
Proposal of Formal Verification of Selected
BPMN Models with Alvis Modeling Language�

Marcin Szpyrka, Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof Kluza

Abstract. BPMN is a leading visual notation for modeling business processes. Al-
though there is many tools that allows for modeling using BPMN, they mostly do not
support formal verification of models. The Alvis language was developed for mod-
eling and verification of embedded systems. However, it is suitable for the modeling
of any information systems with parallel subsystems. The goal of this paper is to de-
scribe the concept of using Alvis for a formal verification of selected BPMN models.
In the paper a translation from BPMN to Alvis model is proposed. The translation
is discussed and evaluated using a simple yet illustrative example.

1 Introduction

Modeling of business process can be considered on two levels. The first one con-
cerns the visual specification with a modeling notation e.g. BPMN. The second one
is related to the correctness of the process model. This general feature is of great
importance in case of safety critical systems. The analysis of the formal aspects of
the model opens up possibility of optimization of the process model.

The goal of the paper is to describe the possibility of using Alvis for a formal
verification of BPMN models. Alvis [6] has been originally defined the modeling
and verification of embedded systems, but it is also suitable for the modeling of any
information systems with subsystems working in parallel. One of the main advan-
tages of this approach is the similarity between BPMN and Alvis models. The Alvis
model resembles the original BPMN one from the graph structure point of view.

Marcin Szpyrka · Grzegorz J. Nalepa · Antoni Ligęza · Krzysztof Kluza
AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: {mszpyrka,gjn,ligeza,kluza}@agh.edu.pl
� The paper is supported by the BIMLOQ Project funded from 2010–2012 resources for

science as a research project.

F.M.T. Brazier et al. (Eds.): Intelligent Distributed Computing V, SCI 382, pp. 249–255.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{mszpyrka,gjn,ligeza,kluza}@agh.edu.pl

250 M. Szpyrka et al.

Thus, after a verification of the Alvis model, it is easy to link the model properties
to the properties of original BPMN model.

The paper is organized as follows. Section 2 provides a short presentation of
BPMN and Alvis modeling languages. It presents a BPMN model of the student’s
project evaluation process. Selected Alvis features that are essential from the con-
sidered problem point of view are described as well. The transformation method
from BPMN to Alvis is described in Section 3. We have limited the presentation
to describing a simple case study. However, it is possible to use this approach with
more complex models. A short summary is given in the final section.

2 BPMN and Alvis Modeling Languages

Business process [7] can be defined as a collection of related, structured tasks that
produce a specific service or product (serve a particular goal) for a particular cus-
tomer. Business Process Model and Notation (BPMN) [5], is a visual notation for
modeling business processes. The notation uses a set of predefined graphical el-
ements to depict a business process and how it is performed. For the purpose of
this research, only a subset of BPMN elements is considered i.e. elements used to
model orchestration business processes, such as flow objects (events, activities, and
gateways) and connecting objects (sequence flows). The model defines the ways
in which individual tasks are carried out. Gateways are to determine forking and
merging of the sequence flow between tasks depending on some conditions. Events
denotes something that happens in the process. The icon within the event circle
denotes the event type, e.g. envelope for message event, clock for time event.

Let us analyze a BPMN use case describing a student project evaluation process.
The diagram shown in Fig. 1 depicts the evaluation process of a student’s project for
the Internet technologies course. The process is applied to the website evaluation. At
the beginning, the syntax is automatically checked. Every website code in XHTML
needs to be a well-formed XML and valid w.r.t. XHTML DTD.

Syntax
validation

Preliminary
content

checking

passed

syntax error

missing
basic
content

Evaluation of a
student’s work

ready for
evaluation

Request for
completing

project

Expecting for
the completed

project

waiting
time
expired

the com-
pleted
project
reveived

Fig. 1 An example of the student’s project evaluation process

Proposal of Formal Verification of Selected BPMN Models 251

If the syntax of the project file is correct, preliminary content checking is per-
formed. Then, if the project contains expected elementary tags (e.g. at least several
headings, an image and a table), it can be evaluated and a grade can be given ac-
cording to some specified evaluation rules [3]. On the other hand, if the project
contains any syntax error or lacks some basic required content, it is requested to be
completed. After receiving the completed project, the whole process starts from the
syntax checking again. However, if the completed project is not received on time,
the process is terminated (thus, the author of the project does not get a credit).

