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Preface

A network protocol is a formal description of digital message formats, and
of the rules for exchanging those messages in or between computing systems.
A cryptographic protocol (also called a security protocol) is a kind of spe-
cial network protocol that performs a security-related function and applies
cryptographic methods.

Network protocols are typically developed in layers, with each layer re-
sponsible for a different aspect of communication; the security mechanisms
are therefore embedded in layers. For instance, Transport Layer Security
(TLS) is a well-known cryptographic protocol proposed for adding secu-
rity services to TCP. In fact, cryptographic protocols are widely used for
key establishment, entity authentication, message authentication, and se-
cure data transport, or non-repudiation methods. Due to the asynchronous
nature of communication, although there are only a few messages in a crypto-
graphic protocol, the protocol may not be as secure as intended. For example,
the Needham-Schroeder public-key authentication protocol was found to be
flawed in 1995, seventeen years after its publication.

This book focuses on the security analysis of cryptographic protocols,
introducing a novel idea for security analysis based on trusted freshness, and
a formalism based on this freshness principle and beliefs multisets about
security properties. It tries to answer the following questions:
— What does protocol security (computational and practical) mean?
— Is it possible to verify the security via engineering methods?
— How can protocol security verification be made easy or done automati-

cally?
The book is intended as a reference for researchers, engineers and grad-

uate students in computer security or cryptography. A lot of examples of
analyzing cryptographic protocols are illustrated in the book. It is especially
useful for both researchers and practitioners engaged in the area of designing,
security analyzing, and engineering practice of network security protocols.

This book would not have been written without the support and help of
many people. It is impossible for us to list all the people who contributed all
the way.

First of all, the authors would like to thank colleagues as well as current
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and former students of the authors for various forms of support. We want
to thank Prof. Jiren Cai and Prof. Dingyi Pei for their encouragement to
the publishing project, special thanks to Prof. Xuejia Lai for his valuable
comments on an earlier version of the book. We gratefully acknowledge the
excellent cooperation with Higher Education Press and Springer, and espe-
cially Mrs. Hongying Chen.

This book is supported in part by the National High-Tech Program (863)
of China, the National Basic Research Program (973) of China, and the Na-
tional Natural Science Foundation of China.

Shanghai Jiaotong University Ling Dong
April 2011 Kefei Chen
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1 Introduction of Cryptographic Protocols

Abstract Cryptographic protocols are communication protocols
which are designed to provide security assurances of various kinds,
using cryptographic mechanisms. This chapter gives a brief introduc-
tion of cryptographic protocols and the reason why we study these
protocols.

A protocol consists of a set of rules (conventions) which determine the ex-
change of messages between two or more participants. Cryptographic pro-
tocols, also called security protocols, use cryptographic primitives in com-
munication protocols to provide information security, such as confidentiality,
authentication, integrity or nonrepudiation, in an insecure network. Encryp-
tion schemes, digital signatures, hash functions, and random number genera-
tions are among the cryptographic primitives which may be utilized to build
cryptographic protocols.

Example 1.1 (A cryptographic protocol) Alice is an initiator who wants to
establish a secure session between herself and the responder Bob with the aid
of a trusted third party Trent, as shown in Fig. 1.1. Alice seeks to establish
this connection with Bob by selecting a nonce NA at random and sending it
to Trent, and Trent returns the nonce NA along with a selected new session
key kAB encrypted under the long-term key KAS (shared between Alice and

Fig. 1.1 Example of a cryptographic protocol.
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Trent) and KBS (shared between Bob and Trent) respectively. A successful
run of this protocol does achieve the establishment of the shared key kAB
exclusively between Alice and Bob except Trent, then kAB can be used for
the subsequent communication between Alice and Bob.

1.1 Information security and cryptography

Over the ages, information was typically stored and transmitted on paper,
whereas much of it now resides on magnetic media and is transmitted via
computer networks. As we all know, it is much easier to copy and alter
information stored and transmitted electronically than that on paper. Infor-
mation security intends to provide security services for information in digital
form. Information security objectives include confidentiality, data integrity,
authentication, non-repudiation, access control, availability, fairness and so
on. Computer and network security research and development focus on the
first four general security services, from which other security services, such
as access control, and fairness can be derived[1–5]. Many terms and concepts
in this book are from Ref. [1] which is well addressed. For strict or inquisitive
readers, please refer to book [1] for detailed information.
— Confidentiality is a service used to keep the content of information from all

but those authorized to have it. That is, the information in a computer
system or transmitted information cannot be comprehended by unau-
thorized parties. Secrecy is a term synonymous with confidentiality and
privacy.

— Data integrity is a service which addresses the unauthorized modifica-
tion of data. Modification includes creating, writing, deleting, changing,
changing status, and delaying or replaying of transmitted messages.

— Authentication is a service related to identification, including entity au-
thentication and data origin authentication. Entity authentication ensures
that the identity of the party entering into a communication is not false.
Data origin authentication ensures that the origin of information itself
is not false. Data origin authentication implicitly provides data integrity
(for if a message is modified, the source has changed). In many applica-
tions, entity authentication is to allow resource usage to be tracked to
identified entities.

— Non-repudiation is a service which prevents an entity from denying previ-
ous commitments or actions. A procedure involving a trusted third party
is needed to resolve the dispute where an entity may deny that certain
commitments were made or certain actions were taken. Commonly used
fairness security in electronic commerce protocols can be derived from
non-repudiation.

— Access control is a service which addresses the authorization of a party
to access information resources. Only authorized parties may access the
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information resources of the target system. To gain access to an informa-
tion resource (e.g., computer account, printer, or software application),
the user enters a (userid, password) pair, and explicitly or implicitly spec-
ifies a resource; here userid is a claim of identity, and password is the
evidence supporting the claim. The system checks to see if the password
matches corresponding data it holds for that userid, and if the stated
identity is authorized to access the resource. Demonstration of knowledge
of this secret (by revealing the password itself) is accepted by the system
as corroboration of the entity’s identity.

— Availability is a service which addresses the availability of the information
resources, when they are needed, to authorized parties in a computer
system.

— Fairness is a service to keep each honest protocol participant to have
sufficient evidence (through acquisition of corroborative evidence) to solve
the argumentation between or among parties, which may arise in or after
a protocol run. It is the most important security service in a electronic
commerce protocol.
Cryptography is to study mathematical techniques related to aspects of

information security such as confidentiality, data integrity, entity authentica-
tion, and data origin authentication. It is about the prevention and detection
of cheating and other malicious activities. Cryptographic skills are the most
common technical means of providing information security. Often the objec-
tives of information security cannot solely be achieved through cryptographic
primitives and protocols alone, but require procedural techniques and abid-
ance of laws to achieve the desired security result[1].

1.2 Classes of cryptographic protocols

A cryptographic protocol is a distributed algorithm defined by a sequence
of steps precisely specifying the actions required of two or more entities to
achieve a specific security objective. Cryptographic protocols involving mes-
sage exchanges require precise definition of both the messages to be exchanged
and the actions to be taken by each party. Cryptographic protocols may be
typically divided into four main categories, depending on the security objec-
tives of the cryptographic protocol:

1.2.1 Authentication protocol

It is a protocol to provide one party some degree of assurance regarding the
identity of another with whom it is purportedly communicating. An iden-
tification or an entity authentication technique assures one party (through
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acquisition of corroborative evidence) of both: the identity of a second party
involved, and that the second party was active at the time the evidence was
created or acquired. Authentication protocol typically involves no meaningful
messages other than the claim of being a particular entity. Authentication
protocol could be broadly subdivided into unilateral entity authentication
protocol, and mutual entity authentication protocol. Examples include Woo-
Lam protocol[6], Zero knowledge proofs of identify[7] and Okamoto protocol[8].
— Unilateral entity authentication protocol, also called unilateral authenti-

cation protocol, is a protocol to assure a corroborated identity of a second
party and that this party is active at the protocol run.

— Mutual entity authentication protocol, also called mutual authentication
protocol, is a protocol to assure corroborated identities of both protocol
parties and that they are active at the protocol run. Mutual authenti-
cation may be obtained by running any of the unilateral authentication
mechanisms twice.

1.2.2 Key establishment protocol

It is a protocol to establish shared secrets, which are typically called or used to
derive session keys. Key establishment is any process whereby a shared secret
key becomes available to two or more parties for subsequent cryptographic
use. Ideally, a session key is an ephemeral secret, i.e., the one whose use is
restricted to a short time period such as a single telecommunications con-
nection (or session), after which all trace of it is eliminated. While privacy
of keying material is a requirement in key establishment protocols, source
authentication is also typically needed. Encryption and signature primitives
may respectively be used to provide these properties. Key establishment pro-
tocol can be broadly subdivided into key agreement protocol and key trans-
port protocol.
— Key transport protocol is a key establishment technique with which one

party creates or otherwise obtains a secret value, and securely transfers
it to the other(s) as a session key.

— Key agreement protocol is a key establishment technique in which a ses-
sion key is derived by two (or more) parties as a function of information
contributed by or associated with each of these, (ideally) so that no party
can predetermine the resulting value.

— Authenticated key establishment protocol is a protocol to establish a
shared secret with a party whose identity has been (or can be) cor-
roborated. Examples include Needham-Schroeder public-key protocol[9],
IKE (Internet Key Exchange) protocol[10], Kerberos authentication
protocol[11], X.509 protocol[12], DASS (Distributed Authentication Se-
curity Protocol)[13], etc.
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1.2.3 Electronic commerce protocol

It is a protocol to provide secure electronic trades over network for two (or
more) parties. The focuses of electronic commerce protocols are fairness and
non-repudiation. Examples include SET (Secure Electronic Transaction)[14],
IKP (Internet Keyed Payments)[15], etc.

1.2.4 Secure multi-party protocol

It is a protocol to assure secure collaborated run of computation for any
parties of the protocol run in a distributed system. Examples include group
key exchange protocols, multi-party authentication protocols, electronic vote
protocols over net, electronic bid protocols, electronic cash protocols etc.

In the literature of cryptographic protocols, authentication protocols are
commonly used to refer to both authentication protocols and key establish-
ment protocols, and this is the case in this book.

1.3 Security of cryptographic protocols

An active adversary (perhaps by co-working with his friends distributed over
an open communication network) is capable of intercepting, modifying, or
injecting messages, and is good at doing so by impersonating other protocol
principals. Even in the existence of active adversaries and communication
errors, a secure cryptographic protocol should meet all claimed objectives.
As for a key establishment protocol, this should include being operational,
providing both secrecy and authenticity of the key, and being resilient. A
key establishment protocol is operational (or compliant) if, in the absence
of active adversaries and communications errors, honest participants who
comply with its specification always complete the protocol having computed
a common key and having knowledge of the identities of the parties with
whom the key is shared. Key authenticity implies that the identities of the
parties sharing the key are understood and corroborated, thus addressing
impersonation and substitution. A key establishment protocol is resilient if
it is impossible for an active adversary to mislead honest participants as to
the final outcome[1].

Cryptographic protocols, such as authentication or authenticated key-
establishment protocols, are difficult to design and debug. For example, IEEE
802.11 wired equivalent privacy (WEP) protocol[16], which is used to protect
link-layer communications from eavesdropping and other attacks, has several
serious security flaws. Anomalies and shortcomings have also been discovered
in standards and proposed standards for Secure Sockets Layer[17], the later
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IEEE 802.11i wireless authentication protocols[18], Kerberos[11], and others.
A successful attack on an authentication or authenticated key establish-

ment protocol usually does not refer to breaking a cryptographic algorithm,
e.g., via complexity theory-based cryptanalysis technique. Instead, it usu-
ally refers to adversary’s unauthorized and undetected acquisition of crypto-
graphic credential or nullification of cryptographic service without breaking a
cryptographic algorithm. Of course, this is due to an error in protocol design,
not the one in the cryptographic algorithm[3].

Here is a taxonomy of the possible attack types: message replay attack,
man-in-the-middle attack, parallel session attack, reflection attack, interleav-
ing attack, attack due to type flaw, attack due to name omission, attack due
to misuse of cryptographic services, etc. We cannot exhaust all possible types
of attacks even we could list all known attacks or attacks we can imagine, since
the ability of an adversary is always developing. Furthermore, viewing from a
lower-layer (the network layer) communication protocol, it actually does not
require very sophisticated techniques for an adversary to mount various types
of attacks. Hence, cryptographic protocols, especially authenticated protocols
and key establishment protocols, are readily to contain security flaws, even
under the great care of experts in the field.

The main objective of this section is to show the delicate nature of crypto-
graphic protocols, especially authenticated protocols and key establishment
protocols.

Example 1.2 (Needham-Schroeder public-key protocol) The Needham-
Schroeder public-key protocol[9] provides mutual entity authentication and
key transport for both parties, as shown in Fig. 1.2. The transported sym-
metric keying materials NA and NB may serve both as nonces for entity
authentication and session key parts for further secure communication use.
Combination of the resulting shared key parts allows computation of a joint
key to which both parties contribute.

Fig. 1.2 Needham-Schroeder public-key protocol.

Notation

{Y }KX denotes public-key encryption (e.g., RSA) of data Y using party
X ’s public key KX ; {Y1, Y2}KX denotes the encryption of the concatenation
of Y1 and Y2. A stands for Alice, B for Bob, and I for the active adversary
Malice. NA and NB are secret symmetric keying materials chosen by Alice
and Bob, respectively.
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Premise

KA is Alice’s public key, KB is Bob’s public key, and Alice and Bob
possess each other’s authentic public key. If this is not the case, while each
party has an authentic certificate carrying its own public key, one additional
message is required for certificate transport.

Actions

1) A randomly chooses a nonce NA and sends B Message 1.
2) B recovers NA upon receiving Message 1, and randomly chooses a

nonce NB and returns Message 2 to A.
3) Upon decrypting Message 2, A checks if the key material NA recovered

agrees with that sent in Message 1. (Provided NA has never been previously
used, this gives A both entity authentication of B and assurance that B
knows this key). A sends B Message 3.

4) Upon decrypting Message 3, B checks if the key NB recovered agrees
with that sent in Message 2. A session key can be computed as f(NA, NB)
using an appropriate publicly known non-reversible function f .

Thus, a successful run of this protocol does achieve the establishment of
the symmetric keying materials NA and NB, which are shared secrets ex-
clusively between Alice and Bob. Further notice that since both parties con-
tribute to these shared secrets recently, they are confident about the freshness
of NA and NB. A and B trust the randomness of the secrets NA and NB

since they are from a large space, which can be used to initialize a shared
secret key f(NA, NB) for subsequent secure communication between Alice
and Bob.

Unfortunately, the Needham-Schroeder public-key protocol is vulnerable
to an attack discovered by Lowe in 1995[19]. In the attack of Low, Malice
intercepts the messages sent by (or to) Alice and Bob in Messages 1, 2, and
3, and replaces them with his own version. The following example is the
attack.

Example 1.3 (Attack on Needham-Schroeder public-key protocol) The at-
tack (see Fig. 1.3) involves two simultaneous runs of the protocol. In the first

Fig. 1.3 Attack on Needham-Schroeder public-key protocol.
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run (steps 1, 2, 3), Alice establishes a valid session with Malice; in the sec-
ond run (steps 1′, 2′, 3′), Malice establishes a bogus session with Bob by
impersonating Alice. At last, Bob believes that Alice (in deed, it is Malice)
has correctly established a session with him and they shared exclusively the
secret nonces NA and NB.

Premise

Suppose that Malice has the public keys of all the protocol participants
in his possession.

Actions

1) In step 1, Alice starts to establish a normal session with Malice, sending
him a nonce NA.

2) In step 1′, via replaying the nonce NA to Bob, Malice tries to establish
a bogus session with Bob by impersonating Alice.

3) In step 2′, Bob responds to Alice (Malice indeed) by selecting a new
nonce NB and returning it back along with NA. Malice intercepts this mes-
sage, but he cannot decrypt it because it is encrypted under Alice’s public
key.

4) In step 2, Malice therefore seeks to use Alice’s private key to do the de-
cryption for him, by forwarding the message to Alice; note that this message
is of the form expected by Alice in the first run of the protocol.

5) In step 3, Alice decrypts the message to obtain NB, and returns NB

to Malice (encryption under Malice’s public key), thus completing the first
run of the protocol.

6) In step 3′, Malice decrypts Message 3 to obtain NB using Malice’s
private key, and then constructs Message 3′ and sends it to Bob by imper-
sonating Alice, thus completing the second run of the protocol.

We can imagine the following consequences of this attack. Malice may
include the shared nonces which suggest a session key within a subsequent
message, and Bob will believe that the encrypted message using this session
key originates from Alice.

Example 1.4 (Revised Needham-Schroeder public-key protocol) Figure 1.4
illustrates a revised Needham-Schroeder public-key protocol which is de-
signed to enhance the security by indicating Alice’s identity in Message 3.
Alice assures Bob that NA and NB are exclusively symmetric keying ma-

Fig. 1.4 A revise on Needham-Schroeder public-key protocol.
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terials between Alice and Bob by explicitly indicating Alice’s identity and
encrypting Message 3 using Bob’s public key.

Actions

1) Upon receiving Message 2, Alice should be assured that she is talking
to Bob, since only Bob could be able to decrypt Message 1 to obtain NA and
this must have been done after her action of sending the nonce NA out (a
recent action).

2) Upon receiving Message 3, Bob should be assured that he is talking to
Alice, since only Alice could be able to decrypt Message 2 to obtain NB (a
recent action). Bob should also be assured that NA and NB are exclusively
symmetric keying materials between Alice and Bob since they are transmitted
with the explicit identity of Alice, and only Bob could decrypt Message 3.

However, the revised protocol with security enhanced is not secure indeed.
It could also be compromised by the attack discovered by Lowe[20].

Example 1.5 (Attack on the revised Needham-Schroeder public-key proto-
col) The new attack involves two simultaneous runs of the protocol, as shown
in Fig. 1.5. In the first run (steps 1, 2, 3), Alice establishes a valid session with
Malice; in the second run (steps 1′, 2′, 3′) Malice tries to establish a bogus
session with Bob by impersonating Alice. At last, Bob believes that Alice has
correctly established a session with himself and they shared exclusively the
nonces NA and NB. However, NA and NB are known by Malice.

Fig. 1.5 Attack on the revised Needham-Schroeder public-key protocol.

Cryptographic protocols often comprise only a few messages, and protocol
construction might seem a simple task. However this is clearly deceptive in
practice, and the example we have shown above is an illustration.

1.4 Motivations of this book

Authentication protocols are the most commonly used cryptographic proto-
cols and they are important in real world applications. Many and various
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protocols have been proposed to provide authentication and key establish-
ment security[1–18]. Although many of these protocols may seem relatively
simple, in comparison with more complex distributed systems, they are sub-
tle to design and very easily compromised, as we have witnessed in the above
section.

Furthermore, authentication protocols are not only notoriously error-
prone, and the flaws of these protocols are very difficult to detect. The cur-
rent version of the Internet key exchange (IKE) protocol for Internet security
is proved to be not secure as it promised, even after many years’ proto-
col development by the committee of highly experienced computer security
experts[21]. Many protocols have shown to be flawed even a long time af-
ter they were published. For example, the Needham-Schroeder public-key
authentication protocol was found flawed by Lowe in 1995, seventeen years
after its publication[9, 19].

The question of whether the security of an authentication protocol or an
authenticated key establishment protocol is adequate has been extensively
studied, with a large body of approaches proposed, including [20, 22 – 34]
etc., and these approaches have played a very important role in protocol se-
curity analysis. While this book will introduce a new idea, which is more
operational in practice, on how to uncover flaws in cryptographic protocols,
the uncovering procedure can be done in a short time, by even a communi-
cation engineer without deep cryptographic knowledge background.

In this book, we will discuss the topic of the security of cryptographic
protocols, especially that of authentication protocols. Our study of crypto-
graphic protocol security in this book covers a wide range of topics in the
subject with in depth discussions. Especially, we will put forward a novel
idea, security analysis based on trusted fresheness, which will indicate when
a cryptographic protocol is secure, why a cryptographic protocol is flawed,
and how to achieve the security of a cryptographic protocol. Security analysis
based on trusted fresheness is a new idea but not only a concrete means or
formalism for analyzing the security of a cryptographic protocol. While it is
an operational idea which can be easily employed by even a communication
engineer without deep cryptographic background, and it can be utilized by
information security researchers to invent systematic approaches (i.e., formal
methods) for developing correct cryptographic protocols, or to invent for-
mal approaches and automation tools for analyzing the security of existing
cryptographic protocols.

This book includes 9 chapters. In Chapter 2, we will introduce some back-
ground knowledge of cryptography related to cryptographic protocols, and we
will further study the principles to design cryptographic protocols in Chapter
3. Informal security analysis mechanisms, and reasons why taxonomy attacks
on authentication protocol exist are in Chapter 4, and case studies of several
protocols for real world applications are in Chapter 5. Formal definition of
some security properties, formalism approaches of protocol security analysis,
and design approaches to the development of correct authentication proto-
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cols are in Chapters 6, 7, and 8. Chapter 9 introduces automated verification
approaches to authentication protocols.
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2 Background of Cryptographic Protocols

Abstract Some background knowledge including preliminary knowl-
edge, cryptographic primitive knowledge, cryptographic protocol
knowledge, cryptographic protocol security knowledge, and commu-
nication threat model knowledge are briefly introduced.

A brief introduction of background knowledge on cryptographic protocols is
given in this chapter. Readers who are familiar with cryptography knowledge
can skip this chapter without causing difficulty for reading the rest parts
of this book, while inquisitive readers can refer to Refs. [1, 2] for sufficient
reference materials.

2.1 Preliminaries

This section gives some preliminary knowledge of cryptographic protocols
including functions, one way transformation, message space, adversary, etc.

2.1.1 Functions

Definition 2.1 A set consists of distinct objects which are called elements
of the set. For example, a set X might consist of the elements a, b, c, and this
is denoted by X = {a, b, c}.
Definition 2.2 A function (or transformation) is defined by two sets X and
Y , and a rule f which assigns to each element in X precisely one element in
Y . The set X is called the domain of the function and Y the codomain. If
x is an element of X (usually written x ∈ X), the image of x is the element
in Y for which the rule Y associates with x; the image y of x is denoted
by y = f(x). Standard notation for a function f from set X to set Y is
f : X → Y . If y ∈ Y , then a preimage of y is an element x ∈ X for which
f(x) = y. The set of all elements in Y which have at least one preimage is
called the image of f , denoted by Im(f).
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Definition 2.3 A function f from a set X to a set Y is called a one-way
function if f(x) is “easy” to compute for all x ∈ X but for “essentially all”
elements y ∈ Im(f) it is “computationally infeasible” to find any x ∈ X so
that f(x) = y.

Here and elsewhere, the terms easy and computationally infeasible (or
hard) are intentionally left without formal definition; it is intended they are
intended to be interpreted relative to an understood frame of reference. Easy
might mean polynomial time and space, or more practically, within a certain
number of machine operations or time units—perhaps seconds or millisec-
onds. A more specific definition of computationally infeasible might involve
super-polynomial effort, require effort far exceeding understood resources,
specify a lower bound on the number of operations or memory required in
terms of a specified security parameter, or specify that the probability that
a security property is violated is exponentially small.

Definition 2.4 A function (or transformation) is injective if each element
in the codomain Y is the image of at most one element in the domain X .

Definition 2.5 A function (or transformation) is onto if each element in
the codomain Y is the image of at least one element in the domain X . Equiv-
alently, a function f : X → Y is onto if Im(f) = Y .

Definition 2.6 If a function f : X → Y is injective and Im(f) = Y , then
f is called a bijection.

Definition 2.7 A trapdoor one-way function is a one-way function f : X →
Y with the additional property that gives some extra information (called the
trapdoor information) and it becomes feasible to find, for any given y ∈
Im(f), an x ∈ X so that f(x) = y.

Definition 2.8 Let S be a finite set and let f be a bijection from S to S
(i.e., f : S → S). The function f is called an involution if f = f−1. An
equivalent way of stating this is f(f(x)) = x for all x ∈ S.

2.1.2 Terminology

Definition 2.9 A denotes a finite set called the alphabet of definition. For
example, A = {0, 1}, the binary alphabet, is a frequently used alphabet of
definition.

Definition 2.10 M denotes a set called the message space. M consists of
strings of symbols from an alphabet of definition. An element of M is called
a plaintext message or simply a plaintext. For example, M may consist of
binary strings, English texts, computer codes, etc.
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Definition 2.11 C denotes a set called the ciphertext space. C consists of
strings of symbols from an alphabet of definition, which may differ from the
alphabet of definition for M . An element of C is called a ciphertext.

Definition 2.12 K denotes a set called the key space. An element of K is
called a key. In this book, we usually use upper case K as a long-term key,
and lower case k as a temporal session key.

Definition 2.13 An encryption scheme consists of a set Ee : e ∈ K of
encryption transformations (encryption algorithm) and a corresponding set
Dd : d ∈ K of decryption transformations (decryption algorithm) with the
property that for each e ∈ K there is a unique key d ∈ K so that Dd = E−1

e ,
that is, Dd(Ee(m)) = m for all m ∈M .

Definition 2.14 The keys e and d in the preceding definition are referred
to as a key pair and sometimes denoted by (e, d). Note that e and d could be
the same.

Public key e, and private key d are paired keys in a public-key system;
symmetric keys e and d (e = d) are equal keys in a symmetric-key (single-key)
system.

A fundamental premise in cryptography is that the sets M,C,K, {Ee :
e ∈ K}, {Dd : d ∈ K} are public knowledge, and the only thing to keep secret
is the particular key pair (e, d) that is being used.

The other premise in cryptography a priori is that for point-to-point mech-
anisms, parties A and B shared a secret key, or A and B each shares a secret
key with a trusted party T in a symmetric-key mechanism; A and B know
the opponent parties’ public key, or A and B both have the knowledge of the
public key of a trusted party T in a public-key mechanism.

These shared long-term keys are initially established by non-cryptographic,
and out-of-band techniques providing confidentiality and authenticity (e.g.,
in person, or by trusted courier).

The objective of attacks is to confuse a run of a protocol, to systematically
recover plaintext from ciphertext, or even more drastically, to deduce the
decryption key.

Definition 2.15 An adversary is an unauthorized “third” party in a com-
munication who tries to defeat the information security service provided be-
tween the sender and receiver. Various other names are synonymous with
adversary such as enemy, attacker, opponent, tapper, eavesdropper, intruder,
saboteur, and interloper. We usually call the adversary “Malice” in this book.

An adversary will often attempt to play the role of either the legitimate
sender or the legitimate receiver.

Definition 2.16 A passive adversary is an adversary who is only capable
of reading information from an unsecured channel.
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Definition 2.17 An active adversary is an adversary who is capable of
not only reading information, but also transmitting, altering, or deleting
information on an unsecured channel.

In a practical cryptographic setting, it is prudent to make the assumption
that the adversary is an active adversary, and it is very powerful.

Definition 2.18 A passive attack is the one where the adversary only mon-
itors the communication channel. A passive attacker only threatens confiden-
tiality of data.

Passive attacks are in the nature of eavesdropping on, or monitoring of
transmitted messages. Two classical types of passive attacks are release of
message contents and traffic analysis. Passive attacks are very difficult to
detect because they do not involve any alternation of data. However, it is
feasible to prevent passive attacks.

Definition 2.19 An active attack is one where the adversary attempts to
delete, add, or in some other way alter the transmission on the channel besides
the monitoring of transmitted messages. An active attacker threatens data
integrity and authentication as well as confidentiality.

Active attacks involve some replay, creation, insertion, deletion or modi-
fication of transmissions, masquerade of entity, and denial of service.

2.2 Cryptographic primitives

This section gives a brief introduction to some cryptographic knowledge in-
cluding primitive, encryption, signature, identification, symmetric-key sys-
tem etc.

2.2.1 Cryptology

Definition 2.20 An algorithm or a primitive is a well-defined computa-
tional procedure that takes a variable input and halts with an output.

Examples of primitives include encryption schemes, hash functions, and
digital signature schemes. Primitives, when applied in various ways and with
various inputs, will typically exhibit different characteristics.

Definition 2.21 A cryptosystem is a general term referring to a set of
cryptographic primitives used to provide information security services. Most
often the term is used in conjunction with primitives providing confidentiality,
i.e., encryption. An encryption algorithm and a decryption algorithm plus the
description of the format of messages and keys form a cryptographic system
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or a cryptosystem.

Definition 2.22 Cryptanalysis is the study of mathematical techniques for
attempting to defeat cryptographic techniques, and, more generally, informa-
tion security services.

Computational complexity is one of the most important foundations for
modern cryptography.

Definition 2.23 A polynomial-time algorithm, also called efficient algo-
rithm or a good algorithm, is an algorithm whose worst-case running time
function could be expressed by a polynomial in the size of the input. That
is, the algorithm is deterministic or randomized with polynomial execution
time. Thus, informally speaking, a computational problem is said to be easy
or tractable if there exists a good or efficient algorithm to solve the problem.
Any algorithm whose running time cannot be so bounded by polynomial exe-
cution time is called an exponential-time algorithm. Thus, informally speak-
ing, a computational problem is said to be hard or intractable if there doesn’t
exist an efficient algorithm to solve the problem.

Note that there are, however, some practical situations when this distinc-
tion is not appropriate for average-case complexity is more important than
worst-case complexity in cryptography– a necessary condition for an encryp-
tion scheme to be considered secure is that the corresponding cryptanalysis
problem is difficult on average (or more precisely, almost always difficult),
and not just for some isolated cases[1].

Definition 2.24 Non-deterministic polynomial-time (NP) problems are
those in which we couldn’t find an efficient algorithm to solve in polyno-
mial time. Many cryptographic primitives are based on the difficulty of these
intractable problems, also called hard problems, such as the integer factor-
ization problem and the discrete logarithm problem. Some hard problems in
computational complexity theory can provide a high confidence in the secu-
rity of a cryptographic algorithm or protocol.

Clearly, a cryptographic algorithm must be designed so that it is tractable
for a legitimate user, but is intractable for a non-user or an attacker and
so constitutes a difficult problem to solve. Here, “intractable” means that
the widely available computational methods cannot effectively handle these
problems, that is, they cannot solve these problems in polynomial time.

Definition 2.25 An encryption scheme is said to be breakable if a third
party, without prior knowledge of the key pair (e, d), can systematically re-
cover plaintext from corresponding ciphertext within some appropriate time
frame.

Encryption schemes are not inherent to provide data integrity, and in some
cases the encryption scheme may not be compromised while the cryptographic
protocol may fail to provide confidentiality adequately.
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Cryptographic techniques are typically divided into two generic types:
symmetric-key system and public-key system.

Definition 2.26 A symmetric-key system is a system involving two trans-
formations – one for the originator and one for the recipient – both of which
make use of either the same secret key or two keys easily computed from each
other. Symmetric-key system is also referred to as conventional cryptosystem.

Definition 2.27 An public-key system is a system involving two related
transformations – one defined by a public key (the public transformation),
and the other defined by a private key—with the property that it is compu-
tationally infeasible to determine the private transformation from the public
transformation.

Most well-known public-key cryptosystems are based on the difficulty of
intractable problems, such as the integer factorization problem, the discrete
logarithm problem, and elliptic-curve discrete logarithm problem (ECDLP).

2.2.2 Symmetric-key encryption

Definition 2.28 Symmetric-key encryption is a cryptographic primitive
which uses the same encryption and decryption keys, e= d, to perform en-
crypting and decrypting. Other terms used in the literature are single-key
encryption, one-key encryption, private key encryption, secret key encryp-
tion, and conventional encryption.

In a two-party communication, the key in symmetric-key encryption must
remain secret at both ends, and sound cryptographic practice dictates that
the key be changed frequently perhaps for each communication session. In
symmetric-key case, the only system that has proven secure is the one-time
pad.

The symmetric-key primitives can be designed to have much higher rates
of data throughput in encrypting and decrypting than public-key encryption.

There are two classes of symmetric-key encryption schemes which are
commonly distinguished: block ciphers and stream ciphers.

Definition 2.29 A block cipher is an encryption scheme which breaks up
the plaintext messages to be transmitted into strings (called blocks) of a fixed
length t over an alphabet A, and encrypts one block at a time.

Most well-known symmetric-key encryption techniques are block ciphers.
For example, DES, 3DES, IDEA etc.

Definition 2.30 A stream cipher is, in one sense, a very simple block cipher
having block length equal to one.
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What makes stream ciphers useful is the fact that the encryption transfor-
mation can change for each symbol of plaintext encrypted. They are especially
useful in some situations, such as highly probable error transmission channel,
or buffering of data is limited.

2.2.3 Public-key encryption

Definition 2.31 A public-key encryption is a cryptographic primitive which
uses different encryption and decryption keys, the public-key e and the pri-
vate key d and the two keys match each other; the encryption key e needn’t
be kept secret, and only the party who is the owner of e can decrypt a ci-
phertext encrypted under e using the matching private key d. Other terms
used in the literature are asymmetric cryptosystems.

Each entity in the network has a public/private encryption key pair (e, d).
The public-key e along with the identity of the entity is usually stored in a
central repository. In a large network, the number of keys necessary may be
considerably smaller than in the symmetric-key scenario. Per-communication
interaction with the central repository can be eliminated if entities store
certificates locally. Depending on the mode of usage, a private/public-key
pair (e, d) may remain unchanged for considerable periods of time, e.g., many
communication sessions (even several years).

Throughput rates for the most popular public-key encryption methods
are several orders of magnitude slower than the best known symmetric-key
schemes. That is, the computational performance of a public-key encryption
is inferior to that of a symmetric-key encryption.

2.2.4 Digital signatures

Definition 2.32 A digital signature is a cryptographic primitive which en-
tails transforming the message and some secret information held by the entity
into a tag called a signature in digital form, contrary to handwritten signa-
ture in previous centuries. Digital signature is fundamental in authentication,
authorization, and nonrepudiation.

A digital signature of a message is a number dependent on some secret
known only to the signer, and additionally, the content of the message being
signed. Signatures must be verifiable; if a dispute arises as to whether a
party signed a document (caused by either a lying signer trying to repudiate
a signature it did create, or a fraudulent claimant), an unbiased third party
should be able to resolve the matter equitably, without requiring access to
the signer’s secret information (private key).
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A digital signature scheme (or digital signature mechanism) consists of a
signature generation algorithm and an associated verification algorithm.

Schemes for unforgeable digital signature can be constructed using the
same computational assumptions as used in the constructing of private-key
encryption schemes, where the encryption key d should be kept secret, and
all users including the adversary can decrypt a ciphertext encrypted under d
using the matching public-key e.

Digital signatures have many applications in information security, includ-
ing authentication, data integrity, and non-repudiation. One of the most sig-
nificant applications of digital signatures is the certification of public-keys in
large networks. Certification is a means for a trusted third party to bind the
identity of a user to a public-key, so that at some later time, other entities
can authenticate a public-key without assistance from a trusted third party.

Public-key techniques may be used to establish a key for a symmetric-key
system being used by communicating entities A and B. In this scenario A
and B can take advantage of the long-term nature of the public/private keys
of the public-key scheme and the performance efficiency of the symmetric-key
scheme. Note that data encryption is frequently the most time consuming part
of the encryption process, and the public-key scheme for key establishment
is a small fraction of the total encryption process between A and B[1].

The size of public-key signatures is larger than that of tags providing data
origin authentication from symmetric-key techniques.

2.2.5 Hash Functions

Definition 2.33 A hash function is a cryptographic primitive which is a
computationally efficient function mapping binary strings of arbitrary length
to binary strings of some fixed n bits length, called hash values. For any given
x ∈ X , the corresponding hash value y is a binary string of some fixed n bits
length, y = h(x). Hash value is also referred to as a hashcode, hash-result,
or simply hash.

The cryptographic hash function is often informally called a one-way hash
function. The basic idea of cryptographic hash functions is that a hash value
serves as a compact representative image (sometimes called an imprint, digital
fingerprint, or message digest) of an input string, and can be used as if it
were uniquely identifiable with that string.

The main properties of cryptographic hash functions include:
1) Preimage resistance—one-way, for essentially all pre-specified outputs,

is computationally infeasible to find any input which hashes to that output,
i.e., to find any preimage x′ so that h(x′) = y when giving any y for which
a corresponding input is not known. A hash function with this property is
called a one-way hash function.
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2) 2nd-preimage resistance—weak collision resistance is computationally
infeasible to find any second input which has the same output as any specified
input, i.e., given x, to find a 2nd-preimage x′ �= x so that h(x′) = h(x).

3) Collision resistance— strong collision resistance is computationally in-
feasible to find any two distinct inputs x, x′ which hash to the same output so
that h(x) = h(x′) (Note that here there is free choice of both inputs contrary
to 2nd-preimage resistance). A hash function with this property is called a
collision resistance hash function.

At the highest level, hash functions may be split into two generic classes:
1) An unkeyed hash function is a specific hash function whose specification

dictates a single input parameter, a message.
2) A keyed hash functions is a specific hash function whose specification

dictates two distinct inputs, a message and a secret key.
The most common cryptographic uses of hash functions are with digital

signatures and are for data integrity. With digital signatures, a long message
is usually hashed (using a publicly available hash function) and only the hash
value is signed in place of the original message. For data integrity, the hash
value corresponding to a particular input is computed at some point in time
by the sender, and later the hash value is recomputed by the receiver using
the particular input at hand which is the same as the sender, and then the
recomputed hash value is compared for equality with the original hash value.
The problem of preserving the integrity of a potentially large message is thus
reduced to that of a small fixed-size hash value.

Specific applications, which hash functions are used for data integrity
in conjunction with digital signature schemes, include virus protection and
software distribution.

Keyed hash functions can be used to provide data origin authentication as
conventional encryption schemes do. Keyed hash functions could not directly
recover the input binary strings from a computed hash value while conven-
tional encryption schemes could recover the plaintext from a ciphertext with
a common secret key at hand. When they are used to provide integrity and
data origin authentication information security services, they behave almost
the same. Hence, in this book, we do not distinguish keyed hash functions
from conventional encryption schemes accurately when they are used to pro-
vide data origin authentication, and we take keyed hash functions as a sort
of symmetric-key primitives in this case since they both require a common
secret key shared by some specific identities to complete computing.

2.2.6 Message authentication

Definition 2.34 Manipulation detection codes (MDCs) are a subclass of
unkeyed hash functions to provide a representative image or hash for message
manipulation detection. MDCs is also called modification detection codes
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(MDCs), and less commonly known as message integrity codes (MICs).

MDCs may be further classified, the specific two primary classes of MDCs
are:

1) one-way hash functions (OWHFs): for these hash functions, finding an
input which hashes to a pre-specified hash value is difficult;

2) collision resistant hash functions (CRHFs): for these hash functions,
finding any two inputs having the same hash value is difficult.

Definition 2.35 Message authentication codes (MACs) are a distinct class
of hash functions, parameterized by a secret key k, which provide the detec-
tion of message alternation on an insecure channel for encryption schemes.

MAC algorithms are also a subclass of keyed hash functions which take
two functionally distinct inputs, a message and a secret key k, and produce
a fixed-size (say n-bit) output or hash value, with the design intent that it
is infeasible in practice to produce the same output without knowledge of
the key k. That is, a hash value should be uniquely identifiable with a single
input in practice, and collisions should be computationally difficult to find
(essentially never occurring in practice).

MACs can be used, without the use of any additional mechanisms, to
provide data integrity and symmetric data origin authentication (the source
of a message), as well as identification in symmetric-key schemes. That is,
MAC allows message authentication by symmetric techniques.

Distinction should be made between the use of a MAC algorithm and that
of a MDC, where MAC is with a secret key included as part of its message
input.

It is generally assumed that the algorithmic specification of a hash func-
tion is public knowledge. Thus in the case of MDCs, given a message as
input, anyone may compute the hash value, and in the case of MACs, given
a message as input, anyone with knowledge of the key may compute the hash
value.

A message authentication scheme does not necessarily constitute a digital
signature scheme. In some sense, message authentication is similar to a digital
signature. The difference between these two is that in the setting of message
authentication it is not required that a “third” party (who may be the dis-
honest adversaries) should be able to verify the validity of authentication
tags produced by the designed users[2].

Table 2.1 indicates various types of algorithms commonly used to achieve
the specified cryptographic objectives. The classification given requires spec-
ification of both the type of algorithm (e.g., encryption vs. signature) and
the intended use (e.g., confidentiality vs. entity authentication).

Data origin authentication is a type of authentication whereby a party
is corroborated as the (original) source of specified data created at some
(typically unspecified) time in the past.
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Table 2.1 Types of algorithms commonly used to meet specified objectives

Cryptographic objective (usage) symmetric-key public-key

confidentiality encryption encryption

data integrity MDC signature

message authentication MAC signature

data origin authentication MAC signature

non-repudiation / signature

key transport encryption encryption

key agreement various methods Diffie-Hellman

entity authentication
(by challenge-response protocols)

1. MAC
2. encryption

1. signature
2. decryption
3. customized

Message authentication is a term used analogously with data origin au-
thentication. It provides data origin authentication with respect to the orig-
inal message source (and data integrity, but no uniqueness and timeliness
guarantees).

In deed, data origin authentication implicitly provides data integrity since,
if the message was modified during transmission, the message sender would no
longer be the originator. Message authentication itself provides no timeliness
guarantees, while entity authentication involves corroboration of a claimant’s
identity at the current instant in time through actual communications with
an associated verifier during execution of the protocol itself.

Encryption may provide privacy of keying material in key establishment
protocols, while signature and MAC may provide data integrity, message
authentication and data origin authentication.

We use the terms identification and entity authentication synonymously
throughout this book. Elsewhere in the literature of cryptography, identifi-
cation sometimes implies only a claimed or stated identity whereas entity
authentication suggests a corroborated identity. In many applications, the
motivation for identification is to provide access service allowing resource us-
age to be tracked to identified entities, and to facilitate appropriate billing.
In general, an authentication is considered flawed if a principal concludes a
normal run of the protocol with its intended communication partner while
the intended partner would have a different conclusion.

Identification schemes are closely related to, but simpler than digital sig-
nature schemes, which involve a variable message and typically provide a
non-repudiation feature allowing disputes to be resolved by judging after the
fact. Identifications do not have “lifetimes” as signatures do and a claimed
identity is either corroborated or rejected immediately, with associated priv-
ileges or access either granted or denied in real time.

One of the primary purposes of entity authentication is to facilitate ac-
cess control to a resource, when an access privilege is linked to a particular
identity.

Entity authentication techniques may be divided into three main cate-
gories, depending on which of the following securities is based on[1]:



24 2 Background of Cryptographic Protocols

1) Something known. Examples include standard passwords, Personal
Identification Numbers (PINs), and the secret or private keys.

2) Something possessed. It is typically a physical accessory, resembling a
passport in function. Examples include magnetic-striped cards, smart cards
(also called chipcards or IC cards), and hand-held customized calculators
(also called password generators, or Tokencard, such as RSA Secure ID)
which provide time-variant passwords or passcodes. The generator usually
contains a device-specific secret key.

3) Something inherent (to a human individual). This category includes
methods which make use of human physical characteristics and involuntary
actions (biometrics), such as handwritten signatures, and fingerprints.

The important points in practice about cryptographic primitives are:
1) Public-key cryptography facilitates efficient signatures (particularly

non-repudiation) and key management.
2) Symmetric-key cryptography is efficient for encryption and some data

integrity applications.

2.3 Cryptographic protocols

This section gives some background knowledge about the cryptographic pro-
tocols including Message-driven protocol, secured channel, etc.

A communication protocol or protocol is a collection of interactive com-
munication procedures that specify a particular processing of incoming mes-
sages and the generation of outgoing messages. A communication procedure
including a sequence of determined steps runs between or among co-operative
parties.

A Message-driven protocol is initially triggered at a party by an external
“call” and later by the arrival of messages. Upon each of these events, and
according to the protocol specification, the protocol processes information
and may generate and transmit a message, and/or wait for the next message
to arrive.

Note that message-driven protocols are asynchronous in nature, and this
reflects the prevalent form of communication in today’s networks.

Recall that a cryptographic protocol is a distributed algorithm defined by
a sequence of steps precisely specifying the actions required of two or more
entities to achieve a specific security objective.

A mechanism is a more general term encompassing protocols, includ-
ing algorithms (specifying the steps followed by a single entity), and non-
cryptographic techniques (e.g., hardware protection and procedural controls)
to achieve specific security objectives.
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2.3.1 Secure channel

Definition 2.36 A channel is a means of conveying information from one
entity to another.

1) A physically secure channel (or secure channel) is the one that is not
physically accessible to the adversary. Some channels are assumed to be phys-
ically secure, and these include trusted couriers, personal contact between
communicating parties, and a dedicated communication link, for example.

2) An unsecured channel (or open channel, or unprotected channel) is the
one from which parties other than those for which the information is intended
can reorder, delete, insert, or read.

3) A secured channel (or protected channel,or authenticated channel) is
the one from which an adversary does not have the ability to reorder, delete,
insert, or read. A secured channel may be secured by physical or crypto-
graphic techniques. Secure channel is a type of secured channel.

Definition 2.37 A session is a copy of a protocol run or a protocol instance
at a party. Several copies of protocol run (i.e., interactive subroutines or other
protocols) may be simultaneously instantiated by one party.

Technically, a session is an interactive subroutine executed inside a party.
Each session is identified by the party that runs it, the parties with whom
the session communicates and a session-identifier. The session-identifiers are
used in practice to bind transmitted messages to their corresponding sessions.

A session could be completed at one party but not necessarily at the other.
Each run of a protocol at a given party creates a local state for that session
during execution. Typically, the local state of a session is mostly independent
of local states of other sessions. When a session ends its run and outputs a
key in a key establishment protocol, we call this session a complete one and
assume that its local state is erased.

A session key is an ephemeral secret whose use is restricted to a short
time period such as a single telecommunications connection (or a session),
after which all trace of it is eliminated.

Key establishment protocols result in a shared ephemeral session key or
shared ephemeral session key parts for subsequent communications. Motiva-
tion for using ephemeral keys includes the following:

1) to limit available ciphertext (under a fixed key) for cryptanalytic attack;
2) to limit exposure, with respect to both time period and quantity of

data, in the event of (session) key compromise;
3) to avoid long-term storage of a large number of distinct secret keys (in

the case where one terminal communicates with a large number of others) by
creating keys only when actually required;

4) to create independence across communication sessions or applications.
It is also desirable in practice to avoid the requirement of maintaining state
information across sessions.
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2.3.2 Principals

An entity (or a party) is someone or something that sends, receives, or manip-
ulates information over point-to-point channels. An entity may be a person,
a computer terminal, etc., or even an adversary.

Definition 2.38 A communicating entity or party is formally called princi-
pal in key establishment protocol with a unique name. They are probabilistic
polynomial-time users, processes, or machines in current cryptographic liter-
ature, and we usually denote principals by P1, P2, ..., Pn, etc.

Definition 2.39 A trusted third party (TTP) is an entity in the network
who is trusted by all other entities. This party is referred to by a variety of
names depending on the role it plays: trusted third party, trusted server,
authentication server, key distribution center (KDC), key translation center
(KTC), and certification authority (CA).

Definition 2.40 A key translation center (KTC) is a trusted server which
allows two parties A and B, which do not directly shared keying material,
to establish a secure communication through use of the long-term keys KAT

and KBT they respectively shared with TTP T .

In symmetric-key case, each entity shares a distinct symmetric key with
the TTP. These keys are assumed to have been distributed over a secured
channel. In public-key case, each entity knows the public-key of the TTP.
The TTP carefully verifies the identity of each entity, and signs a message
consisting of an identifier and the entity’s authentic public-key.

From a communication viewpoint, TTPs may be classified based on their
real-time interactions with other communicating entities such as A and/or
B.

1) In-line TTP: it is an intermediary TTP, serving as the real-time means
of communication between A and B.

2) On-line TTP: it is a TTP involved in real-time communication during
each protocol instance (communicating with A and/or B), but A and B
communicate directly rather than through T .

3) Off-line TTP: it is a TTP not involved in real-time communication
during a protocol instance, but T provides or prepares information a priori,
which is available to A and/or B and the priori is used during protocol
execution.

In-line third parties are of particular interest when A and B belong to
different security domains or cannot otherwise interact directly due to non-
interoperable security mechanisms. Examples of in-line third parties include
KDCs or KTCs which provide the communication paths between A and B,
as in IEEE 802.11i[3].

On-line third parties are widely used in key establishment protocols.
Examples include Needham-Schroeder shared key protocol[4], Woo-Lam
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protocol[5] etc.
A typical example of an off-line third party is a certification authority

(CA) producing public-key certificates and placing them in a public directory;
here, the directory owner may be an on-line third party, but the certification
authority is not. Protocols with off-line third parties usually involve fewer
real-time message exchanges, and do not require real-time availability of the
third parties.

Definition 2.41 A certificate is a TTP singed message, which binds the
identity of an entity to its public-key. If the signing key (private key) of the
TTP is compromised, all communications become insecure.

In this book, we suppose the honest entity TTP itself is uncondition-
ally secure, while the TTP could be impersonated by an adversary with the
requirement that the TTP machine itself has not been crashed.

In order for an entity B to verify the authenticity of the public-key of an
entity A, B must have an authentic copy of the public signature verification
function of the TTP. For simplicity, in this book, we assume that the au-
thenticity of this verification function is provided to B by noncryptographic
means, for example by B obtaining it from the TTP in person.

Definition 2.42 Certificate Authority (CA) is a trusted third party who is
responsible for establishing and vouching for the authenticity of the public-
key bound to the subject entity. CA’s responsibility includes binding public-
keys to distinguished names through signed certificates, managing certificate
serial numbers, and certificate revocation.

The authenticity of the CA’s public-key may be originally provided by
non-cryptographic means including personal acquisition, or through trusted
couriers; authenticity of the CA’s public-key is required, but not secrecy.
This CA public-key allows any system user, through certificate acquisition
and verification, to transitively acquire trust in the authenticity of the public-
key in any certificate signed by that CA.

Definition 2.43 A public-key certificate is a data structure consisting of
a data part and a signature part. The data part contains cleartext data
including, as a minimum, a public-key and a string identifying the subject
party to be associated therewith. The signature part consists of the digital
signature of a certification authority over the data part, thereby binding the
subject entity’s identity to the specified public-key.

2.3.3 Time-variant parameters

Definition 2.44 A time-variant parameter (TVP), also called freshness
component, is a value used no more than once for the same purpose. It typ-
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ically serves to prevent (undetectable) replay. It is sometimes called nonce,
unique number, or non-repeating value.

Often, to ensure protocol security, the integrity of such TVPs must be
guaranteed (e.g., by cryptographically binding them with other data via a
MAC or digital signature algorithm).

Uniqueness means to be unique, and it is often required only within a
given key lifetime or time window.

A uniqueness guarantee may be provided by a TVP such as a timestamp
or a never-repeated sequential counter. The never-repeated sequential counter
may not provide (real-time) timeliness, and thus are not appropriate to entity
authentication.

Definition 2.45 Timeliness (or freshness) typically means to be recent, it
is in the sense of having originated subsequent to the beginning of the current
protocol instance.

A timeliness guarantee may also be provided using TVPs such as times-
tamps. Note that timeliness alone does not rule out interleaving attacks using
parallel sessions.

Three main classes of time-variant parameters are below:
1) Random number. Random numbers may be used to provide uniqueness

and timeliness assurances, and to preclude certain replay and interleaving
attacks on protocols. In a challenge-response mechanism, the challenger must
temporarily maintain per-connection short-term state information, but only
until the response is verified. The term nonce is most often used to refer
to a “random” number in a challenge-response mechanism, but the required
randomness properties vary.

In protocol descriptions, “choose a random number” is intended to express
“pick a number with uniform distribution from a specified sample space” or
“select from a uniform distribution”.

2) Sequence number (or serial number, or counter value). A sequence num-
ber serves as a unique number identifying a message, and is typically used
to detect message replays. Forced delays of messages with sequence number
are not detectable in general. It may also be used to provide timeliness in
conjunction with the maintenance of pairwise (sender, receiver) state infor-
mation. As a consequence of the overhead and synchronization maintenance
necessary, sequence numbers are most appropriate for smaller, and closed
groups.

3) Timestamp. Timestamps may be used to provide timeliness and unique-
ness guarantees, to detect message replays and forced delays. It provides time-
liness in conjunction with distributed timeclocks. Timestamp-based protocols
require that timeclocks be both loosely synchronized (fixing clock drift) and
secured from modification.
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2.3.4 Challenge and response

A challenge is typically a nonce chosen by one entity at the outset of the
protocol and subsequent challenges will differ from each other.

Definition 2.46 A challenge-response protocol (or Challenge-response
mechanism) is that one entity (the claimant, or the sender) “proves” its
identity to another entity (the verifier, the receiver) by demonstrating one’s
possession of a secret to be associated with the claimant, without revealing
the secret itself to the verifier during the protocol.

This is done by providing a response to a time-variant challenge, where
the response depends on both the claimant’s secret and the time-variant chal-
lenge. Answering a challenge in challenge-response protocols requires some
type of computing device and secure storage for long-term keying material.

Challenge-response mechanisms may be implemented via symmetric-key
techniques, public-key techniques, and zero-knowledge techniques. Exam-
ples of challenge-response protocols based on symmetric-key encryption are
the Kerberos protocol[6] and the Needham-Schroeder shared-key protocol[4].
Challenge-response mechanisms may also be implemented by keyed hash
functions which could provide data origin authentication security service sim-
ilar to a symmetric-key block cipher MAC, e.g., IEEE 802.11i[3].

2.3.5 Other classes of cryptographic protocols

Besides the classification of cryptographic protocols in Chapter 1, there exist
other classifications. For example, cryptographic protocols are classified by
time-variant parameters (TVPs) used:

1) Challenge-response protocols: One entity includes a (new) time-variant
challenge, mostly a random number, in an outgoing message, then other
entity provides a response to this challenge in the next protocol message,
where the response depends on both the entity’s secret and the challenge.
This protocol instance is then deemed to be fresh based on the reasoning
that the random number links the two messages. Typically the protocol in-
volves one additional message compared to timestamp-based protocols, and
the challenger must temporarily maintain state information, but only until
the response is verified.

2) Timestamp-based protocols: timestamps are in conjunction with dis-
tributed timeclocks in a timestamp-based cryptographic protocol. Timestamp-
based protocols require that timeclocks be both synchronized and secured.
Timestamps in protocols may typically be replaced by a random number
challenge plus a return message.

3) Sequence number-based protocols: sequence numbers are in conjunc-
tion with the maintenance of pairwise (claimant, verifier) state information in
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a sequence number-based protocol. Sequence number should be guaranteed
to be increasing and unique.

In addition, classification of cryptographic protocols can be also based
on the use of trusted third party (cryptographic protocols with trusted third
party; cryptographic protocols without trusted third party), or based on the
cryptosystems used (symmetric-key based protocols and public-key based
protocols).

2.4 Security of cryptographic protocols

This section gives some background knowledge about the security of crypto-
graphic protocols including attack models, security models, analysis methods
for protocol security, etc.

2.4.1 Attacks on primitives

Some generic types of attacks on encryption schemes, signature schemes,
message authentication code schemes are given below.

1. Classification of attacks on encryption schemes

The following are some generic types of attacks on encryption schemes:
1) Ciphertext-only attack. The adversary (or cryptanalyst) tries to deduce

the decryption key or plaintext by only observing ciphertext. Any encryption
scheme vulnerable to this type of attack is considered to be completely inse-
cure.

2) Known-plaintext attack. The adversary tries to deduce the decryption
key or plaintext in possession of a quantity of plaintext and corresponding
ciphertext.

3) Chosen-plaintext attack. The adversary chooses plaintext and is then
given corresponding ciphertext. Subsequently, the adversary tries to recover
plaintext corresponding to previously unseen ciphertext by any information
deduced.

4) Adaptive chosen-plaintext attack. It is a chosen-plaintext attack wherein
the choice of plaintext may depend on the ciphertext received from previous
requests.

5) Chosen-ciphertext attack. The adversary chooses ciphertext and is then
given corresponding plaintext. Subsequently, the adversary tries to recover
plaintexts corresponding to different ciphertext by any information deduced.

6) Adaptive chosen-ciphertext attack. It is a chosen-ciphertext attack
where the choice of ciphertext may depend on the plaintext received from
previous requests.
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2. Classification of attacks on signature schemes

The objective of the attacker on signature schemes is to compute the pri-
vate key information of the signer, or to forge signatures, that is, to produce
signatures which will be accepted as those of some other entity. The following
are some generic types of attacks on signature schemes:

1) Key-only attack. The adversary tries to produce signatures which will
be accepted as those of some other entity while the adversary knows only the
signer’s public-key.

2) Known-message attack. The adversary tries to forge signatures in pos-
session of a quantity of signatures for a set of messages which are known to
the adversary but not chosen by him.

3) Chosen-message attack. The adversary obtains valid signatures from
a chosen list of messages before attempting to break the signature scheme.
This attack is non-adaptive in the sense that messages are chosen before any
signatures are seen.

4) Adaptive chosen-message attack. The adversary uses the signer as an
oracle, and he may even request signatures of messages which depend on
previously obtained signatures or messages.

3. Classification of attacks on message authentication codes

hk(x) is the message authentication code given the input value key k and
some text x. To attack a MAC means: given one or more pairs (xi, hk(xi)),
without prior knowledge of a key k, the adversary can compute a new text-
MAC pair (x, hk(x)) for some text x �= xi. The following are some generic
types of attacks on message authentication codes:

1) Known-text attack. The adversary obtains one or more text-MAC pairs
(xi, hk(xi)).

2) Chosen-text attack. The adversary chooses xi and obtains more text-
MAC pairs (xi, hk(xi)).

3) Adaptive chosen-text attack. The adversary may choose xi to obtain
new text-MAC pair (xi, hk(xi)) based on the results of prior queries.

Some practical applications may limit the number of interactions allowed
for text-MAC pair queries over a fixed period of time, or may be designed so
as to compute MACs only for inputs created within the application itself; but
it is practical to allow access to an unlimited number of text-MAC pairs, or
to allow MAC verification of an unlimited number of messages and to accept
any with a correct MAC for further processing.

2.4.2 Attacks on protocols

Definition 2.47 A protocol failure (or mechanism failure) occurs when a
mechanism fails to meet the goals for which it is intended, in a manner
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whereby an adversary gains advantage not by breaking an underlying primi-
tive such as an encryption algorithm directly, but by manipulating the pro-
tocol or mechanism itself.

That is, the underlying primitive has not been compromised but the pro-
tocol has failed to provide the intended security service adequately.

An adversary in a key establishment protocol may pursue many strategies,
including attempting to:

1) Deduce a session key using information gained by eavesdropping.
2) Participate covertly in a protocol initiated by one party with another,

and influence it, e.g., by altering messages so as to be able to deduce the key.
3) Initiate one or more protocol executions (possibly simultaneously), and

combine (interleave) messages from one with another, so as to masquerade
as some party or carry out one of the above attacks.

4) Without being able to deduce the session key itself, deceive a legitimate
party regarding the adversary as the identity of intended party with which it
shares a key.

In a unauthenticated key establishment protocol, impersonation is usually
possible. In an entity authentication protocol, where there is no session key to
attack, an adversary’s objective is to deceive a legitimate party to believe that
the protocol has been run successfully with a party other than the adversary.

The following are some generic types of attacks on cryptographic proto-
cols:

1) Known-key attack. The adversary obtains some keys used previously
and then uses this information to determine new keys.

2) Replay. The adversary records a communication session and replays
the entire session, or a portion thereof, at some later point in time.

3) Impersonation. The adversary personates the identity of one of the
legitimate parties in a network.

4) Dictionary. This is usually an attack against passwords. Typically,
a password is stored in a computer file as the image of an unkeyed hash
function. When a user logs on and enters a password, it is hashed and the
image is compared with the stored value. An adversary can take a list of
probable passwords, hash all entries in this list, and then compare this with
the list of true encrypted passwords in file with the hope of finding matches.

5) Forward search. This attack is similar in spirit to the dictionary attack
and is used to decrypt messages.

6) Interleaving attack. This type of attack usually involves parallel sessions
and impersonation in an authentication protocol.

2.4.3 Security of protocols

It is typically assumed that protocol messages are transmitted over unsecured
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channels and the adversary has complete control of the data therein, with the
ability to record, alter, delete, insert, redirect, and reuse the past or current
messages, and inject new messages. In general a protocol has the following
properties:

1) Operational property. In the absence of active adversaries and commu-
nication errors, honest participants who comply with its specification always
complete the protocol. For example, for a key establishment protocol, the
honest participants always compute a common key and corroborate the iden-
tities of the parties with whom the key is shared.

2) Completeness property. In the absence of active adversaries and com-
munication errors, a protocol is complete if, given an honest claimant and
an honest verifier, the protocol succeeds with overwhelming probability (i.e.,
the verifier accepts the claimant’s claim or they both have the knowledge of
the new session key). The definition of overwhelming generally implies that
the probability of failure is not of practical significance.

3) Soundness property. An interactive proof of a protocol is sound if there
exists an expected polynomial-time algorithmM with the following property:
if a dishonest prover (impersonating A) can, with non-negligible probability,
successfully execute the protocol with B, then M can be used to extract A’s
secret from this prover’s knowledge with overwhelming probability.

Suppose all protocols are operational and complete in this book, which is
the basic correctness requirement of protocols.

1. Attack models

The following are some types of attack models:
1) Passive attack. The adversary is passive when facing a ciphertext, i.e.,

all that the adversary could do about a ciphertext is eavesdropping.
2) Indistinguishable chosen-plaintext attack (IND-CPA). In this attack

model, the adversary is allowed to obtain an assistance in the encryption
mode to break the target cryptosystems.

3) Indistinguishable chosen-ciphertext attack (IND-CCA). In this attack
model, the adversary is allowed to obtain a conditional assistance in the de-
cryption mode to break the target cryptosystems. Other synonymous names
are lunchtime attack, midnight attack or indifferent chosen-ciphertext attack.

4) Indistinguishable adaptive chosen-ciphertext attack (IND-CCA2). In
this attack model, the adversary is allowed to obtain an assistance in the de-
cryption mode to break the target cryptosystems. Other synonymous names
are small-hours attack.

2. Security models

Definition 2.48 (All-or-nothing security) For a given ciphertext output
from a given encryption algorithm, the adversary either succeeds with ob-
taining the whole block of the targeted secret, or fails with nothing. Here
“all” means to find the whole plaintext block which in general has a size stip-
ulated by a security parameter of the cryptosystem; “nothing” means that
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the adversary does not have any knowledge about the targeted secret before
or after its attacking attempt.

All-or-nothing secrecy is unfit for the real world since the guarantee of
the secrecy is valid only if the attacker is passive, i.e., all that the attacker
could do about a ciphertext is eavesdropping. Hence, if a cryptosystem is
all-or-nothing secure, then it is a “textbook crypto”. Numerous attacks have
been discovered in practice on the textbook cryptos.

Definition 2.49 (Semantic security, IND-CPA security) A cryptosystem
with a security parameter k is said to be semantically secure: after the IND-
CPA attack game being played with any polynomially bounded adversary,
the advantage Adv for the adversary Malice to distinguish the two plaintexts
chosen by the adversary is negligible. The semantic security is also called
the security for indistinguishable chosen-plaintext attack, for short IND-CPA
security.

Informally speaking, semantic security means that whatever is efficiently
computable about the plaintext given the ciphertext, is also efficiently com-
putable without the ciphertext. The notion of the IND-CPA security captures
the intuition that any polynomially bounded adversary should not be able to
obtain any apriori information about a plaintext.

Definition 2.50 (IND-CCA security) A cryptosystem with a security pa-
rameter k is said to be secure against an indistinguishable chosen-ciphertext
attack (IND-CCA security): after the IND-CCA attack game being played
with any polynomially bounded adversary, the advantage Adv for the ad-
versary Malice to distinguish the two plaintexts chosen by the adversary is
negligible.

Lunchtime attack is a quite restrictive attack model in that the decryption
assistance provided to Malice is only available in a short period of time, which
is not a reasonable or realistic scenario. In reality, naive users will remain
permanently naive, and Malice will definitely strike back, probably even in
the afternoon tea-break time[2]!

Definition 2.51 (IND-CCA2 security) A cryptosystem with a security pa-
rameter k is said to be secure against an indistinguishable adaptive chosen-
ciphertext attack (IND-CCA2 security): after the CCA2 attack game being
played with any polynomially bounded adversary, the advantage Adv for the
adversary Malice to distinguish the two plaintexts chosen by the adversary
is negligible.

Most cryptosystems which are IND-CPA secure may be particularly vul-
nerable in IND-CCA (or IND-CCA2) model. In CCA and CCA2 models,
an adversary (now he is Malice) may get decryption assistance, that is, he
may be in a certain level of control of a “decryption box” and so may have
some ciphertext of his choice to be decrypted for him even though he does
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not have possession of the decryption key. Such an assistance is treated as
a “cryptanalysis training course” provided to Malice in order to ease his
attack job. These modes of attacks, particularly CCA2 model, are realistic
in many applications of public-key cryptography[7]. Nowadays, IND-CCA2
is becoming the standard and fit-for-application security notion for public-
key cryptosystems[2]. New public-key encryption schemes need to have this
security quality for general purpose applications in real world setting.

2.4.4 Analysis methods for protocol security

We identify two distinct approaches for analyzing cryptographic protocols:
Informal approaches and formal approaches (or formalisms). Formal
approaches are a natural extension to informal ones and they are more im-
portant in protocol security analysis field. The following are some types of
analysis methods for protocol security[1, 2, 7, 8].

1. Ad hoc and practical analysis

It is also called heuristic security. Protocols are typically designed to
counter standard attacks, and shown to follow accepted principles. This ap-
proach, perhaps, is the most commonly used and practical one, but it may
provide least satisfying of protocol security. Claims of security in this class
generally remain questionable, and unforeseen attacks remain a threat.

2. Complexity-theoretic analysis

It is also called computational security or computationally secure. An ap-
propriate model of computation is defined, and adversaries are modeled as
having polynomial computational power (they may mount attacks involving
time and space polynomial in the size of appropriate security parameters).
Security analysis of this mathematical type helps a protocol designer or an-
alyzer to consider using correct or more precise cryptographic services, and
so protocol flaws can be avoided.

Provable security, also called provably secure, may be considered as part
of a special sub-class of the computational security. Provable Security is a for-
mal method for proving the security of cryptographic schemes, in which the
difficulty of breaking a particular scheme is formally related to that of solving
a widely believed computational hard problem, such as integer factorization
or the computation of discrete logarithms. Random oracle is a very powerful
and imaginary hash function with the “mixing-transformation” property: for
any input, the distribution of the output hash values is uniform in the func-
tion’s output space. In provable security, random oracle is used to construct
public-key encryption schemes out of using the basic and popular public-key
cryptographic primitives.

Provable security is the most commonly used analysis method in com-
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putational security. Hence, in this book, we typically use provable security
to refer to computational security. It is often required for a scheme to be
secure in this class, and most of the best known public-key and symmetric
key schemes in current use are in it.

3. Information-theoretic analysis

This approach uses mathematical proofs involving entropy relationships
to prove that protocols are unconditionally secure. An adversary is assumed
to have unlimited computational resources, and the question is whether or
not there is enough information available to defeat the system. Uncondi-
tional security for encryption systems is also called perfect secrecy. While
unconditional security is ultimately desirable, this approach is not applicable
to most practical schemes. This approach cannot be combined with com-
putational complexity arguments because it allows unlimited computation,
while computational complexity requires that the adversaries should only
have polynomial computational power.

4. Symbolic manipulation analysis

It is also called formal methods, verification methods or formalisms. This
approach uses a set of abstract symbols to express security properties and
these abstract symbols can be manipulated. The so-called approaches include
formal logic systems, term re-writing systems, expert systems, and various
other methods which combine algebraic and state-transition techniques.

On one hand, symbolic formal analysis methods are simple but have
proven to be of utility in finding flaws and redundancies in protocols, and
some are automatable to varying degrees. On the other hand, the “proofs”
provided are proofs within the specified formal system, and cannot be inter-
preted as absolute proofs of security. For example, the security of symbolic
view regards an encryption as a deterministic function. The foundations for
formal cryptology need to be strengthened.

2.5 Communication threat model

This section gives a brief introduction to the communication threat model.

2.5.1 Dolev-Yao threat model

Dolev and Yao propose a communication threat model[9], which has been
widely accepted as the standard threat model for cryptographic protocols.

The Dolev-Yao threat model supposes that Malice, the attacker, controls
the entire communication network, so Malice is able to observe all message
traffic over the network, to intercept, read, modify or destroy messages. Fur-
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ther more, Malice may perform transformation operations on the intercepted
messages (such as encryption or decryption as long as he has in his pos-
session of the correct keys), and send his messages to other principals by
masquerading as some principal.

The Dolev-Yao threat model requires very few quantity assumptions on
the behavior of the adversary. Here are the basic assumptions for the protocol
environment in Dolev-Yao threat model.

1) In a perfect public-key system, as long as
— the one-way functions used are unbreakable;
— the public directory, including all the text m ∈ M and its corresponding

ciphertext Ee(m) pairs, is secure and cannot be tampered with;
— everyone has access to the encryptions under public-key e;
— only the public-key owner has the corresponding private key d.

2) In a two-party protocol, only the two users who wish to communicate
are involved in the transmission process; the assistance of a third party in
decryption or encryption is not needed.

3) In a uniform protocol, the same format is used by every pair of users
who wish to communicate.

4) The adversaries are “active” eavesdroppers: someone who first taps the
communication line to obtain messages will try everything he can to discover
the plaintext. More precisely, the followings are assumed:
— He can obtain any message passing through the network.
— He is a legitimate user of the network, and thus particularly can initiate

a conversation with any other user.
— He will have the opportunity to become a receiver to any user.
— He can send messages to any principal by impersonating any other prin-

cipal.
Recall that Malice only has polynomial computational power, so he has

the following characteristics:
— Malice cannot guess a random number which is chosen from a sufficiently

large space.
— Without the correct secret (or private) key, Malice cannot retrieve plain-

text from given ciphertext, and cannot create valid ciphertext from given
plaintext.

— Malice is not in control of many private areas of the computing envi-
ronment, such as accessing the memory of a entity’s offline computing
device.

2.5.2 Assumptions of protocol environment

The Dolev-Yao-like threat model will be applied to the protocol analysis in
this book, where Malice is assumed to have the entire control of the vulnerable
network and his computational capability is polynomially bounded.
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To clarify the threats that cryptographic protocols may be subject to, and
to motivate the need for specific protocol characteristics, precise assumptions
of protocol environment in our protocol analysis are given.

1. Assumptions of cryptosystems

1) Suppose cryptographic primitives are perfect. That is, when exam-
ining the security of protocols, it is assumed that the underlying crypto-
graphic mechanisms used, such as encryption algorithms and digital signa-
tures schemes, are secure in the protocol run. An adversary is hypothesized
to be not a cryptanalyst attacking the underlying primitives such as encryp-
tion algorithms directly, or rather the one attempting to subvert the protocol
objectives by manipulating the protocol or mechanism itself.

Suppose cryptographic primitives are unbreakable in protocol analysis,
so an adversary gains advantages not by breaking an underlying primitive
such as an encryption algorithm directly, but by manipulating the protocol
or mechanism itself.

Recall that security for indistinguishable adaptive chosen-ciphertext at-
tack (IND-CCA2) is fit-for-application in a practical cryptographic setting,
and it can be mathematically specified and proved independent of qualifying
assumptions. Hence, we suppose our “perfect” cryptographic primitives are
practical primitives which are IND-CCA2 secure. Namely, under IND-CCA2,
the failures in a cryptographic protocol are not in any way related to the
strength or weakness of the primitive used, but related to the protocol logic
flaws.

2) The secret (or private) key d of the particular key pair (e, d), in which
the communication parties are being used, should be kept secret while com-
municating securely. Without the correct private key, Malice cannot be able
to retrieve plaintext from given ciphertext, and cannot create valid ciphertext
from given plaintext.

History has shown that maintaining the secrecy, the secret (or private)
key, of the encryption and decryption transformations is very difficult indeed.

3) Suppose that a legitimate party is either totally corrupted or totally
secure. That is, the secrecy or the local state for a session during execution
is either totally known by the adversary or totally not.

In practice, it is a common case that the adversary finds part of the local
state or other information, and then he can deduce the decryption key or
recover the desired plaintext. However, we omit this information exposure
case for it is out of the scope of this book: analyzing the security of the
protocol itself.

4) Suppose that each party has his own private key and the public-keys of
other parties (including the adversary) in public-key case; Suppose that each
party shares long-term keys with co-operative principals or the trusted third
party in symmetric-key case. Furthermore, private keys and shared keys are
commonly assumed to be too long to guess in a computationally feasible way.

In common, public-keys or long-term keys are deployed safely before the
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protocol run via authenticated channel or even traditional communication
means. However, in some special cases, public-keys or long-term keys may
also be transmitted in a cryptographic protocol.

5) Malice cannot guess a random number which is chosen from a suffi-
ciently large space.

2. Assumptions of receiving messages

The receiving information of a participant is referred to as bit string.
Further decision should be made to determine whether this bit string is a
message or not. Suppose each entity can distinguish the sentence structure
of a message from random bit strings and has the ability to recognize a basic
message.

3. Assumptions of participants

Suppose each participant, given an honest claimant and an honest veri-
fier, will comply with the determined protocol steps, and the protocol will
succeed with overwhelming probability (i.e., for key establishment protocol,
the verifier accepts the claimant’s claim or they both have the knowledge of
the new session key).

4. Assumptions of encryption and decryption

Suppose the encryption and decryption manipulation on a message are
inverse functions, that is, they obey a set of term-rewriting rules. For example,
Dd(Ee(m)) = m for all m ∈ M , where public-key e and private key d are
paired keys in a public-key system, and symmetric keys e and d are equal
keys (e = d) in a symmetric-key system.

5. Assumptions of adversary

In general, it is assumed that Malice is very clever in manipulating com-
munications over the open network. His manipulation techniques are unpre-
dictable because they are unspecified.

Malice is able to observe all message traffic over the network, to inter-
cept, read, modify or destroy messages at will, to perform transformation
operations on the intercepted messages, and to send his messages to other
principals by masquerading as some principal. However, Malice’s computa-
tional capability is polynomially bounded, therefore there is a set of “words”
that Malice does not know naturally at the beginning of a protocol run, this
set of words can be secret messages or cryptographic keys for which a protocol
is meant to protect.

Malice represents a coalition of bad guys and thereby may use a large
number of computers across the open network in parallel. Hence, an adversary
usually means a group of attackers in this literature.

Furthermore, suppose the attacker can perform a kind of cryptanalysis
training course that helps him to obtain a conditional assistance, in the de-
cryption mode or encryption mode, and makes him more experienced in the
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future.

2.5.3 Expressions of cryptographic protocols

We adopt the formal notation expressions in the Dolev-Yao-like threat model,
which distinguish the underlying primitives from the cryptographic protocols
explicitly and the security of a cryptographic protocol is discussed under a
“perfect” primitive.

One message procedure step usually is

Message 2 A→ B {m}KAB .

“Message 2” means that this is the second message exchanged in a protocol.
“A → B : {m}KAB” indicates that the protocol participant A has sent the
message “{m}KAB” to the opponent protocol participant B. “→” shows that
the message is sent from the arrow end terminal A to the arrow top terminal
B. m is a text where m ∈M , KAB is a long-term key between the principals
A and B. {m}KAB is an encryption of m under key KAB.

I(A) (or I(B)) is the adversary Malice I impersonating A (or B respec-
tively).
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3 Engineering Principles for Security Design
of Protocols

Abstract Informal methods are useful in helping designers to find
implicit assumptions and to avoid them. Prudent engineering prin-
ciples presented by Abadi and Needham in the excellent paper have
shown considerable use for the protocol designers. Cryptographic pro-
tocol engineering is a new notion introduced in this book to give a
set of principles for cryptographic protocol design, which is derived
from software engineering method. Cryptographic protocol engineer-
ing principles are composed of protocol engineering requirement analy-
sis principles, detailed protocol design principles and protocol provable
security principles. Furthermore, the protocol engineering principles
are demonstrated with some well-known published protocols.

An enormous increase has been seen in the development and use of crypto-
graphic protocols in distributed system in the past two decades. These cryp-
tographic protocols intend to provide confidentiality, authenticity, integrity
or nonrepudiation for applications. But, unfortunately, design of a crypto-
graphic protocol, especially an authentication protocol, remains extremely
error-prone, even for experts in this area. Some protocols have shown to
be flawed even a long time after they were published. Needham-Schroeder
public-key authentication protocol was found flawed by Lowe in 1995, seven-
teen years after its publication[1, 2].

The study of successful attacks on cryptographic protocols helps designers
to learn from previous design errors, to understand general attack methods.
However, claims of protocol security may remain questionable, although pro-
tocols are typically designed to counter standard attacks, and are shown to
follow accepted principles, but they may be subject to unforeseen attacks.
The reasons of protocol failure are implicit assumptions, such as implicit se-
curity strength, implicit attack models, implicit assumptions of features of
a cryptographic algorithm, implicit principal identities, implicit freshness in-
formation in some messages, etc. These implicit assumptions may lead flaws
to the protocols[2–6].
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3.1 Introduction of engineering principles

Over time, various formalisms have been used to analyze cryptographic pro-
tocols, such as BAN logic, Random Oracle Model, Model Checking etc.[7–9].
These formalisms are useful to find some published or even some previously
unrecognized flaws and redundancies. However, they are not beneficial di-
rectly to protocol designers in preventing flaws, and it is relatively compli-
cated and difficult to prove security via formalisms for some cryptographic
protocols in modern communication.

Informal methods are useful in helping designers to find implicit assump-
tions and to avoid them[3, 5, 6, 10, 11]. An excellent paper [3] by Abadi and
Needham presents some informal principles for the design of cryptographic
protocols and these principles have shown considerable use for the protocol
designers. To make it more systematic and operational, in this book we put
forward the notion of cryptographic protocol engineering where we regard the
design of cryptographic protocol as an engineering and point out some im-
portant possible implicit assumptions, e.g., what the security requirements of
a cryptographic protocol are, which attack model this protocol is acted upon,
where this protocol is applied and how to avoid some particular features of
a cryptographic algorithm, according to various design phases.

When designing a cryptographic protocol, it is important to identify as-
sumptions in the protocol design and to determine the effect on the security
objectives if that assumption is violated. Study of uncovered flaws in pro-
tocols motivates and allows an understanding of various design features of
protocols, and that of successful attacks helps designers to avoid standard at-
tacks. This explicitly or implicitly defines the threats a protocol is intended
to address, and formulate design principles.

3.1.1 Prudent engineering principles

Abadi and Needham propose eleven heuristic prudent engineering principles
for cryptographic protocols design, including two general principles and the
famous and important principle about entity’s identity[3].

The first basic principle of the two general principles is concerned with
the content of a message:

P1: Every message should say what it means: The interpretation of the

message should depend only on its content. It should be possible to write

down a straightforward English sentence describing the content—though

if there is a suitable formalism available, that is good too.

That is, all elements of the sentence meaning should be explicitly repre-
sented in the message, so that a recipient can recover the meaning without
any context.

Another basic principle is concerned with the circumstances:
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P2: The conditions for a message to be acted upon should be clearly set out

so that someone reviewing a design may see whether they are acceptable or

not.

The above two principles are basic general principles for the design of
secure cryptographic protocols. Other Abadi and Needham’s principles are:

P3: If the identity of a principal is essential to the meaning of a message,

it is prudent to mention the principal’s name explicitly in the message.

Principle P3 has proved to be a correct and well recognized principle for
protocol design. Numerous known attacks could be avoided if this principle
is followed[1, 6].

P4: Be clear about why encryption is being done. Encryption is not wholly
cheap, and not asking precisely why it is being done can lead to redundancy.
Encryption is not synonymous with security, and its improper use can lead
to errors.
P5: When a principal signs material that has already been encrypted, it
should not be inferred that the principal knows the content of the message.
On the other hand, it is proper to infer that the principal that signs a
message and then encrypts it for privacy knows the content of the message.
P6: Be clear what properties you are assuming about nonces. What may
do for ensuring temporal succession may not do for ensuring association
and perhaps association is best established by other means.
P7: The use of a predictable quantity (such as the value of a counter) can
serve in guaranteeing newness, through a challenge-response exchange. But
if a predictable quantity is to be effective, it should be protected so that an
intruder cannot simulate a challenge and later replay a response.
P8: If timestamps are used as freshness guarantees by reference to absolute
time, then the difference between local clocks at various machines must be
much less than the allowable age of a message deemed to be valid. Further-
more, the time maintenance mechanism everywhere becomes part of the
trusted computing base.
P9: A key may have been used recently, for example, to encrypt a nonce,
yet be quite old, and possibly compromised. Recent use does not make the
key look any better than it would otherwise.
P10: If an encoding is used to present the meaning of a message, then it
should be possible to tell which encoding is being used. In the common case
where the encoding is protocol dependent, it should be possible to deduce
that the message belongs to this protocol, and in fact to a particular run of
the protocol, and to know its number in the protocol.

P11: The protocol designer should know which trust relations his protocol

depends on, and why the dependence is necessary. The reasons for partic-

ular trust relations being acceptable should be explicit though they will be

founded on judgment and policy rather than on logic.

3.1.2 Cryptographic protocol engineering principles

The Abadi-Needham prudent engineering principles help the researchers a lot
in designing a secure protocol. However, the design of cryptographic protocols
is still an error-prone job for its subtlety. Some fixed versions of cryptographic
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protocols illustrated by Abadi and Needham in [3] are found flawed, even if
they have followed the design principles. We introduce the cryptographic
protocol engineering notion into the analyzing of protocol security, set out
some new principles for protocol design, and try to improve this situation.

Cryptographic protocol engineering is a new notion introduced in this
book to give a set of principles for cryptographic protocol design, which is
derived from software engineering method. Similar to software engineering,
cryptographic protocol engineering is the application of engineering to pro-
tocol design, that is, the application of a systematic, disciplined, quantifiable
approach to the development of cryptographic protocol design, and the study
of these approaches.

Cryptographic protocol engineering means at least two different things:
the first is that protocol design isn’t merely the act of designing messages
but a sequence of applications to protocol design. Secondly, the term “cryp-
tographic protocol engineering” has been used to describe “building of cryp-
tographic protocols which are so complex in practice although there may be
only several messages in a protocol”[6].

Cryptographic protocol engineering principles are presented based on the
software engineering idea, which help the designers to avoid implicit assump-
tions in protocol design.

Cryptographic protocol engineering principles are divided into three parts:
1) protocol engineering requirements analysis phase,
2) detailed protocol design phase, and
3) protocol provable security phase

corresponding to
1) software requirements analysis phase,
2) detailed software design phase, and
3) software test phase

in a software design. Note that the presented principles may be affinal with
some previous protocol design principles and not completely original, but
they are more operational[3, 12, 13].

First, we give principles to help protocol designers to answer what the
security requirements of a cryptographic protocol are, which attack model
this protocol actes upon, where this protocol is applied, when and which
cryptographic service should be used. Then, we present principles on avoiding
subtleties and errors in detailed protocol design, which is also the focus of
[3]. At last, we address principles about provable security for protocol design.
Furthermore, the protocol engineering principles are demonstrated with some
well-known published protocols.

It is worth noting that we present these protocol engineering principles
at an abstract level, and do not intend to discuss the concrete method on
how to choose a cryptographic algorithm or an attack model for a particu-
lar protocol, on the correct implementation or appropriate application of a
particular protocol.

Although these principles themselves are informal, they are useful directly



3.2 Protocol engineering requirement analysis 45

for protocol designers along the whole cryptographic protocol design. If de-
signers adhere to these principles, a lot of confusion and a number of mistakes
can be avoided and the risk of designing flawed protocols will be reduced.

3.2 Protocol engineering requirement analysis

Protocol engineering requirement analysis phase in the protocol design corre-
sponds to software requirement analysis phase in the software development,
and the protocol requirement analysis is about the security requirement anal-
ysis, plaintext analysis, application environment analysis, etc.

3.2.1 Security requirement analysis

Principle 3.1 Protocol designers should be clear about the security re-
quirements of a cryptographic protocol, especially the security strength re-
quirements of the protocol.

The security requirements of a cryptographic protocol include not only
the security goals of the protocol but also the security strength to be reached.

The security goals of a cryptographic protocol are usually indicated ex-
plicitly, such as providing confidentiality, authenticity, integrity or nonrepu-
diation for applications.

1) For a public-key certificate, the objective may be to make one entity’s
public-key available to others over unsecured media without danger of unde-
tectable manipulation.

2) For a key establishment protocol, the objective may be to provide both
secrecy and authenticity of the key for protocol participants, which implies
the identities of the parties sharing the key, and the temporality and the
uniqueness of the key between these parties.

The security strength requirements also should be clearly stated for a
cryptographic protocol. It is important to consider what assurances and prop-
erties an intended application requires while designing or selecting a cryp-
tographic technique for use. The security strength requirements in various
environments such as the mainframe computer systems, VPNs, LANs, and
Internet are different.

The strength of a particular cryptographic algorithm is completely dif-
ferent. Some achieves all-or-nothing security, some semantic security, some
chosen-ciphertext attack security, while other non-malleable security.

All-or-nothing security means that an adversary either succeeds in ob-
taining the whole block of the targeted secret, or fails with nothing. The
all-or-nothing security for a cryptosystem is not sufficient. It is based on pas-
sive attack and could not defense indistinguishable chosen-plaintext attack
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(IND-CPA). Most of the primitives in the textbook are all-or-nothing security
ones.

Semantic security[13, 14], also called security for indistinguishable chosen-
plaintext attack, means that a ciphertext doesn’t leak any useful information
about the plaintext to any adversary whose computational power is polyno-
mially bounded. A protocol may defense chosen-plaintext attack, but it may
not withstand the chosen-ciphertext attack (IND-CCA) or adaptive chosen-
ciphertext attack (IND-CCA2).

Protocol designers often copy features from existing protocols to achieve
confidentiality, authenticity or integrity, but they fail to take into account
the particular features of a cryptographic algorithm used. Although protocol
designers may have in their minds the cryptographic algorithm they expect
to use, the strength of a cryptographic algorithm can be completely under-
mined by using it in an unsafe way. As a result of this, misuse of textbook
cryptosystems frequently appears in the literature of cryptographic protocols
even for serious real-world applications. Direct encryption of a password un-
der a basic public-key encryption algorithm is a typical example of textbook
crypto[13].

Example 3.1 With the apriori information in plaintext, a textbook en-
cryption algorithm such as RSA does not hide partial information about a
plaintext very well, hence it is less harder to recover some information in a
cryptosystem than to recover the whole plaintext block. That is, if the plain-
text message input to a basic or textbook public-key cryptographic primi-
tives has a random distribution, then extracting a single bit of the plaintext
message from a ciphertext is as hard as extracting the whole block of the
plaintext.

Example 3.2 The RSA least significant bit can be as strong as the whole
block of the plaintext. But if the owner of an RSA public-key acts as a
decryption oracle to return a whole data block to a decryption request, he
may leak the least significant bit.

Example 3.3 Optimal Asymmetric Encryption Padding (OAEP) and
Cramer-Shoup public-key cryptosystem are formally provably secure under
IND-CCA2, and they are practical public-key cryptosystems[15–18].

The protocol designers should be clear to the particular features including
the security strength property of a cryptographic algorithm they intend to
use before the algorithm is practically used.

3.2.2 Plaintext analysis

Principle 3.2 If a plaintext is characteristic, some measures should be
taken to hide the apriori information of the plaintext.
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Plaintexts are usually implicitly assumed to be random in the plaintext
space. However, in many applications, plaintexts may contain apriori infor-
mation that can be guessed easily.

