
4 Informal Analysis Schemes of Cryptographic
Protocols

Abstract Four security definitions about unilateral authentication
secure, mutual authentication secure, unilateral session key secure, or
mutual session key secure are given respectively under the compu-
tational model of matching conversation and indistinguishability. An
informal analysis approach based on trusted freshness is presented,
and the analysis results suggest the correctness of a protocol or the
way to construct attacks intuitively from the absence of security prop-
erties. Then, the reasons why typical attacks on authentication proto-
cols exist are discussed based on trusted freshness, and corresponding
examples are illustrated to corroborate the discussion.

Due to the asynchronous nature of contemporary networks, establishing
whether the security of an authentication protocol is adequate or not is far
more difficult than one may have initially imagined[1–15]. A variety of useful
rigorous ways have been developed for analyzing and reasoning about cryp-
tographic protocols and they have been proved much useful while designing
and analyzing a cryptographic protocol[16–21].

However, there are some important issues that still lack satisfactory treat-
ment. (1) What’s the efficient way to distinguish whether a message is fresh
or not, to prevent replay attacks, parallel attacks and interleaving attacks.
For example, Burrows, Abadi and Needham presented the famous BAN
logic[7], which states: the formula X has not been sent in a message at any
time before the current run of the protocol, then X is fresh. This is subtle,
hence there exists an interleaving attack which is also a replay attack on
Needham-Schroeder public key protocol (Needham-Schroeder protocol for
short) even if the Needham-Schroeder protocol could be proved secure by
BAN logic[1–3, 7, 8, 22]. (2) How to avoid the dependency of analysis on the
idealization of a protocol, the concrete formalization of attackers’ possible
behaviors and the formalization of concurrent runs of protocols. (3) What
are the precise specifications of the guarantee for the security of an authenti-
cation protocol, which prove the correctness of the protocol sufficiently and
necessarily.

In this chapter, 4 security definitions about unilateral authentication se-
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cure, mutual authentication secure, unilateral session key secure, or mutual
session key secure are given respectively under the computational model of
matching conversation and indistinguishability. The presented conditions to
guarantee the security adequacy of unilateral entity authentication protocols,
mutual entity authentication protocols, unilateral key establishment proto-
cols and mutual key establishment protocols are proved. A novel idea of
protocol security analysis is presented based on trusted freshness, which is
called the freshness principle. Security analysis based on trusted freshness
can efficiently distinguish whether a message is fresh or not, and the analysis
results suggest the correctness of a protocol or the way to construct attacks
intuitively from the absence of security properties. The reasons why typi-
cal attacks on authentication protocols exist are discussed based on trusted
freshness, and corresponding examples are illustrated to corroborate the dis-
cussion.

4.1 The security of cryptographic protocols

Recall the security assumptions of the cryptographic protocols. Suppose there
exists a probabilistic polynomial time (PPT) attacker I that has full control of
the communication links as described in Dolev-Yao threat model[23]. Besides
this, suppose that the Dolev-Yao attacker I can also launch the Adaptive
Chosen Ciphertext Attacks (CCA2) without limitations. Suppose the cryp-
tographic primitives are secure against Indistinguishable Adaptive Chosen
Ciphertext Attack (IND-CCA2). That is, in IND-CCA2 security strength,
the failures in cryptographic protocols are not in any way related to the
strength or weakness of a particular cryptographic primitive used (that is,
the cryptographic primitives are perfect in this attack model), but related to
the protocol logic flaws, which permit the attacker to break the security goals
of cryptographic protocols without necessarily breaking the particular cryp-
tographic primitives used. Suppose that a legitimate party is either totally
corrupted or totally secure. Suppose that each participant has his own pri-
vate key and all other parties’ public keys (respectively, the shared long-term
key between co-operative principals or trusted third parties) in public-key
case (respectively, in symmetric-key case), which are deployed safely before
the cryptographic protocol run via non-cryptographic, and out-of-band tech-
niques. Furthermore, private keys and shared keys are commonly assumed
to be too long to guess in a computationally feasible way. In general, an au-
thentication protocol is considered flawed if a principal concludes a normal
run of the protocol with its intended communication partners while the in-
tended partner would have a different conclusion. This book mainly discusses
Challenge-Response authentication protocols.
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4.1.1 Authenticity and confidentiality under computational model

The security definition under computational model provides a high confidence
of the security of a cryptosystem.

Definition 4.1 A conversation is a sequence of timely ordered messages
that a participant sent out (respectively, received), and as consequent re-
sponses, received (respectively, sent). Let τ1 < τ2 < · · · τn be a time se-
quence recorded by the participant when it converses. The conversation can
be denoted by the following sequence: conv = (τ1,m1,m

′
1) , (τ2,m2,m

′
2) , · · · ,

(τn,mn,m
′
n)[17, 24].

This sequence encodes that at time τ1, the participant was asked m1 and
responded with m′1, and then, at some later time τ2 > τ1, the participant
was asked m2, and responded with m′2, and so on, until, finally, at time τn
it was asked mn, and responded with m′n. If m1 ="", that is no message
input, then the participant is the initiator, otherwise, it is called the respon-
der. If mn ="", there is no message output, then the participant ends the
conversation. At the end of a protocol run, each participant makes a deci-
sion about the authentication of the intended partner: accept, reject, or is
undetermined.

Definition 4.2 Suppose there exists a cryptographic protocol run between
principals A and B. Let conv = (τ0, "",m1), (τ2,m′1,m2), (τ4,m′2,m3), · · · ,
(τ2(t−1),m

′
t−1,mt) be a conversation of A. It is said that B has a conversation

conv′ which matches conv if there exists time sequence τ1 < τ2 < · · · τn and
conv′ = (τ1,m1,m

′
1), (τ3,m2,m

′
2), (τ5,m3,m

′
3), · · · , (τ2t−1,mt,m

′
t) where

mt ="no message output". These two conversations are called matching
conversations[17, 22, 24, 25].

Given a protocol Π between principals A and B, if a principal like A (or
B) with a conversation conv believes that B (or A) always has a conversation
conv′ which matches conv whenever it is allowed to complete a protocol run,
then this authentication protocol is secure from the point of view of A (or B).
Here the attacker wins if the principal A or B has reached “accept” decision
while A or B does not have a matching conversation in B or A.

We follow the probabilistic indistinguishability definitional approach[25]

presented by Goldwasser and Micali to define confidentiality security. Here,
that the attacker has broken the scheme means that: without breaking any
cryptographic primitive and knowing the corresponding key, the attacker can
still learn something about the established new session key under the run of a
cryptographic protocol. Here “learn” is defined as distinguishing the value of
a key generated by the cryptographic protocol from an independent randomly
chosen key.
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4.1.2 Security definitions

Based on the security definition of authenticity, the Unilateral entity Au-
thentication Secure definition (UA-Secure) and Mutual entity Authentica-
tion Secure definition (MA-Secure) are presented; based on the security def-
inition of authenticity and confidentiality, the Unilateral authenticated Key
Secure (UK-Secure) and Mutual authenticated Key Secure (MK-Secure) are
presented[19].

Definition 4.3 (UA-Secure) Unilateral entity Authentication Secure: an
authentication protocol Π is called UA-Secure from the point of view of A if
the attacker cannot win with a non-negligible probability for any attacker I in
Dolev-Yao threat model with the assistance of cryptanalysis training course.
Here the attacker wins if the principal A has reached “accept” decision while
A does not have a matching conversation in B.

Actually, according to the notion matching conversation, we can only
prove that the intended principal has correctly responded to the challenge of
the current protocol run, that is, the intended principal is present, but we
can not prove that the intended principal has participated in this protocol
run where the challenge is generated. Hence, there exists Man-in-the-Middle
attack even the presence of the intended principal has been proved. To correct
this problem, the challenge should be associated with all the participants
in the protocol, then the identity of the intended principal could not be
authenticated.

Definition 4.4 (MA-Secure) Mutual entity Authentication Secure: an au-
thentication protocol Π is called MA-Secure if the attacker cannot win with a
non-negligible probability for any attacker I in Dolev-Yao threat model with
the assistance of cryptanalysis training course. Here the attacker wins if any
principal A or B has reached “accept” decision while A or B does not have
a matching conversation in B or A.

Definition 4.5 (UK-Secure) Unilateral authenticated Key Secure: let k be
the value of the corresponding new session key. We toss a coin b, b R←− {0, 1}.
If b = 0, we provide the attacker I with the value k. Otherwise we provide the
attacker I with a value r randomly chosen from the probability distribution
of keys generated by protocol Π . At the end of its run, the attacker I outputs
a bit b′ (as its guess for b). An authentication protocol Π is called UK-Secure
from the point of view of A if the following properties hold for any attacker
I in Dolev-Yao threat model with the assistance of cryptanalysis training
course:

1) If uncorrupted party A believes that A has completed a session with
the intended opposite party B, then A trusts that the uncorrupted party B
must have responded to the same session, and they both output the same
key k.
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2) The probability that the attacker I guesses correctly the bit b (i.e.,
outputs b′ = b) is no more than 1/2 plus a negligible fraction in the security
parameter.

Definition 4.6 (MK-Secure) Mutual authenticated Key Secure (SK-
Secure[19]): let k be the value of the corresponding session key. We toss a
coin b, b R←− {0, 1}. If b = 0, we provide the attacker I with the value k.
Otherwise we provide the attacker I with a value r randomly chosen from
the probability distribution of keys generated by protocol Π . At the end of
its run, the attacker I outputs a bit b′ (as its guess for b). An authentica-
tion protocol Π is called MK-Secure if the following properties hold for any
attacker I in Dolev-Yao threat model with the assistance of cryptanalysis
training course:

1) Protocol Π satisfies the property that if two uncorrupted parties com-
plete matching sessions then they both output the same key.

2) The probability that the attacker I guesses correctly the bit b (i.e.,
outputs b′ = b) is no more than 1/2 plus a negligible fraction in the security
parameter.

Recall that each party creates and maintains a local state for a particular
protocol run until a session ends its run. To corrupt a party means that
the attacker learns all the internal memory of that party including long-
term secrets (such as private keys or master shared keys used across different
sessions) and session-specific information contained in the party’s memory
(such as internal state of incomplete sessions and session-keys corresponding
to completed sessions).

Mutual authenticated key secure includes mutual authenticated key trans-
port secure (for mutual authenticated key transport) and mutual authenti-
cated key agreement secure (for mutual authenticated key agreement).

4.2 Security mechanism based on trusted freshenss

A novel idea of protocol security analysis based on trusted freshness will be
presented in this section[26]. The presentations include the freshness principle,
which is the key of the security analysis based on trusted freshness; the
substantial and necessary requirements to meet four computational security
definitions; a manual analysis method based on the freshness principle, and
an illustration of the analysis method based on trusted freshness.
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4.2.1 Notions

Some notions used in the security analysis method based on trusted freshness
will be given in this subsection.

Definition 4.7 (Freshness) From the point of view of a participant in a
protocol run, freshness means that a freshness identifier or a message is con-
firmed to be new for a particular run of the protocol. If a freshness identifier
is new generated by the principal itself for this run or a message is conveyed
with this new generated identifier via a one-way transformation or a trapdoor
one-way transformation, then the freshness of the freshness identifier or the
message is confirmed.

Definition 4.8 (Trusted freshness) A trusted freshness identifier (also called
trusted freshness) is a freshness identifier whose freshness has been confirmed
via generation of the principal itself or via a one-way transformation or
a trapdoor one-way transformation including a trusted freshness identifier.
The trusted freshness identifiers include trusted nonces, trusted timestamps,
trusted session keys or trusted shared parts of a session key. Note that the
trusted freshness identifiers are different for different protocol runs, are dif-
ferent for each participant in the same protocol run, and are different for the
same principal in different protocol runs.

Definition 4.9 (Fresh message) From the point of view of a participant in
a protocol run, a fresh message is a sent or received message that includes a
trusted freshness.

Definition 4.10 (Term) A term m̂ is a fresh message owned by a principal
that may be exchanged in a particular protocol run. A term set M̂ is the
collection of all terms in a protocol run. Terms can be recursively defined as:

1) If m̂ is a trusted freshness identifier, then m̂ is a term.
2) If m̂ is a term, o is a principal identity or a freshness identifier, and

{m̂, o}, or {o, m̂} is encrypted or should be decrypted via a one-way trans-
formation or a trapped door one-way transformation, then {m̂, o}, or {o, m̂}
is a term. {m̂, o} and {o, m̂} are regarded as the same term in the security
analysis approach based on trusted freshness.

3) If m̂ is a term, k is a cryptographic key known by the principal, and
{m̂}k is encrypted or should be decrypted via a one-way transformation or a
trapped door one-way transformation, then {m̂}k is a term. If m̂ is a term,
o is a principal identity or a freshness identifier, then {o}m̂ is a term.

A maximal term is the longest term which is constructed from a single
message of a particular protocol run via the applications of Definition 4.12
as many times as possible.
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There may be more than one maximal terms in a message, for example,
the message 4 in a protocol:

Message 4 A→ B : {A, kAB, TB}KBS , {NB}kAB
Both {A, kAB, TB}KBS and {NB}kAB are the maximal term of the message.

If the maximal term of a message in a protocol run is the same as that of
another message of this protocol run, then we say this protocol has similar
term in these two messages.

That is, one single message’s maximal term should not be the same as an-
other single message’s maximal term in a particular protocol run. Otherwise,
one of these two messages may be interleaving replayed in some cases. Recall
the similar term in Message 4 and Message 5 in the Clark-Jacob attack on
the Woo-Lam protocol of Example 3.28.

A signed term is a binary group (δ, m̂), where δ is a sign, m̂ ∈ M̂ . A signed
term is stated as +m̂ or −m̂. +m̂ and −m̂ states a sent out or received fresh
message.

Example 4.1 Figure 4.1 illustrates an example of terms. The protocol in-
tends to establish a new session key kAB between A and B, with the help of
the trusted server S. NA, NB are nonces generated by A and B respectively;
KAS and KBS are shared long-term keys between A and S, and B and S
respectively.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 4 B → A : {NB}kAB
Message 5 A→ B : {NB − 1}kAB

Fig. 4.1 Example of terms.

Suppose the principal B believes that NB is a trusted freshness identifier
(NB is generated by B in this protocol run). Suppose the principal A believes
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that NA is a trusted freshness identifier (NA is generated by A in this protocol
run).

Message 1 A→ S : A,B,NA

Upon sending Message 1, A has gotten the terms as in Table 4.1, where
{...NA...} is the maximal term of Message 1.

Upon receiving Message 1, B has not gotten any terms since there does
not exist a trusted freshness identifier for B.

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Table 4.1 The terms owned by A from Message 1

No. Term Signed Term

1 {...NA...} +{...NA...}
Maximal Term

{...NA...}

Upon sending Message 2, S has gotten the terms as in Table 4.2. Upon
receiving Message 2, A has gotten the terms as in Table 4.3.

