
9 Automated Analysis of Cryptographic
Protocols Based on Trusted Freshness

Abstract Logics can be systematically applied to reasoning about
the working of protocols. However, the process of applying and reap-
plying the inference rules is often tedious and error-prone when carried
out manually, while automation method will improve this problem. An
automated logic-based analysis tool based on the freshness principle
is introduced and developed, which uses the belief multiset formalism
to analyze the security of cryptographic protocols.

The freshness principle presented in Chapter 4 has proved to be an effi-
cient and easy idea in analyzing the security of cryptographic protocols from
its capacity in distinguishing whether a message is fresh or not based on al-
ready trusted freshness identifier. The inherent appeal in using modal logic
to instance the freshness principle stems from logic’s simplicity and effective-
ness for analyzing cryptographic protocols[1–4]. The modal logic of security
analysis based on trusted freshness, the belief multiset formalism, has been
presented in Chapter 7. Logic can be systematically applied to reasoning
about the working of protocols, often helping to reveal missing assumptions,
deficiencies or redundancies. This can then lead to the protocol, the assump-
tions or the original goals being re-evaluated, after which the inference rules
can be reapplied to determining whether the goals are attainable after these
modifications have been made. However, the process of applying and reap-
plying the inference rules is often tedious and error-prone when carried out
manually. Another problem is that protocol has become so advanced and
complex that we often cannot perform certain security analysis by hand, and
we may accidentally miss conclusions drawn from inference rules, the fresh-
ness principle or the informal principles based on trusted freshness. Hence,
specialized tool support for formal methods can significantly aid protocol
engineers in creating and implementing cryptographic protocols which do
not leak information, do achieve security goals and are immune to replay
attacks[5].

In this chapter, we will give an automated logic-based analysis tool based
on the freshness principle (see Chapter 4), and this Prolog-based analyzer
uses the belief multiset formalism (see Chapter 7) to analyze protocols and
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it is developed mainly based on the concepts introduced during the SPEAR
II Framework[5, 6].

9.1 Previously known methods for automated analysis

The cryptographic protocol automated analysis tools are useful for keeping
track of whether or not a cryptographic protocol is secure or not.

9.1.1 Automated analysis tool based on logic

The symbolic manipulation correctness analysis approaches can greatly sim-
plify the analysis of protocols, which consist of theoretic computer scientists
in formal method area, and the security properties are expressed as a set
of abstract symbols which can be manipulated, sometimes by a formal logic
system, sometimes by an mechanical tool called a theorem prover, toward a
YES/NO result[7].

SPEAR I, the Security Protocol Engineering and Analysis Resource[8],
was developed by J.P. Bekmann, P. de Goede and A. Hutchison in 1997 to
aid in the design and analysis of cryptographic protocols. The two primary
goals of SPEAR I are to enable secure and efficient protocol design and to
support the generation of protocol source code. SPEAR I offers developers
of cryptographic protocols an environment in which security protocols are
designed, analyzed and generated. Protocols are specified using a graphical
user interface in the style of Event Trace diagrams and the security analysis
based on the BAN logic[9] is facilitated.

SPEAR II, the Security Protocol Engineering and Analysis Resource II[6],
is a protocol engineering tool built on the foundation of previous experience
garnered during the SPEAR I project. The goal of the SPEAR II tool is to
facilitate cryptographic protocol engineering and to aid users in distilling the
critical issues during an engineering session by presenting them with an ap-
propriate level of detail and guiding them as much as possible. The SPEAR
II tool consists of four components that have been integrated into one con-
sistent and unified graphical interface: a protocol specification environment
(GYPSIE), a GNY statement construction interface (Visual GNY), a Prolog-
based GNY analysis engine (GYNGER) and a message rounds calculator.
GYNGER is a Prolog-based analyzer that performs automated analysis of
protocols by using the GNY modal logic. Recall that the GNY logic could
find the reflection replay attack (Suppose the message sender could recognize
the message sent by itself), but it is hard for the GNY logic to find the trans-
fer replay attacks and the direct replay attacks. The analysis engine employs
a forward chaining approach to mechanize the tedious application of GNY in-
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ference rules, allowing all derivable GNY statements to be generated quickly,
accurately and efficiently. To conduct an analysis with GYNGER a protocol
engineer needs to specify a protocol’s messages, initial assumptions and tar-
get goals in a Prolog-style GNY syntax. The GNY rule set is then imported
and employed in the analysis, after which a proof is generated in an English-
style GNY syntax for every successful goal that was specified. Visual GNY
functions as a user-friendly interface to the GYNGER analyzer. SPEAR II
provides a graphically based protocol security analysis environment, and it
can find the security flaws in a lot of authentication protocols. The idea of
SPEAR II to implement GNY logic could be referenced for automation of
protocol security analysis based on the logic – belief multiset formalism.

9.1.2 Automated analysis tool based on model checking

9.1.2.1 FDR tool

Failures Divergences Refinement (FDR)[10–12] is a model checker tool that
is tailored to check CSP processes for refinement relations, where CSP stands
for Communication Sequential Process[13]. CSP is particularly suitable for
modeling and describing the behavior of concurrency and communication
systems, and this feature has inspired some researchers for its using for for-
mal analysis of authentication protocols. FDR models a complex system,
such as an authentication protocol, into a (finite) state system and the prop-
erties of a state system can be expressed by some state satisfaction relations.
FDR allows the refinement relation to be checked mechanically for finite
state processes and it can be used to clarify whether or not certain proper-
ties of a complex system will be satisfied. In 1995, Lowe applied the FDR
model checker and successfully uncovered a previously unknown error in the
Needham-Schroeder Public-key Authentication Protocol, where this flaw has
not been discovered for seventeen years since the publication of this proto-
col in 1978[11]. In FDR, a principal (it may be an attacker) in a protocol is
considered as a concurrent CSP process, and a variety of attacks (such as
eavesdropping, imitation or replaying) could be applied by an attacker pro-
cess. The security of a protocol is modeled as the sequences of principal’s
events, and the FDR is used to check whether or not certain sequence of a
principal’s events is satisfied. The FDR model checker for CSP has achieved
the success in analyzing the Needham-Schroeder Public-key Authentication
Protocol.