Example 3.4 Plaintexts may be a password in a password dictionary, the
name list of the candidates to be voted, or a value from a known range of
salaries etc. To guess such information about a plaintext encrypted under an
all-or-nothing encryption algorithm, an adversary can simply reencrypt the
plaintext and see if the result is the same as the targeted ciphertext.

Example 3.5 ElGamal cryptosystem achieves the distribution of the en-
crypted plaintext message uniformly over the entire message space. But if a
plaintext message is not in the subgroup generated by g (g is a random mul-
tiplication generator element of the group Z

∗
p where p is a randomly chosen

prime number), ElGamal cryptosystem will become a deterministic scheme
that may leak partial information and an adversary can launch the meet-in-
the-middle attack on it[13, 19].

Besides this, partial apriori information about the plaintext may provide
the adversary an unfair advantage in some applications.

Example 3.6 Shamir, Rivest and Adleman propose a fair deal protocol for
RSA mental poker game, which directly applies one-way trapdoor functions
in the protocol. The variation of the RSA cryptosystem in this approach
could not hide the quadratic residuosity (QR) information in plaintexts. By
selecting a plaintext card in QRN (quadratic residuosity modulo a composite
number N) and the other not, the adversary can guess which card the op-
ponent has got. That is to say, it could not defense indistinguishable chosen-
plaintext attack (IND-CPA). This approach can be fixed by forcing all the
cards chosen from QRN .

Shannon’s work establishes a principle of cryptographic practice that the
plaintext should be as random as possible for most cryptographic applica-
tions. Apriori information of the plaintext can be hidden by data compres-
sion, by homophonic substitution, or by hash function. With the application
of hash function, etc., the plaintext message could become randomized, then
the problem of finding any information about the plaintext can be as hard
as solving the difficulty hard problem.

3.2.3 Application environment analysis

Principle 3.3 Protocol designers should explicitly indicate the application
environment where the protocol is fit for use.

The stringency of cryptographic requirements is different, depending on
the susceptibility of the environment in question to various types of attacks.
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Certain cryptographic protocol can be applied in a passive attack environ-
ment or in an adaptive attack environment, in local area networks or in
Internet, in wired networks or in wireless networks.

For an environment with active adversaries, who are capable of intercept-
ing, modifying, or injecting messages, neither party has assurances of the
source identity of the incoming message or the identity of the party which
may know the resulting key in a key establishment protocol.

If a protocol designer fails to indicate the environment where this protocol
should be applied clearly, and caters for wide applications of their crypto-
graphic protocol, then, as a result, the protocol may not offer the required
security as it has guaranteed. Application environment analysis is tightly re-
lated to the security strength to be reached. The bandwidth and computation
abilities should also be considered.

To avoid the determination of signature and encryption, probabilistic se-
curity is introduced, and many applicable cryptographic protocols also use
randomized algorithm. However, the randomness property may be lost in
some scenarios. In the case of the ElGamal encryption and signature, the
randomization is due to the randomness of the ephemeral key in randomized
algorithm.

Example 3.7 In ElGamal Signature scheme, if an ephemeral key l is reused
to issue two signatures (r1, s1), (r2, s2) for two messages m1 �= m2 (mod p−
1), the private key k−1 may be computed from it: Since r = gl (mod p), and
s = l−1(m−k−1r) (mod p−1), we have l(s1−s2) ≡ (m1−m2) (mod p−1),
then we have l−1 ≡ (s1−s2)/(m1−m2) (mod p−1), at last we can compute
private key k−1 ≡ (m1 − ls1)/r (mod p − 1). Hence, this ephemeral key l
should be chosen randomly from Z

∗
p−1, and shouldn’t be reused, otherwise

the private key k−1 could be deduced[13, 19].

In some applications, e.g., in wireless communication environment, espe-
cially when smart cards are used, random values are often far from being per-
fect and may be monitored by using probing or electromagnetic analysis[13, 20].
Then the assumption of perfect random generator is not available to devices
equipped with limited randomness source. Hence, one must be prudent while
using the probabilistic security cryptosystem, especially in a device equipped
with limited randomness source.

3.2.4 Attack model and adversary abilities analysis

Principle 3.4 The attack model and the adversary abilities should be ex-
plicitly specified in security definition of a cryptographic protocol.

Different answers to assumptions of attack models give protocol design-
ers completely different security[21–23]. For example, all-or-nothing security
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is based on passive attack model; semantic security is based on chosen-
plaintext attack model (IND-CPA); CCA2 security is based on adaptive
chosen-ciphertext attack model. A protocol designed to be secure against
one type of attack models may not be secure against another. What are the
implicit assumptions of attack models behind the designer’s protocol? and
are they clear or obscure in designer’s protocol?

Example 3.8 Rabin developed a public-key cryptosystem based on the dif-
ficulty of computing a square root modulo a composite integer. In all-or-
nothing security, if there exists an algorithm for forging a Rabin signature,
then the composite modulus can be factored via using this forging algorithm.
While in an IND-CPA model, the adaptive adversary can ask the signer to
issue the signature of a message m = s2 (mod N), the adversary has chosen
an arbitrary s ∈ Z

∗
N . N is a composite integer, and N = p×q with p, q (being

distinct odd primes). If the reply s′ of the signer is any one of four square
roots of m and s′ �= ±s (mod N), then N can be factored by the adaptive
attacker. This basic Rabin scheme is absolutely unusable in any real world
application, since adaptive attack is unavoidable.

Moreover, even if the attack model is specified, the abilities of an adver-
sary are usually dark and designers do not really know what they can do to
defense the attacks.

There are many assumptions of the abilities of the adversary. Particu-
larly, an adversary may ask for concurrent arbitrarily-interleaved executions
of the protocol, may modify messages or even prevent their delivery, may
impersonate participants in the protocol and act as a “man-in-the-middle”,
may corrupt all protocol participants and may take other vicious actions
discovered in the future. As a matter of fact, most attacks on published pro-
tocols are found as a result of changing the assumptions of the abilities of
the adversary[4, 10, 13, 24].

Example 3.9 In Needham Schroeder shared key protocol[1], an implicit
assumption is made that the old session key would not be vulnerable to
compromise, but in deed, the old session key may compromise, hence there
exists an attack on Needham Schroeder shared key protocol as shown in
Example 3.39.

In real world communication settings, it is better to consider an adver-
sary as a probabilistic polynomial-time attacker that has full control of the
communication links. The adversary can do everything but decrypt a confi-
dential content without the corresponding key to the message. It is better to
avoid concrete description of an adversary’s ability, since we cannot exhaust
all possible types of attacks even we list all known attacks or attacks we can
imagine.
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3.2.5 Cryptographic service requirement analysis

Principle 3.5 Protocol designers should use correct or more precise crypto-
graphic services in appropriate occasion to avoid protocol flaws due to misuse
of them.

Cryptographic algorithms can provide different and determined crypto-
graphic services, and they need to be combined to meet various information
security objectives. A given security objective, whose algorithms are most
effective is determined by the basic properties of the algorithms. Misuse of
cryptographic services may lead to protocol flaws.

Example 3.10 Cipher Block Chaining (CBC) is a common block-
cryptographic algorithm for encryption of general data. It chains all the ci-
pher blocks together and makes each cipher block depend on all previous data
blocks. It seems that CBC can provide data integrity protection, but it could
not provide data integrity protection in any sense. The only security service
that the CBC mode offers is to randomize output ciphertext. CBC padding
is applied to SSL, IPSEC, WTLS, etc. to provide data integrity protection,
which induces security flaws[25].

Example 3.11 RSA encryption is a widely used cryptographic algorithm.
Since partially known plaintext is not uncommon in application, it is now
widely agreed that RSA encryption should avoid using small encryption ex-
ponent. Otherwise, if there exists m < N1/e, then message m can be found
efficiently by extracting the e-th root in integers from ciphertext c = me

(mod N).

Example 3.12 This example is related to ElGamal signature in GPG (GNU
privacy guard)[26]. Both a short private exponent and a short nonce are used
for the generation of ElGamal signatures in GPG version 1.0.2 (January 2000)
and 1.2.3 (August 2003). The signer’s private key can be recovered in less
than a second on a PC by using lattice-based attack[27].

Protocol designers often misunderstand the available service a crypto-
graphic algorithm can provide. As a result, the cryptographic protocol will
be insecure if the algorithm is not chosen correctly. It is prudent to analyze
the cryptographic service requirement and security strength requirements of
the protocol following Principle 3.1 and Principle 3.5, and then to select an
appropriate cryptographic algorithm correspondingly.

3.3 Detailed protocol design

Detailed protocol design is the most important part of the whole protocol
design work. Due to the asynchronous and complicated nature of contem-
porary networks, it is not easier to achieve cryptographic protocol security
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than to achieve that of a cryptographic algorithm. In this section, we take
some typical cryptographic protocols as representative examples to explain
the principles about detailed protocol design.

3.3.1 Liveness of the principal’s identity

Principle 3.6 If the identity of a principal is essential to the meaning of
a message, protocol designers should not only mention the principal’s name
explicitly but also authenticate the principal’s liveness.

An important goal of authentication is to establish a lively communication
between or among the initiate identity and the identities sought by the first.

The liveness of a principal means that from a legitimate participant A’s
point of view, the B believes that the intended communication partner A is
alive in this protocol run. That is to say, whenever a principal A is to be
authenticated with the principal B, there should be some evidence that A
has truly taken part in the run of this protocol.

At first, a principal only trusts a time-variant parameter (say TVP, in-
cluding nonce, timestamps, new session keys, shared parts of new session
keys etc.) unambiguously generated by the principal himself. The liveness
of A, from B’s point of view, can only be deduced by a signed message that
contains the TVP trusted by B. The signed message can be a signature of A,
a message encrypted under the long-term shared key between A and B with
data integrity protection, etc.

Often, the claimed source identity or source network address of a message
is not explicitly included as a message field, since in some cases the identity
of the principal can be deduced from other information like keys applied or
context. This may cause failure in protocols. See more attack examples in [28]
about principal’s identity on protocol A, protocol B, protocol C and protocol
D in [29].

The principle P3 in paper [3] indicates that if the identity of a principal
is essential to the meaning of a message, the principal’s name should be men-
tioned explicitly in the message. This is a useful principle, but it may not
guarantee the liveness of a principal via mention of a principal’s name explic-
itly. The absence of principal’s liveness can still cause failure in cryptographic
protocol. Here are some examples.

Example 3.13 The Woo-Lam protocol is an authentication protocol based
on symmetric-key cryptography[30]. In the Woo-Lam protocol as shown in
Fig. 3.1, the principal A intends to authenticate B with the aid of a trusted
third party S.

Message 1 A→ B : A

Message 2 B → A : NB
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Message 3 A→ B : {NB}KAS

Message 4 B → S :
{
A, {NB}KAS

}
KBS

Message 5 S → B : {NB}KBS

Fig. 3.1 The Woo-Lam authentication protocol.

Notation

A and B are two protocol principals, and S is trusted third party, a
server; NB is a nonce; KAS and KBS are keys that A and B shared with S
respectively.

Premise

KAS (KBS) is the shared long-term key between A and S (B and S),
which is initially established by non-cryptographic, and out-of-band tech-
niques. NB is randomly chosen by B.

Protocol actions

1) In Message 1, A claims his identity.
2) In Message 2, B randomly chooses a nonce NB and sends it to A.
3) In Message 3, A returns this challenge encrypted under the shared

long-term key KAS.
4) In Message 4, B passes this encryption on to S for verification, bound

with A’s name encrypted under KBS .
5) Upon receiving Message 4, S recovers NB using KBS and KAS, and

re-encrypts NB using B’s key KBS and sends it to B in Message 5.
6) Upon receiving Message 5, B checks whether A has responded to the

challenge NB. If S replies {NB}KBS , then B should be convinced that A is
active in this protocol run.

1. Attack on the original Woo-Lam protocol

Abadi and Needham found that the original Woo-Lam protocol was
flawed[3], as shown in Fig. 3.2, since nothing connects B’s query to S with
S’s reply. Then the adversary I can impersonate A.
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Message 1 I(A)→ B : A

Message 1′ I → B : I

Message 2 B → I(A) : NB

Message 2′ B → I : N ′
B

Message 3 I(A)→ B : {NB}KIS

Message 3′ I → B : {NB}KIS

Message 4 B → S :
{
A, {NB}KIS

}
KBS

Message 4′ B → S :
{
I, {NB}KIS

}
KBS

Message 5 S → B : {N ′′
B}KBS

Message 5′ S → B : {NB}KBS

Fig. 3.2 An attack on the original Woo-Lam authentication protocol.

Notation

A and B are two legitimate protocol principals, S is a server, and I is
an attacker with legitimate identity; NB and N ′

B are nonce; KAS , KBS and
KIS are long-term keys that A, B and I shared with S respectively; N ′′

B is
the result of decrypting {NB}KIS using KAS.

Premise

KAS (KIS , KBS) is the shared long-term key between A and S (I and
S, B and S), NB is randomly chosen by B for the session between A and B,
while N ′

B is randomly chosen by B for the session between I and B.
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Protocol actions

1) In Messages 1 and l′, I tells B that both A (by impersonating A) and
I want to establish a connection.

2) In Messages 2 and 2′, B provides challenges NB and N ′
B for sessions

between A and B, and I and B respectively.
3) In Messages 3 and 3′, I replies to both challenges with the same

{NB}KIS .
4) Upon receiving Message 3, B could not find any abnormality since the

received messages are encryption under KIS which is not in B’s possession.
Hence B simply passes this encryption on to S for verification in Messages 4
and 4′.

5) Messages 5 and 5′ are the replies from S. One of these replies matches
nothing, while the other one contains the challenge NB intended for A. On
the basis of the reply containing NB, B must believe that A is active in this
protocol run. On the basis of the reply containing N ′′

B, B believes that he
has completed an unsuccessful protocol run with I.

2. Clark-Jacob attack on Woo-Lam protocol

Abadi and Needham gave a fixed version of the Woo-Lam Protocol in [3],
by changing the last message of the protocol:

Message 5 S → B: {A,NB}KBS (3.1)

The fixed version indeed removes the attack in Fig. 3.2 for the attack will
appear to be:

Message 5 S → B: {I,NB}KBS

Since B is expecting (3.1), hence the attack could be detected. But this
fixed version is still insecure. Upon receiving Message 3, the liveness of the
principal A cannot be authenticated to B since B couldn’t read the message.
Upon receiving Message 5, B still couldn’t authenticate the liveness of the
principal A since there doesn’t exist any evidence that A is alive. Messages
4 and 5 are similar since B has signed an encrypted message {NB}KAS that
B could not read, which results in an attack discovered by Clark and Jacob
in [6], as illustrated in Fig. 3.3.

Message 1 I(A)→ B : A

Message 2 B → I(A) : NB

Message 3 I(A)→ B : NB

Message 4 B → I(S) : {A,NB}KBS

Message 5 I(S)→ B : {A,NB}KBS

3. Improved attack on the new fixed version against Clark-Jacob attack

To defense the Clark-Jacob attack, the last message of the protocol could
be changed to:

Message 5 S → B : {A,B,NB}KBS (3.2)
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Fig. 3.3 The Clark-Jacob attack on the fixed Woo-Lam protocol.

The new fixed version removes the attack in Fig. 3.3 for the attack will
appear to be:

Message 5 S → B : {A,NB}KBS

Since B is expecting (3.2), the attack could be detected. Unfortunately,
this new fixed version is also flawed, Fig. 3.4 indicates an improved attack.

Message 1 A→ I : A

Message 1′ I(A)→ B : A

Message 2′ B → I(A) : NB

Message 2 I → A : NB

Message 3 A→ I : {NB}KAS

Message 3′ I(A)→ B : {NB}KAS

Message 4′ B → S :
{
A, {NB}KAS

}
KBS

Message 5′ S → B : {A,B,NB}KBS

Message 4 I → S :
{
A, {NB}KAS

}
KIS

Message 5 S → I : {A, I,NB}KIS

Notation

A and B are two legitimate protocol principals, S is a server, and I is
an attacker with legitimate identity; NB is a nonce; KAS, KBS and KIS are
keys that A,B and I shared with S respectively.

Premise

KAS (KBS,KIS) is the shared long-term key between A and S (B and
S, I and S), NB is randomly chosen by B for the session between A and B.

Protocol actions

1) In Message 1, A tells I that A wants to establish a connection with
I; upon receiving Message 1, I establishes a connection with B instantly by
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Fig. 3.4 An improved attack on the new fixed Woo-Lam protocol.

impersonating A.
2) In Message 2′, B provides challenge NB for the session between A

(indeed I) and B; upon receiving Message 2′, I provides the same challenge
NB to A for the session between A and I.

3) In Message 3, A returns this challenge NB encrypted under KAS to
I; upon receiving Message 3, I passes {NB}KAS to B as A’s response to the
challenge NB by impersonating A. As we have seen, in Message 3, A serves
as an encryption oracle in the session between I(A) and B.

4) Upon receiving Message 3′, since the received message is an encryption
under KAS, B simply passes this encryption {NB}KAS on to S for verification
in Message 4′.

5) Message 5′ is the reply from S which contains the challengeNB intended
for A and B. On the basis of the reply containing {A, B, NB}, B believes
that A is active in this protocol run.

6) For another protocol run between A and I, upon receiving Message
3, I continues the session with A by sending and receiving Message 4 and
Message 5 normally, and at last, successfully complete the protocol run.

This is a perfect attack, all principals including A,B and S could not
find any abnormality. Upon termination of the run of this fixed Woo-Lam
protocol, B accepts “the run with A”, but in fact A has not launched the
run with B at all, and A thinks that he has completed a normal protocol
run with I. As we have seen in this example, even if the principal names A
and B are explicitly mentioned in this protocol revision, the absence of A’s
liveness still causes this flaw.

As we have seen, it is definitely an important and prudent principle to have
the identities of the protocol participants explicitly specified in a protocol for
developing secure authentication protocols. However, it is more important to
authenticate the principal’s liveness.
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From the absence of security properties, it is convenient to give the re-
vision of the above protocol. For example, in order to fix the absence of A’s
liveness in this protocol, there should be a message unambiguously generated
by A, and generated not only for this protocol but for this run, to pro-
vide some evidence for B to authenticate A. We can achieve this by changing
Message 3 to {B,NB}KAS . In this fixed version, upon receiving Message 5, B
can believe that it must be S who has generated the message {A,B,NB}KBS .
Since NB is fresh for B, B believes that S is alive. From Message 4, the gen-
uine S must have decrypted a message {B,NB}KAS to get NB, so it must
be A who has generated the message {B,NB}KAS , and A knows that NB is
associated with A and B in this run, hence B believes the liveness of A.

4. Abadi-Needham simplified version of Woo-Lam Protocol

In [3], Abadi and Needham give a simplified version of Woo-Lam Protocol
as shown in Fig. 3.5.

Message 1 A→ B : A

Message 2 B → A : NB

Message 3 A→ B : {NB}KAS

Message 4 B → S : A,B, {NB}KAS

Message 5 S → B : {A,NB}KBS

Fig. 3.5 The Abadi-Needham simplified version of Woo-Lam protocol.

Although Message 4 and Message 5 are dissimilar, the absence of A’s
liveness still exists in this version, hence there exists an attack on this protocol
simplification, similar to that in Fig. 3.4.

Example 3.14 Fig. 3.6 illustrates a pair-key management approach which
is a key establishment protocol in sensor networks based on symmetric-key
cryptography [31]. It allows two sensor nodes A and B to establish a shared
session key kAB with the help of the trusted third party KDC.

1) A→ KDCj : KDCj , IDA, IDB, NA

2) KDCj → A : IDA,KDCj , ticketB, NA, {kAB, IDB, NA, L}KA,KDCj
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3) A→ B : IDA, IDB, ticketB, {IDB, TA}kAB
4) B → A : IDA, IDB, {TA}kAB

Fig. 3.6 A pair-key management approach in sensor networks.

Notation

A and B are sensor nodes who intend to run the pair-key management
approach.KDCj is the jth key distribution center (KDC). IDA, IDB are the
certificates of nodes A and B respectively; NA is a nonce, TA is a timestamp,
and kAB is a new session key established between A and B with the help
of KDC; ticketB is a ticket generated by KDCj for B’s session, and equals
{kAB, NA, L}KB,KDCj

, where L is the life of the key kAB; KA,KDCj and
KB,KDCj are keys that sensor nodes A and B shared with KDC (KDCj)
respectively.

Premise

IDA, IDB are public information. KA,KDCj (KB,KDCj) is the shared
long-term key between A and KDCj (B and KDCj), which is initially es-
tablished by non-cryptographic, and out-of-band techniques; NA is randomly
chosen by A; TA is a timestamp generated by A. kAB is a new session key
chosen by KDCj .

Protocol actions

1) In Message 1, A claims the identity of himself, the identity of opponent
sensor node B to the trusted third party KDCj , and provides a nonce NA.

2) In Message 2, KDCj randomly chooses a new session key kAB for A
and B, encrypts kAB, with the certificate of node B, the TVP NA (to avoid
replay attack), and the life of the key kAB using KA,KDCj . Meanwhile, KDCj

generates ticketB which is an encryption of kAB together with NA and the
life of the key kAB.

3) Upon receiving Message 2, A recovers kAB from {kAB, IDB, NA,
L}KA,KDCj

using KA,KDCj .
4) In Message 3, A claims the identity of himself to the opponent sensor

node B, forwards ticketB, and shows his possession of kAB via the encryption
of plaintext {IDB, TA} using kAB.
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5) Upon receiving Message 3, B recovers kAB from ticketB, and then
checks whether A has possession of kAB via decryption of {IDB, TA}kAB .

6) In Message 4, B encrypts TA using kAB to show his possession of kAB
to A.

7) Upon receiving Message 4, A checks whether B has possession of kAB
via decryption of {TA}kAB .

Upon termination of this protocol run, it appears that both A and B have
confirmed possession of kAB by itself and the opponent participant.

Attack on the the pair-key management approach in sensor networks

This approach is also insecure. At the second step of the protocol, since
NA is fresh for A, A believes that KDCj is alive and kAB is associated with
B and A. At the third step of the protocol, since there is no TVP trusted
by B, and ticketB may be a replay message including a compromised key
kAB , B cannot believe that KDCj or A is alive. At the fourth step of the
protocol, A believes that only B can read the ticket ticketB to obtain kAB,
so it must be B who has encrypted the fresh timestamp TA, hence A believes
that B is alive. Upon termination of this run, the liveness of A has not been
authenticated. From the absence of the liveness of A, we can construct an
attack as shown in Fig. 3.7.

1) I → KDCj : KDCj , IDI , IDB, NI

2) KDCj → I : IDI ,KDCj , ticketB, NI , {kAB, IDB, NI , L}KI,KDCj

3) I(A)→ B : IDA, IDB, ticketB, {IDB, TI}kAB
4) B → I(A) : IDA, IDB, {TI}kAB

Fig. 3.7 An attack on the pair-key management approach in sensor networks.

Notation

TI is a timestamp, IDI is the certificate of the adversary I; KI,KDCj is
the key that the adversary I shares with KDC (KDCj). Other notations are
the same as in Fig. 3.6.

premise

Besides the premises of the protocol in Fig. 3.6, the adversary I is also a
legitimate sensor node, and IDI is public information; KI,KDCj is the shared
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long-term key between I and KDCj .

Protocol actions

1) In Message 1, I claims the identity of himself, the identity of opponent
sensor node B to the trusted third party KDCj , and provides a nonce NI .

2) In Message 2, KDCj randomly chooses a new session key kAB for I
and B. Then KDCj encrypts kAB with the certificate of node B, the TVP
NA (to avoid replay attack), and the life of the key kAB using KA,KDCj .
Meanwhile, KDCj generates ticketB which is an encryption of kAB together
with NI and the life of the key kAB.

3) Upon receiving Message 2, I recovers kAB by using KI,KDCj , and
records the ticketB {kAB, NI , L}KB,KDCj

.
4) In Message 3, the legitimate and malicious I impersonates sensor node

A, and sends a message IDA, IDB, ticketB , {IDB, TI}kAB to the opponent
sensor node B. Note that IDA, IDB are public information, I has recorded
ticketB , and I can encrypt {IDB, TI} with possession of kAB.

5) Upon receiving Message 3, B recovers kAB from ticketB, and then
checks whether A (indeed, it is the adversary I) has possession of kAB via
decryption of {IDB, TI}kAB .

6) In Message 4, B encrypts TI using kAB to show his possession of kAB
to A (indeed, the adversary I).

7) Upon receiving Message 4, A (indeed, the adversary I) checks whether
B has possession of kAB via decryption of {TI}kAB .

This is a perfect attack. Upon termination of the attack, B accepts the
run with A even if A has not participated in the run with B at all. And B
believes that B shares a new session key kAB with A, but in deed B shares
the key kAB with the adversary I.

Example 3.15 In [32], Otway and Rees describe a key establishment pro-
tocol as shown in Fig. 3.8. It allows two parties A and B to establish a shared
key kAB, with the help of a server S.

Message 1 A→ B : M,A,B, {NA,M,A,B}KAS

Message 2 B → S : M,A,B, {NA,M,A,B}KAS , {NB,M,A,B}KBS

Message 3 S → B : M, {NA, kAB}KAS , {NB, kAB}KBS

Message 4 B → A : M, {NA, kAB}KAS

Fig. 3.8 The Otway-Rees key establishment protocol.
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Notation

A and B are principals, S is an online trusted third party; M,NA, NB

are nonces, and M is unique for each particular protocol run; kAB is a new
session key established between A and B with the help of S; KAS and KBS

are keys.

Premise

KAS (KBS) is the shared long-term key between A and S (B and S),
which is initially established by non-cryptographic, and out-of-band tech-
niques; NA and NB are randomly chosen by A and B respectively; kAB is
chosen by S as a new session key for A and B.

Protocol actions

1) In Message 1, A randomly chooses M,NA for this protocol run, and A
tells B that A wants to establish a connection with B.

2) In Message 2, B randomly chooses NB for this run, and tells S that A
wants to establish a connection with B.

3) Upon receiving Message 2, S recovers NA, NB from the encryptions
{NA,M,A, B}KAS and {NB,M,A,B}KBS using KAS and KBS respectively.
S checksM to test whether the message {NB,M,A,B}KBS is generated by B
for this particular protocol run. IfM is the same as that in {NA,M,A,B}KAS ,
then S believes B’s presence for this run and M is unique for this protocol
run between A and B.

4) In Message 3, S randomly chooses a new session key kAB for A and B,
and sends {NA, kAB}KAS to A and {NB, kAB}KBS to B.

5) Upon receiving Message 3, B checks the freshness of the message
{NB, kAB}KBS via NB and then recovers kAB from it. When B receives
{NB, kAB}KBS , B knows that the uniqueness of M must have been checked
by S, otherwise S would not send {NB, kAB}KBS to B.

6) Upon receiving Message 4, A checks the freshness of Message 4 via NA

and recovers kAB from it. When A receives {NA, kAB}KAS , A knows that
the unique nonce M must have been checked by S to guarantee B’s presence
before S sends {NA, kAB}KAS to A. Hence, upon receiving {NA, kAB}KAS ,
B’s presence is guaranteed to A.

Upon termination of this protocol run, B believes that S is alive from
receiving fresh nonce NB, and A believes that S is alive from receiving fresh
nonce NA, and B’s presence is also guaranteed to A.

1. Attack on the Otway-Rees key establishment protocol

In the Otway-Rees key establishment protocol, A’s presence is not guaran-
teed to B. Suppose the adversary I has recorded the messages M,A,B, {NA,
M,A,B}KAS in an old protocol run, then I can launch a new protocol run
by impersonating A, Fig. 3.9 illustrates the following attack:
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Message 1 I(A)→ B : M,A,B, {NA,M,A,B}KAS

Message 2 B → S : M,A,B, {NA,M,A,B}KAS , {NB,M,A,B}KBS

Message 3 S → B : M, {NA, k
′
AB}KAS , {NB, k

′
AB}KBS

Message 4 B → I(A) : M, {NA, k
′
AB}KAS

Fig. 3.9 An attack on the Otway-Rees original protocol.

Upon termination of this protocol run, the adversary I makes B believe
that B has been talking and sharing a session key k′AB with A, while A
has not participated in the run. B will never be notified of any abnormality
and B may omit A’s subsequent requests for establishing a session key. The
implicit problem is that A’s presence has never been authenticated to B in
this protocol.

2. A simplified version of the Otway-Rees key establishment protocol

In [3], Abadi and Needham suggest that the encryption ofNB in Message 2
is unnecessary, as shown in Fig. 3.10, and many encryptions could be avoided
when names are included in S’s reply. M is also omitted as a redundancy
in this simplified version of the Otway-Ree protocol. The simplification may
make the protocol even insecure.

Message 1 A→ B : A,B,NA

Message 2 B → S : A,B,NA, NB

Message 3 S → B : {NA, A,B, kAB}KAS , {NB, A,B, kAB}KBS

Message 4 B → A : {NA, A,B, kAB}KAS

Fig. 3.10 The Abadi-Needham simplified version of the Otway-Ree key establish-
ment protocol.
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3. Attack on the simplified version of the Otway-Rees key establishment
protocol

Upon termination of the protocol run of the simplified version, neither A’s
presence nor B’s presence is guaranteed to B and A. From the absence of A’s
presence, there is an attack (similar to the attack presented in Fig. 3.9) on
the Abadi-Needham simplified version of the Otway-Ree key establishment
protocol.

From the absence of B’s presence, we can construct another attack:
Message 1 A→ I(B) : A,B,NA

Message 2 I(B)→ S : A,B,NA, N
′
B

Message 3 S → I(B) : {NA, A,B, k′AB}KAS , {N ′
B, A,B, k′AB}KBS

Message 4 I(B)→ A : {NA, A,B, k′AB}KAS

Upon termination of this protocol run, the adversary I makes A believe
that A has been talking and sharing a session key k′AB with B, while B has
not participated in the run. Note that the adversary I may also launch denial
of service on the online trusted third party S by impersonating B.

As we have seen, the unique nonce M and the encryption ofM in Message
2 are necessary for B’s presence to S, then to A.

We may remove the flaw in the original Otway-Ree Protocol by adding
Message 5 to the protocol, as shown in Fig. 3.11.

Fig. 3.11 A revision of the original Otway-Ree key establishment protocol.

Message 5 A→ B : {M}kAB
Upon receiving Message 5, B recovers M from {M}kAB to check A’s

possession of kAB. Since B believes that M is unique for this protocol run
between A and B, B can guarantee the liveness of A.

3.3.2 Freshness and association of time-variant parameter

Principle 3.7 If a time-variant parameter is essential to the meaning of a
message, it is prudent to authenticate the freshness and association of the
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TVP. It is important for protocol designers to understand properly where the
TVP is needed and what it is associated with – the freshness of a message or
the liveness of a principal.

It is the most important part of authentication and key establishment to
deem whether a message is fresh or a principal is present. For each commu-
nication principal, the belief about whether a message is fresh or a principal
is present is different.

A message which is deemed to have been issued recently is often referred
to as a fresh message. In common sense, the freshness of a message implies a
good correspondence between the communication principals. The liveness of
a principal implies online correspondence.

Time-variant parameters (TVPs) are the most commonly used techniques
for timeliness. Time-variant parameters can be nonces, timestamps, sequence
numbers, new session keys or share-parts of a new session key.

Verifiable timeliness of a message or a principal may be provided through
use of nonces (also new session keys or share-parts of a new session key),
timestamps in conjunction with distributed timeclocks, or sequence numbers
in conjunction with the maintenance of pairwise (claimant, verifier) state
information.

Containing TVP doesn’t guarantee the freshness of a message or the live-
ness of a principal. A TVP in itself may be an old one (as we will illustrate
in Example 3.39), so it is better for a TVP to be authenticated fresh by the
legitimate participant himself.

The TVP should be associated with the legitimate participants of this
run, and bound together with a message, so that the message could not be
a replayed one of other run. The freshness and association of a TVP help
designers to deem whether a message is fresh for this run. The freshness of
a TVP means that the TVP is a new generated one in the current session,
and the association of a TVP means that the TVP is associated with the
legitimate participants of this run. The freshness and the association of a
TVP (e.g., associated with A and B) guarantee that this TVP is a fresh
TVP generated for this particular run (e.g., between A and B).

Timestamps in protocols offer the advantage of fewer messages and al-
most no state information. Timestamps may be used to provide timeliness
guarantee and to detect message replay.

It seems charming to use timestamps in protocols. However, timestamps
require the maintenance of secure, and synchronized timeclocks, which is
difficult in distributed system.

The adversarial modification of distributed timeclocks is difficult to de-
tect in many distributed environments. The adversarial modifications include
resetting of a clock backwards so as to restore the validity of old messages,
and setting of a clock forward to prepare a message for some future point in
time. In both cases, the timeliness provided must be carefully re-evaluated[3].
Timestamps in protocols may typically be replaced by a random number



3.3 Detailed protocol design 65

challenge plus a return message.
From a legitimate participant’s point of view, the freshness and associa-

tion of a TVP can only be deduced from a signed message that contains the
TVP trusted by this participant itself. The signed message can be a signa-
ture of certain principal, or a message encrypted under a long-term shared
key with data integrity protection, etc.

Example 3.16 Fig. 3.12 illustrates the Needham-Schroeder public-key pro-
tocol, let’s analyze why the protocol is flawed.

Message 1 A→ B : {A,NA}KB

Message 2 B → A : {NA, NB}KA

Message 3 A→ B : {NB}KB

Fig. 3.12 The Needham-Schroeder public-key protocol.

Upon receiving Message 1, B believes that NA is confidential.
Upon receiving Message 2, A believes that B is alive, and that NA and

NB are associated with A and B, since only B can decrypt the message
{A,NB}KB to obtain NA and only A can decrypt the message {NA, NB}KA .

Upon receiving Message 3, B believes that A is alive and NB is associated
with A and B, but B still could not guarantee the freshness of NA and the
association of NA with A and B. So an adversary I can launch an attack
by confusing NA. Hence, there exists the attack discovered by Lowe using
FDR[33].

In order to fix the absence of the freshness of NA and the association of
NA with A and B in this protocol, there should exist some evidence for B to
authenticate these properties. The flaw can be fixed by changing Message 2
of the protocol to {B,NA, NB}KA

[33]. At the second step, B believes that NA

is associated with NB in a particular run of B. Upon receiving Message 3, B
believes that A is alive and NB is associated with A and B. Since B believes
that NA is associated with NB, B believes that NA is fresh and associated
with A and B.

Example 3.17 The Needham-Schroeder shared key protocol[1], as shown
in Fig. 3.13, intends to establish a shared new session key kAB between two
participants A and B, with the help of a server S.
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Message 1 A→ S : A,B,NA

Message 2 S → A :
{
NA, kAB, B, {kAB , A}KBS

}
KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 4 B → A : {NB}kAB
Message 5 A→ B : {NB − 1}kAB

Fig. 3.13 The Needham-Schroeder shared key protocol.

Notation

A and B are principals; S is an online trusted third party; NA, NB are
nonces; kAB is a new session key established between A and B with the help
of S; KAS and KBS are keys.

Premise

KAS (KBS) is the shared long-term key between A and S (B and S),
which is initially established by non-cryptographic, and out-of-band tech-
niques; NA and NB are randomly chosen by A and B respectively; kAB is
chosen by S as a new session key for A and B.

Protocol actions

1) In Message 1, A randomly chooses NA for this protocol run, and tells
S that A wants to establish a connection with B.

2) In Message 2, S randomly chooses kAB for this run between A and B,
and sends kAB to A in encryption under KAS and to B in encryption under
KBS .

3) Upon receiving Message 2, A checks NA and believes S’s presence for
this run. Then A recovers kAB from the encryption {NA, kAB, B}KAS using
KAS and forwards {kAB, A}KBS .

4) Upon receiving Message 3, B recovers kAB from {kAB, A}KBS using
KBS , and believes the association of kAB with A and B.
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5) In Message 4, B randomly chooses NB for this protocol run, and en-
crypts NB to show his possession of the new session key kAB to A.

6) In Message 5, A encrypts {NB − 1} to show his possession of the new
session key kAB to B.

7) Upon receiving Message 5, B checks NB, and believes that A is alive
from receiving of fresh nonce NB.

Attack on the Needham-Schroeder shared key protocol

Upon receiving Message 3, B believes that kAB is associated with A, but
B is not sure of the freshness of kAB. Upon receiving Message 5, B knows
that someone who has kAB has generated the message {NB − 1}kAB , but he
still could not authenticate the liveness of the principal A. Hence there exists
an attack[4] as shown in Fig. 3.14.

Message 1 I(A)→ S : skip

Message 2 S → I(A) : skip

Message 3 I(A)→ B : S, {k′AB, A}KBS

Message 4 B → I(A) : {NB}k′AB
Message 5 I(A)→ B : {NB − 1}k′

AB

Fig. 3.14 An attack on the Needham-Schroeder shared key protocol.

Premise

k′AB is a compromised session key between A and B. The adversary I has
recorded {k′AB, A}KBS in Message 3 of an old protocol run.

Protocol actions

1) In Message 3, the adversary I impersonates A and replays the message
{k′AB, A}KBS to B.

2) Upon receiving Message 3, B recovers k′AB from {k′AB, A}KBS using
KBS , and believes the association of k′AB with A and B.

3) In Message 4, B randomly chooses NB for this protocol run, and en-
crypts NB to show his possession of the new session key k′AB to A.
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4) In Message 5, I(A) encrypts {NB − 1} to show his possession of the
new session key k′AB to B.

5) Upon receiving Message 5, B checks NB, and believes that A (indeed,
it is the adversary I) is alive from receiving of fresh nonce NB and the A’s
possession of k′AB.

Now B thinks that B is communicating with the opponent partner A,
while in fact A knows nothing about it. In Message 3, there is no evidence
showing the identification of A although the name of A is explicitly indicated.
The absence of the liveness of A and the freshness of kAB makes it possible
to record Message 3 and to replay it in the current run.

It is important to understand properly where the TVP is needed and what
it is associated with. Misuses of authentication about identities and TVPs
are costly. Here is an example:

Example 3.18 Recall the Otway-Rees protocol in Example 3.31. In this
protocol, NA and NB are associated with a particular run of this protocol
between A and B. Since Message 1 is encrypted under the shared key be-
tween A and S, so the explicit mention of principal name A in Message 1 is
unnecessary. But B should be explicitly mentioned in Message 1, otherwise
an adversary I impersonating B can confuse NA. As for NB, it is similar to
NA. Figure 3.15 illustrates a fixed simplified version of Otway-Rees Protocol.

Message 1 A→ B : A,B, {NA, B}KAS

Message 2 B → S : A,B, {NA, B}KAS , {NB, A}KBS

Message 3 S → B : {NA, kAB}KAS , {NB, kAB}KBS

Message 4 B → A : {NA, kAB}KAS , {A,B}kAB
Message 5 A→ B : {kAB}kAB

Fig. 3.15 A simplified version of the Otway-Ree key establishment protocol.

Protocol actions

1) In Message 1, A randomly chooses NA for this protocol run, and A
believes that NA is fresh and associated with B.

2) In Message 2, B randomly chooses NB for this run, and B believes
that NB is fresh and associated with A.
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3) Upon receiving Message 2, S recovers NA, NB from the encryptions
{NA, B}KAS and {NB, A}KBS using KAS and KBS respectively.

4) In Message 3, S randomly chooses a new session key kAB for A and B,
and sends {NA, kAB}KAS to A and {NB, kAB}KBS to B.

5) Upon receiving Message 3, B checks the freshness of the message
{NB, kAB}KBS via NB and then recovers kAB from it. Then B believes that
kAB is fresh and associated with A and B.

6) In Message 4, {A,B}kAB is an evidence to authenticate B’s presence
to A.

7) Upon receiving Message 4, A checks the freshness of Message 4 via NA

and recovers kAB from it. A believes that kAB is fresh and associated with A
and B. When A receives {A,B}kAB , A knows that it must be B who creates
this encryption using the new session key kAB , so A believes B’s presence.

8) In Message 5, {kAB}kAB is attached to authenticate A’s presence to B,
since B believes that kAB is fresh and associated with A.

9) Upon receiving Message 5, B knows that it must be A who creates this
encryption using the new session key kAB, so B believes A’s presence.

Upon termination of this protocol run, B believes that S is alive from
receiving fresh nonce NB, and A believes that S is alive from receiving fresh
nonce NA, and B’s presence is also guaranteed to A, A’s presence is guaran-
teed to B in this protocol.

3.3.3 Data integrity protection of message

Principle 3.8 Correct data integrity protection of a message should be
provided to ensure the liveness of principal or the freshness of a message.

A more important aspect of message authentication is data integrity pro-
tection. To ensure entity authentication, the freshness and association of a
TVP, a proper data integrity protection service should be in the place[3, 13, 32].

Example 3.19 This is an attack discovered by Boyd andMao[34] on a minor
variation of the Otway-Rees Protocol.

The original Message 2 in the Otway-Rees protocol (see Example 3.31):

Message 2 B → S : M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

The variation of the Otway-Rees Protocol differs from the original one
very slightly:

Message 2 B → S : M,A,B, {NA,M,A,B}KAS , {NB}KBS , {M,A,B}KBS

(3.3)
If the encryption primitive does not provide data integrity protection

of a message, then the variation can be neglected since a long message is
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always implemented in a plural number of blocks while encrypting. Figure
3.16 illustrates the attack by Boyd and Mao.

Message 1 I(A)→ B : M,A,B, {NI ,M, I, B}KIS

Message 2 B → I(S) : M,A,B, {NI ,M, I, B}KIS , {NB}KBS , {M,A,B}KBS

Message 2′ I(B)→ S : M, I,B, {NI ,M, I, B}KIS , {NB}KBS , {M, I,B}KBS

Message 3 S → B : M, {NI , kIB}KIS , {NB, kIB}KBS

Message 4 B → I(A) : M, {NI , kIB}KIS

Fig. 3.16 The Boyd-Mao attack on the variation version of Otway-Rees protocol.

Notation

Besides the notations of the protocol in Fig. 3.8, the adversary I is a
malicious legitimate principal who runs the Otway-Rees protocol with B
in advance, and records some dialogs before. I(A), I(B) and I(S) are the
adversary I impersonating the principals A, B and S respectively.

Premise

Besides the premises of the protocol in Fig. 3.8, KIS is the shared long-
term key between the adversaries I and S, which is initially established by
non-cryptographic, and out-of-band techniques; NI is randomly chosen by the
adversary I; kIB is chosen by S as a new session key for I and B. Note that
{M, I,B}KBS is an old cipher chunk, a part of Message 2 in (3.3), recorded
by I.

Protocol actions

1) In Message 1, I randomly chooses NI for this protocol run, and I
(by impersonating A) tells B that A wants to establish a connection with
B (with the same M as in {M, I,B}KBS). Note that the encryption of
{NI ,M, I, B}KIS cannot be read by B without the corresponding long-term
key KIS .

2) In Message 2, B randomly chooses NB for this run, and tells S that A
wants to establish a connection with B.
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3) The adversary intercepts Message 2, and replaces {M,A,B}KBS with
{M, I, B}KBS in Message 2′.

4) Upon receiving Message 2′, S recoversNI , andNB from the encryptions
{NI ,M, I, B}KIS and {NB}KBS using KIS and KBS respectively. S checks
M to deem whether B is present or not. Since there is no data integrity
protection of {M,A,B}KBS in (3.3), B’s presence cannot be guaranteed by
{NB}KBS and {M, I,B}KBS .

5) In Message 3, S randomly chooses a new session key kIB for I and B,
and sends {NI , kIB}KIS via B to I(A) and {NB, kIB}KBS to B.

6) Upon receiving Message 3, B checks the freshness of the message
{NB, kIB}KBS by NB and then recovers kIB.

7) Upon receiving Message 4, I checks the freshness of Message 4 by NI

and recovers kIB.
As a result of this run, B believes that B has been talking to A and shares

a session key with A. But in fact, B does this with I. This attack reveals
an important point: the liveness of principals, the freshness and association
of TVPs could not be achieved without proper data integrity protection of a
message.

3.3.4 Stepwise refinement

Principle 3.9 The cryptographic protocol tends to be sound if it is imple-
mented via stepwise refinement.

Stepwise refinement helps designers follow the basic principles in [3]: every
message should say what it means. That is, first write down a straight forward
English sentence describing the content of a message, then the interpretation
of the message should depend only on its content and the whole contents of
the cryptographic protocol are carried out step by step.

Boyd and Mao propose a refinement approach that uses two notations to
express the precisely needed cryptographic services.
{m}k denotes an encryption of the message m under k, [m]k denotes a

one-way transformation of the message m using the key k[13]. [m]k serves not
only data integrity, but also message source identification.

A principal with k−1 which is the verification key matching k can verify
the data-integrity correctness of [m]k and identify the message source. The
verification procedure outputs “YES” or “NO”: in the “YES” case, [m]k is
deemed to have the correct data integrity and m is deemed to be a recogniz-
able message from the identified source; in the “NO”case, [m]k is deemed to
have an incorrect data integrity and m is deemed to be unrecognizable[13].
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Remark

1) In practice, [m]k can be realized by a signed message, etc. for the case
of asymmetric technique realization, a block cipher with MAC, a keyed hash,
etc. for the case of symmetric technique realization. Hence, [m]k denotes a
one-way transformation with trapdoor in most cases. So in this book, when
we refer to “one-way transformation” we always mean “loose one-way trans-
formation”, i.e., it can be one-way transformation with trapdoor.

2) It is noticed that we do not distinguish [m]k from {m}k in this book,
since [m]k can provide data integrity security and data origin authentication
security, otherwise, the cryptographic algorithms without these properties
will be no use to guarantee the security of cryptographic protocols. Hence in
this book, when we refer to “{m}k” we always mean “[m]k”, if these crypto-
graphic algorithms in cryptographic protocols are one-way transformations.

The refined specifications are useful in stepwise refinement. Stepwise re-
finement helps designers achieve soundness of the cryptographic protocol.

Example 3.20 Recall the Needham-Schroeder public-key authentication
protocol[1] (ref. Example 1.2), and there exists an attack on this protocol[2].
The above flaw can be fixed via stepwise refinement as follows:

Step 1: Message 1 A→ B : {A,NA}KB

Message 1 wants to say that A sends the principal name A and a nonce
generated by himself to B, hoping that only B can decrypt it. According to
the above Principles 6, 7, 8, principal name A and the nonce NA should be
authenticated and provided with data integrity protection, thus Message 1
can be refined to:

Message 0–1 A→ B :
{
{A,NA}K−1

A

}
KB

In this message, only NA should be kept secret, and only B can recover
NA from the encryption. The encryption using KB could not provide data
integrity protection, while the signature ofA could, so we can change Message
1 to:

Message 1–1 A→ B :
{
A, {NA}KB

}
K−1
A

Step 2: Message 2 B → A : {NA, NB}KA

Message 2 wants to say that B has got NA by using B’s private key K−1
B

(only B can decrypt it, so he is really B), and B wants to send NA back with
a new nonce NB generated by B himself to A using A’s public-key, hoping
that A can check NA and recover NB from the encryption. According to the
above principles 6,7,8, NA and NB should be authenticated and provided
with data integrity protection, thus Message 2 can be refined to:

Message 0–2 B → A :
{
NA, {NB}K−1

B

}
KA
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Likewise in Message 1, we can change Message 2 to:

Message 1–2 B → A :
{{NA, NB}KA

}
K−1
B

Step 3: Message 3 A→ B : {NB}KB

Message 3 wants to say that A has got NB by using A’s secret key K−1
A

(only A can decrypt it, so he is really A), and A wants to send NB to B using
B’s public-key, hoping that B can check NB from the encryption. NB should
be kept secret by using B’s public-key KB, and NB should be provided with
data integrity protection by using A’s private key K−1

A , thus Message 3 can
be refined to:

Message 0–3 A→ B :
{
{NB}K−1

A

}
KB

Likewise in Message 1, we can change Message 3 to:

Message 1–3 A→ B :
{{NB}KB

}
K−1
A

1. The refinement 0-* of Needham-Schroeder public-key protocol

Now, we have the revised Needham-Schroeder public-key 0-* protocol as
shown in Fig. 3.17.

Message 0–1 A→ B :
{
{A,NA}K−1

A

}
KB

Message 0–2 B → A :
{
NA, {NB}K−1

B

}
KA

Message 0–3 A→ B :
{
{NB}K−1

A

}
KB

Fig. 3.17 The revised Needham-Schroeder public-key 0-* protocol.

Lowe’s attack on the original protocol won’t work on 0-* protocol as shown
in Fig. 3.18.

Message 1 A→ I :
{
{A,NA}K−1

A

}
KI

Message 1′ I(A)→ B :
{
{A,NA}K−1

A

}
KB

Message 2′ B → I(A) :
{
NA, {NB}K−1

B

}
KA

Message 2 I → A :
{
NA, {NB}K−1

B

}
KA
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Fig. 3.18 Attack on the Needham-Schroeder public-key 0-* protocol.

Message 3 A→ I :
{
{N ′

B}K−1
A

}
KI

Message 3′ I(A)→ B :
{
{N ′

B}K−1
A

}
KB

Notation

A and B are two protocol principals, and I is an attacker with legitimate
identity; NA and NB are secret symmetric keying materials chosen by A and
B, respectively. K−1

A and KA are A’s private key and public-key, K−1
B and

KB are B’s private key and public-key, and K−1
I and KI are I’s private key

and public-key. I(A) is the adversary I impersonating the principal A.

Premise

KA, KB, and KI are A, B and I’s authentic public-keys respectively;
K−1

A , K−1
B and K−1

I are A, B and I’s authentic private key only known by
itself. They all are initially established by non-cryptographic, and out-of-band
techniques.

Actions

1) In step 1, A intends to launch a session between A and I. Firstly, A ran-
domly chooses a nonce NA, and signs {A,NA}K−1

A
using A’ private key K−1

A

to provide data integrity protection for {A,NA}. A encrypts {A,NA}K−1
A

using the adversary I’s public-key KI to keep NA secret to all but I.
2) In step 1′, I recovers {{A,NA}K−1

A
}KI using I’s private key K−1

I and
then encrypts the message using B’s public-key KB, and tries to establish a
bogus session with B by impersonating A.

3) Upon receiving Message 1′, B recovers NA using B’s private key K−1
B

and A’s public-key KA.
4) In step 2′, B randomly chooses a new nonce NB and signs it, and then

encrypts {NA, {NB}K−1
B
} using A’s public-key KA in order to keep NB secret

to all but A.
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5) The adversary I intercepts Message 2′ {NA, {NB}K−1
B
}KA , but couldn’t

recover NB without A’s private key K−1
A . Hence, I just passes {NA,

{NB}K−1
B
}KA to A.

6) Upon receiving Message 2, A checks NA and recovers N ′
B (an error NB

from {N ′
B}K−1

B
using I’s public-key KI).

7) A signs N ′
B and encrypts {N ′

B}K−1
A

using I’s public-key KI to keep
N ′
B secret to all but I.
8) I recovers {N ′

B}K−1
A

from {{N ′
B}K−1

A
}KI , encrypts {N ′

B}K−1
A

using B’s
public-key KB, and sends it to B.

9) Upon receiving Message 3′, B deems that the session between A and
B is bogus since NB is an error N ′

B.

2. The refinement 1-* of Needham-Schroeder public-key protocol

Figure 3.19 illustrates the revised Needham-Schroeder public-key 1-* pro-
tocol.

Message 1–1 A→ B :
{
A, {NA}KB

}
K−1
A

Message 1–2 B → A :
{{NA, NB}KA

}
K−1
B

Message 1–3 A→ B :
{{NB}KB

}
K−1
A

Fig. 3.19 The revised Needham-Schroeder public-key 1-* protocol.

Lowe’s attack on the original protocol won’t work on 1-* protocol (see
Fig. 3.20).

Message 1 A→ I :
{{A,NA}KI

}
K−1
A

Message 1′ I(A)→ B :
{{A,NA}KI

}
K−1
A

Notation

Same as the Needham-Schroeder public-key 0-* protocol.

Premise

Same as the Needham-Schroeder public-key 0-* protocol.
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Fig. 3.20 Attack on the Needham-Schroeder public-key 1-* protocol.

Actions

1) In step 1, A intends to launch a session between A and I. Firstly, A
randomly chooses a nonce NA, and encrypts it using the adversary I’s public-
key KI , then signs {A, {NA}KI} using A’s private key K−1

A and sends the
signed message to I. The signature of A can provide data integrity protection
for {A, {NA}KI}.

2) In step 1′, I passes the message to B, and tries to establish a bogus
session with Bob by impersonating A.

3) Upon receiving Message 1′, B decrypts {A,NA}KI using B’s private
key K−1

B , and B could not recognize the identity name A. Hence B will abort
this protocol run.

As we have seen, I could not even launch an denial of service attack on
the Needham-Schroeder public-key 1-* protocol.

3.4 Provable security

Principle 3.10 It is prudent to prove security of a cryptographic protocol
using formalisms. However, the protocol designers should be clear to the
constraints of the formalism used. Weakened assumptions should be used if
a proof of security can be derived on it.

Formal analysis of cryptographic protocol security is important in cryp-
tographic protocol design, and it is similar to the software test in software
engineering. It helps designers to determine the security strength reached by
the cryptographic protocol, to find flaws in the protocol.

Formal analysis, especially mathematical provable security, requires a de-
signer or an analyzer to use correct or more precise cryptographic services,
so protocol flaws due to misuse of cryptographic services will become less
frequent with the provable security in consideration.

Each formal protocol analysis methodology has its own advantages and
limitations, and a protocol analysis approach may be applicable only to a
subset of protocols or classes of attacks.

It is important to select an appropriate formalism for each special cryp-
tographic protocol. As for some authentication protocols, formalisms such
as Burrows-Abadi-Needham (BAN) logic, strand spaces and model check-
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ing are suitable[7, 8, 35]. As for public-key schemes, digital signatures etc.,
security proofs under ROM are better[9, 14].

Although security validation via formal methods is consistent and
useful[36–38], a formal analysis approach in itself may contain implicit as-
sumptions, hence it may be subject to subtle flaws[13, 32]. Protocol designers
should be clear to the constraints of the formalism used.

The critical process of converting a concrete protocol into a formal spec-
ification still may lead subtle flaws to the analysis[38]. We often assume that
analyzers can accurately translate a protocol into rules about security require-
ments and transmitted messages. But, in fact, we are still lack a method for
deciding whether a given set of rules captures “enough” properties of an un-
derlying cryptosystem[22, 23]. A proof of security correctness is often specially
tailored for target protocol to be proved, which may introduce some informal
assumptions based on human ingenuity[13].

Example 3.21 The initial assumptions of BAN logic usually come from
designers’ experience and are lack of a formal definition; the protocol speci-
fication’s idealization for an underlying semantics is also informal, while the
security of the protocol idealization is the basis of the soundness of the BAN
logic axioms system. Hence people will believe that there are flaws in the
protocol if BAN logic has discovered these, but they cannot believe that the
protocol is actually secure when BAN logic has proved that. That is, the
absence of discovered flaws does not imply the absence of flaws. More, Mao
has observed that BAN logic provides a context-free procedure for protocol
formulation. For example, suppose a trusted third party S chooses a new ses-
sion key kAB as a good key for communication between the principals A and
B, so the message sending step may be idealized into: S said A

kAB←→ B. This
protocol formulation is subtle, since the context of the protocol has not been
considered. That is, who really sends this message? Is there any authenti-
cation mechanism for sender or receiver? Is there any secure mechanism for
kAB? We have got no guarantee from this formulation[13].

Example 3.22 Since most of the formalisms suffer from a limitation of
fixed time and space resources, formal analysis of a protocol tends to be
applied in an isolated run instance. Some formalism requires a formal model
of the behavior of adversaries, but it is difficult to be given accurately[35].
The simplifications undoubtedly imply inaccuracies, perhaps mistakes.

Example 3.23 Computational security defines notions of security so that
we know what to aim for and what to expect, and we can prove how the
security of a scheme relates to the security of its primitives. Provable security
in itself is based on some assumptions. In Random Oracle Model, we usually
assume that all random values are indeed random, adversary does not exploit
any properties of a hash function, and hash functions behave idealistically.
In essence, to hash a message has only added quality redundancy to the
message in a deterministically verifiable manner. While a deterministic hash
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function can never “amplify” entropy according to Shannon’s entropy theory,
so random oracle does not exist in the real world. Thus, a real-world hash
function only emulates the random oracle behavior to a precision where the
difference is hopefully a negligible quantity[32]. Hence, a rigorous argument
on the security of a cryptographic scheme requires a formal model of the
behavior of a hash function, while it is difficult to give a formal hash model
accurately. Assumptions reduce the strength of a provable security proof.

Perhaps a cryptographic scheme is secure in practice even though a re-
duction may not exist. Perhaps the scheme is in fact insecure, but an attack
has not been discovered. Perhaps a reduction can be found by modifying the
scheme slightly, and we can regard this reduction as a type of assurance about
the original cryptographic protocol.

A lot of assumptions are made about the abilities of an adversary, and
the behavior of the adversary are hard to be expressed in provable security.
The adversary may guess password via off-line password dictionary guessing,
replay a message from a last run of a protocol, execute protocols concurrently,
etc. It is difficult to express this adversary’s knowledge accurately since the
abilities of an adversary are incremental.

Cryptographic scheme using weaker assumptions provides a higher secu-
rity confidence than that using stronger assumptions. For example, a proof
under standard intractability assumptions is a formal proof of security for a
public-key cryptosystem relying solely on the intractability of the underlying
one-way trapdoor transformation. It is a strong security established in the
real world. That is to say, if the underlying intractability assumptions could
not be broken, then a cryptosystem will not be broken too. This is an exact
security property.
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4 Informal Analysis Schemes of Cryptographic
Protocols

Abstract Four security definitions about unilateral authentication
secure, mutual authentication secure, unilateral session key secure, or
mutual session key secure are given respectively under the compu-
tational model of matching conversation and indistinguishability. An
informal analysis approach based on trusted freshness is presented,
and the analysis results suggest the correctness of a protocol or the
way to construct attacks intuitively from the absence of security prop-
erties. Then, the reasons why typical attacks on authentication proto-
cols exist are discussed based on trusted freshness, and corresponding
examples are illustrated to corroborate the discussion.

Due to the asynchronous nature of contemporary networks, establishing
whether the security of an authentication protocol is adequate or not is far
more difficult than one may have initially imagined[1–15]. A variety of useful
rigorous ways have been developed for analyzing and reasoning about cryp-
tographic protocols and they have been proved much useful while designing
and analyzing a cryptographic protocol[16–21].

However, there are some important issues that still lack satisfactory treat-
ment. (1) What’s the efficient way to distinguish whether a message is fresh
or not, to prevent replay attacks, parallel attacks and interleaving attacks.
For example, Burrows, Abadi and Needham presented the famous BAN
logic[7], which states: the formula X has not been sent in a message at any
time before the current run of the protocol, then X is fresh. This is subtle,
hence there exists an interleaving attack which is also a replay attack on
Needham-Schroeder public key protocol (Needham-Schroeder protocol for
short) even if the Needham-Schroeder protocol could be proved secure by
BAN logic[1–3, 7, 8, 22]. (2) How to avoid the dependency of analysis on the
idealization of a protocol, the concrete formalization of attackers’ possible
behaviors and the formalization of concurrent runs of protocols. (3) What
are the precise specifications of the guarantee for the security of an authenti-
cation protocol, which prove the correctness of the protocol sufficiently and
necessarily.

In this chapter, 4 security definitions about unilateral authentication se-



84 4 Informal Analysis Schemes of Cryptographic Protocols

cure, mutual authentication secure, unilateral session key secure, or mutual
session key secure are given respectively under the computational model of
matching conversation and indistinguishability. The presented conditions to
guarantee the security adequacy of unilateral entity authentication protocols,
mutual entity authentication protocols, unilateral key establishment proto-
cols and mutual key establishment protocols are proved. A novel idea of
protocol security analysis is presented based on trusted freshness, which is
called the freshness principle. Security analysis based on trusted freshness
can efficiently distinguish whether a message is fresh or not, and the analysis
results suggest the correctness of a protocol or the way to construct attacks
intuitively from the absence of security properties. The reasons why typi-
cal attacks on authentication protocols exist are discussed based on trusted
freshness, and corresponding examples are illustrated to corroborate the dis-
cussion.

4.1 The security of cryptographic protocols

Recall the security assumptions of the cryptographic protocols. Suppose there
exists a probabilistic polynomial time (PPT) attacker I that has full control of
the communication links as described in Dolev-Yao threat model[23]. Besides
this, suppose that the Dolev-Yao attacker I can also launch the Adaptive
Chosen Ciphertext Attacks (CCA2) without limitations. Suppose the cryp-
tographic primitives are secure against Indistinguishable Adaptive Chosen
Ciphertext Attack (IND-CCA2). That is, in IND-CCA2 security strength,
the failures in cryptographic protocols are not in any way related to the
strength or weakness of a particular cryptographic primitive used (that is,
the cryptographic primitives are perfect in this attack model), but related to
the protocol logic flaws, which permit the attacker to break the security goals
of cryptographic protocols without necessarily breaking the particular cryp-
tographic primitives used. Suppose that a legitimate party is either totally
corrupted or totally secure. Suppose that each participant has his own pri-
vate key and all other parties’ public keys (respectively, the shared long-term
key between co-operative principals or trusted third parties) in public-key
case (respectively, in symmetric-key case), which are deployed safely before
the cryptographic protocol run via non-cryptographic, and out-of-band tech-
niques. Furthermore, private keys and shared keys are commonly assumed
to be too long to guess in a computationally feasible way. In general, an au-
thentication protocol is considered flawed if a principal concludes a normal
run of the protocol with its intended communication partners while the in-
tended partner would have a different conclusion. This book mainly discusses
Challenge-Response authentication protocols.
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4.1.1 Authenticity and confidentiality under computational model

The security definition under computational model provides a high confidence
of the security of a cryptosystem.

Definition 4.1 A conversation is a sequence of timely ordered messages
that a participant sent out (respectively, received), and as consequent re-
sponses, received (respectively, sent). Let τ1 < τ2 < · · · τn be a time se-
quence recorded by the participant when it converses. The conversation can
be denoted by the following sequence: conv = (τ1,m1,m

′
1) , (τ2,m2,m

′
2) , · · · ,

(τn,mn,m
′
n)[17, 24].

This sequence encodes that at time τ1, the participant was asked m1 and
responded with m′1, and then, at some later time τ2 > τ1, the participant
was asked m2, and responded with m′2, and so on, until, finally, at time τn
it was asked mn, and responded with m′n. If m1 ="", that is no message
input, then the participant is the initiator, otherwise, it is called the respon-
der. If mn ="", there is no message output, then the participant ends the
conversation. At the end of a protocol run, each participant makes a deci-
sion about the authentication of the intended partner: accept, reject, or is
undetermined.

Definition 4.2 Suppose there exists a cryptographic protocol run between
principals A and B. Let conv = (τ0, "",m1), (τ2,m′1,m2), (τ4,m′2,m3), · · · ,
(τ2(t−1),m

′
t−1,mt) be a conversation of A. It is said that B has a conversation

conv′ which matches conv if there exists time sequence τ1 < τ2 < · · · τn and
conv′ = (τ1,m1,m

′
1), (τ3,m2,m

′
2), (τ5,m3,m

′
3), · · · , (τ2t−1,mt,m

′
t) where

mt ="no message output". These two conversations are called matching
conversations[17, 22, 24, 25].

Given a protocol Π between principals A and B, if a principal like A (or
B) with a conversation conv believes that B (or A) always has a conversation
conv′ which matches conv whenever it is allowed to complete a protocol run,
then this authentication protocol is secure from the point of view of A (or B).
Here the attacker wins if the principal A or B has reached “accept” decision
while A or B does not have a matching conversation in B or A.

We follow the probabilistic indistinguishability definitional approach[25]

presented by Goldwasser and Micali to define confidentiality security. Here,
that the attacker has broken the scheme means that: without breaking any
cryptographic primitive and knowing the corresponding key, the attacker can
still learn something about the established new session key under the run of a
cryptographic protocol. Here “learn” is defined as distinguishing the value of
a key generated by the cryptographic protocol from an independent randomly
chosen key.
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4.1.2 Security definitions

Based on the security definition of authenticity, the Unilateral entity Au-
thentication Secure definition (UA-Secure) and Mutual entity Authentica-
tion Secure definition (MA-Secure) are presented; based on the security def-
inition of authenticity and confidentiality, the Unilateral authenticated Key
Secure (UK-Secure) and Mutual authenticated Key Secure (MK-Secure) are
presented[19].

Definition 4.3 (UA-Secure) Unilateral entity Authentication Secure: an
authentication protocol Π is called UA-Secure from the point of view of A if
the attacker cannot win with a non-negligible probability for any attacker I in
Dolev-Yao threat model with the assistance of cryptanalysis training course.
Here the attacker wins if the principal A has reached “accept” decision while
A does not have a matching conversation in B.

Actually, according to the notion matching conversation, we can only
prove that the intended principal has correctly responded to the challenge of
the current protocol run, that is, the intended principal is present, but we
can not prove that the intended principal has participated in this protocol
run where the challenge is generated. Hence, there exists Man-in-the-Middle
attack even the presence of the intended principal has been proved. To correct
this problem, the challenge should be associated with all the participants
in the protocol, then the identity of the intended principal could not be
authenticated.

Definition 4.4 (MA-Secure) Mutual entity Authentication Secure: an au-
thentication protocol Π is called MA-Secure if the attacker cannot win with a
non-negligible probability for any attacker I in Dolev-Yao threat model with
the assistance of cryptanalysis training course. Here the attacker wins if any
principal A or B has reached “accept” decision while A or B does not have
a matching conversation in B or A.

Definition 4.5 (UK-Secure) Unilateral authenticated Key Secure: let k be
the value of the corresponding new session key. We toss a coin b, b R←− {0, 1}.
If b = 0, we provide the attacker I with the value k. Otherwise we provide the
attacker I with a value r randomly chosen from the probability distribution
of keys generated by protocol Π . At the end of its run, the attacker I outputs
a bit b′ (as its guess for b). An authentication protocol Π is called UK-Secure
from the point of view of A if the following properties hold for any attacker
I in Dolev-Yao threat model with the assistance of cryptanalysis training
course:

1) If uncorrupted party A believes that A has completed a session with
the intended opposite party B, then A trusts that the uncorrupted party B
must have responded to the same session, and they both output the same
key k.
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2) The probability that the attacker I guesses correctly the bit b (i.e.,
outputs b′ = b) is no more than 1/2 plus a negligible fraction in the security
parameter.

Definition 4.6 (MK-Secure) Mutual authenticated Key Secure (SK-
Secure[19]): let k be the value of the corresponding session key. We toss a
coin b, b R←− {0, 1}. If b = 0, we provide the attacker I with the value k.
Otherwise we provide the attacker I with a value r randomly chosen from
the probability distribution of keys generated by protocol Π . At the end of
its run, the attacker I outputs a bit b′ (as its guess for b). An authentica-
tion protocol Π is called MK-Secure if the following properties hold for any
attacker I in Dolev-Yao threat model with the assistance of cryptanalysis
training course:

1) Protocol Π satisfies the property that if two uncorrupted parties com-
plete matching sessions then they both output the same key.

2) The probability that the attacker I guesses correctly the bit b (i.e.,
outputs b′ = b) is no more than 1/2 plus a negligible fraction in the security
parameter.

Recall that each party creates and maintains a local state for a particular
protocol run until a session ends its run. To corrupt a party means that
the attacker learns all the internal memory of that party including long-
term secrets (such as private keys or master shared keys used across different
sessions) and session-specific information contained in the party’s memory
(such as internal state of incomplete sessions and session-keys corresponding
to completed sessions).

Mutual authenticated key secure includes mutual authenticated key trans-
port secure (for mutual authenticated key transport) and mutual authenti-
cated key agreement secure (for mutual authenticated key agreement).

4.2 Security mechanism based on trusted freshenss

A novel idea of protocol security analysis based on trusted freshness will be
presented in this section[26]. The presentations include the freshness principle,
which is the key of the security analysis based on trusted freshness; the
substantial and necessary requirements to meet four computational security
definitions; a manual analysis method based on the freshness principle, and
an illustration of the analysis method based on trusted freshness.
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4.2.1 Notions

Some notions used in the security analysis method based on trusted freshness
will be given in this subsection.

Definition 4.7 (Freshness) From the point of view of a participant in a
protocol run, freshness means that a freshness identifier or a message is con-
firmed to be new for a particular run of the protocol. If a freshness identifier
is new generated by the principal itself for this run or a message is conveyed
with this new generated identifier via a one-way transformation or a trapdoor
one-way transformation, then the freshness of the freshness identifier or the
message is confirmed.

Definition 4.8 (Trusted freshness) A trusted freshness identifier (also called
trusted freshness) is a freshness identifier whose freshness has been confirmed
via generation of the principal itself or via a one-way transformation or
a trapdoor one-way transformation including a trusted freshness identifier.
The trusted freshness identifiers include trusted nonces, trusted timestamps,
trusted session keys or trusted shared parts of a session key. Note that the
trusted freshness identifiers are different for different protocol runs, are dif-
ferent for each participant in the same protocol run, and are different for the
same principal in different protocol runs.

Definition 4.9 (Fresh message) From the point of view of a participant in
a protocol run, a fresh message is a sent or received message that includes a
trusted freshness.

Definition 4.10 (Term) A term m̂ is a fresh message owned by a principal
that may be exchanged in a particular protocol run. A term set M̂ is the
collection of all terms in a protocol run. Terms can be recursively defined as:

1) If m̂ is a trusted freshness identifier, then m̂ is a term.
2) If m̂ is a term, o is a principal identity or a freshness identifier, and

{m̂, o}, or {o, m̂} is encrypted or should be decrypted via a one-way trans-
formation or a trapped door one-way transformation, then {m̂, o}, or {o, m̂}
is a term. {m̂, o} and {o, m̂} are regarded as the same term in the security
analysis approach based on trusted freshness.

3) If m̂ is a term, k is a cryptographic key known by the principal, and
{m̂}k is encrypted or should be decrypted via a one-way transformation or a
trapped door one-way transformation, then {m̂}k is a term. If m̂ is a term,
o is a principal identity or a freshness identifier, then {o}m̂ is a term.

A maximal term is the longest term which is constructed from a single
message of a particular protocol run via the applications of Definition 4.12
as many times as possible.
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There may be more than one maximal terms in a message, for example,
the message 4 in a protocol:

Message 4 A→ B : {A, kAB, TB}KBS , {NB}kAB
Both {A, kAB, TB}KBS and {NB}kAB are the maximal term of the message.

If the maximal term of a message in a protocol run is the same as that of
another message of this protocol run, then we say this protocol has similar
term in these two messages.

That is, one single message’s maximal term should not be the same as an-
other single message’s maximal term in a particular protocol run. Otherwise,
one of these two messages may be interleaving replayed in some cases. Recall
the similar term in Message 4 and Message 5 in the Clark-Jacob attack on
the Woo-Lam protocol of Example 3.28.

A signed term is a binary group (δ, m̂), where δ is a sign, m̂ ∈ M̂ . A signed
term is stated as +m̂ or −m̂. +m̂ and −m̂ states a sent out or received fresh
message.

Example 4.1 Figure 4.1 illustrates an example of terms. The protocol in-
tends to establish a new session key kAB between A and B, with the help of
the trusted server S. NA, NB are nonces generated by A and B respectively;
KAS and KBS are shared long-term keys between A and S, and B and S
respectively.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 4 B → A : {NB}kAB
Message 5 A→ B : {NB − 1}kAB

Fig. 4.1 Example of terms.

Suppose the principal B believes that NB is a trusted freshness identifier
(NB is generated by B in this protocol run). Suppose the principal A believes
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that NA is a trusted freshness identifier (NA is generated by A in this protocol
run).

Message 1 A→ S : A,B,NA

Upon sending Message 1, A has gotten the terms as in Table 4.1, where
{...NA...} is the maximal term of Message 1.

Upon receiving Message 1, B has not gotten any terms since there does
not exist a trusted freshness identifier for B.

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Table 4.1 The terms owned by A from Message 1

No. Term Signed Term

1 {...NA...} +{...NA...}
Maximal Term

{...NA...}

Upon sending Message 2, S has gotten the terms as in Table 4.2. Upon
receiving Message 2, A has gotten the terms as in Table 4.3.

Table 4.2 The terms owned by S from Message 2

No. Term Signed Term

1 {...kAB...} +{...kAB...}
2 {...kAB, A...} +{...kAB, A...}
3 {...kAB...}KBS +{...kAB...}KBS
4 {...kAB, A...}KBS +{...kAB, A...}KBS
5 {...NA, kAB...} +{...NA, kAB ...}
6 {...kAB, B...} +{...kAB, B...}
7 {...kAB, {...kAB, A...}KBS ...} +{...kAB, {...kAB, A...}KBS ...}
8 {...NA, kAB, B...} +{...NA, kAB , B...}
9 {...NA, kAB, {...kAB, A...}KBS ...} +{...NA, kAB , {...kAB, A...}KBS ...}
10 {...kAB, B, {...kAB, A...}KBS ...} +{...kAB, B, {...kAB, A...}KBS ...}
11 {...NA, kAB, B, {...kAB, A...}KBS ...} +{...NA, kAB , B, {...NA, kAB,

A...}KBS ...}
12 {...NA, kAB...}KAS +{...NA, kAB ...}KAS
13 {...kAB, B...}KAS +{...kAB, B...}KAS
14 {...kAB, {...kAB, A...}KBS ...}KAS +{...kAB, {...kAB, A...}KBS ...}KAS
15 {...NA, kAB, B...}KAS +{...NA, kAB , B...}KAS
16 {...NA, kAB, {...kAB, A...}KBS ...}KAS +{...NA, kAB , {...kAB, A...}KBS ...}KAS
17 {...kAB, B, {...kAB, A...}KBS ...}KAS +{...kAB, B, {...kAB, A...}KBS ...}KAS
18 {...NA, kAB, B, {...kAB, +{...NA, kAB , B, {...kAB,

A...}KBS ...}KAS A...}KBS ...}KAS
Maximal Term

{...NA, kAB, B, {...kAB, A...}KBS ...}KAS
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Table 4.3 The terms owned by A from Message 2

No. Term Signed Term

1 {...NA...} −{...NA...}
2 {...NA, kAB...} −{...NA, kAB ...}
3 {...NA, B...} −{...NA, B...}
4 {...NA, {...kAB, A...}KBS ...} −{...NA, {...kAB, A...}KBS ...}
5 {...NA, kAB, B...} −{...NA, kAB , B...}
6 {...NA, kAB, {...kAB, A...}KBS ...} −{...NA, kAB , {...kAB, A...}KBS ...}
7 {...NA, B, {...kAB, A...}KBS ...} −{...NA, B, {...kAB, A...}KBS ...}
8 {...NA, kAB, B, {...kAB, A...}KBS ...} −{...NA, kAB , B, {...NA, kAB,

A...}KBS ...}
9 {...NA, kAB...}KAS −{...NA, kAB ...}KAS
10 {...NA, B...}KAS −{...NA, B...}KAS
11 {...NA, {...kAB, A...}KBS ...}KAS −{...NA, {...kAB, A...}KBS ...}KAS
12 {...NA, kAB, B...}KAS −{...NA, kAB , B...}KAS
13 {...NA, kAB, {...kAB, A...}KBS ...}KAS −{...NA, kAB , {...kAB, A...}KBS ...}KAS
14 {...NA, B, {...kAB, A...}KBS ...}KAS −{...NA, B, {...kAB, A...}KBS ...}KAS
15 {...NA, kAB, B, {...kAB, −{...NA, kAB , B, {...kAB,

A...}KBS ...}KAS A...}KBS ...}KAS
Maximal Term

{...NA, kAB, B, {...kAB, A...}KBS ...}KAS

Note that from the point of view of A, {...NA, kAB, A...}KBS is the same
as a randomly chosen nonce since A does not have possession of the long-term
key KBS. Here, {...NA, kAB, B, {...kAB, A...}KBS ...}KAS is the maximal term
of Message 2.

As we will show in the following part of this chapter, upon receiving
Message 2, A has the belief that kAB is a trusted freshness from a trap-
door one-way transformation {...NA, kAB, B, {...kAB, A...}KBS ...}KAS includ-
ing the trusted freshness identifier NA.

Message 3 A→ B : S, {kAB, A}KBS

Upon sending Message 3, A has not gotten any terms without the knowl-
edge of the long-term key KBS. Upon receiving Message 3, B has not gotten
any terms since there does not exist a trusted freshness identifier for B. So,
the maximal term in Message 3 is null.

Message 4 B → A : {NB}kAB
Upon sending Message 4, B has gotten the terms as in Table 4.4.

Table 4.4 The terms owned by B from Message 4

No. Term Signed Term

1 {...NB...} +{...NB...}
2 {...NB...}kAB +{...NB...}kAB
Maximal Term

{...NB...}kAB
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Upon receiving Message 4, note that kAB is a trusted freshness, so A has
gotten the terms as in Table 4.5.

Table 4.5 The terms owned by A from Message 4

No. Term Signed Term

1 {...NB...}kAB −{...NB...}kAB
Maximal Term

{...NB...}kAB

So, the maximal term of Message 4 is {...NB...}kAB .

Message 5 A→ B : {NB − 1}kAB

Upon sending Message 5, note that kAB is a trusted freshness, so A has
gotten the terms as in Table 4.6.

Table 4.6 The terms owned by A from Message 5

No. Term Signed Term

1 {...NB...}kAB +{...NB...}kAB
Maximal Term

{...NB...}kAB

Upon receiving Message 5, B has gotten the terms as in Table 4.7.

Table 4.7 The terms owned by B from Message 5

No. Term Signed Term

1 {...NB...} +{...NB...}
2 {...NB...}kAB +{...NB...}kAB
Maximal Term

{...NB...}kAB

Here, {...NB...}kAB is the maximal term in Message 5.

Example 4.2 Here is an example of similar term. Recall the Example 4.16,
the maximal term {...NB...}kAB in Message 4 is the same as that in Message
5, so we say this protocol in Example 4.16 has similar term {...NB...}kAB in
Message 4 and Message 5.

Definition 4.11 (Liveness of a principal) From the point of view of a par-
ticipant in a protocol run, the intended opposite participant is in lively cor-
respondence with him in this session.

Note From the point of view of a participant in a protocol run, the intended
opposite participant is specially in lively correspondence with this origin par-
ticipant in this session. The liveness of a principal with origin is also called
origin liveness of a principal.
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In lively correspondence with a origin participant means that the origin
participant has corroborative evidence that the intended opposite participant
is in lively correspondence with this origin participant but not any other
participant.

Definition 4.12 (Confidentiality of a freshness identifier From the point of
view of a participant in a protocol run, the freshness identifier is transmitted
in the form of an encryption that cannot be decrypted by the attacker.

If the freshness identifier is transmitted in the form of a plaintext or
an encryption that may be decrypted by the attacker, then the freshness
identifier is open. Note that the signature of a freshness identifier is not
confidential.

Definition 4.13 (Freshness of a freshness identifier) From the point of view
of a participant in a protocol run, the freshness identifier is new generated
for this particular protocol run, not an old one or a compromised one.

A principal believes the freshness of the freshness identifier generated by
the principal itself.

Definition 4.14 (Association of a freshness identifier) From the point of
view of a participant in a protocol run, the freshness identifier is bound to
some legitimate participants of this particular protocol run.

In the security analysis of a cryptographic protocol based on trusted fresh-
ness, the security properties are described by beliefs, which are the beliefs
about the security of a cryptographic protocol owned by each participant in
a particular protocol run. The beliefs are about liveness of principal, con-
fidentiality of a freshness identifier, freshness of a freshness identifier and
association of a freshness identifier.

4.2.2 Freshness principle

Definition 4.15 (Freshness Principle) For each participant of a crypto-
graphic protocol, the security of the protocol depends only on the sent or re-
ceived “loose” one-way transformation of a message which includes a trusted
freshness.

The security goals are the security objects at the end of the protocol run.
The set of security goals constructs the security properties of a cryptographic
protocol to achieve.

In practice, a one-way transformation [M ]k can be realized by a pair
(M,prfk(M)) where prfk denotes a keyed pseudorandom function (e.g., a mes-
sage authentication code in cipher-block-chaining mode of operation, CBC-
MAC, or a keyed cryptographic hash function, HMAC) for the case of sym-
metric technique realization, or a digital signature algorithm for the case of
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asymmetric technique realization. These are practically efficient
realization[6]. These practical one-way transformations are indeed trapped
door one-way transformations for most cases, hence we use “loose” one-way
transformation to refer to them. As we have stated in the last chapter, when
we refer to “one-way transformation”, we usually mean “loose one-way trans-
formation”.

Let A, B be the participants of an authentication protocol, we have the
following lemmas:

Lemma 4.1 (Liveness Lemma) The liveness of a principalB can be achieved
by a participant A via a sent or received “loose” one-way transformation that
includes a trusted freshness identifier owned by A, where the “loose” one-way
transformation can only be accomplished by the principal B.

Lemma 4.2 (Confidentiality Lemma) The confidentiality of a freshness
identifier can be achieved by a participant A if the identifier is transmitted
in the form of an encryption that cannot be decrypted by the attacker; if the
freshness identifier is transmitted in the form of a plaintext or an encryption
that may be decrypted by the attacker, then the freshness identifier is open.

Lemma 4.3 (Freshness Lemma) The freshness of a freshness identifier can
be achieved by a participant A via a sent or received “loose” one-way trans-
formation that includes:

1) a new freshness identifier which is generated by the principal A itself;
2) a new freshness identifier which is bound together with A’s another

trusted freshness identifier in a “loose” one-way transformation, where the
“loose” one-way transformation can only be accomplished by the intended
participant B.

Lemma 4.4 (Association Lemma) The association of a freshness identifier
can be achieved by a participant A via a sent or received “loose” one-way
transformation that includes a trusted freshness identifier owned by A, where
the “loose” one-way transformation can only be accomplished by the intended
principalB, or the identity of the participant is explicitly stated in the “loose”
one-way transformation.

Lemma 4.5 (Origin liveness Lemma) The liveness of a principal B with
origin can be achieved by a participant A via a sent or received “loose” one-
way transformation that includes a trusted freshness identifier owned by A,
where the “loose” one-way transformation can only be accomplished by the
principal B specially for the origin participant A.

In security analysis approach based on trusted freshness, only “loose” one-
way transformation that includes a trusted freshness identifier is considered
as an efficient message of a conversation, so terms could be deduced from
the transformation. That is to say, only the fresh messages are concerned
in security analysis based on trusted freshness, and the message parts that
do not contribute to the protocol security property analysis in the trusted
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freshness method are omitted.

4.2.3 Security of authentication protocol

Suppose there exists a protocol Π between A and B, the security goal of Π
is to authenticate the liveness of a principal entity or establish a new session
key to build a secure channel in an insecure network. The new session key kab
can either be generated by any of the authenticated participants or a trusted
third party S, or be the output of a function of all protocol participants’
random input like NA and NB.

Table 4.8 lists the security property requirements to guarantee the secu-
rity goals of a cryptographic protocol, and we will show that the listed security

Table 4.8 The guarantee of the security adequacy of a cryptographic protocol

Security Properties Security Properties

Security Goals Achieved by A Achieved by B

B S NA NB kAB A S NA NB kAB

UA-secure (Authenticate B) 1a

UA-secure (Authenticate A) 1

MA-secure

(Authenticate both)
1 1

Origin UA-secure

(Origin Authenticate B)
A1b

Origin UA-secure

(Origin Authenticate A)
B1

Origin MA-secure

(Origin Authenticate both)
A1 B1

UK-secure (Authenticate B) 1 1c1dABe

UK-secure (Authenticate A) 1 11AB

MK-secure (Key Transport) 1 11AB 1 11AB

MK-secure (Key Transport) 1 11AB 11AB 1 11AB 11AB
a "1" or "" means that the liveness of the principal is authenticated or unknown respectively.
b "A1" or "" means that the liveness of the principal is authenticated with origin or unknown

respectively.
c "?" or "" means that the confidentiality of the freshness identifier is unknown; "1" means

that the confidentiality of the freshness identifier is confidential; "0" means that the freshness
identifier is open, which is a plaintext, or a compromised one or an old one.

d "?" or "" means that the freshness of the freshness identifier is unknown; "1" means that
the freshness identifier is fresh.

e "#" or "" means that the freshness identifier is not associated with any principals; "11A"
(or "11B") means that the freshness identifier is associated with the principal A (or B); "11AB"
or "11BA" means that the freshness identifier is associated with both A and B.

goals are not only necessary but also substantial. Here, when an authentica-
tion protocol is MK-secure is proved, and other similar proofs of UA-secure,
UK-secure, MK-secure are omitted for interest of concision.

The security property requirements of some cryptographic protocols are
given in [26]. And they are:
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Theorem 4.1 An authentication-only protocol Π is called UA-Secure if
and only if a participant like A believes the liveness of the intended opposite
principal B.

Theorem 4.2 An authentication-only protocol Π is called MA-Secure if
and only if each participant believes the liveness of both communication
principals.

Theorem 4.3 A key establishment authentication protocol Π is called UK-
Secure if and only if a participant like A believes the liveness of the in-
tended opposite principal B, and believes the confidentiality, the freshness
and also the association of the new session key k with the principal A and the
principal B.

Theorem 4.4 A key establishment authentication protocol Π is called MK-
Secure if and only if each participant like A (or B) believes the liveness of
the intended opposite principal B (or A), and believes the confidentiality, the
freshness and also the association of the new session key k with the principal
A and the principal B.

Theorem 4.5 A authentication-only protocol Π is called Origin UA-Secure
if and only if a participant like A believes the liveness of the intended opposite
principal B with origin.

Theorem 4.6 A authentication-only protocol Π is called OriginMA-Secure
if and only if each participant believes the liveness of both communication
principals with origin.

Here, the liveness of the principal is able to determine the true identity of
the other(s) which could possibly gain access to the resulting key; the confi-
dentiality of the new session key k implies secrecy of the key; the freshness of
the key k requires that the key is new for this protocol run and it could not
be a replay of a compromised one; the association of the k implies preclusion
of any unauthorized additional parties from deducing the same key.

Note that the liveness of the intended opposite principal differs subtly, but
in a very important manner, from the association of the new session key k.
The liveness of a principal implies entity authentication, and an actual com-
munication has been established with such party (or parties); the association
of the new session key k is knowledge of the identity of parties which may
gain access to the key, rather than corroboration of the entity authentication.

4.2.4 Manual analysis based on trusted freshness

Based on the freshness principle and the accurately presented security goals,
an analysis method as shown in Fig. 4.2 based on trusted freshness will be
presented, which can be accomplished easily even by hand.
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Fig. 4.2 Security analysis of cryptographic protocol based on trusted freshness.



98 4 Informal Analysis Schemes of Cryptographic Protocols

The manual freshness analysis method is refined as follows for the same
authentication protocol Π in Section 4.2.3.

1) The security goals to be reached is specified based on Table 4.8.
2) Table 4.9 specifies the premise before the start of the protocol.
Recall that each participant has his own private key and all other parties’

public-keys (respectively, the shared long-term key between co-operative prin-
cipals or trusted third parties) in public-key case (respectively, in symmetric-
key case).

