
6 Guarantee of Cryptographic Protocol
Security

Abstract Some important provable security notions like indistin-
guishability, match conversation, authentication, etc. are briefly re-
viewed. The security definitions of UA-Secure, MA-Secure, UK-Secure
and MK-Secure are specified based on the trusted freshness principle,
and these formalization specifications are proved to be adequate for
the intended security goals.

As we have witnessed in cryptographic literature, cryptographic protocols are
notoriously error-prone. These protocols can be flawed in very subtle ways.
It is widely agreed by researchers with different backgrounds that formal
methods should be taken into the security analysis of cryptographic protocols.

The methodology provable security is introduced where the security could
be proved under “standard” and well-believed complexity theoretic assump-
tions (e.g., the assumed intractability of factoring). The provable security
method often entails providing (i) a definition of the security goal, (ii) a pro-
tocol, and (iii) a proof that the protocol meets its goal, assuming some stan-
dard complexity-theoretic assumption holds true.It is the opinion of many
researchers that provable security should be in hand for all of the “basic”
cryptographic primitives[1, 2].

In provable security field, some novel definitional ideas are achieved:
Goldwasser, Micali et al. have suggested probabilistic encryption[3] and dig-
ital signatures[4], Blum–Micali and Yao suggested pseudorandom number
generation[5, 6], Bellare, Rogaway et al. suggested authentication[2, 7].

The security goals discussed in this book involve unilateral entity authen-
tication secure, mutual entity authentication secure, unilateral authenticated
key secure and mutual authenticated key secure. The question of whether
the security properties of a cryptographic protocol are adequate for a se-
curity goal or not will be answered in this chapter. Particularly we try to
raise the security specification guarantees of unilateral entity authentication
secure, mutual entity authentication secure, unilateral authenticated key se-
cure and mutual authenticated key secure, similar to those primitives such
as encryptions, pseudorandom generators, or digital signatures.

In this chapter, some important provable security notions like indistin-
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guishability, authentication, etc., will be briefly reviewed first. Then, we try
to formalize the security goals –UA-Secure, MA-Secure, UK-Secure and MK-
Secure – of cryptographic protocols based on the trusted freshness principle,
and prove that the formalization specifications are adequate for the intended
security goals. In deed, the latter security goal MK-Secure, which is well
known to applied cryptographers, is very useful to build secure distributed
system.

6.1 Security definition of authentication

Bellare and Rogaway are the first researchers who propose a computational
model for the security of authentication and authenticated key establishment
protocols[1]. The idea of the definition of a mutual authentication in this
model is simple but strong: any adversary effectively behaves as a trusted
wire, if not a broken one. This simple idea is formalized via a notion of
matching conversations. The idea of the definition of an authenticated key
exchange is to keep the session key remaining protected. The adversary’s
inability is formalized to gain any helpful information about the session key
along the lines of formalizations of security for probabilistic encryption[1, 7].

Four protocols are specifically discussed in the Bellare and Rogaway’s
model. Protocol MAP1 is a mutual authentication protocol for an arbitrary
set of parties. Protocol MAP2 is an extension of MAP1, allowing arbitrary
text strings to be authenticated along with its flows. Protocol AKEP1 is a
simple authenticated key exchange which uses MAP2 to do the key distribu-
tion. Protocol AKEP2 is a particularly efficient authenticated key exchange
which introduces the idea of “implicitly” distributing a key; its flows are
identical to MAP1, but it accomplishes a key distribution all the same. The
primitive required for all of these protocols is a pseudorandom function.

In practice, the pseudo-random function can be practically realized by
a message authentication code in cipher-block-chaining mode of operation
(CBC-MAC) or by a keyed cryptographic hash function (HMAC). The proof
of the security of authentication and authenticated key establishment pro-
tocols in the Bellare and Rogaway’s model leads from an alleged successful
attack on a protocol to the collapse of pseudo-randomness, i.e., the output of
a pseudo-random function can be distinguished from that of a truly random
function by a polynomial-time distinguisher, in the proof of the adversary; in
other words, the existence of pseudo-random functions is denied. This implies
that the result of the reduction should be either false or a major breakthrough
in the foundations for modern cryptography. As the former is more likely the
case, the reduction derives a contradiction as desired[8].



6.1 Security definition of authentication 217

6.1.1 Formal modeling of protocols

The protocols considered in Bellare and Rogaway’s model are two party ones,
formally specified by an efficiently computable function, a polynomial-time
function Π on the following input values:

1k: the security parameter k, k ∈ N where N is a set of natural numbers.
i : the identity of the sender ranging over I, i ∈ I ⊆ {0, 1}k where I is

a set of principals who can participate in the protocol and share a secret
long-term key, and {0, 1}k denotes the set of finite binary strings of length
at most k.

j : the identity of the (intended) communication partner of the sender,
the receiver ranging over I. Elements of I will sometimes be denoted as A
and B (or Alice and Bob), rather than i and j. Note that the adversary is
not a partner in the Bellare-Rogaway model and A = B (or i = j) is quite
possible.

K : the long-term symmetric key shared between the sender i and the
receiver j.

conv : the conversation so far, conv ∈ {0, 1}∗ where {0, 1}∗ denotes the
set of finite binary strings. conv grows with the protocol run; new string is
concatenated to it.

r : the random coin inputs of the sender like a nonce generated by the
sender.

The function of Π (1k, i, j,K, conv, r) implies that K, r is of size k, and
i, j, conv is of size polynomial in k. The value of Π (1k, i, j,K, conv, r) =
(m, δ, α) specifies:

m: the next message to send out, m ∈ {0, 1}∗ ∪ {“no message output”}.
α: the privte output, α ∈ {0, 1}∗ ∪ {“no private output”}.
δ: the decision for the sender, δ ∈ {Accept, Reject, Undetermined}. An

acceptance decision usually does not occur until the end of the protocol,
although a rejection decision may occur at any time. For mutual authenti-
cation protocol, only acceptance or rejection decision is concerned with. For
key exchange protocols, the private output, such as an agreed session key, is
concerned with. Once a decision other than “undetermined” is reached, the
private output will no longer change.

Oracle Π s
i,j models partner i attempting to authenticate partner j in a

“session” s for i, j ∈ I and s ∈ N.

6.1.2 Formal modeling of communications

In Bellare-Rogaway model, all communications among interacting parties are
assumed to be under the adversary I’s control. Particularly, the adversary
can read the messages produced by the parties, provide messages of his own
to them, modify messages before they reach their destination, and delay mes-
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sages or replay them. Most importantly, the adversary can start up entirely
new “instances” of any of the parties, modeling the ability of communicat-
ing agents to simultaneously engage in many sessions at once. Formally the
adversary I is a probabilistic machine equipped with an infinite collection of
oracles Π s

i,j, I can conduct as many sessions as I pleases among the honest
partners, and I can persuade a partner to start a protocol run as if it is
run with another honest partner. Each honest party will be modeled by an
infinite collection of oracles which the adversary may run. These oracles only
interact with the adversary, they never directly interact with one another[7].

Query

A query is of the form (i, j, s, x) which means that the adversary I is
sending message x to i, and the adversary I claims that it is from j in session
s. A query from I will be answered by an oracle Π s

i,j . In response to an
oracle call, I learns not only the outgoing message but also whether or not
the oracle has accepted, but I couldn’t learn the oracle’s private output. In
a particular execution of a protocol, the adversary’s i-th query to an oracle
is said to occur at time τ = τi ∈ R where R is a set of reals.

The Benign Adversary

An adversary is called benign if it is deterministic and it restricts its action
to choosing a pair of oracles Π s

i,j and Π s
j,i and then faithfully conveying each

flow from one oracle to the other, with Π s
i,j beginning first. In other words,

the first query I makes is (i, j, τ1, ""), generating response m1; the second
query I makes is (j, i, τ2,m1), generating response m′1, and so forth. While
the choice of i, j, τ1, τ2 is up to the adversary, this choice is the same in all
executions with security parameter k. Therefore, a benign adversary behaves
just like a wire between i and j. If the adversary wished to have the targeted
partners to output the acceptance decision, the adversary’s behavior should
be restricted to that of a benign adversary.

Time

Conforming notions of time include “abstract time”, where τi = i, and
“Turing machine time”, where τi = the i-th step in I’s computation, when
parties are realized by interacting Turing machines. Another conforming no-
tion of time (but a harder one to formalize) is “real time”, where τi is the
exact time when the i-th query is made, when parties are realized by inter-
acting computers. For the i-th query and the j-th query, if i < j, we demand
that τi < τj .

6.1.3 Formal modeling of entity authentication

A central notion in formalizing entity authentication goals is that of a match-
ing conversation.
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Bellare and Rogaway defined authenticity security as the matching con-
versation by an experiment involving the running of the adversary I with
security parameter k. When I terminates, each oracle Π s

i,j has had a cer-
tain conversation convsi,j with I, and it has reached a certain decision δ ∈
{Accept, Reject, Undetermined}.