9.1.2.2 NRL protocol analyzer

The NRL protocol analyzer[14] is a PROLOG-based protocol model-
checking tool developed by Meadows, where “NRL” stands for Naval Re-
search Laboratory of the United States of America. The NRL Protocol Ana-
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lyzer is also based on the Dolev and Yao threat model of communications[15].
In Dolev-Yao model, an adversary could observe all message traffic over the
network, intercept, read, modify or destroy messages, perform transformation
operations on the intercepted messages (such as encryption or decryption, as
long as he has in his possession of the correct keys), and send his messages
to other principals by masquerading as some principals. Since an adversary’s
computational capability is polynomially bounded in the Dolev-Yao model,
after an execution of the protocol, the adversary could not learn any infor-
mation of the secret messages or cryptographic keys for which a protocol is
meant to protect.

In Model-checking techniques the analysis of the behavior of a system
usually involves a state space exploration to check whether or not certain
properties will be satisfied. The main algorithm used in the NRL Protocol
Analyzer settles a state reachability problem. It is well known that such
algorithms are not guaranteed to terminate. Therefore a limit is placed on
the number of recursive calls allowed for some of the checking routines. Using
the tool seems to require quite a high level of user expertise in accurately
coding the transition rules for a protocol and in specifying insecure state.
The tool also has an inherent limitation on being particularly applicable to
protocols for key establishment[7].

The NRL protocol analyzer has been used to analyze a number of authen-
tication protocols and has successfully found or demonstrated known flaws
in some of them. These protocols include the Needham-Schroeder Public-key
Authentication Protocol[16] (for the analysis of this protocol Meadows pro-
vided a comparison between the analysis using the NRL protocol analyzer
and Lowe’s analysis using the model checker FDR in [11]), the Internet Key
Exchange protocol (IKE, a reflection attack is found in the signature-based
“Phase 2” exchange protocol)[17,18] and the Secure Electronic Transaction
protocols (SET)[19].

9.1.2.3 The Murϕ

Murϕ[20] is a protocol verification tool that has been successfully applied to
several industrial protocols, especially in the domains of multiprocessor cache
coherence protocols and multiprocessor memory models. The Murϕ language
is a simple high-level language for describing nondeterministic finite-state ma-
chines. To use Murϕ for verification, one has to model the protocol in the
Murϕ language and augment this model with a specification of the desired
properties. The state of the model consists of the values of all global variables.
The transition from one state to another is performed by rules. The desired
properties of a protocol can be specified in Murϕ by invariants, which are
Boolean conditions that have to be true in every reachable state. The Murϕ
system automatically checks, by explicit state enumeration, if all reachable
states of the model satisfy the given specification. Most Murϕ models are
nondeterministic since states typically allow execution of more than one ac-
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tion. Murϕ can only guarantee correctness of the down-scaled version of the
protocol, but not correctness of the general protocol. If a state is reached in
which some invariant is violated, Murϕ prints an error trace – a sequence of
states from the start state to the state exhibiting the problem. Murϕ proves
that there exist attacks on some known protocols such as Needham-Schroeder
Public-key Authentication Protocol, TMN protocol and a simplified version
of Kerberos V5[21–23].

9.1.2.4 Interrogator

The Interrogator[24] is a Prolog program developed by Jonathan Millen,
Sidney Clark and Sheryl Freedman in 1985. Using the Interrogator, a pro-
tocol engineer can search for security vulnerabilities in network protocols
for automatic cryptographic key distribution. Given a formal specification of
a protocol, the Interrogator searches for message modification attacks that
defeat the protocol objective and reveal secret information. The current ver-
sion of the Interrogator assumes that the adversary is trying to learn pri-
vate information, and the only way in which he can get that information is
to read a message in which it is transmitted as a data item. A black-box
view of the Interrogator is simple: for input it receives a protocol specifi-
cation and a target data item; its output is a message history, consistent
with the protocol specification, showing how the adversary could obtain the
data item, if this is possible. The Interrogator and its associated graphical
interface were implemented using LM-Prolog on an LISP machine. The user
interface takes advantage of the windowing, graphics and mouse capabilities
of the LISP machine. Within the Interrogator, protocols are modeled using
a state-transition approach, principals being represented as communicating
finite-state machines. This method allows a wider class of protocols to be
supported and permits variations in message sequencing. The Interrogator
interface has two main components: a preprocessor that converts textual
protocol specifications into an internal Prolog form, and a display interface
for graphical user interaction. To conduct an analysis, a protocol is specified
in a textual format, edited with normal LISP machine facilities, parsed and
loaded. The interactive graphical display is then used to establish penetration
objectives. If a flaw is found, it is displayed in the form of a message sequence,
showing messages before and after modification by an adversary. The Inter-
rogator has been developed to the extent where it has succeeded in finding
a multiple-modification penetration of the Needham-Schroeder protocol and
some others with known vulnerabilities. Given a protocol specification and a
target component to uncover, the Interrogator searches for a scenario involv-
ing adversary actions which reveal the target. The history of messages sent
and modified is displayed, allowing the user to examine how the attack was
carried out and evaluate it for feasibility and possible counter-measures.
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9.1.3 Automated analysis tool based on theorem proving

SyMP[25] stands for “Symbolic Model Prover” and it is a general purpose
prover generator for generating special purpose theorem provers in various ap-
plication domains. SyMP is proposed by S. Berezin and A. Groce of Carnegie
Mellon University. The core of the tool is a generic prover which is connected
to several proof system modules. Each such module defines an input spec-
ification language, a proof system, and a rule application mechanism, and
the generic prover provides all the proof management and an interactive user
interface. Note that the SyMP prover does not have a built-in model checker

SyMP has two proof systems: the default proof system, and Athena.
The default proof system implements a general framework for combining
model checking and theorem proving, and has a hardware-oriented specifica-
tion language. The main purpose of the language is to provide a convenient
environment for fast and clean prototyping of new (mostly hardware) verifica-
tion methodologies based on model checking with some elements of theorem
proving. It can also be used as an intermediate representation in translation
between other specification languages.

