
D. Nagamalai, E. Renault, and M. Dhanushkodi (Eds.): PDCTA 2011, CCIS 203, pp. 122–134, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Staggered Checkpointing and Recovery in Cluster Based
Mobile Ad Hoc Networks

Parmeet Kaur Jaggi1 and Awadhesh Kumar Singh2

1 Department of Computer Science, Jaypee Institute of Information Technology,
NOIDA, UP, India

parmeet.kaur@jiit.ac.in
2 Department of Computer Engineering, National Institute of Technology,

Kurukshetra, Haryana, India
aksinreck@rediffmail.com

Abstract. Checkpointing uses stable storage available in the distributed system
for saving the consistent states of processes to which they can rollback at the
time of recovery. But the checkpointing techniques for wired and cellular
mobile systems are not trivially applicable to ad hoc networks as these networks
have limited stable storage and wireless links are of low bandwidth. Moreover
if synchronous checkpointing is employed, the processes contend for these
limited resources at the time of checkpointing. This paper addresses the
application of checkpointing to ad hoc networks and proposes a staggered
approach to avoid simultaneous contention for resources. The staggering causes
events, which would normally happen at the same time, to start or happen at
different times. The proposed protocol does not need FIFO channels and logs
minimum number of messages. It supports concurrent checkpoint initiation and
successfully handles the overlapping failures in ad hoc networks.

Keywords: Checkpointing, Staggering, Concurrent initiators, Recovery, ad hoc
networks.

1 Introduction

A mobile ad hoc network (MANET) is an autonomous collection of mobile nodes that
communicate over relatively bandwidth constrained wireless links. The network
topology is dynamic and decentralized; where all network activity including
discovering the topology and delivering messages must be executed by the nodes
themselves. Since the nodes communicate over wireless links, they have to contend
with the effects of radio communication, such as noise, fading, and interference. In
addition, the links typically have less bandwidth than in a wired network. The nodes
have limited storage capabilities and typically no stable storage. The lifetime of a
node may be determined by the battery life, thereby requiring the minimization of
energy expenditure.

In such a scenario, the failure probability of the computing process increases
greatly along with enlarging scale of the system. If a failure occurs in a computing
process and there is not an appropriate method to protect it, more cost will be wasted

 Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks 123

for restarting the program. This need for reliability leads to the requirement of some
fault tolerance method specifically designed for such networks. A major class of
distributed systems uses checkpointing along with rollback recovery for providing
fault tolerance. The work presented in this paper aims to present checkpointing as a
fault tolerance approach in mobile ad hoc networks. We consider clustered mobile ad
hoc networks in which nodes are partitioned into a number of virtual and disjoint
groups called clusters. Under the cluster structure, mobile nodes are assigned a
different function, such as cluster head (CH) or cluster member. One node in each
cluster is chosen as the cluster head based on some criteria and the other members of
the cluster use the stable storage at the cluster head for saving their checkpoints.

Three types of checkpointing protocols have been proposed in the literature,:
synchronous checkpointing, where each process checkpoints simultaneously with
every other process [1], quasi- synchronous checkpointing, where the communication
history is piggybacked on each message, and each process checkpoints independently
based on that information [1], and asynchronous checkpointing, where each process
checkpoints independently, but the end result may be an inconsistent global state [1].
However, none considers contention.

The stable storage contention may not be a problem for asynchronous
checkpointing as the processes take their checkpoints independently. Hence,
checkpoints are often spaced apart on time axis. However, the synchronous
checkpointing does not have this advantage. Therefore, it is advantageous for the
synchronous checkpointing to stagger the checkpoints in order to avoid stable storage
contention. The staggered checkpoints improve performance because, as the number
of processes taking their checkpoints simultaneously and the checkpoint size grow,
there is more contention present during synchronous checkpointing and thus more
room for improvement when checkpoints are staggered [2]. When processes in a
mobile ad hoc network’s cluster contend for storage over limited bandwidth,
staggering will bring a huge benefit to system performance.

Therefore the approach described in this paper uses a staggered checkpointing
scheme adapted to the cluster based ad hoc environment. We aim to demonstrate that
checkpointing can be a useful fault tolerance approach in ad hoc networks and
staggering the checkpoints will give a boost to the performance. The next section
discusses the work done in the area of checkpointing in MANETs. Further we put
forth our system model. Subsequently, we describe our algorithm and its working.
Then we present the recovery protocol. Lastly we conclude the presentation.