Table 4.9 The premise of a cryptographic protocol

Cryptographic schemes
Premise

knowledge of A

Premise

knowledge of B

Premise

knowledge of I

public-key K−1
A ,KA,KB, KI K−1

B ,KB, KA, KI K−1
I ,KA,KB ,KI

symmetric-key without
TTP

KAB KAB

symmetric-key with TTP KAS KBS

3) From the point of view of each legitimate participant, the security
properties of a cryptographic protocol are established based on the freshness
principle and Lemmas 4.1, 4.2, 4.3, and 4.4 while sending or receiving a
“loose” one-way transformation that includes a trusted freshness.

4) Comparing with the security goals established in step 1, the analysis
results can either establish the correctness of the protocol when it is in fact
correct, or identify the absence of the security properties and the structure
to construct attacks based on the absence. From the absence of the security
properties of an authentication protocol, various attacks could be directly
constructed:

(1) Absence of the liveness of a principal like A: impersonate A to launch
an attack, e.g., Otway-Rees protocol[27], Woo-Lam protocol[5, 10].

Absence of the origin liveness of a principal like A: impersonate A by
replaying the corroborative evidence from A which may be generated for any
other participants but the original participant B.

(2) Absence of the freshness of a freshness identifier: launch an attack by
replaying the recorded one-way transformation with a compromised session
key, e.g., Needham-Schroeder shared key protocol[9].

(3) Absence of the association of a freshness identifier: launch an attack
by confusing a legitimate principal like B to believe a session key k’ between
I and A (or B) to be the key between A and B, e.g., the Needham-Schroeder
public-key protocol[9].

4.2.5 Application of security analysis based on trusted freshness

Example 4.3 Recall the analysis of Needham-Schroeder public-key proto-
col in Example 3.16 and Example 3.20, Fig. 4.3 illustrates the analysis pro-
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cedure of the Needham-Schroeder public-key protocol based on the trusted
freshness analysis method.

Fig. 4.3 Security analysis of Needham-Schroeder public-key protocol based on
trusted freshness.

By analyzing, we get result on security properties, as shown in Tables
4.10, 4.11, and 4.12.
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Table 4.10 Security properties achieved by A in the Needham-Schroeder public-
key protocol

Presence NA NB

of B Confidentiality Freshness Association Conf. Fresh. Asso.

Message 1 1 1 A

Message 2 1 AB 1 1 AB

Message 3

End of run 1 11AB 11AB

Table 4.11 Security properties achieved by B in the Needham-Schroeder public-
key protocol

Presence NA NB

of A Confidentiality Freshness Association Conf. Fresh. Asso.

Message 1 1 ? #

Message 2 1 1 #

Message 3 1 AB

End of run 1 1?# 11AB

For the sake of ease, the security properties achieved by A and B are
simplified as in Table 4.12.

Table 4.12 Security analysis of the Needham-Schroeder public key protocol

A B

B NA NB A NA NB

Message 1 11A 1?#

Message 2 1 11AB 11AB 11#

Message 3 1 11AB

End of run 1 11AB 11AB 1 1?# 11AB

4.3 Analysis of classic attacks

A successful attack on an authentication or key establishment protocol usu-
ally does not refer to breaking a cryptographic algorithm, e.g., via a complex-
ity theory-based cryptanalysis technique. Instead, it usually refers to Mal-
ice’s unauthorized and undetected acquisition of a cryptographic credential
or nullification of a cryptographic service without breaking a cryptographic
algorithm. It actually does not require very sophisticated techniques for an
adversary to mount these attacks on a lower-layer communication protocol,
as we have seen in Example 1.3.

Over several years, many different types of attacks on cryptographic prim-
itives and protocols have been identified, and it is impossible for us to know
all the protocol attacking techniques an adversary may use since the adver-
sary will constantly devise new techniques. In this section, several typical
attacks on cryptographic protocols will be analyzed, and the reasons why
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these protocols are flawed will be discussed based on trusted freshness to
provide us with insight into how to develop stronger protocols. Notice that
an adversary may actually launch attacks via a combined way of the listed
well-known protocol attacking techniques[22].

In the specific examples below, A and B are the legitimate parties Al-
ice and Bob, and I is the adversary Malice who could also be a legitimate
participant in some cases.

4.3.1 Man in the middle attack

In man-in-the-middle attack (often abbreviated to MITM), the attacker makes
independent connections with the victims and relays messages between them,
making them believe that they are talking directly to each other over a private
connection while in fact the entire conversation is controlled by the attacker.
A man-in-the-middle attack can only be successful when the attacker can
impersonate each entity to the satisfaction of the other. Most cryptographic
protocols include some form of entity authentication specifically to prevent
MITM attacks. In essence, man-in-the-middle attack is generally applicable
to a communication protocol where mutual entity authentication is absent.

Example 4.4 Diffie-Hellman key agreement[28] provides the first practical
solution to the key distribution problem, allowing two parties, never having
met in advance or having shared keying material, to establish a shared secret
by exchanging messages over an insecure network, as shown in Fig. 4.4. The
security rests on the intractability of the Diffie-Hellman problem and the
related problem of computing discrete logarithms.

Message 1 A→ B : αx mod p

Message 2 B → A : αy mod p

Fig. 4.4 The basic version of Diffie-Hellman key agreement protocol.

Notation

A and B are two protocol principals, x and y are randomly chosen as
their private keys by A and B, respectively.
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Premise

An appropriate large prime p and a generator element α of Z
∗
p (2 � α �

p− 2) are selected and published. x and y are randomly chosen hence could
not be found out.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.

2) Upon receiving Message 1, B gets “αx” and computes the shared key
as “k = (αx)y mod p = αxy mod p”.

3) In Message 2, B randomly chooses a secret “y, 1 � y � p − 2”, and
sends A message “αy mod p”.

4) Upon receiving Message 2, A gets “αy” and computes the shared key
as “k = (αy)x mod p = αyx mod p”.

Note that “αxy mod p = αyx mod p”, hence A and B have computed the
same key k. This is how the Diffie-Hellman key exchange protocol achieves a
shared key between two communication parties.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP x; from Lemma 4.2, B has the
confidentiality assurance of the TVP x, but B could not deduce the freshness
of the TVP x.

2) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and freshness assurances of the TVP y; from Lemma 4.2, A has the
confidentiality assurance of the TVP y, but A could not deduce the freshness
of the TVP y.

3) At the end of the protocol run, A and B have computed the same key
“k = αxy mod p”, and have gotten the confidentiality and freshness assur-
ances of k from the confidentiality and freshness of the TVP x and the TVP y
respectively. However, the whole transmitted messages in this protocol could
not provide the assurance of the association of A with k for B, and B with
k for A.

The analyzing result is indicated in Table 4.13.

Table 4.13 Security analysis of the Diffie-Hellman key agreement protocol

A B

B x y k A x y k

Message 1 11# 1?#

Message 2 1?# 11#

End of run 11# 1?# 11A 1?# 11# 11B

This basic Diffie-Hellman protocol version provides none authentication,
entity authentication and key confirmation, hence it can only provide se-
crecy protection of the resulting key from eavesdroppers, but not from active
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adversaries. Fig. 4.5 illustrates the “man-in-the-middle” attack on the basic
unauthenticated Diffie-Hellman key establishment protocol.

Message 1 A→ I(B) : αx mod p
Message 1′ I(A)→ B : αx′ mod p

Message 2′ B → I(A) : αy mod p

Message 2 I(B)→ A : αy′ mod p

Fig. 4.5 The attack on the basic Diffie-Hellman key agreement.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.

2) The adversary I intercepts A′s exponential αx and replaces it with αx′

where x′ is a secret chosen by I; meanwhile I intercepts B′s exponential αy

and replaces it with αy′ where y′ is a secret chosen by I.
3) At the end of protocol run, A forms session key “k1 = (αy′)x mod p =

αy′x mod p = αxy′ mod p”, and B forms session key “k2 = (αx′)y mod p =
αx′y mod p”, while I can compute both keys k1 and k2.

4) When A subsequently sends a message to B encrypted under k1, I de-
crypts it, re-encrypts the plaintext under k2, and forwards it to B. Similarly,
I decrypts the message encrypted by B (for A) under k2, and re-encrypts it
under k1. Both A and B believe that they communicate securely, while I can
read all traffic.

4.3.2 Source-substitution attack

In source-substitution attack, the attacker makes a substitution of a source
entity identity with the identity of the adversary, making the victim believe
that it is talking directly to the intended entity while in fact the entire con-
versation is controlled by the adversary. e.g., in Example 4.5, the adversary
registers source entity’s public-key as its own. A source-substitution attack
can only be successful when the adversary can impersonate an entity to the
satisfaction of the other. In essence, source-substitution attack is generally
applicable to a communication protocol where entity authentication is absent.
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Example 4.5 The ElGamal key agreement is a Diffie-Hellman variant pro-
viding a one-pass protocol with unilateral key authentication[29]. This pro-
tocol is more simply Diffie-Hellman key agreement wherein the public expo-
nential of the recipient is fixed and has verifiable authenticity, as shown in
Fig. 4.6.

Message 1 A→ B : αx mod p

Fig. 4.6 ElGamal key agreement in one-pass.

Notation

A and B are two protocol principals. x is randomly chosen as its private
key by A. b is a preselected secret random integer.

Premise

An appropriate large prime p and a generator element α of Z
∗
p (2 � α �

p − 2) are selected and published. The public-key of the recipient is known
to the originator.

Protocol actions

1) One-time setup (public-key generation and publication). B picks an
appropriate large prime p and a generator element “α of Z

∗
p”, selects a random

integer “b, 2 � b � p− 2”, and computes “αb mod p”, then B publishes p, α
and αb, keeping private key b secret.

2) Each time a shared key is required.
(1) A obtains an authentic copy of B′s public-key αb. A randomly chooses

a secret “x, 1 � x � p− 2”, and sends B message “αx mod p”.
(2) A computes the shared key as “k = (αb)x mod p = αbx mod p =

αxb mod p”; B receives αx and computes the same shared key as “k =
(αx)b mod p = αxb mod p”.

Protocol security analysis

1) Before the protocol run, suppose A and B have the assurance that b is
a confidential and long-term key which is known only by B.

2) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP x; from Lemma 4.2, B has the
confidentiality assurance of the TVP x, but B could not deduce the freshness
of the TVP x.

3) At the end of the protocol run, A has computed the key k = αxb mod p.
From Lemma 4.2, Lemma 4.3 and Lemma 4.4, A has gotten the confidential-
ity and freshness assurances of k from the confidentiality and freshness of the
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TVP x, and A has gotten the association of A and B with k from the TVP x
and B′s long-term key b respectively. From Lemma 4.2, B has the confiden-
tiality and the association (B with k) assurances, from B′s long-term private
key b, but B could not deduce the freshness of k and also the association
assurance of A with k.

The analyzing result is indicated in Table 4.14. The recipient B in this
protocol has neither corroboration that it shares the secret key k, nor any
key freshness assurance. Neither party obtains entity authentication or key
confirmation. The adversary can launch an attack by impersonating A di-
rectly.

Table 4.14 Security analysis of the ElGamal key agreement in one-pass

A B

B x b k A x b k

Message 1 11# 11B 1?# 11B

End of run 11# 11B 11AB 1?# 11B 1?B

Example 4.6 TheMTI two-pass key agreement protocol as shown in Fig. 4.7
is a variant of Diffie-Hellman key agreement to yield time-variant session key
with mutual key authentication against passive attacks[28–30].

Message 1 A→ B : αx mod p

Message 2 B → A : αy mod p

Fig. 4.7 The MTI key agreement protocol in two-pass.

Notation

A and B are two protocol principals, a (1 � a � p − 2) and b (1 � b �
p − 2) are randomly chosen integers as its long-term private keys by A and
B respectively.

Premise

An appropriate large prime p and a generator element α of “Z
∗
p (2 � α �

p−2)” are selected and published. A has the assurance that only B knows the
corresponding long-term private key b of “αb mod p”, B has the assurance
that only A knows the corresponding long-term private key a of “αa mod p”.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.
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2) In Message 2, B randomly chooses a secret “y, 1 � y � p − 2”, and
sends A message “αy mod p”.

3)B receives “αx mod p” and computes the shared key as “k = (αx)b(αa)y

= αbx+ay mod p”.
4) A receives αy and computes the shared key as “k = (αy)a(αb)x =

αay+bx = αbx+ay mod p”.

Protocol security analysis

1) Before the protocol run, suppose A and B have the assurance that a
is a confidential and long-term key which is known only by A, and that b is
a confidential and long-term key which is known only by B.

2) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP x; from Lemma 4.2, B has the
confidentiality assurance of the TVP x, but B could not deduce the freshness
of the TVP x.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and freshness assurances of the TVP y; from Lemma 4.2, A has the
confidentiality assurance of the TVP y, but A could not deduce the freshness
of the TVP y.

4) At the end of the protocol run, A has computed the key “k = αbx+ay

mod p”. From Lemma 4.2, Lemma 4.3, and Lemma 4.4, A has gotten the
confidentiality and freshness assurances of k from the confidentiality and
freshness of the TVP x, and A has gotten the association of A and B with k
from the TVP x and B′s long-term key b respectively. Similar cases exist for
B. At last, neither party obtains entity authentication, hence the adversary
could launch an attack with a masquerade.

From Table 4.15 we get security properties of the protocol. The fresh-
ness assurance of the session key k depends on the fresh input x or y from
each party, and the association of k depends on the long-term private key a
and b. Neither party obtains entity authentication or key confirmation. The
adversary can launch an attack by impersonating A directly.

Table 4.15 Security analysis of the MTI key agreement in two-pass

A B

B x y k A x y k

Message 1 11# 1?#

Message 2 1?# 11#

End of run 11# 1?# 11AB 1?# 11# 11AB

Hence, the protocol in Example 4.6 may suffer an attack[29], as shown in
Fig. 4.8.

Message 1 A→ I(B) : αx mod p
Message 1′ I → B : αx mod p

Message 2′ B → I : αy mod p

Message 2 I(B)→ A : αey mod p
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Fig. 4.8 The attack on the MTI key agreement protocol in two-pass.

Premise

A selects a random integer “a (1 � a � p− 2)” as A’s long-term private
key, and registers the public-key “αa mod p”; B selects a random integer “b
(1 � b � p − 2)” as B’s long-term private key, and registers the public-key
“αb mod p”; the adversary I selects an integer e, computes “αae mod p”, and
registers the public-key “αae mod p”.

Protocol actions

1) In Message 1, A randomly chooses a secret “x, 1 � x � p − 2”, and
sends B message “αx mod p”.

2) In Message 1′, I launches a new protocol run between I and B by
forwarding A′s exponential αx to B.

3) B receives αx and computes the shared key between I and B as “k =
(αx)b(αae)y = αbx+aey mod p”.

4) In Message 2′, I intercepts B’s exponential αy, then modifies “αy to
αey” and sends it to A.

5) A receives αey and computes the shared key with B as “k = (αey)a(αb)x

= αaey+bx mod p = αbx+aey mod p”.
At the end of the protocol run, A believes it is shared key “αbx+aey”

with B, while B believes it is shared key “αbx+aey” with I. In this attack,
I is not actually able to compute k itself, but rather causes B to have false
beliefs. B concludes that subsequently received messages encrypted by the
key “k = αbx+aey mod p” originated from I, whereas, in fact, it is only A
who knows k and can originate such messages. This attack may be detected
by key confirmation and prevented by modifying the protocol so that the
exponentials or the identities of the intended entities are authenticated, e.g.,
through a digital signature.

4.3.3 Message replay attack

Message replay is a classic attack on authentication and authenticated key es-
tablishment protocols. A message replay attack is where a previous legitimate
data transmission is captured or recorded and then replayed by an attacker
in a new protocol run attempting to gain unauthorized access to data or re-



108 4 Informal Analysis Schemes of Cryptographic Protocols

sources. A replay attack can be used in conjunction with a masquerade where
an unauthorized user pretends to be somebody else.

A replay attack is a form of network attack in which a valid data trans-
mission is maliciously or fraudulently repeated or delayed. This is carried
out either by the originator or by an adversary who intercepts the data and
retransmits it, possibly as part of a masquerade attack by IP packet substi-
tution (such as stream cipher attack).

Suppose A wants to prove A’s identity to B. B requests A’s password as
proof of identity A dutifully provides (possibly after some transformation like
a hash function); meanwhile, Malice is eavesdropping the conversation and
keeps the password. After the interchange is over, Malice connects with B
posing as A; when asking for a proof of identity, Malice sends A’s password
read from the last session which B will accept.

A way to avoid replay attacks is using session tokens: B sends a one-time
token to A, which A uses to transform the password and sends the result
to B (e.g., computing a hash function of the session token appended to the
password). On B’s side, B performs the same computation; if and only if both
values match, the login is successful. Now suppose Malice has captured this
value and tries to use it on another session; B sends a different session token,
and when Malice replies with the captured value it will be different from B’s
computation. Session tokens should be chosen by a (pseudo-) random process.
Otherwise Malice may be able to guess some future token and convince A to
use that token in A’s transformation. Malice can then replay A’s reply at a
later time, which B will accept.

B can also send nonces but should then include a message authentication
code (MAC), which A should check in order to avoid replay attacks.

Timestamping is another way of preventing a replay attack. Synchro-
nization should be achieved when using timestamp in a secure protocol. For
example, B periodically broadcasts the time on B’s clock together with a
MAC. When A wants to send B a message, A includes A’s best estimate of
the time on A’s clock in A’s message, which is also authenticated. B only
accepts messages for which the timestamp is within a reasonable tolerance.
The advantage of this scheme is that B does not need to generate (pseudo-)
random numbers.

It seems that we have already established a good awareness of message-
replay attacks. This can be evidently seen from the ubiquitous use of TVPs
(nonces, timestamps) in the basic and standard protocol constructions. How-
ever, simply using a timestamp on data or a message, or using tokens to verify
timestamps of messages does not guarantee the key freshness. In essence, re-
play attack is generally applicable to a communication protocol where key
freshness assurance is absent. This is why mistakes can be made repeatedly
even when the designers know the errors very well in a different context. The
freshness assurance could be achieved as in Lemma 4.3.

Example 4.7 Recall Needham-Schroeder shared key protocol in Example
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3.17. The protocol as shown in Fig. 4.9 intends to establish a new session
key kAB between A and B, with the help of the trusted server S. NA, NB

are nonces generated by A and B respectively; KAS and KBS are shared
long-term keys between A and S, and B and S respectively.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 4 B → A : {NB}kAB
Message 5 A→ B : {NB − 1}kAB

Fig. 4.9 The Needham-Schroeder shared key protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.3, A has the freshness assurance of the
TVP NA.

2) Upon receiving Message 2, A has the assurance that Message 2 includ-
ing trusted freshness NA must be encrypted by the trusted third party S, and
could not be a replay one. From Lemma 4.2 and Lemma 4.3, A has the confi-
dentiality and freshness assurances of the new chosen session key kAB; from
Lemma 4.4, A has the association assurance of the new session key kAB with
A and B since Message 2 could not be a replay one, and only S could encrypt
NA and kAB. From Lemma 4.1, A has gotten the entity authentication of S.

3) Upon receiving Message 3, from Lemma 4.2, B has the assurance that
the new chosen session key kAB is confidential, but B does not know whether
kAB is a new generated key for this protocol run or a promised one, and B
does not know whether kAB is associated with A and B in this protocol run.

4) Upon receiving Message 4, A decrypts N ′
B via using kAB , but A is not

sure whether N ′
B is exactly the randomly chosen TVP NB by B, or just a

value decrypted using kAB from a random data selected by the adversary I.
5) Upon receiving Message 5, B could not get any new assurance about

the protocol security.
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From Table 4.16, the absence of the security properties, various attacks,
most of which are message replay attacks, could be constructed.

Table 4.16 Security analysis of the Needham-Schroeder shared key protocol

A B

B S NA NB kAB A S NA NB kAB

Message 1 01# 0?#

Message 2 1 11AB

Message 3 1?#

Message 4 1?# 11#

Message 5

End of run 1 01# 1?# 11AB 0?# 11# 1?#

1. Attack onNeedham-Schroeder shared key protocol by impersonating B

Example 4.8 From the absence of the B’s liveness, in the point of view of
A, an attack by impersonation B could be launched, as shown in Fig. 4.10.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB, B, {kAB, A}KBS}KAS

Message 3 A→ I(B) : S, {kAB, A}KBS

Message 4 I(B)→ A : N
Message 5 A→ I(B) : {N ′

B − 1}kAB , where N ′
B = {N}k−1

AB

Fig. 4.10 An attack on the Needham-Schroeder shared key protocol by imperson-
ating B.

Protocol actions

1) The message exchanges from Message 1 to Message 3 are the same as
in the original Needham-Schroeder shared key protocol.

2) In Message 4, B sends a random nonce N to A as {NB}kAB , then A
decrypts N using the new session key kAB and gets N ′

B = {N}k−1
AB

.
3) In Message 5, A encrypts {N ′

B − 1} using kAB as a response to B’s
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challenge N ′
B (Actually N ′

B is not a challenge from B, it is only a nonce from
the attacker).

Upon termination of the protocol run in Example 4.8, the adversary I is
not actually able to get kAB itself, but rather causes A to have false beliefs: A
has completed a successful protocol run with B, and is sharing a new session
key kAB with B. A concludes that subsequently messages could be encrypted
using kAB and safely transmitted to B, whereas in fact, B knows nothing
about the key establishment procedure.

2. An attack on the Needham-Schroeder shared key protocol by using
compromised key

Example 4.9 From the absence of the key freshness assurance of kAB, the
Needham-Schroeder protocol is vulnerable to an attack discovered by Den-
ning and Sacco[31], as illustrated in Fig. 4.11. The attacker I intercepts A’s
messages sent by and to A in the message lines 3, 4 and 5, and replays old
session key material S, {k′AB, A}KBS which the attacker may record from a
previous run of the protocol between A and B. An old session key k′AB could
possibly be promised since a careless communication principal may put it in
an insecure place, or discard it etc., while the attacker has unlimited time to
spend on finding an old data encryption key and then reusing it as though it
were new.

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, kAB , B, {kAB, A}KBS}KAS

Message 3 A→ B : S, {kAB, A}KBS

Message 3′ I(A)→ B : S, {k′AB, A}KBS

Message 4′ B → I(A) : {NB}k′AB
Message 5′ I(A)→ B : {NB − 1}k′AB

Fig. 4.11 An attack on the Needham-Schroeder shared key protocol using a com-
promised key k′AB .
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Protocol actions

1) The message exchanges from Message 1 to Message 3 are the same as
in the original Needham-Schroeder shared key protocol.

2) In Message 3′, the attacker I sends a recorded old message “S, {k′AB,
A}KBS” to B where I has the knowledge of the old session key k′AB.

3) In Message 4′, B sends A a challenge NB to confirm the new session
key.

4) In Message 5′, A makes response {NB − 1}k′AB to B by using a com-
promised old session key k′AB.

Upon termination of the protocol run in Example 4.9, A believes that
the key establishment with B fails, whereas, B believes that he has suc-
cessfully established a new session key k′AB with A, and B may ignore the
subsequently key establishment requirement for a new session key. Actually,
k′AB is a promised key known by the attacker. In deed, this attack could be
launched by I from sending Message 3′ directly, and the principal A will not
participate in this protocol run at all (Example 4.10).

3. Attack onNeedham-Schroeder shared key protocol by impersonating A

Example 4.10 From the absence of the A’s liveness, the attacker may
launch an attack without the presence of A, as shown in Fig. 4.12.

Message 3′ I(A)→ B : S, {k′AB, A}KBS

Message 4′ B → I(A) : {NB}k′AB
Message 5′ I(A)→ B : {NB − 1}k′AB

Fig. 4.12 An attack on the Needham-Schroeder shared key protocol by imperson-
ating A.

4.3.4 Parallel session attack

A parallel session attack occurs when two or more protocol runs are executed
concurrently and messages from one run (the reference session) are used to
form spoofed messages in another run (the attack session). Following are
examples of the parallel session attack.
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Example 4.11 Figure 4.13 is a simple one-way authentication protocol. A
wants to check the liveness of B by using a new chosen challenge NA.

Message 1 A→ B : {NA}KAB

Message 2 B → A : {NA + 1}KAB

Fig. 4.13 A simple one-way authentication protocol.

Notation

A and B are two protocol principals.

Premise

KAB is the shared long-term key between A and B, which is initially
established by non-cryptographic, and out-of-band techniques; NA is a nonce
randomly chosen by A.

Protocol actions

1) In Message 1, A randomly chooses a new nonce NA as a challenge for
this protocol run, and sends it to B encrypted under the shared long-term
key KAB between A and B.

2) Upon receiving Message 1, B gets NA from the encryption {NA}KAB ,
and responses {NA + 1}KAB to show that B is operational.

Successful execution of the protocol should convince A that B is present
since only B could have formed the appropriate response {NA + 1}KAB to
the challenge NA issued in Message 1.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and the freshness assurances of the TVP NA.

2) Upon receiving Message 1, B could not determine whether {NA}KAB

is a nonce chosen by the attacker or a challenge selected by the opponent
party A.

3) Upon receiving Message 2, A could not determine whether {NA+1}KAB

is an appropriate response to the challengeNA from B or not, since there does
not exist the evidence that {NA+1}KAB is accomplished by the principal B,
hence it even may be a trapped one-way transformation from A itself. Table
4.17 indicates the analyzing result.
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Table 4.17 Security analysis of the simple one-way authentication protocol

A

B NA

Message 1 11#

Message 2

End of run 11#

Example 4.12 Figure 4.14 illustrates that an intruder can play the role of
B as responder and initiator. The attack works by starting another protocol
run in response to the initial challenge {NA}.

Message 1 A→ I(B) : {NA}KAB

Message 1′ I(B)→ A : {NA}KAB

Message 2′ A→ I(B) : {NA + 1}KAB

Message 2 I(B)→ A : {NA + 1}KAB

Fig. 4.14 A parallel session attack on the simple one-way authentication protocol.

Notation

A and B are two protocol principals, I is the attacker.

Premise

KAB is the shared long-term key between A and B, which is initially
established by non-cryptographic, and out-of-band techniques; NA is a nonce
randomly chosen by A.

Protocol actions

1) To initiate the attack, the adversary waits for A to initiate the first
protocol session with B. A does the same thing as in Message 1 of Example
4.11.

2) I intercepts the Message 1 and pretends to be B, starting a second run
of the protocol by replaying the intercepted message {NA}KAB .

3) A replies to I(B)’s challenge in Message 2′ with the exact value {NA+
1}KAB that I(B) requires to accurately complete the attack session.
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4) I intercepts the Message 2′ and replays the intercepted message {NA+
1}KAB to A as B’s (indeed, it is I) response to Message 1.

Successful execution of the attack on this simple One-Way protocol could
convince A that B is present since only B could have formed the appropriate
response {NA + 1}KAB to the challenge NA issued in Message 1.

Such attacks may be prevented via modifying the protocol so that the
challenge response messages could show the identity of the party performing
encryption or decryption. For example, change {NA + 1}KAB to {A,NA +
1}KAB , or {B,NA + 1}KAB .

Example 4.13 The Woo-Lam protocol[5] is an authentication protocol
based on symmetric-key cryptography, as shown in Fig. 4.15. The protocol
intends to authenticate A to B with the aid of a trusted third party S. The
nonce NB servers as challenge for authenticating A to B.

Message 1 A→ B : A
Message 2 B → A : NB

Message 3 A→ B : {NB}KAS

Message 4 B → S : {A, {NB}KAS}KBS

Message 5 S → B : {NB}KBS

Fig. 4.15 The Woo-Lam authentication protocol.

Notation

A and B are two protocol principals, and S is the trusted third party.
KAS and KBS are keys that A and B shared with S respectively.

Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
of-band techniques. NB is a nonce randomly chosen by B.

Protocol actions

1) In Message 1, A launches a new protocol run.
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2) In Message 2, B randomly chooses a new nonce NB as a challenge to
this protocol run and sends it to A.

3) In Message 3, A sends B a response to the challenge NB using the
shared long-term only known by A and the trusted third party S, to show
that it is A who has encrypted B’s challenge NB.

4) In Message 4, B encrypts A’s response with A’s identity using the
shared long-term key only known by B and the trusted third party S, to
show that it is B who has encrypted A’s response {NB}KAS .

5) Upon receiving Message 4, S checks A’s response {NB}KAS to con-
firm A’s identity. Then, S sends B the message {NB}KBS showing that A’s
identity has been authenticated by S.

6) Upon receiving Message 5, B checks S’s response {NB}KBS to get NB.
If NB is correct, then B believes that A’s identity has been authenticated by
the trusted third party S.

Successful execution should convince B that A is present with the help of
the trusted party S.

Protocol security analysis

1) In Message 1, neither A nor B can draw any useful assurance from it.
2) In Message 2, from Lemma 4.3, B has the freshness assurance of the

TVP NB.
3) Upon receiving Message 3, B could not determine whether {NB}KAS

is a nonce chosen by the attacker or a response from the opponent party A,
and B can only treat it as an unrecognizable foreign cipher chunk. Neither
A nor B can draw any new assurance from Message 3.

4) Upon receiving Message 4, S could not determine whether {NB}KAS or
{A, {NB}KAS}KBS is a fresh message or not since S doesn’t have any trusted
freshness. Actually, S could not authenticate the liveness of A and B, but S
proves that NB is recovered from an encryption under the shared long-term
key between A and S.

5) Upon receiving Message 5, from Lemma 4.1, B believes that it must
be S who has decrypted the message {A, {NB}KAS}KBS and {NB}KAS from
recovering NB which is trusted by B. However, B cannot authenticate the
liveness of A since there does not exist any evidence that NB is the challenge
from B to A.

Upon termination of the Woo-Lam protocol, B has not gotten the assur-
ance that A is present. The analyzing result is indicated in Table 4.18.

From the absence of the liveness property of A, an attacker can play the
role of A as responder or initiator. In addition to the attacks discovered in [10]
and [12] on the Woo-Lam Protocol, a new attack is illustrated in Example
3.13. In essence, a parallel session attack continually exists in the Woo-Lam
Protocol, since the absence of A’s liveness property has not been fixed.
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Table 4.18 Security analysis of the Woo-Lam protocol

A B S

B S NB A S NB A B NB

Message 1

Message 2 0?# 01# 0?#

Message 3

Message 4 01# 0?#

Message 5 1

End of run 1 0?#

4.3.5 Reflection attack

Reflection attack is a type of replay attack in which transmitted data is sent
back to its originator. In a basic authentication scheme, a secret is known
to both the originator and the target (or the trusted server), this allows
them to be authenticated and they may verify this shared secret without
sending it in plaintext over the wire. The originator initiates a connection to
a target, and the target attempts to authenticate the originator by sending
it a challenge, then the originator utilizes the shared secret to process this
randomly chosen challenge to show his identity. The essential idea of the
reflection attack is to trick the target into providing the answer to its own
challenge (Example 4.11). That is, the same challenge-response protocol is
used by each side to authenticate the other side, thereby leaving the attacker
with fully-authenticated channel connection.

Example 4.11 could be fixed by sending the responder’s identity within the
response. Then, if the originator receives a response that has its own identity
in it, then the originator will reject the response; if the originator receives a
response that has the opponent’s identity in it, and if the nonce is the same
as the one the originator has sent in his challenge, then the originator will
accept the message.

Example 4.14 Recall the fixed Woo-Lam protocol by Abadi and
Needham[10]. This fixed version of the Woo-Lam Protocol suffers a reflec-
tion attack discovered by Clark and Jacob[12]. Here, the attacker mounts
reflection attack twice: Message 3 is a reflection of Message 2, and Message
5 is that of Message 4. First, the random chunk that B receives in Message
3 is actually B’s nonce sent out in Message 2. Again, the cipher chunk that
B receives in Message 5 is actually the one created by himself and sent out
in Message 4. B cannot detect this attack discovered by Clark and Jacob.

As Mao has stated in [22], a series of fixes for the Woo-Lam Protocol[32]

are also flawed in a similar way: they all suffer reflection attack in various
ways[10, 12, 22]. The key reason for this flaw is the absence of the liveness
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property of A as we have illustrated in Table 4.18.

4.3.6 Interleaving attack

Interleaving attack is a type of replay attack in which transmitted data is
from outside the current run of the protocol. The attacker may compose a
message and sends it out to a principal in one run, from which he expects to
receive an answer; the answer may be useful for another principal in another
run, and in the latter run, the answer obtained from the former run may
further stimulate the latter principal to answer a question which in turn is
further used in the first run, and so on[22]. In essence, interleaving attack is
generally applicable to a communication protocol where a principal’s liveness
or the session key’s association assurance is absent. Here are two examples:

Example 4.15 Figure 4.16 illustrates a refined Woo-Lam protocol in [22].
The absence of the A’s liveness has not been solved yet (see Table 4.18).

Message 1 A→ B : A
Message 2 B → A : NB

Message 3 A→ B : {NB}KAS

Message 4 B → S : {A,NB, {NB}KAS}KBS

Message 5 S → B : {NB}KBS

Fig. 4.16 The refined Woo-Lam authentication protocol version of Mao.

Protocol actions

1) The message exchanges from Message 1 to Message 3 are the same as
in the original Woo-Lam authentication protocol.

2) In Message 4, {NB}KAS is an encryption which B could not recover, so
B includes the trusted freshness NB in Message 4 to guarantee the freshness
of Message 4.
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3) Upon receiving Message 4, S recovers NB using KBS , checks whether
A has responded to the same challenge NB, and then re-encrypts NB using
the long-term key KBS and sends NB back to B in Message 5.

4) Upon receiving Message 5, If S replies to {NB}KBS , then B is convinced
that A is active in this protocol run.

Successful execution should convince B that A is present with the help of
the trusted party S.

Protocol security analysis

1) The assurances from Message 1 to Message 3 are the same as in the
original Woo-Lam authentication protocol.

2) Upon receiving Message 4, since there is none trusted TVP for S, S
still could not determine whether {NB}KAS or {A, {NB}KAS}KBS is a fresh
message or not. Actually, S still could not authenticate the liveness of A and
B.

Hence, upon termination of the Woo-Lam protocol, B has not gotten the
assurance that A is present. The security properties of the Woo-Lam protocol
are the same as those in Table 4.18. Hence there exists an interleaving attack
on the refined Woo-Lam protocol, as shown in Fig. 4.17.

Message 1 A→ I : A

Message 1′ I(A)→ B : A

Message 2′ B → I(A) : NB

Message 2 I → A : NB

Message 3 A→ I : {NB}KAS

Message 3′ I(A)→ B : {NB}KAS

Message 4′ B → S : {A,NB, {NB}KAS}KBS

Message 5′ S → B : {NB}KBS

Message 4 I → S : {I,NB, {NB}KAS}KIS

Message 5 S → I : {NB}KIS

Protocol actions

1) In Message 1, A tells I that A wants to establish a connection with
I; upon receiving Message 1, I establishes a connection with B instantly by
impersonating A.

2) In Message 2′, B provides challenge NB to the session between A
(indeed, it is I) and B; upon receiving Message 2′, I provides the same
challenge NB to A for the session between A and I.

3) In Message 3, A returns this challenge NB encrypted under KAS to
I; upon receiving Message 3, by impersonating A, I passes {NB}KAS to B
as A’s response to the challenge NB for the session between A and B. As
we have seen, in Message 3, A servers as an encryption oracle in the session
between I(A) and B.
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Fig. 4.17 An attack on the refined Woo-Lam protocol version of Mao.

4) Upon receiving Message 3′, B passes the encryption {NB}KAS on to S
in Message 4′ for future verification.

5) Upon receiving Message 4′, S could not find any abnormality since the
received message is an encryption under KBS and KAS.

6) Message 5′ is the reply from S which contains the challenge NB in-
tended for A and B. On the basis of the reply containing NB, B believes
that A is active in this protocol run.

7) Upon receiving Message 3 containing {NB}KAS , I can continue his
session with A, and at last, successfully complete the protocol run.

This is a perfect attack, all principals including A, B and S could not
find any abnormality. Upon termination of the run of this refined Woo-Lam
protocol, B accepts “the run with A”, but in fact, A has not launched the
run with B at all, and A thinks that A has completed a protocol run with I.

As we have shown above, although the principal name A is explicitly
mentioned in Message 4, the absence of A’s liveness still causes this flaw.

Example 4.16 Recall the Needham-Schroeder public-key authentication
protocol and the security analysis of the Needham-Schroeder public-key pro-
tocol in Table 4.12. Since B could not guarantee the freshness of NA and
the association of NA with A and B, there exists the interleaving attack
discovered by Lowe[9].

Example 4.17 Recall Mao’s revised Needham-Schroeder public-key 0-* pro-
tocol as shown in Fig. 4.18.

Message 1 A→ B :
{
{A,NA}K−1

A

}
KB
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Message 2 B → A :
{
NA, {NB}K−1

B

}
KA

Message 3 A→ B :
{
{NB}K−1

A

}
KB

Fig. 4.18 The revised Needham-Schroeder public-key 0-* protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and the freshness assurances of the TVP NA.

2) Upon receiving Message 1, B could not determine whether {{A,
NA}K−1

A
}KB is a replay message from the attacker or a new message gen-

erated by the opponent party A. B could not get any security assurances.
3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-

tiality and the freshness assurances of the TVP NB.
4) Upon receiving Message 2, according to the freshness assurance of NA,

A is sure that only B could get NA, using B’s private key K−1
B , and send NA

back to A in Message 2, hence, from Lemma 4.1, A has the liveness assurance
of B. Since only A could decrypt {NA, {NB}K−1

B
}KA to get NB, and NB is

signed by B’s private key K−1
B , from Lemma 4.3 and Lemma 4.4, A has the

freshness assurance and the association assurance of the TVP NB with A
and B. So does NA.

5) Similar case exists as in Message 3: upon receiving Message 3, from
Lemma 4.2, Lemma 4.3, and Lemma 4.4, B has the confidentiality assurance,
the freshness assurance, and the association assurance of the TVP NA and
NB with A and B; from Lemma 4.1, B has the liveness assurance of A.

Upon termination of the Needham-Schroeder public-key 0-* protocol run,
both A and B achieve the security objects of the Needham-Schroeder public-
key. The analyzing result is indicated in Table 4.19.

Table 4.19 Security analysis of the refined Needham-Schroeder public-key 0-*
protocol

A B

B NA NB A NA NB

Message 1 11A 1?#

Message 2 1 11AB 11AB 11#

Message 3 1 11AB 11AB

End of run 1 11AB 11AB 1 11AB 11AB
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Example 4.18 Recall Mao’s another revised Needham-Schroeder public-
key 1-* protocol as shown in Fig. 4.19.

Message 1 A→ B : {A, {NA}KB}K−1
A

Message 2 B → A : {{NA, NB}KA}K−1
B

Message 3 A→ B : {{NB}KB}K−1
A

Fig. 4.19 The revised Needham-Schroeder public-key 1-* protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and the freshness assurances of the TVP NA.

2) Upon receiving Message 1, B could not determine whether {A,
{NA}KB}K−1

A
is a replay message from the attacker or a new message gener-

ated by the opponent party A. B could not get any security assurances.
3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-

tiality and the freshness assurances of the TVP NB.
4) Upon receiving Message 2, according to the freshness assurance of NA,

A is sure that only B could get NA, using B’s private key K−1
B , and send NA

back to A in Message 2. Hence, from Lemma 4.3 and Lemma 4.4, A has the
freshness assurance and the association assurance of the TVP NA and NB

with A and B; from Lemma 4.1, A has the liveness assurance of B.
5) Similar case exists in Message 3: upon receiving Message 3, from

Lemma 4.2, Lemma 4.3, and Lemma 4.4, B has the confidentiality assur-
ance, the freshness assurance, and the association assurance of the TVP NA

and NB with A and B; from Lemma 4.1, B has the liveness assurance of A.
Upon termination of the Needham-Schroeder public-key 1-* protocol run,

both A and B achieve the security objects of the Needham-Schroeder public-
key. The analyzing result is indicated in Table 4.20.
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Table 4.20 Security analysis of the refined Needham-Schroeder public-key 1-*
protocol

A B

B NA NB A NA NB

Message 1 11# 1?#

Message 2 1 11AB 11AB 11#

Message 3 1 11AB 11AB

End of run 1 11AB 11AB 1 11AB 11AB

4.3.7 Attack due to type flaw

An attack is stated due to type flaw in [22]: typical type flaws include a prin-
cipal tricked to misinterpret a nonce, a timestamp or an identity into a key,
etc. Misinterpretations are likely to occur when a protocol is poorly designed
in that the type information of message components is not explicit, then
type flaws can be very common in implementation. Let us check why type
flaws exist using the security analysis apporach based on trusted freshness.
In essence, type flaw attacks are generally applicable to a communication
protocol where entity authentication or the freshness assurance of a TVP is
absent.

Example 4.19 Neuman and Stubblebine[33] propose an authentication pro-
tocol, as shown in Fig. 4.20, to achieve mutual authentication and authenti-
cated key establishment between A and B with the help of a trusted third
party S.

Message 1 A→ B : A,NA

Message 2 B → A : B, {A,NA, TB}KBS , NB

Message 3 A→ B : {B,NA, kAB, TB}KAS , {A, kAB, TB}KBS , NB

Message 4 A→ B : {A, kAB, TB}KBS , {NB}kAB

Fig. 4.20 The Neuman-Stubblebine authentication protocol.
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Notation

A and B are two protocol principals, and S is a trusted third party. NA

and NB are nonces, and TB is a timestamp generated by B referring to an
absolute time. KAS and KBS are shared long-term keys, and kAB is a new
session key between A andB to be established in this authentication protocol.

Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
of-band techniques. NA or NB is a nonce randomly chosen by A and B
respectively, and TB is a timestamp generated by B.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identity
A and a randomly chosen nonce NA.

2) In Message 2, B randomly chooses a nonce NB, and then sends the
identity B, and the nonce NB with the encryption {A,NA, TB}KBS to S to
indicate a new protocol run between A and B.

3) Upon receiving Message 2, S gets NA and NB for this run between A
and B, and then S randomly chooses a new session key kAB for this run and
keeps it secret via an encryption under KAS and KBS respectively.

4) Upon receiving Message 3, A gets the new session key kAB via the
shared long-term key KAS known only by A and S.

5) In Message 4, A forwards {A, kAB, TB}KBS received in Message 3 to
B, and encrypts NB under kAB to show A’s knowledge of kAB to B.

6) Upon receiving Message 4, B gets the new session key kAB via the
shared long-term key KBS known only by B and S, and confirms A’s knowl-
edge of kAB via the encryption {NB}kAB .

Successful execution should convince A and B that both entities are
present and kAB is a new session key between A and B.

Unfortunately, this protocol has not achieved these security objects as it
intends to.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A believes that the
TVP NA is no longer confidential, but it is fresh for this run.

2) Upon receiving Message 1, B could not get any assurance about this
protocol.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B believes that the
TVP NB is no longer confidential, but it is fresh for this run.

4) Upon receiving Message 2, since TB is an absolute timestamp, S be-
lieves that the message {A,NA, TB}KBS is fresh, and it could not be a replay
one. Furthermore, since KBS is only known by B and S, from Lemma 4.1
and Lemma 4.3, S believes that B is present and it must be B who has just
generated this message {A,NA, TB}KBS . From Lemma 4.4, S believes that
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NA and NB are new established for the protocol run between A and B from
the explicitly identity of A and the possession of the key KBS by B.

5) Upon receiving Message 3, from the point of view of A, since NA is a
trusted fresh TVP and KAS is only known by A and S, from Lemma 4.2 and
Lemma 4.3, A gets the confidentiality and freshness assurances of the new
session key kAB. From Lemma 4.4, A believes that kAB is for this protocol
run between A and B from the explicitly identity of B and the possession of
the key KAS by A. According to the protocol semantic cue, the principal in
{B,NA, kAB, TB}KAS is the one who has confirmed his identity and liveness
to the third trusted party S. From Lemma 4.1, since NA is a trusted fresh
TVP from the point of view of A, A believes that it could only be S who has
generated and sent the message {B,NA, kAB, TB}KAS after S has checked
the liveness of B via the message of {A,NA, TB}KBS , hence A believes the
liveness of S and B.

6) Upon receiving Message 4, since TB is an absolute timestamp, B be-
lieves that the message {A, kAB, TB}KBS is fresh, but the maximal term
{A, kAB, TB}KBS in Message 4 is similar to the maximal term {A,NA, TB}KBS

in Message 2, so {A, kAB, TB}KBS may be a replay one of Message 2. Hence,
B could not get any new assurance about this protocol.

The maximal term {A, kAB, TB}KBS includes an identity of A, a random
session key and an absolute timestamp (or we can call it a trusted freshness
TVP), and it can be constructed via term definition, terms are TB, {TB}KBS ,
{kAB, TB}KBS , {A, TB}KBS , then {A, kAB, TB}KBS . Similar case exists in the
maximal term {A,NA, TB}KBS of Message 2. Hence, {A,NA, TB}KBS could
be replayed in Message 4 as Mao has stated in [22]. Note that {NB}kAB is
also a maximal term in Message 4.

Table 4.21 Security analysis of the Neuman-Stubblebine authentication protocol

A B

B S NA NB kAB A S NA NB kAB

Message 1 01# 0?#

Message 2 01#

Message 3 1 1 01AB 11AB

Message 4

End of run 1 1 01AB 11AB 0?# 01#

Upon termination of the protocol run, by analyzing of Table 4.21shows
that B is not sure whether the opponent principal is present or not, and
whether kAB is a new session key for A and B or not.

From the absence of the liveness of the principal A and the association of
kAB with A and B in the point of view of B, the adversary I could launch
an attack as shown in Fig. 4.21 by impersonating A[22].

Message 1 I(A)→ B : A,NA

Message 2 B → I(S) : B, {A,NA, TB}KBS , NB
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Message 3 I(S)→ I(A) : none
Message 4 I(A)→ B : {A,NA, TB}KBS , {NB}NA

Fig. 4.21 An attack on the Neuman-Stubblebine authentication protocol.

Notation

I(A) and I(S) are adversaries impersonating A and S respectively.

Protocol actions

1) In Message 1, the adversary launches a new protocol run with a ran-
domly chosen nonce NA by impersonating A.

2) In Message 2, B does the same as in the original Neuman-Stubblebine
authentication protocol.

3) I intercepts Message 2 to get NB, then encrypts NB using I’s randomly
chosen nonce NA and sends {NB}NA to B to show A’s knowledge of kAB by
confusing NA with kAB.

Upon termination of the protocol run, B believes that B has performed
a successful protocol run with A, and NA is a new session key for A and B,
while A knows nothing about this key establishment procedure.

4.3.8 Attack due to name omission

Name omission is often the case in authentication protocols for the name
information about a message can be deduced from other data parts in the
context, or from what encryption keys have been applied to. To obtain an
elegant protocol that contains little redundancy, protocol designers may omit
the identities of the participants, which may lead to name-omission flaws.
In security analysis based on trusted freshness, entity authentication or the
association assurance of a TVP may be absent due to name omission. Hence,
attack due to name omission can be constructed from these absences.

Example 4.20 Denning and Sacco propose a public-key protocol as an
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alternative to their fix of the Needham-Schroeder shared key protocol[1, 31].
The protocol of Denning and Sacco is as shown in Fig. 4.22.

Message 1 A→ S : A,B

Message 2 S → A : CertA, CertB

Message 3 A→ B : CertA, CertB,
{
{kAB, TA}K−1

A

}
KB

Fig. 4.22 The Denning and Sacco authentication protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. TA is
a timestamp generated by A referring to an absolute time. KA (KB) andK−1

A

(K−1
B ) are public-key and private key of A (B) respectively. CertA (CertB)

is a certification of A’s (or B’s) identity and corresponding public-key (KA)
signed by a trusted certification authority center CA. kAB is a new session
key between A and B to be established in this authentication protocol.

Premise

Both A and B know the public-key of the trusted certification authority
center CA to get KA and KB. Each principal knows the key pair of himself,
that is, KA and K−1

A for A, and KB and K−1
B for B.

Protocol actions

1) In Message 1, A launches a new protocol run of mutual authentication
and authenticated key establishment between A and B.

2) Upon receiving Message 2, A gets the public-key KB of B.
3) In Message 3, {{kAB, TA}K−1

A
}KB is encrypted for confidentiality (un-

der KB) and authenticity (under K−1
A ).

4) Upon receiving Message 3, B gets the public-key KA of A, and B sees
that the new session key kAB should be exclusively shared between A and B
from B’s private key K−1

B and A’s public-key KA being applied. Note kAB
is randomly chosen by A for this protocol run.

Successful execution should convince A and B that kAB is a new session
key between A and B.

Unfortunately, the Denning and Sacco authentication protocol has not
achieved the security objects as it intends to.
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Protocol security analysis

1) In Message 1 and Message 2, neither A nor B could get any assurance
about this protocol.

2) In Message 3, from Lemma 4.2 and Lemma 4.3, A has the confidential-
ity and the freshness assurances of the new session key kAB. From Lemma
4.4, A has the association assurance of kAB with A, since the “loose” one-way
transformation {kAB, TA}K−1

A
could only be generated by A.

3) Upon receiving Message 3, since TB is an absolute timestamp, B be-
lieves that the message {kAB, TA}K−1

A
is fresh, and it could not be a replay

one. Hence, from Lemma 4.2 and Lemma 4.3, B has the confidentiality and
the freshness assurances of the new session key kAB . From Lemma 4.4, B has
the association assurance of kAB with A, since the “loose” one-way transfor-
mation {kAB, TA}K−1

A
could only be generated by A.

Table 4.22 means that upon termination of the protocol run B believes A
is present, and the new session key kAB is confidential, fresh, and associated
with A but B.

Table 4.22 Security analysis of the Denning-Sacco protocol

A B

B kAB A kAB

Message 1

Message 2

Message 3 11A 1 11A

End of run 11A 11A

Example 4.21 From the absence of the kAB ’s association with B in the
point of view of B, the adversary can perform an attack by confusing the
session key k′AB, as shown in Fig. 4.23, intended for A and I to be the session
key between A and B[10].

Message 1 A→ S : A, I

Message 2 S → A : CertA, CertI

Message 3 A→ I : CertA, CertI ,
{
{k′AB, TA}K−1

A

}
KI

Message 1′ I(A)→ S : A,B

Message 2′ S → I(A) : CertA, CertB

Message 3′ I(A)→ B : CertA, CertB,
{
{k′AB, TA}K−1

A

}
KB

Notation

I(A) is an adversary I impersonating A. KI and K−1
I are the public-key

and private key of I. CertI is a certification of I’s identity and corresponding
public-key (KI) signed by a trusted certification authority center CA.
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Fig. 4.23 An attack on the Denning-Sacco authentication protocol.

Premise

All principals A, B and I know the public-key of the trusted certification
authority center CA to get KA, KB and KI . Each principal knows the key
pair of himself, that is, KA and K−1

A for A, KB and K−1
B for B, and KI and

K−1
I for I.

Protocol actions

1) In Message 1, A launches a new protocol run of mutual authentication
and makes authenticated key establishment between A and I.

2) Upon receiving Message 2, A gets the public-key KI of I.
3) In Message 3, {{k′AB, TA}K−1

A
}KI is encrypted for confidentiality (under

KI) and authenticity (under K−1
A ).

4) Upon receiving Message 3, I gets the new session key k′AB. Then
I could launch an attack by impersonating A and use the transformation
{k′AB, TA}K−1

A
to generate Message 3′ {CertA, CertB, {{k′AB, TA}K−1

A
}KB}.

Upon termination of the protocol attack, B believes that B has performed
a successful run with A, and k′AB is a new session key for A and B, while A
knows nothing about this key establishment between A and B, and k′AB is
actually shared by A and I.

4.3.9 Attack due to misuse of cryptographic services

The attack due to misuse of cryptographic services is a very common design
flaw as stated in [22]. Misuse of cryptographic services means that a cryp-
tographic algorithm used in a protocol provides an incorrect protection so
that the needed protection is absent. This type of flaw may lead to various
attacks.
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Example 4.22 Recall Example 3.15, the Otway and Rees key establish-
ment protocol is illustrated as in Fig. 4.24.

Message 1 A→ B : M,A,B, {NA,M,A,B}KAS

Message 2 B → A : M,A,B, {NA,M,A,B}KAS , {NB,M,A,B}KBS

Message 3 S → B : M, {NA, kAB}KAS , {NB, kAB}KBS

Message 4 A→ B : M, {NA, kAB}KAS

Fig. 4.24 The Otway-Rees key establishment protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confidential-
ity and the freshness assurances of the TVP NA and the freshness assurance
of the TVP M . From Lemma 4.4, A has the association assurance of NA

with A and B, since the transformation {NA,M,A,B}KAS generated by A
includes the identities of both A and B, which implies the association of both
A and B.

2) Upon receiving Message 1, B has the confidentiality assurance of the
TVP NA.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and the freshness assurances of the TVP NB. From Lemma 4.4, B
has the association assurance of NB with A and B, since the transformation
{NB,M,A,B}KBS generated by B includes the identities of both A and B,
which implies the association of both A and B.

4) Upon receiving Message 2, S could not get any assurance about this
protocol. A could not get any new assurance since {NB,M,A,B}KBS is an
encryption for B without corresponding decrypted key KBS .

5) Upon receiving Message 3, from Lemma 4.3, B has the liveness as-
surance of the trusted third party S from the transformation {NB, kAB}KBS

including B’s trusted freshness component NB, since only S could get NB

and generate this message {NB, kAB}KBS . From the one-way transformation
{NB, kAB}KBS including the trusted freshness NB, and from Lemmas 4.2,
4.3, and 4.4, B has the confidentiality assurance, freshness assurance of kAB,
and also the association assurance of kAB with both A and B.

6) Similarly, upon receiving Message 4, from Lemma 4.2, Lemma 4.3, and
Lemma 4.4, A has the liveness assurance of the trusted third party S from
the receiving fresh nonce NA, and A also has the confidentiality assurance,
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freshness assurance of kAB, and also the association assurance of kAB with A
and B. From Lemma 4.3, A has the liveness assurance of B from the receiving
fresh nonce NA and M .

Upon termination of this protocol run, B believes that S is alive from
receiving fresh nonce NB, and A believes that S is alive from receiving fresh
nonce NA, and B’s liveness is also guaranteed to A via M , but A’s liveness
is not guaranteed to B in this protocol. The analyzing result is indicated in
Table 4.23.

Table 4.23 Security analysis of the Otway-Rees protocol

A B

B S NA NB kAB A S NA NB kAB

Message 1 11AB 1?#

Message 2 1?# 11AB

Message 3 1 11AB

Message 4 1 1 11AB 11AB

End of run 1 1 11AB 1 11AB

From the absence of the A’s liveness, there exists an attack as stated in Ex-
ample 3.15: the adversary I has recorded the message {M,A,B, {NA,M,A,
B}KAS} in an old protocol run, then I can launch a new protocol run by
impersonating A.

4.3.10 Security analysis of other protocols

Example 4.23 The KryptoKnight protocol[34] as shown in Fig. 4.25 is a
mutual authentication protocol based on symmetric-key cryptography. NA

serves as nonce for entity authentication of B and NB serves as nonce for
entity authentication of A.

Message 1 A→ B : A,B,NA

Message 2 B → A : B,A,NB, H(NA, NB, B,KAB)
Message 3 A→ B : A,B,H(NA, NB,KAB)

Fig. 4.25 The KryptoKnight mutual authentication protocol.
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Notation

A and B are two protocol principals. NA and NB are nonces. KAB is a
shared long-term key. H(x1, x2, ..., k) is a keyed cryptographic hash function.

Premise

KAB is the shared long-term key between A and B, which is initially
established by non-cryptographic, and out-of-band techniques; NA, NB are
nonces generated by A and B respectively.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A, B and a randomly chosen nonce NA.

2) B randomly chooses a nonce NB, and sends Message 2 to A to indicate
the liveness of B. Message 2 includes the identities of A, B and the hash
value H(NA, NB, B,KAB).

3) Upon receiving Message 2, A gets NB, and then recalculates and com-
pares H(NA, NB, B,KAB) with the received hash value. If it matches, then
A confirms the liveness of B.

4) In Message 3, A generates and sends the hash value H(NA, NB,KAB)
to B to indicate the liveness of A.

5) Upon receiving Message 3, B recalculates and compares H(NA, NB,
KAB) with the received hash value. If it matches, then B knows that it must
be A who has generated and sent the hash valueH(NA, NB,KAB) using their
shared long-term key KAB.

Successful execution should convince A and B that both entities are
present.

Protocol security analysis

1) In Message 1, from Lemma 4.3, A has the freshness assurance of the
TVP NA.

2) Upon receiving Message 1, B couldn’t get any assurance about this
protocol.

3) In Message 2, from Lemma 4.3, B has the freshness assurance of the
TVP NB.

4) Upon receiving Message 2, A getsNB, recalculatesH(NA, NB, B,KAB),
and compares the recalculation value with the received hash value. If it
matches, from Lemma 4.2, then A knows that it must be B who has gen-
erated and sent the hash value H(NA, NB, B,KAB) including the trusted
freshness NA using their shared long-term key KAB. Hence, the liveness of
B is authenticated.

5) Similarly, upon receiving Message 3, B recalculates H(NA, NB,KAB),
and compares the recalculation value with the received hash value. If it
matches, from Lemma 4.2, then B knows that it must be A who has generated
and sent the hash value H(NA, NB,KAB) including the trusted freshness NB
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using their shared long-term key KAB. Hence, the liveness of A is authenti-
cated.

Upon termination of the protocol run, A believes that B is alive from com-
paring the hash valueH(NA, NB,KAB) including the trusted fresh nonceNA,
andB believes that A is alive from comparing the hash valueH(NA, NB,KAB)
including the trusted fresh nonce NB.

The security analysis result in Table 4.24 based on the trusted freshness
shows that the KryptoKnight protocol has achieved the mutual authentica-
tion objectives as it intends to.

Table 4.24 Security analysis of the KryptoKnight protocol

A B

B NA NB A NA NB

Message 1 01# 0?#

Message 2 1 01AB 01AB 01AB

Message 3 1 01AB

End of run 1 1

Example 4.24 The Yahalom protocol[35] is a classical authenticated key
establishment protocol as shown in Fig. 4.26. The protocol intends to establish
a new session key kAB between A and B with the help of a server S, and to
achieve mutual authentication.

Message 1 A→ B : A,NA

Message 2 B → S : B, {A,NA, NB}KBS

Message 3 S → A : {B, kAB, NA, NB}KAS , {A, kAB}KBS

Message 4 I(A)→ B : {A, kAB}KBS , {NB}kAB

Fig. 4.26 The Yahalom protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. NA

and NB are nonces. KAS and KBS are shared long-term keys. kAB is a new
session key between A andB to be established in this authentication protocol.
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Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
of-band techniques. NA, NB are nonces generated by A and B respectively.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identity
of A and a randomly chosen nonce NA.

2) In Message 2, B randomly chooses a nonce NB, and sends the en-
cryption {A,NA, NB}KBS to S to show the ownership of the long-term key
KBS .

3) Upon receiving Message 2, S gets NA and NB.
4) In Message 3, S calculates {B, kAB, NA, NB}KAS , {A, kAB}KBS using

the shared long-term key KAS and KBS and sends Message 3 to A.
5) Upon receiving Message 3, A gets NB and the new session key kAB

from the encryption {B, kAB, NA, NB}KAS .
6) In Message 4, A encrypts NB using the new session key kAB to show

the liveness of A and the knowledge of kAB.
7) Upon receiving Message 4, B gets the new session key kAB from the

encryption {A, kAB}KBS , and then B checks A’s liveness and A’s knowledge
of kAB via {NB}kAB .

Successful execution should convince A and B that both entities are
present and kAB is the new session key for A and B.

Protocol security analysis

1) In Message 1, from Lemma 4.3, A has the freshness assurance of the
TVP NA.

2) Upon receiving Message 1, B couldn’t get any assurance about this
protocol.

3) In Message 2, from Lemma 4.2, both A and B have the confidentiality
assurance of NB. From Lemma 4.3, B has the freshness assurance of the TVP
NB. From Lemma 4.4, B has the association assurance of NB with A and B.

4) Upon receiving Message 2, S gets NA and NB using the long-term
key KBS . From Lemma 4.2, S has the confidentiality assurance of NB, but
S couldn’t get any assurance about the liveness of B and the freshness of
NA and NB for there is not any trusted freshness of S in the transformation
{A,NA, NB}KBS .

5) Upon receiving Message 3, from Lemma 4.1, A has the liveness assur-
ances of both B and S. From Lemma 4.2, A has the confidentiality assurance
of NB and kAB . From Lemma 4.3, A has the freshness assurance of NB and
kAB . From Lemma 4.4, A has the association assurance of NA, NB and kAB
with A and B.

6) Upon receiving Message 4, from Lemma 4.1, B has the liveness as-
surance of A. From Lemma 4.2, B has the confidentiality assurance of kAB.
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From Lemma 4.3, B has the freshness assurance of kAB from the trusted
freshness NB. From Lemma 4.4, B has the association assurance of kAB with
A and B from the trusted freshness NB’s association with A and B.

Upon termination of this protocol run, the security analysis result in
Table 4.25 based on the trusted freshness shows that the Yahalom protocol
has achieved the mutual authentication and key establishment objectives.

Table 4.25 Security analysis of the Yahalom protocol

A B S

B S NA NB kAB A S NA NB kAB NA NB kAB

Message 1 01# 0?# 0?#

Message 2 1?# 11AB 1?#

Message 3 1 1 01AB 11AB 11AB 1?#

Message 4 1 11AB

End of run 1 11AB 1 11AB

Example 4.25 The TMN protocol[36] is a key establishment protocol based
on asymmetric-key cryptography with trusted third party, as illustrated in
Fig. 4.27.

Message 1 A→ S : A,S,B, {kA}KS

Message 2 S → B : S,B,A
Message 3 B → S : B,S,A, {kB}KS

Message 4 S → A : S,A,B, V (kA, kB)

Fig. 4.27 The TMN protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. KS

is a public-key of S. kA and kB are randomly chosen input by A and B
respectively, and kB is also the new session key to be established between A
and B in the TMN protocol.

The Vernam encryption V (k1, k2) is the bit XOR of the two keys k1 and
k2 where V (k1, V (k1, k2)) = k2. Suppose the randomly input keys k1 and
k2 are redundancy, hence the receiver could determine whether the received
encryption V (k1, k2) is correctly decrypted or not.
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Premise

KS and K−1
S are the public-key and the private key of the trusted third

party S, which is initially established by non-cryptographic, and out-of-band
techniques. kB is the new session key to be established between A and B in
this protocol, and kB can be recovered by A from the Vernam encryption
V (kA, kB).

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A,S,B and the encryption of a randomly chosen key input kA under the
public-key KS .

2) Upon receiving Message 1, S gets kA from the encryption of {kA}KS

using S’s private key K−1
S .

3) In Message 2, S notices B launching a new session between A and B
by sending the identities of A, B and S.

4) In Message 3, B randomly chooses a new key kB for this session between
A and B, and sends S the encryption of kB under S’s public-key KS.

5) Upon receiving Message 3, S gets kB from the encryption of {kB}KS

using S’s private key K−1
S .

6) In Message 4, S sends A the new session key kB via the Vernam
encryption V (kA, kB).

7) Upon receiving Message 4, A resumes the new session key kB via the
ownership of kA and the recalculation of V (kA, V (kA, kB)) = kB.

Successful execution should establish a new session key kB between A and
B.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP kA.

2) Upon receiving Message 1, from Lemma 4.2, B has the confidentiality
assurance of the TVP kA.

3) In Message 2, neither A nor B could get any new assurance about this
protocol.

4) In Message 3, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and freshness assurances of the TVP kB .

5) Upon receiving Message 3, from Lemma 4.2, S has the confidentiality
assurance of the TVP kB . A also has the confidentiality assurance of the TVP
kB .

6) Upon receiving Message 4, from Lemma 4.2, A has the confidentiality
assurance of the TVP kB. From Lemma 4.3, A has the freshness assurance
of the TVP kB from the trusted freshness kA.

Upon termination of the protocol run, the security analysis result in Table
4.26 shows that: both A and B are not sure whether the opponent principal
is present or not, and whether kB is a new session key for A and B or not.
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From the absence of the security properties of an authentication protocol,
various attacks could be directly constructed[37].

Table 4.26 Security analysis of the TMN protocol

A B

B S kA kB A S kA kB

Message 1 11# 1?#

Message 2

Message 3 1?# 11#

Message 4 11#

End of run 11# 11#

Example 4.26 (Attack 1 on the TMN protocol) From the absence of A’s
liveness, the attacker may launch an attack without the presence of A, as
illustrated in Fig. 4.28.

Message 1 I(A)→ S : A,S,B, {k′A}KS

Message 2 S → B : S,B,A

Message 3 B → S : B,S,A, {kB}KS

Message 4 S → I(A) : S,A,B, V (k′A, kB)

Fig. 4.28 An attack on the TMN protocol by impersonating A.

Notation

I(A) is the adversary I impersonating A.

Premise

k′A is randomly chosen by I as the nonce to launch a new session between
A and B by impersonating A. kB is randomly chosen by B as the new session
key to be established between A and B.

Protocol actions

1) In Message 1, the adversary I randomly chooses a TVP k′A to launch
a new session between A and B by impersonating A.

2) Upon receiving Message 1, S gets k′A from the encryption of {k′A}KS

using S’s private key K−1
S .

3) In Message 2, S notices B launching a new session between A and B
by sending the identities of A, B and S.
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4) In Message 3, B randomly chooses a new key kB for this session between
A and B (actually between I and B), and sends S the encryption of kB under
S’s public-key KS .

5) Upon receiving Message 3, S gets kB from the encryption of {kB}KS

using S’s private key K−1
S .

6) In Message 4, S sends A the new session key kB via the Vernam
encryption V (k′A, kB).

7) Upon receiving Message 4, I(A) resumes the new key kB via the own-
ership of k′A and the recalculation of V (k′A, V (k′A, kB)) = kB .

Upon termination of the attack on the TMN protocol, the adversary I
causes B to have false beliefs: B has completed a successful protocol run
with A, and is sharing a new session key kB with A, but actually shares the
key kB with I. Furthermore, B concludes that subsequently messages could
be encrypted using kB and safely transmitted to A (actually known by I),
whereas in fact, A knows nothing about the key establishment.

Example 4.27 (Attack 2 on the TMN protocol) From the absence of the
B’s liveness, the attacker may launch an attack without the presence of B,
as illustrated in Fig. 4.29.

Message 1 A→ S : A,S,B, {kA}KS

Message 2 S → I(B) : S,B,A

Message 3 I(B)→ S : B,S,A, {k′B}KS

Message 4 S → A : S,A,B, V (kA, k′B)

Fig. 4.29 An attack on the TMN protocol by impersonating B.

Notation

I(B) is the adversary I impersonating B.

Premise

k′B is randomly chosen by I as the new session key to be established
between A and B by impersonating B.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A, S, B and the encryption of a randomly chosen key input kA under S’s
public-key KS .
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2) Upon receiving Message 1, S gets kA from the encryption of {kA}KS

using S’s private key K−1
S .

3) In Message 2, S notices B launching a new session between A and B
by sending the identities of A, B and S.

4) In Message 3, the adversary I randomly chooses a TVP k′B as the new
session key between A and B by impersonating B (actually between I and
B), and sends S the encryption of k′B under S’s public-key KS.

5) Upon receiving Message 3, S gets k′B from the encryption of {k′B}KS

using S’s private key K−1
S .

6) In Message 4, S sends A the new session key k′B via the Vernam
encryption V (kA, k′B).

7) Upon receiving Message 4, A resumes the new key k′B via the ownership
of kA and the recalculation of V (kA, V (kA, k′B)) = k′B .

Upon termination of the attack on the TMN protocol, the adversary I
causes A to have false beliefs: A has completed a successful protocol run
with B, and is sharing a new session key k′B with B, but actually shares the
key k′B with I. Furthermore, A concludes that subsequently messages could
be encrypted using k′B and safely transmitted to B (actually known by I),
whereas in fact, B knows nothing about the key establishment.

Example 4.28 (Attack 3 on the TMN protocol) From the absence of the
key association assurance of kB, the adversary I could get the secret new
session key kB which is intended only for A and B, as illustrated in Fig. 4.30.

Message 1 A→ I(A) : A,S,B, {kA}KS

Message 1′ I(A)→ S : A,S,B, {kA}KS

Message 2′ S → I(B) : S,B,A

Message 3′ I(B)→ S : B,S,A, {k′B}KS

Message 4′ S → I(A) : S,A,B, V (kA, k′B)

(Now I knows kA from V (k′B , V (kA, k′B)) = kA)

Message 1′′ A→ S : A,S,B, {kA}KS

Message 2 S → B : S,B,A

Message 3 B → S : B,S,A, {kB}KS

Message 4′′ S → I(A) : S,A,B, V (kA, kB)

(Now I knows kB from V (kA, V (kA, kB)) = kB)

Message 4 I(S)→ A : S,A,B, V (kA, kB)

Notation

I(A) or I(B) is the adversary I impersonating A and B independently.
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Fig. 4.30 An attack on the TMN protocol to get the secret new session key kB
between A and B by impersonating both A and B.

Premise

k′B is randomly chosen by I as the new session key to be established
between A and B by impersonating B.

Protocol actions

1) In Message 1, A launches a new protocol run by sending the identities
of A,S,B and the encryption of a randomly chosen key input kA under the
public-key KS of S.

2) The adversary I intercepts Message 1 and replays this message as
Message 1′ to S by impersonating A.

3) In Message 2′, S notices B launching a new session between A and B
by sending the identities of A, B and S.

4) The adversary I intercepts Message 2′, and randomly chooses a TVP
k′B as the new session key between A and B by impersonating B (actually
between I and A), and sends S the encryption of k′B under S’s public-key
KS .

5) Upon receiving Message 3′, S gets k′B from the encryption of {k′B}KS

using S’s private key K−1
S .

6) In Message 4′, S sends A (Indeed I) the new session key k′B via the
Vernam encryption V (kA, k′B).

7) Upon receiving Message 4′, the adversary I intercepts Message 4′

and resumes kA via the ownership of the TVP k′B and the recalculation
of V (k′B, V (kA, k′B)) = kA.

8) In Message 1′′, the adversary I forwards Message 1 to S, indicating a
new protocol run between A and B.

9) Upon receiving Message 1′′, S gets kA from the encryption of {kA}KS

using S’s private key K−1
S .

10) In Message 2, S notices B the new session between A and B by
sending the identities of A, B and S.
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11) In Message 3, B randomly chooses a new key kB for this session
between A and B, and sends S the encryption of kB under S’s public-key
KS .

12) Upon receiving Message 3, S gets kB from the encryption of {kB}KS

using S’s private key K−1
S .

13) In Message 4′′, S sends A the new session key kB via the Vernam
encryption V (kA, kB).

14) The adversary I intercepts Message 4′′, and resumes the new key kB
via the ownership of kA and the recalculation of V (kA, V (kA, kB)) = kB. Up
to now, I knows the session key kB which is intended to be secret and only
known by A and B.

15) In Message 4, the adversary I forwards Message 4′′ as Message 4 to
A.

16) Upon receiving Message 4, A resumes the new key kB via the owner-
ship of kA and the recalculation of V (kA, V (kA, kB)) = kB.

Upon termination of the attack on the TMN protocol, the adversary I
has gotten the secret new session key kB between A and B, which is intended
to be secret and only known by A and B. As a result of this, the adversary I
could get the subsequent sensitive encryption communicated between A and
B, via using the decryption key kB .

Note that Message 1′′ and Message 1 are actually the same message from
A to S, and the adversary I has intercepted this message. Similar case exists
in Message 4′′ and Message 4.

Example 4.29 The big mouth frog protocol[38] is a key transport protocol
based on symmetric-key cryptography with trusted third party, as illustrated
in Fig. 4.31.

Message 1 A→ S : A, {B, kAB}KAS

Message 2 S → B : {A, kAB}KBS

Fig. 4.31 The big mouth frog protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. kAB
is randomly chosen by A as the new session key to be established between A
and B.

Premise

KAS and KBS are shared long-term keys between A and S, and B and S
respectively, which are initially established by non-cryptographic, and out-
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of-band techniques.

Protocol actions

1) In Message 1, A randomly chooses a new key kAB for this session
between A and B, and sends S the encryption of {B, kAB}KAS using the
shared long-term key KAS to indicate that A wants to establish a subsequent
communication key with B, and kAB is intended for A and B.

2) Upon receiving Message 1, S gets kAB from the encryption of {B,
kAB}KAS using the shared long-term key KAS.

3) In Message 2, S notices B launching a new session between A and B
by sending the encryption {A, kAB}KBS .

4) Upon receiving Message 2, B gets kAB from the encryption of {A,
kAB}KBS using the shared long-term key KBS.

Successful execution should establish a new session key kAB between A
and B.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the confiden-
tiality and freshness assurances of the TVP kAB. From Lemma 4.4, A has
the association assurance of the kAB with B from the explicitly mentioned
principal name and the trusted freshness kAB. From Lemma 4.4, A also has
the association assurance of the kAB with A since only A could have the new
session key kAB which is encrypted under the shared long-term key KAS .

2) Upon receiving Message 1, from Lemma 4.2, B has the confidentiality
assurance of the TVP kAB.

3) In Message 2, B couldn’t get any new assurance about this protocol
since there is not a trusted freshness in the encryption {A, kAB}KBS .

Upon termination of the protocol run, the security analysis result in Table
4.27 shows that: both A and B are not sure whether the opponent principal is
present or not, and B is not sure whether kAB is a fresh session key for A and
B or not. From the absence of the security properties of an authentication
protocol, various attacks could be directly constructed.

Table 4.27 Security analysis of the big mouth frog protocol

A B

B S kAB A S kAB

Message 1 11AB 1?#

Message 2

End of run 11AB 1?#

Example 4.30 (Attack on the big mouth frog protocol) From the absence
of the A’s liveness, the attacker may launch an attack without the presence of
A, as shown in Fig. 4.32. Suppose the adversary I has recorded the message
{A, {B, k′AB}KAS} in an old protocol run, then I can launch a new protocol
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run by impersonating A.

Message 1 I(A)→ S : A, {B, k′AB}KAS

Message 2 S → B : {A, k′AB}KBS

Fig. 4.32 An attack on the big mouth frog protocol.

Notation

I(A) is an adversary I impersonating A.

Premise

k′AB is a compromised session key between A and B. The adversary I has
recorded {A, {B, kAB}KAS} in Message 1 of an old protocol run.

Protocol actions

1) In Message 1, the adversary I replays the recorded message {A, {B,
kAB}KAS} to S to indicate that A wants to establish a subsequent commu-
nication key k′AB with B, and k′AB is intended for A and B.

2) Upon receiving Message 1, S gets k′AB from the encryption of {B,
k′AB}KAS using the shared long-term key KAS.

3) In Message 2, S notices B launching a new session between A and B
by sending the encryption {A, k′AB}KBS .

Upon termination of the attack on the big mouth frog protocol, the adver-
sary I causes B to have false beliefs: B has completed a successful protocol
run with A, and is sharing a new session key k′AB with A, but actually the key
k′AB is known by I. Furthermore, B concludes that subsequently messages
could be encrypted using k′AB and safely transmitted to A (actually known
by I), whereas in fact, A knows nothing about the key establishment.

From the absence of the B’s liveness, the attacker may also intercept the
protocol run, and cause A to have false beliefs: A has completed a successful
protocol run with A, and is sharing a new session key k′AB with B, but
actually B knows nothing about the key establishment.

Example 4.31 A electronic voting protocol is a voting protocol with deni-
able authentication for general elections[39, 40]. Fig. 4.33 shows that the voting
center S collects each voter Ai’s vote VAi and believes that the vote VAi is
not repudiated via the use of the fresh nonce NS; Every voter Ai is notified
of the voting result RE and the voter Ai believes that the vote result RE is
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noot repudiated via the use of the fresh nonce NAi .

Message 1 S → Ai : NS

Message 2 Ai → S : Ai, NAi, VAi , H(NS , SAi , VAi)
Message 3 S → Ai : RE,H(NAi, SAi , RE)

Fig. 4.33 An electronic voting protocol.

Notation

Ai is a voter who casts a vote in this electronic voting protocol, and S is a
trusted third party who works as a voting center. SAi is the shared long-term
key between the voter Ai and the voting center S. VAi is the vote which is
sent by every voter Ai at the beginning of voting, and RE is the voting result
collected by the voting center S.

Premise

The shared long-term SAi is initially established by non-cryptographic,
and out-of-band techniques. H (nonce, key, data) is a keyed hash function
with three input values. NS is a nonce randomly chosen by S. NAi is a nonce
randomly chosen by Ai.

Protocol actions

1) In Message 1, S launches a new electronic voting process by sending
each voter Ai a randomly chosen fresh nonce NS .

2) Upon receiving Message 1, every voter Ai gets NS .
3) In Message 2, the voter Ai randomly chooses a nonce NAi for this

voting, sends the identity of Ai, the nonce NAi , and Ai’s vote VAi to S. Ai

wants to show the freshness and the ownership of the vote VAi to S via a
keyed hash function under the shared long-term SAi .

4) Upon receiving Message 2, S gets the vote VAi of the voter Ai and
checks the validity of VAi via the ownership of SAi and the recalculation of
H(NS , SAi , VAi). Then, S summarizes all the votes of every voter and works
out the voting result RE. Every voter Ai could not deny its sending vote VAi
to S for the hash value H(NS , SAi , VAi) including the trusted freshness NS .

5) In Message 3, S announces the voting result RE to every voter Ai and
wants to show the freshness and the ownership of the voting result RE to
every Ai via a keyed hash function under the shared long-term key SAi .
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6) Upon receiving Message 3, the voter Ai checks the validity of RE via
the ownership of SAi and the recalculation of H(NAi , SAi , RE). S could not
deny its sending the voting result RE, which is summarized by S, to every
voter Ai for the hash value H(NAi , SAi , RE) includes the trusted fresh nonce
NAi generated by Ai.

Successful execution should work out a new voting result RE, and neither
the voter Ai nor the voting center S could deny the participation of this
electronic voting.

Protocol security analysis

1) In Message 1, from Lemma 4.3, S has the freshness assurance of the
TVP NS, that is, NS is the trusted freshness of S.

2) Upon receiving Message 1, B couldn’t get any assurance about this
protocol.

3) In Message 2, from Lemma 4.3, Ai has the freshness assurance of the
TVP NAi and the vote VAi . From Lemma 4.2, Ai knows that the vote VAi
is open.

4) Upon receiving Message 2, from Lemma 4.3, S has the freshness assur-
ance of the vote VAi . From Lemma 4.1, S believes that it must be Ai who
has generated the message H(NS , SAi , VAi) using the shared long-term SAi .
From Lemma 4.2, S knows that the vote VAi is open.

5) In Message 3, from Lemma 4.3, S has the freshness assurance of the
voting result RE. From Lemma 4.2, S knows that the vote RE is open. From
Lemma 4.4, S has the association assurance of the voting result RE with S.

6) Upon receiving Message 3, from Lemma 4.2, Ai knows that the voting
result RE is open. From Lemma 4.3, Ai has the freshness assurance of the
voting result RE. From Lemma 4.1 and Lemma 4.4, Ai has the liveness
assurance of S and the association assurance of the vote VAi with S, since only
S could generate H(NAi , SAi , RE) using the shared long-term SAi , hence
H(NAi , SAi , RE) is associated with the protocol run with S, and S is present.

The security analysis result in Table 4.28 based on the trusted freshness
shows that the electronic voting protocol has achieved the general elections
with deniable authentication objectives as it intends to. The voter Ai could
not deny Ai’s vote VAi and the voting center S could not deny S’s announce-
ment of the voting result RE. However, the voter Ai can only believe that RE
is a recently announced voting result by S, but Ai does not know whether
the voting result RE is associated with each VAi or not.

Table 4.28 Security analysis of the electronic voting protocol

Ai S

S NS NAi VAi RE Ai NS NAi VAi RE

Message 1 01#

Message 2 01# 0?# 1 01# 01#

Message 3 1 01S 01#

End of run 1 01S 1 01#
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Example 4.32 A fair non-repudiation protocol is based on a trusted third
party[39, 40]. In the protocol as shown in Fig. 4.34, the principal A sends
message m to the principal B with the help of a trusted third party S. At
the end of the protocol, A could deny A’s sending of the message m, B could
not deny B’s receiving the message m.

Message 1 A→ B : f1, B, L, {m}k′ , {f1, B, L, {m}k′}K−1
A

Message 2 B → A : f2, A, L, {m}k′ , {f2, A, L, {m}k′}K−1
B

Message 3 A→ S : f3, B, L, k′, {f3, B, L, k′}K−1
A

Message 4 S → A : f4, A,B, L, k′, {f4, A,B, L, k′}K−1
S

Message 5 S → B : f4, A,B, L, k′, {f4, A,B, L, k′}K−1
S

Fig. 4.34 A fair non-repudiation protocol.

Notation

A and B are two protocol principals, and S is a trusted third party. fi
is a message tag to indicate the message step, i.e., data type. L is the life of
this protocol run. m is a sensitive data to be sent to B by A. k′ is a randomly
chosen temporary key for this protocol run by A. KA and K−1

A , KB and
K−1

B , KS and K−1
S are the public, and private key pairs of the principals A,

B and S respectively.

Premise

The public and private long-term key KA and K−1
A , KB and K−1

B , KS

andK−1
S are initially established by non-cryptographic, and out-of-band tech-

niques.

Protocol actions

1) In Message 1, A randomly chooses a temporary key k′, and sends
the message tag f1, the opponent partner’s identity B, and the life circle L
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with the encryption {m}k′ of the data m to B to launch a new protocol run
between A and B. {f1, B, L, {m}k′}K−1

A
is signed by A’s private key K−1

A to
indicate that Message 1 is from A.

2) Upon receiving Message 1, B verifies the signature {f1, B, L, {m}k′}K−1
A

using A’s public-key KA and gets the encryption {m}k′ of the data m. But
B can not confirm whether the received message is new generated by A or
not, hence also B can’t confirm whether A is present or not.

3) In Message 2, B sends the message tag f2, the opponent partner’s
identity A, and the life circle L with the encryption {m}k′ of the data m
to A. {f2, A, L, {m}k′} is signed by B’s private key K−1

B to indicate that
Message 2 is from B.

4) Upon receiving Message 2, A checks the validity of {m}k′ using B’s
public-key KB. If it is right, then it must be B who has gotten {m}k′ using
A’s public-key KA and signed {f2, A, L, {m}k′} using B’s private key K−1

B .
5) In Message 3, A sends the message tag f3, the opponent partner’s

identity B, the life circle L and the temporary key k′ to S. {f3, B, L, k′} is
signed by A’s private key K−1

A to indicate that Message 3 is from A.
6) Upon receiving Message 3, S gets and checks k′ from the signature

{f3, B, L, k′}K−1
A

using A’s public-key KA. Hence, A could not deny A’s send-
ing of k′.

7) In Message 4 and Message 5, S sends the message tag f4, the proto-
col partners’ identities A and B, the life circle L and the randomly chosen
temporary key k′ to A and B respectively. {f4, A,B, L, k′} is signed by the
trusted third party S’s private key K−1

S to indicate that Message 4 is from
S and the temporary key k′ has been checked by S.

8) Upon receiving Message 4, A gets k′ from the signature {f4, A,B, L,
k′}K−1

S
using S’s public-key KS and checks the validity of k′.

9) Upon receiving Message 5, B gets and checks k′ from the signature
{f4, A,B, L, k′}K−1

S
using S’s public-key KS. Hence, B can get the data m

from the encryption {m}k′ via using k′.
Upon termination of the protocol run, from (b) and (f), A could not deny

her sending of the message m, and from (d) and (i), B can get the message
m. However, B could deny B’s receiving of the message m, since no witness
shows that B has gotten k′, hence the message m.

Protocol security analysis

1) In Message 1, from Lemma 4.2, A has the confidentiality assurance of
the temporary key k′ and the data m. From Lemma 4.3, A has the freshness
assurance of the temporary key k′. That is, k′ is the trusted freshness of A.

2) Upon receiving Message 1, from Lemma 4.2 and Lemma 4.3, B has the
confidentiality assurance of the temporary key k′ and the data m.

3) Upon receiving Message 2, from Lemma 4.1, A has the liveness assur-
ance of B. From Lemma 4.4, A has the association assurance of k′ and m
with B since Message 2 could not be a replay one, and only B could generate
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{f2, A, L, {m}k′}K−1
B

using B’s private key K−1
B . From Lemma 4.4, A has the

association assurance of k′ and m with A, since the identity of A has been
explicitly indicated in {f2, A, L, {m}k′}K−1

B
, so k′ and m are also associated

with A.
4) In Message 3, from Lemma 4.2, A knows that k′ is open.
5) After Message 3 is sent, from Lemma 4.2, B also knows that k′ is open

according to the protocol.
6) Upon receiving Message 4, from Lemma 4.1, A has the liveness as-

surance of S since Message 4 could not be a replay one, and only S could
generate {f4, A,B, L, k′}K−1

S
using its private key K−1

S , hence S is present.
7) Upon receiving Message 5, B couldn’t get any assurance about this

protocol for B has not gotten any trusted freshness identifier.
The security analysis result in Table 4.29 based on the trusted freshness

shows that from the legitimate participant A’s point of view, B is present
and the data m is open, fresh and associated with both A and B, and from
the legitimate participant B’s point of view, A is not present and the data m
is open, and B could not achieve the association assurance of m with both
A and B.

Table 4.29 Security analysis of the fair non-repudiation protocol

A B

B S k′ m A S k′ m

Message 1 11# 11# 1?# 1?#

Message 2 1 11AB 11AB

Message 3 01AB 01AB 0?# 0?#

Message 4 1

Message 5

End of run 1 1 01AB 01AB 0?# 0?#

Example 4.33 (Attack on the fair non-repudiation protocol) From the ab-
sence of A’s liveness, the attacker may launch an attack without the presence
of A, as shown in Fig. 4.35. Suppose the adversary I has recorded the message
{f1, B, L, {m}k′′ , {f1, B, L, {m}k′′}K−1

A
} in an old protocol run, then I can

launch a new protocol run by impersonating A.

Message 1 I(A)→ B : f1, B, L, {m}k′′, {f1, B, L, {m}k′′}K−1
A

Message 2 B → I(A) : f2, A, L, {m}k′′ , {f2, A, L, {m}k′′}K−1
B

Message 3 I(A)→ S : f3, B, L, k′′, {f3, B, L, k′′}K−1
A

Message 4 S → I(A) : f4, A,B, L, k′′, {f4, A,B, L, k′′}K−1
S

Message 5 S → B : f4, A,B, L, k′′, {f4, A,B, L, k′′}K−1
S

Notation

I(A) is an adversary I impersonating A.
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Fig. 4.35 An attack on the fair non-repudiation protocol.

Premise

The adversary I has recorded {f1, B, L, {m}k′′ , {f1, B, L, {m}k′′}K−1
A
}

in Message 1 and {f3, B, L, k′′, {f3, B, L, k′′}K−1
A
} in Message 3 of an old

protocol run.

Protocol actions

1) In Message 1, the adversary I replays the recorded message {f1, B, L,
{m}k′′ , {f1, B, L, {m}k′′}K−1

A
} to B to indicate that A wants to send a sen-

sitive data m to B.
2) Upon receiving Message 1, B verifies the signature {f1, B, L, {m}k′′}K−1

A

and gets the encryption {m}k′′ of the data m.
3) In Message 2, B sends the message {f2, A, L, {m}k′′}K−1

B
to A (actually

it is the adversary I).
4) In Message 3, the adversary I replays the recorded message {f3, B, L,

k′′, {f3, B, L, k′′}K−1
A
} to S.

5) Upon receiving Message 3, S gets and checks k′′ from the signature
{f3, B, L, k′′}K−1

A
using A’s public-key KA.

