

1 may be inserted into the template gallery. Provided their exists
a directed path from template t to sample u ∈ U{G1}. Other samples of U /∈
U{G1} will be completely neglected for the adaptation, in this case.



598 A. Rattani, G.L. Marcialis, and F. Roli

This implies that, self-update will result in limited capture of samples de-
pending on the representativeness of the enrolled templates. In other words, in
order to allow self-update to be efficient in capturing significant variations, a
careful a priori selection of templates must be done by human experts, on the
basis of user-specific subgraphs characteristics, with respect to the given user
population and the selected threshold thr∗. Another alternative is to relax the
threshold value,thr∗, which changes the obtained subgraphs partitioning and
reduces the number n of subgraphs.

As an example, Figure 1(a), shows the hypothetical diagram with two com-
ponent subgraphs Gb0

1 and Gb0
2 formed from the user-specific sample space, for

any modality b0. If the enrolled templates are in Gb0
1 , only samples lying in the

subgraph Gb0
1 can be captured by the self-update process. The samples in Gb0

2

will be completely neglected for the adaptation process.

(a) Modality b0 (b) Modality b1

Fig. 1. A hypothetical diagram showing the different component subgraphs Gb0 and
Gb1, of a complete directional graph where nodes are the biometric samples hypothet-
ically projected in the feature space, formed from removing the edges labelled with
matching score below thr∗ for the modalities b0 and b1

2.2 Template Co-updating

In template co-update [6], mutual and complimentary help of two biometrics is
utilized for the adaptation of the templates. Specifically, given two modalities,
input samples classified as genuine with high confidence by the one modality
(for ex, face), together with the corresponding complementary sample from the
another modality (for ex, fingerprint), are used for the updating process.

Co-updating procedure is presented in Algorithm 2, where T b0 and T b1 are
the template sets and U b0 and U b1 are the input batches of samples, for the
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modalities b0 and b1 (for example, fingerprint and face). The sample is highly
confidently classified if its matching score on comparison with the enrolled tem-
plates is above the set threshold thrb0∗ and thrb1∗. sbi

h is the confidently classified
sample by the modality bi.

Algorithm 2. Co-updating algorithm
1. Given modalities b1 and b2:

– T b0 = {tb0
1 , ..., tb0

M} and T b1 = {tb1
1 , ..., tb1

M} as the template sets.
– Ub0 = {ub0

1 , ..., ub0
N } and Ub1 = {ub1

1 , ..., ub1
N } as available batches of samples,

where sample ub0
h is coupled with ub1

h .
– Ub0∗ = φ and Ub1∗ = φ as empty sets.

2. Estimate thrb0∗ on T b0 and thrb1∗ on T b1.
3. For i = 0, 1

(a) For h = 1, ..., N
i. sbi

h = matchscore(ubi
h , T bi)

ii. If (sbi
h > thrbi∗), then Ubi∗ = Ubi ∗ ∪{ubi

h }
4. T b0 = T b0 ∪ Ub0∗
5. T b1 = T b1 ∪ Ub1∗

Following the same convention of directed relational graph and sub-graph
partioning of the user-specific sample space, as used for the representation of
self-update, the conceptual representation of co-update may be explained as
well. Worth noticing that each modality may form different sub-graphs with
different number of samples i.e, Gb0 = {Gb0

1 , ..., Gb0
nb0} and Gb1 = {Gb1

1 , ..., Gb1
nb1}

where nb0 �= nb1. This is due to the difference in the match score distribution
and complementary characteristics of different modalities. Figures 1(a)and 1(b)
show the component subgraphs of two independent modalities b0 and b1.

Irrespective of the induced partitioning (in the form of component subgraphs)
of individual biometric modality, template galleries of each modality can be
updated with the samples lying in the subgraphs different from the one in which
the enrolled templates reside, using the complementary matcher. In other words,
biometric b0 uses biometric b1 to update the template gallery, and vice-versa.
This is done thanks to the conditional independence among two biometrics as
assumed in co-updating algorithm: each sample of biometric b0, ub0 may be
coupled with any sample, ub1, of b1, independently of user-specific sample space
partitioning.

3 Experimental Analysis

3.1 Data Set

40 subjects with 50 samples per subjects are used from the DIEE multi-modal
face and fingerprint dataset. These 50 samples are acquired in 5 sessions with
10 samples per session (batch) with a gap of minimum three weeks between
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two consecutive sessions. These batches are indicated as B1, ..., B5. The whole
collection process span a period of 1.5 years. Each batch Bi consist of fingerprint
and face couples for a certain subject. For the co-update process these batches
are used as it, however, for self updating process face and fingerprint samples
are isolated. For the sake of simplicity, we indicated in the following mono- and
multi-modal batches using the same notation.

For face biometrics, variations such as lighting, expression change (i.e., happy,
sad, surprised and angry) and eyes half-closed are introduced in every batch. For
fingerprint biometrics, rotation, changes in pressure, non-linear deformations and
partial fingerprints are introduced as variations [8]. Two consecutive batches, Bi

and Bi+1 are temporally ordered. Figure 2 shows some of the images taken from
different sessions of face modality for a randomly chosen subject, where images
in different rows represent different sessions.

Fig. 2. Face images from different sessions exhibit ageing as well as other intra-class
variations, for a randomnly chosen subject

3.2 Experimental Protocol

– Training:
1. The system is trained with 2 enrolled samples per user from the first

session i.e, batch B1.
2. Threshold for adaptation is set by estimating genuine distribution ac-

cording to available templates.
– Updating: Remaining user images consisting of eight samples from the

batch B1 and ten samples from the remaining four batches i.e, B2:4, are
used for adaptation as follows:
1. For each user, B1...B4 are available over time.
2. Each batch Bi with i ∈ 1 : 4 is used for updating the template set of

the respective user by using the self-update and co-update algorithms
as mentioned in Section II. These batches Bi corresponds to unlabelled
batch U in algorithms 1 and 2.

– Performance evaluation:
1. After updating using batch Bi, i.e., after updating cycle i, batch Bi+1 is

used for testing the system performance. Scores for each test sample are
always computed using the max rule [2].

2. At each updating cycle i, Equal Error Rate of the system, namely, EERi,
is computed as follows: EERi = i−1

i ∗EERave
i−1 + 1

i ∗EER∗
i , as the mean

of the EER at previous update cycles i.e., EERave
i−1 and the EER (EER∗

i )
obtained at the specific update cycle i.

3. After the evaluation of the system, the same batch Bi+1 is used for the
process of updating.
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3.3 Results

The goals of these experiments are to:

– Provide experimental validation of the conceptual representation of the func-
tioning of self-update and co-update as provided in section II. This is done by
evaluating the capability of self and co-update techniques in capturing sig-
nificant intra-class variations and its dependence on the representativeness
of the initial enrolled templates over time.

– Evaluation of these techniques over time, following multiple update cycles,
that is, using batches B1, ..., B5.

3.4 Experiment no. #1

The aim of this experiment is to validate the dependence of self-update on initial
templates and to verify the contrary for co-update in capturing large intra-class
variations, according to the conceptual representation of Section II.

For sake of space, we present results only for the face biometric, but similar
results may be obtained for the fingerprint biometrics as well.

In confirmity with the conceptual representation in section II, structure of
data is studied and following steps have been performed, considering all the
samples for each user:

– The graph G is formed and partitioned by connecting each sample to only
those samples with matching score above the acceptance threshold set at
0.001% FAR of the system. This is a very stringent value in order to avoid
presence of impostors in the graph.

– Then, two samples are chosen as templates from the subgraph containing
batch B1 i.e, Gface(B1), for face modality.

– Self- and co-update algorithms are applied on batches B1:4. Both of these
update techniques operate at acceptance threshold set at 0.001% FAR (i.e.,
thr*, thrb0∗ and thrb1∗ in algorithms 1 and 2) which is same for all the users.

– After four updating cycles using batches B1:4, number of captured samples,
belonging to subgraph containing enrolled templates and those captured
from other different subgraphs are computed and presented in Figures 3(a)-
3(b) for each subject. These Figs. (3(a)- 3(b)) clearly show that co-update
has the high potential to capture samples with significant variations (that is,
belonging to different subgraphs) in contrary to self-update, using exactly
the same acceptance threshold as that of self-update (0.001% FAR).

– Finally, using the batch B5, average mean genuine score over all the users is
computed for each updating algorithm and the baseline classifier (without
adaptation) for the templates updated till fourth update cycles. In case of
baseline classifier, initial enrolled templates are matched against the batch
B5. The relative increase of the genuine mean score for self-update and co-
update techniques over the baseline classifier is computed to be 25% and
53%, respectively. This is a direct confirmation of the increase in represen-
tativeness of the enrolled templates.
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(a)

(b)

Fig. 3. Number of samples exploited by a) self-update and b)co-update process, from
the same sub-graph to which the enrolled templates belong and from the other different
sub-graphs. X axis represent different users and y axis represent number of captured
samples from the same and different subgraphs.
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Table 1. Cumulative percentage of samples in the updated template set till each
update cycle i for the self-update and co-update process

Update techniques (%) B1 (%) B1 ∪ B2 (%) B1 ∪ ... ∪ B3 (%) B1 ∪ ... ∪ B4

Self-update 31 18 17 17

Co-update 77 77 83 86

In addition to above evidences, Table 1, presents the cumulative percentage of
samples after the i − th update cycle, that is, the total percentage of data from
batches B1 ∪ ... ∪ Bi which have been gradually added to the template gallery,
again proving the efficacy of co-update.

3.5 Experiment #2

The aim of the experiment is the performance assessment of the self-update and
co-update in terms of Equal Error Rate (EERi) as computed over time (see
protocol). For the real time evaluation, five random impostor samples are also
inserted in each batch Bi. Figures 4(a) and 4(b) show EER values for baseline,
self- and co-update at each update cycle.

It can be seen that, over time, performance of the co-update significantly
increases. Differences in performances are due to the intrinsic characteristic of
face and fingerprint modalities, as may be deduced from both the figures. This is
evident both for the face and fingerprint biometrics. Specifically, after the third
update cycle, EER exhibits a decreasing trend. On the other hand, self-update
strictly follows the trend of baseline matcher.

(a) Face (b) Fingerprint

Fig. 4. EER Curve of the performance evaluation of the co-update in comparison to
self-update and baseline classifier over time for a) face and b) fingerprint modalities
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4 Conclusions

In this paper, we experimentally evaluated the performance of self- and co-
update algorithms on multiple update cycles, available over time.

Existing claims in the literature such as: a) self-update is dependent on the
threshold settings and on the representativeness of the initial templates, in cap-
turing significant variations; on the contrary, co-update does not suffer from this
limitation and b) self update process results in slow adaptation and limited per-
formance improvement in comparison to co-update over time, were argued but
never investigated.

We explicitly did such an analysis, which has been fully confirmed in our
opinion, by the proposed conceptual representation supported by experimental
evidences on DIEE Multi-modal data set.
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Abstract. We present a biologically motivated approach to fast feature 
extraction on hexagonal pixel based images using the concept of eye tremor in 
combination with the use of the spiral architecture and convolution of non-
overlapping Laplacian masks.  We generate seven feature maps “a-trous” that 
can be combined into a single complete feature map, and we demonstrate that 
this approach is significantly faster than the use of conventional spiral 
convolution or the use of a neighbourhood address look-up table on hexagonal 
images. 

Keywords: hexagonal images, feature extraction, spiral architecture, eye 
tremor. 

1   Introduction 

In order to obtain real-time solutions to problems that require efficient large-scale 
computation, researchers often seek inspiration from biological systems; for real-time 
image processing we consider the characteristics of the human visual system.  In 
order for humans to process visual input, the eye captures information that is directed 
to the retina located on the inner surface of the eye. A small region within the retina, 
known as the fovea and consisting of a high density of cones, is responsible for sharp 
vision capture and is comprised of cones that are shaped and placed in a hexagonal 
arrangement [4, 6, 8]. Additional important characteristics of the human eye are that, 
within the central fovea, receptive fields of ganglion cells of the same type do not 
overlap [5], and that the eye can be subjected to three types of eye movement: tremor, 
drift, and micro-saccades.  Furthermore, the human vision system does not process 
single static images, but instead a series of temporal images that are slightly off-set 
due to involuntary eye movements.  Therefore, the traditional approaches to feature 
detection using overlapping convolution operators applied to static images do not 
closely resemble the human visual system. 

Recent research has focussed on the use of hexagonal pixel-based images [7, 11] as 
the hexagonal pixel lattice closely resembles the structure of the human fovea and has 
many advantages in terms of image capture and analysis. In [10], Sheridan introduced 
a unique addressing system for hexagonal pixel based images, known as the spiral 
architecture, that addresses each hexagonal pixel with a single co-ordinate address, 
rather than the two co-ordinate address scheme typically used with rectangular image 
structures.  Such a one-dimensional addressing scheme potentially provides an 
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appropriate structure for real-time image processing of hexagonal images. However, 
with respect to feature extraction via convolution, where typically an operator is 
applied to a pixel and its neighbours, the process of determining these neighbours in a 
one-dimensional addressing scheme is not always trivial and can require time 
consuming special hexagonal and radix-7 addition.  In [9] the concept of eye tremor - 
rhythmic oscillations of the eye - has been exploited for image processing.  Instead of 
applying the operators to every pixel in an overlapping manner typical of standard 
convolution, Roka et al. used nine overlapping images and applied the masks in a 
non-overlapping manner; however, they still assume the image to be comprised of 
rectangular pixels that are addressed in a two-dimensional structure, and they apply 
standard square image processing masks. 

We present a biologically motivated approach to feature detection based on the use 
of the spiral architecture in conjunction with eye tremor and convolution of non-
overlapping Laplacian masks [9]. The Laplacian operator can be considered 
analogous to the on-off receptive fields found in the retina in which the centre of the 
receptive field is negative, surrounded by positive values or vice versa.  We develop a 
cluster operator, based on the spiral architecture, which can be applied to a one-
dimensional spiral image in a fast and efficient way.   

2   Spiral Architecture 

In the spiral architecture [10] the addressing scheme originates at the centre of the 
hexagonal image (pixel index 0) and spirals out using one-dimensional indexing. Pixel 0 
may be considered as a layer 0 tile. Pixel 0, together with its six immediate neighbours 
indexed in a clockwise direction (pixels 1, …, 6) then form a layer 1 super-tile centred at 
pixel 0.  This layer 1 super-tile may then be combined with its six immediately 
neighbouring layer 1 super-tiles, the centres of which are indexed as 10, 20, 30, 40, 50 
and 60; the remaining pixels in each of these layer 1 super-tiles are then indexed in a 
clockwise direction in the same fashion as the layer 1 super-tile centred at 0, (e.g., for the 
layer 1 super-tile centred at 30, the pixel indices are 30, 31, 32, 33, 34, 35 and 36).   

 

 

Fig. 1. One-dimensional addressing scheme in the central region of the image, showing one 
layer 2 super-tile, comprising 7 layer 1 super-tiles 
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The entire spiral addressing scheme is generated by recursive use of the super-tiles; 
for example, seven layer 2 super-tiles are combined to form a layer 3 super-tile.   
Ultimately the entire hexagonal image may be considered to be a layer L super-tile 

centred at 0 comprising L7  pixels. Figure 1 shows the spiral addressing scheme for 
the central portion of an image (up to the layer 2 super-tile).  

A major advantage of this addressing scheme is that any location in the image can 
be represented by a single co-ordinate value. This is advantageous for a number of 
reasons: it permits full exploitation of the symmetry of the hexagonal lattice; 
placement of the origin at the centre of the image simplifies geometric 
transformations such as rotation and translation; and most importantly it allows the 
spiral image to be stored as a vector [7]. Spatially neighbouring pixels within the 7-
pixel layer 1 super-tiles in the image remain neighbouring pixels in the one-
dimensional image storage vector. This is a very useful characteristic when 
performing image processing tasks on the stored image vector, and this contiguity 
property lies at the heart of our approach to achieve fast and efficient processing for 
feature extraction. 

3   Cluster Operators 

We refer to the operator that is applied to a cluster neighbourhood in the spiral 
architecture as a cluster operator. In recent work [2] we have shown how a finite 
element based approach can be used to create hexagonal operators based on 
constructing either two independent directional derivative operators aligned in the x- 
and y- directions, or tri-directional operators aligned along the x-, y- and z- hexagonal 
axes. Our operators are built using a regular mesh of equilateral triangles with nodes 
placed at the centres of each hexagonal pixel. With each node s we associate a 
piecewise linear basis function sφ , with 1=sφ at node s and 0=sφ at all other nodes 

st ≠ . Each sφ  is thus a "tent-shaped" function with support restricted to a small 

neighbourhood of six triangular elements centred on node s.  We represent the image 
by a function ∑

∈
=

Qq
qqII φ)( , where Q denotes the set of all nodal addresses; the 

parameters { })(qI  are the image intensity values at the pixel centres. 

Feature detection and enhancement operators are often based on first or second 
order derivative approximations, and we consider a weak form of the second order 
directional derivative )( u∇⋅∇− B  over small neighbourhoods. To approximate the 

second directional derivative, ( )u∇⋅∇− B , over a λ-neighbourhood )(sNλ  centred on 

the pixel with spiral address s, the respective derivative term is multiplied by a test 

function 1Hv ∈ and the result is integrated over )(sNλ . The neighbourhood size λ  

corresponds to the layer λ : here we focus only on the neighbourhood )(1 sN  

containing seven pixels (Figure 1 shows seven layer 1 neighbourhoods with 
60 and 50,40,30,20,10,0=s ). Hence at each node s we may obtain a layer λ weak 

second order directional derivative ( )sDλ  as  



608 S. Coleman, B. Scotney, and B. Gardiner 

( ) ∫ Ω∇∇=
)(

).B(
sN

s dIsD
λ

λ
λ ψ  (1) 

where B =b bT and )sin,(cos θθ=b  is the unit direction vector. Our cluster operator 

is the isotropic form of the second order derivative, namely the Laplacian ).( u∇∇− ; 

this is equivalent to the general form in which the matrix B is the identity matrix I.  
Although we are not addressing the issue of scale at this stage, it should be noted 

that each neighbourhood test function λψ s  is restricted to have support over the 

neighbourhood )(sNλ for any choice of layer ,...3,2,1=λ  Thus we may write 

( ) ( ) ∑∑ ∫
∈∈

×=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ω∇∇=

)()(

)()(.)(
sNqQq sN

sq qIqHdqIsD
λλ

λ
λ

λ ψφ  (2) 

where λH is a hexagonal operator of “size” λ (having the size and shape of a 

hexagonal λ-neighbourhood). Our general design procedure incorporates a layer-
related parameter that enables scale to be addressed in future work. In this paper we 

have chosen each neighbourhood test function λψ s to be a Gaussian function centred 

on node s, parameterised so that 95% of its central cross section falls within )(sNλ  

and then its tails truncated so that support is restricted to the neighbourhood )(sNλ . 

Figure 2 shows the layer 2 Laplacian cluster operator generated in this way. 

 
 

 

Fig. 2. Layer 2 Laplacian cluster operator  

4   Framework for Fast Processing 

Our proposed fast image processing framework has three essential elements: 
simulation of eye tremor by use of a set of slightly off-set images of the same scene; a 
special definition of sparse spiral convolution; and efficient identification of the spiral 
architecture pixel addresses within those 2=λ  neighbourhood clusters on which 
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local operator convolution is required to be performed. We consider each of these 
three elements in turn below. 

4.1   Simulation of Eye Tremor 

We consider the hexagonal image 0I  to be the “base” image, and we capture six 

further images, 6,...,1, =jI j ,  of the same scene. Each of these additional images is 

off-set spatially from 0I by a distance of one pixel in the image plane along one of the 

three natural hexagonal axis directions. This mechanism simulates the phenomenon of 
“eye tremor”. In each image 6,...,1, =jI j , the pixel with spiral address 0 represents 

the same spatial location in the scene as the pixel with spiral address j in 0I . 

The centre (i.e., the pixel with spiral address zero) of each image 6,...,0, =jI j , is 

thus located at a pixel within the layer 1=λ neighbourhood centred at the pixel with 
spiral address 0 in image 0I , as shown in Figure 3. 

 

Fig. 3. The 7 image centres in the eye tremor approach 

Through use of the spiral architecture for pixel addressing, it is assumed that image 

0I is stored in a one-dimensional vector (with base-7 indexing), as shown in Figure 4. 

Using the spiral architecture the additional images 6,...,1, =jI j , are stored similarly. 

 
0 1 2 3 4 5 6 10 … 16 20 … 26 … … 60 … 66 100 … 106 110 … 

Fig. 4. One-dimensional storage vector showing address values for image 0I   

4.2   Sparse Spiral Convolution 

For a given image 0I , convolution of a hexagonal operator λH of “size” λ (having the 

size and shape of a layer λ cluster neighbourhood) across the entire image plane is 
achieved by convolving the operator sparsely with each of the seven images 

6,...,0, =jI j  and then combining the resultant outputs.  

In each of the images 6,...,0, =jI j , we apply the operator λH only when centred at 

those pixels with spiral address 0 (mod 7). Figure 5 shows a sample of pixels in 
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image 0I for which the label 6,...,0=j  for each pixel indicates in which of the 

images 6,...,0, =jI j , the pixel address takes the value 0 (mod 7). Each pixel in 

image 0I may be thus uniquely labeled. 
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Fig. 5. Pixel positions in image 0I corresponding to pixels in images 6,...,0, =jI j  with 

address value 0 (mod 7). 