2 Related Work

Research on fault tolerance for the distributed systems has received tremendous
interests in recent years. But these schemes can not be applied directly in ad hoc
wireless networks due to the reason that there is no support of any static centralized
administration and there are no fixed stable hosts or Mobile Support Stations.

2.1 Checkpointing MANETs

The work in [15] presents a cluster based checkpointing and rollback recovery
scheme for ad-hoc wireless networks based on processes checkpointing and the

124 P.K. Jaggi and A.K. Singh

cluster-based multi-channel management protocol (CMMP).The network of mobile
hosts is partitioned into several clusters. The mobile nodes act as cluster heads,
gateways or ordinary members. Quasi synchronous checkpointing algorithm is
employed along with pessimistic logging. Mobile hosts take checkpoints periodically
managed by the local cluster head and log their output/input and messages related to
the gateway.

The migratory services [16] model supports continuous and stateful client-service
interactions in highly volatile ad hoc networks. The scheme uses context aware
checkpointing to extend the primary backup approach for fault tolerance.

A checkpoint protocol for ad hoc networks has been proposed in [17]. Here, a
checkpoint request message is delivered by flooding. State information of a mobile
computer is carried by this message and stored into neighbor mobile computers. In the
model of [18] the MANET is geographically partitioned into several disjoint and
equal sized cluster regions. Each cluster is assigned a unique cluster id and has only
one manager which is the one that can directly communicate with the adjacent
managers For the recovery algorithm each manager must keep an (ntotal h * ncluster h)
dependency matrix where ntotal h is the total number of mobile hosts in the system and
n cluster h is the total number of mobile hosts in its cluster

None of the above approaches addresses the problem of simultaneous access to
stable storage and wireless channels by the checkpointing nodes.

2.2 Staggered Checkpointing

Staggered checkpointing has been proposed in literature for wired distributed systems.
Chandy-Lamport algorithm [3] can stagger checkpoints when marker messages are
forwarded, by the coordinator, to its neighbors only, which further forward the marker
to their neighbors. However, the staggering vanishes in a completely connected
topology where the coordinator directly forwards marker simultaneously to all
processes. Based on Chandy-Lamport algorithm, two protocols, [4] and [5] have
considered contention. Both allow processes to stagger their checkpoints and use
either message logging or some form of additional synchronous checkpoints to
guarantee a consistent state. A topology dependent algorithm to stagger a limited
number of checkpoints is proposed in [4]. The work in [5] proposed an approach that
could stagger all checkpoints. All three schemes work with single initiator and require
FIFO message delivery.

The authors of [6] pointed out that the approach in [5] suffers from a major
limitation. All messages must be logged in order to ensure global consistency. Hence,
when the number of checkpointing processes in the system increases, the size of
message log also increases dramatically. A heavy message log causes traffic for the
stable storage leading to overall performance degradation. A solution to the problem
has been put forth in [6]. As, processes contend for the stable storage; the availability
of stable storage has been increased by using concurrent disks through a distributed
RAID system [7].Since increasing the size of stable storage is not feasible in
MANETs, we present an approach that can reduce the size of message log while
staggering checkpoints.

Our algorithm is designed to work in MANETs with limited storage and non-FIFO
channels. There can be concurrent initiators of the checkpointing process which will

 Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks 125

speed up the process. The issue of concurrent initiations has been handled in
literature. Most of the checkpointing algorithms[9][10][11][12], have assumed that
the channels to be FIFO and have not considered the issue of contention.

We have used an approach similar to [10] to handle multiple initiations but our
proposed protocol handles contention and does not need FIFO guarantee. Recently,
two staggered quasi-synchronous checkpointing algorithms, as [13] and [14], have
been presented. However, our checkpointing protocol is a staggered synchronous one.

3 System Model

Clustering approaches have been found suitable for large scale and high-density ad
hoc network applications. A special node such as the cluster head can coordinate the
message transmission and checkpointing of nodes in its cluster. We therefore apply
our checkpointing algorithm to a cluster based network as in Fig 1. The nodes of the
mobile ad hoc network are divided into clusters and one node is chosen as the Cluster
Head (CH) in each cluster. For instance a node N identifies itself as a cluster head
when it recognizes that it meets some predefined qualifying criteria. This criterion
could be that a node having the lowest node ID within its one-hop neighborhood will
become a CH. A CH and all its neighbors thus form a cluster.

