
2 Background of Cryptographic Protocols

Abstract Some background knowledge including preliminary knowl-
edge, cryptographic primitive knowledge, cryptographic protocol
knowledge, cryptographic protocol security knowledge, and commu-
nication threat model knowledge are briefly introduced.

A brief introduction of background knowledge on cryptographic protocols is
given in this chapter. Readers who are familiar with cryptography knowledge
can skip this chapter without causing difficulty for reading the rest parts
of this book, while inquisitive readers can refer to Refs. [1, 2] for sufficient
reference materials.

2.1 Preliminaries

This section gives some preliminary knowledge of cryptographic protocols
including functions, one way transformation, message space, adversary, etc.

2.1.1 Functions

Definition 2.1 A set consists of distinct objects which are called elements
of the set. For example, a set X might consist of the elements a, b, c, and this
is denoted by X = {a, b, c}.
Definition 2.2 A function (or transformation) is defined by two sets X and
Y , and a rule f which assigns to each element in X precisely one element in
Y . The set X is called the domain of the function and Y the codomain. If
x is an element of X (usually written x ∈ X), the image of x is the element
in Y for which the rule Y associates with x; the image y of x is denoted
by y = f(x). Standard notation for a function f from set X to set Y is
f : X → Y . If y ∈ Y , then a preimage of y is an element x ∈ X for which
f(x) = y. The set of all elements in Y which have at least one preimage is
called the image of f , denoted by Im(f).

 Cryptographic Protocol
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012
L. Dong et al.,



14 2 Background of Cryptographic Protocols

Definition 2.3 A function f from a set X to a set Y is called a one-way
function if f(x) is “easy” to compute for all x ∈ X but for “essentially all”
elements y ∈ Im(f) it is “computationally infeasible” to find any x ∈ X so
that f(x) = y.

Here and elsewhere, the terms easy and computationally infeasible (or
hard) are intentionally left without formal definition; it is intended they are
intended to be interpreted relative to an understood frame of reference. Easy
might mean polynomial time and space, or more practically, within a certain
number of machine operations or time units—perhaps seconds or millisec-
onds. A more specific definition of computationally infeasible might involve
super-polynomial effort, require effort far exceeding understood resources,
specify a lower bound on the number of operations or memory required in
terms of a specified security parameter, or specify that the probability that
a security property is violated is exponentially small.

Definition 2.4 A function (or transformation) is injective if each element
in the codomain Y is the image of at most one element in the domain X .

Definition 2.5 A function (or transformation) is onto if each element in
the codomain Y is the image of at least one element in the domain X . Equiv-
alently, a function f : X → Y is onto if Im(f) = Y .

Definition 2.6 If a function f : X → Y is injective and Im(f) = Y , then
f is called a bijection.

Definition 2.7 A trapdoor one-way function is a one-way function f : X →
Y with the additional property that gives some extra information (called the
trapdoor information) and it becomes feasible to find, for any given y ∈
Im(f), an x ∈ X so that f(x) = y.

Definition 2.8 Let S be a finite set and let f be a bijection from S to S
(i.e., f : S → S). The function f is called an involution if f = f−1. An
equivalent way of stating this is f(f(x)) = x for all x ∈ S.

2.1.2 Terminology

Definition 2.9 A denotes a finite set called the alphabet of definition. For
example, A = {0, 1}, the binary alphabet, is a frequently used alphabet of
definition.

Definition 2.10 M denotes a set called the message space. M consists of
strings of symbols from an alphabet of definition. An element of M is called
a plaintext message or simply a plaintext. For example, M may consist of
binary strings, English texts, computer codes, etc.



2.1 Preliminaries 15

Definition 2.11 C denotes a set called the ciphertext space. C consists of
strings of symbols from an alphabet of definition, which may differ from the
alphabet of definition for M . An element of C is called a ciphertext.

Definition 2.12 K denotes a set called the key space. An element of K is
called a key. In this book, we usually use upper case K as a long-term key,
and lower case k as a temporal session key.

Definition 2.13 An encryption scheme consists of a set Ee : e ∈ K of
encryption transformations (encryption algorithm) and a corresponding set
Dd : d ∈ K of decryption transformations (decryption algorithm) with the
property that for each e ∈ K there is a unique key d ∈ K so that Dd = E−1

e ,
that is, Dd(Ee(m)) = m for all m ∈M .

Definition 2.14 The keys e and d in the preceding definition are referred
to as a key pair and sometimes denoted by (e, d). Note that e and d could be
the same.

Public key e, and private key d are paired keys in a public-key system;
symmetric keys e and d (e = d) are equal keys in a symmetric-key (single-key)
system.

A fundamental premise in cryptography is that the sets M,C,K, {Ee :
e ∈ K}, {Dd : d ∈ K} are public knowledge, and the only thing to keep secret
is the particular key pair (e, d) that is being used.

The other premise in cryptography a priori is that for point-to-point mech-
anisms, parties A and B shared a secret key, or A and B each shares a secret
key with a trusted party T in a symmetric-key mechanism; A and B know
the opponent parties’ public key, or A and B both have the knowledge of the
public key of a trusted party T in a public-key mechanism.

These shared long-term keys are initially established by non-cryptographic,
and out-of-band techniques providing confidentiality and authenticity (e.g.,
in person, or by trusted courier).

The objective of attacks is to confuse a run of a protocol, to systematically
recover plaintext from ciphertext, or even more drastically, to deduce the
decryption key.

Definition 2.15 An adversary is an unauthorized “third” party in a com-
munication who tries to defeat the information security service provided be-
tween the sender and receiver. Various other names are synonymous with
adversary such as enemy, attacker, opponent, tapper, eavesdropper, intruder,
saboteur, and interloper. We usually call the adversary “Malice” in this book.

An adversary will often attempt to play the role of either the legitimate
sender or the legitimate receiver.

Definition 2.16 A passive adversary is an adversary who is only capable
of reading information from an unsecured channel.



16 2 Background of Cryptographic Protocols

Definition 2.17 An active adversary is an adversary who is capable of
not only reading information, but also transmitting, altering, or deleting
information on an unsecured channel.

In a practical cryptographic setting, it is prudent to make the assumption
that the adversary is an active adversary, and it is very powerful.

Definition 2.18 A passive attack is the one where the adversary only mon-
itors the communication channel. A passive attacker only threatens confiden-
tiality of data.

Passive attacks are in the nature of eavesdropping on, or monitoring of
transmitted messages. Two classical types of passive attacks are release of
message contents and traffic analysis. Passive attacks are very difficult to
detect because they do not involve any alternation of data. However, it is
feasible to prevent passive attacks.

Definition 2.19 An active attack is one where the adversary attempts to
delete, add, or in some other way alter the transmission on the channel besides
the monitoring of transmitted messages. An active attacker threatens data
integrity and authentication as well as confidentiality.

Active attacks involve some replay, creation, insertion, deletion or modi-
fication of transmissions, masquerade of entity, and denial of service.

2.2 Cryptographic primitives

This section gives a brief introduction to some cryptographic knowledge in-
cluding primitive, encryption, signature, identification, symmetric-key sys-
tem etc.

2.2.1 Cryptology

Definition 2.20 An algorithm or a primitive is a well-defined computa-
tional procedure that takes a variable input and halts with an output.

Examples of primitives include encryption schemes, hash functions, and
digital signature schemes. Primitives, when applied in various ways and with
various inputs, will typically exhibit different characteristics.

