
5 Security Analysis of Real World Protocols

Abstract Several de facto or industrial standards are widely used
in many real world applications are discussed and analyzed via the
trusted freshness approach. The typical cryptographic protocols in-
clude the Secure Socket Layer Protocol (SSL) and its variant, Trans-
port Layer Security Protocol (TLS), the Internet Key Exchange Pro-
tocol (IKE) and the Kerberos Authentication Protocol. From the dis-
cussion and the security analysis of these protocols, we will see that it
is very challenging to achieve strong security properties of the cryp-
tographic protocols fit for application.

Our study of cryptographic protocols in the preceding chapters has focused
on the academic protocols, while in this chapter, we will touch some widely
used real world cryptographic protocols and analyze them using the trusted
freshness method. This will help the readers to understand the trusted fresh-
ness method deeply and evaluate the security strength of a cryptographic
protocol they may use in practice.

The Internet is an enormous open network of computers and devices called
“nodes”. To deal with the complicated network well, the ISO (the Interna-
tional Organization for Standardization) presents the Open System Inter-
connection Reference Model (OSI Reference Model or OSI Model) which is
an abstract description for layered communications and computer network
protocol design. In its most basic form, it divides network architecture into
seven layers which, from top to bottom, are the Application, Presentation,
Session, Transport, Network, Data-Link, and Physical Layers, and they are
also called the seventh layer, the sixth layer, and so on and so forth. A layer
is a collection of conceptually similar functions that provide services to the
layer above it and receive service from the layer below it.

Figure 5.1 illustrates a simplified ISO Open System Interconnection (OSI)
architecture considering placement of key distribution protocols[1–12].

Internet is an open network environment, and each node in the network
trusts each other from the Internet’s original design intention, hence inse-
cure systems are already in wide use. To keep backward compatibility, secure
solutions should be added in with the least interruption to the insecure sys-
tems which are already in operation[13]. E.g. the SSL avoids modifying “TCP

 Cryptographic Protocol
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012
L. Dong et al.,

154 5 Security Analysis of Real World Protocols

Fig. 5.1 The ISO Open System Interconnection.

stack” and requires minimum changes to the application, mostly used to au-
thenticate servers; IPSec is transparent to the application, but it requires
modification of the network stack and establishes a secure channel between
nodes.

In this chapter, we shall introduce and discuss several cryptographic pro-
tocols which are de facto or industrial standards, and they are already widely
used in many real world applications. The real world protocols we shall study
include the Secure Socket Layer Protocol (SSL)[2], and its variant, Trans-
port Layer Security Protocol (TLS)[3]; the Internet Key Exchange Protocol
(IKE)[4, 5] and the Kerberos Authentication Protocol[6, 7]. From the discus-
sion and the security analysis of these protocols, we will see that it is very
challenging to achieve strong security properties of the cryptographic proto-
cols fit for application.

5.1 Secure Socket Layer and Transport Layer Security

Secure Socket Layer (SSL), and its variant, Transport Layer Security (TLS),
are the de facto standards used to end-to-end encrypt, and they are mainly
for WorldWideWeb (Web for short) security[2, 3]. This includes specifically
credit card purchases and bank sites, but it may also be used on any site
requesting a password or dealing with personal information. SSL and TLS
use public-key encryption.

The most recent draft of the SSL 3.0 specification was published in Novem-
ber 1996 by Netscape and SSL 3.0 was the basis for the TLS 1.0 (RFC 2246)
specification published by the Internet Engineering Task force (IETF) in
1999. The IETF made some small changes and clarifications and published
RFC4346 in 2006 detailing TLS 1.1. The most recent draft of the TLS 1.2

5.1 Secure Socket Layer and Transport Layer Security 155

(RFC 5246) specification was published in August 2008 by IETF.

5.1.1 SSL and TLS overview

The primary goal of the SSL Protocol is to provide privacy and reliability
between two communicating applications. Except cryptographic security, the
goals also include interoperability, extensibility, and relative efficiency. The
protocol allows client/server applications to communicate in a way that is
designed to prevent eavesdropping, tampering, or message forgery. The SSL
Handshake Protocol can be considered as a stateful process running on the
client and server machines. A stateful connection is called a “session”, and a
session can be renegotiated.

The SSL protocol is composed of two layers. At the lowest level, layered
on top of some reliable transport protocol (e.g., Transmission Control Pro-
tocol, that is TCP protocol) is the SSL Record Protocol. The SSL Record
Protocol provides secure encapsulation of the communication channel for
use by higher layer application protocols. The higher level protocols include
Handshake, Change Cipher Spec, and Alert protocols as well as application
data. The SSL handshake protocol is a key exchange protocol which initial-
izes and synchronizes cryptographic state at the two endpoints. After the
key-exchange protocol completes, sensitive application data can be sent via
the SSL record layer. One advantage of SSL is that a higher level protocol
can layer on top of the SSL Protocol transparently. The technique used to
encrypt and verify the integrity of SSL records is specified by the currently
active Cipher Spec. A typical example would be to encrypt data using DES
and generate authentication codes using MD5.

SSL/TLS has 4 underlying protocols: Handshake, Record, Change Cipher
Spec, and Alert. This is laid out as:

8 bit 8 bit 8 bit 16 bit 16384 bytes

Type
Major
version

Minor
Version

Record Length Record Data

In decimal, the types are as follows:
20 Change Cipher Spec
21 Alert
22 Handshake
23 Application (data)
The version would be 3 and then 0 for SSL 3.0. Since TLS is a “minor

modification to the SSL 3.0 protocol,” TLS 1.0 is defined as SSL major version
3, minor version 1, TLS 1.1 is 3 and then 2, and the upcoming TLS 1.2 will
be major version 3, then minor version 3.

The record length is written in terms of bytes and can not exceed 214 (16,
384). Compression allows for the length to be extended by up to 1024 bytes,

156 5 Security Analysis of Real World Protocols

to a new max of 17,408 bytes in the TLS compressed length field.
SSL connections begin with a 4-way handshake. The keys for symmetric

encryption and for HMAC are generated uniquely for each session connection
and are based on a secret negotiated by the SSL Handshake Protocol.

Alert messages with a level of fatal result in the immediate termination of
the connection. In this case, other connections corresponding to the session
may continue, but the session identifier must be invalidated, preventing the
failed session from being used to establish new connections.

5.1.2 The SSL handshake protocol

The SSL Handshake Protocol is one of the defined higher level clients of the
SSL Record Protocol. The SSL Handshake Protocol allows the server and
client to authenticate each other and to negotiate a encryption algorithm
and cryptographic keys for symmetric encryption and for HMAC uniquely for
each session connection, and thereby to establish a secure session connection
with the SSL Record Protocol to process secure communications with higher
level application protocols. The handshake protocol structure is:

8 bit 24 bit

Type Length Content

The allowed values for type are indicated in Table 5.1.

Table 5.1 Allowed values for type in SSL handshake protocol

Type Value Type Remark

0 HelloRequest

1 ClientHello

2 ServerHello

11 Certificate Optional

12 ServerKeyExchange Optional

13 CertificateRequest Optional

14 ServerHelloDone

15 CertificateVerify

16 ClientKeyExchange Optional

20 Finished

The handshake protocol messages are presented in the order in which they
must be sent; sending handshake messages in an unexpected order results in
a fatal error.

The data handshake process performs the following steps, as shown in
Fig. 5.2.

Message 1 C → S : Client Hello

5.1 Secure Socket Layer and Transport Layer Security 157

Message 2 S → C : ServerHello
ServerCertificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone

Message 3 C → S : ClientCertificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished

Message 4 S → C : [ChangeCipherSpec]
Finished

Fig. 5.2 Message flow for a full handshake of SSL.

Notation

C denotes a client (the client-side web browser), S denotes the web server,
and * indicates optional or situation-dependent messages that are not always
sent.

Premise

ClientCertificate (ServerCertificate) is a certification of C’s (or S’s) iden-
tity and corresponding public-key KC (or KS) signed by a trusted certifica-
tion authority center CA.

158 5 Security Analysis of Real World Protocols

Protocol actions

1) In Message 1 (ClientHello message:)
The client starts the session connection by sending a message to which

the server must respond with a ServerHello message, or else the connection
will fail. The client may resume an existing session. The ClientHello message
will have the following data:
— The protocol version is in the client hello which is for backward compat-

ibility use.
— A 32-bit Unix format timestamp and a 28-byte random number Clien-

tHello.random are generated by the client.
— The session identifier: When the client wishes to start a new session

connection, this field should be empty. The client may specify a session
identifier of a current or previous session. Doing this allows for multiple
secure connections without going through the entire handshake process
each time, although both Hello, the Change Cipher Spec, and both Fin-
ished messages must still be exchanged and be valid.

— The cipher suite, a list of the cryptographic options supported in the
client side machine, sorted with the client’s first preference first. Each
cipher suite defines the algorithm for key exchange, the bulk encryption
algorithm with secret key and length, and the message authentication
code (MAC). A wide range of public-key and symmetric cryptographic
algorithms, digital signature schemes, MAC schemes and hash functions
can be proposed by the client.

A cipher suite identifies a Cipher Spec. These structures are part of
the SSL session state. The Cipher Spec includes:

enum {stream, block} CipherType;
enum {true, false} IsExportable;
enum {null, rc4, rc2, des, 3des, des40, fortezza}

BulkCipherAlgorithm;
enum {null, md5, sha} MACAlgorithm;
struct {

BulkCipherAlgorithm bulk cipher algorithm;
MACAlgorithm mac algorithm;
CipherType cipher type;
IsExportable is exportable;
uint8 hash size;
uint8 key material;
uint8 IV size;

} CipherSpec;

Here, unit8 is an unsigned byte.
— The compression method supported in the client side machine.

2) In Message 2 (ServerHello message:)
The server responds to Client Hello message with the ServerHello message.

The ServerHello message will have the following data:
— The version number being used: the lowering of the server’s highest sup-

ported version and the version in the client hello.

5.1 Secure Socket Layer and Transport Layer Security 159

— A 32-bit Unix format timestamp and a 28-byte random number Server-
Hello.random are generated by the server.

— The session identifier: if the session ID is recognized, then a short hand-
shake is used and the following fields are filled in with the values from the
previous connection. Otherwise, the ServerHello generates a new session
ID, uses this new value in this field, and caches the session ID in its local
memory. The server may return an empty session ID to indicate that the
session will not be cached and therefore cannot be resumed.

— The cipher suite chosen by the server, where the server selects a single
scheme for each necessary cryptographic operation, informs the client in
this field.

— The compression method chosen by the server.
If the server can not find an acceptable cipher suite and compression

method, it will respond with a handshake failure alert.
(1) ServerCertificate message: Unless the key exchange method is anony-

mous, if the server is to be authenticated (which is generally the case), the
server will send out a certificate immediately after sending the ServerHello.
The certificate is generally an X.509 v3 certificate public-key and unless oth-
erwise specified uses the same key exchange method and signing algorithm
previously decided on. An X.509 certificate contains sufficient information
about the name and the public-key of the certificate owner and that about
the issuing certification authority. Sending a list of certificates permits the
client to choose one with the public-key algorithm supported in the client’s
machine. That is, certificates from all the up line servers are necessary to get
to the one that the client trusts must be included. The order of these should
be so that each certificate validates the one before it.

(2) ServerKeyExchange message: If the ServerCertificate does not con-
tain enough data for a pre-master secret, then a ServerKeyExchange is sent
with either an RSA public, or a Diffie-Hellman public-key (This is the case
for DHE DSS, DHE RSA, and DH anon; but not for RSA, DH DSS, and
DH RSA key exchange methods). ServerKeyExchange contains the server’s
public-key material matching the certificate list in ServerCertificate. The ma-
terial for Diffie-Hellman key agreement will be included here which is the tuple
(p, g, gy) where p is a prime modulus, g is a generator modulo p of a large
group and y is an integer cached in the server’s local memory.

(3) CertificateRequest message: If it is appropriate, the server may re-
quest a certificate from the client with a CertificateRequest. This would im-
mediately follow the ServerCertificate, or present the ServerKeyExchange.
The CertificateRequest would specify the types of certificates the server will
accept and the Certificate Authorities the server trusts.

(4) ServerHelloDone message: The ServerHelloDone indicates to the client
that server is done sending data and the client should now verify the certifi-
cates and whatnot it has received.

160 5 Security Analysis of Real World Protocols

3) In Message 3 (ClientCertificate message:)
After receiving the ServerHelloDone the client would respond with a mes-

sage identical in format to the ServerCertificate if a CertificateRequest was
received before.

(1) ClientKeyExchange message: If RSA is used, the Client Key Exchange
message includes an encrypted pre-master secret which consists of a 48-bit
number that is encrypted with the server’s public-key.

If Diffie-Hellman is used, but not Fixed Diffie-Hellman, then the public-
key parameters are sent here.

(2) CertificateVerify message: If the client sent a certificate, then it would
send a CertificateVerify message at this point, in most cases. This would
include a signature in the same format as defined for the ServerKeyMessage
as well as an MD5 sum of all of the previous messages and a SHA hash of all
of the previous messages.

(3) ChangeCipherSpec message: The Client sends the ChangeCipherSpec
message indicating that all future traffic will be computed with the master
secret. The random numbers and the pre-master secret are used by both
systems in a pseudorandom function to calculate the master secret.

The change cipher spec protocol is a single byte that will always have
a value of 1. It is encrypted and compressed under the current cipher (the
pre-master secret) and with compression method.

(4) Finished message: Up to now, the client and server have negotiated
the shared secret information known only to themselves. This value is a 48-
byte quantity called the master secret.

master secret =

MD5(pre master secret + SHA(‘A’ + pre master secret

+ ClientHello.random + ServerHello.random)) +

MD5(pre master secret + SHA(‘BB’ + pre master secret

+ ClientHello.random + ServerHello.random)) +

MD5(pre master secret + SHA(‘CCC’ + pre master secret

+ ClientHello.random + ServerHello.random)).

The client now sends the Finished message. This consists of the master
secret, the finished label, an MD5 of all previous messages and an SHA of
all previous messages. All of this is encrypted with the master secret. If the
server can read all of this, then the server knows that the key generation
was successful. The Finished message is the first protected with the just-
negotiated algorithms, keys, and secrets.

4) In Message 4 (ChangeCipherSpec & Finished message:)
The server responds with its own ChangeCipherSpec and Finished mes-

sages which verify to the client that the key generation was successful.
If any warning or fatal errors occur, an alert is sent. Alerts consist of a

byte that defines whether it’s a warning (1) or a fatal (2) alert, and a byte

5.1 Secure Socket Layer and Transport Layer Security 161

that indicates the specific alert. The possible values for alerts are indicated
in Table 5.2.

Table 5.2 Alerts in SSL

Fatal alerts Not fatal alerts

unexpected message (10) close notify (0)

bad record mac (20) no certificate RESERVED (41) – this is SSL 3.0 only

decryption failed (21) bad certificate (42)

record overflow (22) unsupported certificate (43)

decompression failure (30) certificate revoked (44)

handshake failure (40) certificate expired (45)

illegal parameter (47) certificate unknown (46)

unknown ca (48) decrypt error (51)

access denied (49) no renegotiation (100)

decode error (50)

export restriction RESERVED (60)

protocol version (70)

insufficient security (71)

internal error (80)

user canceled (90)

Application data: The master secret is used to generate keys and secrets
for encryption and MAC computations. To generate the key material, com-
pute key block until enough output has been generated, where

key block =

MD5(master secret + SHA(‘A’ + master secret

+ ServerHello.random + ClientHello.random)) +

MD5(master secret + SHA(‘BB’ + master secret

+ ServerHello.random + ClientHello.random)) +

MD5(master secret + SHA(‘CCC’ + master secret

+ ServerHello.random + ClientHello.random)) + [...].
Then the key block is partitioned as follows.

client write MAC secret[CipherSpec.hash size]

server write MAC secret[CipherSpec.hash size]

client write key[CipherSpec.key material]

server write key[CipherSpec.key material]

client write IV[CipherSpec.IV size] /* non-export ciphers */

server write IV[CipherSpec.IV size] /* non-export ciphers */
Any extra key block material is discarded.
Now that the keys and secrets are computed, data may be sent encapsu-

lated inside record protocol. This data will be encrypted and compressed in
the agreed upon methods and can be reliably read by the other end but not

162 5 Security Analysis of Real World Protocols

likely anyone in-between.

