
D. Nagamalai, E. Renault, and M. Dhanushkodi (Eds.): PDCTA 2011, CCIS 203, pp. 112–121, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Critical Aware Community Based Parallel Service
Composition Model for Pervasive Computing

Environment

P. Kumaran and R. Shriram

Department of Computer Science and Engineering,
B.S. Abdur Rahman University, Chennai, Tamil Nadu, India

p_kumaran@hotmail.com,
shriram@bsauniv.ac.in

Abstract. Service composition in pervasive computing environments is needed
to provide best quality of service. Services need to be discovered at run time
and composed together for best possible user scenarios. The need for
identifying the best services among the service nodes is essential in pervasive
computing systems as the environment of operation can change rapidly.
Pervasive computing demands systems that are scalable, adaptive, fault tolerant
and can work in heterogeneous environments. Hence an adaptive method that
takes into account the environment is the need of the hour. In this work, a
dynamic parallel composition model to compose the best matched services is
proposed for the pervasive computing environment exhibiting the quality of
service and contingency management properties. The model ensures that the
highest quality of service conditions is fulfilled. Facilities for contingency
management ensure efficient fault tolerance and failure recovery. The proposed
model uses the community framework for grouping the service nodes and
composing the services provided by the nodes. This ensures that resultant
composition mechanism is dynamic in nature to adapt to the service nodes
failure without compromising the quality of service with better fault error
recovery time. The model has been validated experimentally and the results
show considerable promise. The work is unique in its extensive mechanisms for
modeling the pervasive computing environment, failure handling, fault
tolerance and best quality of service parameters.

Keywords: Community Manager, Fault Recovery, Pervasive Computing,
Service Composition, Service Evaluation.

1 Introduction

Pervasive Computing is a vision of the world where the computing happens anywhere
and at any time. Service Composition is the process of composing the unit services
into an integrated service to provide end user requirement. Service oriented
architecture relies on interaction between autonomic loosely couple services which
can be composed together for delivery of goals by the users. These services can be
expressed in a middleware system. The middleware system composes the services

 Critical Aware Community Based Parallel Service Composition Model 113

dynamically for accomplishing the goals. Service Composition in the pervasive
environment is a challenging research problem due to the unpredictable dynamic
behavior of the pervasive environment. The biggest challenge is in developing the
middleware [2] for the pervasive environment. The services residing in the nodes
need to be composed in parallel in the absence of a centralized entity as the
environment needs services dynamically. The key objectives of this work are a) to
propose a critical ware service composition model to improve the quality of service,
b) to optimize the metrics for improved quality of service and c) to demonstrate the
experimental prototype that validates our architecture.

The rest of the paper is organized as follows. In section 2, we discuss the related
work carried out supporting our service composition model. In section 3, we describe
our composition middleware. In section 4, we give the experimental results and
analysis. Finally, section 5 concludes our work and gives research directions to the
service composition problem.

2 Related Study

There have been many studies on Service composition in Pervasive Computing. In
[8], the user preference is integrated with the system preference to evaluate the service
model. The proposed work considers the services residing in the node are of equal
priority and based on the utility function value, the higher utility value node in the
ordered list is selected. We classified the services residing in the node as critical and
non-critical service.

In PICO model [11], mobile and static delegents representing camileuns in
communities try to use resources as effectively as possible. The challenges due to
mobility and heterogeneity in the pervasive environment are addressed by providing
transparent, autonomous and continual middleware services. We have adopted the
community formation methodologies used in the PICO model to address the node
mobility and heterogeneity. The mobile community network [4] is proposed for the
interaction of middleware client installed in the mobile devices. The middleware
client request contains device profile, network status, personal profile and requested
service data.

In [5], graph based service composition mechanism is proposed. The inputs and the
outputs of the services are represented as nodes in the graph and the dependencies of
each service are represented as edges. The services’ input and output are considered
as single parameter which is not the practical and adaptive as the real time services
have multiple parameters.