Definition 2.21 A cryptosystem is a general term referring to a set of
cryptographic primitives used to provide information security services. Most
often the term is used in conjunction with primitives providing confidentiality,
i.e., encryption. An encryption algorithm and a decryption algorithm plus the
description of the format of messages and keys form a cryptographic system



2.2 Cryptographic primitives 17

or a cryptosystem.

Definition 2.22 Cryptanalysis is the study of mathematical techniques for
attempting to defeat cryptographic techniques, and, more generally, informa-
tion security services.

Computational complexity is one of the most important foundations for
modern cryptography.

Definition 2.23 A polynomial-time algorithm, also called efficient algo-
rithm or a good algorithm, is an algorithm whose worst-case running time
function could be expressed by a polynomial in the size of the input. That
is, the algorithm is deterministic or randomized with polynomial execution
time. Thus, informally speaking, a computational problem is said to be easy
or tractable if there exists a good or efficient algorithm to solve the problem.
Any algorithm whose running time cannot be so bounded by polynomial exe-
cution time is called an exponential-time algorithm. Thus, informally speak-
ing, a computational problem is said to be hard or intractable if there doesn’t
exist an efficient algorithm to solve the problem.

Note that there are, however, some practical situations when this distinc-
tion is not appropriate for average-case complexity is more important than
worst-case complexity in cryptography– a necessary condition for an encryp-
tion scheme to be considered secure is that the corresponding cryptanalysis
problem is difficult on average (or more precisely, almost always difficult),
and not just for some isolated cases[1].

Definition 2.24 Non-deterministic polynomial-time (NP) problems are
those in which we couldn’t find an efficient algorithm to solve in polyno-
mial time. Many cryptographic primitives are based on the difficulty of these
intractable problems, also called hard problems, such as the integer factor-
ization problem and the discrete logarithm problem. Some hard problems in
computational complexity theory can provide a high confidence in the secu-
rity of a cryptographic algorithm or protocol.

Clearly, a cryptographic algorithm must be designed so that it is tractable
for a legitimate user, but is intractable for a non-user or an attacker and
so constitutes a difficult problem to solve. Here, “intractable” means that
the widely available computational methods cannot effectively handle these
problems, that is, they cannot solve these problems in polynomial time.

Definition 2.25 An encryption scheme is said to be breakable if a third
party, without prior knowledge of the key pair (e, d), can systematically re-
cover plaintext from corresponding ciphertext within some appropriate time
frame.

Encryption schemes are not inherent to provide data integrity, and in some
cases the encryption scheme may not be compromised while the cryptographic
protocol may fail to provide confidentiality adequately.



18 2 Background of Cryptographic Protocols

Cryptographic techniques are typically divided into two generic types:
symmetric-key system and public-key system.

Definition 2.26 A symmetric-key system is a system involving two trans-
formations – one for the originator and one for the recipient – both of which
make use of either the same secret key or two keys easily computed from each
other. Symmetric-key system is also referred to as conventional cryptosystem.

Definition 2.27 An public-key system is a system involving two related
transformations – one defined by a public key (the public transformation),
and the other defined by a private key—with the property that it is compu-
tationally infeasible to determine the private transformation from the public
transformation.

Most well-known public-key cryptosystems are based on the difficulty of
intractable problems, such as the integer factorization problem, the discrete
logarithm problem, and elliptic-curve discrete logarithm problem (ECDLP).

2.2.2 Symmetric-key encryption

Definition 2.28 Symmetric-key encryption is a cryptographic primitive
which uses the same encryption and decryption keys, e= d, to perform en-
crypting and decrypting. Other terms used in the literature are single-key
encryption, one-key encryption, private key encryption, secret key encryp-
tion, and conventional encryption.

In a two-party communication, the key in symmetric-key encryption must
remain secret at both ends, and sound cryptographic practice dictates that
the key be changed frequently perhaps for each communication session. In
symmetric-key case, the only system that has proven secure is the one-time
pad.

The symmetric-key primitives can be designed to have much higher rates
of data throughput in encrypting and decrypting than public-key encryption.

There are two classes of symmetric-key encryption schemes which are
commonly distinguished: block ciphers and stream ciphers.

Definition 2.29 A block cipher is an encryption scheme which breaks up
the plaintext messages to be transmitted into strings (called blocks) of a fixed
length t over an alphabet A, and encrypts one block at a time.

Most well-known symmetric-key encryption techniques are block ciphers.
For example, DES, 3DES, IDEA etc.

Definition 2.30 A stream cipher is, in one sense, a very simple block cipher
having block length equal to one.



2.2 Cryptographic primitives 19

What makes stream ciphers useful is the fact that the encryption transfor-
mation can change for each symbol of plaintext encrypted. They are especially
useful in some situations, such as highly probable error transmission channel,
or buffering of data is limited.

2.2.3 Public-key encryption

Definition 2.31 A public-key encryption is a cryptographic primitive which
uses different encryption and decryption keys, the public-key e and the pri-
vate key d and the two keys match each other; the encryption key e needn’t
be kept secret, and only the party who is the owner of e can decrypt a ci-
phertext encrypted under e using the matching private key d. Other terms
used in the literature are asymmetric cryptosystems.

Each entity in the network has a public/private encryption key pair (e, d).
The public-key e along with the identity of the entity is usually stored in a
central repository. In a large network, the number of keys necessary may be
considerably smaller than in the symmetric-key scenario. Per-communication
interaction with the central repository can be eliminated if entities store
certificates locally. Depending on the mode of usage, a private/public-key
pair (e, d) may remain unchanged for considerable periods of time, e.g., many
communication sessions (even several years).

Throughput rates for the most popular public-key encryption methods
are several orders of magnitude slower than the best known symmetric-key
schemes. That is, the computational performance of a public-key encryption
is inferior to that of a symmetric-key encryption.

2.2.4 Digital signatures

Definition 2.32 A digital signature is a cryptographic primitive which en-
tails transforming the message and some secret information held by the entity
into a tag called a signature in digital form, contrary to handwritten signa-
ture in previous centuries. Digital signature is fundamental in authentication,
authorization, and nonrepudiation.

A digital signature of a message is a number dependent on some secret
known only to the signer, and additionally, the content of the message being
signed. Signatures must be verifiable; if a dispute arises as to whether a
party signed a document (caused by either a lying signer trying to repudiate
a signature it did create, or a fraudulent claimant), an unbiased third party
should be able to resolve the matter equitably, without requiring access to
the signer’s secret information (private key).



20 2 Background of Cryptographic Protocols

A digital signature scheme (or digital signature mechanism) consists of a
signature generation algorithm and an associated verification algorithm.

Schemes for unforgeable digital signature can be constructed using the
same computational assumptions as used in the constructing of private-key
encryption schemes, where the encryption key d should be kept secret, and
all users including the adversary can decrypt a ciphertext encrypted under d
using the matching public-key e.

Digital signatures have many applications in information security, includ-
ing authentication, data integrity, and non-repudiation. One of the most sig-
nificant applications of digital signatures is the certification of public-keys in
large networks. Certification is a means for a trusted third party to bind the
identity of a user to a public-key, so that at some later time, other entities
can authenticate a public-key without assistance from a trusted third party.

Public-key techniques may be used to establish a key for a symmetric-key
system being used by communicating entities A and B. In this scenario A
and B can take advantage of the long-term nature of the public/private keys
of the public-key scheme and the performance efficiency of the symmetric-key
scheme. Note that data encryption is frequently the most time consuming part
of the encryption process, and the public-key scheme for key establishment
is a small fraction of the total encryption process between A and B[1].