5.1.3 Security analysis of SSL based on trusted freshness

SSL is helpful for enhancing the security of communications, however it is
not as secure as it intends to. In this subsection, we give the security analysis
of SSL based on trusted freshness, and some attacks are given from the
absence of the protocol security properties. Moreover, attacks related to TLS
renegotiation implementation are also briefly introduced.

5.1.3.1 Security analysis of SSL negotiation based on trusted freshness

Example 5.1 (A full SSL handshake protocol with both side certificates)
When a new session begins, the CipherSpec encryption, hash, and compres-
sion algorithms are initialized to null. Figure 5.3 illustrates the message ex-
changes in SSL handshake protocol related to authentication and key estab-
lishment with the certification verifying both server side and client side.

Message 1 C → S : V erC , TC , NC , NULL
Message 2 S → C : V erS , TS, NS , SIDS , CertS

Message 3 C → S : {kCS}KS , CertC , {NC , NS}K−1
C

,
{
C, {NC , NS}K−1

C

}
kCS

Message 4 S → C : {S,NS, NC}kCS

Fig. 5.3 Message in a full handshake of SSL with certifications of both sides.

Notation

C denotes a client (the client-side web browser), S denotes the web server.
VerC is the protocol version in the client hello, and VerS is the version
number being used (the lowering of the server’s highest supported version
and the version in the client hello). TC and TS are timestamps generated by
C and S referring to an absolute time, where clocks are not required to be set
correctly by the basic SSL Protocol, but higher level or application protocols
may define additional requirements. NC and NS are nonces randomly chosen
by C and S respectively. kCS is a new session key between C and S to

5.1 Secure Socket Layer and Transport Layer Security 163

be established in this authentication protocol (Note: we do not distinguish
pre master secret, master secret and other keys and secrets for encryption
and MAC computations since they do not effect the security analysis of SSL).
SIDS is a new session ID generated and cached by the Server. CertC (CertS)
is a certificate of C (or S) and corresponding public-key KC (or KS) signed
by a trusted certificate authority CA. KS and K−1

S are public-key and private
key of S, while KC and K−1

C are public-key and private key of C.

Premise

Both C and S know the public-key of the trusted certificate authority CA
to get KC and KS . Each principal knows the key pair of himself, that is, KC

and K−1
C for C, KS and K−1

S for S.

Protocol actions

1) In Message 1, the client C starts the negotiation by sending the client
SSL version VerC , the timestamp TC , a randomly chosen new nonce NC by
C for this protocol run, a NULL session identifier and the intended cryp-
tographic algorithm for key exchange, the bulk encryption algorithm with
secret key and length, and MAC (the chosen cipher suite does not effect the
security analysis of SSL, hence omitted.).

2) Upon receiving Message 1, since the session ID is NULL, a full hand-
shake is launched.

3) In Message 2, S generates a new session ID SIDS, and sends it to C
with the version number VerS being used, the timestamp TS , the randomly
chosen new nonce NS by S, and the certificate of S containing the name and
the public-key.

4) Upon receiving Message 2, C randomly chooses a new session key kCS

for this protocol run, then encrypts it underKS and sends it to C; C encrypts
the identity of himself, the randomly chosen nonce NC and NS , and sends
{C, {NC , NS}K−1

C
}kCS to S.

5) Upon receiving Message 3, S gets the new session key kCS using S’s
private key K−1

S , then decrypts {C, {NC , NS}K−1
C
}kCS using kCS also KC

and verifies the correction of NC and NS .
6) In Message 4, S encrypts the identity of S, the randomly chosen nonce

NC and NS , and sends {S,NS, NC}kCS to C.
7) Upon receiving Message 4, C decrypts {S,NS, NC}kCS using kCS and

verifies the correction of NC and NS .
Successful execution should convince C and S that kCS is a new ses-

sion key between C and S. Actually, this protocol has not achieved the key
exchange and authentication security objects as it intends to.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce NC , and C also believes that NC is
open.

164 5 Security Analysis of Real World Protocols

2) Upon receiving Message 1, from Lemma 4.2, S believes that NC is
open.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, S has the freshness
assurance of the randomly chosen nonce NS, and S also believes that NS is
open.

4) Upon receiving Message 2, from Lemma 4.2, C believes that NS is
open.

5) In Message 3, from Lemma 4.2 and Lemma 4.3, C has the confiden-
tiality and the freshness assurances of the new session key kCS .

6) Upon receiving Message 3, from Lemma 4.3, S has the freshness as-
surance of the new session key kCS . From Lemma 4.4, S has the association
assurance of kCS with C, since only C could sign {NC , NS}K−1

C
using its

private key, and the identity of C is explicitly indicated in Message 3. Upon
receiving {NC , NS}K−1

C
, from Lemma 4.1, S has the liveness assurance of C

based on the trusted freshness NS .
7) Upon receiving Message 4, from Lemma 4.1, C has the liveness as-

surance of S. From Lemma 4.3, C has the freshness assurance of NS. From
Lemma 4.4, S has the association assurances of NC , NS and kCS with S,
since only S could get kCS from the encryption {kCS}KS using its private
key, and the identity of S is explicitly indicated in Message 4.

Upon termination of the protocol run, as indicated in Table 5.3, C believes
that S is present, and the new session key kCS is confidential, fresh, and
associated with S, while S believes that C is present, and the new session
key kCS is confidential, fresh, and associated with C.

Table 5.3 Security analysis of the full handshake of SSL protocol

C S

S NC NS kCS C NC NS kCS

Message 1 01# 0?#

Message 2 0?# 01#

Message 3 11# 1 01C 11C

Message 4 1 01S 01S 11S

End of run 1 11S 1 11C

Example 5.2 (Attack-1 on a full SSL handshake protocol with both side
certificates) From the absence of the association of kCS with S in the point
of view of S, we can construct an attack as shown in Fig. 5.4.

Message 1 C → I : VerC , TC , NC ,NULL

Message 1′ I(C)→ S : VerC , TC , NC ,NULL

Message 2′ S → I(C) : VerS , TS , NS,SIDS ,CertS
Message 2 I → C : VerS , TS , NS,SIDS ,CertI
Message 3 C → I : {kCS}KI ,CertC , {NC , NS}K−1

C
,{

C, {NC , NS}K−1
C

}
kCS

5.1 Secure Socket Layer and Transport Layer Security 165

Message 3′ I(C)→ S : {kCS}KS ,CertC , {NC , NS}K−1
C

,{
C, {NC , NS}K−1

C

}
kCS

Message 4 I → C : {I,NS, NC}kCS
Message 4′ S → I(C) : {S,NS, NC}kCS

Fig. 5.4 An attack on a full handshake of SSL with certifications of both sides.

Notation

I denotes the adversary, and I(C) is an adversary I impersonating C.
CertI is a certificate of I and corresponding public-key KI signed by CA. KI

and K−1
I are public-key and private key of I. Other notations are the same

as the original SSL handshake protocol.

Premise

Each principal knows the public-key of the trusted certification authority
center CA to get KC ,KS and KI . Each principal knows the key pair of
himself, that is, KC and K−1

C for C, KS and K−1
S for S, KI and K−1

I for I.

Protocol actions

1) In Message 1, the client C starts a protocol run with I. In Message 1′,
the adversary I(C) replays the Message 1 to S to start a fake protocol run
between C and S by impersonating C.

2) Upon receiving Message 1′, S makes response to I(C) with Message 2′

including the certificate of S. I substitutes CertS with CertI in Message 2′,
then forwards Message 2 {VerS , TS, NS , SIDS, CertI} to C.

3) Upon receiving Message 2, C randomly chooses a new session key
kCS for this protocol run between C and I. In Message 3, C generates
{NC , NS}K−1

C
using C’s private key K−1

C to show that it is really C who
has sent this message {C, {NC , NS}K−1

C
}kCS .

4) Upon receiving Message 3, I gets the new session key kCS using I’s
private key K−1

I . Then, I encrypts kCS with S’s public-key KS , generates
Message 3′ {kCS}KS ,CertC , {NC , NS}K−1

C
, and {C, {NC , NS}K−1

C
}kCS , then

166 5 Security Analysis of Real World Protocols

forwards it to S.
5) Upon receiving Message 3′, S gets kCS and verifies {NC , NS}K−1

C
, then

S believes that it must be C who is sharing the new session key kCS with S.
At the same time, I will complete his protocol run with C normally.

Upon termination of the attack on the full SSL handshake protocol with
both side certificates, the adversary I causes S to have false beliefs: S has
completed a successful protocol run with C, and is sharing a new session key
kCS with C, whereas in fact, C knows nothing about the key establishment
with S, and actually C shares the key kCS with I. Furthermore, S concludes
that subsequently messages could be encrypted using kCS and safely trans-
mitted to C (actually known by I).

Example 5.3 (Attack-2 on a full SSL handshake protocol with both side
certificates) From the absence of the association of kCS with C in the point
of view of C, we can construct an attack as shown in Fig. 5.5.

Message 1 C → I(S) : VerC , TC , NC ,NULL

Message 1′ I(C)→ S : VerC , TC , NC ,NULL

Message 2′ S → I(C) : VerS , TS , NS ,SIDS ,CertS
Message 2 I(S)→ C : VerS , TS , NS ,SIDS ,CertI
Message 3 C → I(S) : {kCS}KI ,CertC , {NC , NS}K−1

C
,{

C, {NC , NS}K−1
C

}
kCS

Message 3′ I(C)→ S : {kCS}KS ,CertC , {NC, NS}K−1
C

,{
C, {NC , NS}K−1

C

}
kCS

Message 4 I(S)→ C : {S,NS, NC}kCS
Message 4′ S → I(C) : {S,NS, NC}kCS

Fig. 5.5 Another attack on a full handshake of SSL with certifications of both
sides.

5.1 Secure Socket Layer and Transport Layer Security 167

Notation

I denotes the adversary, and I(C)/I(S) denotes the adversary I imper-
sonating C/S respectively. CertI is a certificate of I and KI signed by CA.
KI and K−1

I are public-key and private key of I. Other notations are the
same as the original SSL handshake protocol.

Premise

Each principal knows the public-key of the trusted certificate authority
CA to get KC ,KS and KI . Each principal knows the key pair of himself, that
is, KC and K−1

C for C, KS and K−1
S for S, KI and K−1

I for I.

Protocol actions

1) In Message 1, the client C starts a protocol run with S. I intercepts
Message 1, then forwards it to S as Message 1′.

2) Upon receiving Message 1′, S makes response to I(C) with Message 2′

including the certificate of S. I substitutes CertS with CertI in Message 2′,
then forwards Message 2 {V erS , TS , NS,SIDS ,CertI} to C.

3) Upon receiving Message 2, C randomly chooses a new session key kCS

for this protocol run between C and S (Actually, it is the adversary I imper-
sonating S). In Message 3, C encrypts kCS with S’s public-key KS (Actually,
the public-key is deduced from CertI in Message 2′, hence it is the adversary
I’s public-keyKI), and generates Message 3 {{kCS}KI ,CertC , {NC , NS}K−1

C
,

{C, {NC , NS}K−1
C
}kCS}.

4) Upon receiving Message 3, I gets the new session key kCS using I’s
private key K−1

I . I encrypts kCS with S’s public-key KS in Message 3′, then
forwards Message 3′ to S.

5) In Message 4, I will complete his protocol run with C normally by
impersonating S.

6) Upon receiving Message 4′, S will complete his protocol run with C
normally (Actually, it is the adversary I impersonating C).

Upon termination of the attack on the full SSL handshake protocol with
both side certificates, the adversary I causes both sides to have false beliefs:
each side has completed a successful protocol run with its opponent, and is
sharing a new session key kCS with the opponent, whereas in fact, the shared
key kCS between C and S is also known by I.

In an execution of the SSL Handshake Protocol, the client may be chosen
to be anonymous and so is not authenticated to the server. As a result,
the server unilaterally authenticates itself to the client. The output from the
execution is a unilaterally authenticated channel from the server to the client.
This is a typical example of using the SSL Protocol in a Web-based electronic
commerce application, for example, buying a book from an online bookseller.
The output channel assures the client that only the authenticated server
will receive its instructions on book purchase which may include confidential
information such as its user’s bankcard details, the book title, and the delivery

168 5 Security Analysis of Real World Protocols

address[13].

5.1.3.2 Attacks related to renegotiation

This protocol can be executed with all the optional messages and the
ClientKeyExchange message omitted. This is the case when the client wants
to resume an existing session. Session resumption can save the server time and
CPU by obviating the need to do a full basic SSL negotiation. The ostensible
reason for renegotiation is to allow either end to decide that it would like to
refresh its cryptographic keys, increase the level of authentication, increase
the strength of the cipher suite in use, and so forth. If the session ID in the
ClientHello message is non-empty, the server will look in its session cache for
a match. If a match is found and the server is willing to establish the new
connection using the specified session state, the server will respond with the
same session ID as supplied by the client. This indicates a resumed session
and dictates that the parties must proceed directly to the finished messages,
omitting all the optional messages and the ClientKeyExchange message. The
renegotiation SSL handshake protocol structure is illustrated in Fig. 5.6.

Message 1 C → S : VerC , TC , NC ,SIDExisting

Message 2 S → C : VerS , TS , NS,SIDExisting

Message 3 C → S : {kCS}KS , {C,NC , NS}kCS
Message 4 S → C : {S,NS, NC}kCS

Fig. 5.6 Message exchanges in a renegotiation handshake of SSL.

Notation

SIDExisting is the ID of an existing session stored in the server’s session
cache. Other notations are the same as the original SSL handshake protocol.

Premise

SIDExisting is stored in the server’s session cache and the server is willing
to establish the new connection using the specified session state.

The premises are the same as the original SSL handshake protocol.

5.1 Secure Socket Layer and Transport Layer Security 169

Protocol actions

1) In Message 1, if the client C wants to resume an existing session, then
the client sends a ClientHello message using the Session ID of the session to
be resumed.

2) Upon receiving Message 1, if the Session ID of the ClientHello Message
is non-empty, the server will check its session cache for a match. If a match
is found, and the server is willing to reestablish the connection under the
specified session state, it will send a ServerHello Message with the same
Session ID value. Otherwise this field will contain a different value identifying
the new session.

3) In Message 3, C sends a randomly chosen new session key kCS under
KS for this resumption, and also an encryption {C,NC , NS}kCS of previously
sent handshake messages under kCS .

4) Upon receiving Message 3, S gets the new session key kCS using S’s
private key K−1

S , then decrypts {C,NC , NS}kCS using kCS and verifies the
correction of NC and NS .

5) In Message 4, S encrypts the identity of himself, the randomly chosen
nonce NC and NS , and sends {S,NS , NC}kCS to C.

6) Upon receiving Message 4, C decrypts {S,NS, NC}kCS using kCS and
verifies the correction of NC and NS .

Successful execution should convince C and S that kCS is a new session
key for this resumption. Actually, the security of the renegotiation process is
even worse than the original full SSL handshake protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce NC , and C also believes that NC is
open.