Table 4.2 The terms owned by S from Message 2

No. Term Signed Term

1 {...kAB...} +{...kAB...}
2 {...kAB, A...} +{...kAB, A...}
3 {...kAB...}KBS +{...kAB...}KBS
4 {...kAB, A...}KBS +{...kAB, A...}KBS
5 {...NA, kAB...} +{...NA, kAB ...}
6 {...kAB, B...} +{...kAB, B...}
7 {...kAB, {...kAB, A...}KBS ...} +{...kAB, {...kAB, A...}KBS ...}
8 {...NA, kAB, B...} +{...NA, kAB , B...}
9 {...NA, kAB, {...kAB, A...}KBS ...} +{...NA, kAB , {...kAB, A...}KBS ...}
10 {...kAB, B, {...kAB, A...}KBS ...} +{...kAB, B, {...kAB, A...}KBS ...}
11 {...NA, kAB, B, {...kAB, A...}KBS ...} +{...NA, kAB , B, {...NA, kAB,

A...}KBS ...}
12 {...NA, kAB...}KAS +{...NA, kAB ...}KAS
13 {...kAB, B...}KAS +{...kAB, B...}KAS
14 {...kAB, {...kAB, A...}KBS ...}KAS +{...kAB, {...kAB, A...}KBS ...}KAS
15 {...NA, kAB, B...}KAS +{...NA, kAB , B...}KAS
16 {...NA, kAB, {...kAB, A...}KBS ...}KAS +{...NA, kAB , {...kAB, A...}KBS ...}KAS
17 {...kAB, B, {...kAB, A...}KBS ...}KAS +{...kAB, B, {...kAB, A...}KBS ...}KAS
18 {...NA, kAB, B, {...kAB, +{...NA, kAB , B, {...kAB,

A...}KBS ...}KAS A...}KBS ...}KAS
Maximal Term

{...NA, kAB, B, {...kAB, A...}KBS ...}KAS
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Table 4.3 The terms owned by A from Message 2

No. Term Signed Term

1 {...NA...} −{...NA...}
2 {...NA, kAB...} −{...NA, kAB ...}
3 {...NA, B...} −{...NA, B...}
4 {...NA, {...kAB, A...}KBS ...} −{...NA, {...kAB, A...}KBS ...}
5 {...NA, kAB, B...} −{...NA, kAB , B...}
6 {...NA, kAB, {...kAB, A...}KBS ...} −{...NA, kAB , {...kAB, A...}KBS ...}
7 {...NA, B, {...kAB, A...}KBS ...} −{...NA, B, {...kAB, A...}KBS ...}
8 {...NA, kAB, B, {...kAB, A...}KBS ...} −{...NA, kAB , B, {...NA, kAB,

A...}KBS ...}
9 {...NA, kAB...}KAS −{...NA, kAB ...}KAS
10 {...NA, B...}KAS −{...NA, B...}KAS
11 {...NA, {...kAB, A...}KBS ...}KAS −{...NA, {...kAB, A...}KBS ...}KAS
12 {...NA, kAB, B...}KAS −{...NA, kAB , B...}KAS
13 {...NA, kAB, {...kAB, A...}KBS ...}KAS −{...NA, kAB , {...kAB, A...}KBS ...}KAS
14 {...NA, B, {...kAB, A...}KBS ...}KAS −{...NA, B, {...kAB, A...}KBS ...}KAS
15 {...NA, kAB, B, {...kAB, −{...NA, kAB , B, {...kAB,

A...}KBS ...}KAS A...}KBS ...}KAS
Maximal Term

{...NA, kAB, B, {...kAB, A...}KBS ...}KAS

Note that from the point of view of A, {...NA, kAB, A...}KBS is the same
as a randomly chosen nonce since A does not have possession of the long-term
key KBS. Here, {...NA, kAB, B, {...kAB, A...}KBS ...}KAS is the maximal term
of Message 2.

As we will show in the following part of this chapter, upon receiving
Message 2, A has the belief that kAB is a trusted freshness from a trap-
door one-way transformation {...NA, kAB, B, {...kAB, A...}KBS ...}KAS includ-
ing the trusted freshness identifier NA.

Message 3 A→ B : S, {kAB, A}KBS

Upon sending Message 3, A has not gotten any terms without the knowl-
edge of the long-term key KBS. Upon receiving Message 3, B has not gotten
any terms since there does not exist a trusted freshness identifier for B. So,
the maximal term in Message 3 is null.

Message 4 B → A : {NB}kAB
Upon sending Message 4, B has gotten the terms as in Table 4.4.

Table 4.4 The terms owned by B from Message 4

No. Term Signed Term

1 {...NB...} +{...NB...}
2 {...NB...}kAB +{...NB...}kAB
Maximal Term

{...NB...}kAB
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Upon receiving Message 4, note that kAB is a trusted freshness, so A has
gotten the terms as in Table 4.5.

Table 4.5 The terms owned by A from Message 4

No. Term Signed Term

1 {...NB...}kAB −{...NB...}kAB
Maximal Term

{...NB...}kAB

So, the maximal term of Message 4 is {...NB...}kAB .

Message 5 A→ B : {NB − 1}kAB

Upon sending Message 5, note that kAB is a trusted freshness, so A has
gotten the terms as in Table 4.6.

Table 4.6 The terms owned by A from Message 5

No. Term Signed Term

1 {...NB...}kAB +{...NB...}kAB
Maximal Term

{...NB...}kAB

Upon receiving Message 5, B has gotten the terms as in Table 4.7.

Table 4.7 The terms owned by B from Message 5

No. Term Signed Term

1 {...NB...} +{...NB...}
2 {...NB...}kAB +{...NB...}kAB
Maximal Term

{...NB...}kAB

Here, {...NB...}kAB is the maximal term in Message 5.

Example 4.2 Here is an example of similar term. Recall the Example 4.16,
the maximal term {...NB...}kAB in Message 4 is the same as that in Message
5, so we say this protocol in Example 4.16 has similar term {...NB...}kAB in
Message 4 and Message 5.

Definition 4.11 (Liveness of a principal) From the point of view of a par-
ticipant in a protocol run, the intended opposite participant is in lively cor-
respondence with him in this session.

Note From the point of view of a participant in a protocol run, the intended
opposite participant is specially in lively correspondence with this origin par-
ticipant in this session. The liveness of a principal with origin is also called
origin liveness of a principal.
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In lively correspondence with a origin participant means that the origin
participant has corroborative evidence that the intended opposite participant
is in lively correspondence with this origin participant but not any other
participant.

Definition 4.12 (Confidentiality of a freshness identifier From the point of
view of a participant in a protocol run, the freshness identifier is transmitted
in the form of an encryption that cannot be decrypted by the attacker.

If the freshness identifier is transmitted in the form of a plaintext or
an encryption that may be decrypted by the attacker, then the freshness
identifier is open. Note that the signature of a freshness identifier is not
confidential.

Definition 4.13 (Freshness of a freshness identifier) From the point of view
of a participant in a protocol run, the freshness identifier is new generated
for this particular protocol run, not an old one or a compromised one.

A principal believes the freshness of the freshness identifier generated by
the principal itself.

Definition 4.14 (Association of a freshness identifier) From the point of
view of a participant in a protocol run, the freshness identifier is bound to
some legitimate participants of this particular protocol run.

In the security analysis of a cryptographic protocol based on trusted fresh-
ness, the security properties are described by beliefs, which are the beliefs
about the security of a cryptographic protocol owned by each participant in
a particular protocol run. The beliefs are about liveness of principal, con-
fidentiality of a freshness identifier, freshness of a freshness identifier and
association of a freshness identifier.

4.2.2 Freshness principle

Definition 4.15 (Freshness Principle) For each participant of a crypto-
graphic protocol, the security of the protocol depends only on the sent or re-
ceived “loose” one-way transformation of a message which includes a trusted
freshness.

The security goals are the security objects at the end of the protocol run.
The set of security goals constructs the security properties of a cryptographic
protocol to achieve.

In practice, a one-way transformation [M ]k can be realized by a pair
(M,prfk(M)) where prfk denotes a keyed pseudorandom function (e.g., a mes-
sage authentication code in cipher-block-chaining mode of operation, CBC-
MAC, or a keyed cryptographic hash function, HMAC) for the case of sym-
metric technique realization, or a digital signature algorithm for the case of
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asymmetric technique realization. These are practically efficient
realization[6]. These practical one-way transformations are indeed trapped
door one-way transformations for most cases, hence we use “loose” one-way
transformation to refer to them. As we have stated in the last chapter, when
we refer to “one-way transformation”, we usually mean “loose one-way trans-
formation”.

Let A, B be the participants of an authentication protocol, we have the
following lemmas:

Lemma 4.1 (Liveness Lemma) The liveness of a principalB can be achieved
by a participant A via a sent or received “loose” one-way transformation that
includes a trusted freshness identifier owned by A, where the “loose” one-way
transformation can only be accomplished by the principal B.

Lemma 4.2 (Confidentiality Lemma) The confidentiality of a freshness
identifier can be achieved by a participant A if the identifier is transmitted
in the form of an encryption that cannot be decrypted by the attacker; if the
freshness identifier is transmitted in the form of a plaintext or an encryption
that may be decrypted by the attacker, then the freshness identifier is open.

Lemma 4.3 (Freshness Lemma) The freshness of a freshness identifier can
be achieved by a participant A via a sent or received “loose” one-way trans-
formation that includes:

1) a new freshness identifier which is generated by the principal A itself;
2) a new freshness identifier which is bound together with A’s another

trusted freshness identifier in a “loose” one-way transformation, where the
“loose” one-way transformation can only be accomplished by the intended
participant B.

Lemma 4.4 (Association Lemma) The association of a freshness identifier
can be achieved by a participant A via a sent or received “loose” one-way
transformation that includes a trusted freshness identifier owned by A, where
the “loose” one-way transformation can only be accomplished by the intended
principalB, or the identity of the participant is explicitly stated in the “loose”
one-way transformation.

Lemma 4.5 (Origin liveness Lemma) The liveness of a principal B with
origin can be achieved by a participant A via a sent or received “loose” one-
way transformation that includes a trusted freshness identifier owned by A,
where the “loose” one-way transformation can only be accomplished by the
principal B specially for the origin participant A.

In security analysis approach based on trusted freshness, only “loose” one-
way transformation that includes a trusted freshness identifier is considered
as an efficient message of a conversation, so terms could be deduced from
the transformation. That is to say, only the fresh messages are concerned
in security analysis based on trusted freshness, and the message parts that
do not contribute to the protocol security property analysis in the trusted
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freshness method are omitted.

4.2.3 Security of authentication protocol

Suppose there exists a protocol Π between A and B, the security goal of Π
is to authenticate the liveness of a principal entity or establish a new session
key to build a secure channel in an insecure network. The new session key kab
can either be generated by any of the authenticated participants or a trusted
third party S, or be the output of a function of all protocol participants’
random input like NA and NB.

Table 4.8 lists the security property requirements to guarantee the secu-
rity goals of a cryptographic protocol, and we will show that the listed security

Table 4.8 The guarantee of the security adequacy of a cryptographic protocol

Security Properties Security Properties

Security Goals Achieved by A Achieved by B

B S NA NB kAB A S NA NB kAB

UA-secure (Authenticate B) 1a

UA-secure (Authenticate A) 1

MA-secure

(Authenticate both)
1 1

Origin UA-secure

(Origin Authenticate B)
A1b

Origin UA-secure

(Origin Authenticate A)
B1

Origin MA-secure

(Origin Authenticate both)
A1 B1

UK-secure (Authenticate B) 1 1c1dABe

UK-secure (Authenticate A) 1 11AB

MK-secure (Key Transport) 1 11AB 1 11AB

MK-secure (Key Transport) 1 11AB 11AB 1 11AB 11AB
a "1" or "" means that the liveness of the principal is authenticated or unknown respectively.
b "A1" or "" means that the liveness of the principal is authenticated with origin or unknown

respectively.
c "?" or "" means that the confidentiality of the freshness identifier is unknown; "1" means

that the confidentiality of the freshness identifier is confidential; "0" means that the freshness
identifier is open, which is a plaintext, or a compromised one or an old one.

d "?" or "" means that the freshness of the freshness identifier is unknown; "1" means that
the freshness identifier is fresh.

e "#" or "" means that the freshness identifier is not associated with any principals; "11A"
(or "11B") means that the freshness identifier is associated with the principal A (or B); "11AB"
or "11BA" means that the freshness identifier is associated with both A and B.

goals are not only necessary but also substantial. Here, when an authentica-
tion protocol is MK-secure is proved, and other similar proofs of UA-secure,
UK-secure, MK-secure are omitted for interest of concision.

The security property requirements of some cryptographic protocols are
given in [26]. And they are:
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Theorem 4.1 An authentication-only protocol Π is called UA-Secure if
and only if a participant like A believes the liveness of the intended opposite
principal B.

Theorem 4.2 An authentication-only protocol Π is called MA-Secure if
and only if each participant believes the liveness of both communication
principals.

Theorem 4.3 A key establishment authentication protocol Π is called UK-
Secure if and only if a participant like A believes the liveness of the in-
tended opposite principal B, and believes the confidentiality, the freshness
and also the association of the new session key k with the principal A and the
principal B.

Theorem 4.4 A key establishment authentication protocol Π is called MK-
Secure if and only if each participant like A (or B) believes the liveness of
the intended opposite principal B (or A), and believes the confidentiality, the
freshness and also the association of the new session key k with the principal
A and the principal B.

Theorem 4.5 A authentication-only protocol Π is called Origin UA-Secure
if and only if a participant like A believes the liveness of the intended opposite
principal B with origin.

Theorem 4.6 A authentication-only protocol Π is called OriginMA-Secure
if and only if each participant believes the liveness of both communication
principals with origin.

Here, the liveness of the principal is able to determine the true identity of
the other(s) which could possibly gain access to the resulting key; the confi-
dentiality of the new session key k implies secrecy of the key; the freshness of
the key k requires that the key is new for this protocol run and it could not
be a replay of a compromised one; the association of the k implies preclusion
of any unauthorized additional parties from deducing the same key.

Note that the liveness of the intended opposite principal differs subtly, but
in a very important manner, from the association of the new session key k.
The liveness of a principal implies entity authentication, and an actual com-
munication has been established with such party (or parties); the association
of the new session key k is knowledge of the identity of parties which may
gain access to the key, rather than corroboration of the entity authentication.

4.2.4 Manual analysis based on trusted freshness

Based on the freshness principle and the accurately presented security goals,
an analysis method as shown in Fig. 4.2 based on trusted freshness will be
presented, which can be accomplished easily even by hand.
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Fig. 4.2 Security analysis of cryptographic protocol based on trusted freshness.
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The manual freshness analysis method is refined as follows for the same
authentication protocol Π in Section 4.2.3.

1) The security goals to be reached is specified based on Table 4.8.
2) Table 4.9 specifies the premise before the start of the protocol.
Recall that each participant has his own private key and all other parties’

public-keys (respectively, the shared long-term key between co-operative prin-
cipals or trusted third parties) in public-key case (respectively, in symmetric-
key case).