Conversation

A conversation of oracle Π s
i,j is a sequence of timely ordered messages

that a partner sent out (respectively, received), and as consequent responses,
received (respectively, sent). Let τ1 < τ2 < · · · τn be a time sequence, for
any oracle Π s

i,j, the conversation (for this execution) can be denoted by the
following sequence:

conv = (τ1,m1,m
′
1) , (τ2,m2,m

′
2) , · · · , (τn,mn,m

′
n) .

This sequence encodes that at time τ1, the participant was asked m1 and
responded with m′1, and then, at some later time τ2 > τ1, oracle Π s

i,j was
asked m2, and answered m′2; and so forth, until, finally, at time τn it was
asked mn, and answered m′n. Adversary I terminates without asking oracle
Π s
i,j any more questions.
Suppose oracle Π s

i,j has conversation prefixed by (τ1,m1,m
′
1). Then if

m1 ="", we call oracle Π s
i,j an initiator oracle; if m1 is any other string,

we call Π s
i,j a responder oracle. If mn ="no message output", Π s

i,j ends
the conversation. At the end of a protocol run, each participant makes a
decision about the authentication of the intended partner: accept, reject, or
undetermined.

Matching conversation

Give a protocol Π between partners i and j. Run Π in the presence of
a benign adversary I and consider two oracles Π s

i,j and Π s′
j,i that engage in

conversations conv and conv′ in sessions s and s′, respectively.
1) We say that conv′ is a matching conversation to conv if there exist time

sequences τ0 < τ1 < τ2 < · · · < τn and m1,m
′
1,m2,m

′
2,m3, · · · ,m′t−1,mt,m

′
t

so that conv is prefixed by

conv = (τ0, "",m1) , (τ2,m′1,m2) , (τ4,m′2,m3) , · · · ,
(
τ2t−2,m

′
t−1,mt

)

and conv′ is prefixed by

conv′ = (τ1,m1,m
′
1) , (τ3,m2,m

′
2) , (τ5,m3,m

′
3) , · · · ,

(
τ2t−3,mt−1,m

′
t−1

)
.

2) We say that conv is a matching conversation to conv′ if there exists time
sequence τ0 < τ1 < τ2 < · · · τn and m1,m

′
1,m2,m

′
2,m3, · · · ,m′t−1,mt,m

′
t so

that conv′ is prefixed by

conv′ = (τ1,m1,m
′
1) , (τ3,m2,m

′
2) , (τ5,m3,m

′
3) , · · · , (τ2t−1,mt, ∗)
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and conv is prefixed by

conv = (τ0, "",m1) , (τ2,m′1,m2) , (τ4,m′2,m3) , · · · ,
(
τ2t−2,m

′
t−1,mt

)
.

Explanation. Case (1) defines when the conversation of a responder oracle
matches the conversation of an initiator oracle. Case (2) defines when the
conversation of an initiator oracle matches the conversation of a responder
oracle.

Consider an execution in which Π s
i,j is an initiator oracle and Π s′

j,i is a
responder oracle. If every message that Π s

i,j sends out, except possibly the
last, is subsequently delivered to Π s′

j,i, with the response to this message being
returned to Π s

i,j as its own next message, then we say that the conversation
of Π s′

j,i matches that of Π s
i,j . Similarly, if every message that Π s′

j,i receives
was previously generated by Π s

i,j , and each message that Π s′
j,i sends out is

subsequently delivered to Π s
i,j , with the response that this message generates

being returned to Π s′
j,i as its own next message, then it is said that the

conversation of Π s
i,j matches the one of Π s′

j,i.
It is said that oracle Π s

j,i has a matching conversation with oracle Π s
i,j

if Π s
j,i has conversation conv′, Π s

i,j has conversation conv, meanwhile conv′

matches conv.

Entity Authentication

Any mutual authentication protocol must have at least 3 round message
exchanges. The definition of a mutual authentication is similar to [1] as fol-
lows:

Definition 6.1 (Secure mutual authentication) Give a protocol Π between
partners A and B. We say that Π is a secure mutual authentication protocol
in the presence of any polynomial time adversary I if

1) (Matching conversations ⇒ acceptance.) The oracles Π s
A,B and Π s′

B,A

have matching conversations, then both oracles accept.
2) (Acceptance ⇒ matching conversations.) The adversary I cannot win

with a non-negligible probability in k. Here the adversary wins if the oracles
Π s
A,B and Π s′

B,A both reach the “accept” decision while they do not have
matching conversations in oracles.

Explanation. The first condition says that if one party’s messages are
faithfully relayed to one another, then the party accepts the authentication
of one another. The second condition says that if oracles Π s

A,B and Π s′
B,A

have reached the “accept” decision, then Π s
A,B or Π s′

B,A must have a matching
conversation in both oracles.

Note that an oracle’s matching partner is unique based on the Defini-
tion 6.1. More formally, let Multiple-MatchE(k) be the event that some
Π s
A,B accepts in the presence of any polynomial time adversary I, and there

are at least two distinct oracles Π s′
B,A and Π s′′

B,A which have had matching
conversations with Π s

A,B.



6.2 Security definition of SK-security 221

Proposition 6.1 Suppose the protocol Π between partners A and B is a
secure mutual authentication protocol. Let I be any polynomial time adver-
sary. Then the probability of Multiple-MatchE(k) is negligible.

The probability of Multiple-MatchE(k) is at most l2 ∗ 2−k where l is the
(polynomial) number of oracle calls of the adversary I and k is the security
parameter.

Bellare and Rogaway demonstrate their formal proof technique by pro-
viding a simple mutual entity authentication protocol named MAP1 and
conducting its proof of security. They also consider the correctness for au-
thenticated key establishment protocols. For more details, please refer to
references [1, 7].

6.2 Security definition of SK-security

Bellare and Rogaway’s idea of provable security under a computational model
originates from the seminal work of Goldwasser and Micali[3]. Goldwasser
and Micali propose a well-known public-key probabilistic encryption scheme
named the Goldwasser-Micali cryptosystem, GM cryptosystem, which pos-
sesses the property of semantic security assuming the intractability of the
quadratic residuosity problem. The semantic security is a stronger security
notion: Whatever is efficiently computable about the plaintext given the
ciphertext, is also efficiently computable without the ciphertext[8].

The semantic security, which is also known as IND-CPA security or
polynomial-time indistinguishability, means that a ciphertext does not leak
any useful information about the plaintext to any attacker whose computa-
tional power is polynomially bounded. They observed that in many applica-
tions, messages may contain certain apriori information which may be useful
for an attack. Goldwasser and Micali point out that public-key cryptosystems
which are based on direct applications of one-way trapdoor functions are in
general very weak for hiding such messages[3, 8]. The semantic security notion
tries to meet the need for a general fix of this much bigger problem.

There, a security property (one of several confidentiality qualities) is ar-
gued under a given attacking scenario (one of several attacking games each
of which models, with sufficient generality and precision, one of some typi-
cal behavior of a real-world attacker against public-key encryption schemes).
A proof of security for public-key encryption schemes with respect to an
alleged attack involves demonstrating an efficient transformation (called a
polynomial-time reduction) leading from the alleged attack to a major break-
through to a well-believed hard problem in computational complexity. It is the
wide belief on the unlikelihood of the major breakthrough that should refute
the existence of the alleged attack, that is, a proof is given by contradiction[8].

The Goldwasser-Micali scheme[3] can be described in a general setting
by using the notion of a trapdoor predicate. Briefly, a trapdoor predicate is
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a Boolean function B : {0, 1}∗ → {0, 1} so that, given a bit v, it is easy
to choose an x at random satisfying B(x) = v. Moreover, given a bitstring
x, computing B(x) correctly with probability significantly greater than 1

2 is
difficult; however, if certain trapdoor information is known, then it is easy to
compute B(x). Suppose an entity A’s public-key is a trapdoor predicate B,
any other entity encrypts a message bitmi by randomly selecting an xi so that
B(xi) = mi, and then sends xi to A. Since A knows the trapdoor information,
A can compute B(xi) to recover mi, but an adversary can do no better
than guess the value of mi. Goldwasser and Micali proved that if trapdoor
predicates exist, then this probabilistic encryption scheme is polynomially
secure[3, 9].

In the Bellare-Rogaway model, they also consider the correctness for au-
thenticated session key establishment (session key transport) protocols (for
the two-party case[1], also for the three-party case which uses a trusted third
party as an authentication server[7]). The security notion of key establish-
ment originates from the Goldwasser-Micali probabilistic encryption[3]. For
key establishment protocols, “Malice wins” means a successful guess of the
new session key. Since the new session key is randomly chosen by a pseudo-
random function, and the transported key is encrypted under the shared long-
term key, successful guessing of the session key is similarly hard as making
distinction between a pseudo-random function and a truly random function.