We then define “base-7-zero” convolution  
IHS

07⊗= λλ  (3) 

of the hexagonal operator λH with the hexagonal image I by: 

∑
∈

×=
)(

0

0

)()()(
sNs

sIsHsS
λ

λλ      { })7(mod00 =∈∀ sss  (4) 

and )(sNλ denotes the layer λ neighbourhood cluster centred on the pixel with spiral 

address s in image I.  Thus in order to implement  “eye tremor” simulation in relation 
to the base image 0I , we apply “base-7-zero” convolution (

07⊗ ) of the hexagonal 

operator λH  with each of the hexagonal images 6,...,0, =jI j , thus generating seven 

output responses: 

6,...,0,
07 =⊗= jIHS j

j
λλ  (5) 

that are combined to provide the consolidated response 0IHE ⊗= λλ . 

4.3   Layer 2 Cluster Neighbourhood Address Identification 

As it is not appropriate to construct a Laplacian operator as small as Layer 1 due to its 
sensitivity to noise [12], we focus on a layer 2 Laplacian cluster operator. Application 
of a layer 2=λ operator on a neighbourhood )( 02 sN  requires identification of an 
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ordered set of addresses of the centres of the layer 1 cluster neighbourhoods contained 
in )( 02 sN . As 00 =s (mod 7) we may determine these 7 centres of layer 1 cluster 

neighbourhoods as: 

αα isc 100 +=  ,   6,...,0=αi  (6) 
For each layer 1 centre, αc , the corresponding layer 0 cluster neighbourhood 

addresses are then simply given by the ordered set 

{ }6
0=+ jjcα  (7) 

From the above it can be seen that the amount of special hexagonal addition required 
to identify an ordered list of the pixel addresses in a layer 2  cluster neighbourhood 

)( 02 sN centred on a pixel with spiral architecture address 0s  ( 7mod,00 =s ) is 

considerably less than would typically be required to identify such an address list for 
an arbitrary layer 2  cluster neighbourhood )(2 sN  with  7mod,0≠s . (For 

7mod,0≠s , a full set of 49 special hexagonal additions would be required.) Hence, 
as demonstrated by the performance evaluation results presented in Section 6, our 
proposed approach using sparse “base-7-zero” convolution is significantly more 
efficient than standard spiral convolution.  

5   Spiral Implementation 

In terms of implementation using the one-dimensional vector structure for the 
images 6,...,0, =jI j , that is facilitated by the spiral architecture, each output response 

6,...,0, =jS j
λ is stored in a one-dimensional vector “a-trous” with non-empty values 

corresponding to the array positions with indices 0 (mod 7), as illustrated in Figure 6.  
 

0
λS : 0       10       ...       

1
λS : 0       10      ...      

2
λS :  0       10      ...     

3
λS :   0       10      ...    

4
λS :    0       10      ...   

5
λS :     0       10      ...  

6
λS :      0       10      ... 

Fig. 6. Assembly of the one-dimensional vectors “a-trous” 6,...,0, =jS j
λ  

The one-dimensional vectors “a-trous” 6,...,0, =jS j
λ , may then be assembled 

according to the “shifted” structure illustrated in Figure 6: 
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{ } )()(   ,)7(mod0 000 sSksEsss k
λλ =+=∈∀   for 6,...,0=k  (8) 

to yield the consolidated output image 00 )( IHIE ⊗= λλ as shown in Figure 7. 

)0(0
λS  )0(1

λS )0(2
λS  )0(3

λS  )0(4
λS )0(5

λS )0(6
λS )10(0

λS )10(1
λS  ... … 

Fig. 7. Consolidated output image 00 )( IHIE ⊗= λλ  resulting from assembly of the vectors 

“a-trous” in Fig 6 

6   Performance Evaluation 

We present run-times for our proposed biologically motivated approach in 
comparison with standard convolution of an operator with a spiral image where the 
pixel neighbour addresses are found in two different ways: (i) via standard spiral 
convolution using special hexagonal and radix-7 addition; and (ii) neighbours are 
stored in a look-up table (LUT).  The LUT takes 8.001s to generate for the spiral 
convolution approach and 0.091s for the eye tremor approach in the case of 2=λ , as 
the spiral convolution LUT requires all 49 addresses to be stored per record whereas 
the eye tremor LUT requires only the addresses of the centres of the seven 1=λ  sub-
clusters. Algorithmic run-times were recorded for application of λ=2 Laplacian cluster 
operators to the clock image shown in Figure 8a. The hexagonal clock image was 
obtained by resampling the original square pixel-based image to a spiral image 
containing 117649 hexagonal pixels. The edge map and each of the seven “a-trous” 
gradient outputs used to generate it are also shown in Figure 8.  The run-times 
presented in Table 1 are the averages over 100 runs using a workstation with a 
2.99Ghz Pentium D processor and 3.50Gb of RAM. 

Table 1. Algorithm run-times for 49-point operator )2( =λ  

Method Run-time  
Biologically motivated “eye tremor” approach 0.106s 
Standard spiral convolution 25.087s 

 “Eye tremor” approach using LUT 0.028s 

Spiral convolution using LUT 0.018s 
 

The results in Table 1 demonstrate that our biologically motivated approach is 
approximately 250 times faster than standard spiral convolution. The implementation 
of both approaches can be accelerated by use of a LUT; this results in the run-time for 
the spiral convolution approach being faster than our approach but there is also, of 
course, the additional overhead of storing a larger LUT, which can be considerable for 
larger values of λ.  More specifically though, the run-time of 0.028s for our approach 
is a combined time for processing seven “a-trous” gradient outputs; however, for 
video processing, as the spiral addressing in each frame in a sequence can be off-set 
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slightly from its adjacent frames in a cyclic pattern, once the first seven a-trous 
images are processed to generate a complete frame, the addition of each subsequent a-
trous image will generate a new complete frame.  Hence each subsequent frame will 
be generated in one seventh of the time stated in Table 1, i.e., approx 0.004s.  
Therefore, our biologically motivated approach will be approximately four times 
faster than full implementation of the spiral convolution LUT approach when 
processing a stream of video images. 

Additionally, using an adaptation of the Figure of Merit [1], we compare the 
accuracy of the Layer 2 Laplacian cluster operator (denoted as L2) with two 
Laplacian operators designed for use on standard rectangular-based images: the 77 ×  
Marr Hildreth operator (denoted as MH7) and the 77 ×  Laplacian near-circular 
operator [2] (denoted as LNC7), which are both equivalent in size to the Layer 2 
operator (L2, MH7 and LNC7 all have 49 mask values). In order to measure 
accurately the performance of the Laplacian cluster operator, we have modified the  
 

 
(a)  

 
(b)  

 
(c)  
 

Fig. 8. (a) Original image; (b) Completed spiral edge map; (c) S0, an example of a 
corresponding edge map “a-trous” 
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Fig. 9. Figure of Merit results comparing the tri-directional spiral operators (L2) with 
equivalent standard use of square operators (LNC7, MH7) using synthetic images containing 
(a) a curved edge; (b) a horizontal edge 

well-known Figure of Merit technique in [1] to accommodate the use of hexagonal 
pixel-based images. The Figure of Merit results shown in Figure 9 illustrate that the 
proposed L2 spiral Laplacian operator has increased edge locational accuracy over the 
equivalent rectangular operators for all evaluated edge directions. 

7   Conclusion 

We present a biologically motivated approach to fast feature extraction using the 
concept of eye tremor.  We have presented a design procedure for Laplacian cluster 
operators for use within our fast framework.  The Figure of Merit results show that 
the Laplacian cluster operator provides better edge detection performance than the 
other square Laplacian masks of equivalent size. We have demonstrated that the 
approach of generating feature maps “a-trous”, using Layer 2 cluster operators, that 
can be combined into a single complete feature map is significantly faster than 
standard convolution or use of a neighbourhood LUT on hexagonal images.  
Generalisation of the approach to enable application of Laplacian operators at various 
scales will be the focus of future work. 
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Abstract. Appearance description is a relevant field in computer vision
that enables object recognition in domains as re-identification, retrieval
and classification. Important cues to describe appearance are colors and
textures. However, in real cases, texture detection is challenging due
to occlusions and to deformations of the clothing while person’s pose
changes. Moreover, in some cases, the processed images have a low res-
olution and methods at the state of the art for texture analysis are not
appropriate.

In this paper, we deal with the problem of localizing real textures for
clothing description purposes, such as stripes and/or complex patterns.
Our method uses the entropy of primitive distribution to measure if a
texture is present in a region and applies a quad-tree method for texture
segmentation.

We performed experiments on a publicly available dataset and com-
pared to a method at the state of the art[16]. Our experiments showed
our method has satisfactory performance.

1 Introduction

In many applications, it is required a proper object description to enable recogni-
tion and/or classification. When the object is mainly a person, such description
is related to the appearance and can be used to solve the people re-identification
problem, very common in domain such as surveillance. There are many cues
that can be used to perform re-identification; an approach could be to focus on
the face and use facial features. However, this approach requires the face is ad-
equately visible, and this is not the general case. Moreover, face descriptors are
generally affected by pose and illumination changes so that the re-identification
should be performed by using also other cues, i.e colors and textures in clothes.

Indeed, in case of people re-identification, clothing has an important role
particularly when it presents some evident texture; e.g. “a person wearing a
shirt with white and red stripes”. Intuitively, an appearance description aiming
to capture such properties would be more discriminative than a simple bag of
words [7] color description.

In the following we describe a method to discover “salient” structured areas in
an image of a person that can be interpreted as “texture” characterizing person’s
clothing. Persons’ clothing can be described by their colors and characteristics
such as stripes, text and, broadly speaking, textures. To describe these kinds of

G. Maino and G.L. Foresti (Eds.): ICIAP 2011, Part I, LNCS 6978, pp. 616–625, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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properties, features robust to illumination changes should be used. For detecting
texture we employ edge-based primitives, as they tend to be invariant to illumi-
nation. We use an approach inspired in some respects by the method of Kadir
and Brady [15] for salient point detection. As we will explain later, we use an
entropy based approach for detecting both the scale and the area of the texture
in the object instance. In the method of Kadir and Brady, a strong response was
obtained for textured areas that would result in false salient points; what was
a limitation of their method is an advantage: for detecting interesting regions
on a person’s clothing that can ease object instance discrimination, the saliency
measure is helpful, in the sense that a texture can be interpreted as a salient
region; for example, considering a flat region, that is an area where no texture
is present, a textured area would be salient inside this region.

The plan of the paper is as follows. In Section 2 we present related works and
discuss important applications for the proposed method. In Sections 3 and 4, we
present our method and discuss implementation details. In Sections 5 we present
experimental results we got on a publicly available dataset and comparison to a
method at the state of the art [16]. Finally, in Section 6 we present conclusions
and future directions for our work.

2 Related Works

Appearance descriptors have an important role in establishing correspondences
in multi-camera system to perform consistent labeling [6]. In [23], each object is
represented as a “bag-of-visterms” where the visual words are local features. A
model is created for each individual detected in the site. Descriptors consist of
128-dimensional SIFT vectors that are quantized to form visual words using a
predefined vocabulary. In [18], appearance is modeled as bag of words in which
a latent structure of features is recovered. A latent Dirichlet allocation (LDA)
machine is used to describe appearance and discover correspondences between
persons’ instances.

The person re-identification task is not restricted just to video-surveillance
systems but it is a recurrent problem in multimedia database management. A
particular case is, for example, photo collection organization. In such application,
Content Based Image Retrieval (CBIR) techniques and face features can be
integrated in a probabilistic framework to define clusters of photos in order to
ease browsing the collection [1]. In some works [5,9,19], once the face is detected,
the region under the face is used to compute information about the clothing of
the person. In [21], face and clothing information are used for finding persons
in many photos. First, a hierarchical clustering method is used for finding the
set of persons whose face was detected in the photo sequence. Then, a clothing
model is estimated for each person and used to recover mis-detected person’s
instances.

There are other applications for texture detection and recognition in clothing.
Recently, in [24] a new method for clothes matching to help blind or color blind
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people has been presented. The method handles clothes with multiple colors and
complex patterns by using both color and texture information.

In [8], the focus is on learning attributes, which are visual qualities of objects,
such as red, striped, or spotted. To minimize the human effort needed to learn an
attribute, they train models from web search engines. Once a model is learnt, it
is capable of recognizing the attribute and determine its spatial extent in novel
images. However, it seems impractical to enumerate all the possible kinds of
textures that can arise in images. We believe, instead, the problem should be
addressed at a lower visual level.

Texture detection and description are relevant problem, and a huge literature
exists on the subject. Some works concern about texture detection for object seg-
mentation [4,25] and classification [20]. A common problem when working with
texture is the scale selection [17,13]. A texture can be detected and described by
local properties and a proper neighborhood must be chosen. In particular, in [13]
an approach based on the entropy of local patches is combined with a measure
of the difference between neighboring patches to determine the best textel size
for the texture.

In [16], a method to detect and localize instances of repeated elements in a
photo is presented. Such elements may represent texels and the method is meant
to detect repeated elements such as stripes in person’s clothing. In this work,
we consider a similar application. We use a multi-scale approach to find the
best scale at which a texture can be detected. Texture is localized by using the
entropy of some primitive and is segmented by a quad-tree strategy.

3 Problem Definition

Many definitions have been proposed for texture: Haralick [12] defines a texture
as an organized area for which it exists a spatial distribution of a “primitive”
defining some sort of ordered structure [22]. For Gibson, a texture is a charac-
teristic based on which an area can appear as homogeneous [10].

The main goal in this work is to detect a predominant and well visible texture
– for example, text or stripes on clothing – that can be used for describing the
person appearance. Methods in literature, as for example [11], are not completely
suitable for our application as they are generally conceived for high resolution
images; moreover, generally objects are moving and undergoing articulated de-
formations so that fine details are not generally distinguishable and only rough
texture can be discriminated.

Many methods for texture detection consider properties about the pixel inten-
sity [13] or try to recognize specific patterns that can arise. However, the kind of
textures we are interested in can be generally detected by exploring color orga-
nization with particular attention to their structure repeated over the space. As
also proposed in other works [4], this structure can be highlighted, for example,
by the edges in the image; therefore, an analysis of the detected edges can put
in evidence some properties of the texture itself. Other properties can be explored
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too, as in the case of Law’s energy measures where the basic features are: the
average gray level, edges, spots, ripples and waves [2].

To segment a textured area, we need to measure how much a certain pixel
belongs to a texture. This problem is strongly connected to the ability to detect
the texel and the natural scale of a texture [22]. For natural scale we mean the
smallest size of the structure (texel) that can be spatially replicated to reproduce
the texture itself [22,2].

In our approach, we use the entropy of a certain primitive to automatically
detect the scale to use for segmenting the texture; then we use a split and merge
approach for localizing and segmenting the texture.

4 Texture Detection

Detecting a texture requires reference to local properties measured in a suitable
neighborhood. The size of this neighborhood is related – but not necessary equal
– to the natural scale of the texture. In our approach, the scale of the texture
is related to the size of the neighborhood that permits to have the best texture
detection. To measure the presence of a texture, it makes sense to look at the
local disorder measured for each pixel in an appropriate primitive space with
respect to flat and ordered area. The most natural way is to use the entropy
of these primitives; intuitively, the entropy will be maximum in textured areas.
Other approaches in literature use the entropy for detecting the texture, as for
example in [13], where the entropy is combined with other measures to detect
textured area based on pixel intensities.

Given the probability distribution P for a set of N primitives, the entropy E
is defined as:

E =
1
N

N∑
i=1

Pi · log Pi (1)

Algorithm 1 summarizes the general framework we used for detecting pixel can-
didates to belong to a texture. In general, for each possible scale, we compute
pixel per pixel the local entropy by using the statistic of the selected set of prim-
itives in a suitable neighborhood. Points belonging to a texture have a very high
entropy that decreases when the area becomes more and more flat. To segment
the textured area, we take into account the spatial distribution of the pixels in
the image: pixels near and with high entropy are much more probable to belong
to a textured region.

4.1 Primitives for Texture Detection

The method described until now is quite general and applicable to different kinds
of features as, for example, Gabor filters, Law’s energy measures or features based
on Local Binary Pattern [20]. In this paper we use as primitive the orientation
of the edges, even if any other primitive could be used.
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Algorithm 1. Scale and Texture Detection
for scale s in range [1, Max] do

for each pixel (x, y) do
compute primitives in Neighborhood N = {(x − s, y − s);(x + s, y + s))}
compute entropy E(x, y) of the primitive probability distribution in N

end for
apply split and merge algorithm on matrix E to detect textured area
store area corresponding to maximum average entropy (MAE)
store MAE

end for
select scale s corresponding to maximum MAE
select the textured area corresponding to s

Algorithm 2. Computing Edge-based Primitives
apply Canny detector to compute edges in the image
discard edges in flat area by applying an adaptive threshold on local standard devi-
ations
set orientations to 0 for all pixels in the image
for each pixel on an edge do

compute orientation, assign a value in [1, 5] depending on the estimated direction
end for
for each pixel (x, y) do

compute orientation histogram in Neighborhood N = {(x−s, y−s); (x+s, y+s))}
end for
return as Primitives the orientation histograms

As we already said, a texture can be detected by analyzing properties of
the detected edges. A texture is characterized by the presence of an organiza-
tion/structure that can be detected considering the orientations of its edges. For
each pixel on an edge we compute the orientation and then we quantize it so
to consider only 4 predominant orientations: horizontal, vertical and obliques
(that is ±45deg). Orientations are computed by using the gradient components
of the gray level image. Algorithm 2 reports the pseudo-code for the extraction
of this kind of primitives. Not all the detected edges belong to a texture but
some of them are in flat areas, in correspondence to wrinkles in the clothing or
self-occlusions of the person. To improve the edge detection, we filter them to
remove edges in areas with homogeneous colors. The remaining edges are then
used to compute the statistic of the orientations in a local neighborhood. The size
of this neighborhood is related to the scale s the texture is detected to. Given a
neighborhood and the orientations of the edges in it , we computed an histogram
of 5 bins: 1 for counting pixels in flat areas, and 4 for considering the orientations
of the edges within the neighborhood. Based on this histogram, for each pixel
we computed the entropy associated to the pixel within a neighborhood of size
2 · s (the scale).



Entropy-Based Localization of Textured Regions 621

4.2 Texture Segmentation

We segment the textures by a split and merge approach to construct a quad-tree.
For splitting, we consider how much homogeneous each quad is and we used the
local standard deviation of the entropy assigned to each pixel as metric. The
minimum quad size during decomposition has been set to 8× 8 pixels, while the
threshold on the standard deviation has been set to 0.1.

For the merging step, instead, we merge all the neighbor quad regions that
have similar entropies. In this case, the threshold has been set to 0.3. The success
of the merging step depends strongly on the order with which the quads are
merged together. We start the merging phase from the quad presenting the
highest entropy.

For selecting the correct scale, we considered the neighborhood size that gives
the best texture representation, that is we choose the scale corresponding to
the maximum average entropy in the detected area. At the selected scale, we
consider the region with the highest entropy, and we apply a threshold τE to
determine if such region can be classified as texture.

Fig. 1a shows an example with an artificial texture where each quad is 10
pixel large (so that the natural scale should be 20 pixels). Figure 1b shows how
the expected entropy in the textured area varies with respect to the scale. As
the figure shows, the entropy has a periodic trend depending on the scale of the
texture. The selected scale is chosen to be the first peak.

In real case images, however, the trend of the entropy is not so regularly peri-
odic because of the noise in the images, and the deformation to which primitives
generally undergo due to different orientations and person’s pose. In this case,
we consider the scale corresponding to the maximum value of the entropy.

Fig. 1. Artificial texture and average entropy at different scales

4.3 Implementation Details

Fig. 2 shows two examples of texture detection on surveillance data. The good-
ness of the detection strongly depends on the operator used for the edge detection
and the filtering step. In our implementation, we computed edges by considering
the maximum response of a Canny detector applied to each color channel. Filtering
was performed discarding all the edges in color flat area.This areawere determined
by looking at the maximum local standard deviation of the channel intensities in a
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neighborhood of size 5× 5 pixels. We applied a local threshold to maintain all the
edges having standard deviation in the 65% confidence interval. In our implemen-
tation, the threshold τE on the entropy has been set empirically to 0.4.

Performance of the multi-scale approach has been considerably improved by
using integral images when computing the histogram for each orientation. In
our experiments, when a texture is detected, the corresponding scale changes
according to the distance of the object from the camera; we noted that in se-
quences of frames, it is possible to track the scale itself. In this case, once a scale
is detected, the corresponding value may be used as prior for the next frame to
process so that not all the range of possible values for the scale is spanned but
only those values in a neighborhood of the prior scale value, speeding up the
computation.

We also note that the texture detector fails when there are too strong features
in the image not related to a texture, for example when there are too evident
wrinkles in clothing or a cluttered background, and the filtering step is not able
to classify the area around the edge as homogeneous. Another case of failure
arises, of course, in case the edge detector fails.

Fig. 2. Textures detected on surveillance data

5 Evaluation

We tested our method on a publicly available dataset [9]. To measure the per-
formance, we randomly choose a subset of images. For each image, we detected
the face and considered the region under the face as possible clothing region. We
considered a subset of 50 persons. Of these images, 16 did not have any textured
region in the clothing, while the remaining 34 had. For each image, we manually
detected the region corresponding to the texture in the clothing (see fig. 3).