Table 4.9 The premise of a cryptographic protocol

Cryptographic schemes
Premise

knowledge of A

Premise

knowledge of B

Premise

knowledge of I

public-key K−1
A ,KA,KB, KI K−1

B ,KB, KA, KI K−1
I ,KA,KB ,KI

symmetric-key without
TTP

KAB KAB

symmetric-key with TTP KAS KBS

3) From the point of view of each legitimate participant, the security
properties of a cryptographic protocol are established based on the freshness
principle and Lemmas 4.1, 4.2, 4.3, and 4.4 while sending or receiving a
“loose” one-way transformation that includes a trusted freshness.

4) Comparing with the security goals established in step 1, the analysis
results can either establish the correctness of the protocol when it is in fact
correct, or identify the absence of the security properties and the structure
to construct attacks based on the absence. From the absence of the security
properties of an authentication protocol, various attacks could be directly
constructed:

(1) Absence of the liveness of a principal like A: impersonate A to launch
an attack, e.g., Otway-Rees protocol[27], Woo-Lam protocol[5, 10].

Absence of the origin liveness of a principal like A: impersonate A by
replaying the corroborative evidence from A which may be generated for any
other participants but the original participant B.

(2) Absence of the freshness of a freshness identifier: launch an attack by
replaying the recorded one-way transformation with a compromised session
key, e.g., Needham-Schroeder shared key protocol[9].

(3) Absence of the association of a freshness identifier: launch an attack
by confusing a legitimate principal like B to believe a session key k’ between
I and A (or B) to be the key between A and B, e.g., the Needham-Schroeder
public-key protocol[9].

4.2.5 Application of security analysis based on trusted freshness

Example 4.3 Recall the analysis of Needham-Schroeder public-key proto-
col in Example 3.16 and Example 3.20, Fig. 4.3 illustrates the analysis pro-
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cedure of the Needham-Schroeder public-key protocol based on the trusted
freshness analysis method.

Fig. 4.3 Security analysis of Needham-Schroeder public-key protocol based on
trusted freshness.

By analyzing, we get result on security properties, as shown in Tables
4.10, 4.11, and 4.12.
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Table 4.10 Security properties achieved by A in the Needham-Schroeder public-
key protocol

Presence NA NB

of B Confidentiality Freshness Association Conf. Fresh. Asso.

Message 1 1 1 A

Message 2 1 AB 1 1 AB

Message 3

End of run 1 11AB 11AB

Table 4.11 Security properties achieved by B in the Needham-Schroeder public-
key protocol

Presence NA NB

of A Confidentiality Freshness Association Conf. Fresh. Asso.

Message 1 1 ? #

Message 2 1 1 #

Message 3 1 AB

End of run 1 1?# 11AB

For the sake of ease, the security properties achieved by A and B are
simplified as in Table 4.12.

Table 4.12 Security analysis of the Needham-Schroeder public key protocol

A B

B NA NB A NA NB

Message 1 11A 1?#

Message 2 1 11AB 11AB 11#

Message 3 1 11AB

End of run 1 11AB 11AB 1 1?# 11AB

4.3 Analysis of classic attacks

A successful attack on an authentication or key establishment protocol usu-
ally does not refer to breaking a cryptographic algorithm, e.g., via a complex-
ity theory-based cryptanalysis technique. Instead, it usually refers to Mal-
ice’s unauthorized and undetected acquisition of a cryptographic credential
or nullification of a cryptographic service without breaking a cryptographic
algorithm. It actually does not require very sophisticated techniques for an
adversary to mount these attacks on a lower-layer communication protocol,
as we have seen in Example 1.3.

Over several years, many different types of attacks on cryptographic prim-
itives and protocols have been identified, and it is impossible for us to know
all the protocol attacking techniques an adversary may use since the adver-
sary will constantly devise new techniques. In this section, several typical
attacks on cryptographic protocols will be analyzed, and the reasons why
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these protocols are flawed will be discussed based on trusted freshness to
provide us with insight into how to develop stronger protocols. Notice that
an adversary may actually launch attacks via a combined way of the listed
well-known protocol attacking techniques[22].

In the specific examples below, A and B are the legitimate parties Al-
ice and Bob, and I is the adversary Malice who could also be a legitimate
participant in some cases.

4.3.1 Man in the middle attack

In man-in-the-middle attack (often abbreviated to MITM), the attacker makes
independent connections with the victims and relays messages between them,
making them believe that they are talking directly to each other over a private
connection while in fact the entire conversation is controlled by the attacker.
A man-in-the-middle attack can only be successful when the attacker can
impersonate each entity to the satisfaction of the other. Most cryptographic
protocols include some form of entity authentication specifically to prevent
MITM attacks. In essence, man-in-the-middle attack is generally applicable
to a communication protocol where mutual entity authentication is absent.

Example 4.4 Diffie-Hellman key agreement[28] provides the first practical
solution to the key distribution problem, allowing two parties, never having
met in advance or having shared keying material, to establish a shared secret
by exchanging messages over an insecure network, as shown in Fig. 4.4. The
security rests on the intractability of the Diffie-Hellman problem and the
related problem of computing discrete logarithms.

Message 1 A→ B : αx mod p

Message 2 B → A : αy mod p

Fig. 4.4 The basic version of Diffie-Hellman key agreement protocol.

Notation

A and B are two protocol principals, x and y are randomly chosen as
their private keys by A and B, respectively.
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Premise

An appropriate large prime p and a generator element α of Z
∗
p (2 � α �

p− 2) are selected and published. x and y are randomly chosen hence could
not be found out.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.

2) Upon receiving Message 1, B gets “αx” and computes the shared key
as “k = (αx)y mod p = αxy mod p”.

3) In Message 2, B randomly chooses a secret “y, 1 � y � p − 2”, and
sends A message “αy mod p”.

4) Upon receiving Message 2, A gets “αy” and computes the shared key
as “k = (αy)x mod p = αyx mod p”.

Note that “αxy mod p = αyx mod p”, hence A and B have computed the
same key k. This is how the Diffie-Hellman key exchange protocol achieves a
shared key between two communication parties.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP x; from Lemma 4.2, B has the
confidentiality assurance of the TVP x, but B could not deduce the freshness
of the TVP x.

2) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and freshness assurances of the TVP y; from Lemma 4.2, A has the
confidentiality assurance of the TVP y, but A could not deduce the freshness
of the TVP y.

3) At the end of the protocol run, A and B have computed the same key
“k = αxy mod p”, and have gotten the confidentiality and freshness assur-
ances of k from the confidentiality and freshness of the TVP x and the TVP y
respectively. However, the whole transmitted messages in this protocol could
not provide the assurance of the association of A with k for B, and B with
k for A.

The analyzing result is indicated in Table 4.13.

Table 4.13 Security analysis of the Diffie-Hellman key agreement protocol

A B

B x y k A x y k

Message 1 11# 1?#

Message 2 1?# 11#

End of run 11# 1?# 11A 1?# 11# 11B

This basic Diffie-Hellman protocol version provides none authentication,
entity authentication and key confirmation, hence it can only provide se-
crecy protection of the resulting key from eavesdroppers, but not from active
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adversaries. Fig. 4.5 illustrates the “man-in-the-middle” attack on the basic
unauthenticated Diffie-Hellman key establishment protocol.

Message 1 A→ I(B) : αx mod p
Message 1′ I(A)→ B : αx′ mod p

Message 2′ B → I(A) : αy mod p

Message 2 I(B)→ A : αy′ mod p

Fig. 4.5 The attack on the basic Diffie-Hellman key agreement.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.

2) The adversary I intercepts A′s exponential αx and replaces it with αx′

where x′ is a secret chosen by I; meanwhile I intercepts B′s exponential αy

and replaces it with αy′ where y′ is a secret chosen by I.
3) At the end of protocol run, A forms session key “k1 = (αy′)x mod p =

αy′x mod p = αxy′ mod p”, and B forms session key “k2 = (αx′)y mod p =
αx′y mod p”, while I can compute both keys k1 and k2.

4) When A subsequently sends a message to B encrypted under k1, I de-
crypts it, re-encrypts the plaintext under k2, and forwards it to B. Similarly,
I decrypts the message encrypted by B (for A) under k2, and re-encrypts it
under k1. Both A and B believe that they communicate securely, while I can
read all traffic.

4.3.2 Source-substitution attack

In source-substitution attack, the attacker makes a substitution of a source
entity identity with the identity of the adversary, making the victim believe
that it is talking directly to the intended entity while in fact the entire con-
versation is controlled by the adversary. e.g., in Example 4.5, the adversary
registers source entity’s public-key as its own. A source-substitution attack
can only be successful when the adversary can impersonate an entity to the
satisfaction of the other. In essence, source-substitution attack is generally
applicable to a communication protocol where entity authentication is absent.
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Example 4.5 The ElGamal key agreement is a Diffie-Hellman variant pro-
viding a one-pass protocol with unilateral key authentication[29]. This pro-
tocol is more simply Diffie-Hellman key agreement wherein the public expo-
nential of the recipient is fixed and has verifiable authenticity, as shown in
Fig. 4.6.

Message 1 A→ B : αx mod p

Fig. 4.6 ElGamal key agreement in one-pass.

Notation

A and B are two protocol principals. x is randomly chosen as its private
key by A. b is a preselected secret random integer.

Premise

An appropriate large prime p and a generator element α of Z
∗
p (2 � α �

p − 2) are selected and published. The public-key of the recipient is known
to the originator.

Protocol actions

1) One-time setup (public-key generation and publication). B picks an
appropriate large prime p and a generator element “α of Z

∗
p”, selects a random

integer “b, 2 � b � p− 2”, and computes “αb mod p”, then B publishes p, α
and αb, keeping private key b secret.

2) Each time a shared key is required.
(1) A obtains an authentic copy of B′s public-key αb. A randomly chooses

a secret “x, 1 � x � p− 2”, and sends B message “αx mod p”.
(2) A computes the shared key as “k = (αb)x mod p = αbx mod p =

αxb mod p”; B receives αx and computes the same shared key as “k =
(αx)b mod p = αxb mod p”.

Protocol security analysis

1) Before the protocol run, suppose A and B have the assurance that b is
a confidential and long-term key which is known only by B.

2) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP x; from Lemma 4.2, B has the
confidentiality assurance of the TVP x, but B could not deduce the freshness
of the TVP x.

3) At the end of the protocol run, A has computed the key k = αxb mod p.
From Lemma 4.2, Lemma 4.3 and Lemma 4.4, A has gotten the confidential-
ity and freshness assurances of k from the confidentiality and freshness of the
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TVP x, and A has gotten the association of A and B with k from the TVP x
and B′s long-term key b respectively. From Lemma 4.2, B has the confiden-
tiality and the association (B with k) assurances, from B′s long-term private
key b, but B could not deduce the freshness of k and also the association
assurance of A with k.

The analyzing result is indicated in Table 4.14. The recipient B in this
protocol has neither corroboration that it shares the secret key k, nor any
key freshness assurance. Neither party obtains entity authentication or key
confirmation. The adversary can launch an attack by impersonating A di-
rectly.

Table 4.14 Security analysis of the ElGamal key agreement in one-pass

A B

B x b k A x b k

Message 1 11# 11B 1?# 11B

End of run 11# 11B 11AB 1?# 11B 1?B

Example 4.6 TheMTI two-pass key agreement protocol as shown in Fig. 4.7
is a variant of Diffie-Hellman key agreement to yield time-variant session key
with mutual key authentication against passive attacks[28–30].

Message 1 A→ B : αx mod p

Message 2 B → A : αy mod p

Fig. 4.7 The MTI key agreement protocol in two-pass.

Notation

A and B are two protocol principals, a (1 � a � p − 2) and b (1 � b �
p − 2) are randomly chosen integers as its long-term private keys by A and
B respectively.

Premise

An appropriate large prime p and a generator element α of “Z
∗
p (2 � α �

p−2)” are selected and published. A has the assurance that only B knows the
corresponding long-term private key b of “αb mod p”, B has the assurance
that only A knows the corresponding long-term private key a of “αa mod p”.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.
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2) In Message 2, B randomly chooses a secret “y, 1 � y � p − 2”, and
sends A message “αy mod p”.

3)B receives “αx mod p” and computes the shared key as “k = (αx)b(αa)y

= αbx+ay mod p”.
4) A receives αy and computes the shared key as “k = (αy)a(αb)x =

αay+bx = αbx+ay mod p”.

Protocol security analysis

1) Before the protocol run, suppose A and B have the assurance that a
is a confidential and long-term key which is known only by A, and that b is
a confidential and long-term key which is known only by B.

2) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP x; from Lemma 4.2, B has the
confidentiality assurance of the TVP x, but B could not deduce the freshness
of the TVP x.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and freshness assurances of the TVP y; from Lemma 4.2, A has the
confidentiality assurance of the TVP y, but A could not deduce the freshness
of the TVP y.

4) At the end of the protocol run, A has computed the key “k = αbx+ay

mod p”. From Lemma 4.2, Lemma 4.3, and Lemma 4.4, A has gotten the
confidentiality and freshness assurances of k from the confidentiality and
freshness of the TVP x, and A has gotten the association of A and B with k
from the TVP x and B′s long-term key b respectively. Similar cases exist for
B. At last, neither party obtains entity authentication, hence the adversary
could launch an attack with a masquerade.

From Table 4.15 we get security properties of the protocol. The fresh-
ness assurance of the session key k depends on the fresh input x or y from
each party, and the association of k depends on the long-term private key a
and b. Neither party obtains entity authentication or key confirmation. The
adversary can launch an attack by impersonating A directly.

Table 4.15 Security analysis of the MTI key agreement in two-pass

A B

B x y k A x y k

Message 1 11# 1?#

Message 2 1?# 11#

End of run 11# 1?# 11AB 1?# 11# 11AB

Hence, the protocol in Example 4.6 may suffer an attack[29], as shown in
Fig. 4.8.

Message 1 A→ I(B) : αx mod p
Message 1′ I → B : αx mod p

Message 2′ B → I : αy mod p

Message 2 I(B)→ A : αey mod p
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Fig. 4.8 The attack on the MTI key agreement protocol in two-pass.

Premise

A selects a random integer “a (1 � a � p− 2)” as A’s long-term private
key, and registers the public-key “αa mod p”; B selects a random integer “b
(1 � b � p − 2)” as B’s long-term private key, and registers the public-key
“αb mod p”; the adversary I selects an integer e, computes “αae mod p”, and
registers the public-key “αae mod p”.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.

2) In Message 1′, I launches a new protocol run between I and B by
forwarding A′s exponential αx to B.

3) B receives αx and computes the shared key between I and B as “k =
(αx)b(αae)y = αbx+aey mod p”.

4) In Message 2′, I intercepts B’s exponential αy, then modifies “αy to
αey” and sends it to A.