SK-Security notation is an important notion in the authentication proto-
col field. Canetti and Krawczyk put forward the CK model[10], including the
SK-Security notation, for the analysis of key establishment protocols that re-
sults from the combination of two previous works in this area: [1] by Bellare
and Rogaway and [2] by Bellare, Canetti and Krawczyk.

6.2.1 Protocol and adversary models in CK model

Canetti and Krawczyk extend and refine the formalism in the approach of
[10], where a general framework for studying the security of session-based
multi-party protocols over insecure channels is introduced. Let’s review the
CK model.

6.2.1.1 Protocol notations

P1, P2, ..., Pn: a set of parties (probabilistic polynomial-time machines)
interconnected by point-to-point links over which messages can be exchanged.

Protocols: collections of interactive procedures, run concurrently by par-
ties P1, P2, ..., Pn, which specify a particular processing of incoming messages
and the generation of outgoing messages.

Message-driven protocols: Protocols are initially triggered at a party by
an external “call” and later by the arrival of messages. Upon each of these
events, and according to the protocol specification, the protocol processes
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information and may generate and transmit a message and/or wait for the
next message to arrive.

Session: Each copy of a protocol run at a party is a session. Technically,
a session is an interactive subroutine executed inside a party. Each session is
identified by the party that runs it, the parties with whom the session com-
municates and by a session-identifier (session ID). Several copies of protocols
may be simultaneously run by each party. Each invocation of a protocol (or
session) at a given party creates a local state for that session during execu-
tion, and produces local outputs by that party. When a session ends its run
we call it complete and assume that its local state is erased.

Session key: Key-Establishment (KE) protocols are message-driven proto-
cols where the communication takes place between pairs of parties and which
return, upon completion, a secret key called a session key. It is required that
the calling protocol makes sure that the session ID’s of no two KE sessions
in which the party participates are identical. Furthermore, we leave it to the
calling protocol to make sure that two parties that wish to exchange a key
will activate matching sessions.

Upon activation, the partners Pi and Pj of two matching sessions exchange
messages, and eventually generate local outputs that include the name of the
partners of the session, the session identifier (session ID), and the value of the
computed session key. A key establishment event is recorded only when the
exchange is completed. Note that a session can be completed at one partner
but not necessarily at the other.

6.2.1.2 Adversary models

Adversarial setting determines the capabilities and possible actions of the
attacker. In CK model, the adversary model is given as generic as possible (as
opposed to, say, merely representing a list of possible attacks). The CK model
follows the general adversary formalism of [2] but specializes and extends the
adversarial model here for the case of KE protocols.

1. The unauthenticated-links adversarial model (UM)

Basic attacker capabilities Consider a probabilistic polynomial-time
(PPT) attacker that has full control of the communication links. The for-
malism represents this ability of the attacker by letting the attacker be the
one in charge of passing messages from one party to another. The attacker
also controls the scheduling of all protocol events including the initiation of
protocols and message delivery.

Obtaining secret information All the secret information stored at a
party is potentially vulnerable to break-ins or to other forms of leakage. The
attacker may obtain secret information stored in the party’s memories via
explicit attacks. However, when defining security of a protocol, it is important
to guarantee that the leakage of some form of secret information has the
least possible effect on the security of other secrets. In order to be able to
differentiate between various vulnerabilities and to be able to guarantee as
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much security as possible in the event of information exposures, three attacks
categories are classified depending on the type of information accessed by the
adversary:

1) Session-state reveal. The attacker provides the name of a party and a
session identifier of a yet incomplete session at that party and receives the
internal state of that session. What information is included in the local states
of a session is to be specified by each KE protocol. Typically, the revealed
information will include all the local state of the session and its subroutines,
except for the local state of the subroutines that directly access the long-term
secret information.

2) Session-key query. The attacker provides a party’s name and a session
identifier of a completed session at that party and receives the value of the key
generated by the named session. This attack provides the formal modeling
for leakage of information on specific session keys that may result from events
such as break-ins, cryptanalysis, and careless disposal of keys.

3) Party corruption. The attacker can decide at any point to corrupt a
party, in which case the attacker learns all the internal memory of that party
including long-term secrets (such as private keys or master shared keys used
across different sessions) and session-specific information contained in the
party’s memory (such as internal state of incomplete sessions and session-
keys corresponding to completed sessions).

If a session is subject to any of the above three attacks then the session is
called locally exposed. If a session or its matching session is locally exposed
then we call the session exposed.

Session expiration. Session expiration means that a session key (and
any related session state) is erased from that party’s memory. The value of
an expired session key cannot be found via any of the above session-state
reveal, session-key query and party corruption attacks if these attacks are
performed after the session expired.

2. The authenticated-links adversarial model (AM)

Authenticated-links adversarial model The attacker is restricted to only
deliver messages truly generated by the parties without any change or ad-
dition to them. This is the fundamental difference between UM adversarial
model and AM adversarial model.

Emulation A notion introduced in order to capture the equivalence of
functionality between protocols in different adversarial models, particularly
between the UM and AM adversarial models.

Authenticator A special algorithm acts as an automatic “compiler”
that translates protocols in the AM adversarial model into equivalent (or “as
secure as”) protocols in the UM adversarial model.
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6.2.2 SK-security in CK model

The security of a key-exchange protocol was defined by Canetti and Krawczyk,
it’s also called session-key security in CK model.

Session-key security (or SK-security), focus on ensuring the security of an
individual session-key as long as the session key value is not obtained by the
attacker via an explicit key exposure. To capture the idea that the attacker
“does not learn anything about the value of the key” from interacting with
the key-establishment protocol and attacking other sessions and parties, the
CK model formalizes SK-security via the infeasibility to distinguish between
the real value of the key and an independent random value as that in the
semantic-security approach[1]. The formulation of SK-security is very careful
about tuning the definition to offer enough strength as required for the use of
key-establishment protocols to realize secure channels, as well as being real-
istic enough to avoid over-kill requirements which would prevent researchers
from proving the security of very useful protocols[10].

First, define an “experiment” where the attacker I chooses a session which
is “tested” about information it learned on the session-key; specifically, ask
the attacker to differentiate the real value of the chosen session key from a
random value.

For the sake of this experiment we extend the usual capabilities of the
adversary I in the UM by allowing it to perform a test-session query. That
is, in addition to the regular actions of I against a key-exchange protocol Π ,
we let I choose, at any time during its run, a test-session among the sessions
that have been completed, and are unexpired and unexposed at the time. Let
k be the value of the corresponding session key. We toss a coin b, b R←− {0, 1}.
If b = 0, we provide the attacker I with the value k. Otherwise we provide the
attacker I with a value r randomly chosen from the probability distribution of
keys generated by the protocol Π . The attacker I is now allowed to continue
with the regular actions of a UM adversary but is not allowed to expose
this test-session (namely, it is not allowed session-state reveals, session-key
queries, or partner’s corruption on this test-session or its matching session).
At the end of its run, the attacker I outputs a bit b′ (as its guess for b). We
will refer to an attacker that is allowed test-session queries as a KE-adversary.

Definition 6.2 (SK-Security[10]) A KE protocol Π is called SK-secure if
the following properties hold for any KE-adversary I in the UM.

1) Protocol Π satisfies the property that if two uncorrupted parties com-
plete matching sessions then they both output the same key.

2) The probability that the adversary I guesses correctly the bit b (i.e.,
outputs b′ = b) is no more than 1/2 plus a negligible fraction in the security
parameter.

The first condition is a “consistency” requirement for sessions completed
by two uncorrupted parties. The second condition is the “core property”
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for SK-security. Definition 6.2 is very powerful and can be shown to ensure
many specific properties that are required from a good key-exchange protocol.
However, a key establishment protocol where all key-sessions “hang” and
never return also satisfies the definition. For simplicity, Canetti et al choose
to leave the analysis of the termination properties of protocols out of the
scope of the definition of security. This is also the case in this book.

6.3 Authentication based on trusted freshness

In this section, we will introduce the security definitions based on trusted
freshness. Some notations and security definitions in [1, 3] are adopted in the
trusted freshness security definition. Recall that the central ingredient in the
trusted freshness security analysis approach is the freshness principles intro-
duced in chapter 4 of this book. Let’s review and introduce some notations
related to trusted freshness security analysis.
— Principals, probabilistic polynomial time machines, which are intercon-

nected by point-to-point links over which messages can be exchanged.
— Trusted Third Party (TTP), a principal that provides a centralized au-

thentication service in an open system.
— Freshness identifier (or TVP), a unique freshness component generated

for a particular protocol run, it can be a nonce, a timestamp, a session
key or a shared part of a session key.

— Protocol, a communication procedure which is run between or among
co-operative principals.

— Message-driven protocols, protocols are initially triggered at a party by
an external “call” and later by the arrival of messages.

— Challenge-Response protocol, in a challenge-response mechanism, one
participant can verify the lively correspondence of the intended opposite
partner by inputting a freshness identifier (challenge) to a composition of
a protocol message and the composition involves a cryptographic opera-
tion (response) performed by the intended opposite partner.