2) Upon receiving Message 1, from Lemma 4.2, S believes that NC is
open.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, S has the freshness
assurance of the randomly chosen nonce NS, and S also believes that NS is
open.

4) Upon receiving Message 2, from Lemma 4.2, C believes that NS is
open.

5) In Message 3, from Lemma 4.2 and Lemma 4.3, C has the confiden-
tiality and the freshness assurances of the new session key kCS .

6) Upon receiving Message 3, from Lemma 4.2 and Lemma 4.3, S has the
confidentiality and the freshness assurances of the new session key kCS .

7) Upon receiving Message 4, from Lemma 4.1, C has the liveness as-
surance of S. From Lemma 4.3, C has the freshness assurance of kCS . From
Lemma 4.4, S has the association assurances of NC , NS and kCS with S,
since only S could get kCS from the encryption {kCS}KS using its private
key, and the identity of S is explicitly indicated in Message 4.

170 5 Security Analysis of Real World Protocols

Upon termination of the protocol run, we get analyzing result from Table
5.4, it means C believes that S is present, and the new session key kCS is
confidential, fresh, and associated with S, while S only believes that the new
session key kCS is confidential, fresh, but S does not know whether kCS is
associated with C and/or S or not.

Table 5.4 Security analysis of the full handshake of SSL protocol

C S

S NC NS kCS C NC NS kCS

Message 1 01# 0?#

Message 2 0?# 01#

Message 3 11# 11#

Message 4 1 01S 01S 11S

End of run 1 11S 11#

Example 5.4 (Attack-1 on SSL renegotiation) From the absence of the
liveness of C in the point of view of S, we can construct an attack as shown
in Fig. 5.7.

Message 1 I(C)→ S : VerC , TC , NC ,SIDExisting

Message 2 S → I(C) : VerS , TS , NS,SIDExisting

Message 3 I(C)→ S : {kCS}KS , {C,NC , NS}kCS
Message 4 S → I(C) : {S,NS , NC}kCS

Fig. 5.7 An attack on the SSL renegotiation to cheat S.

Notation

I(C) is an adversary I impersonating C. Other notations are the same as
the original renegotiation SSL handshake protocol.

Premise

Premises are the same as the original renegotiation SSL handshake pro-
tocol.

Protocol actions

1) In Message 1, the adversary I starts SSL renegotiation to resume an
existing session by impersonating C.

5.1 Secure Socket Layer and Transport Layer Security 171

2) Upon receiving Message 1, S checks its session cache for a match and
makes response to I(C) with Message 2.

3) Upon receiving Message 2, I(C) randomly chooses a new session key
kCS for this resumption between C (actually the adversary) and S, then
encrypts kCS under KS and sends the encryption to S. I(C) also sends the
encryption of the previously sent handshake messages under kCS to S.

4) Upon receiving Message 3, S gets the new session key kCS using his
private key K−1

S and verifies {C,NC , NS}kCS . Then S believes that it must
be C who is sharing the new session key kCS with S.

Upon termination of the attack on the SSL renegotiation, the adversary I
causes S to have false beliefs: S has completed a successful protocol run with
C, and is sharing a new session key kCS with C, whereas in fact, C knows
nothing about the key establishment with S, and actually S shares the key
kCS with I. Furthermore, S concludes that subsequently messages could be
encrypted using kCS and safely transmitted to C (actually I).

The above attack can be launched directly by an adversary I impersonat-
ing a legitimate client C even without the liveness of C. This case is perhaps
more attractive to the attacker because this characteristic permits the adver-
sary to apply an attack on an intended victim at any time, and no particular
client-side or server-side configuration is required for this attack to succeed.

5.1.3.3 Attacks related to TLS renegotiation implementation[14]

TLS (including RFC 5246 and previous ones, SSL v3 and previous ones) is
subject to a number of serious man-in-the-middle (MITM) attacks related to
renegotiation in real world. The TLS standard permits either end to request
renegotiation of the TLS session at any time. The MITM attacks related to
renegotiation are expected to generalize well to not only HTTPS but also
other protocols layered on TLS. There are three general attacks related to
renegotiation against HTTPS, each with slightly different characteristics, all
of which yield the same result: the attacker is able to execute an HTTP
transaction of his choice, authenticated by a legitimate user (the victim of
the MITM attack).

Example 5.5 (Client certificate authentication renegotiation attack) The
server cannot insist that the client provide a valid client certificate until it
has received the certificate request from the client and filtered it through its
authentication rules. For requests that are found to require client certificate
authentication, the HTTPS server must then renegotiate the TLS channel
to obtain and validate the certificate from the client. Unfortunately, because
HTTP lacks a specific response code to instruct the client to resubmit the
request within the newly authenticated channel, the server must apply the au-
thentication retroactively to the original request. This “authentication gap”
is the central weakness exploited by these attacks. Most existing installations
which currently rely on client certificates for authentication appear to be
vulnerable to this client certificate authentication renegotiation attack.

172 5 Security Analysis of Real World Protocols

Example 5.6 (Differing server cryptographic requirements renegotiation at-
tack) HTTPS servers that host resources with varying cipher suite require-
ments (this is often the case since web servers often host “secure” or “anony-
mous” content with varying certificate authentication requirements) may be
vulnerable to another renegotiation attack. Because of the variations in the
level of cipher suite strength, the web server has to be willing to negotiate
TLS at the most basic encryption level supported on the server. Only after
having seen the URL requested by the client can the server accurately deter-
mine which cipher suites will be acceptable. If the current cipher suite is not
one of the required cipher suites, the server must request a renegotiation and
agree on new parameters. The act of soliciting client renegotiation triggers
the same weakness as in the case of client certificates: the server is forced to
replay the buffered request, which in this case includes the chosen plaintext
of the attacker. This has the effect of authorizing the transaction requested
by the MITM.

Example 5.7 (Client-initiated renegotiation attack) TLS equally allows the
client side of the connection to initiate a renegotiation. The MITM splices
an initial request with an un-terminated HTTP “ignore” header onto the
beginning of the client’s intended request, again steals whatever authentica-
tion or authorization information provided. Note that this does not require
pipelining or HTTP keep-alive. In all other respects, the server sees the same
sort of request buffer as above. Most or all server applications built on TLS
implementations which honor client-initiated renegotiation are vulnerable.

5.2 Internet Protocol Security

The Internet is an enormous open network of computers and devices, which
are called “network nodes”, each with unique Internet Protocol (IP) ad-
dress. IPSec (Internet Protocol Security) is a suite of protocol designed by
IETF[15, 16] to provide security for IPv4 and IPv6. The security services
include confidentiality, data authentication, data integrity, and key man-
agement. IPSec provides securing communications over the Internet in key
layer – the network layer of TCP/IP, hence the protection which covers the
addressing information as well as the content can be very effective. In general,
security at the IP layer can provide a wide protection on all applications at
higher layers. Due to scalability and practical implementation considerations
automatic key management seems a natural choice in significantly large vir-
tual private networks (VPNs), IPSec has become standard by default of the
most of the IP VPN technology in the world.

5.2 Internet Protocol Security 173

5.2.1 IPSec overview

IPSec has two modes: Transport mode (between two hosts) and Tunnel mode
(between hosts/firewalls) and three sub protocols: Authentication Header
(AH, RFC 2402[17]), Encapsulating Security Payload (ESP, RFC 2406[18])
and Internet Key Exchange Protocol (IKE, RFC 2409[19]). AH assures in-
tegrity protection, ESP provides encryption services and optional integrity
protection while IKE allows communicating entities to derive session keys for
secure communication via a series of messages exchange. IKE is the current
IETF standard of authenticated key exchange protocol for IPSec, hence it is
the concern of this book and it will be discussed in detail in Subsection 5.2.2.

5.2.1.1 Authentication Header (AH)

The Internet Protocol (IP) has evolved from version 4 (IPv4) to version 6
(IPv6). The data structure for IPv6 is a multiple of 32-bit data blocks called
datagrams. In IPv6 with IPSec protection, an IP packet has an additional
field called “Authentication Header” (AH)[17, 20]. Authentication protection
(in fact, data integrity with origin identification) is a mandatory service for
IPSec. The position for the AH in an IP packet (see Fig. 5.8, Fig. 5.9) is
between “IP header” and the “TCP field”. AH can have a variant length
but must be a multiple of 32-bit datagrams which are organized into several
subfields which contain data for providing cryptographic protection on the
IP packet.

Fig. 5.8 Structure of an AH and its Position in an IP Packet in transport mode.

The subfield named “Security Parameters Index” (SPI) in an AH is an
arbitrary 32-bit value which specifies (uniquely identifies) the cryptographic
algorithms used for the authentication service for this IP packet. The sub-

174 5 Security Analysis of Real World Protocols

Fig. 5.9 The Structure of an AH and its Position in an IP Packet in tunnel mode.

field named “Sequence Number” can be used against replay of IP packets.
The other subfield named “Authentication Data” (also called Integrity Check
Value, ICV) in an AH contains the authentication data generated by the mes-
sage sender for the message receiver to conduct data integrity verification.
The receiver of the IP packet can use the algorithm uniquely identified in SPI
and a secret key to regenerate “Authentication Data” and to compare with
that received. End nodes have already established a shared secret session key
manually or by IKE.

5.2.1.2 Encapsulating Security Payload (ESP)

Confidentiality (encryption) protection is an optional service for IPSec. To
achieve this, a multiple of 32-bit datagrams named “Encapsulating Security
Payload” (ESP)[18] is specified and allocated in an IP packet. The position
for the ESP in an IP packet (see Fig. 5.10, Fig. 5.11) is between “IP header”
(note that an ESP can follow an AH too) and the “TCP field”. The format
of an ESP is shown in Fig. 5.12.

The subfield named “Security Parameters Index” (SPI) in an ESP is an
arbitrary 32-bit value which specifies (uniquely identifies) the encryption al-
gorithm used for the confidentiality service for this IP packet.

The second subfield “Sequence Number” can be used against replay of IP
packets.

The third subfield “Payload Data” has a variable length which is the
ciphertext of the confidential data. Since an IP (v6) packet must have a length
as a multiple of 32 bits, the plaintext “Payload Data” of variable length must
be padded, and the paddings are given in “Padding”. The Padding bytes are
initialized with a series of (unsigned, 1-byte) integer values. The first padding

5.2 Internet Protocol Security 175

Fig. 5.10 An ESP and its Position in an IP Packet in transport mode.

Fig. 5.11 An ESP and its Position in an IP Packet in tunnel mode.

Fig. 5.12 The Structure of an Encapsulating Security Payload.

byte appended to the plaintext is numbered 1, with subsequent padding bytes
making up a monotonically increasing sequence: ′01′||′02′|| · · · ||′xy′, where
′xy′ is the hexadecimal value so that ′01′ < ′xy′ < ′FF ′. Therefore, the
maximum number of the padding bytes is ′FF ′ = 255(10). The length of the
padding bytes is stated in “Pad Length”.

The fourth subfield “Authentication Data” has the same meaning as that
in an AH. However, “Authentication Data” in an ESP and that in an AH are

176 5 Security Analysis of Real World Protocols

different. In an ESP, “Authentication Data” is for providing a data integrity
protection on the ciphertext in the ESP packet, while in an AH, “Authenti-
cation Data” is for providing a data integrity protection on an IP packet.

5.2.2 Internet Key Exchange

Internet Key Exchange (IKE) is a set of protocols and mechanisms designed
to perform two functions, creation of a protected environment (which in-
cludes authenticated peers that are unknown to each other in advance) and
to establish and manage Security Associations (SA) between the authenti-
cated peers, called the initiator and responder (or the receiver)[4, 19]. Both of
the parties need to provide a digital signature in the key exchange protocol
that the other party will verify. A successful verification means that the other
party is authenticated. In order to be able to verify the signature also the
public-key (certificate) needs to be trusted, and verified. SA defines how the
traffic between the two hosts is to be protected.

Notation 5.1 (Security Associations (SA)) Each secure connection is called
a security association (SA). A SA is simply a contract between two entities
to provide a minimum set of services. It can be bi-directional or unidirec-
tional. In case of unidirectional SA, which is often the case, we shall need
two unidirectional SAs to complete one communication. With the view point
of a programmer an SA can be considered as a data structure containing
the information on Security Policy Index (SPI), its state (alive or expired),
authentication algorithm, sequence number and SA life time. Considering
globally, an SA is a set of proposals. A proposal can be thought of as a set
of protocols and a protocol is, in turn, a set of transforms. A transform is a
set of algorithms.

IKE is heart of the IPSec because it not only controls the services to be
offered to secure the traffic but also manages the whole range of different
transform options available at different levels and at different granularity.
IKE architecture is based on three other protocols, namely, the Internet Se-
curity Association and Key Management Protocol (ISAKMP) [RFC 2408][21],
the Oakley Key Determination Protocol (OAKLEY) [RFC 2412][22] and the
Versatile Secure Key Exchange Mechanism for Internet (SKEME)[23].

ISAKMP provides a common framework for two communication parties
to establish SA and cryptographic keys in an Internet environment. ISAKMP
defines the procedures for authenticating a communicating peer, for creation
and management of Security Associations, for key generation techniques, and
for threat mitigation (e.g., denial of service and replay attacks). However
ISAKMP does not define any specific key exchange technique so that it can
support many different key exchange techniques.

5.2 Internet Protocol Security 177

OAKLEY describes a protocol by which two authenticated parties can
agree on secure and secret keying material. The OAKLEY protocol supports
Perfect Forward Secrecy, compatibility with the ISAKMP protocol for man-
aging Security Associations, user-defined abstract group structures for use
with the Diffie-Hellman algorithm, key updates, and incorporation of keys
distributed via out-of-band mechanisms. The basic mechanism is the Diffie-
Hellman key exchange algorithm.

SKEME describes an authenticated key exchange technique which sup-
ports deniability of connections between communication partners and quick
key refreshment.

As a hybrid protocol of these work, IKE can be thought of as a suite
of two-party protocols, featuring authenticated session key exchange, most
of which in the suite use the Diffie-Hellman key exchange mechanism. IKE
has many options for the two participants to negotiate and agree upon in an
on-line fashion.

5.2.2.1 Two phases of IKE

IKE operates in two phases, namely, Phase 1 and Phase 2.

1. IKE Phase 1

The purpose of Phase 1 is to authenticate the communicating peers and
generate the shared secret from which other keys will be computed. For IKE
Phase 1, IKE has several modes, Main Mode, Aggressive Mode, Base Mode,
New Group Mode, etc.

Phase 1 assumes that each of the two parties involved in a key exchange
can verify the cryptographic capability of the other party, where capability
might be enabled by a pre-shared secret key for a symmetric cryptosystem,
or by a private key matching a reliable copy of a public-key for a public-key
cryptosystem. Phase 1 attempts to achieve mutual authentication based on
showing that cryptographic capability and establishes a shared session key
from which other keys will be computed as an output from the IKE phases
of exchanges.

2. IKE Phase 2

Phase 2 intends to create an IPSec security association and to generate
new keys quickly, which relies on the shared session key agreed in Phase 1.
All messages in this phase are made secure due to the algorithms and keys
negotiated in Phase 1. This Create-Child-SA request may be launched by
any party once Phase 1 is completed.

A multiple number of Phase 2 exchanges may take place between the
same pair of entities involved in Phase 1. The reason for having a multiple
number of Phase 2 exchanges is that they allow the users to set up multi-
ple connections with different security properties, such as “integrity-only,”
“confidentiality-only”, “encryption with a short key” or “encryption with a
strong key”.

178 5 Security Analysis of Real World Protocols

Notation 5.2 (IKE key material) SKEYID is a string derived from se-
cret material known only to the active parties in the exchanges. The value
SKEYID is computed separately for each authentication method and SKEYID
is also a key seed of other keys.