6) In Message 4 and Message 5, S signs {f4, A,B, L, k′′} using S’s private
key K−1

S and sends it to A and B respectively.
7) Upon receiving Message 4, the adversary I intercepts the message

intended for A.
8) Upon receiving Message 5, B gets and checks k′′ from the signature

{f4, A,B, L, k′′}K−1
S

using S’s public-key KS .
Upon termination of this attack on the fair non-repudiation protocol, the

adversary I causes B to have false beliefs: B has completed a successful
protocol run with A, B has received the message m sent from A, and A
could not deny the sending of m to B.

In real life, the freshness of non-repudiation record is important. For ex-
ample, suppose a car agent has ordered 1000 cars from the General Motors
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Corporation before, if the adversary can simply replay this order record with-
out freshness guarantee, then the General Motors Corporation may check and
accept this order, since the replayed order record may be regarded as non-
repudiation assurance.
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5 Security Analysis of Real World Protocols

Abstract Several de facto or industrial standards are widely used
in many real world applications are discussed and analyzed via the
trusted freshness approach. The typical cryptographic protocols in-
clude the Secure Socket Layer Protocol (SSL) and its variant, Trans-
port Layer Security Protocol (TLS), the Internet Key Exchange Pro-
tocol (IKE) and the Kerberos Authentication Protocol. From the dis-
cussion and the security analysis of these protocols, we will see that it
is very challenging to achieve strong security properties of the cryp-
tographic protocols fit for application.

Our study of cryptographic protocols in the preceding chapters has focused
on the academic protocols, while in this chapter, we will touch some widely
used real world cryptographic protocols and analyze them using the trusted
freshness method. This will help the readers to understand the trusted fresh-
ness method deeply and evaluate the security strength of a cryptographic
protocol they may use in practice.

The Internet is an enormous open network of computers and devices called
“nodes”. To deal with the complicated network well, the ISO (the Interna-
tional Organization for Standardization) presents the Open System Inter-
connection Reference Model (OSI Reference Model or OSI Model) which is
an abstract description for layered communications and computer network
protocol design. In its most basic form, it divides network architecture into
seven layers which, from top to bottom, are the Application, Presentation,
Session, Transport, Network, Data-Link, and Physical Layers, and they are
also called the seventh layer, the sixth layer, and so on and so forth. A layer
is a collection of conceptually similar functions that provide services to the
layer above it and receive service from the layer below it.

Figure 5.1 illustrates a simplified ISO Open System Interconnection (OSI)
architecture considering placement of key distribution protocols[1–12].

Internet is an open network environment, and each node in the network
trusts each other from the Internet’s original design intention, hence inse-
cure systems are already in wide use. To keep backward compatibility, secure
solutions should be added in with the least interruption to the insecure sys-
tems which are already in operation[13]. E.g. the SSL avoids modifying “TCP



154 5 Security Analysis of Real World Protocols

Fig. 5.1 The ISO Open System Interconnection.

stack” and requires minimum changes to the application, mostly used to au-
thenticate servers; IPSec is transparent to the application, but it requires
modification of the network stack and establishes a secure channel between
nodes.

In this chapter, we shall introduce and discuss several cryptographic pro-
tocols which are de facto or industrial standards, and they are already widely
used in many real world applications. The real world protocols we shall study
include the Secure Socket Layer Protocol (SSL)[2], and its variant, Trans-
port Layer Security Protocol (TLS)[3]; the Internet Key Exchange Protocol
(IKE)[4, 5] and the Kerberos Authentication Protocol[6, 7]. From the discus-
sion and the security analysis of these protocols, we will see that it is very
challenging to achieve strong security properties of the cryptographic proto-
cols fit for application.

5.1 Secure Socket Layer and Transport Layer Security

Secure Socket Layer (SSL), and its variant, Transport Layer Security (TLS),
are the de facto standards used to end-to-end encrypt, and they are mainly
for WorldWideWeb (Web for short) security[2, 3]. This includes specifically
credit card purchases and bank sites, but it may also be used on any site
requesting a password or dealing with personal information. SSL and TLS
use public-key encryption.

The most recent draft of the SSL 3.0 specification was published in Novem-
ber 1996 by Netscape and SSL 3.0 was the basis for the TLS 1.0 (RFC 2246)
specification published by the Internet Engineering Task force (IETF) in
1999. The IETF made some small changes and clarifications and published
RFC4346 in 2006 detailing TLS 1.1. The most recent draft of the TLS 1.2
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(RFC 5246) specification was published in August 2008 by IETF.

5.1.1 SSL and TLS overview

The primary goal of the SSL Protocol is to provide privacy and reliability
between two communicating applications. Except cryptographic security, the
goals also include interoperability, extensibility, and relative efficiency. The
protocol allows client/server applications to communicate in a way that is
designed to prevent eavesdropping, tampering, or message forgery. The SSL
Handshake Protocol can be considered as a stateful process running on the
client and server machines. A stateful connection is called a “session”, and a
session can be renegotiated.

The SSL protocol is composed of two layers. At the lowest level, layered
on top of some reliable transport protocol (e.g., Transmission Control Pro-
tocol, that is TCP protocol) is the SSL Record Protocol. The SSL Record
Protocol provides secure encapsulation of the communication channel for
use by higher layer application protocols. The higher level protocols include
Handshake, Change Cipher Spec, and Alert protocols as well as application
data. The SSL handshake protocol is a key exchange protocol which initial-
izes and synchronizes cryptographic state at the two endpoints. After the
key-exchange protocol completes, sensitive application data can be sent via
the SSL record layer. One advantage of SSL is that a higher level protocol
can layer on top of the SSL Protocol transparently. The technique used to
encrypt and verify the integrity of SSL records is specified by the currently
active Cipher Spec. A typical example would be to encrypt data using DES
and generate authentication codes using MD5.

SSL/TLS has 4 underlying protocols: Handshake, Record, Change Cipher
Spec, and Alert. This is laid out as:

8 bit 8 bit 8 bit 16 bit 16384 bytes

Type
Major
version

Minor
Version

Record Length Record Data

In decimal, the types are as follows:
20 Change Cipher Spec
21 Alert
22 Handshake
23 Application (data)
The version would be 3 and then 0 for SSL 3.0. Since TLS is a “minor

modification to the SSL 3.0 protocol,” TLS 1.0 is defined as SSL major version
3, minor version 1, TLS 1.1 is 3 and then 2, and the upcoming TLS 1.2 will
be major version 3, then minor version 3.

The record length is written in terms of bytes and can not exceed 214 (16,
384). Compression allows for the length to be extended by up to 1024 bytes,
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to a new max of 17,408 bytes in the TLS compressed length field.
SSL connections begin with a 4-way handshake. The keys for symmetric

encryption and for HMAC are generated uniquely for each session connection
and are based on a secret negotiated by the SSL Handshake Protocol.

Alert messages with a level of fatal result in the immediate termination of
the connection. In this case, other connections corresponding to the session
may continue, but the session identifier must be invalidated, preventing the
failed session from being used to establish new connections.

5.1.2 The SSL handshake protocol

The SSL Handshake Protocol is one of the defined higher level clients of the
SSL Record Protocol. The SSL Handshake Protocol allows the server and
client to authenticate each other and to negotiate a encryption algorithm
and cryptographic keys for symmetric encryption and for HMAC uniquely for
each session connection, and thereby to establish a secure session connection
with the SSL Record Protocol to process secure communications with higher
level application protocols. The handshake protocol structure is:

8 bit 24 bit

Type Length Content

The allowed values for type are indicated in Table 5.1.

Table 5.1 Allowed values for type in SSL handshake protocol

Type Value Type Remark

0 HelloRequest

1 ClientHello

2 ServerHello

11 Certificate Optional

12 ServerKeyExchange Optional

13 CertificateRequest Optional

14 ServerHelloDone

15 CertificateVerify

16 ClientKeyExchange Optional

20 Finished

The handshake protocol messages are presented in the order in which they
must be sent; sending handshake messages in an unexpected order results in
a fatal error.

The data handshake process performs the following steps, as shown in
Fig. 5.2.

Message 1 C → S : Client Hello
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Message 2 S → C : ServerHello
ServerCertificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone

Message 3 C → S : ClientCertificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished

Message 4 S → C : [ChangeCipherSpec]
Finished

Fig. 5.2 Message flow for a full handshake of SSL.

Notation

C denotes a client (the client-side web browser), S denotes the web server,
and * indicates optional or situation-dependent messages that are not always
sent.

Premise

ClientCertificate (ServerCertificate) is a certification of C’s (or S’s) iden-
tity and corresponding public-key KC (or KS) signed by a trusted certifica-
tion authority center CA.
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Protocol actions

1) In Message 1 (ClientHello message:)
The client starts the session connection by sending a message to which

the server must respond with a ServerHello message, or else the connection
will fail. The client may resume an existing session. The ClientHello message
will have the following data:
— The protocol version is in the client hello which is for backward compat-

ibility use.
— A 32-bit Unix format timestamp and a 28-byte random number Clien-

tHello.random are generated by the client.
— The session identifier: When the client wishes to start a new session

connection, this field should be empty. The client may specify a session
identifier of a current or previous session. Doing this allows for multiple
secure connections without going through the entire handshake process
each time, although both Hello, the Change Cipher Spec, and both Fin-
ished messages must still be exchanged and be valid.

— The cipher suite, a list of the cryptographic options supported in the
client side machine, sorted with the client’s first preference first. Each
cipher suite defines the algorithm for key exchange, the bulk encryption
algorithm with secret key and length, and the message authentication
code (MAC). A wide range of public-key and symmetric cryptographic
algorithms, digital signature schemes, MAC schemes and hash functions
can be proposed by the client.

A cipher suite identifies a Cipher Spec. These structures are part of
the SSL session state. The Cipher Spec includes:

enum {stream, block} CipherType;
enum {true, false} IsExportable;
enum {null, rc4, rc2, des, 3des, des40, fortezza}

BulkCipherAlgorithm;
enum {null, md5, sha} MACAlgorithm;
struct {

BulkCipherAlgorithm bulk cipher algorithm;
MACAlgorithm mac algorithm;
CipherType cipher type;
IsExportable is exportable;
uint8 hash size;
uint8 key material;
uint8 IV size;

} CipherSpec;

Here, unit8 is an unsigned byte.
— The compression method supported in the client side machine.

2) In Message 2 (ServerHello message:)
The server responds to Client Hello message with the ServerHello message.

The ServerHello message will have the following data:
— The version number being used: the lowering of the server’s highest sup-

ported version and the version in the client hello.
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— A 32-bit Unix format timestamp and a 28-byte random number Server-
Hello.random are generated by the server.

— The session identifier: if the session ID is recognized, then a short hand-
shake is used and the following fields are filled in with the values from the
previous connection. Otherwise, the ServerHello generates a new session
ID, uses this new value in this field, and caches the session ID in its local
memory. The server may return an empty session ID to indicate that the
session will not be cached and therefore cannot be resumed.

— The cipher suite chosen by the server, where the server selects a single
scheme for each necessary cryptographic operation, informs the client in
this field.

— The compression method chosen by the server.
If the server can not find an acceptable cipher suite and compression

method, it will respond with a handshake failure alert.
(1) ServerCertificate message: Unless the key exchange method is anony-

mous, if the server is to be authenticated (which is generally the case), the
server will send out a certificate immediately after sending the ServerHello.
The certificate is generally an X.509 v3 certificate public-key and unless oth-
erwise specified uses the same key exchange method and signing algorithm
previously decided on. An X.509 certificate contains sufficient information
about the name and the public-key of the certificate owner and that about
the issuing certification authority. Sending a list of certificates permits the
client to choose one with the public-key algorithm supported in the client’s
machine. That is, certificates from all the up line servers are necessary to get
to the one that the client trusts must be included. The order of these should
be so that each certificate validates the one before it.

(2) ServerKeyExchange message: If the ServerCertificate does not con-
tain enough data for a pre-master secret, then a ServerKeyExchange is sent
with either an RSA public, or a Diffie-Hellman public-key (This is the case
for DHE DSS, DHE RSA, and DH anon; but not for RSA, DH DSS, and
DH RSA key exchange methods). ServerKeyExchange contains the server’s
public-key material matching the certificate list in ServerCertificate. The ma-
terial for Diffie-Hellman key agreement will be included here which is the tuple
(p, g, gy) where p is a prime modulus, g is a generator modulo p of a large
group and y is an integer cached in the server’s local memory.

(3) CertificateRequest message: If it is appropriate, the server may re-
quest a certificate from the client with a CertificateRequest. This would im-
mediately follow the ServerCertificate, or present the ServerKeyExchange.
The CertificateRequest would specify the types of certificates the server will
accept and the Certificate Authorities the server trusts.

(4) ServerHelloDone message: The ServerHelloDone indicates to the client
that server is done sending data and the client should now verify the certifi-
cates and whatnot it has received.
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3) In Message 3 (ClientCertificate message:)
After receiving the ServerHelloDone the client would respond with a mes-

sage identical in format to the ServerCertificate if a CertificateRequest was
received before.

(1) ClientKeyExchange message: If RSA is used, the Client Key Exchange
message includes an encrypted pre-master secret which consists of a 48-bit
number that is encrypted with the server’s public-key.

If Diffie-Hellman is used, but not Fixed Diffie-Hellman, then the public-
key parameters are sent here.

(2) CertificateVerify message: If the client sent a certificate, then it would
send a CertificateVerify message at this point, in most cases. This would
include a signature in the same format as defined for the ServerKeyMessage
as well as an MD5 sum of all of the previous messages and a SHA hash of all
of the previous messages.

(3) ChangeCipherSpec message: The Client sends the ChangeCipherSpec
message indicating that all future traffic will be computed with the master
secret. The random numbers and the pre-master secret are used by both
systems in a pseudorandom function to calculate the master secret.

The change cipher spec protocol is a single byte that will always have
a value of 1. It is encrypted and compressed under the current cipher (the
pre-master secret) and with compression method.

(4) Finished message: Up to now, the client and server have negotiated
the shared secret information known only to themselves. This value is a 48-
byte quantity called the master secret.

master secret =

MD5(pre master secret + SHA(‘A’ + pre master secret

+ ClientHello.random + ServerHello.random)) +

MD5(pre master secret + SHA(‘BB’ + pre master secret

+ ClientHello.random + ServerHello.random)) +

MD5(pre master secret + SHA(‘CCC’ + pre master secret

+ ClientHello.random + ServerHello.random)).

The client now sends the Finished message. This consists of the master
secret, the finished label, an MD5 of all previous messages and an SHA of
all previous messages. All of this is encrypted with the master secret. If the
server can read all of this, then the server knows that the key generation
was successful. The Finished message is the first protected with the just-
negotiated algorithms, keys, and secrets.

4) In Message 4 (ChangeCipherSpec & Finished message:)
The server responds with its own ChangeCipherSpec and Finished mes-

sages which verify to the client that the key generation was successful.
If any warning or fatal errors occur, an alert is sent. Alerts consist of a

byte that defines whether it’s a warning (1) or a fatal (2) alert, and a byte
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that indicates the specific alert. The possible values for alerts are indicated
in Table 5.2.

Table 5.2 Alerts in SSL

Fatal alerts Not fatal alerts

unexpected message (10) close notify (0)

bad record mac (20) no certificate RESERVED (41) – this is SSL 3.0 only

decryption failed (21) bad certificate (42)

record overflow (22) unsupported certificate (43)

decompression failure (30) certificate revoked (44)

handshake failure (40) certificate expired (45)

illegal parameter (47) certificate unknown (46)

unknown ca (48) decrypt error (51)

access denied (49) no renegotiation (100)

decode error (50)

export restriction RESERVED (60)

protocol version (70)

insufficient security (71)

internal error (80)

user canceled (90)

Application data: The master secret is used to generate keys and secrets
for encryption and MAC computations. To generate the key material, com-
pute key block until enough output has been generated, where

key block =

MD5(master secret + SHA(‘A’ + master secret

+ ServerHello.random + ClientHello.random)) +

MD5(master secret + SHA(‘BB’ + master secret

+ ServerHello.random + ClientHello.random)) +

MD5(master secret + SHA(‘CCC’ + master secret

+ ServerHello.random + ClientHello.random)) + [...].
Then the key block is partitioned as follows.

client write MAC secret[CipherSpec.hash size]

server write MAC secret[CipherSpec.hash size]

client write key[CipherSpec.key material]

server write key[CipherSpec.key material]

client write IV[CipherSpec.IV size] /* non-export ciphers */

server write IV[CipherSpec.IV size] /* non-export ciphers */
Any extra key block material is discarded.
Now that the keys and secrets are computed, data may be sent encapsu-

lated inside record protocol. This data will be encrypted and compressed in
the agreed upon methods and can be reliably read by the other end but not
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likely anyone in-between.

5.1.3 Security analysis of SSL based on trusted freshness

SSL is helpful for enhancing the security of communications, however it is
not as secure as it intends to. In this subsection, we give the security analysis
of SSL based on trusted freshness, and some attacks are given from the
absence of the protocol security properties. Moreover, attacks related to TLS
renegotiation implementation are also briefly introduced.

5.1.3.1 Security analysis of SSL negotiation based on trusted freshness

Example 5.1 (A full SSL handshake protocol with both side certificates)
When a new session begins, the CipherSpec encryption, hash, and compres-
sion algorithms are initialized to null. Figure 5.3 illustrates the message ex-
changes in SSL handshake protocol related to authentication and key estab-
lishment with the certification verifying both server side and client side.

Message 1 C → S : V erC , TC , NC , NULL
Message 2 S → C : V erS , TS, NS , SIDS , CertS

Message 3 C → S : {kCS}KS , CertC , {NC , NS}K−1
C

,
{
C, {NC , NS}K−1

C

}
kCS

Message 4 S → C : {S,NS, NC}kCS

Fig. 5.3 Message in a full handshake of SSL with certifications of both sides.

Notation

C denotes a client (the client-side web browser), S denotes the web server.
VerC is the protocol version in the client hello, and VerS is the version
number being used (the lowering of the server’s highest supported version
and the version in the client hello). TC and TS are timestamps generated by
C and S referring to an absolute time, where clocks are not required to be set
correctly by the basic SSL Protocol, but higher level or application protocols
may define additional requirements. NC and NS are nonces randomly chosen
by C and S respectively. kCS is a new session key between C and S to
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be established in this authentication protocol (Note: we do not distinguish
pre master secret, master secret and other keys and secrets for encryption
and MAC computations since they do not effect the security analysis of SSL).
SIDS is a new session ID generated and cached by the Server. CertC (CertS)
is a certificate of C (or S) and corresponding public-key KC (or KS) signed
by a trusted certificate authority CA. KS and K−1

S are public-key and private
key of S, while KC and K−1

C are public-key and private key of C.

Premise

Both C and S know the public-key of the trusted certificate authority CA
to get KC and KS . Each principal knows the key pair of himself, that is, KC

and K−1
C for C, KS and K−1

S for S.

Protocol actions

1) In Message 1, the client C starts the negotiation by sending the client
SSL version VerC , the timestamp TC , a randomly chosen new nonce NC by
C for this protocol run, a NULL session identifier and the intended cryp-
tographic algorithm for key exchange, the bulk encryption algorithm with
secret key and length, and MAC (the chosen cipher suite does not effect the
security analysis of SSL, hence omitted.).

2) Upon receiving Message 1, since the session ID is NULL, a full hand-
shake is launched.

3) In Message 2, S generates a new session ID SIDS, and sends it to C
with the version number VerS being used, the timestamp TS , the randomly
chosen new nonce NS by S, and the certificate of S containing the name and
the public-key.

4) Upon receiving Message 2, C randomly chooses a new session key kCS

for this protocol run, then encrypts it underKS and sends it to C; C encrypts
the identity of himself, the randomly chosen nonce NC and NS , and sends
{C, {NC , NS}K−1

C
}kCS to S.

5) Upon receiving Message 3, S gets the new session key kCS using S’s
private key K−1

S , then decrypts {C, {NC , NS}K−1
C
}kCS using kCS also KC

and verifies the correction of NC and NS .
6) In Message 4, S encrypts the identity of S, the randomly chosen nonce

NC and NS , and sends {S,NS, NC}kCS to C.
7) Upon receiving Message 4, C decrypts {S,NS, NC}kCS using kCS and

verifies the correction of NC and NS .
Successful execution should convince C and S that kCS is a new ses-

sion key between C and S. Actually, this protocol has not achieved the key
exchange and authentication security objects as it intends to.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce NC , and C also believes that NC is
open.
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2) Upon receiving Message 1, from Lemma 4.2, S believes that NC is
open.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, S has the freshness
assurance of the randomly chosen nonce NS, and S also believes that NS is
open.

4) Upon receiving Message 2, from Lemma 4.2, C believes that NS is
open.

5) In Message 3, from Lemma 4.2 and Lemma 4.3, C has the confiden-
tiality and the freshness assurances of the new session key kCS .

6) Upon receiving Message 3, from Lemma 4.3, S has the freshness as-
surance of the new session key kCS . From Lemma 4.4, S has the association
assurance of kCS with C, since only C could sign {NC , NS}K−1

C
using its

private key, and the identity of C is explicitly indicated in Message 3. Upon
receiving {NC , NS}K−1

C
, from Lemma 4.1, S has the liveness assurance of C

based on the trusted freshness NS .
7) Upon receiving Message 4, from Lemma 4.1, C has the liveness as-

surance of S. From Lemma 4.3, C has the freshness assurance of NS. From
Lemma 4.4, S has the association assurances of NC , NS and kCS with S,
since only S could get kCS from the encryption {kCS}KS using its private
key, and the identity of S is explicitly indicated in Message 4.

Upon termination of the protocol run, as indicated in Table 5.3, C believes
that S is present, and the new session key kCS is confidential, fresh, and
associated with S, while S believes that C is present, and the new session
key kCS is confidential, fresh, and associated with C.

Table 5.3 Security analysis of the full handshake of SSL protocol

C S

S NC NS kCS C NC NS kCS

Message 1 01# 0?#

Message 2 0?# 01#

Message 3 11# 1 01C 11C

Message 4 1 01S 01S 11S

End of run 1 11S 1 11C

Example 5.2 (Attack-1 on a full SSL handshake protocol with both side
certificates) From the absence of the association of kCS with S in the point
of view of S, we can construct an attack as shown in Fig. 5.4.

Message 1 C → I : VerC , TC , NC ,NULL

Message 1′ I(C)→ S : VerC , TC , NC ,NULL

Message 2′ S → I(C) : VerS , TS , NS,SIDS ,CertS
Message 2 I → C : VerS , TS , NS,SIDS ,CertI
Message 3 C → I : {kCS}KI ,CertC , {NC , NS}K−1

C
,{

C, {NC , NS}K−1
C

}
kCS
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Message 3′ I(C)→ S : {kCS}KS ,CertC , {NC , NS}K−1
C

,{
C, {NC , NS}K−1

C

}
kCS

Message 4 I → C : {I,NS, NC}kCS
Message 4′ S → I(C) : {S,NS, NC}kCS

Fig. 5.4 An attack on a full handshake of SSL with certifications of both sides.

Notation

I denotes the adversary, and I(C) is an adversary I impersonating C.
CertI is a certificate of I and corresponding public-key KI signed by CA. KI

and K−1
I are public-key and private key of I. Other notations are the same

as the original SSL handshake protocol.

Premise

Each principal knows the public-key of the trusted certification authority
center CA to get KC ,KS and KI . Each principal knows the key pair of
himself, that is, KC and K−1

C for C, KS and K−1
S for S, KI and K−1

I for I.

Protocol actions

1) In Message 1, the client C starts a protocol run with I. In Message 1′,
the adversary I(C) replays the Message 1 to S to start a fake protocol run
between C and S by impersonating C.

2) Upon receiving Message 1′, S makes response to I(C) with Message 2′

including the certificate of S. I substitutes CertS with CertI in Message 2′,
then forwards Message 2 {VerS , TS, NS , SIDS, CertI} to C.

3) Upon receiving Message 2, C randomly chooses a new session key
kCS for this protocol run between C and I. In Message 3, C generates
{NC , NS}K−1

C
using C’s private key K−1

C to show that it is really C who
has sent this message {C, {NC , NS}K−1

C
}kCS .

4) Upon receiving Message 3, I gets the new session key kCS using I’s
private key K−1

I . Then, I encrypts kCS with S’s public-key KS , generates
Message 3′ {kCS}KS ,CertC , {NC , NS}K−1

C
, and {C, {NC , NS}K−1

C
}kCS , then
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forwards it to S.
5) Upon receiving Message 3′, S gets kCS and verifies {NC , NS}K−1

C
, then

S believes that it must be C who is sharing the new session key kCS with S.
At the same time, I will complete his protocol run with C normally.

Upon termination of the attack on the full SSL handshake protocol with
both side certificates, the adversary I causes S to have false beliefs: S has
completed a successful protocol run with C, and is sharing a new session key
kCS with C, whereas in fact, C knows nothing about the key establishment
with S, and actually C shares the key kCS with I. Furthermore, S concludes
that subsequently messages could be encrypted using kCS and safely trans-
mitted to C (actually known by I).

Example 5.3 (Attack-2 on a full SSL handshake protocol with both side
certificates) From the absence of the association of kCS with C in the point
of view of C, we can construct an attack as shown in Fig. 5.5.

Message 1 C → I(S) : VerC , TC , NC ,NULL

Message 1′ I(C)→ S : VerC , TC , NC ,NULL

Message 2′ S → I(C) : VerS , TS , NS ,SIDS ,CertS
Message 2 I(S)→ C : VerS , TS , NS ,SIDS ,CertI
Message 3 C → I(S) : {kCS}KI ,CertC , {NC , NS}K−1

C
,{

C, {NC , NS}K−1
C

}
kCS

Message 3′ I(C)→ S : {kCS}KS ,CertC , {NC, NS}K−1
C

,{
C, {NC , NS}K−1

C

}
kCS

Message 4 I(S)→ C : {S,NS, NC}kCS
Message 4′ S → I(C) : {S,NS, NC}kCS

Fig. 5.5 Another attack on a full handshake of SSL with certifications of both
sides.
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Notation

I denotes the adversary, and I(C)/I(S) denotes the adversary I imper-
sonating C/S respectively. CertI is a certificate of I and KI signed by CA.
KI and K−1

I are public-key and private key of I. Other notations are the
same as the original SSL handshake protocol.

Premise

Each principal knows the public-key of the trusted certificate authority
CA to get KC ,KS and KI . Each principal knows the key pair of himself, that
is, KC and K−1

C for C, KS and K−1
S for S, KI and K−1

I for I.

Protocol actions

1) In Message 1, the client C starts a protocol run with S. I intercepts
Message 1, then forwards it to S as Message 1′.

2) Upon receiving Message 1′, S makes response to I(C) with Message 2′

including the certificate of S. I substitutes CertS with CertI in Message 2′,
then forwards Message 2 {V erS , TS , NS,SIDS ,CertI} to C.

3) Upon receiving Message 2, C randomly chooses a new session key kCS

for this protocol run between C and S (Actually, it is the adversary I imper-
sonating S). In Message 3, C encrypts kCS with S’s public-key KS (Actually,
the public-key is deduced from CertI in Message 2′, hence it is the adversary
I’s public-keyKI), and generates Message 3 {{kCS}KI ,CertC , {NC , NS}K−1

C
,

{C, {NC , NS}K−1
C
}kCS}.

4) Upon receiving Message 3, I gets the new session key kCS using I’s
private key K−1

I . I encrypts kCS with S’s public-key KS in Message 3′, then
forwards Message 3′ to S.

5) In Message 4, I will complete his protocol run with C normally by
impersonating S.

6) Upon receiving Message 4′, S will complete his protocol run with C
normally (Actually, it is the adversary I impersonating C).

Upon termination of the attack on the full SSL handshake protocol with
both side certificates, the adversary I causes both sides to have false beliefs:
each side has completed a successful protocol run with its opponent, and is
sharing a new session key kCS with the opponent, whereas in fact, the shared
key kCS between C and S is also known by I.

In an execution of the SSL Handshake Protocol, the client may be chosen
to be anonymous and so is not authenticated to the server. As a result,
the server unilaterally authenticates itself to the client. The output from the
execution is a unilaterally authenticated channel from the server to the client.
This is a typical example of using the SSL Protocol in a Web-based electronic
commerce application, for example, buying a book from an online bookseller.
The output channel assures the client that only the authenticated server
will receive its instructions on book purchase which may include confidential
information such as its user’s bankcard details, the book title, and the delivery
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address[13].

5.1.3.2 Attacks related to renegotiation

This protocol can be executed with all the optional messages and the
ClientKeyExchange message omitted. This is the case when the client wants
to resume an existing session. Session resumption can save the server time and
CPU by obviating the need to do a full basic SSL negotiation. The ostensible
reason for renegotiation is to allow either end to decide that it would like to
refresh its cryptographic keys, increase the level of authentication, increase
the strength of the cipher suite in use, and so forth. If the session ID in the
ClientHello message is non-empty, the server will look in its session cache for
a match. If a match is found and the server is willing to establish the new
connection using the specified session state, the server will respond with the
same session ID as supplied by the client. This indicates a resumed session
and dictates that the parties must proceed directly to the finished messages,
omitting all the optional messages and the ClientKeyExchange message. The
renegotiation SSL handshake protocol structure is illustrated in Fig. 5.6.

Message 1 C → S : VerC , TC , NC ,SIDExisting

Message 2 S → C : VerS , TS , NS,SIDExisting

Message 3 C → S : {kCS}KS , {C,NC , NS}kCS
Message 4 S → C : {S,NS, NC}kCS

Fig. 5.6 Message exchanges in a renegotiation handshake of SSL.

Notation

SIDExisting is the ID of an existing session stored in the server’s session
cache. Other notations are the same as the original SSL handshake protocol.

Premise

SIDExisting is stored in the server’s session cache and the server is willing
to establish the new connection using the specified session state.

The premises are the same as the original SSL handshake protocol.
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Protocol actions

1) In Message 1, if the client C wants to resume an existing session, then
the client sends a ClientHello message using the Session ID of the session to
be resumed.

2) Upon receiving Message 1, if the Session ID of the ClientHello Message
is non-empty, the server will check its session cache for a match. If a match
is found, and the server is willing to reestablish the connection under the
specified session state, it will send a ServerHello Message with the same
Session ID value. Otherwise this field will contain a different value identifying
the new session.

3) In Message 3, C sends a randomly chosen new session key kCS under
KS for this resumption, and also an encryption {C,NC , NS}kCS of previously
sent handshake messages under kCS .

4) Upon receiving Message 3, S gets the new session key kCS using S’s
private key K−1

S , then decrypts {C,NC , NS}kCS using kCS and verifies the
correction of NC and NS .

5) In Message 4, S encrypts the identity of himself, the randomly chosen
nonce NC and NS , and sends {S,NS , NC}kCS to C.

6) Upon receiving Message 4, C decrypts {S,NS, NC}kCS using kCS and
verifies the correction of NC and NS .

Successful execution should convince C and S that kCS is a new session
key for this resumption. Actually, the security of the renegotiation process is
even worse than the original full SSL handshake protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce NC , and C also believes that NC is
open.

2) Upon receiving Message 1, from Lemma 4.2, S believes that NC is
open.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, S has the freshness
assurance of the randomly chosen nonce NS, and S also believes that NS is
open.

4) Upon receiving Message 2, from Lemma 4.2, C believes that NS is
open.

5) In Message 3, from Lemma 4.2 and Lemma 4.3, C has the confiden-
tiality and the freshness assurances of the new session key kCS .

6) Upon receiving Message 3, from Lemma 4.2 and Lemma 4.3, S has the
confidentiality and the freshness assurances of the new session key kCS .

7) Upon receiving Message 4, from Lemma 4.1, C has the liveness as-
surance of S. From Lemma 4.3, C has the freshness assurance of kCS . From
Lemma 4.4, S has the association assurances of NC , NS and kCS with S,
since only S could get kCS from the encryption {kCS}KS using its private
key, and the identity of S is explicitly indicated in Message 4.
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Upon termination of the protocol run, we get analyzing result from Table
5.4, it means C believes that S is present, and the new session key kCS is
confidential, fresh, and associated with S, while S only believes that the new
session key kCS is confidential, fresh, but S does not know whether kCS is
associated with C and/or S or not.

Table 5.4 Security analysis of the full handshake of SSL protocol

C S

S NC NS kCS C NC NS kCS

Message 1 01# 0?#

Message 2 0?# 01#

Message 3 11# 11#

Message 4 1 01S 01S 11S

End of run 1 11S 11#

Example 5.4 (Attack-1 on SSL renegotiation) From the absence of the
liveness of C in the point of view of S, we can construct an attack as shown
in Fig. 5.7.

Message 1 I(C)→ S : VerC , TC , NC ,SIDExisting

Message 2 S → I(C) : VerS , TS , NS,SIDExisting

Message 3 I(C)→ S : {kCS}KS , {C,NC , NS}kCS
Message 4 S → I(C) : {S,NS , NC}kCS

Fig. 5.7 An attack on the SSL renegotiation to cheat S.

Notation

I(C) is an adversary I impersonating C. Other notations are the same as
the original renegotiation SSL handshake protocol.

Premise

Premises are the same as the original renegotiation SSL handshake pro-
tocol.

Protocol actions

1) In Message 1, the adversary I starts SSL renegotiation to resume an
existing session by impersonating C.
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2) Upon receiving Message 1, S checks its session cache for a match and
makes response to I(C) with Message 2.

3) Upon receiving Message 2, I(C) randomly chooses a new session key
kCS for this resumption between C (actually the adversary) and S, then
encrypts kCS under KS and sends the encryption to S. I(C) also sends the
encryption of the previously sent handshake messages under kCS to S.

4) Upon receiving Message 3, S gets the new session key kCS using his
private key K−1

S and verifies {C,NC , NS}kCS . Then S believes that it must
be C who is sharing the new session key kCS with S.

Upon termination of the attack on the SSL renegotiation, the adversary I
causes S to have false beliefs: S has completed a successful protocol run with
C, and is sharing a new session key kCS with C, whereas in fact, C knows
nothing about the key establishment with S, and actually S shares the key
kCS with I. Furthermore, S concludes that subsequently messages could be
encrypted using kCS and safely transmitted to C (actually I).

The above attack can be launched directly by an adversary I impersonat-
ing a legitimate client C even without the liveness of C. This case is perhaps
more attractive to the attacker because this characteristic permits the adver-
sary to apply an attack on an intended victim at any time, and no particular
client-side or server-side configuration is required for this attack to succeed.

5.1.3.3 Attacks related to TLS renegotiation implementation[14]

TLS (including RFC 5246 and previous ones, SSL v3 and previous ones) is
subject to a number of serious man-in-the-middle (MITM) attacks related to
renegotiation in real world. The TLS standard permits either end to request
renegotiation of the TLS session at any time. The MITM attacks related to
renegotiation are expected to generalize well to not only HTTPS but also
other protocols layered on TLS. There are three general attacks related to
renegotiation against HTTPS, each with slightly different characteristics, all
of which yield the same result: the attacker is able to execute an HTTP
transaction of his choice, authenticated by a legitimate user (the victim of
the MITM attack).

Example 5.5 (Client certificate authentication renegotiation attack) The
server cannot insist that the client provide a valid client certificate until it
has received the certificate request from the client and filtered it through its
authentication rules. For requests that are found to require client certificate
authentication, the HTTPS server must then renegotiate the TLS channel
to obtain and validate the certificate from the client. Unfortunately, because
HTTP lacks a specific response code to instruct the client to resubmit the
request within the newly authenticated channel, the server must apply the au-
thentication retroactively to the original request. This “authentication gap”
is the central weakness exploited by these attacks. Most existing installations
which currently rely on client certificates for authentication appear to be
vulnerable to this client certificate authentication renegotiation attack.
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Example 5.6 (Differing server cryptographic requirements renegotiation at-
tack) HTTPS servers that host resources with varying cipher suite require-
ments (this is often the case since web servers often host “secure” or “anony-
mous” content with varying certificate authentication requirements) may be
vulnerable to another renegotiation attack. Because of the variations in the
level of cipher suite strength, the web server has to be willing to negotiate
TLS at the most basic encryption level supported on the server. Only after
having seen the URL requested by the client can the server accurately deter-
mine which cipher suites will be acceptable. If the current cipher suite is not
one of the required cipher suites, the server must request a renegotiation and
agree on new parameters. The act of soliciting client renegotiation triggers
the same weakness as in the case of client certificates: the server is forced to
replay the buffered request, which in this case includes the chosen plaintext
of the attacker. This has the effect of authorizing the transaction requested
by the MITM.

Example 5.7 (Client-initiated renegotiation attack) TLS equally allows the
client side of the connection to initiate a renegotiation. The MITM splices
an initial request with an un-terminated HTTP “ignore” header onto the
beginning of the client’s intended request, again steals whatever authentica-
tion or authorization information provided. Note that this does not require
pipelining or HTTP keep-alive. In all other respects, the server sees the same
sort of request buffer as above. Most or all server applications built on TLS
implementations which honor client-initiated renegotiation are vulnerable.

5.2 Internet Protocol Security

The Internet is an enormous open network of computers and devices, which
are called “network nodes”, each with unique Internet Protocol (IP) ad-
dress. IPSec (Internet Protocol Security) is a suite of protocol designed by
IETF[15, 16] to provide security for IPv4 and IPv6. The security services
include confidentiality, data authentication, data integrity, and key man-
agement. IPSec provides securing communications over the Internet in key
layer – the network layer of TCP/IP, hence the protection which covers the
addressing information as well as the content can be very effective. In general,
security at the IP layer can provide a wide protection on all applications at
higher layers. Due to scalability and practical implementation considerations
automatic key management seems a natural choice in significantly large vir-
tual private networks (VPNs), IPSec has become standard by default of the
most of the IP VPN technology in the world.
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5.2.1 IPSec overview

IPSec has two modes: Transport mode (between two hosts) and Tunnel mode
(between hosts/firewalls) and three sub protocols: Authentication Header
(AH, RFC 2402[17]), Encapsulating Security Payload (ESP, RFC 2406[18])
and Internet Key Exchange Protocol (IKE, RFC 2409[19]). AH assures in-
tegrity protection, ESP provides encryption services and optional integrity
protection while IKE allows communicating entities to derive session keys for
secure communication via a series of messages exchange. IKE is the current
IETF standard of authenticated key exchange protocol for IPSec, hence it is
the concern of this book and it will be discussed in detail in Subsection 5.2.2.

5.2.1.1 Authentication Header (AH)

The Internet Protocol (IP) has evolved from version 4 (IPv4) to version 6
(IPv6). The data structure for IPv6 is a multiple of 32-bit data blocks called
datagrams. In IPv6 with IPSec protection, an IP packet has an additional
field called “Authentication Header” (AH)[17, 20]. Authentication protection
(in fact, data integrity with origin identification) is a mandatory service for
IPSec. The position for the AH in an IP packet (see Fig. 5.8, Fig. 5.9) is
between “IP header” and the “TCP field”. AH can have a variant length
but must be a multiple of 32-bit datagrams which are organized into several
subfields which contain data for providing cryptographic protection on the
IP packet.

Fig. 5.8 Structure of an AH and its Position in an IP Packet in transport mode.

The subfield named “Security Parameters Index” (SPI) in an AH is an
arbitrary 32-bit value which specifies (uniquely identifies) the cryptographic
algorithms used for the authentication service for this IP packet. The sub-
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Fig. 5.9 The Structure of an AH and its Position in an IP Packet in tunnel mode.

field named “Sequence Number” can be used against replay of IP packets.
The other subfield named “Authentication Data” (also called Integrity Check
Value, ICV) in an AH contains the authentication data generated by the mes-
sage sender for the message receiver to conduct data integrity verification.
The receiver of the IP packet can use the algorithm uniquely identified in SPI
and a secret key to regenerate “Authentication Data” and to compare with
that received. End nodes have already established a shared secret session key
manually or by IKE.

5.2.1.2 Encapsulating Security Payload (ESP)

Confidentiality (encryption) protection is an optional service for IPSec. To
achieve this, a multiple of 32-bit datagrams named “Encapsulating Security
Payload” (ESP)[18] is specified and allocated in an IP packet. The position
for the ESP in an IP packet (see Fig. 5.10, Fig. 5.11) is between “IP header”
(note that an ESP can follow an AH too) and the “TCP field”. The format
of an ESP is shown in Fig. 5.12.

The subfield named “Security Parameters Index” (SPI) in an ESP is an
arbitrary 32-bit value which specifies (uniquely identifies) the encryption al-
gorithm used for the confidentiality service for this IP packet.

The second subfield “Sequence Number” can be used against replay of IP
packets.

The third subfield “Payload Data” has a variable length which is the
ciphertext of the confidential data. Since an IP (v6) packet must have a length
as a multiple of 32 bits, the plaintext “Payload Data” of variable length must
be padded, and the paddings are given in “Padding”. The Padding bytes are
initialized with a series of (unsigned, 1-byte) integer values. The first padding
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Fig. 5.10 An ESP and its Position in an IP Packet in transport mode.

Fig. 5.11 An ESP and its Position in an IP Packet in tunnel mode.

Fig. 5.12 The Structure of an Encapsulating Security Payload.

byte appended to the plaintext is numbered 1, with subsequent padding bytes
making up a monotonically increasing sequence: ′01′||′02′|| · · · ||′xy′, where
′xy′ is the hexadecimal value so that ′01′ < ′xy′ < ′FF ′. Therefore, the
maximum number of the padding bytes is ′FF ′ = 255(10). The length of the
padding bytes is stated in “Pad Length”.

The fourth subfield “Authentication Data” has the same meaning as that
in an AH. However, “Authentication Data” in an ESP and that in an AH are
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different. In an ESP, “Authentication Data” is for providing a data integrity
protection on the ciphertext in the ESP packet, while in an AH, “Authenti-
cation Data” is for providing a data integrity protection on an IP packet.

5.2.2 Internet Key Exchange

Internet Key Exchange (IKE) is a set of protocols and mechanisms designed
to perform two functions, creation of a protected environment (which in-
cludes authenticated peers that are unknown to each other in advance) and
to establish and manage Security Associations (SA) between the authenti-
cated peers, called the initiator and responder (or the receiver)[4, 19]. Both of
the parties need to provide a digital signature in the key exchange protocol
that the other party will verify. A successful verification means that the other
party is authenticated. In order to be able to verify the signature also the
public-key (certificate) needs to be trusted, and verified. SA defines how the
traffic between the two hosts is to be protected.

Notation 5.1 (Security Associations (SA)) Each secure connection is called
a security association (SA). A SA is simply a contract between two entities
to provide a minimum set of services. It can be bi-directional or unidirec-
tional. In case of unidirectional SA, which is often the case, we shall need
two unidirectional SAs to complete one communication. With the view point
of a programmer an SA can be considered as a data structure containing
the information on Security Policy Index (SPI), its state (alive or expired),
authentication algorithm, sequence number and SA life time. Considering
globally, an SA is a set of proposals. A proposal can be thought of as a set
of protocols and a protocol is, in turn, a set of transforms. A transform is a
set of algorithms.

IKE is heart of the IPSec because it not only controls the services to be
offered to secure the traffic but also manages the whole range of different
transform options available at different levels and at different granularity.
IKE architecture is based on three other protocols, namely, the Internet Se-
curity Association and Key Management Protocol (ISAKMP) [RFC 2408][21],
the Oakley Key Determination Protocol (OAKLEY) [RFC 2412][22] and the
Versatile Secure Key Exchange Mechanism for Internet (SKEME)[23].

ISAKMP provides a common framework for two communication parties
to establish SA and cryptographic keys in an Internet environment. ISAKMP
defines the procedures for authenticating a communicating peer, for creation
and management of Security Associations, for key generation techniques, and
for threat mitigation (e.g., denial of service and replay attacks). However
ISAKMP does not define any specific key exchange technique so that it can
support many different key exchange techniques.
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OAKLEY describes a protocol by which two authenticated parties can
agree on secure and secret keying material. The OAKLEY protocol supports
Perfect Forward Secrecy, compatibility with the ISAKMP protocol for man-
aging Security Associations, user-defined abstract group structures for use
with the Diffie-Hellman algorithm, key updates, and incorporation of keys
distributed via out-of-band mechanisms. The basic mechanism is the Diffie-
Hellman key exchange algorithm.

SKEME describes an authenticated key exchange technique which sup-
ports deniability of connections between communication partners and quick
key refreshment.

As a hybrid protocol of these work, IKE can be thought of as a suite
of two-party protocols, featuring authenticated session key exchange, most
of which in the suite use the Diffie-Hellman key exchange mechanism. IKE
has many options for the two participants to negotiate and agree upon in an
on-line fashion.

5.2.2.1 Two phases of IKE

IKE operates in two phases, namely, Phase 1 and Phase 2.

1. IKE Phase 1

The purpose of Phase 1 is to authenticate the communicating peers and
generate the shared secret from which other keys will be computed. For IKE
Phase 1, IKE has several modes, Main Mode, Aggressive Mode, Base Mode,
New Group Mode, etc.

Phase 1 assumes that each of the two parties involved in a key exchange
can verify the cryptographic capability of the other party, where capability
might be enabled by a pre-shared secret key for a symmetric cryptosystem,
or by a private key matching a reliable copy of a public-key for a public-key
cryptosystem. Phase 1 attempts to achieve mutual authentication based on
showing that cryptographic capability and establishes a shared session key
from which other keys will be computed as an output from the IKE phases
of exchanges.

2. IKE Phase 2

Phase 2 intends to create an IPSec security association and to generate
new keys quickly, which relies on the shared session key agreed in Phase 1.
All messages in this phase are made secure due to the algorithms and keys
negotiated in Phase 1. This Create-Child-SA request may be launched by
any party once Phase 1 is completed.

A multiple number of Phase 2 exchanges may take place between the
same pair of entities involved in Phase 1. The reason for having a multiple
number of Phase 2 exchanges is that they allow the users to set up multi-
ple connections with different security properties, such as “integrity-only,”
“confidentiality-only”, “encryption with a short key” or “encryption with a
strong key”.
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Notation 5.2 (IKE key material) SKEYID is a string derived from se-
cret material known only to the active parties in the exchanges. The value
SKEYID is computed separately for each authentication method and SKEYID
is also a key seed of other keys.

For signature public-keys: SKEYID = prf (nonces, gxy mod p);

For encryption public-keys: SKEYID = prf (hash(nonces), cookies);

For pre-shared secret key: SKEYID = prf (pre-shared secret key, nonces).

The result of either Main Mode or Aggressive Mode is three groups of
authenticated keying material:

For secret to generate other keys: SKEYID d = prf (SKEYID, gxy|cookies|0);
For integrity key: SKEYID a = prf (SKEYID, SKEYID d|gxy|cookies|1);
For encryption key: SKEYID e = prf (SKEYID, SKEYID a|gxy|cookies|2).

Here, prf (key, msg) is the keyed pseudo-random function, while nonces and
cookies are from the IKE exchanges between the initiator and the responder,
and gxy is the Diffie-Hellman shared secret.

5.2.2.2 IKE Modes

For IKE Phase 1, IKE has several modes, Main Mode, Aggressive Mode,
Base Mode, New Group Mode, etc., which define how the actual key exchange
procedure is to be done. Main Mode and Aggressive Mode are two of the most
common modes. Main Mode (MM) has six message exchanges, and it should
be run first in Phase 1, that is, two parties cannot run an aggressive mode
without running a main mode first. Aggressive Mode (AM) has only three
messages, and it is optional in Phase 1, that is, it can be omitted. There
are four types of keys: pre-shared secret key, public encryption key (fields
are separately encrypted using the public-key), optimized public encryption
key (used to encrypt a random symmetric key, and then data is encrypted
using the symmetric key) and public signature key (used only for signature
purpose). For each key type there are two types of Phase 1 exchanges: a
“main mode” and an “aggressive mode”, hence there are 8 variants of IKE
Phase 1.

For IKE Phase 2, IKE supports only one mode: the Quick Mode. The
Quick Mode takes 3 packets to complete.

1. IKE Phase-1 Mode

The IKE Phase-1 is used to perform the mutual authentication, to ex-
change proposals, specific information and certificates. The result of the
Phase-1 can be called in many ways: Phase-1 SA, ISAKMP SA, IKE SA, etc.
They all mean the same thing. The Phase-1 SA is also used to protect the
actual Phase-2 negotiation and other informational notifications that may be
sent in IKE.

1) Phase-1 Main Mode The IKE negotiation always starts by execut-
ing the Main Mode in Phase-1 of the protocol. The Phase-1 Main Mode is
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performed as shown in Fig. 5.13.
1. Initiator→ Responder : HDR, SA

2. Responder→ Initiator : HDR, SA

3. Initiator→ Responder : KE, NONCE, CR

4. Responder→ Initiator : KE, NONCE, CR

5. Initiator→ Responder : ID, *CERT, SIGR

6. Responder→ Initiator : ID, *CERT, SIG

Fig. 5.13 Message flow for IKE Phase-1 Main Mode.

Notation

HDR is an ISAKMP header whose exchange type defines the IKE mode.
SA is used to list the security properties supported by the initiator and the
responder respectively. Key Exchange (KE) payload is the Diffie-Hellman
public value, and is used to exchange the Diffie-Hellman public-keys. NONCE
payload by the initiator or the responder respectively is used (with other
information) in the IKE to compute the secret data for the Phase-1 SA.
CR payload is certification request, and it includes the name of the CA
(certification authority). ID payload is used to tell the other party who the
sender or the responder is. The CERT payload includes the sender’s or the
responder’s end entity certificate, and is also possible to send Certificate
Revocation List (CRL). The signature payload (SIG) is the digital signature
that the other party must verify. * indicates optional or situation-dependent
messages that are not always sent.

Premise

CERT is a certification of the initiator or the responder and corresponding
public-key signed by a trusted certificate authority CA.

Protocol actions

The first two messages negotiate policy; the next two exchange Diffie-
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Hellman public values and ancillary data (e.g., nonces) necessary for the ex-
change, and the last two messages authenticate the Diffie-Hellman Exchange.

In Message 1: The initiator sends an HDR including an initiator cookie.
The HDR is an ISAKMP header whose exchange type defines the IKE mode.
An ISAKMP Header fields includes Initiator Cookie, Responder Cookie, Mes-
sage ID etc. During Phase 1 negotiation, the initiator and responder cookies
determine the ISAKMP SA. Message ID is a unique message identifier ran-
domly generated by the initiator in Phase 2, which is used to identify protocol
state during Phase 2 negotiation. This Message ID and the initiator’s SPI(s)
to be associated with each protocol in the proposal are sent to the responder.
The SPI(s) will be used by the security protocols once the Phase 2 negoti-
ation is completed. During Phase 1 negotiation, Message ID must be set to
0.

The SA payload is mandatory and it is used to list the security properties
the initiator supports. It includes the ciphers, hash algorithms, key lengths,
life time, and other information. It is possible to send only one SA payload
in Phase-1.

In Message 2: The responder sends back an HDR including a responder
cookie to the initiator. The responder must also include SA payload in its
reply. The SA payload the responder sent includes the security properties it
selected from the initiator’s security property list (the SA payload).

Note that Message 1 and Message 2 are not encrypted, since there are no
key to encrypt them with.

In Message 3: The IKE protocol is based on the Diffie-Hellman key ex-
change algorithm, which was the first ever invented algorithm that uses
public-key cryptography (in 1976). Message 3 is used to exchange the Diffie-
Hellman public-keys inside a Key Exchange (KE) payload. The Diffie-Hellman
public-keys are created automatically every time the Phase-1 negotiation is
performed, and they are destroyed automatically after the Phase-1 SA is
destroyed.

There is also a NONCE payload that is generated by the sender and sent
in Message 3 which is used (with other information) in the IKE to compute
the secret data for the Phase-1 SA. The NONCE payload includes random
data from random number generator.

The CR payload is a Certificate Request payload and is used to request
for certificates by a specific CA. The CR payload includes the name of the
CA for which it would like to receive the remote’s end entity certificate (peer
certificate). If empty CR payload is received, it means that it requests any
certificate from any CA.

In Message 4: The responder also sends its Diffie-Hellman public-key,
NONCE and CR payload in Message 4 to the initiator.

The CR payload is usually sent in the third and fourth packets, but it
can be sent also in the first and second packets. Message 3 and Message 4
are not encrypted, since there is no key to encrypt them with.

In Message 5: The ID payload is used to tell the other party who the
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sender is, and it also can be used to make policy decisions and to find the
certificate of the remote end. The ID may be IP address, Fully Qualified
Domain Name (FQDN), email address, or something similar.

The initiator may send zero (0) or more certificate payloads (CERT),
with each including one certificate (or CRL). The CERT payload is optional
payload, but usually if it is not sent, the result of the IKE is “Authentication
Failed” error. The CERT payload includes the sender’s end entity certificate,
but it is also possible to send CRL inside a CERT payload. The CERT
payload is optional because it is possible that the remote end has cached the
public-key locally, and does not need to receive the CERT payload in the
negotiation. Usually implementations do not cache it locally and in this case
failing to send CERT payload also causes failure of the IKE negotiation.

The signature payload (SIG) is the digital signature that the other party
must verify. The SIG payload includes the digital signature computed with
the private key of the corresponding public-key (usually sent inside the CERT
payload), and provides the authentication to the other party. When both of
the parties successfully verify each other’s SIG payloads, they are then mutu-
ally authenticated. They use the public-key found in the certificate (usually
received in CERT payload, or some other means (cached locally, fetched from
Lightweight Directory Access Protocol (LDAP), etc.)) to verify the signature.
Before verifying the signature they also verify the certificate of the remote
end. They check whether they trust the issuer (Certificate Authority, CA)
of the certificate, and they also check whether the certificate is valid (not
revoked, etc.) or not.

In Message 6: The responder also sends its ID, CERT and SIG payload
in Message 6 to the initiator.

Note that Message 5 and Message 6 are fully encrypted, since the key
was computed after Message 3 and Message 4 (where the Phase-1 SA is
created and Diffie-Hellman public values is computed). When communication
is protected, all payloads following the ISAKMP header MUST be encrypted.

After these packets are sent and the digital signatures are successfully
verified the result of this Phase-1 negotiation is the Phase-1 SA, which can
be used to protect other packets sent in the IKE, such as the packets of the
Phase-2 negotiation. This also completes the Phase-1 negotiation successfully.

2) The Phase-1 Aggressive Mode The Phase-1 Aggressive Mode is per-
formed as shown in Fig. 5.14.

1. Initiator → Responder: VID, SA, KE, NONCE, ID

2. Responder → Initiator: VID, SA, KE, NONCE, ID, *CERT,

SIG

3. Initiator → Responder: *CERT, SIG

Notation

VID means Vendor ID. Other notations are the same as in the IKE Phase-
1 Aggressive Mode
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Fig. 5.14 Message flow for IKE Phase-1 Aggressive Mode.

Premise

CERT is a certificate of the initiator or the responder and its correspond-
ing public-key signed by a trusted certificate authority CA.

Protocol actions

1) In Message 1: The initiator sends the crypto proposal supported, ex-
changes Diffie-Hellman public values and ancillary data necessary for the
exchange, and identities.

2) In Message 2: The responder selects the crypto supported from the
initiator’s security property list (the SA payload), exchanges Diffie-Hellman
public values and ancillary data necessary for the exchange, and identities.
In addition Message 2 authenticates the responder.

3) In Message 3: Message 3 authenticates the initiator and provides a
proof of participation in the exchange.

2. The IKE Phase-2 Mode

After the Phase-1 is successfully completed the Phase-2 negotiation can
proceed. The purpose of the Phase-2 exchange is to provide and to refresh
the key material that is used to create the Security Associations (SAs) to
protect the actual IP traffic with IPSEC. The Phase-2 exchange is protected
by encrypting the Phase-2 packets with the key material derived from the
Phase-1. The Phase-2 also provides proposal list which defines the actual
ciphers, HMACs, hash algorithms and other security properties that are used
in the protection of the IP traffic. The proposal proposed in the Phase-1 is
merely for protection of traffic under the Phase-1 SA (like the packets of the
Phase-2), and not for the actual IP traffic. The Phase-2, also called the Quick
Mode, is for the protection of the actual IP traffic. Since the ISAKMP SA
is bi-directional, either communication party may initiate Quick Mode. The
Phase-2 Quick Mode is performed as shown in Fig. 5.15.

Notation

HASH payload is the keying material exchanged. The SA payload is the
Phase-2 proposal list which indicates the security properties. The NONCE
payload includes always random data. The KE payload is from the ephemeral
Diffie-Hellman exchange of Phase-1 Main Mode, and is confidential in Quick
Mode. The ID payload is the participant’s ID, usually IP address. * indicates
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Fig. 5.15 Message flow for IKE Phase-2 Quick Mode.

optional or situation-dependent messages that are not always sent.

Premise

Diffie-Hellman public values have already exchanged in Phase 1.

Protocol actions

1) In Message 1: The initiator sends SA, HASH, NONCE and ID payloads
to the responder to generate a new session key for IP traffic.

The SA payload is the Phase-2 proposal list which includes the ciphers,
HMACs, hash algorithms, life times, key lengths, the IPSEC encapsulation
mode (ESP, AH etc.) and other security properties. Note that it is possible
to send more than one SA payloads in Phase-2, although usually only one is
sent.

The HASH and NONCE payloads (marked here as NI) are the keying
material which are exchanged, and then are used to create the new key pair.
The NONCE payload includes always random data.

The ID payloads, marked as IDI and IDR, for initiator’s ID and respon-
der’s ID, respectively, are optional in Phase-2. Usually IKE implementations
do send the ID payloads in Phase-2 since they can be easily used to make
local policy decisions. However, as noted, they are not mandatory and can be
omitted. The IDI is the initiator’s ID, usually IP address or similar, and the
IDR is the responder’s ID, usually IP address, IP range or IP subnet. Both
of the initiator and responder usually use the ID payloads to search the lo-
cal policy for matching connection. The ID payloads in the Phase-2 are also
called “proxy IDs”, “pseudo IDs” or similar, since they do not necessarily
represent the actual negotiator (for example when Security Gateway (SGW)
negotiates on behalf of some client).

2) In Message 2: The responder selects the crypto from the Phase-2 pro-
posal list, and sends HASH, NONCE (marked here as NR) and ID payloads.

3) In Message 3: The initiator sends a HASH payload.
After the Phase 2 has been completed by sending the last packet, the

result of the Phase-2 is two Security Associations (SAs). One is for inbound
traffic, the other is for outbound traffic. This also completes the IKE key
exchange for basic key exchange.

Note that all messages in Phase 2 are encrypted using SKEYID e, and
integrity protected using SKEYID a.
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5.2.3 Security analysis of IKE based on trusted freshness

The examples in this subsection assume that digital signatures are used in
authentication and key establishment of IKE.

5.2.3.1 Security analysis of main mode

Example 5.8 (Public Signature Keys, IKE Phase-1 Main Mode) Figure
5.16 illustrates the message exchanges related to authentication and key es-
tablishment in public signature key-based IKE Phase-1 Main Mode, and some
minute details are omitted.

Message 1 A→ B : HDRA,SAA

Message 2 B → A : HDRB,SAB

Message 3 A→ B : HDRA, g
x, NA

Message 4 B → A : HDRB, g
y, NB

Message 5 A→ B : HDRA,
{

IDA,CertA, {HASHA}K−1
A

}
SKEY ID

Message 6 B → A : HDRB,
{

IDB,CertB, {HASHB}K−1
B

}
SKEY ID

Fig. 5.16 Message exchanges in signature-based IKE phase-1 main mode.

Notation

A denotes the initiator, B denotes the responder.
HDRA and HDRB, ISAKMP headers of A and B, respectively are for

keeping the session state information for these two entities.
SAA, SAB are the Security Associations (SA) of A and B, respectively. A

and B use SAA, SAB to negotiate parameters to be used in the current run
of the protocol: encryption algorithms, signature algorithms, pseudo-random
functions for hashing messages to be signed, etc. A may propose a set of
proposals, whereas B must reply with only one choice.
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x and y are the private values randomly chosen by the initiator A and
the responder B respectively. gx, gy are the Diffie-Hellman public values of
A and B respectively. The gxy can be computed via (gy)x or (gx)y by A and
B, respectively.

NA and NB are nonces randomly chosen by A and B, respectively.
IDA and IDB are endpoint identities of A and B, respectively.
CertA and CertB are certifications of A and B issued by a trusted cer-

tificate authority CA, respectively.
HASH A and HASH B are hash values computed by A and B, respectively.

The entire ID payload (including ID type, port, and protocol but excluding
the generic header HDR) is hashed into both HASH A and HASH B.

HASHA = prf1 (SKEYID|gx|gy|CA|CB|SAA|IDA)
HASHB = prf1 (SKEYID|gy|gx|CB |CA|SAB|IDB)

where SKEYID is the new session key between A and B, which can be com-
puted as SKEYID = prf2(NA|NB|gxy). CA and CB are the initiator’s and
the responder’s cookie respectively. prf1 and prf2 are pseudo-random func-
tions agreed in SAs. For A and B to authenticate each other, the mutually
obtainable hash values HASH A and HASH B will be signed by A and B
respectively via the negotiated digital signature algorithm.

Note that we do not distinguish SKEYID from SKEYID d, SKEYID
a, SKEYID e, etc., since all these keys can be derived from SKEYID and
some open key materials.

Premise

Both A and B trust the issuer CA of the certificates CertA and CertB,
and they could verify that the certificate is valid (not revoked, etc.). That is,
they know the public-key of CA to get KA of A and KB of B. Each principal
knows the key pair of himself, that is, KA and K−1

A for A, KB and K−1
B for

B.

Protocol actions

1) In Message 1, the initiator A starts the negotiation by sending an
HDRA including a null Message ID, an initiator cookie CA, and an SAA

including encryption algorithms, signature algorithms, pseudo-random func-
tions for hashing messages to be signed, key lengths, life time, and other
information.

2) Upon receiving Message 1, since the Message ID is NULL, then a
Phase-1 Main Mode is applied.

3) In Message 2, the responder B sends back an HDRB including a re-
sponder cookie CB and also the initiator cookie CA to A. The responder also
includes an SAB in its reply to indicate the security properties B selects.

4) In Message 3, A randomly chooses a Diffie-Hellman private value x and
a nonce NA for this run. Then A computes the Diffie-Hellman public-key gx

and sends it to the responder B with NA.
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5) In Message 4, B also randomly chooses a Diffie-Hellman private value
y and a nonce NB for this run. Then B computes the Diffie-Hellman public
value gy and sends it to the initiator A with NB.

Up to now, they have exchanged the Diffie-Hellman public values and
ancillary data (e.g., nonces) necessary, and both A and B could compute the
new session key SKEYID = prf2(NA|NB|gxy).

6) In Message 5, A computes the hash of the entire ID payload HASHA =
prf1(SKEYID|gx|gy|CA|CB |SAA|IDA), signs HASH A using A’s private key
K−1

A to show his identity of A, and then encrypts all payloads following
the ISAKMP header {IDA,CertA, {HASHA}K−1

A
} using the negotiated new

session key SKEYID.
7) Upon receiving Message 5, B decrypts {IDA,CertA,

{HASHA}K−1
A
}SKEYID to get {IDA,CertA, {HASHA}K−1

A
} using SKEYID,

verifies CertA to get KA, and then checks the correction of the hash value:
{
{HASHA}K−1

A

}
KA

= HASHA = prf1(SKEYID|gx|gy|CA|CB |SAA|IDA).

8) In Message 6, B does similar things as A has done in Message 5. Upon
receiving Message 6, A does similar things as B has done upon receiving
Message 5.

Successful execution should authenticate the identities of the communi-
cation parties A and B, and establish a new session key SKEYID between
A and B. Actually, Phase-1 Main Mode l suffers from a flaw which has been
proved by Lowe, Meadows and Mao respectively[5, 24, 25].

Protocol security analysis

1) In Message 1 and Message 2, neither A nor B could draw any useful
assurance from it since there is not any trusted freshness identifier from the
point of view of the two parties.

2) In Message 3, from Lemma 4.2 and Lemma 4.3, A has the freshness
assurance of the randomly chosen Diffie-Hellman private value x and the
nonce NA, and A also believes that x is confidential and NA is open.

3) Upon receiving Message 3, from Lemma 4.2, B believes that NA is
open and x is confidential.

4) Similarly, in Message 4, from Lemma 4.2 and Lemma 4.3, B has the
confidentiality and the freshness assurances of the randomly chosen Diffie-
Hellman private value y, and the nonce NB is fresh and open. Further, B
could compute the new session key SKEYID = prf2(NA|NB|gxy), and from
Lemma 4.2 and Lemma 4.3, B has the confidentiality and the freshness as-
surances of SKEYID.

5) Upon receiving Message 4, from Lemma 4.2, A believes that NB is
open and y is confidential. Further, A could compute the new session key
SKEYID = prf2(NA|NB|gxy), and from Lemma 4.2 and Lemma 4.3, A has
the confidentiality and the freshness assurances of SKEYID.
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6) In Message 5, A could not get any new assurance.
7) Upon receiving Message 5, from Lemma 4.1, B has the liveness assur-

ance ofA based on the trusted freshnessNB and SKEYID = prf2(NA|NB|gxy),
since it must be A who has signed the fresh hash value HASHA =
prf1(SKEYID|gx|gy|CA|CB |SAA|IDA) using A’s private key. From Lemma
4.4, B has the association assurance of SKEYID with A, since only A could
sign HASH A using A’s private key, and the identity of A is explicitly indi-
cated in Message 5.

8) Similarly, in Message 6, B could not get any new assurance. Upon
receiving Message 6, A has the liveness assurance of B and the association
assurance of SKEYID with B.

Upon termination of the protocol run, the analyzing result from Table
5.5shows that A believes that B is present, and the new session key SKEYID
is confidential, fresh, and associated with B, while B believes that A is
present, and the new session key SKEYID is confidential, fresh, and as-
sociated with A.

Table 5.5 Security analysis of the IKE phase-1 main mode

A B

B NA NB x y SKEYID A NA NB x y SKEYID

Message 1

Message 2

Message 3 01# 11# 0?# 1?#

Message 4 0?# 1?# 11# 01# 11# 11#

Message 5 1 11A

Message 6 1 11B

End of run 1 11B 1 11A

Example 5.9 (Attack-1 on Signature-based, IKE Phase-1 Main Mode) From
the absence of the association of SKEYID with B in the point of view of B,
there exists an attack[5, 24, 25], as shown in Fig. 5.17.

Message 1 A→ I : HDRA,SAA

Message 1′ I(A)→ B : HDRA,SAA

Message 2′ B → I(A) : HDRB,SAB

Message 2 I → A : HDRB,SAB

Message 3 A→ I : HDRA, g
x, NA

Message 3′ I(A)→ B : HDRA, g
x, NA

Message 4′ B → I(A) : HDRB, g
y, NB

Message 4 I → A : HDRB, g
y, NB

Message 5 A→ I : HDRA,
{

IDA,CertA, {HASHA}K−1
A

}
SKEY ID

Message 5′ I(A)→ B : HDRA,
{

IDA,CertA, {HASHA}K−1
A

}
SKEY ID
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Message 6′ B → I(A) : HDRB,
{

IDB,CertB, {HASHB}K−1
B

}
SKEY ID

Message 6 I → A : Dropped

Fig. 5.17 An attack on the signature-based IKE phase-1 main mode.

Notation

I denotes the adversary, and I(A) is an adversary I impersonating the
initiator A. Other notations are the same as the original IKE phase-1 main
mode.

Premise

The premises are the same as the original IKE phase-1 main mode.

Protocol actions

1) In Message 1, the initiator A starts a protocol run with I. In Message
1′, the adversary I(A) replays the Message 1 to B to start a fake protocol
run between A and B by impersonating B. B responds to Message 2′.

2) Upon receiving Message 2′ and so on, the adversary I just replays all
the follwing messages to the initiator A or the responder B respectively until
receiving Message 6′.

3) Upon receiving Message 6′, the adversary I just drops this message.
Upon termination of the attack on the IKE Phase-1 Main Mode with

both side certificates, the adversary I causes B to have false beliefs: B has
completed a successful protocol run with A, and is sharing a new session key
SKEYID with A, whereas in fact, A knows nothing about the key establish-
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ment with B, while A thinks that A has been talking with I in an incomplete
run. Furthermore, B will never be notified of any abnormality and B will keep
the session state information for these two entities A (Actually the adversary
I) and B. This is effective for the adversary I to make a denial of service
attacks[24].

Note that the adversary I could not launch an attack similar to Example
5.3, since the HASH A includes the confidential and fresh seed of SKEYID.

5.2.3.2 Security analysis of aggressive mode

Example 5.10 (Public signature keys, IKE phase-1 aggressive mode) Ag-
gressive Mode is a cut-down simplification from IKE Phase-1 Main Mode,
and Fig. 5.18 shows the message exchanges with some minute details omit-
ted. The first two messages negotiate policy, exchange Diffie-Hellman public
values and ancillary data necessary for the exchange, and identities. In ad-
dition, the second message authenticates the responder. The third message
authenticates the initiator and provides a proof of participation in the ex-
change.

Aggressive Mode can be used to reduce round trips even further.
Message 1 A→ B : HDRA,SAA, g

x, NA, IDA

Message 2 B → A : HDRB,SAB , gy, NB, IDB, [CertB], {HASHB}K−1
B

Message 3 A→ B : [CertA], {HASHA}K−1
A

Fig. 5.18 Message exchanges in signature-based IKE phase-1 aggressive mode.

[x] indicates that x is optional, other notations, premise and protocol
actions in this mode are the same as those in Main Mode (Example 5.8),
hence omitted.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the freshness
assurance of the private value x and the nonce NA, and A also believes that
x is confidential and NA is open.

2) Upon receiving Message 1, from Lemma 4.2, B believes that NA is
open and x is confidential.

3) In Message 2, from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and the freshness assurances of the private value y, and the nonce NB
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is fresh and open. Further, B could compute the new session key SKEYID =
prf2(NA|NB|gxy), and from Lemma 4.2 and Lemma 4.3, B has the confiden-
tiality and the freshness assurances of SKEYID.

4) Upon receiving Message 2, from Lemma 4.1, A has the liveness assur-
ance ofB based on the trusted freshnessNA and SKEYID = prf2(NA|NB|gxy),
since it must be B who has signed the fresh hash value HASHB =
prf1(SKEYID|gx|gy|CA|CB |SAB |IDB) using B’s private key. From Lemma
4.4, A has the association assurance of SKEYID with B, since only B could
sign HASH B using B’s private key, and the identity of B is explicitly indi-
cated in Message 2.

5) Similarly, upon receiving Message 3, from Lemma 4.2 and Lemma
4.3, B has the liveness assurance of A based on the trusted freshness NB

and SKEYID = prf2(NA|NB|gxy), since it must be A who has signed the
fresh hash value HASHA = prf1(SKEYID|gx|gy|CA|CB |SAA|IDA) using A’s
private key. From Lemma 4.4, B has the association assurance of SKEYID
with A, since only A could sign HASH A using A’s private key, and the
identity of A is explicitly indicated in Message 3.

Upon termination of the protocol run, the analyzing result is indicated
in Table 5.6, it means A believes that B is present, and the new session key
SKEYID is confidential, fresh, and associated with B, while B believes that
A is present, and the new session key SKEYID is confidential, fresh, and
associated with A.

Table 5.6 Security analysis of the IKE phase-1 aggressive mode

A B

B NA NB x y SKEYID A NA NB x y SKEYID

Message 1 01# 11# 0?# 1?#

Message 2 1 0?# 1?# 11B 01# 11# 11#

Message 3 1 11A

End of run 1 11B 1 11A

Note that HASH A and HASH B take the new session key SKEYID as its
seed input to pseudo-random function, hence the signature of these two hash
values could not be faked, and the signatures are exclusively verifiable by the
principals who hold the agreed session key. However, the attack (Example
5.9 Attack-1) on IKE main mode is still effect on the IKE aggressive mode.

5.2.3.3 Security analysis of quick mode

Example 5.11 (Public signature keys, IKE phase-2 quick mode) Each in-
stance of a Quick Mode uses a unique initialization vector (e.g., Message ID),
hence it is possible to have multiple simultaneous Quick Modes, based on a
single ISAKMP SA, in progress at any one time. Quick Mode is essentially an
SA negotiation and exchanges of nonces that provides replay protection. The
nonces are used to generate fresh key material and to prevent replay attacks
from generating bogus security associations. Base Quick Mode (without the
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KE payload) refreshes the keying material derived from the exponentiation in
Phase-1. Figure 5.19 illustrates the Quick Mode exchanges related to security.

Message 1 A→ B : HDRA, {HASH1,SAA, NA, [gx], [IDA, IDB]}SKEY ID

Message 2 B → A : HDRB , {HASH2,SAB, NB, [gy], [IDA, IDB]}SKEY ID

Message 3 A→ B : HDRA, {HASH3}SKEY ID

Fig. 5.19 Message exchanges in signature-based IKE phase-2 quick mode.

Notation

[x] indicates that x is optional, other notations in Quick Mode are the
same as those in Main Mode except the following:

k is a new session key generated from this Quick Mode run.

k = prf (SKEYID d, gxyqm|protocol |SPI |NA|NB)

where gxyqm is the shared secret from the ephemeral Diffie-Hellman exchange
of this Quick Mode. “protocol” and “SPI ” are from the ISAKMP proposal
payload that contains the negotiated transform.

HASH1 and HASH3 are hash values computed by A, while HASH2 by B:

HASH1 = prf (SKEYID a, IDAB|SAA|NA[|gx][|IDA|IDB ])
HASH2 = prf (SKEYID a, IDAB|NA|SAB|NB[|gy][|IDA|IDB ])
HASH3 = prf (SKEYID a, 0|IDAB|NA|NB)

IDAB is a message ID to indicate a Quick Mode in progress for a partic-
ular ISAKMP SA, and this particular SA is identified by the cookies in the
ISAKMP header.

Premise

gxy is from the ephemeral Diffie-Hellman exchange of Phase-1 Main Mode,
and is confidential in Quick Mode. Suppose the key SKEYID a from Main
Mode is confidential and only known by A and B. Other premises are the
same as those in Main Mode.
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Protocol actions

Omitted for interest of concision.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, A has the freshness
assurance of the nonce NA, and the confidentiality and freshness assurances
of the value x. From Lemma 4.4, A has the association assurance of NA and
x with A and B, since the key SKEYID a from Main Mode is confidential
and only known by A and B.

2) Upon receiving Message 1, B could not draw any useful assurance from
Message 1 since there is not any trusted freshness identifier from the point
of view of B.

3) Similarly, in Message 2, from Lemma 4.2 and Lemma 4.3, B has the
freshness assurance of the nonce NB, and the confidentiality and freshness
assurances of both y and k. From Lemma 4.4, B has the association assurance
of NB, y and k with A and B.

4) Upon receiving Message 2, from Lemma 4.2, Lemma 4.3, and Lemma
4.4, A believes that k is confidential, fresh and associated with A and B based
on the trusted freshness NA. From Lemma 4.1, A has the liveness assurance
of B based on the trusted freshness NA, since it must be B who has gener-
ated the fresh hash value HASH2 = prf (SKEYID a, IDAB|NA|SAB|NB[|gy]
[|IDA|IDB]) using the shared key SKEYID a.

5) Similarly, upon receiving Message 3, from Lemma 4.1, B has the live-
ness assurance of A from the hash value HASH3 = prf (SKEYID a, 0|IDAB|
NA|NB) including the trusted freshness NB.

Table 5.7 shows the analyzing result of the IKE phase-2 quick mode. Upon
termination of the protocol run, with the premise that the gxy from Main
Mode is confidential in Quick Mode, the protocol achieves thatA believes that
B is present, and the new session key k is confidential, fresh, and associated
with both A and B, while B believes that A is present, and the new session
key k is confidential, fresh, and associated with A. Hence, IKE Phase-2 Quick
Mode has achieved the key exchange and authentication security objects as
it intends to.

Table 5.7 Security analysis of the IKE phase-2 quick mode

A B

B NA NB x y k A NA NB x y k

Message 1 01AB 11AB 0?# 1?#

Message 2 1 0?# 1?# 11AB 01AB 11AB 11AB

Message 3 1

End of run 1 11AB 1 11AB

However, we should note that if gxy from Main Mode was not confidential
in Quick Mode, that is, if gxy was known by the adversary, then the adversary
could initiate a Quick Mode instance at any one time by impersonating A or
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B, and shared a new session key with the victim.

5.3 Kerberos — the network authentication protocol

In open network computing environments, a user (an employee, a subscriber
or a customer) may be provided with various kinds of information resources
and services: remote hosts, file servers, printers, and many other networked
services. When a user requests use of a network service, the service provider
wants an assurance that the user is who he says he is in a physically insecure
network. However, it would be unrealistic and uneconomic to require a user
to maintain several different cryptographic assurances, no matter whether
in terms of memorizing various passwords, or in terms of holding a number
of smartcards. Furthermore, unencrypted passwords sent over the network
may suffer from the “sniff” attack. Hence, Kerberos[6, 7] is introduced by
Massachusetts Institute of Technology (MIT) as a solution to these network
security problems: a trusted third party mediates between a user and a re-
source server by issuing a shared session key between the two entities. The
Kerberos protocol allows a legitimate user to log onto his terminal once a
day (typically) and then transparently access all the networked resources he
needs for the rest of that day. Each time the legitimate user wants to access
an information resource, to retrieve a file from a remote server for example,
Kerberos will securely handle the required authentication behind the scene
without any user intervention.

5.3.1 Kerberos overview

Kerberos is developed as part of the MIT Athena project. The Kerberos
protocol is designed to provide strong authentication so that a client can prove
its identity to a server (and vice versa) across an insecure network connection.
After a client and a server have proved their identities via Kerberos, they can
also encrypt all of their communications to assure privacy and data integrity
as they go about their business. Furthermore, Kerberos is being used as a
building block for higher-level protocols. Kerberized applications are those
that use the Kerberos authentication protocol to provide authentication, and
to provide encryption and signing for subsequent messages. Kerberos relies
on conventional encryption rather than public-key encryption, that is, it uses
private-key cryptography. PKINIT[26], which adds public-key authentication
and a fair amount of complexity to the basic protocol, is an extension of
Kerberos 5.

In basic Kerberos, a session generally starts with a user logging onto a
system. This triggers the creation of a client process that will transparently
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handle all his authentication requests. The client process—usually acting
for a human user – interacts with three other types of principals when using
Kerberos 5. The initial authentication between the client and the Kerberos
administrative principal is traditionally based on a shared key derived from
a password chosen by the user. The client’s goal is to be able to authenti-
cate himself/herself to various application servers (e.g., email, file, and print
servers). This is done by obtaining a “Ticket-granting ticket” (TGT) from a
“Kerberos Authentication Server” (AS) and then presenting this TGT to a
“Ticket-Granting Server” (TGS) in order to obtain a “Service ticket” (ST).
ST is the credential that the client uses to authenticate himself/herself to
the application server. The AS and the TGS together are known as the “Key
Distribution Center” (KDC)

A TGT might be valid for a day, and may be used to obtain several STs
for many different application servers from the TGS, while a single ST is
valid for a few minutes (although it may be used repeatedly) and is used for
a single application server. That is, Authentication Service Exchange occurs
once for every logon session, the user doesn’t need to login every time he
starts an application that uses Kerberos. Delegation refers to the facility for
a service to impersonate an authenticated client in order to relieve the user
of the additional burden of authenticating to multiple services. To the latter
services, it will look as if they are communicating directly with the user,
whereas in reality another service will sit between them and the user.

Kerberos can provide authentication, authorization and accounting secu-
rity properties. Authentication is the confirmation that a user who is request-
ing services is a valid user of the network services requested. Authorization is
the granting of specific type of service to a user based on their authentication,
and what services they are requesting and what the current system state is.
Accounting is the tracking of the consumption of network resources by users.

Kerberos is more secure than LAN Manager(LM) authentication and
NTLM authentication, since user’s passwords are never sent across the net-
work encrypted or in plain text; session keys are only passed across the
network in encrypted form; client and server systems are mutually authenti-
cated, and Kerberos limits the duration of their users’ authentication.

There are two major versions of Kerberos in common use. Version 4 is
the most widely used version and it uses DES encryption algorithm, which
has been shown to be vulnerable to brute-force-attacks with little comput-
ing power. Version 5 is a draft Internet Standard (RFC 1510[6]) which has
corrected some of the security deficiencies of Version 4. For example, Ker-
beros Version 5 has indicated the notion realm of the user, added a random
nonce to assure the response fresh, improved the ticket lifetime to enhance
the security, etc.

Here are the related ports, protocols and functions of Kerberos:
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Port Protocol Function

88 UDP TCP Kerberos V5

750 UDP TCP Kerberos V4 Authentication

751 UDP TCP Kerberos V4 Authentication

752 UDP Kerberos password server

753 UDP Kerberos user registration server

754 TCP Kerberos slave propagation

1109 TCP POP with Kerberos

2053 TCP Kerberos demultiplexer

2105 TCP Kerberos encrypted rlogin

In Windows 2000, 56bit DES and 128bit RC4 are the most commonly used
ones in Kerberos; in Windows Server 2003, RC4-HMAC, DES-CBC-CRC and
DES-CBC-MD5 are commonly used; in Windows XP, RC4 is commonly used
while others are allowed, and DES is notably used; in Windows Vista, 256bit
AES, 3DES, SHA2 are commonly used.

5.3.1.1 Terms

Term 5.1 Kerberos uses “realm” to group user accounts. A Kerberos realm
means a single Kerberos administrative domain, and it includes at lease a
Kerberos server, a number of Clients and several Application servers.

Kerberos supports inter-realm authentication, but the Kerberos server in
each realm should shared a secret key with those servers in other realms,
and the Kerberos server in one realm should trust the one in other realm
to authenticate its users. Realms are typically organized hierarchically. Each
realm shares a key with its parent and a different key with each child.

A Kerberos server, which is a trusted third party, or, in Kerberos ter-
minology, the Key Distribution Center (KDC). The KDC itself is made of
two subservices: the Authentication Service and the Ticket Granting Ser-
vice. In Windows 2000 and Windows Server 2003, both services run on the
KDC server. While in other Kerberos implementations these two subservices
can run on different machines such as an Authentication Server (AS) and
a Ticket Granting Server (TGS). This is for the scenario where application
servers belong to different TGS’s in different domains.

A number of clients, all should have registered with the Kerberos server
KDC to use the information resources and services.

Several application servers, which are target servers that provide infor-
mation resources and services, and they all have shared long-term keys with
the Kerberos server KDC.

Notation 5.3 Key Distribution Center (KDC) is composed of an Authen-
tication Server (AS) and a Ticket Granting Server (TGS). It has a database
that houses all principals, including severs and clients, and their keys for a
given realm. For example, the Kerberos KDC runs on every Windows 2000
domain controller and Windows 2003 server.
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Notation 5.4 Authentication Server (AS) authenticates a client logon and
issues a Ticket Granting Ticket (TGT) for future authentication.

Notation 5.5 Ticket Granting Server (TGS) is responsible for accepting
and verifying TGT from the AS, and grants application service tickets to
clients holding this TGT. The existence of TGS allows the clients only to
have to authenticate themselves once to the AS to get TGT, which can then
be presented to the TGS.

Notation 5.6 Application Server (S) is responsible for accepting and ver-
ifying service tickets from the TGS, and grants information resources and
services to a network client.

Notation 5.7 Client (C)Client is a Client (a user process) which makes use
of a network service on behalf of a user. The user credential is given to the
client C as C prompts the user to key-in his password. Note that in some
cases a server may itself be a client of some other servers. Kerberos assumes
that the workstations or machines are secure, i.e., there is no way for an
attacker to intercept communication between a user and a client.

Notation 5.8 Ticket or Kerberos ticket is encrypted protocol messages
used to confirm identities of the end participants and to establish a new
session key that both parties will shared for secure communication. Kerberos
uses two types of tickets in its process of authentication: TGTs and Service
Tickets.

Notation 5.9 Authenticator consists of timestamps that are encrypted with
the secret session key shared between the client and the AS, or between the
client and the application server. Note that the timestamp cannot exceed the
expiration time. The authenticator has a very short life time to prevent re-
play attacks, and the authenticator can only be used once. One authenticator
is typically built in per session of use of a service.

Notation 5.10 Ticket Granting Ticket (TGT) is issued by the Authenti-
cation Server (SA) that contains the client’s Privilege Attribute Certificate
(PAC).

Notation 5.11 Privilege Attribute Certificate (PAC) is strictly used in
Windows 2000 Kerberos authentication, which contains information such as
the user’s Security ID (SID), group membership SIDs, and users’ rights on
the domain.

Notation 5.12 Service Ticket is issued by the Ticket Granting Server,
which provides authentication for a specific application server or resource.

Notation 5.13 Session key is a derived value used strictly for the immedi-
ate session between a client and a resource server.
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5.3.1.2 Kerberos exchanges

The Kerberos protocol consists of several sub-protocols (or phases, or ex-
changes): the authentication service exchange, ticket granting service ex-
change, client/server exchange. The Kerberos authentication process is illus-
trated in Fig. 5.20.

Fig. 5.20 The Kerberos protocol message exchanges.

Phase 1 Authentication service exchange:

— Message 1: The client sends a request AS REQ to the authentication
server (AS) requesting a Ticket Granting Ticket (TGT) to the Ticket
Granting Server (TGS).

— Message 2: AS looks up the client and server principals named in the
AS REQ in its database, extracting their respective keys, then generates
a “random” session key (kc,tgs) for use between the client and the TGS.
AS creates and sends the client a TGT which includes the client part and
the TGS part. The part of TGT for the client including kc,tgs is encrypted
under the client’s secret key, and the part of TGT for TGS including kc,tgs
is encrypted under the long-term secret key between the AS and the TGS.

Phase 2 Ticket granting service exchange:

— Message 3: The client decrypts the encrypted part using its secret key,
verifies client’s sending nonce (to detect replays) and recovers the session
key kc,tgs, then uses kc,tgs to create an authenticator containing the user’s
name, IP address and a timestamp. The client sends this authenticator,
along with the TGT, to the TGS, requesting access to the application
server S.

— Message 4: The TGS decrypts the TGT, then uses kc,tgs inside the TGT
to verify the user’s name, IP address and the timestamp in the authen-
ticator. If everything matches, then the TGS generates a “random” new
session key (kc,s) for the client and the application server. The Kerberos
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database is queried to retrieve the record for the requested server, and the
TGS creates and sends the client a new ticket. This ticket is also made of
the client part and the S part. The part for the client encrypts the kc,s
using kc,tgs, and the part for S encrypts the kc,s with the network address,
the client’s name, the server’s name, the time of initial authentication and
an expiration time using the long-term secret key Ks,tgs between the S
and the TGS.

Phase 3 Client/server exchange:

— Message 5: The client decrypts the encrypted part using kc,tgs, verifies
client’s sending nonce and recovers the session key kc,s, then uses kc,s to
create a new authenticator containing the user’s name, IP address and a
timestamp. The client sends the received encrypted session ticket and the
encrypted new authenticator to the application server S.

— Message 6: The application server decrypts and checks the ticket, au-
thenticator, client address and timestamp. For applications that require
two-way authentication, the target server returns a message consisting of
the timestamp plus 1, encrypted with kc,s.
Up to now, the application server S and the client C have authenticated

the opponent party is who he claims to be, and the two now shared an encryp-
tion key kc,s for future secure communications. The user ID and password
are secure since they are never sent over the network.

