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Preface

Computer Vision is the science and technology of machines that see. The domi-
nant scientific conferences in computer vision, such as ICCV, CVPR and ECCV,
concentrate on theories and models for obtaining information from images and
image sequences. The intensely competitive nature of these conferences leaves
little room to address the systems and engineering science issues necessary for
transforming vision theory into practical vision systems. The International Con-
ference on Vision Systems, ICVS, was created to fill this gap.

The first ICVS was organized in December 1999 at Las Palmas in the Canary
Islands to provide a forum for research on systems architecture, benchmarks and
performance evaluation. Since that time, the field of computer vision has made
impressive progress, with the emergence of reliable techniques for interest point
detection and matching, image indexing, category learning, object detection,
recognition and classification. Meanwhile, computing power has become much
less of a barrier to building vision systems. Desktop computers have evolved from
machines with 100-MHz clocks and a few megabytes of memory to multi-core
architectures with multiple GHz clock processors and gigabytes of memories.
This progress has been reflected in the emergence of techniques documented in
ICVS conferences in Toronto in 2001, Vancouver in 2002, Graz in 2003, New
York in 2005, Santorini in 2007, and Liège in 2009. We continued this tradition
with the 8th International Conference on Vision System in Sophia Antipolis.

The conference Program Committee received 58 submitted papers. Each pa-
per was assigned to three reviewers from among the 31 members of the review
committee, leading to the selection of 22 papers for oral presentation at the con-
ference. These were organized into seven sessions, showcasing recent progress in
the areas performance evaluation, activity recognition, control of perception, and
knowledge-directed vision. The program was completed by presentations from
three invited speakers, exploring areas of particularly high potential for impact
on the engineering science of vision systems.

The emergence of mobile computing has led to a revolution in computer vision
systems. The ubiquitous nature of cameras on mobile telephones and tablets
has enabled new applications that combine vision and mobility with ubiquitous
access to information over the Internet. However, the limited computing and
electrical power of mobile platforms has limited these systems. This is set to
change with the emergence of low-power GPUs specifically designed to support
computer vision and graphics on mobile devices. The invited talk by Joe Stam of
NVIDIA described the emerging use of GPUs as a hardware platform for vision
systems on personal computers and described the new generation of devices for
mobile platforms such as cameras and tablets.



VI Preface

The use of open source systems has had a profound impact on all areas
of informatics, including computer vision. Our second invited speaker, Gary
Bradski, has been an early champion of open source software for computer vision.
Gary launched the OpenCV library as a standard open source repository for
computer vision in the late 1990s. Since that time OpenCV has emerged as
the standard source for vision software, enabling rapid prototyping of computer
vision systems for an increasingly diverse variety of applications. In our second
invited talk, Gary Bradski retraced the emergence of OpenCV as a standard,
and presented the wide scope of applications that OpenCV has made possible.

Video surveillance and monitoring is currently one of the largest and most
active application areas for Computer Vision systems. In our third invited talk,
Mubarak Shah discussed the software engineering aspects, as well as the vision
techniques used for object detection, tracking and activity recognition in both
ground-based and aerial surveillance systems.

We wish to thank all authors who submitted papers for the program, as well as
the Program Committee for providing reviews as well as feedback to the authors.
We would also like to thank the local organizers for the local arrangements. Most
importantly, we thank the participants, for providing discussion and debates that
stimulate progress in the science and technology of computer vision systems.

July 2011 James L. Crowley
Bruce Draper

Monique Thonnat
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Knowing What Happened - Automatic

Documentation of Image Analysis Processes

Birgit Möller, Oliver Greß, and Stefan Posch

Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06120 Halle/Saale, Germany

{birgit.moeller,oliver.gress,stefan.posch}@informatik.uni-halle.de

Abstract. Proper archiving or later reconstruction and verification of
results in data analysis requires thorough logging of all manipulative ac-
tions on the data and corresponding parameter settings. Unfortunately
such documentation tasks often enforce extensive and error prone manual
activities by the user. To overcome these problems we present Alida, an
approach for fully automatic documentation of data analysis procedures.
Based on an unified operator interface all operations on data including
their sequence and configurations are registered during analysis. Sub-
sequently these data are made explicit in XML graph representations
yielding a suitable base for visual and analytic inspection. As example
for the application of Alida in practice we present MiToBo, a toolbox for
image analysis implemented on the basis of Alida and demonstrating the
advantages of automatic documentation for image analysis procedures.

Keywords: automatic documentation, meta data, XML, processing
graph, image analysis.

1 Introduction

In many fields of application the amount of data that needs to be analyzed is
constantly growing. Thus, manual analysis of large datasets gets impossible and
the need for automatic analysis procedures arises. A further driving force behind
automatic data analysis is its potential to produce objective and reproducible
results compared to the subjective outcome of human inspection of data. How-
ever, besides the results per se, it is often also of interest how the results where
achieved. Hence, monitoring data analysis yields a documentation of the process
and facilitates verification later-on, as well as long-term archival storage.

Documentation of analysis processes can, by nature, be formalized more eas-
ily for automatic procedures, as the input data and the algorithmic operations
performed including parameter settings determine the output in a deterministic
way in most cases. However, to manually create a detailed documentation is te-
dious and error prone. In addition, it has to be taken into account that software
usually evolves over time. While the development itself is tracked by revision
control systems, the execution of programs and generation of actual results is
usually not linked to these systems.

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 1–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 B. Möller, O. Greß, and S. Posch

In this paper we present our approach Alida1 for fully automatic documen-
tation of analysis processes to ease the generation of documentation, automatic
reconstruction and verification of analysis results. The documentation extracted
includes all input and output objects involved, manipulations performed with all
relevant parameters, the flow of data, and also software versions used. All this
information is summarized in the processing graph which is implicitly defined by
any analysis process, and made explicit by Alida.

Our approach is based on two fundamental building blocks. To monitor all data
manipulations of an analysis process, manipulations are realized in terms of oper-
ators providing unified interface definitions and following clearly specified invoca-
tion procedures. Secondly, all objects ever manipulated are registered within the
system and linked to manipulating operators resulting in an implicit representa-
tion of the processing graph. For each output object this graph can subsequently
be made explicit and stored in terms of an XML representation. This allows for
convenient visualization, reconstruction and verification of results at a later point
in time, and also for long-term archiving, e.g., in databases. Alida enforces min-
imal restrictions for users and programmers to automatically generate the docu-
mentation, interfering as little as possible with usual software development cycles,
and resulting in automatic documentation with a minimum of overhead.

One important area where the automatic analysis of data has become an
indispensable tool during the last decades are applications dealing with data
from optical sensors and digital cameras, or relying on the analysis of visual
information in general. In particular, in biomedical image analysis the amounts
of data are growing fast, and objectivity of results is an important issue as the
variation within manual analysis results of humans is often immense [13].

We demonstrate Alida’s practical relevance regarding this field using as an
example MiToBo, a toolbox for biomedical image analysis. It makes use of Alida’s
documentation capabilities to allow for parameter logging and process documen-
tation in biomedical research as well as in image analysis algorithm development.

The remainder of this paper is organized as follows. In Section 2 we briefly
review related work, while Section 3 presents a detailed description of the auto-
matic documentation concept and its realization in Java. In Section 4 we deal
with the visualization of the processing history, describe practical experiences
applying Alida in Section 5, and make some concluding remarks in Section 6.

2 Related Work

Documentation of analysis processes and data manipulation actions is crucial
in many fields of applications. In particular computer-based data management
and analysis often requires detailed logging of what happens to given data, e.g.,
to reconstruct manipulative actions later-on or to verify data analysis results.
Obviously such logging procedures should be done automatically as explicit man-
ual documentation by the user is cumbersome and error prone.
1 Automatic Logging of Process Information in Data Analysis,
http://www.informatik.uni-halle.de/alida

http://www.informatik.uni-halle.de/alida
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The levels on which automatic logging and documentation may be accom-
plished vary significantly, starting from journaling file systems and logging pro-
cedures on the operating system level (e.g., [3,8]), continuing with automatic
tracing of user interactions (e.g., [11]), and ending up with explicit extraction of
semantic process meta information [10]. In particular the latter option, however,
sometimes requires introspection of applied software. In the scientific community
proper documentation of data analysis procedures and scientific result extraction
is essential for scientific authenticity and progress. Thereby the documentation
is supposed to subsume information about the data itself and its acquisition,
analysis and manipulation, and of course the results accomplished [6]. In several
fields, e.g., in bioinformatics (microarrays, proteomics), activities have evolved
to define common standards for data and process documentation [2,12].

With regard to biomedical imaging the Open Microscopy Environment
(OME)2 is working on standardized documentation of microscope image data
based on its own XML format OME-XML [6]. Besides detailed acquisition de-
vice data and image meta data, also options for documenting analysis steps are
intended [9]. However, while device and image meta data can often be extracted
automatically, gathering of analysis procedures’ meta information usually re-
quires explicit manual activities from user side.

3 Automatic Documentation

Here we introduce the concept of operators as the only place of data manipulation
leading to the interpretation of an analysis process as a processing graph. Then
we give some details of our Java implementation of the automatic documentation
framework Alida and the external representation of the processing history.

3.1 Operators

The background for automatic documentation is the concept of operators, being
the only places where data are processed and manipulated (see, e.g., [5]). The
data to be processed are considered as input objects of an operator. The types of
these objects are application dependent, e.g., in computer vision images or sets of
segmented regions are common. An operator receives zero or more input objects,
and its behavior is controlled or configured via parameters. Typical examples for
parameters are sizes of kernels, structuring elements, filter masks or weighting
constants. The application of an operator produces zero or more output objects.
The types of these objects are the same as for the inputs as in virtually all cases
an operator output may act as the input to other operators.

The basic assumptions of the documentation framework are as follows. The
output objects resulting from the application of an operator depend only on

• the values of the input objects,
• parameters of the operator, and
• the software version of the operator upon invocation.

2 http://www.openmicroscopy.org/site

http://www.openmicroscopy.org/site


4 B. Möller, O. Greß, and S. Posch

These assumptions are probably easy to agree upon. Note that the first two
state principles of reasonable software design avoiding, e.g., side effects or de-
pendencies on global variables. However, these basic assumptions underscore the
benefits of proper documentation of operators. If we know these bits of informa-
tion for a data object, e.g., an image stored in a file, we are able to understand
and reproduce its content completely.

3.2 Processing Graph

In almost all cases a single operator will not be sufficient to produce desired
results. Several operators will act sequentially or in parallel on the same or on
different data, and an operator may invoke further operators to accomplish its
goals. Such a sequence of operator calls may be understood as a directed acyclic
graph (DAG) which we call processing graph. If each invocation of an operator
is realized by a method call, the processing graph is a subgraph of the dynamic
call graph of the analysis process. To understand the process this DAG may also
be interpreted as a hierarchical graph, where the invocation of an operator is
represented as a nested child of the calling operator as shown in Fig. 1 for an
example graph. Each invocation of an operator is depicted as a rectangle. There
are further nodes in the graph representing the events where new data objects
are generated. These are shown as triangles and are denoted as data ports in
contrast to input and output ports of operators defined below. Typical examples
are reading data from file, cloning data or generating data from scratch.

Graph nodes are connected by edges indicating the flow of data. Each operator
features input and output ports each corresponding to one of the input and
output data objects. These ports may be conceived as the entry or exit points
of data into and out of the operator. Ports are depicted as filled ellipses in light
gray (input ports) and dark gray (output ports), respectively.3

Besides the graph structure, describing the operators applied and the data
flow between them, further required information are the parameters’ values upon
invocation and the software version of each operator. Continuing the argument
given above for a single operator, given this information along with the processing
graph allows to completely understand and reproduce the resulting data, given
knowledge of the initial input objects to the top most operator. This argument
is valid for the final output of the processing pipeline and also for temporary
results of processing. In the latter case a subgraph of the complete processing
graph contains all relevant information and may easily be extracted.

Obviously it is of interest to extend documentation of analysis beyond the
execution of single processes, as often intermediate results are persistently stored,
e.g., in files, and further processes perform additional operations on the data.
Such documentation across processes becomes feasible if not only the output
data itself are stored, but are accompanied by an external representation of the
processing graph including parameter values and software version. This allows to
retrace the complete processing history of a given data object back to the point

3 Colour codes for different entities have been converted to b/w in the proceedings.
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Fig. 1. Example processing graph representing the history for the data object shown
as bright ellipse. Each operator call refers to a rectangle, which is in lighter gray if
temporarily collapsed. Light and dark gray ellipses are input and output ports of op-
erators, triangles represent newly generated data objects. If read from file, the triangle
is tagged by the filename. If in addition a processing graph of a former analysis proce-
dure was read the triangle is coloured in dark gray and both graphs are connected by
a dashed edge.

of generation by a sensor and, thus, to reproduce the complete analysis pipeline.
In Fig. 1 the events of reading data from persistent memory are depicted as
triangles tagged with names showing, e.g., the name of a file read. Data objects
internally created from scratch are displayed by a gray triangle without name. If
a former processing history is associated with the data imported, its processing
graph is read as well and linked to the processing graph of the currently executing
process via a dashed edge. In this case the triangle is displayed in dark gray.

3.3 Implementation

We implemented this concept of operators and process documentation in Java,
but the concept can be transfered to other object-oriented languages as well. In
our implementation each operator has to extend the abstract class ALDOperator.
This is necessary to automatically generate the processing history upon
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public class ALDCalcMean extends ALDOperator {
@Parameter( label= ”data”, required = true,

type = Type.INPUT, explanation = ”Input data”)

private Double [] data;

@Parameter( label= ”mean”,type = Type.OUTPUT,explanation = ”Mean value”)

private Double mean = null;

@Parameter( label=”trim”, type=Type.PARAMETER,

explanation = ”Fraction of data to be trimmed”)

private float trim = 0.0f;

protected ALDCalcMean(Double [] data) throws ALDOperatorException {
this.data = data; }

protected void operate() { // code your operation here }

// getter and setter methods come here

}

Fig. 2. Code fragment implementing a simple operator

invocation without any efforts for the programmer. Basically two issues have
to be taken care of when implementing an operator, namely defining the inter-
face of the operator and implementing the operation or functionality itself.

The interface of an operator comprises the input and output objects and the
parameters of the operator. Each of these items is realized by a member variable
of the class. The annotation mechanism of Java is used to define

• a name or label,
• the role, e.g., as a parameter or output object,
• whether a parameter or input object is required or optional, and
• an optional explanatory text.

A simple example is shown in Fig 2.
In addition, an operator may use supplemental arguments, e.g., to define

variables to control output or debugging information or to return intermediate
results. The output of an operator is expected to be independent of the values of
these supplemental arguments, hence, they are not stored in the history. These
supplemental parameters are not tied to the operator concept in a strict sense, as
they could be realized by not annotated fields of a class. But, they are included
to facilitate code generation and graphical programming in the future.

The functionality of the operator is supplied by implementing the abstract
method operate(). Obviously, this method has access to all input and output
objects, as well as parameters, as these are realized as member variables.

To actually invoke an operator, an instance of the operator class is created,
the input objects and parameters of this object are set, and subsequently the
method runOp() supplied by ALDOperator is called. Upon return from runOp()
the output objects can be retrieved from the operator instance (see Fig. 3).



Automatic Documentation of Image Analysis Processes 7

ALDCalcMean mOp =
new ALDCalcMean(MyData);

mOp.setTrim( 0.1f);
mOp.runOp();
Double out = mOp.getMean();

Fig. 3. Code fragment showing
how to invoke an operator

The method runOp() realizes the core of
the documentation. Upon call it creates an
instance of the class ALDOpNode which rep-
resents this activation of the operator in the
processing graph. Each ALDOpNode is auto-
matically linked to its parent in the graph,
unless it is a top-level ALDOpNode having no
parent. Thus, the processing graph is incre-
mentally built on-the-fly as operators are in-

voked. To deliberately hide an operator invocation from the processing history,
runOp(true) may be used. In addition, runOp() links the input ports of all non-
null input objects to their current origin in the processing graph. This origin may
be an input or data port of the parent ALDOpNode or an output port of a sibling
ALDOpNode. For each data object this originating port is stored in a global weak
hash map and updated as the data object is passed to or from further operator
calls during subsequent processing. As a consequence only uniquely identifiable
objects are allowed as inputs and outputs, which excludes only primitive data
types, interned strings, and cached numerical objects.

Supplementing the construction of the graph, upon invocation the method
runOp() retrieves the current values of all parameters via the Java reflection mech-
anism and stores these in the ALDOpNode created. As the last necessary informa-
tion the current software version is acquired. To this end Alida defines an abstract
class ALDVersionProvider specifying methods for software version retrieval.
Concrete implementations of this class can be passed to the operator mechanism
at runtime. A factory infers the desired implementation via environment variables
or JVM properties and creates corresponding objects. As default implementation
Alida supplies the programmer with class ALDVersionProviderCmdLine read-
ing version data from the environment. Other options are straightforward, e.g.,
querying SVN repositories is implemented in MiToBo.

3.4 External Representation of the Processing History

To make use of the implicitly constructed processing graph, at any point of
processing the subgraph associated to a particular data object may explicitly be
extracted. To this end the originating port of the data object is queried from the
hash map mentioned above and the processing graph is built by traversing the
port links in a bottom-up fashion to collect all relevant ALDOpNodes including
parameter values and software version. For an external representation we serialize
the constructed processing graph to XML using graphML [1] as the basic tool.
We extended its schema description to satisfy our application specific needs
like the representation of properties, and use xmlbeans4 for code generation.
Although graphML supports the concepts of ports we prefer to model ports as
child nodes of an operator node in graphML because we need to attach more
complex information to ports than provided by graphML and as this gives more
flexibility regarding the visualization of processing graphs.
4 http://xmlbeans.apache.org

http://xmlbeans.apache.org
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4 Exploring the Processing History: Chipory

One important use of the processing history is the visual inspection of operators
including their sequence of invocation, and to scrutinize the parameter settings.