In [3], service composition for mobile environments is achieved through the
Dynamic Broker selection and Distributed Broker selection based protocols and
suggested to incorporate the parallel broker arbitration to handle parallel service
flows. Our earlier work [6] focused on parallel service composition middleware
model to addresses the pervasive attribute issues.

In [2], survey on Service composition middleware in pervasive environments
discussed on the attributes such as Context Awareness, Interoperability, Discoverability,
Adaptability, QoS management, Spontaneous Management, Managing Contingencies,

114 P. Kumaran and R. Shriram

Leveraging Heterogeneous Devices and Security Mechanisms. These are the key design
rationale in designing the middleware for the pervasive computing environments. Our
work addresses the design rationale such as QoS management, Spontaneous
management and managing contingencies effectively.

We incorporated the parallel composition model in this critical aware model to
improve the quality of service by reducing the fault recovery time and service
composition length. Our work uniquely differs from the existing service composition
middleware for pervasive computing in classifying the services as critical and non-
critical dynamically based on the community, evaluating the service nodes based on
the service value, activating the critical service execution in parallel and handling the
fault recovery. Our experimental result shows the better improvement in the fault
recovery time and service composition length compared to the existing works.

3 Service Composition Model

The architecture of the proposed critical aware service composition model is shown in
Fig 1.

Fig. 1. Service Composition Architecture Model

The Requestor Node is the consumer of the service. Any node in the network can
make a request. The Responder nodes are the set of the nodes which receives the
service initialize request message sent by the requestor node. The Community
manager is responsible for the execution of the service and sent back the required
service to the requestor node.

The Community contains the set of nodes actively participating in the service
execution. The service manager is responsible for the task coordination. The data
communication includes the service initialize request, Community manager response
messages and the data transfer between the responder nodes & community manager.
The process steps involved in the model are explained in the following sections.

 Community Manager

Service Manager

Service Activation Engine

Context Broker
Requestor Node

Responder Node n

Responder Node 2

Responder Node 1

 Critical Aware Community Based Parallel Service Composition Model 115

3.1 Service Request Initialization

The requestor node initiates the service request by sending the broadcast message.
The responder nodes having the exact composite, abstract service or the service link
sends back the response to the requestor node.

The reply message format of the responder node contains the Service Identifier(Id)
to uniquely identify the service, Service Name(Sn) to describe the service, Abstract
Level service definition (La) to represent the exact composite (0) or Service
abstract(1) or service link(2), Child Object (Oc) to know whether the service requires
to complete any pre-requisite services, Terminating Service(Ts) to represent whether
the service is the end service, PreCondition for executing the service (Pc), Service
Parameters(Sp) containing the list of service level parameter such as failure rates,
trust binding values and the task decomposition.

3.2 Community Manager Selection

The service initialize request message contains the Service Identifier(Id) to uniquely
identify the service, Service Name(Sn) to describe the service, Intermediate results
(Ir), user preferences(Pr) containing the list of user preferences which helps the
community manager to maintain the service quality as requested by the requestor
node, community manager identifier (Cm) to uniquely identify the community
manager, context broker identifier (Cb) to identify the context broker to handle the
user inputs and the reply messages(Rm) sent by the responder nodes which contains
the list of the information along with the service level information in each responder
nodes which can be used as the results of the service discovery.

The Pr contains the list of user preferences which includes the quality of service

parameters, task decomposition values, service level agreement between the
community manager and requestor node. The requestor node simply acknowledges
the message sent by the community manager.

The service response message sent by the community manager contains the service

identification(Id) to uniquely identify the service, Intermediate results (Ir), community
manager identifier (Cm) to uniquely identify the community manager, timeout (Tm)
in milliseconds to denote the validity of the intermediate results sent by the
community manager and the criticality flag (C) specifying the completion of the task.
The last response message has the value true set in the flag.