5) A receives αey and computes the shared key with B as “k = (αey)a(αb)x

= αaey+bx mod p = αbx+aey mod p”.
At the end of the protocol run, A believes it is shared key “αbx+aey”

with B, while B believes it is shared key “αbx+aey” with I. In this attack,
I is not actually able to compute k itself, but rather causes B to have false
beliefs. B concludes that subsequently received messages encrypted by the
key “k = αbx+aey mod p” originated from I, whereas, in fact, it is only A
who knows k and can originate such messages. This attack may be detected
by key confirmation and prevented by modifying the protocol so that the
exponentials or the identities of the intended entities are authenticated, e.g.,
through a digital signature.

4.3.3 Message replay attack

Message replay is a classic attack on authentication and authenticated key es-
tablishment protocols. A message replay attack is where a previous legitimate
data transmission is captured or recorded and then replayed by an attacker
in a new protocol run attempting to gain unauthorized access to data or re-
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sources. A replay attack can be used in conjunction with a masquerade where
an unauthorized user pretends to be somebody else.

A replay attack is a form of network attack in which a valid data trans-
mission is maliciously or fraudulently repeated or delayed. This is carried
out either by the originator or by an adversary who intercepts the data and
retransmits it, possibly as part of a masquerade attack by IP packet substi-
tution (such as stream cipher attack).

Suppose A wants to prove A’s identity to B. B requests A’s password as
proof of identity A dutifully provides (possibly after some transformation like
a hash function); meanwhile, Malice is eavesdropping the conversation and
keeps the password. After the interchange is over, Malice connects with B
posing as A; when asking for a proof of identity, Malice sends A’s password
read from the last session which B will accept.

A way to avoid replay attacks is using session tokens: B sends a one-time
token to A, which A uses to transform the password and sends the result
to B (e.g., computing a hash function of the session token appended to the
password). On B’s side, B performs the same computation; if and only if both
values match, the login is successful. Now suppose Malice has captured this
value and tries to use it on another session; B sends a different session token,
and when Malice replies with the captured value it will be different from B’s
computation. Session tokens should be chosen by a (pseudo-) random process.
Otherwise Malice may be able to guess some future token and convince A to
use that token in A’s transformation. Malice can then replay A’s reply at a
later time, which B will accept.

B can also send nonces but should then include a message authentication
code (MAC), which A should check in order to avoid replay attacks.

Timestamping is another way of preventing a replay attack. Synchro-
nization should be achieved when using timestamp in a secure protocol. For
example, B periodically broadcasts the time on B’s clock together with a
MAC. When A wants to send B a message, A includes A’s best estimate of
the time on A’s clock in A’s message, which is also authenticated. B only
accepts messages for which the timestamp is within a reasonable tolerance.
The advantage of this scheme is that B does not need to generate (pseudo-)
random numbers.

It seems that we have already established a good awareness of message-
replay attacks. This can be evidently seen from the ubiquitous use of TVPs
(nonces, timestamps) in the basic and standard protocol constructions. How-
ever, simply using a timestamp on data or a message, or using tokens to verify
timestamps of messages does not guarantee the key freshness. In essence, re-
play attack is generally applicable to a communication protocol where key
freshness assurance is absent. This is why mistakes can be made repeatedly
even when the designers know the errors very well in a different context. The
freshness assurance could be achieved as in Lemma 4.3.

Example 4.7 Recall Needham-Schroeder shared key protocol in Example
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3.17. The protocol as shown in Fig. 4.9 intends to establish a new session
key kAB between A and B, with the help of the trusted server S. NA, NB

are nonces generated by A and B respectively; KAS and KBS are shared
long-term keys between A and S, and B and S respectively.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 4 B → A : {NB}kAB
Message 5 A→ B : {NB − 1}kAB

Fig. 4.9 The Needham-Schroeder shared key protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.3, A has the freshness assurance of the
TVP NA.

2) Upon receiving Message 2, A has the assurance that Message 2 includ-
ing trusted freshness NA must be encrypted by the trusted third party S, and
could not be a replay one. From Lemma 4.2 and Lemma 4.3, A has the confi-
dentiality and freshness assurances of the new chosen session key kAB; from
Lemma 4.4, A has the association assurance of the new session key kAB with
A and B since Message 2 could not be a replay one, and only S could encrypt
NA and kAB. From Lemma 4.1, A has gotten the entity authentication of S.

3) Upon receiving Message 3, from Lemma 4.2, B has the assurance that
the new chosen session key kAB is confidential, but B does not know whether
kAB is a new generated key for this protocol run or a promised one, and B
does not know whether kAB is associated with A and B in this protocol run.

4) Upon receiving Message 4, A decrypts N ′
B via using kAB , but A is not

sure whether N ′
B is exactly the randomly chosen TVP NB by B, or just a

value decrypted using kAB from a random data selected by the adversary I.
5) Upon receiving Message 5, B could not get any new assurance about

the protocol security.
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From Table 4.16, the absence of the security properties, various attacks,
most of which are message replay attacks, could be constructed.

Table 4.16 Security analysis of the Needham-Schroeder shared key protocol

A B

B S NA NB kAB A S NA NB kAB

Message 1 01# 0?#

Message 2 1 11AB

Message 3 1?#

Message 4 1?# 11#

Message 5

End of run 1 01# 1?# 11AB 0?# 11# 1?#

1. Attack onNeedham-Schroeder shared key protocol by impersonating B

Example 4.8 From the absence of the B’s liveness, in the point of view of
A, an attack by impersonation B could be launched, as shown in Fig. 4.10.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Message 3 A→ I(B) : S, {kAB, A}KBS

Message 4 I(B)→ A : N
Message 5 A→ I(B) : {N ′

B − 1}kAB , where N ′
B = {N}k−1

AB

Fig. 4.10 An attack on the Needham-Schroeder shared key protocol by imperson-
ating B.

Protocol actions

1) The message exchanges from Message 1 to Message 3 are the same as
in the original Needham-Schroeder shared key protocol.

2) In Message 4, B sends a random nonce N to A as {NB}kAB , then A
decrypts N using the new session key kAB and gets N ′

B = {N}k−1
AB

.
3) In Message 5, A encrypts {N ′

B − 1} using kAB as a response to B’s
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challenge N ′
B (Actually N ′

B is not a challenge from B, it is only a nonce from
the attacker).

Upon termination of the protocol run in Example 4.8, the adversary I is
not actually able to get kAB itself, but rather causes A to have false beliefs: A
has completed a successful protocol run with B, and is sharing a new session
key kAB with B. A concludes that subsequently messages could be encrypted
using kAB and safely transmitted to B, whereas in fact, B knows nothing
about the key establishment procedure.

2. An attack on the Needham-Schroeder shared key protocol by using
compromised key

Example 4.9 From the absence of the key freshness assurance of kAB, the
Needham-Schroeder protocol is vulnerable to an attack discovered by Den-
ning and Sacco[31], as illustrated in Fig. 4.11. The attacker I intercepts A’s
messages sent by and to A in the message lines 3, 4 and 5, and replays old
session key material S, {k′AB, A}KBS which the attacker may record from a
previous run of the protocol between A and B. An old session key k′AB could
possibly be promised since a careless communication principal may put it in
an insecure place, or discard it etc., while the attacker has unlimited time to
spend on finding an old data encryption key and then reusing it as though it
were new.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB , B, {kAB, A}KBS}KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 3′ I(A)→ B : S, {k′AB, A}KBS

Message 4′ B → I(A) : {NB}k′AB
Message 5′ I(A)→ B : {NB − 1}k′AB

Fig. 4.11 An attack on the Needham-Schroeder shared key protocol using a com-
promised key k′AB .
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Protocol actions

1) The message exchanges from Message 1 to Message 3 are the same as
in the original Needham-Schroeder shared key protocol.

2) In Message 3′, the attacker I sends a recorded old message “S, {k′AB,
A}KBS” to B where I has the knowledge of the old session key k′AB.

3) In Message 4′, B sends A a challenge NB to confirm the new session
key.

4) In Message 5′, A makes response {NB − 1}k′AB to B by using a com-
promised old session key k′AB.

Upon termination of the protocol run in Example 4.9, A believes that
the key establishment with B fails, whereas, B believes that he has suc-
cessfully established a new session key k′AB with A, and B may ignore the
subsequently key establishment requirement for a new session key. Actually,
k′AB is a promised key known by the attacker. In deed, this attack could be
launched by I from sending Message 3′ directly, and the principal A will not
participate in this protocol run at all (Example 4.10).

3. Attack onNeedham-Schroeder shared key protocol by impersonating A

Example 4.10 From the absence of the A’s liveness, the attacker may
launch an attack without the presence of A, as shown in Fig. 4.12.

Message 3′ I(A)→ B : S, {k′AB, A}KBS

Message 4′ B → I(A) : {NB}k′AB
Message 5′ I(A)→ B : {NB − 1}k′AB

Fig. 4.12 An attack on the Needham-Schroeder shared key protocol by imperson-
ating A.

4.3.4 Parallel session attack

A parallel session attack occurs when two or more protocol runs are executed
concurrently and messages from one run (the reference session) are used to
form spoofed messages in another run (the attack session). Following are
examples of the parallel session attack.
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Example 4.11 Figure 4.13 is a simple one-way authentication protocol. A
wants to check the liveness of B by using a new chosen challenge NA.

Message 1 A→ B : {NA}KAB

Message 2 B → A : {NA + 1}KAB

Fig. 4.13 A simple one-way authentication protocol.

Notation

A and B are two protocol principals.

Premise

KAB is the shared long-term key between A and B, which is initially
established by non-cryptographic, and out-of-band techniques; NA is a nonce
randomly chosen by A.

Protocol actions

1) In Message 1, A randomly chooses a new nonce NA as a challenge for
this protocol run, and sends it to B encrypted under the shared long-term
key KAB between A and B.

2) Upon receiving Message 1, B gets NA from the encryption {NA}KAB ,
and responses {NA + 1}KAB to show that B is operational.

Successful execution of the protocol should convince A that B is present
since only B could have formed the appropriate response {NA + 1}KAB to
the challenge NA issued in Message 1.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and the freshness assurances of the TVP NA.

2) Upon receiving Message 1, B could not determine whether {NA}KAB

is a nonce chosen by the attacker or a challenge selected by the opponent
party A.

3) Upon receiving Message 2, A could not determine whether {NA+1}KAB

is an appropriate response to the challengeNA from B or not, since there does
not exist the evidence that {NA+1}KAB is accomplished by the principal B,
hence it even may be a trapped one-way transformation from A itself. Table
4.17 indicates the analyzing result.



114 4 Informal Analysis Schemes of Cryptographic Protocols

Table 4.17 Security analysis of the simple one-way authentication protocol

A

B NA

Message 1 11#

Message 2

End of run 11#

Example 4.12 Figure 4.14 illustrates that an intruder can play the role of
B as responder and initiator. The attack works by starting another protocol
run in response to the initial challenge {NA}.

Message 1 A→ I(B) : {NA}KAB

Message 1′ I(B)→ A : {NA}KAB

Message 2′ A→ I(B) : {NA + 1}KAB

Message 2 I(B)→ A : {NA + 1}KAB

Fig. 4.14 A parallel session attack on the simple one-way authentication protocol.

Notation

A and B are two protocol principals, I is the attacker.

Premise

KAB is the shared long-term key between A and B, which is initially
established by non-cryptographic, and out-of-band techniques; NA is a nonce
randomly chosen by A.

Protocol actions

1) To initiate the attack, the adversary waits for A to initiate the first
protocol session with B. A does the same thing as in Message 1 of Example
4.11.

2) I intercepts the Message 1 and pretends to be B, starting a second run
of the protocol by replaying the intercepted message {NA}KAB .

3) A replies to I(B)’s challenge in Message 2′ with the exact value {NA+
1}KAB that I(B) requires to accurately complete the attack session.
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4) I intercepts the Message 2′ and replays the intercepted message {NA+
1}KAB to A as B’s (indeed, it is I) response to Message 1.

Successful execution of the attack on this simple One-Way protocol could
convince A that B is present since only B could have formed the appropriate
response {NA + 1}KAB to the challenge NA issued in Message 1.

Such attacks may be prevented via modifying the protocol so that the
challenge response messages could show the identity of the party performing
encryption or decryption. For example, change {NA + 1}KAB to {A,NA +
1}KAB , or {B,NA + 1}KAB .

Example 4.13 The Woo-Lam protocol[5] is an authentication protocol
based on symmetric-key cryptography, as shown in Fig. 4.15. The protocol
intends to authenticate A to B with the aid of a trusted third party S. The
nonce NB servers as challenge for authenticating A to B.

Message 1 A→ B : A
Message 2 B → A : NB

Message 3 A→ B : {NB}KAS

Message 4 B → S : {A, {NB}KAS}KBS

Message 5 S → B : {NB}KBS

Fig. 4.15 The Woo-Lam authentication protocol.

Notation

A and B are two protocol principals, and S is the trusted third party.
KAS and KBS are keys that A and B shared with S respectively.

Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
of-band techniques. NB is a nonce randomly chosen by B.

Protocol actions

1) In Message 1, A launches a new protocol run.
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2) In Message 2, B randomly chooses a new nonce NB as a challenge to
this protocol run and sends it to A.

3) In Message 3, A sends B a response to the challenge NB using the
shared long-term only known by A and the trusted third party S, to show
that it is A who has encrypted B’s challenge NB.

4) In Message 4, B encrypts A’s response with A’s identity using the
shared long-term key only known by B and the trusted third party S, to
show that it is B who has encrypted A’s response {NB}KAS .

5) Upon receiving Message 4, S checks A’s response {NB}KAS to con-
firm A’s identity. Then, S sends B the message {NB}KBS showing that A’s
identity has been authenticated by S.

6) Upon receiving Message 5, B checks S’s response {NB}KBS to get NB.
If NB is correct, then B believes that A’s identity has been authenticated by
the trusted third party S.

Successful execution should convince B that A is present with the help of
the trusted party S.

Protocol security analysis

1) In Message 1, neither A nor B can draw any useful assurance from it.
2) In Message 2, from Lemma 4.3, B has the freshness assurance of the

TVP NB.
3) Upon receiving Message 3, B could not determine whether {NB}KAS

is a nonce chosen by the attacker or a response from the opponent party A,
and B can only treat it as an unrecognizable foreign cipher chunk. Neither
A nor B can draw any new assurance from Message 3.

4) Upon receiving Message 4, S could not determine whether {NB}KAS or
{A, {NB}KAS}KBS is a fresh message or not since S doesn’t have any trusted
freshness. Actually, S could not authenticate the liveness of A and B, but S
proves that NB is recovered from an encryption under the shared long-term
key between A and S.

5) Upon receiving Message 5, from Lemma 4.1, B believes that it must
be S who has decrypted the message {A, {NB}KAS}KBS and {NB}KAS from
recovering NB which is trusted by B. However, B cannot authenticate the
liveness of A since there does not exist any evidence that NB is the challenge
from B to A.

Upon termination of the Woo-Lam protocol, B has not gotten the assur-
ance that A is present. The analyzing result is indicated in Table 4.18.