The Athena proof system is specialized in verifying security protocols,
uses Strand Spaces[26] as the basis for the protocol representation and is
based on the Athena[27] technique developed by D. Song. Each protocol in
this framework is a set of roles, and each role is a sequence of actions where
actions are separated by an optional semicolon. Two built-in actions, “send”
and “receive”, send and receive messages to and from the environment. An
instance of a role with concrete parameters defines a strand, or a particular
run of a particular principal in the protocol. Properties are specified in a
propositional logic that specifies which strands must or must not appear in
any protocol execution.

9.1.4 CAPSL specification language

CAPSL, the Common Authentication Protocol Specification Language[28], is
a high-level language intended to support the analysis of cryptographic pro-
tocols using formal methods. The development of CAPSL started in 1996
and is being managed by Jonathan Millen. Its goal is to permit a protocol to
be specified once in a form that is usable as an interface to any type of anal-
ysis tool or technique, given appropriate translation software. The CAPSL
Intermediate Language (CIL) acts as an interface to analysis tools, allowing
protocols specified in CAPSL to be examined by these tools. CIL is designed
to make the translation to tool-specific representations as easy as possible. A
CAPSL specification is parsed and translated into CIL, and at that point a
different translator can convert from CIL to whatever form required for each
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tool. The translator from CAPSL to CIL can deal with the universal aspects
of input language processing, such as parsing, type checking, and unraveling
a message-list protocol description into the underlying separate processes.

Messages in cryptographic authentication protocols are constructed us-
ing cryptographic operators and functions. In principle, all functions used in
CAPSL, and the data types they operate on, must be specified axiomatically
with abstract data type specifications, called typespecs. Several commonly
used data types and operators are defined in a standard prelude. Type specifi-
cations in this prelude are considered built-in, and do not need to be supplied
by a designer or imported explicitly. When a protocol is being analyzed or
simulated, the analyst may have to specify which principals are to be run.
Other run-specific information, such as the initial knowledge of the attacker,
may also have to be supplied. A CAPSL environment contains specifications
detailing this kind of information. Environment specifications, like type spec-
ifications, are separated from the definition of a protocol. The content and
interpretation of an environment specification depend on the analysis tool.
However, CAPSL does provide syntax, keywords and organization so that dif-
ferent tools can take advantage of the CAPSL parser. Declarations to name
principals and other constants can be placed in an environment, and sessions
can be defined. More than one session may be declared and these sessions
will run concurrently by default.

9.2 Automated cryptographic protocol analysis based on
trusted freshness

As we have seen, conducting an analysis manually is often tedious, error-
prone and not very productive in the majority of situations. To facilitate the
effective use and application of a logic system, it is needed to make the logic
analysis automated and the user interface graphical.

In this section, we put forward a cryptographic protocol analysis ana-
lyzer based on the belief multiset formalism logic (for short, the BMF logic),
the BMF analyzer, which is also a completely graphic-based environment. A
benefit of the BMF analyzer is that it would make protocol analysis oper-
ations accessible to a wider range of individuals, since it would remove the
requirement that protocol designers need to be experts in a large number of
specialized engineering techniques.

9.2.1 Analyzer frame based on belief multiset formalism

The BMF analyzer consists of 5 parts: visual BMF, BMF analyze engine,
BMF result view, BMF rule engine and BMF attack engine, and it involves
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operations on the database of facts, goals, rules and attacks. The parts BMF
analyze engine, BMF rule engine and BMF attack engine are the core of
the BMF analyzer, while the parts visual BMF and BMF result view are the
user-friendly interfaces to the BMF analyzer. The frame of the BMF analyzer
illustrates in Fig. 9.1.

Fig. 9.1 The frame of the BMF analyzer.

1. Visual BMF

The visual BMF functions as a user-friendly interface to the BMF an-
alyzer, and the input components include protocol messages, premises and
goals. These components are constructed to BMF statements necessary for
analysis via the visual BMF interface, and then passed on to BMF ana-
lyze engine. The protocol message import interface supports the input of the
messages including the principals, nonce etc., supports the chosen of cryp-
tographic schemes, and the construction of the BMF language component
and the terms. From the view point of a participant in a protocol run, the
terms owned by each principal are completely different. The premise import
interface supports the input of the initial security assumptions of the public-
key and private key in public-key case, the long-term key in the shared-key
case, and also principal which has generated the freshness identifier used in
the protocol messages. The goal import interface supports the security goal
configuration of an input protocol, such as UA-secure, MA-secure, UK-secure
MK-secure.

2. BMF analyze engine

The BMF analyze engine supports the formal presentations of terms, ini-
tial assumptions, security goals, inference rules, and it functions as a protocol
security analyzer that generates all of the BMF beliefs and possessions that
can result from the systematic application of the inference rules to a set of



9.2 Automated cryptographic protocol analysis based on trusted freshness 349

initial assumptions and message steps. The BMF analyze engine mainly in-
cludes the database of premises, the database of goals, the database of rules,
and the analyzing engine based on the trusted freshness.

3. BMF result view

The BMF result view subsystem supports the presentations of the secu-
rity analysis result of a cryptographic protocol based on the belief multiset
formalism.

4. BMF rule engine

The BMF rule engine is an interface of a new belief multiset formalism
inference rule input. Based on the freshness principle, the belief multiset
formalism inference rules could be extended to meet variety applications in
the real world, such as new liveness rules, new confidential rules, new fresh-
ness rules, new association rules, also other new rules about non-repudiation,
fairness etc. A new rule could be inputted into the BMF analyzer via a user-
friendly interface, and then it is converted to a standard format rule with a
series of operations via BMF analyze engine, and then it is passed on to the
rules database.

5. BMF attack engine

Recall that the security analysis of a protocol based on the belief multiset
formalism can either establish the correctness of the protocol when it is in fact
correct, or identify the absence of the security properties and the structure
to construct attacks based on the absence. The BMF attack engine supports
the presentations of attacks in the belief multiset formalism, and supports
the construction of attacks from the absence of the security properties.