The size of public-key signatures is larger than that of tags providing data
origin authentication from symmetric-key techniques.

2.2.5 Hash Functions

Definition 2.33 A hash function is a cryptographic primitive which is a
computationally efficient function mapping binary strings of arbitrary length
to binary strings of some fixed n bits length, called hash values. For any given
x ∈ X , the corresponding hash value y is a binary string of some fixed n bits
length, y = h(x). Hash value is also referred to as a hashcode, hash-result,
or simply hash.

The cryptographic hash function is often informally called a one-way hash
function. The basic idea of cryptographic hash functions is that a hash value
serves as a compact representative image (sometimes called an imprint, digital
fingerprint, or message digest) of an input string, and can be used as if it
were uniquely identifiable with that string.

The main properties of cryptographic hash functions include:
1) Preimage resistance—one-way, for essentially all pre-specified outputs,

is computationally infeasible to find any input which hashes to that output,
i.e., to find any preimage x′ so that h(x′) = y when giving any y for which
a corresponding input is not known. A hash function with this property is
called a one-way hash function.



2.2 Cryptographic primitives 21

2) 2nd-preimage resistance—weak collision resistance is computationally
infeasible to find any second input which has the same output as any specified
input, i.e., given x, to find a 2nd-preimage x′ �= x so that h(x′) = h(x).

3) Collision resistance— strong collision resistance is computationally in-
feasible to find any two distinct inputs x, x′ which hash to the same output so
that h(x) = h(x′) (Note that here there is free choice of both inputs contrary
to 2nd-preimage resistance). A hash function with this property is called a
collision resistance hash function.

At the highest level, hash functions may be split into two generic classes:
1) An unkeyed hash function is a specific hash function whose specification

dictates a single input parameter, a message.
2) A keyed hash functions is a specific hash function whose specification

dictates two distinct inputs, a message and a secret key.
The most common cryptographic uses of hash functions are with digital

signatures and are for data integrity. With digital signatures, a long message
is usually hashed (using a publicly available hash function) and only the hash
value is signed in place of the original message. For data integrity, the hash
value corresponding to a particular input is computed at some point in time
by the sender, and later the hash value is recomputed by the receiver using
the particular input at hand which is the same as the sender, and then the
recomputed hash value is compared for equality with the original hash value.
The problem of preserving the integrity of a potentially large message is thus
reduced to that of a small fixed-size hash value.

Specific applications, which hash functions are used for data integrity
in conjunction with digital signature schemes, include virus protection and
software distribution.

Keyed hash functions can be used to provide data origin authentication as
conventional encryption schemes do. Keyed hash functions could not directly
recover the input binary strings from a computed hash value while conven-
tional encryption schemes could recover the plaintext from a ciphertext with
a common secret key at hand. When they are used to provide integrity and
data origin authentication information security services, they behave almost
the same. Hence, in this book, we do not distinguish keyed hash functions
from conventional encryption schemes accurately when they are used to pro-
vide data origin authentication, and we take keyed hash functions as a sort
of symmetric-key primitives in this case since they both require a common
secret key shared by some specific identities to complete computing.

2.2.6 Message authentication

Definition 2.34 Manipulation detection codes (MDCs) are a subclass of
unkeyed hash functions to provide a representative image or hash for message
manipulation detection. MDCs is also called modification detection codes



22 2 Background of Cryptographic Protocols

(MDCs), and less commonly known as message integrity codes (MICs).

MDCs may be further classified, the specific two primary classes of MDCs
are:

1) one-way hash functions (OWHFs): for these hash functions, finding an
input which hashes to a pre-specified hash value is difficult;

2) collision resistant hash functions (CRHFs): for these hash functions,
finding any two inputs having the same hash value is difficult.

Definition 2.35 Message authentication codes (MACs) are a distinct class
of hash functions, parameterized by a secret key k, which provide the detec-
tion of message alternation on an insecure channel for encryption schemes.

MAC algorithms are also a subclass of keyed hash functions which take
two functionally distinct inputs, a message and a secret key k, and produce
a fixed-size (say n-bit) output or hash value, with the design intent that it
is infeasible in practice to produce the same output without knowledge of
the key k. That is, a hash value should be uniquely identifiable with a single
input in practice, and collisions should be computationally difficult to find
(essentially never occurring in practice).

MACs can be used, without the use of any additional mechanisms, to
provide data integrity and symmetric data origin authentication (the source
of a message), as well as identification in symmetric-key schemes. That is,
MAC allows message authentication by symmetric techniques.

Distinction should be made between the use of a MAC algorithm and that
of a MDC, where MAC is with a secret key included as part of its message
input.

It is generally assumed that the algorithmic specification of a hash func-
tion is public knowledge. Thus in the case of MDCs, given a message as
input, anyone may compute the hash value, and in the case of MACs, given
a message as input, anyone with knowledge of the key may compute the hash
value.

A message authentication scheme does not necessarily constitute a digital
signature scheme. In some sense, message authentication is similar to a digital
signature. The difference between these two is that in the setting of message
authentication it is not required that a “third” party (who may be the dis-
honest adversaries) should be able to verify the validity of authentication
tags produced by the designed users[2].

Table 2.1 indicates various types of algorithms commonly used to achieve
the specified cryptographic objectives. The classification given requires spec-
ification of both the type of algorithm (e.g., encryption vs. signature) and
the intended use (e.g., confidentiality vs. entity authentication).

Data origin authentication is a type of authentication whereby a party
is corroborated as the (original) source of specified data created at some
(typically unspecified) time in the past.



2.2 Cryptographic primitives 23

Table 2.1 Types of algorithms commonly used to meet specified objectives

Cryptographic objective (usage) symmetric-key public-key

confidentiality encryption encryption

data integrity MDC signature

message authentication MAC signature

data origin authentication MAC signature

non-repudiation / signature

key transport encryption encryption

key agreement various methods Diffie-Hellman

entity authentication
(by challenge-response protocols)

1. MAC
2. encryption

1. signature
2. decryption
3. customized

Message authentication is a term used analogously with data origin au-
thentication. It provides data origin authentication with respect to the orig-
inal message source (and data integrity, but no uniqueness and timeliness
guarantees).

In deed, data origin authentication implicitly provides data integrity since,
if the message was modified during transmission, the message sender would no
longer be the originator. Message authentication itself provides no timeliness
guarantees, while entity authentication involves corroboration of a claimant’s
identity at the current instant in time through actual communications with
an associated verifier during execution of the protocol itself.

Encryption may provide privacy of keying material in key establishment
protocols, while signature and MAC may provide data integrity, message
authentication and data origin authentication.

We use the terms identification and entity authentication synonymously
throughout this book. Elsewhere in the literature of cryptography, identifi-
cation sometimes implies only a claimed or stated identity whereas entity
authentication suggests a corroborated identity. In many applications, the
motivation for identification is to provide access service allowing resource us-
age to be tracked to identified entities, and to facilitate appropriate billing.
In general, an authentication is considered flawed if a principal concludes a
normal run of the protocol with its intended communication partner while
the intended partner would have a different conclusion.

Identification schemes are closely related to, but simpler than digital sig-
nature schemes, which involve a variable message and typically provide a
non-repudiation feature allowing disputes to be resolved by judging after the
fact. Identifications do not have “lifetimes” as signatures do and a claimed
identity is either corroborated or rejected immediately, with associated priv-
ileges or access either granted or denied in real time.