— Session, a copy of a protocol run at a party, several copies of any protocol
may be simultaneously run by each party.

6.3.1 Trusted freshness

In the context of communication protocols, that a freshness identifier is fresh
means that the identifier has not been used previously, and originated within
an acceptably recent time. Formally, fresh typically means recent, and it is in
the sense of having originated subsequent to the beginning of the current pro-
tocol instance. Note that such freshness alone does not rule out interleaving
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attacks using parallel sessions[8, 9].

Definition 6.3 (Freshness) Given a protocol Π between partners A and B.
A component of the protocol Π is fresh if the component is guaranteed to be
new from the viewpoint of one party A or B.

Classification of freshness component

Three freshness component categories are classified depending on the type
of the component:

1) Timestamp Recording the time of creation, transmission, receipt or
existence of information.

The party originating a message obtains a timestamp from its local (host)
clock, and binds it to a message. Upon receiving a time-stamped message, the
second party obtains the current time from its own (host) clock, and subtracts
the timestamp received. The timestamp difference should be within the ac-
ceptance window, and each party should maintain a “loosely synchronized”
clock which must be appropriate to accommodate the acceptance window
used.

The time clock must be secure to prevent adversarial resetting of a clock
backwards so as to restore the validity of old messages, or setting a clock
forward to prepare a message for some future point in time.

2) Nonce A value originated subsequent to the beginning of the current
protocol instance, and it is used no more than once for the same purpose.

In a challenge-response protocol, the term nonce is most often used to
refer to a “random” number which is sampled from a sufficiently large space,
but the required randomness properties vary. A key parameter or the shared
parts of a key may be viewed as a nonce in some cases. If random numbers
are chosen by A and B, respectively, then the random numbers together with
a signature may provide a guarantee of freshness and entity authentication.

3) Sequence number A value provided by a never-repeated sequential
counter, and it serves as a unique number identifying a message and is typi-
cally used to detect message replay. A message is accepted only if the sequence
number therein has not been used previously (or not used previously within
a specified time period). Sequence number changes on every new protocol
instance or new message depending on different purposes.

Each party should maintain the sequence number pairwise of the origina-
tor and the receiver, and be sufficient to determine previously used and/or
still valid sequence numbers. Distinct sequences are customarily necessary for
messages from A to B and from B to A.

Sequence numbers may provide uniqueness, but not (real-time) timeli-
ness, and thus are more appropriate to detect message replay than entity
authentication. Sequence numbers may also be used to detect the deletion of
entire messages; they thus allow data integrity to be checked over an ongoing
sequence of messages, in addition to individual messages.

Note that a sequence number is not natively fresh even for the sequence



228 6 Guarantee of Cryptographic Protocol Security

number generator.

The cost for a random number or a sequence number to provide a freshness
guarantee is an additional message more than that for the timestamp in the
one-pass technique.

Definition 6.4 (Trusted freshness) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links. We say that the freshness identifier
γ is fresh, or in other words, a trusted freshness, if for a participant A,

1) the freshness identifier γ originates in the participant A itself.
2) the freshness identifier γ is a timestamp and the timestamp difference

between the initiator and the receiver is within the acceptance window.
3) A has corroborative evidence that γ is fresh. Here the corroborative ev-

idence may be a signature, a MAC or other one-way transformation including
the freshness identifier.

The first sufficient condition of Definition 6.4 is based on the random-
ization of A’s nonce, which has been sampled at random from a sufficiently
large space and so no one can predicate the value before sampling; the sec-
ond sufficient condition of Definition 6.4 is based on a “loosely synchronized”
clock, and the timestamp difference is within the acceptance window, hence
the “recent” property could be checked by the opponent party; The third
sufficient condition of Definition 6.4 is based on the security property of the
cryptographic algorithms, and it is widely used and more useful in challenge-
response protocols. Note that the freshness of a freshness identifier could be
given via mathematical proofs.

Theorem 6.1 (Generation Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. If a freshness identifier γ is a
nonce or a timestamp, and it is generated by the participant A itself, then A
believes that γ is a trusted freshness.

Proof A freshness identifier γ originating in the participant A could be
a nonce, a timestamp or a sequence number. Let’s consider the freshness of
γ in these three cases:

(1) The freshness identifier γ is a nonce.
Let’s recall the supposition: the term nonce is most often used to refer to

a “random” number which is sampled from a sufficiently large space.
The “random” numbers are in fact pseudo-random numbers, they are

generated by a pseudorandom number generator and they have a distribution
totally determined (i.e., in a deterministic fashion) by a seed. Yet, a good
pseudo-random number generator yields pseudorandom numbers which are
polynomially indistinguishable from truly random numbers.

Recall that the adversary I is a probabilistic polynomial-time machine
which has full control of the communication links. Hence, the adversary I
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couldn’t distinguish the distribution of the random variables output from
a pseudorandom number generator from the uniform distribution of strings
(truly random numbers) which are of the same length as those of the pseudo-
random variables.

Hence, if a freshness identifier γ is generated by the participant A itself,
then A believes that γ is recent and it is a “random” number. Since γ is a
“random” number, it couldn’t be guessed by a probabilistic polynomial-time
attacker I, and we can guarantee that the freshness identifier γ is used no
more than once for the same purpose. That is, the freshness identifier γ is a
trusted freshness.

(2) The freshness identifier γ is a timestamp.
Since the freshness identifier γ is generated by the participant A itself,

then A believes that γ is recent. Recall the supposition that the timestamp
difference between the initiator and the receiver is within the acceptance
window, so there is no time gap for the freshness identifier γ to be used for
other purpose. That is, the freshness identifier γ is used no more than once
for the same purpose, hence the timestamp γ is a trusted freshness.

(3) The freshness identifier γ is a sequence number.
The sequence number is a value provided by a never repeated sequential

counter, and it is typically used to detect message replay. Since the freshness
identifier γ is generated by the participant A itself, A believes that γ is re-
cent. However, the sequence number γ may be guessed even by a probabilistic
polynomial-time attacker I, so I could obtain the intending response mes-
sages from sending request messages to the victim oracle, and the attacker I
may replay the achieved messages including γ for other purpose. Hence, we
do not regard a sequence number as a trusted freshness.

Theorem 6.2 (Timestamp Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. If a freshness identifier γ is a
timestamp, and it is received by A from the opponent B, then A believes
that γ is a trusted freshness.

Proof Since the freshness identifier γ is a timestamp, and the timestamp
difference between the initiator and the receiver is within the acceptance
window, so A believes that γ is recent and there is no time gap for the
freshness identifier γ to be used for other purpose. That is, the freshness
identifier γ is used no more than once for the same purpose, hence γ is a
trusted freshness.

Recall the term, maximal term, signed term and similar term notions in
Chapter 4, the follows is a example.

Example 6.1 Here is another illustration of terms. Suppose there exists
a message B → A : {B,A,NA, {NA, NB, A,B}K}, the principal B believes
that NB is a trusted freshness identifier, and the principal A believes that
NA is a trusted freshness identifier too.
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Upon sending this message, B has the terms:
1 + {...NB...} Definition 4.10 (1)

2 + {...NB...}K Term 1 and Definition 4.10 (3)

3 + {...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

4 + {...NB, A...}K Term 2 and Definition 4.10 (2),(3)

5 + {...NB, B...}K Term 2 and Definition 4.10 (2),(3)

6 + {...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

7 + {...NA, NB, A...}K Term 6 and Definition 4.10 (2),(3)

8 + {...NA, NB, B...}K Term 6 and Definition 4.10 (2),(3)

9 + {...NA, NB, A,B...}K Term 8 and Definition 4.10 (2),(3)
Upon sending this message, A has the terms:
1 −{...NA...} Definition 4.10 (1)

2 −{...NA...}K Term 1 and Definition 4.10 (3)

3 −{...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

4 −{...NA, A...}K Term 2 and Definition 4.10 (2),(3)

5 −{...NA, B...}K Term 2 and Definition 4.10 (2),(3)

6 −{...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

7 −{...NA, NB, A...}K Term 6 and Definition 4.10 (2),(3)

8 −{...NA, NB, B...}K Term 6 and Definition 4.10 (2),(3)
{...NA, NB, A,B...}K is the maximal term of the message {NA, NB, A,

B}K sent from B to A.
To detect parallel attack, the maximal term of each message in the same

protocol should not be the same.

6.3.2 Liveness of principal

The notation of the principal’s liveness originates from [8], which means the
presence of the intended partner. We try to make the liveness property more
specific by giving the principal’s liveness definition and a liveness rule.

Definition 6.5 (Liveness of a principal) Given a protocol Π between part-
ners A and B in the presence of a probabilistic polynomial-time adversary
I that has full control of the communication links. The liveness of B means
that B is the intended partner of the communication from the point of view
of A, and B is responsive to the communications in the current protocol run.