From the absence of the liveness property of A, an attacker can play the
role of A as responder or initiator. In addition to the attacks discovered in [10]
and [12] on the Woo-Lam Protocol, a new attack is illustrated in Example
3.13. In essence, a parallel session attack continually exists in the Woo-Lam
Protocol, since the absence of A’s liveness property has not been fixed.
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Table 4.18 Security analysis of the Woo-Lam protocol

A B S

B S NB A S NB A B NB

Message 1

Message 2 0?# 01# 0?#

Message 3

Message 4 01# 0?#

Message 5 1

End of run 1 0?#

4.3.5 Reflection attack

Reflection attack is a type of replay attack in which transmitted data is sent
back to its originator. In a basic authentication scheme, a secret is known
to both the originator and the target (or the trusted server), this allows
them to be authenticated and they may verify this shared secret without
sending it in plaintext over the wire. The originator initiates a connection to
a target, and the target attempts to authenticate the originator by sending
it a challenge, then the originator utilizes the shared secret to process this
randomly chosen challenge to show his identity. The essential idea of the
reflection attack is to trick the target into providing the answer to its own
challenge (Example 4.11). That is, the same challenge-response protocol is
used by each side to authenticate the other side, thereby leaving the attacker
with fully-authenticated channel connection.

Example 4.11 could be fixed by sending the responder’s identity within the
response. Then, if the originator receives a response that has its own identity
in it, then the originator will reject the response; if the originator receives a
response that has the opponent’s identity in it, and if the nonce is the same
as the one the originator has sent in his challenge, then the originator will
accept the message.

Example 4.14 Recall the fixed Woo-Lam protocol by Abadi and
Needham[10]. This fixed version of the Woo-Lam Protocol suffers a reflec-
tion attack discovered by Clark and Jacob[12]. Here, the attacker mounts
reflection attack twice: Message 3 is a reflection of Message 2, and Message
5 is that of Message 4. First, the random chunk that B receives in Message
3 is actually B’s nonce sent out in Message 2. Again, the cipher chunk that
B receives in Message 5 is actually the one created by himself and sent out
in Message 4. B cannot detect this attack discovered by Clark and Jacob.

As Mao has stated in [22], a series of fixes for the Woo-Lam Protocol[32]

are also flawed in a similar way: they all suffer reflection attack in various
ways[10, 12, 22]. The key reason for this flaw is the absence of the liveness
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property of A as we have illustrated in Table 4.18.

4.3.6 Interleaving attack

Interleaving attack is a type of replay attack in which transmitted data is
from outside the current run of the protocol. The attacker may compose a
message and sends it out to a principal in one run, from which he expects to
receive an answer; the answer may be useful for another principal in another
run, and in the latter run, the answer obtained from the former run may
further stimulate the latter principal to answer a question which in turn is
further used in the first run, and so on[22]. In essence, interleaving attack is
generally applicable to a communication protocol where a principal’s liveness
or the session key’s association assurance is absent. Here are two examples:

Example 4.15 Figure 4.16 illustrates a refined Woo-Lam protocol in [22].
The absence of the A’s liveness has not been solved yet (see Table 4.18).

Message 1 A→ B : A
Message 2 B → A : NB

Message 3 A→ B : {NB}KAS

Message 4 B → S : {A,NB, {NB}KAS}KBS

Message 5 S → B : {NB}KBS

Fig. 4.16 The refined Woo-Lam authentication protocol version of Mao.

Protocol actions

1) The message exchanges from Message 1 to Message 3 are the same as
in the original Woo-Lam authentication protocol.

2) In Message 4, {NB}KAS is an encryption which B could not recover, so
B includes the trusted freshness NB in Message 4 to guarantee the freshness
of Message 4.
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3) Upon receiving Message 4, S recovers NB using KBS , checks whether
A has responded to the same challenge NB, and then re-encrypts NB using
the long-term key KBS and sends NB back to B in Message 5.

4) Upon receiving Message 5, If S replies to {NB}KBS , then B is convinced
that A is active in this protocol run.

Successful execution should convince B that A is present with the help of
the trusted party S.

Protocol security analysis

1) The assurances from Message 1 to Message 3 are the same as in the
original Woo-Lam authentication protocol.

2) Upon receiving Message 4, since there is none trusted TVP for S, S
still could not determine whether {NB}KAS or {A, {NB}KAS}KBS is a fresh
message or not. Actually, S still could not authenticate the liveness of A and
B.

Hence, upon termination of the Woo-Lam protocol, B has not gotten the
assurance that A is present. The security properties of the Woo-Lam protocol
are the same as those in Table 4.18. Hence there exists an interleaving attack
on the refined Woo-Lam protocol, as shown in Fig. 4.17.

Message 1 A→ I : A

Message 1′ I(A)→ B : A

Message 2′ B → I(A) : NB

Message 2 I → A : NB

Message 3 A→ I : {NB}KAS

Message 3′ I(A)→ B : {NB}KAS

Message 4′ B → S : {A,NB, {NB}KAS}KBS

Message 5′ S → B : {NB}KBS

Message 4 I → S : {I,NB, {NB}KAS}KIS

Message 5 S → I : {NB}KIS

Protocol actions

1) In Message 1, A tells I that A wants to establish a connection with
I; upon receiving Message 1, I establishes a connection with B instantly by
impersonating A.

2) In Message 2′, B provides challenge NB to the session between A
(indeed, it is I) and B; upon receiving Message 2′, I provides the same
challenge NB to A for the session between A and I.

3) In Message 3, A returns this challenge NB encrypted under KAS to
I; upon receiving Message 3, by impersonating A, I passes {NB}KAS to B
as A’s response to the challenge NB for the session between A and B. As
we have seen, in Message 3, A servers as an encryption oracle in the session
between I(A) and B.



120 4 Informal Analysis Schemes of Cryptographic Protocols

Fig. 4.17 An attack on the refined Woo-Lam protocol version of Mao.

4) Upon receiving Message 3′, B passes the encryption {NB}KAS on to S
in Message 4′ for future verification.

5) Upon receiving Message 4′, S could not find any abnormality since the
received message is an encryption under KBS and KAS.

6) Message 5′ is the reply from S which contains the challenge NB in-
tended for A and B. On the basis of the reply containing NB, B believes
that A is active in this protocol run.

7) Upon receiving Message 3 containing {NB}KAS , I can continue his
session with A, and at last, successfully complete the protocol run.

This is a perfect attack, all principals including A, B and S could not
find any abnormality. Upon termination of the run of this refined Woo-Lam
protocol, B accepts “the run with A”, but in fact, A has not launched the
run with B at all, and A thinks that A has completed a protocol run with I.

As we have shown above, although the principal name A is explicitly
mentioned in Message 4, the absence of A’s liveness still causes this flaw.

Example 4.16 Recall the Needham-Schroeder public-key authentication
protocol and the security analysis of the Needham-Schroeder public-key pro-
tocol in Table 4.12. Since B could not guarantee the freshness of NA and
the association of NA with A and B, there exists the interleaving attack
discovered by Lowe[9].

Example 4.17 Recall Mao’s revised Needham-Schroeder public-key 0-* pro-
tocol as shown in Fig. 4.18.

Message 1 A→ B :
{
{A,NA}K−1

A

}
KB
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Message 2 B → A :
{
NA, {NB}K−1

B

}
KA

Message 3 A→ B :
{
{NB}K−1

A

}
KB

Fig. 4.18 The revised Needham-Schroeder public-key 0-* protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and the freshness assurances of the TVP NA.

2) Upon receiving Message 1, B could not determine whether {{A,
NA}K−1

A
}KB is a replay message from the attacker or a new message gen-

erated by the opponent party A. B could not get any security assurances.
3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-

tiality and the freshness assurances of the TVP NB.
4) Upon receiving Message 2, according to the freshness assurance of NA,

A is sure that only B could get NA, using B’s private key K−1
B , and send NA

back to A in Message 2, hence, from Lemma 4.1, A has the liveness assurance
of B. Since only A could decrypt {NA, {NB}K−1

B
}KA to get NB, and NB is

signed by B’s private key K−1
B , from Lemma 4.3 and Lemma 4.4, A has the

freshness assurance and the association assurance of the TVP NB with A
and B. So does NA.

5) Similar case exists as in Message 3: upon receiving Message 3, from
Lemma 4.2, Lemma 4.3, and Lemma 4.4, B has the confidentiality assurance,
the freshness assurance, and the association assurance of the TVP NA and
NB with A and B; from Lemma 4.1, B has the liveness assurance of A.

Upon termination of the Needham-Schroeder public-key 0-* protocol run,
both A and B achieve the security objects of the Needham-Schroeder public-
key. The analyzing result is indicated in Table 4.19.

Table 4.19 Security analysis of the refined Needham-Schroeder public-key 0-*
protocol

A B

B NA NB A NA NB

Message 1 11A 1?#

Message 2 1 11AB 11AB 11#

Message 3 1 11AB 11AB

End of run 1 11AB 11AB 1 11AB 11AB
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Example 4.18 Recall Mao’s another revised Needham-Schroeder public-
key 1-* protocol as shown in Fig. 4.19.

Message 1 A→ B : {A, {NA}KB}K−1
A

Message 2 B → A : {{NA, NB}KA}K−1
B

Message 3 A→ B : {{NB}KB}K−1
A

Fig. 4.19 The revised Needham-Schroeder public-key 1-* protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and the freshness assurances of the TVP NA.

2) Upon receiving Message 1, B could not determine whether {A,
{NA}KB}K−1

A
is a replay message from the attacker or a new message gener-

ated by the opponent party A. B could not get any security assurances.
3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-

tiality and the freshness assurances of the TVP NB.
4) Upon receiving Message 2, according to the freshness assurance of NA,

A is sure that only B could get NA, using B’s private key K−1
B , and send NA

back to A in Message 2. Hence, from Lemma 4.3 and Lemma 4.4, A has the
freshness assurance and the association assurance of the TVP NA and NB

with A and B; from Lemma 4.1, A has the liveness assurance of B.
5) Similar case exists in Message 3: upon receiving Message 3, from

Lemma 4.2, Lemma 4.3, and Lemma 4.4, B has the confidentiality assur-
ance, the freshness assurance, and the association assurance of the TVP NA

and NB with A and B; from Lemma 4.1, B has the liveness assurance of A.
Upon termination of the Needham-Schroeder public-key 1-* protocol run,

both A and B achieve the security objects of the Needham-Schroeder public-
key. The analyzing result is indicated in Table 4.20.
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Table 4.20 Security analysis of the refined Needham-Schroeder public-key 1-*
protocol

A B

B NA NB A NA NB

Message 1 11# 1?#

Message 2 1 11AB 11AB 11#

Message 3 1 11AB 11AB

End of run 1 11AB 11AB 1 11AB 11AB

4.3.7 Attack due to type flaw

An attack is stated due to type flaw in [22]: typical type flaws include a prin-
cipal tricked to misinterpret a nonce, a timestamp or an identity into a key,
etc. Misinterpretations are likely to occur when a protocol is poorly designed
in that the type information of message components is not explicit, then
type flaws can be very common in implementation. Let us check why type
flaws exist using the security analysis apporach based on trusted freshness.
In essence, type flaw attacks are generally applicable to a communication
protocol where entity authentication or the freshness assurance of a TVP is
absent.

Example 4.19 Neuman and Stubblebine[33] propose an authentication pro-
tocol, as shown in Fig. 4.20, to achieve mutual authentication and authenti-
cated key establishment between A and B with the help of a trusted third
party S.

Message 1 A→ B : A,NA

Message 2 B → A : B, {A,NA, TB}KBS , NB

Message 3 A→ B : {B,NA, kAB, TB}KAS , {A, kAB, TB}KBS , NB

Message 4 A→ B : {A, kAB, TB}KBS , {NB}kAB

Fig. 4.20 The Neuman-Stubblebine authentication protocol.
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Notation

A and B are two protocol principals, and S is a trusted third party. NA

and NB are nonces, and TB is a timestamp generated by B referring to an
absolute time. KAS and KBS are shared long-term keys, and kAB is a new
session key between A andB to be established in this authentication protocol.

Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
of-band techniques. NA or NB is a nonce randomly chosen by A and B
respectively, and TB is a timestamp generated by B.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identity
A and a randomly chosen nonce NA.

2) In Message 2, B randomly chooses a nonce NB, and then sends the
identity B, and the nonce NB with the encryption {A,NA, TB}KBS to S to
indicate a new protocol run between A and B.

3) Upon receiving Message 2, S gets NA and NB for this run between A
and B, and then S randomly chooses a new session key kAB for this run and
keeps it secret via an encryption under KAS and KBS respectively.

4) Upon receiving Message 3, A gets the new session key kAB via the
shared long-term key KAS known only by A and S.

5) In Message 4, A forwards {A, kAB, TB}KBS received in Message 3 to
B, and encrypts NB under kAB to show A’s knowledge of kAB to B.

6) Upon receiving Message 4, B gets the new session key kAB via the
shared long-term key KBS known only by B and S, and confirms A’s knowl-
edge of kAB via the encryption {NB}kAB .

Successful execution should convince A and B that both entities are
present and kAB is a new session key between A and B.

Unfortunately, this protocol has not achieved these security objects as it
intends to.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A believes that the
TVP NA is no longer confidential, but it is fresh for this run.

2) Upon receiving Message 1, B could not get any assurance about this
protocol.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B believes that the
TVP NB is no longer confidential, but it is fresh for this run.

4) Upon receiving Message 2, since TB is an absolute timestamp, S be-
lieves that the message {A,NA, TB}KBS is fresh, and it could not be a replay
one. Furthermore, since KBS is only known by B and S, from Lemma 4.1
and Lemma 4.3, S believes that B is present and it must be B who has just
generated this message {A,NA, TB}KBS . From Lemma 4.4, S believes that
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NA and NB are new established for the protocol run between A and B from
the explicitly identity of A and the possession of the key KBS by B.

5) Upon receiving Message 3, from the point of view of A, since NA is a
trusted fresh TVP and KAS is only known by A and S, from Lemma 4.2 and
Lemma 4.3, A gets the confidentiality and freshness assurances of the new
session key kAB. From Lemma 4.4, A believes that kAB is for this protocol
run between A and B from the explicitly identity of B and the possession of
the key KAS by A. According to the protocol semantic cue, the principal in
{B,NA, kAB, TB}KAS is the one who has confirmed his identity and liveness
to the third trusted party S. From Lemma 4.1, since NA is a trusted fresh
TVP from the point of view of A, A believes that it could only be S who has
generated and sent the message {B,NA, kAB, TB}KAS after S has checked
the liveness of B via the message of {A,NA, TB}KBS , hence A believes the
liveness of S and B.

6) Upon receiving Message 4, since TB is an absolute timestamp, B be-
lieves that the message {A, kAB, TB}KBS is fresh, but the maximal term
{A, kAB, TB}KBS in Message 4 is similar to the maximal term {A,NA, TB}KBS

in Message 2, so {A, kAB, TB}KBS may be a replay one of Message 2. Hence,
B could not get any new assurance about this protocol.