9.2.2 Comparision of two initial implementations of BMF

The focus of the automation of a cryptographic protocol analyzer is to give a
correct analysis result, and to remove as much of the complexity and tedium
surrounding protocol analyzing as possible and to provide a user-friendly, ef-
fective and powerful environment that can be used by the researchers. The
automation of the belief multiset formalism based on the freshness principle
could be implemented with the object-oriented development language like
C#, C++, Java, etc.; or with artificial intelligence language like Prolog. To
determine which is more suitable for the implementation of the belief multiset
formalism, under the prerequisite to ensure the correctness of the analysis re-
sults, we compare the efficiency, usability of the automation tools developed
under the object-oriented development language C# and the Prolog-based
implementation language. The initial implementations of these two develop-
ment environments mainly focus on the visual BMF part, the BMF analyze
engine part and the BMF result view part of the BMF analyzer.
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BMF analyzer 1[29] is developed using the object-oriented development
language C#. The corresponding classes based on the belief multiset for-
malism include the Principal Class, FreshnessComponent Class, Expectation
Class, Fragment Class, Timestamp Class, BeliefMultisetsPresentation class,
Key class (AsymmetricKey Class, SymmetricKey Class, SharedKey Class),
Belief Class (PrincipalBelief Class, MarkBelief Class, KeyBelief Class, Key-
Known Class), as illustrated in Fig. 9.2.

Fig. 9.2 Class illustrations of BMF analyzer 1.

The configuration and the analysis results, which are in the XML format,
are stored in the database of facts and the database of goals, and are provided
to the user with a completely graphic-based environment for message input
and result show, as illustrated in Fig. 9.3.

The BMF analyze engine in the BMF analyzer 1 supports optimized rule
search, rule class operations, rule search method triggered by new generated
beliefs, remove of plenty of useless intermediate results. Applying the strat-
egy model and abstract factory model to define the database of rules, the
belief multiset formalism inference rules could be modeled, and the opera-
tions on the rules are independent of the custom applying the database of
rules. E.g., for associate class (shared key subclass, shared key with TTP
subclass, private key subclass), the operation of the class implements the
inference function of rules.

The BMF analyzer 1 is implemented under the object-oriented develop-
ment language C#. The implementation under the object-oriented develop-
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Fig. 9.3 User interface of BMF analyzer 1.

ment environment is model-based, hence it is clear and convenient to develop
and debug this analyzer. However, it is difficult to add new classes and to
extend the belief multiset formalism rules in the analyzer since they are em-
bedded within the analyzer.

The BMF analyzer 2[30] is implemented based on the artificial intelli-
gence language Prolog that is simple and reliant as an implementation lan-
guage. The BMF analyzer 2 is similar to the GYNGER in the SPEAR II
Framework[6]. The initial BMF analyzer 2 includes three parts: the BMF
statement construction interface (visual BMF), a Prolog-based BMF analyze
engine (BMFGER) and the result presentation interface (BMF result view).
Similar to the GNY analysis engine GYNGER in SPEAR II, the Prolog-
based analysis engine BMFGER relies on a forward-chaining inference en-
gine to generate all of the BMF beliefs that can result from the systematic
application of the inference rules to a set of initial assumptions and message
steps. The visual BMF functions as a user-friendly interface for the input
of the protocol, the initial assumptions and the goals. The BMF result view
functions as a user-friendly interface for the output of the analysis results
of a specific protocol. The initial assumptions goals and analysis results are
presented as the belief multiset formalism statements in the Prolog-style, and
the belief multiset formalism statements are represented using a tree-like ap-
proach. The messages and initial assumptions pertaining to the protocol to
be analyzed are specified in the form of fact/3 predicates, and the target goals
are specified in the form of goal/2 predicates. The BMF result view converts
the analysis results in the Prolog-style into an English-style BMF syntax for
every successful goal that was specified, as illustrated in Fig. 9.4.

Note that the rules, the protocol messages in the BMF analyzer 2 are all
presented in the Prolog style, hence the database of rules could be stored
independently from the BMF analyzer 2, so we could extend the belief multi-
set rules and add these rules to the BMF analyze engine conveniently in the
future, even by a text editor.
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Fig. 9.4 User interface of BMF analyzer 2.

After taking security analysis test of cryptographic protocols under the
above two environments, we know that the cryptographic protocol analysis
result could be given definitely under both implementations of the BMF
analyzers, and the time for analyzing under both cases is short. However,
the BMF analyzer 1 which is implemented with embedded belief multiset
formalism rules is more difficult to extend than the BMF analyzer 2 which
has an independent rule database from the analyzer.

9.2.3 Implementation of the belief multiset formalism

The focus of the BMF analyzer is to provide a user-friendly, effective and
powerful environment that can be used to facilitate the analysis of the existing
cryptographic protocols and the creation of secure cryptographic protocols
based on the notion of the trusted freshness.

From the comparison in Subsection 2, we decide to develop the BMF
analyzer mainly on the BMF analyzer 2, that is, using Prolog to develop the
BMF analyze engine and using Java source code generation to develop the
visual BMF and the BMF result view.

Prolog is a general purpose logic programming language associated with
artificial intelligence and computational linguistics, and it remains among
the most popular such languages today, with many free and commercial im-
plementations available. The Prolog program logic is expressed in terms of
relations, represented as facts and rules, and a computation is initiated by
running a query over these relations. Prolog is well suited for implementing a
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BMF analyzer as it is straight forward to map all of the BMF constructs into
suitable Prolog counterparts which can be easily manipulated and queried.

The BMF analyzer based on Prolog helps the protocol engineers to derive
all possible BMF statements applicable to a given protocol and to determine
whether a given protocol achieves its design objectives.

Java is an object-orientated technique that is employed in order to facil-
itate expansion and understanding of the source code. It is clear and conve-
nient to develop and debug user-friendly interfaces like the visual BMF and
the BMF result view.

The BMF analyzer is a graphically based application that incorporates
cryptographic protocol modeling, automated BMF-based protocol security
analysis and the analysis results presentation. The BMF analyzer is imple-
mented similarly to the SPEAR II Framework except the analysis logic is the
belief multiset formalism but GNY, and it incorporates a number of enhance-
ments. Because of the architectural and security analysis logic differences be-
tween the SPEAR II and the BMF analyzer, the Java code generation and
scenario simulation features are not the same in the BMF analyzer imple-
mentation.