Cluster Head

 Wireless links Cluster node

Fig. 1. System Model

The nodes which are chosen as the cluster heads, can then take part in the inter-
cluster communication with the other CHs in their communication range. Ordinary
nodes in each cluster can talk only within the cluster. The topology is such that any
node can communicate with any other node in the cluster either directly or via the

126 P.K. Jaggi and A.K. Singh

CH. The CHs are assumed to have enough stable storage for saving the checkpoints of
nodes in their cluster.

The processes in the system are fail-stop. The processes communicate with each
other only by exchanging messages through an asynchronous and reliable channel
with unpredictable but finite transmission delays. No message will be lost in the
channel. The channel is non-FIFO and each message has a unique sequence number.

4 The Algorithm Concept

We present a staggering based synchronous checkpointing scheme adapted for
handling the limited storage and bandwidth problems of MANETs. Controlled sender-
based message logging is used, where only those messages are recorded in the
message log that have been sent and yet not received at their respective destinations.
We call them in-channel messages because these are the messages presently in the
channel. If we could delay the recording of a local snapshot, the in-channel messages
would get more propagation time and most of them would reach their respective
destinations. Hence, the global snapshot collected by our approach represents a much
more recent state of the system than what is collected without the proposed approach.
In addition, the number of in-channel messages would be drastically reduced, which
requires the small-sized message log to be maintained at sender. The messages are
given sequence numbers to maintain consistency at the time of recovery.

Each CH has a distinct identifier (or id) and the hosts on joining a cluster also get
an id. Each CH keeps a list, LOCAL of the active nodes in its cluster. The nodes in a
cluster use the stable storage at the CH to save their most recent checkpoints.

Any CH may initiate the checkpointing and there can be multiple initiators of the
checkpoint process. The initiator CHs are called leaders. The checkpoints are assumed
to be sequenced so that all checkpoints with the same sequence number form a
consistent state of the system. The further discussion of the algorithm describes the
checkpointing process for a given checkpoint sequence number.

A leader CH after taking its own checkpoint sends a take_chkpt message,
containing its own id, to other CHs in its transmission range and then initiates the
checkpoint in its cluster. All the clusters which take a checkpoint in response to the
message from the same leader form a group. Thus there will be as many groups
formed in the system as there are concurrent leaders. Any CH on receiving the
take_chkpt message for the first time saves the sender’s id as its PARENT and the
initiator’s id as its LEADER. Every CH keeps a record of the recipients of its
take_chkpt message by a 2D array, GLOBAL

A CH on receiving a take_chkpt message another time, sends a DENY message to
the sender. It however keeps track of any concurrent leaders by a boundary-set data
structure. If the initiator’s id in any subsequent take_chkpt message is different from
that saved in the LEADER variable at the CH, then the receiver CH saves this
initiator’s id in its boundary-set after sending a DENY message to the sender CH.

Thus the CHs form a forest of spanning trees in the system. Each leader is the root
of a spanning tree and all CHs which take a checkpoint due to it belong to its
spanning tree. A CH which sends a take_chkpt message to another for the first time is
its parent in the spanning tree. The receiver of this take_chkpt message is its child

 Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks 127

node. Within a cluster, a CH, after taking its own checkpoint, initiates the checkpoint
by sending the take_chkpt message to its cluster nodes one by one in increasing order
of their ids. This procedure continues till the last member of the cluster. Hence the
nodes of the cluster take checkpoints at the CH in a staggered fashion.

When a leaf CH in the spanning tree has completed a checkpoint in its cluster, it
sends an ACK message along with the boundary set to its parent in the spanning tree.
This boundary-set is merged with the parent’s boundary-set. After an intermediate CH
in a spanning tree has received such ACK messages from its entire set of child CHs
and has completed the checkpoint in its cluster, it sends an ACK message along with
the boundary-set to its parent in the spanning tree

When the leader receives the acknowledgement of all its children CHs, it also
knows the identifiers of other initiators in the system using boundary-set information
it receives from the child CHs. The initiator then sends the chkpt_taken message to
other initiators. When it has received similar messages from all concurrent initiators,
it propagates a chkpt_taken message in the group formed by its child nodes to
complete the checkpointing process for a given sequence number.