To support these needs we extended Chisio5 to handle the specific exten-
sions of the documentation framework yielding Chipory (Chisio for Processing
history). Chisio is a free editing and layout tool for compound or hierarchi-
cally structured graphs. In Chipory most editing and display functionality was
conserved, however, is not required for inspecting a processing history. Chisio
offers several layout algorithms where Chipory chooses Sugiyama as default as
this is most adequate for the hierarchical graph structure of processing histories.

Fig. 4. Screen shot of Chipory with details for the operator CellSegmentation and
the output port resultImage of the same operator

The processing graph displayed in Fig. 1 was in fact created using Chipory.One
important extension of Chipory with respect to Chisio is its support to collapse
operator nodes. Collapsing a node makes all enclosed operator and data nodes in-
visible, thus, only the ports of collapsed operators are shown. In the example there
are three collapsed nodes, depicted with their names on lighter gray background,
namely MTB GammaCorrection,DetectNuclei, and one invocation of ReadImage.
If a node is uncollapsed later on, all enclosed nodes are made recursively visible
again, until a previously collapsed node is encountered.

More details for operators and ports may be inspected using the Object prop-
erties of Chipory’s nodes. These are displayed in a separate window which can
be popped up for any selected operator node. Information displayed includes

• name of the operator or port,
• type of the node, e.g., opNode for operators,
• for operators the parameter values at time of invocation, their class names

and software versions,
5 http://sourceforge.net/projects/chisio

http://sourceforge.net/projects/chisio
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• for input and output ports the Java class of the data object as it is passed
into or out of the operator, along with the explanatory text of this port,

• for output ports additionally the properties recorded if the data object re-
sulting from the invocation of the operator is derived from the class ALDData.

In Fig. 4 this is shown for the operator CellSegmentation and the output port
with name resultImage of this operator.

5 Alida in Practice: The MiToBo Image Processing
Toolbox

We use Alida within our research on automatic analysis of microscope im-
ages (see, e.g., [7,4]). In particular, we have developed a software toolbox called
MiToBo6 using Alida as the core for automatic documentation. MiToBo is based
on and extends the widely-used Java image analysis framework ImageJ7. Within
MiToBo more than 100 operators are already implemented including basic image
processing operations like filtering or thresholding, segmentation employing ac-
tive contours, and also specific applications intended for the use by life scientists.

The integrated documentation capabilities of Alida significantly ease algo-
rithm development in MiToBo as well as scientific data preparation for publica-
tion. Automatic documentation simplifies parameter tuning in testing phases,
releasing the developer from sometimes cumbersome explicit parameter logging.
Once an algorithm has reached a stable status and, e.g., its results on specific
data are to be published, Alida guarantees for complete process logging and
easy reproduction of the results without enforcing additional efforts. Note that
this is independent of the scientist actually producing the results as no special
knowledge is needed to produce the documents.

Besides these benefits another important feature of Alida is the larger flexi-
bility it induces for the biologists in their daily work when seeking for suitable
software to analyze new kinds of data. Given the documentation of operations
and parameters with which earlier results on similar data were produced, exist-
ing algorithms can easily be tested by the biologists given the formerly optimized
set of parameters as a reasonable starting point. This not only helps biologists
to quickly obtain prototypical results, but it also yields valuable information for
computer scientists if adaptations of algorithms become necessary.

6 Conclusion

The integrated and automated documentation concept of Alida releases
programmers as well as users from time-consuming and error prone manual
documentation tasks during algorithm development and scientific data analy-
sis. For each generated result data item the complete trace of its processing
6 Microscope Image Analysis ToolBox, http://www.informatik.uni-halle.de/

mitobo
7 http://rsb.info.nih.gov/ij/index.html

http://www.informatik.uni-halle.de/mitobo
http://www.informatik.uni-halle.de/mitobo
http://rsb.info.nih.gov/ij/index.html
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history is available as well in an easy to interpret graphical representation as
in wide-spread XML format. Thus analysis, verification and reconstruction of
the analysis process can easily be accomplished even in the course of long-term
archival.

While for the moment Alida is mainly focused on the documentation task,
there are straightforward extensions towards automatic code generation from
formerly extracted processing histories. Also foundations for an integration of
the process documentation with graphical programming frameworks have been
established by well-defined operator interfaces and will be further investigated.
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Efficient Use of Geometric Constraints for

Sliding-Window Object Detection in Video
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Abstract. We systematically investigate how geometric constraints can
be used for efficient sliding-window object detection. Starting with a
general characterization of the space of sliding-window locations that
correspond to geometrically valid object detections, we derive a general
algorithm for incorporating ground plane constraints directly into the de-
tector computation. Our approach is indifferent to the choice of detection
algorithm and can be applied in a wide range of scenarios. In particular,
it allows to effortlessly combine multiple different detectors and to auto-
matically compute regions-of-interest for each of them. We demonstrate
its potential in a fast CUDA implementation of the HOG detector and
show that our algorithm enables a factor 2-4 speed improvement on top
of all other optimizations.

1 Introduction

Object detection has become a standard building block for many higher-level
computer vision tasks. Current detectors reach sufficient detection accuracies
[1] to support complex mobile scene analysis and multi-person tracking appli-
cations [2,3,4], and there is a strong call to make this performance available for
automotive and robotics applications.

Even though first CPU [5] and GPU [6,7] implementations of object detec-
tors have already been proposed that operate at several frames per second, the
pressure to develop more efficient algorithms does not subside. This is because
object detection is only part of a modern vision system’s processing pipeline and
needs to share computational resources with other modules. In addition, prac-
tical applications often require not just detection of a single object category,
but of many categories seen from multiple viewpoints [8]. Consequently, efficient
object detection is a very active field of research. Many approaches have been
proposed in recent years to speed up detection, including detection cascades
[5,9,10], efficient approximative feature representations [11,12], and alternatives
to the sliding-window search strategy [13].

The use of scene geometry enables computational speedups which are orthog-
onal to the approaches mentioned above. It is well-known that in many street-
scene scenarios, objects of interest can be expected to occur in a corridor of
locations and scales on the ground plane [14,3]. Approaches targeted at automo-
tive scenarios have used such constraints for a long time. Surprisingly, though,

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 11–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the employed geometric constraints are often defined rather heuristically, sam-
pling a few 3D locations and scales to be processed by the detector [15]. Such
an approach is feasible for single-class detection scenarios with limited camera
motion, but it quickly becomes impractical when multiple object class detectors
shall be combined or when the camera may undergo stronger motion (e.g. for
automatic sports video analysis or pan/tilt/zoom surveillance cameras).

In this paper, we derive a general solution for this problem that is applicable
to any camera, any ground plane, and any object detector or combination of
detectors (as long as perspective distortion is small enough such that objects can
still be detected upright in the image). Starting from geometric principles, we
analyze the space of sliding-window locations that correspond to geometrically
valid object detections under the constraints of a ground plane corridor. We
show that for a given detector scale, this space corresponds to an image region
that is bounded by two parabolas, and we give a practical formula to efficiently
compute the corresponding ROI. Based on this, we propose a sliding-window
algorithm that touches the minimal set of pixels to return all valid detections.

Our approach is flexible. It does not rely on a precomputed ground plane
corridor, but provides a principled algorithm to recompute the ROI for every
frame based on an estimate of the camera motion. The only information it
requires is the current ground plane homography, the projection of the ground
plane normal vector (both of which can be obtained either by structure-from-
motion [3] or homography tracking [16]), the height of the detection bounding
box in the image, and the real-world size range of the objects of interest.

In particular, this makes it possible to combine multiple object detectors with
minimum effort. It does not matter whether those detectors have been trained
on different resolutions [17] or for different viewpoints or real-world object sizes
[18]. Everything that is needed is each detector’s bounding box height in the
image and the target object’s real-world size range. We demonstrate this by
performing experiments for single-class pedestrian detection [19] and for multi-
viewpoint car detection (similar to [3,18]). In all cases, we show the validity of
our approach and quantify the resulting detector speed-ups. In order to perform
a fair quantitative evaluation of those speed-ups, it is important to apply our
algorithm to an already efficient detector implementation. We therefore combine
it with a fast CUDA implementation of HOG, which closely follows the original
HOG pipeline from [19]. Our resulting groundHOG pedestrian detector runs at
57fps for a street scene scenario without loss in detection accuracy.

Related Work. Several recent approaches have been proposed to integrate
scene geometry and detection [14,4,20,21,22]. Their main goal is to increase
precision by selecting consistent detections. However, scene geometry offers ad-
ditionally a potential speed increase, if one limits the detector’s search region.
Many automotive applications therefore employ a fixed, precomputed ground
plane corridor (e.g. [2]), which is deliberately left a bit wider than necessary in
order to compensate for changing camera pitch. Other approaches try to stabi-
lize the camera image by detecting the horizon line [23] or fit a ground plane to
stereo measurements [15]. A common approach is to then sample a fixed set of
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ROIs in 3D and to process the corresponding image regions with an AdaBoost
classifier [15]. Such an approach is possible when dealing with a single object
category, but it quickly becomes both inefficient and cumbersome when multiple
categories with different real-world sizes shall be detected simultaneously. Such
a scenario requires a more principled solution.

From the computational side, there are two major cost items in the design
of a sliding-window classifier: the evaluation of the window classifier itself and
the computation of the underlying feature representation. The success of the
Viola-Jones detector [5] has shown that for certain object classes such as faces
or cars, relatively simple Haar wavelet features are sufficient. This has been used
in the design of AdaBoost based detectors which evaluate the features for each
test window independently. For more complex object categories, Histograms of
Oriented Gradients (HOG) [19] have become the dominant feature representation
[1]. Unfortunately, HOG features are expensive to compute. Looking at highly
optimized CUDA implementations of the HOG detection pipeline [6,7], they
typically account for 60-70% of the total run-time of a single-class classifier.
It is therefore more efficient to precompute the features and to reuse them for
different evaluation windows [24,25], as is common practice in the design of SVM-
based detectors [19,18]. When combining several classifiers for different object
aspects or categories, the relative importance of the shared feature computation
decreases, but it still imposes a lower bound on the effective run-time.

In this paper, we therefore address both problems together: (1) Our proposed
algorithm automatically computes the ROIs in which each employed classifier
needs to be evaluated for each detection scale, such that it only considers geo-
metrically valid detections. (2) In addition, it returns the minimal set of pixels
that need to be touched for all detectors together, so that feature computation
can be kept efficient.

The paper is structured as follows. We first derive a general formulation for the
problem and analyze the space of sliding-window locations that correspond to
geometrically valid object detections (Sec. 2). Based on this analysis, we propose
a general algorithm for incorporating ground plane constraints directly into the
detector design (Sec. 3). Finally, Sec. 4 presents detailed experimental results
evaluating the approach’s performance in practice.

2 The Space of Valid Object Detections

The central question we address in this paper is: What is the space of all valid
detections? That is, if we only consider detection bounding boxes that correspond
to objects on the ground plane whose real-world size is within a range of Sobj ∈
[Smin , Smax ], what is the region in the image in which those bounding boxes can
occur? More concretely, we consider a sliding-window detector that processes
the image at a discrete set of scale levels. At each scale, a fixed-size bounding
box of height simg pixels slides over the image. We are interested in the positions
of the bounding box foot point yb that lead to valid detections.

Geometric Derivation. In the following, we address this problem in the
general case. We use the notation from [26], denoting real-world quantities by
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upper-case letters and image quantities by lower-case letters. Let us assume that
we have a calibrated camera with projection matrix P = K [R|t] watching a scene
containing the ground plane π with normal vector N(Fig. 1). We can define a
local coordinate system on the ground plane by an origin Q0 and two orthogonal
basis vectors Q1,Q2. The (homogenous) world coordinates X = [X, Y, Z, 1]T of
a point U = [U, V, 1]T on the ground plane are then given by the transformation

X = QU =
[
Q1 Q2 Q0

0 0 1

]
U (1)

and their projection on the image plane is given by the homography Hπ = PQ.
We now want to find an object with real-world height Sobj that is located on

or above ground plane position U and which extends from height Sb to height
St = Sb + Sobj . The projections x = [x, y, w]T of the object’s bottom and top
points Xb and Xt into the image are given by

xb = PXb = P (QU + SbN) = HπU + SbPN (2)
xt = PXt = P (QU + StN) = HπU + StPN. (3)

Writing hT
j = [hj1, hj2, hj3] for the row vectors of Hπ and using n = [n1, n2, n3]

T =
PN, we can compute the y coordinates of the corresponding image pixels as

yb =
hT

2U + Sbn2

hT
3U + Sbn3

, yt =
hT

2 U + Stn2

hT
3 U + Stn3

. (4)

We can now express the constraint that the projected object height in the image
should exactly correspond to the height of the sliding window given by simg :

yt = yb + simg (5)

hT
2U + Stn2

hT
3U + Stn3

=
hT

2U + Sbn2 + simg

(
hT

3U + Sbn3

)
hT

3U + Sbn3(
hT

2U+Stn2

) (
hT

3U+Sbn3

)
=

(
hT

2U+Sbn2+simg

(
hT

3 U+Sbn3

)) (
hT

3U+Stn3

)
The set of all ground plane locations U for which this constrained is fulfilled is
then given by the conic section C with

UTCU=0 (6)

[
U V 1

]⎡⎣h3hT
3 +

⎡
⎣0 0 a

0 0 b
a b c + d

⎤
⎦
⎤
⎦
⎡
⎣U

V
1

⎤
⎦=0 , where

[
2a 2b c

]
=

1
simg

[
(St − Sb)(n3hT

2 − n2hT
3 ) + simg(St + Sb)n3hT

3

]
(7)

d = StSbn
2
3 . (8)

It can easily be seen that the discriminant of the conic (i.e., the determinant
of its upper-left 2 × 2 matrix) is 0, since h3hT

3 has only rank 1. The equation
therefore represents a parabola, whose projection into the image is given by

xTDx = xTH−T
π CH−1

π x = 0 . (9)
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Analysis. In our sliding-window detection scenario, we are interested in finding
objects which have a real-world height in the range Sobj ∈ [Smin , Smax ]. From
the above derivation, it follows that the only windows at which those objects
can be found are located in the space between the two curves defined by D for
St = Sb + Smin and St = Sb + Smax . In the following, we analyze the detailed
shape of those curves further. If the camera viewing direction is exactly parallel
to the ground plane, then eq. (9) degenerates and defines a pair of lines (one of
which will be behind the camera). In order to analyze the remaining cases, we
perform the variable substitution[

Ū
V̄

]
=

[
h31 h32

−h32 h31

] [
U
V

]
(10)

and obtain the ground plane locations of the curve points on the parabola

V̄=
h2

31+h2
32

2(h32a−h31b)
Ū2 +

h33(h2
31+h2

32)+h31a+h32b

h32a−h31b
Ū +

(h2
33+c+d)(h2

31+h2
32)

2(h32a−h31b)
.

Of particular interest is the factor in front of the quadratic term Ū2. In a more
detailed analysis we found that the factor is negligible for most practically rele-
vant cases in automotive or mobile robotics scenarios, unless a wide-angle camera
is used. This means the parabola can be approximated by a line.

Obtaining the Ground Constraints. In the above derivation, we assumed
an internally and externally calibrated camera, as well as knowledge about the
ground plane. In an automotive or mobile robotics setup, this information can be
obtained by structure-from-motion and dense stereo measurements (e.g. [3,4]).
However, looking at the components of D in eq. (9), it becomes clear that the
curve is already fully specified if we know the ground plane homography Hπ

and the projection of the normal vector n = PN. This makes the approach also
attractive for other applications, such as sports broadcasts or surveillance, where
landmark points on the ground plane can be tracked to maintain calibration.

The homography Hπ can be estimated from at least four image points with
known ground plane coordinates (e.g. using the DLT algorithm [26]). The pro-
jection of the normal can also easily be obtained from two or more points with
known heights above the ground plane. Let Xi be a point with height Si above
its known ground plane footpoint Ui. According to eq. (4), the corresponding
image coordinates are given by

xi =
hT

1Ui + Sin1

hT
3Ui + Sin3

, yi =
hT

2Ui + Sin2

hT
3Ui + Sin3

. (11)

From this, we get an equation system, with two constraints per measured point:⎡
⎢⎣
−Si 0 Sixi

0 −Si Siyi

...
...

...

⎤
⎥⎦
⎡
⎣n1

n2

n3

⎤
⎦=

⎡
⎢⎣
(hT

1 − xihT
3 )Ui

(hT
2 − yihT

3 )Ui

...

⎤
⎥⎦ (12)

An=b , (13)

resulting in the least-squares solution n = A†b if at least two points are given.
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Fig. 1. (left) Visualization of the employed coordinate system and notation. (middle
& right) Ground plane corridor at scales σ = 1.75 (middle) and σ = 0.65 (right). Two
valid detections within the corridor are shown. The selected region-of-interest (ROI) is
delimited by the uppermost and lowermost lines.

Extension to Multiple Scales. Until now, we have assumed that the image
is scanned with a fixed-size detection window with height simg . In order to
detect objects at different scales, a sliding-window detector processes downscaled
versions of the input image at fixed scale intervals σ. We achieve the same effect
by adapting the internal camera calibration matrix K. If we assume a camera
with zero skew, this results in the following matrix for scale level k:

Kk =

⎡
⎣αx/σk 0 x0/σk

0 αy/σk y0/σk

0 0 1

⎤
⎦ . (14)

Propagating this change to the ground plane homography and the projection of
the normal vector, we can see that those entities are obtained as

Hπ,k =

⎡
⎣hT

1 /σk

hT
2 /σk

hT
3

⎤
⎦ , nk =

⎡
⎣n1/σk

n2/σk

n3

⎤
⎦ . (15)

3 Detection Algorithms

Putting all the pieces together, we can now formulate a general algorithm for ge-
ometrically constrained object detection, as shown in Alg. 1. For each scale level,
we first compute the corresponding D matrices for the minimum and maximum
object size. We then create a rectangular ROI by inserting the x coordinates of
the left and right image borders into eq. (9) and taking the minimum and maxi-
mum of the resulting y coordinates. As derived above, only the window locations
inside this region correspond to geometrically valid object detections. Since we
compute the region for each scale independently, this allows us to restrict all
rescaling and feature computation steps to those regions.