To conduct an analysis with the BMF analyzer, a protocol engineer needs
to specify a protocol’s messages, initial assumptions and target goals in a
Prolog-style BMF syntax via the visual BMF interface. The Prolog-based
BMF rules are then imported and employed in the analysis, where a forward-
chaining inference engine generates all of the BMF beliefs that can result from
the systematic application of the inference rules to the set of initial assump-
tions, message steps and the cryptographic goals. A proof is then generated
in an English-style syntax for every successful goal that was specified. This
English-style proof lists all of the statements involved in the derivation of the
successful goal, indicating the postulates that were used and the premises
which were employed in the postulate’s application.

The BMF analyzer is extensible, it allows extended security analysis of
a protocol such as non-repudiation analysis for future use, and it also al-
lows further engineering and design techniques to be incorporated, since the
inference rules are stored separately from the BMF analyzer itself.

For interest of concision, some atoms and the predicates in the BMF
analyzer are only briefly introduced. For strict or inquisitive readers, please
refer to [5, 6] or contact us for detailed information.

9.2.3.1 Facts, goals and rules

In belief multiset formalism, the relations in Prolog include: assumptions,
terms, medium results, goals and rules. These important concepts are repre-
sented as Prolog-style predications, and stored in the database of facts, the
database of goals and the database of rules respectively.

The Prolog-style predications are formulae, statements, etc. Formulae are
the components which are used to construct protocol messages and typically
contain constants such as principal names, nonce, shared keys, shared parts
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of keys, etc. The statements will be used to specify the initial and target
beliefs and possessions of principals as well as extensions to be appended to
the message components.

Facts

The idealized protocol messages, initial assumptions, terms and medium
results are represented as fact/3, and are all stored as instances of fact/3
in the database of facts. Before conducting an automated BMF-based anal-
ysis, the messages and initial assumptions pertaining to the protocol to be
analyzed must be specified in a Prolog file in the form of fact/3 predicates.

The predicate fact/3, which defines an inference step, appears as follows:

fact(Index,Statement, Reason(PremiseList,Rule))

The integer Index is used to reference instances of this fact/3, while the
argument Statement is bound to a derived statement, including the idealized
protocol messages, initial assumptions, terms and medium results. The last
argument Reason(PremiseList, Rule) is the reason to derive this fact/3, the
parameter PremiseList is a list containing the indices of the premises that
were used in deriving this Statement through the application of Rule, and
the parameter Rule represented by characters enclosed in single quotes is the
applied rule to derive this fact/3. If the statement represents terms or initial
assumptions, the PremiseList would be empty and Rule would be either
“Term” or “Assumption”. For example, fact(Index, Statement, Reason([],
“Term”)) and fact(Index, Statement, Reason([], “Assumption”)).

There are two important predicates for representing “send” and “receive”
terms:

send(Identity,Statement, Step)

and
receive(Identity,Statement, Step)

which means that the principal ‘Identity’ has sent or received the term ‘State-
ment ’ in this step ‘Step’ respectively, where the integer ‘Step’ is used to
reference the time point to send or receive this term.

New added fact/3 involved in the analysis process must be extracted and
sorted in ascending order by their indices, and any duplicates in this list must
also be removed. The predicate getMaxFactIndex/1 collects all of the indices
within fact/3 into a list and then finds the maximum in this list, and the
maximum index is returned in the argument MaxIndex.

Goals

In order to perform a protocol security analysis based on the belief mul-
tiset formalism, a designer must know what goals the protocol under inspec-
tion is expected to achieve. The security analysis will essentially involve a
researcher determining the class of the protocol that he wishes to analyze,
and then ensuring that the expected goals are fulfilled. For an authentication
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protocol, one should verify the identities of participants and then ensures
that they agree on an encryption key for later use.

The protocol goals are represented in a similar way to fact/3 with the
goal/2 predicate and stored in the database of goals. The goal/2 predicate
appears as follows:

goal(Index,Statement)

The integer Index is used to reference instances of this goal/2, and the argu-
ment Statement is bound to the anticipated security objectives (the security
properties in the belief multisets, including the beliefs about principals and
the beliefs about a freshness identifier). A belief is presented as the predicate:

Belief (Identity,Trust)

it means that the principal Identity believes the Trust. Any target goals must
be specified in the same file by using goal/2 predicates.

Rules

The BMF inference rules are all specified through the use of a rules/0
predicate and stored in the database of rules. For each BMF rule, there is at
least one instance of the rules/0 predicates, some requiring more because of
multiple conclusions. The basic pattern followed in a typical instance of the
rules/0 predicate is to first check that all of the premises of the respective
BMF rule are true and then to assert the conclusion in the Prolog database
if it has not yet been asserted. After asserting the conclusion, the added-
Facts atom is also asserted in the database to indicate that a conclusion
was derived during the current cycle. If addedFacts has been asserted, then
all the remaining instances are retracted from the database, and the done/0
predicate fails. Otherwise, if addedFacts was not asserted then done/0 would
succeed and forward-chaining would not commence. The done/0 predicate
checks whether any new beliefs or possessions have been added to the Prolog
database in the current cycle.

Example 9.1 Recall that the fragment rule A1(a) in the belief multiset
formalism is:

A1(a) −{...N,N ′...}KPiPj
∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈...1N...〉)

⇒ BPi,t(∼ {...N,N ′...}KPiPj
)

The code for the rules/0 predicate of the Fragment Rule 1 in the BMF
analyzer appears below:
rules :-

fact(PremiseIndex1, told(P,encrypt(List, shared(K))), ),

is list(List),

length(List, LengthOfList),

LengthOfList > 1,

fact(PremiseIndex2, believes(P, secret(shared(K))), ),

fact(PremiseIndex3, believes(P,fresh(shared(K))), ),

fact(PremiseIndex4, believes(P, associate(shared(K),P, Q)), ),
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listMemberIsFresh(P, List, PremiseIndex5),

Conclusion = believes(P, bound(List)),

not(fact( ,Conclusion, )),

getMaxFactIndex(MaxIndex),NewIndex is MaxIndex + 1,

PremiseIndices = [PremiseIndex1, PremiseIndex2, PremiseIndex3,

PremiseIndex4, PremiseIndex5],

asserta(fact(NewIndex,Conclusion,reason(PremiseIndices,’Fragment1’))),

asserta(addedFacts).