For signature public-keys: SKEYID = prf (nonces, gxy mod p);

For encryption public-keys: SKEYID = prf (hash(nonces), cookies);

For pre-shared secret key: SKEYID = prf (pre-shared secret key, nonces).

The result of either Main Mode or Aggressive Mode is three groups of
authenticated keying material:

For secret to generate other keys: SKEYID d = prf (SKEYID, gxy|cookies|0);
For integrity key: SKEYID a = prf (SKEYID, SKEYID d|gxy|cookies|1);
For encryption key: SKEYID e = prf (SKEYID, SKEYID a|gxy|cookies|2).

Here, prf (key, msg) is the keyed pseudo-random function, while nonces and
cookies are from the IKE exchanges between the initiator and the responder,
and gxy is the Diffie-Hellman shared secret.

5.2.2.2 IKE Modes

For IKE Phase 1, IKE has several modes, Main Mode, Aggressive Mode,
Base Mode, New Group Mode, etc., which define how the actual key exchange
procedure is to be done. Main Mode and Aggressive Mode are two of the most
common modes. Main Mode (MM) has six message exchanges, and it should
be run first in Phase 1, that is, two parties cannot run an aggressive mode
without running a main mode first. Aggressive Mode (AM) has only three
messages, and it is optional in Phase 1, that is, it can be omitted. There
are four types of keys: pre-shared secret key, public encryption key (fields
are separately encrypted using the public-key), optimized public encryption
key (used to encrypt a random symmetric key, and then data is encrypted
using the symmetric key) and public signature key (used only for signature
purpose). For each key type there are two types of Phase 1 exchanges: a
“main mode” and an “aggressive mode”, hence there are 8 variants of IKE
Phase 1.

For IKE Phase 2, IKE supports only one mode: the Quick Mode. The
Quick Mode takes 3 packets to complete.

1. IKE Phase-1 Mode

The IKE Phase-1 is used to perform the mutual authentication, to ex-
change proposals, specific information and certificates. The result of the
Phase-1 can be called in many ways: Phase-1 SA, ISAKMP SA, IKE SA, etc.
They all mean the same thing. The Phase-1 SA is also used to protect the
actual Phase-2 negotiation and other informational notifications that may be
sent in IKE.

1) Phase-1 Main Mode The IKE negotiation always starts by execut-
ing the Main Mode in Phase-1 of the protocol. The Phase-1 Main Mode is

5.2 Internet Protocol Security 179

performed as shown in Fig. 5.13.
1. Initiator→ Responder : HDR, SA

2. Responder→ Initiator : HDR, SA

3. Initiator→ Responder : KE, NONCE, CR

4. Responder→ Initiator : KE, NONCE, CR

5. Initiator→ Responder : ID, *CERT, SIGR

6. Responder→ Initiator : ID, *CERT, SIG

Fig. 5.13 Message flow for IKE Phase-1 Main Mode.

Notation

HDR is an ISAKMP header whose exchange type defines the IKE mode.
SA is used to list the security properties supported by the initiator and the
responder respectively. Key Exchange (KE) payload is the Diffie-Hellman
public value, and is used to exchange the Diffie-Hellman public-keys. NONCE
payload by the initiator or the responder respectively is used (with other
information) in the IKE to compute the secret data for the Phase-1 SA.
CR payload is certification request, and it includes the name of the CA
(certification authority). ID payload is used to tell the other party who the
sender or the responder is. The CERT payload includes the sender’s or the
responder’s end entity certificate, and is also possible to send Certificate
Revocation List (CRL). The signature payload (SIG) is the digital signature
that the other party must verify. * indicates optional or situation-dependent
messages that are not always sent.

Premise

CERT is a certification of the initiator or the responder and corresponding
public-key signed by a trusted certificate authority CA.

Protocol actions

The first two messages negotiate policy; the next two exchange Diffie-

180 5 Security Analysis of Real World Protocols

Hellman public values and ancillary data (e.g., nonces) necessary for the ex-
change, and the last two messages authenticate the Diffie-Hellman Exchange.

In Message 1: The initiator sends an HDR including an initiator cookie.
The HDR is an ISAKMP header whose exchange type defines the IKE mode.
An ISAKMP Header fields includes Initiator Cookie, Responder Cookie, Mes-
sage ID etc. During Phase 1 negotiation, the initiator and responder cookies
determine the ISAKMP SA. Message ID is a unique message identifier ran-
domly generated by the initiator in Phase 2, which is used to identify protocol
state during Phase 2 negotiation. This Message ID and the initiator’s SPI(s)
to be associated with each protocol in the proposal are sent to the responder.
The SPI(s) will be used by the security protocols once the Phase 2 negoti-
ation is completed. During Phase 1 negotiation, Message ID must be set to
0.

The SA payload is mandatory and it is used to list the security properties
the initiator supports. It includes the ciphers, hash algorithms, key lengths,
life time, and other information. It is possible to send only one SA payload
in Phase-1.

In Message 2: The responder sends back an HDR including a responder
cookie to the initiator. The responder must also include SA payload in its
reply. The SA payload the responder sent includes the security properties it
selected from the initiator’s security property list (the SA payload).

Note that Message 1 and Message 2 are not encrypted, since there are no
key to encrypt them with.

In Message 3: The IKE protocol is based on the Diffie-Hellman key ex-
change algorithm, which was the first ever invented algorithm that uses
public-key cryptography (in 1976). Message 3 is used to exchange the Diffie-
Hellman public-keys inside a Key Exchange (KE) payload. The Diffie-Hellman
public-keys are created automatically every time the Phase-1 negotiation is
performed, and they are destroyed automatically after the Phase-1 SA is
destroyed.

There is also a NONCE payload that is generated by the sender and sent
in Message 3 which is used (with other information) in the IKE to compute
the secret data for the Phase-1 SA. The NONCE payload includes random
data from random number generator.

The CR payload is a Certificate Request payload and is used to request
for certificates by a specific CA. The CR payload includes the name of the
CA for which it would like to receive the remote’s end entity certificate (peer
certificate). If empty CR payload is received, it means that it requests any
certificate from any CA.

In Message 4: The responder also sends its Diffie-Hellman public-key,
NONCE and CR payload in Message 4 to the initiator.

The CR payload is usually sent in the third and fourth packets, but it
can be sent also in the first and second packets. Message 3 and Message 4
are not encrypted, since there is no key to encrypt them with.

In Message 5: The ID payload is used to tell the other party who the

5.2 Internet Protocol Security 181

sender is, and it also can be used to make policy decisions and to find the
certificate of the remote end. The ID may be IP address, Fully Qualified
Domain Name (FQDN), email address, or something similar.

The initiator may send zero (0) or more certificate payloads (CERT),
with each including one certificate (or CRL). The CERT payload is optional
payload, but usually if it is not sent, the result of the IKE is “Authentication
Failed” error. The CERT payload includes the sender’s end entity certificate,
but it is also possible to send CRL inside a CERT payload. The CERT
payload is optional because it is possible that the remote end has cached the
public-key locally, and does not need to receive the CERT payload in the
negotiation. Usually implementations do not cache it locally and in this case
failing to send CERT payload also causes failure of the IKE negotiation.

The signature payload (SIG) is the digital signature that the other party
must verify. The SIG payload includes the digital signature computed with
the private key of the corresponding public-key (usually sent inside the CERT
payload), and provides the authentication to the other party. When both of
the parties successfully verify each other’s SIG payloads, they are then mutu-
ally authenticated. They use the public-key found in the certificate (usually
received in CERT payload, or some other means (cached locally, fetched from
Lightweight Directory Access Protocol (LDAP), etc.)) to verify the signature.
Before verifying the signature they also verify the certificate of the remote
end. They check whether they trust the issuer (Certificate Authority, CA)
of the certificate, and they also check whether the certificate is valid (not
revoked, etc.) or not.

In Message 6: The responder also sends its ID, CERT and SIG payload
in Message 6 to the initiator.

Note that Message 5 and Message 6 are fully encrypted, since the key
was computed after Message 3 and Message 4 (where the Phase-1 SA is
created and Diffie-Hellman public values is computed). When communication
is protected, all payloads following the ISAKMP header MUST be encrypted.

After these packets are sent and the digital signatures are successfully
verified the result of this Phase-1 negotiation is the Phase-1 SA, which can
be used to protect other packets sent in the IKE, such as the packets of the
Phase-2 negotiation. This also completes the Phase-1 negotiation successfully.

2) The Phase-1 Aggressive Mode The Phase-1 Aggressive Mode is per-
formed as shown in Fig. 5.14.

1. Initiator → Responder: VID, SA, KE, NONCE, ID

2. Responder → Initiator: VID, SA, KE, NONCE, ID, *CERT,

SIG

3. Initiator → Responder: *CERT, SIG

Notation

VID means Vendor ID. Other notations are the same as in the IKE Phase-
1 Aggressive Mode

182 5 Security Analysis of Real World Protocols

Fig. 5.14 Message flow for IKE Phase-1 Aggressive Mode.

Premise

CERT is a certificate of the initiator or the responder and its correspond-
ing public-key signed by a trusted certificate authority CA.

Protocol actions

1) In Message 1: The initiator sends the crypto proposal supported, ex-
changes Diffie-Hellman public values and ancillary data necessary for the
exchange, and identities.

2) In Message 2: The responder selects the crypto supported from the
initiator’s security property list (the SA payload), exchanges Diffie-Hellman
public values and ancillary data necessary for the exchange, and identities.
In addition Message 2 authenticates the responder.

3) In Message 3: Message 3 authenticates the initiator and provides a
proof of participation in the exchange.

2. The IKE Phase-2 Mode

After the Phase-1 is successfully completed the Phase-2 negotiation can
proceed. The purpose of the Phase-2 exchange is to provide and to refresh
the key material that is used to create the Security Associations (SAs) to
protect the actual IP traffic with IPSEC. The Phase-2 exchange is protected
by encrypting the Phase-2 packets with the key material derived from the
Phase-1. The Phase-2 also provides proposal list which defines the actual
ciphers, HMACs, hash algorithms and other security properties that are used
in the protection of the IP traffic. The proposal proposed in the Phase-1 is
merely for protection of traffic under the Phase-1 SA (like the packets of the
Phase-2), and not for the actual IP traffic. The Phase-2, also called the Quick
Mode, is for the protection of the actual IP traffic. Since the ISAKMP SA
is bi-directional, either communication party may initiate Quick Mode. The
Phase-2 Quick Mode is performed as shown in Fig. 5.15.

Notation

HASH payload is the keying material exchanged. The SA payload is the
Phase-2 proposal list which indicates the security properties. The NONCE
payload includes always random data. The KE payload is from the ephemeral
Diffie-Hellman exchange of Phase-1 Main Mode, and is confidential in Quick
Mode. The ID payload is the participant’s ID, usually IP address. * indicates

5.2 Internet Protocol Security 183

Fig. 5.15 Message flow for IKE Phase-2 Quick Mode.

optional or situation-dependent messages that are not always sent.

Premise

Diffie-Hellman public values have already exchanged in Phase 1.

Protocol actions

1) In Message 1: The initiator sends SA, HASH, NONCE and ID payloads
to the responder to generate a new session key for IP traffic.

The SA payload is the Phase-2 proposal list which includes the ciphers,
HMACs, hash algorithms, life times, key lengths, the IPSEC encapsulation
mode (ESP, AH etc.) and other security properties. Note that it is possible
to send more than one SA payloads in Phase-2, although usually only one is
sent.

The HASH and NONCE payloads (marked here as NI) are the keying
material which are exchanged, and then are used to create the new key pair.
The NONCE payload includes always random data.

The ID payloads, marked as IDI and IDR, for initiator’s ID and respon-
der’s ID, respectively, are optional in Phase-2. Usually IKE implementations
do send the ID payloads in Phase-2 since they can be easily used to make
local policy decisions. However, as noted, they are not mandatory and can be
omitted. The IDI is the initiator’s ID, usually IP address or similar, and the
IDR is the responder’s ID, usually IP address, IP range or IP subnet. Both
of the initiator and responder usually use the ID payloads to search the lo-
cal policy for matching connection. The ID payloads in the Phase-2 are also
called “proxy IDs”, “pseudo IDs” or similar, since they do not necessarily
represent the actual negotiator (for example when Security Gateway (SGW)
negotiates on behalf of some client).

2) In Message 2: The responder selects the crypto from the Phase-2 pro-
posal list, and sends HASH, NONCE (marked here as NR) and ID payloads.

3) In Message 3: The initiator sends a HASH payload.
After the Phase 2 has been completed by sending the last packet, the

result of the Phase-2 is two Security Associations (SAs). One is for inbound
traffic, the other is for outbound traffic. This also completes the IKE key
exchange for basic key exchange.

Note that all messages in Phase 2 are encrypted using SKEYID e, and
integrity protected using SKEYID a.

184 5 Security Analysis of Real World Protocols

5.2.3 Security analysis of IKE based on trusted freshness

The examples in this subsection assume that digital signatures are used in
authentication and key establishment of IKE.

5.2.3.1 Security analysis of main mode

Example 5.8 (Public Signature Keys, IKE Phase-1 Main Mode) Figure
5.16 illustrates the message exchanges related to authentication and key es-
tablishment in public signature key-based IKE Phase-1 Main Mode, and some
minute details are omitted.

Message 1 A→ B : HDRA,SAA

Message 2 B → A : HDRB,SAB

Message 3 A→ B : HDRA, g
x, NA

Message 4 B → A : HDRB, g
y, NB

Message 5 A→ B : HDRA,
{

IDA,CertA, {HASHA}K−1
A

}
SKEY ID

Message 6 B → A : HDRB,
{

IDB,CertB, {HASHB}K−1
B

}
SKEY ID

Fig. 5.16 Message exchanges in signature-based IKE phase-1 main mode.

Notation

A denotes the initiator, B denotes the responder.
HDRA and HDRB, ISAKMP headers of A and B, respectively are for

keeping the session state information for these two entities.
SAA, SAB are the Security Associations (SA) of A and B, respectively. A

and B use SAA, SAB to negotiate parameters to be used in the current run
of the protocol: encryption algorithms, signature algorithms, pseudo-random
functions for hashing messages to be signed, etc. A may propose a set of
proposals, whereas B must reply with only one choice.

5.2 Internet Protocol Security 185

x and y are the private values randomly chosen by the initiator A and
the responder B respectively. gx, gy are the Diffie-Hellman public values of
A and B respectively. The gxy can be computed via (gy)x or (gx)y by A and
B, respectively.

NA and NB are nonces randomly chosen by A and B, respectively.
IDA and IDB are endpoint identities of A and B, respectively.
CertA and CertB are certifications of A and B issued by a trusted cer-

tificate authority CA, respectively.
HASH A and HASH B are hash values computed by A and B, respectively.

The entire ID payload (including ID type, port, and protocol but excluding
the generic header HDR) is hashed into both HASH A and HASH B.

HASHA = prf1 (SKEYID|gx|gy|CA|CB|SAA|IDA)
HASHB = prf1 (SKEYID|gy|gx|CB |CA|SAB|IDB)

where SKEYID is the new session key between A and B, which can be com-
puted as SKEYID = prf2(NA|NB|gxy). CA and CB are the initiator’s and
the responder’s cookie respectively. prf1 and prf2 are pseudo-random func-
tions agreed in SAs. For A and B to authenticate each other, the mutually
obtainable hash values HASH A and HASH B will be signed by A and B
respectively via the negotiated digital signature algorithm.

Note that we do not distinguish SKEYID from SKEYID d, SKEYID
a, SKEYID e, etc., since all these keys can be derived from SKEYID and
some open key materials.