 Thus our checkpointing protocol initiates the cluster heads at each level of a
spanning tree in parallel. However, the nodes in a cluster are initiated sequentially.
This approach has a two fold benefit. Firstly it removes the contention for CH storage
and the wireless bandwidth as the checkpointing within each group is ordered
sequentially for the nodes in the cluster while the checkpointing of different clusters
can take place in parallel. Secondly, by delaying the checkpointing of some nodes,
due to the sequence imposed upon them, some in-channel messages can reach their
destinations, thereby reducing the size of message log.

5 The Working of Algorithm

The following messages have been used in the algorithm:

take_chkpt<initiator CH id >: a CH sends this message to other CHs to take
checkpoint, a CH also passes information about the initiator.

ACK<boundary-set>: a CH sends this message to its PARENT after taking a
checkpoint in its cluster carrying along with it the information it has about other
concurrent leaders

DENY: a CH which has already taken a checkpoint, on receiving a subsequent
take_chkpt message sends DENY to sender

chkpt_taken: a leader sends this message to other leaders after completing the
checkpointing in its group

Any CH may initiate the checkpointing process by sending the take_chkpt message
to the CHs in its transmission range. This message carries with it the sender’s id so
that any process receiving the take_chkpt message for the first time is included in the
group of this initiator or leader. Since there can be multiple concurrent initiations, a
CH receiving the take_chkpt message more than once replies to any subsequent
senders with a DENY message. A CH which is not the leader replies with an ACK

128 P.K. Jaggi and A.K. Singh

message to its PARENT after completing the checkpointing in its cluster. The ACK
message is appended with the information, if any, of other concurrent initiators.

For accomplishing the above, the algorithm uses the following data structures:

GLOBALi< CH id, flag>: is a 2D vector where each row denotes the recipients of the
take_chkpt message; flag is 0 till the time an ACK/DENY is received back from the
corresponding CH.

LOCALi: the set of active nodes in a cluster Ci // for simplicity assume nodes in a
cluster are numbered 0,1,2…so on

PARENT: the CH which has sent the first take_chkpt message to CHi

LEADERi: the initiator CH due to which CHi takes a checkpoint

Boundary-seti: list of known concurrent initiators other than the LEADER

time_out: Boolean flag which denotes whether the waiting time for ACK/DENY
messages has expired or not

Cluster_time_out: Boolean flag which denotes whether the waiting time for
checkpoint of a node in the cluster has expired or not. If a node has not taken a
checkpoint in this interval, CH can remove it from active nodes list.

Some member nodes may voluntarily or involuntarily disconnect from the
MANET but we assume that a CH will not disconnect from the MANET. Every CH
therefore maintains the status of each recipient CH of its take_chkpt message by the
GLOBAL array .The flag bit in each row of the array is set to 1 only after receiving
the ACK/DENY message from the corresponding CH. The recipients of the take_chkpt
message keep a record of the sender by the PARENT identifier and the initiator by the
LEADER identifier. If a CH does not respond within the time_out interval, its parent
will again initiate that cluster to take the checkpoint. Since a CH does not disconnect,
ultimately the flag bit for this CH at its parent will be set to 1. Within a cluster, some
nodes may disconnect. Therefore a CH removes an inactive node from its current
nodes list, LOCALi if it does not take a checkpoint within a cluster_time_out interval.

6 The Algorithm

6.1 Pseudo Code

a) Initialization

for all b=0 to m-1,
GLOBAL b=NULL
LEADERb= NULL
PARENTb =NULL
boundary-setb = NULL

Let CHm, CHn,… be various concurrent initiators

b) PROCEDURE leader_chkpt(i) {
//Each leader CHi executes leader_chkpt(i)
(i) CHi sends take_chkpt(i) to all CHx in transmission range of CHi
(ii) CHi adds a record < CHx, 0> to GLOBALi

 Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks 129

(iii) CHi calls Cluster_chkpt(i)
(iii) if(chk_global(i) ==TRUE) then send chkpt_taken message to boundary

initiators
(iv)Wait for chkpt_taken message from other leaders
(v) If CHi has has received chkpt_taken message from all members of its boundary-

set, propagate chkpt_taken message in own group
}

PROCEDURE Cluster_chkpt(j) {
//Within a cluster j
 (i) CHj takes its checkpoint;
 (ii) m=1
(iii) While there exists more elements in LOCALj

{ s=LOCALj[m] // member node of the cluster//
(iv) CHj sends take_chkpt to node s;
(v) If Node s takes checkpoint then

{m++
Goto(iii)