Multi-Class/Multi-viewpoint Detection. A straightforward extension to
multiple classes or viewpoints of objects is to apply several specialized classifiers
on the precomputed features. This approach can be easily augmented with our
geometric constraints formulation. For each individual classifier one precomputes
the ROI. The HOG features are then computed for a minimal region encompass-
ing all ROIs that are active at each scale. Each classifier can then be evaluated
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Algorithm 1. The proposed algorithm
Compute Hπ and n.
for all scale levels k do

Compute Hπ,k and nk according to eq. (15).
Compute DSmin

and DSmax according to eq. (9) using Hπ,k.
Set xmin and xmax to the left and right image borders.
Compute ymin and ymax by solving eq. (9) for xmin and xmax using DSmin

and DSmax .
Process the ROI (xmin , ymin , xmax , ymax ) with the detector:
• Only up-/downscale the image pixels inside the ROI.
• Only compute features inside the ROI.
• Only apply the sliding-window classifier to the window locations in the ROI.

end for

on its respective region. Note that only the height of each object class and the
classifiers’ window sizes are necessary. No error-prone manual process is required.

Different Detector Resolutions and Part-Based Models. A common me-
thod to improve detection performance is to use specialized classifiers for distinct
scale ranges [10]. Our formulation naturally adapts to the ROI multi-resolution
case. Here, the benefit is that the system can determine automatically if at some
scale only a subset of classifiers can return viable detections. It is not necessary
to fine tune any further parameters. If no valid ROI is found for a classifier, it is
automatically skipped for the current scale. Similarly, our algorithm can be used
with the popular part-based detection approach by Felzenszwalb et al . [18].

4 Experimental Results

We quantitatively evaluate our proposed ground plane constraints. In order to
demonstrate the advantage our algorithm can achieve on top of all other opti-
mizations, we combine it with a highly optimized CUDA implementation of the
HOG detector (in the following called cudaHOG). Our code is publicy available
at http://www.mmp.rwth-aachen.de/projects/groundhog.

Baseline Detection Performance. First, we establish that our baseline sys-
tem cudaHOG achieves the same detection performance as two other published
HOG-based systems: the original Dalal HOG Detector [19] and fastHOG [7].
Fig. 3(left) compares the performance on the INRIA pedestrian dataset [19].
We plot recall vs . false positives per image (fppi) using the standard PASCAL
VOC criterion [27]. The plot shows that our baseline cudaHOG implementation
is competitive.

Effect of Ground Plane Constraints. Next, we investigate the effects of
the ground plane constraints in detail. For the experiments in this section, we
use the Bahnhof sequence from the Zurich Mobile Pedestrian corpus [4], and
employ ground planes estimated by SfM. The sequence consists of 999 frames of
size 640×480, containing 5,193 annotated pedestrians with a height > 60 pixels.

We start by evaluating computational effort on the first 100 frames. We vary
the start scale and ground plane corridor size and report the number of blocks
and SVM windows evaluated, as well as the average run-time per frame (Tab. 1).
Our baseline cudaHOG runs at roughly 22 fps for the start scale 1.0. By adopting

http://www.mmp.rwth-aachen.de/projects/groundhog
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Fig. 2. cudaHOG vs. groundHOG for scale steps 1.05 (left) and 1.20 (right). In both
cases, we plot the performances when starting at scale 1.0 and when upscaling the
image to twice its original resolution (scale 0.5). For the upscaled version we also plot
the performance for a bounded ROI width of maximal 600 pixels.

a ground plane corridor of [1.5m, 1.9m], we can more than double the speed to
57 fps.

In addition, we investigate how detection performance is affected by the start
scale. As observed by several authors [1,3,4], the HOG detection performance can
be considerably improved by upscaling the input images to twice their original
resolution (start scale σ = 0.5 instead of σ = 1.0). The results shown in Fig. 2
verify this performance improvement (e.g., recall increases by 10% at 0.2 fppi).
Usually, the upscaling step comes at considerable additional cost. groundHOG
can achieve significant computational savings here, since it can limit the upscal-
ing operation to a (relatively small) band around the horizon line. As Tab. 1
shows, groundHOG can still process the upscaled images at 20 fps (23 fps if the
width of the detection corridor is also bounded to 600 pixels), effectively the
same run-time as the unconstrained detector on the original images. Hence, our
algorithm achieves significantly higher recall in the same computation time.

Finally, we investigate the effect of increasing the scale step factor σ from its
default value of 1.05 to 1.20 (as also explored in [6]). As shown in Tab. 1 and
Fig. 2, this results in a significant speedup to 222 fps without and 87 fps/104
fps with upscaling at a moderate loss of recall (about 5% at 0.5 fppi).

Multi-Class/Multi-viewpoint Detection. As a proof-of-concept experiment
for multi-viewpoint detection, we have trained a basic car detector for five view-
points. We perform a bounding box based non-maximum-suppression step on the
individual detector outputs to combine them into a single detection response.
While this basic setup cannot achieve the absolute detection rates of more so-
phisticated setups, it is suitable to demonstrate the effects of a ground plane
constraint. We evaluate on the Leuven sequence [3] that contains 1175 images
at 720 × 576 pixel resolution. Fig. 3 shows that detection performance benefits
significantly, as fewer false positives are encountered by groundHOG. When in-
corporating the ground plane constraints, detection takes only 94 ms compared
to originally 339 ms, representing a 3.6-fold speedup.
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Table 1. HOG blocks & SVM windows evaluated per frame on the Bahnhof sequence
when applying groundHOG with the corridor [Smin , Smax ] = [1.5m, 1.9m]. max w refers
to a maximal ROI width of 600 pixels. (CPU: Core2Quad Q9550, GPU: GTX 280).

scale step 1.05 scale step 1.2
start 1.0 start 0.5 start 1.0 start 0.5

cuda ground cuda ground max w cuda ground cuda ground max w
HOG blocks 53,714 21,668 215,166 52,230 40,781 16,305 6,334 65,404 15,142 11,460
SVM windows 31,312 4,069 162,318 11,132 8,208 9,801 1,243 50,110 3,289 2,341

run-time (ms) 43.78 17.28 183.60 49.80 43.49 12.44 4.50 50.35 11.45 9.58
run-time (fps) 22 57 5 20 23 80 222 19 87 104
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Fig. 3. (left) Baseline comparison on INRIAPerson dataset. (right) Results of a 5-view
car detector on Leuven sequence, demonstrating the performance gains through our
geometric constraints. The individual results are merged by a simple NMS scheme.

5 Conclusion

We have systematically explored how geometric ground plane constraints can be
used to speed up sliding-window object detection. As a result of this analysis,
we have presented a general algorithm that enforces a detection corridor, while
taking maximum advantage of the sliding window detection scheme. We have
demonstrated this approach in a CUDA implementation of the HOG detector.
As verified in our experiments, the resulting groundHOG algorithm achieves at
least the same detection accuracy as the original HOG detector in a range of
detection scenarios, while allowing significant speedups.
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lenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.)
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Abstract. We present a procedure for asteroids 3D surface reconstruction from
images for close approach distances. Different from other 3D reconstruction sce-
nario from spacecraft images, the closer flyby gave the chance to revolve around
the asteroid shape and thus acquiring images from different viewpoints with a
higher baseline. The chance to have more information of the asteroids surface
is however paid by the loss of correspondences between images given the larger
baseline. In this paper we present a procedure used to reconstruct the 3D surface
of the asteroid 21 Lutetia encountered by Rosetta spacecraft on July the 10th of
2010 at the closest approach distance of 3170 Km. It was possible to reconstruct a
wider surface even dealing with strong ratio of missing data in the measurements.
Results show the reconstructed 3D surface of the asteroid as a sparse 3D mesh.

Keywords: Astronomy, Structure from Motion, Asteroid 3D reconstruction.

1 Introduction

The inference of the physical properties of asteroids (size, shape, spin, mass, density,
etc.) is of primary importance for understanding the planetary formation processes of
the Solar System. Although many analysis can be carried out on ground stations, with
large telescopes and adaptive optics, the best accuracy of parameters, other than the
validation of on-ground techniques [3], are obtained from spacecrafts’ imaging systems.
A fair example is the main belt asteroid 21 Lutetia, the largest to have been visited by a
spacecraft.

Rosetta ESA cornerstone mission, two years after the flyby with the asteroid 2867
Steins, encountered Lutetia on its way to the comet 67P/Churyumov-Gerasimenko with
an expected rendez vous in 2014. Rosetta flew by Lutetia on the 10th July of 2010 at
a 15 km/s velocity. Within about 10 hours, the two OSIRIS (Optical, Spectroscopic,
and Infrared Remote Imaging System) imaging cameras [9] took 462 images. The 234
images from Narrow-Angle Camera (NAC, 717 mm focal length, angular resolution 5
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arcsec/px,) and the 228 images from Wide-Angle Camera (WAC, 135 mm focal length,
angular resolution 22 arcsec/px) covered more than 50% of the asteroid surface. The
highest spatial scale in the NAC was around 60 m/px whereas the whole 120 km max-
imum length of the asteroid was imaged by the 2048x2048 pixel CCD. All 24 filters
of the two cameras, extending from 240 to 980 nm, have been used to investigate on
shape, volume, spin, surface characteristics, and a number of other aspects.

The shape reconstruction goes surprisingly beyond its intrinsic scientific importance:
an accurate shape model can improve the quality of the spacecraft orbit, geometrical cal-
ibration of the cameras, albedo map (by subtracting the illumination due to the shape
and to the reflectance model), and hopefully proving gravitational waves [10]. Volume
estimation is an important product of the shape reconstruction. The volume has to be
obtained by fusing the estimate of the 50% surface visible from OSIRIS with the oc-
cluded one which is based on a lightcurve inversion technique (both from ground [2, 3]
and from previous observations during Rosetta cruise [12]).

This work reports on the authors’ first results on the 3D reconstruction of the Lute-
tia side visible from the OSIRIS imagers. This 3D reconstruction is obtained using a
pipeline for structure from motion tailored to the imaging scenario in deep space. The
approach is divided in several stages. Starting from Section 2, we describe the feature
detection stage and how to form image trajectories lying onto the asteroid surface by
rejecting outliers and points at the asteroid limb. The outlier rejection stage is also im-
proved with the known mission data of the prevailing approaching movement of the
asteroid. Such filtered image trajectories may yet contain missing data because of oc-
clusions and feature detection failures. Thus, in Section 3 incomplete trajectories are
fed to a robust Structure from Motion algorithm that can deal with large amounts of
missing data. The experimental Section 4 shows the final reconstructed surface of the
asteroid as a 3D mesh.

2 Feature Detection

Our pipeline for 3D reconstruction begins from a sparse reconstruction of uncalibrated
images. The first crucial task is to obtain an accurate images features detection and
matching over multiple frames. The frames selected were 9 among those obtained by the
NAC during the closest approach phase. During the flyby, using a dedicated navigation
camera, the attitude control was pointing the spacecraft imagers towards the centroid
of the asteroid. The first set of selected images for the reconstruction are a compromise
between a high spatial resolution and a stable set of features, considering that in the last
phase of the closest approach images had the highest resolution but also a very high
rate of occlusions due to the fast relative rotation of the asteroid. We use a multi-step
procedure. First, we use the Hessian-based, rotation and scale invariant feature detection
algorithm SURF [1] (see Figure 1). The features too close to the limb of the asteroid
(Figure 1) are filtered out, thus preventing likely outliers due to the limb variation with
the asteroid rotation.

A first matching step is the one proposed by the classical SURF algorithm. In addi-
tion, we propose a custom checking phase that filters out the features that do not have a
one-to-one match after comparing the matches between two consecutive frames in both
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Features detected Border features deleted

Fig. 1. The left figure shows in red all the features extracted using the SURF features detector.
The right figure shows the features detected as lying on the limb of the asteroid. Such features
are rejected since likely to be occluded given the approach motion.

forth and back directions. The matched points are then subjected to a RANSAC outliers
detection algorithm. RANSAC is a RANdom SAmple Consensus algorithm that rejects
samples which do not fit the chosen observation model [7]. In our case, the natural
choice given the imaging device is the fundamental matrix model to reject outliers [11].
According to the camera model used in the first reconstruction, as explained in the fol-
lowing sections, an affine fundamental matrix is implemented in the RANSAC fit. As
a result, we obtain a set of 2D image trajectories. Short trajectories (i.e. the features
tracked in a number of frames under a fixed threshold) are discarded and the remaining
outliers are eliminated relying upon a heuristic algorithm which is based upon a tra-
jectory consistency constraint. This final stage filters out the last outliers which are not
consistent with the prevailing approaching movement of the asteroid. The relative 3D
positions and rotations between object and camera has the affect to create new 2D im-
age trajectories as result of an object rotation around an apparent spin axis. This axis is
parallel to the image columns (since spacecraft and asteroid trajectoris are almost in the
same plane during the flyby) and far outside the object. The trajectories of the features
are well described by a simple linear model where the displacement of a feature along
the columnns is proportional to the column distance from the apparent spin axis (check
Figure 2).

This multi-step approach reveals to be robust enough to proceed with the surface
reconstruction. The features are then stored in a W matrix which contains the image
coordinates as:

W =

⎡
⎢⎣

w11 . . . w1p

...
. . .

...
wf1 . . . wfp

⎤
⎥⎦ =

⎡
⎢⎣
W1

...
Wf

⎤
⎥⎦ , (1)
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Fig. 2. Features column displacement versus column position is well linearly fitted for this partic-
ular frames selection representing Lutetia zooming in and rotating around an apparent spin axis
outside the asteroid while it is approaching Rosetta. Crosses are inliers and circles outliers.

where the 2-vector wij represents the image coordinates for frame i and point j. The
sub-block matrix Wi of size 2× p contains all the coordinates for a single frame. Notice
that by forming the matrix we will have some image trajectories that are not viewed in
all the f frames. Given the rotational motion of the asteroid, some feature points will
appear or disappear during the matching. Thus, the matrix W will have some missing
entries which must be taken into account during 3D reconstruction.

We aim also at estimating the 3D final uncertainty of the reconstruction. A good
starting point is to estimate the feature covariance as the observations uncertainty and
to propagate it over the reconstruction process by embedding the extrinsic and intrin-
sic parameters uncertainties [5]. We use the method provided by Zeisl et al. [17] to
calculate the correlated uncertainty of SURF feature position estimation. As Zeisl et
al. demonstrate experimentally, the directional uncertainty provides a more accurate
result, instead of using an isotropic uncertainty, when a weighted 3D reconstruction op-
timization process like Bundle Adjustment [16] is used. Furthermore, the uncertainty
of feature locations could be exploited in the matching phase to select better reference
features. In Figure 3 we report a sample of the estimated covariances for some points
lying on the asteroid surface.

3 Surface Reconstruction

The feature detection algorithm provides a set of image trajectories of the moving body.
The next task is to find the precise localisation of the 3D points lying on the surface.
The Structure from Motion (SfM) framework is used to extract the 3D point position
given the image coordinates motion. Rigid structure from motion techniques are fairly
consolidated in the computer vision literature. With a reliable set of 2D features tracked
through time, Bundle Adjustment (BA) is the Gold Standard method for 3D recon-
struction. However, it has been observed that other methods may perform better than
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Covariance ellipses of features

Fig. 3. An example of estimated covariance of the SURF features’ location obtained with the
covariance estimator in [17]

standard approaches [13] when the amount of missing entries in the measurements in-
creases. Given the amount of missing data and the possible approximation of the camera
model, the Lutetia 3D reconstruction task can be tackled with such approach.

Given the fly-by motion of the spacecraft revolving around the asteroid, we have a
particular distribution of the computed 2D points from the previous stage. The revo-
lution around the body gives a set of interrupted point trajectories since the surface of
the asteroid becomes occluded given the motion. This mostly appears near the border
of the imaged shape. This percentage of missing points amounts to about 50% of the
overall trajectories for the Lutetia experiment. In general, such percentage of missing
features can cause problems to reconstruction algorithms. However, if we approximate
the camera model to affine, we have at disposal modern optimisation tolls that are able
to stand high percentages of missing data.

3.1 Affine Camera Approximation

The crux of using full perspective camera models are the non-linearities implicit in
the optimisation problem solving for the Structure and Motion of the imaged object.
However, in a spacecraft flight approach the assumption of a full perspective models is
exact but not entirely necessary to provide an initial reconstruction. The object shape
relief would always be smaller of some order of magnitude compared to the spacecraft
distance from the body. Thus, an affine approximation of the camera model may hold
in practice. Experimentally, we have verified for the Lutetia 3D reconstruction that the
reprojection error for BA [16] and a state of the art algorithm with affine cameras [6]
were very similar. Another advantage of using affine cameras is that such approaches
may deal with vast amounts of missing data in the measurements (higher then 60% and
up to 90% of the whole measurements). Also, in general, initialising an optimisation
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algorithm using affine cameras is far easier then the projective counter-part. Notice
that it is rather common using an incremental procedure to SfM where each increment
represents the use of a more complex camera model as in [4].