Fig. 3. Test images and corresponding manually segmented ground-truth
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As the detection method works on local properties, we measured the perfor-
mance by dividing the image in sub-windows (blocks) of 30×30 pixels. For each
block, we computed the balanced accuracy defined as:

BA =
sensitivity + specificity

2
=

1
2
· TP

TP + FN
+

1
2
· TN

TN + FP
(2)

where TP , TN , FP , and FN are true positive, true negative, false positive and
false negative respectively. This performance measure treats both classes (the
positive and the negative ones) with equal importance [3], and it is particularly
appropriated in our case as we want to measure the ability to correctly classify
a pixel as belonging to a texture or not.

We considered correctly classified a sub-window for which the balanced accu-
racy was greater than a threshold τa and, for each image, we measured the ratio
of the correctly classified blocks over the total number of sub-windows.

For comparison purposes, we tested our method against the one in [16]. This
method is conceived to detect and group repeated scene elements representing
complex patterns or stripes from an image. First, the method detects interesting
elements in the image by analyzing the structure tensor; such candidates are
matched against their neighbors estimating the affine transform between them.
The elements are grown and iteratively grouped together to form a distinctive
unit (for more details, refer to[16]). In Fig. 4, the graph shows the curves of
the average classification rate over the whole dataset for different values of the
threshold τa for our method and for the one in [16]. τa = 1 represents the ideal
case the texture is always correctly detected and in such a case our method
shows a classification rate of about 64% while the other method has a classifi-
cation rate equals to 51.3%. For a balanced accuracy of about 80% (τa = 0.8),
our method shows a classification rate of 79.27% while the other method has a
classification rate equals to 61.5%. In comparison to [16], our method presents
an higher specificity and showed to be more robust when detecting text and
complex patterns. The method in [16] suffers from the fact that the scale is not
automatically detected and it is unable to detect those regions where the texel
size is large. On the contrary, in our method the scale is automatically detected
by evaluating the entropy as already explained in section 4.

Fig. 4. Comparison between our method and the one in [16]
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Fig. 5. Results by applying our method on the test images

Fig. 5 shows an example of results we got by applying our method. As the
figure shows, the method can be sensitive to the background (see second image
in the figure). However, this problem could be limited using proper algorithm
to detect persons. In surveillance application, background suppression could be
adopted. In photo collections, the method in [9] can be used to approximate the
clothing region, then our method can be used to find the textured area.

6 Conclusion and Future Works

In this paper, we proposed a new method to detect textured area in clothes
region. Our method computes the predominant orientation in a neighborhood
for each pixel and uses entropy to capture the disorder associated to such a
primitive distribution. A split and merge approach is then used to segment the
textured area. Our method is able to capture 2D structures representing complex
(i.e. text) or regular patterns (i.e. stripes) in clothing regions. We deal with
the problem of selecting the scale of the texture automatically by adopting a
multi-scale approach and using the entropy as measure of the goodness of such
selection. In future works, we will study how the entropy distribution can be used
also for description purposes and if it is possible to use it to perform classification.
We will also study techniques for fusing color and texture information to enhance
person re-identification by using probabilistic frameworks.
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Abstract. In this paper, we evaluate the effectiveness and efficiency of
the global image descriptors and their distance metric functions in the
domain of object recognition and near duplicate detection. Recently, the
global descriptor GIST has been compared with the bag-of-words local
image representation, and has achieved satisfying results. We compare
different global descriptors in two famous datasets against mean aver-
age precision (MAP) measure. The results show that Fuzzy Color and
Texture Histogram (FCTH) is outperforming GIST and several MPEG-
7 descriptors by a large margin. We apply different distance metrics to
global features so as to see how the similarity measures can affect the
retrieval performance. In order to achieve the goal of lower memory cost
and shorter retrieval time, we use the Spectral Hashing algorithm to
embed the FCTH in the hamming space. Querying an image, from 1.26
million images database, takes 0.16 second on a common notebook com-
puter without losing much searching accuracy.

1 Introduction

There are more and more images in our daily life. It is of great significance to
find the one needed among a large number of images. The content based image
retrieval (CBIR) may be just a solution to this problem, which is a prosperous
researching field. See a recent survey [3] for a deep understanding.

The CBIR retrieval process usually follows a similar pattern. Firstly, an image
is represented by features, either a vector of global features like several MPEG-7
image descriptors or a set of local image features like SIFT [7]. After an image is
represented by features, a similarity measure is proposed to calculate the similar-
ity between images. Usually, the image representation and the distance measure
should be considered simultaneously; Secondly, to tradeoff between effectiveness
and efficiency, an indexing scheme has to be proposed to tackle the dilemma of
the large scale image database and the requirement of a real-time response time.

Currently, in the field of the near duplicate detection and object recognition,
the bag-of-words features based on local image descriptors have gained most of
the attention, and have achieved some success, like [11,12,6]. However, the local
image features take a long time to extract. When performing the visual key
words generation process like the k-means clustering, it will consume a lot of
time to deal with large database. At the same time, when the number of visual
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words is very large, for example, millions or even larger, the new comer image
to be retrieved will take lots of time to compare with each visual word in order
to get the bag-of-words representation. Although some ingenious methods like
hierarchy quantization method Vocabulary Tree [9] have been proposed to reduce
the bag-of-words quantization time, the quantization error has also increased.
Besides, because each image has a set of local descriptors, ranging from hundreds
to thousands of dimensions, the storage space for these features is very huge.

Considering the near duplicate images often share most of the same appear-
ances, only some small parts change significantly. One vector of a global repre-
sentation may suffice to depict the specific image, which indeed has the merit of
easy computing and storage efficient. The global descriptors also have the merits
of no need to take a long time and use a large dataset to train the bag-of-words
model. In spite of these merits, the global features seem to be forgotten in the
domain of object recognition and near duplicate detection.

Recently,the authors [5] evaluate the GIST descriptor [10] in the web-scale
image search, which has achieved fairly exciting results. This encourages us to
evaluate different global features against two famous datasets with ground truth.
The results show that The GIST descriptor is indeed a better choice than several
global MPEG-7 descriptors, see [1] for an overview, like Color Layout Descriptor,
Edge Histogram Descriptor and Scalable Color Descriptor, but it seems that the
FCTH [2] a fuzzy color and texture histogram outperforms GIST by a large
margin with fewer dimensions of feature. FCTH feature only needs 72 bytes,
while the GIST descriptor needs 960 floating numbers. The FCTH descriptor is
also much efficient by using a simple similarity measure compared to the GIST
descriptor, which using L2 similarity measure. Considering this in a context of
millions of images to be compared, this little promotion of performance will
save a lot of computation resources as well as lots of time, which may make the
retrieval to be processed in real time.

In this paper, we compare different global image features using the MAP
protocol against two famous datasets with ground truth. We evaluate different
similarity measures for two effective global features GIST and FCTH. The results
show that the FCTH is outperforming GIST and several MPEG-7 descriptors.
We propose to use the L1 similarity measure for both the GIST and FCTH,
considering the better performance and lower computational complexity. At the
end, we use the state-of-art Spectral Hashing to represent the FCTH feature in
the hamming space. We present the results of the scalability of using Spectral
Hashing algorithm in large scale image retrieval context.

The rest of the paper is organized as follows. It starts with the image descrip-
tors and similarity measures in Section 2, and then in Section 3 we give a short
introduction to the Spectral Hashing algorithm and use it to derive the hamming
features for retrieval. In Section 4 we show the datasets and measure to evaluate
the performance of the retrieval results. In Section 5 we list the experiments
we are performing and give the evaluation results. Conclusions are presented in
Section 6.
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2 Descriptors and Similarity Measure

2.1 Image Descriptors

In this section, we give a brief description on the image features and distance
functions we are going to evaluate.

FCTH feature, which includes color and texture information in one his-
togram, is very compact and only needs 72 bytes to characterize it. This feature
is derived from the combination of 3 fuzzy systems. To compute this feature, the
image is initially segmented into blocks. For each block, a 10-bin histogram is
generated from the first fuzzy system. The 10-bin histogram is derived from 10
preselected colors in the HSV color space. This histogram is then expanded to
24-bins using the second fuzzy system by including hue-related information for
each color. For each image block, a Haar Wavelet transform is applied to the Y
component. After a one-level wavelet transform, each block is decomposed into
four frequency bands, and the coefficients of the three high frequency bands HL,
LH, and HH are used to compute the texture features. The intuition for using
these three high frequency bands is that each of them reflects the texture chang-
ing directions. After using the third fuzzy system, the histogram is expanded to
192-bins by integrating the extracted texture information and the 24-bins color
information. A quantization is applied to limit the final length of the feature
descriptor to 72 bytes per image.

GIST feature is based on a low dimensional representation of the scene, by-
passing the segmentation and the processing of individual objects or regions. The
authors propose a set of perceptual dimensions (naturalness, openness, rough-
ness, expansion, ruggedness) that represent the dominant spatial structure of
a scene. The descriptor is gained as follows: the image is segmented by a 4×4
grids, and the orientation histograms are extracted.

MPEG-7 Color Layout Descriptor(CLD) is designed to represent the
spatial color distribution of an image in YCbCr color space. This feature is
obtained by applying the discrete cosine transform (DCT) in a 2-D image space.
It includes five steps to compute this descriptor: (1) partition image into 8×8
blocks; (2) calculate the dominant color for each of the partitioned blocks; (3)
compute the DCT transform; (4) nonlinear quantizate the DCT coefficients; (5)
zigzag scan of the DCT coefficients.

MPEG-7 Edge Histogram Descriptor (EHD) is describing spatial dis-
tribution of four directional edges and one non-directional edge in the image.
An image is divided into non-overlapping 4×4 sub-images. Then, from each sub-
image an edge histogram is extracted, each sub-image histogram consists of 5
bins with vertical, horizontal, 45-degree diagonal, 135-degree diagonal, and non-
directional edge types. Each image is represented by an edge histogram with a
total of 80 (4×4×5) bins.

MPEG-7 Scalable Color Descriptor(SCD) is a color histogram in HSV
color space encoded by Haar Transform. SCD aims at improving storage effi-
ciency and computation complexity. Usually the number of bins can span from
16 to 256.
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2.2 Similarity Measure

In terms of the CLD, EHD, SCD and FCTH, we use the excellent image retrieval
LIRe [8] framework to extract these features, and for CLD, EHD and SCD, we
use the default similarity measure to measure the similarity between images.
For the FCTH and GIST features, from the later experiment results, we can
clearly see their better performance, so we compare different similarity function
including L1, L2, Histogram Intersection(HI), Tanimoto (T) [2] and evaluate the
retrieval results.

L1(x, y) =
d∑

i=1

‖xi − yi‖ (1)

L2(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (2)

HI(x, y) = 1 −
∑d

i=1 min(x, y)

min(
∑d

i=1 xi,
∑d

i=1 yi)
(3)

T (x, y) =
xT y

xT x + yT y − xT y
(4)

3 Image Indexing Scheme

In this section, we present the image indexing scheme used in this paper to solve
the problem of retrieval from a large scale image dataset. We use the state-of-
art technique Spectral Hashing [13] to map features into hamming space, and
apply the hamming distance to compare image similarities. The computing of
hamming distance runs fairly fast in that it only needs bits processing. Further-
more features embedded into the hamming space are very distance preserving,
which means that the similar data points in the original feature space will also
be mapped nearly in the hamming space. The result will be shown later. Next
we give a brief introduction to Spectral Hashing.

3.1 Spectral Hashing

In [13] the authors aim at designing a code which has three properties: (1) is to
compute easily for a novel input; (2) is that the code should be compact which
only take a small number of bits to represent the feature; (3) maps similar items
to similar binary code-words. Considering these properties the authors seek to
minimize the average Hamming distance between similar points as follows:

Minimize :
∑
ij

Wij ‖yi − yj‖2 (5)
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Subject to :
yi ∈ {−1, 1}k∑

i yi = 0
1
n

∑
i yiy

T
i = 1

Where {yi}n
i=1 is the n data-points embedded into hamming space with the

length of k, and Wn×n is the distance matrix from the original space. There are
three constraints, each of which requires the code should be binary. Every bit
has probability 0.5 to equal 1, and the bits should be uncorrelated.

The direct solution to the above optimization is non-trivial since even a single
bit binary code is a balanced graph partition problem, which is NP hard. The
authors relax the constraints, and the relaxed problem can be efficiently solved by
using spectral graph analysis. Further, the authors assume that the data-points
are sampled from a multidimensional uniform distribution, which means that the
probability distribution p(x) is a separable distribution. After this assumption
the out of samples problem can be efficiently solved by a closed form solution not
using the Nystrom method which computes linearly by the size of the database
for a new point.

The final Spectral Hashing algorithm has two input parameters. One is a list
containing n data points,and each one is represented by a d-dimensional vector;
the other is the number k, using k binary bits to represent the final embedded
hamming feature. The algorithm has three main steps: (1) finding the principal
components of the data using PCA; (2) for each coordinate of the final k bits,
assume the data distribution are uniform and learn analytical eigenfunction by
a sinusoidal function; (3) threshold the analytical eigenfunction to obtain binary
codes.

4 Datasets and Evaluation Protocol

4.1 Datasets

We have used two famous evaluation datasets with ground truth, the Univer-
sity of Kentucky dataset and the INRIA Holidays dataset. Apart from the two
datasets with ground-truth manual annotations, we also use the large scale IM-
AGENET dataset as distracting images to evaluate the performance of different
image descriptors and the indexing scheme in a large scale dataset.

The University of Kentucky Recognition Benchmark Images [11].
This dataset contains 10200 images altogether, with 4 images in a group to
depict either the same object or the same scene from different viewpoints. When
searching an image, the first four images should be the images in that group.

INRIA Holidays dataset [6], this dataset mainly contains personal holiday
photos. The remaining ones are taken on purpose to test the robustness against
various transformations: rotations, viewpoint and illumination changes, blurring,
etc. The dataset includes a very large variety of scene types ( natural, man-
made, water and fire effects, etc.) and images are of high resolution. The dataset
contains 500 image groups, each of which represents a distinct scene. The first



Evaluation of Global Descriptors for Large Scale Image Retrieval 631

image of each group is the query image and the correct retrieval results are the
other images in the group.

IMAGENET Large Scale Visual Recognition Challenge 2010 [4].
We use a subset of 1256612 images from the datasets training set of the JPEG
format. The number of images for each category ranges from 668 to 3047.

4.2 Evaluation Protocol

To evaluate performance we use Average Precision, computed as the area under
the precision-recall curve. Precision is the number of retrieved positive images
relative to the total number of images retrieved. Recall is the number of re-
trieved positive images relative to the total number of positives in the database.
We compute an Average Precision score for each of the query image, and then
average these scores to obtain a Mean Average Precision (MAP) as a single value
to evaluate the results. The bigger the number is, the better the performance is.

5 Experiments

5.1 Evaluate Global Features

At first, we evaluate the different global features listed in the Section 2. For
the GIST we scale the image to 128×128 pixels, then use the implementation
in [10] to extract the 960 dimensions feature vector. For other features, like
FCTH, SCD, EHD, and CLD, we use the wonderful package LIRe [8] to extract
these features and use the default similarity measures to calculate the similarity
between images. The result is shown in the Figure 1. From the figure we can
see that in both the Kentucky and the Holidays datasets, the FCTH is much
better than the GIST descriptor by a large margin, which is much surprising
since the FCTH only use 72 bytes while GIST has to use 960 floating numbers.
The GIST descriptor performs almost the same as the Color Layout Descriptor,
while both the Edge Histogram Descriptor and Scalable Color Descriptor show
unsatisfactory results.

From this graph we can see that all the features from the Kentucky dataset
perform better than the Holidays dataset. This is because the images in the
former group share most of their appearances, while the latter change a lot in
the same group. From the results of Holidays dataset, the best performance
is still lower than 0.5, we admit that this is an intrinsic defect of the global
features compared to local descriptors. In the Kentucky dataset the result is
much encouraging, with the FCTH feature has achieved a MAP score almost
close to 0.7. We attribute this to the merit of that FCTH consider both the
color and texture feature simultaneously.

5.2 Evaluate Similarity Measures

In this subsection we will evaluate how the different similarity measures can
affect the retrieval performance. We choose the FCTH and GIST descriptors to
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Fig. 1. Evaluate different global descriptors

compare in this round for their better performance in the above experiments.
Firstly, we evaluate how the different similarity measures affect the performance
of the FCTH feature, and the result is shown in Figure 2, which shows that
the Tanimoto, L1 and L2 all perform well, achieving almost the same result.
In the Kentucky dataset the Tanimoto measure is the best and in the Holidays
the L1 is the best, while in both datasets the Histogram Intersection gives the
most unsatisfying results. Then we evaluate how the different similarity measures
influence the GIST descriptor, the result of which is also shown in Figure 2.
Clearly, the L1 is the best performer in both datasets, and the L2 and Tanimoto
almost achieve the same score. The Histogram Intersection again performs worst.

The authors in [2] use Tanimoto measure as the similarity measure. Judging
from the results it performs well, but it seems that the L1 measure is much
better, not only that they make a draw from the evaluation with the Tanimoto
measure, but also it is much computational efficient in the large scale retrieval
context, where it requires to compare millions or billions of image features, so a
lower complexity will indeed decrease the retrieval time, and promote the user
experience. For the GIST feature, no doubt, the L1 is the best choice, which also
contradicts with [10]. The authors use L2 as similarity measure. From this eval-
uation the L1 is indeed better than the L2 measure because of its performance
and its lower complexity.

Now let’s compare the best result from the FCTH and the GIST feature
similarity measure, the FCTH outperforms GIST in both datasets. So despite
of the success of the GIST descriptor in the domain of object recognition and
near duplicate detection, it seems much wiser if we can try the FCTH feature
to test if they can achieve a better result. Judged from the two famous datasets
the FCTH indeed gives a better result.
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Fig. 2. Evaluate different similarity measures for FCTH and GIST descriptors

5.3 Evaluate Spectral Hashing

From the above experiments we can clearly see that the FCTH descriptor per-
forms better than several MPEG-7 descriptors and even better than the GIST
feature. So in this subsection we select the FCTH feature as our final descrip-
tor to evaluate the Spectral Hashing [13] algorithm, to see how the length of
embedding bits can affect the results. We use our own implementation of the
Spectral Hashing algorithm. The result is shown in Figure 3. Clearly, we can see
the trend that the longer hamming bits used as feature, the better performance
will achieve in both datasets, which is conform to our intuition. For the differ-
ent length of the hamming feature from 32 bits to 192 bits, the searching time
difference is almost negligible, because this only takes a XOR bits processing,
so we use the 192 hamming bits to compare with best performance in the above
experiments. First we check the effect on the Kentucky dataset and use the best
performance similarity measure. The best MAP score from the four different
similarity measures is 0.68, while the 192 bits hamming MAP score is 0.59, de-
creased by 0.09, but we should also note that the feature is reduced to one third,
from the 72 bytes to 24 bytes. In the Holidays dataset the best performance of
the L1 similarity measure is 0.49, decreased to 0.39 with a 192 bits hamming
representation. From the above experiments we can conclude that when using
the hamming feature derived from the Spectral Hashing, the feature size and
retrieval time are reduced significantly, and also can preserve the most of correct
results. Later we will mix a large scale of distracting images with each of the
two datasets to see how the performance will be.

In this round we will evaluate how a mixture of distracting images will affect
the final retrieval performance. We evaluate both datasets. When each of the
two datasets is chosen, the IMAGENET dataset with a size of 1256612 images
is mixed with the benchmark dataset. We use the 192 bits hamming feature as
descriptor. In the Holidays dataset, when mixing with the IMAGENET 1256612
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Fig. 3. Evaluate how the length of hamming bits affect results

images, the MAP score is dropping to 0.14 compared to 0.39 without distract-
ing images and also uses the 192 hamming bits as descriptor. In the Kentucky
dataset when mixing with the IMAGENET dataset set, the MAP score is from
the 0.59 to the 0.39. Although there are some performance dropping, we should
also note that we only use the 72 bytes global descriptor to derive the hamming
bits features. When using more complicated features, the performance will in-
deed boost a lot. Also when using these bits features derived from the Spectral
Hashing algorithm, the retrieval process can be very efficient, we just exhaus-
tively compare the query image to all the images in the database, and sort the
results, without using other indexing methods, the average query response time
is 0.16 second from a database of more than 1.26 million images.

6 Conclusions

In this paper, we evaluate the different global features in the domain of ob-
ject recognition and near duplicate detection against two famous datasets with
ground truth. We show the result that FCTH global feature outperforms the
state-of-art GIST global feature and several other MPEG-7 global features. This
may give the resurgence of the global features when performing some specific
image understanding tasks, and may be a complement to the local features to
achieve a better result. We also evaluate the different similarity measures to
compute the similarity between images, the result of which shows that the L1 is
a better choice for its performance and its low computation complexity for GIST
descriptor. To tackle the dilemma of the large scale of image database and the
requirement of a real-time response time, we use the Spectral Hashing to embed
the feature points to the hamming space, and simply use the hamming distance
to efficiently compute similarities between images, which is very efficient because
the computation is only the bits processing. This technique is not only efficient
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but effective with an average query response time of 0.16 second from a database
of more than 1.26 million images with a little performance degradation.
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Abstract. For most HVS(Human Visual System) perceptual models,
the JND(Just Noticeable Difference) values in highly-textured image re-
gions have little difference with those in edge areas. This is not consis-
tent with the characteristics of human vision. In this paper, an improved
method is introduced to give a better content-based perceptual mask
than traditional ones using the arrangement of scale-invariant feature
points. It could decrease the JND values in edge areas of those tra-
ditional masks so that they have an obvious difference with values in
highly textured areas. Experimental results show the advantages of this
improved approach visually, and the enhancement of the invisibility of
watermarks.