5.3.2 Basic Kerberos network authentication service

Kerberos 5, the most recent version, is introduced in the early 1990s[6, 27],
and it is available for all major operating systems: Microsoft Windows 2000,
Microsoft Windows server 2003, and many UNIX and UNIX-like operating
systems, including FreeBSD, Apple’s Mac OS X, Red Hat Enterprise Linux
4, Sun’s Solaris, IBM’s AIX, HP’s OpenVMSLinux[28]. Especially, Microsoft
bases its Kerberos implementation on the standard defined in RFC 1510.
Fig. 5.21 shows the Message exchanges of Kerberos V:

Message 1 C → AS : Options||IDc||Realmc||IDtgs||Times||Nonce1
Message 2 AS → C : IDc||Realmc||Tickettgs||{IDtgs||Realmtgs||kc,tgs

||Times||Nonce1}Kc

Message 3 C → TGS : Options||IDs||Realms||Times||Nonce2||Tickettgs
||Authenticatorc1

Message 4 TGS → C : Realmc||IDc||Tickets||{kc,s||Times||Nonce2||IDs

||Realms}kc,tgs
Message 5 C → S : Options||Tickets||Authenticatorc2
Message 6 S → C : {Ctime||[Subkey]||[Seq]}kc,s
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Fig. 5.21 Message exchanges of domain authentication based on Kerberos.

where
Tickettgs = {IDtgs||Realmtgs||Flags||kc,tgs||Realmc||IDc||Times}Kas,tgs ,
Authenticatorc1 = {IDc||Realmc||Ctime}kc,tgs ,
Tickets = {IDs||Realms||Flags||kc,s||Realmc||IDc||Times}Ks,tgs ,
Authenticatorc2 = {IDc||Realmc||Ctime||[Subkey]||[Seq]}kc,s
The fields in the above messages are:
Options: the client may specify a number of options in the initial re-

quest. Among these options are whether preauthentication is to be performed;
whether the requested ticket is to be renewable, proxiable, or forwardable;
whether it should be postdated or allow postdating of derivative tickets, etc.

IDc, IDtgs or IDs: it is the identity of the client user, the ticket grant-
ing server or the application server. It is a uniquely named client or server
instance that participates in a network communication.

Realmc, Realmtgs or Realms: it indicates the realm of the client user, the
TGS server or the application server respectively.

Time consists of three parts:
from: the desired start time for the ticket;
till: the requested expiration time;
rtime: requested renew-till time.
Nonce1 or Nonce2: it is a random value generated by the client to assure

the response of freshness. If the same number is included in the encrypted
response from the KDC, it provides evidence that the response is fresh and
has not been replayed by an attacker.

Tickettgs: it is a ticket granting ticket to obtain service-granting ticket,
which is received from AS.
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Kc: it is a long-term key between the client and the authentication server,
which is traditionally derived from a password chosen by the user.

kc,tgs: a temporary key for secure communication between the client and
the ticket granting server.

Authenticatorc1 : it is the authenticator that contains plaintext encrypted
under kc,tgs, hence it proves that the client knows the temporary key kc,tgs.

kc,s: a temporary session key for secure communication between the client
and the application server.

Authenticatorc2 : it is the authenticator that contains plaintext encrypted
under kc,s, hence it proves that the client knows the session key kc,s.

[...]: it indicates an optional field.
Subkey: it contains the client’s choice for an encryption key which is to

be used to protect this specific application session. If this field is left out the
session key from the ticket will be used.

Seq: it is a sequence number used to detect replays. The initial sequence
number should be random and uniformly distributed across the full space of
possible sequence numbers, so that it cannot be guessed by an attacker.

Ctime: it contains the current time on the client’s host.

5.3.3 Security analysis of Kerberos based on trusted freshness

Example 5.12 Figure 5.22 illustrates the security analysis of Kerberos V5
based on trusted freshness. For ease of exposition of the mutual authenti-
cation and key establishment idea in the Kerberos Authentication Protocol,
only some mandatory protocol messages will be presented and some minute
details are omitted to avoid obscuration.

Message 1 C → AS : C, TGS, T,N1

Message 2 AS → C : C, {TGS, kc,tgs, C, T}Kas,tgs , {TGS, kc,tgs, T,N1}Kc

Message 3 C → TGS : S, T,N2, {TGS, kc,tgs, C, T}Kas,tgs ,

{C,Client time}kc,tgs
Message 4 TGS → C : C, {S, kc,s, C, T}Ks,tgs , {kc,s, T,N2, S}kc,tgs
Message 5 C → S : {S, kc,s, C, T}Ks,tgs , {C,Client time}kc,s
Message 6 S → C : {Client time}kc,s

Notation

C denotes the client, AS denotes the authentication server, TGS denotes
the ticket granting server and S denotes the application server.

T and Client time are the timestamps chosen by the client for the ticket.
N1 and N2 are nonces randomly chosen by the client for AS REQ and

TGS REQ respectively.
Kc is a long-term key between the client C and the AS, which is usually
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Fig. 5.22 Messages of the Kerberos protocol.

derived from the user’s password.
Kas,tgs and Ks,tgs are the long-term keys between AS and TGS, between

S and TGS respectively.
kc,tgs is a temporary key randomly chosen by the authentication server

AS for the temporary session between C and TGS.
kc,s is a new session key randomly chosen by the ticket granting server

TGS for this protocol run between C and the application server S.

Premise

The authentication server AS and the client C know their shared key Kc

and also K−1
c . Kas,tgs is confidential and only known by the authentication

server AS and the ticket granting server TGS; Ks,tgs is confidential and only
known by the authentication server S and the ticket granting server TGS.
N1 and N2 are randomly chosen nonces. kc,tgs and kc,s are randomly chosen
temporary keys for this protocol run.

Protocol actions

1) In Message 1, the client C starts the protocol run by sending the
identities of the client and the ticket granting server (from whom C desires
a TGT), a timestamp T and a randomly chosen new nonce N1 by C.

2) In Message 2, the authentication server AS randomly chooses a tem-
porary key kc,tgs for the subsequent communication between C and TGS,
then generates a granting ticket {TGS, kc,tgs, C, T}Kas,tgs to TGS using the
long-term key Kas,tgs between AS and TGS to show that it is AS who has
sent the ticket. AS also sends C the temporary key kc,tgs using the long-term
key Kc to keep kc,tgs secret. Kc is usually derived from the user’s password.
This is the only time that this long-term key is used in a standard Kerberos
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run because later exchanges use freshly generated keys.
3) Upon receiving Message 2, the client C may undertake the Ticket-

Granting exchange. It decrypts {TGS, kc,tgs, T,N1}Kc using the key Kc, ver-
ifies the correction of N1, and gets the temporary key kc,tgs.

4) In Message 3, the client C generates the authenticator {C,
Client time}kc,tgs to prove that the client knows the key kc,tgs. The encrypted
timestamp prevents an eavesdropper from recording both the ticket and the
authenticator to replay them later. C also forwards the ticket {TGS, kc,tgs, C,
T }Kas,tgs received in Message 2. Encrypting the authenticator in the session
key kc,tgs proves that it is generated by a party possessing the session key.
Since no one except C and the server TGS knows the session key (it is never
sent over the network in the clear), this guarantees the identity of the client
C.

5) Upon receiving Message 3, the ticket granting server TGS decrypts
{TGS, kc,tgs, C, T}Kas,tgs using the long-term key Kas,tgs, verifies the correc-
tion of the timestamp T , and gets the temporary key kc,tgs. TGS also verifies
the authenticator {C,Client time}kc,tgs .

6) In Message 4, TGS randomly chooses a new session key kc,s for the ap-
plication between S and C, then generates a service ticket {S, kc,s, C, T}Ks,tgs

to S using the long-term key Ks,tgs to show that it is TGS who has sent the
ticket. TGS also sends C the session key kc,s using the negotiated temporary
key kc,tgs to keep kc,s secret.

7) Upon receiving Message 4, C decrypts {kc,s, T,N2, S}kc,tgs using kc,tgs,
verifies the correction of the nonce N2, and gets the temporary key kc,s.

8) In Message 5, the client C generates the authenticator {C,
Client time}kc,s to prove that the client knows the key kc,s. C also forwards
the service ticket {S, kc,s, C, T}Ks,tgs received in Message 4 to the application
server S.

9) Upon receiving Message 5, the application server S decrypts {S, kc,s, C,
T }Ks,tgs using the long-term key Ks,tgs, verifies the correction of the times-
tamp T , and gets the new session key kc,s. S also verifies the authenticator
{C,Client time}kc,s .

10) In Message 6, S sends the encryption {Client time}kc,s to show the
ownership of kc,s by the identity S.

Successful execution should achieve mutual authentication and convince
both C and S that kc,s is a secure new session key between C and S.

Protocol security analysis

The security properties related to mutual authentication and key estab-
lishment idea will be indicated in detail, and other security properties, such
as the security of kc,tgs from the point of view of S, and the security of kc,s
from the point of view of TGS, will be omitted.

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce N1, and C also believes that N1 is
open. AS could not draw any useful assurance from Message 1 since there is
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not any trusted freshness identifier from the point of view of AS.
2) Upon receiving Message 2, from Lemma 4.2, C has the confidential as-

surance of kc,tgs. From Lemma 4.3, C has the freshness assurance of the tem-
porary key kc,tgs since kc,tgs is sent to C together with C’s trusted freshness
N1. From Lemma 4.4, C has the association assurance of N1 and kc,tgs with
C, since only C could get kc,tgs from the encryption {TGS, kc,tgs, T,N1}Kc

using the long-term key Kc between C and AS. From Lemma 4.4, C also
has the association assurance of N1 and kc,tgs with TGS since the identity of
TGS is explicitly indicated in {TGS, kc,tgs, T,N1}Kc of Message 2.

3) In Message 3, from Lemma 4.2 and Lemma 4.3, C has the freshness
assurance of the randomly chosen nonce N2, and C also believes that N2 is
open.

4) Upon receiving Message 3, from Lemma 4.2 and Lemma 4.3, TGS has
the confidential and freshness assurances of the temporary key kc,tgs based
on the timestamp T . From Lemma 4.4, TGS has the association assurance of
kc,tgs with both TGS and C since the identities of both TGS and C are ex-
plicitly indicated in Message 3 and the encryption {TGS, kc,tgs, C, T}Kas,tgs

could only be generated by the authentication server AS using the shared
long-term key Kas,tgs. From Lemma 4.1, TGS has the liveness assurance of
C based on the timestamp Client time, since it must be C who has just gen-
erated the authenticator {C,Client time}kc,tgs using the shared temporary
key kc,tgs.

5) Upon receiving Message 4, from Lemma 4.2, C has the confidential
assurance of kc,s. From Lemma 4.3, C has the freshness assurance of the
temporary key kc,s since kc,s is sent to C together with C’s trusted fresh-
ness N2. From Lemma 4.4, C has the association assurance of kc,s with C
and S since the identity of S is explicitly indicated in Message 4 and the
encryption {kc,s, T,N2, S}kc,tgs is generated under the shared temporary key
kc,tgs between C and TGS. From Lemma 4.1, C has the liveness assurance of
TGS based on the trusted freshness N2, since it must be TGS who has just
generated the encryption {kc,s, T,N2, S}kc,tgs using kc,tgs.

6) Upon receiving Message 5, from Lemma 4.2 and Lemma 4.3, S has the
confidential and freshness assurances of the temporary key kc,s based on the
timestamp T . From Lemma 4.4, S has the association assurance of kc,s with
both C and S since the identities of both C and S are explicitly indicated
in Message 5 and the encryption {S, kc,s, C, T}Ks,tgs could only be generated
by TGS using the shared long-term key Ks,tgs. From Lemma 4.1, S has the
liveness assurance of C based on the timestamp Client time, since it must be
C who has just generated the authenticator {C,Client time}kc,s using the
shared session key kc,s.

7) Upon receiving Message 6, from Lemma 4.1, C has the liveness assur-
ance of S based on the timestamp Client time, since it must be S who has
just generated the authenticator {Client time}kc,s using the shared session
key kc,s.

Table 5.8 indicates the analyzing result of Kerberos protocol. Upon termi-
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nation of the protocol run, S believes that C is present, and the new session
key kc,s is confidential, fresh, and associated with both C and S, while C
believes that S is present, and the new session key kc,s is confidential, fresh,
and associated with both C and S. That is, the analyzed Kerberos authen-
tication protocol has achieved the security objects of mutual authentication
and secure key establishment.

Table 5.8 Security analysis of the Kerberos protocol

C TGS S

AS TGS S N1 kc,tgs N2 kc,s C kc,tgs C kc,s

Message 1 01#

Message 2 1 01C TGS 11C TGS

Message 3 01# 1 11C TGS

Message 4 1 01CS 11CS

Message 5 1 11CS

Message 6 1

End of run 1 11CS 1 11CS

5.3.4 Public-key Kerberos

PKINIT introduces a new trust model in which the KDC is not the first
entity to identify the users (as is the case for classical Kerberos). Before
KDC authentication, users are identified by the certification authority CA
in order to obtain a certificate. In this new model the users and the KDC
obviously both need to trust the same CA.

Public-Key Kerberos PKINIT[26], which is included in Windows 2000 and
Windows Server 2003, is an extension to Kerberos 5 that uses public-key cryp-
tography for initial authentication. That is, PKINIT modifies the authentica-
tion service exchange but not other parts of the basic Kerberos 5 protocol to
avoid shared secrets between a client and an authentication server. PKINIT
enables the smart card logon process to a Windows 2000 or later domain.
PKINIT allows a client’s master key to be replaced with its public-key cre-
dentials in the Kerberos Authentication[27].

In traditional Kerberos 5 protocol, the long-term shared key in the au-
thentication service exchange is typically derived from a password, which
limits the strength of the authentication to the user’s ability to choose and
remember good passwords, while PKINIT uses public-key cryptography and
thus avoids this problem. Furthermore, if a public-key infrastructure (PKI)
is already in place, PKINIT allows network administrators to use it rather
than to expend additional effort to manage users’ long-term keys needed for
traditional Kerberos. However, this protocol extension adds complexity to
Kerberos as it retains symmetric encryption in the later exchanges but relies
on asymmetric encryption, digital signatures, and corresponding certificates
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in the first exchange. PKINIT is intended to add flexibility, security and
administrative convenience by introducing public-key cryptography.

In PKINIT, the client C and the authentication server AS each possesses
an independent public/secret key pair, KC and K−1

C for C, KS and K−1
S for

S, respectively. Certificate sets CertC and CertS issued by a PKI indepen-
dent of Kerberos are used to testify the binding between each principal and
his purported public-key. C and AS need only maintain the public-keys of a
few known certification authorities CA within the PKI. Hence, AS need not
maintain keys individually shared with each client, and dictionary attacks are
defeated as user-chosen passwords are replaced with automatically generated
asymmetric keys. Since very few users would be able to remember a random
public/private key pair, PKINIT authentication is typically used with smart-
card, where the keys and certificate chains are stored in a smartcard that the
user swipes in a reader at login time or in the user’s hard drive.

PKINIT is supported by Kerberized versions of Microsoft Windows, in-
cluding Windows 2000 Professional and Server, Windows XP, and Windows
Server 2003[29]; it has also been included in Heimdal since 2002[30]. PKINIT
is not yet supported in the MIT reference implementation.

The manner in which PKINIT works depends on both the protocol ver-
sion and the mode invoked. “PKINIT-n” is used to refer to the protocol as
specified in the nth draft revision and “PKINIT” for the generic protocol[31].
PKINIT can operate in two modes: Diffie-Hellman (DH) mode and public-
key encryption mode.

5.3.4.1 PKINIT public-key encryption mode

In public-key encryption mode, the key pairs are used for both signature and
encryption. The latter is designed to (indirectly) protect the confidentiality
of AK, while the former ensures its integrity.

Phase 1 Authentication service exchange

The abstract structure of the authentication service exchange in public-
key encryption PKINIT– 26 is given:

Message 1 C → AS : CertC , {tc, n2}K−1
c

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

The last part of Message 1, “C, TGS, T,N1”, is exactly as in basic Ker-
beros 5, containing the client’s name, the name of the TGS from which the
client wants to get a TGT, a timestamp and a nonce. CertC , {tc, n2}K−1

c
is

added by PKINIT and contains the client’s certificates CertC and client’s
signature {tc, n2}K−1

c
over a timestamp tc and another nonce n2. The nonces

n2 and timestamp tc are generated by C specifically for this request.
Message 2 is more complex than in basic Kerberos. The last part of Mes-

sage 2 “C, {TGS, kc,tgs, C, T}Kas,tgs , {TGS, kc,tgs, T,N1}k” is very similar to
AS ’s reply in basic Kerberos; the difference is that the symmetric key k



206 5 Security Analysis of Real World Protocols

which is used to protect kc,tgs is now freshly generated by AS and not a
long-term shared key that is usually derived from the client’s password. The
ticket-granting ticket TGT {TGS, kc,tgs, C, T}Kas,tgs is encrypted with a long-
term key Kas,tgs shared between AS and the ticket granting server TGS; the
TGT contains TGS’s name, kc,tgs, C’s name, and AS ’s local time T . The
message part encrypted under the freshly generated symmetric key k in-
cludes TGS’s name, kc,tgs, AS ’s local time T , and the nonce N1 from the
request. To ensure the ability to learn k of C, PKINIT adds the message part
{CertAS , {k, n2}K−1

as
}Kc in Message 2. This encryption is encrypted under

Kc, and it contains AS ’s certificate CertAS and the signature {k, n2}K−1
as

by
AS, hence only C can get the freshly generated key k.

PKINIT leaves the subsequent exchanges of Kerberos unchanged.

Example 5.13 Here is the security analysis of the Kerberos public-key en-
cryption PKINIT based on trusted freshness. The whole message exchanges
of PKINIT mode are illustrated in Fig. 5.23.

Message 1 C → AS : CertC , {tc, n2}K−1
c

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

Message 3 C → TGS : S, T,N2, {TGS, kc,tgs, C, T}Kas,tgs
,

{C,Client time}kc,tgs
Message 4 TGS → C : C, {S, kc,s, C, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 5 C → S : {S, kc,s, C, T}Ks,tgs

, {C,Client time}kc,s
Message 6 S → C : {Client time}kc,s

Fig. 5.23 Kerberos message exchanges in Public-key encryption PKINIT mode.



5.3 Kerberos —the network authentication protocol 207

Notation

Kc and K−1
c are the public-key and the private key for C, and Kas and

K−1
as are for AS.
CertC and CertAS denote the client’s certificate and the authentication

server’s certificate respectively.
tc is a timestamp from the client C and n2 is a nonce randomly chosen

by C.
k is a symmetric key randomly chosen by AS to protect the temporary

key kc,tgs.
Other notations are the same as in the basic Kerberos protocol, hence

omitted.
Premise

Each principal knows the public-key of the trusted certificate authority
CA to get Kc or Kas from CertC or CertAS . Each principal knows the key
pair of himself, that is, Kc and K−1

c for C, Kas and K−1
as for AS.

Protocol actions

1) In Message 1, the client C randomly chooses the nonces n2 and N1,
and signs n2 and timestamp tc using C’s private key K−1

c , then C starts the
protocol run by sending the certificate of C, the signature {tc, n2}K−1

c
, the

identities of C and TGS, a timestamp T and N1.
2) Upon receiving Message 1, AS gets the public-key of C from CertC ,

decrypts {tc, n2}K−1
c

using C’s public-key Kc, verifies the correction of times-
tamp tc, and gets the nonce n2. The KDC will then query the Active Directory
for a mapping between the certificate CertC and a Windows account. If it
finds a mapping, it will issue a TGT to the corresponding account.

3) In Message 2, the authentication server AS randomly chooses a sym-
metric key k and a temporary key kc,tgs for the subsequent communication
between TGS and C, then AS signs k and n2 using AS ’s private key K−1

as .
AS makes response to C with {CertAS , {k, n2}K−1

as
}Kc to keep the freshly

generated key k confidential by encrypting under C’s public-key Kc. The
last part of Message 2 is very similar to AS ’s reply in basic Kerberos, hence
omitted.

Other messages are the same as the basic Kerberos protocol.

Protocol security analysis

1) In Message 1, from Lemma 4.2 and Lemma 4.3, C has the freshness as-
surance of the randomly chosen nonce N1 and n2, and C also believes that N1

and n2 are open.TGS could not draw any useful assurance from Message 1.
2) Upon receiving Message 2, from Lemma 4.2, C has the confidential

assurance of k and kc,tgs since only C could decrypt {CertAS , {k, n2}K−1
as
}Kc

using C’s private key K−1
c to get k and then kc,tgs. From Lemma 4.3, C has

the freshness assurance of the temporary key k since k is sent to C together
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with C’s trusted freshness n2. Similarly, C has the freshness assurance of
the temporary key kc,tgs since kc,tgs is sent to C together with C’s trusted
freshness N1. From Lemma 4.4, C has the association assurance of k and n2

with AS, since AS has signed k and n2 using AS ’s private key K−1
as . However,

from the point of view of C, k and n2 are not associated with TGS or C
since if an adversary is a legal user, then the adversary could impersonate
C and generate the encryption {CertAS , {k, n2}K−1

as
}Kc using the public Kc.

Note that kc,tgs is not associated with TGS since k is not associated with C,
although the identity of TGS is explicitly indicated in Message 2.

3) In Message 3, C has the same security beliefs as those in the basic
Kerberos.

4) Upon receiving Message 3, TGS has the same security beliefs as those
in the basic Kerberos.

5) Upon receiving Message 4, from Lemma 4.2, C has the confidential
assurance of the temporary key kc,s since it is encrypted under the temporary
key kc,tgs. From Lemma 4.3, C has the freshness assurance of kc,s since kc,s
is sent to C together with C’s trusted freshness N2.

6) Upon receiving Message 5, S has the same security beliefs as those in
the basic Kerberos.

7) Upon receiving Message 6, C could not authenticate the liveness of S
since C is not sure whether kc,s is between C and S, hence C is not sure
whether the fresh message {Client time}kc,s is from S or not.

Table 5.9 indicates the analyzing result of Public-key Kerberos protocol.
Upon termination of the protocol run, S believes that C is present, and the
new session key kc,s is confidential, fresh, and associated with both S and
C, while C only believes that kc,s is confidential and fresh, but C is not sure
whether kc,s is between C and S or not.

Table 5.9 Security analysis of the PKINIT Public-key Kerberos protocol

C TGS S

AS TGS S k n2 N1 kc,tgs N2 kc,s C kc,tgs C kc,s

Message 1 01# 01#

Message 2 1 11AS 01AS 01# 11#

Message 3 01# 1 11C TGS

Message 4 11#

Message 5 1 11CS

Message 6

End of run 11# 1 11CS

Example 5.14 From the absence of the association of kc,s with C and S
in the point of view of C, there exists an attack[31] as illustrated in Fig. 5.24.

Message 1 C → I(AS) : CertC , {tc, n2}K−1
c

, C, TGS, T,N1

Message 1′ I → AS : CertI , {tc, n2}K−1
i

, I, TGS, T,N1
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Message 2′ AS → I :
{
CertAS , {k, n2}K−1

as

}
Ki

, I,

{TGS, kc,tgs, I, T}Kas,tgs
,{TGS, kc,tgs, T,N1}k

Message 2 I(AS)→ C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, I, T}Kas,tgs
,{TGS, kc,tgs, T,N1}k

Message 3 C → I(TGS) : S, T,N2, {TGS, kc,tgs, I, T}Kas,tgs
,

{C,Client time}kc,tgs
Message 3′ I → TGS : S, T,N2, {TGS, kc,tgs, I, T}Kas,tgs

,

{I, Client time}kc,tgs
Message 4′ TGS → I : I, {S, kc,s, I, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 4 I(TGS)→ C : C, {S, kc,s, I, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 5 C → I(S) : {S, kc,s, I, T}Ks,tgs

, {C,Client time}kc,s
Message 5′ I → S : {S, kc,s, I, T}Ks,tgs

, {I, Client time}kc,s
Message 6 S → I : {Client time}kc,s
Message 6′ I(S)→ C : {Client time}kc,s

Fig. 5.24 An attack on the Kerberos PKINIT Public-key Encryption mode.
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Notation

I denotes the adversary, Ki and K−1
i are the public-key and the private

key for I, and CertI denotes the adversary’s certificate.
I(TGS) or I(S) is the adversary I impersonating TGS or S.
n2 is a nonce randomly chosen by the client for AS REQ in PKINIT

public-key encryption mode.
TGT = {TGS, kc,tgs, I, T}Kas,tgs is a ticket granting ticket.
Other notations are the same as the original Keberos PKINIT protocol.

Premise

The adversary is a legal user, Other premises are the same as the original
Keberos protocol.

Protocol actions

1) In Message 1, the client C starts a new protocol run. I intercepts
Message 1, replaces CertC with CertI , gets {tc, n2} using C’s public-key and
encrypts it using I’s private key, then sends Message 1′ to AS.

2) Upon receiving Message 1′, AS responds to I just as AS does in basic
Keberos.

3) Upon receiving Message 2′, I gets {k, n2}K−1
as

and k using I’s private
key and AS ’s public-key, hence I can get kc,tgs using k.

4) In Message 2, I constructs {CertAS , {k, n2}K−1
as
}Kc from {k, n2}K−1

as

using C’s public-key, replaces the identity of I with C.
5) In Message 3, C responds as usual. I intercepts Message 3, replaces the

identity ofC with I in {C,Client time}, and then sends {I, Client time}kc,tgs
to TGS.

6) Upon receiving Message 3′, TGS responds to I just as TGS does in
basic Keberos.

7) Upon receiving Message 4′, I gets kc,s using kc,tgs.
8) In Message 4, I replaces the identity of I with C in Message 4′, and

then forwards Message 4.
9) Up to now, both C and I know the session key kc,s, hence they can

complete the subsequence protocol run as usual.
Upon termination of the attack on the Kerberos PKINIT public-key en-

cryption, the adversary I causes C to have false beliefs: C has completed a
successful protocol run with S, and is sharing a new session key kc,s with S,
whereas in fact, S knows nothing about the key establishment with C, and
thinks that it has been talking with the adversary I, and sharing kc,s with
I. From now on, C will send subsequent sensitive data encrypted under kc,s
which is also known by I.

5.3.4.2 PKINIT Diffie-Hellman mode

In Diffie-Hellman (DH) mode, the key pairs (Kc andK−1
c for C, Kas andK−1

as

for AS ) are used to provide digital signature support for an authenticated
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Diffie-Hellman key agreement which is used to protect the temporary key
kc,tgs between the client and the TGS. A variant of this mode allows the
reuse of previously generated shared secrets kc,tgs.

The following abstract description leaves out a number of fields which
are of no significance with respect to our analysis. We invite the interested
reader to consult the specifications[26]. The simplified authentication service
exchange in Diffie-Hellman PKINIT-26 is:

Message 1 C → AS :
{
CertC , {tc, n2}K−1

c

}
Kas

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

Example 5.15 The whole message exchanges of PKINIT Diffie-Hellman
mode are illustrated in Fig. 5.25.

Message 1 C → AS :
{
CertC , {tc, n2}K−1

c

}
Kas

, C, TGS, T,N1

Message 2 AS → C :
{
CertAS , {k, n2}K−1

as

}
Kc

, C,

{TGS, kc,tgs, C, T}Kas,tgs
, {TGS, kc,tgs, T,N1}k

Message 3 C → TGS : S, T,N2, {TGS, kc,tgs, C, T}Kas,tgs
,

{C,Client time}kc,tgs
Message 4 TGS → C : C, {S, kc,s, C, T}Ks,tgs

, {kc,s, T,N2, S}kc,tgs
Message 5 C → S : {S, kc,s, C, T}Ks,tgs

, {C,Client time}kc,s
Message 6 S → C : {Client time}kc,s

Fig. 5.25 Kerberos message exchanges in PKINIT Diffie-Hellman mode.

Table 5.10 indicates the security analysis result of PKINIT Diffie-Hellman



212 5 Security Analysis of Real World Protocols

mode. The security analysis details are left to the interested reader.

Table 5.10 Security analysis of the Kerberos PKINIT Diffie-Hellman protocol

C TGS S

AS TGS S k n2 N1 kc,tgs N2 kc,s C kc,tgs C kc,s

Message 1 01# 01#

Message 2 1 11C AS 01C AS 01C TGS 11C TGS

Message 3 01# 1 11C TGS

Message 4 1 11C S

Message 5 1 11C S

Message 6 1

End of run 1 11C S 1 11C S

Upon termination of the protocol run, S believes that C is present, and
the new session key kc,s is confidential, fresh, and associated with both S and
C; at the same time, C believes that S is present, and the new session key
kc,s is confidential, fresh, and associated with both S and C.
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6 Guarantee of Cryptographic Protocol
Security

Abstract Some important provable security notions like indistin-
guishability, match conversation, authentication, etc. are briefly re-
viewed. The security definitions of UA-Secure, MA-Secure, UK-Secure
and MK-Secure are specified based on the trusted freshness principle,
and these formalization specifications are proved to be adequate for
the intended security goals.

As we have witnessed in cryptographic literature, cryptographic protocols are
notoriously error-prone. These protocols can be flawed in very subtle ways.
It is widely agreed by researchers with different backgrounds that formal
methods should be taken into the security analysis of cryptographic protocols.

The methodology provable security is introduced where the security could
be proved under “standard” and well-believed complexity theoretic assump-
tions (e.g., the assumed intractability of factoring). The provable security
method often entails providing (i) a definition of the security goal, (ii) a pro-
tocol, and (iii) a proof that the protocol meets its goal, assuming some stan-
dard complexity-theoretic assumption holds true.It is the opinion of many
researchers that provable security should be in hand for all of the “basic”
cryptographic primitives[1, 2].

In provable security field, some novel definitional ideas are achieved:
Goldwasser, Micali et al. have suggested probabilistic encryption[3] and dig-
ital signatures[4], Blum–Micali and Yao suggested pseudorandom number
generation[5, 6], Bellare, Rogaway et al. suggested authentication[2, 7].

The security goals discussed in this book involve unilateral entity authen-
tication secure, mutual entity authentication secure, unilateral authenticated
key secure and mutual authenticated key secure. The question of whether
the security properties of a cryptographic protocol are adequate for a se-
curity goal or not will be answered in this chapter. Particularly we try to
raise the security specification guarantees of unilateral entity authentication
secure, mutual entity authentication secure, unilateral authenticated key se-
cure and mutual authenticated key secure, similar to those primitives such
as encryptions, pseudorandom generators, or digital signatures.

In this chapter, some important provable security notions like indistin-
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guishability, authentication, etc., will be briefly reviewed first. Then, we try
to formalize the security goals –UA-Secure, MA-Secure, UK-Secure and MK-
Secure – of cryptographic protocols based on the trusted freshness principle,
and prove that the formalization specifications are adequate for the intended
security goals. In deed, the latter security goal MK-Secure, which is well
known to applied cryptographers, is very useful to build secure distributed
system.

6.1 Security definition of authentication

Bellare and Rogaway are the first researchers who propose a computational
model for the security of authentication and authenticated key establishment
protocols[1]. The idea of the definition of a mutual authentication in this
model is simple but strong: any adversary effectively behaves as a trusted
wire, if not a broken one. This simple idea is formalized via a notion of
matching conversations. The idea of the definition of an authenticated key
exchange is to keep the session key remaining protected. The adversary’s
inability is formalized to gain any helpful information about the session key
along the lines of formalizations of security for probabilistic encryption[1, 7].

Four protocols are specifically discussed in the Bellare and Rogaway’s
model. Protocol MAP1 is a mutual authentication protocol for an arbitrary
set of parties. Protocol MAP2 is an extension of MAP1, allowing arbitrary
text strings to be authenticated along with its flows. Protocol AKEP1 is a
simple authenticated key exchange which uses MAP2 to do the key distribu-
tion. Protocol AKEP2 is a particularly efficient authenticated key exchange
which introduces the idea of “implicitly” distributing a key; its flows are
identical to MAP1, but it accomplishes a key distribution all the same. The
primitive required for all of these protocols is a pseudorandom function.

In practice, the pseudo-random function can be practically realized by
a message authentication code in cipher-block-chaining mode of operation
(CBC-MAC) or by a keyed cryptographic hash function (HMAC). The proof
of the security of authentication and authenticated key establishment pro-
tocols in the Bellare and Rogaway’s model leads from an alleged successful
attack on a protocol to the collapse of pseudo-randomness, i.e., the output of
a pseudo-random function can be distinguished from that of a truly random
function by a polynomial-time distinguisher, in the proof of the adversary; in
other words, the existence of pseudo-random functions is denied. This implies
that the result of the reduction should be either false or a major breakthrough
in the foundations for modern cryptography. As the former is more likely the
case, the reduction derives a contradiction as desired[8].
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6.1.1 Formal modeling of protocols

The protocols considered in Bellare and Rogaway’s model are two party ones,
formally specified by an efficiently computable function, a polynomial-time
function Π on the following input values:

1k: the security parameter k, k ∈ N where N is a set of natural numbers.
i : the identity of the sender ranging over I, i ∈ I ⊆ {0, 1}k where I is

a set of principals who can participate in the protocol and share a secret
long-term key, and {0, 1}k denotes the set of finite binary strings of length
at most k.

j : the identity of the (intended) communication partner of the sender,
the receiver ranging over I. Elements of I will sometimes be denoted as A
and B (or Alice and Bob), rather than i and j. Note that the adversary is
not a partner in the Bellare-Rogaway model and A = B (or i = j) is quite
possible.

K : the long-term symmetric key shared between the sender i and the
receiver j.

conv : the conversation so far, conv ∈ {0, 1}∗ where {0, 1}∗ denotes the
set of finite binary strings. conv grows with the protocol run; new string is
concatenated to it.

r : the random coin inputs of the sender like a nonce generated by the
sender.

The function of Π (1k, i, j,K, conv, r) implies that K, r is of size k, and
i, j, conv is of size polynomial in k. The value of Π (1k, i, j,K, conv, r) =
(m, δ, α) specifies:

m: the next message to send out, m ∈ {0, 1}∗ ∪ {“no message output”}.
α: the privte output, α ∈ {0, 1}∗ ∪ {“no private output”}.
δ: the decision for the sender, δ ∈ {Accept, Reject, Undetermined}. An

acceptance decision usually does not occur until the end of the protocol,
although a rejection decision may occur at any time. For mutual authenti-
cation protocol, only acceptance or rejection decision is concerned with. For
key exchange protocols, the private output, such as an agreed session key, is
concerned with. Once a decision other than “undetermined” is reached, the
private output will no longer change.

Oracle Π s
i,j models partner i attempting to authenticate partner j in a

“session” s for i, j ∈ I and s ∈ N.

6.1.2 Formal modeling of communications

In Bellare-Rogaway model, all communications among interacting parties are
assumed to be under the adversary I’s control. Particularly, the adversary
can read the messages produced by the parties, provide messages of his own
to them, modify messages before they reach their destination, and delay mes-
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sages or replay them. Most importantly, the adversary can start up entirely
new “instances” of any of the parties, modeling the ability of communicat-
ing agents to simultaneously engage in many sessions at once. Formally the
adversary I is a probabilistic machine equipped with an infinite collection of
oracles Π s

i,j, I can conduct as many sessions as I pleases among the honest
partners, and I can persuade a partner to start a protocol run as if it is
run with another honest partner. Each honest party will be modeled by an
infinite collection of oracles which the adversary may run. These oracles only
interact with the adversary, they never directly interact with one another[7].

Query

A query is of the form (i, j, s, x) which means that the adversary I is
sending message x to i, and the adversary I claims that it is from j in session
s. A query from I will be answered by an oracle Π s

i,j . In response to an
oracle call, I learns not only the outgoing message but also whether or not
the oracle has accepted, but I couldn’t learn the oracle’s private output. In
a particular execution of a protocol, the adversary’s i-th query to an oracle
is said to occur at time τ = τi ∈ R where R is a set of reals.

The Benign Adversary

An adversary is called benign if it is deterministic and it restricts its action
to choosing a pair of oracles Π s

i,j and Π s
j,i and then faithfully conveying each

flow from one oracle to the other, with Π s
i,j beginning first. In other words,

the first query I makes is (i, j, τ1, ""), generating response m1; the second
query I makes is (j, i, τ2,m1), generating response m′1, and so forth. While
the choice of i, j, τ1, τ2 is up to the adversary, this choice is the same in all
executions with security parameter k. Therefore, a benign adversary behaves
just like a wire between i and j. If the adversary wished to have the targeted
partners to output the acceptance decision, the adversary’s behavior should
be restricted to that of a benign adversary.

Time

Conforming notions of time include “abstract time”, where τi = i, and
“Turing machine time”, where τi = the i-th step in I’s computation, when
parties are realized by interacting Turing machines. Another conforming no-
tion of time (but a harder one to formalize) is “real time”, where τi is the
exact time when the i-th query is made, when parties are realized by inter-
acting computers. For the i-th query and the j-th query, if i < j, we demand
that τi < τj .

6.1.3 Formal modeling of entity authentication

A central notion in formalizing entity authentication goals is that of a match-
ing conversation.
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Bellare and Rogaway defined authenticity security as the matching con-
versation by an experiment involving the running of the adversary I with
security parameter k. When I terminates, each oracle Π s

i,j has had a cer-
tain conversation convsi,j with I, and it has reached a certain decision δ ∈
{Accept, Reject, Undetermined}.

Conversation

A conversation of oracle Π s
i,j is a sequence of timely ordered messages

that a partner sent out (respectively, received), and as consequent responses,
received (respectively, sent). Let τ1 < τ2 < · · · τn be a time sequence, for
any oracle Π s

i,j, the conversation (for this execution) can be denoted by the
following sequence:

conv = (τ1,m1,m
′
1) , (τ2,m2,m

′
2) , · · · , (τn,mn,m

′
n) .

This sequence encodes that at time τ1, the participant was asked m1 and
responded with m′1, and then, at some later time τ2 > τ1, oracle Π s

i,j was
asked m2, and answered m′2; and so forth, until, finally, at time τn it was
asked mn, and answered m′n. Adversary I terminates without asking oracle
Π s
i,j any more questions.
Suppose oracle Π s

i,j has conversation prefixed by (τ1,m1,m
′
1). Then if

m1 ="", we call oracle Π s
i,j an initiator oracle; if m1 is any other string,

we call Π s
i,j a responder oracle. If mn ="no message output", Π s

i,j ends
the conversation. At the end of a protocol run, each participant makes a
decision about the authentication of the intended partner: accept, reject, or
undetermined.

Matching conversation

Give a protocol Π between partners i and j. Run Π in the presence of
a benign adversary I and consider two oracles Π s

i,j and Π s′
j,i that engage in

conversations conv and conv′ in sessions s and s′, respectively.
1) We say that conv′ is a matching conversation to conv if there exist time

sequences τ0 < τ1 < τ2 < · · · < τn and m1,m
′
1,m2,m

′
2,m3, · · · ,m′t−1,mt,m

′
t

so that conv is prefixed by

conv = (τ0, "",m1) , (τ2,m′1,m2) , (τ4,m′2,m3) , · · · ,
(
τ2t−2,m

′
t−1,mt

)

and conv′ is prefixed by

conv′ = (τ1,m1,m
′
1) , (τ3,m2,m

′
2) , (τ5,m3,m

′
3) , · · · ,

(
τ2t−3,mt−1,m

′
t−1

)
.

2) We say that conv is a matching conversation to conv′ if there exists time
sequence τ0 < τ1 < τ2 < · · · τn and m1,m

′
1,m2,m

′
2,m3, · · · ,m′t−1,mt,m

′
t so

that conv′ is prefixed by

conv′ = (τ1,m1,m
′
1) , (τ3,m2,m

′
2) , (τ5,m3,m

′
3) , · · · , (τ2t−1,mt, ∗)
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and conv is prefixed by

conv = (τ0, "",m1) , (τ2,m′1,m2) , (τ4,m′2,m3) , · · · ,
(
τ2t−2,m

′
t−1,mt

)
.

Explanation. Case (1) defines when the conversation of a responder oracle
matches the conversation of an initiator oracle. Case (2) defines when the
conversation of an initiator oracle matches the conversation of a responder
oracle.

Consider an execution in which Π s
i,j is an initiator oracle and Π s′

j,i is a
responder oracle. If every message that Π s

i,j sends out, except possibly the
last, is subsequently delivered to Π s′

j,i, with the response to this message being
returned to Π s

i,j as its own next message, then we say that the conversation
of Π s′

j,i matches that of Π s
i,j . Similarly, if every message that Π s′

j,i receives
was previously generated by Π s

i,j , and each message that Π s′
j,i sends out is

subsequently delivered to Π s
i,j , with the response that this message generates

being returned to Π s′
j,i as its own next message, then it is said that the

conversation of Π s
i,j matches the one of Π s′

j,i.
It is said that oracle Π s

j,i has a matching conversation with oracle Π s
i,j

if Π s
j,i has conversation conv′, Π s

i,j has conversation conv, meanwhile conv′

matches conv.

Entity Authentication

Any mutual authentication protocol must have at least 3 round message
exchanges. The definition of a mutual authentication is similar to [1] as fol-
lows:

Definition 6.1 (Secure mutual authentication) Give a protocol Π between
partners A and B. We say that Π is a secure mutual authentication protocol
in the presence of any polynomial time adversary I if

1) (Matching conversations ⇒ acceptance.) The oracles Π s
A,B and Π s′

B,A

have matching conversations, then both oracles accept.
2) (Acceptance ⇒ matching conversations.) The adversary I cannot win

with a non-negligible probability in k. Here the adversary wins if the oracles
Π s
A,B and Π s′

B,A both reach the “accept” decision while they do not have
matching conversations in oracles.

Explanation. The first condition says that if one party’s messages are
faithfully relayed to one another, then the party accepts the authentication
of one another. The second condition says that if oracles Π s

A,B and Π s′
B,A

have reached the “accept” decision, then Π s
A,B or Π s′

B,A must have a matching
conversation in both oracles.

Note that an oracle’s matching partner is unique based on the Defini-
tion 6.1. More formally, let Multiple-MatchE(k) be the event that some
Π s
A,B accepts in the presence of any polynomial time adversary I, and there

are at least two distinct oracles Π s′
B,A and Π s′′

B,A which have had matching
conversations with Π s

A,B.
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Proposition 6.1 Suppose the protocol Π between partners A and B is a
secure mutual authentication protocol. Let I be any polynomial time adver-
sary. Then the probability of Multiple-MatchE(k) is negligible.

The probability of Multiple-MatchE(k) is at most l2 ∗ 2−k where l is the
(polynomial) number of oracle calls of the adversary I and k is the security
parameter.

Bellare and Rogaway demonstrate their formal proof technique by pro-
viding a simple mutual entity authentication protocol named MAP1 and
conducting its proof of security. They also consider the correctness for au-
thenticated key establishment protocols. For more details, please refer to
references [1, 7].

6.2 Security definition of SK-security

Bellare and Rogaway’s idea of provable security under a computational model
originates from the seminal work of Goldwasser and Micali[3]. Goldwasser
and Micali propose a well-known public-key probabilistic encryption scheme
named the Goldwasser-Micali cryptosystem, GM cryptosystem, which pos-
sesses the property of semantic security assuming the intractability of the
quadratic residuosity problem. The semantic security is a stronger security
notion: Whatever is efficiently computable about the plaintext given the
ciphertext, is also efficiently computable without the ciphertext[8].

The semantic security, which is also known as IND-CPA security or
polynomial-time indistinguishability, means that a ciphertext does not leak
any useful information about the plaintext to any attacker whose computa-
tional power is polynomially bounded. They observed that in many applica-
tions, messages may contain certain apriori information which may be useful
for an attack. Goldwasser and Micali point out that public-key cryptosystems
which are based on direct applications of one-way trapdoor functions are in
general very weak for hiding such messages[3, 8]. The semantic security notion
tries to meet the need for a general fix of this much bigger problem.

There, a security property (one of several confidentiality qualities) is ar-
gued under a given attacking scenario (one of several attacking games each
of which models, with sufficient generality and precision, one of some typi-
cal behavior of a real-world attacker against public-key encryption schemes).
A proof of security for public-key encryption schemes with respect to an
alleged attack involves demonstrating an efficient transformation (called a
polynomial-time reduction) leading from the alleged attack to a major break-
through to a well-believed hard problem in computational complexity. It is the
wide belief on the unlikelihood of the major breakthrough that should refute
the existence of the alleged attack, that is, a proof is given by contradiction[8].

The Goldwasser-Micali scheme[3] can be described in a general setting
by using the notion of a trapdoor predicate. Briefly, a trapdoor predicate is
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a Boolean function B : {0, 1}∗ → {0, 1} so that, given a bit v, it is easy
to choose an x at random satisfying B(x) = v. Moreover, given a bitstring
x, computing B(x) correctly with probability significantly greater than 1

2 is
difficult; however, if certain trapdoor information is known, then it is easy to
compute B(x). Suppose an entity A’s public-key is a trapdoor predicate B,
any other entity encrypts a message bitmi by randomly selecting an xi so that
B(xi) = mi, and then sends xi to A. Since A knows the trapdoor information,
A can compute B(xi) to recover mi, but an adversary can do no better
than guess the value of mi. Goldwasser and Micali proved that if trapdoor
predicates exist, then this probabilistic encryption scheme is polynomially
secure[3, 9].

In the Bellare-Rogaway model, they also consider the correctness for au-
thenticated session key establishment (session key transport) protocols (for
the two-party case[1], also for the three-party case which uses a trusted third
party as an authentication server[7]). The security notion of key establish-
ment originates from the Goldwasser-Micali probabilistic encryption[3]. For
key establishment protocols, “Malice wins” means a successful guess of the
new session key. Since the new session key is randomly chosen by a pseudo-
random function, and the transported key is encrypted under the shared long-
term key, successful guessing of the session key is similarly hard as making
distinction between a pseudo-random function and a truly random function.

SK-Security notation is an important notion in the authentication proto-
col field. Canetti and Krawczyk put forward the CK model[10], including the
SK-Security notation, for the analysis of key establishment protocols that re-
sults from the combination of two previous works in this area: [1] by Bellare
and Rogaway and [2] by Bellare, Canetti and Krawczyk.

6.2.1 Protocol and adversary models in CK model

Canetti and Krawczyk extend and refine the formalism in the approach of
[10], where a general framework for studying the security of session-based
multi-party protocols over insecure channels is introduced. Let’s review the
CK model.

6.2.1.1 Protocol notations

P1, P2, ..., Pn: a set of parties (probabilistic polynomial-time machines)
interconnected by point-to-point links over which messages can be exchanged.

Protocols: collections of interactive procedures, run concurrently by par-
ties P1, P2, ..., Pn, which specify a particular processing of incoming messages
and the generation of outgoing messages.

Message-driven protocols: Protocols are initially triggered at a party by
an external “call” and later by the arrival of messages. Upon each of these
events, and according to the protocol specification, the protocol processes
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information and may generate and transmit a message and/or wait for the
next message to arrive.

Session: Each copy of a protocol run at a party is a session. Technically,
a session is an interactive subroutine executed inside a party. Each session is
identified by the party that runs it, the parties with whom the session com-
municates and by a session-identifier (session ID). Several copies of protocols
may be simultaneously run by each party. Each invocation of a protocol (or
session) at a given party creates a local state for that session during execu-
tion, and produces local outputs by that party. When a session ends its run
we call it complete and assume that its local state is erased.

Session key: Key-Establishment (KE) protocols are message-driven proto-
cols where the communication takes place between pairs of parties and which
return, upon completion, a secret key called a session key. It is required that
the calling protocol makes sure that the session ID’s of no two KE sessions
in which the party participates are identical. Furthermore, we leave it to the
calling protocol to make sure that two parties that wish to exchange a key
will activate matching sessions.

Upon activation, the partners Pi and Pj of two matching sessions exchange
messages, and eventually generate local outputs that include the name of the
partners of the session, the session identifier (session ID), and the value of the
computed session key. A key establishment event is recorded only when the
exchange is completed. Note that a session can be completed at one partner
but not necessarily at the other.

6.2.1.2 Adversary models

Adversarial setting determines the capabilities and possible actions of the
attacker. In CK model, the adversary model is given as generic as possible (as
opposed to, say, merely representing a list of possible attacks). The CK model
follows the general adversary formalism of [2] but specializes and extends the
adversarial model here for the case of KE protocols.

1. The unauthenticated-links adversarial model (UM)

Basic attacker capabilities Consider a probabilistic polynomial-time
(PPT) attacker that has full control of the communication links. The for-
malism represents this ability of the attacker by letting the attacker be the
one in charge of passing messages from one party to another. The attacker
also controls the scheduling of all protocol events including the initiation of
protocols and message delivery.

Obtaining secret information All the secret information stored at a
party is potentially vulnerable to break-ins or to other forms of leakage. The
attacker may obtain secret information stored in the party’s memories via
explicit attacks. However, when defining security of a protocol, it is important
to guarantee that the leakage of some form of secret information has the
least possible effect on the security of other secrets. In order to be able to
differentiate between various vulnerabilities and to be able to guarantee as
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much security as possible in the event of information exposures, three attacks
categories are classified depending on the type of information accessed by the
adversary:

1) Session-state reveal. The attacker provides the name of a party and a
session identifier of a yet incomplete session at that party and receives the
internal state of that session. What information is included in the local states
of a session is to be specified by each KE protocol. Typically, the revealed
information will include all the local state of the session and its subroutines,
except for the local state of the subroutines that directly access the long-term
secret information.

2) Session-key query. The attacker provides a party’s name and a session
identifier of a completed session at that party and receives the value of the key
generated by the named session. This attack provides the formal modeling
for leakage of information on specific session keys that may result from events
such as break-ins, cryptanalysis, and careless disposal of keys.

3) Party corruption. The attacker can decide at any point to corrupt a
party, in which case the attacker learns all the internal memory of that party
including long-term secrets (such as private keys or master shared keys used
across different sessions) and session-specific information contained in the
party’s memory (such as internal state of incomplete sessions and session-
keys corresponding to completed sessions).

If a session is subject to any of the above three attacks then the session is
called locally exposed. If a session or its matching session is locally exposed
then we call the session exposed.

Session expiration. Session expiration means that a session key (and
any related session state) is erased from that party’s memory. The value of
an expired session key cannot be found via any of the above session-state
reveal, session-key query and party corruption attacks if these attacks are
performed after the session expired.

2. The authenticated-links adversarial model (AM)

Authenticated-links adversarial model The attacker is restricted to only
deliver messages truly generated by the parties without any change or ad-
dition to them. This is the fundamental difference between UM adversarial
model and AM adversarial model.

Emulation A notion introduced in order to capture the equivalence of
functionality between protocols in different adversarial models, particularly
between the UM and AM adversarial models.

Authenticator A special algorithm acts as an automatic “compiler”
that translates protocols in the AM adversarial model into equivalent (or “as
secure as”) protocols in the UM adversarial model.
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6.2.2 SK-security in CK model

The security of a key-exchange protocol was defined by Canetti and Krawczyk,
it’s also called session-key security in CK model.

Session-key security (or SK-security), focus on ensuring the security of an
individual session-key as long as the session key value is not obtained by the
attacker via an explicit key exposure. To capture the idea that the attacker
“does not learn anything about the value of the key” from interacting with
the key-establishment protocol and attacking other sessions and parties, the
CK model formalizes SK-security via the infeasibility to distinguish between
the real value of the key and an independent random value as that in the
semantic-security approach[1]. The formulation of SK-security is very careful
about tuning the definition to offer enough strength as required for the use of
key-establishment protocols to realize secure channels, as well as being real-
istic enough to avoid over-kill requirements which would prevent researchers
from proving the security of very useful protocols[10].

First, define an “experiment” where the attacker I chooses a session which
is “tested” about information it learned on the session-key; specifically, ask
the attacker to differentiate the real value of the chosen session key from a
random value.

For the sake of this experiment we extend the usual capabilities of the
adversary I in the UM by allowing it to perform a test-session query. That
is, in addition to the regular actions of I against a key-exchange protocol Π ,
we let I choose, at any time during its run, a test-session among the sessions
that have been completed, and are unexpired and unexposed at the time. Let
k be the value of the corresponding session key. We toss a coin b, b R←− {0, 1}.
If b = 0, we provide the attacker I with the value k. Otherwise we provide the
attacker I with a value r randomly chosen from the probability distribution of
keys generated by the protocol Π . The attacker I is now allowed to continue
with the regular actions of a UM adversary but is not allowed to expose
this test-session (namely, it is not allowed session-state reveals, session-key
queries, or partner’s corruption on this test-session or its matching session).
At the end of its run, the attacker I outputs a bit b′ (as its guess for b). We
will refer to an attacker that is allowed test-session queries as a KE-adversary.

Definition 6.2 (SK-Security[10]) A KE protocol Π is called SK-secure if
the following properties hold for any KE-adversary I in the UM.

1) Protocol Π satisfies the property that if two uncorrupted parties com-
plete matching sessions then they both output the same key.

2) The probability that the adversary I guesses correctly the bit b (i.e.,
outputs b′ = b) is no more than 1/2 plus a negligible fraction in the security
parameter.

The first condition is a “consistency” requirement for sessions completed
by two uncorrupted parties. The second condition is the “core property”
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for SK-security. Definition 6.2 is very powerful and can be shown to ensure
many specific properties that are required from a good key-exchange protocol.
However, a key establishment protocol where all key-sessions “hang” and
never return also satisfies the definition. For simplicity, Canetti et al choose
to leave the analysis of the termination properties of protocols out of the
scope of the definition of security. This is also the case in this book.

6.3 Authentication based on trusted freshness

In this section, we will introduce the security definitions based on trusted
freshness. Some notations and security definitions in [1, 3] are adopted in the
trusted freshness security definition. Recall that the central ingredient in the
trusted freshness security analysis approach is the freshness principles intro-
duced in chapter 4 of this book. Let’s review and introduce some notations
related to trusted freshness security analysis.
— Principals, probabilistic polynomial time machines, which are intercon-

nected by point-to-point links over which messages can be exchanged.
— Trusted Third Party (TTP), a principal that provides a centralized au-

thentication service in an open system.
— Freshness identifier (or TVP), a unique freshness component generated

for a particular protocol run, it can be a nonce, a timestamp, a session
key or a shared part of a session key.

— Protocol, a communication procedure which is run between or among
co-operative principals.

— Message-driven protocols, protocols are initially triggered at a party by
an external “call” and later by the arrival of messages.

— Challenge-Response protocol, in a challenge-response mechanism, one
participant can verify the lively correspondence of the intended opposite
partner by inputting a freshness identifier (challenge) to a composition of
a protocol message and the composition involves a cryptographic opera-
tion (response) performed by the intended opposite partner.

— Session, a copy of a protocol run at a party, several copies of any protocol
may be simultaneously run by each party.

6.3.1 Trusted freshness

In the context of communication protocols, that a freshness identifier is fresh
means that the identifier has not been used previously, and originated within
an acceptably recent time. Formally, fresh typically means recent, and it is in
the sense of having originated subsequent to the beginning of the current pro-
tocol instance. Note that such freshness alone does not rule out interleaving
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attacks using parallel sessions[8, 9].

Definition 6.3 (Freshness) Given a protocol Π between partners A and B.
A component of the protocol Π is fresh if the component is guaranteed to be
new from the viewpoint of one party A or B.

Classification of freshness component

Three freshness component categories are classified depending on the type
of the component:

1) Timestamp Recording the time of creation, transmission, receipt or
existence of information.

The party originating a message obtains a timestamp from its local (host)
clock, and binds it to a message. Upon receiving a time-stamped message, the
second party obtains the current time from its own (host) clock, and subtracts
the timestamp received. The timestamp difference should be within the ac-
ceptance window, and each party should maintain a “loosely synchronized”
clock which must be appropriate to accommodate the acceptance window
used.

The time clock must be secure to prevent adversarial resetting of a clock
backwards so as to restore the validity of old messages, or setting a clock
forward to prepare a message for some future point in time.

2) Nonce A value originated subsequent to the beginning of the current
protocol instance, and it is used no more than once for the same purpose.

In a challenge-response protocol, the term nonce is most often used to
refer to a “random” number which is sampled from a sufficiently large space,
but the required randomness properties vary. A key parameter or the shared
parts of a key may be viewed as a nonce in some cases. If random numbers
are chosen by A and B, respectively, then the random numbers together with
a signature may provide a guarantee of freshness and entity authentication.

3) Sequence number A value provided by a never-repeated sequential
counter, and it serves as a unique number identifying a message and is typi-
cally used to detect message replay. A message is accepted only if the sequence
number therein has not been used previously (or not used previously within
a specified time period). Sequence number changes on every new protocol
instance or new message depending on different purposes.

Each party should maintain the sequence number pairwise of the origina-
tor and the receiver, and be sufficient to determine previously used and/or
still valid sequence numbers. Distinct sequences are customarily necessary for
messages from A to B and from B to A.

Sequence numbers may provide uniqueness, but not (real-time) timeli-
ness, and thus are more appropriate to detect message replay than entity
authentication. Sequence numbers may also be used to detect the deletion of
entire messages; they thus allow data integrity to be checked over an ongoing
sequence of messages, in addition to individual messages.

Note that a sequence number is not natively fresh even for the sequence
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number generator.

The cost for a random number or a sequence number to provide a freshness
guarantee is an additional message more than that for the timestamp in the
one-pass technique.

Definition 6.4 (Trusted freshness) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links. We say that the freshness identifier
γ is fresh, or in other words, a trusted freshness, if for a participant A,

1) the freshness identifier γ originates in the participant A itself.
2) the freshness identifier γ is a timestamp and the timestamp difference

between the initiator and the receiver is within the acceptance window.
3) A has corroborative evidence that γ is fresh. Here the corroborative ev-

idence may be a signature, a MAC or other one-way transformation including
the freshness identifier.

The first sufficient condition of Definition 6.4 is based on the random-
ization of A’s nonce, which has been sampled at random from a sufficiently
large space and so no one can predicate the value before sampling; the sec-
ond sufficient condition of Definition 6.4 is based on a “loosely synchronized”
clock, and the timestamp difference is within the acceptance window, hence
the “recent” property could be checked by the opponent party; The third
sufficient condition of Definition 6.4 is based on the security property of the
cryptographic algorithms, and it is widely used and more useful in challenge-
response protocols. Note that the freshness of a freshness identifier could be
given via mathematical proofs.

Theorem 6.1 (Generation Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. If a freshness identifier γ is a
nonce or a timestamp, and it is generated by the participant A itself, then A
believes that γ is a trusted freshness.

Proof A freshness identifier γ originating in the participant A could be
a nonce, a timestamp or a sequence number. Let’s consider the freshness of
γ in these three cases:

(1) The freshness identifier γ is a nonce.
Let’s recall the supposition: the term nonce is most often used to refer to

a “random” number which is sampled from a sufficiently large space.
The “random” numbers are in fact pseudo-random numbers, they are

generated by a pseudorandom number generator and they have a distribution
totally determined (i.e., in a deterministic fashion) by a seed. Yet, a good
pseudo-random number generator yields pseudorandom numbers which are
polynomially indistinguishable from truly random numbers.

Recall that the adversary I is a probabilistic polynomial-time machine
which has full control of the communication links. Hence, the adversary I
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couldn’t distinguish the distribution of the random variables output from
a pseudorandom number generator from the uniform distribution of strings
(truly random numbers) which are of the same length as those of the pseudo-
random variables.

Hence, if a freshness identifier γ is generated by the participant A itself,
then A believes that γ is recent and it is a “random” number. Since γ is a
“random” number, it couldn’t be guessed by a probabilistic polynomial-time
attacker I, and we can guarantee that the freshness identifier γ is used no
more than once for the same purpose. That is, the freshness identifier γ is a
trusted freshness.

(2) The freshness identifier γ is a timestamp.
Since the freshness identifier γ is generated by the participant A itself,

then A believes that γ is recent. Recall the supposition that the timestamp
difference between the initiator and the receiver is within the acceptance
window, so there is no time gap for the freshness identifier γ to be used for
other purpose. That is, the freshness identifier γ is used no more than once
for the same purpose, hence the timestamp γ is a trusted freshness.

(3) The freshness identifier γ is a sequence number.
The sequence number is a value provided by a never repeated sequential

counter, and it is typically used to detect message replay. Since the freshness
identifier γ is generated by the participant A itself, A believes that γ is re-
cent. However, the sequence number γ may be guessed even by a probabilistic
polynomial-time attacker I, so I could obtain the intending response mes-
sages from sending request messages to the victim oracle, and the attacker I
may replay the achieved messages including γ for other purpose. Hence, we
do not regard a sequence number as a trusted freshness.

Theorem 6.2 (Timestamp Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. If a freshness identifier γ is a
timestamp, and it is received by A from the opponent B, then A believes
that γ is a trusted freshness.

Proof Since the freshness identifier γ is a timestamp, and the timestamp
difference between the initiator and the receiver is within the acceptance
window, so A believes that γ is recent and there is no time gap for the
freshness identifier γ to be used for other purpose. That is, the freshness
identifier γ is used no more than once for the same purpose, hence γ is a
trusted freshness.

Recall the term, maximal term, signed term and similar term notions in
Chapter 4, the follows is a example.

Example 6.1 Here is another illustration of terms. Suppose there exists
a message B → A : {B,A,NA, {NA, NB, A,B}K}, the principal B believes
that NB is a trusted freshness identifier, and the principal A believes that
NA is a trusted freshness identifier too.
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Upon sending this message, B has the terms:
1 + {...NB...} Definition 4.10 (1)

2 + {...NB...}K Term 1 and Definition 4.10 (3)

3 + {...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

4 + {...NB, A...}K Term 2 and Definition 4.10 (2),(3)

5 + {...NB, B...}K Term 2 and Definition 4.10 (2),(3)

6 + {...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

7 + {...NA, NB, A...}K Term 6 and Definition 4.10 (2),(3)

8 + {...NA, NB, B...}K Term 6 and Definition 4.10 (2),(3)

9 + {...NA, NB, A,B...}K Term 8 and Definition 4.10 (2),(3)
Upon sending this message, A has the terms:
1 −{...NA...} Definition 4.10 (1)

2 −{...NA...}K Term 1 and Definition 4.10 (3)

3 −{...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

4 −{...NA, A...}K Term 2 and Definition 4.10 (2),(3)

5 −{...NA, B...}K Term 2 and Definition 4.10 (2),(3)

6 −{...NA, NB...}K Term 2 and Definition 4.10 (2),(3)

7 −{...NA, NB, A...}K Term 6 and Definition 4.10 (2),(3)

8 −{...NA, NB, B...}K Term 6 and Definition 4.10 (2),(3)
{...NA, NB, A,B...}K is the maximal term of the message {NA, NB, A,

B}K sent from B to A.
To detect parallel attack, the maximal term of each message in the same

protocol should not be the same.

6.3.2 Liveness of principal

The notation of the principal’s liveness originates from [8], which means the
presence of the intended partner. We try to make the liveness property more
specific by giving the principal’s liveness definition and a liveness rule.

Definition 6.5 (Liveness of a principal) Given a protocol Π between part-
ners A and B in the presence of a probabilistic polynomial-time adversary
I that has full control of the communication links. The liveness of B means
that B is the intended partner of the communication from the point of view
of A, and B is responsive to the communications in the current protocol run.

Theorem 6.3 (Liveness Rule) Given a protocol Π between partners A and
B in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. We say that the liveness of B has been
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authenticated by A if A has corroborative evidence that B has participated
in this protocol run.

Suppose γ is a trusted freshness from the point of view of A. A may have
the liveness of B from receiving the following “loose” one-way transformation,

1) A signature including the trusted freshness γ, which is signed by B.
2) An encryption including the trusted freshness γ, which is encrypted

with MAC by B using the shared long-term key between A and B.
3) Other one-way transformation of a message including the trusted fresh-

ness identifier γ, and this cryptographic operation can provide evidence of
B’s generation of this one-way transformation.

Proof Let’s consider the liveness of B from the point of view of A in
the following three scenarios:

(1) Signature including the trusted freshness identifier γ by B.
Suppose B is not alive and is not responsive to the communications in

the current protocol run. Since the signature (it is believed to be signed by
B’s private key) includes the trusted freshness identifier γ, then this signature
could not be a replay of an old recorded message. So, it must be the adversary
I who has recently constructed the signature including the trusted freshness
identifier γ. That is to say, the adversary I has the ability to construct the
signature without knowing the corresponding private key. This has translated
an advantage for an alleged attack on the protocol to a similar (up to poly-
nomial difference) advantage for inverting the signature used in the scheme.
This contradicts the wide belief that there exists no efficient algorithm for
inverting a signature.

Hence, if A has received the signature including the trusted freshness
identifier γ from B, then A is assured that B is alive and responsive to the
communications in the current protocol run.

(2) Encryption including the trusted freshness identifier γ under the shared
long-term key between Aand B.

Recall that the maximal term of each message in the same protocol should
not be the same, so this one-way transformation could not be a replay of
encryption by A itself. Other proof procedures are similar to the case (1).

(3) One-way transformation including the trusted freshness identifier γ,
and this cryptographic operation can provide evidence of B’s generation of
this one-way transformation.

The proof procedures are similar to the case (1).
The second condition of Theorem 6.3 also includes the case – keyed hash

where the encryption algorithm is a hash function but not a traditional block
cipher, and the key is the shared long-term key between A and B.

Definition 6.6 (Liveness of a principal with origin) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. The liveness of
B means that B is the intended partner of the communication from the point
of view of A, and B is specially responsive to the communication with A in
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the current protocol run.

Theorem 6.4 (Origin Liveness Rule) Given a protocol Π between partners
A and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. We say that the Origin liveness
of B has been authenticated by A if A has specially corroborative evidence
that B has participated in this protocol run with this origin participant A.

Suppose γ is a trusted freshness from the point of view of A. A may
have the origin liveness of B from receiving the following “loose” one-way
transformation.

1) A signature including the trusted freshness γ and the origin identity
A, which is signed by B.

2) An encryption including the trusted freshness γ and the origin iden-
tity A, which is encrypted with MAC by B using the shared long-term key
between A and B.

3) Other one-way transformation of a message including the trusted fresh-
ness identifier γ and the origin identity A, and this cryptographic operation
can provide evidence of B’s generation of this one-way transformation.

6.3.3 Confidentiality of freshness identifier

Definition 6.7 (Confidentiality of freshness identifier) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. We say that the
freshness identifier is confidential if the adversary I could not know γ from
the protocol run.

Theorem 6.5 (Confidentiality Rule) Given a protocol Π between partners
A and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. Suppose all freshness identifiers
are confidential at the beginning of a protocol run. The confidential property
may change in the following two scenarios:
1) The freshness identifier is transmitted in plain text.
2) The freshness identifier is transmitted in an encryption whose decryption

key is known by the adversary I.

Proof Omitted for its obviousness.

6.3.4 Freshness of freshness identifier

Definition 6.8 (Freshness of a Freshness Identifier) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. We say that the
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freshness identifier γ is fresh if γ is new for this protocol run.

Theorem 6.6 (Freshness Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. We say that the freshness of γ
has been authenticated by A if A has corroborative evidence that γ is new
for this protocol run. The corroborative evidence includes the following three
scenarios:

1) The freshness identifier γ originates in the participant A itself for this
protocol run.

2) The freshness identifier γ is a timestamp and the timestamp difference
between the initiator and the receiver is within the acceptance window.

3) A has corroborative evidence that γ is fresh. Here the corroborative
evidence may be a signature, a MAC or other one-way transformation to
assure the freshness of the freshness identifier.

Proof Refer to proofs in Theorem 6.4 and Theorem 6.1.

6.3.5 Association of freshness identifier

Definition 6.9 (Association of Freshness Identifier) Given a protocol Π
between partners A and B in the presence of a probabilistic polynomial-time
adversary I that has full control of the communication links. We say that the
freshness identifier γ is associated with A (and/or B) if γ is generated for the
protocol run related with A (and/or B).

Theorem 6.7 (Association Rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links. We say that the freshness identifier
γ is associated with A (and/or B) from the point of view of A if A has
corroborative evidence that γ is generated for this protocol run related with
A (and/or B). The corroborative evidence includes the following scenarios:

1) A sends or receives a message which is encrypted under the shared
long-term key between two parties, then the trusted freshness identifier γ in
this message is related to these two parties.

2) A sends or receives a message including the identity of B, which is
encrypted under the shared long-term key between A and the trusted third
party S, then the trusted freshness identifier γ in this message is related to
B.

3) A receives an encryption under the public-key of A, then the trusted
freshness identifier γ in this encryption is related to A.

4) A sends an encryption including the identity of A using the public-key
of the opponent B, then the trusted freshness identifier γ in this encryption
is related to A.
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5) A receives a signature of B, then the trusted freshness identifier γ in
this signature is related to B.

6) A receives a signature of B including the identity of A, then the trusted
freshness identifier γ in this signature is related to A.

7) Other one-way transformation including the trusted freshness identifier
γ, and this cryptographic operation can provide evidence of B’s (and/or A’s)
association with γ, then the trusted freshness identifier γ in this one-way
transformation is related to B (and/or A).

Proof We show that 1) of the theorem is satisfied. Suppose the two
parties in case 1) are A and B. If A receives a message including the trusted
freshness identifier which is encrypted under the shared long-term key be-
tween A and B, then A knows that it must be a message originating from
B and it could not be a replay one. Since the received message could only
be decrypted by both A and B, and the adversary could do nothing but re-
play this one, hence A believes that the trusted freshness identifier γ in this
message is related to these two parties A and B.

The proofs for 2) to 7) of the theorem are similar, hence omitted for
concision.

The encryption algorithm in 1) and 2) of Theorem 6.7 may be block cipher
or keyed hash; In case 3) of Theorem 6.7, if A receives an encryption including
the identity of B under the public-key of A, then the freshness identifier γ
in this encryption needn’t be related to B, since this message could even be
generated by the adversary I.

6.3.6 Security analysis based on trusted freshness

We mainly discuss Challenge-Response authentication protocols.

6.3.6.1 Notion

— Unilateral entity authentication: the identity of one protocol participant
is authenticated.

— Mutual entity authentication: the identities of both protocol participants
are authenticated to each other.

— Unilateral authenticated key transport: the identity of one protocol par-
ticipant is authenticated, and the opposite unauthenticated party believes
that the session key generated by the authenticated participant or a TTP
can provide a secure channel over an insecure network.

— Mutual authenticated key transport: the identities of both protocol par-
ticipants are authenticated to each other, and both protocol participants
believe that the new session key generated by one of the participants or
a TTP can provide a secure channel over an insecure network.
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— Mutual authenticated key exchange (or key agreement): the identities
of both protocol participants are authenticated to each other, and both
protocol participants believe that the new session key which is the output
of a function of all protocol participants’ random input can provide a
secure channel over an insecure network.

6.3.6.2 Hypothesis

Suppose we have a probabilistic polynomial-time (PPT) attacker I that has
full control of the communication links as described in Dolev-Yao threat
model[11]. Besides this, we suppose that the Dolev-Yao attacker I in this book
is allowed to perform a kind of cryptanalysis training course, and I can also
launch the adaptive chosen ciphertext attacks (CCA2) without limitations.

Suppose we have cryptographic primitives with security against indistin-
guishable adaptive chosen ciphertext attack (IND-CCA2). That is, in IND-
CCA2 security strength, the failures in cryptographic protocols are not in
any way related to the strength or weakness of the particular cryptographic
primitives used, but related to the protocol logic flaws, which permits the
attacker to break the security goals of cryptographic protocols without nec-
essarily breaking the particular cryptographic primitives used. And we also
suppose that a legitimate party is either totally corrupted or totally secure.

Suppose that each participant has his own private key and all other par-
ties’ public-keys (respectively, the shared long-term key between co-operative
principals or the trusted third party) in public-key case (respectively, in
shared key case), which are deployed safely before the cryptographic proto-
col run via authenticated channel or even traditional communication means.
Furthermore, private keys and shared keys are commonly assumed to be too
long to guess in a computationally feasible way.

Suppose that all freshness identifiers are confidential at the beginning of
the protocol run.

In general, an authentication protocol is considered flawed if a principal
concludes a normal run of the protocol with its intended communication
partners while the intended partner would have a different conclusion.

6.3.6.3 Notation

— ρ, arbitrary principal, ranges over the participants of the protocol run.
— Pi or Pj , a principal indexed by subscript in a protocol run.
— S, trusted third party.
— t, arbitrary time, a moment, not a period of time.
— t0, t1, t2, ..., t$, various time points. t0 means time before the start of a

protocol run, ti means time at message i (i = 1, 2, . . . ) exchange, and t$
means time at the termination of a protocol run respectively.

— N or N ′, arbitrary freshness identifier, it can be a nonce, a timestamp, a
session key or the shared part of a session key.

— NPi , a freshness identifier invented by subscript principal Pi.
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— k, a cryptographic key; k−1, the inverse of k. In shared key case, k and
k−1 are equal.

— K, a long-term key, it may be a secret key in shared key schemes, or a
public-key and a private key in public-key schemes.

— KPiPj , the long-term key shared by principal Pi and Pj in shared key
case.

— KPi and K−1
Pi

, the public-key and private key subscripted by the principal
identity respectively in public-key case.

— ϕ, ψ or Γ, a fact which has the value of True or False respectively.
— ¬, it is the same as negation used in logic.
— Key(Pi, k), the principal Pi has the knowledge of key k.
— Belief (Pi, ϕ), the principal Pi asserts that the fact ϕ is True. For exam-

ple, Belief (Pi,Key(Pj , k)) means that the principal Pi asserts that the
principal Pj knows the key k.

— Existing(Pj), the intended partner Pj is in lively correspondence in this
protocol run; Belief (Pi,Existing(Pj)), the principal Pi asserts that the
intended partner Pj is in lively correspondence in this protocol run.

— Originexisting(Pj), the intended partner Pj is specially in lively cor-
respondence in this protocol run with the origin participant Pi; Be-
lief (Pi,Originexisting(Pj)), the principal Pi asserts that the intended
partner Pj is specially in lively correspondence in this protocol run with
the origin participant Pi.

— Secret(N), the freshness identifier N is confidential in this protocol run;
Belief (Pi,Secret(N)), the principal Pi asserts that the freshness identifier
N is confidential in this protocol run.

— Fresh(N), the freshness identifier N is fresh in this protocol run; Be-
lief (Pi, Fresh(N)), the principal Pi asserts that the freshness identifier N
is fresh in this protocol run.

— Associate(N,P1, P2, P3, ...), the freshness identifier N is associated with
a participant P1, (or with both P1 and P2, or with P1, P2 and P3...) in
this protocol run; Belief (Pi,Associate(N,P1, P2, P3, ...)), the principal Pi

asserts that the freshness identifier N is associated with a participant P1,
(or with both P1 and P2, or with P1, P2 and P3...) in this protocol run. For
example, Belief (Pi,Associate(NA, A,B)) means the principal Pi asserts
that the freshness identifier NA is associated with the principals A and
B.

6.3.7 Definition of security

The security definition under computational model provides a high confidence
of the security of a cryptosystem[1, 3, 8, 13]. Recall the notations “conversa-
tion”, “matching conversations”, and we make tiny changes: only one-way
transformation that includes a trusted freshness identifier is considered as an
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efficient message of a conversation in our security analysis of cryptographic
protocols based on trusted freshness. That is to say, we only concern with
the fresh messages but omit the message parts that do not contribute to our
protocol security properties to be proved in the trusted freshness approach.

Recall that at the end of a protocol run, each participant makes a de-
cision about the authentication of the intended partner: “accept”, “reject”,
or “undetermined”[8]. Given a protocol Π between the principal A and the
principal B, if a principal like A with a conversation conv believes that B
always has a conversation conv′ which matches conv whenever they are al-
lowed to complete a protocol run, then this authentication protocol is secure
from the point of view of A. Here the attacker wins if the principal A has
reached “accept” decision while B does not have a matching conversation in
B.

Semantic security is widely accepted in the cryptographic area, and we
follow the probabilistic indistinguishability definitional approach in [3] to
define confidentiality security. In this book, that the attacker has broken
the scheme means that without breaking any cryptographic algorithm and
knowing the corresponding key, the attacker can still learn something about
the established new session key under the run of a cryptographic protocol.
Here we define “learn” as distinguishing the value of a key generated by the
cryptographic protocol from an independent randomly chosen key.

Based on the security definition of authenticity, we have presented the
Unilateral entity Authentication Secure definition (UA-Secure) (Definition
4.3) and Mutual entity Authentication Secure definition (MA-Secure) (Defi-
nition 4.4); based on the security definition of authenticity and confidential-
ity, we have presented the Unilateral authenticated Key Secure (UK-Secure)
(Definition 4.5) and Mutual authenticated Key Secure (MK-Secure[10]) (Def-
inition 4.6).

In Chapter 4, we have also presented the security properties to clarify
whether a cryptographic protocol is adequate for the security goals or not.
Here, four formal security specifications will be given based on Theorem 4.1,
Theorem 4.2, Theorem 4.3 and Theorem 4.4.

Theorem 6.8 (UA-Secure) Given a protocol Π between partners Pi and Pj

in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. The authentication protocol Π is UA-
Secure if and only if the following property holds for one of the participants,
say Pi: Pi has Existing(Pi, Pj), that is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol run.

Proof We show that the authentication protocol Π is UA-Secure if and
only if Pi has Existing(Pj).

(1) Sufficiency proof. We show that if Pi has Existing(Pj), then the pro-
tocol Π meets Definition 4.3, that is UA-Secure. Suppose Pi wants to au-
thenticate the identity of the opponent partner Pj . This try could be made
by Pi or be a reply to the message sent by the opponent partner Pj . Recall
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that only one-way transformation that includes a trusted freshness identi-
fier is considered as an efficient message of a conversation in our trusted
freshness. If Pi has Existing(Pj), that is Pi believes the liveness of the in-
tended opposite principal Pj , according to the liveness rule (Theorem 6.3),
Pi must have invented a challenge NPi for this particular protocol run, and
received a one-way transformation that includes NPi , where the one-way
transformation can only be accomplished by the principal Pj . Recall that we
have a cryptographic algorithm under IND-CCA2, if Pi sees the conversation
convPi = (τ0, · · · , NPi), (τ2, {NPi}KPiPj

, · · · ) in shared key case or convPi =
(τ0, · · · , NPi), (τ2, {NPi}K−1

Pj

, · · · ) in public-key case, then Pi sees that the

uniformly random string {NPi}KPiPj
or {NPi}K−1

Pj

is computed using NPi

invented by Pi itself; it can therefore conclude that the probability for this
bit string not having been computed by its intended partner (in other words,
having been computed by the attacker) is at the level of 2−k. Consequently,
Pi can conclude that its intended partner has a conversation which is prefixed
by convPj = (τ1, NPi , {NPi}KPiPj

) or convPj = (τ1, NPi , {NPi}K−1
Pj

). This es-

sentially shows that there exists a conversation convPj matching convPi , and
the conversation convPj has been computed by the intended partner Pj in
an overwhelming probability (in the security parameter KPiPj or K−1

Pj
). Ac-

cording to the security definition of authentication, hence Pi believes that Pj

is in lively correspondence with Pi in the matching session.
(2) Necessary proof. We show that if the protocol Π is UA-Secure, then

Pi has Existing(Pj). Suppose the UA-Secure protocol Π doesn’t hold the
listed security property Existing(Pj), that is, Pi does not believe the liveness
of the intended opposite principal Pj , then, according to the liveness rules
(Theorem 6.3), Pi has either sent a compromised or an old challenge NPi to
the intended opposite partner Pj (namely, the attacker can replay a recorded
stale message to Pi by impersonating Pj), or Pi does not require a response
to Pi’s challenge (namely, the attacker can launch an attack directly). So
the protocol Π cannot be UA-secure, hence there exists a contradiction with
the initial assumption that the protocol Π is UA-Secure. Typical examples
include Otway-Rees protocol[13], revised Woo-Lam protocol[14].

Therefore, we can conclude that the listed UA-secure security property is
not only sufficient but also necessary for the protocol Π to be UA-secure.

Theorem 6.9 (MA-Secure) Given a protocol Π between partners Pi and
Pj in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. The authentication protocol Π is called
MA-Secure if the following properties hold for the participants Pi and Pj :

1) Pi has Existing(Pj), that is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol run;

2) Pj has Existing(Pi), that is, Pj believes that the intended opposite
participant Pi is in lively correspondence with Pj in this protocol run;
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Proof Similar to Theorem 6.8, omitted.

Theorem 6.10 (Origin UA-secure) Given a protocol Π between partners
Pi and Pj in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. The authentication protocol Π
is Origin UA-Secure if and only if the following property holds for one of the
participants, say Pi: Pi has Originexisting(Pj), that is, Pi believes that the
intended opposite participant Pj is specially in lively correspondence with
this origin participant Pi in this protocol run.

Theorem 6.11 (Origin MA-secure) Given a protocol Π between partners
Pi and Pj in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. The authentication protocol Π is
called Origin MA-Secure if the following properties hold for the participants
Pi and Pj :

1) Pi has Originexisting(Pj), that is, Pi believes that the intended op-
posite participant Pj is specially in lively correspondence with this origin
participant Pi in this protocol run;

2) Pj has Originexisting(Pi), that is, Pj believes that the intended op-
posite participant Pi is specially in lively correspondence with this origin
participant Pj in this protocol run;

Unilateral entity authentication secure (UA-secure) and Mutual entity
authentication secure (MA-secure) are the most common cases in real world
applications for identity authentication and access control services, which
may suffer the replay attacks and at last may provide false identity authen-
tication and access control. In deed, Origin Unilateral entity authentication
secure (Origin UA-secure) and Origin Mutual entity authentication secure
(Origin MA-secure) could meet these real world application requirements.

Theorem 6.12 (UK-secure) Given an authentication protocol Π between
partners Pi and Pj in the presence of a probabilistic polynomial-time adver-
sary I that has full control of the communication links. k is the new session
or the shared part of the new session key for this protocol run. The authen-
tication protocol Π is called UK-Secure if the following properties hold for
one of the participants, say Pi:

1) Pi has Existing(Pj). That is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol.

2) Pi has Secret(k), Fresh(k) and Associate(k, Pi, Pj). That is, Pi be-
lieves that the adversary I could not know the new session key k and k is
new for this protocol run between Pi and Pj .

Proof Similar to Theorem 6.13, omitted.

Theorem 6.13 (MK-secure) Given an authentication protocol Π between
partners Pi and Pj in the presence of a probabilistic polynomial-time adver-
sary I that has full control of the communication links. k is the new session
key or the shared part of the new session key for this protocol run. The au-
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thentication protocol Π is called MK-Secure if the following properties hold
for the participants Pi and Pj :

1) Pi has Existing(Pj). That is, Pi believes that the intended opposite
participant Pj is in lively correspondence with Pi in this protocol run.

2) Pj has Existing(Pi). That is, Pj believes that the intended opposite
participant Pi is in lively correspondence with Pj in this protocol run.

3) Pi has Secret(k), Fresh(k) and Associate(k, Pi, Pj). That is, Pi be-
lieves that the adversary I could not know the new session key k and k is
new for this protocol run between Pi and Pj .

4) Pj has Secret(k), Fresh(k) and Associate(k, Pi, Pj). That is, Pj be-
lieves that the adversary I could not know the new session key k and k is
new for this protocol run between Pi and Pj .

Proof Sufficiency proof. We show that 1) of the Definition 4.6 is satisfied
by protocol Π . Since the principal Pi believes the liveness of the intended op-
posite principal Pj and only one-way transformation that includes a trusted
freshness identifier is considered as an efficient message of a conversation in
our approach, according to liveness rule (Theorem 6.3), Pi must have gener-
ated a challenge NPi for this particular protocol run, and received a one-way
transformation that includes a trusted freshness identifierNPi , where the one-
way transformation can only be accomplished by the principal Pj . Recall that
we have an ideal cryptographic algorithm with security against IND-CCA2,
if Pi sees the conversation convPi = (τ0, · · · , NPi), (τ2, {NPi}KPiPj

, · · · ) in
shared key case or convPj = (τ1, NPi , {NPi}K−1

Pj

) in public-key case, then Pi

sees that the uniformly random string {NPi}KPiPj
or {NPi}K−1

Pj

is computed

using NPi invented by Pi itself; it can therefore conclude that the proba-
bility for this bit string not having been computed by its intended partner
(in other words, having been computed by the attacker) is at the level of
2−k. Consequently, Pi can conclude that its intended partner has a con-
versation which is prefixed by convPj = (τ1, NPi , {NPi}KPiPj

) or convPj =
(τ1, NPi , {NPi}K−1

Pj

). This essentially shows that there exists a conversation

convPj matching convPi and the conversation convPj has been computed by
the intended partner in an overwhelming probability (in the security parame-
ter KPiPj or K−1

Pj
). According to the security definition of authentication, Pi

believes that Pj is in lively correspondence with Pi in this session. Similarly,
Pj believes that Pi is in lively correspondence with Pj in this session.

Since principal Pi believes the freshness of the new session key k, according
to the Freshness Rule (Theorem 6.6), k must be a new generated session key
for this run. Since principal Pi believes the association of the new session key
k with the principals Pi and Pj , according to the Association Rule (Theorem
6.7), k must be a session key for a particular protocol run between Pi and Pj .
Up to now, k must be a new generated session key for a particular protocol
run between Pi and Pj , hence k is the same key for both Pi and Pj , and it
is different from other generated keys in any other sessions. That is to say, if
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two uncorrupted parties complete matching sessions then they both output
the same key.

We show that 2) of the Definition 4.6 is also satisfied by protocol Π .
Recall that the attacker I is a PPT machine who has full control of the com-
munication links and I is allowed to perform a kind of cryptanalysis training
course. We can specify that l is an upper bound of the session number for
training invoked by I in any interactions. Let k be the value of the corre-
sponding session key selected randomly in this protocol Π . Let Pi play the
game with the attacker I as in Definition 4.6. Let Bad be the events that
the information of k may leak during the cryptanalysis training courses. Let
Iwins denote the event that I makes a correct guess of the challenge bit b. It
is clear that in absence of the event Bad, due to the uniform randomness of
the selected session key k, the challenge bit b is independent of the challenge
ciphertext b’. Thus we have

Prob[Iwins|Bad ] =
1
2
.

Since

Prob[Iwins|Bad ] =
Prob[Iwins ∩ Bad ]

Prob[Bad ]
,

we have

Prob[Iwins ∩ Bad ] =
1
2
Prob[Bad ] =

1
2
(1 − Prob[Bad ]).

While
Prob[Iwins] = Prob[Iwins ∩ Bad ] + Prob[Iwins ∩ Bad ],

therefore

Prob[Iwins] � Prob[Bad ] + Prob[Iwins ∩ Bad ]

= Prob[Bad ] +
1
2
(1 − Prob[Bad ]) =

1
2
(1 + Prob[Bad ]).

Since we have an ideal cryptosystem, even the attacker I has invoked l
times cryptanalysis training course, the probability that the information of k
may be leaked to I by the underlying cryptosystem (say Bad1) is negligible in
the security parameter, that is Prob[Bad1] � l∗Adv where Adv is a negligible
fraction. Since principal Pi believes the liveness of the intended partner Pj ,
the probability that the information of k might be leaked by Pj to I (say
Bad2) is 0. Since principal Pi believes the association of the new session key
k with the principals Pi and Pj , the probability that the attacker I could
persuade Pj to believe a key between I and Pj (or I and Pi) to be the key k
between Pi and Pj (say Bad3) is 0. Then we have

Prob[Bad ] = Prob[Bad1] + Prob[Bad2] + Prob[Bad3] � l ∗Adv,
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therefore

Prob[Iwins] � 1
2
(1 + Prob[Bad ]) � 1

2
(1 + l ∗Adv) =

1
2
+

l ∗Adv

2
.

Since attacker I is a PPT attacker, then (l ∗Adv)/2 is negligible. There-
fore, the probability that I guesses correctly the bit b is no more than 1/2
plus a negligible fraction in the security parameter.