One of the primary purposes of entity authentication is to facilitate ac-
cess control to a resource, when an access privilege is linked to a particular
identity.

Entity authentication techniques may be divided into three main cate-
gories, depending on which of the following securities is based on[1]:



24 2 Background of Cryptographic Protocols

1) Something known. Examples include standard passwords, Personal
Identification Numbers (PINs), and the secret or private keys.

2) Something possessed. It is typically a physical accessory, resembling a
passport in function. Examples include magnetic-striped cards, smart cards
(also called chipcards or IC cards), and hand-held customized calculators
(also called password generators, or Tokencard, such as RSA Secure ID)
which provide time-variant passwords or passcodes. The generator usually
contains a device-specific secret key.

3) Something inherent (to a human individual). This category includes
methods which make use of human physical characteristics and involuntary
actions (biometrics), such as handwritten signatures, and fingerprints.

The important points in practice about cryptographic primitives are:
1) Public-key cryptography facilitates efficient signatures (particularly

non-repudiation) and key management.
2) Symmetric-key cryptography is efficient for encryption and some data

integrity applications.

2.3 Cryptographic protocols

This section gives some background knowledge about the cryptographic pro-
tocols including Message-driven protocol, secured channel, etc.

A communication protocol or protocol is a collection of interactive com-
munication procedures that specify a particular processing of incoming mes-
sages and the generation of outgoing messages. A communication procedure
including a sequence of determined steps runs between or among co-operative
parties.

A Message-driven protocol is initially triggered at a party by an external
“call” and later by the arrival of messages. Upon each of these events, and
according to the protocol specification, the protocol processes information
and may generate and transmit a message, and/or wait for the next message
to arrive.

Note that message-driven protocols are asynchronous in nature, and this
reflects the prevalent form of communication in today’s networks.

Recall that a cryptographic protocol is a distributed algorithm defined by
a sequence of steps precisely specifying the actions required of two or more
entities to achieve a specific security objective.

A mechanism is a more general term encompassing protocols, includ-
ing algorithms (specifying the steps followed by a single entity), and non-
cryptographic techniques (e.g., hardware protection and procedural controls)
to achieve specific security objectives.



2.3 Cryptographic protocols 25

2.3.1 Secure channel

Definition 2.36 A channel is a means of conveying information from one
entity to another.

1) A physically secure channel (or secure channel) is the one that is not
physically accessible to the adversary. Some channels are assumed to be phys-
ically secure, and these include trusted couriers, personal contact between
communicating parties, and a dedicated communication link, for example.

2) An unsecured channel (or open channel, or unprotected channel) is the
one from which parties other than those for which the information is intended
can reorder, delete, insert, or read.

3) A secured channel (or protected channel,or authenticated channel) is
the one from which an adversary does not have the ability to reorder, delete,
insert, or read. A secured channel may be secured by physical or crypto-
graphic techniques. Secure channel is a type of secured channel.

Definition 2.37 A session is a copy of a protocol run or a protocol instance
at a party. Several copies of protocol run (i.e., interactive subroutines or other
protocols) may be simultaneously instantiated by one party.

Technically, a session is an interactive subroutine executed inside a party.
Each session is identified by the party that runs it, the parties with whom
the session communicates and a session-identifier. The session-identifiers are
used in practice to bind transmitted messages to their corresponding sessions.

A session could be completed at one party but not necessarily at the other.
Each run of a protocol at a given party creates a local state for that session
during execution. Typically, the local state of a session is mostly independent
of local states of other sessions. When a session ends its run and outputs a
key in a key establishment protocol, we call this session a complete one and
assume that its local state is erased.

A session key is an ephemeral secret whose use is restricted to a short
time period such as a single telecommunications connection (or a session),
after which all trace of it is eliminated.

Key establishment protocols result in a shared ephemeral session key or
shared ephemeral session key parts for subsequent communications. Motiva-
tion for using ephemeral keys includes the following:

1) to limit available ciphertext (under a fixed key) for cryptanalytic attack;
2) to limit exposure, with respect to both time period and quantity of

data, in the event of (session) key compromise;
3) to avoid long-term storage of a large number of distinct secret keys (in

the case where one terminal communicates with a large number of others) by
creating keys only when actually required;

4) to create independence across communication sessions or applications.
It is also desirable in practice to avoid the requirement of maintaining state
information across sessions.



26 2 Background of Cryptographic Protocols

2.3.2 Principals

An entity (or a party) is someone or something that sends, receives, or manip-
ulates information over point-to-point channels. An entity may be a person,
a computer terminal, etc., or even an adversary.

Definition 2.38 A communicating entity or party is formally called princi-
pal in key establishment protocol with a unique name. They are probabilistic
polynomial-time users, processes, or machines in current cryptographic liter-
ature, and we usually denote principals by P1, P2, ..., Pn, etc.

Definition 2.39 A trusted third party (TTP) is an entity in the network
who is trusted by all other entities. This party is referred to by a variety of
names depending on the role it plays: trusted third party, trusted server,
authentication server, key distribution center (KDC), key translation center
(KTC), and certification authority (CA).

Definition 2.40 A key translation center (KTC) is a trusted server which
allows two parties A and B, which do not directly shared keying material,
to establish a secure communication through use of the long-term keys KAT

and KBT they respectively shared with TTP T .

In symmetric-key case, each entity shares a distinct symmetric key with
the TTP. These keys are assumed to have been distributed over a secured
channel. In public-key case, each entity knows the public-key of the TTP.
The TTP carefully verifies the identity of each entity, and signs a message
consisting of an identifier and the entity’s authentic public-key.

From a communication viewpoint, TTPs may be classified based on their
real-time interactions with other communicating entities such as A and/or
B.

1) In-line TTP: it is an intermediary TTP, serving as the real-time means
of communication between A and B.

2) On-line TTP: it is a TTP involved in real-time communication during
each protocol instance (communicating with A and/or B), but A and B
communicate directly rather than through T .

3) Off-line TTP: it is a TTP not involved in real-time communication
during a protocol instance, but T provides or prepares information a priori,
which is available to A and/or B and the priori is used during protocol
execution.

In-line third parties are of particular interest when A and B belong to
different security domains or cannot otherwise interact directly due to non-
interoperable security mechanisms. Examples of in-line third parties include
KDCs or KTCs which provide the communication paths between A and B,
as in IEEE 802.11i[3].

On-line third parties are widely used in key establishment protocols.
Examples include Needham-Schroeder shared key protocol[4], Woo-Lam



2.3 Cryptographic protocols 27

protocol[5] etc.
A typical example of an off-line third party is a certification authority

(CA) producing public-key certificates and placing them in a public directory;
here, the directory owner may be an on-line third party, but the certification
authority is not. Protocols with off-line third parties usually involve fewer
real-time message exchanges, and do not require real-time availability of the
third parties.

Definition 2.41 A certificate is a TTP singed message, which binds the
identity of an entity to its public-key. If the signing key (private key) of the
TTP is compromised, all communications become insecure.

In this book, we suppose the honest entity TTP itself is uncondition-
ally secure, while the TTP could be impersonated by an adversary with the
requirement that the TTP machine itself has not been crashed.

In order for an entity B to verify the authenticity of the public-key of an
entity A, B must have an authentic copy of the public signature verification
function of the TTP. For simplicity, in this book, we assume that the au-
thenticity of this verification function is provided to B by noncryptographic
means, for example by B obtaining it from the TTP in person.