Responder Node Service Response
M(Id,Sn,La,Oc,Ts,Pc,Sp)

Service Initialize Request Message
M(Id,Sn,Ir,Cm,Cb,Pr,Rm)

Service Response Message
M(Id,Ir,Cm,Tm,C)

116 P. Kumaran and R. Shriram

3.3 Critical and Non-critical Service Identification

The proposed service composition model classifies the entire services as critical and
non-critical based on the service level parameters. The critical services are those
services whose providers are very less in number (N), higher failure rates and low
trust binding values. The value of N is either system preferences or the user
preferences. The requestor node sent the value for N as part of the user preference
parameter Pr. If not specified, the system preferences is chosen.

The community manager forms the community using the Rm updated as part of the
service initialize request message. It might not be necessary that all the nodes
available in the Rm to be part of the community. The Service Evaluation model
shown in Figure 2 is used to identify the nodes which are actively participating in the
community by the community manager. The Service Evaluation model used in our
work is the enhancement of the work proposed in [3]. We have enhanced the
evaluation model to incorporate the identification of service criticality.

3.4 Service Evaluation Model and Community Formation

The parameter C is introduced for representing the criticality of the service and its
value is decided based on the integration function of system and user preference.

Fig. 2. Service Evaluation Model

If the C takes the value R, then Cs(No of critical service) is checked. Based on the
value of Cs, the community manager decides to proceed for the dynamic community
expansion or not. If the value of Cs is 1, then the community manager will go for the
dynamic expansion of the community (Figure 3).

Once the service evaluation model is constructed, there may be more than one
qualified node for a service. The objective of the service evaluation is to evaluate the
service value for each node in the list L, and then sorts in the descending order. We
are calculating the service value by taking into account the parameters such as quality

 Critical Aware Community Based Parallel Service Composition Model 117

of service, time taken for completion and past trust rating. After the service
evaluation nodes are ranked, the community manager identifies the top ranked nodes
in the list for forming the community. Though only one service node is chosen for the
non-critical service, two top ranked service nodes for critical services in the list is
considered for forming the community. Hence the community manager constructs the
community with the nodes providing both the critical and non-critical services.

The community manager sends the message containing the information related to

the community to the requestor node and the participating nodes in the community.
The requestor node updates this message as part of the intermediate results(Ir) and
sends back the responds to the community manager. The timeout for the next message
will also be sent along with this message. The Intermediate result(Ir) format sent by
the community manager for the community formation contains the number of nodes
(N) to denote the set of nodes in the community, objective of the community (M) to
represent the set of community goals or missions, define the community
characteristics (Cp) such as community identity, number of nodes, community
coordination manager, and community resources needed.

3.5 Service Activation

In the service activation phase, the critical services are given priority and are executed
using the parallel service composition model. The two top ranked service nodes in the
service evaluation model ordered list (L) are executed in parallel. If either of the
service faulted, the next ranked node providing the critical service is executed. If not
available, the service discovery for critical service is initiated by the community
manager. The parallel composition model we proposed in our earlier work [4] is used
to execute the critical services in parallel to achieve better quality of service. We
briefly have given below the service activation using our parallel composition model.

The composition task is implemented with two major components: a) the service
manager, b) service activation engine. The service manager works for parallel
composition by dividing the overall task into a set of independent set of service tasks
that can be executed in parallel. The task is now split by the service manager into two
independent threads. The threads are executed in the service activation engine.

After the execution of the critical services, the results are sent back to the requestor
node with the next timeout period mentioned. The requestor Node acknowledges the
message. The service nodes providing the critical services can be released by the
community manager from the community. After all the critical services are executed
the non-critical services are executed.

Intermediate Result Message
M(N,M,Cp)

Service Evaluation Function
F(S,P,L,C)

118 P. Kumaran and R. Shriram

3.6 Fault Management

We have incorporated the fault handling mechanism for achieving the better quality
of service. We have identified three fault origination points which includes Service
Node failure, Community manager failure and the Requestor node failure. The service
node failure happens when either the service node leaves the community, move away
from the network or due to the any kind of network failure. If the service node was
not able to activate the service due to any of the reasons mentioned above, the next
ranked node in the list (L) providing the similar service is activated.