 }
else
{ if (cluster_time_out=1) then
{remove node s from LOCALj

 goto (iii)
 }

}
}
}

Procedure CH_checkpoint(i,j,k) {
//Each CHk, which is not a leader, on receiving the take_chkpt(i) message from CHj
executes CH_checkpoint()
 (i)If LEADERk <> NULL then
{send DENY to CHj;
 if LEADERk <>i then add i to < boundary-setk >
}
else
 { Set LEADERk = i
 Set PARENTk = j
 CHk sends take_chkpt(i) to all CHy // y<>j
 Add a record < CHy, 0> to GLOBALk
 }
(ii) CHk calls Cluster_chkpt(k)
(iii)if chk_global(k) is TRUE then

Send ACK<boundaryk> message to PARENTk
 }

130 P.K. Jaggi and A.K. Singh

PROCEDURE chk_GLOBAL(p) {
// A CH calls chk_GLOBAL to check if all child nodes have replied
While each flag(GLOBALp)<> 1
{
if (time_out=0)
then
{ wait for ACK and DENY messages from CHs in GLOBALp
If CHp receives a DENY message from CHy, then set GLOBALp< CHy, 1>
If CHp receives an ACK<boundary-set> message from CHy , then set GLOBALp<

CHy,1>, merge <boundary-set>y with <boundary-set>p
}
}
if each flag(GLOBALp)== 1 , // all CHs for which CHi was the PARENT have

replied back//
 Return TRUE }

6.2 Proof of Correctness

Theorem 1. The checkpointing algorithm converges.

Proof: We prove this by contradiction. Suppose the checkpointing algorithm does not
converge. Hence, there exists at least one cluster, say Ci that never finalizes its
checkpoint. Now, there could be the following possibility: cluster Ci takes checkpoint
under group leader, say Cl, as it receives take_chkpt message from another CH, say
CHj. Thus, if Ci is the last i.e. a leaf cluster of its group then it will send an ACK
message to its parent CHj; otherwise, it will send take_chkpt message to the next
cluster of its group after taking its own checkpoint. The next process proceeds
similarly and the last member i.e. leaf of the group sends an ACK message to its
parent. Every parent ensures that each group member under its group has taken a
checkpoint by checking the GLOBAL vector present with it. If some bit in the
GLOBAL vector is zero corresponding to any particular cluster and time_out timer
has expired then that parent will again initiate that cluster to take the checkpoint and
corresponding messages will be replayed. Moreover within a cluster, a CH removes
an inactive node from its current nodes list if it does not take a checkpoint within a
cluster_time_out interval. Eventually, the checkpoint for the group is finalized.
Therefore, there does not remain any cluster Ci which is not able to finalize its
checkpoint. It is a contradiction. Thus, the checkpointing algorithm converges.

Theorem 2. No orphan messages can be generated in the system.

Proof: The algorithm requires controlled sender based message logging. Every
message is logged at the sender at the time of sending. It is logged from the time it is
sent till the time it is known to have been received at its destination. Thus the recording
of the receipt of a message is preceded by the logging of its sending. Any message that
is received has its determinant i.e. sending event logged at the sender. So, orphan
messages cannot be generated by the system.

 Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks 131

7 The Recovery Procedure

7.1 Data Structures Used

Let a process Pi be running on a node i
The following data structures are used for the recovery of process Pi :

SentSeti: Every process maintains the set of all those processes to whom it has only
sent messages to since the last checkpoint

RcdSeti: Every process maintains the set of all those processes from which it has
received messages since the last checkpoint

Countrcdi: It keeps the count of messages Pi has received from any other processes Pj

since the last checkpoint

nCountrcdi: It keeps the count of messages Pi receives from other processes Pj during
the recovery

rollback_status: Boolean variable (value 1 indicates that process is running recovery
thread and value 0 indicates that process has completed the recovery successfully)

7.2 On Cluster Node Failure and Subsequent Recovery

We are using controlled sender based message logging. Only the in-channel messages
are logged at the sender. Fig. 2 shows a failure at process Pi after it has sent messages
m & m’ to process Pk and received the message m” from Pj since its last checkpoint
i2. Once the process Pi needs to recover after the failure, it rollbacks to its latest
checkpoint, here i2, and replays the logged messages.