Premise

Both A and B trust the issuer CA of the certificates CertA and CertB,
and they could verify that the certificate is valid (not revoked, etc.). That is,
they know the public-key of CA to get KA of A and KB of B. Each principal
knows the key pair of himself, that is, KA and K−1

A for A, KB and K−1
B for

B.

Protocol actions

1) In Message 1, the initiator A starts the negotiation by sending an
HDRA including a null Message ID, an initiator cookie CA, and an SAA

including encryption algorithms, signature algorithms, pseudo-random func-
tions for hashing messages to be signed, key lengths, life time, and other
information.

2) Upon receiving Message 1, since the Message ID is NULL, then a
Phase-1 Main Mode is applied.

3) In Message 2, the responder B sends back an HDRB including a re-
sponder cookie CB and also the initiator cookie CA to A. The responder also
includes an SAB in its reply to indicate the security properties B selects.

4) In Message 3, A randomly chooses a Diffie-Hellman private value x and
a nonce NA for this run. Then A computes the Diffie-Hellman public-key gx

and sends it to the responder B with NA.

186 5 Security Analysis of Real World Protocols

5) In Message 4, B also randomly chooses a Diffie-Hellman private value
y and a nonce NB for this run. Then B computes the Diffie-Hellman public
value gy and sends it to the initiator A with NB.

Up to now, they have exchanged the Diffie-Hellman public values and
ancillary data (e.g., nonces) necessary, and both A and B could compute the
new session key SKEYID = prf2(NA|NB|gxy).

6) In Message 5, A computes the hash of the entire ID payload HASHA =
prf1(SKEYID|gx|gy|CA|CB |SAA|IDA), signs HASH A using A’s private key
K−1

A to show his identity of A, and then encrypts all payloads following
the ISAKMP header {IDA,CertA, {HASHA}K−1

A
} using the negotiated new

session key SKEYID.
7) Upon receiving Message 5, B decrypts {IDA,CertA,

{HASHA}K−1
A
}SKEYID to get {IDA,CertA, {HASHA}K−1

A
} using SKEYID,

verifies CertA to get KA, and then checks the correction of the hash value:
{
{HASHA}K−1

A

}
KA

= HASHA = prf1(SKEYID|gx|gy|CA|CB |SAA|IDA).

8) In Message 6, B does similar things as A has done in Message 5. Upon
receiving Message 6, A does similar things as B has done upon receiving
Message 5.

Successful execution should authenticate the identities of the communi-
cation parties A and B, and establish a new session key SKEYID between
A and B. Actually, Phase-1 Main Mode l suffers from a flaw which has been
proved by Lowe, Meadows and Mao respectively[5, 24, 25].

Protocol security analysis

1) In Message 1 and Message 2, neither A nor B could draw any useful
assurance from it since there is not any trusted freshness identifier from the
point of view of the two parties.

2) In Message 3, from Lemma 4.2 and Lemma 4.3, A has the freshness
assurance of the randomly chosen Diffie-Hellman private value x and the
nonce NA, and A also believes that x is confidential and NA is open.

3) Upon receiving Message 3, from Lemma 4.2, B believes that NA is
open and x is confidential.

4) Similarly, in Message 4, from Lemma 4.2 and Lemma 4.3, B has the
confidentiality and the freshness assurances of the randomly chosen Diffie-
Hellman private value y, and the nonce NB is fresh and open. Further, B
could compute the new session key SKEYID = prf2(NA|NB|gxy), and from
Lemma 4.2 and Lemma 4.3, B has the confidentiality and the freshness as-
surances of SKEYID.

5) Upon receiving Message 4, from Lemma 4.2, A believes that NB is
open and y is confidential. Further, A could compute the new session key
SKEYID = prf2(NA|NB|gxy), and from Lemma 4.2 and Lemma 4.3, A has
the confidentiality and the freshness assurances of SKEYID.

5.2 Internet Protocol Security 187

6) In Message 5, A could not get any new assurance.
7) Upon receiving Message 5, from Lemma 4.1, B has the liveness assur-

ance ofA based on the trusted freshnessNB and SKEYID = prf2(NA|NB|gxy),
since it must be A who has signed the fresh hash value HASHA =
prf1(SKEYID|gx|gy|CA|CB |SAA|IDA) using A’s private key. From Lemma
4.4, B has the association assurance of SKEYID with A, since only A could
sign HASH A using A’s private key, and the identity of A is explicitly indi-
cated in Message 5.

8) Similarly, in Message 6, B could not get any new assurance. Upon
receiving Message 6, A has the liveness assurance of B and the association
assurance of SKEYID with B.

Upon termination of the protocol run, the analyzing result from Table
5.5shows that A believes that B is present, and the new session key SKEYID
is confidential, fresh, and associated with B, while B believes that A is
present, and the new session key SKEYID is confidential, fresh, and as-
sociated with A.

Table 5.5 Security analysis of the IKE phase-1 main mode

A B

B NA NB x y SKEYID A NA NB x y SKEYID

Message 1

Message 2

Message 3 01# 11# 0?# 1?#

Message 4 0?# 1?# 11# 01# 11# 11#

Message 5 1 11A

Message 6 1 11B

End of run 1 11B 1 11A

Example 5.9 (Attack-1 on Signature-based, IKE Phase-1 Main Mode) From
the absence of the association of SKEYID with B in the point of view of B,
there exists an attack[5, 24, 25], as shown in Fig. 5.17.

Message 1 A→ I : HDRA,SAA

Message 1′ I(A)→ B : HDRA,SAA

Message 2′ B → I(A) : HDRB,SAB

Message 2 I → A : HDRB,SAB

Message 3 A→ I : HDRA, g
x, NA

Message 3′ I(A)→ B : HDRA, g
x, NA

Message 4′ B → I(A) : HDRB, g
y, NB

Message 4 I → A : HDRB, g
y, NB

Message 5 A→ I : HDRA,
{

IDA,CertA, {HASHA}K−1
A

}
SKEY ID

Message 5′ I(A)→ B : HDRA,
{

IDA,CertA, {HASHA}K−1
A

}
SKEY ID

188 5 Security Analysis of Real World Protocols

Message 6′ B → I(A) : HDRB,
{

IDB,CertB, {HASHB}K−1
B

}
SKEY ID

Message 6 I → A : Dropped

Fig. 5.17 An attack on the signature-based IKE phase-1 main mode.

Notation

I denotes the adversary, and I(A) is an adversary I impersonating the
initiator A. Other notations are the same as the original IKE phase-1 main
mode.

Premise

The premises are the same as the original IKE phase-1 main mode.

Protocol actions

1) In Message 1, the initiator A starts a protocol run with I. In Message
1′, the adversary I(A) replays the Message 1 to B to start a fake protocol
run between A and B by impersonating B. B responds to Message 2′.

2) Upon receiving Message 2′ and so on, the adversary I just replays all
the follwing messages to the initiator A or the responder B respectively until
receiving Message 6′.

3) Upon receiving Message 6′, the adversary I just drops this message.
Upon termination of the attack on the IKE Phase-1 Main Mode with

both side certificates, the adversary I causes B to have false beliefs: B has
completed a successful protocol run with A, and is sharing a new session key
SKEYID with A, whereas in fact, A knows nothing about the key establish-

5.2 Internet Protocol Security 189

ment with B, while A thinks that A has been talking with I in an incomplete
run. Furthermore, B will never be notified of any abnormality and B will keep
the session state information for these two entities A (Actually the adversary
I) and B. This is effective for the adversary I to make a denial of service
attacks[24].

Note that the adversary I could not launch an attack similar to Example
5.3, since the HASH A includes the confidential and fresh seed of SKEYID.

5.2.3.2 Security analysis of aggressive mode

Example 5.10 (Public signature keys, IKE phase-1 aggressive mode) Ag-
gressive Mode is a cut-down simplification from IKE Phase-1 Main Mode,
and Fig. 5.18 shows the message exchanges with some minute details omit-
ted. The first two messages negotiate policy, exchange Diffie-Hellman public
values and ancillary data necessary for the exchange, and identities. In ad-
dition, the second message authenticates the responder. The third message
authenticates the initiator and provides a proof of participation in the ex-
change.

Aggressive Mode can be used to reduce round trips even further.
Message 1 A→ B : HDRA,SAA, g

x, NA, IDA

Message 2 B → A : HDRB,SAB , gy, NB, IDB, [CertB], {HASHB}K−1
B

Message 3 A→ B : [CertA], {HASHA}K−1
A

Fig. 5.18 Message exchanges in signature-based IKE phase-1 aggressive mode.

[x] indicates that x is optional, other notations, premise and protocol
actions in this mode are the same as those in Main Mode (Example 5.8),
hence omitted.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the freshness
assurance of the private value x and the nonce NA, and A also believes that
x is confidential and NA is open.

2) Upon receiving Message 1, from Lemma 4.2, B believes that NA is
open and x is confidential.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and the freshness assurances of the private value y, and the nonce NB

190 5 Security Analysis of Real World Protocols

is fresh and open. Further, B could compute the new session key SKEYID =
prf2(NA|NB|gxy), and from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and the freshness assurances of SKEYID.

4) Upon receiving Message 2, from Lemma 4.1, A has the liveness assur-
ance ofB based on the trusted freshnessNA and SKEYID = prf2(NA|NB|gxy),
since it must be B who has signed the fresh hash value HASHB =
prf1(SKEYID|gx|gy|CA|CB |SAB |IDB) using B’s private key. From Lemma
4.4, A has the association assurance of SKEYID with B, since only B could
sign HASH B using B’s private key, and the identity of B is explicitly indi-
cated in Message 2.

5) Similarly, upon receiving Message 3, from Lemma 4.2 and Lemma
4.3, B has the liveness assurance of A based on the trusted freshness NB

and SKEYID = prf2(NA|NB|gxy), since it must be A who has signed the
fresh hash value HASHA = prf1(SKEYID|gx|gy|CA|CB |SAA|IDA) using A’s
private key. From Lemma 4.4, B has the association assurance of SKEYID
with A, since only A could sign HASH A using A’s private key, and the
identity of A is explicitly indicated in Message 3.

Upon termination of the protocol run, the analyzing result is indicated
in Table 5.6, it means A believes that B is present, and the new session key
SKEYID is confidential, fresh, and associated with B, while B believes that
A is present, and the new session key SKEYID is confidential, fresh, and
associated with A.

Table 5.6 Security analysis of the IKE phase-1 aggressive mode

A B

B NA NB x y SKEYID A NA NB x y SKEYID

Message 1 01# 11# 0?# 1?#

Message 2 1 0?# 1?# 11B 01# 11# 11#

Message 3 1 11A

End of run 1 11B 1 11A

Note that HASH A and HASH B take the new session key SKEYID as its
seed input to pseudo-random function, hence the signature of these two hash
values could not be faked, and the signatures are exclusively verifiable by the
principals who hold the agreed session key. However, the attack (Example
5.9 Attack-1) on IKE main mode is still effect on the IKE aggressive mode.

5.2.3.3 Security analysis of quick mode

Example 5.11 (Public signature keys, IKE phase-2 quick mode) Each in-
stance of a Quick Mode uses a unique initialization vector (e.g., Message ID),
hence it is possible to have multiple simultaneous Quick Modes, based on a
single ISAKMP SA, in progress at any one time. Quick Mode is essentially an
SA negotiation and exchanges of nonces that provides replay protection. The
nonces are used to generate fresh key material and to prevent replay attacks
from generating bogus security associations. Base Quick Mode (without the

5.2 Internet Protocol Security 191

KE payload) refreshes the keying material derived from the exponentiation in
Phase-1. Figure 5.19 illustrates the Quick Mode exchanges related to security.

Message 1 A→ B : HDRA, {HASH1,SAA, NA, [gx], [IDA, IDB]}SKEY ID

Message 2 B → A : HDRB , {HASH2,SAB, NB, [gy], [IDA, IDB]}SKEY ID

Message 3 A→ B : HDRA, {HASH3}SKEY ID

Fig. 5.19 Message exchanges in signature-based IKE phase-2 quick mode.

Notation

[x] indicates that x is optional, other notations in Quick Mode are the
same as those in Main Mode except the following:

k is a new session key generated from this Quick Mode run.

k = prf (SKEYID d, gxyqm|protocol |SPI |NA|NB)

where gxyqm is the shared secret from the ephemeral Diffie-Hellman exchange
of this Quick Mode. “protocol” and “SPI ” are from the ISAKMP proposal
payload that contains the negotiated transform.

HASH1 and HASH3 are hash values computed by A, while HASH2 by B:

HASH1 = prf (SKEYID a, IDAB|SAA|NA[|gx][|IDA|IDB])
HASH2 = prf (SKEYID a, IDAB|NA|SAB|NB[|gy][|IDA|IDB])
HASH3 = prf (SKEYID a, 0|IDAB|NA|NB)

IDAB is a message ID to indicate a Quick Mode in progress for a partic-
ular ISAKMP SA, and this particular SA is identified by the cookies in the
ISAKMP header.

Premise

gxy is from the ephemeral Diffie-Hellman exchange of Phase-1 Main Mode,
and is confidential in Quick Mode. Suppose the key SKEYID a from Main
Mode is confidential and only known by A and B. Other premises are the
same as those in Main Mode.

192 5 Security Analysis of Real World Protocols

Protocol actions

Omitted for interest of concision.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the freshness
assurance of the nonce NA, and the confidentiality and freshness assurances
of the value x. From Lemma 4.4, A has the association assurance of NA and
x with A and B, since the key SKEYID a from Main Mode is confidential
and only known by A and B.

2) Upon receiving Message 1, B could not draw any useful assurance from
Message 1 since there is not any trusted freshness identifier from the point
of view of B.

3) Similarly, in Message 2, from Lemma 4.2 and Lemma 4.3, B has the
freshness assurance of the nonce NB, and the confidentiality and freshness
assurances of both y and k. From Lemma 4.4, B has the association assurance
of NB, y and k with A and B.

4) Upon receiving Message 2, from Lemma 4.2, Lemma 4.3, and Lemma
4.4, A believes that k is confidential, fresh and associated with A and B based
on the trusted freshness NA. From Lemma 4.1, A has the liveness assurance
of B based on the trusted freshness NA, since it must be B who has gener-
ated the fresh hash value HASH2 = prf (SKEYID a, IDAB|NA|SAB|NB[|gy]
[|IDA|IDB]) using the shared key SKEYID a.

5) Similarly, upon receiving Message 3, from Lemma 4.1, B has the live-
ness assurance of A from the hash value HASH3 = prf (SKEYID a, 0|IDAB|
NA|NB) including the trusted freshness NB.

Table 5.7 shows the analyzing result of the IKE phase-2 quick mode. Upon
termination of the protocol run, with the premise that the gxy from Main
Mode is confidential in Quick Mode, the protocol achieves thatA believes that
B is present, and the new session key k is confidential, fresh, and associated
with both A and B, while B believes that A is present, and the new session
key k is confidential, fresh, and associated with A. Hence, IKE Phase-2 Quick
Mode has achieved the key exchange and authentication security objects as
it intends to.

Table 5.7 Security analysis of the IKE phase-2 quick mode

A B

B NA NB x y k A NA NB x y k

Message 1 01AB 11AB 0?# 1?#

Message 2 1 0?# 1?# 11AB 01AB 11AB 11AB

Message 3 1

End of run 1 11AB 1 11AB

However, we should note that if gxy from Main Mode was not confidential
in Quick Mode, that is, if gxy was known by the adversary, then the adversary
could initiate a Quick Mode instance at any one time by impersonating A or

5.3 Kerberos —the network authentication protocol 193

B, and shared a new session key with the victim.