3.2 Affine Structure from Motion

Given the image trajectory stored in a matrix W of size 2f x p as in Eq. (1) we have that
the image coordinates are given at each frame i by:

Wi = Mi S (2)

where Mi is a 2 × 4 affine camera matrix that projects the overall 3D shape defined by
the 4× p matrix S in homogeneous coordinates. The chosen camera model for Mi is the
scaled orthographic camera model giving:

Mi =
[
siRi ti

]
RiR

T
i = I2 (3)

with si being a scalar which model the scale of the shape given the distance, Ri a 2 × 3
camera with two orthonormal rows (i.e. a rotation matrix without the last row) and ti a
2D translation vector. The matrix I2 is a 2 × 2 identity matrix. Such model represents
a reasonable alternative to full-perspective models when the distance from the object is
high in comparison with the relative depth of the shape – a fitting constrain for space
image analysis. If we stack Eq. (3) frame-wise we can form a global formulation for the
imaging projection equations giving:

W =

⎡
⎢⎣
M1

...
Mf

⎤
⎥⎦ S =

⎡
⎢⎣

[
s1R1 t1

]
...[

sfRf tf

]
⎤
⎥⎦ S = M S. (4)

It is straightforward to notice that the image coordinates are in bilinear form with the
matrix S storing the 3D coordinates in homogeneous coordinates and each camera pro-
jection matrix stacked in M. Moreover, matrix M contains non-linear constraints given
by the orthonormal rows of Ri i.e. the matrix M lies on a specific matrix manifold. Such
manifold in the case of structure from motion problems is called motion manifold [13].

3.3 Optimisation with Augmented Lagrange Multipliers (ALM)

The optimisation structure of bilinear problems with matrix manifold constraints can
be optimised with a general tool called BALM recently introduced in [6]. This algo-
rithm is favored in respect to previous approaches such as [13] because the smoother
convergence properties given by the ALM. The cost function optimised by BALM for
our reconstruction problem is the following:

min
RiR

T
i

=I2

‖D� (W − M S)‖2 (5)

where D is a 2f × p mask matrix with either 1 if the 2D point is present or 0 if it is
missing (the symbol� denotes the element-wise Hadamard product). Given the missing
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entries, it is not possible to solve for such cost function in closed form. The algorithm
is generic in its formulation but it can achieve state of the art results for several bilinear
optimisation problems [6]. Given our Structure from Motion problem, the algorithm
requires an initialisation (i.e. the values for M0 and S0 at iteration 0) and a projector,
preferably optimal, to the respective motion manifold of orthographic camera matrices.

Initialisation. To initialise the matrices M0 and S0 we first fill each missing entries
for each trajectory with the respective mean value of the trajectory. Computationally it
means to replace the W matrix with missing entries with a complete matrix W0. Since the
matrix is now complete, it is possible to run standard Tomasi and Kanade factorization
algorithm for rigid Structure from Motion [15]. The closed form solution can find an
initial decomposition that complies with Eq. (4).

Projector. The BALM algorithm optimises iteratively the bilinear components M and
S while enforcing the specific manifold constraints of the problem (check [6] for more
details). In the proposed ALM framework, enforcing the manifold constraints signifies
projecting the current estimate of M without constraints and without considering the
translation component ti, called M̃. This results in a simplified optimisation sub-problem
at each frame as:

min
RiR

T
i

=I2

∥∥M̃i − siRi

∥∥2
(6)

where M̃i are the sub-block of M̃ as presented in Eq. (3) for M. This projection is solved
in closed form as:

Ri = UVT and si = (σ1 + σ2)\2 (7)

where M̃i = UCVT is the SVD of the matrix not satisfying the constraints and σd for
d = 1, 2 are the singular values stored in C.

4 Results

Figure 4 and Figure 5 show the results (in texture mapping form) of the ALM algorithm
application on part of the visible surface. The underlying sparse mesh is made by 1245
points. The RMS reprojection error is 0.17 pixels thus achieving a low error even using
an approximated scaled orthographic camera model. The 3D reconstruction allows to
appreciate the 3D relief of the asteroid body. By inspecting the side view in Figure 5, it
is possible to notice the various elevations of the 3D shape.

The large and completely shaded areas, mostly in crater regions, have not been re-
constructed in details as well as the large homogeneous areas because of the lack of
feature points in these regions. We plan to use photometric, shading and dense methods
techniques in order to increase the reconstruction accuracy in these regions. Similarly
to the sparse 3D reconstruction case, such methods will be tailored to the spacecraft
data and the albedo information provided by the mission.

The Lutetia reconstruction of its part visible from the Osiris imagers, which is about
50% of the total surface can not be cross-validated with other measurements except
for the silhouette part, which should be consistent with that of the occluded part of the
asteroid reconstructed thanks to a lightcurve inversion technique [2, 3].
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Fig. 4. Asteroid texture mapping – frontal view

Fig. 5. Asteroid texture mapping – side view

5 Conclusions and Future Work

We presented a 3D reconstruction pipeline for asteroids shape reconstruction from
spacecrafts flyby images. In particular we obtained our first results on the Lutetia aster-
oid using the images taken from OSIRIS data servers. The ALM optimization approach
applied on the affine structure from motion problem with a large fraction of missing data
as in this case, confirmed to be fairly good in providing an accurate 3D reconstruction.
Such initial 3D shape reconstruction can be aligned to the real observation parameters
in order to estimate the exact scale and to fix the reference system to absolute astronom-
ical coordinates. In such regard, we may use Schweighofer and Pinz algorithm [14] to
align 3D reconstruction with Rosetta spacecraft data. After that, a final BA algorithm
can refine the results using the full parameters of the imaging model. At this stage we
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will implement the covariance propagation starting by the feature covariance and using
a standard analytical method [8].

Future work will be directed toward the dense and precise reconstruction of largely
shaded areas. In a similar manner as for the sparse 3D reconstruction case, we aim
to include in the pipeline robust photometric techniques which may also account for
missing entries given the asteroid rotation and relief self-occlusion. This stage can be
improved by making an explicit use of the a priori information given by the surface
albedo and illumination sources localisation. In this way, we plan to create a system that
consistently joins photometric information to the proposed 3D reconstruction pipeline.
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Abstract. This article presents a new open-source C++ implementa-
tion to solve the SLAM problem, which is focused on genericity, versatil-
ity and high execution speed. It is based on an original object oriented
architecture, that allows the combination of numerous sensors and land-
mark types, and the integration of various approaches proposed in the
literature. The system capacities are illustrated by the presentation of
an inertial/vision SLAM approach, for which several improvements over
existing methods have been introduced, and that copes with very high
dynamic motions. Results with a hand-held camera are presented.

1 Motivation

Progresses in image processing, the growth of available computing power and
the proposition of approaches to deal with bearings-only observations have made
visual SLAM very popular, particularly since the demonstration of a real-time
implementation by Davison in 2003 [4]. The Extended Kalman Filter (EKF) is
widely used to solve the SLAM estimation problem, but it has recently been
challenged by global optimization methods that have shown superior precision
for large scale SLAM. Yet EKF still has the advantage of simplicity and faster
processing for problems of limited size [14], and can be combined with global
optimization methods [6] to take the best of both worlds.

Monocular EKF-SLAM reached maturity in 2006 with solutions for initiali-
zing landmarks [7] [12] [9]. Various methods for landmark parametrization have
been analyzed [10], and the literature now abounds with contributions to the
problem.

This article presents RT-SLAM1, a software framework aimed at fulfilling two
essential requirements. The first one is the need for a generic, efficient and flex-
ible development tool, that allows to easily develop, evaluate and test various
1 RT-SLAM stands for “Real-Time SLAM”.
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approaches or improvements. The second one is the need for practical solu-
tions for live experiments on robots, for which localization and mapping require
real-time execution and robustness. RT-SLAM is a C++ implementation based
on Extended Kalman Filter (EKF) that allows to easily change robot, sensor
and landmark models. It runs up to 60 Hz with 640 × 480 images, withstand-
ing highly dynamic motions, which is required for instance on humanoid or
high speed all terrain robots. RT-SLAM is available as open source software at
http://rtslam.openrobots.org.

Section 2 details the architecture of RT-SLAM and section 3 presents some of
the techniques currently integrated within, to define an efficient inertial/visual
SLAM approach. Section 4 analyzes results obtained with a hand-held system
assessed thanks to ground truth, and section 5 concludes the article by a pre-
sentation of prospects.

2 Overall Architecture

Fig. 1 presents the main objects defined in RT-SLAM. They encompass the ba-
sic concepts of a SLAM solution: the world or environment contains maps ; maps
contain robots and landmarks; robots have sensors ; sensors make observations of
landmarks. Each of these objects is abstract and can have different implementa-
tions. They can also contain other objects that may themselves be generic.

(a) Main objects in a SLAM context.
Different robots Rob have several sen-
sors Sen, providing observations Obs of
landmarks Lmk. States of robots, sen-
sors and landmarks are stored in the
stochastic map Map. There is one ob-
servation per sensor-landmark pair.

(b) Objects hierarchy in RT-SLAM. Each in-
dividual map M in the world W contains robots
R and landmarks L. A robot has sensors S,
and an observation O is created for every pair
of sensor and landmark. In order to allow full
genericity, map managers MM and data man-
agers DM are introduced.

Fig. 1. The main objects in RT-SLAM

Map. The maps contain an optimization or estimation engine: for now RT-
SLAM uses a standard formulation of EKF-SLAM. Since this solution is very
well documented in the literature [5], it is not detailed in depth here. Indirect
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indexing within Boost’s ublas C++ structures is intensively used to exploit the
sparsity of the problem and the symmetry of the covariances matrices.

Robot. Robots can be of different type according to the way their state is repre-
sented and their prediction model. The latter can be either a simple kinematic
model (constant velocity, constant acceleration, . . . ) or a proprioceptive sensor
(odometric, inertial, . . . ), as illustrated section 3.3. The proprioceptive sensor is
an example of generic object contained in robot objects, as different hardware
can provide the same function.

Sensor. Similarly to robots, sensors can also have different models (perspective
camera, panoramic catadioptric camera, laser, . . . ), and contain a generic extero-
ceptive sensor hardware object (firewire camera, USB camera, . . . ). In addition,
as sensors belong to the map, their state can be estimated: this opens the possi-
bility for estimating other parameters such as extrinsic calibration, time delays,
biases and gain errors, and the like.

Landmark. Landmarks can be of different type (points, lines, planes, . . . ), and
each type can have different state parametrization (Euclidean point, inverse
depth point, . . . ). Moreover the parametrization of a landmark can change over
time, as explained section 3.2. A landmark also contains a descriptor used for
data association, which is a dual description to the state representation.

As shown Fig. 1(a), it is worth noticing that landmark objects are common
to the different sensors, all of them being able to observe the same landmark
(provided they have compatible descriptors for this landmark of course). This
allows to greatly improve the observability of landmarks compared to a system
where the sensors are strictly independent. In the particular case of two cameras
for instance, landmarks can be used even if they are only visible from one camera
or if they are too far away for a stereovision process to observe their depth (this
process was introduced in [11] as BiCam SLAM).

Observation. In RT-SLAM, the notion of observation plays a predominant role.
An observation is a real object containing both methods and data. One obser-
vation is instantiated for every sensor-landmark pair, regardless of the sensor
having actually observed the landmark or not, and has the same lifetime as the
associated landmark. The methods it contains are the conventional projection
and back-projection models (that depend on the associated sensor and landmark
models), while the stored data consist of results and intermediary variables such
as Jacobian matrices, predicted and observed appearances, innovations, event
counters and others, that allow to greatly simplify and optimize computations.

Managers. In order to achieve full genericity wrt landmark types, in particu-
lar to allow the concurrent use of different landmark types for one sensor, two
different manager objects are added: data manager and map manager. Their im-
plementations define a given management strategy, while their instantiations are
dedicated to a certain landmark type. The data manager processes the sensors
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raw data, providing observations of the external landmarks. For this purpose,
it exploits some raw data processors (for feature detection and tracking), and
decides which observations are to be corrected and in which order, according to
the quantity of information they bring and their quality. For example it can ap-
ply an active search strategy and try to eliminate outliers as described in section
3.1. The map manager keeps the map clean, with relevant information, and at a
manageable size, by removing landmarks according to their quality and the given
policy (e.g. visual odometry where landmarks are discarded once they are not
observed, or multimap slam where maps are “closed” according to given criteria).
These managers communicate together: for example, the data manager may ask
the map manager if there is enough space in the map to start a new initialization
process, and to allocate the appropriate space for the new landmark.

3 Inertial/Visual SLAM within RT-SLAM

3.1 Active Search and One-Point RANSAC

The strategy currently implemented in RT-SLAM’s data manager to deal with
observations is an astute combination of active search [5] and outliers rejection
using one-point RANSAC [3].

The goal of active search is to minimize the quantity of raw data processing
by constraining the search in the area where the landmarks are likely to be
found. Observations outside of this 3σ observation uncertainty ellipse would
be anyway considered incompatible with the filter and ignored by the gating
process. In addition active search gives the possibility to decide anytime to stop
matching and updating landmarks with the current available data, thus enabling
hard real-time constraints. We extended the active search strategy to landmark
initialization: each sensor strives to maintain features in its whole field of view
using a randomly moving grid of fixed size, and feature detection is limited to
empty cells of the grid. Furthermore the good repartition of features in the field
of view ensures a better observability of the motions.

Outliers can come from matching errors in raw data or mobile objects in the
scene. Gating is not always discriminative enough to eliminate them, particu-
larly right after the prediction step when the observation uncertainty ellipses can
be quite large – unfortunately at this time the filter is very sensitive to faulty
corrections because it can mistakenly make all the following observations incom-
patible. To prevent faulty observations, outliers are rejected using a one-point
RANSAC process. It is a modification of RANSAC, that uses the Kalman filter
to obtain a whole model with less points than otherwise needed, and provides a
set of strongly compatible observations that are then readily corrected. Contrary
to [3] where data association is assumed given when applying the algorithm, we
do the data association along with the one-point RANSAC process: this allows
to look for features in the very small strongly compatible area rather than the
whole observation uncertainty ellipse, and to save additional time for raw data
processing.



RT-SLAM: A Generic and Real-Time Visual SLAM Implementation 35

3.2 Landmark Parametrizations and Reparametrization

In order to solve the problem of adding to the EKF a point with unknown dis-
tance and whose uncertainty cannot be represented by a Gaussian distribution,
point landmarks parametrizations and initialization strategies for monocular
EKF-SLAM have been well studied [4] [8] [9]. The solutions now widely accepted
are undelayed initialization techniques with inverse depth parametrization. An-
chored Homogeneous Point [10] parametrization is currently used in RT-SLAM.

The drawback of inverse depth parametrizations is that they describe a land-
mark by at least 6 variables in the stochastic map, compared to only 3 for an
Euclidean point (x y z)T . Memory and temporal complexity being quadratic
with the map size for EKF, there is a factor of 4 to save in time and memory by
reparametrizing landmarks that have converged enough [2]. The map manager
uses the linearity criterion proposed in [9] to control this process.

3.3 Motion Prediction

The easiest solution for EKF-SLAM is to use a robot kinematic model to do the
filter prediction, such as a constant velocity model:

R = (p q v w)T

where p and q are respectively the position and quaternion orientation of the
robot, and v and w are its linear and angular velocities.

The advantage of such a model is that it does not require complicated hard-
ware setup (only a simple camera), but its strong limitation is that the scale
factor is not observable. A second camera with a known baseline can provide a
proper scale factor, but one can also use a proprioceptive sensor for the predic-
tion step. Furthermore it usually provides a far better prediction with smaller
uncertainties than a simple kinematic model, which brings several benefits:

1. search areas for matching are smaller, so processing is faster,
2. linearization points are more accurate, so SLAM precision is better, or one

can reduce the framerate to decrease CPU load for equivalent quality,
3. it allows to withstand high motion dynamics.

In the case of an Inertial Measurement Unit (IMU), the robot state is then:

R = (p q v ab wb g)T

where ab and wb are the accelerometers and gyrometers biases, and g the 3D
gravity vector. Indeed it is better for linearity reasons to estimate the direction
of g rather than constraining the robot orientation to enforce g to be vertical.

A special care has to be taken for the conversion of the noise from continous
time (provided by the manufacturer in the sensor’s datasheet) to discrete time.
As the perturbation is continuous white noise, the variance of the discrete noise
grows linearly with the integration period.
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3.4 Image Processing

Point extraction. Point extraction is based on Harris detector with several opti-
mizations. Some of them are approximations: a minimal derivative mask [−1, 0, 1]
is used, as well as a square and constant convolution mask, in order to minimize
operations. This allows the use of integral images [15] to efficiently compute the
convolutions. Additional optimizations are related to active search (section 3.1):
only one new feature is searched in a small region of interest, which eliminates
the costly steps of thresholding and sub-maxima suppression.

Point matching. Point matching is based on Zero-mean Normalized Cross Cor-
relation (ZNCC), also with several optimizations. Integral images are used to
compute means and variances, and a hierarchical search is made (two searches
at half and full resolution are sufficient). We also implemented bounded partial
correlation [13] in order to interrupt the correlation score computation when
there is no more hope to obtain a better score than the threshold or the best one
up to now. To be robust to viewpoint changes and to track landmarks longer,
tracking is made by comparing the initial appearance of the landmark with its
current predicted appearance [5].

4 Results

Fig. 2 shows the hardware setup that has been used for the experiments. It is
composed of a firewire camera rigidly tied to an IMU, on which four motion
capture markers used to measure the ground truth are fixed.

Fig. 2. The experimental setup composed of a Flea2 camera and an XSens MTi IMU,
and screen captures of the 3D and 2D display of RT-SLAM

Two different sequences are used, referred to as low dynamic and high dynamic
sequences. Both were acquired indoor with artificial lights only, with an image
framerate of 50 Hz synchronized to the inertial data rate of 100 Hz. The motion
capture markers are localized with a precision of approximately 1 mm, so the
ground truth has a precision of σxyz = 1 mm in position and σwpr = 0.57◦ in
angle (baseline of 20 cm).