Keywords: content-based watermarking, scale-invariant feature trans-
form, density-based clustering.

1 Introduction

With the increasing use of the Internet and the effortless copying, tampering
and distribution of digital data, copyright protection for multimedia data has
become an important issue. Digital watermarking has emerged [1] as a tool for
protecting multimedia data from copyright infringement. Efficient techniques for
image watermarking must accurately balance two contrasting requirements. On
the one hand, the hidden watermark should be imperceivable to the HVS, and
on the other hand, a watermark should not be inserted into image regions which
are not perceptually important [2]. Furthermore the watermark must be robust
against intentional and unintentional attacks. Robustness and imperceptibility of
watermarks are at odds with one-another. In order to ensure an optimal trade-off,
HVS perceptual models have found widespread applications in watermarking.
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A variety of HVS models developed from image compression and quality as-
sessment [3,4,5], have been applied to the design and optimization of digital
watermarking since the late 1990’s [6,7]. Generally, most of HVS models create
a perceptual mask or a JND mask using a multi-channel visual decomposition
suggested by psychophysics experiments. A JND mask indicates the maximum
amount one can add or subtract at every pixel position of an image without pro-
ducing any visible difference. This is a so called masking effect. In addition, most
watermarking techniques aim at the optimization of the robustness-invisibility
trade-off, and are motivated by qualitative perceptual models rather than quan-
titative visual models.

2 Literature Review

HVS models can be applied in the spatial or frequency domain (DFT, DCT,
DWT). In general, watermark embedding can be represented by following equa-
tion:

y = x + αw (1)

where y is the watermarked image, x is the original image. The embedding can
be applied in either the time-spatial domain, or the coefficients in the frequency
domain. Here α controls the embedding strength. The aim of the HVS model and
the perceptual mask is to optimize embedding strength α so that the best trade-
off can be obtained between the robustness and invisibility of the watermark.

Delaigle et al. [8] present an additive watermarking technique in the Fourier
domain. The core of the embedding process is a masking criterion that guar-
antees the invisibility of the watermark. This perceptual model is derived from
Michelson’s contrast C, which is defined as:

c =
Lmax − Lmin

Lmax + Lmin
(2)

where Lmax and Lmin are respectively the maximal and minimal luminance
value of grating. The masking criterion is depicted as a general expression of the
detection threshold contrast.

Another HVS Fourier domain mask is described in [9]. Here Florent et al.
introduce a perceptual model by taking into account advanced features of the
HVS identified from psychophysics experiments. This HVS model is used to cre-
ate a perceptual mask and optimize the watermark strength. This is done by
combining the perceptual sub-band decomposition of Fourier spectrum with the
quantization noise visibility based on the local band limited contrast. Experi-
mental results demonstrate that this method can resist many attacks, including
geometrical distortions.

The Watson model [10] is a popular HVS model for DCT domain. It assesses
image visual quality by estimating the final perceptual masking threshold used
for image compression. According to the mechanisms of the HVS, three factors
are considered in the Watson model in order to comprehensively approximate the
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perceptual quality of an image. The three factors are: a) a frequency sensitivity
function, b) a luminance masking function, and c) a contrast masking function.
A pooling process is used then to combine all the estimated local perceptual
distances together to achieve a global perceptual distance.

Lewis et al. [11] tackle the problem of DWT coefficient quantization for com-
pression and propose to adapt the quantization step of each coefficient according
to the local noise sensitivity of the eye. Barni et al. [12] make some modifications
of the model proposed in [11] in order to better fit the behavior of the HVS to the
watermarking problem. A number of factors are taken into account, including
luminance, the frequency band, texture and proximity to an edge. Podilchuk et
al. [13] propose an image adaptive watermarking algorithm for both the DCT
and DWT domains. The JND masks applied to the DCT domain are computed
from quantization matrices established, while the JND masks used in the DWT
domain are computed from visual thresholds given by Watson et al. [14]. For
both embedding domains, the watermark robustness has been tested against
JPEG compression and cropping.

Huiyan Qi et al. [15] design a perceptual mask in the spatial domain using
image features such as the brightness, edges, and region activities. In their re-
search, the exact mask values of the cover image can be obtained, guaranteeing
the maximum-possible imperceptivity of the watermark. Therefore, the water-
mark embedding directly substitutes the final mask for watermark strength α.
The authors also successfully extend the proposed spatial masking to the DCT
domain by searching the extreme value of a quadratic function subject to the
bounds on the variable.

In the above-mentioned papers, the computational complexity for the per-
ceptual masks complicates the analysis of the results. Experimental results sup-
port the robustness of these approaches. By contrast Voloshynovskiy et al. [16]
propose and verify a general perceptual mask referred to as the Noise Visibil-
ity Function (NVF), which is based on the Maximum Aposteriori Probability
(MAP) estimation and Markov random fields. It is simple, practical and has
been widely used in many watermarking algorithms, both in the spatial and
frequency domains.

In this paper, we describe an improved perceptual mask using an arrangement
of scale-invariant feature points. The approach can decrease the JND values in
edge regions so that they have given obvious difference in highly textured areas.
Therefore, the improved mask is more suitable for human visual characteris-
tics, with low JND values in both edge and flat areas, and high values only in
highly textured regions. We choose the perceptual mask in [16] as the proto-
type. However the proposed improvement also applies to alternative perceptual
masks where the JND values in highly textured area have an insignificant dif-
ference with the JND values in edge regions. The remainder of this paper is
organized as follows. Section 3 introduces the perceptual model in [16]. Section
4 introduces Scale-Invariant Feature Transform (SIFT). Section 5 presents our
improved mask and estimation method. Section 6 gives experimental results.
The paper is concluded in Section 7.
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3 Original HVS Model

The perceptual mask in [16] is based on the computation of NVF that character-
izes the local image properties, identifying textured and edge regions. In order
to determine the final NVF, the authors consider the watermark as noise and
estimate it using a classical MAP image denoising approach. We will not provide
the details of this theory here, but rather give the main formula of the method
and explain its deficiency.

The authors examine two NVFs, a non-stationary Gaussian model and a sta-
tionary generalized Gaussian model, and finally propose a stochastically empir-
ical expression for the optimal NVF. This is widely used in image restoration
applications, and calculated using the equation:

NV F (i, j) =
1

1 + θ · σ2
x(i, j)

(3)

where σ2
x(i, j) denotes the grey-scale local variance for neighboring pixels. The

parameter θ is used for tuning and plays the role of contrast adjustment in
NVF. This version of NVF is the basic prototype for a large quantity of adaptive
regularization algorithms. The parameter θ depends on the image variance and
is given by:

θ =
D

σ2
max(i, j)

(4)

where D ∈ [50, 100] is an experimentally determined constant, and σ2
max(i, j) is

the maximum local variance for a given image.
Using NVF, the perceptual mask is:

Λ = α · (1 − NV F ) + β · NV F (5)

and the watermark embedding equation is:

y = x + α · (1 − NV F ) · w + β · NV F · w (6)

where β can be set to 3 for most of real world and computer generated images.
The watermark strength parameter α approaches 1 in highly textured areas and
approaches 0 in flat region. The third term in equation (6) is added to increase the
watermark strength in very flat regions to a level below the visibility threshold.
This avoids the problem that the watermark information is (nearly) lost in these
areas. The method is illustrated in Fig 1.

As shown in Fig.1, the watermarking rule (Equ.6) embeds the watermark
in highly textured areas and areas containing edges stronger than in very flat
regions. The deficiency of the method is the relative extraction of the edge and
texture information. The JND values in these two regions are very close and the
difference between them is not significant for the original HVS model in [16](as
illustrated in Fig.1).

From the literature [13,15,16], we note the following two rules consistent with
the characteristics of human vision, which are the foundation of the improved
method described in this paper:
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(a) (b) (c)

Fig. 1. Effect of HVS model in [16]. (a) original image(size of 512 × 512); (b) NVF
image ; (c) final perceptual mask, here α = 250 and β = 3.

• disturbances are less visible in highly textured regions than in flat
areas.
• Edges and contours are more sensitive to noise addition than highly
textured regions, and less than but close to the very flat areas.

That is to say, the distortion visibility is low in highly textured areas. However
it is high in both edge and very flat region. Therefore, only highly textured areas
are strongly suited to watermark embedding and the JND values corresponding
to these areas must be high. By contrast, edge areas have the low JND values and
very flat areas that contain little (or no) frequency information have the lowest
JND values. The perceptual mask in [16] follows just the first of two rules. It is
therefore not consistent with the characteristics of human vision.

4 SIFT Theory and Analysis

Affine-invariant features have recently been studied in object recognition and
image retrieval applications. These features are highly distinctive and can be
matched with high probability under large image distortions. SIFT was proposed
by Lowe [17,18] and has been proved to be robust to image rotation, scaling,
translation, and to some extend illumination changes, and projective transforms.
It has been applied to image forensics [19,20], and digital watermarking [21].
The basic idea of SIFT is to extract features through a staged filtering that
identifies stable feature points in the scale-space. In order to extract candidate
locations for features, the scale-space is computed using Difference of Gaussian
function, where an image is filtered by Gaussian function of different scales and
then difference images are calculated. In this scale-space, all local maximum
and minimum are retrieved by checking the eight closest neighbors at the same
scale and nine neighbors at the scale above and the scale below [22]. Finally
the locations and descriptors of feature points are determined, using the scale
and orientation changes. Some example images and their corresponding SIFT
feature points are shown in Fig.2 (using the program provided by [23]).We can
distinguish between edge areas and highly textured regions using the distribution
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of SIFT points, that is, the small number of points involved in edge areas can
be regarded as noise that is supposed to be classified. This idea is the basis of
this paper.

(a) (b)

(c) (d)

Fig. 2. Original images and the corresponding SIFT point locations

5 Improved Method

Our improved watermarking method has four steps,and is illustrated as Fig. 3.
Step1. SIFT extractor

Calculate feature points using the SIFT algorithm and obtain a binary siftmap
for the arrangement of SIFT key points. We denote the pixel of cover image as
I(i, j), i = 1, 2, . . . , M, j = 1, 2, . . . , N. The location set of feature points that are
calculated with SIFT algorithm is denoted as S. The binary siftmap is denoted
as I

′
, which is obtained by following formulation:

I
′
(i, j) =

{
1 (i, j) ∈ S

0 otherwise
(7)

Obviously, binary siftmap I
′

is size of M × N , the same with original cover
image I.

Step2. Density-based clustering
Cluster analysis is a primary method for database mining. The biggest ad-

vantage of density-based clustering is that regions indicated clusters may have an
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Fig. 3. Flow chart of proposed improvement approach and example result of every step

arbitrary shape and that the points inside a region may be arbitrarily distributed.
In density-based clustering, clusters are regarded as regions in the data space in
which the objects are dense, and which are separated by regions of low object
density (noise). So density-based clustering is very suitable for classification of
points on binary siftmap in the case of proposed improvement approach.

The first density-based clustering algorithm is proposed by Martin et al. in
[24], which is called Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). It has two important parameters, search radius Eps and density
search parameter MinPts. The details of the algorithm will not be described
here and we only give the parameter settings. From adequate experiments we
can find, the number of clusters is empirically supposed to be at the range from 6
to 30 in order to denoise to the greatest degree in this step. Moreover, clustering
results are just sensitive to Eps, and MinPts can be constant. Therefore, the
parameter Eps should be set carefully to make sure of getting a suitable number
of clusters. We do experiments for an image database more than 30 and get an
empirical range of the optimal search radius, that is, Eps ∈ [10, 16, 20, 32, 40].
The parameter MinPts is set to 4.

A certain number of clusters is obtained after implement of DBSCAN. We
denote these clusters as C1, C2, . . . , Ck and the number of points in them as
Num1, Num2, . . . , Numk . Then we sort the set of Numi in accordance with
descending order, which can be expressed as:
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sort({Num1, Num2, . . . , Numk}) = {Num∗
1, Num∗

2, . . . , Num∗
k} (8)

Thus permutation can be made to set of Ci correspondingly and we can get
C∗

1 , C∗
2 , . . . , C∗

k . After all this, we can get texture-left siftmap, which is denoted
as I∗, through keeping the first t of C∗

i and discarding the points involved in
other clusters on binary siftmap I

′
, which t satisfies the following constrain:

t∑
i=1

Num∗
i ≥ p

k∑
i=1

Numi (9)

here t is a natural number and 1 < t < k , p is an given percent.
Step3. Block-based screening

As shown in Fig.4, the texture-left siftmap is a point-scattering mask so that
it cannot be directly used as a perceptual mask in watermark embedding. We
design a simple method to get a final texure map, which is called ’block-based
density screening’. First of all, texture-left siftmap I∗ (size of M ×N ) is divided
into non-overlapping small blocks. If the size of each block is defined as m × n,
the division process can be denoted as this expression:

I∗ =

⎡⎢⎢⎢⎢⎣
B1,1 B1,2 . . . B1, N

n

B2,1 B2,2 . . . B2, N
n

...
...

. . .
BM

m ,1 BM
m ,2 . . . BM

m , N
n

⎤⎥⎥⎥⎥⎦ (10)

Then calculate the number of points in every corresponding block, which is
expressed as: ⎡⎢⎢⎢⎢⎣

Num1,1 Num1,2 . . . Num1, N
n

Num2,1 Num2,2 . . . Num2, N
n

...
...

. . .
NumM

m ,1 NumM
m ,2 . . . NumM

m , N
n

⎤⎥⎥⎥⎥⎦ (11)

The texture map, which is denoted as TM, can be obtained using following
formulation:

TM(i, j) =

{
1 Numi,j > Threshold

0 Numi,j ≤ Threshold
(12)

Step4. Improved mask
For our research, the prototype of perceptual mask in [16] is improved using

the texture map. Bilinear interpolation and binarization are sequentially applied
to texture map to stretch and re-binarize it. Thus, a big texture map can be ob-
tained with the same size of the prototype. In order to avoid the watermark
information to be lost when the value of texture map TM equals to 0, the fi-
nal texture mask is processed by following rule: the values of pixels which equal to
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0 are set to a given small constant tmin at the range of (0, 0.4]; and the values
of pixels which equal to 1 are unchanged. Finally, the perceptual mask (Equ.5)
is modified as follows,

Λ̃ = α · (1 − NV F ) ∗ TM + β · NV F ∗ TM (13)

here the operator ∗ does not represent matrix multiplication but array multipli-
cation.

6 Experiment Results

6.1 Improved Mask

Experiments are performed on a set of images for our improvement approach.
The parameter p in the second step of our method is set to 90%, Threshold in
the third step is 1, and tmin in final step is 0.4. Besides, α = 250 and β = 3 is
the same with Fig.1(c). For images in Fig.2, the comparison of perceptual masks
is shown in Fig.4.

The advantage of our improved method is directly and clearly illustrated in
Fig.4. Our method significantly decreases the JND values in all (or most) edge
areas, and makes them have a considerable difference with JND values in highly
textured regions. Before implement of proposed method, values of perceptual
mask just have two levels, but the entire mask is to be divided into three levels
after: the lowest in very flat region, the relatively lower in edge region, and
the highest in highly-textured region. This advantage in the test image lake is
most evident, particularly in parts of trunks and the small boat. Obviously, our
perceptual masks are better for the characteristic of human vision than before.

6.2 Application in Watermark Embedding

We test the improved mask in the direct embedding method with the following
equation,

y = x + Λ̃ · ω (14)

where y denotes watermarked image, x denotes cover image and w denotes wa-
termark. We use a grey-scale image (shown in Fig.5(a)) as watermark and embed
it to a group of common test images. The embedding strength parameters α are
set to 20, and still β = 3. The examples of cover image and watermarked image
are shown in Fig.5(b) and (c).

The peak signal-to-noise ratio (PSNR) is chosen to measure the visibility of
watermark and the quality of cover image. For an 8-bit grey-scale image, the
equation of PSNR is as follows:

PSNR = 10 log 10
2552

1
M×N

∑M
i=1

∑N
j=1(y(i, j) − x(i, j))2

(15)
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(a)

(b)

(c)

Fig. 4. Comparison of perceptual masks before and after implement of proposed im-
proved method
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(a) watermark (b) cover image (c) watermarked image

Fig. 5. Watermark embedding

where y(i, j) and x(i, j) are the pixel value in watermarked image and original
image respectively. M ×N presents the image size. After watermark embedding,
the values of PSNR calculated and parameters Eps for every image are listed
in Table 1. More test results have been shown in Fig.6 for our image database.
From these results we can find, our improved method significantly and generally
increases the value of PSNR and enhances the invisibility of embedded water-
mark. Moreover, the more edge information cover image contains, the more of
the PSNR value increases.

Table 1. Comparison of PSNR for mask effect in different methods

cover image Eps PSNR(in [16]) PSNR(here) PSNR(no mask)

peppers 32 32.7540db 35.5923db 25.2939db

lena 24 31.5628db 33.5113db 25.7776db

lake 10 31.2367db 32.6696db 25.7413db

clock 10 33.5889db 35.0734db 26.3042db

cameraman 10 32.6604db 33.5734db 26.3042db

baboon 32 28.4366db 29.1577db 24.7816db

We also do experiments about watermarking attacks and calculate correlation
values between original watermark and extracted watermark. The results against
noise-adding (Salt & pepper, Gaussian, Speckle) are illustrated in Fig.7.
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Fig. 7. Detection values of watermarked image after noise-adding attack

7 Conclusion

In this article, we describe an improved method for the perceptual mask using
the arrangement of scale-invariant feature key points. It could decrease the JND
values in edge areas of those traditional masks so that they give obvious difference
with values in highly textured areas. Therefore, the improved mask is more
suitable for human visual characteristics. But one of the shortcomings of our
method is the imprecision of segment between the highly textured region and
the edge areas. This is one of the directions of our future work.
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Abstract. In this paper we propose a new method to detect cropped images by 
analyzing the blocking artefacts produced by a previous block based 
compression techniques such as JPEG and MPEG family that are the most used 
compression standards for still images and video sequences. It is useful for 
image forgery detection, in particular when an image has been cropped. The 
proposed solution is very fast compared to the previous art and the experimental 
results show that it is quite reliable also when the compression ratio is low, i.e. 
the blocking artefact is not visible. 

Keywords: crop and paste technique, DCT blocking artefacts analysis, 
tampered images, image forensic. 

1   Introduction 

In the last years, the number of forged images has drastically increased due to the 
spread of image capture devices, especially mobile phones, and the availability of 
image processing software. Copy and paste is the simplest and most used technique to 
counterfeit images. It can be used to obtain a completely new image by cropping the 
interest part or to cover unwanted details. In image forensics it is important to 
understand (without any doubts) if an image has been modified after the acquisition 
process.  

There are two methodologies to detect tampered images: active protection methods 
and passive detection methods [1]. The active protection methods make use of a 
signature inserted in the image [2]. If the signature is no more detectable, the image 
has been tampered. These techniques are used basically to assess ownership for 
artworks and/or relative copyrights. Passive detection methods make use of ad-hoc 
image analysis procedures to detect forgeries. Usually the presence of peculiar 
artefacts is properly investigated and, in case of anomalies, the image is supposed to 
be counterfeit. Several algorithms exist in literature as reported in a recent survey [3]. 
Among others, a lot of methods in the field consider the possibility to exploit the 
statistical distribution of DCT coefficients in order to reveal the irregularities due to  
the presence of a superimposed signal over the original one [4, 5, 6, 7]. The usage of 
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Discrete Cosine Transform (DCT) artefacts analysis have a further advantage due to 
the fact, that is the most used compression technique; JPEG [8] for still images and 
MPEG compression family [9] for video sequences make use of block based DCT 
data compression (usually 8x8 pixel size non-overlapping windows). 

While there are a lot of algorithms in literature for the estimation of the 
quantization (and compression) history [5, 6], there are only a few approaches for 
cropping detection [7]. In this paper a pipeline is suggested aiming to merge both 
techniques in order to obtain a more reliable system. In fact, blocking artefacts 
analysis works well when the image is aligned to the block boundary. But, in case the 
image has been cropped, this assumption is no more valid and the detection may fail. 
In the proposed system the quantization detection block is preceded by a cropping 
detection in order to align the image to the block boundary. It allows to increase the 
reliability of the detection and to better understand if only some parts of the image are 
tampered. 

In Li et al. [1] the grid extraction is realized by extrapolating the Block Artefact 
Grid (BAG) embedded in the image where block artefact appears, i.e. the grid 
corresponding to the blocks boundaries.  The authors introduce a measure of 
blockiness just considering the ratio between the sum of AC components of the first 
raw (and column) with respect to the DC coefficient in the DCT domain. One of the 
main drawbacks of the method is related to the fact that it requires to compute 8x8 
pixels DCT again (in a dense way) over the image under detection, just to locate 
properly the correct alignment. Also the detection of tampered regions corresponding 
to misaligned grid is demanded to a visual inspection of the resulting filtering 
operation without a clear and objective measure.  The same authors propose in [7] an 
interesting approach based on spatial consideration devoted to locate the BAG just 
combining together a series of derivative and non-linear filters to isolate blockiness 
avoiding the influence of textures or strong edges present in the input image. 
Unfortunately, both the techniques were not properly evaluated just considering a 
proper dataset (high variability with respect to resolution size) and a sufficient 
number of misalignments cropping with respect to the 8x8 grid. Also an exhaustive 
comparison just considering the overall range of JPEG compression factors is lacking. 