 Pk

Pi

i2

j2

 m m'

Failure

m” j1

i1

k1 k2

Pj

 Time

Fig. 2. Recovery of processes

Hence any process Pk that has received messages from Pi before Pi‘s failure need
not rollback as it has either already received the message m from Pi before Pi’s failure
or will receive the in-channel message m’ at the time of Pi’s recovery. However, if a
process Pj has also sent messages to Pi then Pj needs to rollback to the last checkpoint

132 P.K. Jaggi and A.K. Singh

, here j2, so that it can re-send any message m” earlier sent by Pj but un-received due
to the rollback by Pi.

To avoid inconsistency in the system due to the recovery process, two approaches
are possible. A non-blocking approach would allow processes like Pk to continue
normal operation during recovery of any other process Pi to which no messages were
sent during the last checkpoint interval. In such a case, all checkpoints of the same
sequence number would form a consistent state of the system. A second blocking
approach for recovery can require a recovering process Pi to send a RECOVERING
message to all processes in SentSeti so that they do not advance their checkpoint till Pi

has recovered. This will prevent orphan messages in the system. Upon the
completion of recovery process, Pi can send a RECOVERED message to SentSeti.

We assume the non-blocking approach described above for achieving consistent
state in the system. No process is restarted from a state that has recorded the receipt of
a message that no other process has recorded as received. If a process Pk has recorded
the receipt of a message m between its checkpoint k2 and a later checkpoint k3, the
sending of m shall be recorded by Pi between its checkpoint i2 and a later checkpoint
i3.The recovery procedure never leads to an inconsistent state in the system.

Thus our algorithm provides an optimization by not requiring all processes in the
system to roll back at the time of recovery. Only the processes in the RcdSeti are
required to rollback to their latest checkpoint.

7.3 The Recovery Algorithm

Step1: upon restart after failure

(i) read RcdSeti from stable storage,
(ii) rollback to latest checkpoint
(iii) Status =Recovering;
(iv) Rollback_status=1;
(v) Send recover request to all processes those are in RcdSeti

Step 2: if Pj receives a recovery request from Pi then

(i) Pj rollbacks to its latest checkpoint
(ii) Pj forwards the recovery request to all members of RcdSetj;

Step 3: if multiple failure then

repeat step1 through step2 at each failed node Pk;
Step 4: Pi and each Pj replay the logged in-channel messages;
Step 5: if (ncountrcdseti = =countrcdseti) then
Statusi= normal;
Rollback_status=0;
 else initiate recovery again;

7.4 Proof of Consistent Recovery

Theorem 3. Recovery is consistent assuming reliable CHs and channels.

 Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks 133

Proof: Upon recovery after failure, a process rollbacks to its latest checkpoint and
resends any in-channel messages which are logged with it. Thus the messages to be
sent by the process are eventually sent assuming reliable channels. Also the process
sends a recovery request to processes in its RecdSet i.e. those processes from which it
had received messages in the interval between its last checkpoint and failure. These
processes rollback too and replay their messages. At any destination, messages can be
placed in sequence and duplicates removed by using sequence numbers of the
messages. Hence the recovery of nodes is consistent assuming reliable CHs and
channels.

Theorem 4. The algorithm handles multiple failures.

Proof: Let, during the recovery of some failed process Pi at a node i some other
process Pj has also failed at node j. When the failed process Pi initiates its recovery, it
rolls back to its last checkpoint and then it sends the recovery request to all those
processes from which it had received messages. On receiving the recovery request
these processes will also roll back to their last checkpoints. Meanwhile, if some other
process Pj fails, then Pj will also send the recovery request to the processes listed in its
RcdSetj. Thus, same procedure would be executed by Pj as for Pi .The two recovery
threads would run concurrently. Thus, the protocol can successfully handle multiple
failures.

8 Conclusions and the Scope of Future Work

Many researchers have concluded that, due to heavy message logging, the staggering
should be discouraged in communication-intensive applications. Our technique
subverts this inherent disadvantage of staggering. The small-sized message log makes
our staggered approach a suitable candidate to checkpoint the communication-
intensive applications too. Also, the more recent global snapshot collected by the
proposed staggered protocol, jointly with the small-sized message log, eliminate any
possibility of occurrence of the missing message problem. The algorithm will also
scale up even when number of nodes is increased, since nodes are organized in a
cluster based hierarchy. As the clusters can be initiated in parallel, the performance of
the system does not degrade when new clusters are added to the system. The
algorithm uses concurrent initiation and handles overlapping failures. Moreover, it
does not need the channels to be FIFO. The rollback distance is limited to last
checkpoint, even if frequency of application messages are less and processes are
running in isolation. However, the algorithm has a scope for further improvement. We
propose to utilize the inherent spatial and message redundancy present in the
MANETs for better results in our future work.