9.2.3.2 Visual BMF

The visual BMF provides graphical interface for the import of the protocol
messages, initial assumptions, and security goals.

The protocol messages

Similar to SPEAR II, the visual BMF environment represents BMF state-
ments using a tree-like structure combined with pop-up menus to allow easy
interaction and to produce a meaningful representation of BMF information.

All statements of the same type form part of the same tree structure,
a heterogeneous set of BMF statements are represented by a collection of
separate trees. These representation techniques help users to easily create
syntactically correct BMF statements without the need to be acquainted
with the BMF syntax and notation. These structured trees representing the
protocol messages could be exported and read as English-style text.

With a graphical interface, users have to remember few details about a
system’s structure and functionality, since this information is available within
the interface. Furthermore, to use the visual BMF environment, users do not
need to be familiar with the semantics and concepts underlying the belief
multiset logic, however, they’d better be familiar with the logic to use it
effectively.

The protocol’s messages are specified in an optimum order as follows:
the principals involved in the protocol, the role selection of each principal
(sender, receiver and the trusted freshness), the cryptographic mechanism
in the protocol, the actual communication between the principals etc. Once
the protocol specification is complete, the protocol will be translated into
graphical display as shown in Fig. 9.5.

Fig. 9.5 View of a cryptographic protocol in the BMF analyzer.
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Here, Alice means the principal A, Bob means the principal B.

The initial assumptions

The initial assumptions, also called the initial BMF beliefs, should be
declared at the start of the protocol analysis, and any amendments could be
made at a later stage. If a principal has generated a freshness identifier used
in the protocol messages, the belief about the freshness of this identifier by
the generator is also an initial assumption.

Once the protocol specification is complete, an analyzer can definitely
make recommendations as to what the initial conditions for an analysis should
be in certain cases, that is, the initial assumptions could be derived directly
from the import protocol messages, as shown in Fig. 9.6.

Fig. 9.6 The premise set of BMF analysis.
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The cipherFlag is the flag of the cryptographic mechanism applied in this
protocol:
— for cipherFlag=1, the cryptographic mechanism applied is Public-key

scheme;
— for cipherFlag=2, the cryptographic mechanism applied is shared-key

scheme with the trusted third party;
— for cipherFlag=3, the cryptographic mechanism applied is shared-key

scheme without the trusted third party;
— for cipherFlag=3, the cryptographic mechanism applied is keyed hash

scheme.

The extraction of terms

In general, the extraction of terms could be done meanwhile with the pro-
tocol message specification. If there exist nests of the cryptographic one-way
transformations, the condition of repetition of the terms should be prudently
considered. If the maximum terms of different messages are the same, there
may exist the replay attack, hence the designed protocol should be recon-
structed, as shown in Fig. 9.7 for the extraction of the terms, where maxStep
is the largest number of the protocol message steps.

The security goals

The goal import interface supports the security goal configuration of an
input protocol, such as UA-secure, MA-secure, UK-secure and MK-secure.
The target goals are specified in the form of goal/2 predicates, that is Be-
lief (Identity, Trust). The Trust beliefs are predicates about the security prop-
erties, including Existing(Identity), Secret(Identifier), Fresh(Identifier) and
Associate(Identifier, Identity). The predicate Existing(Identity) means that
a principal has the trust about the lively communication of this Identity prin-
cipal. The predicate Secret(Identifier) means that a principal has the trust
about the security of this Identifier. The predicate Fresh(Identifier) means
that a principal has the trust that the freshness Identifier is a new generated
TVP for this protocol. The predicate Associate(Identifier, Identity) means
that a principal has the trust that the freshness Identifier is a TVP for a
protocol related with the principal Identity.

Example 9.2 Here is an illustration of the security goals of a protocol in
the BMF analyzer. Suppose the two communication principals are A and B,
the new session key they want to establish is kAB .

As for a UA-secure authentication protocol, if A wants to authenticate the
principal B, then A has the security goal to achieve: Belief (A, Existing(B)).

As for an MA-secure authentication protocol, if A and B want to authen-
ticate each other, the security goals to achieve are Belief (A, Existing(B))
and Belief (B, Existing(A)).

As for a UK-secure authentication protocol, the security goals to achieve
are Belief (A, Existing(B)), Belief (A, Secret(kAB)), Belief (A, Fresh(kAB)),
Belief (A, Associate(kAB, A)) and Belief (A, Associate(kAB , B)).
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Fig. 9.7 Abstraction of BMF term generation.

As for an MK-secure authentication protocol, the security goals to achieve
for the principal A are Belief (A, Existing(B)), Belief (A, Secret(kAB)), Be-
lief (A, Fresh(kAB)), Belief (A, Associate(kAB , A)) and Belief (A, Associate



360 9 Automated Analysis of Cryptographic Protocols Based on Trusted Freshness

(kAB , B)); the security goals to achieve for the principal B are Belief (B,
Existing(B)), Belief (B, Secret(kAB)), Belief (B, Fresh(kAB)), Belief (B, As-
sociate(kAB , A)) and Belief (B, Associate(kAB , B)).

9.2.3.3 BMF analyze engine

Principals, messages, terms and initial assumptions specified in visual
BMF are exported to BMF analyze engine in Prolog-style statements for
analysis, and all of the BMF statements derived during an analysis, as well
as the proofs for successful goals, are stored in the database of facts and are
accessible through the result view pane.

Before conducting an automated BMF-based analysis, the messages, terms
and initial assumptions pertaining to the protocol to be analyzed have been
specified in the form of fact/3 predicates in the database of facts. Any target
goals have also been specified in the form of goal/2 predicates in the database
of goals.