As well described in [3, 10] the new emerging fields of Digital Forensics require to 
provide common benchmarks and datasets that are needed for fair comparisons 
among the numerous proposed techniques and algorithms published in the field. 

The rest of the paper is organized as follows. In Section 2 the proposed technique 
is described; the next Section reports a series of experiments devoted to assess the 
effectiveness of the method. Finally, some conclusions are given together with a few 
hints for the future work. 

2   Proposed System 

The proposed solution can be used as stand-alone algorithm to detect crop operations 
or it can be inserted in a typical advanced pipeline for complex tampering detection 
using compression artefacts analysis. The proposed solution aimed to handle images 
without any further compression. In this case, in fact, the further compression may 
introduce blocking artefact that may deceive the algorithm. In Figure 1 an example 
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aiming to detect the camera model from an image, after a copy/paste and re-encoding 
counterfeit process, is shown. In this case, the algorithms described in [5] and [6] can 
be used for the quantization detection, while the study proposed in [11] can be used 
for the signature detection block. 

 

 

Fig. 1. Block based schema of the pipeline used to retrieve the camera model from an image 

2.1   Algorithm Description 

The DCT codec-engines (e.g., JPEG, MPEG, etc.) typically apply a quantization step 
in the transform domain just considering non-overlapping blocks of the input data. 
Such quantization is usually achieved by a quantization table useful to differentiate 
the levels of quantization adapting its behavior to each DCT basis. The JPEG standard 
allows to use different quantization factors for each of the bi-dimensional DCT 
coefficients. Usually standard quantization tables are used and a single multiplicative 
factor is applied to modify the compression ratio [12, 13], obtaining different quality 
levels. As the tables are included into the image file, they are also customizable as 
proved by some commercial codec solutions that exploit proprietary tables. Images 
compressed by DCT codec-engines are affected by annoying blocking artefacts that 
usually appear like a regular grid superimposed to the signal. In the following, we 
discuss a simple example based on the Lena image. The picture has been compressed 
using the cjpeg [12] software with a properly managed compression ratio, obtained 
modifying the quantization tables through the variation of the quality parameter in the 
range {10, 90} (see Figure 2). 

 

Fig. 2. Blocking artefact example in a JPEG compressed image (quality factor = 40) 
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It is an annoying artefact visible especially in flat regions. It is also regular, since it 
depends on the quantization of the DCT coefficients of every 8x8 blocks. 
Unfortunately, this kind of artefact is not simple to be characterized (i.e., detectable) 
in the Fourier domain, since image content and the effect of the quantization step of 
the encoding pipeline mask the regular pattern, as shown in Figure 3. 

 

 

Fig. 3. Results of the visualization of the Fourier spectrum applied to the compressed Lena 
image shown in Figure 2 

We established to work directly in the spatial domain and, in particular, in the 
luminance component. The blocking artefact is basically a discrepancy in all the 
borders between adjacents blocks. It is regularly spaced (8x8 for JPEG and MPEG) 
and it also affects the image in only two perpendicular directions (horizontal and 
vertical if the image has not been rotated).  

The straightforward way to detect such artefact exploits a derivative filter along the 
horizontal and vertical direction. The proposed strategy could be easily generalized to 
consider all possible malicious rotation of the cropped image, just iterating the 
process at different rotation angles. In Figure 4  the overall schema of the proposed 
algorithm is depicted. 

 

 

Fig. 4. Block based schema of the cropping detection algorithm 
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The blocks “H filter” and “V filter” are derivative filters. Basically they are High 
Pass Filters (HPF) usually used to isolate image contours. An example is the Sobel 
filter, with the following basic kernel: 
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Fig. 5. Sobel filter masks 

These filters are able to detect textures, as shown in the image below.  

 

Fig. 6. Effect of the Sobel filter (3x3 kernel size) applied to the Lena image 

It is very useful to retrieve textures of the image, but the blocking artefact effect is 
also masked. In order to detect only regular pattern and discard real edges, a very long 
taps directional filter has been used It was obtained by properly expanding the 
following 3x3 filters along the horizontal or vertical direction: 
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Bigger is the number of taps, better are the results, although computational time also 
increase. In Figure 7 is shown the result of a long directional filters with different 
kernel size. 
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Fig. 7. 30 taps directional HPF applied to the Lena image. Borders are not considered (thus the 
vertical size in the left image and the horizontal size in the right images are less than the 
original size). 

We define the Regular Pattern Measure (RPM) that computes a measure of the 
blockiness effect as defined in the following. Let I  a MxN pixel size image and IH , IV 

the corresponding filtered images obtained by applying a directional HPF as above. 
For sake of simplicity let suppose to have serialized the image, by simple scan line 
ordering of the corresponding rows and columns just obtaining the vector IH’, IV’ . The 
RPM values for both directions is obtained as: 

( ) ;7,...,1     ;8)(
)8/(

0

' =+⋅= ∑
=

iijIiRPM
Nfloor

j

H
H  

( ) ;7,...,1     ;8)(
)8/(

0

' =+⋅= ∑
=

iijIiRPM
Mfloor

j

V
V  

 

0 2 4 6 8
6

7

8

9

10

11

12

13
x 10

4 regular vertical pattern measure

0 2 4 6 8
0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

5 regular horizontal pattern measure

 

Fig. 8. RPM measure without cropping. The blocking artefact starts with the pixel [1,1]. 



656 A.R. Bruna, G. Messina, and S. Battiato 

0 2 4 6 8
6

7

8

9

10

11

12

13
x 10

4 regular vertical pattern measure

0 2 4 6 8
7.5

8

8.5

9

9.5

10

10.5

11

11.5
x 10

4 regular horizontal pattern measure

 

Fig. 9. RPM measure with cropping. The blocking artefact starts with the pixel [6,5]. 

Experiments have shown that both the RPMH and RPMV measures allow 
discriminating, in a very robust way (e.g., with respect to the main content of the 
image), the periodicity of the underlying cropping positions. Such values can be 
extracted by considering a simple order statistic criterion (e.g., the maximum). 
Figures 8 and 9 show the plot of the two RPM measures, in case of no cropping (e.g., 
blocking artefact starts with the pixel [1,1]) and in case of malicious cropping at 
position [6, 5]. 

3   Experimental Results 

To assess the effectiveness of any forgery detection technique, a suitable dataset of 
examples should be used for evaluation. According to [10] the input dataset contains a 
number of uncompressed images organized with respect to different resolutions, sizes 
and camera models. Also the standard dataset from Kodak images and from UCID v.2 
have been used. The overall dataset can be downloaded from [14]. It is composed by 
114 images with different resolution. Experiments were done varying in an exhaustive 
way the cropping position and the compression rate. 

Moreover the cjpeg [12], (i.e., the reference code for the JPEG encoder), has been 
used to compress the images and the flag -quality was used to modify the quality from 
10 (high compression ratio) to 90 (low compression ratio) with the step of 10. In 
particular each image has been cropped in order to test every possible cropping 
position in the 8x8 block, just to consider the possibility to test the method also in 
presence of real regular patterns in the image that could influence the results. In  
Table 1 are reported the overall results, described in terms of correct percentage of the 
cropping position detection, with respect to the involved compression ratio. 

Exhaustive tests have been done for every image, every cropping position and 
quality factor. Thus the accuracy has been obtained considering 2891 cases. 

Experimental results show that performances increase according to the 
compression rate. It is reasonable, since the blocking artefact increases at higher 
compression ratio. 
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Table 1. Results of the proposed method 

Quality factor Accuracy (%) 
10 99 
20 91 
30 80 
40 69 
50 58 
60 46 
70 39 
80 28 
90 16 

 

 

Fig. 10. RPM measure obtained at varying the quality factor 

In Figure 10 the RPM (only vertical) measure is shown at varying the quality factor 
(real crop position = 7). Reducing the quantization (i.e., increasing the quality factor), 
the peak is less evident and, in this example, with the quality=80 the estimation fails, 
since the effect of a real edge becomes predominant.  
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The proposed solution was compared to the method described in [1,7]. 
Unfortunately in these papers the cropping detection is not automatic, but it is 
supposed a visual inspection at the end of the process. In Figure 11 are shown the 
results of this method at varying the quality factor from 10 to 90 for the Lena image 
for a cropping position (3,5). It is evident that the cropping position is detectable up to 
q=40. Above this value it is no more visible. Similar results have been obtained for all 
the involved dataset. 

Lenna - q=10; crop=(3,5); Lenna - q=20; crop=(3,5); Lenna - q=30; crop=(3,5);

Lenna - q=40; crop=(3,5); Lenna - q=50; crop=(3,5); Lenna - q=60; crop=(3,5);

Lenna - q=70; crop=(3,5); Lenna - q=80; crop=(3,5); Lenna - q=90; crop=(3,5);

 

Fig. 11. Li’s method [1, 7] applied to Lena image at varying the quality factor 

4   Conclusions 

A new algorithm for cropping detection has been presented. It can be used in forensic 
applications to detect tampered images affected by cropping pre-compressed images. 
It can also be used in the pipeline with other blocks to increase the reliability of the 
results. The method is based on DCT artefacts analysis, in particular on the blocking 
artefacts that are detected through an adaptive system working in the luminance 
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component. Experimental results show that, according to the blocking artefact 
behavior, the reliability of the response increase according to the compression ratio. 

The main advantages of the proposed technique with respect to the state of the art 
are the speed (e.g. the [1] requires 50 seconds while the proposed solution requires 
less that 1 second for each inspection). Moreover it is a fully unsupervised (e.g., not 
require any visual inspection). Also its reliability is acceptable at lower compression 
ratio (i.e. when the blocking artefact is almost negligible). Further works will aim to 
increase the reliability of the system (e.g., by weighting differently the blocks 
contribution according to a flatness measure) and extending the methodology also to 
the color component, since these are heavily compressed. Moreover, further research 
will also devoted to exploit local information, in order to locate discrepancies inside 
the image (i.e., to discover copy and paste forgery).  
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Abstract. In this paper we present a dense 3D reconstruction pipeline
from monocular video sequences using jointly Photometric Stereo (PS)
and Structure from Motion (SfM) approaches. The input videos are com-
pletely uncalibrated both from the multi-view geometry and photometric
stereo aspects. In particular we make use of the 3D metric information
computed with SfM from a set of 2D landmarks in order to solve for
the bas-relief ambiguity which is intrinsic from dense PS surface esti-
mation. The algorithm is evaluated over the CMU Multi-Pie database
which contains the images of 337 subjects viewed under different lighting
conditions and showing various facial expressions.

Keywords: Structure from Motion, Photometric Stereo, Dense 3D Re-
construction.

1 Introduction

The 3D inference of the objects shape is of paramount interest in many fields
of engineering and life science. However, the inference of the depth from a set
of images is one of the most challenging inverse problem and various features
has been used in order to extract information of 3D surfaces from images. The
field of multi-view geometry [8] uses the information of a set of known 2D corre-
spondences in order to estimate the localization of a set of 3D points lying over
the surface. Shape from defocus [6] instead uses the blurring effect of images ob-
tained from varying the distance of the lens with respect to the camera sensor.
Shape from texture [4] infers the 3D surface bending given the variation of the
texture belonging to an object. Differently, shape from shading [13] and photo-
metric stereo [17] compute dense surfaces by analyzing the variations of a pixel
subject to different illumination sources. In our work we will focus exclusively on
the multi view geometry and photometric aspects of such problems and present
a joint algorithm which obtains reliable 3D reconstruction from an uncalibrated
monocular sequence of images.

Regarding the multi-view geometry aspect, the sparse 3D surface estimation
from a single video requires the extraction of a set of 2D image points for each
frame. These selected points are then uniquely matched for the whole video
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sequence thus creating image trajectories. The collection of such 2D trajectories
define the motion of the image shape and it is subject to the metric properties
of the 3D object and the camera position projecting the 3D points onto the
image plane. The localization of the 2D image points is fatally sparse since good
features to track and matches are restricted to a few particular regions in the
image [14]. However, given a rigid object, very accurate sparse representation of
the world can be obtained, even in the presence of interrupted 2D trajectories
[12].

Differently, from a photometric perspective, Photometric Stereo (PS) com-
putes dense 3D localization directly from image intensity variations in a sin-
gle video sequence. Each surface point imaged by a camera reflects a light
source with respect to its orientation and surface photometric properties. Thus,
if enough views of the same surface point are given at different lighting positions,
we may succeed to infer the 3D surface and its photometric properties (i.e. the
albedo). However, this approach, in the case of a video sequence, requires the
dense matching of each pixel from frame to frame or completely stationary shape
with controlled lighting conditions. The latter case is the standard scenario and
recent techniques [2] may compute lighting parameter and 3D surface without a
prior calibration of the lighting setup. However, a well known problem implicit
in the most PS reconstructions is the generalized bas-relief ambiguity. In few
words, the same image pixels may correspond to different configurations of 3D
surfaces and lighting sources. Choosing the right solution depends generally on
a priori information of the 3D shape of the object.

Images with different camera views and constant lighting conditions

Images with same camera view and varying lighting conditions

Fig. 1. An example of the set of images in the Multi-Pie database for subject 42

In this work, we design a 3D dense reconstruction pipeline that joins SfM
and PS techniques in order to obtain reliable 3D reconstructions from image
sequences. The generalized bas-relief ambiguity is reduced by obtaining a reliable
localization of a set of sparse 2D points extracted from the images and used to
obtain a metric 3D reconstruction of the shape. In this case, we can define a
photo-geometric relation between the 3D sparse model and the dense 3D surface
obtained with SfM and PS respectively. By solving for the transformation, we
obtain the correct alignment of the two reconstructions up to an overall scale.
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There are similar works in the literature that attempt to include SfM con-
straints into a dense reconstruction problem. Lim et al. [11] tried to recover
correct depths from multiple images of a moving object illuminated by time
varying lighting. They used multiple views of the object to generate a coarse
planar surface based on the recovered 3D points and then they used PS in an it-
erative process to recover dense surface and align it into the recovered 3D point.
Zhang et al. [18] use an iterative algorithm to solve a sub-constrained optical
flow formulation. They use SfM to compute the camera motion and initialize
the lighting on sparse features. Then, they iteratively recover the shape and
lighting in a coarse-to-fine manner using an image pyramid. All such methods
have known features and drawbacks. Other works such as [9] uses specific setups
with colored lights or [1] active patterns using projectors in order to constraints
the photometric ambiguities. Since our proposed method uses solely standard
image sequences, we deal with a less constrained case than the two previously
mentioned approaches.

The testing framework used to verify the effectiveness of our 3D reconstruc-
tion algorithm is the CMU Multi-Pie face database [7]. This database contains
more than 750, 000 images of 337 subjects recorded in up to four sessions over
the span of five months. Subjects were imaged under 15 view points and 19
illumination conditions while displaying a range of facial expressions. Figure 1
shows samples of the database for different views and varying lighting conditions.
No information is provided by this database to recover the 3D position of any
point on the subjects. Notice that in such scenario, we deliberately choose not
to use any a priori information about the calibration for both the cameras and
lighting conditions of the experiments. In such way, we pose ourself in the most
challenging scenario and with the largest modeling freedom. Many applications
could be considered for such scenario, e.g. model-based face recognition, face
morphing or creating 3D face databases using inexpensive off-the-shelf facilities
instead of expensive 3D laser scanners.

The paper is structured as it follows. The next section is dedicated to the
formulation of problem and it is described how the metric upgrade affects the
results. Then, in Section 3, results obtained by applying the proposed approach
on the MultiPIE database are discussed. And finally, in section 4 some brief
remarks conclude this paper.

2 Sparse and Dense 3D Reconstruction

We first formulate the SfM and PS problems in the mathematical context of
bilinear matrix factorization. In general, either the 2D image trajectories used
by SfM and the image pixel variations in time can be both described by bilinear
matrix models. For the case of SfM, the bilinear model contains the 3D shape
coordinates and the camera projection matrices. Similarly, the PS case results
in two factors that contain the object surface normals with the albedo and the
lighting directions.
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2.1 Structure from Motion

Structure from Motion algorithms simultaneously reconstruct the 3D position
and camera matrices using a set of 2D points extracted from an image sequence.
The inter-image relations are linked by the fact that a unique shape is projected
into the images by a moving camera. Thus the 2D image trajectories created by
this mapping can be used to estimate the 3D position of a shape if a sufficient
baseline is given. A set of popular approaches compute simultaneously the 3D
structure and camera motion via a factorization approach using solely the col-
lection of such 2D trajectories. In more detail, the 3D structure and the camera
projection matrices can be expressed as a bilinear matrix model.

In more detail, by defining the non-homogeneous coordinate of a point j in
frame i as the vector wij = (uij vij)T , we may write the measurement matrix W
that gathers the coordinates of all the points in all the views as:

W =

⎡⎢⎣w11 . . . w1p

...
. . .

...
wg1 . . . wgp

⎤⎥⎦ =

⎡⎢⎣W1

...
Wg

⎤⎥⎦ (1)

where g is the number of frames and p the number of points. In general, the
rank of W is constrained to be rank{W} ≤ r where r � min{2g, p}

In the case of a rigid object viewed by an orthographic camera, if we assume
the measurements in W are registered to the image centroid, the camera motion
matrices Ri and the 3D points Sj can be expressed as:

Ri =
[
ri1 ri2 ri3

ri4 ri5 ri6

]
and Sj =

[
Xj Yj Zj

]T (2)

where Ri is a 2 × 3 matrix that contains the first two rows of a rotation matrix
(i.e. RiRT

i = I2×2) and Sj is a 3-vector containing the metric coordinates of the
3D point. Thus a 2D point j in a frame i is given by wij = Ri Sj . We can collect
all the image measurements and their respective bilinear components Ri and Sj

in a global matrix as in Eq. (1). Thus we can formulate the factorization model
of the image trajectories as

W = R2g×3 S3×p (3)

where the bilinear components R and S are defined as:

R =

⎡⎢⎣R1

...
Rg

⎤⎥⎦ and Ssfm =
[
S1 · · · Sp

]
. (4)

Expressing the camera projections and 3D points in such matrix form makes
evident the rank constraint of W.
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Given the rank relation: rank(W) ≤ min{rank(R), rank(Ssfm)}, we have that
the rank of the measurement is at most equal to three. This constraints is used
to obtain a closed form solution for the 3D position of the points and the camera
matrices as presented in the seminal paper of Tomasi and Kanade [15]. In the
case of different imaging conditions remember that the simplistic assumption
of an orthographic camera model has been extended to more complex affine
cameras [10] or either projective ones [16].

2.2 Photometric Stereo

The principle at the base of PS is that an object illuminated by a light source will
reflect light with respect to the surface orientation, light direction and intrinsic
photometric properties of the shape. Thus, we can use a collection of the data
representing the lighting variations of the pixels in order to infer the photometric
properties of the shape. Notice that in this case we treat the object as being static
and the light source moving – the aim here is to find a dense 3D reconstruction
(i.e. for each pixel position in the image) of the object shape.

The chosen photometric model is based on a spherical harmonics representa-
tion of lighting variations [2] and it allows to frame PS as a factorization problem
with normality constraints on one of the bilinear factors. Given a set of images
of a Lambertian object with varying illumination, it is possible to extract the
dense normals to the surface of the object n, the albedos ρ and the lighting
directions l. For a 1st order spherical harmonics approximation, the brightness
at image pixel j at frame i can be modeled as:

Yij = l�i ρj [1 n�
j ]� = lisj

where li ∈ R4, ρj ∈ R, zj ∈ R3 with n�
j nj = 1. A compact matrix form can be

obtained for each pixel yij as:

Y =

⎡⎢⎣ y11 . . . y1t

...
. . .

...
yf1 . . . yft

⎤⎥⎦ =

⎡⎢⎣ l�1
...
l�f

⎤⎥⎦ [
ρ1

[
1
n1

]
. . . ρt

[
1
nt

]]
= L N (5)

where a single image i is represented by the vector yi =
[
yi1 . . . yit

]T . The
f × 4 matrix L contains the collection of the lighting directions while the 4 × t
matrix N the values for the normals and the albedos. Thus the 1st order spherical
harmonics model enforces a rank four constraint over the image brightness of
the scene. Similarly to the SfM case, it is possible to factorize the pixel values
in Y to obtain a closed form solution that complies with the normal constraints
(i.e. n�

j nj = 1) as presented in [2].
Notice that we solve for the surface normals associated to each pixel. Normals

integration is then required to recover the final 3D surface from the surface
normals. Thus, after applying the overall PS algorithm we obtain a matrix Sps

of size 3 × t containing the 3D coordinates of the surface. However this final
step give a solution which is up to an unknown Generalized Bas Relief (GBR)
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transformation [3]. Figure 2 shows qualitatively the difference between a correct
solution and a metric 3D surface. In order to find an unique solution, we use the
SfM 3D metric shape to resolve the GBR ambiguity. How to estimate the correct
transformation which respects the shape metric using SfM represents the main
novel issue and the core of the work, which will be described in the next session.