The maximal term {A, kAB, TB}KBS includes an identity of A, a random
session key and an absolute timestamp (or we can call it a trusted freshness
TVP), and it can be constructed via term definition, terms are TB, {TB}KBS ,
{kAB, TB}KBS , {A, TB}KBS , then {A, kAB, TB}KBS . Similar case exists in the
maximal term {A,NA, TB}KBS of Message 2. Hence, {A,NA, TB}KBS could
be replayed in Message 4 as Mao has stated in [22]. Note that {NB}kAB is
also a maximal term in Message 4.

Table 4.21 Security analysis of the Neuman-Stubblebine authentication protocol

A B

B S NA NB kAB A S NA NB kAB

Message 1 01# 0?#

Message 2 01#

Message 3 1 1 01AB 11AB

Message 4

End of run 1 1 01AB 11AB 0?# 01#

Upon termination of the protocol run, by analyzing of Table 4.21shows
that B is not sure whether the opponent principal is present or not, and
whether kAB is a new session key for A and B or not.

From the absence of the liveness of the principal A and the association of
kAB with A and B in the point of view of B, the adversary I could launch
an attack as shown in Fig. 4.21 by impersonating A[22].

Message 1 I(A)→ B : A,NA

Message 2 B → I(S) : B, {A,NA, TB}KBS , NB
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Message 3 I(S)→ I(A) : none
Message 4 I(A)→ B : {A,NA, TB}KBS , {NB}NA

Fig. 4.21 An attack on the Neuman-Stubblebine authentication protocol.

Notation

I(A) and I(S) are adversaries impersonating A and S respectively.

Protocol actions

1) In Message 1, the adversary launches a new protocol run with a ran-
domly chosen nonce NA by impersonating A.

2) In Message 2, B does the same as in the original Neuman-Stubblebine
authentication protocol.

3) I intercepts Message 2 to get NB, then encrypts NB using I’s randomly
chosen nonce NA and sends {NB}NA to B to show A’s knowledge of kAB by
confusing NA with kAB.

Upon termination of the protocol run, B believes that B has performed
a successful protocol run with A, and NA is a new session key for A and B,
while A knows nothing about this key establishment procedure.

4.3.8 Attack due to name omission

Name omission is often the case in authentication protocols for the name
information about a message can be deduced from other data parts in the
context, or from what encryption keys have been applied to. To obtain an
elegant protocol that contains little redundancy, protocol designers may omit
the identities of the participants, which may lead to name-omission flaws.
In security analysis based on trusted freshness, entity authentication or the
association assurance of a TVP may be absent due to name omission. Hence,
attack due to name omission can be constructed from these absences.

Example 4.20 Denning and Sacco propose a public-key protocol as an
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alternative to their fix of the Needham-Schroeder shared key protocol[1, 31].
The protocol of Denning and Sacco is as shown in Fig. 4.22.

Message 1 A→ S : A,B

Message 2 S → A : CertA, CertB

Message 3 A→ B : CertA, CertB,
{
{kAB, TA}K−1

A

}
KB

Fig. 4.22 The Denning and Sacco authentication protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. TA is
a timestamp generated by A referring to an absolute time. KA (KB) andK−1

A

(K−1
B ) are public-key and private key of A (B) respectively. CertA (CertB)

is a certification of A’s (or B’s) identity and corresponding public-key (KA)
signed by a trusted certification authority center CA. kAB is a new session
key between A and B to be established in this authentication protocol.

Premise

Both A and B know the public-key of the trusted certification authority
center CA to get KA and KB. Each principal knows the key pair of himself,
that is, KA and K−1

A for A, and KB and K−1
B for B.

Protocol actions

1) In Message 1, A launches a new protocol run of mutual authentication
and authenticated key establishment between A and B.

2) Upon receiving Message 2, A gets the public-key KB of B.
3) In Message 3, {{kAB, TA}K−1

A
}KB is encrypted for confidentiality (un-

der KB) and authenticity (under K−1
A ).

4) Upon receiving Message 3, B gets the public-key KA of A, and B sees
that the new session key kAB should be exclusively shared between A and B
from B’s private key K−1

B and A’s public-key KA being applied. Note kAB
is randomly chosen by A for this protocol run.

Successful execution should convince A and B that kAB is a new session
key between A and B.

Unfortunately, the Denning and Sacco authentication protocol has not
achieved the security objects as it intends to.
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Protocol security analysis

1) In Message 1 and Message 2, neither A nor B could get any assurance
about this protocol.

2) In Message 3, from Lemma 4.2 and Lemma 4.3, A has the confidential-
ity and the freshness assurances of the new session key kAB. From Lemma
4.4, A has the association assurance of kAB with A, since the “loose” one-way
transformation {kAB, TA}K−1

A
could only be generated by A.

3) Upon receiving Message 3, since TB is an absolute timestamp, B be-
lieves that the message {kAB, TA}K−1

A
is fresh, and it could not be a replay

one. Hence, from Lemma 4.2 and Lemma 4.3, B has the confidentiality and
the freshness assurances of the new session key kAB . From Lemma 4.4, B has
the association assurance of kAB with A, since the “loose” one-way transfor-
mation {kAB, TA}K−1

A
could only be generated by A.

Table 4.22 means that upon termination of the protocol run B believes A
is present, and the new session key kAB is confidential, fresh, and associated
with A but B.

Table 4.22 Security analysis of the Denning-Sacco protocol

A B

B kAB A kAB

Message 1

Message 2

Message 3 11A 1 11A

End of run 11A 11A

Example 4.21 From the absence of the kAB ’s association with B in the
point of view of B, the adversary can perform an attack by confusing the
session key k′AB, as shown in Fig. 4.23, intended for A and I to be the session
key between A and B[10].

Message 1 A→ S : A, I

Message 2 S → A : CertA, CertI

Message 3 A→ I : CertA, CertI ,
{
{k′AB, TA}K−1

A

}
KI

Message 1′ I(A)→ S : A,B

Message 2′ S → I(A) : CertA, CertB

Message 3′ I(A)→ B : CertA, CertB,
{
{k′AB, TA}K−1

A

}
KB

Notation

I(A) is an adversary I impersonating A. KI and K−1
I are the public-key

and private key of I. CertI is a certification of I’s identity and corresponding
public-key (KI) signed by a trusted certification authority center CA.
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Fig. 4.23 An attack on the Denning-Sacco authentication protocol.

Premise

All principals A, B and I know the public-key of the trusted certification
authority center CA to get KA, KB and KI . Each principal knows the key
pair of himself, that is, KA and K−1

A for A, KB and K−1
B for B, and KI and

K−1
I for I.

Protocol actions

1) In Message 1, A launches a new protocol run of mutual authentication
and makes authenticated key establishment between A and I.

2) Upon receiving Message 2, A gets the public-key KI of I.
3) In Message 3, {{k′AB, TA}K−1

A
}KI is encrypted for confidentiality (under

KI) and authenticity (under K−1
A ).

4) Upon receiving Message 3, I gets the new session key k′AB. Then
I could launch an attack by impersonating A and use the transformation
{k′AB, TA}K−1

A
to generate Message 3′ {CertA, CertB, {{k′AB, TA}K−1

A
}KB}.

Upon termination of the protocol attack, B believes that B has performed
a successful run with A, and k′AB is a new session key for A and B, while A
knows nothing about this key establishment between A and B, and k′AB is
actually shared by A and I.

4.3.9 Attack due to misuse of cryptographic services

The attack due to misuse of cryptographic services is a very common design
flaw as stated in [22]. Misuse of cryptographic services means that a cryp-
tographic algorithm used in a protocol provides an incorrect protection so
that the needed protection is absent. This type of flaw may lead to various
attacks.
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Example 4.22 Recall Example 3.15, the Otway and Rees key establish-
ment protocol is illustrated as in Fig. 4.24.

Message 1 A→ B : M,A,B, {NA,M,A,B}KAS

Message 2 B → A : M,A,B, {NA,M,A,B}KAS , {NB,M,A,B}KBS

Message 3 S → B : M, {NA, kAB}KAS , {NB, kAB}KBS

Message 4 A→ B : M, {NA, kAB}KAS

Fig. 4.24 The Otway-Rees key establishment protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confidential-
ity and the freshness assurances of the TVP NA and the freshness assurance
of the TVP M . From Lemma 4.4, A has the association assurance of NA

with A and B, since the transformation {NA,M,A,B}KAS generated by A
includes the identities of both A and B, which implies the association of both
A and B.

2) Upon receiving Message 1, B has the confidentiality assurance of the
TVP NA.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and the freshness assurances of the TVP NB. From Lemma 4.4, B
has the association assurance of NB with A and B, since the transformation
{NB,M,A,B}KBS generated by B includes the identities of both A and B,
which implies the association of both A and B.

4) Upon receiving Message 2, S could not get any assurance about this
protocol. A could not get any new assurance since {NB,M,A,B}KBS is an
encryption for B without corresponding decrypted key KBS .

5) Upon receiving Message 3, from Lemma 4.3, B has the liveness as-
surance of the trusted third party S from the transformation {NB, kAB}KBS

including B’s trusted freshness component NB, since only S could get NB

and generate this message {NB, kAB}KBS . From the one-way transformation
{NB, kAB}KBS including the trusted freshness NB, and from Lemmas 4.2,
4.3, and 4.4, B has the confidentiality assurance, freshness assurance of kAB,
and also the association assurance of kAB with both A and B.

6) Similarly, upon receiving Message 4, from Lemma 4.2, Lemma 4.3, and
Lemma 4.4, A has the liveness assurance of the trusted third party S from
the receiving fresh nonce NA, and A also has the confidentiality assurance,
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freshness assurance of kAB, and also the association assurance of kAB with A
and B. From Lemma 4.3, A has the liveness assurance of B from the receiving
fresh nonce NA and M .

Upon termination of this protocol run, B believes that S is alive from
receiving fresh nonce NB, and A believes that S is alive from receiving fresh
nonce NA, and B’s liveness is also guaranteed to A via M , but A’s liveness
is not guaranteed to B in this protocol. The analyzing result is indicated in
Table 4.23.

Table 4.23 Security analysis of the Otway-Rees protocol

A B

B S NA NB kAB A S NA NB kAB

Message 1 11AB 1?#

Message 2 1?# 11AB

Message 3 1 11AB

Message 4 1 1 11AB 11AB

End of run 1 1 11AB 1 11AB

From the absence of the A’s liveness, there exists an attack as stated in Ex-
ample 3.15: the adversary I has recorded the message {M,A,B, {NA,M,A,
B}KAS} in an old protocol run, then I can launch a new protocol run by
impersonating A.

4.3.10 Security analysis of other protocols

Example 4.23 The KryptoKnight protocol[34] as shown in Fig. 4.25 is a
mutual authentication protocol based on symmetric-key cryptography. NA

serves as nonce for entity authentication of B and NB serves as nonce for
entity authentication of A.

Message 1 A→ B : A,B,NA

Message 2 B → A : B,A,NB, H(NA, NB, B,KAB)
Message 3 A→ B : A,B,H(NA, NB,KAB)

Fig. 4.25 The KryptoKnight mutual authentication protocol.
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Notation

A and B are two protocol principals. NA and NB are nonces. KAB is a
shared long-term key. H(x1, x2, ..., k) is a keyed cryptographic hash function.

Premise

KAB is the shared long-term key between A and B, which is initially
established by non-cryptographic, and out-of-band techniques; NA, NB are
nonces generated by A and B respectively.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A, B and a randomly chosen nonce NA.

2) B randomly chooses a nonce NB, and sends Message 2 to A to indicate
the liveness of B. Message 2 includes the identities of A, B and the hash
value H(NA, NB, B,KAB).

3) Upon receiving Message 2, A gets NB, and then recalculates and com-
pares H(NA, NB, B,KAB) with the received hash value. If it matches, then
A confirms the liveness of B.

4) In Message 3, A generates and sends the hash value H(NA, NB,KAB)
to B to indicate the liveness of A.

5) Upon receiving Message 3, B recalculates and compares H(NA, NB,
KAB) with the received hash value. If it matches, then B knows that it must
be A who has generated and sent the hash valueH(NA, NB,KAB) using their
shared long-term key KAB.

Successful execution should convince A and B that both entities are
present.

Protocol security analysis

1) In Message 1, from Lemma 4.3, A has the freshness assurance of the
TVP NA.

2) Upon receiving Message 1, B couldn’t get any assurance about this
protocol.

3) In Message 2, from Lemma 4.3, B has the freshness assurance of the
TVP NB.

4) Upon receiving Message 2, A getsNB, recalculatesH(NA, NB, B,KAB),
and compares the recalculation value with the received hash value. If it
matches, from Lemma 4.2, then A knows that it must be B who has gen-
erated and sent the hash value H(NA, NB, B,KAB) including the trusted
freshness NA using their shared long-term key KAB. Hence, the liveness of
B is authenticated.

5) Similarly, upon receiving Message 3, B recalculates H(NA, NB,KAB),
and compares the recalculation value with the received hash value. If it
matches, from Lemma 4.2, then B knows that it must be A who has generated
and sent the hash value H(NA, NB,KAB) including the trusted freshness NB
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using their shared long-term key KAB. Hence, the liveness of A is authenti-
cated.

Upon termination of the protocol run, A believes that B is alive from com-
paring the hash valueH(NA, NB,KAB) including the trusted fresh nonceNA,
andB believes that A is alive from comparing the hash valueH(NA, NB,KAB)
including the trusted fresh nonce NB.

The security analysis result in Table 4.24 based on the trusted freshness
shows that the KryptoKnight protocol has achieved the mutual authentica-
tion objectives as it intends to.

Table 4.24 Security analysis of the KryptoKnight protocol

A B

B NA NB A NA NB

Message 1 01# 0?#

Message 2 1 01AB 01AB 01AB

Message 3 1 01AB

End of run 1 1

Example 4.24 The Yahalom protocol[35] is a classical authenticated key
establishment protocol as shown in Fig. 4.26. The protocol intends to establish
a new session key kAB between A and B with the help of a server S, and to
achieve mutual authentication.

Message 1 A→ B : A,NA

Message 2 B → S : B, {A,NA, NB}KBS

Message 3 S → A : {B, kAB, NA, NB}KAS , {A, kAB}KBS

Message 4 I(A)→ B : {A, kAB}KBS , {NB}kAB

Fig. 4.26 The Yahalom protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. NA

and NB are nonces. KAS and KBS are shared long-term keys. kAB is a new
session key between A andB to be established in this authentication protocol.
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Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
of-band techniques. NA, NB are nonces generated by A and B respectively.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identity
of A and a randomly chosen nonce NA.

2) In Message 2, B randomly chooses a nonce NB, and sends the en-
cryption {A,NA, NB}KBS to S to show the ownership of the long-term key
KBS .