The key concept of Alvis [6] is an agent that denotes any distinguished part of
the system under consideration with a defined identity persisting in time. An Alvis
model is a system of agents that usually run concurrently, communicate one with an-
other, compete for shared resources etc. To describe all dependences among agents
Alvis uses three model layers: graphical, code and system one. The code layer is
used to define the behavior of individual agents. Each agent is describe with a piece
of source code implemented in Alvis Code Language (AlvisCL) [6]. From the code
layer point of view, agents are divided into active and passive ones. Active agents
perform some activities and each of them can be treated as a thread of control in
a concurrent or distributed system. Passive agents do not perform any individual ac-
tivity, but provide a mechanism for the mutual exclusion and data synchronization.
The graphical layer (communication diagram) is used to define interconnections
(communication channels) among agents. A communication diagram is a hierarchi-
cal graph whose nodes may represent both kinds of agents (active or passive) and
parts of the model from the lower level. From users point of view, the system layer
is predefined and only graphical and code layers must be designed. Alvis provides
a few different system layers. The most universal one is denote by α0 and makes
Alvis similar to other formal languages. The layer is based on the following assump-
tions: each active agent has access to its own processor and performs its statements
as soon as possible; the scheduler function is called after each statement automati-
cally; in case of conflicts, agents priorities are taken under consideration.

3 BPMN to Alvis Transformation

The transformation procedure starts with preparing the initial set of agents. Initially,
each activity is treated as a potential active agent in the corresponding Alvis model.
Because the names of agents in Alvis are programming identifiers that must start
with an upper-case letter, the initial set of agents is as follows: {SV, PCC, RCP, ESW,
ECP}, where SV stands for Syntax validation, etc. In the second stage, the initial set
of agents is optimized. Consider the Request for completing project activity: From
the data flow point of view, the corresponding Alvis agent works like a buffer that
collects a signal/value and then sends it to the next agent.

The agent realizes three steps (entering the loop, in and out statements) in every
cycle of its activity. These steps do not provide any essential information from the
verification point of view, but influence the state space size. Without losing any
possibility of the Alvis model verification, we can join the RCP and ECP agents into
one (ECP name has been chosen for the agent that represents these two activities).

252 M. Szpyrka et al.

For each agent identified in the previous stage we have to define its interface i.e.
the set of ports. To do this, we consider the set of surrounding edges for a given
BPMN activity. Surrounding edges are these ones that go to or from the activity, but
if an edge goes from the activity to a gateway, instead of the edge we consider edge
going from the gateway. Each surrounding edge is transformed into a port of the
corresponding agent. Moreover, we have to add names (identifiers) for each port.
The result of this step for the Syntax validation activity is shown in Fig. 2. The edge
drawn with dashed line is not a surrounding edge for the considered activity.

Syntax
validation

passed

syntax error

SV

submit

passed

get

error

Syntax
validation

Preliminary
content

checking

passed

syntax error

missing
basic
content

Request for
completing

project

SV

submit

passed

get

error

ECP

project

error

resubmit

time_out

PCC

get error

passed

seds

syntax error

missing
basic
content

Fig. 2 Transformation of the Syntax validation activity to the SV agent (left), Generation of
communication channels (right)

To complete the SV agent definition it is necessary to define its behavior:

data Project = None | Defective | CorrectSyntax
| CorrectContent String String deriving(Eq,Show);

data Grade = Grade Char deriving(Show);}
-- ...
agent SV {

pr :: Project = None;
in submit pr;
loop {
if(pr == Defective) { out error; }
else { out passed pr; }
pr = None;
in get pr; }

It should be underlined that the BPMN XOR gateway is represented here by the
if else statement. The SV agent: waits for a project to evaluate; collects it via the
submit port; uses the pr parameter to store the project; if the project is defective,
sends a signal via the error port, otherwise sends the project via the passed port;
waits for revised project (if necessary).

Other agents in the Alvis model are defined in very similar way. Let us focus only
on the most interesting features of the code layer. In the model, a student is treated
as a part of the system environment. Thus, a project (submission or resubmission),
a grade and a timeout are sent via border ports. The ports are specified as follows:

Proposal of Formal Verification of Selected BPMN Models 253

in submit Project [0] durable; out time_out [] [];
in resubmit Project [1..] signal durable; out grade Grade [];

It means that a value of the Project data type can be sent once (at the beginning)
via the submit port and may be sent (it’s not necessary) via the resubmit port every
one day. In both cases, if a Project value is provided by the environment, it waits
for serving. A signal (without any particular value) can be sent any time via the
time_out port and a value of the Grade data type may be sent via the grade port.

The last stage of the transformation procedure is to define communication chan-
nels in the Alvis model graphical layer. In most cases it is easy to point out pairs
of ports that should be connected. In the considered example, the most interesting
is the transformation of the OR gateway (see Fig. 2). It is necessary to connect two
ports (SV.error and PCC.error) with the ECP.error port.