Theorem 6.3 (Liveness Rule) Given a protocol Π between partners A and
B in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. We say that the liveness of B has been
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authenticated by A if A has corroborative evidence that B has participated
in this protocol run.

Suppose γ is a trusted freshness from the point of view of A. A may have
the liveness of B from receiving the following “loose” one-way transformation,

1) A signature including the trusted freshness γ, which is signed by B.
2) An encryption including the trusted freshness γ, which is encrypted

with MAC by B using the shared long-term key between A and B.
3) Other one-way transformation of a message including the trusted fresh-

ness identifier γ, and this cryptographic operation can provide evidence of
B’s generation of this one-way transformation.

Proof Let’s consider the liveness of B from the point of view of A in
the following three scenarios:

(1) Signature including the trusted freshness identifier γ by B.
Suppose B is not alive and is not responsive to the communications in

the current protocol run. Since the signature (it is believed to be signed by
B’s private key) includes the trusted freshness identifier γ, then this signature
could not be a replay of an old recorded message. So, it must be the adversary
I who has recently constructed the signature including the trusted freshness
identifier γ. That is to say, the adversary I has the ability to construct the
signature without knowing the corresponding private key. This has translated
an advantage for an alleged attack on the protocol to a similar (up to poly-
nomial difference) advantage for inverting the signature used in the scheme.
This contradicts the wide belief that there exists no efficient algorithm for
inverting a signature.

Hence, if A has received the signature including the trusted freshness
identifier γ from B, then A is assured that B is alive and responsive to the
communications in the current protocol run.

(2) Encryption including the trusted freshness identifier γ under the shared
long-term key between Aand B.

Recall that the maximal term of each message in the same protocol should
not be the same, so this one-way transformation could not be a replay of
encryption by A itself. Other proof procedures are similar to the case (1).

(3) One-way transformation including the trusted freshness identifier γ,
and this cryptographic operation can provide evidence of B’s generation of
this one-way transformation.

The proof procedures are similar to the case (1).
The second condition of Theorem 6.3 also includes the case – keyed hash

where the encryption algorithm is a hash function but not a traditional block
cipher, and the key is the shared long-term key between A and B.

Definition 6.6 (Liveness of a principal with origin) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. The liveness of
B means that B is the intended partner of the communication from the point
of view of A, and B is specially responsive to the communication with A in
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the current protocol run.

Theorem 6.4 (Origin Liveness Rule) Given a protocol Π between partners
A and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. We say that the Origin liveness
of B has been authenticated by A if A has specially corroborative evidence
that B has participated in this protocol run with this origin participant A.

Suppose γ is a trusted freshness from the point of view of A. A may
have the origin liveness of B from receiving the following “loose” one-way
transformation.

1) A signature including the trusted freshness γ and the origin identity
A, which is signed by B.

2) An encryption including the trusted freshness γ and the origin iden-
tity A, which is encrypted with MAC by B using the shared long-term key
between A and B.

3) Other one-way transformation of a message including the trusted fresh-
ness identifier γ and the origin identity A, and this cryptographic operation
can provide evidence of B’s generation of this one-way transformation.

6.3.3 Confidentiality of freshness identifier

Definition 6.7 (Confidentiality of freshness identifier) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. We say that the
freshness identifier is confidential if the adversary I could not know γ from
the protocol run.

Theorem 6.5 (Confidentiality Rule) Given a protocol Π between partners
A and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. Suppose all freshness identifiers
are confidential at the beginning of a protocol run. The confidential property
may change in the following two scenarios:
1) The freshness identifier is transmitted in plain text.
2) The freshness identifier is transmitted in an encryption whose decryption

key is known by the adversary I.

Proof Omitted for its obviousness.

6.3.4 Freshness of freshness identifier

Definition 6.8 (Freshness of a Freshness Identifier) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. We say that the
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freshness identifier γ is fresh if γ is new for this protocol run.

Theorem 6.6 (Freshness Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. We say that the freshness of γ
has been authenticated by A if A has corroborative evidence that γ is new
for this protocol run. The corroborative evidence includes the following three
scenarios:

1) The freshness identifier γ originates in the participant A itself for this
protocol run.

2) The freshness identifier γ is a timestamp and the timestamp difference
between the initiator and the receiver is within the acceptance window.

3) A has corroborative evidence that γ is fresh. Here the corroborative
evidence may be a signature, a MAC or other one-way transformation to
assure the freshness of the freshness identifier.

Proof Refer to proofs in Theorem 6.4 and Theorem 6.1.

6.3.5 Association of freshness identifier

Definition 6.9 (Association of Freshness Identifier) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. We say that the
freshness identifier γ is associated with A (and/or B) if γ is generated for the
protocol run related with A (and/or B).

Theorem 6.7 (Association Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links. We say that the freshness identifier
γ is associated with A (and/or B) from the point of view of A if A has
corroborative evidence that γ is generated for this protocol run related with
A (and/or B). The corroborative evidence includes the following scenarios:

1) A sends or receives a message which is encrypted under the shared
long-term key between two parties, then the trusted freshness identifier γ in
this message is related to these two parties.

2) A sends or receives a message including the identity of B, which is
encrypted under the shared long-term key between A and the trusted third
party S, then the trusted freshness identifier γ in this message is related to
B.

3) A receives an encryption under the public-key of A, then the trusted
freshness identifier γ in this encryption is related to A.

4) A sends an encryption including the identity of A using the public-key
of the opponent B, then the trusted freshness identifier γ in this encryption
is related to A.
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5) A receives a signature of B, then the trusted freshness identifier γ in
this signature is related to B.

6) A receives a signature of B including the identity of A, then the trusted
freshness identifier γ in this signature is related to A.

7) Other one-way transformation including the trusted freshness identifier
γ, and this cryptographic operation can provide evidence of B’s (and/or A’s)
association with γ, then the trusted freshness identifier γ in this one-way
transformation is related to B (and/or A).

Proof We show that 1) of the theorem is satisfied. Suppose the two
parties in case 1) are A and B. If A receives a message including the trusted
freshness identifier which is encrypted under the shared long-term key be-
tween A and B, then A knows that it must be a message originating from
B and it could not be a replay one. Since the received message could only
be decrypted by both A and B, and the adversary could do nothing but re-
play this one, hence A believes that the trusted freshness identifier γ in this
message is related to these two parties A and B.

The proofs for 2) to 7) of the theorem are similar, hence omitted for
concision.

The encryption algorithm in 1) and 2) of Theorem 6.7 may be block cipher
or keyed hash; In case 3) of Theorem 6.7, if A receives an encryption including
the identity of B under the public-key of A, then the freshness identifier γ
in this encryption needn’t be related to B, since this message could even be
generated by the adversary I.

6.3.6 Security analysis based on trusted freshness

We mainly discuss Challenge-Response authentication protocols.

6.3.6.1 Notion

— Unilateral entity authentication: the identity of one protocol participant
is authenticated.

— Mutual entity authentication: the identities of both protocol participants
are authenticated to each other.

— Unilateral authenticated key transport: the identity of one protocol par-
ticipant is authenticated, and the opposite unauthenticated party believes
that the session key generated by the authenticated participant or a TTP
can provide a secure channel over an insecure network.

— Mutual authenticated key transport: the identities of both protocol par-
ticipants are authenticated to each other, and both protocol participants
believe that the new session key generated by one of the participants or
a TTP can provide a secure channel over an insecure network.
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— Mutual authenticated key exchange (or key agreement): the identities
of both protocol participants are authenticated to each other, and both
protocol participants believe that the new session key which is the output
of a function of all protocol participants’ random input can provide a
secure channel over an insecure network.

6.3.6.2 Hypothesis

Suppose we have a probabilistic polynomial-time (PPT) attacker I that has
full control of the communication links as described in Dolev-Yao threat
model[11]. Besides this, we suppose that the Dolev-Yao attacker I in this book
is allowed to perform a kind of cryptanalysis training course, and I can also
launch the adaptive chosen ciphertext attacks (CCA2) without limitations.

Suppose we have cryptographic primitives with security against indistin-
guishable adaptive chosen ciphertext attack (IND-CCA2). That is, in IND-
CCA2 security strength, the failures in cryptographic protocols are not in
any way related to the strength or weakness of the particular cryptographic
primitives used, but related to the protocol logic flaws, which permits the
attacker to break the security goals of cryptographic protocols without nec-
essarily breaking the particular cryptographic primitives used. And we also
suppose that a legitimate party is either totally corrupted or totally secure.

Suppose that each participant has his own private key and all other par-
ties’ public-keys (respectively, the shared long-term key between co-operative
principals or the trusted third party) in public-key case (respectively, in
shared key case), which are deployed safely before the cryptographic proto-
col run via authenticated channel or even traditional communication means.
Furthermore, private keys and shared keys are commonly assumed to be too
long to guess in a computationally feasible way.

Suppose that all freshness identifiers are confidential at the beginning of
the protocol run.