Definition 2.42 Certificate Authority (CA) is a trusted third party who is
responsible for establishing and vouching for the authenticity of the public-
key bound to the subject entity. CA’s responsibility includes binding public-
keys to distinguished names through signed certificates, managing certificate
serial numbers, and certificate revocation.

The authenticity of the CA’s public-key may be originally provided by
non-cryptographic means including personal acquisition, or through trusted
couriers; authenticity of the CA’s public-key is required, but not secrecy.
This CA public-key allows any system user, through certificate acquisition
and verification, to transitively acquire trust in the authenticity of the public-
key in any certificate signed by that CA.

Definition 2.43 A public-key certificate is a data structure consisting of
a data part and a signature part. The data part contains cleartext data
including, as a minimum, a public-key and a string identifying the subject
party to be associated therewith. The signature part consists of the digital
signature of a certification authority over the data part, thereby binding the
subject entity’s identity to the specified public-key.

2.3.3 Time-variant parameters

Definition 2.44 A time-variant parameter (TVP), also called freshness
component, is a value used no more than once for the same purpose. It typ-



28 2 Background of Cryptographic Protocols

ically serves to prevent (undetectable) replay. It is sometimes called nonce,
unique number, or non-repeating value.

Often, to ensure protocol security, the integrity of such TVPs must be
guaranteed (e.g., by cryptographically binding them with other data via a
MAC or digital signature algorithm).

Uniqueness means to be unique, and it is often required only within a
given key lifetime or time window.

A uniqueness guarantee may be provided by a TVP such as a timestamp
or a never-repeated sequential counter. The never-repeated sequential counter
may not provide (real-time) timeliness, and thus are not appropriate to entity
authentication.

Definition 2.45 Timeliness (or freshness) typically means to be recent, it
is in the sense of having originated subsequent to the beginning of the current
protocol instance.

A timeliness guarantee may also be provided using TVPs such as times-
tamps. Note that timeliness alone does not rule out interleaving attacks using
parallel sessions.

Three main classes of time-variant parameters are below:
1) Random number. Random numbers may be used to provide uniqueness

and timeliness assurances, and to preclude certain replay and interleaving
attacks on protocols. In a challenge-response mechanism, the challenger must
temporarily maintain per-connection short-term state information, but only
until the response is verified. The term nonce is most often used to refer
to a “random” number in a challenge-response mechanism, but the required
randomness properties vary.

In protocol descriptions, “choose a random number” is intended to express
“pick a number with uniform distribution from a specified sample space” or
“select from a uniform distribution”.

2) Sequence number (or serial number, or counter value). A sequence num-
ber serves as a unique number identifying a message, and is typically used
to detect message replays. Forced delays of messages with sequence number
are not detectable in general. It may also be used to provide timeliness in
conjunction with the maintenance of pairwise (sender, receiver) state infor-
mation. As a consequence of the overhead and synchronization maintenance
necessary, sequence numbers are most appropriate for smaller, and closed
groups.

3) Timestamp. Timestamps may be used to provide timeliness and unique-
ness guarantees, to detect message replays and forced delays. It provides time-
liness in conjunction with distributed timeclocks. Timestamp-based protocols
require that timeclocks be both loosely synchronized (fixing clock drift) and
secured from modification.



2.3 Cryptographic protocols 29

2.3.4 Challenge and response

A challenge is typically a nonce chosen by one entity at the outset of the
protocol and subsequent challenges will differ from each other.

Definition 2.46 A challenge-response protocol (or Challenge-response
mechanism) is that one entity (the claimant, or the sender) “proves” its
identity to another entity (the verifier, the receiver) by demonstrating one’s
possession of a secret to be associated with the claimant, without revealing
the secret itself to the verifier during the protocol.

This is done by providing a response to a time-variant challenge, where
the response depends on both the claimant’s secret and the time-variant chal-
lenge. Answering a challenge in challenge-response protocols requires some
type of computing device and secure storage for long-term keying material.

Challenge-response mechanisms may be implemented via symmetric-key
techniques, public-key techniques, and zero-knowledge techniques. Exam-
ples of challenge-response protocols based on symmetric-key encryption are
the Kerberos protocol[6] and the Needham-Schroeder shared-key protocol[4].
Challenge-response mechanisms may also be implemented by keyed hash
functions which could provide data origin authentication security service sim-
ilar to a symmetric-key block cipher MAC, e.g., IEEE 802.11i[3].

2.3.5 Other classes of cryptographic protocols

Besides the classification of cryptographic protocols in Chapter 1, there exist
other classifications. For example, cryptographic protocols are classified by
time-variant parameters (TVPs) used:

1) Challenge-response protocols: One entity includes a (new) time-variant
challenge, mostly a random number, in an outgoing message, then other
entity provides a response to this challenge in the next protocol message,
where the response depends on both the entity’s secret and the challenge.
This protocol instance is then deemed to be fresh based on the reasoning
that the random number links the two messages. Typically the protocol in-
volves one additional message compared to timestamp-based protocols, and
the challenger must temporarily maintain state information, but only until
the response is verified.

2) Timestamp-based protocols: timestamps are in conjunction with dis-
tributed timeclocks in a timestamp-based cryptographic protocol. Timestamp-
based protocols require that timeclocks be both synchronized and secured.
Timestamps in protocols may typically be replaced by a random number
challenge plus a return message.

3) Sequence number-based protocols: sequence numbers are in conjunc-
tion with the maintenance of pairwise (claimant, verifier) state information in



30 2 Background of Cryptographic Protocols

a sequence number-based protocol. Sequence number should be guaranteed
to be increasing and unique.

In addition, classification of cryptographic protocols can be also based
on the use of trusted third party (cryptographic protocols with trusted third
party; cryptographic protocols without trusted third party), or based on the
cryptosystems used (symmetric-key based protocols and public-key based
protocols).

2.4 Security of cryptographic protocols

This section gives some background knowledge about the security of crypto-
graphic protocols including attack models, security models, analysis methods
for protocol security, etc.

2.4.1 Attacks on primitives

Some generic types of attacks on encryption schemes, signature schemes,
message authentication code schemes are given below.

1. Classification of attacks on encryption schemes

The following are some generic types of attacks on encryption schemes:
1) Ciphertext-only attack. The adversary (or cryptanalyst) tries to deduce

the decryption key or plaintext by only observing ciphertext. Any encryption
scheme vulnerable to this type of attack is considered to be completely inse-
cure.

2) Known-plaintext attack. The adversary tries to deduce the decryption
key or plaintext in possession of a quantity of plaintext and corresponding
ciphertext.

3) Chosen-plaintext attack. The adversary chooses plaintext and is then
given corresponding ciphertext. Subsequently, the adversary tries to recover
plaintext corresponding to previously unseen ciphertext by any information
deduced.

4) Adaptive chosen-plaintext attack. It is a chosen-plaintext attack wherein
the choice of plaintext may depend on the ciphertext received from previous
requests.

5) Chosen-ciphertext attack. The adversary chooses ciphertext and is then
given corresponding plaintext. Subsequently, the adversary tries to recover
plaintexts corresponding to different ciphertext by any information deduced.

6) Adaptive chosen-ciphertext attack. It is a chosen-ciphertext attack
where the choice of ciphertext may depend on the plaintext received from
previous requests.