Fig. 2. Left image shows the surface before the upgrade. The right image shows the
surface after the metric upgrade for subject 42.

2.3 Photometric Stereo Metric Upgrade

The photometric stereo step estimates at each image pixel position the 3D surface
Sps. Notice however that a GBR transformation H such as [3]:

H =

⎡⎣ 1 0 0
0 1 0
u v λ

⎤⎦ , (6)

can be multiplied to the recovered shape giving S̃ = HSps. The shape S̃ is still a
valid solution to the PS problem. Thus, we need to fix the GBR transformation
that reflects the correct depth of the surface. If a set O of metric 3D coordinates
in Sps is available, we might be able to estimate the GBR parameters that define
the correct metric surface. Such correspondences can be obtained through the
mentioned SfM algorithm in Section 2.1. First, we extract a set of 2D points
from a multi view image sequence such as the one showed in Figure 3. These
points will form the matrix W as in Eq. (1). However notice that not all the points
are visible in each view thus the matrix W will have missing entries. This leads
to a factorization problem with missing data which can be solved with general
purpose optimizers such as the BALM [5]. After this step, we have a set of sparse
3D metric coordinates which can be used to solve for the GBR ambiguity.

A further problem should be definitely solved. First, the SfM 3D shape Ssfm

is up to an unknown rotation and in general it is not aligned with respect to the
3D surface estimated with PS (i.e. Sps). This can be solved with the assumption
that one of the views in the SfM sequence corresponds to the view of the se-
quence used by the PS algorithm. This is always true for the Multi-Pie database
and, more in general, this is a strict assumption of our method. If we have such
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Fig. 3. 2D points on the image (Subject 42, Session 1, Recording 2)

image in common, the correspondence between the image point used by PS and
SfM is also given. We call S̄ps as the 3 × p matrix containing the corresponding
points between PS and SfM sequences. Thus, we can define the following photo-
geometric transformation A such as:

Ssfm = H Rrel S̄ps = A S̄ps (7)

where Rrel is a 3 × 3 rotation matrix that aligns the PS and SfM 3D points. The
solution can be found by computing the matrix A with standard Least Squares
that simultaneously aligns and solves for the GBR shape ambiguity.
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Fig. 4. Scheme of the 3D dense reconstruction algorithm pipeline

In summary, Figure 4 depicts the algorithm pipeline for 3D dense reconstruc-
tion. Our approach uses two different sequences: one contains 20 single view
images with different illuminations to be used for the PS reconstruction, and the
other sequence contains 15 images showing multiple views of the same subject
used to extract 2D image points for the BALM algorithm. First, we preprocess
the photometric sequence in order to select only the part of the image where the
skin is present. A treshholding technique on Hue channel of the sequence with
20 images is used and refined with morphological operators to remove the back-
ground and clothing. A dense 3D surface is obtained applying the photometric
stereo method on the masked images. On the other hand, in the SfM phase, some
corresponding points are marked in 15 images, as it can be seen in Figure 3. As
some of the points may be invisible in some views the resulted matrix will have
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some missing entries. To compute the 3D position of marker points and dealing
with such missing data as well, the BALM method is used as the SfM engine,
which results in a sparse reconstruction. Finally, the resulted reconstructions,
dense and sparse one, are merged to reduce the bas-relief ambiguity effect. At
this step, the sparse points are projected on to the image plane and their cor-
responding points on the surface are extracted. Having these two sets of points
resulted by PS and SfM methods, we can solve Eq. (7) for A. As soon as we find
the photo-geometric transformation A which relates these two point clouds, we
can apply it on the dense surface of PS and correct all the points of such surface.

3 Results on Multi-Pie Database

This section shows our results for two sample subjects of the MultiPIE database
(42 and 46). Figure 5 presents the dense surface computed with photometric
stereo (top left) and the surface with the attached texture (top right). As it is
apparent in this figure, the elevation of surface points from the image plane does
not comply with the metric condition. Figure 6 shows the dense surface after
bas-relief correction.

Fig. 5. Dense Surface and texture from Photometric Stereo reconstruction for subject 42

Fig. 6. Surface after bas-relief correction for subject 42
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Figures 7 and 8 illustrate the results of proposed approach for another subject
in the database. Computed dense surface and the surface with the attached
texture are presented in Fig. 7. The dense surface after bas-relief correction is
presented in Fig. 8.

Fig. 7. Dense Surface and texture from Photometric Stereo reconstruction for subject
46

Fig. 8. Surface after bas-relief correction for subject 46

4 Conclusions

In this paper, we have presented a 3D reconstruction pipeline to obtain dense
3D metric surfaces using both Photometric Stereo and Structure from Motion
techniques. The method has been tested using the Multi-Pie database in an
uncalibrated scenario. The 3D reconstructions are satisfactory, however we plan
to use more complex photometric models in order to grasp finer details of the
objects that may strongly diverge from the Lambertian surface assumption (e.g.
glasses, hairs). Another point for future investigations is to couple more deeply
both SfM and PS techniques with the aim to achieve a simultaneous estimation
of both photometric and 3D structure components. Such future work will be
tested on ground truth data in order to be able to compare our reconstructed
surfaces with real ones.
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Università di Bologna, via Mura Anteo Zamboni 7, 40127, Italy

galbanes@cs.unibo.it
2 Dipartimento di Matematica e Informatica
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Abstract. Normalized convolution techniques operate on very few sam-
ples of a given digital signal and add missing information, trough spatial
interpolation. From a practical viewpoint, they make use of data really
available and approximate the assumed values of the missing informa-
tion. The quality of the final result is generally better than that obtained
by traditional filling methods as, for example, bilinear or bicubic inter-
polations. Usually, the position of the samples is assumed to be random
and due to transmission errors of the signal. Vice versa, we want to ap-
ply normalized convolution to compress data. In this case, we need to
arrange a higher density of samples in proximity of zones which con-
tain details, with respect to less significant, uniform parts of the image.
This paper describes an evolutionary approach to evaluate the position
of certain samples, in order to reconstruct better images, according to a
subjective definition of visual quality. An extensive analysis on real data
was carried out to verify the correctness of the proposed methodology.

1 Introduction

Normalized convolution is a signal processing method that allows to reconstruct
an image when just a few pixels are available due to the presence, for exam-
ple, of noise or instrumental error. These pixels, also called certain samples, are
assumed to have an uniform random distribution. Adaptive normalized convo-
lution consists in a pipeline of normalized convolutions to improve the overall
quality of the resulting reconstruction, though it requires a lot of computation.

Aim of this paper is the robustness evaluation of normalized convolution for
data coding and compression purposes. In this case, we want to establish the
correct amount of samples, together with their positions, needed to reconstruct
images having an high perceived quality. In particular, we present a genetic
algorithm able to locate these samples, according to an attentive model based
on edges and centers of symmetry that usually correspond to details in the
scene. A recent metrics has been applied to measure the subjective quality of
the solution, trough the analysis of luminance, contrast and structures.

We experimentally verified on a database of real images that our method
outperforms classic normalized convolution. Moreover, it can be used as a pre-
processing step to enhance adaptive normalized convolution, too.
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Section 2 briefly describes both normalized convolution and its adaptive vari-
ant. Section 3.1 sketches phase congruency and radial symmetry transforms to
detect regions of interest in images. The structural similarity metrics is reported
in section 3.4 as part of the fitness function of our genetic algorithm, introduced
in the rest of section 3. Experiments and conclusions are reported in sections 4
and 5.

2 Normalized Convolution

Normalized convolution represents an important tool in the digital signal pro-
cessing field. It was described for the first time by Knutsson and Westin [1] who
pointed out the opportunity to provide also a confidence measure of the available
samples. Actually, a map should indicate the presence degree of a sample in a
given position. In particular, a binary map would indicate just the absence or
presence of the signal. The underlying theory is simple and its implementation
appears quite fast.

Let S be the positive map that represents certain samples of a digital image
I. If we indicate by {S · I} the pixelwise product of S and I and by {K ∗ I} the
usual convolution with a kernel K, then normalized convolution is defined by

NC(I, S, K) = {K ∗ S · I} / {K ∗ S}
In other words, to reconstruct the whole image I from its samples specified in
S, we just have to weight {K ∗ S · I} by the confidence {K ∗ S} of the results
generated.

The kernel, centered in the origin, is usually defined as a Gaussian-like surface

Kx,y =

{
r−2 cos2

(
πr

2rmax

)
if r<rmax

0 otherwise

where r=
√

(x2 + y2). To avoid over-smoothing the output image, K should be
big enough to contain just some pixels of the input signal. Vice versa, if the
distance between the nearest samples in S is greater than the size rmax of K,
then the reconstructed image will contain gaps. Without a priori information,
rmax is automatically set to the minimal distance among the available samples
to reduce artifact effects along edges: at least one pixel lies always within the
radius. It is noteworthy that fast implementations can be developed for both
convolving images with very few samples and computing the distance among
these samples.

A variant of this algorithm is known as adaptive normalized convolution and it
modulates both the size and the shape of the kernel K, according to the position
of certain samples [2,3]. In this case, implementing an optimized and efficient
custom convolution routine can be quite difficult. Indeed, a different filter can
be arranged for each pixel of the output image and an estimate of the gradient
of the whole image is used to determine this proper kernel. Obviously, this gra-
dient itself is just an approximation since it has to be computed from available
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samples specified by S. This preprocessing step, known as derivative of normal-
ized convolution or normalized differential convolution, requires a considerable
amount of computational time. Actually, we do not to use the adaptive nor-
malized convolution technique because its performances usually does not justify
the enhancement of the final output image, which we aim to achieve by better
positioning the samples in S. Anyway, adaptive normalized convolution can be
applied with the sample positions returned by our method.

3 Genetic Normalized Convolution

Genetic algorithms have been already applied to the inpainting problem (i.e.
automatic completing missing areas and spatiotemporal restoration by using
image samples) [4], but, to our knowledge, this is the first description of a method
that combines normalized convolution and an evolutionary approach. We have
not modified this former algorithm which will be used to code and compress
data. We implemented a genetic algorithm to locate the best position of certain
samples. We desire to hold all details in the image by assigning most information
to them. In order to decide if such parts of the image should be considered as
a regions of interest, we used models suggested by the Gestalt theory. Anyway,
enough samples still have to be devoted to uniform zones, which are usually
due to the background. The following section regards basic algorithms helpful
to identify important details in images.

3.1 Regions of Interest

Regions of interest detectors are usually applied to selectively process images,
to locate peculiar features and to simulate active vision systems. Many defini-
tions of regions of interest do exist and provide complementary information as
edges, corners, blobs and symmetries. In particular, we will sketch a fast radial
symmetry transform and an effective edge detector. These methods are the basis
for a combined detector to manage the positions of certain pixels needed by the
normalized convolution process.

A variety of algorithms to locate centers of radial symmetry in digital images
have been described in the literature. Some of these methods require custom
hardware or do complex filtering within big windows. Often, the size of symmet-
ric zones is unknown, thus multiresolution pyramidal approaches were proposed
too [5]. A few methods reduce the computational time by letting the gradient of
the image drive the analysis in some way [6]. In particular, we used the fast radial
symmetry transform [7] because it returns in real time an output coherent with
present attentive human models. The key idea is to use an accumulation map,
as for the Hough transform, which highlights the contribution of the gradient
vector field. If a point is a center of symmetry, then it receives a degree propor-
tional to the number of gradient vectors heading to it (see figure 1a). Actually,
the radius of the scanning window, that is the length of the vectors to consider,
should be set by the user, but satisfactory results can be obtained by merging
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together the outputs corresponding to a set of different radii (figure 2b shows an
example with radius from 1 to 11 with an incremental step equal to 2).

In [8] it was presented an algorithm to locate both corners and edges from
phase congruency information. This is particularly robust against changes in
illumination and contrast because contours have many of their frequency com-
ponents in the same phase, as in figure 1b. Moreover, these edges present a
single response as line features, are less prone to the presence of noise and are
largely independent of the local contrast (see figure 2c). These observations are
due to the fact that this algorithm is not based on a first-derivative operator
(on the contrary of Canny or Sobel filters) which usually exalts also the contri-
bution of negligible details. The whole method is computationally intensive, but
fortunately we need to apply both phase congruency and the above symmetry
detector just at the beginning of our genetic algorithm to create a regions of
interest mask that comprises both edges and centers of radial symmetries.

a b

Fig. 1. (a) dots represent the degree of radial symmetry pointed by gradient vectors.
(b) Fourier components, as dashed lines, share the same zero crossing of a step edge.

3.2 Population

Given an image I, our algorithm creates a corresponding mask ROI that mea-
sures the pixels’ ‘importance’. This mask is the superimposition, normalized
in [0,1], of edges and centers, obtained trough the methods described in sec-
tion 3.1. To reduce the effect of pointlike noise and to spread the regions of
interest, a Gaussian convolution, with radius equal to 19 and standard deviation
equal to 6.3, is performed. The pixelwise product of the resulting mask with its
thresholded version (on the average value), puts in evidence all details [9,10,11]
(figure 2d).

Each genome A of the population encodes co different indices with values in
[1, n2], where the image has exactly n × n pixels and co samples will be used to
reconstruct it. Even if a convenient coding would be the use of whole permu-
tations of n2 elements, we limited the genome dimension to co, thus reducing
drastically the storage complexity of the algorithm. Indeed, we want to remark
that usually co�n2.

The initial set of ni random individuals have fd genes constrained on details
highlighted by the mask ROI. This trick is not necessary and does not follow
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any evolutionary strategy, but we verified that it reduces the number ng of gen-
erations required to reach a stable solution. It must be noted that our algorithm
does not constrain the number of samples on details during the evolution of the
population. The cardinality ni of the population, the quantity fd of details and
further parameters will be considered in section 4.

a b c d

Fig. 2. (a) input image. (b) radial symmetries. (c) phase congruency edges. (d) regions
of interest map.

3.3 Selection and Genetic Operators

During the development of our algorithm, we considered a variety of selection
methods (e.g. roulette wheel, ranking and random) [12] to pick the chromosomes
for crossover. The final version of the system includes only a 4-way tournament,
without duplication of already selected individuals, because other strategies re-
turned poor results. An elitist selection is also applied to assure that the worst
chromosome will be eliminated and the best one be present as two copies in
the next population too. Although this approach reduces the variability of the
hereditary characteristics, we ascertained that it increases the result accuracy.

Since our individuals store just part of permutations, we developed ad hoc
tools instead of using standard genetic operators for permutations (e.g. CX, OX
and PMX). Let us indicate with A

⋃
B and A

⋂
B respectively the union and

intersection sets of genes owned by two parents A and B. Two offsprings C
and D are obtained by joining the indices in A

⋂
B with half of the indices in

(A
⋃

B)\(A
⋂

B), randomly chosen (see figure 3). This operation is not subject
to any probability because, due to data structure optimizations, we always force
the same percentage pc of chromosomes to undergo crossover.

A = (26 11 30 9 15 24 14 27 5 34)
B = (21 6 30 15 9 29 19 26 10 16)

P ((A
⋃

B)\(A
⋂

B)) = (29 16 10 19 27 21
∣∣ 6 11 34 14 5 24)

C = (26 29 30 9 15 16 10 19 27 21)
D = (6 11 30 15 9 34 14 26 5 24)

Fig. 3. A crossover example. Common genes in A and B are underlined. P indicates a
random permutation of the indices.
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In the case of complete permutations, mutation is accomplished usually by
swapping a pair of random indices. We cannot apply this method because, while
the order of the indices in an individual is irrelevant, we must ensure to replace
a gene already coded with another one that is not in the genome yet. This
operation corresponds to move just a sample to another position. We introduced
the parameter mg to guarantee that an adequate number of genes are modified to
significantly change the content of the image. Moving mg samples in a completely
random fashion does not improve the overall quality of the reconstructed image,
because, on average, the same number of samples remain in the same zones of the
image. To slightly change the aspect of the scene (see figure 4), we verified that a
better strategy consists in moving mg samples within their own neighborhoods
of radius 3. As for crossover, this operation is not subject to any probability
because we force always the same percentage mg of genes to change and the
same percentage pm of chromosomes to undergo mutation.

A = (26 11 30 9 15 24 14 27 5 34)

B = (26 11 30 8 15 24 14 29 5 34)

Fig. 4. A chromosome A and its mutated version B. Small perturbations, underlined
here, usually occur.

3.4 Quality Metrics and Fitness Function

Many metrics were defined to evaluate the similarity between images. For ex-
ample, mean square error and its variant peak signal-to-noise ratio are widely
applied to quantify pixelwise differences between two images, though this ap-
proach does not satisfy a real human perception system. That is, it can be
proved that very altered versions of the same image still present almost identical
PSNR values. It must be noted that the bigger this metrics is, the better the
image is perceived. Generally speaking, a medium quality image should have a
PSNR value not smaller than 30dB.

A recent subjective metrics, known as structural similarity, was introduced
in [13] to compare local patterns of pixel intensities, after luminance and con-
trast normalization trough a z-score function. This method assumes that the
main structures in the scene are independent from luminosity, which should be
isolated. The similarity index between two images with � gray levels, means μ
and standard deviations σ is given by

SSIM(I1, I2) =
(2μ1μ2−κμ) (2σ12+κσ)

(μ2
1+μ2

2+κμ) (σ2
1 +σ2

2+κσ)

where σ12 represents the covariance of the images and the constants
κμ =εμ(�−1)2 and κσ =εσ(�−1)2, with 0<εμ �1 and 0<εσ �1, avoid insta-
bility when μ2

1+μ2
2 or σ2

1+σ2
2 is close to 0.
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Again, the bigger the value of this metrics is, the better the image is perceived.
Assessments derived from SSIM keep count of the whole image and are closer
to subjective judgments. Sometimes, PSNR provides very different values in the
case of images which can be considered almost identical and, therefore, with
similar SSIM values. For the sake of completeness, we compare the reference
image and the reconstructed one by both SSIM and PSNR.

Our fitness function f to evaluate a chromosome A is just the inner product,
normalized to the number of pixels, between the regions of interest mask (see
section 3.1) and the SSIM value of the original image I and its reconstructed
version, obtained trough the map of samples coded in A

f(A) = 〈ROI(I), SSIM(I, NC(I, S(A), K))〉 / n2

Better individuals correspond to higher values of f . Despite its simplicity, this
formula provided enough variability to produce good results for all images we
considered. The population evolves until a stable solution is found or merely the
maximum number of generation is reached.

4 Experimental Setup

We verified the performance of our methodology on a database of gray scale
images, freely available on the Internet. We studied 50 images that contain
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Fig. 5. Average fitness trend versus number of generations, with respect to number ni
of individuals and percentage co of confident samples. The values of f lie within the
gray band. Average fitness due to random samples is reported as dashed line. Suggested
number of generations is indicated by the point.
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co=5% random co=5% ni=64 co=5% ni=128 co=5% ni=256

co=10% random co=10% ni=64 co=10% ni=128 co=10% ni=256

co=15% random co=15% ni=64 co=15% ni=128 co=15% ni=256

SSIM=0.69 PSNR=22.4 SSIM=0.71 PSNR=30.2 SSIM=0.74 PSNR=30.3 SSIM=0.75 PSNR=30.4

SSIM=0.76 PSNR=24.3 SSIM=0.77 PSNR=31.4 SSIM=0.80 PSNR=31.6 SSIM=0.82 PSNR=31.7

SSIM=0.80 PSNR=25.5 SSIM=0.81 PSNR=32.0 SSIM=0.83 PSNR=32.4 SSIM=0.85 PSNR=32.6

Fig. 6. Comparison among random samples and samples arranged by our algorithm
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structured and textured scenes with 256 × 256 or 512 × 512 pixels. They were
compared with the reconstructed versions by the SSIM quality metrics. Plots
in figure 5 show the average fitness during the genetic evolution on the entire
database. The gray band represents the minimum and maximum values of f . The
average value is close to the best one (i.e. the maximum), thus most chromo-
somes really converge to the solution found by our method. Further parameters,
as the percentage co of certain samples and the number ni of individuals are
also reported. The average fitness of an image reconstructed from samples in
completely random positions is depicted as a dashed line. Reconstruction ex-
amples are shown in figure 6. It is quite evident that our genetic algorithm is
able to locate samples that improve the performance of the usual normalized
convolution, regardless the values of ni and co.

Various experiments were carried out to fine tune the percentages
mg∈{0.10, 0.40} of genes to mutate, fd∈{0.10, 0.40} of details to maintain,
pc∈{0.70, 0.95} and pm∈{0.05, 0.30} of chromosomes for crossover and muta-
tion, respectively. As a rule of thumb, mg = 0.25, fd = 0.15, pc = 0.95, pm = 0.05
allow to reduce the run time and to achieve satisfactory final images. For all these
values, we studied the results corresponding to an incremental step equal to 0.05
and a number ni of individuals equal to 64, 128 and 256. In the case of lots
of chromosomes, a better solution is expected but many generations are needed
to let it stabilize. The following sets of suitable parameters, indicated trough a
point in the plots of figure 5, can be used independently of the number co of cer-
tain samples (as percentage of the image size): ni = 64 and ng = 384, ni = 128
and ng = 512, ni = 256 and ng = 768.