In general, an authentication protocol is considered flawed if a principal
concludes a normal run of the protocol with its intended communication
partners while the intended partner would have a different conclusion.

6.3.6.3 Notation

— ρ, arbitrary principal, ranges over the participants of the protocol run.
— Pi or Pj , a principal indexed by subscript in a protocol run.
— S, trusted third party.
— t, arbitrary time, a moment, not a period of time.
— t0, t1, t2, ..., t$, various time points. t0 means time before the start of a

protocol run, ti means time at message i (i = 1, 2, . . . ) exchange, and t$
means time at the termination of a protocol run respectively.

— N or N ′, arbitrary freshness identifier, it can be a nonce, a timestamp, a
session key or the shared part of a session key.

— NPi , a freshness identifier invented by subscript principal Pi.
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— k, a cryptographic key; k−1, the inverse of k. In shared key case, k and
k−1 are equal.

— K, a long-term key, it may be a secret key in shared key schemes, or a
public-key and a private key in public-key schemes.

— KPiPj , the long-term key shared by principal Pi and Pj in shared key
case.

— KPi and K−1
Pi

, the public-key and private key subscripted by the principal
identity respectively in public-key case.

— ϕ, ψ or Γ, a fact which has the value of True or False respectively.
— ¬, it is the same as negation used in logic.
— Key(Pi, k), the principal Pi has the knowledge of key k.
— Belief (Pi, ϕ), the principal Pi asserts that the fact ϕ is True. For exam-

ple, Belief (Pi,Key(Pj , k)) means that the principal Pi asserts that the
principal Pj knows the key k.

— Existing(Pj), the intended partner Pj is in lively correspondence in this
protocol run; Belief (Pi,Existing(Pj)), the principal Pi asserts that the
intended partner Pj is in lively correspondence in this protocol run.

— Originexisting(Pj), the intended partner Pj is specially in lively cor-
respondence in this protocol run with the origin participant Pi; Be-
lief (Pi,Originexisting(Pj)), the principal Pi asserts that the intended
partner Pj is specially in lively correspondence in this protocol run with
the origin participant Pi.

— Secret(N), the freshness identifier N is confidential in this protocol run;
Belief (Pi,Secret(N)), the principal Pi asserts that the freshness identifier
N is confidential in this protocol run.

— Fresh(N), the freshness identifier N is fresh in this protocol run; Be-
lief (Pi, Fresh(N)), the principal Pi asserts that the freshness identifier N
is fresh in this protocol run.

— Associate(N,P1, P2, P3, ...), the freshness identifier N is associated with
a participant P1, (or with both P1 and P2, or with P1, P2 and P3...) in
this protocol run; Belief (Pi,Associate(N,P1, P2, P3, ...)), the principal Pi

asserts that the freshness identifier N is associated with a participant P1,
(or with both P1 and P2, or with P1, P2 and P3...) in this protocol run. For
example, Belief (Pi,Associate(NA, A,B)) means the principal Pi asserts
that the freshness identifier NA is associated with the principals A and
B.

6.3.7 Definition of security

The security definition under computational model provides a high confidence
of the security of a cryptosystem[1, 3, 8, 13]. Recall the notations “conversa-
tion”, “matching conversations”, and we make tiny changes: only one-way
transformation that includes a trusted freshness identifier is considered as an
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efficient message of a conversation in our security analysis of cryptographic
protocols based on trusted freshness. That is to say, we only concern with
the fresh messages but omit the message parts that do not contribute to our
protocol security properties to be proved in the trusted freshness approach.

Recall that at the end of a protocol run, each participant makes a de-
cision about the authentication of the intended partner: “accept”, “reject”,
or “undetermined”[8]. Given a protocol Π between the principal A and the
principal B, if a principal like A with a conversation conv believes that B
always has a conversation conv′ which matches conv whenever they are al-
lowed to complete a protocol run, then this authentication protocol is secure
from the point of view of A. Here the attacker wins if the principal A has
reached “accept” decision while B does not have a matching conversation in
B.

Semantic security is widely accepted in the cryptographic area, and we
follow the probabilistic indistinguishability definitional approach in [3] to
define confidentiality security. In this book, that the attacker has broken
the scheme means that without breaking any cryptographic algorithm and
knowing the corresponding key, the attacker can still learn something about
the established new session key under the run of a cryptographic protocol.
Here we define “learn” as distinguishing the value of a key generated by the
cryptographic protocol from an independent randomly chosen key.

Based on the security definition of authenticity, we have presented the
Unilateral entity Authentication Secure definition (UA-Secure) (Definition
4.3) and Mutual entity Authentication Secure definition (MA-Secure) (Defi-
nition 4.4); based on the security definition of authenticity and confidential-
ity, we have presented the Unilateral authenticated Key Secure (UK-Secure)
(Definition 4.5) and Mutual authenticated Key Secure (MK-Secure[10]) (Def-
inition 4.6).

In Chapter 4, we have also presented the security properties to clarify
whether a cryptographic protocol is adequate for the security goals or not.
Here, four formal security specifications will be given based on Theorem 4.1,
Theorem 4.2, Theorem 4.3 and Theorem 4.4.

Theorem 6.8 (UA-Secure) Given a protocol Π between partners Pi and Pj

in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. The authentication protocol Π is UA-
Secure if and only if the following property holds for one of the participants,
say Pi: Pi has Existing(Pi, Pj), that is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol run.

Proof We show that the authentication protocol Π is UA-Secure if and
only if Pi has Existing(Pj).

(1) Sufficiency proof. We show that if Pi has Existing(Pj), then the pro-
tocol Π meets Definition 4.3, that is UA-Secure. Suppose Pi wants to au-
thenticate the identity of the opponent partner Pj . This try could be made
by Pi or be a reply to the message sent by the opponent partner Pj . Recall
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that only one-way transformation that includes a trusted freshness identi-
fier is considered as an efficient message of a conversation in our trusted
freshness. If Pi has Existing(Pj), that is Pi believes the liveness of the in-
tended opposite principal Pj , according to the liveness rule (Theorem 6.3),
Pi must have invented a challenge NPi for this particular protocol run, and
received a one-way transformation that includes NPi , where the one-way
transformation can only be accomplished by the principal Pj . Recall that we
have a cryptographic algorithm under IND-CCA2, if Pi sees the conversation
convPi = (τ0, · · · , NPi), (τ2, {NPi}KPiPj

, · · · ) in shared key case or convPi =
(τ0, · · · , NPi), (τ2, {NPi}K−1

Pj

, · · · ) in public-key case, then Pi sees that the

uniformly random string {NPi}KPiPj
or {NPi}K−1

Pj

is computed using NPi

invented by Pi itself; it can therefore conclude that the probability for this
bit string not having been computed by its intended partner (in other words,
having been computed by the attacker) is at the level of 2−k. Consequently,
Pi can conclude that its intended partner has a conversation which is prefixed
by convPj = (τ1, NPi , {NPi}KPiPj

) or convPj = (τ1, NPi , {NPi}K−1
Pj

). This es-

sentially shows that there exists a conversation convPj matching convPi , and
the conversation convPj has been computed by the intended partner Pj in
an overwhelming probability (in the security parameter KPiPj or K−1

Pj
). Ac-

cording to the security definition of authentication, hence Pi believes that Pj

is in lively correspondence with Pi in the matching session.
(2) Necessary proof. We show that if the protocol Π is UA-Secure, then

Pi has Existing(Pj). Suppose the UA-Secure protocol Π doesn’t hold the
listed security property Existing(Pj), that is, Pi does not believe the liveness
of the intended opposite principal Pj , then, according to the liveness rules
(Theorem 6.3), Pi has either sent a compromised or an old challenge NPi to
the intended opposite partner Pj (namely, the attacker can replay a recorded
stale message to Pi by impersonating Pj), or Pi does not require a response
to Pi’s challenge (namely, the attacker can launch an attack directly). So
the protocol Π cannot be UA-secure, hence there exists a contradiction with
the initial assumption that the protocol Π is UA-Secure. Typical examples
include Otway-Rees protocol[13], revised Woo-Lam protocol[14].

Therefore, we can conclude that the listed UA-secure security property is
not only sufficient but also necessary for the protocol Π to be UA-secure.

Theorem 6.9 (MA-Secure) Given a protocol Π between partners Pi and
Pj in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. The authentication protocol Π is called
MA-Secure if the following properties hold for the participants Pi and Pj :

1) Pi has Existing(Pj), that is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol run;

2) Pj has Existing(Pi), that is, Pj believes that the intended opposite
participant Pi is in lively correspondence with Pj in this protocol run;
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Proof Similar to Theorem 6.8, omitted.

Theorem 6.10 (Origin UA-secure) Given a protocol Π between partners
Pi and Pj in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. The authentication protocol Π
is Origin UA-Secure if and only if the following property holds for one of the
participants, say Pi: Pi has Originexisting(Pj), that is, Pi believes that the
intended opposite participant Pj is specially in lively correspondence with
this origin participant Pi in this protocol run.