Movies illustrating a run of every experiment are provided at:
http://rtslam.openrobots.org/Material/ICVS2011.
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4.1 Constant Velocity Model

The inertial data is here not used, and the prediction is made according to a
constant velocity model. Fig. 3 presents the estimated trajectory and the ground
truth for the low dynamic sequence, and Fig. 4 shows the absolute errors for the
same run.

Fig. 3. Illustration of low dynamic trajectory, constant velocity SLAM (with scale
factor of 2.05 manually corrected). Estimated trajectory parameters and ground truth,
as a function of time (in seconds).

Fig. 4. Errors of the estimated parameters of the trajectory shown Fig. 3. The 99%
confidence area corresponds to 2.57σ bounds. The SLAM 99% confidence area, that
does not include ground truth uncertainty, is also shown.

Besides the global scale factor which is manually corrected, the camera tra-
jectory is properly estimated. The movie shows that loops are correctly closed,
even after a full revolution.

The position error raises up to 10 cm after quick rotations of the camera: this
is due to a slight drift of the scale factor caused by the integration of newer
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landmarks (when closing loops, the scale factor is restimated closer to its initial
value). Also, uncertainty ellipses remain relatively large throughout the sequence:
these issues are solved by the use of an IMU to predict the motions.

4.2 Inertial/Visual SLAM

Fig. 5 shows the trajectory estimated with the high dynamic sequence, and Fig.
6 and 7 show the behavior of inertial SLAM. Here, all of the 6 degrees of freedom
are successively excited, then y and yaw are excited with extreme dynamics: the
yaw angular velocity goes up to 400 deg/s, the rate of change of angular velocity
exceeds 3,000 deg/s2, and accelerations reach 3 g. It is interesting to note that
the time when SLAM diverges (around t = 65 s) corresponds to motions for
which the angular velocity exceeds the limit of the IMU (300 deg/s) and where
its output is saturated.

The IMU now allows to observe the scale factor, and at the same time reduces
the observation uncertainty ellipses and thus eases the active search procedure.
Conversely, the divergence of the SLAM process at the end of the sequence illus-
trates what happens when vision stops stabilizing the IMU: it quickly diverges
because the biases and the gravity cannot be estimated anymore.

Fig. 5. Illustration of high dynamic trajectory, inertial/visual SLAM. Estimated tra-
jectory parameters and ground truth, as a function of time (in seconds).

5 Outlook

We have presented a complete SLAM architecture whose genericity and per-
formance make it both a useful experimentation tool and efficient solution for
robot localization. The following extensions are currently being developed: using
a second camera to improve landmarks observability, a multimap approach to
cope with large scale trajectories and multirobot collaborative localization, and
the use of line landmarks complementarily to points to provide more meaningful
maps and to ease map matching for loop closure.

The architecture of RT-SLAM allows to easily integrate such developments,
and also to consider additional motion sensors: to increase the robustness of the
system, it is indeed essential to consider the various sensors usually found on
board a robot (odometry, gyrometers, GPS). Eventually, it would be interesting
to make RT-SLAM completely generic wrt the estimation engine as well, in order
to be able to use global optimization techniques in place of filtering.



RT-SLAM: A Generic and Real-Time Visual SLAM Implementation 39

Fig. 6. Errors of inertial/visual SLAM estimated over 100 runs on the dynamic se-
quence, as a function of time (in seconds) – the difference between each run is due
to the randomized landmark selection, see section 3.1. All the runs remain in the
neighborhood of the 99% confidence area. The angular ground truth uncertainty is
not precisely known: its theoretical value is both overestimated and predominant over
SLAM precision in such a small area.

Fig. 7. Inertial/visual SLAM NEES [1] over 100 runs on the dynamic sequence. The
average NEES is quickly out of the corresponding 99% confidence area, but as the 100
runs were made on the same sequence they are not independant and the average NEES
should rather be compared to the simple NEES confidence area. The filter appears
to be very conservative with angles but this is due to the overestimated ground truth
uncertainty as explained in Fig. 6.
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Abstract. A space-variant representation of images is of great impor-
tance for active vision systems capable of interacting with the environ-
ment. A precise processing of the visual signal is achieved in the fovea,
and, at the same time, a coarse computation in the periphery provides
enough information to detect new saliences on which to bring the focus of
attention. In this work, different techniques to implement the blind-spot
model for the log-polar mapping are quantitatively analyzed to assess the
visual quality of the transformed images and to evaluate the associated
computational load. The technique with the best trade-off between these
two aspects is expected to show the most efficient behaviour in robotic
vision systems, where the execution time and the reliability of the visual
information are crucial.

1 Introduction

The vision modules of robotic systems, which continuously interact with the en-
vironment by purposefully moving the eyes to bring the interesting objects into
the foveas [1,2], require mechanisms that simultaneously provide a wide field-of-
view, a high spatial resolution in the region of interest, and a reduction of the
amount of data to be processed. This can be achieved through a variable reso-
lution (or space-variant) image acquisition stage, inspired by the primate visual
system. Indeed, the distribution of the photoreceptors in the mammals’ retina
is denser in the central region, the fovea, whereas it is sparser in the periphery.
In particular, the projection of the photoreceptor array into the primary visual
cortex can be well described by a log-polar mapping [3].

In the literature, several authors apply the log-polar transform to solve dif-
ferent visual processing tasks in computer vision and robotic applications, e.g.
vergence control [4], and binocular tracking [5] in active vision systems. An ap-
proach for the computation of binocular disparity is described in [6], and in [7]
the author faces the estimation of the optic flow in cortical images. Moreover,
the log-polar imaging has been applied in several pattern recognition tasks, such
as object detection [8], and facial feature detection [9]. For recent reviews of the
different applications of the log-polar mapping approach see [10,11].
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Different models for mapping the Cartesian images into the log-polar domain
have been proposed [12,13,14]. Among them, the blind-spot model is particularly
interesting, since its implementation is easier and computationally less demand-
ing than that of the other models. Moreover, two interesting properties come
with it: rotation and scale invariance. Several techniques are present in the lit-
erature to implement the blind-spot model, nevertheless a systematic analysis
and a comparison among them is still lacking, but see [15].

The aim of this paper is to analyze the different techniques developed to
implement the blind-spot model. To this end, we perform a quantitative com-
parison that takes into account the computational load, and the amount of visual
information preserved in the transformation. Specifically, we compute different
image quality indexes [16,17] for assessing the degradation of the visual infor-
mation in the transformed image. It is worth noting that we are interested in
how the space-variant subsampling of the images is achieved, since we wonder
if the different techniques yield an undesired loss of details in the periphery, in
addition to the one due to the mapping itself.

2 Log-Polar Mapping: The Blind-Spot Model

The log-polar mapping is a non linear transformation that maps each point of
the Cartesian domain (x, y) into a cortical domain of coordinates (ξ, η). For the
blind spot model [14], the transformation is described by the following equations:{

ξ = loga

(
ρ
ρ0

)
η = θ

(1)

where a parameterizes the non-linearity of the mapping, ρ0 is the radius of the
central blind spot, and (ρ, θ) = (

√
x2 + y2, arctan (y/x)) are the polar coordi-

nates derived from the Cartesian ones. All points with ρ < ρ0 are ignored.
In order to deal with digital images, given a Cartesian image of M ×N pixels,

and defined ρmax = 0.5 min(M, N), we obtain an R×S (rings × sectors) discrete
cortical image of coordinates (u, v) by taking:{

u = �ξ�
v = �qη� (2)

where �·� denotes the integer part, q = S/(2π), and a = exp(ln(ρmax/ρ0)/R).
Figure 1 shows the transformations through the different domains. The retinal
area that refers to a given cortical pixel defines its receptive field (RF). By in-
verting Eq. 1 the centers of the RFs can be computed, and these points present a
non-uniform distribution through the retinal plane, as in Figure 2a. The optimal
relationship between R and S is the one that optimizes the pixel aspect ratio,
making it as close as possible to 1. It can be shown that, for a given R, the
optimal rule is S = 2π/(a − 1) [14].

The shape of the RFs affects both the quality of the transformation and its
computational burden. In the following, we consider four common techniques,
each characterized by a different shape for the RFs.
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cartesian domain cortical domain retinal domain

Fig. 1. Left: the cyan circle and the green sector in the Cartesian domain map to
vertical and horizontal stripes, respectively, in the cortical domain. Right: an example
of image transformation from the Cartesian to the cortical domain, and backward to
the retinal domain. The specific choice of the parameters is: R = 100, S = 157, ρ0 = 5,
and ρmax = 256. The cortical image is scaled to improve the visualization.

Nearest Pixel. In this technique (see Figure 2a), the RFs are single points.
Each RF is located, in the most general case, between four adjacent Cartesian
pixels. This technique assigns to the cortical pixel that refers to a given RF, the
value of the closest Cartesian pixel. The inverse transformation follows the same
principle.

Bilinear Interpolation. Similarly to the previous technique, the RFs are single
points, as shown in Figure 2a. The difference is that, in this case, the value of
a desired cortical pixel is obtained through a bilinear interpolation of the values
of the four nearest neighbouring Cartesian pixels to the center of the RF [18].
The same principle is applied to the inverse transformation.

Overlapping Circular Receptive Fields. This biological plausible technique
is a modified implementation of the one proposed in [12,15]. The Cartesian plane
is divided in two regions: the fovea and the periphery. The periphery is defined
as the part of the plane in which the distance between the centers of two RFs on
the same radius is greater than 1 (undersampling). The fovea (oversampling) is
handled by using the bilinear interpolation technique described above, whereas in
the periphery we use the overlapping Gaussian circular RFs shown in Figure 2b.

The standard deviation of the RF Gaussian profile is a third of the distance
between the centers of two consecutive RFs, and the spatial support is six times
the standard deviation. As a consequence of this choice, adjacent RFs overlap
[12]. A cortical pixel Ci is computed as a Gaussian weighted sum of the Cartesian
pixels Pj in the i-th RF:

Ci =
∑

j

wijPj (3)

where the weights wij are the values of a normalized Gaussian centered on the
i-th RF. A similar approach is used to compute the backward transformation.

Adjacent Receptive Fields. In this technique [14], all the Cartesian pix-
els, whose coordinates in the cortical domain share the same integer part, are
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assigned to the same RF, see Figure 2c. The value of a cortical pixel Ci can
be calculated through a weighted sum of the values of the pixels that belong
to the corresponding RF, normalized with respect to the total sum of weights.
The precision of the boundaries of the RF can be improved by breaking each
pixel into subpixels and assigning each of them to the correct RF. Consequently,
the weight of each Cartesian pixel Pj is the fraction Aij of the pixel area that
belongs to the i-th RF:

Ci =
1∑

j Aij

∑
j

AijPj (4)

If no pixel subdivision is applied, the sum reduces to a simple average. In the
following we consider a pixel subdivision equals to 1/4. The cortical image can
be backward transformed by assigning to each retinal pixel the value of its corre-
sponding cortical pixel by following an approach similar to the one of the forward
transformation.

(a) (b) (c)

Fig. 2. The RFs for the different implementations of the blind-spot model, represented
on the Cartesian image (the square frame): (a) nearest pixel and bilinear interpolation
(the centers of the RFs); (b) overlapping circular RFs (plotted at twice the value of
the standard deviation); (c) adjacent RFs.

3 Comparison and Results

The four different techniques, described in the previous Sections, are here com-
pared in terms both of their associated computational load (i.e. execution time),
and of the quality of the resulting transformed images.

3.1 Computational Load

It is important to consider that, in the vision modules of a robotic system, all the
image processing steps must be performed at a given frequency in order to meet
the real-time constraints. Thus, the log-polar mapping should be much faster
than the usual 40 ms/frame. Figure 3 shows the execution times for transforming
the images into the log-polar domain, for different sizes of the Cartesian input
image and of the target cortical image (the latter defined by different R and with
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S computed in order to keep the aspect ratio of the log-polar pixel equals to 1).
The transformations are implemented in C++, the codes are compiled in release
version, and run on an Intel Core i7 2.8 GHz. The results show how the nearest
pixel and the bilinear interpolation techniques are ten times faster than the
solutions based on RFs. In particular, these two techniques are slightly affected
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Fig. 3. Execution times (ms) with respect to R of the cortical image for the transfor-
mation of two Cartesian images (512 × 512 and 1024 × 1024 pixels) into the log-polar
domain by using the four techniques of the blind-spot model with ρ0 = 5.

by the size of the input image, since they are based on point-wise processing,
and, consequently, the number of online computations is O(K), where K is
the number of cortical pixels. The other two techniques, based on RFs, require
O(KH) operations, where H denotes the number of Cartesian pixels. For these
reasons, we have decided not to implement the matrix approach proposed in [15].
It is worth noting that we have neglected to consider the inverse transformation
(i.e. from the cortical to the retinal domain), since robotic vision systems should
use the information computed in the cortical domain directly. In the following,
we will consider the backward transformed retinal images only for the sake of
comparison with the reference Cartesian ones.

3.2 Image Quality Indexes

In the literature, several authors address the problem of quality image assess-
ment in the field of lossy image compression. A major problem in evaluating
lossy techniques is the extreme difficulty in describing the type and the amount
of degradation in the reconstructed images. Thus, to obtain a reliable image
quality assessment, it is common to consider the results obtained with different
indexes. The same approach is here followed to evaluate the degradation of the
transformed images in the log-polar domain, for different compression ratios.

Several quantitative measures appeared in the literature [19]: the simplest
and most widely used full-reference quality metric is the mean squared error,
along with the related quantity of Peak Signal-to-Noise Ratio (PSNR). These
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Fig. 4. Quality indexes (PSNR, MSSIM, and VIFP) computed on the considered image
subset, numbered from 1 to 17, of the LIVE database. The bars represent the four
different techniques to implement the blind-spot model: light gray for the nearest pixel,
black for the bilinear interpolation, white for the overlapping circular RF, and dark
gray for adjacent RF, respectively. The parameters of the log-polar transformations
are: R = 70, S = 109, and ρ0 = 5.

quantities are easy to compute and have a clear physical meaning, though they
are not very well suited to match the perceived visual quality. In [16] the authors
proposed the use of the Mean Structural SIMilarity (MSSIM) to design an image
quality measure that takes advantage of the known characteristics of the human
visual system. Along this line, in [17] the Visual Information Fidelity (VIF) index
is introduced, which is derived from a statistical model for natural scenes and
from a model of image distortions, and it also takes into account considerations
on the human vision system.

The results presented in this Section are obtained by using the following
quality indexes: PSNR, the MSSIM implemented by [16], and the pixel do-
main version of visual information fidelity (VIFP) implemented by [17]. The
four implementations of the blind-spot model have been compared by using 17
images (512 × 512 pixels) from the LIVE Image Quality Assessment Database
[20]. The considered images are: bikes, building2, buildings, caps, coinsinfoun-
tain, flowersonih35, house, lighthouse2, monarch, ocean, paintedhouse, parrots,
plane, rapids, sailing1, sailing4, stream, in the following numbered from 1 to 17.

We have chosen two different values of cortical rings (R = 70 and R = 150)
in order to obtain two different compression ratios: 1:34 and 1:7, respectively. In
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parrots stream

nearest bilinear overlapping RF adjacent RF

Fig. 5. Examples of log-polar transformations with the four considered techniques for
two images of the LIVE database. The square images are the Cartesian reference ones.
The circles below represent the corresponding transformed images, by the different
techniques analyzed in this paper. The used parameters are the same of Fig. 4.

general, the quality indexes have higher values for cortical images with dimension
of 150 × 237 pixels, due to the lower compression ratio. Figure 4 shows the
indexes computed for the 17 selected images for R = 70. It is worth noting the
variability of the index values, with respect to the different images. This can be
explained by the different properties of the images: complex textures are indeed
affected by the decreased resolution in the periphery, thus leading to a lower
quality of the transformed images. Figure 5 shows the transformations obtained
for two significant cases: images 12 (parrots) and 17 (stream), since they present
the highest and the lowest quality indexes, respectively. In general, it is worth
nothing that the bilinear interpolation technique (black bar in Fig. 4) has better
performances, with respect to the other solutions, with images characterized
by gross uniform textures, thus yielding higher quality indexes (especially, for
the MSSIM and the VIFP). On the contrary, for images characterized by fine
details, thus more degraded by the log-polar transformation, the adjacent RF and
the overlapping RF techniques (dark gray and white bars, respectively) perform
slightly better. Nevertheless, considering both the quality indexes separately and
their mean values and standard deviation (see Table 1) we can conclude that the
bilinear interpolation technique is characterized by quality indexes comparable
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Fig. 6. The average quality indexes (PSNR, MSSIM, and VIFP) as a function of the
radial position, for the four solutions of the blind-spot model, by considering the chosen
subset of the LIVE database. Mapping parameters as in Fig. 4.

to the solutions based on RFs. The nearest pixel solution yields the worst results,
since it is most affected by the artifacts due to the aliasing. Moreover, we have
analyzed how the quality of the transformed images is affected by the distance
from their center (the fovea), by computing the quality indexes for all the pixels
within a given radius. Figure 6 shows that the bilinear interpolation (thick red
line) and the overlapping RF (thin black line) implementations of the blind-spot
model are the best solutions for all the eccentricities, whereas the nearest pixel
(dotted line) yields the lower values of the indexes. This result is consistent with
the findings shown in [15].