5 Results and Conclusions

Normalized convolution is an important tool to reconstruct images from few
samples and it is particularly useful when part of the information is lost due to
noise or when a failure occurs during data transmission. Usually, these samples
are assumed to be randomly distributed, in a uniform fashion. This paper consid-
ers normalized convolution for data coding and compression. In this case, we are
interested in the reconstruction from a given number of certain samples or below
an error threshold. A genetic algorithm has been presented to locate the best
positions of the samples and an extensive experiment was carried out to verify
its robustness on real images. In particular, an attentive model, based on phase
congruency and radial symmetry, was used to create a proper initial population,
while a structural similarity metrics was adopted to measure the perceived qual-
ity of the solution. It is noteworthy that this image can be slightly improved by
using the usual adaptive normalized convolution on the samples chosen by our
genetic algorithm, in spite of the increased amount of computations.

We developed our system in the interpreted high level MatLab language. This
means that a few minutes are still necessary to elaborate a 256 × 256 pixels im-
age, though a C/MPI compiled version of the program should be able to reach a
feasible solution very quickly. We are already working on an improved, parallel



Genetic Normalized Convolution 679

version of our genetic algorithm to get benefit from new multicore CPUs, avail-
able on present computers. We experimentally verified that the time complexity
is roughly linear with respect to both the number of individuals and the size
of the image to reconstruct. On the other hand, the number of certain samples
does not cause any overload, due to the reduced quantity of genes coded by the
chromosomes.
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Abstract. Shape-from-shading is an interesting approach to the prob-
lem of finding the shape of a face because it only requires one image and
no subject participation. However, SfS is not accurate enough to pro-
duce good shape models. Previously, SfS has been combined with shape
models to produce realistic face reconstructions. In this work, we aim
to improve the quality of such models by exploiting a probabilistic SfS
model based on Fisher-Bingham 8-parameter distributions (FB8). The
benefits are two-fold; firstly we can correctly weight the contributions
of the data and model where the surface normals are uncertain, and
secondly we can locate areas of shadow and facial hair using inconsis-
tencies between the data and model. We sample the FB8 distributions
using a Gibbs sampling algorithm. These are then modelled as Gaus-
sian distributions on the surface tangent plane defined by the model.
The shape model provides a second Gaussian distribution describing the
likely configurations of the model; these distributions are combined on
the tangent plane of the directional sphere to give the most probable sur-
face normal directions for all pixels. The Fisher criterion is used to locate
inconsistencies between the two distributions and smoothing is used to
deal with outliers originating in the shadowed and specular regions. A
surface height model is then used to recover surface heights from surface
normals. The combined approach shows improved results over the case
when only surface normals from shape-from-shading are used.

1 Introduction

Shape-from-shading(SfS) is a method of finding the shape of a surface from a
single image, and has been used previous for finding 3D face models. Faces are
quite suitable for this approach because they have a fairly constant albedo over
most of the surface (excluding eyes, facial hair and so on) and the shape varies
smoothly. Capturing a face in this way only requires one image and no subject
participation and so it is non-invasive and can be done at a distance. However,
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even state-of-the-art SfS methods are not accurate enough to produce correct
face shapes on their own.

In order to improve the quality of the face shape, a model is required. These
may vary from specific constraints on the shape to complete models of the shape
of faces; for example Prados and Faugeras[16] enforce convexity through the lo-
cation of singular points. Zhao and Chellappa[17] use the symmetry of faces as
a constraint. Samaras and Metaxas[18] use a deformable model of face-shape.
Blanz et al.[6] exploit a full 3D morphable head model built from laser range
scans which also includes texture. By minimising the difference between the
rendered model and the measured face image, they can estimate face-shape,
pose and lighting at the same time. Smith and Hancock[15] combined SfS with
a statistical model of face shape. This face model was derived from 3D face
range scans and provided sufficient constraints on the shape to produce realis-
tic models of faces. This method exploited the SfS method of Worthington and
Hancock[3] However, Haines and Wilson [1] presented a more reliable SfS algo-
rithm which use directional statistics; specifically Bingham, Bingham-Mardia,
von-Mises-Fisher and Fisher-Bingham 8-parameter distributions (FB8) [10] to
model different entities involved in any SfS algorithm Cone constraint [3], bound-
ary and gradient information and resulting surface normals [1]. In our work we
make use of advantages of both of these models and combine the statistical
face shape models of Smith and Hancock with probabilistic Shape-from-Shading
method of Haines and Wilson in a probabilistic framework to give a more reliable
facial Shape-from-Shading method.

These two models produce results on different spaces and using different prob-
ability distributions. The SfS algorithm of Haines and Wilson outputs the surface
normal directions on the unit sphere as Fisher-Bingham distributions (FB8) for
every pixel whereas statistical model of Smith and Hancock gives a Normal
distribution on the tangent plane for each pixel. The two models can only be
combined when they are in the same space and are represented using tractable
distributions.

2 Background

This research work aims to improve the quality of SfS face-shape models by
combining a probabilistic Shape-from-Shading method with a statistical shape
models of human faces. The goal is to exploit the distributions provided by
the two methods to locate a maximum-likelihood shape which accounts for the
uncertainties in both models. To commence, we briefly describe the formulation
of the two models, and the exponential map, which form the key elements of our
framework.

2.1 Shape-from-Shading

Haines and Wilson presented a probabilistic Shape-from-Shading algorithm based
on Markov random fields and belief propagation [1]. Directional statistics, specifi-
cally FB8 distributions[9] were used for the probabilistic representation of surface
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orientation. In particular, the method produces a FB8 distribution describing the
surface normal at each point on the image

pFB(x̂;A) ∝ exp(bT x̂ + x̂T Ax̂) (1)
where x̂ is the surface normal direction, b is the Fisher parameter and A is
Bingham matrix and is symmetric. In this method, the irradiance and smooth-
ness constraints are defined in terms of directional distributions. The global
distribution of normals is described using a Markov random field model. Haines
and Wilson used the hierarchical belief propagation method of Felzenszwalb and
Huttenlocher[11] to find the marginals of the directional distributions; once the
belief propagation has converged the Shape-from-Shading algorithm gives sur-
face orientation for each pixel using an FB8 distribution. Haines and Wilson’s
approach generally performed well as compared to Lee & Kuo[2] and Worthing-
ton & Hancock[3] and has the advantage of characterizing the uncertainty in
normal direction at any point.

2.2 The Exponential Map

Directional data can be naturally modelled as points on the surface of a unit
sphere. The direction is given by the unit vector from the origin to the point on
the surface. This is a non-linear manifold which highlights some of the difficulties
in computing statistics with surface normals.

The exponential map is a map from points on the manifold to points on a
tangent space of the manifold. As the tangent space is flat (i.e. Euclidean), we
can calculate quantities on the tangent space in a straightforward way. The map
has an origin, which defines the point at which we construct the tangent space
of the manifold. Formally, the definition of these properties as follows: Let TM

be the tangent space at some point M on the manifold, P be a point on the
manifold and X a point on the tangent space. We have

X = LogMP (2)
P = ExpMX (3)

The Log and Exp notation defines a log-map from the manifold to the tangent
space and an exp-map from the tangent space to the manifold. This is a formal
notation and does not imply the normal log and exp functions - although they do
co-incide for some types of data, they are not the same for the spherical space.
M is the origin of the map and is mapped onto the origin of the tangent space.

For the spherical manifold, which is used to represent directional data, the
log-map corresponds to the azimuthal equidistant projection, and the exp-map
to its inverse. We define a point P on the sphere as a unit vector p. Similarly,
the point M is represented by the unit vector m which is the origin of the map.
The maps are then

x =
θ

sin θ
(p − m cos θ) (4)

p = m cos θ +
sin θ

θ
x (5)
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where θ is the angle between the vectors. The vector x is the image of P and lies in
the tangent space of the sphere at point m, and the image of M is at the origin
of the tangent space. x is intrinsically 2-dimensional as it lies in the tangent
plane, and we can characterise it by two variables if we define an orthogonal
coordinate system for the tangent plane using the unit vectors {u1,u2}; the two
parameters are then α = xTu1 and β = xTu2.

2.3 Facial Shape Model

Smith[4] constructed a statistical model of needle maps using range images
from 3DFS database[5] and Max Plank database[6] based on Principal Geodesic
Analysis[7]. Each range image in the training data is converted to a field of
surface normals and then PGA is applied to the data. Smith calculates the
spherical median μ(x, y) at each pixel location. At each point in the image, a
tangent plane to the sphere is defined by the direction μ(x, y) and the surface
normals projected onto this tangent plane using the log-map. The covariance
matrix calculated using PGA then describes the distribution of surface normals
on the union of all of these tangent planes. As a result, the statistical model
consisted of the set of spherical medians μ(x, y) and a covariance matrix on the
union of tangent planes L.

Smith also constructed a statistical surface height model which gives surface
height from surface normals implicitly without following any explicit surface
integration method. Like the statistical surface normal model Smith’s height
model extracts the principal modes of variation from a joint model of surface
normal and height. Least-squares can then be used to locate the best height
model for a particular configuration of surface normals.

2.4 Outline of the Method

Our goal is to combine these two probabilistic descriptions of the set of surface
normals, one from SfS and one from the shape model. The FB8 distribution is
difficult to manipulate; for example finding maximum-likelihood estimates for
the parameters is a non-trivial problem. Instead, we convert the SfS distribu-
tions to distributions on the tangent planes of the shape model using sampling.
We commence with the the FB8 distributions delivered by SfS and the Smith
and Hancock statistical face model. The first step is to sample the FB8 distribu-
tions. From these samples we compute the spherical median at each point. We
then project the samples onto the tangent plane of the directional sphere and
compute the Normal distribution on the tangent plane. We then combine this
with the Smith and Hancock model on the tangent plane to provide a combined
distribution of surface normals. We identify and eliminate SfS outliers using the
Fisher criterion. Finally we smooth and integrate the resulting surface normals
to obtain a shape estimate.

In section 3, we describe a sampling method for the FB8 distribution. In
section 4 we explain how to model the samples on the tangent plane and combine
them with the shape model. Section 5 describes how to identify outliers where
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the SfS is ineffective, and how to construct a final face shape. Finally, we present
some results in Section 6.

3 Sampling of FB8 Distributions

The FB8 distribution[9] is a multivariate normal distribution that is constrained
to lie on the surface of a unit sphere. The Fisher-Bingham distribution is used
to model the directional data on spheres and sometimes for shape analysis[1].
If x = (x0, x1, x2) is a random variable from this distribution then according to
the unit norm constraint ‖x‖2 = 1. Hence, (x2

0, x
2
1, x

2
2) lies on a simplex.

Our goal is to generate a set of samples from the distribution using the method
of Kume and Walker[9] which we briefly describe here. The key idea of Kume
and Walker is to transform x to (ω, s) where si = x2

i and ωi = xi

‖xi‖ , so ωi can
either be 1 or −1. They then study the marginal and conditional distributions
of ω and s.

The FB8 distribution is

pFB(x̂;A) = N(b,A) exp(bT x̂ + x̂TAx̂) (6)

where N(b,A) is the normalizing constant, x ∈ R3 and xT x = 1. We can
diagonalize the Bingham matrix A by a suitable orthogonal transform so we may
assume A is diagonal without any loss of generality i.e. A = diag(λ0, λ1, λ2).
Using the parameters ai = λi − λ0 for i = 1, 2 and s = 1 − s0 = s1 + s2. We can
write the density as

PFB(ω, s) ∝ exp

[
2∑

i=0

(aisi + biωi
√

si)

]
× exp

[
b0ω0

√
1 − s

]
×

2∏
i=0

1
√

si

1√
1 − s

1(s ≤ 1)

(7)

where, 1(s ≤ 1) is the indicator variable and c is a constant. Kume and Walker
then introduced three latent variables (u, v, w) and construct a joint density of

f(ω, s, u, v, w) ∝1

[
u < exp

(
2∑

i=1

(aisi + biωi
√

si)

)]
× 1

[
v < exp

(
b0ω0

√
1 − s

)]
× 1

[
w <

1√
1 − s

]
×

2∏
i=1

1
√

si
1 (s ≤ 1)

(8)

Finally, Gibbs sampling may be used to draw samples using the conditional
distributions of all of these variables. The values of s and ω conform to the
original Fisher-Bingham distribution and can be converted back into samples of
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x̂. In the interests of space we omit the details of the sampling process which
can be found in [9].

We use this slice sampling process to sample a set of surface normals from the
FB8 distribution produced by Haines and Wilson shape-from-shading. Typically
we sample of the order of 100 normals, which we use in the next section to
compute a distribution on the tangent plane. We analyze the number of samples
required in the experimental section.

4 Combining the Normals

The shape model and the SfS process both provide a distribution for the surface
normals at each point in the image. We now explain how we combine these
distributions. Quantities from the shape model will be denoted with the subscript
1 and those from the SfS with subscript 2. These calculations are applied at each
pixel.

4.1 Acquiring the Mean and Covariance Matrices

Finding the appropriate mean and covariance from Smith’s model is straightfor-
ward. The mean surface normal is already defined as μ1. We use this direction to
define the tangent plane on which we combine the models, because the normals
from SfS could potentially be outliers.

The covariance matrix L from Smith’s model describes the covariance on the
union of tangent planes at all points. To extract the covariance matrix at a single
point, we need only pull out the appropriate components from L to find the 2-
by-2 covariance. We represent this by a precision matrix P1 for convenience:

C1 =
[
Lxyα,xyα Lxyα,xyβ

Lxyα,xyβ Lxyβ,xyβ

]
(9)

P1 = C−1
1 (10)

where xyα refers to the α component of the tangent-plane normals at pixel (x, y).
For Haines and Wilson SfS, we have k samples from the FB8 distribution for

each pixel {n1,n2, . . . ,nk} as described in section 3. We begin by computing the
the extrinsic mean of the surface normal samples using, p̂0 = 1

K

∑K
k=1nk. We

then use this extrinsic mean to calculate the spherical median using the iterative
process below:

p̂j+1 = Expp̂j

(
1
K

K∑
i=1

Logp̂j
(ni)

)
(11)

We use 5−10 iterations to calculate the spherical median. Once the spherical me-
dian is found we use this surface normal μ2 = p̂final as the base point to convert
the k samples [n1,n2, . . . ,nk]T from last iteration to the vectors [v1,v2, . . . ,vk]T

on the tangent plane using the log-map:vk = Logμ2
(nk). From these samples, we

compute a tangent-plane covariance C2 and corresponding precision P2 = C−1
2
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4.2 Combining Gaussian Distributions

We now have two Gaussian distributions on two different tangent planes corre-
sponding to the SfS model and the shape model. We combine these on a single
tangent plane defined by the shape model surface normal as the SfS normal may
in some cases be an outlier. The mean of the shape model distribution is of
course at the origin on the tangent plane, but we must project the SfS mean
onto this tangent plane using the log-map i.e. vμ2 = Logμ1

μ2. We may then
combine the distributions using the normal rules for combining Gaussians:

P∗ = P1 + P2 (12)
v∗ = (P∗)−1(P2vμ2) (13)

The normal on the tangent plane is then converted back on the unit-sphere with
exponential mapping i.e. μ∗ = Expμ1

v∗. v∗ is then our maximum-likelihood
estimate of the surface normal.

4.3 Dealing with Outliers

Outliers arise in the regions where surface normals resulting from Smith’s model
do not comply with the surface normals generated through the sampling of FB8

distribution. This is due to the fact that we are so far ignoring the effects of
albedo i.e. the irradiance equation assumes unit albedo which does not hold in
the eyes, areas of facial hair or shadow regions. To detect these outliers we use
Fisher criterion. The Fisher criterion is ideal for our algorithm due to the fact
that we have separate class distributions to represent surface normals from shape
model and FB sampling.

The Fisher criterion is a linear pattern classifier that evaluates between-class
variance relative to the within-class variance [13]. The idea of Fisher criterion lies
in finding such a vector d that the patterns belonging to opposite classes would
be optimally separated after projecting them onto d [14]. The Fisher criterion
for two classes can be expressed as

F (d) =
dTSd
dTΣd

(14)

where, S is between class scatter matrix given by S = ΔΔT and Δ = μ1 − μ2.
μ1, μ2 are the mean vectors and Σ1, Σ2 are the covariance matrices of classes
1 and 2. Σ = p1Σ1 + p2Σ2 where p1 and p2 are the a priori probabilities of the
two classes which are taken as 0.5 while giving equal weightage to both classes.
The optimal value of Fisher discriminant dopt maximises the value of F . Here we
are interested in the optimal value of F (dopt) as it gives a good measure of the
separation of the two classes. We use the F (dopt) as a threshold to deal with the
outliers; the outliers exist at the pixels where the two surface normals from FB
sampling and Smith’s model do not register with each other. The distributions
will therefore be well separated and give a large value of the Fisher criterion.
As we already have the necessary class means and covariances to hand, it is a
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straightforward task to compute the criterion. We decide a threshold value for
the criterion and then replace that particular pixel’s surface normal μ∗ with
Smith’s surface normal μ1 at that specific location if the value of F (dopt) is
higher than decided threshold.

4.4 Surface Reconstruction

After the surface normals have been combined using product normal distribution
we perform smoothing on these normals. Smoothing is required as it finds the
normal’s best fit to the statistical model. The normals are first converted on the
tangent plane using the Smith’s statistical normals as the base points using Log
map i.e.

u(x, y) = Logμ1(x,y) (μ∗(x, y)) (15)

All the image points [u(1, 1), u(1, 2), . . .] are then stacked together to give a N ×2
vector Uc of combined normals on the tangent plane. The best fit vector on the
tangent plane is then found using[15],

Ur = PPT Uc (16)

where P is the matrix of principal directions from Smith’s statistical model. Uc

is the vector comprised of combined surface normals on the tangent plane and
Ur is the vector of recovered smoothed surface normals. The surface normals on
the tangent plane are then brought back to the unit sphere through exponential
mapping using Smith’s statistical needle map as base points. We will show in
experiments that smoothing helps in reducing the RMS error.

Finally we use Smith’s height model to recover surface height from surface
normals, as described in section 2.3.

5 Experimental Results

We have tested our algorithm on the same data set that has been used to con-
struct Smith’s statistical models [4]. Iterative Closest Point method [12] was
used to compute the RMS distance between ground truth normals and recov-
ered normals and between ground truth surface height and recovered surface
height.

5.1 Effects of Number of Samples

The only time consuming component in our technique is the slice sampling of the
FB8 distributions. For each pixel first 200 samples are used for burn in period
then extrinsic mean is calculated with next 100 samples. We use 5−10 iterations
to calculate intrinsic mean; each iteration in turn may use 25, 100, 250 or 500
samples. Increasing the number of samples increases the global consistency of
sampled FB8 surface normals resulting from SfS at the expense of time. Figure
1 shows results for one of the test images that has been used as input to the SfS
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algorithm; the outputted FB8 distributions from SfS were sampled using Kume
& Walker [9]. In figure 1 row 1 we have shown the resulting sampled illuminated
surface normals when 25, 100, 250 and 500 samples were used per iteration for
computing spherical median. Row 2 of figure 1 shows the combined normals
when SfS sampled normals are combined with statistical model of needle maps.
No fisher criterion or smoothing yet have been performed.

Fig. 1. Illuminated FB Sampled (Row1) and Combined Normals (Row2)

5.2 Surface Normals and Surface Height Errors

Figure 2 on the left shows the ground truth normals (Row1) for 5 subjects
from our test data, the Shape-from-Shading FB sampled normals (Row2) and
resultant Combined normals (Row3). In right half of figure 2 we have shown the
illuminated version of these normals when they are illuminated with a fronto-
parallel unit light source [0,0,1]. For subjects shown in figure 2 ; 500 samples per
iteration have been used for computing the spherical median.

We have computed error distances for 200 synthetic images for surface nor-
mals and surface heights using Iterative Closest Point algorithm. Figure 3 on
the left shows the Root Mean Squared error computed between Groundtruth
surface normals and SfS FB sampled normals (EFBSampled shown in red); and be-
tween Groundtruth normals and resultant Combined normals (ECombined shown
in green). In the right halft the RMS distance profile computed for surface heights
is shown. The number of subjects have been adjusted according to the ascend-
ing EFBSampled error. Only 25 samples per iteration have been used for spherical
median computations for the purpose of computing these errors.

From the error profiles it is apparent that the Root Mean Squared error has
reduced significantly when combined surface normals have been used instead of
using the surface normals computed through the SfS model alone. So the surface
heights constructed from these normals have shown improvements as well as
apparent from figure 3.
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Fig. 2. Groundtruth Surface Normals (Row1), SfS FB Sampled Normals (Row2) and
Combined Normals (Row3)

Fig. 3. Profiles of Surface Normal (Left) and Surface Hieght (Right) Errors

6 Conclusions

We have presented a probabilistic framework in which Fisher-Bingham 8-
parameter distributions arising from a probabilistic Shape-from-Shading method
are sampled using a slice sampling algorithm; surface normals are calculated from
these samples using the machinery of spherical median and log/exp mapping.
These normals are then combined with normals resulting from a statistical facial
shape model using individual Gaussian distributions on the tangent plane. Fisher
criterion and smoothing are used to deal with outliers. From our experiments we
have shown that the error distances reduce when combined normals are used;
even when less samples from FB sampling were used to compute spherical me-
dians. In our future work we will try to fit Fisher-Bingham distributions to the
statistical normals instead of fitting Gaussian distribution to the sampled SfS
normals on the tangent plane and then combine the resulting Fisher-Bingham
distributions. Since, Fisher-Bingham distribution models directional data more
precisely than Gaussian distribution; we hope this will give more reliable com-
bined normals.
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Abstract. In this paper we introduce a new method for Visual Saliency 
detection. The goal of our method is to emphasize regions that show rare visual 
aspects in comparison with those showing frequent ones. We propose a bottom 
up approach that performs a new technique based on low level image features 
(texture) analysis. More precisely, we use SIFT Density Maps (SDM), to study 
the distribution of keypoints into the image with different scales of observation, 
and its relationship with real fixation points. The hypothesis is that the image 
regions that show a larger distance from the mode (most frequent value) of the 
keypoints distribution over all the image are the same that better capture our 
visual attention. Results have  been compared to two other low-level 
approaches and a supervised method. 