3) Upon receiving Message 2, S gets NA and NB.
4) In Message 3, S calculates {B, kAB, NA, NB}KAS , {A, kAB}KBS using

the shared long-term key KAS and KBS and sends Message 3 to A.
5) Upon receiving Message 3, A gets NB and the new session key kAB

from the encryption {B, kAB, NA, NB}KAS .
6) In Message 4, A encrypts NB using the new session key kAB to show

the liveness of A and the knowledge of kAB.
7) Upon receiving Message 4, B gets the new session key kAB from the

encryption {A, kAB}KBS , and then B checks A’s liveness and A’s knowledge
of kAB via {NB}kAB .

Successful execution should convince A and B that both entities are
present and kAB is the new session key for A and B.

Protocol security analysis

1) In Message 1, from Lemma 4.3, A has the freshness assurance of the
TVP NA.

2) Upon receiving Message 1, B couldn’t get any assurance about this
protocol.

3) In Message 2, from Lemma 4.2, both A and B have the confidentiality
assurance of NB. From Lemma 4.3, B has the freshness assurance of the TVP
NB. From Lemma 4.4, B has the association assurance of NB with A and B.

4) Upon receiving Message 2, S gets NA and NB using the long-term
key KBS . From Lemma 4.2, S has the confidentiality assurance of NB, but
S couldn’t get any assurance about the liveness of B and the freshness of
NA and NB for there is not any trusted freshness of S in the transformation
{A,NA, NB}KBS .

5) Upon receiving Message 3, from Lemma 4.1, A has the liveness assur-
ances of both B and S. From Lemma 4.2, A has the confidentiality assurance
of NB and kAB . From Lemma 4.3, A has the freshness assurance of NB and
kAB . From Lemma 4.4, A has the association assurance of NA, NB and kAB
with A and B.

6) Upon receiving Message 4, from Lemma 4.1, B has the liveness as-
surance of A. From Lemma 4.2, B has the confidentiality assurance of kAB.
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From Lemma 4.3, B has the freshness assurance of kAB from the trusted
freshness NB. From Lemma 4.4, B has the association assurance of kAB with
A and B from the trusted freshness NB’s association with A and B.

Upon termination of this protocol run, the security analysis result in
Table 4.25 based on the trusted freshness shows that the Yahalom protocol
has achieved the mutual authentication and key establishment objectives.

Table 4.25 Security analysis of the Yahalom protocol

A B S

B S NA NB kAB A S NA NB kAB NA NB kAB

Message 1 01# 0?# 0?#

Message 2 1?# 11AB 1?#

Message 3 1 1 01AB 11AB 11AB 1?#

Message 4 1 11AB

End of run 1 11AB 1 11AB

Example 4.25 The TMN protocol[36] is a key establishment protocol based
on asymmetric-key cryptography with trusted third party, as illustrated in
Fig. 4.27.

Message 1 A→ S : A,S,B, {kA}KS

Message 2 S → B : S,B,A
Message 3 B → S : B,S,A, {kB}KS

Message 4 S → A : S,A,B, V (kA, kB)

Fig. 4.27 The TMN protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. KS

is a public-key of S. kA and kB are randomly chosen input by A and B
respectively, and kB is also the new session key to be established between A
and B in the TMN protocol.

The Vernam encryption V (k1, k2) is the bit XOR of the two keys k1 and
k2 where V (k1, V (k1, k2)) = k2. Suppose the randomly input keys k1 and
k2 are redundancy, hence the receiver could determine whether the received
encryption V (k1, k2) is correctly decrypted or not.
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Premise

KS and K−1
S are the public-key and the private key of the trusted third

party S, which is initially established by non-cryptographic, and out-of-band
techniques. kB is the new session key to be established between A and B in
this protocol, and kB can be recovered by A from the Vernam encryption
V (kA, kB).

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A,S,B and the encryption of a randomly chosen key input kA under the
public-key KS .

2) Upon receiving Message 1, S gets kA from the encryption of {kA}KS

using S’s private key K−1
S .

3) In Message 2, S notices B launching a new session between A and B
by sending the identities of A, B and S.

4) In Message 3, B randomly chooses a new key kB for this session between
A and B, and sends S the encryption of kB under S’s public-key KS.

5) Upon receiving Message 3, S gets kB from the encryption of {kB}KS

using S’s private key K−1
S .

6) In Message 4, S sends A the new session key kB via the Vernam
encryption V (kA, kB).

7) Upon receiving Message 4, A resumes the new session key kB via the
ownership of kA and the recalculation of V (kA, V (kA, kB)) = kB.

Successful execution should establish a new session key kB between A and
B.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP kA.

2) Upon receiving Message 1, from Lemma 4.2, B has the confidentiality
assurance of the TVP kA.

3) In Message 2, neither A nor B could get any new assurance about this
protocol.

4) In Message 3, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and freshness assurances of the TVP kB .

5) Upon receiving Message 3, from Lemma 4.2, S has the confidentiality
assurance of the TVP kB . A also has the confidentiality assurance of the TVP
kB .

6) Upon receiving Message 4, from Lemma 4.2, A has the confidentiality
assurance of the TVP kB. From Lemma 4.3, A has the freshness assurance
of the TVP kB from the trusted freshness kA.

Upon termination of the protocol run, the security analysis result in Table
4.26 shows that: both A and B are not sure whether the opponent principal
is present or not, and whether kB is a new session key for A and B or not.
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From the absence of the security properties of an authentication protocol,
various attacks could be directly constructed[37].

Table 4.26 Security analysis of the TMN protocol

A B

B S kA kB A S kA kB

Message 1 11# 1?#

Message 2

Message 3 1?# 11#

Message 4 11#

End of run 11# 11#

Example 4.26 (Attack 1 on the TMN protocol) From the absence of A’s
liveness, the attacker may launch an attack without the presence of A, as
illustrated in Fig. 4.28.

Message 1 I(A)→ S : A,S,B, {k′A}KS

Message 2 S → B : S,B,A

Message 3 B → S : B,S,A, {kB}KS

Message 4 S → I(A) : S,A,B, V (k′A, kB)

Fig. 4.28 An attack on the TMN protocol by impersonating A.

Notation

I(A) is the adversary I impersonating A.

Premise

k′A is randomly chosen by I as the nonce to launch a new session between
A and B by impersonating A. kB is randomly chosen by B as the new session
key to be established between A and B.

Protocol actions

1) In Message 1, the adversary I randomly chooses a TVP k′A to launch
a new session between A and B by impersonating A.

2) Upon receiving Message 1, S gets k′A from the encryption of {k′A}KS

using S’s private key K−1
S .

3) In Message 2, S notices B launching a new session between A and B
by sending the identities of A, B and S.
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4) In Message 3, B randomly chooses a new key kB for this session between
A and B (actually between I and B), and sends S the encryption of kB under
S’s public-key KS .

5) Upon receiving Message 3, S gets kB from the encryption of {kB}KS

using S’s private key K−1
S .

6) In Message 4, S sends A the new session key kB via the Vernam
encryption V (k′A, kB).

7) Upon receiving Message 4, I(A) resumes the new key kB via the own-
ership of k′A and the recalculation of V (k′A, V (k′A, kB)) = kB .

Upon termination of the attack on the TMN protocol, the adversary I
causes B to have false beliefs: B has completed a successful protocol run
with A, and is sharing a new session key kB with A, but actually shares the
key kB with I. Furthermore, B concludes that subsequently messages could
be encrypted using kB and safely transmitted to A (actually known by I),
whereas in fact, A knows nothing about the key establishment.

Example 4.27 (Attack 2 on the TMN protocol) From the absence of the
B’s liveness, the attacker may launch an attack without the presence of B,
as illustrated in Fig. 4.29.

Message 1 A→ S : A,S,B, {kA}KS

Message 2 S → I(B) : S,B,A

Message 3 I(B)→ S : B,S,A, {k′B}KS

Message 4 S → A : S,A,B, V (kA, k′B)

Fig. 4.29 An attack on the TMN protocol by impersonating B.

Notation

I(B) is the adversary I impersonating B.

Premise

k′B is randomly chosen by I as the new session key to be established
between A and B by impersonating B.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A, S, B and the encryption of a randomly chosen key input kA under S’s
public-key KS .
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2) Upon receiving Message 1, S gets kA from the encryption of {kA}KS

using S’s private key K−1
S .

3) In Message 2, S notices B launching a new session between A and B
by sending the identities of A, B and S.

4) In Message 3, the adversary I randomly chooses a TVP k′B as the new
session key between A and B by impersonating B (actually between I and
B), and sends S the encryption of k′B under S’s public-key KS.

5) Upon receiving Message 3, S gets k′B from the encryption of {k′B}KS

using S’s private key K−1
S .

6) In Message 4, S sends A the new session key k′B via the Vernam
encryption V (kA, k′B).

7) Upon receiving Message 4, A resumes the new key k′B via the ownership
of kA and the recalculation of V (kA, V (kA, k′B)) = k′B .

Upon termination of the attack on the TMN protocol, the adversary I
causes A to have false beliefs: A has completed a successful protocol run
with B, and is sharing a new session key k′B with B, but actually shares the
key k′B with I. Furthermore, A concludes that subsequently messages could
be encrypted using k′B and safely transmitted to B (actually known by I),
whereas in fact, B knows nothing about the key establishment.

Example 4.28 (Attack 3 on the TMN protocol) From the absence of the
key association assurance of kB, the adversary I could get the secret new
session key kB which is intended only for A and B, as illustrated in Fig. 4.30.

Message 1 A→ I(A) : A,S,B, {kA}KS

Message 1′ I(A)→ S : A,S,B, {kA}KS

Message 2′ S → I(B) : S,B,A

Message 3′ I(B)→ S : B,S,A, {k′B}KS

Message 4′ S → I(A) : S,A,B, V (kA, k′B)

(Now I knows kA from V (k′B , V (kA, k′B)) = kA)

Message 1′′ A→ S : A,S,B, {kA}KS

Message 2 S → B : S,B,A

Message 3 B → S : B,S,A, {kB}KS

Message 4′′ S → I(A) : S,A,B, V (kA, kB)

(Now I knows kB from V (kA, V (kA, kB)) = kB)

Message 4 I(S)→ A : S,A,B, V (kA, kB)

Notation

I(A) or I(B) is the adversary I impersonating A and B independently.
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Fig. 4.30 An attack on the TMN protocol to get the secret new session key kB
between A and B by impersonating both A and B.

Premise

k′B is randomly chosen by I as the new session key to be established
between A and B by impersonating B.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A,S,B and the encryption of a randomly chosen key input kA under the
public-key KS of S.

2) The adversary I intercepts Message 1 and replays this message as
Message 1′ to S by impersonating A.

3) In Message 2′, S notices B launching a new session between A and B
by sending the identities of A, B and S.

4) The adversary I intercepts Message 2′, and randomly chooses a TVP
k′B as the new session key between A and B by impersonating B (actually
between I and A), and sends S the encryption of k′B under S’s public-key
KS .

5) Upon receiving Message 3′, S gets k′B from the encryption of {k′B}KS

using S’s private key K−1
S .

6) In Message 4′, S sends A (Indeed I) the new session key k′B via the
Vernam encryption V (kA, k′B).

7) Upon receiving Message 4′, the adversary I intercepts Message 4′

and resumes kA via the ownership of the TVP k′B and the recalculation
of V (k′B, V (kA, k′B)) = kA.

8) In Message 1′′, the adversary I forwards Message 1 to S, indicating a
new protocol run between A and B.

9) Upon receiving Message 1′′, S gets kA from the encryption of {kA}KS

using S’s private key K−1
S .

10) In Message 2, S notices B the new session between A and B by
sending the identities of A, B and S.
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11) In Message 3, B randomly chooses a new key kB for this session
between A and B, and sends S the encryption of kB under S’s public-key
KS .

12) Upon receiving Message 3, S gets kB from the encryption of {kB}KS

using S’s private key K−1
S .

13) In Message 4′′, S sends A the new session key kB via the Vernam
encryption V (kA, kB).

14) The adversary I intercepts Message 4′′, and resumes the new key kB
via the ownership of kA and the recalculation of V (kA, V (kA, kB)) = kB. Up
to now, I knows the session key kB which is intended to be secret and only
known by A and B.

15) In Message 4, the adversary I forwards Message 4′′ as Message 4 to
A.

16) Upon receiving Message 4, A resumes the new key kB via the owner-
ship of kA and the recalculation of V (kA, V (kA, kB)) = kB.

Upon termination of the attack on the TMN protocol, the adversary I
has gotten the secret new session key kB between A and B, which is intended
to be secret and only known by A and B. As a result of this, the adversary I
could get the subsequent sensitive encryption communicated between A and
B, via using the decryption key kB .

Note that Message 1′′ and Message 1 are actually the same message from
A to S, and the adversary I has intercepted this message. Similar case exists
in Message 4′′ and Message 4.

Example 4.29 The big mouth frog protocol[38] is a key transport protocol
based on symmetric-key cryptography with trusted third party, as illustrated
in Fig. 4.31.

Message 1 A→ S : A, {B, kAB}KAS

Message 2 S → B : {A, kAB}KBS

Fig. 4.31 The big mouth frog protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. kAB
is randomly chosen by A as the new session key to be established between A
and B.

Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
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of-band techniques.

Protocol actions

1) In Message 1, A randomly chooses a new key kAB for this session
between A and B, and sends S the encryption of {B, kAB}KAS using the
shared long-term key KAS to indicate that A wants to establish a subsequent
communication key with B, and kAB is intended for A and B.

2) Upon receiving Message 1, S gets kAB from the encryption of {B,
kAB}KAS using the shared long-term key KAS.

3) In Message 2, S notices B launching a new session between A and B
by sending the encryption {A, kAB}KBS .

4) Upon receiving Message 2, B gets kAB from the encryption of {A,
kAB}KBS using the shared long-term key KBS.

Successful execution should establish a new session key kAB between A
and B.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP kAB. From Lemma 4.4, A has
the association assurance of the kAB with B from the explicitly mentioned
principal name and the trusted freshness kAB. From Lemma 4.4, A also has
the association assurance of the kAB with A since only A could have the new
session key kAB which is encrypted under the shared long-term key KAS .

2) Upon receiving Message 1, from Lemma 4.2, B has the confidentiality
assurance of the TVP kAB.

3) In Message 2, B couldn’t get any new assurance about this protocol
since there is not a trusted freshness in the encryption {A, kAB}KBS .

Upon termination of the protocol run, the security analysis result in Table
4.27 shows that: both A and B are not sure whether the opponent principal is
present or not, and B is not sure whether kAB is a fresh session key for A and
B or not. From the absence of the security properties of an authentication
protocol, various attacks could be directly constructed.

Table 4.27 Security analysis of the big mouth frog protocol

A B

B S kAB A S kAB

Message 1 11AB 1?#

Message 2

End of run 11AB 1?#

Example 4.30 (Attack on the big mouth frog protocol) From the absence
of the A’s liveness, the attacker may launch an attack without the presence of
A, as shown in Fig. 4.32. Suppose the adversary I has recorded the message
{A, {B, k′AB}KAS} in an old protocol run, then I can launch a new protocol
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run by impersonating A.