Necessary proof. Suppose that a MK-secure protocol Π doesn’t hold the
listed security properties.

If a participant like Pi (or Pj) does not believe the liveness of the intended
opposite principal Pj (or Pi), then, according to Theorem 6.3, Pi (or Pj) has
sent either a compromised or an old challenge to the intended opposite part-
ner Pj (or Pi) (That is to say, the attacker can replay a recorded stale message
to Pi (or Pj) by impersonating Pj (or Pi), or does not require a response to
Pi’s (or Pj ’s) challenge (That is to say, the attacker can launch an attack
directly). This contradicts the initial assumption. The typical examples are
Otway-Rees protocol[13], revised Woo-Lam protocol[14]. Hence the protocol
Π cannot be MK-secure.

If a participant like Pi (or Pj) believes that the confidentiality of the
new session key k is open, then, according to Lemma 4.2, the attacker wins
with the probability of 1 when playing the game in Definition 4.6. Hence the
protocol Π cannot be MK-secure.

If a participant like Pi (or Pj) does not believe the freshness of the ses-
sion key k, then, according to Lemma 4.3, the attacker can replay a recorded
message including a compromised key k′ as response to Pi (or Pj). A typ-
ical example is the Needham-Schroeder shared key protocol[15]. Hence the
protocol Π cannot be MK-secure.

If a participant like Pi (or Pj) does not believe the association of the ses-
sion key k with the co-operative participants, then, according to Lemma 4.4,
the attacker may cheat a legitimate participant by confusing a key between
the attacker and another to be the key between two legitimate participants.
A typical example is the Needham-Schroeder public-key protocol[8]. Hence
the protocol Π cannot be MK-secure.

Therefore, we can conclude that the listed MK-secure security properties
are not only substantial but also necessary for the protocol Π to be MK-
secure.

6.3.8 Non-repudiation based on trusted freshness

Non-repudiation means a principal could not deny his sending or receiving
a message. These non-repudiation services (protection against false denials)
relate to the transfer of a message from an originator to a recipient. Non-
repudiation is an important security service for many applications and it is
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a necessary security requirement in electronic commerce. Non-repudiation
mechanisms are specified for non-repudiation of origin (denial of being the
originator of a message), non-repudiation of delivery (denial of having re-
ceived a message). Commonly used fairness security in electronic commerce
protocols can also be derived from non-repudiation.

When disputes arise due to a principal denying that certain actions (hav-
ing sent or received a message) were taken, a trusted third party can be called
upon to make an arbitration: give the proof of message origin, or the proof
of message delivery. For example, a principal may authorize a purchase of a
car and later he may deny such an authorization granted. A procedure in-
volving a third party is needed to resolve the dispute. What evidence would
be submitted to the third party, and what precise process the third party is
to follow to render judgement on disputes should be specified in detail for a
non-repudiation service.

Digital signatures can provide the non-repudiation service because a sig-
nature of a message is verifiable universally. The non-repudiation service pro-
vided by a digital signature means a proof of knowledge that a signer owns
exclusively a private key (knowledge) which has enabled him (her) to issue
the signature. The non-repudiation aspect of digital signatures is a primary
advantage of public-key cryptography.

Symmetric techniques (including encipherment and keyed one-way func-
tions) typically cannot provide non-repudiation service effectively, since the
data integrity techniques based on a shared secret key (e.g., MACs) typically
involve mutual trust and do not address true (single-source) data origin au-
thentication, that is, either party sharing the secret key can equally originate
a message using the shared key.

If the resolution of subsequent disputes is a potential requirement, then
either an on-line trusted third party is in a notary role, or asymmetric tech-
niques should be used.

Definition 6.10 (Non-repudiation) A crypto protocol Π can provide non-
repudia-tion service if any attacker I cannot win with a non-negligible prob-
ability in Dolev-Yao threat model. Here the attacker wins if a principal A
has reached the conclusion of message origin of B, or message delivery of B
while B has not sent or received the message.

Rule 6.1 (Non-repudiation rule) Given a protocol Π between partners A
and B in the presence of a probabilistic polynomial-time adversary I that
has full control of the communication links. We say that the protocol Π
can provide non-repudiation service if A has corroborative evidence that the
dispute message m originates from B, or the dispute message m has been
received by B. The corroborative evidence includes these following scenarios:

1) The dispute message m is a signature of its originator B.
2) The dispute messagem is guaranteed known by the dispute opponentB

via the message composition involving a cryptographic operation (response)
that could only be performed by the intended opposite partner B.
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Note: Suppose the trusted third party S is secure, then the corrobora-
tive evidence could be an encryption sent by B to the trusted third party
encrypted under the shared key between B and S.

Definition 6.11 (Real time non-repudiation) A cryptographic protocol Π
can provide realtime non-repudiation service if any attacker I cannot win with
a non-negligible probability for a particular protocol run in Dolev-Yao threat
model. Here the attacker wins if a principal A has reached the conclusion of
message origin of B, or message delivery of B for this particular protocol run
while B has not sent or received the message.

Rule 6.2 (Real time non-repudiation rule) Given a protocol Π between
partnersA andB in the presence of a probabilistic polynomial-time adversary
I that has full control of the communication links. We say that the protocol
Π can provide non-repudiation service if A has corroborative evidence that
the dispute message m originates from B for this particular protocol run, or
the dispute message m has been received by B for this particular protocol
run. The corroborative evidence includes these following scenarios:

1) The dispute message m including a timestamp is a signature of its
originator B.

2) The dispute message m is guaranteed known by the dispute opponent
B via B’s cryptographic operation (response), which could only be performed
by B, on the message composition including a timestamp.

3) The dispute messagem is guaranteed known by the dispute opponentB
via the message composition involving a cryptographic operation (response)
that could only be performed by B, and the cryptographic operation includes
a timestamp.

Here are some notations supplemented in trusted frehsness approach:
— Originate(ρ,m, Pj), every principal ρ or at least a dispute judger could

assert that the dispute message m originates from Pj .
— Respond(ρ,m, Pj), every principal ρ or at least a dispute judger could

assert that the dispute message m has been received by Pj .
— RealTimeOriginate(ρ,m, Pj), every principal ρ or at least a dispute judger

could assert that the dispute messagem originates from Pj for a particular
protocol run.

— RealTimeRespond(ρ,m, Pj), every principal ρ or at least a dispute judger
could assert that the dispute message m has been received by Pj for a
particular protocol run.

Theorem 6.14 (Non-repudiation secure) Given an authentication protocol
Π between partners Pi and Pj in the presence of a probabilistic polynomial-
time adversary I that has full control of the communication links. m is a
dispute message between partners Pi and Pj . We say that the protocol Π
can provide non-repudiation service if either of the following properties holds
for one of the participants, say Pi:

1) Pi has Originate(Pi,m, Pj). That is, Pi has corroborative evidence that
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the dispute message m is generated by Pj .
2) Pi has Respond(Pi,m, Pj). That is, Pi has corroborative evidence that

the dispute message m has been received by Pj .

Proof We show that 1) of the Theorem 6.14 is satisfied. Suppose that
an adversary I can win with a non-negligible probability to make the princi-
pal Pi believe that a forged message m originates from the opponent partner
Pj . Recall that Pi has Originate(Pi,m, Pj). That is, Pi has corroborative
evidence that the dispute message m is generated by Pj . Suppose the corrob-
orative evidence is that the dispute message m is a signature of its originator
Pj . Hence, the forged message m is a successfully constructed signature of
its originator Pj . The adversary’s ability for signature forgery can be fully
translated to one for inverting the hard function (i.e., the underlying one-way
trapdoor function). This contradicts the assumed well-known intractability
problem (i.e., factoring of RSA moduli).

Therefore, we can conclude that Originate(Pi,m, Pj) is substantial for
the protocol Π to provide non-repudiation service.

We show that 2) of the Theorem 6.14 is satisfied. Suppose that an ad-
versary I can win with a non-negligible probability to make the principal Pi

believe that a forged message m has been received by the opponent partner
Pj . Recall that Pi has Respond(Pi,m, Pj). That is, Pi has corroborative evi-
dence that the dispute message m has been received by Pj . The corroborative
evidence is that the dispute message m is known by the dispute opponent Pj

via a cryptographic operation that could only be performed by the intended
opposite partner (i.e., a decryption using Pj ’s private key of receiving an
encryption including m). Hence, if the adversary wins, then the adversary
could decrypt a public-key encryption without knowing the corresponding
private key in public-key case. The adversary’s ability for decryption with-
out corresponding key can also be fully translated to one for inverting the
hard function. This also contradicts the assumed well-known intractability
problem.

Therefore, we can conclude that Respond(Pi,m, Pj) is also substantial for
the protocol Π to provide non-repudiation service.

Theorem 6.15 (Realtime non-repudiation secure) Given an authentication
protocol Π between partners Pi and Pj in the presence of a probabilistic
polynomial-time adversary I that has full control of the communication links.
m is the dispute message for this protocol run. We say that the protocol Π
can provide non-repudiation service if either of the following properties holds
for one of the participants, say Pi:

1) Pi has RealTimeOriginate(Pi,m, Pj). That is, Pi has corroborative
evidence that the dispute message m is generated by Pj .

2) Pi has RealTimeRespond(Pi,m, Pj). That is, Pi has corroborative ev-
idence that the dispute message m has been received by Pj .

Proof We show that 1) of the Theorem 6.15 is satisfied. The proof that
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the Non-repudiation property, the dispute message m, originates from Pj , in
this theorem is similar to that proof in Theorem 6.14, hence omitted.

We show that the real time property in this theorem is also satisfied.
Recall that Pi has RealTimeOriginate(Pi,m, Pj). That is, Pi (respectively,
Pj) has corroborative evidence that the dispute message m has been sent
by Pj in a “loosely synchronized” clock time (the timestamp records the
time of sending). In deed, this timestamp is obtained by the party Pj from
its local (host) clock, and is bound to the dispute message m. Since each
party has maintained a “loosely synchronized” clock which is appropriate
to accommodate the acceptance window used, if the timestamp difference is
within the acceptance window, then Pi believes that this dispute message m
is a real time message.

Therefore, we can conclude that RealTimeOriginate(Pi,m, Pj) is sufficient
for the protocol Π to provide real time non-repudiation service.

From the proof of the real time property in 1) of Theorem 6.15 and also
the proof of delivery property in 2) of Theorem 6.14, we can obtain the proof
of 2) real time non-repudiation in Theorem 6.15 similarly.
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7 Formalism of Protocol Security Analysis

Abstract Formal methods are natural extensions to informal ones
that have been used to analyze cryptographic protocols. First, some
famous formalisms such as BAN logic, model checking and strand
space are briefly introduced; then a belief multiset formalism is put
forward based on the trusted freshness notion in Chapters 4, 5 and
also 6, and the formalism is simple and precise for automation of se-
curity analysis.

Formal methods are natural extensions to informal ones, and they have
proven to be useful in finding flaws and redundancies in cryptographic pro-
tocols. A formal method usually supports a symbolic system or a description
language for modeling and specifying a system’s behavior so that the behavior
can be captured and reasoned about by applying logical and mathematical
methods in a rigorous manner. Sometimes, a formal method is an expert
system which captures human experience or even tries to model human in-
genuity. A common characteristic of formal methods is that they take a sys-
tematic, sometime an exhaustive approach to a problem. Therefore, formal
methods are particularly suitable for the analysis of complex systems[1].

In the area of formal analysis of cryptographic protocols, two distinct
approaches are identified. One can be referred to as formal reasoning about
holding of some desirable, or secure properties (Correctness proof of a proto-
col); the other can be referred to as systematic search for some undesirable,
or dangerous properties (Finding flaws of a protocol). In the first approach,
a protocol to be analyzed must be very carefully chosen or designed so that
it could be proved to be correct and secure. In the latter approach, a proto-
col is often considered error-prone although it has been carefully chosen or
designed. So in this latter approach, analysis is to, in terms of systematic, or
exhaustive approach, search for errors[1–3].

The correctness analysis approach tries to establish that the protocol is
indeed correct with respect to a set of desirable properties which have also
been carefully formalized. Because of the carefully chosen protocols to be ana-
lyzed, a formal proof is often specially tailored to the target protocol and may
hence need to have much human ingenuity involvement, although the proof
methodology can be more general. The correctness analysis approach further
branches to two schools: a computational school (i.e., the Goldwasser-Micali
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provable security approach) and a symbolic manipulation school (i.e., the
Burrows-Abadi-Needham logic). In the latter school, security properties are
expressed as a set of abstract symbols which can be manipulated, sometimes
by a formal logic system, sometimes by a mechanical tool called a theorem
prover, toward a YES/NO result[1]. Logic-based methods attempt to reason
that a protocol is correct by evolving a set of beliefs held by each party,
and to eventually derive a belief that the protocol goals have been obtained.
The most popular symbolic method is the Burrows-Abadi-Needham (BAN)
logic[4].

The fault finding analysis approach tries to formalize a protocol, to for-
malize the behavior of an adversary and to find path from initial state to the
insecure state. For example, the insecure state means the message ends up in
Malice’s set of knowledge for the case of secrecy of a message, or the insecure
state means a wrong identity ends up in the set of accepted identities of an
honest principal for the case of entity authentication[1]. The most popular
fault finding method is Model Checking[5].

Note that the security proofs provided are within the specified formal
system, and cannot be interpreted as absolute proofs of security. Some of
these security analysis techniques are also unwieldy, or applicable only to a
subset of protocols or classes of attack. Many require (manually) converting
a concrete protocol into a formal specification, a critical process which itself
may be subject to subtle flaws[2].

We have introduced the idea whether a cryptographic protocol is secure
based on trusted freshness in Chapters 4, 5 and also 6. This idea is useful
in that it has pointed out a freshness principle and the specifications to
guarantee the security objects of a protocol. This trusted freshness idea could
be implemented via a correctness proof approach and also via a fault finding
approach.

In this chapter, we will first review some famous formalisms including
BAN logic, Model checking method, and then give a logic-based belief mul-
tiset formalism derived from the trusted freshness which is simple and pre-
cise for automation of security analysis. We have also noticed that other
formalisms for protocol analysis could be presented based on the freshness
principle, for example, a formalism using the notion of Strand[6].

7.1 BAN logic

The BAN logic[4] is a “Logic of Authentication” proposed by Burrows, Abadi
and Needham. The BAN logic provides a set of logical formulae to model the
basic actions of protocol participants and the meanings of the basic protocol
components. It focuses on the beliefs of trustworthy parties involved in au-
thentication protocols and on the evolution of these beliefs as a consequence
of communication.
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Since BAN logic operates at an abstract level, it does not consider er-
rors introduced by concrete implementation of a protocol, or errors such as
deadlocks, or even inappropriate use of cryptosystems.

In this section we will briefly review the BAN logic, and we refer the
interested reader to [4] for details of the logic and its semantics.

7.1.1 Basic notation

BAN logic distinguishes several sorts of objects: principals, encryption keys,
and formulas (also called statements). Messages are identified with statements
in the logic. Typically, the symbols A, B, and S denote specific principals;
KAB, KAS and KBS denote specific shared keys between A and B, A and
S, and B and S respectively; KA, KB and KS denote specific public-keys,
and K−1

A , K−1
B and K−1

S denote the corresponding secret keys for A, B and
S respectively; NA, NB and NC denote specific statements. The symbols
P , Q, and R range over principals; X and Y range over statements, and K
ranges over encryption keys. The only propositional connective is conjunction,
denoted by a comma. In addition to conjunction, BAN logic uses the following
constructs:
— P believes X : P believes X , or P would be entitled to believe X .
— P sees X : P sees X , that is, someone has sent a message containing X to

P , who can read and repeat X .
— P said X : P once said X , that is, the principal P at some time sent a

message including the statement X .
— P controls X : P has jurisdiction over X , that is, the principal P is an

authority on X and should be trusted on this matter.
— Fresh(X): The formula X is fresh, that is, X has not been sent in a

message at any time before the current run of the protocol.
— P K←→ Q : P and Q may use the shared key K to communicate. The key

K is good, in that it will never be discovered by any principal except P
or Q, or a principal trusted by either P or Q.

— K�−→ P : P has K as a public-key, that is, the matching secret key (denoted
K−1) will never be discovered by any principal except P or a principal
trusted by P .

— P
X� Q : The formula X is a secret known only to P and Q, and possibly

to principals trusted by them. Only P and Q may use X to prove their
identities to one another.

— {X}K: This represents the formula X encrypted under the key K. For-
mally, {X}K is a convenient abbreviation for an expression of the form
{X}K from P .

— 〈X〉Y : This represents X combined with the formula Y ; it intends that
Y be a secret and that its presence prove the identity of whoever utters
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〈X〉Y .

7.1.2 Logical postulate

The present epoch begins at the start of the particular run of the protocol
under consideration. All messages sent before this time are considered to be
in the past, and the authentication protocol should be careful to prevent any
such messages from being accepted as recent. All beliefs held in the present
are stable for the entirety of the protocol run.

1) Message-meaning rules:
— For shared keys case:

P believes Q K←→ P, P sees {X}K
P believes Q said X

.

That is, if P believes that the key K is shared with Q and sees X encrypted
under K, then P believes that Q once said X .
— For public-keys case:

P believes K�−→ Q, P sees {X}K−1

P believes Q said X
.

That is, if P believes that K and K−1 are the key pair of Q and sees X
signed under K−1, then P believes that Q once said X .
— For shared secrets case:

P believes Q
Y� P, P sees 〈X〉Y

P believes Q said X
.

That is, if P believes that the secret Y is shared with Q and sees 〈X〉Y , then
P believes that Q once said X .

2) Nonce-verification rule:

P believes fresh(X),P believes Q said X
P believes Q believes X

.

That is, if P believes that X could have been uttered only recently (in the
present) and that Q once said X (either in the past or in the present), then
P believes that Q believes X .

3) Jurisdiction rule:

P believes Q controls X, P believes Q believes X
P believes X

.

The jurisdiction rule states that if P believes that Q has jurisdiction over X
then P trusts Q on the truth of X .



7.1 BAN logic 253

4) Seeing rules:

P sees (X,Y )
P sees X

,
P sees 〈X〉Y

P sees X
,

P believes Q K←→ P, P sees {X}K
P sees X

,

P believes K�−→ P, P sees {X}K
P sees X

,
P believes K�−→ Q, P sees {X}K−1

P sees X
.

Those rules state that if a principal sees a formula, then he also sees its
components, provided he knows the necessary keys.

5) Fresh rule:
P believes fresh(X)

P believes fresh(X,Y )
.

This rule states that if one part of a formula is fresh, then the entire formula
must also be fresh.

7.1.3 Steps for security analysis based on BAN logic

1) Idealize protocols: This is a process to transform protocol messages into
logical formulae in BAN logic. That is, the protocol messages are “idealized”.
There are not any operational rules for the process of the protocol idealization
but to omit cleartext communication simply because it can be forged, and so
its contribution to an authentication protocol is mostly one of providing hints
as to what might be placed in encrypted messages. The idealized messages
are of the form {X1}K1 , ..., {Xn}Kn .

2) Formulate the premises and goals: The BAN logic starts by formu-
lating a set of premises which are protocol assumptions including the belief
premises and the state premises. Typically, the assumptions state what keys
are initially shared between the principals, which principals have generated
fresh nonce, and which principals are trusted in certain ways. The goals of
authentication protocols are also indicated at the start of a communication.
For example, an authentication is complete between A and B if there is a
new session key K so that A believes A

K←→ B, B believes A
K←→ B.

3) Establish the beliefs: The BAN logic axioms are applied to the premises
and the logical formulae with an aim of establishing a desired property such
as a good-key statement. Particularly, the formula before the first message
represents the beliefs of the principals at the start of the protocol. Step by
step, we can follow the evolution from the initial beliefs to the final ones – from
the original assumptions to the conclusions.

4) Verify the conclusion: Once the final beliefs have been achieved, we
can verify whether the goals of authentication protocols are held or whether
there exist flaws in the protocol.
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7.1.4 BAN-like logic

The BAN logic is a simple but effective formal approach. Although the BAN
logic does not have a mechanism for directly finding a flaw in a protocol, it
has been very successful in uncovering implicit assumptions that were miss-
ing from protocol specifications but are actually necessary in order for the
statement of the desired goal to hold true. A missing assumption can often
lead to a discovery of a flaw. However, flaw-finding in this way depends highly
on the analyzer’s experience, insight or even luck[1].

The idealization steps of a protocol in BAN logic are quite straightfor-
ward. Mao observes that the BAN logic provides a context-free procedure
for protocol idealization. For instance, the protocol step may tell B that
KAB is a key to communicate with A which is encrypted under the shared
key KBS between B and the trusted third party S. This step is idealized
as A ⇒ B : {A K←→ B}KBS that means the key K is a good key for com-
munication between A and B. This is in fact a dangerous simplification for
the meaning is induced from a context-free procedure. The idealization of
a protocol in BAN logic has made some differences, by omitting or adding
some meaning, between the original protocol and the idealized protocol.

The BAN logic is also lack of a formal definition for an underlying seman-
tics upon which the soundness of the axiom systems is based[1].

More important, the BAN logic believes that if X has not been sent in a
message at any time before the current run of the protocol, then X is fresh.
The BAN logic believes that this is usually true for a nonce while it may
not be in fact. Hence, the correctness proof of a protocol in the BAN logic
may not convince the security of the protocol, and the examples include the
Needham-Schroeder public-key protocol[7, 8].

To improve the BAN logic, a large body of extensions have been proposed,
including the GNY logic, the AT logic, the SVO logic, etc. They are usually
referred to as BAN-like logic.

The GNY logic[9] was proposed by Gong, Needham and Yahalom in 1990.
The GNY logic extension includes the great change of the BAN logic axiom
systems, and the notion of a message being possessed by a principal as a
result of inventing or recognizing the messages. The BAN logic has only more
than 20 axioms while GNY logic has eight classes and total 72 axioms. These
axioms are more detailed in describing the characteristics of the cryptographic
functions and the logic formulae.

The AT logic[10] was proposed by M. Abadi and M. R. Tuttle in 1991.
It has identified many sources of the past confusion for the semantics of the
BAN logic. And it has improved the BAN logic’s syntax and inference rules,
and has extended its applicability. The greatest improvement made by the
AT logic is its treatment of belief as a form of resource-bounded, defeasible
knowledge.

The SVO logic[11] was proposed by P.F. Syversoon and P.C. van Oorschot
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in 1994. It takes the advantage of BAN logic, GNY logic and AT logic, and its
rules and axioms are simple and efficient. The SVO logic is good at examining
public-key based authenticated key establishment protocols and it has been
used to analyze three Diffie-Hellman based key agreement protocols which
include the STS Protocol[1].

Although the BAN logic, including the BAN-like logic, lacks a formal
semantic model for the soundness of its logic, it is undoubtedly an important
seminal work. It has inspired the start of formal approaches to the analysis
of authentication protocols.

7.2 Model checking

Model checking is a methodology that models a complex system into a (finite)
state system, and the analysis of the behavior of a complex system usually
involves a state space exploration to check whether or not certain properties
will be satisfied. It could be a methodology for guarding against certain un-
desirable properties so that they never occur, or one for making sure that
certain desirable properties do eventually occur. The model checking tech-
nique could be applied to the analysis of authentication protocols.

Indeed, a model checking technique can only deal with systems which
can be modeled into finite state systems. The protocol analysis based on
model checking models an authentication protocol into a (finite) state system,
and the operational behavior of a finite state system is modeled by a finite
state transition system which can make state transitions by interacting with
its environment on a set of events. Not only the behavior of the legitimate
participants’ roles specified in a protocol will be modeled, but also some
typical behavior of the adversary will be modeled. Each state of the state
system is interpreted mechanically into (or assigned with) a logical formula,
and the target property of a protocol is also explicitly interpreted into a
logical formula. Trace is a sequence of events that represents a valid history
of a system running the protocol. The procedure of finding the trace is to use
a state exploration tool to discover if the system can enter an insecure state,
that is, whether there is an attack upon the protocol. The protocol analysis
based on model checking checks all possible traces of whether an undesirable
property of a protocol will be satisfiable, and here satisfiability means that
the target formula is a logical consequence of a formula in a trace. If there
exists a trace to a target formula modeling an undesirable property, then
this provides an explicit description of a system error. Therefore, a model
checking approach can work in the mode for finding an error in a system.

The model checking methodology is efficient in finding flaws in authentica-
tion protocols, e.g., Lowe found the famous attack on the Needham-Schroeder
public-key protocol using the notion CSP (Communication Sequence Pro-
cess) and the model checker FDR in 1996[12]. The famous model checking
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approaches include the FDR model checker, Interrogator system[13], MurΦ
model checker[14], NRL (Naval Research Laboratory) protocol analyzer[15–17],
etc.

The main problem of the model checking methodology is how to produce
a finite state system running the protocol without increasing or reducing the
security of the protocol. Model checking has proved to be a very successful
approach to analyze security protocols, but it tends to model a protocol by
a huge state space, hence model checking methods frequently face a “state
explosion” problem where a protocol maps to a system of too many states so
that the computing resources cannot cope with it. In authentication protocol
analysis, this limitation requires that an attacker should be a computation-
ally bounded principal: behavior which relates to unbounded computational
power will not be considered. To avoid state explosion, model checking mod-
els a protocol to a particular small system, and suppose that if there is no
attack on the particular small system analyzed, there may not be an attack
on some larger system running the same protocol under some sufficient con-
ditions. In other words, for such protocols, model checking is complete. This
simplicity may lead flaws in security analysis. And more, usually, only some
typical behavior of an attacker will be modeled while the ability of an attacker
is developing.

7.3 Theorem proving

A theorem proving approach can be described as a set of algebraic or logical
formulae which are defined for use in system behavior description or in state-
ment construction (premises or consequences to be derived), a set of axioms
which are postulated to derive new formulae from known ones, a set of theo-
rems which are desired behavior or properties of a system to be proved, and
the proofs of theorems by using premise axioms and other already proved
theorems. Sometimes, the proof process in a theorem proving approach can
be mechanized if there are certain rules for applying axioms or theorems. The
proof tool is then called a (mechanical) theorem prover.

Strand space[6] is a famous theorem proving approach proposed by Fab-
rega, Herzog and Guttman in 1998 for stating and proving correctness prop-
erties of cryptographic protocols. In strand space approach, a strand is a
sequence of events; it represents either the execution of legitimate party in
a security protocol or else a sequence of actions by an attacker. For a legiti-
mate participant, each strand is a sequence of messages it sends and receives;
it represents the action of that party in a particular run of the protocol. A
collection of strands for various legitimate protocol parties with the attacker
strands defines strand space. A strand space represents a graph structure gen-
erated by the causal interaction. The set of actions that principals can take
during the execution of a protocol includes actions such as send (denoted by
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+) and receive (denoted by -). A bundle represents a full protocol exchange
that consists of a number of strands hooked together where one strand sends
a message and another strand receives the same message. A node is a pair
〈s, i〉 with s ∈ Σ (Σ is a set of all strands) and i is an integer representing
the node position. There is an edge n1 → n2 if and only if term(n1) = +a
and term(n2) = −a for some a ∈ set of all messages. When n1 = 〈s, i〉 and
n2 = 〈s, i+1〉 are nodes, there is an edge n1 ⇒ n2. If C is a bundle, then the
C-height of a strand s is the largest i so that 〈s, i〉 ∈ C. Bundle is a finite
acyclic subgraph that captures the natural causal precedence relation among
nodes as defined by the edges→ and⇒. If there are terms a1 and a2, then a1

is a subterm if it appears in a2. A term t originates on a node n in a strand
s if n is the first positive node containing t in s. The correct proof of a cryp-
tographic protocol in strand space is expressed in terms of the connections
between strands of different kinds and it is given in the combination with a
range of other protocols. For details of strand space, refer to [6, 18].

Strand space provides a clear semantics to the assumption that certain
data items, such as nonce and session keys, are fresh and never arise in more
than one protocol run; it gives a detailed model of an attacker which is inde-
pendent of the concrete protocol analyzed; it also gives various correct defi-
nitions, hence the correctness proofs have become convenient. Furthermore,
strand space can be used not only by hand but also as a special purpose tool
because of its simplicity and elegance[19]. Theoretical results can also be ex-
pressed using strand space as a framework. However, the proof process under
strand space is related to the concrete formalization of an attacker as model
checking does, although the attacker model is independent of the concrete
protocol analyzed.

7.4 Belief multisets based on trusted freshness

Review that we have presented a freshness principle in Chapter 5, also a
manual analysis method based on the freshness principle in Chapter 6, and
we will now introduce a belief multiset formalism[20–23] in this section to
show the efficiency and the rigorous security analysis idea based on trusted
freshness, which is suited for automation.

In this section we describe the syntax and semantics of the belief multiset
formalism, also its rules, and the transformations that we apply to protocols
before their formal analysis.

7.4.1 Belief logic language

Let’s review the notation introduced in Section 3. The notations in the belief
multiset formalism are indicated in Table 7.1.
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Table 7.1 Notations

Notations Description

ρ Arbitrary principal, ranges over the participants of the protocol run.

Pi or Pj A principal indexed by subscript in a protocol run.

S Trusted third party.

τ Arbitrary time, a moment, not a period of time.

t0, t1, t2, ..., t$

Time before the start of a protocol run, time at the first message

round (e.g., Message 1)..., time at the termination of a protocol

run respectively.

N or N ′
Arbitrary freshness identifier, it can be a nonce, a timestamp,

a session key or a shared part of a session key.

NPi A freshness identifier invented by subscript principal Pi.

k
A cryptographic key; k−1, the inverse of k. In shared-key case,

k and k−1 are equal.

K
A long-term key, it may be a private key in shared-key schemes,

a public-key or a private key in public-key schemes.

KPiPj (or KPiS)
The long-term key shared between the principal Pi and Pj (or S)

in shared-key case.

KPi , K
−1
Pi

The public-key and private key subscripted by principal identity

respectively in public-key case. For example, KPi and K−1
Pi

,

the key pairs of the principal Pi.

ϕ,ψ or Γ A fact, which has the value of True or False.

¬ A logical operator which is the same as negation used in logic.

A belief is a trust about the security property of a cryptographic protocol
in belief multiset formalism, the beliefs defined in this book include fragment
belief, expectation belief, liveness belief, confidentiality belief, freshness belief
and association belief, and the types of beliefs could be further extended to
meet various applications in the future.

Definition 7.1 ∼ {...N,N ′...}k is a fragment belief owned by someone such
as Pi who asserts the binding of a new freshness identifier N ′ with a trusted
freshness identifier N .

Definition 7.2 ≺ {N,Pj} is an expectation belief owned by someone such
as Pi who asserts that only the partner Pj can obtain the freshness identifier
N from a one-way transformation that is sent by Pi.
≺ {N,Pi, Pj} is also an expectation belief owned by someone such as Pi

as ≺ {N,Pj} is, and the explicit identity of Pi in ≺ {N,Pi, Pj} indicates that
N must be associated with the session related to Pi.

Definition 7.3 Key(Pi, k) means the principal Pi has the knowledge of k.
On the contrary, ¬(Key(Pi, k)) means the principal Pi does not have the
knowledge of k.

Definition 7.4 〈...ρ〉 is a liveness belief owned by someone such as Pi about
the liveness of a principal ρ, the default is 〈...ρ〉. If the intended opposite
partner ρ is in lively correspondence in this session, then Pi has 〈1ρ〉, that is,
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Existing(ρ) (see Definition 6.5).

Definition 7.5 〈...1...2ρ〉 is an origin liveness belief owned by someone such
as Pi about the origin liveness of a principal ρ, which is a special type of
liveness belief with origin identity requirement. The default of the origin
liveness belief is Belief (Pi, Existing(ρ)).

“...1” states the origin principal of the liveness property.
“...2” states the liveness property about the opponent participant. If the

intended opposite partner ρ is in lively correspondence in this session, and Pi

has corroborative evidence that Pj is in lively correspondence with Pi, then
Pi has 〈Pi 1ρ〉, that is, Belief (Pi, Originexisting(ρ)) (see Definition 6.6).

Definition 7.6 〈...1...2N...3〉 is a belief owned by someone such as Pi about
the freshness identifier N , including the confidentiality belief, freshness belief
and association belief. The default of the beliefs about the freshness identifier
N is 〈......N...〉 (it is usually written as 〈...N...〉 for interest of concision).

1) “...1” states confidentiality belief owned by someone such as Pi about
the freshness identifier N . If freshness identifier N is confidential in this
run from the point of view of Pi, then Pi has 〈1...N...〉, that is, Belief (Pi,
Secret(N)); if freshness identifier N is open in this run, then Pi has 〈0...N...〉.

2) “...2” states freshness belief owned by someone such as Pi about the
freshness identifier N . If N is fresh, then Pi has 〈...1N...〉, that is, Be-
lief (Pi,Fresh(N)); if the freshness of the freshness identifier N is not clear,
then Pi has 〈......N...〉. In belief multiset formalism, if N is a long-term key
between the principal Pi and Pj in this run, we use 〈11NPiPj〉 to express
this security property.

3) “...3” states the association belief owned by someone such as Pi about
the freshness identifier N . If freshness identifier N is associated with a par-
ticipant Pi (or also with Pj) of a protocol run, then Pi has 〈......NPi〉 (or
〈......NPiPj〉), that is, Belief (Pi,Associate(N,Pi)) or Belief (Pi,
Associate(N,Pi, Pj)).

When N is a key in a belief 〈1...N...3〉, then only the principals indicated
in “...3” know this key N .

In the interest of concision, the confidentiality belief, freshness belief and
association belief about a freshness identifier are often expressed in the same
fact, such as 〈01NPi〉.
Definition 7.7 Suppose ρ is a fact, then Bρ,τ (ϕ) means that the principal
ρ believes ϕ is true at time τ .

In particular, BPi,τ1(Bρ,τ (ϕ)) means that the principal Pi at time τ1 be-
lieves the fact: the principal ρ believes ϕ is true.

Example 7.1 Here are some examples of beliefs in the belief multiset for-
malism:
— BPi,t1(〈1Pj〉): at time t1, principal Pi believes the liveness of the opponent

participant Pj .
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— BPi,t4(〈Pi1Pj〉): at time t4, principal Pi believes the liveness of the oppo-
nent participant Pj and Pj has shown its presence specially for Pi.

— BPi,t0(〈11KPiSPiS〉): at time t0, principal Pi believes that the fact
〈11KPiSPiS〉 is true. That is, Pi believes that KPiS is a shared long-term
key between Pi and the trusted third party S.

— BPi,t0(〈1...kPiPj ...〉): at time t0, principal Pi believes that the fact
〈1...kPiPj ...〉 is true, that is, the key kPiPj is confidential. This is also a
general premise for all freshness identifiers from the start of the protocol
run until the confidentiality property has been changed in the subsequent
steps of the protocol run.

— BPj ,t3(〈...kPiPjPiPj〉): at time t3, principal Pj believes that the fact
〈...kPiPjPiPj〉 is true, that is, the key kPiPj is associated with both prin-
cipals Pi and Pj .

— BPi,t2(〈11kPiPjPiPj〉): at time t2, principal Pi believes that the fact
〈11kPiPjPiPj〉 is true. That is, Pi believes that kPiPj is confidential and
fresh, and Pi also believes that both Pi and Pj know this key kPiPj . Ac-
tually, this assertion includes four beliefs about the freshness identifier
kPiPj : BPi,t2(〈1...kPiPj ...〉), BPi,t2(〈...1kPiPj ...〉), BPi,t2(〈...kPiPjPi〉) and
BPi,t2(〈...kPiPjPj〉).

— BA,t0(¬Key(I,K−1
B )): at time t0, A believes that the fact Key(I,K−1

B ))
is not true, namely, A believes that I doesn’t have the key K−1

B . t0 means
the belief BA,t0(¬Key(I,K−1

B )) is a premise of this protocol run.
— BA,t1(〈01Nρ〉): at time t1, the principal A believes the fact that 〈01Nρ〉

is true. That is, A believes that N is not confidential, but N is fresh and
associated with ρ in the protocol run.

From the above definitions we are able to make the expression of the
security properties clear and intuitive.

Definition 7.8 A belief multiset is an unordered collection of beliefs owned
by a legitimate participant. We use bρ,τ to express the belief multiset owned
by the principal ρ at time τ . A belief (such as a liveness belief, a confidentiality
belief, a freshness belief and an association belief) is an element of a belief
multiset, and we often refer it to a multiset element. In a belief multiset, the
number of the multiset elements and the types of the beliefs are not limited.
The typical form of a belief multiset is �〈...N...〉, ... , 〈...Pj〉�.
Definition 7.9 We define

Bρ,τ (�〈...N1...〉, ..., 〈...Nl...〉, 〈... Pi〉, ..., 〈... Pj〉�)
� Bρ,τ (〈...N1...〉) ∧ ... ∧Bρ,τ (〈...Nl...〉) ∧Bρ,τ (〈...Pi〉) ∧ ...∧

Bρ,τ (〈...Pj〉),
where 〈...N1...〉 is the belief about the freshness identifier N1 (especially the
new session key or the shared part of a new session key) including the con-
fidentiality belief, the freshness belief and the association belief about N1;
〈...Nl...〉 is the belief about the freshness identifier Nl where l is a natural
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number, this belief is similar to that about N1; 〈...Pi〉 and 〈...Pj〉 are the
liveness beliefs about the principal Pi and Pj respectively.

Note that the types of the multiset elements, the properties of the multiset
elements, the number of the multiset elements are various for each belief
multiset owned by some principal, hence we use multiset instead of set to
express the security properties of a cryptographic protocol.

Example 7.2 Here are some examples of the belief multisets:
— bPi,t0 = �〈11KPiSPiS〉, 〈11N...〉�: at time t0, principal Pi has the confi-

dentiality belief, the freshness belief and the association belief about the
shared long-term key KPiS , and Pi also has the confidentiality belief and
the freshness belief about the freshness identifier N . Here 〈11KPiSPiS〉
and 〈11N...〉 are the multiset elements in this belief multiset bPi,t0 .

— bPi,t$ = �〈11kPiPj ...〉, 〈11N...〉�: at time t$, namely at the end of the
protocol run, Pi believes that the new session key kPiPj and the freshness
identifier N are confidential and fresh, but Pi is not sure whether kPiPj
is for the principals Pi and Pj or not.

— bA,t$ = �〈11kAB〉, 〈1B〉�: at the end of the protocol run, A believes that
the new session key k is confidential, fresh, and associated with both
principals A and B, and A also believes that the principal B is in lively
correspondence in this session.

7.4.2 Logical postulate

7.4.2.1 Operation rule

Suppose ϕ and ψ are facts. The facts in belief multiset formalism obey
the following operation rules:
R1 : From � ϕ and � (ϕ⇒ ψ), infer � ψ
R2 : From � ϕ infer Bp,tϕ

� ϕmeans that fact ϕ is valid at all time. For example, ϕ can be a theorem
that is derivable from axioms alone. R1 is the modus ponens and states that
if ϕ can be deduced and ϕ⇒ ψ can be deduced, then ψ can also be deduced.
R2 is the generalization rule, which states that if ϕ is a theorem then the
principal ρ believes that the statement ϕ is true at time t.

Example 7.3 Suppose KPi is the public-key of the principal Pi, suppose
everybody including the adversary I knows this public-key KPi , namely,
〈01KPiρ〉 is a theorem, then according to the operation rule R2, an arbi-
trary principal ρ such as Pj will believe that the statement 〈01KPiρ〉 is true
at the start of the protocol run, that is BPj ,t0(〈01KPiρ〉).
Definition 7.10 (multiset element operation) Suppose ρ is an arbitrary
principal, Pi and Pj are given principals, and N is an arbitrary freshness
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identifier in a protocol run. α, β, δ ∈ {0, 1, “...”}, and a, b, d ∈ {0, 1}. The
multiset element operations are defined as follows:

1) ∪ operator
— For the liveness belief of the principal ρ,

〈αρ〉 ∪ 〈βρ〉 � 〈δρ〉,

we have δ = 1 if and only if at least one of α, β = 1.
— For the freshness belief of the freshness identifier N ,

〈. . .1 αN . . .3〉 ∪ 〈. . .1 βN . . .3〉 � 〈. . .1 δN . . .3〉,

we have δ = 1 if and only if at least one of α, β = 1.
2) ∩ operator

— For the confidentiality belief of the freshness identifier N ,

〈α . . .2 N . . .3〉 ∩ 〈β . . .2 N . . .3〉 � 〈δ . . .2 N . . .3〉,

we have δ = 1 if and only if both α, β = 1.
3) + operator

— For the association belief of the freshness identifier N about a same prin-
cipal,

〈. . .1 . . .2 Nρa〉+ 〈. . .1 . . .2 Nρb〉 � 〈. . .1 . . .2 Nρd〉,
we have d=1 if and only if at least one of a, b=1.Here ρ1 means the identity
of the principal ρ (〈. . .1 . . .2 Nρ〉), and ρ0 means “...3” (〈. . .1 . . .2 N . . .3〉),
that is, the principal ρ is not associated with N , hence N may not be a
new freshness identifier intended for the session related to the principal
ρ.

— For the association belief of the freshness identifier N about various prin-
cipals,

〈. . .1 . . .2 NPi〉+ 〈. . .1 . . .2 NPj〉 � 〈. . .1 . . .2 NPiPj〉,

where Pi and Pj are various principals.

Definition 7.11 (belief multiset operation) Suppose ρ is an arbitrary prin-
cipal, Pi and Pj are given principals, N1 and N2 are arbitrary freshness
identifiers in a protocol run, bρ,τ is a belief multiset of ρ at time τ .

Suppose we have the belief multiset bρ,τ = �〈...N1...〉, ..., 〈... Pi〉�, and the
multiset elements 〈...N2...〉 and 〈... Pj〉, we define

bρ,τ + 〈...N2...〉+ 〈... Pj〉 � �〈...N1...〉, ..., 〈... Pi〉, 〈...N2...〉, 〈... Pj〉�

Example 7.4 Suppose Pi, Pj are principals, and N is a freshness identifier
in a protocol run, then we have:

— �〈...1N...〉, ..., 〈...Pj〉�+ 〈...N...〉+ 〈...Pj〉 = �〈...1N...〉, ..., 〈...Pj〉�
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— �〈...N...〉, ..., 〈1Pj〉�+ 〈...N...〉) + 〈...Pj〉 = �〈...N...〉, ..., 〈1Pj〉�
— �〈1...N...〉, ..., 〈...Pj〉�+ 〈0...N...〉+ 〈...Pj〉 = �〈0...N...〉, ..., 〈...Pj〉�
— �〈...N...〉, ..., 〈...Pj〉�+ 〈0...N...〉+ 〈...Pj〉 = �〈0...N...〉, ..., 〈...Pj〉�
— �〈1...N...〉, ..., 〈...Pj〉�+ 〈...N...〉+ 〈...Pj〉 = �〈1...N...〉, ..., 〈...Pj〉�
— �〈...N...〉, ..., 〈...Pj〉�+ 〈...NPi〉+ 〈...Pj〉 = �〈...NPi〉, ..., 〈...Pj〉�
— �〈...N...〉, ..., 〈...Pj〉�+ 〈...NPj〉+ 〈...Pj〉 = �〈...NPj〉, ..., 〈...Pj〉�
— �〈...NPi〉, ..., 〈...Pj〉�+ 〈...NPj〉+ 〈...Pj〉 = �〈...NPiPj〉, ..., 〈...Pj〉�
— �〈...NPiPj〉, ..., 〈...Pj〉�+ 〈...N...〉) + 〈...Pj〉 = �〈...NPiPj〉, ..., 〈...Pj〉�
— �〈...1NPiPj〉, ..., 〈...Pj〉�+ 〈...N...〉+ 〈1Pj〉) = �〈...1NPiPj〉, ..., 〈1Pj〉�
— �〈...1NPiPj〉, ..., 〈...Pj〉�+〈...N ′...〉+〈1Pi〉=�〈...1NPiPj〉, 〈...N ′...〉, ..., 〈1Pi〉, 〈...Pj〉�

7.4.2.2 Inference rule

Inference rules, as described below, enable the derivation of new beliefs
from current beliefs and incoming fresh messages. We believe that the secu-
rity of a cryptographic protocol can only be derived from a trusted freshness
identifier in trusted freshness analysis. The inference rules tend to be gen-
eral statements of classical propositional calculus, and statements of the hy-
potheses underlying shared-key and public-key cryptographic communication
protocols, and they are intuitively clear, so we just give a brief explanation
here.

As an illustrated example of the hypotheses underlying shared-key and
public-key cryptographic communication protocols, a signature could provide
the evidence that a key is possessed by some party who signed it, and the
trusted freshness identifier assures that the signature is a recent one, hence
the recent signed signature could show the existence of this entity.

Recall that each security belief in the trusted freshness approach is only
owned by a certain principal.

Let Pi and Pj range over principals, ρ be an arbitrary principal ranging
over principals, and N and N ′ range over nonce.

Fragment rules

Fragment rules are rules about the liveness property of a principal, the
freshness property and association property of a new freshness identifier N ′,
which assert the binding of a new freshness identifier N ′ with a trusted fresh-
ness identifier N .

In general, if Pi asserts that the new freshness identifier N ′ is bound to a
trusted freshness identifier N via a one-way transformation including N ′ and
N , then Pi has the fragment ∼ {...N,N ′...}k.

A1 (Fragment Rule)
The fragment rules A1(a) to A1(h) relate to the fragment held by the

principal Pi who asserts that the new freshness identifier N ′ is bound to the
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trusted freshness identifierN via a one-way transformation includingN ′ andN .
A1(a) −{...N,N ′...}KPiPj

∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈...1N...〉)
⇒ BPi,t(∼ {...N,N ′...}KPiPj

)
The fragment rule A1(a) states: the principal Pi receives a term {...N,

N ′...}KPiPj
including the trusted freshness N (i.e., BPi,t(〈...1N...〉)), since Pi

believes that KPiPj is the shared long-term key between Pi and Pj , hence
Pi asserts that it must be Pj who has sent this one-way transformation.
Therefore, Pi believes that N ′ is generated for the same protocol run as N
does, which is between Pi and Pj . That is, Pi asserts that N ′ and N are
bound to the same protocol run.

A1(b) −{...N,N ′, Pj ...}KPiS
∧BPi,t(〈11KPiSPiS〉) ∧BPi,t(〈...1N...〉)

⇒ BPi,t(∼ {...N,N ′...}KPiS
)

The fragment rule A1(b) states: the principal Pi receives a term {... N,N ′,
Pj ... }KPiS

including the trusted freshness N , since Pi believes that KPiS is
the shared long-term key between Pi and the trusted third party S, hence Pi

asserts that it must be S who has sent this one-way transformation and has
indicated that N ′ and N are bound to the same protocol run related to Pi

and Pj (the explicit indication of the identity Pj).
A1(c) −{...N,N ′...}KPi

∧BPi,t(〈01KPiρ〉) ∧BPi,t(〈11K−1
Pi

Pi〉)∧
BPi,t(〈...1N...〉)⇒ BPi,t(∼ {...N,N ′...}KPi

)
The fragment rule A1(c) states: the principal Pi receives a term {...N,

N ′...}KPi
including the trusted freshness N , since Pi believes that K−1

Pi
is

the private key of Pi, hence Pi asserts that only Pi can decrypt this one-way
transformation {... N,N ′... }KPi

. Therefore, Pi believes that N ′ is generated
for the same protocol run as N does, which is related to Pi. That is, Pi asserts
that N ′ and N are bound to the same protocol run related to Pi.

A1(d) −{...N,N ′...}K−1
Pj

∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1
Pj

Pj〉)∧
BPi,t(〈...1NPi...〉)⇒ BPi,t(∼ {...N,N ′...}K−1

Pj

)

The fragment rule A1(d) states: the principal Pi receives a term {...N,
N ′...}K−1

Pj

including the trusted freshness N , since Pi believes that K−1
Pj

is

the private key of Pj , hence Pi asserts that it must be Pj who has generated
this one-way transformation for the principal Pj . Therefore, Pi believes that
N ′ is generated for the same protocol run as N does, which is related to Pj .
That is, Pi asserts that N ′ and N are bound to the same protocol run related
to Pj . Since Pi has BPi,t(〈...1NPi...〉), then Pi believes that N ′ is also related
to the principal Pi. Hence, N ′ and N are bound to the same protocol run
related to Pj and also Pi.

A1(e) +{...N,N ′...}KPiPj
∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈...1N...〉)

⇒ BPi,t(∼ {...N,N ′...}KPiPj
)

The fragment rule A1(e) states: the principal Pi sends out a term {...N,
N ′...}KPiPj

including the trusted freshness N , since Pi believes that KPiPj is
the shared long-term key between Pi and Pj , hence Pi asserts that only Pj

can decrypt this one-way transformation. Therefore, Pi believes that N ′ is
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generated for the same protocol run as N does, which is between Pi and Pj .
That is, Pi asserts that N ′ and N are bound to the same protocol run.

A1(f) +{...N,N ′, Pj ...}KPiS
∧BPi,t(〈11KPiSPiS〉) ∧BPi,t(〈...1N...〉)

⇒ BPi,t(∼ {...N,N ′...}KPiS
)

The fragment rule A1(f) states: the principal Pi sends out a term {... N
,N ′, Pj ... }KPiS

including the trusted freshness N , since Pi believes that KPiS

is the shared long-term key between Pi and the trusted third party S, hence
Pi asserts that only S can decrypt this one-way transformation and S will
learn that N ′ and N are bound to the same protocol run related to Pi from
KPiS , and Pj from the explicitly indicated identity of Pj .

A1(g) +{...N,N ′...}KPj
∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1

Pj
Pj〉)∧

BPi,t(〈...1NPi...〉)⇒ BPi,t(∼ {...N,N ′...}KPj
)

The fragment rule A1(g) states: the principal Pi sends out a term {...N,
N ′...}KPj

including the trusted freshness N , since Pi believes that K−1
Pj

is
the private key of Pj , hence Pi asserts that only Pj can decrypt this one-way
transformation {... N,N ′... }KPj

. Therefore, Pi believes that N ′ is gener-
ated for the same protocol run as N is related to Pj . From the supposition
BPi,t(〈...1NPi...〉), we know that N is also related to Pi, so N is related to
both Pi and Pj . Hence, Pi asserts that N ′ and N are bound to the same
protocol run between Pi and Pj .

A1(h) +{...N,N ′...}K−1
Pi

∧BPi,t(〈01KPiρ〉) ∧BPi,t(〈11K−1
Pi

Pi〉)∧
BPi,t(〈...1N...〉)⇒ BPi,t(∼ {...N,N ′...}K−1

Pi

)

The fragment rule A1(h) states: the principal Pi sends out a term {...N,
N ′...}K−1

Pi

including the trusted freshness N , since every principal including

Pi has the public-key KPi to check that N ′ and N are bound to the same
protocol run as Pi expects, hence Pi asserts that N ′ is generated for the same
protocol run as N does and the protocol run is related to Pi.

Expectation rules

Expectation rules are rules about the liveness property of a principal, the
association property of a freshness identifier N , which assert that only the
partner Pj can obtain the freshness identifier N from a one-way transforma-
tion that is sent by Pi.

The freshness identifier N is sent via a one-way transformation originated
from Pi, and Pi expects that only the intended opposite partner Pj with the
corresponding decryption key KPj can obtain N .

The expectation rules A2(a)-A2(c) refer to the expectation held by Pi

who expects that only the intended opposite partner Pj with the relevant
key can obtain the freshness identifier N .

A2 (Expectation Rule)
Suppose Pi believes that N is confidential and fresh, and KPiPj is the

shared long-term key between Pi and Pj .
A2(a) +{...N...}KPiPj

∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈11N...〉)
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⇒ BPi,t(≺ {N,Pi, Pj})
The expectation rule A2(a) states: the principal Pi believes that N is

confidential and fresh, Pi encrypts the message {...N...} using the shared
long-term key KPiPj and then Pi sends {...N...}KPiPj

out. As Pi believes
that only the intended opposite partner Pj has the corresponding decryption
key KPiPj of this one way transformation {...N...}KPiPj

, hence Pi expects
that only the intended opposite partner Pj can obtain the freshness identifier
N from the encryption, where N is related to a session of Pi.

Supose Pi believes that N is confidential and fresh, and K−1
Pj

is Pj ’s
private key.

A2(b) +{...N...}KPj
∧BPi,t(〈11K−1

Pj
Pj〉) ∧BPi,t(〈11N...〉)

⇒ BPi,t(≺ {N,Pj})
The expectation rule A2(b) states: the principal Pi believes that N is

confidential and fresh, Pi encrypts the message {...N...} using the public-
key KPj of Pj and then Pi sends {...N...}KPj

out. As Pi believes that only
the intended opposite partner Pj has the corresponding decryption key K−1

Pj

of this one way transformation {...N...}KPj
, hence Pi expects that only the

intended opposite partner Pj can obtain the freshness identifier N from the
encryption.

Supose Pi believes that N is confidential and fresh, KPj and K−1
Pj

are key
pair of Pj in public-key case.

A2(c) +{...Pi, N...}KPj
∧BPi,t(〈11K−1

Pj
Pj〉) ∧BPi,t(〈11N...〉)

⇒ BPi,t(≺ {N,Pi, Pj})
The expectation rule A2(c) states: the principal Pi believes that N is

confidential and fresh, Pi encrypts the message {...Pi, N...} using the public-
key KPj of Pj and then Pi sends {...Pi, N...}KPj

out. As Pi believes that only
the intended opposite partner Pj has the corresponding decryption key K−1

Pj

of this one way transformation {...Pi, N...}KPj
, hence Pi expects that only

the intended opposite partner Pj can obtain the freshness identifier N from
the encryption, and Pi knows that N is related to a session of Pi from the
explicit indication of Pi in {...Pi, N...}KPj

.

Inference rules about the confidentiality of a freshness identifier

Confidentiality rule is a rule about the confidentiality property of a fresh-
ness identifier, which asserts that the freshness identifier is secret if it is
transmitted in the form of an encryption that may not be decrypted by the
attacker.

Recall the confidentiality lemma (Lemma 4.2), the confidentiality of a
freshness identifier can be achieved by a participant Pi if the identifier is
transmitted in the form of an encryption that cannot be decrypted by the
attacker; if the freshness identifier is transmitted in the form of a plaintext
or an encryption that may be decrypted by the attacker, then the freshness
identifier is open, that is, it is known by the attacker.
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Once a freshness identifier is open, it could not be confidential again in
the subsequent protocol run.

A3 (Confidentiality Rule)
Suppose all freshness identifiers are confidential at the beginning of the

protocol run, that is, BPi,t0(〈1...N...〉). The freshness identifier will become
open if one of the following cases is met:

(1) The freshness identifier is transmitted in plaintext.
A3(a) −{...N...} ⇒ BPi,t(〈0...N...〉)
The confidentiality rule A3(a) states: if Pi receives a plaintext {...N...}

including a freshness identifier N , then Pi believes that N is open, that is,
N is known by the attacker.

A3(b) +{...N...} ⇒ BPi,t(〈0...N...〉)
The confidentiality rule A3(b) states: if Pi sends a plaintext {...N...}

including a freshness identifier N , then Pi believes that N is open.
(2) The freshness identifier is transmitted in encryption, but the decryp-

tion key is known by adversary I .
Suppose that the corresponding decryption key k−1 of the encryption

{...N...}k is known by adversary I.
A3(c) −{...N...}k ∧BPi,t(Key(I, k−1))⇒ BPi,t(〈0...N...〉)
The confidentiality rule A3(c) states: if Pi believes that the correspond-

ing decryption key k−1 of the receiving encryption {...N...}k is known by an
attacker, then Pi believes that the freshness identifier N could not be confi-
dential since the attacker could get N from the encryption {...N...}k using
k−1.

A3(d) +{...N...}k ∧BPi,t(Key(I, k−1))⇒ BPi,t(〈0...N...〉)
The confidentiality rule A3(d) states: if Pi believes that the correspond-

ing decryption key k−1 of the sending encryption {...N...}k is known by an
attacker, then Pi believes that the freshness identifier N could not be confi-
dential since the attacker could get N from the encryption {...N...}k using
k−1.

Inference rules about the liveness of a principal

1) General liveness rules.
Liveness rules are rules about the liveness property of a principal. Recall

the liveness lemma (Lemma 4.1), the liveness of a principal Pj can be achieved
by a participant Pi via a sent or received one-way transformation that in-
cludes a trusted freshness identifier of Pi, where the one-way transformation
can only be accomplished by the principal Pj . Pi may have corroborative
evidence that Pj is in lively correspondence with Pi if one of the following
cases is met:

A4 (Liveness Rule)
(1) Pi has corroborative evidence that the received message must have

been generated by Pj .
Pi receives an encryption including the trusted freshness N , and Pi be-

lieves that this encryption is encrypted by Pj using the shared long-term key
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KPiPj between Pi and Pj .
A4(a) −{...N...}KPiPj

∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈...1N...〉)
⇒ BPi,t(〈1Pj〉)

If Pi believes that N is fresh, KPiPj is the shared long-term key between
Pi and Pj , and Pi receives a one-way transformation {...N...}KPiPj

, then Pi is
entitled to believe that Pj is in lively correspondence with Pi in this session.

The liveness rule A4(a) states: principal Pi receives a term {...N...}KPiPj

including a trusted freshness identifier N , since Pi believes that KPiPj is the
shared long-term key between Pi and Pj , hence Pi asserts that it must be Pj

who has encrypted the message including the trusted freshness identifier N
using the keyKPiPj . Therefore, Pi believes that Pj is in lively correspondence
with Pi in this session.

Pi receives a signature including the trusted freshness N , and Pi believes
that this signature is signed by Pj using Pj ’s private key K−1

Pj
.

A4(b) −{...N...}K−1
Pj

∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1
Pj

Pj〉)∧
BPi,t(〈...1N...〉)⇒ BPi,t(〈1Pj〉)

If Pi believes that N is fresh and K−1
Pj

is the private key of Pj , and Pi

receives a one-way transformation {...N...}K−1
Pj

, then Pi is entitled to believe

that Pj is in lively correspondence with Pi in this session.
The liveness rule A4(b) states: principal Pi receives a term {...N...}K−1

Pj

including the trusted freshness identifier N , since Pi believes that K−1
Pj

is the
private key of Pj , hence Pi asserts that it must be Pj who has encrypted
the message including the trusted freshness identifier N using the key K−1

Pj
.

Therefore, Pi believes that Pj is in lively correspondence with Pi in this
session.

(2) Pi has corroborative evidence that the sent fresh message has been
processed by Pj .

Suppose Pi believes that N is fresh and Pi expects that only the intended
opposite partner Pj can obtain the freshness identifier N . Subsequently, if
Pi has received the term {...N...} or {...N...}k and the correctness of N has
been checked, then Pi is entitled to believe that Pj is in lively correspondence
with Pi in this session.

A4(c) −{...N...}k ∧BPi,t(≺ {N,Pj}) ∧BPi,t(Key(Pi, k
−1))∧

BPi,t(〈...1N...〉)⇒ BPi,t(〈1Pj〉)
and

A4(c′) −{...N...}k ∧BPi,t(≺ {N,Pi, Pj}) ∧BPi,t(Key(Pi, k
−1))∧

BPi,t(〈...1N...〉)⇒ BPi,t(〈1Pj〉)
The liveness rule A4(c) states: principal Pi has the expectation BPi,t(≺

{N,Pj}) (or BPi,t(≺ {N,Pi, Pj})) which implies that only the intended op-
posite participant Pj can read the freshness identifier N . When Pi receives
the term {...N...} or {...N...}k including the trusted freshness identifier N ,
Pi asserts that it must be Pj who has sent the message including N , so Pi

believes that Pj is in lively correspondence with Pi in this session.
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More liveness rules could be given only if the cryptographic operation
could provide a corroborative evidence that a principal is in lively corre-
spondence with a challenge – a trusted freshness identifier N owned by the
principal who wants to establish the liveness belief about its opponent par-
ticipant.

2) Liveness rules with origin
Pi receives an encryption including the trusted freshness N , and Pi be-

lieves that this encryption is encrypted by Pj using the shared long-term key
KPiPj between Pi and Pj .

A4(d) −{...N...}KPiPj
∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈...1N...〉)

⇒ BPi,t(〈Pi 1Pj〉)
If Pi believes that N is fresh, KPiPj is the shared long-term key between

Pi and Pj , and Pi receives a one-way transformation {...N...}KPiPj
, then

Pi is entitled to believe that Pj is in lively correspondence with Pi in this
session, and Pi has corroborative evidence that Pj is in lively correspondence
specially with this origin participant Pi.

The liveness rule A4(d) states: principal Pi receives a term {...N...}KPiPj

including a trusted freshness identifier N , since Pi believes that KPiPj is the
shared long-term key between Pi and Pj , hence Pi asserts that it must be
Pj who has encrypted the message including the trusted freshness identifier
N using the key KPiPj , and this is a special correspondence with Pi. There-
fore, Pi believes that Pj is in lively correspondence specially with this origin
participant Pi in this session.

Pi receives a signature including the trusted freshness N , and Pi believes
that this signature is signed by Pj using Pj ’s private key K−1

Pj
.

A4(e) −{...PiN...}K−1
Pj

∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1
Pj

Pj〉)∧
BPi,t(〈...1N...〉)⇒ BPi,t(〈Pi 1Pj〉)

If Pi believes that N is fresh and K−1
Pj

is the private key of Pj , and Pi re-
ceives a one-way transformation {...PiN...}K−1

Pj

, then Pi is entitled to believe

that Pj is in lively correspondence with Pi in this session, and Pi has corrob-
orative evidence (the explicit indication of the identity Pi in {...PiN...}K−1

Pj

)

that Pj is in lively correspondence specially with this origin participant Pi.
The liveness rule A4(e) states: principal Pi receives a term {...PiN...}K−1

Pj

including the trusted freshness identifier N , since Pi believes that K−1
Pj

is the
private key of Pj , hence Pi asserts that it must be Pj who has encrypted the
message including the trusted freshness identifier N using the key K−1

Pj
, and

this is a special correspondence with Pi. Therefore, Pi believes that Pj is in
lively correspondence specially with this origin participant Pi in this session.

A4(f) −{...N...}k ∧BPi,t(≺ {N,Pi, Pj}) ∧BPi,t(Key(Pi, k
−1))∧

BPi,t(〈...1N...〉)⇒ BPi,t(〈Pi 1Pj〉)
The liveness rule A4(f) states: principal Pi has the expectation BPi,t(≺

{N,Pi, Pj}) which implies that only the intended opposite participant Pj
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can read the freshness identifier N related to Pi. When Pi receives the term
{...N...} or {...N...}k including the trusted freshness identifier N , Pi asserts
that it must be Pj who has sent the message including N , and this is a special
correspondence with Pi, so Pi believes that Pj is in lively correspondence
specially with this origin participant Pi in this session.

Inference rules about freshness of the freshness identifier

Freshness rule is a rule about the freshness property of a freshness identifier,
which asserts that the freshness identifier is new for this particular protocol
run.

Recall the freshness lemma (Lemma 4.3), the freshness of a new freshness
identifier could be achieved by a participant Pi when Pi has corroborative
evidence that the identifier is new for this particular protocol run if one of
the following cases is met:

1) The freshness identifier is a nonce new generated for this protocol run
by the principal Pi itself or a timestamp falls in the acceptance time window;

2) The new freshness identifier is bound together with Pi’s another trusted
freshness identifier in a one-way transformation, where the one-way transfor-
mation can only be accomplished by the opponent participant Pj .

A5 (Freshness Rule)
(1) The freshness identifier is a timestamp T.
Suppose the timestamp difference between the initiator and the receiver

is within the acceptance window, e.g., one second.
A5(a) ±{...T ...} ⇒ BPi,t(〈...1T ...〉)
The generation rule (or the freshness rule) A5(a) states: if Pi exchanges

a message {...T ...} including a freshness identifier T which is a timestamp,
and the difference of T with the local clock is within the acceptance window,
then Pi believes the freshness of the freshness identifier T .

(2) The freshness identifier N is a nonce generated by the participant Pi

itself.
A5(b) +{...NPi ...} ⇒ BPi,t(〈...1NPi ...〉)
The generation rule (or the freshness rule) A5(b) states: if a freshness

identifier NPi is invented by Pi for this particular protocol run, then Pi

believes the freshness of the freshness identifier NPi .
(3) The new freshness identifier is bound to a trusted freshness identifier.
Pi has corroborative evidence that N ′ is fresh. Here the corroborative evi-

dence may be a signature, a MAC or other one-way transformations including
the new freshness identifier and the trusted freshness identifier.

If one of the above fragment rules is met, then Pi will have corroborative
evidence that N ′ is fresh since N ′ and N are bound to the same protocol
run.

A5(c) BPi,t(∼ {...N,N ′...}k) ∧BPi,t(〈...1N...〉)⇒ BPi,t(〈...1N ′...〉)
The rule A5(c) states: since N is fresh in a particular run, and the prin-

cipal Pi believes that the freshness identifier N ′ is bound to N in the same
protocol run, then Pi has corroborative evidence that N ′ is also fresh.
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Inference rules about association of the freshness identifier

Association rules are rules about the association property of a freshness
identifier, which assert that the freshness identifier is related to some princi-
pals of a particular protocol run.

Recall the association lemma (Lemma 4.4), the association of a freshness
identifier could be achieved by a participant Pi when Pi has corroborative
evidence that the identifier is related to a particular protocol run related to
Pi and/or Pj if one of the following cases is met:

A6 (Association Rule)
(1) Shared key case.
If Pi believes that KPiPj is the shared long-term key between Pi and Pj ,

and Pi has exchanged a one-way transformation {...N...}KPiPj
, then Pi is

entitled to believe that the trusted freshness identifier N is associated with
the protocol run between Pi and Pj .

A6(a) ±{...N...}KPiPj
∧BPi,t(〈11KPiPjPiPj〉)⇒ BPi,t(〈...NPiPj〉)

The association rule A6(a) states: principal Pi exchanges a term
{...N...}KPiPj

including a freshness identifier N , since Pi believes that KPiPj

is the shared long-term key between Pi and Pj , Pi believes that this protocol
run related to N is associated with Pi and Pj .

Pi sends or receives a message including the identity of Pj , which is en-
crypted under the shared long-term key between Pi and the trusted third
party S, then the freshness identifier N in this message is related to Pi and
Pj .

A6(b) ±{...N, Pj ...}KPiS
∧BPi,t(〈11KPiSPiS〉)⇒ BPi,t(〈...NPiPj〉)

The association rule A6(b) states: principal Pi exchanges a term {...N,
Pj ...}KPiS

including a freshness identifier N , since Pi believes that KPiS is
the shared long-term key between Pi and the trusted third party S, hence Pi

believes that this protocol run related to N is associated with Pi. Since the
identity of Pj is explicitly indicated in the term {...N, Pj ...}KPiS

, Pi believes
that N is also associated with the protocol run related to Pj .

(2) public-key case.
Pi receives a signature of Pj , then the freshness identifier N in this sig-

nature is related to Pj .
A6(c) −{...N...}K−1

Pj

∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1
Pj

Pj〉)
⇒ BPi,t(〈...NPj〉)

The association rule A6(c) states: principal Pi receives a term
{...N...}K−1

Pj

including the freshness identifier N , since Pi believes that K−1
Pj

is the private key of Pj , Pi asserts that it must be Pj who has generated
this one-way transformation for the protocol run related to Pj . Therefore, Pi

believes that N is associated with Pj .
Pi receives a signature of Pj including the identity of Pi, then the freshness

identifier N in this signature is also related to Pi from Pi’s point of view.
A6(d) −{...N, Pi...}K−1

Pj

∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1
Pj

Pj〉)
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⇒ BPi,t(〈...NPiPj〉)
The association rule A6(d) states: principal Pi receives a term {...N,

Pi...}K−1
Pj

including the identity of Pi, since Pi believes thatK−1
Pj

is the private

key of Pj , Pi asserts that it must be Pj who has generated this one-way
transformation for the protocol run related to Pj . Since the identity of Pi is
explicitly indicated in the term {...N, Pi...}K−1

Pj

, Pi believes that N is also

associated with Pi.
Pi receives an encryption under the public-key of Pi, then the freshness

identifier N in this encryption is related to Pi.
A6(e) −{...N...}KPi

∧BPi,t(〈01KPiρ〉) ∧BPi,t(〈11K−1
Pi

Pi〉)
⇒ BPi,t(〈...NPi〉)

The association rule A6(e) states: principal Pi receives a term
{...N...}KPi

including the freshness identifier N , since Pi believes that K−1
Pi

is
the private key of Pi, hence Pi asserts that only Pi can decrypt this one-way
transformation {...N...}KPi

. Therefore, Pi believes that N is associated with
the protocol run related to Pi.

Pi sends an encryption including the identity of Pi using the public-key of
the opponent Pj , then the freshness identifier N in this encryption is related
to Pi.

A6(f) +{...Pi, N...}KPj
∧BPi,t(〈01KPjρ〉) ∧BPi,t(〈11K−1

Pj
Pj〉)

⇒ BPi,t(〈...NPi〉)
The association rule A6(f) states: principal Pi sends a term {...Pi,

N...}KPj
including the identity of Pi, since Pi believes that K−1

Pj
is the private

key of Pj , hence Pi asserts that only Pj can decrypt this one-way transfor-
mation {...Pi, N...}KPj

, but a legal attacker Pj may re-encrypt N and send
it to some other hones participant, hence Pi isn’t sure that N is associated
with the protocol run related to Pj . Since the identity of Pi is explicitly indi-
cated in the term {...Pi, N...}KPj

, Pi believes that N is associated with the
protocol run related to Pj .

(3) Expectation association rule.
If Pi believes that N is fresh and it can only be obtained by the intended

opposite partner Pj , and Pi receives a one-way transformation {...N...}k
including N , then Pi is entitled to believe that N is associated with the
protocol run related to Pj .

A6(g) −{...N...}k ∧BPi,t(≺ {N,Pi, Pj}) ∧BPi,t(Key(Pi, k
−1))∧

BPi,t(〈...1N...〉)⇒ BPi,t(〈...1NPj〉)
The rule A6(g) states: principal Pi has the expectation BPi,t(≺{N,Pi, Pj})

which implies that only the intended opposite participant Pj can read the
freshness identifier N . When Pi receives the term {...N...}k including a
trusted freshness identifier N , Pi asserts that N is related to a particular
protocol run related to Pj . Therefore, Pi believes that N is associated with
the principal Pj .

(4) Fragment association rule.
If Pi believes that N and N ′ are bound to the same protocol run, and
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that the trusted freshness identifier N is bound to a protocol run between Pi

and Pj , then Pi is entitled to believe that N ′ is bound to the same protocol
run between Pi and Pj .

A6(h) BPi,t(∼ {...N,N ′...}k)∧BPi,t(〈...1NPiPj〉)⇒ BPi,t(〈...1N ′PiPj〉)
The rule A6(h) states: principal Pi believes that the new freshness iden-

tifier N ′ is bound to a trusted freshness identifier N , since N is fresh in a
particular run between Pi and Pj , then N ′ is also fresh in the same particular
run between Pi and Pj .
V. Other cryptographic operations which can provide evidence of Pj ’s (and/or
Pi’s) association with N .

7.5 Applications of belief multiset formalism

To analyze a cryptographic protocol, all one needs to do is to simply prove
the security of a protocol via the manual security analysis method based
on trusted freshness or the belief multiset formalism, then one gets to know
whether a cryptographic protocol is secure or not in a realistic adversary-
controlled network. The efficiency, rigorousness, automation possibility of the
belief multiset formalism will be illustrated in this section via the analysis of
the Needham-Schroeder public-key protocol.

The stepwise analysis based on belief multisets is refined as follows. Sup-
pose there exists a protocol Π between A and B, the security goal of Π is to
establish a new session key k between A and B to build a secure channel in
an insecure network.

Specify the security goals to be reached based on the belief multisets

The sufficient and necessary conditions to guarantee the security of a
cryptographic protocol are specified in Chapter 4, and they can be expressed
as bA,t$ = �〈11kAB〉, 〈1B〉� and bB,t$ = �〈11kAB〉, 〈1A〉� in belief multiset
formalism.

Specify the premises before the start of the cryptographic protocol

Recall that each participant has his own private key and all other par-
ties’ public-keys (respectively, the shared long-term key between co-operative
principals or trusted third party) in public-key case (respectively, in shared
key case). ρ is an arbitrary principal which ranges over participants of the
protocol run including the attacker I.

1) public-key case:
BA,t0(〈11K−1

A A〉), BA,t0(〈11K−1
B B〉), BA,t0(〈01KAρ〉), BA,t0(〈01KBρ〉)

and BB,t0(〈11K−1
B B〉), BB,t0(〈11K−1

A A〉), BB,t0(〈01KAρ〉), BB,t0(〈01KBρ〉).
2) Shared key case without trusted third party:

BA,t0(〈11KABAB〉) and BB,t0(〈11KABAB〉).
3) Shared key case with trusted third party:
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BA,t0(〈11KASAS〉) and BB,t0(〈11KBSBS〉).
Besides the above premises, key-establishment protocol has these assump-

tions:
bA,t0 = �〈1...k...〉, 〈...B〉� and bB,t0 = �〈1...k...〉, 〈...A〉�.

Establish the security properties

Establish the security properties of a cryptographic protocol based on
inference rules from current beliefs and incoming fresh messages that include
a trusted freshness identifier.

Compare with the security goals established in step 1

The analysis results can either establish the correctness of the protocol
when it is in fact correct, or identify the absence of the security properties
and the structure to construct attacks based on the absence.

1) Absence of the liveness of a principal like A: impersonating A to launch
an attack, e.g., the Otway-Rees protocol[24], revised Woo-Lam protocol[25];

2) Absence of the freshness of a freshness identifier: launching an attack by
replaying the recorded one-way transformation with a compromised session
key, e.g., the Needham-Schroeder shared key protocol[7, 26];

3) Absence of the association of a freshness identifier: launch an attack
by making a legitimate principal like B confuse a key k′ between I and A (or
B) with the key between A and B, e.g., the Needham-Schroeder public-key
protocol[7].

7.5.1 Analysis of Needham-Schroeder public-key protocol

The analysis of the original Needham-Schroeder public-key protocol and the
analysis of the revised Needham-Schroeder public-key protocol are given in
Subsections 7.5.1.1 and 7.5.1.2 respectively.

7.5.1.1 Analysis of the Original Needham-Schroeder public-key protocol

The Needham-Schroeder public-key protocol (say, Needham-Schroeder
protocol)[7] is a well-known cryptographic protocol, whose intended goal is to
establish a secret shared key k between two principals Alice (say, A) and Bob
(say, B) via the shared parts NA and NB. NA and NB are nonce invented by
A and B respectively. Let ρ be an arbitrary principal. Figure 7.1 illustrates
the protocol part related to key establishment.

Message1 A→ B : {NA, A}KB

Message2 B → A : {NA, Nb}KA

Message3 A→ B : {NB}KB
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Fig. 7.1 The Needham-Schroeder public-key protocol.

Specify the security goals

bA,t$ = �〈11NAAB〉, 〈11NBAB〉, 〈1B〉�,
bB,t$ = �〈11NAAB〉, 〈11NBAB〉, 〈1A〉�.

Specify the premise before the start of the protocol

bA,t0 = �〈11K−1
A A〉, 〈11K−1

B B〉, 〈01KAρ〉, 〈01KBρ〉, 〈1... NA... 〉,
〈1... NB... 〉, 〈... B〉�,

bB,t0 = �〈11K−1
B B〉, 〈11K−1

A A〉, 〈01KBρ〉, 〈01KAρ〉, 〈1... NA... 〉,
〈1... NB... 〉, 〈... A〉�.

Establish the security properties of the Needham-Schroeder protocol

Step 1. Upon receiving Message 1 A → B : {NA, A}KB
No. Security properties Term Applied

(1) +{...NA...} ⇒ BA,t1(〈...1NA...〉) +{...NA...} Rule A5(b)

(2) BA,t0(〈11K−1
B B〉) ⇒ BA,t0(〈11K−1

B ...〉) Definition of 〈...1...2N...3〉
(3) BA,t0(〈11K−1

B B〉) ⇒ BA,t0(¬Key(I,K−1
B )) Definition of 〈...1...2N...3〉

(4)
+{...NA...}KB ∧BA,t0(¬Key(I,K−1

B ))

⇒ BA,t1(〈1...NA...〉)
+{...NA...}KB (2),(3), A3(d)

(5)
+{...A,NA...}KB ∧ BA,t0(〈01KBρ〉)
∧BA,t0 (〈11K−1

B B〉) ⇒ BA,t1 (〈...NAA〉)
+{...A,NA...}KB

Premise,

(1),A6(f)

(6)
+{... A,NA... }KB ∧ BA,t0(〈11K−1

B B〉)
∧BA,t1 (〈11NA ...〉) ⇒ BA,t1(≺ {NA, A,B})

+{...A,NA...}KB
Premise,

(1),(4),A2(c)

(7) BB,t0 (〈11K−1
B B〉) ⇒ BB,t0 (〈11K−1

B ...〉) Definition of 〈...1...2N...3〉
(8) BB,t0 (〈11K−1

B B〉) ⇒ BB,t0 (¬Key(I,K−1
B )) Definition of 〈...1...2N...3〉

(9)
−{...NA...}KB ∧BB,t0 (¬Key(I,K−1

B ))

⇒ BB,t1 (〈1...NA...〉)
−{...NA...}KB (7),(8), A3(c)
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Step 2. Upon receiving Message 2 B → A : {NA, NB}KA
No. Security properties Term Applied

(10) +{...NB...} ⇒ BB,t2 (〈...1NB ...〉) +{...NB ...} Rule A5(b)

(11)
+{...NB ...}KA ∧BB,t0 (¬Key(I,K−1

B ))

⇒ BB,t2 (〈1 . . . NB ...〉)
+{...NB ...}KA (7),(8),A3(d)

(12)
+{...NB ...}KA ∧BB,t0 (〈11K−1

A A〉)
∧BB,t2 (〈11NB ...〉) ⇒ BB,t2 (≺ {NB , B, A})

+{...NB ...}KA
Premise,(10),

(11), A2(b)

(13) BA,t0(〈11K−1
A A〉) ⇒ BA,t0(〈11K−1

A ...〉) Definition of 〈...1...2N...3〉
(14) BA,t0(〈11K−1

A A〉) ⇒ BA,t0(¬Key(I,K−1
A )) Definition of 〈...1...2N...3〉

(15)
−{...NB ...}KA ∧BA,t0(¬Key(I,K−1

A ))

⇒ BA,t2(〈1...NB ...〉)
−{...NB ...}KA

(13), (14),

A3(c)

(16)

−{... NA, NB ...}KA ∧ BA,t0(〈01KAρ〉)
∧BA,t0(〈11K−1

A A〉) ∧BA,t1(〈...1NA...〉)
⇒ BA,t2(∼ {...NA, NB ...}KA)

−{... NA, NB ... }KA
Premise,

(1), A1(c)

(17) BA,t0(〈11K−1
A A〉) ⇒ BA,t0(Key(A,K−1

A )) Definition of 〈...1...2N...3〉

(18)

−{... NA...}KA ∧BA,t1 (≺ {NA, B})
∧BA,t0(Key(A,K−1

A )) ∧ BA,t1(〈...1NA...〉)
⇒ BA,t2(〈1B〉)

−{...NA...}KA
(1),(6),

(17),A4(c)

(19)

−{... NA... }KA ∧ BA,t1 (≺ {NA, A, B})
∧BA,t0(Key(A,K−1

A )) ∧ BA,t1(〈...1NA...〉)
⇒ BA,t2(〈...NAB〉)

−{...NA...}KA
(1),(6),

(17), A6(g)

(20) BA,t2(〈11NAAB〉) (1),(4),(5),(19),R3,R4,R5

(21)
BA,t2(∼ {...NA, NB ...}KA )

∧BA,t2(〈...1NAAB〉) ⇒ BA,t2(〈...1NBAB〉)
(16),(20),A6(h)

(22) BA,t2(〈11NBAB〉) (15),(21),R5

Step 3. Upon receiving Message 3 A → B : {NB}KB
No. Security properties Term Applied

(23) BB,t0 (〈11K−1
B B〉) ⇒ BB,t0 (Key(B,K−1

B )) Definition of 〈...1...2N...3〉

(24)

−{... NB ... }KB ∧ BB,t2(≺ {NB , B, A})
∧BB,t0 (Key(B,K−1

B )) ∧BB,t2 (〈...1NB ...〉)
⇒ BB,t3 (〈1A〉)

−{...NB...}KB
(12),(23),

(10),A4(c)

(25)

−{... NB ... }KB ∧ BB,t2(≺ {NB , B, A})
∧BB,t0 (Key(B,K−1

B )) ∧BB,t2 (〈...1NB ...〉)
⇒ BB,t3 (〈...1NBA〉)

−{...NB...}KB
(12),(23),

(10),A6(g)

(26)
−{...NB ...}KB ∧ BB,t0(〈11K−1

B B〉)
∧BB,t0 (〈01KBρ〉) ⇒ BB,t3 (〈...NBB〉)

−{...NB...}KB
Premise,

A6(e)

(27) BB,t3 (〈11NBB〉) (10),(11),(25),(26),R3,R4,R5

(28) bA,t$ = �〈11NAAB〉, 〈11NBAB〉, 〈1B〉	 (20),(22),(18)

(29) bA,t$ = �〈1...NA...〉, 〈11NBAB〉, 〈1A〉	 (9),(27),(24)

Table 7.2 shows the analyzing result of the Needham-Schroeder public-
key protocol based on belief multisets. Upon terminationd, A believes that
Needham-Schroeder public-key protocol is secure, but B could not be assure
the freshness of NA, and also the association of the session key shared part
NA with the principal A and the principal B.
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Table 7.2 Analysis of the Needham-Schroeder public-key protocol based on belief
multisets

Step A’s beliefs B’s beliefs

Message 1 〈11NAA〉 〈1...NA...〉
Message 2 〈1B〉 〈11NAAB〉 〈11NBAB〉 〈11NB ...〉
Message 3 〈1A〉 〈11NBAB〉
At the End 〈1B〉 〈11NAAB〉 〈11NBAB〉 〈1A〉 〈1...NA...〉 〈11NBAB〉

Compare with the security goals established in step 1

1) Absence of the association of freshness identifier NA with A and B for
the principal B
→ Cheat B by confusing N ′

A (between the attacker I and A) with NA

(between A and B).
2) The liveness of the principal A under the condition 1)
→ Suggest that A must be alive to act as an oracle in this attack, so it is

a concurrent run attack.
From the above analysis, we can get the attack structure, as shown in

Fig. 7.2: first, the adversary can only cheatB; second, it must be an interleave
attack; last, the adversary can confuse NA to cheat B. This constructed not
just discovered attack is just the same as the well-known flaw discovered by
Lowe using FDR[12].

Message1 A→ I : {NA, A}KI

Message1′ I(A)→ B : {NA, A}KB

Message2′ B → I(A) : {NA, NB}KA

Message2 I → A : {NA, NB}KA

Message3 A→ I : {NB}KI

Message3′ I(A)→ B : {NB}KB

Fig. 7.2 Attack on the Needham-Schroeder public-key protocol.

The most important characteristic of the security analysis approach based
on the trusted freshness is that the security analysis result suggests the struc-
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ture to construct the attacks directly, and we may construct several attacks
instantly from the security absence.

7.5.1.2 Analysis of the N-S-L public-key protocol

In [12], Lowe gave a correction of the original Needham-Schroeder public-
key protocol, said N-S-L protocol, in Message 2:

B → A : {B,NA, NB}KA

Figure 7.2 illustrates the N-S-L protocol.

Message1 A→ B : {NA, A}KB

Message2 B → A : {B,NA, NB}KA

Message3 A→ B : {NB}KB

Fig. 7.3 N-S-L public-key protocol

Lowe proves the correctness of the revised protocol using FDR. A different
correctness proof of N-S-L protocol with the belief multiset approach is given
below. The similar analysis process in Subsection 7.5.1.1 is omitted.

7.5.1.3 Establish the security properties of N-S-L protocol

Up to now, both principals A and B have achieved the security goals of
the protocol, hence N-S-L protocol is MK-secure, that is, N-S-L protocol is
secure for building an secure channel betweenA andB in an insecure network.
Table 7.3 shows the analyzing result of the N-S-L public-key protocol based
on belief multisets.