There might be the scenario where the community manager can itself get faulted
due to network instability. The community manager updates the requestor node with
the intermediate results and the timeout for the arrival of the next message. If the
community manager itself faulted and not able to communicate to the requestor node,
the requestor node will wait till the timeout period lastly updated by the community
manager along with the intermediate result. After the timeout period, it recognizes
that the community manager is not reachable and initiates the new service initialize
request for the new community manager selection and the intermediate results are
sent to the new community manager for further processing.

If the community manager does not get the acknowledgement from the requestor
node after sending the intermediate results, then it considers the requestor node gets
faulted. If the user preference parameter for erred acknowledgement is false, then it
stops the service execution and stores the intermediate results to the PSNR with a
timeout period above which the data are deleted. If the requestor node had a chance
to acknowledge with the delay or trying to initialize the same service initiate request,
then the community manager shares the data from the PSNR. If the user preference
parameter for erred acknowledgement is true, then the community manager continues
the service activation till the end and stores the service results in the PSNR.

4 Experimental Setup and Results

The middleware was implemented in J2ME with an Apache Server backend working
as the community network server. The community network server in turn contacts the
various service providers and gets the jobs executed. The faults are injected at the
service nodes at runtime. If any service node faults, the community manager selects
another service node from the ordered list and the service execution proceeds. This is
done till the job is completed. At any point of time, for the critical service two
alternative parallel services by service nodes are always executing.

We have conducted ten experiments with different number of mobile nodes
forming different communities. For experiment purpose, currently QoS and Service
Execution Time for each mobile node are taken for the evaluation. The two top
ranked service nodes in the ordered list are executed in parallel. The failure nodes and
their failure times are defined at runtime during the service execution. The Service
reconfiguration is done when the node gets faulted, the next service node in the
ordered list is chosen and the time taken for reconfiguration is noted. The Service
Composition Time and the fault recovery time are calculated at the completion of
task. For the experimental purpose, we have considered the independent service tasks.

 Critical Aware Community Based Parallel Service Composition Model 119

In the service initialize request message the nodes that provide the required tasks
are identified by the community manager. Based on the service response messages
which contains the failure rates and trust binding values the requestor node selects the
community manager. We used N0 as the community manager.

Table1. Experimental Datasets and Results

DATASET
NO OF

MOBILE
NODES

PARALLEL COMPOSITION
CRITICAL AWARE

COMPOSITION
TOTAL
TIME

TAKEN

RECOV
ERY
TIME

QOS
TOTAL
TIME

TAKEN

RECOV
ERY
TIME

QOS

1 6 16 0 35 10 0 42
2 5 11 0 26 7 0 35
3 5 37 19 23 20 10 31
4 6 69 38 65 45 16 72
5 6 51 9 18 32 6 29
6 5 37 18 47 18 10 60
7 5 39 0 18 19 0 23
8 4 40 16 22 20 10 30
9 4 49 14 30 24 9 40

10 6 38 20 19 17 11 34

In the service evaluation phase, we identified the critical and non-critical services.

We then execute the function to rank the service nodes. The ordered list is updated
based on the function. The QoS values are updated as part of the ordered list. We
injected the fault he node dynamically into the service node. In our model, the top two
ranked service value threads are executed in parallel and based on the rankings, the
clusters are formed with the given set of nodes. In the service activation phase, the top
ranking nodes are executed in parallel to accomplish the task. If any error occurs during
the activation phase, the faulted sub tasks need not be re-executed as the same is done in
parallel with the another set of nodes which leads to the minimal composition length.
The same pattern is followed for the entire cluster in the execution phase till the task is
completed. In our proposed work, instead of the rankings based on the QoS parameter,
we have used the function to construct the list of service nodes for parallel execution
which improves the performance of the overall system.