Message 1 I(A)→ S : A, {B, k′AB}KAS

Message 2 S → B : {A, k′AB}KBS

Fig. 4.32 An attack on the big mouth frog protocol.

Notation

I(A) is an adversary I impersonating A.

Premise

k′AB is a compromised session key between A and B. The adversary I has
recorded {A, {B, kAB}KAS} in Message 1 of an old protocol run.

Protocol actions

1) In Message 1, the adversary I replays the recorded message {A, {B,
kAB}KAS} to S to indicate that A wants to establish a subsequent commu-
nication key k′AB with B, and k′AB is intended for A and B.

2) Upon receiving Message 1, S gets k′AB from the encryption of {B,
k′AB}KAS using the shared long-term key KAS.

3) In Message 2, S notices B launching a new session between A and B
by sending the encryption {A, k′AB}KBS .

Upon termination of the attack on the big mouth frog protocol, the adver-
sary I causes B to have false beliefs: B has completed a successful protocol
run with A, and is sharing a new session key k′AB with A, but actually the key
k′AB is known by I. Furthermore, B concludes that subsequently messages
could be encrypted using k′AB and safely transmitted to A (actually known
by I), whereas in fact, A knows nothing about the key establishment.

From the absence of the B’s liveness, the attacker may also intercept the
protocol run, and cause A to have false beliefs: A has completed a successful
protocol run with A, and is sharing a new session key k′AB with B, but
actually B knows nothing about the key establishment.

Example 4.31 A electronic voting protocol is a voting protocol with deni-
able authentication for general elections[39, 40]. Fig. 4.33 shows that the voting
center S collects each voter Ai’s vote VAi and believes that the vote VAi is
not repudiated via the use of the fresh nonce NS; Every voter Ai is notified
of the voting result RE and the voter Ai believes that the vote result RE is
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noot repudiated via the use of the fresh nonce NAi .

Message 1 S → Ai : NS

Message 2 Ai → S : Ai, NAi, VAi , H(NS , SAi , VAi)
Message 3 S → Ai : RE,H(NAi, SAi , RE)

Fig. 4.33 An electronic voting protocol.

Notation

Ai is a voter who casts a vote in this electronic voting protocol, and S is a
trusted third party who works as a voting center. SAi is the shared long-term
key between the voter Ai and the voting center S. VAi is the vote which is
sent by every voter Ai at the beginning of voting, and RE is the voting result
collected by the voting center S.

Premise

The shared long-term SAi is initially established by non-cryptographic,
and out-of-band techniques. H (nonce, key, data) is a keyed hash function
with three input values. NS is a nonce randomly chosen by S. NAi is a nonce
randomly chosen by Ai.

Protocol actions

1) In Message 1, S launches a new electronic voting process by sending
each voter Ai a randomly chosen fresh nonce NS .

2) Upon receiving Message 1, every voter Ai gets NS .
3) In Message 2, the voter Ai randomly chooses a nonce NAi for this

voting, sends the identity of Ai, the nonce NAi , and Ai’s vote VAi to S. Ai

wants to show the freshness and the ownership of the vote VAi to S via a
keyed hash function under the shared long-term SAi .

4) Upon receiving Message 2, S gets the vote VAi of the voter Ai and
checks the validity of VAi via the ownership of SAi and the recalculation of
H(NS , SAi , VAi). Then, S summarizes all the votes of every voter and works
out the voting result RE. Every voter Ai could not deny its sending vote VAi
to S for the hash value H(NS , SAi , VAi) including the trusted freshness NS .

5) In Message 3, S announces the voting result RE to every voter Ai and
wants to show the freshness and the ownership of the voting result RE to
every Ai via a keyed hash function under the shared long-term key SAi .
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6) Upon receiving Message 3, the voter Ai checks the validity of RE via
the ownership of SAi and the recalculation of H(NAi , SAi , RE). S could not
deny its sending the voting result RE, which is summarized by S, to every
voter Ai for the hash value H(NAi , SAi , RE) includes the trusted fresh nonce
NAi generated by Ai.

Successful execution should work out a new voting result RE, and neither
the voter Ai nor the voting center S could deny the participation of this
electronic voting.

Protocol security analysis

1) In Message 1, from Lemma 4.3, S has the freshness assurance of the
TVP NS, that is, NS is the trusted freshness of S.

2) Upon receiving Message 1, B couldn’t get any assurance about this
protocol.

3) In Message 2, from Lemma 4.3, Ai has the freshness assurance of the
TVP NAi and the vote VAi . From Lemma 4.2, Ai knows that the vote VAi
is open.

4) Upon receiving Message 2, from Lemma 4.3, S has the freshness assur-
ance of the vote VAi . From Lemma 4.1, S believes that it must be Ai who
has generated the message H(NS , SAi , VAi) using the shared long-term SAi .
From Lemma 4.2, S knows that the vote VAi is open.

5) In Message 3, from Lemma 4.3, S has the freshness assurance of the
voting result RE. From Lemma 4.2, S knows that the vote RE is open. From
Lemma 4.4, S has the association assurance of the voting result RE with S.

6) Upon receiving Message 3, from Lemma 4.2, Ai knows that the voting
result RE is open. From Lemma 4.3, Ai has the freshness assurance of the
voting result RE. From Lemma 4.1 and Lemma 4.4, Ai has the liveness
assurance of S and the association assurance of the vote VAi with S, since only
S could generate H(NAi , SAi , RE) using the shared long-term SAi , hence
H(NAi , SAi , RE) is associated with the protocol run with S, and S is present.

The security analysis result in Table 4.28 based on the trusted freshness
shows that the electronic voting protocol has achieved the general elections
with deniable authentication objectives as it intends to. The voter Ai could
not deny Ai’s vote VAi and the voting center S could not deny S’s announce-
ment of the voting result RE. However, the voter Ai can only believe that RE
is a recently announced voting result by S, but Ai does not know whether
the voting result RE is associated with each VAi or not.

Table 4.28 Security analysis of the electronic voting protocol

Ai S

S NS NAi VAi RE Ai NS NAi VAi RE

Message 1 01#

Message 2 01# 0?# 1 01# 01#

Message 3 1 01S 01#

End of run 1 01S 1 01#



146 4 Informal Analysis Schemes of Cryptographic Protocols

Example 4.32 A fair non-repudiation protocol is based on a trusted third
party[39, 40]. In the protocol as shown in Fig. 4.34, the principal A sends
message m to the principal B with the help of a trusted third party S. At
the end of the protocol, A could deny A’s sending of the message m, B could
not deny B’s receiving the message m.

Message 1 A→ B : f1, B, L, {m}k′ , {f1, B, L, {m}k′}K−1
A

Message 2 B → A : f2, A, L, {m}k′ , {f2, A, L, {m}k′}K−1
B

Message 3 A→ S : f3, B, L, k′, {f3, B, L, k′}K−1
A

Message 4 S → A : f4, A,B, L, k′, {f4, A,B, L, k′}K−1
S

Message 5 S → B : f4, A,B, L, k′, {f4, A,B, L, k′}K−1
S

Fig. 4.34 A fair non-repudiation protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. fi
is a message tag to indicate the message step, i.e., data type. L is the life of
this protocol run. m is a sensitive data to be sent to B by A. k′ is a randomly
chosen temporary key for this protocol run by A. KA and K−1

A , KB and
K−1

B , KS and K−1
S are the public, and private key pairs of the principals A,

B and S respectively.

Premise

The public and private long-term key KA and K−1
A , KB and K−1

B , KS

andK−1
S are initially established by non-cryptographic, and out-of-band tech-

niques.

Protocol actions

1) In Message 1, A randomly chooses a temporary key k′, and sends
the message tag f1, the opponent partner’s identity B, and the life circle L
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with the encryption {m}k′ of the data m to B to launch a new protocol run
between A and B. {f1, B, L, {m}k′}K−1

A
is signed by A’s private key K−1

A to
indicate that Message 1 is from A.

2) Upon receiving Message 1, B verifies the signature {f1, B, L, {m}k′}K−1
A

using A’s public-key KA and gets the encryption {m}k′ of the data m. But
B can not confirm whether the received message is new generated by A or
not, hence also B can’t confirm whether A is present or not.

3) In Message 2, B sends the message tag f2, the opponent partner’s
identity A, and the life circle L with the encryption {m}k′ of the data m
to A. {f2, A, L, {m}k′} is signed by B’s private key K−1

B to indicate that
Message 2 is from B.

4) Upon receiving Message 2, A checks the validity of {m}k′ using B’s
public-key KB. If it is right, then it must be B who has gotten {m}k′ using
A’s public-key KA and signed {f2, A, L, {m}k′} using B’s private key K−1

B .
5) In Message 3, A sends the message tag f3, the opponent partner’s

identity B, the life circle L and the temporary key k′ to S. {f3, B, L, k′} is
signed by A’s private key K−1

A to indicate that Message 3 is from A.
6) Upon receiving Message 3, S gets and checks k′ from the signature

{f3, B, L, k′}K−1
A

using A’s public-key KA. Hence, A could not deny A’s send-
ing of k′.

7) In Message 4 and Message 5, S sends the message tag f4, the proto-
col partners’ identities A and B, the life circle L and the randomly chosen
temporary key k′ to A and B respectively. {f4, A,B, L, k′} is signed by the
trusted third party S’s private key K−1

S to indicate that Message 4 is from
S and the temporary key k′ has been checked by S.

8) Upon receiving Message 4, A gets k′ from the signature {f4, A,B, L,
k′}K−1

S
using S’s public-key KS and checks the validity of k′.

9) Upon receiving Message 5, B gets and checks k′ from the signature
{f4, A,B, L, k′}K−1

S
using S’s public-key KS. Hence, B can get the data m

from the encryption {m}k′ via using k′.
Upon termination of the protocol run, from (b) and (f), A could not deny

her sending of the message m, and from (d) and (i), B can get the message
m. However, B could deny B’s receiving of the message m, since no witness
shows that B has gotten k′, hence the message m.

Protocol security analysis

1) In Message 1, from Lemma 4.2, A has the confidentiality assurance of
the temporary key k′ and the data m. From Lemma 4.3, A has the freshness
assurance of the temporary key k′. That is, k′ is the trusted freshness of A.

2) Upon receiving Message 1, from Lemma 4.2 and Lemma 4.3, B has the
confidentiality assurance of the temporary key k′ and the data m.

3) Upon receiving Message 2, from Lemma 4.1, A has the liveness assur-
ance of B. From Lemma 4.4, A has the association assurance of k′ and m
with B since Message 2 could not be a replay one, and only B could generate
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{f2, A, L, {m}k′}K−1
B

using B’s private key K−1
B . From Lemma 4.4, A has the

association assurance of k′ and m with A, since the identity of A has been
explicitly indicated in {f2, A, L, {m}k′}K−1

B
, so k′ and m are also associated

with A.
4) In Message 3, from Lemma 4.2, A knows that k′ is open.
5) After Message 3 is sent, from Lemma 4.2, B also knows that k′ is open

according to the protocol.
6) Upon receiving Message 4, from Lemma 4.1, A has the liveness as-

surance of S since Message 4 could not be a replay one, and only S could
generate {f4, A,B, L, k′}K−1

S
using its private key K−1

S , hence S is present.
7) Upon receiving Message 5, B couldn’t get any assurance about this

protocol for B has not gotten any trusted freshness identifier.
The security analysis result in Table 4.29 based on the trusted freshness

shows that from the legitimate participant A’s point of view, B is present
and the data m is open, fresh and associated with both A and B, and from
the legitimate participant B’s point of view, A is not present and the data m
is open, and B could not achieve the association assurance of m with both
A and B.

Table 4.29 Security analysis of the fair non-repudiation protocol

A B

B S k′ m A S k′ m

Message 1 11# 11# 1?# 1?#

Message 2 1 11AB 11AB

Message 3 01AB 01AB 0?# 0?#

Message 4 1

Message 5

End of run 1 1 01AB 01AB 0?# 0?#

Example 4.33 (Attack on the fair non-repudiation protocol) From the ab-
sence of A’s liveness, the attacker may launch an attack without the presence
of A, as shown in Fig. 4.35. Suppose the adversary I has recorded the message
{f1, B, L, {m}k′′ , {f1, B, L, {m}k′′}K−1

A
} in an old protocol run, then I can

launch a new protocol run by impersonating A.

Message 1 I(A)→ B : f1, B, L, {m}k′′, {f1, B, L, {m}k′′}K−1
A

Message 2 B → I(A) : f2, A, L, {m}k′′ , {f2, A, L, {m}k′′}K−1
B

Message 3 I(A)→ S : f3, B, L, k′′, {f3, B, L, k′′}K−1
A

Message 4 S → I(A) : f4, A,B, L, k′′, {f4, A,B, L, k′′}K−1
S

Message 5 S → B : f4, A,B, L, k′′, {f4, A,B, L, k′′}K−1
S

Notation

I(A) is an adversary I impersonating A.
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Fig. 4.35 An attack on the fair non-repudiation protocol.

Premise

The adversary I has recorded {f1, B, L, {m}k′′ , {f1, B, L, {m}k′′}K−1
A
}

in Message 1 and {f3, B, L, k′′, {f3, B, L, k′′}K−1
A
} in Message 3 of an old

protocol run.

Protocol actions

1) In Message 1, the adversary I replays the recorded message {f1, B, L,
{m}k′′ , {f1, B, L, {m}k′′}K−1

A
} to B to indicate that A wants to send a sen-

sitive data m to B.
2) Upon receiving Message 1, B verifies the signature {f1, B, L, {m}k′′}K−1

A

and gets the encryption {m}k′′ of the data m.
3) In Message 2, B sends the message {f2, A, L, {m}k′′}K−1

B
to A (actually

it is the adversary I).
4) In Message 3, the adversary I replays the recorded message {f3, B, L,

k′′, {f3, B, L, k′′}K−1
A
} to S.

5) Upon receiving Message 3, S gets and checks k′′ from the signature
{f3, B, L, k′′}K−1

A
using A’s public-key KA.

6) In Message 4 and Message 5, S signs {f4, A,B, L, k′′} using S’s private
key K−1

S and sends it to A and B respectively.
7) Upon receiving Message 4, the adversary I intercepts the message

intended for A.
8) Upon receiving Message 5, B gets and checks k′′ from the signature

{f4, A,B, L, k′′}K−1
S

using S’s public-key KS .
Upon termination of this attack on the fair non-repudiation protocol, the

adversary I causes B to have false beliefs: B has completed a successful
protocol run with A, B has received the message m sent from A, and A
could not deny the sending of m to B.

In real life, the freshness of non-repudiation record is important. For ex-
ample, suppose a car agent has ordered 1000 cars from the General Motors
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Corporation before, if the adversary can simply replay this order record with-
out freshness guarantee, then the General Motors Corporation may check and
accept this order, since the replayed order record may be regarded as non-
repudiation assurance.
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