Table 1. The mean and standard deviation values of the three quality indexes for the
four solutions of the blind-spot model, for the selected images of the LIVE database

R = 70, S = 109, ρ0 = 5 R = 150, S = 237, ρ0 = 5

PSNR MSSIM VIFP

nearest 18.31±2.99 0.45±0.15 0.10±0.03

bilinear 20.34±3.09 0.52±0.16 0.14±0.05

overlapping RF 21.00±3.01 0.52±0.16 0.15±0.04

adjacent RF 20.70±2.93 0.50±0.15 0.13±0.03

PSNR MSSIM VIFP

20.28±3.10 0.58±0.13 0.18±0.05

22.48±3.15 0.65±0.13 0.23±0.06

22.77±3.10 0.64±0.13 0.24±0.05

22.56±3.08 0.63±0.12 0.23±0.05
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4 Conclusions and Future Work

In this paper, we have compared different techniques to implement the log-polar
blind-spot model (nearest pixel, bilinear interpolation, overlapping circular RF,
and adjacent RF), from an image quality point of view, and for what concerns
the associated computational load. The analysis of the image quality, i.e. the
preservation of the visual information in the log-polar transformation, has been
conducted by using three widely used image quality indexes. The experimental
validation shows how the simple and easy-to-implement bilinear interpolation
technique yields good results in terms of the quality of the transformed image.
Moreover, such a technique is ten times faster than the solutions based on RFs.
Thus, we can conclude that the bilinear interpolation solution of the blind-
spot model is the best trade-off for all the applications that require a fast and
reliable processing of the images, such as those typical of robotic vision. Indeed,
the possibility of efficiently exploiting a space-variant representation is of great
importance in the development of active vision systems capable of interacting
with the environment, since a precise processing of the visual signal is possible in
the foveal area, where the errors in the considered visual feature (e.g. binocular
disparity and optic flow) are small enough to allow a fine exploration of the
object of interest. At the same time, the coarse computation of the feature in
the peripheral area provides enough information to detect new saliencies and
to direct the focus of attention there. It is worth noting that this cannot be
achieved through an uniform downsampling of the images.

In this paper, we have analyzed the different solutions by examining the qual-
ity of the retinal image after the inverse mapping. In a future work, we will
comparatively assess the reliability of the visual feature extraction directly in
the cortical domain, by using the different techniques.

The software libraries used in this paper are available to the Computer Vision
community at www.pspc.dibe.unige.it/Research/logpolar.html.
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Abstract. The quality of interest point detectors is crucial for many
computer vision applications. One of the frequently used integral meth-
ods to compare detectors’ performance is repeatability score. In this
work, the authors analyze the existing approach for repeatability score
calculation and highlight some important weaknesses and drawbacks of
this method. Then we propose a set of criteria toward more accurate in-
tegral detector performance measure and introduce a modified repeata-
bility score calculation. We also provide illustrative examples to highlight
benefits of the proposed method.

1 Introduction

Image feature detection is a key problem in a wide range of computer vision
(CV) applications. The performance of CV applications typically depends on the
detection robustness for different transformations of images. Common integral
“measure” of detector’s performance is a very necessary tool for evaluation. One
of the most widely used (for example, in [6, 3, 2, 4, 5], and other works) integral
performance measures is the repeatability score [10].

In this work, we provide a detailed analysis of this method, which reveals some
important weaknesses and shortcomings, and then propose a set of modifications
to address them.

This paper is organized as follows: in Section 2, we analyze the existing re-
peatability score calculation algorithm and highlight some drawbacks, which,
in our opinion, significantly reduce the accuracy of this method. In Section 3,
we propose a modified approach to repeatability score calculation that does not
suffer from these drawbacks. Finally, in Section 4 we summarize our results and
future work.

2 Repeatability Score Analysis

2.1 Definitions

The repeatability score was originally introduced in [10]: “The repeatability rate
is the percentage of the total observed points which are repeated between two
images”.

Below are definitions from [10] (with slightly modified notation):

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 51–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



52 P. Smirnov et al.

1. A point pi detected in image Ii is repeated in image Ij if the corresponding
point pj is detected in image Ij . To actually measure the repeatability, a
relation between pi and pj , has to be established. In general this is impossible,
but if the scene is planar this relation is defined by a homography Hj,i:

pj = Hj,i · pi (1)

2. Some points can not be repeated due to image parts which exist only in one
of the images. Points dj and di which could potentially be detected in both
images are defined by

{di} = {pi | Hj,i · pi ∈ Ij}
{dj} = {pj | Hi,j · pj ∈ Ii} (2)

where {pi} and {pj} are the points detected in images Ii and Ij .
3. A point is not in general detected exactly at position pj, but rather in some

neighborhood of pj . The size of this neighborhood is denoted by ε and re-
peatability within this neighborhood is called ε-repeatability. The set of point
pairs (dj , di) which corresponds within an ε-neighborhood is

Di,j(ε) = {(dj , di) | ‖dj − Hj,i · di‖ < ε} (3)

4. The percentage of detected points which are repeated is the repeatability
rate from image Ii to image Ij .

ri,j(ε) =
|Di,j(ε)|

min(|{di}|, |{dj}|) (4)

From [10] “we can easily verify that”

0 ≤ ri,j(ε) ≤ 1 (5)

2.2 Issue 1: Implicit Assumption About Biunique Point-to-Point
Correspondence

Above (or similar) definitions are in [10, 11, 8, 6, 12]. Some publications observe
but do not define point-to-point correspondence.

One can see that (5) is true only if cardinality of set |Di,j(ε)| is less of minimum
cardinality of the sets: min(|{di}|, |{dj}|). So, authors implicitly assume that dj

and di should be unique in Di,j(ε) set (1 : 1 or point-to-point correspondence).
Otherwise in the M : N case of points correspondence the number of (dj , di)
pairs of Di,j(ε) set can be greater then any cardinality of dj and di that can
produce “probability” ri,j(ε) > 1.

Condition (5) is not enough to select point-to-point subset from all possible
M : N some-points-to-some-points Di,j(ε) set, see Fig.1. This set can produce
four different 1 : 1 subsets with different (from 2 to 4) cardinalities, where the
choice of some graph edge can cancel other possible choices (see Fig.2).

It is computationally expensive to support complex algorithms for maximiza-
tion of the cardinality of the final point-to-point subset. The point-to-point cor-
respondence is unpredictable in the general case.
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(a) Two sets of points and its possible
correspondence D1,2(ε).

(b) Bipartite graph of all possible cor-
respondent pairs

Fig. 1. Sample of correspondence that is based only on ε-selection

(a) Best point-to-point choice - 4 pairs
- max

(b) Poor choice - 2 pairs only - min

(c) 3 pairs (d) 3 pairs

Fig. 2. Point-to-point selection problem

2.3 Issue 2: Noisy Inputs Produce High Scores

The following example demonstrates the issue with using the repeatability score
definition as a probability of points’ correspondence.

Let I1 be an image with noise that produce N detected interest points, I2

is an image with single robust point and homography H2,1 is the identity in
the mathematical sense (“complex illumination variation” [10,11] only). If some
point (robust or noise) detected in I1 corresponds by (3) to a single robust point
of I2, then repeatability rate by (4) is always 1 regardless number of missed
(non-repeatable) points of I1.

If repeatability “is the percentage of the total observed points which are re-
peated between two images” then the expected number of such points should
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be N , but we can see that cardinality of Di,j(ε) (3) in our case is only 1 (single
correspondence).

This example illustrates how noisy images can produce higher repeatability
scores and produce inaccurate measurements of detector robustness. This is due
to the inherent nature of definition (4) which is based on the minimum of car-
dinality of compared sets.

Unfortunately the min-based definition is wide spread not just for repeata-
bility score for interest points [10, 11], but for regions too [6, 12].

2.4 Issue 3: Repeatability Score Depends on Scale Factor

The next issue is related to (3), where ε is fixed and independent from a homog-
raphy.

Most of authors consider that two points xa and xb correspond to each other
if [8]:

1. The error in relative point location is less than ε = 1.5 pixels [10, 11, 6, 12]:

‖xb − H · xa‖ < 1.5 (6)

where H is the homography between the images.
2. The error in the image surface covered by point neighborhoods is εS < 0.4 [8].

In the case of scale invariant points the surface error is:

εS = 1 − s2 · min(σ2
a, σ2

b )
max(σ2

a, σ2
b )

(7)

where σa and σb are the selected point scales and s is the actual scale factor
recovered from the homography between the images (s > 1).

Measurements of repeatability score for scale changes are described in the set
of publications [10, 11, 7, 3]. Let the interest point location detection error in
first image Ii be δ and the homography scale factor is k > 1 the distortion of
position pj = Hj,i · pi in second image Ij is multiplied to k too. The final error
is k · δ. If k · δ ≥ ε then condition (3) is not satisfied and the repeatability score
is (calculated for fixed ε) decreasing with increasing scale factor.

In the common case (3) and (6) are not symmetric. If the upscale factor from
the first image to the second image ki,j > 1, the downscale factor from the
second image to the first image kj,i < 1 and the repeatability score is relative to
the transform direction.

As one can see from the Fig.3 error depends upon the features’ scale, so
predefined fixed ε in the original method affects accuracy (especially for large
scales). To address this, the contribution of errors to the final score should be
weighed proportionally to the feature scales.

2.5 Alternative Repeatability Score Definitions

In [7] the authors propose a modified definition of repeatability score as the “ratio
between the number of point-to-point correspondences that can be established
for detected points and the mean number of points detected in two images”:
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(a) Images 1 → 2 (b) Images 1 → 3 (c) Images 1 → 4

(d) Images 1 → 5 (e) Images 1 → 6

Fig. 3. “Graffiti” dataset [1], SURF detector [3]: Dependency between squared error
(horizontal axis) and feature scale (vertical axis)

r1,2 =
C(I1, I2)

mean(m1, m2)
(8)

where C(I1, I2) “denotes the number of corresponding couples” and m1, m2 “the
numbers of detected points in the images”.

The “mean” operator in the definition (8) hides the real meaning of the defini-
tion. The current definition assumes that in each pair (point-to-point correspon-
dence) there are always 2 points. Let {d′i} and {d′j} are members of corresponding
pairs, each with equal (point-to-point) cardinality be

C(I1, I2) = |{d′i}| = |{d′j}| (9)

The total number of corresponding points in both sets is |{d′i}∪{d′j}| = |{d′i}|+
|{d′j}| = 2C(I1, I2) The total number of points in overlapped region (2) of both
images is |{di} ∪ {dj}| = |{di}| + |{dj}|. The ratio of the total number of cor-
responding points in both sets to the total number of points in both sets is the
repeatability score

ri,j =
|{d′i}| + |{d′j}|
|{di}| + |{dj}| (10)

With (9)

ri,j =
|{d′i}| + |{d′j}|
|{di}| + |{dj}| =

2C(I1, I2)
|{di}| + |{dj}| (11)

where
2

|{di}| + |{dj}| =
1

mean(|{di}|, |{dj}|) (12)

Criteria (10) defines the repeatability score not as a property of some detected
set of image points relative to other set, but as integral property of both sets.
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Note, that (10) is suitable for any type of correspondences: 1:1, 1:N , M :N .
Estimations of repeatability score in this form of the definition are free from
dominance of a robust but small compared set.

2.6 Remaining Issues of Repeatability Score Definition

The alternative definition fixes Issue 2 for high scores when a noisy image com-
pared against a robust image. As one can see, issues 1 and 3 listed above still
hold true for the alternative definition in [7]:

1. Repeatability score is not symmetric against direction of homography. Ho-
mography has a significant influence on the repeatability score. Distance (or
scale difference) measurements are calculated in metrics of second image only
and ri,j 
= rj,i.

2. Point-to-point selection is dependent upon the order. The point-to-point
selection choice (see Fig.1) can produce unstable sets of pairs. For small
scale factors of homography (<< 1, downscaling) point position errors can
be comparable to the position difference between points that does not allow
point-to-points selection on some formal regular basis (minimum of distance,
for example). Some points after downscaling can overlap each other.

3 Proposed Modifications toward More Accurate
Repeatability Score Calculation

3.1 Complex Shape of the ε-Neighborhood Region

If the distance threshold in the second image is fixed, then interest-points which
may be repeatable for transformations without significant scale changes can de-
crease the repeatability score for transformations that significantly increase scale
from the first image to the second, or, on the contrary, can show higher repeata-
bility score for transformations which significantly reduce scale. Estimation of
the repeatability score is dependent upon the homography direction and are not
accurate.

Let the image transformation be the identity (brightness, contrast, noise, etc.
non-coordinate distortions are only applied). The distribution of the measured
errors in the interest points’ coordinates (relative to the “ideal” interest points) is
truncated on some level and can be called as δ-neighborhood: acceptable detector
error.

The joint ε-neighborhood error region of such identity-transformed images is
a cross-coorelation function (convolution, if Hermitian) of the δ-neighborhoods
(wider, than the δ-neighborhood of each separate image).

The exact method of the above convolution can vary. For example, it can be
based on the following error estimation methods:

1. max of errors
2. simple sum of errors
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3. error of sum of independent values (square root of the errors sum squared)
4. cross-correlation of errors distribution

The correspondence of points in this model is symmetric. For non-identity trans-
formations the interest point and its δ-neighborhood should be transformed to-
gether. In general, the ε-neighborhood region is not uniform (and can’t be de-
scribed by ε-distance only, as in [8]) and is not the property of the second image
only, but is dependent on the transformation, too. The final ε-neighborhood
in the second image coordinates is a convolution of the transformed first im-
age interest point δ-neighborhood region with the second image (uniform) δ-
neighborhood region.

For example, the affine transform can produce an elliptical error distribu-
tion shape. More complex transforms can create non-uniform interest point
coordinate-dependent error distributions.

Fig. 4. Sample of points correspondence for complex type of homography

Instead of ε-neighborhood criteria (3) for corresponding points selection, the
following algorithm 1 can be used, for example (see Fig.4): Let d′1,1 = H · d1,1

(first case) and d′1,2 = H · d1,2 (second case).
The methods above are suitable only for models with equal significance of po-

sition errors. As demonstrated in Fig.3 errors’ significance depends on scale. Cor-
respondence measure for points p1 = (x1, y1, σ1) and p′2 = (x′

2, y
′
2, σ

′
2) (where

p′2 = (x′
2, y

′
2, σ

′
2) is point of the second image p2 = (x2, y2, σ2) transformed

into scale-space coordinates of the first image) can be defined as cross-correlation
of Gaussians:

2
σ1
σ′2

+ σ′2
σ1

exp(−1
2

(x1 − x′
2)2 + (y1 − y′

2)2

σ2
1 + σ′2

2

) (13)
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Algorithm 1. Points correspondence testing
Require: points d1 ∈ I1, d2 ∈ I2

Ensure: d1 and d2 corresponding status
1: d′

1 = H · d1

2: if ‖d′
1 − d2‖ < δ then

3: d1 corresponds to d2

4: else
5: find point d′

2 between points d2 and d′
1 with offset δ from the point d2:

d′
2 = d2 + δ

d′
1 − d2

‖d′
1 − d2‖

6: apply inverse homography H−1 to it:

d′′
2 = H−1 · d′

2

7: if ‖d′′
2 − d1‖ < δ then

8: points d1 and d2 correspond
9: else

10: points d1 and d2 do not correspond
11: end if
12: end if

The points correspond when the correspondence measure (13) is above a thresh-
old. For example, threshold for equation (7) is near 0.968. Using this threshold
one can also find scale in (6): 4.18 pixels.

For simple cases (uniform transforms) ε-neighborhood criteria (3) is allowed
with ε = δ(1 + k), where k is scale factor of the homography. Appendix “A.2
Gaussian Identities” in [9] can help to deduce (13) for more complex cases of
homography.

3.2 New “Correspondence” Assumptions and Two Types of
Repeatability Score

Our approach to mitigating issues 1–3 is to use a definition closer to “the percent-
age of detected points which are repeated” [10] instead of “the ratio between the
number of point-to-point correspondences and the minimum number of points
detected in the images” [8]. or “ratio between the number of point-to-point cor-
respondences that can be established for detected points and the mean number
of points detected in two images” [11].

We propose to define two different types of repeatability scores:

1. Integral repeatability score we define as “the ratio between the number of
points in both images that have corresponding points in the other image and
the total number of points in the both images” (see (10)).
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2. Single-side repeatability score we define as “the ratio between the number of
points in the first image that have corresponding points in the second image
and the total number of points in the first image” (in terms of (10):

ssri,j =
|{d′i}|
|{di}| (14)

where {di} is a set of all points that satisfy (2) and {d′i} is a subset of a set
{di} where corresponding ε-neighborhood region in image Ij is not empty.

Sets of points being compared should satisfy (2) (points which could potentially
be detected in both images). The correspondence criteria uses the complex shape
of the ε-neighborhood region defined above. Both definitions do not assume
point-to-point correspondences, but rather existence or absence of points in the
ε-neighborhood. The repeatability score result using the new definition is always
in the range [0, 1].

The first definition is similar to the definition (10) (except the absence of the
strict point-to-point correspondence requirement).

The repeatability score in integral form is a measure of the mutual repeatabil-
ity of point sets in both images and can be used as an image similarity measure.

The single-side repeatability score is a measure of “relative” points robustness
(points in the first image to the points in the second image). It can also be used
as a selection criteria for detector tuning between robustness and sensitivity, for
example.

4 Conclusion

The repeatability score in its original definitions has some major weaknesses,
which could produce unreliable estimations of the feature detectors’ performance.
In this work, we proposed a modified definition of this measure, which addresses
these drawbacks. The proposed method is also less dependent on the homography
parameters.

Further research will be dedicated to the development of the integral measure,
which will combine both scale and spatial “distances” and other, detector-specific
attributes of interest points.
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Abstract. Recently, local descriptors have drawn a lot of attention as a
representation method for action recognition. They are able to capture
appearance and motion. They are robust to viewpoint and scale changes.
They are easy to implement and quick to calculate. Moreover, they have
shown to obtain good performance for action classification in videos.
Over the last years, many different local spatio-temporal descriptors have
been proposed. They are usually tested on different datasets and using
different experimental methods. Moreover, experiments are done making
assumptions that do not allow to fully evaluate descriptors. In this paper,
we present a full evaluation of local spatio-temporal descriptors for action
recognition in videos. Four widely used in state-of-the-art approaches
descriptors and four video datasets were chosen. HOG, HOF, HOG-HOF
and HOG3D were tested under a framework based on the bag-of-words
model and Support Vector Machines.