Step 2. Upon receiving Message 2 B → A : {B,NA, NB}KA
No. Security properties Term Applied

(29)
+{... B,NB ...}KA ∧ BB,t0 (〈11K−1

A A〉)
∧BB,t2 (〈11NB ...〉) ⇒ BB,t2 (≺ {NB , B,A})

+{...B,NB...}KA
Premise, (10),

(11),A2(c)

(30)
+{...B,NB ...}KA ∧ BB,t0 (〈01KAρ〉)
∧BB,t0 (〈11K−1

A A〉) ⇒ BB,t2 (〈...NBB〉)
+{...B,NB...}KA

Premise,

A6(f)

(31)

+{... NA, NB... }KA ∧ BB,t0 (〈01KAρ〉)
∧BB,t0 (〈11K−1

A A〉) ∧BB,t2 (〈...1NBB...〉)
⇒ BB,t2 (∼ {...NA, NB ...}KA )

+{... NA, NB ... }KA
Premise,(10),

(30), A1(g)
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Step 3. Upon receiving Message 3 B → A : {NB}KB
No. Security properties Term Applied

(32)

−{...NB ...}KB ∧ BB,t2 (≺ {NB , B, A})
∧BB,t0 (Key(B,K−1

B )) ∧BB,t2 (〈...1NB ...〉)
⇒ BB,t3 (〈...1NBA〉)

−{...NB ...}KB
(10),(23),(29),

A6(g)

(33) BB,t3(〈11NBAB〉) (11),(26),(32)

(34)
BB,t2 (∼ {...NA, NB...}KA )

∧BB,t3 (〈...1NBAB〉) ⇒ BB,t3 (〈...1NAAB〉)
(31),(33),A6(h)

(35) BB,t3(〈11NAAB〉) (9),(34)

(36) bB,t$ = �〈11NAAB〉, 〈11NBAB〉, 〈1A〉	 (24),(33),(35)

Table 7.3 Analysis of the N-S-L public-key protocol based on belief multisets

Step A’s beliefs B’s beliefs

Message 1 〈11NAA〉 〈1...NA...〉
Message 2 〈1B〉 〈11NAAB〉 〈11NBAB〉 〈11NBB...〉
Message 3 〈1A〉 〈11NAAB〉 〈11NBAB〉
At the End 〈1B〉 〈11NAAB〉 〈11NBAB〉 〈1A〉 〈11NAAB〉 〈11NBAB〉

7.5.2 Analysis of Kerberos pair-key agreement in DSNs

The Kerberos pair-key agreement approach in Distributed Sensor Networks
(DSNs) uses a Key Distribution Center (KDC) to establish a secret shared
key kAB between two sensor nodes A and B. The four-pass protocol intends
to provide mutual entity authentication, key confirmation and a key fresh-
ness guarantee between the sensor nodes. IDA,IDB and IDI are the unique
identifiers of node A, B and the adversary I respectively. NA is a nonce
invented by A. Each sensor node shares a secret key KA,KDCj , KB,KDCj

with KDCj (the jth KDC) respectively. TA is a timestamp taken by node
A. Define ticketB as {kAB, A, L}KB,KDCj

, and L is the life of the key kAB .
Figure 7.4 illustrates the Kerberos version 5 protocol in DSNs with some

fields removed for clarity.
1) A→ KDCj : KDCj , IDA, IDB, NA

2) KDCj → A : IDA,KDCj , ticketB , NA, {kAB, IDB, NA, L}KA,KDCj

3) A→ B : IDB, IDA, ticketB, {IDB, TA}kAB
4) B → A : IDA, IDB, {TA}kAB
Specifying the security goals

bA,t$ = �〈11kABAB〉, 〈1B〉� and bB,t$ = �〈11kABAB〉, 〈1A〉�.
Specifying the premise before the start of the protocol

bA,t0 = �〈11KA,KDCjA KDCj〉, 〈1...kAB ...〉, 〈...B〉� and
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Fig. 7.4 Kerberos pair-key agreement approach in DSNs.

bB,t0 = �〈11KB,KDCjB KDCj〉, 〈1...kAB ...〉, 〈...A〉�.
Establishing the security properties

Step 1. Message 1 A → KDCj : KDCj , IDA, IDB, NA

No. Security properties Term Applied

(1) +{...NA...} ⇒ BA,t1 (〈...1NA...〉) +{...NA...} Rule A5(b)

Step 2. Message 2 KDCj → A : IDA,KDCj , ticketB, NA, {kAB , IDB , NA,
L}KA,KDCj
No. Security properties Term Applied

(2)
BA,t0(〈11KA,KDCjAKDCj〉)
⇒ BA,t0(〈11KA,KDCj ...〉)

Definition of 〈...1...2N...3〉

(3)
BA,t0(〈11KA,KDCjAKDCj〉)
⇒ BA,t0(¬Key(I,KA,KDCj ))

Definition of 〈...1...2N...3〉

(4)

−{...kAB...}KA,KDCj
∧BA,t0(¬Key(I,KA,KDCj ))

⇒ BA,t2(〈1...kAB ...〉)
−{...kAB...}KA,KDCj

Premise, R4,

(2),(3), A3(c)

(5)

−{...kAB, NA...}KA,KDCj
∧BA,t0(〈11KA,KDCjAKDCj〉)
∧BA,t1(〈...1NA...〉)
⇒ BA,t2(∼ {...kAB , NA...}KA )

−{... kAB, NA... }KA,KDCj
Premise,

(1),A1(a)

(6)

−{... IDB , NA...}KA,KDCj
∧BA,t0(〈11KA,KDCjAKDCj〉)
⇒ BA,t2(〈...NAAB〉)

−{... IDB , NA...}KA,KDCj
Premise,

(1),A6(b)

(7)

BA,t2(∼ {...kAB , NA...}KA )

∧BA,t2(〈...1NAAB〉)
⇒ BA,t2(〈...1kABAB〉)

(1),(5),(6),A6(h)

(8) BA,t2 (〈11kABAB〉) (4),(7)

Step 3. Message 3 A → B : IDB , IDA, ticketB , {IDB , TA}kAB
No. Security properties Term Applied

(9) +{...TA...} ⇒ BA,t3 (〈...1TA...〉) +{...TA...} A5(a)

(10) −{...TA...} ⇒ BA,t3 (〈...1TA...〉) −{...TA...} A5(a)
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Step 4. Message 4 B → A : IDA, IDB, {TA}kAB
No. Security properties Term Applied

(11)
−{...TA...}kAB ∧BA,t2 (〈11kABAB〉)
∧BA,t3 (〈...1TA...〉) ⇒ BA,t4(〈1B〉) −{...TA...}kAB

Premise,

(8),(9),A4(a)

(12) bA,t$ = �〈11kABAB〉, 〈1B〉	 (8),(11)

(13) bB,t$ = �〈......kAB ...〉, 〈...A〉	

Table 7.4 indicates the analyzing result of the Kerberos pair-key in DSNs
based on belief multisets.

Table 7.4 Analysis of the Kerberos pair-key in DSNs based on belief multisets

Step A’s beliefs B’s beliefs

Message 1 〈...1NA...〉
Message 2 〈11NAAB〉 〈11kABAB〉
Message 3 〈...1TA...〉 〈...1TA...〉
Message 4 〈1B〉
At the End 〈1B〉 〈11kABAB〉 〈...A〉 〈......kAB ...〉

Comparing with the security goals

After the protocol execution, B cannot authenticate the liveness of A
and the association of the session key kAB with A and B. The absence of
security properties suggests the structure of the attack directly. Suppose that
an adversary has recorded ticket′B in Round 2 of a past normal run and the
session key k′AB is compromised before. Now the adversary I can launch
an attack by impersonating A, and confusing B to regard an old key k′AB
(the absence of kAB’s freshness) as a new session key kAB between A and B
(Similar to the attack discovered in [26] on Needham-Schroeder shared key
protocol).

Figure 7.5 illustrates the attack on the Kerberos pair-key agreement ap-
proach in DSNs:

1) I(A)→ KDCj : Skip

2) KDCj → I(A) : Skip

3) I(A)→ B : IDB, IDA, ticket
′
B, {IDB, TI}k′AB

4) B → I(A) : IDA, IDB, {TI}k′AB
Now B thinks that B is communicating with A and sharing key k′AB with

A, while in fact A knows nothing about it.
Since an old ticketB can be replayed, a variation (ticketB � {kAB, NA,

L}KB,KDCj
) has been made to remedy the flaw. On the contrary, this variation

just causes even worse flaw than the original protocol does, for the absence of
association property of kAB (with sensor nodes A and B) has not been solved
yet. Suppose I is a legal participant, then I shares a secret key KIKDCj with
KDCj . NI is a nonce invented by I, and TI is a timestamp taken by node I.

Here is new attack on a revised Kerberos pair-key agreement approach in
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Fig. 7.5 An attack on the Kerberos pair-key agreement approach in DSNs.

DSNs as shown in Fig. 7.6.
1) I → KDCj : KDCj, IDI , IDB, NI

2) KDCj → I : IDI ,KDCj , ticketB, NI , {kAB, IDB, NI , L}KIKDCj

3) I(A)→ B : IDB, IDA, ticketB, {IDB, TI}kAB
4) B → I(A) : IDA, IDB, {TI}kAB
This is a perfect attack. Upon receipt of the message in Round 3, B

will check whether ticketB = {kAB, NI , L}KB,KDCj
and kAB are correct or

not. B could not find any abnormality, so B will continue the protocol run.
Therefore, upon termination of this attack, B accepts the run with A even
if A has not participated in the run with B at all. And B believes that B
shares a new session key kAB with A, but in deed B shares this key kAB with
the attacker I.

Fig. 7.6 Attack on a revised Kerberos pair-key agreement approach in DSNs.

7.5.3 Analysis of authentication in IEEE 802.11i

The future of networking lies within the wireless realm for its convenience
and economy to use and for its ease to deploy. The IEEE 802.11 standard for
Wireless Local Area Networks (WLAN) is one of the most widely adopted
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standards for wireless Internet access[28]. But the open access to the radio
interface in wireless networks exposes the content of communication to anyone
who knows how to intercept radio waves at the proper frequencies.

The key problems of WLAN security are authentication and key manage-
ment. In wireless networks, the key establishment protocol usually confirms
the new session key while it is established, and it is very important whether
a protocol could defense Denial of Service (DoS) attack.

7.5.3.1 Extension of the belief multiset formalism

Extended Notation

The belief multiset formalism is extended to meet these requirements as
indicated in Table 7.5.

Table 7.5 Extended Statements

Fact Description

BPi,τ (〈Pi...1...2〉) beliefs owned by Pi about the DoS-tolerant property and the consis-
tency property, the default is BPi,τ (〈Pi......〉) or BPi,τ (〈Pi...〉).
“...1” states the DoS-tolerant property about the principal Pi itself. If
Pi could defense DoS attack from the point of view of Pi, then Pi is
DoS-tolerant and has BPi,t(〈Pi1...〉); otherwise, Pi is not DoS-tolerant
and has BPi,t(〈Pi0...〉). Suppose each principal is DoS-tolerant at the
beginning of the protocol analysis, that is Bρ,t(〈ρ1...〉).
“...2” states the consistency property about the protocol. If Pi believes
that both sides have shown their possessions of the same session key,
then Pi has BPi,t(〈Pi...1〉); otherwise, Pi has BPi,t(〈Pi...0〉).

Extended Rules

A7 (DoS-tolerant Rule)
From the point of view of a principal, if each principal of a protocol could

defense DoS attack, then we say the cryptographic protocol could defense
DoS attack, otherwise, the protocol is easy to be attacked by DoS.

Suppose each principal is DoS-tolerant at the beginning of the protocol
analysis. If a received message is a plaintext or can be forged, then the receiver
Pi could not defense the DoS attack.

A7(a) −{m} ⇒ BPi,t(〈Pi0...〉)
The DoS-tolerant rule A7(a) states: the principal Pi receives a plain text

m, since even the adversary could construct the plaintext m, and Pi doesn’t
have the ability to distinguish whether m is from a legitimate participant or
not, hence Pi could not defense the DoS attack.

A7(b) −{m}k ∧BPi,t(Key(I, k))⇒ BPi,t(〈Pi0...〉)
The DoS-tolerant rule A7(b) states: the principal Pi receives an encryp-

tion {m}k whose encryption key k is known by the attacker I. So I could
construct the encryption {m}k, and Pi doesn’t have the ability to distin-
guish whether {m}k is from a legitimate participant or not, hence Pi could
not defense the DoS attack.
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A8 (Confirm Rule)
A8(a) −{...m...}k ∧BPi,t(〈11kPiPj〉)⇒ BPi,t(BPj ,t(〈11kPiPj〉))
The confirmed rule A8(a) states: if Pi believes that k is a new session key

between Pi and Pj , and Pi receives an encryption of a plaintext m (or this
message m could be recognized by the principal Pi) under the key k, then Pi

is entitled to believe that the intended partner Pj knows the new session key
k between Pi and Pj .

A8(b) −{...m...}k ∧BPi,t(≺ {k, Pi, Pj}) ∧BPi,t(〈11kPiPj〉)
⇒ BPi,t(BPj ,t(BPi,t(〈11kPiPj〉)))

The confirmed rule A8(b) states: if Pi believes that k is a new session key
between Pi and Pj , and only Pj can obtain the session key k for the protocol
run related to Pi, when Pi receives a one-way transformation {...m...}k in-
cluding a plaintextm (or this messagem could be recognized by the principal
Pi), then Pi believes that Pj knows that Pi has the same new session key k
between principals Pi and Pj .

A9 (Consistency Rule):
BPi,t(〈11kPiPj〉) ∧BPi,t(BPj ,t(〈11kPiPj〉)) ∧BPi,t(BPj ,t(BPi,t(〈11kPiPj〉)))

⇒ BPi,t(〈Pi...1〉)
The consistency rule A9 states: if Pi believes that k is a new session key

between Pi and Pj , and Pi believes that Pj knows that the key k is a new
session key between Pi and Pj (BPi,t(BPj ,t(〈11kPiPj〉))), also Pi believes
that Pj believes that Pi has the key k between Pi and Pj (BPi,t(BPj ,t(BPi,t

(〈11kPiPj〉)))), then the consistency of k on both sides is confirmed.

7.5.3.2 Analysis of the 4-way handshake in IEEE 802.11i

In this subsection, a formal security analysis of the enhanced authenti-
cation protocols in IEEE 802.11i including the 4-Way Handshake and the
Group Key Handshake will be given. Analysis based on the belief multiset
formalism is independent of the concrete formalization of attackers’ possible
behavior contrary to the analysis in [29, 30].

The first wireless security solution Wired Equivalent Privacy (WEP) pro-
tocol intends to provide confidentiality, access control and data integrity
for IEEE 802.11-based networks[28]. However, the protocol has been proved
to be vulnerable, including lack of legitimate key management and efficient
authentication[31]. In order to enhance security of IEEE 802.11, a new stan-
dard called IEEE 802.11i is ratified in June 2004 to provide confidentiality,
integrity, and mutual authentication[32].

IEEE 802.11i defines a Robust Security Network Association (RSNA)
based on IEEE 802.1X authentication to enhance Medium Access Control
(MAC) security[33,34]. RSNA includes a novel 4-Way Handshake to provide
robust session key management.

There are three main entities in the IEEE 802.1X authentication sys-
tem: supplicant (station, STA), authenticator (also called Access Point, AP),
and Authentication Server (AS, Remote Authentication Dial In User Service
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server). In IEEE 802.11, the AS might be physically integrated into an AP.
Generally, a successful authentication means that STA and AP verify each
other’s liveness and generate a fresh session key for subsequent secure data
transmissions.

A typical RSNA establishment procedure starts by executing an Exten-
sible Authentication Protocol (EAP) authentication between the STA and
the AS via the AP and STA’s uncontrolled ports. If the STA and the AS
authenticate each other successfully, they will both output the same Pairwise
Master Key (PMK ) independently. The AS then transmits the PMK to the
AP through a secure channel (e.g., IPsec or TLS). The PMK may also be
derived directly from a PreShared Key (PSK ). With the PMK in place, the
AP initiates a 4-Way Handshake with the STA, to confirm that the PMK
at the peer is the same and current, and to derive and verify a Pairwise
Transient Key (PTK ) via PMK. Therefore, a secure communication channel
between the authenticator AP and the supplicant STA can be constructed
via the fresh key PTK.

The message exchanges of the 4-Way Handshake in IEEE 802.11i, as
shown in Fig. 7.7.

Message 1 AP → STA : sn, ack,NA

Message 2 STA→ AP : sn,NS , {sn,NS}PTK
Message 3 AP → STA : sn+ 1, ack,NA, {sn+ 1, ack,NA}PTK
Message 4 STA→ AP : sn+ 1, {sn+ 1}PTK

Fig. 7.7 The 4-Way Handshake in IEEE 802.11i.

We omit the lower level details of messages that do not contribute to the
logical properties of authentication to be proved in belief multiset formalism.
S and A represent STA and AP respectively; sn is a sequence number; ack
means that a response to this message is required; NA and NS represent fresh
nonce chosen by the subscript party A or S which are also called Anonce
and Snonce; PTK (Pairwise Transient Key) is the new session key for this
protocol; SPA and AA represent MAC address of STA and AP; the Min and
Max operations for SPA and AA are with the address converted to a positive
integer treating the first transmitted octet as the most significant octet of the
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integer. [m]k is a message m encrypted under a key k with Message Integrity
Code(MIC) protection.

Here, PTK = PRF - X (PMK, “Pairwise key expansion”, Min(AA,
SPA)||Max(AA, SPA)||Min(NA, NS)||Max(NA, NS)), and PTK should be a
random number. PRF - X is a Pseudo Random Function with output length
X.

The fresh PTK is split up into KCK (Key Confirmation Key), KEK (Key
Encryption Key) and TK (Temporary Key). Note that MIC is actually calcu-
lated with KCK, which is only part of PTK. However, we do not distinguish
KCK, KEK and TK from PTK here, for it doesn’t effect the logical security
properties of authentication to be proved.

The AP and STA normally derive a PTK only once per association. But
the AP can refresh the PTK by running another 4-Way Handshake with the
same PMK. The AP and STA silently discard any received message that has
a used sequence number or an invalid MIC. The AP accepts only the expected
reply within the configured time intervals, and the AP will deauthenticate
the STA if the AP does not receive a valid response after several retries.

When IEEE 802.1X completes successfully, IEEE 802.11i assumes that
the PMK is current and known only by STA and AP (AS does not expose
the PMK or masquerade as STA or AP). Otherwise, IEEE 802.11i will fail
to provide any security guarantees. If a PMK is not current, then it might
be a compromised one and known by the attacker. If a PMK is known not
only by STA and AP, then the attacker could compute PTK from PMK and
the plaintext AA, SPA, NA, NS . Hence, the 4-Way Handshake relies heavily
on the assumptions that PMK is current and known only by STA and AP.

Let’s analyze the security of the 4-Way Handshake based on the above
assumptions and the belief multiset formalism.

Specifying the security goals

The intended goal of the 4-Way Handshake is to establish secure com-
munication between the authenticator AP (denoted A for short) and the
supplicant STA (denoted S for short) via a new generated session key PTK.
In the belief multiset formalism, the security goals of the 4-Way Handshake
can be accurately expressed as

bA,t$ = �〈1S〉, 〈A11〉, 〈11PTK A S〉�,
bS,t$ = �〈1A〉, 〈S11〉, 〈11PTK A S〉�.

Specifying the premise sets

Recall the assumptions of PMK in the belief multiset formalism, and they
can be stated as

bA,t0 = �〈11PMK A S〉, 〈...S〉, 〈A1...〉, 〈1...PTK...〉�,
bS,t0 = �〈11PMK A S〉, 〈...A〉, 〈S1...〉, 〈1...PTK...〉�.
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Establishing the security properties

Establishing the security properties of the 4-Way Handshake based on the
premise sets, the inference rules, and he fresh messages that include a trusted
freshness identifier

Step 1. Message 1 AP → STA : sn, ack,NA

No. Security properties Term Applied

(1) +{...NA...} ⇒ BA,t1(〈...1NA...〉) +{...NA...} A5(b)

(2) +{...NA...} ⇒ BA,t1(〈0...NA...〉) +{...NA...} A3(b)

(3) −{...NA...} ⇒ BS,t1(〈0...NA...〉) −{...NA...} A3(a)

(4) −{sn, ack,NA} ⇒ BS,t1(〈S0...〉) −{sn, ack,NA} A7(a)

Step 2. Message 2 STA → AP : sn,NS , {sn,NS}PTK 1©

No. Security properties Term Applied

(5) +{...NS ...} ⇒ BS,t2 (〈...1NS ...〉) +{...NS ...} A5(b)

(6) +{...NS ...} ⇒ BS,t2 (〈0...NS ...〉) +{...NS ...} A3(b)

(7)

+{...PTK , NS ...}PMK

∧BS,t0(〈11 PMK AS〉)
∧BS,t2(〈...1NS ...〉)
⇒ BS,t2(∼ {...PTK , NS ...}PMK)

{...PTK , NS ...}PMK
Premise,

(5), A1(a)

(8)
BS,t0(〈11 PMK AS〉)
⇒ BS,t0(¬Key(I,PMK ))

Definition of 〈...1...2N...3〉

(9)
BS,t0(〈11 PMK AS〉)
⇒ BS,t0(〈11 PMK ...〉) Definition of 〈...1...2N...3〉

(10)

+{...PTK ...}PMK

∧BS,t0(¬Key(I,PMK ))

⇒ BS,t2(〈1...PTK ...〉)
+{...PTK ...}PMK

Premise,(8),

(9), A3(d)

(11)
+{...NS ...}PMK ∧BS,t0 (〈11 PMK AS〉)
⇒ BS,t2(〈...NS AS〉)

+{...NS ...}PMK
Premise,

A6(a)

(12)

BS,t2(∼ {...PTK , NS ...}PMK )

∧BS,t2(〈...1NS AS〉)
⇒ BS,t2(〈...1 PTK AS〉)

(5),(7), (11),

A6(h)

(13) BS,t2(〈11 PTK AS〉) (10),(12)

(14)

+{...sn...}PTK ∧ BS,t2(〈11 PTK AS〉)
∧BS,t2(〈11 PTK...〉)
⇒ BS,t2(≺ {PTK,S,A})

+{...sn...}PTK (13), A2(a)

(15) −{...NS ...} ⇒ BA,t2 (〈0...NS ...〉) −{...NS ...} A3(a)

(16)
−{...NA...}PMK ∧ BA,t0 (〈11 PMK AS〉)
⇒ BA,t2(〈...NA AS〉) −{...NA...}PMK

Premise,

A6(a)

(17)

−{...PTK , NA...}PMK

∧BA,t0(〈11 PMK AS〉)
∧BA,t1(〈...1NA...〉)
⇒ BA,t2(∼ {...PTK , NA...}PMK)

−{... PTK , NA... }PMK
Premise,

(1), A1(a)

1©PTK = PRF-X (PMK, “Pairwise key expansion”, Min(AA, SPA)||Max(AA,
SPA)||Min(NA, NS)||Max(NA, NS))
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Continued
No. Security properties Term Applied

(18)

BA,t2(∼ {...PTK , NA...}PMK)

∧BA,t2(〈...1NA AS〉)
⇒ BA,t2(〈...1 PTK AS〉)

(1), (16),

(17), A6(h)

(19)
BA,t0(〈11 PMKAS〉)
⇒ BA,t0(¬Key(I,PMK ))

Definition of 〈...1...2N...3〉

(20)

−{...PTK ...}PMK

∧BA,t0(¬Key(I,PMK )))

⇒ BA,t2(〈1...PTK ...〉)
−{...PTK ...}PMK (19), A3(c)

(21) BA,t2 (〈11 PTK AS〉) (18),(20)

(22)
−{...NA...}PMK ∧BA,t0 (〈11 PMK AS〉)
∧BA,t1(〈...1NA...〉) ⇒ BA,t2(〈1S〉) −{...NA...}PMK

Premise,

(1), A4(a),

Step 3. Message 3 AP → STA : sn+ 1, ack,NA, {sn+ 1, ack, NA}PTK
No. Security properties Term Applied

(23)
−{...NS ...}PMK ∧BS,t0 (〈11PMK AS〉)
∧BS,t2(〈...1NS ...〉) ⇒ BS,t3 (〈1A〉) −{...NS ...}PMK

Premise,

(5), A4(a),

(24)
−{...sn+ 1...}PTK ∧ BS,t2 (〈11 PTK AS〉)
⇒ BS,t3(BA,t(〈11 PTK AS〉)) −{...sn+ 1... }PTK (13), A8(a)

(25)

−{...sn+ 1...}PTK ∧ BS,t2 (≺ {PTK,S,A})
∧BS,t2(〈11PTK AS〉)
⇒ BS,t3(BA,t(BS,t(〈11PTK AS〉)))

−{...sn+ 1... }PTK Premise,(13),

(14),A8(b)

(26)

BS,t2(〈11PTK AS〉)
∧BS,t3(BA,t(〈11PTK AS〉))
∧BS,t3(BA,t(BS,t(〈11PTK AS〉)))
⇒ BS,t3(〈S...1〉)

(13),(24),

(25), A9

(27) bS,t3 = �〈1A〉, 〈S01〉, 〈11 PTK AS〉	 (4),(13),

(23),(26)

(28)

+{...sn...}PTK ∧ BA,t2(〈11 PTK AS〉)
∧BA,t2(〈11PTK . . . ...〉)
⇒ BA,t3(≺ {PTK,A,S}

+{...sn...}PTK (21), A2(a)

Step 4. Message 4 STA → AP : sn+ 1, {sn+ 1}PTK
No. Security properties Term Applied

(29)
−{...sn+ 1...}PTK ∧ BA,t2 (〈11PTK AS〉)
⇒ BA,t4(BS,t(〈11PTK AS〉)) −{...sn + 1... }PTK (21), A8

(30)

−{...sn+ 1...}PTK ∧ BA,t3 (≺ {PTK,A,S}
∧BA,t2(〈11PTK AS〉)
⇒ BA,t4(BS,t(BA,t(〈11PTK AS〉)))

−{...sn + 1... }PTK (21),(28),

A8(b)

(31)

BA,t2(〈11PTK AS〉)
∧BA,t4(BS,t(〈11PTK AS〉))
BA,t4(BS,t(BA,t(〈11PTK AS〉)))
⇒ BA,t4(〈A...1〉)

(21),(29),

(30),A9

(32) bA,t4 = �〈1S〉, 〈A11〉, 〈11 PTK AS〉	 Premise,(21),

(22),(31)
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Table 7.6 shows the analyzing result of the 4-Way Handshake based on
belief multisets.

Table 7.6 Analysis of the 4-Way Handshake based on belief multisets

Step A’s beliefs S’s beliefs

Message 1 〈01NA... 〉 〈S0... 〉 〈0... NA... 〉
Message 2 〈1S〉 〈01NAAS... 〉 〈11PTK AS〉 〈01NSAS〉 〈11PTK AS〉
Message 3 〈1A〉 〈S01〉
Message 4 〈A11〉
At the End 〈1S〉 〈A11〉 〈11PTK AS〉 〈1A〉 〈S01〉 〈11PTK AS〉

Comparing with the security goals established in step 1

Upon the termination of the protocol run, A has the belief with bA,t4 =
�〈1S〉, 〈A11〉, 〈11PTK A S〉�, so A has achieved all the security goals. That
is, A believes that the PTK is special for this Pairwise Transient Key Se-
curity Association (PTKSA), so a secure communication channel between
the authenticator A(AP ) and the supplicant S(STA) can be constructed for
subsequent data transmissions, based on the new session key PTK. The au-
thenticator A also believes that A and S both have the same session key,
and A can defense DoS attacks. Likewise, S has achieved the same security
goals, as A has done, except that S may suffer from DoS attacks. That is,
an attacker can launch DoS attacks upon S by impersonating A in a 4-Way
Handshake.

From the analysis process, we can see that all the security properties are
deduced from the belief 〈11PMK A S〉 possessed by both A and S. That is
to say, if the assumptions, that PMK is confidential and is only known by
A and S, are broken, the 4-Way Handshake will fail to provide any security
guarantees.

7.5.3.3 Analysis of the group key handshake in IEEE 802.11i

After the 4-way handshake protocol run, AP could make a Group Key
Handshake protocol run to refresh a Group Temporal Key (GTK ) to the
STA by which multicast messages can be securely exchanged.

The Group Key Handshake is used only to issue a new GTK to peers
with whom the local station (STA) has already formed security associations.
The message exchanges of the Group Key Handshake protocol is shown in
Fig. 7.8.

Message 1 A→ S : sn+ 2, ack, {sn+ 2, GTK}PTK
Message 2 S → A : sn+ 2, {sn+ 2}PTK

Specifying the security goals

The security goals of the Group Key Handshake are:
bA,t$ = �〈1S〉, 〈A1...〉, 〈11GTK A S〉� and
bS,t$ = �〈1A〉, 〈S1...〉, 〈11GTK A S〉�.
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Fig. 7.8 Group Key Handshake in IEEE 802.11i.

Specifying the premise sets

The authenticator A couldn’t initiate the Group Key Handshake until the
4-Way Handshake completes successfully, so the premise sets of the 4-Way
Handshake protocol are

bA,t0 = �〈11PTK A S〉, 〈...S〉, 〈A1...〉�,
bS,t0 = �〈11PTK A S〉, 〈...A〉, 〈S1...〉�.

Recall that the authenticator A couldn’t initiate the Group Key Hand-
shake until the 4-Way Handshake completes successfully, so we can sup-
pose that PTK is a fresh key, that is, the fresh property in the expression
BA,t0(〈11PTK A S〉) means that the key is fresh, and it is not a long-term
property. Hence we have

BA,t0(〈11PTK A S〉)⇒ BA,t0(〈...1PTK...〉).

Establishing the security properties of the Group Key Handshake

Message 1 A → S : sn+ 2, ack, {sn+ 2, GTK}PTK
No. Security properties Term Applied

(1) +{...GTK...} ⇒ BA,t1(〈...1GTK...〉) +{...GTK...} A5(b)

(2) BA,t0 (〈11 PTK A S〉) ⇒ BA,t0(¬Key(I, PTK)) Definition of 〈...1...2N...3〉
(3) BA,t0 (〈11 PTK A S〉) ⇒ BA,t0(〈...1 PTK...〉) Definition of 〈...1...2N...3〉
(4)

+{...GTK...}PTK ∧ BA,t0(¬Key(I, PTK))

⇒ BA,t1 (〈1 . . . GTK...〉) +{...GTK...}PTK (2),A3(d)

(5)
+{...GTK...}PTK ∧ BA,t0(〈11 PTK A S〉)
⇒ BA,t1 (〈...GTK A S〉) +{...GTK...}PTK Premise,

A6(a)

(6) BA,t1 (〈11 GTK A S〉) (1),(4),(5)

(7) BS,t0 (〈11 PTK A S〉) ⇒ BS,t0 (¬Key(I, PTK)) Definition of 〈...1...2N...3〉
(8) BS,t0 (〈11 PTK A S〉) ⇒ BS,t0 (〈...1 PTK...〉) Definition of 〈...1...2N...3〉
(9)

−{...GTK...}PTK ∧ BS,t0(¬Key(I, PTK))

⇒ BS,t1 (〈1 . . . GTK...〉) −{...GTK...}PTK (7),A3(c)

(10)

−{...GTK...}PTK ∧ BS,t0(〈11 PTK A S〉)
∧BS,t0 (〈...1 PTK...〉)
⇒ BS,t1 (∼ {...GTK...}PTK )

−{... GTK... }PTK Premise,

(8),A1(a)

(11) BS,t0 (〈11 PTK A S〉) ⇒ BS,t0 (〈...1 PTK A S〉) Definition of 〈...1...2N...3〉

(12)

BS,t1 (∼ {...GTK...}PTK )

∧BS,t0 (〈...1 PTK A S〉)
⇒ BS,t1 (〈...1 GTK A S〉)

(10),(11),A6(h)

(13) BS,t1 (〈11 GTK A S〉) (9),(12)
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(14)
−{...GTK...}PTK ∧BS,t0 (〈11 PTK A S〉)
∧BS,t0 (〈...1 PTK...〉) ⇒ BS,t1(〈1A〉) −{...GTK...}PTK Premise,

(8), A4(a)

(15) bS,t1�〈1A〉, 〈11 GTK A S〉	 (13),(14)

Message 2 S → A : sn+ 2, {sn+ 2}PTK
No. Security properties Term Applied

(16)
−{...GTK...}PTK ∧ BA,t0(〈11 PTK A S〉)
∧BA,t0(〈...1 PTK...〉) ⇒ BA,t2(〈1S〉) −{...GTK...}PTK Premise,

(3), A4(a)

(17) bA,t2 = �〈1S〉, 〈A1...〉, 〈11 GTK A S〉	 Premise,

(6),(16)

(18) bS,t2 = �〈1A〉, 〈S1...〉, 〈11 GTK A S〉	 Premise, (15)

At last, S has bS,t$ = �〈1A〉, 〈S1...〉, 〈11GTK A S〉� and A has bA,t$ =
�〈1S〉, 〈A1...〉, 〈11GTK A S〉�. So, the Group Key Handshake has achieved
its security goals to transfer GTK from the AP to the STA, and GTK will
provide secure channel for multicast message transmissions if the assumptions
(PTK is confidential, new and only known by A and S) are in place.

7.5.3.4 Discussion about authentication in IEEE 802.11i

The above security analysis shows that the 4-Way Handshake and the
Group Key Handshake may provide satisfactory mutual authentication and
key management under the assumptions that the particular Supplicant-
Authenticator pair is authorized to know the PMK and to use it in the
4-Way Handshake. But if the assumptions are broken, then the 4-Way Hand-
shake couldn’t guarantee the mutual authentication, the confidentiality and
association of PTK.

1. PMK security

Recall that a PMK may be derived from an EAP method or may be
obtained directly from a preshared key PSK.

Although there is only one PTKSA with a Supplicant-Authenticator pair
(STA-AP pair), there may be more than one Pairwise Master Key Security
Association (PMKSA) with the same pair. Besides this, the PTKSA consists
of MAC address AA and SPA, while the PMKSA consists of only AA.

If an STA wishes to roam to an AP for which it has cached one or more
PMKSAs, it can include a PMKID in its (Re)Association Request frame.
An AP whose authenticator has retained the PMK for one or more of the
PMKIDs may skip IEEE 802.1X authentication and proceed with the 4-
Way Handshake. If PMK is implicitly associated with an attacker and the
supplicant (or the authenticator), a PTK for a spurious session between the
supplicant and the authenticator could also be deduced by the attacker and
the victim via PMK, the plaintext NA, NS , AA and SPA. Hence, we can only
guarantee that IEEE 802.11i could potentially improve security services in
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IEEE 802.11 WLAN.

2. DoS attack

The above analysis also shows that there exist DoS attacks upon the
supplicant. Message 1 does not carry an MIC, as it is impossible for the sup-
plicant to distinguish this message from a replay message. The supplicant
must accept all Message 1’s received in case of packet loss and retransmis-
sion, which makes the Message 1 attack unavoidable. Although the forgery of
Message 1 may be detected in the failure of Message 3, the forged Message1s
still cause the supplicant to be blocked for the inconsistency Anonce in Mes-
sage 1 and Message 3. To improve this, the supplicant side may store every
received ANonce, the responding SNonce and the derived PTK, but this may
cause memory exhaustion for a WLAN device whose energy supply is limited.
The supplicant may reuse the value of SNonce for the same PTKSA to elimi-
nate the memory DoS attack at the cost of recomputing the final PTK upon
receiving Message 3, so the supplicant side only needs to store one SNonce
for this PTKSA[35,36]. In some cases, one entry of the derived PTK and the
received ANonce can be stored to improve CPU consumption by verifying
MIC in Message 3 directly.

3. Redudancy

It seems that the key replay counter is a redundancy in the 4-Way Hand-
shake since replay protection has already been provided implicitly by PTK
including ANonce and SNonce. However, the key replay counter is not re-
dundant and it plays a useful role as a minor performance optimization in
processing stale instances of messages. It is especially useful for these devices
with limited computational power.

Ack bit helps to stop reflection attacks. Message 4 serves no cryptographic
purpose, but it can ensure reliability. Message 4 is required to inform the
authenticator that the supplicant knows that the authenticator has already
installed PTK. Hence, 4-Way Handshake is a protocol with consistency which
is an important virtue in open WLAN[31,36].

7.6 Comparison

A comparison of belief multiset formalism with other previously known for-
malisms is indicated in Table 7.7.

The central ingredient in the security analysis based on trusted freshness is
the freshness principle: For each participant of a cryptographic protocol, the
security of the protocol depends only on the sent or received “loose” one-way
transformation of a message which includes a trusted freshness. The belief
multiset formalism is established on the basis of the freshness principle, and
the idea to analyze the security of cryptographic protocols based on trusted
freshness is the fundamental difference from previous formalisms including
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BAN logic.

Table 7.7 Comparison of Belief Multisets with Previous Formalisms

Formalism
Correctness

Proving

Finding

Flaws

Instant

Construction

Attacks

Independent

of the

Formalization

of Attacker’s

Abilities

Independent

of the

Concurrent

Runs of

Protocols

Auto-

mation

BAN Logic[4] � � �
Formalism Based on

Model Checking[5]
� � �

Strand Space[6] � �
Authentication

Test[37]
� �

Random Oracle[38] � � �
CK Model[39] �

Belief Multisets[22] � � � � � �

A rigorous proof has been made to show whether a cryptographic protocol
is secure under computational model, which implies that the security in the
belief multisets will deduce the security in the computational model. Mean-
while, as we have seen, the security properties of cryptographic protocols can
be expressed easily in belief multiset logic.

An important advantage of the belief multiset logic is that the security
analysis based on trusted freshness can efficiently clarify whether a message is
fresh or not based on already trusted freshness identifier. A freshness identi-
fier generated by a principal itself is a trusted fresheness, and other freshness
identifiers involved in the protocol run are not inherently fresh. The trusted
fresheness of a freshness identifier can be attained by a one-way transfor-
mation of a message, which includes certain trusted freshness. All the beliefs
attained in the reasoning process are established on the basis of trusted fresh-
eness.

Security analysis based on trusted freshness captures the exact security
properties of a cryptographic protocol, which can establish the correctness
of those protocols convincingly when they are in fact correct, or identify
the absence of security properties definitely in those that are not correct.
On the contrary, some formalisms like theorem proving, random oracle are
correctness proving methods although a failure of a desired property by such
a formalism may result in some insightful ideas to revelation of a hidden
error[1–3].

The absence of security properties which is indicated in belief multisets
suggests the way to construct attacks intuitively as we have demonstrated in.
Chapter 4, Chapter 5 and also Chapter 7. Of course, a formalism based on
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Model Checking may definitely indicate the path to reach an insecure state,
but this attack is discovered by a global state space exploration and not by
construction. So far as we know, security analysis based on trusted freshness
is one of the most convenient and efficient approaches that help researchers
to construct attacks directly.

Security analysis based on trusted freshness is independent of the ide-
alization of a protocol, the concrete formalization of an attacker’s possible
behavior, and it is independent of the concurrent runs with any set of pro-
tocols. On the contrary, the analysis based on Model checking, strand space,
CK model depends directly on the idealization of a protocol, the concrete
formalization of an attacker’s possible behavior, while the attacker’s abilities
are always developing, and a flaw is usually found by a new assumption of
the attacker’s abilities.

The proofs of security via belief multisets are simple and precise, which
can be easily accomplished even by hand (Chapter 4 and Chapter 5), while at
the same time the process is completely rigorous and amenable for automation
(Chapter 7).

We must emphasize that the security analysis based on trusted freshness
is foundationally different from BAN logic, although belief multiset formal-
ism exemplified in this chapter is also a logic tool: the belief in the approach
depends only on the sent or received one-way transformation that includes
trusted freshness identifier while BAN logic deals with all messages. We dis-
tinguish between trusted fresheness and freshness, and all the beliefs attained
in the reasoning process are established on the basis of trusted fresheness.
This is the fundamental difference between the belief mulitset formalism and
the BAN-like logic. The premise of the initial assumptions is simple and
clear in the belief mulitset formalism (refer to Subsection 7.5); the idea be-
hind operation rules and also inference rules is completely different from BAN
logic, so the security properties achieved by a protocol based on these two
logic methods are completely different. Moreover, BAN logic has problems in
providing a correctness proving for its questionable idealization of a proto-
col, hence BAN logic fails to find the interleaving attacks on the Needham-
Schroeder public-key protocol, although BAN logic is a simple and especially
useful method[1].

The approach belief multiset formalism seems to offer important advan-
tages. First, the approach can establish the correctness of a cryptographic
protocol when it is in fact correct, or identify the absence of security proper-
ties definitely in that which is not correct, for the guarantee of security de-
scribed in Chapter 6 is not only sufficient but also necessary. The CK model
can establish the correctness of a cryptographic protocol via an authentica-
tor while BAN logic can only be used as a finding fault tool for its informal
idealization of the protocol and assumptions. Secondly, from the absence of
security properties compared with the sufficient and necessary conditions,
the belief multisets can not only discover attacks but also construct various
attacks directly as we have illustrated. Finally, the initial assumptions re-
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quired are explicit and the reasoning process based on the belief multisets is
simple and perfectly performed. The only universal assumption required in
the reasoning process is that each principal knows his own private key and
the public-keys of other parties (including the adversary) in public-key case,
or knows the shared long-term key with its partner or the trusted third party
in shared key case.

References

[1] Mao W (2004) Modern Cryptography: Theory and Practice. Prentice Hall,
New Jersey

[2] Menezes A, van Oorschot P, Vanstone S (1996) Handbook of Applied Cryp-
tography. CRC Press, New York

[3] Goldreich O (2003) Foundations of Cryptography. Cambridge University
Press, New York

[4] Burrows M, Abadi M, Needham R (1990) A Logic of Authentication. ACM
Transactions on Computer Systems 8(1): 18 – 36

[5] Lowe G (1999) Towards a Completeness Result for Model Checking of Secu-
rity Protocols. Journal of Computer Security 7(2 – 3): 89 – 146

[6] Fabrega FJT, Herzog JC, Guttman JD (1998) Strand Spaces: Why is a
Security Protocol Correct? In: Proceedings of IEEE Symposium on Security
and Privacy, Oakland, 3 – 6 May 1998

[7] Needham RM, Schroeder MD (1978) Using Encryption for Authentication in
Large Network of Computers. Communication of the ACM 21(12): 993 – 999

[8] Zhang YQ (2000) Study on Analysis of Security Protocols of Computer Com-
munication Network. PhD Dissertation (in Chinese), XIDIAN University

[9] Gong L, Needham R, Yahalom R (1990) Reasoning About Belief in Crypto-
graphic Protocols. In Proceedings of the 1990 IEEE Symposium on Research
in Security and Privacy, Oakland, 7 – 9 May 1990

[10] Abadi M, Tuttle MR (1991) A Semantics for a Logic of Authentication.
In: Proceedings of the 10th ACM Symposium on Principles of Distributed
Computing, Montreal, 19 – 21 Aug 1991

[11] Syverson PF, Oorschot PCV (1994) On Unifying Some Cryptographic Pro-
tocol Logics. In: Proceedings of the 1994 IEEE Symposium on Research in
Security and Privacy, Oakland, 16 – 18 May 1994

[12] Lowe G (1996) Breaking and Fixing the Needham-Schroeder Public-key Pro-
tocol Using FDR. In: TACAS’96 Proceedings of the 12th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, Passau, 27 – 29 Mar 1996. Lecture Notes in Computer Science (Lecture
Notes in Software Configuration Management), vol 1055. Springer, Heidel-
berg, pp 147 – 166

[13] Millen JK, Clark SC, Freedman SB (1987) The Interrogator: Protocol Secu-
rity Analysis. IEEE Trans. Software Eng. 13(2): 274 – 288

[14] Mitchell JC, Mitchell M, Stern U (1997) Automated Analysis of Crypto-
graphic Protocols Using MurΦ. In: Proceedings of 1997 IEEE Symposium
on Security and Privacy, Oakland, 4 – 7 May 1997



296 7 Formalism of Protocol Security Analysis

[15] Meadows C (1994) A Model of Computation for the NRL Protocol Analyzer.
In: Proceedings of the 1994 Computer Security Foundations Workshop, Fran-
conia, 14 – 16 June 1994

[16] Meadows C (1996) The NRL Protocol Analyzer: an Overview. Journal of
Logic Programming 26(2): 113 – 131

[17] Meadows C (1999) Analysis of the Internet key Exchange Protocol Using
the NRL Protocol Analyzer. In: Proceedings of 1999 IEEE Symposium on
Security and Privacy, Oakland, 9 – 12 May 1999

[18] Fabrega FJT, Herzog JC, Guttman JD (1999) Mixed Strand Spaces. In:
Proceedings of the 12th IEEE Computer Security Foundations Workshop,
Mordano, 28 – 30 June 1999

[19] Song D, Berezin S, Perrig A (2001) Athena: A Novel Approach to Efficient
Automatic Security Protocol Analysis. Journal of Computer Security 9(1 –
2): 47 – 74

[20] Dong L (2008) Cryptographic Protocol Engineering and Protocol Security
Based on Trusted Freshness. PhD Dissertation (in Chinese), Shanghai Jiao-
tong University

[21] Chen K, Dong L, Lai X (2008) Security Analysis of Cryptographic Proto-
cols Based on Trusted Freshness. Journal of Korea Institute of Information
Security and Cryptology, 18(6B): 1 – 13

[22] Dong L, Chen K, Lai X (2009) Belief Multisets for Cryptographic Protocol
Analysis. Journal of Software 20(11): 3060 – 3076 (in Chinese)

[23] Dong L, Chen K, Lai X, Wen M (2009) When is a Key Establishment Pro-
tocol Correct? Security and Communication Networks, 2(6): 567 – 579

[24] Otway D, Rees O (1987) Efficient and Timely Mutual Authentication. Op-
erating Systems Review 21(1): 8 – 10

[25] Abadi M, Needham R (1996) Prudent Engineering Practice for Crypto-
graphic Protocols. IEEE Transactions on Software Engineering 22(1): 6 – 15

[26] Denning DE, Sacco GM (1981) Timestamps in Key Distribution Protocols.
Communication of the ACM 24(8): 533 – 536

[27] Lowe G (1995) An Attack on the Needham-Schroeder Public Key Authenti-
cation Protocol. Information Processing Letters 56(3): 131 – 133

[28] ANSI/IEEE Std 802.11. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. Sept 1999

[29] Furqan Z, Muhammad S, Guha RK (2006) Formal Verification of 802.11i Us-
ing Strand Space Formalism. In: IEEE Proceedings of ICNICONSMCL’2006,
Morne, 23 – 29 Apr 2006. IEEE Press, pp 140 – 140

[30] Sithirasenan E, Zafar S, Muthukkumarasamy V (2006) Formal Verification
of the IEEE 802.11i WLAN Security Protocol. In: IEEE Proceedings of
ASWEC’2006, Sydney, 18 – 21 Apr 2006. IEEE Press, pp 181 – 190

[31] Brown B (2003) 802.11: The Security Differences Between b and i. IEEE
Potentials 22(4): 23 – 27

[32] IEEE Std 802.11i-2004. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Medium Access Control (MAC) Secu-
rity Enhancements. July 2004

[33] IEEE Std 802.1X. Port-based Network Access Control. NewYork: IEEE
Press, 2001

[34] IEEE Std EAP-2004. Extensible Authentication Protocol (EAP). New York:
IEEE Press, June 2004

[35] He C, Mitchell JC (2004) Analysis of the 802.11i 4-Way Handshake. In: Pro-
ceedings of the 3rd ACM Workshop on Wireless security (Wise’04), Philadel-
phia, 1 Oct 2004. pp 43 – 50



References 297

[36] Chen JC, Jiang MC, Liu YW (2005) Wireless Lan Security and IEEE 802.11i.
IEEE Wireless Communications 12(1): 27 – 36

[37] Guttman JD, Thayer F (2000) Authentication Tests. In: Proceedings of the
IEEE Symposium on Security and Privacy, Berkeley, 14 – 17 May 2000

[38] Bellare M, Rogaway P (1993) Entity Authentication and Key Distribution.
In: CRYPTO’93 Proceedings of the 13th Annual International Cryptology
Conference on Advances in Cryptology, Santa Barbara, 22 – 26 Aug 1993.
Lecture Notes in Computer Science, vol 773. Springer-Verlag, pp 232 – 249

[39] Canetti R, Krawczy H (2001) Analysis of Key-exchange Protocols and Their
Use for Building Secure Channels. In: EUROCRYPT’01 Proceedings of the
International Conference on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology, Innsbruck, 6 – 10 May 2001. Lecture
Notes in Computer Science, vol 2045. Springer-Verlag, pp 453 – 474



8 Design of Cryptographic Protocols Based on
Trusted Freshness

Abstract Informal design principle research and formal design
method research are the two main parts of cryptographic protocol
design research. We have presented ten cryptographic protocol engi-
neering principles for protocol design in Chapter 4, and a belief mul-
tiset design model based on trusted freshness is put forward in this
chapter. Moreover, the efficiency of the key establishment protocol is
also discussed.

The research of the cryptographic protocol design includes two main parts:
informal design principle research and formal design method research. In
the former field, we have introduced the notion of cryptographic protocol
engineering which is derived from the notion of software engineering, and
then we have put forward ten cryptographic protocol principles for protocol
design, that is, the cryptographic protocol engineering principles. In this
chapter, we will develop a belief multiset design model based on trusted
freshness, with detailed specifications of security goals to meet the security
property definitions under the Bellare-Rogaway’s computational model, for
designing cryptographic protocols.

The design of cryptographic protocol is much related to the analysis of
cryptographic protocol. BAN logic[1] is one of the most advanced work in
this area which presents a proof-based approach and focuses on partner’s
beliefs. Some others are model-based approaches which focus on partner
interaction[2, 3]. The first complexity-theoretic treatment of the notion of
security for key establishment protocols is given by Bellare and Rogaway[4].
A central aspect of this definition is the notion of key indistinguishability,
which states that an adversary cannot distinguish between the real key and
a nonce chosen at random. This model was refined and extended by Canetti
and Krawczyk[5] via combination of previous definitional approaches[2, 4, 6].
Here, security of a real protocol is asserted by comparing it with an ideal pro-
tocol that is secure by construction. [5] proves an equivalence between single
session UC-security of key exchange protocols and the indistinguishability-
based notion introduced in [4]. But they offer a limited form of composition
guarantees where primitives do not shared state or shared state under some
very specific conditions[7, 8]. Moreover, these formalizations are not always
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easy to work with for not providing detailed specifications for key establish-
ment protocol design. For example, when will a key establishment protocol
be secure? What security properties should the protocol have? How can the
protocol achieve these security properties? and so on.

The belief multiset design model will answer these questions. The belief
multiset design model is established based on the notation of the trusted
freshness[9, 10]. Recall the important freshness principle presented in Chap-
ter 4: for each participant of a cryptographic protocol, the security of the
protocol depends only on the sent or received “loose” one-way transformation
of a message which includes a trusted freshness. This methodology is also the
central ingredient in our protocol design. Moreover, we will discuss the issue
of protocol efficiency, where there are only scattered published discussions,
on protocol design based on this belief multiset model.

8.1 Previously known methods for protocol design

We will very briefly summarize the ideas behind the previously known meth-
ods for protocol design. For details please refer to [7, 11 – 15].

8.1.1 A simple logic for authentication protocol design

The simple logic proposed by Buttyan, Staamann and Wilhelm in 1998 con-
siders a distributed system to be a set of principals and channels[11]. The
principals can interact with each other according to the rules of some pre-
defined protocols in order to accomplish a common task. The channels are
generalizations of communication links with various security properties. The
channel can represent a physical link, as well as a cryptographically secured
logical connection between principals. A channel is characterized by its set
of readers and its set of writers (i.e., the set of principals that can receive
messages via the channel and the set of principals that can send messages
via the channel). There are six basic types of channels: Public Channel is a
channel iff anybody in the system can write and read it; Authentic Chan-
nel is a channel iff anybody can read it but only one principal P can write
it; Confidential Channel is a channel iff anybody can write it, but only one
principal can read it; Dedicated Channel is a channel iff one principal can
read it and another principal Q can write it; Closed Group Channel is a
channel iff a set of principals can write it and the same set of principals can
read it; Conventional Secret Channel is a channel iff it can be used only by
two determined principals. In this simple logic, the authentication protocol
is treated at a higher abstraction level without having to be concerned with
the problems of the actual implementation such as dealing with encryption
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or decryption operations.
The simple logic belongs to the BAN logic family. The simple logic gives

several types of channels, a set of synthetic rules that can be used by protocol
designers to establish channels, to construct a protocol in a systematic way.
First, the designer must identify the goals of the protocol and describe them
with the language of the simple logic. Then, by using the given synthetic rules,
the designer can generate the whole protocol and the required assumptions
in a systematic way. The result of this process is a formal description of the
protocol in the simple logic language.

8.1.2 Fail-stop protocol design

A protocol is fail-stop if any attack interfering with a message sent in one step
will cause all causally-after messages in the next step or later not to be sent.
The fail-stop cryptographic protocol is introduced by Gong and Syverson in
1995[12]. As Gong and Syverson show, fail-stop protocols possess a very useful
security property, namely: active attacks cannot cause the release of secrets
within the run of a fail-stop protocol. The fail-stop property lets a protocol
designer restrict his concerns to passive (eavesdropping) attacks with the
cost that the protocol must terminate when active attacks occur, rather than
attempt to continue. In fail-stop protocol design, it is believed that reliable
termination is greatly preferred to unknown and insecure behavior in the face
of active attacks on security.

In fail-stop protocol, a distributed system is considered as a collection
of processes which are spatially separated and communicate with each other
by exchanging messages. A protocol is a specification for the format and
relative timing of the messages exchanged. A cryptographic protocol uses
cryptographic mechanisms such as encryption and decryption algorithms to
guarantee the integrity, the secrecy, the origin, the destination, the order,
the timeliness, and ultimately the meaning of the messages. Using Lamport’s
definition of causality[13], the messages of a protocol are organized into an
acyclic directed graph where each arc represents a message and each directed
path represents a sequence of messages. In a fail-stop protocol, if a message
actually sent is in any way inconsistent with the protocol specification, then
all those messages that are causally after the altered message on some path
in the graph will not be sent.

8.1.3 Authentication test

Authentication test is a heuristic method for finding attacks against incorrect
protocols, which was proposed by Guttman and Thayer in 2000[16]. Authen-
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tication test is also useful in protocol design. Suppose a principal in a cryp-
tographic protocol creates and transmits a message containing a new value
v, which it later receives back in cryptographically altered form. This kind of
component may be regarded as an authentication test. Therefore, it can be
concluded that some principal possessing the relevant key has transformed
the message containing v. In some circumstances, this must be a regular par-
ticipant of the protocol, not the attacker, who has transformed the message.
The authentication tests give sufficient conditions for transforming edges be-
ing the work of regular principals.

There are two main kinds of authentication tests. A transforming edge is
the action of changing the cryptographic form in which such a value v is sent
out and later received in a new component, and the notion of a transforming
edge, in which a value is received and later sent out in a new component.
An outgoing test is the one in which the new value v is transmitted in en-
crypted form, and only a regular participant can extract v from that form.
An incoming test is the one in which v is received back in encrypted form,
and only a regular participant can put it in that form. An unsolicited test
is a combination of these two tests with a supplementary idea and a re-
lated method for checking that certain values remain secret. Together, they
determine what authentication properties are achieved by a wide range of
cryptographic protocols. Authentication test is expressed in the strand space
formalism.

The outgoing, incoming, and unsolicited tests, and the authentication re-
sults that apply to them suggest a protocol design process. At the level of
abstraction in authentication test, authentication protocol design is largely
a matter of selecting authentication tests, and constructing a unique regular
transforming edge to satisfy. It is important to start by deciding the goals to
be achieved. Then from the goal it follows that each regular participant of the
protocol selects authentication tests and constructs the corresponding proto-
col messages. At last the protocol is formed by these constructed messages.
We have noticed that the outgoing test, incoming test and unsolicited test in
authentication test have considered the freshness property of new value v but
have neglected the association property of v with determined regular partici-
pants of the protocol, hence the constructed protocol via authentication test
may not defense the interleaving attack.

8.1.4 Canetti-Krawczyk model

Based on the modular approach [2], Canetti and Krawczyk present a for-
malism (Canetti-Krawczyk model, CK model for short) to construct a new
provably secure key-exchange protocol: one can design and prove security
of key-exchange protocols in an idealized model AM (authenticated-link ad-
versarial model) where the communication links are perfectly authenticated,
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and then translate them using general tools (authenticator) to obtain se-
curity in a realistic setting UM (unauthenticated-link adversarial model) of
adversary-controlled links[5].

CK model combines previous definitional approaches and results in a def-
inition of security that enjoys the important analytical benefit: any key-
exchange protocol that satisfies the security definition can be composed with
symmetric encryption and authentication functions to provide provably se-
cure communication channels. AM model is authenticated-links model, which
is defined in a way that the attacker is restricted to only deliver messages
truly generated by the parties without any change or addition to them. That
is, the attacker could launch a run of a protocol, impersonate a legitimate
participant of a protocol, and discover the session key being used, but the
attacker could not forge or replay the message of an uncorrupted party. UM
model considers a probabilistic polynomial-time attacker that has full con-
trol of the communication links: it can listen to all the transmitted informa-
tion, decide what messages will reach their destination and when to change
these messages at will or inject its own generated messages. The attacker
also controls the scheduling of all protocol events including the initiation of
protocols and message delivery. Besides these abilities, the attacker could
also obtain secret information stored in the parties’ memories via explicit
attacks, e.g., Session-state reveal, Session-key query, Party corruption. One
important additional element in CK model is the notion of session expiration,
and this takes the form of a protocol action that when activated causes the
erasure of the named session key (and any related session state) from that
party’s memory. Authenticator is a protocol translation tool (or “compiler”)
which “automatically” transforms the constructed protocols in AM model
into equivalent (or “as secure as”) protocols in the realistic scenario of fully
adversary-controlled communication UM model. This process is the notion
of “emulation” which is introduced in order to capture the equivalence of
functionality between protocols in different adversarial models, particularly
between the UM model and AM model. However, CK model depends directly
on the idealization of a protocol, the concrete formalization of an attacker’s
possible behavior, while the attacker’s abilities are always developing, and a
flaw is usually found by a new assumption of the attacker’s abilities.

8.1.5 Models for secure protocol design and their compositions

In 1996, Heintze and Tygar proposed a model for secure protocols and their
Compositions design[3]. Heintze-Tygar model splits the notion of security into
two parts: the secret-security and the time-security of protocols. By secret-
security, messages that are believed to be secret are never revealed. By time
security, stale messages can not be replayed. Heintze-Tygar model uses a
limited form of belief to capture part of the state of an agent. These beliefs
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are either about the freshness of nonce, or about the security of messages
(particularly, which secrets are shared with whom). Beliefs used to describe
agent state in the Heintze-Tygar model bear little relationship to the actual
protocol properties that can be established. Heintze-Tygar model proposes a
very general treatment of time (particularly, there are no assumptions about
global synchronization of time). Heintze-Tygar model also states sufficient
conditions on two secure protocols guaranteeing the security of a new com-
posite protocol.

In 2003, Datta et al. introduced a basic framework for deriving security
protocols from an accepted set of standard concepts such as Diffie-Hellman
key exchange, nonce to avoid replay, certificates from an accepted authority,
and encrypted or signed messages[14]. As initial steps toward associating log-
ical derivations with protocol derivations, the framework extends a previous
security protocol logic with preconditions and temporal assertions, and de-
rives a family of key exchange protocols, including Station-To-Station (STS),
ISO-9798-3, Just Fast Keying (JFK), IKE and related protocol, from two ba-
sic protocols using a small set of refinements and protocol transformations.

In 2006, Datta et al. proposed a compositional method for proving cryp-
tographically sound security properties of key exchange protocols, based on a
symbolic logic that is interpreted over conventional runs of a protocol against
a probabilistic polynomial-time attacker[7]. This logic is with axioms captur-
ing properties of signatures, symmetric encryption, and message authentica-
tion codes, as well as with the Decisional Diffie-Hellman assumption. Since
commonly used reasoning principles are codified in the proof system, proto-
col security proofs can be carried out at a high-level of abstraction without
worrying about probability and complexity. Protocol proofs in this logic are
compositional, that is, proofs of compound protocols can be constructed from
proofs of their parts. The axioms used in a proof identify specific properties
of cryptographic primitives that are sufficient to guarantee the desired pro-
tocol properties. The proof system is used to establish security of a standard
protocol in the computational model. However, the procedure of protocol
idealization can be an error-prone process, for instance, formulae, Fresh and
Honest about the messages transmitted between principals.

In 2007, Datta et al. further proposed the Protocol Composition Logic
(PCL) which is designed around a process calculus with actions for possi-
ble protocol steps including generating new random numbers, sending and
receiving messages, and performing decryption and digital signature verifica-
tion actions[17]. The proof system consists of axioms about individual protocol
actions and inference rules that yield assertions about protocols composed of
multiple steps. Each provable assertion involving a sequence of actions holds
in any protocol run containing the given actions and arbitrary additional
actions by a malicious adversary. The PCL supports compositional reason-
ing about complex security protocols and has been applied to a number of
industry standards including SSL/TLS, IEEE 802.11i and Kerberos V5.
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8.2 Security properties to achieve in protocol design

Security properties, the level of security attainable, are the security goals of
the cryptographic protocols. In this section, we adopt most of the security
notions in [18] with some alteration, the security property requirements are
augmented to provide security guarantees following a natural language argu-
ment, similar to the one that a protocol designer might be used to convince
himself of the correctness of a protocol. Then, we give the expressions of
some security properties following the security definition in trusted freshness
formalism, where the security properties could not be implemented via direct
cryptographic algorithm application.

Recall some notations. Pi and Pj are principals indexed by subscript which
range over participants of the protocol run.N and N ′ are freshness identifiers
which can be nonce, timestamps, session keys or shared parts of a session key.
k is a cryptographic key and k−1 is the inverse of k.m is an arbitrary message.

The most popular aspects of information security are confidentiality, data
integrity, entity authentication, and data origin authentication. Other secu-
rity properties include non-repudiation, availability, access control and fair-
ness. Most often the cryptosystem is used in conjunction with primitives
providing these security properties. One of the fundamental tools used in
information security is the signature. It is a building block for many other
services such as non-repudiation, data origin authentication, identification,
and fairness, to mention a few. However, key sizes are typically much larger
than those required for symmetric-key encryption, and the size of public-key
signatures is larger than that of tags providing data origin authentication
from symmetric-key techniques.

8.2.1 Confidentiality

Confidentiality (or secrecy, or privacy) is a service used to keep the content of
information from all but those authorized to have it. Methods for providing
confidentiality range from physical protections to mathematical algorithms
which render data unintelligible.

The typical mathematical algorithms for providing confidentiality service
include the following:
— Share-key encryptions (block ciphers and stream ciphers).
— Public-key encryptions.
— Keyed hashes.
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8.2.2 Data integrity

Data integrity is a service which addresses the unauthorized modifications of
data since the time it was created, transmitted, or stored by an authorized
source. Modifications include creating, writing, deleting, changing, changing
status, and delaying or replaying of transmitted messages.

The typical mathematical algorithms for providing data integrity service
include the following:
— Message authentication codes (MACs, such as block ciphers with MDC,

keyed hashes).
— Digital signature schemes.
— Appending (prior to encryption) a secret authenticator value to encrypted

text.
Note that encryption provides protection only from passive attacks since

the attacker could not get the sensitive information from the eavesdropping
encryption without the decryption key, while an active attacker may replay
the message or construct a fraudulent representation where the data integrity
security is needed.

Verification of data integrity requires that only a subset of all candidate
data items satisfy particular criteria distinguishing the acceptable from the
unacceptable. Criteria allowing recognizability of data integrity include ap-
propriate redundancy or expectation with respect to format. Data integrity
includes the notion that data items are complete. For items split into mul-
tiple blocks, the alterations, such as insertion of bits, deletion of bits, and
re-ordering of bits or groups of bits, apply analogously with blocks envisioned
as substrings of a contiguous data string[18].

8.2.3 Data origin authentication

All secret keys used for encryption or data origin authentication should re-
main secret as long as the data secured there (the protection lifetime).

Authentication is a service related to the identification of a message or
an entity. Authentication is usually subdivided into two major classes: data
origin authentication and entity authentication. The first concerns validating
a claimed property of a message, such as origin, date of origin, data content,
and time sent; the second ensures a claimed identity of a message sender,
that is, the identity of the party entering into a communication is not false.

Authentication depends on context of usage; data origin authentication
focuses on the identity of the source of data; entity authentication focuses on
the identity of a party, and the liveness of the party at a given instant; (im-
plicit) key authentication focuses on the identity of party which may possibly
shared a key; key confirmation focuses on the evidence that a key is possessed
by some party; (explicit) key authentication focuses on the evidence that an
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identified party possesses a given key[18].
Data origin authentication (or message authentication, or message source

identification) is a type of authentication whereby a party is corroborated as
the (original) source of specified data created at some time in the past.

For example, suppose A and B are usually not in direct communication,
and A wants to send an electronic mail message (e-mail) to B. The message
may travel through various network communication systems and be stored
for B to retrieve at some later time. B would like some means to verify that
the message received and purportedly created by A did originate from A.
Data origin authentication can provide this security service. Furthermore,
data origin authentication implicitly provides data integrity since A would
no longer be the originator if the message was modified during transmission.

A common misconception is that encryption provides data origin authen-
tication and data integrity, under the argument that if a message is decrypted
with a key shared only with party A, and if the decrypted message is mean-
ingful, then the receiver is assured that the received encryption must have
originated from A. Here “meaningful” means the message contains sufficient
redundancy or meets some other priori expectations. There exists an intuition
that an attacker must know the secret key in order to manipulate messages,
however, this is not always true. In some cases the attacker may choose
the plaintext message, while in other cases the attacker may manipulate
effectively[19].

Example 8.1 Figure 8.1 illustrates a protocol without data-origin authen-
tication security service.

Message 1 A→ B: {I am Alice. Wait at 6pm at the garden gate.}KAB

Fig. 8.1 A protocol illustration without data-origin authentication security service.

In the above example, the attacker recorded this message {I am Alice.
Wait at 6pm at the garden gate.}KAB , as shown in Fig. 8.2, at a previous
run of this protocol and then replayed this message to Bob by impersonating
Alice. That is:
Message 1 I(A)→ B: {I am Alice. Wait at 6pm at the garden gate.}KAB

Fig. 8.2 An attack on the Example 8.1 without data-origin authentication security.

Data origin authentication necessarily involves identifying the source of a



308 8 Design of Cryptographic Protocols Based on Trusted Freshness

message and data integrity, but no uniqueness and timeliness guarantees.
Although MACs and digital signatures may be used to establish that data

was generated by a specified party at some time in the past, these techniques
cannot alone detect message re-use or replay, which is necessary in environ-
ments where messages may have renewed effect on second or subsequent use.
Hence, data-origin authentication necessarily involves establishing freshness
of a message, while again, data integrity could be a piece of stale data which
has perfect data integrity. Requiring that a message be fresh follows a com-
mon sense that a fresh message implies a good correspondence between the
communication principals, and this may further imply less likelihood that,
e.g., the communication principals, apparatus, systems, or the message itself
may have been sabotaged. To obtain an effective data-origin authentication
service, a message receiver should verify whether or not the message has
been sent sufficiently recently (that is, the time interval between the message
issuance and its receipt is sufficiently small)[19]. Hence, a message authen-
tication code, a digital signature, etc. should include a trusted freshness to
guarantee the message is new generated for a particular protocol run.

By definition, data origin authentication includes data integrity, and they
are two very different notions. Data-origin authentication is a security service
for a message receiver to verify whether a message is from a purported source
and it necessarily involves communications. While data integrity security
service can be provided on stored data, hence data integrity security service
can be provided without message source identification. Note that a piece of
stale data can have perfect data integrity. Besides identifying the source of
a message, data-origin authentication should also convince the receiver that
this message is sent by the intended partner for this particular protocol run
but not a replay one, that is, this message is fresh. Otherwise, the attacker
may record a message authentication code, a digital signature, etc. and replay
this record to the receiver to impersonate the intended partner. A message,
which is deemed by the receiver to have been issued sufficiently recently, is
often referred to as a fresh message.

A fresh message without message source identification is not secure since
the source of this message is the attacker but not the reputable principal
source if a message has been modified in a malicious way. An example is
illustrated as follow:

Example 8.2 Figure 8.3 shows a constructed cryptographic protocol with-
out data-origin authentication security, whose intended goal is to establish a
secret shared key k between two principals A and B via the shared parts
NA and NB. NA and NB are nonce invented by A and B respectively.
SequenceNo is a sequence number. KA, KB are A’s and B’s public-keys
respectively. The protocol part related to key establishment is

Message 1 A→ B: {SequenceNo,NA}KB

Message 2 B → A: {NA, NB}KA
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Fig. 8.3 A protocol without data-origin authentication security.

This protocol is insecure without data-origin authentication security of
both A and B, hence we can construct attacks by cheating A and B respec-
tively.

1. Attack 1 on the illustration protocol by cheating A

Message 1 A→ I(B): {SequenceNo,NA}KB

Message 1′ I → B: {SequenceNo,NA}KB

Message 2′ B → I: {NA, NB}KI

Message 2 I(B)→ A: {NA, NB}KA

Attack 1 is a perfect attack, as shown in Fig. 8.4. In attack 1, the adversary
I knows the shared parts of NA and NB of this protocol run to establish the
new session key k, hence I will know the subsequent communication content
between A and B.

Fig. 8.4 Attack on the protocol without data-origin authentication security.

2. Attack 2 on the illustration protocol by cheating B

Message 1 I(A)→ B: {SequenceNo,NA}KB

Message 2 B → I(A): {NA, NB}KA

In attack 2 as shown in Fig. 8.5, the principal B believes that B is sharing
the shared parts NA and NB with A to establish the new session key k, while
A knows nothing about this protocol run.

As we have illustrated above, this protocol is insecure without data-origin
authentication security. Hence, a message authentication code, a digital sig-
nature, etc. should include a trusted freshness and provide the corroborative
data-origin evidence to show that this is a message for a particular protocol
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Fig. 8.5 Another attack on the protocol without data-origin authentication.

run.
The typical mathematical algorithms for providing data origin authenti-

cation service include the following:
1) Message authentication codes (MACs, such as block ciphers with MDC,

keyed hashes) with a trusted freshness.
2) Digital signature schemes with a trusted freshness.
3) Appending (prior to encryption) a secret authenticator value including

a trusted freshness to encrypted text.
Note that data origin authentication provided by a digital signature is

valid only when the secrecy of the signer’s private key is maintained. A threat
which may be addressed is that a signer intentionally discloses his private key,
and thereafter claims that a previously valid signature was forged. Similar
problems exist with credit cards and other methods of authorization.

8.2.4 Entity authentication

Entity authentication considers techniques designed to allow one party (the
verifier) to gain assurances that the identity of another (the claimant) is as
declared, thereby preventing impersonation. Entity authentication involves
corroboration of a claimant’s identity through actual communications with
an associated verifier during execution of the protocol itself (i.e., in real-
time, while the verifying entity awaits). The most common technique is by
the verifier checking the correctness of a message (possibly in response to an
earlier message) which demonstrates that the claimant is in possession of a
secret associated with the genuine party. That is, a message is provided to
B along with additional information so that B can determine the identity of
the entity A that originates the message.

Entity authentication doesn’t necessarily provide guarantees of timeliness
and uniqueness. For example, entity authentications are typically provided
by fixed-password schemes and by certificates from an accepted authority like
CA, and those forms of entity authentication provide no guarantee of time-
liness, but they are useful in situations where the timeliness guarantee may
not be the most important thing, such as in a passive attackers’ environment,
or one of the parties is not active in the communication.

Entity authentication (or identification of source) is the process whereby
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one party is assured (through acquisition of corroborative evidence) of the
identity of a second party involved in a protocol, and that the second was ac-
tive at the time the evidence was created or acquired. The entity authentica-
tion can be broadly subdivided into unilateral entity authentication, mutual
entity authentication, that is, either one or both parties may corroborate
their identities to the other, providing, respectively, unilateral or mutual
identification.

Unilateral entity authentication technique is assured of a corroborated
identity of a second party and that this party is active at the protocol run.

Mutual entity authentication technique is assured of corroborated iden-
tities of both protocol parties and that they are active at the protocol run.
Mutual authentication may also be obtained by running any of the unilateral
authentication mechanisms twice.

An entity authentication protocol (also called identification protocol) typ-
ically involves no meaningful messages other than the claim of being a par-
ticular entity and an actual communication to show possession of a secret
associated with the claimed genuine party. Here are some examples:

Example 8.3 An entity authentication protocol via fixed-password scheme,
as shown in Fig. 8.6.

Message 1 A→ B: I’m A.

Message 2 B → A: Your Password:

Message 3 B → A: %&*A356(

Fig. 8.6 An illustration of an identification protocol to show possession of a pass-
word.

Example 8.4 Figure 8.7 illustrates an identification protocol. The principal
A wants to authenticate itself to B via possession of A’s private key K−1

A .

Message 1 A→ B : {I’m A.}K−1
A

Recall that entity authentication doesn’t necessarily provide guarantees
of timeliness and uniqueness. The timeliness guarantee is typically provided
by appropriate use of time-variant parameters (TVPs). The TVPs include
random numbers, sequence numbers and timestamps in cryptographic pro-
tocols.
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Fig. 8.7 An illustration of an identification protocol to show possession of A’s
certificate.

Example 8.5 Figure 8.8 illustrates a protocol, in which the principal A
wants to authenticate itself to B via possession of A’s private key K−1

A with
a timestamp TA to assure the timeliness.

Message 1 A→ B : {I’m A, TA.}K−1
A

Fig. 8.8 An illustration to show possession of A’s certificate with timeliness.

The distinction between entity authentication and data origin authentica-
tion is that the former acquires an actual communication to show possession
of a secret associated with the claimed genuine party, whereas the latter need
not acquire an actual communication but an evidence to show the (original)
source of the specified data created at some time in the past. Entity authen-
tication involves identifying the opponent participant’s identity of a protocol
run with timeliness guarantee or without, while data origin authentication
itself provides no timeliness guarantees with respect to when a message was
created.

If an entity authentication protocol identifies the opponent participant’s
identity via the fixed-password scheme, then it may be attacked by offline
password-guessing through a classical password dictionary or a dictionary
based on rainbow table.

If an entity authentication protocol identifies the opponent participant’s
identity via possession of a secret associated with the claimed genuine party,
then this protocol may be attacked by message replay. See Example 8.6.

Example 8.6 An attack on Example 8.4. I(A) is the adversary I imper-
sonating A, and {I’m A.}K−1

A
is an old message recorded by the adversary I.

Fig. 8.9 illustrates an attack on above example.

Message 1 I(A)→ B : {I’m A.}K−1
A

In this attack, the adversary I may intercept the message {I’m A.}K−1
A

when A wants to authenticate itself to B, or record this message when A
wants to authenticate itself to I, and then replay this message to B to au-
thenticate itself to B by impersonating A.
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Fig. 8.9 An attack on Example 8.4.

The timeliness guarantee allows replay detection via a sequence number
included within the data of messages authenticated by a MAC or digital
signature algorithm, or via a random number, which is sent by the other party
in the previous message, covered by a MAC or digital signature algorithm
on each of the second and subsequent messages. For the random number
schemes, the MAC values or signatures in the replayed messages would be
incorrect for the disagreement of the random number in the replayed message
and the most recent random number of the new protocol run. However, the
timeliness guarantee still could not assure the detection of a replay message
in a man in the middle attack. As for Example 8.5, the attack in Example
8.6 may still work.

Example 8.7 An attack on Example 8.5. I is the adversary, and I(A) is
the adversary I impersonating A. Figure 8.10 illustrates an attack on above
example.

Message 1 A→ I : {I’m A, TA.}K−1
A

Message 1′ I(A)→ B : {I’m A, TA.}K−1
A

Fig. 8.10 An attack on Example 8.5.

In this attack, the adversary I intercepts the message {I’m A, TA.}K−1
A

when A wants to authenticate itself to I, and then replays this message to B
to authenticate itself to B by impersonating A.

Recall the UA-Secure and MA-Secure notion in Theorems 6.8 and 6.9,
and we give the UA-Secure and MA-Secure rule under the belief multiset
formalism.

Rule 8.1 (UA-secure) Given a protocol Π between partners Pi and Pj

in the presence of a probabilistic polynomial-time adversary I that has full
control of the communication links. We say Pj has authenticated itself to the
participant Pi if we have bPi,t$ = �〈1Pj〉�.
Rule 8.2 (MA-secure) Given a protocol Π between partners Pi and Pj

in the presence of a probabilistic polynomial-time adversary I that has full
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control of the communication links. We say Pi has authenticated itself to the
participant Pj and Pj has authenticated itself to the participant Pi if we have
bPi,t$ = �〈1Pj〉� and bPj ,t$ = �〈1Pi〉�.

The typical mathematical algorithms for providing entity authentication
service include the following:
— Message authentication codes (MACs, such as block ciphers with MDC,

keyed hashes).
— Digital signature schemes.
— Public-key encryptions/decryptions.
— Appending (prior to encryption) a secret authenticator value to encrypted

text.
Public-key encryption is usually combined with a digital signature, provid-

ing confidential key transport with source identity assurances. The intended
recipient authenticates itself by returning some time-variant value which it
alone may produce or recover. This may allow authentication of both the
entity and a transferred key. Schemes using public-keys (transported by cer-
tificates) require signatures for verification, but signatures are not required
within protocol messages.

8.2.5 Origin entity authentication

The uniqueness guarantee is necessary to assure the origin entity authenti-
cation. The uniqueness guarantee may be provided by the appropriate use
of TVPs which should be associated with the participants of a particular
protocol run. We can change Example 8.5:

Example 8.8 Figure 8.11 illustrates an entity authentication protocol via
possession of A’s private key K−1

A . The timestamp TA is associated with the
principals A and B by the explicitly indication of the identities of both A
and B.

Message 1 A→ B: {I’m A, B, TA.}K−1
A

Fig. 8.11 An illustration of identification protocol with timeliness and uniqueness

Rule 8.3 (Origin UA-secure) Given a protocol Π between partners Pi and
Pj in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links, and N is a time-variant parameter.
We say Pj has authenticated itself to the origin participant Pi if we have
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bPi,t$ = �〈Pi1Pj〉�.
That is, Pi believes that the intended opposite participant Pj is specially

in lively correspondence with this origin participant Pi in this protocol run.

Rule 8.4 (Origin MA-secure) Given a protocol Π between partners Pi and
Pj in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links, and N is a time-variant parameter.
We say Pj has authenticated itself to the origin participant Pi and Pj has
authenticated itself to the origin participant Pi if we have bPi,t$ = �〈Pi1Pj〉�
and bPj ,t$ = �〈Pj1Pi〉�.

The typical mathematical algorithms for providing origin entity authen-
tication service include the following:
— Message authentication codes with trusted freshness.
— Digital signature schemes with trusted freshness.
— Public-key encryptions /decryptions with trusted freshness.
— Appending (prior to encryption) a secret authenticator value to encrypted

text with trusted freshness.
As for Example 8.8, the attack in Example 8.6 may not work.

8.2.6 Non-repudiation

Non-repudiation is a service which prevents an entity from denying previ-
ous commitments or actions. A procedure involving a trusted third party is
needed to resolve the dispute where an entity may deny that certain commit-
ments were made or certain actions were taken. Commonly used fairness se-
curity in electronic commerce protocols can be derived from non-repudiation.

Data origin authentication mechanisms based on shared secret keys (e.g.,
MACs) do not allow a distinction to be made between the parties sharing
the key, and thus (as opposed to digital signatures) do not provide non-
repudiation of data origin since either party can equally originate a message
using the shared key. If resolution of subsequent disputes is a potential re-
quirement, then either an on-line trusted third party in a notary role or
asymmetric techniques may be used.

Rule 8.5 (Non-repudiation) Given a protocol Π between partners Pi and
Pj in the presence of a probabilistic polynomial-time adversary I that has
full control of the communication links, and N is a time-variant parameter.
We say Pj could not deny that certain commitments were made or certain
actions were taken to the participant Pi by Pj if we have bPi,t$ = �〈1Pj〉�.

The typical mathematical algorithms for providing non-repudiation ser-
vice include the following:

1) Message authentication codes with an on-line trusted third party.
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2) Digital signature schemes.
3) Appending (prior to encryption) a secret authenticator value to en-

crypted text.
Data origin authentication focuses on identity of the source of data, and

this is typically provided by symmetric-key origin authentication mechanisms
and signature mechanisms; non-repudiation focuses on being able to convince
others at some time in the future that the non-repudiation data m was valid
at some time in the past. Non-repudiation via symmetric-key origin authenti-
cation mechanisms may be accepted by a verifier as a form of authorization in
an environment of mutual trust. Digital signatures are non-repudiable mech-
anisms in nature.

Example 8.9 As shown in Fig. 8.12 a party A has signed and sent a sensi-
tive message m, such as a car order, to B, and B has corroborative evidence
that the received message m is from A. Hence, A could not deny A’s sending
of message m.

Message 1 A→ B : {I order 2 cars.}K−1
A

Fig. 8.12 An illustration of non-repudiation protocol.

This non-repudiation protocol is flawed for being without timeliness. The
attacker I may record this message {I order 2 cars.}K−1

A
and replay it to B.

This protocol may be fixed by the appropriate use of TVPs, and it is like {T,
I order 2 cars.}K−1

A
where T is a TVP such as the date of order. However,

this fixed protocol may still be attacked by an attack similar to the one in
Example 8.6. The uniqueness guarantee is also necessary to assure the gen-
uine non-repudiation. Similar to Origin entity authentication, the uniqueness
guarantee may be provided by the appropriate use of TVPs which should be
associated with the participants of a particular protocol run. Hence we have
the origin non-repudiation security.

Rule 8.6 (Origin non-repudiation) Given a protocol Π between partners
Pi and Pj in the presence of a probabilistic polynomial-time adversary I
that has full control of the communication links, and N is a time-variant
parameter. We say Pj could not deny that certain commitments were made
or certain actions were taken to the origin participant Pi by Pj if we have
bPi,t$ = �〈Pi1Pj〉�.

That is, Pi believes that Pj could not deny that certain commitments were
specially made or certain actions were specially taken to the origin participant
Pi.

The typical mathematical algorithms for providing origin non-repudiation
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service include the following:
1) Message authentication codes including a trusted freshness with an

on-line trusted third party.
2) Digital signature schemes with trusted freshness.
3) Appending (prior to encryption) a secret authenticator value to en-

crypted text with trusted freshness.

8.2.7 Access control

Access control is a service which addresses the authorization of a party to
access some information resources. Only authorized parties may access the
information resources of the target system.

Typical methods for providing access control service include the follow-
ing:
— Fixed-password schemes with plaintext password file. The most obvious

approach is for the system to store user passwords cleartext in a system
password file, which is both read- and write-protected. Upon password
entry by a user, the system compares the entered password to the pass-
word file entry for the corresponding user id; employing no secret keys or
cryptographic primitives such as encryption, this is classified as a non-
cryptographic technique.

— Fixed-password schemes with “Encrypted” password files. Rather than
storing a cleartext user password in a plaintext password file, a one-way
function of each user password is stored in place of the password itself. To
verify a user-entered password, the system computes the one-way function
of the entered password, and compares this to the stored entry for the
stated user id.

— Fixed-password schemes with salting. Each password, upon initial entry,
may be augmented with a t-bit random string called a salt before applying
the one-way function. Both the hashed password and the salt are recorded
in the password file. When the user subsequently enters a password, the
system looks up the salt, as altered or augmented by the salt.

— Fixed-password schemes with time factor. Each password may be aug-
mented with a t-bit random string of time before applying the one-way
function. Upon access control entry by a user, the system looks up the
password for the stated user id, gets the system time, applies the one-way
function to the password and several timestamps (lie in the time window
round the getting system time), then compares this to the user’s entry.
Time factor increases the timeliness and the complexity of a dictionary
attack against a large set of passwords simultaneously, by requiring the
dictionary to contain 2t variations of each trial password.

— Two-factor authentication schemes. Two-factor authentication is a secu-
rity process in which the user provides two means of identification, one
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of which is typically a physical token, such as a card, and the other of
which is typically something memorized, such as a security code. In this
context, the two factors involved are sometimes spoken of as something
you have and something you know. A common example of two-factor au-
thentication is a bank card: the card itself is the physical item and the
personal identification number (PIN) is the data that goes with it.
Some security procedures now require three-factor authentication, which

involves possession of a physical token and a password, used in conjunction
with biometric data, such as fingerscanning or a voiceprint.

One of the primary purposes of entity authentication is to facilitate access
control to a resource, when an access privilege is linked to a particular identity
(e.g., access to software applications; physical entry to restricted areas or
border crossings). Furthermore, origin entity authentication is required to
provide safe access control.

8.2.8 Key establishment

Key establishment is a service used to establish shared secrets, which are
typically called or used to derive session keys for communication principals
in an insecure channel. Key establishment protocol is any process whereby a
shared secret key becomes available to two or more parties, for subsequent
cryptographic use. Key establishment protocol can be broadly subdivided
into key agreement protocol and key transport protocol.

Ideally, a session key is an ephemeral secret, i.e., the one whose use is
restricted to a short time period such as a single telecommunications connec-
tion (or session), after which all trace of it is eliminated. While privacy of
keying material is a requirement in key establishment protocols, source au-
thentication is also typically needed. Key establishment is essentially entity
authentication and message authentication where the message is the key.

Key transport protocol is a key establishment technique where one party
creates or otherwise obtains a secret value, and securely transfers it to the
other(s) as a session key.

Key agreement protocol is a key establishment technique in which a ses-
sion key is derived by two (or more) parties as a function of information
contributed by or associated with each of these, (ideally) so that no party
can predetermine the resulting value.

Authenticated key establishment protocol is to establish a shared secret
with a party whose identity has been (or can be) corroborated.

Unilateral authenticated key establishment technique assures a corrobo-
rated identity of a second party and a corroborated shared of a secret key
only with this active party at the protocol run.

Mutual authenticated key establishment technique assures corroborated
identities of both protocol parties and a corroborated shared of a secret key
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only between these two active parties at the protocol run.
The typical mathematical algorithms for providing key establishment ser-

vice include the following:
— Message authentication codes with trusted freshness.
— Digital signature schemes with trusted freshness.
— Appending (prior to encryption) a secret authenticator value to encrypted

text with trusted freshness.

Rule 8.7 (Unilateral authenticated key transport protocol) Given a proto-
col Π between partners Pi and Pj in the presence of a probabilistic polynomial-
time adversary I that has full control of the communication links, and k is a
temporary session key selected by the principal Pj . We say that the protocol
Π is UK-secure if we have bPi,t$ = �〈11kPiPj〉, 〈1Pj〉�.
Rule 8.8 (Mutual authenticated key transport protocol) Given a protocol
Π between partners Pi and Pj in the presence of a probabilistic polynomial-
time adversary I that has full control of the communication links, and k
is a temporary session key selected by the principal Pj . We say that the
protocol Π is MK-secure if we have bPi,t$ = �〈11kPiPj〉, 〈1Pj〉� and bPi,t$ =
�〈11kPiPj〉, 〈1Pj〉�.
Rule 8.9 (Mutual authenticated key agreement protocol) Given a protocol
Π between partners Pi and Pj in the presence of a probabilistic polynomial-
time adversary I that has full control of the communication links. The tem-
porary session key k is an output of a function of all protocol participants’
random input NPi and NPj , which are randomly input by Pi and Pj re-
spectively. We say that the protocol Π is MK-secure if we have bPi,t$ =
�〈11NPiPiPj〉, 〈11NPjPiPj〉, 〈1Pj〉� and bPj ,t$ = �〈11NPiPiPj〉, 〈11NPjPiPj〉,
〈1Pi〉�.

8.2.9 Fairness

Fairness is a service to keep each honest protocol participant to have suffi-
cient evidence (through acquisition of corroborative evidence) to solve the
argumentation between or among parties, which may arise in or after a pro-
tocol run. It is the most important security service in an electronic commerce
protocol.

The typical mathematical algorithms for providing fairness service include
the following:
— Message authentication codes including a trusted freshness with an on-

line trusted third party.
— Digital signature schemes with trusted freshness.
— Appending (prior to encryption) a secret authenticator value to encrypted

text with trusted freshness.
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Electronic commerce protocol is any process to provide secure electronic
trades over network for two (or more) parties. The focuses of electronic com-
merce protocols are fairness and non-repudiation.

8.3 Protocol design based on trusted freshness

In this section, wewill introduce the belief multiset design model for develop-
ing a cryptographic protocol with guarantee that the security of an authen-
tication protocol is adequate based on security definition in Chapter 4.

This work is inspired by the probabilistic indistinguishability approach[4, 6],
CK model[2, 5] and BAN-like logic[1, 20, 21]. CK model presents a definition,
SK-security, for the security of a key establishment protocol, and it guaran-
tees that any key establishment protocol that satisfies the security definition
SK-security could be composed with symmetric encryption and authentica-
tion functions to provide a provably secure communication channel. In CK
model, the security proof of a key establishment protocol is accomplished via
an authenticator that translates a secure protocol in the Authenticated-links
Adversarial Model (AM) into an equivalent protocol in the Unauthenticated-
Links Adversarial Model (UM). However, for lack of authenticators, the proof
method based on CK model is not so operational as the authors have ex-
pected.

Based on the freshness principle presented in Chapter 4, a simple and
operational modal logic, the belief multiset design formalism, is given to
express the security of a key establishment protocol and to reason about
beliefs in the protocol. Proofs in the logic are therefore quite insightful.

The central idea behind the model is the observation that a participant’s
beliefs about security should depend only on a loose one-way transforma-
tion that binds together with some item whose freshness has been verified
by the participant. Here loose one-way transformation means that for certain
encrypted components of messages, only a regular protocol participant who
has possession of a secret can change these encrypted components in a way
that will be accepted by other regular participants. That is, the adversary
cannot apply any non-trivial actions on this encrypted component, other-
wise the message receiver will detect the alteration. These results allow us
to achieve many authentication results without any further consideration of
the dynamic execution of protocols, which could involve the activity of sev-
eral principals. Instead, we need only consider the possible behavior of each
principal independently.