References

1. Elnozahi, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408 (2002)

2. Norman, A.N., Choi, S.E., Lin,C.: Compiler-generated staggered checkpointing. In: Proc.
7th ACM Workshop on Languages, Compilers, and Run-time Support for Scalable
Systems LCR 2004, pp. 1–8 (2004)

134 P.K. Jaggi and A.K. Singh

3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed
systems. ACM Transactions on Computer Systems 3(1), 63–75 (1985)

4. Plank, J.S.: Efficient checkpointing on MIMD architectures, Ph.D. dissertation, Dept. of
Computer Science, Princeton Univ. (1993)

5. Vaidya, N.H.: Staggered consistent checkpointing. IEEE Transactions on Parallel and
distributed Systems 10(7), 694–702 (1999)

6. Jin, H., Hwang, K.: Distributed checkpointing on clusters with dynamic striping and
staggering. In: Jean-Marie, A. (ed.) ASIAN 2002. LNCS, vol. 2550, pp. 19–33. Springer,
Heidelberg (2002)

7. Hwang, K., Jin, H., Ho, R., Ro, W.: Reliable cluster computing with a new checkpointing
RAID-x architecture. In: Proc. 9th Workshop on Heterogeneous Computing HCW 2000,
Cancun, Mexico, pp. 171–184 (2000)

8. Ahn, J.: An efficient algorithm for removing useless logged messages in SBML protocols.
In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 166–171. Springer,
Heidelberg (2005)

9. Koo, R., Toueg, S.: Checkpointing and rollback-recovery for distributed systems. IEEE
Transactions on Software Engineering SE-13(1), 23–31 (1987)

10. Spezialetti, M., Kearns, P.: Efficient distributed snapshots. In: Proc. 6th IEEE International
Conference on Distributed Computing Systems, pp. 382–388 (1986)

11. Prakash, R., Singhal, M.: Maximal global snapshot with concurrent initiators. In: Proc. 6th
IEEE Symposium on Parallel and Distributed Processing, pp. 344–351 (1994)

12. Mandal, P.S., Mukhopadhyay, K.: Concurrent checkpoint initiation and recovery
algorithms on asynchronous ring networks. Journal of Parallel and Distributed
Computing 64(5), 649–661 (2004)

13. Manivannan, D., Jiang, Q., Yang, J., Persson, K.E., Singhal, M.: An asynchronous
recovery algorithm based on a staggered quasi-synchronous checkpointing algorithm. In:
Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741,
pp. 117–128. Springer, Heidelberg (2005)

14. Jiang, Q., Manivannan, D.: An optimistic checkpointing and selective message logging
approach for consistent global checkpoint collection in distributed systems. In: Proc. IEEE
International Parallel and Distributed Processing Symposium, pp. 1–10 (2007)

15. Men, C., Xu, Z., Li, X.: An Efficient Checkpointing and Rollback Recovery Scheme for
Cluster-Based Multi-channel Ad Hoc Wireless Networks. In: Proc. of the 2008 IEEE
International Symposium on Parallel and Distributed Processing with Applications (ISPA
2008), pp. 371–378. IEEE Computer Society, Washington, DC, USA (2008)

16. Riva, O., Nzouonta, J., Borcea, C.: Context-aware fault tolerance in migratory services. In:
Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services (Mobiquitous 2008). ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST,
Brussels, article 22 (2008)

17. Ono, M., Higaki, H.: Consistent Checkpoint Protocol for Wireless Ad-hoc Networks. In:
The 2007 International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, Nevada, USA, pp. 1041–1046 (2007)

18. Juang, T.T., Liu, M.C.: An Efficient Asynchronous Recovery Algorithm In Wireless
Mobile Ad Hoc Networks. J. of Internet Technology 4, 143–152 (2002)

	Staggered Checkpointing and Recovery in Cluster Based Mobile Ad Hoc Networks

	Introduction
	Related Work
	Checkpointing MANETs
	Staggered Checkpointing

	System Model
	The Algorithm Concept
	The Working of Algorithm
	The Algorithm
	Pseudo Code
	Proof of Correctness

	The Recovery Procedure
	Data Structures Used
	On Cluster Node Failure and Subsequent Recovery
	The Recovery Algorithm
	Proof of Consistent Recovery

	Conclusions and the Scope of Future Work
	References