2.4 Security of cryptographic protocols 31

2. Classification of attacks on signature schemes

The objective of the attacker on signature schemes is to compute the pri-
vate key information of the signer, or to forge signatures, that is, to produce
signatures which will be accepted as those of some other entity. The following
are some generic types of attacks on signature schemes:

1) Key-only attack. The adversary tries to produce signatures which will
be accepted as those of some other entity while the adversary knows only the
signer’s public-key.

2) Known-message attack. The adversary tries to forge signatures in pos-
session of a quantity of signatures for a set of messages which are known to
the adversary but not chosen by him.

3) Chosen-message attack. The adversary obtains valid signatures from
a chosen list of messages before attempting to break the signature scheme.
This attack is non-adaptive in the sense that messages are chosen before any
signatures are seen.

4) Adaptive chosen-message attack. The adversary uses the signer as an
oracle, and he may even request signatures of messages which depend on
previously obtained signatures or messages.

3. Classification of attacks on message authentication codes

hk(x) is the message authentication code given the input value key k and
some text x. To attack a MAC means: given one or more pairs (xi, hk(xi)),
without prior knowledge of a key k, the adversary can compute a new text-
MAC pair (x, hk(x)) for some text x �= xi. The following are some generic
types of attacks on message authentication codes:

1) Known-text attack. The adversary obtains one or more text-MAC pairs
(xi, hk(xi)).

2) Chosen-text attack. The adversary chooses xi and obtains more text-
MAC pairs (xi, hk(xi)).

3) Adaptive chosen-text attack. The adversary may choose xi to obtain
new text-MAC pair (xi, hk(xi)) based on the results of prior queries.

Some practical applications may limit the number of interactions allowed
for text-MAC pair queries over a fixed period of time, or may be designed so
as to compute MACs only for inputs created within the application itself; but
it is practical to allow access to an unlimited number of text-MAC pairs, or
to allow MAC verification of an unlimited number of messages and to accept
any with a correct MAC for further processing.

2.4.2 Attacks on protocols

Definition 2.47 A protocol failure (or mechanism failure) occurs when a
mechanism fails to meet the goals for which it is intended, in a manner



32 2 Background of Cryptographic Protocols

whereby an adversary gains advantage not by breaking an underlying primi-
tive such as an encryption algorithm directly, but by manipulating the pro-
tocol or mechanism itself.

That is, the underlying primitive has not been compromised but the pro-
tocol has failed to provide the intended security service adequately.

An adversary in a key establishment protocol may pursue many strategies,
including attempting to:

1) Deduce a session key using information gained by eavesdropping.
2) Participate covertly in a protocol initiated by one party with another,

and influence it, e.g., by altering messages so as to be able to deduce the key.
3) Initiate one or more protocol executions (possibly simultaneously), and

combine (interleave) messages from one with another, so as to masquerade
as some party or carry out one of the above attacks.

4) Without being able to deduce the session key itself, deceive a legitimate
party regarding the adversary as the identity of intended party with which it
shares a key.

In a unauthenticated key establishment protocol, impersonation is usually
possible. In an entity authentication protocol, where there is no session key to
attack, an adversary’s objective is to deceive a legitimate party to believe that
the protocol has been run successfully with a party other than the adversary.

The following are some generic types of attacks on cryptographic proto-
cols:

1) Known-key attack. The adversary obtains some keys used previously
and then uses this information to determine new keys.

2) Replay. The adversary records a communication session and replays
the entire session, or a portion thereof, at some later point in time.

3) Impersonation. The adversary personates the identity of one of the
legitimate parties in a network.

4) Dictionary. This is usually an attack against passwords. Typically,
a password is stored in a computer file as the image of an unkeyed hash
function. When a user logs on and enters a password, it is hashed and the
image is compared with the stored value. An adversary can take a list of
probable passwords, hash all entries in this list, and then compare this with
the list of true encrypted passwords in file with the hope of finding matches.

5) Forward search. This attack is similar in spirit to the dictionary attack
and is used to decrypt messages.

6) Interleaving attack. This type of attack usually involves parallel sessions
and impersonation in an authentication protocol.

2.4.3 Security of protocols

It is typically assumed that protocol messages are transmitted over unsecured



2.4 Security of cryptographic protocols 33

channels and the adversary has complete control of the data therein, with the
ability to record, alter, delete, insert, redirect, and reuse the past or current
messages, and inject new messages. In general a protocol has the following
properties:

1) Operational property. In the absence of active adversaries and commu-
nication errors, honest participants who comply with its specification always
complete the protocol. For example, for a key establishment protocol, the
honest participants always compute a common key and corroborate the iden-
tities of the parties with whom the key is shared.

2) Completeness property. In the absence of active adversaries and com-
munication errors, a protocol is complete if, given an honest claimant and
an honest verifier, the protocol succeeds with overwhelming probability (i.e.,
the verifier accepts the claimant’s claim or they both have the knowledge of
the new session key). The definition of overwhelming generally implies that
the probability of failure is not of practical significance.

3) Soundness property. An interactive proof of a protocol is sound if there
exists an expected polynomial-time algorithmM with the following property:
if a dishonest prover (impersonating A) can, with non-negligible probability,
successfully execute the protocol with B, then M can be used to extract A’s
secret from this prover’s knowledge with overwhelming probability.

Suppose all protocols are operational and complete in this book, which is
the basic correctness requirement of protocols.

1. Attack models

The following are some types of attack models:
1) Passive attack. The adversary is passive when facing a ciphertext, i.e.,

all that the adversary could do about a ciphertext is eavesdropping.
2) Indistinguishable chosen-plaintext attack (IND-CPA). In this attack

model, the adversary is allowed to obtain an assistance in the encryption
mode to break the target cryptosystems.

3) Indistinguishable chosen-ciphertext attack (IND-CCA). In this attack
model, the adversary is allowed to obtain a conditional assistance in the de-
cryption mode to break the target cryptosystems. Other synonymous names
are lunchtime attack, midnight attack or indifferent chosen-ciphertext attack.

4) Indistinguishable adaptive chosen-ciphertext attack (IND-CCA2). In
this attack model, the adversary is allowed to obtain an assistance in the de-
cryption mode to break the target cryptosystems. Other synonymous names
are small-hours attack.

2. Security models

Definition 2.48 (All-or-nothing security) For a given ciphertext output
from a given encryption algorithm, the adversary either succeeds with ob-
taining the whole block of the targeted secret, or fails with nothing. Here
“all” means to find the whole plaintext block which in general has a size stip-
ulated by a security parameter of the cryptosystem; “nothing” means that



34 2 Background of Cryptographic Protocols

the adversary does not have any knowledge about the targeted secret before
or after its attacking attempt.

All-or-nothing secrecy is unfit for the real world since the guarantee of
the secrecy is valid only if the attacker is passive, i.e., all that the attacker
could do about a ciphertext is eavesdropping. Hence, if a cryptosystem is
all-or-nothing secure, then it is a “textbook crypto”. Numerous attacks have
been discovered in practice on the textbook cryptos.

Definition 2.49 (Semantic security, IND-CPA security) A cryptosystem
with a security parameter k is said to be semantically secure: after the IND-
CPA attack game being played with any polynomially bounded adversary,
the advantage Adv for the adversary Malice to distinguish the two plaintexts
chosen by the adversary is negligible. The semantic security is also called
the security for indistinguishable chosen-plaintext attack, for short IND-CPA
security.

Informally speaking, semantic security means that whatever is efficiently
computable about the plaintext given the ciphertext, is also efficiently com-
putable without the ciphertext. The notion of the IND-CPA security captures
the intuition that any polynomially bounded adversary should not be able to
obtain any apriori information about a plaintext.