1 Introduction

In last years, many researchers have been working on developing effective de-
scriptors to recognize objects, scenes and human actions. Many suggested de-
scriptors have proven to establish very good performance for action classification
in videos. They are able to capture appearance and motion. They are robust to
viewpoint and scale changes. Moreover, they are easy to implement and quick to
calculate. For example [15] proposed Scale-Invariant Feature Transform (SIFT)
descriptor, [1] proposed Speeded Up Robust Features (SURF), [3] proposed His-
togram of Oriented Gradients (HOG) descriptor. [8] proposed PCA-SIFT, [4]
proposed Cuboid descriptor, [13] proposed Histogram of Oriented Gradients
(HOG) and Histogram of Optical Flow (HOF) descriptors computed on spatio-
temporal grids. [9] proposed a Spatio-Temporal Descriptor based on 3D Gradi-
ents (HOG3D). Although much has been done, it is not clear which descriptors
are better than the others. They are usually evaluated on different datasets and
using different experimental methods. Moreover, existing comparisons usually
involve smaller or bigger restrictions. For example, [21] to limit the complexity
choose a subset of 100, 000 selected training features what is around 21% of all
HOG-HOF descriptors and around 40% of all HOG3D descriptors computed for

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 61–70, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the KTH Dataset. Moreover, the authors make all the experiments using only
one codebook size (4000). Also in [19] the authors make an assumption about
the codebook size (one codebook size) and evaluate descriptors on one dataset.

In this paper, we present an evaluation of local spatio-temporal features for
action recognition in videos. Four widely used in the state-of-the-art approaches
descriptors were chosen: HOG, HOF, HOG-HOF and HOG3D. All these de-
scriptors are tested on the same datasets with the same split of training and
testing data, and using the same identical classification method. Our evaluation
framework is based on the bag-of-words approach, an approach that is very of-
ten used together with local features. Computed descriptors are quantized into
visual words and videos are represented as histograms of occurrences of visual
words. For action classification, non-linear Support Vector Machines (SVM) to-
gether with leave-one-out cross-validation technique are used. Our experiments
are performed on several public datasets containing both low and high resolution
videos recorded using static and moving camera (KTH Dataset, Weizmann Ac-
tion Dataset, ADL Dataset and Keck Dataset). In contrast to other evaluations,
we test all the computed descriptors, we perform evaluation on several differ-
ing in difficulty datasets and perform evaluation on several codebook sizes. We
demonstrate that accuracy of evaluated descriptors depends on the codebook
size and a dataset.

The paper is organized as follows. In section 2, we briefly present the main idea
of our evaluation framework. Section 3, presents our experiments and obtained
results. Finally, in section 4, we present our conclusion.

2 Evaluation Framework

Our evaluation framework is as follows. In the first step, for each video, local
space-time detector is applied. For each obtained point, local space-time descrip-
tor is computed (Section 2.1). In the second step, the bag-of-words model is used
to represent actions (Section 2.2). For each video, four different codebooks and
four different video representations are computed. Finally, to evaluated descrip-
tors, the leave-one-person-out cross-validation technique and non-linear multi-
class Support Vector Machine are applied (Section 2.3 and 2.4). To speed-up the
evaluation process, clusters of computers are used.

2.1 Space-Time Local Features

Local spatio-temporal features are extracted for each video. As a local feature
detector, the Harris3D algorithm is applied. Then, for each detected feature, four
types of descriptors are computed (HOG, HOF, HOG-HOF and HOG3D). The
detector and descriptors were selected based on their use in the literature and
availability of the original implementation1,2. For each algorithm, the default
values of parameters were used.
1 http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
2 http://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor/

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
http://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor/
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Harris3D [11] detector - it is proposed by Laptev and Linderberg extension
of the Harris corner detector [6]. The authors propose to extend the notion
of spatial interest and detect local structures in space-time where the image
values have significant local variations in both space and time. The authors use
independent spatial and temporal scale values, a separable Gaussian smoothing
function, and space-time gradients.

Histogram of Oriented Gradients (HOG) [13] - it is a 72-bins descriptor
describing the local appearance. The authors propose to define a grid nx×ny×nt

(default settings: 3× 3× 2) in the surrounding space-time area and compute for
each cell of the grid 4-bins histogram of oriented gradients.

Histogram of Optical Flow (HOF) [13] - it is a 90-bins descriptor describ-
ing the local motion. The authors propose to define a grid nx × ny ×nt (default
settings: 3 × 3 × 2) around the encompassing space-time area and compute for
each cell of the grid 5-bins histogram of optical flow.

HOG-HOF descriptor - it is a 162-bin descriptor combining both His-
togram of Oriented Gradients and Histogram of Oriented Flow descriptors.

Spatio-Temporal Descriptor based on 3D Gradients (HOG3D) - it
is a 300-bins descriptor proposed by Klaser et al. [9]. It is based on orientation
histograms of 3D gradients. The authors propose to define a grid nx × ny × nt

(default settings: 2× 2× 5) in the surrounding space-time area and compute for
each cell of the grid 3D gradients orientations.

2.2 Bag-of-Words Model

To represent videos using local features we apply common bag-of-words model.
All computed descriptors for all Harris3D detected points are used in the quanti-
zation process. First of all, the k-means clustering algorithm with the Euclidean
distance is used to create a codebook. Then, each video is represented as a his-
togram of occurrences of the codebook elements. In our experiments we use four
different sizes of codebooks (1000, 2000, 3000 and 4000).

2.3 Classification

In order to perform classification, we use a multi-class non-linear Support Vector
Machines using radial basis function defined by:

K(Ha, Hb) = exp(−γD(Ha, Hb)) (1)

where both Ha = {ha1, ..., han} and Hb = {hb1, ..., hbn} are n-bins histograms.
Function D is a χ2 distance function defined by:

D(Ha, Hb) =
n∑

i=1

(hai − hbi)2

hai + hbi
(2)

Such defined kernel requires two parameters: (a) trade-off between training error
and margin, and (b) parameter gamma in the rbf kernel. To evaluate selected
descriptors, we test: (a) all values 2x where x is in range −5 to 16 (22 different
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(a) Run (b) Walk (c) Jump (d) Wave1 (e) Wave2

(f) Walking (g) Boxing (h) H.-waving (i) H.-clapping (j) Jogging

Fig. 1. A few sample frames from video sequences from Weizmann (the first row) and
KTH (the second row) datasets

values) for the trade-off between training error and margin, and (b) all values
2y where y is in range 3 to −15 (19 different values) for the parameter gamma
in the rbf kernel. As a Support Vector Machine, the SVM multi-class [20] is
used (multi-class variant of SVM light [7]). To speed-up the evaluation process,
clusters of computers are used.

2.4 Evaluation

To evaluate selected descriptors, we use leave-one-person-out cross-validation
technique (unless specified for a dataset), where videos of one actor are used as
the validation data and videos from the remaining actors as the training data.
This is repeated in such a way that videos from one person are used exactly once
as the validation data. In our experiments we use all the descriptors calculated
for all detected points to comprehensively try out the effectiveness of used local
feature descriptors.

3 Experiments

Our experiments are performed on four different datasets: Weizmann Action
Recognition Dataset (Section 3.1), KTH Dataset (Section 3.2), ADL Dataset
(Section 3.3) and Keck Dataset (Section 3.4). A few sample frames from these
video datasets can be found in Figure 1 and Figure 2. These datasets contain
various types of videos: low and high resolution videos, recorded using static and
moving camera, and containing one and many people. Information about these
databases are summarized in Table 1.

3.1 Weizmann Action Recognition Dataset

The Weizmann Action Recognition Dataset [2,5]3 is a low-resolution (180× 144
pixel resolution, 50 fps) dataset of natural human actions. The dataset contains
3 http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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Table 1. Statistics for the Weizmann, KTH, ADL and Keck datasets: number of videos,
frames, detected points, HOG-HOF (HOG, HOF) descriptors, HOG3D descriptors,
frames per video, detected points per video, HOG-HOF descriptors per video, HOG3D
descriptors per video, points per frame, HOG-HOF descriptors per frame, HOG3D
descriptors per frame, ratio of number of HOG-HOF descriptors to number of points,
and ratio of number of HOG3D descriptors to number of points

Weizmann KTH ADL Keck

resolution 180 × 144 160 × 120 640 × 360 640 × 480
#videos 93 599 150 98
#frames 6,108 289,715 72,729 25,457

#Harris3D points 13,259 473,908 718,440 227,310
#HOG-HOF descriptors 13,259 473,908 718,440 227,310
#HOG3D descriptors 9,116 252,014 690,907 207,655

#frames/#videos 65.68 483.66 484.86 259.77
#points/#videos 142.57 791.17 4789.60 2319.49

#HOG-HOF/#videos 142.57 791.17 4789.60 2319.49
#HOG3D/#videos 98.02 505.04 4606.05 2118.93
#points/#frames 2.17 1.64 9.88 8.93

#HOG-HOF/#frames 2.17 1.64 9.88 8.93
#HOG3D/#frames 1.49 0.87 9.50 8.16

#HOG-HOF/#points 1.00 1.00 1.00 1.00
#HOG3D/#points 0.69 0.53 0.96 0.91

93 video sequences showing 9 different people. The dataset contains 10 actions.
The full list of actions is: run, walk, skip, jumping-jack (shortly jack), jump-
forward-on-two-legs (shortly jump), jump-in-place-on-two-legs (shortly pjump),
gallop-sideways (shortly side), wave-two-hands (shortly wave2), wave-one-hand
(shortly wave1), and bend. Statistics about this dataset are available in table 1.
Evaluation is done using leave-one-person-out cross-validation technique.

Results are presented in table 2. As we can observe, all the descriptors obtain
the same accuracy for codebook 2000 and 4000. In this case, the codebook of size
2000 is preferred (faster codebook computation and faster SVM classification).
The HOG descriptor performs the best for codebook 2000, the HOF descriptor
for codebook 3000, HOG-HOF for codebook 2000 and HOG3D descriptor for
codebook 3000. According to the results, the HOG-HOF is the best descriptor
for the Weizmann dataset and the HOG descriptor is the worst. Ranking is:
HOG-HOF > HOF = HOG3D > HOG. The HOF descriptor obtains the same
classification accuracy as HOG3D descriptor but HOF descriptor is smaller in
size (90-bins descriptor instead of 300-bins). It takes less time to compute code-
book and perform classification for the HOF descriptor. Kläser [10], employing
random sampling on training features for codebook generation (codebook size
4000), obtained 75.3% accuracy for the HOG descriptor, 88.8% for the HOF
descriptor, 85.6% for the HOG-HOF and 90.7% for the HOG3D descriptor. This
shows that the codebook selection method has significant importance to the
effectiveness of the BOW method (we obtained up to 10.72% better results).
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(a) LookNum. (b) DrinkWater (c) Ans.Phone (d) Write (e) EatSnack

(f) Gesture1 (g) Gesture2 (h) Gesture3 (i) Gesture4 (j) Gesture5

Fig. 2. A few sample frames from video sequences from ADL (the first row) and Keck
(the second row) datasets

Table 2. Action recognition accuracy for the Weizmann dataset

HOG HOF HOG-HOF HOG3D

codebook size 1000 83.87% 88.17% 91.40% 89.25%
codebook size 2000 86.02% 90.32% 92.47% 90.32%
codebook size 3000 86.02% 91.40% 91.40% 91.40%
codebook size 4000 86.02% 90.32% 92.47% 90.32%

3.2 KTH Dataset

The KTH dataset [18]4 contains six types of human actions (walking, jogging,
running, boxing, hand waving and hand clapping) performed several times by
25 subjects in four different scenarios: outdoors, outdoors with scale variation,
outdoors with different clothes and indoors. The dataset contains 599 videos. All
videos were taken over homogeneous backgrounds with a static camera with 25
fps. The sequences were down-sampled by the authors to the spatial resolution
of 160 × 120 pixels. For this dataset, as it is recommended by the authors, we
divide the dataset into testing part (person 2, 3, 5, 6, 7, 8, 9, 10 and 22) and
training part (other video sequences). Statistics about this dataset are available
in the table 1.

Results are presented in table 3. Both HOG and HOF descriptors perform the
best for codebook 1000 and both HOG-HOF and HOG3D descriptors for code-
book 3000. According to the results, the HOF descriptor is superior descriptor
for the KTH dataset and again the HOG descriptor is inferior quality. Ranking
is: HOF > HOG-HOF > HOG3D > HOG. Wang et al. [21], choosing a subset
of 100, 000 selected training features and using codebook size of 4000, obtained
80.9% accuracy for the HOG descriptor, 92.1% for the HOF descriptor, 91.8%
for the HOG-HOF and 89% for the HOG3D descriptor. We obtain up to 4.52%
better results on this dataset. Selecting only a subset of descriptors can cause
loss of some important information.
4 http://www.nada.kth.se/cvap/actions/

http://www.nada.kth.se/cvap/actions/
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Table 3. Action recognition accuracy for the KTH dataset

HOG HOF HOG-HOF HOG3D

codebook size 1000 83.33% 95.37% 93.06% 91.66%
codebook size 2000 83.33% 94.44% 93.98% 92.13%
codebook size 3000 83.33% 94.91% 94.44% 93.52%
codebook size 4000 82.41% 94.91% 93.98% 93.06%

Table 4. Action recognition accuracy for the ADL dataset

HOG HOF HOG-HOF HOG3D

codebook size 1000 85.33% 90.00% 94.67% 92.00%
codebook size 2000 88.67% 90.00% 92.67% 91.33%
codebook size 3000 83.33% 89.33% 94.00% 90.67%
codebook size 4000 86.67% 89.33% 94.00% 85.00%

3.3 ADL Dataset

The University of Rochester Activities of Daily Living (ADL) dataset [16]5 is a
high-resolution (1280 × 720 pixel resolution, 30 fps) video dataset of activities
of daily living. The dataset contains 150 video sequences showing five different
people. The dataset contains ten activities. The full list of activities is: answering
a phone, dialling a phone, looking up a phone number in a telephone directory,
writing a phone number on a whiteboard, drinking a glass of water, eating snack
chips, peeling a banana, eating a banana, chopping a banana, and eating food
with silverware. These activities were selected to be difficult to separate on the
basis of single source of information (e.g. eating banana and eating snack or
answering a phone and dialling a phone). These activities were each performed
three times by five people differing in shapes, sizes, genders, and ethnicity. The
videos were down-sampled to the spatial resolution of 640×360 pixels. Statistics
about this dataset are available in table 1. Evaluation is done using leave-one-
person-out cross-validation technique.

Results are presented in table 4. As we can observe, apart from the HOG de-
scriptor, all the other descriptors perform the best for codebook 1000. The HOG
descriptor performs the best for codebook 2000. According to the results, the
HOG-HOF is the best descriptor for the ADL dataset and the HOG descriptor
is again the worst. Ranking is: HOG-HOF > HOG3D > HOF > HOG.

3.4 Keck Dataset

The Keck gesture dataset [14]6 consists of 14 different gesture classes, which
are a subset of military signals. The full list of activities is: Turn left, Turn

5 http://www.cs.rochester.edu/~rmessing/uradl/
6 http://www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html

http://www.cs.rochester.edu/~rmessing/uradl/
http://www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html
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Table 5. Action recognition accuracy for the Keck dataset

HOG HOF HOG-HOF HOG3D

codebook size 1000 42.86% 30.36% 37.50% 50.00%
codebook size 2000 39.29% 33.93% 46.43% 50.00%
codebook size 3000 44.64% 37.50% 39.29% 53.57%
codebook size 4000 41.07% 42.86% 44.64% 44.64%

right, Attention left, Attention right, Attention both, Stop left, Stop right, Stop
both, Flap, Start, Go back, Close distance, Speed up, Come near. The dataset
is collected using a color camera with 640 × 480 resolution. Each gesture is
performed by 3 people. In each sequence, the same gesture is repeated 3 times
by each person. Hence there are 3 × 3 × 14 = 126 video sequences for training
which are captured using a fixed camera with the person viewed against a simple,
static background. There are 4× 3× 14 = 168 video sequences for testing which
are captured from a moving camera and in the presence of background clutter
and other moving objects. Statistics about this dataset are available in table 1.

Results are presented in table 5. The HOG descriptor performs the best for
codebook 3000, the HOF descriptor for codebook 4000, the HOG-HOF for code-
book 2000 and the HOG3D for codebook 3000. The HOG3D is the best descriptor
for the Keck dataset and the HOF descriptor is the worst. Ranking is: HOG3D
> HOG-HOF > HOG > HOF.

According to the obtained results, we observe that accuracy of descriptors
depends on the codebook size (12.5% difference on the Keck dataset for the
HOF descriptor, 7% difference on the ADL dataset for the HOG3D descriptor),
codebook selection method (up to 10.72% better results comparing to [10] on
the Weizmann dataset) and dataset (HOF descriptor obtains 95.37% on the
KTH dataset but only 42.86% on the Keck dataset). Also, we observe that
smaller codebook sizes (1000, 2000, 3000) are found to lead to consistently good
performance across the different datasets. Due to random initialization of k-
means used for codebook generation, we observe no linear relationship accuracy
of codebook size.

Our experiments show that the HOG-HOF, combination of gradient and op-
tical flow based descriptors, seems to be a good descriptor. For the Weizmann
and ADL datasets, the HOG-HOF descriptor performs best and takes the second
place for the KTH and Keck datasets. The HOG descriptor usually perform the
worst. The accuracy of the HOF and HOG3D descriptors depends on a dataset.
Also, we observe that regardless of the dataset, the HOG-HOF and HOG3D
descriptors always work better than the HOG descriptor.