5.3 Kerberos — the network authentication protocol

In open network computing environments, a user (an employee, a subscriber
or a customer) may be provided with various kinds of information resources
and services: remote hosts, file servers, printers, and many other networked
services. When a user requests use of a network service, the service provider
wants an assurance that the user is who he says he is in a physically insecure
network. However, it would be unrealistic and uneconomic to require a user
to maintain several different cryptographic assurances, no matter whether
in terms of memorizing various passwords, or in terms of holding a number
of smartcards. Furthermore, unencrypted passwords sent over the network
may suffer from the “sniff” attack. Hence, Kerberos[6, 7] is introduced by
Massachusetts Institute of Technology (MIT) as a solution to these network
security problems: a trusted third party mediates between a user and a re-
source server by issuing a shared session key between the two entities. The
Kerberos protocol allows a legitimate user to log onto his terminal once a
day (typically) and then transparently access all the networked resources he
needs for the rest of that day. Each time the legitimate user wants to access
an information resource, to retrieve a file from a remote server for example,
Kerberos will securely handle the required authentication behind the scene
without any user intervention.

5.3.1 Kerberos overview

Kerberos is developed as part of the MIT Athena project. The Kerberos
protocol is designed to provide strong authentication so that a client can prove
its identity to a server (and vice versa) across an insecure network connection.
After a client and a server have proved their identities via Kerberos, they can
also encrypt all of their communications to assure privacy and data integrity
as they go about their business. Furthermore, Kerberos is being used as a
building block for higher-level protocols. Kerberized applications are those
that use the Kerberos authentication protocol to provide authentication, and
to provide encryption and signing for subsequent messages. Kerberos relies
on conventional encryption rather than public-key encryption, that is, it uses
private-key cryptography. PKINIT[26], which adds public-key authentication
and a fair amount of complexity to the basic protocol, is an extension of
Kerberos 5.

In basic Kerberos, a session generally starts with a user logging onto a
system. This triggers the creation of a client process that will transparently

194 5 Security Analysis of Real World Protocols

handle all his authentication requests. The client process—usually acting
for a human user – interacts with three other types of principals when using
Kerberos 5. The initial authentication between the client and the Kerberos
administrative principal is traditionally based on a shared key derived from
a password chosen by the user. The client’s goal is to be able to authenti-
cate himself/herself to various application servers (e.g., email, file, and print
servers). This is done by obtaining a “Ticket-granting ticket” (TGT) from a
“Kerberos Authentication Server” (AS) and then presenting this TGT to a
“Ticket-Granting Server” (TGS) in order to obtain a “Service ticket” (ST).
ST is the credential that the client uses to authenticate himself/herself to
the application server. The AS and the TGS together are known as the “Key
Distribution Center” (KDC)

A TGT might be valid for a day, and may be used to obtain several STs
for many different application servers from the TGS, while a single ST is
valid for a few minutes (although it may be used repeatedly) and is used for
a single application server. That is, Authentication Service Exchange occurs
once for every logon session, the user doesn’t need to login every time he
starts an application that uses Kerberos. Delegation refers to the facility for
a service to impersonate an authenticated client in order to relieve the user
of the additional burden of authenticating to multiple services. To the latter
services, it will look as if they are communicating directly with the user,
whereas in reality another service will sit between them and the user.

Kerberos can provide authentication, authorization and accounting secu-
rity properties. Authentication is the confirmation that a user who is request-
ing services is a valid user of the network services requested. Authorization is
the granting of specific type of service to a user based on their authentication,
and what services they are requesting and what the current system state is.
Accounting is the tracking of the consumption of network resources by users.

Kerberos is more secure than LAN Manager(LM) authentication and
NTLM authentication, since user’s passwords are never sent across the net-
work encrypted or in plain text; session keys are only passed across the
network in encrypted form; client and server systems are mutually authenti-
cated, and Kerberos limits the duration of their users’ authentication.

There are two major versions of Kerberos in common use. Version 4 is
the most widely used version and it uses DES encryption algorithm, which
has been shown to be vulnerable to brute-force-attacks with little comput-
ing power. Version 5 is a draft Internet Standard (RFC 1510[6]) which has
corrected some of the security deficiencies of Version 4. For example, Ker-
beros Version 5 has indicated the notion realm of the user, added a random
nonce to assure the response fresh, improved the ticket lifetime to enhance
the security, etc.

Here are the related ports, protocols and functions of Kerberos:

5.3 Kerberos —the network authentication protocol 195

Port Protocol Function

88 UDP TCP Kerberos V5

750 UDP TCP Kerberos V4 Authentication

751 UDP TCP Kerberos V4 Authentication

752 UDP Kerberos password server

753 UDP Kerberos user registration server

754 TCP Kerberos slave propagation

1109 TCP POP with Kerberos

2053 TCP Kerberos demultiplexer

2105 TCP Kerberos encrypted rlogin

In Windows 2000, 56bit DES and 128bit RC4 are the most commonly used
ones in Kerberos; in Windows Server 2003, RC4-HMAC, DES-CBC-CRC and
DES-CBC-MD5 are commonly used; in Windows XP, RC4 is commonly used
while others are allowed, and DES is notably used; in Windows Vista, 256bit
AES, 3DES, SHA2 are commonly used.

5.3.1.1 Terms

Term 5.1 Kerberos uses “realm” to group user accounts. A Kerberos realm
means a single Kerberos administrative domain, and it includes at lease a
Kerberos server, a number of Clients and several Application servers.

Kerberos supports inter-realm authentication, but the Kerberos server in
each realm should shared a secret key with those servers in other realms,
and the Kerberos server in one realm should trust the one in other realm
to authenticate its users. Realms are typically organized hierarchically. Each
realm shares a key with its parent and a different key with each child.

A Kerberos server, which is a trusted third party, or, in Kerberos ter-
minology, the Key Distribution Center (KDC). The KDC itself is made of
two subservices: the Authentication Service and the Ticket Granting Ser-
vice. In Windows 2000 and Windows Server 2003, both services run on the
KDC server. While in other Kerberos implementations these two subservices
can run on different machines such as an Authentication Server (AS) and
a Ticket Granting Server (TGS). This is for the scenario where application
servers belong to different TGS’s in different domains.

A number of clients, all should have registered with the Kerberos server
KDC to use the information resources and services.

Several application servers, which are target servers that provide infor-
mation resources and services, and they all have shared long-term keys with
the Kerberos server KDC.

Notation 5.3 Key Distribution Center (KDC) is composed of an Authen-
tication Server (AS) and a Ticket Granting Server (TGS). It has a database
that houses all principals, including severs and clients, and their keys for a
given realm. For example, the Kerberos KDC runs on every Windows 2000
domain controller and Windows 2003 server.

196 5 Security Analysis of Real World Protocols

Notation 5.4 Authentication Server (AS) authenticates a client logon and
issues a Ticket Granting Ticket (TGT) for future authentication.

Notation 5.5 Ticket Granting Server (TGS) is responsible for accepting
and verifying TGT from the AS, and grants application service tickets to
clients holding this TGT. The existence of TGS allows the clients only to
have to authenticate themselves once to the AS to get TGT, which can then
be presented to the TGS.

Notation 5.6 Application Server (S) is responsible for accepting and ver-
ifying service tickets from the TGS, and grants information resources and
services to a network client.

Notation 5.7 Client (C)Client is a Client (a user process) which makes use
of a network service on behalf of a user. The user credential is given to the
client C as C prompts the user to key-in his password. Note that in some
cases a server may itself be a client of some other servers. Kerberos assumes
that the workstations or machines are secure, i.e., there is no way for an
attacker to intercept communication between a user and a client.

Notation 5.8 Ticket or Kerberos ticket is encrypted protocol messages
used to confirm identities of the end participants and to establish a new
session key that both parties will shared for secure communication. Kerberos
uses two types of tickets in its process of authentication: TGTs and Service
Tickets.

Notation 5.9 Authenticator consists of timestamps that are encrypted with
the secret session key shared between the client and the AS, or between the
client and the application server. Note that the timestamp cannot exceed the
expiration time. The authenticator has a very short life time to prevent re-
play attacks, and the authenticator can only be used once. One authenticator
is typically built in per session of use of a service.

Notation 5.10 Ticket Granting Ticket (TGT) is issued by the Authenti-
cation Server (SA) that contains the client’s Privilege Attribute Certificate
(PAC).

Notation 5.11 Privilege Attribute Certificate (PAC) is strictly used in
Windows 2000 Kerberos authentication, which contains information such as
the user’s Security ID (SID), group membership SIDs, and users’ rights on
the domain.

Notation 5.12 Service Ticket is issued by the Ticket Granting Server,
which provides authentication for a specific application server or resource.

Notation 5.13 Session key is a derived value used strictly for the immedi-
ate session between a client and a resource server.

5.3 Kerberos —the network authentication protocol 197

5.3.1.2 Kerberos exchanges

The Kerberos protocol consists of several sub-protocols (or phases, or ex-
changes): the authentication service exchange, ticket granting service ex-
change, client/server exchange. The Kerberos authentication process is illus-
trated in Fig. 5.20.

Fig. 5.20 The Kerberos protocol message exchanges.

Phase 1 Authentication service exchange:

— Message 1: The client sends a request AS REQ to the authentication
server (AS) requesting a Ticket Granting Ticket (TGT) to the Ticket
Granting Server (TGS).

— Message 2: AS looks up the client and server principals named in the
AS REQ in its database, extracting their respective keys, then generates
a “random” session key (kc,tgs) for use between the client and the TGS.
AS creates and sends the client a TGT which includes the client part and
the TGS part. The part of TGT for the client including kc,tgs is encrypted
under the client’s secret key, and the part of TGT for TGS including kc,tgs
is encrypted under the long-term secret key between the AS and the TGS.

Phase 2 Ticket granting service exchange:

— Message 3: The client decrypts the encrypted part using its secret key,
verifies client’s sending nonce (to detect replays) and recovers the session
key kc,tgs, then uses kc,tgs to create an authenticator containing the user’s
name, IP address and a timestamp. The client sends this authenticator,
along with the TGT, to the TGS, requesting access to the application
server S.

— Message 4: The TGS decrypts the TGT, then uses kc,tgs inside the TGT
to verify the user’s name, IP address and the timestamp in the authen-
ticator. If everything matches, then the TGS generates a “random” new
session key (kc,s) for the client and the application server. The Kerberos

198 5 Security Analysis of Real World Protocols

database is queried to retrieve the record for the requested server, and the
TGS creates and sends the client a new ticket. This ticket is also made of
the client part and the S part. The part for the client encrypts the kc,s
using kc,tgs, and the part for S encrypts the kc,s with the network address,
the client’s name, the server’s name, the time of initial authentication and
an expiration time using the long-term secret key Ks,tgs between the S
and the TGS.

Phase 3 Client/server exchange:

— Message 5: The client decrypts the encrypted part using kc,tgs, verifies
client’s sending nonce and recovers the session key kc,s, then uses kc,s to
create a new authenticator containing the user’s name, IP address and a
timestamp. The client sends the received encrypted session ticket and the
encrypted new authenticator to the application server S.

— Message 6: The application server decrypts and checks the ticket, au-
thenticator, client address and timestamp. For applications that require
two-way authentication, the target server returns a message consisting of
the timestamp plus 1, encrypted with kc,s.
Up to now, the application server S and the client C have authenticated

the opponent party is who he claims to be, and the two now shared an encryp-
tion key kc,s for future secure communications. The user ID and password
are secure since they are never sent over the network.

5.3.2 Basic Kerberos network authentication service

Kerberos 5, the most recent version, is introduced in the early 1990s[6, 27],
and it is available for all major operating systems: Microsoft Windows 2000,
Microsoft Windows server 2003, and many UNIX and UNIX-like operating
systems, including FreeBSD, Apple’s Mac OS X, Red Hat Enterprise Linux
4, Sun’s Solaris, IBM’s AIX, HP’s OpenVMSLinux[28]. Especially, Microsoft
bases its Kerberos implementation on the standard defined in RFC 1510.
Fig. 5.21 shows the Message exchanges of Kerberos V:

Message 1 C → AS : Options||IDc||Realmc||IDtgs||Times||Nonce1
Message 2 AS → C : IDc||Realmc||Tickettgs||{IDtgs||Realmtgs||kc,tgs

||Times||Nonce1}Kc

Message 3 C → TGS : Options||IDs||Realms||Times||Nonce2||Tickettgs
||Authenticatorc1

Message 4 TGS → C : Realmc||IDc||Tickets||{kc,s||Times||Nonce2||IDs

||Realms}kc,tgs
Message 5 C → S : Options||Tickets||Authenticatorc2
Message 6 S → C : {Ctime||[Subkey]||[Seq]}kc,s

5.3 Kerberos —the network authentication protocol 199

Fig. 5.21 Message exchanges of domain authentication based on Kerberos.

where
Tickettgs = {IDtgs||Realmtgs||Flags||kc,tgs||Realmc||IDc||Times}Kas,tgs ,
Authenticatorc1 = {IDc||Realmc||Ctime}kc,tgs ,
Tickets = {IDs||Realms||Flags||kc,s||Realmc||IDc||Times}Ks,tgs ,
Authenticatorc2 = {IDc||Realmc||Ctime||[Subkey]||[Seq]}kc,s
The fields in the above messages are:
Options: the client may specify a number of options in the initial re-

quest. Among these options are whether preauthentication is to be performed;
whether the requested ticket is to be renewable, proxiable, or forwardable;
whether it should be postdated or allow postdating of derivative tickets, etc.

IDc, IDtgs or IDs: it is the identity of the client user, the ticket grant-
ing server or the application server. It is a uniquely named client or server
instance that participates in a network communication.

Realmc, Realmtgs or Realms: it indicates the realm of the client user, the
TGS server or the application server respectively.

Time consists of three parts:
from: the desired start time for the ticket;
till: the requested expiration time;
rtime: requested renew-till time.
Nonce1 or Nonce2: it is a random value generated by the client to assure

the response of freshness. If the same number is included in the encrypted
response from the KDC, it provides evidence that the response is fresh and
has not been replayed by an attacker.

Tickettgs: it is a ticket granting ticket to obtain service-granting ticket,
which is received from AS.

200 5 Security Analysis of Real World Protocols

Kc: it is a long-term key between the client and the authentication server,
which is traditionally derived from a password chosen by the user.

kc,tgs: a temporary key for secure communication between the client and
the ticket granting server.

Authenticatorc1 : it is the authenticator that contains plaintext encrypted
under kc,tgs, hence it proves that the client knows the temporary key kc,tgs.

kc,s: a temporary session key for secure communication between the client
and the application server.

Authenticatorc2 : it is the authenticator that contains plaintext encrypted
under kc,s, hence it proves that the client knows the session key kc,s.

[...]: it indicates an optional field.
Subkey: it contains the client’s choice for an encryption key which is to

be used to protect this specific application session. If this field is left out the
session key from the ticket will be used.

Seq: it is a sequence number used to detect replays. The initial sequence
number should be random and uniformly distributed across the full space of
possible sequence numbers, so that it cannot be guessed by an attacker.

Ctime: it contains the current time on the client’s host.

5.3.3 Security analysis of Kerberos based on trusted freshness

Example 5.12 Figure 5.22 illustrates the security analysis of Kerberos V5
based on trusted freshness. For ease of exposition of the mutual authenti-
cation and key establishment idea in the Kerberos Authentication Protocol,
only some mandatory protocol messages will be presented and some minute
details are omitted to avoid obscuration.