Definition 2.50 (IND-CCA security) A cryptosystem with a security pa-
rameter k is said to be secure against an indistinguishable chosen-ciphertext
attack (IND-CCA security): after the IND-CCA attack game being played
with any polynomially bounded adversary, the advantage Adv for the ad-
versary Malice to distinguish the two plaintexts chosen by the adversary is
negligible.

Lunchtime attack is a quite restrictive attack model in that the decryption
assistance provided to Malice is only available in a short period of time, which
is not a reasonable or realistic scenario. In reality, naive users will remain
permanently naive, and Malice will definitely strike back, probably even in
the afternoon tea-break time[2]!

Definition 2.51 (IND-CCA2 security) A cryptosystem with a security pa-
rameter k is said to be secure against an indistinguishable adaptive chosen-
ciphertext attack (IND-CCA2 security): after the CCA2 attack game being
played with any polynomially bounded adversary, the advantage Adv for the
adversary Malice to distinguish the two plaintexts chosen by the adversary
is negligible.

Most cryptosystems which are IND-CPA secure may be particularly vul-
nerable in IND-CCA (or IND-CCA2) model. In CCA and CCA2 models,
an adversary (now he is Malice) may get decryption assistance, that is, he
may be in a certain level of control of a “decryption box” and so may have
some ciphertext of his choice to be decrypted for him even though he does



2.4 Security of cryptographic protocols 35

not have possession of the decryption key. Such an assistance is treated as
a “cryptanalysis training course” provided to Malice in order to ease his
attack job. These modes of attacks, particularly CCA2 model, are realistic
in many applications of public-key cryptography[7]. Nowadays, IND-CCA2
is becoming the standard and fit-for-application security notion for public-
key cryptosystems[2]. New public-key encryption schemes need to have this
security quality for general purpose applications in real world setting.

2.4.4 Analysis methods for protocol security

We identify two distinct approaches for analyzing cryptographic protocols:
Informal approaches and formal approaches (or formalisms). Formal
approaches are a natural extension to informal ones and they are more im-
portant in protocol security analysis field. The following are some types of
analysis methods for protocol security[1, 2, 7, 8].

1. Ad hoc and practical analysis

It is also called heuristic security. Protocols are typically designed to
counter standard attacks, and shown to follow accepted principles. This ap-
proach, perhaps, is the most commonly used and practical one, but it may
provide least satisfying of protocol security. Claims of security in this class
generally remain questionable, and unforeseen attacks remain a threat.

2. Complexity-theoretic analysis

It is also called computational security or computationally secure. An ap-
propriate model of computation is defined, and adversaries are modeled as
having polynomial computational power (they may mount attacks involving
time and space polynomial in the size of appropriate security parameters).
Security analysis of this mathematical type helps a protocol designer or an-
alyzer to consider using correct or more precise cryptographic services, and
so protocol flaws can be avoided.

Provable security, also called provably secure, may be considered as part
of a special sub-class of the computational security. Provable Security is a for-
mal method for proving the security of cryptographic schemes, in which the
difficulty of breaking a particular scheme is formally related to that of solving
a widely believed computational hard problem, such as integer factorization
or the computation of discrete logarithms. Random oracle is a very powerful
and imaginary hash function with the “mixing-transformation” property: for
any input, the distribution of the output hash values is uniform in the func-
tion’s output space. In provable security, random oracle is used to construct
public-key encryption schemes out of using the basic and popular public-key
cryptographic primitives.

Provable security is the most commonly used analysis method in com-



36 2 Background of Cryptographic Protocols

putational security. Hence, in this book, we typically use provable security
to refer to computational security. It is often required for a scheme to be
secure in this class, and most of the best known public-key and symmetric
key schemes in current use are in it.

3. Information-theoretic analysis

This approach uses mathematical proofs involving entropy relationships
to prove that protocols are unconditionally secure. An adversary is assumed
to have unlimited computational resources, and the question is whether or
not there is enough information available to defeat the system. Uncondi-
tional security for encryption systems is also called perfect secrecy. While
unconditional security is ultimately desirable, this approach is not applicable
to most practical schemes. This approach cannot be combined with com-
putational complexity arguments because it allows unlimited computation,
while computational complexity requires that the adversaries should only
have polynomial computational power.

4. Symbolic manipulation analysis

It is also called formal methods, verification methods or formalisms. This
approach uses a set of abstract symbols to express security properties and
these abstract symbols can be manipulated. The so-called approaches include
formal logic systems, term re-writing systems, expert systems, and various
other methods which combine algebraic and state-transition techniques.

On one hand, symbolic formal analysis methods are simple but have
proven to be of utility in finding flaws and redundancies in protocols, and
some are automatable to varying degrees. On the other hand, the “proofs”
provided are proofs within the specified formal system, and cannot be inter-
preted as absolute proofs of security. For example, the security of symbolic
view regards an encryption as a deterministic function. The foundations for
formal cryptology need to be strengthened.

2.5 Communication threat model

This section gives a brief introduction to the communication threat model.

2.5.1 Dolev-Yao threat model

Dolev and Yao propose a communication threat model[9], which has been
widely accepted as the standard threat model for cryptographic protocols.

The Dolev-Yao threat model supposes that Malice, the attacker, controls
the entire communication network, so Malice is able to observe all message
traffic over the network, to intercept, read, modify or destroy messages. Fur-



2.5 Communication threat model 37

ther more, Malice may perform transformation operations on the intercepted
messages (such as encryption or decryption as long as he has in his pos-
session of the correct keys), and send his messages to other principals by
masquerading as some principal.

The Dolev-Yao threat model requires very few quantity assumptions on
the behavior of the adversary. Here are the basic assumptions for the protocol
environment in Dolev-Yao threat model.

1) In a perfect public-key system, as long as
— the one-way functions used are unbreakable;
— the public directory, including all the text m ∈ M and its corresponding

ciphertext Ee(m) pairs, is secure and cannot be tampered with;
— everyone has access to the encryptions under public-key e;
— only the public-key owner has the corresponding private key d.

2) In a two-party protocol, only the two users who wish to communicate
are involved in the transmission process; the assistance of a third party in
decryption or encryption is not needed.

3) In a uniform protocol, the same format is used by every pair of users
who wish to communicate.

4) The adversaries are “active” eavesdroppers: someone who first taps the
communication line to obtain messages will try everything he can to discover
the plaintext. More precisely, the followings are assumed:
— He can obtain any message passing through the network.
— He is a legitimate user of the network, and thus particularly can initiate

a conversation with any other user.
— He will have the opportunity to become a receiver to any user.
— He can send messages to any principal by impersonating any other prin-

cipal.
Recall that Malice only has polynomial computational power, so he has

the following characteristics:
— Malice cannot guess a random number which is chosen from a sufficiently

large space.
— Without the correct secret (or private) key, Malice cannot retrieve plain-

text from given ciphertext, and cannot create valid ciphertext from given
plaintext.

— Malice is not in control of many private areas of the computing envi-
ronment, such as accessing the memory of a entity’s offline computing
device.

2.5.2 Assumptions of protocol environment

The Dolev-Yao-like threat model will be applied to the protocol analysis in
this book, where Malice is assumed to have the entire control of the vulnerable
network and his computational capability is polynomially bounded.



38 2 Background of Cryptographic Protocols

To clarify the threats that cryptographic protocols may be subject to, and
to motivate the need for specific protocol characteristics, precise assumptions
of protocol environment in our protocol analysis are given.