The transformation of a BPMN model into an Alvis one is only a half-way to the
formal verification of the BPMN model. Next, the Alvis model is transformed into
a Labelled Transition System (LTS) that is used for a formal verification. An LTS
graph is an ordered graph with nodes representing states of the considered system
and edges representing transitions among states. A state of a model is represented
as a sequence of agents states. A state of an agent is four-tuple: agent mode (e.g.
running, waiting), its program counter (point out the current step/statement), context
information list (additional information)and a tuple with parameters values (see [6]).
The initial state for the considered system is:

SV: (running,1,[],-)
PCC: (running,1,[],-)
ECP: (running,1,[],-)
ESW: (running,1,[],(-,-))

*: submit/0, resubmit/1

It means that all agents are running and are about to execute their first steps.
The last line means that a value will provided from the environment to the submit
port immediately, and in 1 day a value via the resubmit port may be provided.

An LTS graph is verified with the CADP toolbox [1]. CADP offers a wide set of
functionalities, ranging from step-by-step simulation to massively parallel model-
checking. Let us focus on the considered model safeness properties. The LTS graph
contains 1438 nodes. Many of them are results of the Alvis language specificity. For
example, Alvis distinguish the states before and after entering a loop that do not
correspond to different states of the BPMN model. From the BPMN model point
of view, an analysis of the corresponding Alvis model deadlocks is very important.
Deadlocks are state without any transition going from them. Moreover, states that
represent a situation when the environment generates signals but the Alvis model
does not respond to them are also treated as deadlocks. The LTS graph for the model
contains only one state without a transition going from it:

SV: (W,7,[in(get)],-)
PCC: (W,2,[in(get)],-)
ECP: (F,0,[],-)
ESW: (W,1,[in(get)],(-,-))

254 M. Szpyrka et al.

It represents the situation after the ECP agent time out. Moreover, the LTS graph
contains 4 other deadlocks that represent situations after grading a project. From the
LTS graph analysis, we can also conclude that our system always provide a grade for
a project with correct content, and that for any received project, the system provide
a grade or a request for a revised project.

4 Conclusion and Future Work

Practical analysis of business process models is needed in case of many systems, e.g.
control or embedded systems. The analysis of the formal aspects of the model al-
lows for optimization of the model. To perform it, translations of the process model
to some formal specification can be considered. Alvis language was developed for
modeling and verification of embedded systems. It is suitable for the modeling of
any information systems with parallel subsystems. The goal of this paper is to de-
scribe the concept of using Alvis for a formal verification of selected BPMN models.

In the paper, a proposal of the translation from BPMN to Alvis model is dis-
cussed and evaluated using an example. The transformation of a BPMN model into
an Alvis model allows for formal verification. The Alvis model is transformed into
a Labelled Transition System that is used for a formal verification. There are two
possible approaches to a formal verification of an LTS graph. It can be also encoded
using the Binary Coded Graphs format and verified with the CADP toolbox.

As future work, a heterogeneous verification approach is considered. In this case
the XTT2 rule language [4] is proposed to model selected activities. XTT2 rules
(and tables) can be formally analyzed using the so-called verification HalVA frame-
work [2]. In this approach table-level verification would be performed with HalVA
and the global verification would be provided translation to Alvis model.

References

1. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the construc-
tion and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

2. Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: HalVA – rule analysis framework for
XTT2 rules. In: Bassiliades, N., Governatori, G., Pasckhe, A. (eds.) RuleML2011 - Inter-
national Symposium on Rules, Lecture Notes in Computer Science, Springer, Heidelberg
(accepted for publication 2011)

3. Nalepa, G.J., Kluza, K., Ernst, S.: Modeling and analysis of business processes with busi-
ness rules. In: Beckmann, J. (ed.) Business Process Modeling: Software Engineering,
Analysis and Applications, Business Issues, Competition and Entrepreneurship. Nova Sci-
ence Publishers (to be published, 2011)

4. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems.
International Journal of Applied Mathematics and Computer Science 20(1), 35–53 (2010)

Proposal of Formal Verification of Selected BPMN Models 255

5. OMG: Business Process Model and Notation (BPMN): Ftf beta 1 for version 2.0 specifi-
cation. Tech. Rep. dtc/2009-08-14, Object Management Group (2009)

6. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – modelling language for concurrent
systems. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision Sys-
tems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 315–341. Springer,
Heidelberg (2011)

7. White, S.A., Miers, D.: BPMN Modeling and Reference Guide: Understanding and Using
BPMN. Future Strategies Inc., Lighthouse Point (2008)

	Proposal of Formal Verification of Selected BPMN Models with Alvis Modeling Language
	Introduction
	BPMN and Alvis Modeling Languages
	BPMN to Alvis Transformation
	Conclusion and Future Work
	References