Message 1 C → AS : C, TGS, T,N1

Message 2 AS → C : C, {TGS, kc,tgs, C, T}Kas,tgs , {TGS, kc,tgs, T,N1}Kc

Message 3 C → TGS : S, T,N2, {TGS, kc,tgs, C, T}Kas,tgs ,

{C,Client time}kc,tgs
Message 4 TGS → C : C, {S, kc,s, C, T}Ks,tgs , {kc,s, T,N2, S}kc,tgs
Message 5 C → S : {S, kc,s, C, T}Ks,tgs , {C,Client time}kc,s
Message 6 S → C : {Client time}kc,s

Notation

C denotes the client, AS denotes the authentication server, TGS denotes
the ticket granting server and S denotes the application server.

T and Client time are the timestamps chosen by the client for the ticket.
N1 and N2 are nonces randomly chosen by the client for AS REQ and

TGS REQ respectively.
Kc is a long-term key between the client C and the AS, which is usually

5.3 Kerberos —the network authentication protocol 201

Fig. 5.22 Messages of the Kerberos protocol.

derived from the user’s password.
Kas,tgs and Ks,tgs are the long-term keys between AS and TGS, between

S and TGS respectively.
kc,tgs is a temporary key randomly chosen by the authentication server

AS for the temporary session between C and TGS.
kc,s is a new session key randomly chosen by the ticket granting server

TGS for this protocol run between C and the application server S.

Premise

The authentication server AS and the client C know their shared key Kc

and also K−1
c . Kas,tgs is confidential and only known by the authentication

server AS and the ticket granting server TGS; Ks,tgs is confidential and only
known by the authentication server S and the ticket granting server TGS.
N1 and N2 are randomly chosen nonces. kc,tgs and kc,s are randomly chosen
temporary keys for this protocol run.

Protocol actions

1) In Message 1, the client C starts the protocol run by sending the
identities of the client and the ticket granting server (from whom C desires
a TGT), a timestamp T and a randomly chosen new nonce N1 by C.

2) In Message 2, the authentication server AS randomly chooses a tem-
porary key kc,tgs for the subsequent communication between C and TGS,
then generates a granting ticket {TGS, kc,tgs, C, T}Kas,tgs to TGS using the
long-term key Kas,tgs between AS and TGS to show that it is AS who has
sent the ticket. AS also sends C the temporary key kc,tgs using the long-term
key Kc to keep kc,tgs secret. Kc is usually derived from the user’s password.
This is the only time that this long-term key is used in a standard Kerberos

202 5 Security Analysis of Real World Protocols

run because later exchanges use freshly generated keys.
3) Upon receiving Message 2, the client C may undertake the Ticket-

Granting exchange. It decrypts {TGS, kc,tgs, T,N1}Kc using the key Kc, ver-
ifies the correction of N1, and gets the temporary key kc,tgs.

4) In Message 3, the client C generates the authenticator {C,
Client time}kc,tgs to prove that the client knows the key kc,tgs. The encrypted
timestamp prevents an eavesdropper from recording both the ticket and the
authenticator to replay them later. C also forwards the ticket {TGS, kc,tgs, C,
T }Kas,tgs received in Message 2. Encrypting the authenticator in the session
key kc,tgs proves that it is generated by a party possessing the session key.
Since no one except C and the server TGS knows the session key (it is never
sent over the network in the clear), this guarantees the identity of the client
C.

5) Upon receiving Message 3, the ticket granting server TGS decrypts
{TGS, kc,tgs, C, T}Kas,tgs using the long-term key Kas,tgs, verifies the correc-
tion of the timestamp T , and gets the temporary key kc,tgs. TGS also verifies
the authenticator {C,Client time}kc,tgs .

6) In Message 4, TGS randomly chooses a new session key kc,s for the ap-
plication between S and C, then generates a service ticket {S, kc,s, C, T}Ks,tgs

to S using the long-term key Ks,tgs to show that it is TGS who has sent the
ticket. TGS also sends C the session key kc,s using the negotiated temporary
key kc,tgs to keep kc,s secret.

7) Upon receiving Message 4, C decrypts {kc,s, T,N2, S}kc,tgs using kc,tgs,
verifies the correction of the nonce N2, and gets the temporary key kc,s.

8) In Message 5, the client C generates the authenticator {C,
Client time}kc,s to prove that the client knows the key kc,s. C also forwards
the service ticket {S, kc,s, C, T}Ks,tgs received in Message 4 to the application
server S.

9) Upon receiving Message 5, the application server S decrypts {S, kc,s, C,
T }Ks,tgs using the long-term key Ks,tgs, verifies the correction of the times-
tamp T , and gets the new session key kc,s. S also verifies the authenticator
{C,Client time}kc,s .

10) In Message 6, S sends the encryption {Client time}kc,s to show the
ownership of kc,s by the identity S.

Successful execution should achieve mutual authentication and convince
both C and S that kc,s is a secure new session key between C and S.

Protocol security analysis

The security properties related to mutual authentication and key estab-
lishment idea will be indicated in detail, and other security properties, such
as the security of kc,tgs from the point of view of S, and the security of kc,s
from the point of view of TGS, will be omitted.

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce N1, and C also believes that N1 is
open. AS could not draw any useful assurance from Message 1 since there is

5.3 Kerberos —the network authentication protocol 203

not any trusted freshness identifier from the point of view of AS.
2) Upon receiving Message 2, from Lemma 4.2, C has the confidential as-

surance of kc,tgs. From Lemma 4.3, C has the freshness assurance of the tem-
porary key kc,tgs since kc,tgs is sent to C together with C’s trusted freshness
N1. From Lemma 4.4, C has the association assurance of N1 and kc,tgs with
C, since only C could get kc,tgs from the encryption {TGS, kc,tgs, T,N1}Kc

using the long-term key Kc between C and AS. From Lemma 4.4, C also
has the association assurance of N1 and kc,tgs with TGS since the identity of
TGS is explicitly indicated in {TGS, kc,tgs, T,N1}Kc of Message 2.

3) In Message 3, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce N2, and C also believes that N2 is
open.

4) Upon receiving Message 3, from Lemma 4.2 and Lemma 4.3, TGS has
the confidential and freshness assurances of the temporary key kc,tgs based
on the timestamp T . From Lemma 4.4, TGS has the association assurance of
kc,tgs with both TGS and C since the identities of both TGS and C are ex-
plicitly indicated in Message 3 and the encryption {TGS, kc,tgs, C, T}Kas,tgs

could only be generated by the authentication server AS using the shared
long-term key Kas,tgs. From Lemma 4.1, TGS has the liveness assurance of
C based on the timestamp Client time, since it must be C who has just gen-
erated the authenticator {C,Client time}kc,tgs using the shared temporary
key kc,tgs.

5) Upon receiving Message 4, from Lemma 4.2, C has the confidential
assurance of kc,s. From Lemma 4.3, C has the freshness assurance of the
temporary key kc,s since kc,s is sent to C together with C’s trusted fresh-
ness N2. From Lemma 4.4, C has the association assurance of kc,s with C
and S since the identity of S is explicitly indicated in Message 4 and the
encryption {kc,s, T,N2, S}kc,tgs is generated under the shared temporary key
kc,tgs between C and TGS. From Lemma 4.1, C has the liveness assurance of
TGS based on the trusted freshness N2, since it must be TGS who has just
generated the encryption {kc,s, T,N2, S}kc,tgs using kc,tgs.

6) Upon receiving Message 5, from Lemma 4.2 and Lemma 4.3, S has the
confidential and freshness assurances of the temporary key kc,s based on the
timestamp T . From Lemma 4.4, S has the association assurance of kc,s with
both C and S since the identities of both C and S are explicitly indicated
in Message 5 and the encryption {S, kc,s, C, T}Ks,tgs could only be generated
by TGS using the shared long-term key Ks,tgs. From Lemma 4.1, S has the
liveness assurance of C based on the timestamp Client time, since it must be
C who has just generated the authenticator {C,Client time}kc,s using the
shared session key kc,s.

7) Upon receiving Message 6, from Lemma 4.1, C has the liveness assur-
ance of S based on the timestamp Client time, since it must be S who has
just generated the authenticator {Client time}kc,s using the shared session
key kc,s.

Table 5.8 indicates the analyzing result of Kerberos protocol. Upon termi-

204 5 Security Analysis of Real World Protocols

nation of the protocol run, S believes that C is present, and the new session
key kc,s is confidential, fresh, and associated with both C and S, while C
believes that S is present, and the new session key kc,s is confidential, fresh,
and associated with both C and S. That is, the analyzed Kerberos authen-
tication protocol has achieved the security objects of mutual authentication
and secure key establishment.

Table 5.8 Security analysis of the Kerberos protocol

C TGS S

AS TGS S N1 kc,tgs N2 kc,s C kc,tgs C kc,s

Message 1 01#

Message 2 1 01C TGS 11C TGS

Message 3 01# 1 11C TGS

Message 4 1 01CS 11CS

Message 5 1 11CS

Message 6 1

End of run 1 11CS 1 11CS

5.3.4 Public-key Kerberos

PKINIT introduces a new trust model in which the KDC is not the first
entity to identify the users (as is the case for classical Kerberos). Before
KDC authentication, users are identified by the certification authority CA
in order to obtain a certificate. In this new model the users and the KDC
obviously both need to trust the same CA.

Public-Key Kerberos PKINIT[26], which is included in Windows 2000 and
Windows Server 2003, is an extension to Kerberos 5 that uses public-key cryp-
tography for initial authentication. That is, PKINIT modifies the authentica-
tion service exchange but not other parts of the basic Kerberos 5 protocol to
avoid shared secrets between a client and an authentication server. PKINIT
enables the smart card logon process to a Windows 2000 or later domain.
PKINIT allows a client’s master key to be replaced with its public-key cre-
dentials in the Kerberos Authentication[27].

In traditional Kerberos 5 protocol, the long-term shared key in the au-
thentication service exchange is typically derived from a password, which
limits the strength of the authentication to the user’s ability to choose and
remember good passwords, while PKINIT uses public-key cryptography and
thus avoids this problem. Furthermore, if a public-key infrastructure (PKI)
is already in place, PKINIT allows network administrators to use it rather
than to expend additional effort to manage users’ long-term keys needed for
traditional Kerberos. However, this protocol extension adds complexity to
Kerberos as it retains symmetric encryption in the later exchanges but relies
on asymmetric encryption, digital signatures, and corresponding certificates

5.3 Kerberos —the network authentication protocol 205

in the first exchange. PKINIT is intended to add flexibility, security and
administrative convenience by introducing public-key cryptography.

In PKINIT, the client C and the authentication server AS each possesses
an independent public/secret key pair, KC and K−1

C for C, KS and K−1
S for

S, respectively. Certificate sets CertC and CertS issued by a PKI indepen-
dent of Kerberos are used to testify the binding between each principal and
his purported public-key. C and AS need only maintain the public-keys of a
few known certification authorities CA within the PKI. Hence, AS need not
maintain keys individually shared with each client, and dictionary attacks are
defeated as user-chosen passwords are replaced with automatically generated
asymmetric keys. Since very few users would be able to remember a random
public/private key pair, PKINIT authentication is typically used with smart-
card, where the keys and certificate chains are stored in a smartcard that the
user swipes in a reader at login time or in the user’s hard drive.

PKINIT is supported by Kerberized versions of Microsoft Windows, in-
cluding Windows 2000 Professional and Server, Windows XP, and Windows
Server 2003[29]; it has also been included in Heimdal since 2002[30]. PKINIT
is not yet supported in the MIT reference implementation.

The manner in which PKINIT works depends on both the protocol ver-
sion and the mode invoked. “PKINIT-n” is used to refer to the protocol as
specified in the nth draft revision and “PKINIT” for the generic protocol[31].
PKINIT can operate in two modes: Diffie-Hellman (DH) mode and public-
key encryption mode.

5.3.4.1 PKINIT public-key encryption mode

In public-key encryption mode, the key pairs are used for both signature and
encryption. The latter is designed to (indirectly) protect the confidentiality
of AK, while the former ensures its integrity.

Phase 1 Authentication service exchange

The abstract structure of the authentication service exchange in public-
key encryption PKINIT– 26 is given:

Message 1 C → AS : CertC , {tc, n2}K−1
c

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

The last part of Message 1, “C, TGS, T,N1”, is exactly as in basic Ker-
beros 5, containing the client’s name, the name of the TGS from which the
client wants to get a TGT, a timestamp and a nonce. CertC , {tc, n2}K−1

c
is

added by PKINIT and contains the client’s certificates CertC and client’s
signature {tc, n2}K−1

c
over a timestamp tc and another nonce n2. The nonces

n2 and timestamp tc are generated by C specifically for this request.
Message 2 is more complex than in basic Kerberos. The last part of Mes-

sage 2 “C, {TGS, kc,tgs, C, T}Kas,tgs , {TGS, kc,tgs, T,N1}k” is very similar to
AS ’s reply in basic Kerberos; the difference is that the symmetric key k

206 5 Security Analysis of Real World Protocols

which is used to protect kc,tgs is now freshly generated by AS and not a
long-term shared key that is usually derived from the client’s password. The
ticket-granting ticket TGT {TGS, kc,tgs, C, T}Kas,tgs is encrypted with a long-
term key Kas,tgs shared between AS and the ticket granting server TGS; the
TGT contains TGS’s name, kc,tgs, C’s name, and AS ’s local time T . The
message part encrypted under the freshly generated symmetric key k in-
cludes TGS’s name, kc,tgs, AS ’s local time T , and the nonce N1 from the
request. To ensure the ability to learn k of C, PKINIT adds the message part
{CertAS , {k, n2}K−1

as
}Kc in Message 2. This encryption is encrypted under

Kc, and it contains AS ’s certificate CertAS and the signature {k, n2}K−1
as

by
AS, hence only C can get the freshly generated key k.

PKINIT leaves the subsequent exchanges of Kerberos unchanged.

Example 5.13 Here is the security analysis of the Kerberos public-key en-
cryption PKINIT based on trusted freshness. The whole message exchanges
of PKINIT mode are illustrated in Fig. 5.23.

Message 1 C → AS : CertC , {tc, n2}K−1
c

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

Message 3 C → TGS : S, T,N2, {TGS, kc,tgs, C, T}Kas,tgs
,

{C,Client time}kc,tgs
Message 4 TGS → C : C, {S, kc,s, C, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 5 C → S : {S, kc,s, C, T}Ks,tgs

, {C,Client time}kc,s
Message 6 S → C : {Client time}kc,s

Fig. 5.23 Kerberos message exchanges in Public-key encryption PKINIT mode.

5.3 Kerberos —the network authentication protocol 207

Notation

Kc and K−1
c are the public-key and the private key for C, and Kas and

K−1
as are for AS.
CertC and CertAS denote the client’s certificate and the authentication

server’s certificate respectively.
tc is a timestamp from the client C and n2 is a nonce randomly chosen

by C.
k is a symmetric key randomly chosen by AS to protect the temporary

key kc,tgs.
Other notations are the same as in the basic Kerberos protocol, hence

omitted.
Premise

Each principal knows the public-key of the trusted certificate authority
CA to get Kc or Kas from CertC or CertAS . Each principal knows the key
pair of himself, that is, Kc and K−1

c for C, Kas and K−1
as for AS.

Protocol actions

1) In Message 1, the client C randomly chooses the nonces n2 and N1,
and signs n2 and timestamp tc using C’s private key K−1

c , then C starts the
protocol run by sending the certificate of C, the signature {tc, n2}K−1

c
, the

identities of C and TGS, a timestamp T and N1.
2) Upon receiving Message 1, AS gets the public-key of C from CertC ,

decrypts {tc, n2}K−1
c

using C’s public-key Kc, verifies the correction of times-
tamp tc, and gets the nonce n2. The KDC will then query the Active Directory
for a mapping between the certificate CertC and a Windows account. If it
finds a mapping, it will issue a TGT to the corresponding account.