Fig. 3. Results of Critical Aware Service Composition Models – Composition time

120 P. Kumaran and R. Shriram

The result graphs in the Figure 4 shows that the critical service composition model
gives better results compared to the parallel composition model for the data sets.

The Figure 5 infers that for a set of independent subtasks taken, the failure
recovery time is comparatively less in our model compared to the traditional model.

Fig. 4. Results of Critical Aware Service Composition Models – Recovery time

The Figure 6 shows that the critical aware service composition model shows better
quality of service than the parallel model for the set of independent sub tasks services.

Fig. 5. Results of Critical Aware Service Composition Models – QoS

5 Conclusion and Future Work

We introduced a novel approach to study the service composition problem for
pervasive composition environments. The services have been classified as critical and
non-critical based on the service parameters. We modeled the systems operation for
various eventualities and designed a fault tolerant critical aware parallel service
composition model using an ad-hoc community network. The system was tested
experimentally. The proposed critical aware composition model gives better
performance in the fault situation as the recovery time is comparatively less. In future,
the work will be tested in a large scale with over 100 nodes for more parameters and
the operation of the overall system improved. Our work is unique and different from
the existing systems in that the work combines the best of a parallel, critical task
aware community based architecture for the pervasive computing system.

 Critical Aware Community Based Parallel Service Composition Model 121

References

1. Brønsted, J., Hansen, K.M., Ingstrup, M.: Service Composition Issues in Pervasive
Computing. IEEE Journal of Pervasive Computing 9(1), 62–70 (2010)

2. Ibrahim, N., Mouël, F.L.: A Survey on Service Composition Middleware in Pervasive
Environments. IJCSI International Journal of Computer Science Issues 1 (2009)

3. Chakraborty, D., Joshi, A., Finin, T., Yesha, Y.: Service Composition for Mobile
Environments. Journal on Mobile Networking and Applications, Special Issue on Mobile
Services 10(4), 435–451 (2005)

4. Shriram, R., Sugumaran, V., Vivekanandan, K.: A middleware for information processing
in mobile computing platforms. International Journal of Mobile Communications 6(5),
646–666 (2008)

5. Kalasapur, S., Kumar, M., Shirazi, B.: Dynamic Service Composition in Pervasive
Computing. IEEE Transactions on Parallel and Distributed Systems 18(7), 907–918 (2007)

6. Kumaran, P., Shriram, R.: Service Composition Middleware for Pervasive Computing. In:
3rd International Conference on Network and Computer Science, vol. 6, pp. 26–28 (2011)

7. Chang, S.-C., Liao, C.-F., Liu, Y.-C., Fu, L.-C., Wang, C.-Y.: A spontaneous Preference
Aware Service Composition Framework for Message-Oriented Pervasive Systems. In: 4th
International Conference on Pervasive and Computing Applications (2009)

8. Chang, H.-C., Liao, C.-F., Fu, L.-C.: Unification of Multiple Preferences and Avoidance of
Service Interference for Service Composition in Context-Aware Pervasive Systems. In: 7th
ACM International Conference on Pervasive Services (2010)

9. Qian, Z., Wang, Z., Xu, T., Lu, S.: A dynamic service composition schema for pervasive
computing. J. Intell. Manuf. (2010)

10. Kumar, M., Shirazi, B.A., Das, S.K., Sung, B.Y., Levine, D., Singhal, M.: PICO: A
middleware framework for Pervasive Computing. IEEE Pervasive Computing 2(3), 72–79
(2003)

	Critical Aware Community Based Parallel Service Composition Model for Pervasive Computing Environment
	Introduction
	Related Study
	Service Composition Model
	Service Request Initialization
	Community Manager Selection
	Critical and Non-critical Service Identification
	Service Evaluation Model and Community Formation
	Service Activation
	Fault Management

	Experimental Setup and Results
	Conclusion and Future Work
	References