Keywords: saliency, visual attention, texture, SIFT. 

1   Introduction 

One of the most challenging issues in Computer Vision field is the detection of salient 
regions in an image. Psychovisual experiments [1] suggest that, in absence of any 
external guidance, attention is directed to visually salient locations in the image. 
Visual Saliency or Saliency mainly deal with identifying fixation points that a human 
viewer would focus on at the first glance.  Visual saliency usually refers to a property 
of a "point" in an image (scene), which makes it likely to be fixated. Most models for 
visual saliency detection are inspired by human visual system and tend to reproduce 
the dynamic modifications of cortical connectivity for scene perception. In scientific 
literature Saliency approaches can be subdivided in three main groups: Bottom-up, 
Top-down, Hybrid. 

In Bottom-up approaches (stimulus driven) human attention is considered a 
cognitive process that selects most unusual aspects of an environment while ignoring 
more common aspects. In [2] the method is based on parallel extraction of various 
feature maps using center-surround differences. In [3] multiscale image features are 
combined into a single topographical saliency map. A dynamical neural network then 
selects attended locations in order of decreasing saliency. Harel et al. in [4] proposed 
graph based activation maps.  

In Top-down approaches [5,6] the visual attention process is considered task 
dependent, and the observer's goal in scene analysis is the reason why a point is fixed 
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rather than others. Object and face detection are examples of high level tasks that 
guide the human visual system in top-down view.  

Generally Hybrid systems for saliency use the combination of the two levels, 
bottom-up and top-down. In hybrid approaches [7,8] Top-down layer usually cleans 
the noisy map extracted from Bottom-up layer. In [7] top-down component is face 
detection. Chen et al. [8] used a combination of face and text detection and they found 
the optimal solutions through branch and bound technique.  

A common problem for many of these models is that they often don’t match real 
fixation maps of a scene. A newer kind of approach was proposed by Judd et al. [9] 
who built a database [10] of eye tracking data from 15 viewers. Low, middle and 
high-level features of this data have been used to learn a model of saliency. In our 
work we aimed to further study this problem. We decided to investigate about the 
relationship between real fixation points and computer generated distinctive points. 
Our method performs a new measure of visual saliency based on image low level 
features, particularly through the distribution of keypoints extracted by SIFT 
algorithm, as descriptor of texture variations into the image. In this work we are not 
interested in color information. Our method is totally unsupervised and it belongs to 
bottom-up saliency methods.  We measured method effectiveness comparing resulting 
maps with real fixation maps of the reference database [10] and with two of the most 
important bottom–up approaches [3][4] and a hybrid method[9].  

2   Proposed Saliency Measure 

Our method propose a new measure of Visual Saliency, focusing on low level image 
features such as texture. What’s the matter for which we use texture information for 
detecting visual saliency? The answer is that texture gives us important information 
about image “behavior”. The base for extracting salient regions, according to our 
method, is to emphasize texture rare event. We decide to study the spatial distribution 
of keypoints inside an image to describe texture variations all over the image. The 
levels of roughness of both fine and coarse regions can be very different (in a fine 
region we will find a larger number of keypoints than in coarse regions), so we use 
keypoints density, to find various texture events and to identify the most salient 
regions. In this work we use SIFT algorithm to extract keypoints from an image. Then 
we introduce the concept of SIFT density maps (SDM) which are used to compute the 
final saliency map.  

2.1   SIFT Feature 

SIFT (Scale Invariant Feature Transform) descriptors [11] are generated by finding 
interesting local keypoints, in a greyscale image, by locating the maxima end the 
minima of Difference-of-Gaussian in the scale-space pyramid. SIFT algorithm takes 
different levels (octaves) of Gaussian blur on the input image, and computes the 
difference between the neighboring octaves. Information about orientation vector is 
then computed for each keypoint, and for each scale. Briefly, a SIFT descriptor is a 
128-dimensional vector, which is computed by combining the orientation histograms 
of locations closely surrounding the keypoint in scale-space. The most important 
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advantage of SIFT descriptors is that they are invariant to scale and rotation, and 
relatively robust to perspective changes. SIFT can be very useful for many computer 
vision application: image registration, mosaicing, object recognition and tracking, etc. 
Their main drawback is the relatively high dimensionality which make them less 
suitable for nearest neighbor lookups against a training dataset. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 1. Original Image (a), SIFT keypoints (b), SIFT Density Map (k=64) (c), final Saliency 
Map (d) 

2.2   SIFT Density Maps 

A SIFT Density Map (SDM) is a representation of the density of keypoints in an 
image, and can give essential information about the regularity of its texture.  A SIFT 
Density Map SDM(k)  is built by counting the number of keypoints into a sliding 
window of size k x k, which represent our scale of observation. Each point in the 
SDM(k) indicates the number of keyponts into a squared area of size k x k, centered 
in corresponding point of the image. It is evident that density values are strictly 
related to the value of k, and are limited by the window size. In fact smaller windows 
should be sensible to texture variations at a finer level, while larger windows will 
emphasize coarser deviations. In section 3 we will discuss the sensibility of the results 
with k.  

In real scenes, the simultaneous presence of many elements (the sky, the urban 
habitations, the urban green spaces) will show many kinds of texture. From a SIFT 
distribution point of view, the homogeneous surface of the sky has almost null values, 
the urban green spaces has mean density while urban habitations have high 
concentration of keypoints. (fig. 1) 
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a) 

 
b) 

 
c) 

 
d) 

 

Fig. 2. Two image examples: a homogeneous subject in a textured scene (a) and the 
corresponding Saliency Map; a textured object in a homogeneous background (c) and the 
corresponding Saliency Map (d) 

2.3   Saliency Map 

Our saliency map SM, for a given k, is built as the absolute difference between the 
SDM values and the most frequent value MV of the map: 

( ) ( ) ( )( )kSDMMVkSDMkSM −=  (1)

which is further normalized with respect to the maximum value to restrict SM values 
to [0,1]. 

The most salient areas into the image are those related to the SDM values with the 
maximum deviation from the most frequent value, typically the most rare texture 
events in the image. This measure emphasizes both the case in which a textured object 
is the salient region, as it is surrounded by homogeneous areas (the most frequent 
value near to 0), and the case in which a homogeneous area is surrounded by textured 
parts (a higher most frequent value). (fig. 2) 

In addition, for a smoother representation of the saliency map, we apply to the SM an 
average filter which has a window size that is a half of that used to build the map (k).  
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(a) 

 
(b) 16 

 
(b) 64 

 
(c) 32 

 
(c) 128 

Fig. 3. Original Image (a), SIFT Density Maps with different values of k (16,32,64,128)  

(a) (b) 0.95 
 

(c) 0.9 

(d) 0.85 (e) 0.8 
 

(f) 0.75 

Fig. 4. Fixation Map (a) of the image in fig. 3.a, Binary maps with different thresholds 
(0.95, 0.9, 0.85, 0.8, 0.75) 
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3   Experimental Results 

In this section we compare our results with those of  Itti-Koch[3], Harel’s Graph 
Based Visual Saliency (GBVS) [4] and Judd [9] methods. Tests were made on [10] 
dataset which consists of 1003 images and the corresponding maps of fixation points, 
which are taken as reference groundtruth (in our tests all the images have been resized 
down by a factor of two).  Tests were executed on an Intel Core i7 PC (4 CPU, 1.6 
GHz per processor, 4 GB RAM), and our method has been implemented in Matlab.  
We use Koch’s Saliency Toolbox[12] to compute saliency maps for the methods [3] 
and [4], and the maps given in [10] for the Judd’s method. Tests were repeated for 
different values of window size (16, 32, 64, 128 - fig.3), with the aim to study the 
sensibility of the results to this parameter.  To compare our results with the other 
methods, and to the groundtruth, we discard from the saliency maps the less N% 
salient pixels (with N= 95, 90, 85, 80, 75 - fig.4) to create a set of binary maps. We 
then measure performances by using as metric (SP) a combination of precision and 
recall parameters: 
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where MD is the binary version of the detected saliency map (with our method or the 
others), while MR is the binary version of the reference fixation map. 

R is the recall, i.e. the ratio between the number of pixels in the intersection 
between the detected map MD and the reference map MR, and the number of pixels in  
MR. When it tends to 1, MD covers the whole MR, but we have no information about 
pixels outside MR (a map made of only salient pixels gives R=1 if compared with any 
other map). If it tends to 0 detected and reference map have smaller intersection. 

P is the precision, i.e the ratio of the number of pixels in the intersection between 
MD and MR, and the number of pixels in MD. When P tends to 0, the whole MD has no 
intersection with MR. If it tends to 1, fewer pixels of MD are labeled outside MR.  
Nevertheless this parameter will not assure that the whole reference area has been 
covered. 

Fig. 5 shows average precision results versus different values of thresholds. Note 
that our method gives its best results for k=128. As noted in section 2.2, smaller 
windows can capture finer details, while larger windows emphasize coarse variation 
of texture. In terms of saliency, human attention is more attracted by areas in which 
there are large texture variations, rather than by small deviation. Then a larger 
window size is preferable. Note also that results with 64 and 128 are similar. In fact 
we observed that while the recall value increases with the window size, precision, in 
case of very large window, does not increase as well. 
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In the comparison with the other methods, we must first underline some 
fundamental issues: 

- Judd method is supervised, and uses 9/10 of the whole dataset for training and 
1/10 for testing. Judd results are averaged only on the 100 testing images. It 
uses both color and texture information. 

- Itti-Koch and GBVS method are unsupervised method and use both color and 
texture information. 

- Our method is unsupervised and use only texture information to build the 
saliency map. 

 
 

 

Fig. 5. Average Saliency Precision (SP) vs. Threshold for our method with different window 
sizes (left), and for our method (k=128) compared to the other methods. 

Our saliency map gives better results than Itti-Koch, for all the threshold values, even 
if we use only texture information. Results are similar to GBVS for higher threshold 
values (0.95 and 0.9), which give information about the most salient pixels, while our 
precision does not increase as well for lower values of threshold (0.85, 0.8). As 
expected Judd method achieves best results, as it is a supervised method, while all the 
other methods are unsupervised. Furthermore Judd tests refers only within a small 
selected subset of images (100 testing images), while other methods have been tested 
within the whole dataset. Judd results are reported only as asymptotic values to be 
compared with. Fig. 6 shows some examples of saliency maps with all the discussed 
methods. Regarding temporal efficiency, our method takes less than 10s to build a 
saliency map, and it is comparable with Itti-Koch and GBVS method for medium 
images (300 x 600). Most of the time (70% ca) is spent to extract keypoints, but it 
depends on image complexity, i.e. the number of keypoints extracted. 
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a) b) c) 

 d)  e) f) 

 g)  h) i) 

j) k)  l) 

 
m) 

 
n) 

 
o) 

 
p)  q)   

r) 
 

Fig. 6. Some visual results. Original images (a,g,m), fixation maps (b,h,n), Judd maps (c,i,o), 
Itti-Koch maps (d,j,p), GBVS maps (e,k,q), our method (f,l,r) window size 128. 
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4   Conclusions 

Visual saliency has been investigated for many years but it is still an open problem, 
especially if the aim is to investigate the relationship between synthetic maps and 
points, in a real scene, that attract a viewer attention. 

The purpose of this paper was to study how computer generated keypoints are 
related to real fixation points. No color information has been used to build our 
saliency maps, as keypoints are typically related only to image texture property. 

Even if we use only texture information, experimental results show that our 
method is very competitive with respect of two of the most cited low-level 
approaches. Judd’s method achieves better results as it is a supervised method which 
has been trained with the fixation maps within the selected dataset.   

In our future works we want to study new color based saliency techniques to be 
integrated with our proposed approach, to improve experimental results. 
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Abstract. Digital image processing techniques are increasingly applied to the 
study of cultural heritage, namely to the analysis of paintings and 
archaeological artefacts, in order to identify particular features or patterns and 
to improve the readability of the artistic work. Digital or 'virtual' restoration 
provides a useful framework where comparisons can be made and hypotheses 
of reconstruction proposed without action or damage for the original object, 
according to the adopted general rules for practical restoration. 

Keywords: Geometrical distortion, image enhancement, virtual restoration, 
mosaics, cultural heritage. 

1   Introduction 

The cultural heritage field has undergone profound changes in recent decades, linked 
to an increasingly demanding public, but also to the transformation of culture in a real 
'good' that can generate wealth and employment. The computer expert that can 
manage virtual restoration programs as now joined the more traditional professional 
figure of the restorer, in a still experimental way. 

These are applications that, in this specific field, provide a number of interesting 
proposals: the virtual restoration does not act on the art work, but simulates a visual 
and aesthetic improvement of the work, so enhancing it. It also gives the possibility to 
choose a series of solutions, before technical operations. 

The case study object of this paper is an experimental project of virtual restoration 
carried out on a mosaic from the church of San Severo in Classe, near Ravenna. The 
construction of San Severo dates from the late sixth century, was consecrated in 582 
and was pulled down and abandoned in the early '20s of the XIX century. The floor of 
the church was formed by a rich mosaic, which was only partially found.  

At the end of the 1966 excavation campaign, a mosaic carpet - 4.50x2.75 m – was 
discovered at the center of the main nave. This mosaic showed a grid of rows of 
tangent pised square containing figures of birds made of glass paste, of great elegance 
and extremely naturalistic; around this main schema runs a shaded three strand 
guillocheon on a black ground (see fig.1). 
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The mosaic was found at a height of 0.40 m beneath the floor of the church, almost 
in the middle of the main nave, but unlike all the other mosaics, it was not aligned and 
oriented north to south direction. These data have suggest that it might be connected 
to an ecclesia domestica, an oratory that might have been part of the Roman domus, 
whose remains are beneath the church. A place of great devotional importance, 
perhaps, the place itself where the saint had exercised (carried out)  his apostolate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Plan of the San Severo church. The original location of the mosaic considered in this 
work is represented by the rectangle in the lower part of the building, near the entrance.  

Today the floor, lifting and relaiding on cement mortar in the late 60s of last 
century, is at the Museo Nazionale in Ravenna, divided into two sections, placed far 
apart on a wall in a narrow and dark lobby, as shown in fig. 2. 
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Fig. 2. The actual location of the San Severo mosaics 

The verticality of the mosaic, the separation of the two sections decontextualize the 
mosaic and impoverish it of its original function as an integral part of the internal 
architecture of the basilica. 

Precisely for this reason it was decided to opt for a virtual restoration project, with 
the intent to provide guidance for future restoration and to revalue this art piece. The 
characteristics of many mosaics - the symmetry and the repetition of geometric 
patterns - make them suitable for the use of information technology both for a 
simulated integratiom and for the reconstruct by analogy of the geometric pattern. The 
use of computers and image processing programs can, in fact, offer a preview of the 
restoration, that can direct the restorer in the techmical operations. 

2   Virtual Restoration 

Our virtual restoration project started from the idea of bringing together the two 
sections. In order to deal with a virtual restoration it is necessary to have the images 
scanned at high resolution; the photographic documentation was made with a Nikon 
D90 at 300 dpi resolution and Kodak color reference band. 

We have chosen the two images that were considered  the best for color reliability 
and for minor distortion, since the narrowness of the environment did not allow a 
clear global frontal view of the entire floor. 

It was then necessary to eliminate the perspective and bring all images in 1:10 
scale. To this end we used a simple photo editing program such as GIMP, which was 
also used for all subsequent operations. As a matter of fact, we used very simple and 
easily provided software to perform this work since our purpose was to give an 
example of virtual processing useful for conservators and restorers as well as for 
scholars (archaeologists, art historians, etc.) that can be carried out without specific 
expertise and computer skills. 

After the images were acquired in digital format, we were able to proceed with the 
actual reconstruction of the floor, taking into account the geometric motifs that make 
up the mosaic assembly and that made the recomposition the most reliable. It was not 
possible to use excavation maps as they had no metric references at all. 
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Once we had a basic image we went on to reconstruct by analogy the geometric 
motif of the floor, which covered both the outer frame with its shaded three strand 
guillocheon, as well as the internal allocation of the carpet, formed by a grid of partly 
overlapping circles, in alternating colors. 

 

Fig. 3. Front image of the two mosaic fragments; the parts inside rectangles refer to fragments 
mistakenly placed in the museum relocation 

Once the virtual reconstruction was completed, some fragments of  the mosaic did 
not fit perfectly, this probably because of injuries and of deformations caused by the 
tearing up and repositioning the mosaic on mortar support, therefore small corrections 
were needed, with minimal and calibrated geometric modifications (fig. 4). 

In addition to the reconstruction of geometric patterns, shown in fig. 5, a proposal 
was made concerning the integration of the figurative lacunae that are not reinstated, 
consisting of three tables. 

The lacunae have been reintegrated, respectively: 

• with a neutral color; 
• with a deliberately discordant color; 
• with a camouflage integration. 

These different choices are shown in figs. 6-8 and make an evaluation possible of the 
obtained results from an aesthetic and conservative points of view. 

The virtual restoration offers a number of possibilities in the field of mosaic 
restoration, although to this date it is not yet so widely adopted. In the case under 
consideration - the Gallinelle mosaics  - it allowed, at low cost and with great ease, to 
create a graphic reconstruction of the mosaic floors, so that when a conservative 
restoration will be carried out,  the restorers will have more significant information 
and different solutions for the integrations. In addition, the handling of mosaic 
fragments - often very bulky and made heavy by concrete support – certainly does not 
not make easy delicate operations such as recompositions. 
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But the virtual restoration not only offers to restorers the possibility of 
recomposing a floor: it also provides the opportunity of simulating on the digital 
image with a photo editing program, the type of integration and the color so that 
scholars, restorers and conservators may evaluate the final appearance of the work 
and the different aesthetic choices. 

 

Fig. 4. Front image of the two mosaic fragments where the smaller pieces have been placed in 
the correct positions 

3   Concluding Remarks 

The virtual restoration is also an essential tool for the revaluation of cultural heritage. 
The new kind of consumer must in fact find the most suitable means to understand 
what she/he sees. A mosaic floor with large lacunae may in fact resemble a ruin rather 
than remind the magnificent mansions that it had been part of. Therefore a mosaic 
floor, decontextualized, hung on a wall and with large lacunae deprives the visitor of 
vital information. 

The virtual restoration then, at very low cost, may intervene by proposing the 
reconstruction of the entire floor, thus playing an important didactic role and giving 
back to the mosaic its readability. In the case of the Gallinelle’s mosaic, split in two 
fragments, attached on a wall in a dark, narrow room, the visitor can not understand 
its importance: she/he, certainly, can not imagine that same floor within the church 
where its position probably indicated an important ancient worship area. 
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Fig. 5. The mosaic with virtual reconstruction of the geometric motifs 

In this case the presence of the digital reconstruction of the floor with camouflage 
mimetic integration could to revalue the importance of this mosaic floor with its 
delicate birds, made more precious by the glass tesserae, and give back, albeit 
partially, its integrity and dignity as a work of art, while waiting for the conservative 
restoration. 
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Fig. 6. The 'restored' mosaic with neutral color integration 
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Fig. 7. The 'restored' mosaic with discordant color integration 



708 E. Nencini and G. Maino 

 

Fig. 8. The virtually restored mosaic with camouflage integration 

The case subject of this work highlights the importance of a preliminary study, as a 
preparation of a restoration before performing surgery. But the virtual restoration not 
only offers the possibility to the restorer of reconstructing a mosaic: It also offers the 
ability to simulate on suitable digital images, by means of a photo editing program, 
the type of integration and the relevant color. Therefore, scholars, conservators and 
Superintendents can evaluate the final appearance of the work and the different 
aesthetic choices. 

In the case of fig. 7, for example, we deliberately chose a red-violet great impact in 
order to emphasize the integration. In the words of Cesare Brandi – the first director 
of Italian National Institute of Restoration - the color of integration must be reduced 
to the background level and should not compose directly with the color distribution of 
the surface of the work (as seen in fig. 8). 
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Last but not least, the virtual restoration is an essential tool for promotion of 
cultural heritage. In the face of increasing and diverse audiences with different levels 
of cultural education, museums and archaeological sites seek more and more to create 
accurate and comprehensive educational courses. The new user should in fact find the 
most appropriate ways to understand what sees. 

A mosaic floor with large gaps may well resemble a ruin rather than refer to the 
magnificent mansions for which it had been made. The mosaic floors were, in fact, in 
the Roman domus as well as later in churches, closely related to architecture and 
function of rooms: The 'triclinium, for example, i.e. the floor space that would house 
the beds had no drawing, while, at the center, was placed an emblem or a 
representation, positioned so as to be watched by the landlord and the guests when 
they were eating. In every room, then, the drawings of the floor were turned towards 
the entrance, to be admired by those who entered. Then the virtual restoration, with a 
very low cost, may intervene proposing the reconstruction of the entire floor, thus 
playing an important educational function and returning to the mosaic readability. 
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