The belief multiset language in belief multiset design model is almost
the same as that in belief multiset formalism in Chapter 7. We assume that
principals are not trustworthy, encrypted messages contain sufficient redun-
dancy, and principals can recognize and ignore their own messages. In the
belief multiset design model, a protocol is derived to achieve the security
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objects as indicated in Section 8.2 step by step.
When designing a cryptographic protocol, the following two steps are

essential[18]:
1) identify all assumptions in the protocol design;
2) for each assumption, determine the effect on the security objective if

that assumption is violated.
In a protocol, a message is typically sent to one intended recipient who

is designated implicitly, explicitly in the plain text or in encrypted parts of
messages. However, due to the asynchronous nature of contemporary net-
works, a principal may receive any messages transmitted on the network,
and the network-messages may be completely lost or even duplicated due to
network failures and errors. Time is a key problem to keep a message distinct
and fresh. The simplest way of introducing time is to assume the existence
of a global clock. But unfortunately, in an insecure networked environment,
such an assumption is best restrictive, and worst unrealistic. Furthermore,
although in general the availability of synchronized clocks and the use of
timestamps often can reduce the numbers of messages and rounds for cryp-
tographic protocols, the efficiency of the protocols is not increased either,
because all parties have the chance to exchange nonce in the whole protocol
run[15].

We advocate that a cryptographic protocol be designed using encrypted
messages that carry as much information as possible (the identities of the
protocol run, the components to guarantee the timeliness and the unique-
ness) regarding the current authentication run, to the extent that it becomes
self-contained and uniquely identifiable as belonging to a particular authen-
tication run.

8.3.1 Notations and descriptions

Similar to the belief multiset formalism in Chapter 7, we write a message
exchange in a protocol run as {...N...}k where N is a freshness component
trusted by the participant, and we omit messages or message parts that do
not contribute to the security logical properties of the protocol to be achieved.
We require that each exchanged message in a protocol should be dissimilar
(see Definition 4.14) to avoid replay attack.

8.3.1.1 Events

The basic interactions among participants are modeled by events in the belief
multiset design approach. An event is a message exchange operation where
the message is distinct for being bound together by signature or encryption
with some item whose freshness has been verified by the participant. Each
event is principal identity indexed, that is to say, an event is related to a
participant.
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We use an abstract notion of distributed logic time to describe the order of
events. This is based on an observation about the protocol message exchange:
in distributed network environment, each participant has a local notion before
and after that defines a total order on each partner’s message exchanges, but
there is no global absolute ordering of message exchanges. Hence, it is not
necessary that time is global and synchronized in this circumstance because
the lack of synchronization would not be observable and thus could not cause
problem. We adopt the non-standard notion of Lamport clock[13]. Lamport
pointed out that clock synchronization need not be absolute and that what
usually matters is not that all partners agree on exactly what time it is, but
rather, that they agree on the order in which events occur.

We introduce a notion causal consistency to enhance concurrency in proto-
col message exchanges. Message exchanges potentially causally related must
be seen in the same order by all principals. Concurrent exchanges may be
seen in a different order by different principals. Suppose event e1 generates
a message {...m1...}k, event e2 reads {...m1...}k, and event e3 sends back
{...m1...}k′ . Here the reading of {...m1...}k and the writing of {...m1...}k′ are
potentially causally related because the generation of {...m1...}k′ depends on
the read of {...m1...}k (by e2) to get m1.

Definition 8.1 An event is a term exchange operation among participants.
Events are subscripted by principal identity to indicate different occurrence of
the same message exchange for various participants. The collection of events
for a particular participant is equipped with a total order, while the collection
of events from all participants is not required to be equipped with a total
order.

The same term exchange is not the same event for different participants.
Suppose Pi has sent a message m, and the opposite principal Pj will re-
ceive this message m, then each principal has different events ePi and ePj
respectively.

Each term appearing in the rules of belief multiset formalism in Subsection
7.4.2 could be an event. Here are some typical event illustrations:

1) +{...NPi ...} indicates that the participant Pi has sent the message
{...NPi ...}, and NPi is a freshness identifier generated by Pi.

This event could be applied to the freshness rule A5(b), and then Pi could
get the freshness property of NPi from it.

2) −{...N |N ′...}KPiPj
indicates that the participant Pi has received the

message {...N |N ′...}KPiPj
, KPiPj is the shared long-term key between Pi

and Pj , N is a trusted freshness identifier of Pi, and N ′ is new a freshness
identifier whose freshness has not been verified by Pi.

This event could be applied to the fragment rule A1(a), Pi could assert
that the new freshness identifierN ′ is bound to the trusted freshness identifier
N .

3) −{...N |N ′|Pj ...}KPiS
indicates that the participant Pi has received the
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message {...N |N ′|Pj ...}KPiS
, KPiS is the shared long-term key between Pi

and the trusted third party S, N is a trusted freshness identifier of Pi, and
N ′ is a new freshness identifier whose freshness has not been verified by Pi.

This event could be applied to the fragment rule A1(b), then Pi could
assert that the new freshness identifier N ′ is bound to the trusted freshness
identifier N .

4) −{...N |N ′...}KPi
indicates that the participant Pi has received the

message {...N |N ′...}KPi
, the decryption key K−1

Pi
is the private key of Pi,

N is a trusted freshness identifier of Pi, and N ′ is a new freshness identifier
whose freshness has not been verified by Pi.

This event could be applied to the fragment rule A1(c), then Pi could
assert that the new freshness identifier N ′ is bound to the trusted freshness
identifier N .

5) −{...N |N ′|Pi...}K−1
Pj

indicates that the participant Pi has received the

message {...N |N ′|Pi...}K−1
Pj

, the encryption key K−1
Pj

is the private key of

Pj , the decryption key KPj is known by all participants. Note that N is
a trusted freshness identifier owned by Pi, N ′ is a new freshness identifier
whose freshness has not been verified by Pi, meanwhile the explicit identity
of Pi indicates that N and N ′ are associated with a session related to Pi.

This event could be applied to the fragment rule A1(d), then Pi could
assert that the new freshness identifier N ′ is bound to the trusted freshness
identifier N .

6) +{...N |N ′...}KPiPj
indicates that the participant Pi has sent the mes-

sage {...N |N ′...}KPiPj
, KPiPj is the shared long-term key between Pi and Pj ,

N is a trusted freshness identifier of Pi, N ′ is a new freshness identifier whose
freshness has not been verified by Pi.

This event could be applied to the fragment rule A1(e) or expectation
rule A2(a), then Pi could assert that the new freshness identifier N ′ is bound
to the trusted freshness identifier N or could assert that only the partner Pj

can obtain the freshness identifier N .
7) +{...N |N ′|Pj ...}KPiS

indicates that the participant Pi has sent the
message {...N |N ′|Pj ...}KPiS

, KPiS is the shared long-term key between Pi

and the trusted third party S, N is a trusted freshness identifier of Pi, and
N ′ is a new freshness identifier whose freshness has not been verified by Pi.

This event could be applied to the fragment rule A1(f), then Pi could
assert that the new freshness identifier N ′ is bound to the trusted freshness
identifier N .

8) +{...N |N ′|Pi...}KPj
indicates that the participant Pi has sent the mes-

sage {...N |N ′|Pi...}KPj
, KPj is the public-key of Pj , N is a trusted freshness

identifier of Pi, and N ′ is a new freshness identifier whose freshness has not
been verified by Pi.

This event could be applied to the fragment rule A1(g) or the expectation
rule A2(b), then Pi could assert that the new freshness identifier N ′ is bound
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to the trusted freshness identifier N , or assert that only the partner Pj can
obtain the freshness identifier N .

9) +{...N |N ′...}K−1
Pi

indicates that the participant Pi has sent the message

{...N |N ′...}K−1
Pi

, the encryption key K−1
Pi

is the private key of Pi, N is a

trusted freshness identifier of Pi, and N ′ is a new freshness identifier whose
freshness has not been verified by Pi.

This event could be applied to the fragment rule A1(h), then Pi could
assert that the new freshness identifier N ′ is bound to the trusted freshness
identifier N associated with a session related to Pi.

8.3.1.2 Causal consistency

There exists a total order on the collection of events corresponding to a par-
ticular participant, hence each event of this participant could be superscript
by the happen order of the event, e.g., e1

Pi
, e2

Pi
and so on.

We use <Pi to denote the relation “happen before”. If e <Pi e
′, then we

say that the event e precedes the event e′ for the participant Pi; if e ≈Pi e
′,

then we say that the event e and the event e′ are the same events.
Recall that the collection of events from all participants is not required

to be equipped with a total order. For example, if Pi sends a message m
while opposite principal Pj receives this message m, then each principal has
different events ePi and ePj respectively. In this case, what counts is whether
event ePi is older or newer than ePj , not their absolute creation time. We
define causal consistency notion to ensure that the send event is preceded by
the receive event for the same message exchange.

Definition 8.2 (Causal Consistency) We use EPi to denote the collection
of events corresponding to principals Pi and E to denote the union of all of
the EPi . We say E has the property of causal consistency if there is a partial
order < on the events of E so that
— if e <Pi e

′ then e < e′;
— the event sent is preceded by the event received for the same message

exchange.

We emphasize that causal consistency is only a consistency requirement
and it does not imply a global ordering of events, where concurrency in proto-
col message exchanges will not be expressed in terms of a fixed event ordering.
Hence these concurrent protocol message exchanges can be implemented in
the same round[22].

In belief multiset design model, events are related to term exchanges that
include a trusted freshness component. Message exchanges in multiple ses-
sions of a protocol or instances of multiple protocols, or potential interactions
among them are subsequently considered as distinct events.
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8.3.1.3 Beliefs and rules
Belief is the key element of protocol security in belief multiset design model
and it differs greatly from that in BAN logic or in Heintze-Tydel model. The
beliefs in this model can only be deduced from the received fresh and con-
fidential messages and the beliefs already possessed by certain party while
BAN deals with all messages; this approach is independent of the formaliza-
tion of cryptographic protocols themselves, the concrete formalization of an
adversary’s possible behavior, concurrent run with any set of protocols while
beliefs in Heintze-Tydel model are used to describe one aspect of a partici-
pant state at each point. In this model, a belief is pointwise valid, and it is
asynchronous. Recall that instead of using a concrete notion of time, we use
causal consistency to reason about time and to describe the beliefs at each
point, and this results in no loss of generality. We need to state what it means
for particular beliefs held in the model.

A belief is a trust about the liveness of legitimate participants, the con-
fidentiality, freshness and association of a freshness component (including
nonce, timestamp, session key or shared parts of a session key), and also the
fragment beliefs, the expectation beliefs defined in belief multiset analysis
approach.

A belief can only be deduced from a fresh message which is bound with
certain trusted freshness identifier. A belief multiset is an unordered collection
of beliefs owned by each of the legitimate participants.

Intuitively, initial beliefs are things that are assumed to be true before the
start of the protocol in cryptographic literature. For example, in symmetric
cryptosystems case, each participant knows the shared key with other parties
or a trusted third party.

The liveness property of a legitimate participant, the freshness and as-
sociation property of a freshness component are monotone increasing, while
the belief about the confidentiality of a message is supposed to be true at
the start of the protocol run, and it may become open at any point of the
protocol run.

In the belief multiset design model, the fragment beliefs and the expec-
tation beliefs are:

1) An expectation belief: An expectation ≺ {m̂, Pj} owned by Pi who
asserts that only the partner Pj can obtain the term m̂ from a one-way
transformation that is sent by Pi.

2) A fragmentbelief: A fragment∼{...N,N ′...}k ownedbyPi who asserts the
binding of a new freshness identifier N ′ with a trusted freshness identifier N .

Given a participant Pi accompanied with a set of beliefs and a set of
events, a protocol specifies a set of legal transitions that a participant can
take.

The events and beliefs in this model are fundamentally different from
those in Heintze-Tydel model: the belief multiset beliefs are trusts about the
liveness of legitimate participants, and trusts about the confidentiality, fresh-
ness and association of some freshness components while beliefs in Heintze-
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Tydel model are used to capture one aspect of a principal state at each point;
our events include only message exchange operations where the messages are
distinct for being bound together by signature or encryption with a trusted
freshness identifier while events in Heintze-Tydel model include all send oper-
ations, receive operations or even generate operations. Based on (1) what the
participant currently believes (about principals and freshness components)
and (2) an event (such as the receipt of a fresh message), each participant
adds new beliefs to its set of current beliefs, and takes actions in accordance
with the protocol such as sending a fresh message.

Rules are a set of legal transitions that reflect the underlying assumptions
in cryptographic literature. The rules in the belief multiset design model are
the same as those in the belief multiset analysis approach in Subsection 4.
These rules are carefully constructed to correspond to certain intuitions about
how participants interact and how a protocol unfolds. A more comprehen-
sive response is that if the assumptions the rules based on are satisfied, the
protocol will be correct.

8.3.2 Design of cryptographic protocols

With the hypothesis indicated in Subsection 6.3.6.2, the steps for protocol
design based on belief multiset are refined as follows.

The security requirements of a cryptographic protocol

Step 1. The security requirements of a cryptographic protocol varies for
different applications. Here we list some necessary chosen about the security
design of a cryptographic protocol, such as the security goals, cryptographic
mechanism.

1. The security goals to achieve

1) Unilateral Entity Authentication.
2) Origin Unilateral entity authentication.
3) Mutual Entity Authentication.
4) Origin Mutual entity authentication.
5) Unilateral authenticated key transport.
6) Mutual authenticated key transport.
7) Mutual authenticated key exchange (or key agreement).

2. The way to get freshness for a cryptographic protocol

1) Nonce, that is Challenge-Response protocol.
2) Timestamp.
3) Sequence number.

3. Cryptographic mechanism

1) Public-key algorithm.
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2) Share-key algorithm,including cypher block and keyed hash.

4. With or without the trusted third party

1) With the trusted third party.
2) Without the trusted third party.

Initial states and premises of cryptographic protocols

Step 2. We must stipulate the cryptographic conditions under which the
protocol will operate. Assume that each party has a shared long-term key with
its participant in shared key case without the trusted third party; Assume
that each party has a shared long-term key with the trusted third party in
shared key case with the trusted third party. Assume that each party has an
asymmetric key pair, and holds the other’s public-key or can reliably obtain
it via a one-time setup. Perhaps some public-key infrastructure is already in
place.

Furthermore, the private key or the shared long-term key is commonly
assumed to be too long to guess in a computationally feasible way. Therefore,
the adversary does not know whether a guess is correct or not, and guessing
attack is rendered impotent. Assume that the encryption or signature schemes
in use can meet the security strength requirements for a particular protocol,
such as secure against chosen ciphertext attacks and so on. The participants
of a cryptographic protocol are definitely indicated and so does the role of
each participant: the initiator, the responder, or the trusted third party.

Suppose Pi and Pj are participants, ρ is an arbitrary principal which
ranges over participants of the protocol run including the attacker I, S is
the trusted third party, k is a new session key randomly chosen by the par-
ticipant Pi, Pj , or the trusted third party S, or generated from the random
input by both Pi and Pj , then the initial assumptions related to the protocol
participants are:

1) public-key case:
BPi,t0(〈11K−1

Pi
Pi〉), BPi,t0(〈11K−1

Pj
Pj〉), BPi,t0(〈01KPiρ〉), BPi,t0(〈01KPjρ〉)

and
BPj ,t0(〈11K−1

Pj
Pj〉), BPj ,t0(〈11K−1

Pi
Pi〉), BPj ,t0(〈01KPjρ〉), BPj ,t0(〈01KPiρ〉)

2) Shared key case without trusted third party:
BPi,t0(〈11K−1

PiPj
PiPj〉) and BPj ,t0(〈11K−1

PiPj
PiPj〉)

3) Shared key case with trusted third party:
BPi,t0(〈11K−1

PiS
PiS〉) and BPj ,t0(〈11K−1

PjS
PjS〉).

Security goals based on the trusted freshness

Step 3. Security goals and premises can be formally and accurately pre-
sented based on the trusted freshness. The security goals of typical applica-
tions of authentication protocols are listed below:

1) Unilateral Entity Authentication: Pi wants to authenticate the identity
of Pj . The security goal could be given as bPi,t$ = �〈1Pj〉� based on the trusted
freshness.
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2) Origin Unilateral Entity Authentication: Pi wants to authenticate the
identity of Pj , and N (a nonce, a timestamp, or a sequence number) is a
challenge generated by Pi for Pj to authenticate. The security goal could be
given as bPi,t$ = �〈Pi1Pj� based on the trusted freshness N .

3) Mutual Entity Authentication: Pi and Pj want to authenticate each
other. The security goal could be given as bPi,t$ = �〈1Pj〉� and bPj ,t$ =
�〈1Pi〉� based on the trusted freshness.

4) Origin Mutual Entity Authentication: Pi and Pj want to authenticate
each other, NPi and NPj are challenges generated by Pi and Pj respectively
to authenticate the opponent participant. The security goal could be given
as bPi,t$ = �〈Pi1Pj〉� and bPj ,t$ = �〈Pj1Pi〉� based on the trusted freshness
Pi and Pj respectively.

5) Unilateral Authenticated Key Transport: Pi wants to authenticate the
identity of Pj , and Pi believes that the session key generated by the authenti-
cated participant Pj or a TTP can provide a secure channel over an insecure
network. The security goal could be given as bPi,t$ = �〈1Pj〉, 〈11kPiPj〉� based
on the trusted freshness.

6) Mutual authenticated key transport: Pi and Pj want to authenti-
cate each other, and both Pi and Pj believe that the session key gener-
ated by one of the authenticated participants or a TTP can provide a se-
cure channel over an insecure network. The security goal could be given as
bPi,t$ = �〈1Pj〉, 〈11kPiPj〉� and bPj ,t$ = �〈1Pi〉, 〈11kPiPj〉� based on the
trusted freshness.

7) Mutual authenticated key exchange (or key agreement): Pi and Pj want
to authenticate each other, both Pi and Pj believe that the new session key,
which is the output of a function of all protocol participants’ random input
NPi and NPj , can provide a secure channel over an insecure network. The se-
curity goal could be given as bPi,t$ = �〈11NPiPiPj〉, 〈11NPjPiPj〉, 〈1Pj〉� and
bPj ,t$ = �〈11NPiPiPj〉, 〈11NPjPiPj〉, 〈1Pi〉� based on the trusted freshness.

Message design of a cryptographic protocol

Step 4. According the requirements of the protocol security, proper events
should be selected from the event list in Subsection 8.3.1.1. From the initial
states and the premises defined in Subsection 3, the security properties of
a cryptographic protocol could be established based on inference rules in
Subsection 7.4.2.2 and the selected events. Repeat step 4, and establish the
security properties from current beliefs and the fresh messages, which are
constructed from the selected events including a trusted freshness identifier.
Repeat this step 4 until the security goals in Subsection 3 are met.

8.3.3 Lower bounds for SK-secure protocols

In this section, we discuss the efficiency of the constructed cryptographic pro-
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tocol under the belief multiset design model. We first introduce two metrics,
the number of messages and the number of rounds.

Definition 8.3 The number of messages is the total number of message
exchanges required to complete the protocol.

Definition 8.4 A round consists of all messages that can be sent and re-
ceived in parallel within one time unit. The number of rounds in a protocol
is the total number of time units from the instant that the originator sends
the first message till the instant that the last message is received, under the
best execution scenario[22].

With the notation of the distributed logic time causal consistency, the
concurrent messages of the cryptographic protocol are determined, then these
concurrent messages can be transmitted in the same message round (sent out
at the same time), to optimize the design of the cryptographic protocol. Other
measures could also be applied to improve the performance of a protocol.

Let’s analyze the number of messages and the number of rounds in a
cryptographic protocol:

1. As for confidentiality, non-repudiation and data integrity properties

They needn’t have a communication feature: they could be provided on
stored data.

2. As for data origin authentication property

It necessarily involves communications: the lower bounds are one message
and one round, that is, the receiver should convince that the receiving mes-
sage is originally sent by the intended data originator. Data-origin authenti-
cation necessarily involves establishing the freshness of a message, otherwise
it may be a replayed message by an attacker.

3. Common entity authentication

We refer common entity authentication to the “loose” entity authentica-
tion to distinguish it from origin entity authentication. As for “loose” entity
authentication, the lower bounds are one message and one round if a times-
tamp is adopted, otherwise, the lower bounds are two messages and two
rounds if nonce or sequence number is adopted in a challenge response pro-
tocol; As for origin entity authentication, the lower bounds are the same as
those in the “loose” entity authentication. While in origin entity authentica-
tion, the freshness identifier (timestamp, nonce or sequence number) should
be associated with the participants of the communication.

Here are the examples of “loose” entity authentication and origin entity
authentication:

Example 8.10 Suppose A and B are the principals of the protocol run, T is
a timestamp from A, keyK−1

A is the private key of A. A wants to authenticate
the identity of A to the opponent participant, that is, the “loose” entity
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authentication, as shown in Fig. 8.13.

Message 1 A→ B : {I am Alice, T.}K−1
A

Fig. 8.13 An illustration of the “loose” entity authentication security service.

The “loose” entity authentication protocol is not secure since the principal
A may be impersonated by an attacker I with the existence of A. Here is the
attack on Example 8.10.

Example 8.11 Suppose A and B are the principals of the protocol run, I
is an attacker, T is a timestamp from A, and the key K−1

A is the private key
of A. A wants to authenticate A to the principal I, meanwhile the attacker I
may use this signature {I am Alice.}K−1

A
to authenticate I(A) to the principal

B by impersonating A. Figure 8.14 illustrates an attack on the protocol of
the “loose” entity authentication security service.

Message 1 A→ I : {I am Alice, T}K−1
A

Message 1′ I(A)→ B : {I am Alice, T}K−1
A

Fig. 8.14 An attack on the protocol in Example 8.10.

As for origin entity authentication, the evidence to show the existence of
an entity should be associated with all of the protocol run principals to avoid
the attack of replay like Example 8.11.

Example 8.12 Suppose A and B are the principals of the protocol run,
T is a timestamp from A, key K−1

A is the private key of A. As shown in
Fig. 8.15, A wants to authenticate A itself to the particular principal B, that
is, origin entity authentication.

Message 1 A→ B : {I am Alice, B, T}K−1
A

Fig. 8.15 A protocol illustration of the origin entity authentication security service.



8.3 Protocol design based on trusted freshness 331

In this example, the signature {I am Alice, B, T}K−1
A

is used as the ex-
plicit evidence of the existence of the entity A to the particular principal B
in this particular protocol run. From this signature, according to the associ-
ation rule A6(d) in the belief multiset formalism, the freshness identifier T
is associated with both the principals A and B. Hence, B asserts that it is
really A who has generated this message, and this signature is indeed sent
to B to authenticate A for this particular protocol run between A and B in
this moment T , that is, the origin entity authentication.

To achieve access control property, “loose” entity authentication is usually
used in real world, hence there may exist the attack similar to that in the
Example 8.11.

4. As for unilateral authenticated key establishment protocol

The key is generated by one of the participants and then transmitted to
its opponent participant. The lower bound are one message and one round
if a timestamp is adopted, while the lower bound are two messages and two
rounds if a nonce or a sequence number is adopted.

Example 8.13 As shown in Fig. 8.16, we design a unilateral authenticated
key transport protocol via the shared key algorithm and the timestamp. Sup-
pose A and B are the principals of the protocol run, T is a timestamp from
A, KAB is the shared long-term key between A and B, and the new session
key kAB is generated by A and then transmitted to the principal B.

Message 1 A→ B : {kAB, T}KAB

Fig. 8.16 An illustration of the unilateral authenticated key establishment proto-
col.

According to the freshness rule A5(a) and the association rule A6(a) in the
belief multiset formalism, the principal B believes that the new session key
kAB is fresh and associated with both A and B from the trusted freshness
identifier T . Hence, according to the security definition of UK-Secure and
the conditions to guarantee the UK-Secure in Definition 4.5, the protocol in
Example 8.13 is UK secure.

Example 8.14 As shown in Fig. 8.17, we adopt the public-key algorithm,
and the timestamp to design a key transport protocol. Suppose A and B
are the principals of the protocol run, T is a timestamp from A, K−1

A is the
private key of A, and the new session key kAB is generated by A and then
transmitted to the principal B.

Message 1 A→ B :
{
{kAB, T}K−1

A

}
KB
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Fig. 8.17 An illustration of the key transport protocol using public-key algorithm.

According to the freshness rule A5(a) in the belief multiset formalism,
the principal B believes that the new session key kAB is fresh; from the
association rule A6(e), B believes that the session key kAB is associated with
B, and it is the run of the moment T , but B could not assert that kAB is
associated with A. Hence, B could not assert that the protocol in Example
8.14 is UK secure. Here is an attack on the protocol in Example 8.14.

Example 8.15 Suppose A and B are the principals of the protocol run, T
is a timestamp from A, I is an attacker and the key K−1

A is the private key
of A. As shown in Fig. 8.18, A wants to generate a new session key kAB for
principals A and I, and then transmit it to the principal I, in this time the
attacker I may use this signature {kAB, T}K−1

A
to authenticate I(A) to the

principal B by impersonating A.

Message 1 A→ I :
{
{kAI , T}K−1

A

}
KI

Message 1′ I(A)→ B :
{
{kAI , T}K−1

A

}
KB

Fig. 8.18 An attack on the protocol in Example 8.14.

Upon the termination of the protocol run in Example 8.15, B believes
that the session key kAI is fresh and associated with both A and B while kAI
is indeed associated with I and B, and A knows nothing about the protocol
run with B. From the attack in Example 8.15, we find that the opponent
participant responder B could not believe the origin entity authentication of
the initiator A. To achieve the security goals in the unilateral authenticated
key establishment protocol, the message in Example 8.14 could be fixed as:

Example 8.16 Fig. 8.19 illustrates a revision of Example 8.14.

Message 1 A→ B :
{
{kAB, B, T}K−1

A

}
KB

For the revision of the key transport protocol using public-key algorithm,
the attack 8.53 will not work on the Example 8.54.

5. As for mutual authenticated key transport protocol

The key is generated by one of the participants and then transmitted to
its opponent participant. The lower bound is two messages and two rounds if
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Fig. 8.19 A revision of the key transport protocol using public-key algorithm.

a timestamp is adopted, while the lower bound is three messages and three
rounds if a nonce or a sequence number is adopted.

Example 8.17 In Fig. 8.20, we adopt the public-key algorithm, and the
timestamp to design a mutual authenticated key transport protocol. Suppose
A and B are the principals of the protocol run, T is a timestamp from A,
K−1

A and K−1
B are the private key of A and B respectively. In the mutual

authenticated key transport protocol, A and B want to authenticate each
other, and the new session key kAB is generated by A and then transmitted
to the principal B.

Message 1 A→ B :
{
{kAB, B, T}K−1

A

}
KB

Message 2 B → A :
{
{kAB, T}K−1

B

}
KA

Fig. 8.20 An illustration of the mutual authenticated key transport protocol.

6. As for mutual authenticated key agreement protocol

The key is an output of a function of all protocol participants’ random
input, (ideally) so that no party can predetermine the resulting value. The
lower bound is two messages and two rounds if a timestamp is adopted, while
the lower bound is three messages and three rounds if a nonce or a sequence
number is adopted.

As an illustration, let’s analyze the number of messages and the number
of rounds in a key agreement protocol using nonce. According to the security
definition of SK-Security and the conditions to guarantee the SK-Security in
Definition 6.3, both the originator and the responder should convince that
the opposite participant is in lively correspondence in this protocol run. First,
the originator notifies the opposite participant of starting the protocol with
a trusted freshness identifier N . Next, the opposite participant sends this
identifier N back to the originator. From the liveness rule A5, the originator
could establish the belief about the responder’s in lively correspondence with
the originator and generates a fresh identifier N ′ by the originator itself. Thus
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a lower bound is three messages. Since beliefs are achieved based on some
items whose freshness is trusted by the participant, thus three rounds are a
lower bound.

Theorem 8.1 (Lower Bounds) Let Π be an SK-secure challenge-response
public-key key establishment protocol, then the lower bounds are three mes-
sages and three rounds.

Proof The main proof technique for the lower bounds on the number of
messages and rounds is to identify a critical path – a causal chain of messages –
that cannot be further shortened.

Suppose A, B are the principals of the protocol run, kAB is the new session
between A and B. The sufficient and necessary conditions to guarantee the
security of a key establishment protocol are specified in Chapter 4, which can
be expressed as bA,t$ = �〈11kABAB〉, 〈1B〉� and bB,t$ = �〈11kABAB〉, 〈1A〉�
in belief multiset formalism.

According to the SK-Security definition, the originatorA has to notify op-
posite participantB of starting the protocol with a trusted freshness identifier
NA as a shared part NA of a new session key k, there should exists an event
e1
A such as e1

A : +{NA}KAB , or e1
A : +{NA, B}KAS or e1

A : +{NA, A}KB ; the
responder B needs to send NA back in security, the event e2

A, so that A can
establish its beliefs about the liveness of the principal B and the freshness and
association of the shared partNA of the new session key k. Obviously we have
e1
A <A e2

A. On the contrary, the responder B needs to send a trusted fresh-
ness identifier NB to A, the event e1

B : +{NB}KAB , or e1
B : +{NB, A}KBS or

e1
B : +{NB, B}KA , and get the response from the originator A, the event e2

B.
Obviously we have e1

B <B e2
B. Since e1

B could not happen before B notifies
the nonce of NA by the originator, according to causal consistency, we have
e1
A < e1

B. Since there is not any causal logic between e2
A and e1

B, these con-
current message exchanges could be implemented in the same message and
in the same round, that is:

1) Round 1 and Message 1: e1
A.

2) Round 2 and Message 2: e2
A and e1

B, here the nonce NA could be sent
back to A by B in the same round with the new generated nonce NB, and
they could be sent back also in the same Message 2.

3) Round 3 and Message 3: e2
B.

Therefore, three messages and three rounds are lower bounds.

8.4 Application of protocol design via trusted freshness

Design of a key establishment protocol is more complicated than that of
other type cryptographic protocols. Hence we show the process to design a
key establishment protocol under the belief multiset model as an illustration.

Key establishment is a foundational element for secure communications.
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It concerns how to set up a new session key to protect communications during
a subsequent session. Key establishment protocols are mechanisms to estab-
lish such common secret keys between pairs of parties over an adversary-
controlled network.

Let’s review the statement about key establishment in [18]: When de-
signing or selecting a key establishment technique for use, it is important
to consider what assurances and properties an intended application requires.
Distinction should be made between functionality provided to a user, and
technical characteristics which distinguish mechanisms at the implementa-
tion level (cost and performance variations). Characteristics which differen-
tiate key establishment techniques include:

1) Nature of the authentication. Any combination of the following may be
provided: entity authentication, key authentication, and key confirmation.

2) Reciprocity of authentication. When provided, entity authentication,
key authentication, and key confirmation may separately be unilateral or
mutual (provided to one or both parties).

3) Key freshness. A key is fresh (from the viewpoint of one party) if it
can be guaranteed to be new, as opposed to possibly an old key being reused
through actions of either an adversary or authorized party.

4) Key control. In some protocols (key transport), one party chooses a key
value. In others (key agreement), the key is derived from joint information,
and it may be desirable that neither party be able to control or predict the
value of the key.

5) Efficiency. Considerations include:
(1) number of message exchanges (passes) required between parties;
(2) bandwidth required by messages (total number of bits transmitted);
(3) complexity of computations by each party (as it affects execution

time), and
(4) possibility of precomputation to reduce on-line computational com-

plexity.
6) Third party requirements. Considerations include:
(1) requirement of an on-line (real-time) party, off-line party, or no third

party;
(2) degree of trust required in a third party (e.g., trusted to certify public-

keys vs. trusted not to disclose long-term secret keys).
7) Type of certificate used, if any. More generally, one may consider the

manner by which initial keying material is distributed, which may be related
to third party requirements.

8) Non-repudiation. A protocol may provide some type of receipt that
keying material has been exchanged.

In this section, the usability and the compositional adequacy of the be-
lief multiset design model are demonstrated via the redesign of Needham-
Schroeder key establishment protocol. We first introduce how to specify se-
curity properties in the model, then we detail the generation of a challenge-
response public-key protocol for two-party authentication and key agreement,
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at last the security of the protocol will be checked.

8.4.1 Construction of a two-party key establishment protocol

Before construction of two-party authenticated key agreement protocol in
this model, we must first determine what the secrets are to be protected in
a key establishment protocol: session keys or shared parts of a session key.
This is typically implicit in the protocol specifications, and should be made
explicit in the model.

The security requirements of a cryptographic protocol

It is important to start by deciding the goals to be achieved. Let us
assume that we intend to construct a protocol in which the initiator A and
the responder B each generates a fresh, secret value, NA and NB respectively.
They want to shared these values between themselves without disclosing them
to any other party. Each should learn that the other has proceeded far enough
in the protocol to receive the values. The two principals intend to hash the
two values together to produce a new session key for the future encrypted
conversation. The intended goal of this challenge-response public-key protocol
is to establish secure communication (SK-secure) between two principals A
and B via the shared parts NA and NB. In the model, the security goals can
be expressed as:

bA,t$ = �〈1B〉, 〈11NAAB〉, 〈11NBAB〉�, and
bB,t$ = �〈1A〉, 〈11NAAB〉, 〈11NBAB〉�.

The freshness guarantee is typically provided by an appropriate use of
a fresh random number, nonce, in a challenge response protocol, and the
public-key cryptographic mechanism without a trusted third party will be
anticipant in the Needham-Schroeder key exchange protocol.

The initial state and the premise of a cryptographic protocol

Assume that each party has its private key as well as the public-keys of
all parties before the start of key establishment protocol, the initial assump-
tions related to the protocol participants are: bA,t0 = �〈11K−1

A A〉, 〈11K−1
B B〉,

〈01KAρ〉, 〈01KBρ〉� and bB,t0 = �〈11K−1
B B〉, 〈11K−1

A A〉, 〈01KAρ〉, 〈01KBρ〉�.
ρ is an arbitrary principal including the adversary.

Message design of a cryptographic protocol

With the security goals and the premise set established, we could con-
struct the challenge-response public-key protocol. In the belief multiset for-
malism design model, the participant only makes responses to the terms
which include trusted freshness. Hence, it requires each participant to send
a nonce before receiving a temporal session key, which is a basis security
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requirement based on the challenge-response mechanism. That is, a partici-
pant without a synchronized clock could not accept any temporal session key
before sending a nonce generated by itself.

Here are some tips for a cryptographic protocol design:
1) It is better to explicitly indicate the identities sharing the new session

key in the message including this session key.
2) It is better to confirm the ownership of the new session key via an

encryption of a known plaintext by the opponent partner under this key.
3) There should not exist similar maximum terms (see Definition 4.10).

That is, the structure of the sending message including a trusted freshness
identifier should not be similar to any receiving terms.

Step 1 Unilateral authentication.
1) At the start of the communication, A should first establish a trusted

freshness identifier. According to the event definition of 8.1(1) and the fresh-
ness rule A5(b), the originator A has to notify B of starting the protocol, and
generates a fresh nonce NA where A has bA,t1 = �〈...1NA...〉� before sending
the notification message.

2) To establish the confidential property of the session key shared part
NA, the freshness identifier NA should be transmitted in an encryption, and
the attacker I doesn’t have the corresponding decryption key k−1. Hence,
the freshness identifier NA can be encrypted under the public-key KB of
the participant B. According to the event Definition 8.1, we have the event
e1
A : +{...NA...}KB and the event e1

B : −{...NA...}KB . Obviously, we have
the relationship of causal consistency between the events e1

A and e1
B, that

is e1
A < e1

B. According to the confidentiality rule A3(d) and the expectation
rule A2(b), A has BA,t1(〈11NA...〉) and BA,t1(≺ {NA, B}).

3) For A to achieve unilateral authentication with B in public-key case,
according to the event Definition 8.1, the confidentiality rule A3(d) and ex-
pectation rule A2(b), B needs to send NA back to A in security, expecting
only A and B know the secret shared parts NA of the session key, hence we
have the event e2

B : +{...NA...}KA and the event e2
A : −{...NA...}KA . Obvi-

ously, we have the relationship of causal consistency “before” between the
events e1

A and e2
A, that is e1

A <A e2
A. We also have the events e1

B and e2
B,

that is e1
B <B e2

B. According to the liveness rule A4(c), A has the belief
BA,t2(〈1B〉).

Hence, for A to achieve unilateral authentication with B in public-key
case, the message exchanges will be of the forms:

Message 1 A→ B: {...NA...}KB

Message 2 B → A: {...NA...}KA

Up to now, A has achieved the belief bA,t = �〈1B〉, 〈...NB...〉, 〈11NA...〉�
via the above message exchanges.

Step 2 Mutual authentication.
In step 1, A has achieved the unilateral authentication with B. Similarly,

for B to achieve unilateral authentication with A in public-key case, B has
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the event e1′
B : +{...NB...}KA , A has the events e1′

A : −{...NB...}KA and
e2′
A : +{...NB...}KB , we have the relationship of “before” between the events
e1′
A and e2′

A , that is e1′
A <A e2′

A , and causal consistency before e1
B < e1′

B ,
e1′
B < e1′

A . Hence, for B to achieve unilateral authentication with A in public-
key case, the message exchanges are:

Message 1 B → A: {...NB...}KA

Message 2 A→ B: {...NB...}KB

Up to now, B has achieved the belief bB,t = �〈1A〉, 〈...NA...〉, 〈11NB...〉�
via the above message exchanges.

Note that there doesn’t exist the relationship of causal consistency “be-
fore” between e2

B and e1′
B . e

2
B and e1′

B are concurrent message exchanges, so
they could be transmitted concurrently. Combining the message exchanges
considering causal consistency, both participants A and B could still achieve
the mutual authentication secure:

Message 1 A→ B : {...NA...}KB

Message 2 B → A : {...NA, NB...}KA

Message 3 A→ B : {...NB...}KB

Step 3 Key agreement.
1) For principal A
According to association rule A6(e), upon receiving Message 2, A has

the belief bA,t2 = �〈...NAA〉�. To achieve the belief bA,t2 = �〈...NAB〉�,
according to association rule A6(g), A should have the expectation belief
BA,t1(≺ {NA, A,B}), hence according to expectation rule A2(c), Message 1
could be revised to

Message 1 A→ B : {...A,NA...}KB

So we have the event e1
A : +{...A,NA...}KB , then A has the belief bA,t2 =

�〈...NAB〉�. According to the event definition of 8.1 (4), there exists event
−{...NA, NB...}KA . Then, according to fragment rule A1(c) and association
rule A6(h), A has the belief bA,t2 = �〈11NBAB〉�. Hence, upon receiving Mes-
sage 2, A has achieved the security goals of the Needham-Schroeder protocol
in this step by the above message exchanges.
2) For principal B

According to fragment rule A1(g), for B to achieve the fragment belief
BB,t2(∼ {...NA, NB...}KA), B should have the belief BB,t2(〈...1NBB〉) at
step 2, hence Message 2 could be revised to

Message 2 B → A : {...B,NA, NB...}KA

So we have the event e1′
B : +{...B,NB...}KA . From this event e1′

B : +{...B,
NB...}KA , according to association rule A6(f), upon sending Message 2, B
has the belief BB,t2(〈...NBB〉). Hence, according to fragment rule A1(g), B
has the fragment belief BB,t2(∼ {...NA, NB...}KA). Upon sending Message 2,
according to expectation rule A2(c), B has the belief BB,t2(≺ {NB, B,A}).
Upon receiving Message 3, according to association rule A6(g), B has the
belief bB,t3 = (〈...NBA〉). Then B has the belief bB,t3 = (〈11NBAB〉). Ac-
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cording to association rule A6(h), B has the belief bB,t3 = (〈11NAAB〉).
Hence, upon receiving Message 3, B has achieved the security goals of the
Needham-Schroeder protocol in this step by the above message exchanges.

Up to now, we have gotten the constructed Needham-Schroeder protocol:
Message 1 A→ B : {...A,NA...}KB

Message 2 B → A : {...B,NA, NB...}KA

Message 3 A→ B : {...NB...}KB

As we have seen, the constructed key establishment protocol in the model
achieves the lower bounds of three messages and three rounds. Note that
although Gong’s nonce-based protocols without handshakes achieve lower
bounds of two messages and two rounds[23], they are indeed not MK-secure
and there exists denial of service attacks. Three messages and three rounds
are lower bounds proven for nonce-based public-key protocols, which has been
proven in Subsection 8.3.3.

In this section, we have exemplified the usability and the efficiency of the
belief multiset design model for designing cryptographic protocols, and how
the detailed security goals are achieved step by step. This stepwise method
makes it possible for protocol designers to select efficient solutions to cater
to various security requirements, such as unilateral authentication secure,
mutual authentication secure or session key secure. Furthermore, we indicate
that the developed key establishment protocol has achieved SK-Secure with
lower bounds.
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9 Automated Analysis of Cryptographic
Protocols Based on Trusted Freshness

Abstract Logics can be systematically applied to reasoning about
the working of protocols. However, the process of applying and reap-
plying the inference rules is often tedious and error-prone when carried
out manually, while automation method will improve this problem. An
automated logic-based analysis tool based on the freshness principle
is introduced and developed, which uses the belief multiset formalism
to analyze the security of cryptographic protocols.

The freshness principle presented in Chapter 4 has proved to be an effi-
cient and easy idea in analyzing the security of cryptographic protocols from
its capacity in distinguishing whether a message is fresh or not based on al-
ready trusted freshness identifier. The inherent appeal in using modal logic
to instance the freshness principle stems from logic’s simplicity and effective-
ness for analyzing cryptographic protocols[1–4]. The modal logic of security
analysis based on trusted freshness, the belief multiset formalism, has been
presented in Chapter 7. Logic can be systematically applied to reasoning
about the working of protocols, often helping to reveal missing assumptions,
deficiencies or redundancies. This can then lead to the protocol, the assump-
tions or the original goals being re-evaluated, after which the inference rules
can be reapplied to determining whether the goals are attainable after these
modifications have been made. However, the process of applying and reap-
plying the inference rules is often tedious and error-prone when carried out
manually. Another problem is that protocol has become so advanced and
complex that we often cannot perform certain security analysis by hand, and
we may accidentally miss conclusions drawn from inference rules, the fresh-
ness principle or the informal principles based on trusted freshness. Hence,
specialized tool support for formal methods can significantly aid protocol
engineers in creating and implementing cryptographic protocols which do
not leak information, do achieve security goals and are immune to replay
attacks[5].

In this chapter, we will give an automated logic-based analysis tool based
on the freshness principle (see Chapter 4), and this Prolog-based analyzer
uses the belief multiset formalism (see Chapter 7) to analyze protocols and
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it is developed mainly based on the concepts introduced during the SPEAR
II Framework[5, 6].

9.1 Previously known methods for automated analysis

The cryptographic protocol automated analysis tools are useful for keeping
track of whether or not a cryptographic protocol is secure or not.

9.1.1 Automated analysis tool based on logic

The symbolic manipulation correctness analysis approaches can greatly sim-
plify the analysis of protocols, which consist of theoretic computer scientists
in formal method area, and the security properties are expressed as a set
of abstract symbols which can be manipulated, sometimes by a formal logic
system, sometimes by an mechanical tool called a theorem prover, toward a
YES/NO result[7].

SPEAR I, the Security Protocol Engineering and Analysis Resource[8],
was developed by J.P. Bekmann, P. de Goede and A. Hutchison in 1997 to
aid in the design and analysis of cryptographic protocols. The two primary
goals of SPEAR I are to enable secure and efficient protocol design and to
support the generation of protocol source code. SPEAR I offers developers
of cryptographic protocols an environment in which security protocols are
designed, analyzed and generated. Protocols are specified using a graphical
user interface in the style of Event Trace diagrams and the security analysis
based on the BAN logic[9] is facilitated.

SPEAR II, the Security Protocol Engineering and Analysis Resource II[6],
is a protocol engineering tool built on the foundation of previous experience
garnered during the SPEAR I project. The goal of the SPEAR II tool is to
facilitate cryptographic protocol engineering and to aid users in distilling the
critical issues during an engineering session by presenting them with an ap-
propriate level of detail and guiding them as much as possible. The SPEAR
II tool consists of four components that have been integrated into one con-
sistent and unified graphical interface: a protocol specification environment
(GYPSIE), a GNY statement construction interface (Visual GNY), a Prolog-
based GNY analysis engine (GYNGER) and a message rounds calculator.
GYNGER is a Prolog-based analyzer that performs automated analysis of
protocols by using the GNY modal logic. Recall that the GNY logic could
find the reflection replay attack (Suppose the message sender could recognize
the message sent by itself), but it is hard for the GNY logic to find the trans-
fer replay attacks and the direct replay attacks. The analysis engine employs
a forward chaining approach to mechanize the tedious application of GNY in-
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ference rules, allowing all derivable GNY statements to be generated quickly,
accurately and efficiently. To conduct an analysis with GYNGER a protocol
engineer needs to specify a protocol’s messages, initial assumptions and tar-
get goals in a Prolog-style GNY syntax. The GNY rule set is then imported
and employed in the analysis, after which a proof is generated in an English-
style GNY syntax for every successful goal that was specified. Visual GNY
functions as a user-friendly interface to the GYNGER analyzer. SPEAR II
provides a graphically based protocol security analysis environment, and it
can find the security flaws in a lot of authentication protocols. The idea of
SPEAR II to implement GNY logic could be referenced for automation of
protocol security analysis based on the logic – belief multiset formalism.

9.1.2 Automated analysis tool based on model checking

9.1.2.1 FDR tool

Failures Divergences Refinement (FDR)[10–12] is a model checker tool that
is tailored to check CSP processes for refinement relations, where CSP stands
for Communication Sequential Process[13]. CSP is particularly suitable for
modeling and describing the behavior of concurrency and communication
systems, and this feature has inspired some researchers for its using for for-
mal analysis of authentication protocols. FDR models a complex system,
such as an authentication protocol, into a (finite) state system and the prop-
erties of a state system can be expressed by some state satisfaction relations.
FDR allows the refinement relation to be checked mechanically for finite
state processes and it can be used to clarify whether or not certain proper-
ties of a complex system will be satisfied. In 1995, Lowe applied the FDR
model checker and successfully uncovered a previously unknown error in the
Needham-Schroeder Public-key Authentication Protocol, where this flaw has
not been discovered for seventeen years since the publication of this proto-
col in 1978[11]. In FDR, a principal (it may be an attacker) in a protocol is
considered as a concurrent CSP process, and a variety of attacks (such as
eavesdropping, imitation or replaying) could be applied by an attacker pro-
cess. The security of a protocol is modeled as the sequences of principal’s
events, and the FDR is used to check whether or not certain sequence of a
principal’s events is satisfied. The FDR model checker for CSP has achieved
the success in analyzing the Needham-Schroeder Public-key Authentication
Protocol.

9.1.2.2 NRL protocol analyzer

The NRL protocol analyzer[14] is a PROLOG-based protocol model-
checking tool developed by Meadows, where “NRL” stands for Naval Re-
search Laboratory of the United States of America. The NRL Protocol Ana-
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lyzer is also based on the Dolev and Yao threat model of communications[15].
In Dolev-Yao model, an adversary could observe all message traffic over the
network, intercept, read, modify or destroy messages, perform transformation
operations on the intercepted messages (such as encryption or decryption, as
long as he has in his possession of the correct keys), and send his messages
to other principals by masquerading as some principals. Since an adversary’s
computational capability is polynomially bounded in the Dolev-Yao model,
after an execution of the protocol, the adversary could not learn any infor-
mation of the secret messages or cryptographic keys for which a protocol is
meant to protect.

In Model-checking techniques the analysis of the behavior of a system
usually involves a state space exploration to check whether or not certain
properties will be satisfied. The main algorithm used in the NRL Protocol
Analyzer settles a state reachability problem. It is well known that such
algorithms are not guaranteed to terminate. Therefore a limit is placed on
the number of recursive calls allowed for some of the checking routines. Using
the tool seems to require quite a high level of user expertise in accurately
coding the transition rules for a protocol and in specifying insecure state.
The tool also has an inherent limitation on being particularly applicable to
protocols for key establishment[7].

The NRL protocol analyzer has been used to analyze a number of authen-
tication protocols and has successfully found or demonstrated known flaws
in some of them. These protocols include the Needham-Schroeder Public-key
Authentication Protocol[16] (for the analysis of this protocol Meadows pro-
vided a comparison between the analysis using the NRL protocol analyzer
and Lowe’s analysis using the model checker FDR in [11]), the Internet Key
Exchange protocol (IKE, a reflection attack is found in the signature-based
“Phase 2” exchange protocol)[17,18] and the Secure Electronic Transaction
protocols (SET)[19].

9.1.2.3 The Murϕ

Murϕ[20] is a protocol verification tool that has been successfully applied to
several industrial protocols, especially in the domains of multiprocessor cache
coherence protocols and multiprocessor memory models. The Murϕ language
is a simple high-level language for describing nondeterministic finite-state ma-
chines. To use Murϕ for verification, one has to model the protocol in the
Murϕ language and augment this model with a specification of the desired
properties. The state of the model consists of the values of all global variables.
The transition from one state to another is performed by rules. The desired
properties of a protocol can be specified in Murϕ by invariants, which are
Boolean conditions that have to be true in every reachable state. The Murϕ
system automatically checks, by explicit state enumeration, if all reachable
states of the model satisfy the given specification. Most Murϕ models are
nondeterministic since states typically allow execution of more than one ac-
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tion. Murϕ can only guarantee correctness of the down-scaled version of the
protocol, but not correctness of the general protocol. If a state is reached in
which some invariant is violated, Murϕ prints an error trace – a sequence of
states from the start state to the state exhibiting the problem. Murϕ proves
that there exist attacks on some known protocols such as Needham-Schroeder
Public-key Authentication Protocol, TMN protocol and a simplified version
of Kerberos V5[21–23].

9.1.2.4 Interrogator

The Interrogator[24] is a Prolog program developed by Jonathan Millen,
Sidney Clark and Sheryl Freedman in 1985. Using the Interrogator, a pro-
tocol engineer can search for security vulnerabilities in network protocols
for automatic cryptographic key distribution. Given a formal specification of
a protocol, the Interrogator searches for message modification attacks that
defeat the protocol objective and reveal secret information. The current ver-
sion of the Interrogator assumes that the adversary is trying to learn pri-
vate information, and the only way in which he can get that information is
to read a message in which it is transmitted as a data item. A black-box
view of the Interrogator is simple: for input it receives a protocol specifi-
cation and a target data item; its output is a message history, consistent
with the protocol specification, showing how the adversary could obtain the
data item, if this is possible. The Interrogator and its associated graphical
interface were implemented using LM-Prolog on an LISP machine. The user
interface takes advantage of the windowing, graphics and mouse capabilities
of the LISP machine. Within the Interrogator, protocols are modeled using
a state-transition approach, principals being represented as communicating
finite-state machines. This method allows a wider class of protocols to be
supported and permits variations in message sequencing. The Interrogator
interface has two main components: a preprocessor that converts textual
protocol specifications into an internal Prolog form, and a display interface
for graphical user interaction. To conduct an analysis, a protocol is specified
in a textual format, edited with normal LISP machine facilities, parsed and
loaded. The interactive graphical display is then used to establish penetration
objectives. If a flaw is found, it is displayed in the form of a message sequence,
showing messages before and after modification by an adversary. The Inter-
rogator has been developed to the extent where it has succeeded in finding
a multiple-modification penetration of the Needham-Schroeder protocol and
some others with known vulnerabilities. Given a protocol specification and a
target component to uncover, the Interrogator searches for a scenario involv-
ing adversary actions which reveal the target. The history of messages sent
and modified is displayed, allowing the user to examine how the attack was
carried out and evaluate it for feasibility and possible counter-measures.
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9.1.3 Automated analysis tool based on theorem proving

SyMP[25] stands for “Symbolic Model Prover” and it is a general purpose
prover generator for generating special purpose theorem provers in various ap-
plication domains. SyMP is proposed by S. Berezin and A. Groce of Carnegie
Mellon University. The core of the tool is a generic prover which is connected
to several proof system modules. Each such module defines an input spec-
ification language, a proof system, and a rule application mechanism, and
the generic prover provides all the proof management and an interactive user
interface. Note that the SyMP prover does not have a built-in model checker

SyMP has two proof systems: the default proof system, and Athena.
The default proof system implements a general framework for combining
model checking and theorem proving, and has a hardware-oriented specifica-
tion language. The main purpose of the language is to provide a convenient
environment for fast and clean prototyping of new (mostly hardware) verifica-
tion methodologies based on model checking with some elements of theorem
proving. It can also be used as an intermediate representation in translation
between other specification languages.

The Athena proof system is specialized in verifying security protocols,
uses Strand Spaces[26] as the basis for the protocol representation and is
based on the Athena[27] technique developed by D. Song. Each protocol in
this framework is a set of roles, and each role is a sequence of actions where
actions are separated by an optional semicolon. Two built-in actions, “send”
and “receive”, send and receive messages to and from the environment. An
instance of a role with concrete parameters defines a strand, or a particular
run of a particular principal in the protocol. Properties are specified in a
propositional logic that specifies which strands must or must not appear in
any protocol execution.

9.1.4 CAPSL specification language

CAPSL, the Common Authentication Protocol Specification Language[28], is
a high-level language intended to support the analysis of cryptographic pro-
tocols using formal methods. The development of CAPSL started in 1996
and is being managed by Jonathan Millen. Its goal is to permit a protocol to
be specified once in a form that is usable as an interface to any type of anal-
ysis tool or technique, given appropriate translation software. The CAPSL
Intermediate Language (CIL) acts as an interface to analysis tools, allowing
protocols specified in CAPSL to be examined by these tools. CIL is designed
to make the translation to tool-specific representations as easy as possible. A
CAPSL specification is parsed and translated into CIL, and at that point a
different translator can convert from CIL to whatever form required for each
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tool. The translator from CAPSL to CIL can deal with the universal aspects
of input language processing, such as parsing, type checking, and unraveling
a message-list protocol description into the underlying separate processes.

Messages in cryptographic authentication protocols are constructed us-
ing cryptographic operators and functions. In principle, all functions used in
CAPSL, and the data types they operate on, must be specified axiomatically
with abstract data type specifications, called typespecs. Several commonly
used data types and operators are defined in a standard prelude. Type specifi-
cations in this prelude are considered built-in, and do not need to be supplied
by a designer or imported explicitly. When a protocol is being analyzed or
simulated, the analyst may have to specify which principals are to be run.
Other run-specific information, such as the initial knowledge of the attacker,
may also have to be supplied. A CAPSL environment contains specifications
detailing this kind of information. Environment specifications, like type spec-
ifications, are separated from the definition of a protocol. The content and
interpretation of an environment specification depend on the analysis tool.
However, CAPSL does provide syntax, keywords and organization so that dif-
ferent tools can take advantage of the CAPSL parser. Declarations to name
principals and other constants can be placed in an environment, and sessions
can be defined. More than one session may be declared and these sessions
will run concurrently by default.

9.2 Automated cryptographic protocol analysis based on
trusted freshness

As we have seen, conducting an analysis manually is often tedious, error-
prone and not very productive in the majority of situations. To facilitate the
effective use and application of a logic system, it is needed to make the logic
analysis automated and the user interface graphical.

In this section, we put forward a cryptographic protocol analysis ana-
lyzer based on the belief multiset formalism logic (for short, the BMF logic),
the BMF analyzer, which is also a completely graphic-based environment. A
benefit of the BMF analyzer is that it would make protocol analysis oper-
ations accessible to a wider range of individuals, since it would remove the
requirement that protocol designers need to be experts in a large number of
specialized engineering techniques.

9.2.1 Analyzer frame based on belief multiset formalism

The BMF analyzer consists of 5 parts: visual BMF, BMF analyze engine,
BMF result view, BMF rule engine and BMF attack engine, and it involves
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operations on the database of facts, goals, rules and attacks. The parts BMF
analyze engine, BMF rule engine and BMF attack engine are the core of
the BMF analyzer, while the parts visual BMF and BMF result view are the
user-friendly interfaces to the BMF analyzer. The frame of the BMF analyzer
illustrates in Fig. 9.1.

Fig. 9.1 The frame of the BMF analyzer.

1. Visual BMF

The visual BMF functions as a user-friendly interface to the BMF an-
alyzer, and the input components include protocol messages, premises and
goals. These components are constructed to BMF statements necessary for
analysis via the visual BMF interface, and then passed on to BMF ana-
lyze engine. The protocol message import interface supports the input of the
messages including the principals, nonce etc., supports the chosen of cryp-
tographic schemes, and the construction of the BMF language component
and the terms. From the view point of a participant in a protocol run, the
terms owned by each principal are completely different. The premise import
interface supports the input of the initial security assumptions of the public-
key and private key in public-key case, the long-term key in the shared-key
case, and also principal which has generated the freshness identifier used in
the protocol messages. The goal import interface supports the security goal
configuration of an input protocol, such as UA-secure, MA-secure, UK-secure
MK-secure.

2. BMF analyze engine

The BMF analyze engine supports the formal presentations of terms, ini-
tial assumptions, security goals, inference rules, and it functions as a protocol
security analyzer that generates all of the BMF beliefs and possessions that
can result from the systematic application of the inference rules to a set of
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initial assumptions and message steps. The BMF analyze engine mainly in-
cludes the database of premises, the database of goals, the database of rules,
and the analyzing engine based on the trusted freshness.

3. BMF result view

The BMF result view subsystem supports the presentations of the secu-
rity analysis result of a cryptographic protocol based on the belief multiset
formalism.

4. BMF rule engine

The BMF rule engine is an interface of a new belief multiset formalism
inference rule input. Based on the freshness principle, the belief multiset
formalism inference rules could be extended to meet variety applications in
the real world, such as new liveness rules, new confidential rules, new fresh-
ness rules, new association rules, also other new rules about non-repudiation,
fairness etc. A new rule could be inputted into the BMF analyzer via a user-
friendly interface, and then it is converted to a standard format rule with a
series of operations via BMF analyze engine, and then it is passed on to the
rules database.

5. BMF attack engine

Recall that the security analysis of a protocol based on the belief multiset
formalism can either establish the correctness of the protocol when it is in fact
correct, or identify the absence of the security properties and the structure
to construct attacks based on the absence. The BMF attack engine supports
the presentations of attacks in the belief multiset formalism, and supports
the construction of attacks from the absence of the security properties.

9.2.2 Comparision of two initial implementations of BMF

The focus of the automation of a cryptographic protocol analyzer is to give a
correct analysis result, and to remove as much of the complexity and tedium
surrounding protocol analyzing as possible and to provide a user-friendly, ef-
fective and powerful environment that can be used by the researchers. The
automation of the belief multiset formalism based on the freshness principle
could be implemented with the object-oriented development language like
C#, C++, Java, etc.; or with artificial intelligence language like Prolog. To
determine which is more suitable for the implementation of the belief multiset
formalism, under the prerequisite to ensure the correctness of the analysis re-
sults, we compare the efficiency, usability of the automation tools developed
under the object-oriented development language C# and the Prolog-based
implementation language. The initial implementations of these two develop-
ment environments mainly focus on the visual BMF part, the BMF analyze
engine part and the BMF result view part of the BMF analyzer.
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BMF analyzer 1[29] is developed using the object-oriented development
language C#. The corresponding classes based on the belief multiset for-
malism include the Principal Class, FreshnessComponent Class, Expectation
Class, Fragment Class, Timestamp Class, BeliefMultisetsPresentation class,
Key class (AsymmetricKey Class, SymmetricKey Class, SharedKey Class),
Belief Class (PrincipalBelief Class, MarkBelief Class, KeyBelief Class, Key-
Known Class), as illustrated in Fig. 9.2.

Fig. 9.2 Class illustrations of BMF analyzer 1.

The configuration and the analysis results, which are in the XML format,
are stored in the database of facts and the database of goals, and are provided
to the user with a completely graphic-based environment for message input
and result show, as illustrated in Fig. 9.3.

The BMF analyze engine in the BMF analyzer 1 supports optimized rule
search, rule class operations, rule search method triggered by new generated
beliefs, remove of plenty of useless intermediate results. Applying the strat-
egy model and abstract factory model to define the database of rules, the
belief multiset formalism inference rules could be modeled, and the opera-
tions on the rules are independent of the custom applying the database of
rules. E.g., for associate class (shared key subclass, shared key with TTP
subclass, private key subclass), the operation of the class implements the
inference function of rules.

The BMF analyzer 1 is implemented under the object-oriented develop-
ment language C#. The implementation under the object-oriented develop-
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Fig. 9.3 User interface of BMF analyzer 1.

ment environment is model-based, hence it is clear and convenient to develop
and debug this analyzer. However, it is difficult to add new classes and to
extend the belief multiset formalism rules in the analyzer since they are em-
bedded within the analyzer.

The BMF analyzer 2[30] is implemented based on the artificial intelli-
gence language Prolog that is simple and reliant as an implementation lan-
guage. The BMF analyzer 2 is similar to the GYNGER in the SPEAR II
Framework[6]. The initial BMF analyzer 2 includes three parts: the BMF
statement construction interface (visual BMF), a Prolog-based BMF analyze
engine (BMFGER) and the result presentation interface (BMF result view).
Similar to the GNY analysis engine GYNGER in SPEAR II, the Prolog-
based analysis engine BMFGER relies on a forward-chaining inference en-
gine to generate all of the BMF beliefs that can result from the systematic
application of the inference rules to a set of initial assumptions and message
steps. The visual BMF functions as a user-friendly interface for the input
of the protocol, the initial assumptions and the goals. The BMF result view
functions as a user-friendly interface for the output of the analysis results
of a specific protocol. The initial assumptions goals and analysis results are
presented as the belief multiset formalism statements in the Prolog-style, and
the belief multiset formalism statements are represented using a tree-like ap-
proach. The messages and initial assumptions pertaining to the protocol to
be analyzed are specified in the form of fact/3 predicates, and the target goals
are specified in the form of goal/2 predicates. The BMF result view converts
the analysis results in the Prolog-style into an English-style BMF syntax for
every successful goal that was specified, as illustrated in Fig. 9.4.

Note that the rules, the protocol messages in the BMF analyzer 2 are all
presented in the Prolog style, hence the database of rules could be stored
independently from the BMF analyzer 2, so we could extend the belief multi-
set rules and add these rules to the BMF analyze engine conveniently in the
future, even by a text editor.
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Fig. 9.4 User interface of BMF analyzer 2.

After taking security analysis test of cryptographic protocols under the
above two environments, we know that the cryptographic protocol analysis
result could be given definitely under both implementations of the BMF
analyzers, and the time for analyzing under both cases is short. However,
the BMF analyzer 1 which is implemented with embedded belief multiset
formalism rules is more difficult to extend than the BMF analyzer 2 which
has an independent rule database from the analyzer.

9.2.3 Implementation of the belief multiset formalism

The focus of the BMF analyzer is to provide a user-friendly, effective and
powerful environment that can be used to facilitate the analysis of the existing
cryptographic protocols and the creation of secure cryptographic protocols
based on the notion of the trusted freshness.

From the comparison in Subsection 2, we decide to develop the BMF
analyzer mainly on the BMF analyzer 2, that is, using Prolog to develop the
BMF analyze engine and using Java source code generation to develop the
visual BMF and the BMF result view.

Prolog is a general purpose logic programming language associated with
artificial intelligence and computational linguistics, and it remains among
the most popular such languages today, with many free and commercial im-
plementations available. The Prolog program logic is expressed in terms of
relations, represented as facts and rules, and a computation is initiated by
running a query over these relations. Prolog is well suited for implementing a
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BMF analyzer as it is straight forward to map all of the BMF constructs into
suitable Prolog counterparts which can be easily manipulated and queried.

The BMF analyzer based on Prolog helps the protocol engineers to derive
all possible BMF statements applicable to a given protocol and to determine
whether a given protocol achieves its design objectives.

Java is an object-orientated technique that is employed in order to facil-
itate expansion and understanding of the source code. It is clear and conve-
nient to develop and debug user-friendly interfaces like the visual BMF and
the BMF result view.

The BMF analyzer is a graphically based application that incorporates
cryptographic protocol modeling, automated BMF-based protocol security
analysis and the analysis results presentation. The BMF analyzer is imple-
mented similarly to the SPEAR II Framework except the analysis logic is the
belief multiset formalism but GNY, and it incorporates a number of enhance-
ments. Because of the architectural and security analysis logic differences be-
tween the SPEAR II and the BMF analyzer, the Java code generation and
scenario simulation features are not the same in the BMF analyzer imple-
mentation.

To conduct an analysis with the BMF analyzer, a protocol engineer needs
to specify a protocol’s messages, initial assumptions and target goals in a
Prolog-style BMF syntax via the visual BMF interface. The Prolog-based
BMF rules are then imported and employed in the analysis, where a forward-
chaining inference engine generates all of the BMF beliefs that can result from
the systematic application of the inference rules to the set of initial assump-
tions, message steps and the cryptographic goals. A proof is then generated
in an English-style syntax for every successful goal that was specified. This
English-style proof lists all of the statements involved in the derivation of the
successful goal, indicating the postulates that were used and the premises
which were employed in the postulate’s application.

The BMF analyzer is extensible, it allows extended security analysis of
a protocol such as non-repudiation analysis for future use, and it also al-
lows further engineering and design techniques to be incorporated, since the
inference rules are stored separately from the BMF analyzer itself.

For interest of concision, some atoms and the predicates in the BMF
analyzer are only briefly introduced. For strict or inquisitive readers, please
refer to [5, 6] or contact us for detailed information.

9.2.3.1 Facts, goals and rules

In belief multiset formalism, the relations in Prolog include: assumptions,
terms, medium results, goals and rules. These important concepts are repre-
sented as Prolog-style predications, and stored in the database of facts, the
database of goals and the database of rules respectively.

The Prolog-style predications are formulae, statements, etc. Formulae are
the components which are used to construct protocol messages and typically
contain constants such as principal names, nonce, shared keys, shared parts
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of keys, etc. The statements will be used to specify the initial and target
beliefs and possessions of principals as well as extensions to be appended to
the message components.

Facts

The idealized protocol messages, initial assumptions, terms and medium
results are represented as fact/3, and are all stored as instances of fact/3
in the database of facts. Before conducting an automated BMF-based anal-
ysis, the messages and initial assumptions pertaining to the protocol to be
analyzed must be specified in a Prolog file in the form of fact/3 predicates.

The predicate fact/3, which defines an inference step, appears as follows:

fact(Index,Statement, Reason(PremiseList,Rule))

The integer Index is used to reference instances of this fact/3, while the
argument Statement is bound to a derived statement, including the idealized
protocol messages, initial assumptions, terms and medium results. The last
argument Reason(PremiseList, Rule) is the reason to derive this fact/3, the
parameter PremiseList is a list containing the indices of the premises that
were used in deriving this Statement through the application of Rule, and
the parameter Rule represented by characters enclosed in single quotes is the
applied rule to derive this fact/3. If the statement represents terms or initial
assumptions, the PremiseList would be empty and Rule would be either
“Term” or “Assumption”. For example, fact(Index, Statement, Reason([],
“Term”)) and fact(Index, Statement, Reason([], “Assumption”)).

There are two important predicates for representing “send” and “receive”
terms:

send(Identity,Statement, Step)

and
receive(Identity,Statement, Step)

which means that the principal ‘Identity’ has sent or received the term ‘State-
ment ’ in this step ‘Step’ respectively, where the integer ‘Step’ is used to
reference the time point to send or receive this term.

New added fact/3 involved in the analysis process must be extracted and
sorted in ascending order by their indices, and any duplicates in this list must
also be removed. The predicate getMaxFactIndex/1 collects all of the indices
within fact/3 into a list and then finds the maximum in this list, and the
maximum index is returned in the argument MaxIndex.

Goals

In order to perform a protocol security analysis based on the belief mul-
tiset formalism, a designer must know what goals the protocol under inspec-
tion is expected to achieve. The security analysis will essentially involve a
researcher determining the class of the protocol that he wishes to analyze,
and then ensuring that the expected goals are fulfilled. For an authentication
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protocol, one should verify the identities of participants and then ensures
that they agree on an encryption key for later use.

The protocol goals are represented in a similar way to fact/3 with the
goal/2 predicate and stored in the database of goals. The goal/2 predicate
appears as follows:

goal(Index,Statement)

The integer Index is used to reference instances of this goal/2, and the argu-
ment Statement is bound to the anticipated security objectives (the security
properties in the belief multisets, including the beliefs about principals and
the beliefs about a freshness identifier). A belief is presented as the predicate:

Belief (Identity,Trust)

it means that the principal Identity believes the Trust. Any target goals must
be specified in the same file by using goal/2 predicates.

Rules

The BMF inference rules are all specified through the use of a rules/0
predicate and stored in the database of rules. For each BMF rule, there is at
least one instance of the rules/0 predicates, some requiring more because of
multiple conclusions. The basic pattern followed in a typical instance of the
rules/0 predicate is to first check that all of the premises of the respective
BMF rule are true and then to assert the conclusion in the Prolog database
if it has not yet been asserted. After asserting the conclusion, the added-
Facts atom is also asserted in the database to indicate that a conclusion
was derived during the current cycle. If addedFacts has been asserted, then
all the remaining instances are retracted from the database, and the done/0
predicate fails. Otherwise, if addedFacts was not asserted then done/0 would
succeed and forward-chaining would not commence. The done/0 predicate
checks whether any new beliefs or possessions have been added to the Prolog
database in the current cycle.

Example 9.1 Recall that the fragment rule A1(a) in the belief multiset
formalism is:

A1(a) −{...N,N ′...}KPiPj
∧BPi,t(〈11KPiPjPiPj〉) ∧BPi,t(〈...1N...〉)

⇒ BPi,t(∼ {...N,N ′...}KPiPj
)

The code for the rules/0 predicate of the Fragment Rule 1 in the BMF
analyzer appears below:
rules :-

fact(PremiseIndex1, told(P,encrypt(List, shared(K))), ),

is list(List),

length(List, LengthOfList),

LengthOfList > 1,

fact(PremiseIndex2, believes(P, secret(shared(K))), ),

fact(PremiseIndex3, believes(P,fresh(shared(K))), ),

fact(PremiseIndex4, believes(P, associate(shared(K),P, Q)), ),



356 9 Automated Analysis of Cryptographic Protocols Based on Trusted Freshness

listMemberIsFresh(P, List, PremiseIndex5),

Conclusion = believes(P, bound(List)),

not(fact( ,Conclusion, )),

getMaxFactIndex(MaxIndex),NewIndex is MaxIndex + 1,

PremiseIndices = [PremiseIndex1, PremiseIndex2, PremiseIndex3,

PremiseIndex4, PremiseIndex5],

asserta(fact(NewIndex,Conclusion,reason(PremiseIndices,’Fragment1’))),

asserta(addedFacts).

9.2.3.2 Visual BMF

The visual BMF provides graphical interface for the import of the protocol
messages, initial assumptions, and security goals.

The protocol messages

Similar to SPEAR II, the visual BMF environment represents BMF state-
ments using a tree-like structure combined with pop-up menus to allow easy
interaction and to produce a meaningful representation of BMF information.

All statements of the same type form part of the same tree structure,
a heterogeneous set of BMF statements are represented by a collection of
separate trees. These representation techniques help users to easily create
syntactically correct BMF statements without the need to be acquainted
with the BMF syntax and notation. These structured trees representing the
protocol messages could be exported and read as English-style text.

With a graphical interface, users have to remember few details about a
system’s structure and functionality, since this information is available within
the interface. Furthermore, to use the visual BMF environment, users do not
need to be familiar with the semantics and concepts underlying the belief
multiset logic, however, they’d better be familiar with the logic to use it
effectively.

The protocol’s messages are specified in an optimum order as follows:
the principals involved in the protocol, the role selection of each principal
(sender, receiver and the trusted freshness), the cryptographic mechanism
in the protocol, the actual communication between the principals etc. Once
the protocol specification is complete, the protocol will be translated into
graphical display as shown in Fig. 9.5.

Fig. 9.5 View of a cryptographic protocol in the BMF analyzer.
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Here, Alice means the principal A, Bob means the principal B.

The initial assumptions

The initial assumptions, also called the initial BMF beliefs, should be
declared at the start of the protocol analysis, and any amendments could be
made at a later stage. If a principal has generated a freshness identifier used
in the protocol messages, the belief about the freshness of this identifier by
the generator is also an initial assumption.

Once the protocol specification is complete, an analyzer can definitely
make recommendations as to what the initial conditions for an analysis should
be in certain cases, that is, the initial assumptions could be derived directly
from the import protocol messages, as shown in Fig. 9.6.

Fig. 9.6 The premise set of BMF analysis.
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The cipherFlag is the flag of the cryptographic mechanism applied in this
protocol:
— for cipherFlag=1, the cryptographic mechanism applied is Public-key

scheme;
— for cipherFlag=2, the cryptographic mechanism applied is shared-key

scheme with the trusted third party;
— for cipherFlag=3, the cryptographic mechanism applied is shared-key

scheme without the trusted third party;
— for cipherFlag=3, the cryptographic mechanism applied is keyed hash

scheme.

The extraction of terms

In general, the extraction of terms could be done meanwhile with the pro-
tocol message specification. If there exist nests of the cryptographic one-way
transformations, the condition of repetition of the terms should be prudently
considered. If the maximum terms of different messages are the same, there
may exist the replay attack, hence the designed protocol should be recon-
structed, as shown in Fig. 9.7 for the extraction of the terms, where maxStep
is the largest number of the protocol message steps.

The security goals

The goal import interface supports the security goal configuration of an
input protocol, such as UA-secure, MA-secure, UK-secure and MK-secure.
The target goals are specified in the form of goal/2 predicates, that is Be-
lief (Identity, Trust). The Trust beliefs are predicates about the security prop-
erties, including Existing(Identity), Secret(Identifier), Fresh(Identifier) and
Associate(Identifier, Identity). The predicate Existing(Identity) means that
a principal has the trust about the lively communication of this Identity prin-
cipal. The predicate Secret(Identifier) means that a principal has the trust
about the security of this Identifier. The predicate Fresh(Identifier) means
that a principal has the trust that the freshness Identifier is a new generated
TVP for this protocol. The predicate Associate(Identifier, Identity) means
that a principal has the trust that the freshness Identifier is a TVP for a
protocol related with the principal Identity.

Example 9.2 Here is an illustration of the security goals of a protocol in
the BMF analyzer. Suppose the two communication principals are A and B,
the new session key they want to establish is kAB .

As for a UA-secure authentication protocol, if A wants to authenticate the
principal B, then A has the security goal to achieve: Belief (A, Existing(B)).

As for an MA-secure authentication protocol, if A and B want to authen-
ticate each other, the security goals to achieve are Belief (A, Existing(B))
and Belief (B, Existing(A)).

As for a UK-secure authentication protocol, the security goals to achieve
are Belief (A, Existing(B)), Belief (A, Secret(kAB)), Belief (A, Fresh(kAB)),
Belief (A, Associate(kAB, A)) and Belief (A, Associate(kAB , B)).
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Fig. 9.7 Abstraction of BMF term generation.

As for an MK-secure authentication protocol, the security goals to achieve
for the principal A are Belief (A, Existing(B)), Belief (A, Secret(kAB)), Be-
lief (A, Fresh(kAB)), Belief (A, Associate(kAB , A)) and Belief (A, Associate
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(kAB , B)); the security goals to achieve for the principal B are Belief (B,
Existing(B)), Belief (B, Secret(kAB)), Belief (B, Fresh(kAB)), Belief (B, As-
sociate(kAB , A)) and Belief (B, Associate(kAB , B)).

9.2.3.3 BMF analyze engine

Principals, messages, terms and initial assumptions specified in visual
BMF are exported to BMF analyze engine in Prolog-style statements for
analysis, and all of the BMF statements derived during an analysis, as well
as the proofs for successful goals, are stored in the database of facts and are
accessible through the result view pane.

Before conducting an automated BMF-based analysis, the messages, terms
and initial assumptions pertaining to the protocol to be analyzed have been
specified in the form of fact/3 predicates in the database of facts. Any target
goals have also been specified in the form of goal/2 predicates in the database
of goals.

Similar to the forward-chaining inference engine in SPEAR II, the BMF
analyze engine applies all the inference rules to the set of statements consist-
ing of the protocol messages, initial assumptions and medium results, until
all of the statements which are derivable have been generated. If there ex-
ist new generated fact/2 predicates in the database of facts, the addedFacts
atom is also asserted in the database to indicate that a conclusion was derived
during the current cycle. If addedFacts has been asserted, the BMF analyze
engine applies all the inference rules to the set of the term statements in this
step, until there are not any new generated fact/3 predicates inserted into
the database of facts. Then the analysis results are compared to determine
whether one or more statements describing the goals of a specific protocol
are derivable from a given set of initial assumptions. If the security goals are
met, a proof can be generated for this security goal in the database, showing
all of the steps and inference rules that were required to generate the result.
Results from a BMF analysis conducted by the BMF analyze engine are re-
turned to the BMF result view environment and appropriately displayed in
English-style BMF syntax. A formal proof will then be constructed to show
that a finite number of conclusions in a finite number of steps can be derived
from using the inference rules based on the initial assumptions and messages
of a given protocol.

Figure 9.8 illustrates the analysis procedure of the BMF analyze engine.
In Chapter 4, we have illustrated the security analysis procedure using the

belief multiset formalism. As we have seen, the useful deriving statements,
medium results, are developed through the application of the belief multiset
inference rules manually, so the analysis procedure is relatively simple. While
in the case of automated analysis, the analyzer will generate a lot of medium
results, including not only the useful facts but also many needless medium
results. The key problem to improve the performance of the analyzer is to
discard the needless medium results effectively.
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Fig. 9.8 BMF analyze engine.
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9.2.3.4 BMF result view

The BMF result view provides a graphical result view environment, in-
cluding protocol security analysis results showing the failed and successful
beliefs in English-style BMF syntax, and the English-style proof list of a
successful protocol goal.

The BMF result view ensures that an analysis statement representing in
a Prolog-style formula is converted to an appropriate textual representation.
The fact that the proof is in an English-style syntax makes it more readable
and comprehensible.

This English-style proof lists all of the statements involved in the deriva-
tion of the successful goal, indicating the postulates that are used and the
premises which are employed in the postulates’ application. If a goal fails, a
proof cannot be generated, and then the text ‘FAILED!’ appears instead of
a proof.

9.2.3.5 BMF rule engine

The BMF rule engine provides a graphical environment for the new added
belief multiset formalism inference rule input. As we know, the belief multiset
rules presented in Chapter 4 are for authentication protocols which apply
traditional cryptographic mechanisms, the researchers need to extend the
inference rules used in the BMF analyze engine to meet variety applications
in the real world.

The BMF rule engine includes the following steps to construct a new
inference rule in the BMF analyzer:

1) Give the general rules/0 representation of the rule to be inserted.

rules :-

fact(PremiseIndex1, Statement1ToBeInserted, ),

fact(PremiseIndex2, Statement2ToBeInserted, ),

... ...

Conclusion =ConclusionToBeInserted

not(fact( , Conclusion, )),

getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,

PremiseIndices = [PremiseIndex1, PremiseIndex2, ... ],

asserta(fact(NewIndex, Conclusion, reason(PremiseIndices,

‘RuleNameToBeInserted ’))),

asserta(addedFacts).

2) Convert the new inference rule in the belief multiset formalism into the
inference rule of the BMF analyzer in Prolog-style.

Replace the Statement1ToBeInserted, Statement2ToBeInserted, etc. with
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the conditions of the new inference rule in the belief multiset formalism;
replace the ConclusionToBeInserted with the conclusions of the new inference
rule in the belief multiset formalism; replace the RuleNameToBeInserted with
the new inference rule name.

3) Show the new inference rule to the rule design researcher, and allow
him to improve this rule until the researchers submit this rule to the system.

To ensure that the new generated rule produces the correct results for
different inputs, the rule should be tested individually by specifying all of
the rule premises using fact/3 predicates, running the analyzer, and then
examining the results.

Recall that the belief multiset inference rules are in the style of Prolog
which is a programming language associated with artificial intelligence, and
the rule database is stored independently from the BMF analyzer and it is
dynamically loaded when the security analysis is ongoing. Hence, it is conve-
nient to edit the inference rules outside the system, and the changing could be
applied immediately. That is, besides the insertion of the new inference rule
in the graphical environment of the BMF analyzer, the inference rules could
even be edited, deleted and inserted in a text editor such as the Notepad in
the Windows system. Therefore, the flexibility of the BMF analyzer has been
greatly improved.

9.2.3.6 BMF attack engine

The attack engine supports the construction of attacks from the absence
of the security properties derived from the security analysis results based on
the belief multiset formalism. As we all know, the automation construction
of an attack requires quite a high level of user expertise in a large number
of specialized engineering techniques, while the manually construction of the
attack may seem relatively simple. Here we only give a naive attack engine
model for attack construction based on the trusted freshness approach, as
shown in Fig. 9.9.

1) Indicate the principal to be deceived from the absence of the security
properties of this protocol being analyzed.

2) Construct the first message to cheat the principal whose security prop-
erties about this protocol are not met.

3) Complement other messages to form an instance of the protocol run
with full messages.

4) Find the messages that couldn’t be constructed in this instance. If
any, continue Step 5; if not, terminate this protocol construct procedure, and
this protocol instance is the attack that we want to construct on this flawed
protocol.

5) Start another instance of this flawed protocol in order to generate
the key messages that couldn’t be constructed from the instance in Step
4. Complement other messages to form this interleaved instance with full
messages. Thus, these two interleaved instances, that are the instance in Step
4 and the instance in Step 5, construct the attack on this flawed protocol.
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Fig. 9.9 BMF attack engine.

6) Arrange the order of the messages in the two interleaved instances, and
then terminate this protocol construct procedure.

Let’s review the Needham-Schroeder public-key protocol in Example 1.2.
From the security analysis of the Needham-Schroeder protocol using the be-
lief multiset formalism in Subsection 5, A believes that B is in lively corre-
spondence in this protocol run, and the shared parts of both NA and NB

are secret, fresh, and also associated with the principal A and the principal
B. However, although B believes that A is in lively correspondence in this
protocol run, NB is secret, fresh, and associated with the principal A and
the principal B, but B has not gotten any corroborative evidence that NA is
fresh and is associated with the principal A and the principal B.

Example 9.3 Here is an illustration of the attack construction procedure
of the Needham-Schroeder public-key protocol in the BMF attack engine.
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Here, Alice means the principal A, Bob means the principal B, while Malice
means the adversary I.

1) It is the principal B whose security properties are absent, we need to
construct an attack to cheat B.

2) Construct the first message Message 1 to cheat B.
Message 1 I(A)→ B : {A,NA}KB

3) Complement Message 2 and Message 3 to form an instance of Needham-
Schroeder public-key protocol with full messages.

Message 1 I(A)→ B : {A,NA}KB

Message 2 B → I(A) : {NA, NB}KA

Message 3 I(A)→ B : {NB}KB

4) Message 3 couldn’t be constructed in the above instance since the ad-
versary I impersonating A namely I(A) could not get the freshness identifier
NB.

If the adversary I wants to generate the message {NB}KB , I must know
NB. Since NB appears only in Message 2 and Message 3, while Message 2 is
a one-way transformation sent from the victim B to A and I does not have
the knowledge of the decryption key K−1

A , hence the adversary I could not
get NB from Message 2, hence I could only get NB from Message 3. Note
that Message 3 is encrypted under the receiver’s public-key, so the adversary
I must be the receiver to perform a one-way transformation in order to get
NB from Message 3 using I’s private key K−1

I . Hence, there should exists:
Message 3′ ??→ I : {NB}KI

5) Since NB appears only in Message 2 which is a one-way transformation
sent from the victim B to A, only A could get NB from Message 2, so the
Message 3′ in Step 4 could only be exchanged between the principal A and
the adversary I, that is:

Message 3′ A→ I : {NB}KI

Hence, the new instance to generate the key Message 3′ is between A and
I, and this idea is consistent with the security property that A is in lively
correspondence in this protocol run.

Complement Message 1′ and Message 2′ to form this new instance:
Message 1′ A→ I: {A, ??}KI

Message 2′ I → A: {??, NB}KA

Message 3′ A→ I: {NB}KB

If the adversary I wants to generate Message 3′, then I should know NB,
since NB is encrypted under A’s public-key, I could only replay the recorded
message Message 2 {NA, NB}KA including {??, NB}KA in order to get NB,
that is:

Message 2′ I → A : {NA, NB}KA

To make the principal A believe that Message 2′ is really from I, then the
unknown “??” in Message 1′ could only be the freshness identifier NA that
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is the same as that in Message 2′. Hence we have:
Message 1′ A→ I : {A,NA}KI

6) From the above construction procedure, we have the first instance
Message 1 I(A)→ B: {A,NA}KB

Message 2 B → I(A): {NA, NB}KA

Message 3 I(A)→ B: {NB}KB

and the second instance
Message 1′ A→ I : {A,NA}KI

Message 2′ I → A : {NA, NB}KA

Message 3′ A→ I : {NB}KB

Arrange the order of the messages in the two interleaved instances, and
then we have the attack on the Needham-Schroeder public-key protocol, as
shown in Fig. 9.10.

Message 1′ A→ I : {A,NA}KI

Message 1 I(A)→ B : {A,NA}KB

Message 2 B → I(A) : {NA, NB}KA

Message 2′ I → A : {NA, NB}KA

Message 3′ A→ I : {NB}KI

Message 3 I(A)→ B : {NB}KB

Fig. 9.10 View of attacks in BMF analyzer.

The attack involves two simultaneous runs of the Needham-Schroeder
public-key protocol. In the first run, A establishes a valid session with the
adversary I; in the second run, I impersonating A tries to establish a bogus
session with B. Upon the termination of this attack, B believes that B has
correctly established a session with A and they shared exclusively the secret
nonce NA and NB to generate the new session key.

As we have seen, the attack construction procedure is complex, and the
formalization of the intelligence activities in the attack construction is diffi-
cult. The BMF attack engine presented is still naive, and a lot of jobs need
to be done.
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In the above chapters, we have presented security definition, security spec-
ifications, freshness principle, manual analysis method, belief multiset formal-
ism and the automation tools based on the trusted freshness for analyzing
cryptographic protocols, which clarify whether a cryptographic protocol is
secure or not.

The central ingredient in the trusted freshness approach is the observa-
tion that a participant’s beliefs about key exchange security should depend
only on the received fresh and confidential messages and the beliefs already
possessed by this party. Analysis based on trusted freshness captures exact
authentication information of each principal, which suggests the correctness
of a protocol or the way to construct attacks intuitively from the absence of
security properties.

First, Chapter 4 presents the security definitions, the security specifica-
tions based on the indistinguishability approach and matching conversation,
which check whether a cryptographic protocol is secure or not; Chapter 6
makes a more rigorous proof to assess that the indicated security specifica-
tions are not only necessary but also substantial under the computational
model. This specific security adequacy captures the peculiarities of key ex-
change protocols that involve different sessions. Chapter 7 presents a belief
multiset formalism for analysis of cryptographic protocols based on trusted
freshness.

Chapter 4, Chapter 5 and Chapter 7 have exemplified the usability and the
efficiency of the security specifications to guarantee the protocol security and
the belief multiset formalism via a set of well-known protocols. The absence of
certain security properties suggests the instant construction of many attacks
(not only one) on the protocol or suggests the correction of the protocol.
For example, in Kerberos pair-key protocol in DSNs (see Subsection 5), B
could not guarantee the freshness of kAB and the liveness of sensor node A,
so the adversary can construct an attack by impersonating A and confuse B
to regard an old key k′AB as a new session key between B and A. From the
absence of the association kAB with A and B, the adversary can construct
an attack and confuse B to believe that B shares a new session key kAB with
A, but in deed B shares kAB with the attacker I.

The proofs of security based on trusted freshness are simple and precise,
which can be easily accomplished not only by hand (Chapter 4 and Chapter
5) but also by formalism (Chapter 6 and Chapter 7). Moreover, the anal-
ysis process based on trusted freshness is rigorous and amenable for design
(Chapter 8) and automation (Chapter 9).
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