Theorem 6.11 (Origin MA-secure) Given a protocol Π between partners
Pi and Pj in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. The authentication protocol Π is
called Origin MA-Secure if the following properties hold for the participants
Pi and Pj :

1) Pi has Originexisting(Pj), that is, Pi believes that the intended op-
posite participant Pj is specially in lively correspondence with this origin
participant Pi in this protocol run;

2) Pj has Originexisting(Pi), that is, Pj believes that the intended op-
posite participant Pi is specially in lively correspondence with this origin
participant Pj in this protocol run;

Unilateral entity authentication secure (UA-secure) and Mutual entity
authentication secure (MA-secure) are the most common cases in real world
applications for identity authentication and access control services, which
may suffer the replay attacks and at last may provide false identity authen-
tication and access control. In deed, Origin Unilateral entity authentication
secure (Origin UA-secure) and Origin Mutual entity authentication secure
(Origin MA-secure) could meet these real world application requirements.

Theorem 6.12 (UK-secure) Given an authentication protocol Π between
partners Pi and Pj in the presence of a probabilistic polynomial-time adver-
sary I that has full control of the communication links. k is the new session
or the shared part of the new session key for this protocol run. The authen-
tication protocol Π is called UK-Secure if the following properties hold for
one of the participants, say Pi:

1) Pi has Existing(Pj). That is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol.

2) Pi has Secret(k), Fresh(k) and Associate(k, Pi, Pj). That is, Pi be-
lieves that the adversary I could not know the new session key k and k is
new for this protocol run between Pi and Pj .

Proof Similar to Theorem 6.13, omitted.

Theorem 6.13 (MK-secure) Given an authentication protocol Π between
partners Pi and Pj in the presence of a probabilistic polynomial-time adver-
sary I that has full control of the communication links. k is the new session
key or the shared part of the new session key for this protocol run. The au-
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thentication protocol Π is called MK-Secure if the following properties hold
for the participants Pi and Pj :

1) Pi has Existing(Pj). That is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol run.

2) Pj has Existing(Pi). That is, Pj believes that the intended opposite
participant Pi is in lively correspondence with Pj in this protocol run.

3) Pi has Secret(k), Fresh(k) and Associate(k, Pi, Pj). That is, Pi be-
lieves that the adversary I could not know the new session key k and k is
new for this protocol run between Pi and Pj .

4) Pj has Secret(k), Fresh(k) and Associate(k, Pi, Pj). That is, Pj be-
lieves that the adversary I could not know the new session key k and k is
new for this protocol run between Pi and Pj .

Proof Sufficiency proof. We show that 1) of the Definition 4.6 is satisfied
by protocol Π . Since the principal Pi believes the liveness of the intended op-
posite principal Pj and only one-way transformation that includes a trusted
freshness identifier is considered as an efficient message of a conversation in
our approach, according to liveness rule (Theorem 6.3), Pi must have gener-
ated a challenge NPi for this particular protocol run, and received a one-way
transformation that includes a trusted freshness identifierNPi , where the one-
way transformation can only be accomplished by the principal Pj . Recall that
we have an ideal cryptographic algorithm with security against IND-CCA2,
if Pi sees the conversation convPi = (τ0, · · · , NPi), (τ2, {NPi}KPiPj

, · · · ) in
shared key case or convPj = (τ1, NPi , {NPi}K−1

Pj

) in public-key case, then Pi

sees that the uniformly random string {NPi}KPiPj
or {NPi}K−1

Pj

is computed

using NPi invented by Pi itself; it can therefore conclude that the proba-
bility for this bit string not having been computed by its intended partner
(in other words, having been computed by the attacker) is at the level of
2−k. Consequently, Pi can conclude that its intended partner has a con-
versation which is prefixed by convPj = (τ1, NPi , {NPi}KPiPj

) or convPj =
(τ1, NPi , {NPi}K−1

Pj

). This essentially shows that there exists a conversation

convPj matching convPi and the conversation convPj has been computed by
the intended partner in an overwhelming probability (in the security parame-
ter KPiPj or K−1

Pj
). According to the security definition of authentication, Pi

believes that Pj is in lively correspondence with Pi in this session. Similarly,
Pj believes that Pi is in lively correspondence with Pj in this session.

Since principal Pi believes the freshness of the new session key k, according
to the Freshness Rule (Theorem 6.6), k must be a new generated session key
for this run. Since principal Pi believes the association of the new session key
k with the principals Pi and Pj , according to the Association Rule (Theorem
6.7), k must be a session key for a particular protocol run between Pi and Pj .
Up to now, k must be a new generated session key for a particular protocol
run between Pi and Pj , hence k is the same key for both Pi and Pj , and it
is different from other generated keys in any other sessions. That is to say, if
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two uncorrupted parties complete matching sessions then they both output
the same key.

We show that 2) of the Definition 4.6 is also satisfied by protocol Π .
Recall that the attacker I is a PPT machine who has full control of the com-
munication links and I is allowed to perform a kind of cryptanalysis training
course. We can specify that l is an upper bound of the session number for
training invoked by I in any interactions. Let k be the value of the corre-
sponding session key selected randomly in this protocol Π . Let Pi play the
game with the attacker I as in Definition 4.6. Let Bad be the events that
the information of k may leak during the cryptanalysis training courses. Let
Iwins denote the event that I makes a correct guess of the challenge bit b. It
is clear that in absence of the event Bad, due to the uniform randomness of
the selected session key k, the challenge bit b is independent of the challenge
ciphertext b’. Thus we have

Prob[Iwins|Bad ] =
1
2
.

Since

Prob[Iwins|Bad ] =
Prob[Iwins ∩ Bad ]

Prob[Bad ]
,

we have

Prob[Iwins ∩ Bad ] =
1
2
Prob[Bad ] =

1
2
(1 − Prob[Bad ]).

While
Prob[Iwins] = Prob[Iwins ∩ Bad ] + Prob[Iwins ∩ Bad ],

therefore

Prob[Iwins] � Prob[Bad ] + Prob[Iwins ∩ Bad ]

= Prob[Bad ] +
1
2
(1 − Prob[Bad ]) =

1
2
(1 + Prob[Bad ]).

Since we have an ideal cryptosystem, even the attacker I has invoked l
times cryptanalysis training course, the probability that the information of k
may be leaked to I by the underlying cryptosystem (say Bad1) is negligible in
the security parameter, that is Prob[Bad1] � l∗Adv where Adv is a negligible
fraction. Since principal Pi believes the liveness of the intended partner Pj ,
the probability that the information of k might be leaked by Pj to I (say
Bad2) is 0. Since principal Pi believes the association of the new session key
k with the principals Pi and Pj , the probability that the attacker I could
persuade Pj to believe a key between I and Pj (or I and Pi) to be the key k
between Pi and Pj (say Bad3) is 0. Then we have

Prob[Bad ] = Prob[Bad1] + Prob[Bad2] + Prob[Bad3] � l ∗Adv,
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therefore

Prob[Iwins] � 1
2
(1 + Prob[Bad ]) � 1

2
(1 + l ∗Adv) =

1
2
+

l ∗Adv

2
.

Since attacker I is a PPT attacker, then (l ∗Adv)/2 is negligible. There-
fore, the probability that I guesses correctly the bit b is no more than 1/2
plus a negligible fraction in the security parameter.

Necessary proof. Suppose that a MK-secure protocol Π doesn’t hold the
listed security properties.

If a participant like Pi (or Pj) does not believe the liveness of the intended
opposite principal Pj (or Pi), then, according to Theorem 6.3, Pi (or Pj) has
sent either a compromised or an old challenge to the intended opposite part-
ner Pj (or Pi) (That is to say, the attacker can replay a recorded stale message
to Pi (or Pj) by impersonating Pj (or Pi), or does not require a response to
Pi’s (or Pj ’s) challenge (That is to say, the attacker can launch an attack
directly). This contradicts the initial assumption. The typical examples are
Otway-Rees protocol[13], revised Woo-Lam protocol[14]. Hence the protocol
Π cannot be MK-secure.

If a participant like Pi (or Pj) believes that the confidentiality of the
new session key k is open, then, according to Lemma 4.2, the attacker wins
with the probability of 1 when playing the game in Definition 4.6. Hence the
protocol Π cannot be MK-secure.

If a participant like Pi (or Pj) does not believe the freshness of the ses-
sion key k, then, according to Lemma 4.3, the attacker can replay a recorded
message including a compromised key k′ as response to Pi (or Pj). A typ-
ical example is the Needham-Schroeder shared key protocol[15]. Hence the
protocol Π cannot be MK-secure.

If a participant like Pi (or Pj) does not believe the association of the ses-
sion key k with the co-operative participants, then, according to Lemma 4.4,
the attacker may cheat a legitimate participant by confusing a key between
the attacker and another to be the key between two legitimate participants.
A typical example is the Needham-Schroeder public-key protocol[8]. Hence
the protocol Π cannot be MK-secure.