Similar to the forward-chaining inference engine in SPEAR II, the BMF
analyze engine applies all the inference rules to the set of statements consist-
ing of the protocol messages, initial assumptions and medium results, until
all of the statements which are derivable have been generated. If there ex-
ist new generated fact/2 predicates in the database of facts, the addedFacts
atom is also asserted in the database to indicate that a conclusion was derived
during the current cycle. If addedFacts has been asserted, the BMF analyze
engine applies all the inference rules to the set of the term statements in this
step, until there are not any new generated fact/3 predicates inserted into
the database of facts. Then the analysis results are compared to determine
whether one or more statements describing the goals of a specific protocol
are derivable from a given set of initial assumptions. If the security goals are
met, a proof can be generated for this security goal in the database, showing
all of the steps and inference rules that were required to generate the result.
Results from a BMF analysis conducted by the BMF analyze engine are re-
turned to the BMF result view environment and appropriately displayed in
English-style BMF syntax. A formal proof will then be constructed to show
that a finite number of conclusions in a finite number of steps can be derived
from using the inference rules based on the initial assumptions and messages
of a given protocol.

Figure 9.8 illustrates the analysis procedure of the BMF analyze engine.
In Chapter 4, we have illustrated the security analysis procedure using the

belief multiset formalism. As we have seen, the useful deriving statements,
medium results, are developed through the application of the belief multiset
inference rules manually, so the analysis procedure is relatively simple. While
in the case of automated analysis, the analyzer will generate a lot of medium
results, including not only the useful facts but also many needless medium
results. The key problem to improve the performance of the analyzer is to
discard the needless medium results effectively.
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Fig. 9.8 BMF analyze engine.
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9.2.3.4 BMF result view

The BMF result view provides a graphical result view environment, in-
cluding protocol security analysis results showing the failed and successful
beliefs in English-style BMF syntax, and the English-style proof list of a
successful protocol goal.

The BMF result view ensures that an analysis statement representing in
a Prolog-style formula is converted to an appropriate textual representation.
The fact that the proof is in an English-style syntax makes it more readable
and comprehensible.

This English-style proof lists all of the statements involved in the deriva-
tion of the successful goal, indicating the postulates that are used and the
premises which are employed in the postulates’ application. If a goal fails, a
proof cannot be generated, and then the text ‘FAILED!’ appears instead of
a proof.

9.2.3.5 BMF rule engine

The BMF rule engine provides a graphical environment for the new added
belief multiset formalism inference rule input. As we know, the belief multiset
rules presented in Chapter 4 are for authentication protocols which apply
traditional cryptographic mechanisms, the researchers need to extend the
inference rules used in the BMF analyze engine to meet variety applications
in the real world.

The BMF rule engine includes the following steps to construct a new
inference rule in the BMF analyzer:

1) Give the general rules/0 representation of the rule to be inserted.

rules :-

fact(PremiseIndex1, Statement1ToBeInserted, ),

fact(PremiseIndex2, Statement2ToBeInserted, ),

... ...

Conclusion =ConclusionToBeInserted

not(fact( , Conclusion, )),

getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,

PremiseIndices = [PremiseIndex1, PremiseIndex2, ... ],

asserta(fact(NewIndex, Conclusion, reason(PremiseIndices,

‘RuleNameToBeInserted ’))),

asserta(addedFacts).

2) Convert the new inference rule in the belief multiset formalism into the
inference rule of the BMF analyzer in Prolog-style.

Replace the Statement1ToBeInserted, Statement2ToBeInserted, etc. with
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the conditions of the new inference rule in the belief multiset formalism;
replace the ConclusionToBeInserted with the conclusions of the new inference
rule in the belief multiset formalism; replace the RuleNameToBeInserted with
the new inference rule name.

3) Show the new inference rule to the rule design researcher, and allow
him to improve this rule until the researchers submit this rule to the system.

To ensure that the new generated rule produces the correct results for
different inputs, the rule should be tested individually by specifying all of
the rule premises using fact/3 predicates, running the analyzer, and then
examining the results.

Recall that the belief multiset inference rules are in the style of Prolog
which is a programming language associated with artificial intelligence, and
the rule database is stored independently from the BMF analyzer and it is
dynamically loaded when the security analysis is ongoing. Hence, it is conve-
nient to edit the inference rules outside the system, and the changing could be
applied immediately. That is, besides the insertion of the new inference rule
in the graphical environment of the BMF analyzer, the inference rules could
even be edited, deleted and inserted in a text editor such as the Notepad in
the Windows system. Therefore, the flexibility of the BMF analyzer has been
greatly improved.

9.2.3.6 BMF attack engine

The attack engine supports the construction of attacks from the absence
of the security properties derived from the security analysis results based on
the belief multiset formalism. As we all know, the automation construction
of an attack requires quite a high level of user expertise in a large number
of specialized engineering techniques, while the manually construction of the
attack may seem relatively simple. Here we only give a naive attack engine
model for attack construction based on the trusted freshness approach, as
shown in Fig. 9.9.

1) Indicate the principal to be deceived from the absence of the security
properties of this protocol being analyzed.

2) Construct the first message to cheat the principal whose security prop-
erties about this protocol are not met.

3) Complement other messages to form an instance of the protocol run
with full messages.

4) Find the messages that couldn’t be constructed in this instance. If
any, continue Step 5; if not, terminate this protocol construct procedure, and
this protocol instance is the attack that we want to construct on this flawed
protocol.

5) Start another instance of this flawed protocol in order to generate
the key messages that couldn’t be constructed from the instance in Step
4. Complement other messages to form this interleaved instance with full
messages. Thus, these two interleaved instances, that are the instance in Step
4 and the instance in Step 5, construct the attack on this flawed protocol.
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Fig. 9.9 BMF attack engine.

6) Arrange the order of the messages in the two interleaved instances, and
then terminate this protocol construct procedure.

Let’s review the Needham-Schroeder public-key protocol in Example 1.2.
From the security analysis of the Needham-Schroeder protocol using the be-
lief multiset formalism in Subsection 5, A believes that B is in lively corre-
spondence in this protocol run, and the shared parts of both NA and NB

are secret, fresh, and also associated with the principal A and the principal
B. However, although B believes that A is in lively correspondence in this
protocol run, NB is secret, fresh, and associated with the principal A and
the principal B, but B has not gotten any corroborative evidence that NA is
fresh and is associated with the principal A and the principal B.