3) In Message 2, the authentication server AS randomly chooses a sym-
metric key k and a temporary key kc,tgs for the subsequent communication
between TGS and C, then AS signs k and n2 using AS ’s private key K−1

as .
AS makes response to C with {CertAS , {k, n2}K−1

as
}Kc to keep the freshly

generated key k confidential by encrypting under C’s public-key Kc. The
last part of Message 2 is very similar to AS ’s reply in basic Kerberos, hence
omitted.

Other messages are the same as the basic Kerberos protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness as-
surance of the randomly chosen nonce N1 and n2, and C also believes that N1

and n2 are open.TGS could not draw any useful assurance from Message 1.
2) Upon receiving Message 2, from Lemma 4.2, C has the confidential

assurance of k and kc,tgs since only C could decrypt {CertAS , {k, n2}K−1
as
}Kc

using C’s private key K−1
c to get k and then kc,tgs. From Lemma 4.3, C has

the freshness assurance of the temporary key k since k is sent to C together

208 5 Security Analysis of Real World Protocols

with C’s trusted freshness n2. Similarly, C has the freshness assurance of
the temporary key kc,tgs since kc,tgs is sent to C together with C’s trusted
freshness N1. From Lemma 4.4, C has the association assurance of k and n2

with AS, since AS has signed k and n2 using AS ’s private key K−1
as . However,

from the point of view of C, k and n2 are not associated with TGS or C
since if an adversary is a legal user, then the adversary could impersonate
C and generate the encryption {CertAS , {k, n2}K−1

as
}Kc using the public Kc.

Note that kc,tgs is not associated with TGS since k is not associated with C,
although the identity of TGS is explicitly indicated in Message 2.

3) In Message 3, C has the same security beliefs as those in the basic
Kerberos.

4) Upon receiving Message 3, TGS has the same security beliefs as those
in the basic Kerberos.

5) Upon receiving Message 4, from Lemma 4.2, C has the confidential
assurance of the temporary key kc,s since it is encrypted under the temporary
key kc,tgs. From Lemma 4.3, C has the freshness assurance of kc,s since kc,s
is sent to C together with C’s trusted freshness N2.

6) Upon receiving Message 5, S has the same security beliefs as those in
the basic Kerberos.

7) Upon receiving Message 6, C could not authenticate the liveness of S
since C is not sure whether kc,s is between C and S, hence C is not sure
whether the fresh message {Client time}kc,s is from S or not.

Table 5.9 indicates the analyzing result of Public-key Kerberos protocol.
Upon termination of the protocol run, S believes that C is present, and the
new session key kc,s is confidential, fresh, and associated with both S and
C, while C only believes that kc,s is confidential and fresh, but C is not sure
whether kc,s is between C and S or not.

Table 5.9 Security analysis of the PKINIT Public-key Kerberos protocol

C TGS S

AS TGS S k n2 N1 kc,tgs N2 kc,s C kc,tgs C kc,s

Message 1 01# 01#

Message 2 1 11AS 01AS 01# 11#

Message 3 01# 1 11C TGS

Message 4 11#

Message 5 1 11CS

Message 6

End of run 11# 1 11CS

Example 5.14 From the absence of the association of kc,s with C and S
in the point of view of C, there exists an attack[31] as illustrated in Fig. 5.24.

Message 1 C → I(AS) : CertC , {tc, n2}K−1
c

, C, TGS, T,N1

Message 1′ I → AS : CertI , {tc, n2}K−1
i

, I, TGS, T,N1

5.3 Kerberos —the network authentication protocol 209

Message 2′ AS → I :
{
CertAS , {k, n2}K−1

as

}
Ki

, I,

{TGS, kc,tgs, I, T}Kas,tgs
,{TGS, kc,tgs, T,N1}k

Message 2 I(AS)→ C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, I, T}Kas,tgs
,{TGS, kc,tgs, T,N1}k

Message 3 C → I(TGS) : S, T,N2, {TGS, kc,tgs, I, T}Kas,tgs
,

{C,Client time}kc,tgs
Message 3′ I → TGS : S, T,N2, {TGS, kc,tgs, I, T}Kas,tgs

,

{I, Client time}kc,tgs
Message 4′ TGS → I : I, {S, kc,s, I, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 4 I(TGS)→ C : C, {S, kc,s, I, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 5 C → I(S) : {S, kc,s, I, T}Ks,tgs

, {C,Client time}kc,s
Message 5′ I → S : {S, kc,s, I, T}Ks,tgs

, {I, Client time}kc,s
Message 6 S → I : {Client time}kc,s
Message 6′ I(S)→ C : {Client time}kc,s

Fig. 5.24 An attack on the Kerberos PKINIT Public-key Encryption mode.

210 5 Security Analysis of Real World Protocols

Notation

I denotes the adversary, Ki and K−1
i are the public-key and the private

key for I, and CertI denotes the adversary’s certificate.
I(TGS) or I(S) is the adversary I impersonating TGS or S.
n2 is a nonce randomly chosen by the client for AS REQ in PKINIT

public-key encryption mode.
TGT = {TGS, kc,tgs, I, T}Kas,tgs is a ticket granting ticket.
Other notations are the same as the original Keberos PKINIT protocol.

Premise

The adversary is a legal user, Other premises are the same as the original
Keberos protocol.

Protocol actions

1) In Message 1, the client C starts a new protocol run. I intercepts
Message 1, replaces CertC with CertI , gets {tc, n2} using C’s public-key and
encrypts it using I’s private key, then sends Message 1′ to AS.

2) Upon receiving Message 1′, AS responds to I just as AS does in basic
Keberos.

3) Upon receiving Message 2′, I gets {k, n2}K−1
as

and k using I’s private
key and AS ’s public-key, hence I can get kc,tgs using k.

4) In Message 2, I constructs {CertAS , {k, n2}K−1
as
}Kc from {k, n2}K−1

as

using C’s public-key, replaces the identity of I with C.
5) In Message 3, C responds as usual. I intercepts Message 3, replaces the

identity ofC with I in {C,Client time}, and then sends {I, Client time}kc,tgs
to TGS.

6) Upon receiving Message 3′, TGS responds to I just as TGS does in
basic Keberos.

7) Upon receiving Message 4′, I gets kc,s using kc,tgs.
8) In Message 4, I replaces the identity of I with C in Message 4′, and

then forwards Message 4.
9) Up to now, both C and I know the session key kc,s, hence they can

complete the subsequence protocol run as usual.
Upon termination of the attack on the Kerberos PKINIT public-key en-

cryption, the adversary I causes C to have false beliefs: C has completed a
successful protocol run with S, and is sharing a new session key kc,s with S,
whereas in fact, S knows nothing about the key establishment with C, and
thinks that it has been talking with the adversary I, and sharing kc,s with
I. From now on, C will send subsequent sensitive data encrypted under kc,s
which is also known by I.

5.3.4.2 PKINIT Diffie-Hellman mode

In Diffie-Hellman (DH) mode, the key pairs (Kc andK−1
c for C, Kas andK−1

as

for AS) are used to provide digital signature support for an authenticated

5.3 Kerberos —the network authentication protocol 211

Diffie-Hellman key agreement which is used to protect the temporary key
kc,tgs between the client and the TGS. A variant of this mode allows the
reuse of previously generated shared secrets kc,tgs.

The following abstract description leaves out a number of fields which
are of no significance with respect to our analysis. We invite the interested
reader to consult the specifications[26]. The simplified authentication service
exchange in Diffie-Hellman PKINIT-26 is:

Message 1 C → AS :
{
CertC , {tc, n2}K−1

c

}
Kas

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

Example 5.15 The whole message exchanges of PKINIT Diffie-Hellman
mode are illustrated in Fig. 5.25.

Message 1 C → AS :
{
CertC , {tc, n2}K−1

c

}
Kas

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

Message 3 C → TGS : S, T,N2, {TGS, kc,tgs, C, T}Kas,tgs
,

{C,Client time}kc,tgs
Message 4 TGS → C : C, {S, kc,s, C, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 5 C → S : {S, kc,s, C, T}Ks,tgs

, {C,Client time}kc,s
Message 6 S → C : {Client time}kc,s

Fig. 5.25 Kerberos message exchanges in PKINIT Diffie-Hellman mode.

Table 5.10 indicates the security analysis result of PKINIT Diffie-Hellman

212 5 Security Analysis of Real World Protocols

mode. The security analysis details are left to the interested reader.

Table 5.10 Security analysis of the Kerberos PKINIT Diffie-Hellman protocol

C TGS S

AS TGS S k n2 N1 kc,tgs N2 kc,s C kc,tgs C kc,s

Message 1 01# 01#

Message 2 1 11C AS 01C AS 01C TGS 11C TGS

Message 3 01# 1 11C TGS

Message 4 1 11C S

Message 5 1 11C S

Message 6 1

End of run 1 11C S 1 11C S

Upon termination of the protocol run, S believes that C is present, and
the new session key kc,s is confidential, fresh, and associated with both S and
C; at the same time, C believes that S is present, and the new session key
kc,s is confidential, fresh, and associated with both S and C.

References

[1] Tanenbaum AS (2001) Computer Networks, 3rd edn. Prentice Hall, New
Jersey.

[2] Freier AO, Karlton P, Kocher PC (1996) The SSL Protocol Version 3.0.
http://wp.netscape.com/eng/ssl3/draft302.txt. Accessed 29 Apr 2007

[3] Dierks T, Allen C (1999) the TLS Protocol Version 1.0, RFC 2246. http://
tools.ietf.org/html/rfc2246. Accessed 21 May 2011

[4] Kaufman C (2005) Internet Key Exchange (IKEv2) Protocol, RFC 4306.
http://tools.ietf.org/html/rfc4306. Accessed Dec 2005

[5] Meadows C (1999) Analysis of the Internet Key Exchange Protocol Using
the NRL Protocol Analyzer. In: Proceedings of 1999 IEEE Symposium on
Security and Privacy, Oakland, 9 – 12 May 1999

[6] Neuman C (1993) The Kerberos Network Authentication Service (V5), RFC
1510. http://www.ietf.org/rfc/rfc1510.txt. Accessed 5 May 2011

[7] Neuman BC, Ts’o T (1994) Kerberos: an Authentication Service for Com-
puter Networks. IEEE Communications Magazine 32(9): 33 – 38

[8] Ylonen T (1995) The SSH (secure shell) Remote Login Protocol, Internet-
Draft. http://www.free.lp.se/fish/rfc.txt. Accessed 15 Nov 1995

[9] Ylonen T (2002) SSH Authentication Protocol, RFC4252. http://www.ietf.
org/rfc/rfc4252.txt. Accessed 5 May 2011

[10] Ylonen T (2002) SSH Connection Protocol, RFC4254. http://www.ietf.org/
rfc/rfc4254.txt. Accessed 5 May 2011

[11] Ylonen T (2002) SSH Protocol Architecture, RFC4251. http://www.ietf.org/
rfc/rfc4251.txt. Accessed 5 May 2011

[12] Ylonen T (2002) SSH Transport Layer Protocol, RFC4253. http://www.ietf.
org/rfc/rfc4253.txt. Accessed 5 May 2011

[13] Stallings W (2006) Cryptography and Network Security: Principles and
Practice, 4th edn. Prentice Hall, New Jersey

References 213

[14] Ray M, Dispensa S (2009) Renegotiating TLS. http://www.phonefactor.
com/sslgapdocs/Renegotia- ting TLS.pdf. Accessed 5 May 2011

[15] Thayer R, Doraswamy N, Glenn R (1998) IP Security Document Roadmap,
RFC2411. http://tools.ietf.org/html/rfc2411. Accessed Nov 1998

[16] Hoffman P (2005) Cryptographic Suites for IPsec, RFC4308. http://tools.
ietf.org/html/rfc4308. Accessed 5 May 2011

[17] Kent S, Atkinson R (1998) IP Authentication Header, RFC2402. http://tools.
ietf.org/html/rfc2402. Accessed 5 May 2011

[18] Kent S, Atkinson R (1998) IP Encapsulating Security Payload (ESP),
RFC2406. http://tools.ietf.org/html/rfc2406. Accessed Nov 1998

[19] Harkins D, Carrel D (1998) The Internet Key Exchange Protocol (IKE),
RFC 2409. http://www.ietf.org/rfc/rfc2409.txt. Accessed Dec 2005

[20] Kent S (2005) IP Authentication Header, RFC4302. http://tools.ietf.org/
html/rfc4302. Accessed Dec 2005

[21] Maughan D, Schertler M, Schneider M, Turner J (1998) Internet Security
Association and Key Management Protocol (ISAKMP). IETF RFC 2408.
http://www.ietf.org/rfc/rfc2408. Accessed November 1998

[22] Orman H (1998) The OAKLEY Key Determination Protocol. IETF RFC
2412. http://www.ietf.org/rfc/rfc2412. Accessed November 1998

[23] Krawczyk H (1996) SKEME: A Versatile Secure Key Exchange Mechanism
for Internet. In: Proceedings of Symposium on Network and Distributed Sys-
tem Security (SNDSS ’96), San Diego, 22 – 23 Feb 1996

[24] Mao W (2004) Modern Cryptography: Theory and Practice. Prentice Hall,
New Jersey

[25] Lowe G (1996) Some new Attacks Upon Security Protocols. In: Proceedings
of the 9th IEEE Computer Security Foundations Workshop, Kenmare, 10 –
12 Mar 1996

[26] Zhu L, Tung B (2006) Public Key Cryptography for Initial Authentication
in Kerberos (PKINIT), RFC4556. http://www.ietf.org/rfc/rfc4556.txt. Ac-
cessed 10 June 2010

[27] Neuman C, Yu T, Hartman S, Raeburn K (2005) The Kerberos Network
Authentication Service (V5). http://www.ietf.org/rfc/rfc4120

[28] Wikipedia. Kerberos (protocol). http://en.wikipedia.org/wiki/Kerberos
(protocol). Accessed 5 Dec 2011

[29] Microsoft Security Bulletin MS05-042. http://www.microsoft.com/technet/
security/bulletin/ms05-042.mspx. Accessed 9 Aug 2010

[30] Strasser M, Steffen A (2002) Kerberos PKINIT Implementation for Unix
Clients. Technical Report, Zurich University of Applied Sciences Winterthur,
Nov 2010

[31] Cervesato I, Jaggard AD, Scedrov A, Tsay JK, Walstad C (2008) Break-
ing and Fixing Public-key Kerberos. Journal Information and Computation
206(2 – 4): 402 – 424

	5 Security Analysis of Real World Protocols
	5.1 Secure Socket Layer and Transport Layer Security
	5.1.1 SSL and TLS overview
	5.1.2 The SSL handshake protocol
	5.1.3 Security analysis of SSL based on trusted freshness
	5.1.3.1 Security analysis of SSL negotiation based on trusted freshness
	5.1.3.2 Attacks related to renegotiation

	5.2 Internet Protocol Security
	5.2.1 IPSec overview
	5.2.1.1 Authentication Header (AH)
	5.2.1.2 Encapsulating Security Payload (ESP)

	5.2.2 Internet Key Exchange
	5.2.2.1 Two phases of IKE
	5.2.2.2 IKE Modes

	5.2.3 Security analysis of IKE based on trusted freshness
	5.2.3.1 Security analysis of main mode
	5.2.3.2 Security analysis of aggressive mode
	5.2.3.3 Security analysis of quick mode

	5.3 Kerberos—the network authentication protocol
	5.3.1 Kerberos overview
	5.3.1.1 Terms
	5.3.1.2 Kerberos exchanges

	5.3.2 Basic Kerberos network authentication service
	5.3.3 Security analysis of Kerberos based on trusted freshness
	5.3.4 Public-key Kerberos
	5.3.4.1 PKINIT public-key encryption mode
	5.3.4.2 PKINIT Diffie-Hellman mode

	References