Therefore, we can conclude that the listed MK-secure security properties
are not only substantial but also necessary for the protocol Π to be MK-
secure.

6.3.8 Non-repudiation based on trusted freshness

Non-repudiation means a principal could not deny his sending or receiving
a message. These non-repudiation services (protection against false denials)
relate to the transfer of a message from an originator to a recipient. Non-
repudiation is an important security service for many applications and it is
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a necessary security requirement in electronic commerce. Non-repudiation
mechanisms are specified for non-repudiation of origin (denial of being the
originator of a message), non-repudiation of delivery (denial of having re-
ceived a message). Commonly used fairness security in electronic commerce
protocols can also be derived from non-repudiation.

When disputes arise due to a principal denying that certain actions (hav-
ing sent or received a message) were taken, a trusted third party can be called
upon to make an arbitration: give the proof of message origin, or the proof
of message delivery. For example, a principal may authorize a purchase of a
car and later he may deny such an authorization granted. A procedure in-
volving a third party is needed to resolve the dispute. What evidence would
be submitted to the third party, and what precise process the third party is
to follow to render judgement on disputes should be specified in detail for a
non-repudiation service.

Digital signatures can provide the non-repudiation service because a sig-
nature of a message is verifiable universally. The non-repudiation service pro-
vided by a digital signature means a proof of knowledge that a signer owns
exclusively a private key (knowledge) which has enabled him (her) to issue
the signature. The non-repudiation aspect of digital signatures is a primary
advantage of public-key cryptography.

Symmetric techniques (including encipherment and keyed one-way func-
tions) typically cannot provide non-repudiation service effectively, since the
data integrity techniques based on a shared secret key (e.g., MACs) typically
involve mutual trust and do not address true (single-source) data origin au-
thentication, that is, either party sharing the secret key can equally originate
a message using the shared key.

If the resolution of subsequent disputes is a potential requirement, then
either an on-line trusted third party is in a notary role, or asymmetric tech-
niques should be used.

Definition 6.10 (Non-repudiation) A crypto protocol Π can provide non-
repudia-tion service if any attacker I cannot win with a non-negligible prob-
ability in Dolev-Yao threat model. Here the attacker wins if a principal A
has reached the conclusion of message origin of B, or message delivery of B
while B has not sent or received the message.

Rule 6.1 (Non-repudiation rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. We say that the protocol Π
can provide non-repudiation service if A has corroborative evidence that the
dispute message m originates from B, or the dispute message m has been
received by B. The corroborative evidence includes these following scenarios:

1) The dispute message m is a signature of its originator B.
2) The dispute messagem is guaranteed known by the dispute opponentB

via the message composition involving a cryptographic operation (response)
that could only be performed by the intended opposite partner B.
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Note: Suppose the trusted third party S is secure, then the corrobora-
tive evidence could be an encryption sent by B to the trusted third party
encrypted under the shared key between B and S.

Definition 6.11 (Real time non-repudiation) A cryptographic protocol Π
can provide realtime non-repudiation service if any attacker I cannot win with
a non-negligible probability for a particular protocol run in Dolev-Yao threat
model. Here the attacker wins if a principal A has reached the conclusion of
message origin of B, or message delivery of B for this particular protocol run
while B has not sent or received the message.

Rule 6.2 (Real time non-repudiation rule) Given a protocol Π between
partnersA andB in the presence of a probabilistic polynomial-time adversary
I that has full control of the communication links. We say that the protocol
Π can provide non-repudiation service if A has corroborative evidence that
the dispute message m originates from B for this particular protocol run, or
the dispute message m has been received by B for this particular protocol
run. The corroborative evidence includes these following scenarios:

1) The dispute message m including a timestamp is a signature of its
originator B.

2) The dispute message m is guaranteed known by the dispute opponent
B via B’s cryptographic operation (response), which could only be performed
by B, on the message composition including a timestamp.

3) The dispute messagem is guaranteed known by the dispute opponentB
via the message composition involving a cryptographic operation (response)
that could only be performed by B, and the cryptographic operation includes
a timestamp.

Here are some notations supplemented in trusted frehsness approach:
— Originate(ρ,m, Pj), every principal ρ or at least a dispute judger could

assert that the dispute message m originates from Pj .
— Respond(ρ,m, Pj), every principal ρ or at least a dispute judger could

assert that the dispute message m has been received by Pj .
— RealTimeOriginate(ρ,m, Pj), every principal ρ or at least a dispute judger

could assert that the dispute messagem originates from Pj for a particular
protocol run.

— RealTimeRespond(ρ,m, Pj), every principal ρ or at least a dispute judger
could assert that the dispute message m has been received by Pj for a
particular protocol run.

Theorem 6.14 (Non-repudiation secure) Given an authentication protocol
Π between partners Pi and Pj in the presence of a probabilistic polynomial-
time adversary I that has full control of the communication links. m is a
dispute message between partners Pi and Pj . We say that the protocol Π
can provide non-repudiation service if either of the following properties holds
for one of the participants, say Pi:

1) Pi has Originate(Pi,m, Pj). That is, Pi has corroborative evidence that
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the dispute message m is generated by Pj .
2) Pi has Respond(Pi,m, Pj). That is, Pi has corroborative evidence that

the dispute message m has been received by Pj .

Proof We show that 1) of the Theorem 6.14 is satisfied. Suppose that
an adversary I can win with a non-negligible probability to make the princi-
pal Pi believe that a forged message m originates from the opponent partner
Pj . Recall that Pi has Originate(Pi,m, Pj). That is, Pi has corroborative
evidence that the dispute message m is generated by Pj . Suppose the corrob-
orative evidence is that the dispute message m is a signature of its originator
Pj . Hence, the forged message m is a successfully constructed signature of
its originator Pj . The adversary’s ability for signature forgery can be fully
translated to one for inverting the hard function (i.e., the underlying one-way
trapdoor function). This contradicts the assumed well-known intractability
problem (i.e., factoring of RSA moduli).

Therefore, we can conclude that Originate(Pi,m, Pj) is substantial for
the protocol Π to provide non-repudiation service.

We show that 2) of the Theorem 6.14 is satisfied. Suppose that an ad-
versary I can win with a non-negligible probability to make the principal Pi

believe that a forged message m has been received by the opponent partner
Pj . Recall that Pi has Respond(Pi,m, Pj). That is, Pi has corroborative evi-
dence that the dispute message m has been received by Pj . The corroborative
evidence is that the dispute message m is known by the dispute opponent Pj

via a cryptographic operation that could only be performed by the intended
opposite partner (i.e., a decryption using Pj ’s private key of receiving an
encryption including m). Hence, if the adversary wins, then the adversary
could decrypt a public-key encryption without knowing the corresponding
private key in public-key case. The adversary’s ability for decryption with-
out corresponding key can also be fully translated to one for inverting the
hard function. This also contradicts the assumed well-known intractability
problem.

Therefore, we can conclude that Respond(Pi,m, Pj) is also substantial for
the protocol Π to provide non-repudiation service.

Theorem 6.15 (Realtime non-repudiation secure) Given an authentication
protocol Π between partners Pi and Pj in the presence of a probabilistic
polynomial-time adversary I that has full control of the communication links.
m is the dispute message for this protocol run. We say that the protocol Π
can provide non-repudiation service if either of the following properties holds
for one of the participants, say Pi:

1) Pi has RealTimeOriginate(Pi,m, Pj). That is, Pi has corroborative
evidence that the dispute message m is generated by Pj .

2) Pi has RealTimeRespond(Pi,m, Pj). That is, Pi has corroborative ev-
idence that the dispute message m has been received by Pj .

Proof We show that 1) of the Theorem 6.15 is satisfied. The proof that
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the Non-repudiation property, the dispute message m, originates from Pj , in
this theorem is similar to that proof in Theorem 6.14, hence omitted.

We show that the real time property in this theorem is also satisfied.
Recall that Pi has RealTimeOriginate(Pi,m, Pj). That is, Pi (respectively,
Pj) has corroborative evidence that the dispute message m has been sent
by Pj in a “loosely synchronized” clock time (the timestamp records the
time of sending). In deed, this timestamp is obtained by the party Pj from
its local (host) clock, and is bound to the dispute message m. Since each
party has maintained a “loosely synchronized” clock which is appropriate
to accommodate the acceptance window used, if the timestamp difference is
within the acceptance window, then Pi believes that this dispute message m
is a real time message.

Therefore, we can conclude that RealTimeOriginate(Pi,m, Pj) is sufficient
for the protocol Π to provide real time non-repudiation service.

From the proof of the real time property in 1) of Theorem 6.15 and also
the proof of delivery property in 2) of Theorem 6.14, we can obtain the proof
of 2) real time non-repudiation in Theorem 6.15 similarly.
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