Example 9.3 Here is an illustration of the attack construction procedure
of the Needham-Schroeder public-key protocol in the BMF attack engine.
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Here, Alice means the principal A, Bob means the principal B, while Malice
means the adversary I.

1) It is the principal B whose security properties are absent, we need to
construct an attack to cheat B.

2) Construct the first message Message 1 to cheat B.
Message 1 I(A)→ B : {A,NA}KB

3) Complement Message 2 and Message 3 to form an instance of Needham-
Schroeder public-key protocol with full messages.

Message 1 I(A)→ B : {A,NA}KB

Message 2 B → I(A) : {NA, NB}KA

Message 3 I(A)→ B : {NB}KB

4) Message 3 couldn’t be constructed in the above instance since the ad-
versary I impersonating A namely I(A) could not get the freshness identifier
NB.

If the adversary I wants to generate the message {NB}KB , I must know
NB. Since NB appears only in Message 2 and Message 3, while Message 2 is
a one-way transformation sent from the victim B to A and I does not have
the knowledge of the decryption key K−1

A , hence the adversary I could not
get NB from Message 2, hence I could only get NB from Message 3. Note
that Message 3 is encrypted under the receiver’s public-key, so the adversary
I must be the receiver to perform a one-way transformation in order to get
NB from Message 3 using I’s private key K−1

I . Hence, there should exists:
Message 3′ ??→ I : {NB}KI

5) Since NB appears only in Message 2 which is a one-way transformation
sent from the victim B to A, only A could get NB from Message 2, so the
Message 3′ in Step 4 could only be exchanged between the principal A and
the adversary I, that is:

Message 3′ A→ I : {NB}KI

Hence, the new instance to generate the key Message 3′ is between A and
I, and this idea is consistent with the security property that A is in lively
correspondence in this protocol run.

Complement Message 1′ and Message 2′ to form this new instance:
Message 1′ A→ I: {A, ??}KI

Message 2′ I → A: {??, NB}KA

Message 3′ A→ I: {NB}KB

If the adversary I wants to generate Message 3′, then I should know NB,
since NB is encrypted under A’s public-key, I could only replay the recorded
message Message 2 {NA, NB}KA including {??, NB}KA in order to get NB,
that is:

Message 2′ I → A : {NA, NB}KA

To make the principal A believe that Message 2′ is really from I, then the
unknown “??” in Message 1′ could only be the freshness identifier NA that
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is the same as that in Message 2′. Hence we have:
Message 1′ A→ I : {A,NA}KI

6) From the above construction procedure, we have the first instance
Message 1 I(A)→ B: {A,NA}KB

Message 2 B → I(A): {NA, NB}KA

Message 3 I(A)→ B: {NB}KB

and the second instance
Message 1′ A→ I : {A,NA}KI

Message 2′ I → A : {NA, NB}KA

Message 3′ A→ I : {NB}KB

Arrange the order of the messages in the two interleaved instances, and
then we have the attack on the Needham-Schroeder public-key protocol, as
shown in Fig. 9.10.

Message 1′ A→ I : {A,NA}KI

Message 1 I(A)→ B : {A,NA}KB

Message 2 B → I(A) : {NA, NB}KA

Message 2′ I → A : {NA, NB}KA

Message 3′ A→ I : {NB}KI

Message 3 I(A)→ B : {NB}KB

Fig. 9.10 View of attacks in BMF analyzer.

The attack involves two simultaneous runs of the Needham-Schroeder
public-key protocol. In the first run, A establishes a valid session with the
adversary I; in the second run, I impersonating A tries to establish a bogus
session with B. Upon the termination of this attack, B believes that B has
correctly established a session with A and they shared exclusively the secret
nonce NA and NB to generate the new session key.

As we have seen, the attack construction procedure is complex, and the
formalization of the intelligence activities in the attack construction is diffi-
cult. The BMF attack engine presented is still naive, and a lot of jobs need
to be done.
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In the above chapters, we have presented security definition, security spec-
ifications, freshness principle, manual analysis method, belief multiset formal-
ism and the automation tools based on the trusted freshness for analyzing
cryptographic protocols, which clarify whether a cryptographic protocol is
secure or not.

The central ingredient in the trusted freshness approach is the observa-
tion that a participant’s beliefs about key exchange security should depend
only on the received fresh and confidential messages and the beliefs already
possessed by this party. Analysis based on trusted freshness captures exact
authentication information of each principal, which suggests the correctness
of a protocol or the way to construct attacks intuitively from the absence of
security properties.

First, Chapter 4 presents the security definitions, the security specifica-
tions based on the indistinguishability approach and matching conversation,
which check whether a cryptographic protocol is secure or not; Chapter 6
makes a more rigorous proof to assess that the indicated security specifica-
tions are not only necessary but also substantial under the computational
model. This specific security adequacy captures the peculiarities of key ex-
change protocols that involve different sessions. Chapter 7 presents a belief
multiset formalism for analysis of cryptographic protocols based on trusted
freshness.

Chapter 4, Chapter 5 and Chapter 7 have exemplified the usability and the
efficiency of the security specifications to guarantee the protocol security and
the belief multiset formalism via a set of well-known protocols. The absence of
certain security properties suggests the instant construction of many attacks
(not only one) on the protocol or suggests the correction of the protocol.
For example, in Kerberos pair-key protocol in DSNs (see Subsection 5), B
could not guarantee the freshness of kAB and the liveness of sensor node A,
so the adversary can construct an attack by impersonating A and confuse B
to regard an old key k′AB as a new session key between B and A. From the
absence of the association kAB with A and B, the adversary can construct
an attack and confuse B to believe that B shares a new session key kAB with
A, but in deed B shares kAB with the attacker I.

The proofs of security based on trusted freshness are simple and precise,
which can be easily accomplished not only by hand (Chapter 4 and Chapter
5) but also by formalism (Chapter 6 and Chapter 7). Moreover, the anal-
ysis process based on trusted freshness is rigorous and amenable for design
(Chapter 8) and automation (Chapter 9).
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