1. Assumptions of cryptosystems

1) Suppose cryptographic primitives are perfect. That is, when exam-
ining the security of protocols, it is assumed that the underlying crypto-
graphic mechanisms used, such as encryption algorithms and digital signa-
tures schemes, are secure in the protocol run. An adversary is hypothesized
to be not a cryptanalyst attacking the underlying primitives such as encryp-
tion algorithms directly, or rather the one attempting to subvert the protocol
objectives by manipulating the protocol or mechanism itself.

Suppose cryptographic primitives are unbreakable in protocol analysis,
so an adversary gains advantages not by breaking an underlying primitive
such as an encryption algorithm directly, but by manipulating the protocol
or mechanism itself.

Recall that security for indistinguishable adaptive chosen-ciphertext at-
tack (IND-CCA2) is fit-for-application in a practical cryptographic setting,
and it can be mathematically specified and proved independent of qualifying
assumptions. Hence, we suppose our “perfect” cryptographic primitives are
practical primitives which are IND-CCA2 secure. Namely, under IND-CCA2,
the failures in a cryptographic protocol are not in any way related to the
strength or weakness of the primitive used, but related to the protocol logic
flaws.

2) The secret (or private) key d of the particular key pair (e, d), in which
the communication parties are being used, should be kept secret while com-
municating securely. Without the correct private key, Malice cannot be able
to retrieve plaintext from given ciphertext, and cannot create valid ciphertext
from given plaintext.

History has shown that maintaining the secrecy, the secret (or private)
key, of the encryption and decryption transformations is very difficult indeed.

3) Suppose that a legitimate party is either totally corrupted or totally
secure. That is, the secrecy or the local state for a session during execution
is either totally known by the adversary or totally not.

In practice, it is a common case that the adversary finds part of the local
state or other information, and then he can deduce the decryption key or
recover the desired plaintext. However, we omit this information exposure
case for it is out of the scope of this book: analyzing the security of the
protocol itself.

4) Suppose that each party has his own private key and the public-keys of
other parties (including the adversary) in public-key case; Suppose that each
party shares long-term keys with co-operative principals or the trusted third
party in symmetric-key case. Furthermore, private keys and shared keys are
commonly assumed to be too long to guess in a computationally feasible way.

In common, public-keys or long-term keys are deployed safely before the



2.5 Communication threat model 39

protocol run via authenticated channel or even traditional communication
means. However, in some special cases, public-keys or long-term keys may
also be transmitted in a cryptographic protocol.

5) Malice cannot guess a random number which is chosen from a suffi-
ciently large space.

2. Assumptions of receiving messages

The receiving information of a participant is referred to as bit string.
Further decision should be made to determine whether this bit string is a
message or not. Suppose each entity can distinguish the sentence structure
of a message from random bit strings and has the ability to recognize a basic
message.

3. Assumptions of participants

Suppose each participant, given an honest claimant and an honest veri-
fier, will comply with the determined protocol steps, and the protocol will
succeed with overwhelming probability (i.e., for key establishment protocol,
the verifier accepts the claimant’s claim or they both have the knowledge of
the new session key).

4. Assumptions of encryption and decryption

Suppose the encryption and decryption manipulation on a message are
inverse functions, that is, they obey a set of term-rewriting rules. For example,
Dd(Ee(m)) = m for all m ∈ M , where public-key e and private key d are
paired keys in a public-key system, and symmetric keys e and d are equal
keys (e = d) in a symmetric-key system.

5. Assumptions of adversary

In general, it is assumed that Malice is very clever in manipulating com-
munications over the open network. His manipulation techniques are unpre-
dictable because they are unspecified.

Malice is able to observe all message traffic over the network, to inter-
cept, read, modify or destroy messages at will, to perform transformation
operations on the intercepted messages, and to send his messages to other
principals by masquerading as some principal. However, Malice’s computa-
tional capability is polynomially bounded, therefore there is a set of “words”
that Malice does not know naturally at the beginning of a protocol run, this
set of words can be secret messages or cryptographic keys for which a protocol
is meant to protect.

Malice represents a coalition of bad guys and thereby may use a large
number of computers across the open network in parallel. Hence, an adversary
usually means a group of attackers in this literature.

Furthermore, suppose the attacker can perform a kind of cryptanalysis
training course that helps him to obtain a conditional assistance, in the de-
cryption mode or encryption mode, and makes him more experienced in the



40 2 Background of Cryptographic Protocols

future.

2.5.3 Expressions of cryptographic protocols

We adopt the formal notation expressions in the Dolev-Yao-like threat model,
which distinguish the underlying primitives from the cryptographic protocols
explicitly and the security of a cryptographic protocol is discussed under a
“perfect” primitive.

One message procedure step usually is

Message 2 A→ B {m}KAB .

“Message 2” means that this is the second message exchanged in a protocol.
“A → B : {m}KAB” indicates that the protocol participant A has sent the
message “{m}KAB” to the opponent protocol participant B. “→” shows that
the message is sent from the arrow end terminal A to the arrow top terminal
B. m is a text where m ∈M , KAB is a long-term key between the principals
A and B. {m}KAB is an encryption of m under key KAB.

I(A) (or I(B)) is the adversary Malice I impersonating A (or B respec-
tively).

References

[1] Menezes A, van Oorschot P, Vanstone S (1996) Handbook of Applied Cryp-
tography. CRC Press, New York

[2] Mao W (2004) Modern Cryptography: Theory and Practice. Prentice Hall,
New Jersey

[3] IEEE Std 802.11i-2004. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Medium Access Control (MAC) Secu-
rity Enhancements. July 2004

[4] Needham RM, Schroeder MD (1978) Using Encryption for Authentication in
Large Network of Computers. Communication of the ACM 21(12): 993 – 999

[5] Woo TYC, Lam SS (1992) Authentication for Distributed Systems. Com-
puter 25(1): 39 – 52

[6] Miller SP, Neuman BC, Schiller JI, Saltzer JH (1987) Kerberos Authenti-
cation and Authorization System. Paper Presented at the Project Athena
Technical Plan Section E.2.1. MIT, Boston

[7] Stallings W (2006) Cryptography and Network Security: Principles and
Practice, 4th edn. Prentice Hall, New Jersey

[8] Goldreich O (2003) Foundations of Cryptography. Cambridge University
Press, New York

[9] Dolev D, Yao AC (1983) On the Security of Public-key Protocols. IEEE
Transactions on Information Theory 29(2): 198 – 208


	2 Background of Cryptographic Protocols
	2.1 Preliminaries
	2.1.1 Functions
	2.1.2 Terminology

	2.2 Cryptographic primitives
	2.2.1 Cryptology
	2.2.2 Symmetric-key encryption
	2.2.3 Public-key encryption
	2.2.4 Digital signatures
	2.2.5 Hash Functions
	2.2.6 Message authentication

	2.3 Cryptographic protocols
	2.3.1 Secure channel
	2.3.2 Principals
	2.3.3 Time-variant parameters
	2.3.4 Challenge and response
	2.3.5 Other classes of cryptographic protocols

	2.4 Security of cryptographic protocols
	2.4.1 Attacks on primitives
	2.4.2 Attacks on protocols
	2.4.3 Security of protocols
	2.4.4 Analysis methods for protocol security

	2.5 Communication threat model
	2.5.1 Dolev-Yao threat model
	2.5.2 Assumptions of protocol environment
	2.5.3 Expressions of cryptographic protocols

	References