4 Conclusions

In this paper, we present a full evaluation of local spatio-temporal descriptors
for action recognition in videos. Four widely used in state-of-the-art approaches
descriptors (HOG, HOF, HOG-HOF and HOG3D) were chosen and evaluated
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under the framework based on the bag-of-words approach, non-linear Support
Vector Machine and leave-one-out cross-validation technique. Our experiments
are performed on four public datasets (KTH Action Dataset, Weizmann Action
Dataset, ADL Dataset and Keck Dataset) containing low and high resolution
videos recorded by static and moving cameras. In contrast to other existing
evaluations, we test all the computed descriptors, perform evaluation on several
differing in difficulty datasets and perform evaluation on several codebook sizes.
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Abstract. State-of-the-art systems for visual concept detection typi-
cally rely on the Bag-of-Visual-Words representation. While several
aspects of this representation have been investigated, such as keypoint
sampling strategy, vocabulary size, projection method, weighting scheme
or the integration of color, the impact of the spatial extents of local SIFT
descriptors has not been studied in previous work. In this paper, the effect
of different spatial extents in a state-of-the-art system for visual concept
detection is investigated. Based on the observation that SIFT descriptors
with different spatial extents yield large performance differences, we pro-
pose a concept detection system that combines feature representations
for different spatial extents using multiple kernel learning. It is shown
experimentally on a large set of 101 concepts from the Mediamill Chal-
lenge and on the PASCAL Visual Object Classes Challenge that these
feature representations are complementary: Superior performance can be
achieved on both test sets using the proposed system.

Keywords: Visual Concept Detection, Video Retrieval, SIFT, Bag-of-
Words, Magnification Factor, Spatial Bin Size.

1 Introduction

Visual concept detection, also known as high-level feature extraction, plays a
key role in semantic video retrieval, navigation and browsing. Query-by-content
based on low-level features is insufficient to search successfully in large-scale
multimedia databases [10]. Thus, several approaches in the field of image and
video retrieval focus on high-level features serving as intermediate descriptions
to bridge the “semantic gap” between data representation and human interpre-
tation. Hauptmann et al. [3] has stated that less than 5000 concepts, detected
with a minimum accuracy of 10% mean average precision, are sufficient to pro-
vide search results comparable to text retrieval in the World Wide Web. Due
to the large visual variations in the appearance of semantic concepts, current
approaches mainly focus on local keypoint features, with SIFT (scale-invariant
feature transform [9]) as the most successful descriptor. These local features
are usually clustered to build a visual vocabulary, where the cluster centers are
regarded as “visual words”. Similar to the representation of documents in the

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 71–80, 2011.
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field of text retrieval, an image or shot can then be represented as a Bag-of-
Visual-Words (BoW) by mapping the local descriptors to the visual vocabulary.
Current semantic concept detection systems rely on this BoW representation
[11]. Although several variations of keypoint sampling strategies, vocabulary con-
struction techniques, local descriptor projection methods, and machine learning
algorithms have been evaluated, the impact of the spatial extents of local SIFT
descriptors has not been studied for semantic concept detection in previous work.

In this paper, we investigate the impact of the spatial extents of local SIFT
descriptors using a state-of-the-art visual concept detection system. We have ob-
served that for particular semantic concepts different spatial extents cause large
performance differences. Based on these observations, we propose to combine
feature representations for different spatial extents using multiple kernel learn-
ing (MKL). Experimental results on the Mediamill and on the PASCAL Visual
Object Classes (VOC) Challenge show that the concept detection performance
can be significantly boosted by combining feature representations of different
spatial sizes using MKL. In particular, it is more effective than using a spatial
pyramid representation. Futhermore, the results indicate that the magnification
factor of SIFT descriptors, which defines the spatial bin size depending on the
keypoint scale, should be much larger for semantic concept detection than the
usually used default value.

The paper is organized as follows. Section 2 discusses related work. Section
3 describes the concept detection system. Experimental results are presented in
Section 4. Section 5 concludes the paper and outlines areas for future research.

2 Related Work

In recent years, researchers have shifted their attention to generic concept de-
tection systems, since the development of specialized detectors for hundreds or
thousands of concepts seems to be infeasible. Using BoW approaches, contin-
uous progress has been reported in recent years. The top 5 official runs at the
TRECVID 2010 semantic indexing task rely on BoW representations [11]. While
early BoW approaches have mainly extracted local descriptors at salient points,
today it seems that this representation using keypoint detectors like Harris-
Laplace or DoG (Difference of Gaussians) is often insufficient to describe nat-
ural images. For scene classification, random or dense sampling strategies have
outperformed the previously mentioned scale- and rotation-invariant keypoint
detectors [1][12]. Jiang et al. [4] have evaluated various factors of the BoW rep-
resentation for semantic video retrieval including the choice of keypoint detector,
kernel, vocabulary size and weighting scheme. Furthermore, they have proposed a
soft-weighting scheme where a keypoint is assigned to multiple visual words, and
the importance is determined by the similarity of the keypoint to the vocabulary
entry. Another study of Jiang et al. [5] has provided a comprehensive compari-
son of representation choices of keypoint-based semantic concept detection. Yang
et al. [17] have applied techniques used in text categorization, including term
weighting, stop word removal or feature selection to generate image representa-
tions for scene classification that differ in dimension, selection, and weighting of
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Fig. 1. SIFT descriptor geometry

visual words. Various color features, like rgb-SIFT, opponent-SIFT or hsv-SIFT
have been compared by van de Sande et al. [13] for visual concept classification.
Lazebnik et al. [8] have suggested spatial pyramid features for scene classification
to integrate spatial information. They have concatenated BoW representations
for equally sized image subregions of different partitioning levels. The different
levels were fused using a weighted combination of kernels per level. It has been
shown that the combination of multiple spatial layouts is helpful, whereas an im-
age partitioning of more than 2x2 regions is ineffective [17][13]. An example of
using MKL to combine different BoW representations based on spatio-temporal
features is given by Kovashka and Grauman [7] in the field of action recognition.
The best semantic indexing system [11] at TRECVID 2010 has used sparse and
dense sampling, multiple color SIFT descriptors, spatial pyramids, multi-frame
video processing, and kernel-based machine learning.

3 Concept Detection System

In this section, we describe the proposed system for visual concept detection.
The concept detection challenge is considered as a supervised learning task.
Support vector machines (SVM) that have proven to be powerful for visual con-
cept detection [11] are used for the classification of each concept. We apply two
sampling strategies to extract local SIFT descriptors: sparse sampling using the
DoG salient point detector and dense sampling. The visual vocabulary is gener-
ated using a K-means algorithm, and an image is then described as a histogram
indicating the presence of each “visual word”. Further implementation choices
of the used BoW approach, such as the soft-weighting scheme, the integration
of color and spatial information, and the used kernel are described below. The
proposed MKL framework to combine feature representations based on different
local region sizes is presented in Section 3.5.

3.1 SIFT Descriptor Geometry

The scale-invariant feature transform (SIFT) performs keypoint detection and
local feature extraction. A DoG detector is used to detect the keypoints. The
appearance of a keypoint is described using a spatial histogram of image gra-
dients, where a Gaussian weighting function is applied to reduce the influence
of gradients further away from the keypoint. The SIFT descriptor geometry is
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specified by the number and size of the spatial bins and the number of orien-
tation bins. Using 8 orientation bins and 4x4 spatial bins, the local descriptor
results in an 128-dimensional vector. To extract SIFT features, the implementa-
tion of the Vision Lab Features Library (VLFEAT) [16] is used. It also provides
a fast algorithm for the calculation of densely sampled SIFT descriptors of the
same scale and orientation. We use a step size of 5 pixels for dense sampling.
In the case of scale-invariant keypoints the spatial bin size is determined by the
product of the detected keypoint scale and the magnification factor (see Figure
1). The default magnification factor of the SIFT implementation is 3 [9]. Since
dense sampled keypoints do not have detected keypoint scales, the bin size is
specified directly.

3.2 Soft-Weighting Scheme

Instead of mapping a keypoint only to its nearest neighbor, a soft-weighting
scheme similar to Jiang et al. [4] is used, where the top K nearest visual words
are selected. Using a visual vocabulary of N visual words, the importance of a
visual word t in the image is represented by the weights of the resulting histogram
bins w = [w1, . . . , wt, . . . , wN ] with

wt =
K∑

i=1

Mi∑
j=1

sim(j, t), (1)

where Mi is the number of keypoints whose i-th nearest neighbor is the word t.

3.3 Color and Spatial Information

Color information is integrated using rgb-SIFT. Therefore, the SIFT descriptors
are computed independently for the three channels of the RGB color model. The
final keypoint descriptor is the concatenation of the individual descriptors. Due
to the normalizations during the SIFT feature extraction, rgb-SIFT is equal to
the transformed color SIFT descriptor, and thus invariant against light intensity
and color changes [13].

To capture the spatial image layout, we use a spatial pyramid of 1x1 and
2x2 equally sized subregions. The HoWs (histogram of words) are generated
independently for each subregion and concatenated in a final feature vector.
The weighting of the HoWs is realized as specified by Lazebnik et al. [8].

3.4 Kernel Choice

The kernel choice is a critical decision for the performance of a SVM. Since
histogram representations are used in our approach, we apply the χ2 kernel that
is based on the corresponding histogram distance:

kχ2 (x, y) = e−γχ2(x,y) with χ2(x, y) =
∑

i

(xi − yi)2

xi + yi
. (2)

Jiang et al. [5] have used the χ2 kernel successfully for BoW features in the
context of semantic concept detection. In their study, the χ2 kernel has outper-
formed the traditional linear and radial basis function kernels.
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3.5 Multiple Kernel Learning

In order to combine the capabilities of feature respresentations based on different
spatial extents, MKL is applied to find an optimal kernel combination

k =
n∑

i=1

βiki with βi ≥ 0 (3)

where each kernel ki takes a different feature representation into account. The
sparsity of the kernel weights can be controlled by the Lp-norm. We use the
l2-norm that leads to a uniform distribution of kernel weights. Throughout our
experiments, we use the MKL framework provided by the Shogun library [15] in
combination with the support vector machine implementation of Joachims [6],
called SV M light.

4 Experimental Results

In this section, the performance impact of the spatial extents of SIFT descriptors
and the combination of different spatial extents using MKL is investigated in
the field of visual concept detection. For this purpose, two benchmarks are used,
the Mediamill Challenge [14] and the PASCAL Visual Object Classes (VOC)
Challenge [2]. The Mediamill Challenge offers a dataset based on the TRECVID
2005 [11] training set with an extensive set of 101 annotated concepts, including
objects, scenes, events and personalities. It consists of 86 hours of news videos
containing 43,907 completely annotated video shots. These shots are divided
into a training set of 30,993 shots and a test set of 12,914 shots. For every
shot, a single representative keyframe image is provided. In our experiments
the positive and negative training instances per concept are each restricted to
5000 samples to speed up the training process. The PASCAL VOC Challenge

Fig. 2. Evaluation of different spatial sizes on the Mediamill Challenge using a 1000-
dimensional vocabulary (averaged over 101 concepts)
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provides a test set for image classification with 20 annotated object classes, e.g.
“bird”, “cat”, “cow”, “aeroplane”, “bicycle”, “boat”, “bottle”, “chair”, “dining
table” and “person”. In total, this dataset consists of 9,963 “flickr” images,
approximately equally splitted into training and test set.

4.1 Evaluation Criteria

To evaluate the concept retrieval results, the quality measure of average precision
(AP) is used. For each concept, the implemented system returns a list of ranked
shots, which is used to calculate the average precision as follows:

AP (ρ) =
1
R

N∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik) (4)

where ρk = i1, i2, . . . , ik is the ranked shot list up to rank k, N is the length
of the ranked shot list, R ist the total number of relevant shots and

∣∣R ∩ ρk
∣∣

is the number of relevant shots in the top k of ρ. The function ψ(ik) = 1 if
ik ∈ R and 0 otherwise. To evaluate the overall performance, the mean average
precision score is calculated by taking the mean value of the average precisions
for the individual concepts. Furthermore, the official partial randomization test
in the TRECVID evaluation [11] is used to determine whether our system is
significantly better than a reference system, or if the difference is only due to
chance.

4.2 Results

Our experiments are based on visual features analysis. In all experiments, the
rgb-SIFT descriptor is used since color SIFT descriptors achieve superior perfor-
mance for concept detection [13]. We have conducted several experiments on the
two benchmark test sets to investigate the impact of spatial bin sizes in combi-
nation with different sampling strategies (sparse and dense sampling), different
vocabulary sizes (1000 and 4000 visual words) and spatial pyramids.

(a) w/o spatial pyramids (b) spatial pyramids

Fig. 3. Evaluation of different spatial sizes on the Mediamill Challenge using a vocab-
ulary of 4000 visual words (averaged over 101 concepts)
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Table 1. Average precision values of 7 selected concepts from the Mediamill Challenge
for different spatial bin sizes using a vocabulary size of 4000

In [%] sparse sampling dense sampling

5 10 15 5 10 15

bicycle 0.5 1.5 5.5 2.4 17.6 65.4
beach 7.5 15.6 14.6 7.7 17.1 16.0
desert 18.8 17.3 15.7 22.1 20.5 18.0
boat 10.4 12.6 13.1 16.4 18.4 20.0

marching 46.4 42.9 39.9 46.6 38.2 33.9
tennis 73.9 69.8 68.7 77.9 69.7 62.0
court 38.0 35.0 36.9 34.1 38.6 41.6

The experimental results on the Mediamill Challenge are presented in
Figures 2–3. In a first experiment, the impact of different spatial bin sizes in
combination with different sampling strategies and a vocabulary size of 1000 vi-
sual words was investigated. Using a magnification factor of 10, an improvement
of 5.5% was achieved compared to the default factor of 3 (see Figure 2). In case
of dense sampling, the best performance was achieved using a spatial bin size of
13. We performed several runs to measure the impact of the non-deterministic
K-means algorithm on the results. Using 10 iterations, the mean AP and the
standard deviation for a magnification factor/spatial bin size of 10 amounts to
32.91%±0.06 for scale-invariant keypoints and 34.6%±0.08 in the case of dense
sampling. The experiment was repeated for the magnification factors/spatial
bin sizes 5, 10 and 15 with an increased vocabulary of 4000 visual words and
additionally in combination with a spatial pyramid representation (see Figure
3). The spatial pyramids were constructed using a spatial grid of 1x1 and 2x2
regions. In both experiments based on salient points, the best performance was
achieved using a magnification factor of 10, and the best spatial bin size for
dense sampled SIFT descriptors was 10, too. Some semantic concepts yielded
large performance differences for different magnification factors and spatial bin
sizes, respectively. Table 1 shows these differences for selected concepts.

Furthermore, we combined the feature representations of different magnifica-
tion factors/spatial bin sizes using MKL. Significant performance improvements
were achieved in all experiments for both sparse and dense sampling. Using a vo-
cabulary of 4000 visual words, the relative performance improvement was up to
10.7% in the case of sparse sampling (see Figure 3(a)) and with spatial pyramids
up to 8.2% in the case of dense sampling (see Figure 3(b)). Finally, all spatial
pyramid representations based on sparse and dense sampling were combined
using MKL, which achieved a mean AP of 43.2%.

On the VOC Challenge different spatial bin sizes are analyzed in combination
with sparse and dense sampling. In this experiments, spatial pyramids and a
vocabulary size of 4000 visual words were used (see Figure 4). The best perfor-
mance based on sparse sampling was achieved using a magnification factor of 10,
like on the Mediamill Challenge. When dense sampling was used, the best perfor-
mance was achieved for a spatial bin size of 5. In both cases, the combination of
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Fig. 4. Evaluation of different spatial
sizes on the PASCAL VOC Challenge
using spatial pyramids and a 4000-
dimensional vocabulary (averaged over
20 object classes).

Fig. 5. Comparison of spatial pyramids
vs combining different magnification fac-
tors/spatial bin sizes on the Mediamill
Challenge using a 4000-dimensional vo-
cabulary (averaged over 101 concepts).

different spatial sizes yielded significant relative performance improvements of up
to 6.4% and 10.5%, respectively. The combination of all feature representations
based on sparse and dense sampling achieved a mean AP of 54.1%.

4.3 Discussion

The results of our experiments show that the spatial bin size and thus the patch
size of the SIFT descriptor should not be too small. The magnification factor
that determines the spatial bin size depending on the keypoint scale should be
chosen considerably larger than the default value of 3. In all experiments on the
VOC as well as on the Mediamill Challenge, a magnification factor of 10 achieved
the best detection performance. Due to the large visual variations within concept
classes, larger patch sizes seem to result in a more generalizable representation.
While small patch sizes only describe the near neighborhood of a keypoint, larger
patch sizes describe rather coarse image structures. In the case of dense sampling,
the impact of the bin size varies depending on the data set. While the concept
detection results on the Mediamill Challenge also suggest larger bin sizes, the
best performance on the object classification test set was already achieved using
a bin size of 5. It seems that larger bin sizes are better suited for detecting scenes
than for detecting objects. In general, it can be noticed that the best spatial bin
size depends on the used dataset and most notably on the detected concept class.

In all experiments, the combination of different spatial bin sizes/magnification
factors using MKL significantly improved the concept detection performance.
These results show that the feature representations based on different spatial
bin sizes are complementary.

Figure 5 depicts the performance improvement of the spatial pyramid repre-
sentation versus the combination of different magnification factors/spatial bin
sizes. The combination of different spatial bin sizes using MKL is more effective
than the use of spatial pyramids. Using a 4000-dimensional vocabulary and a
magnification factor respectively spatial bin size of 10, the performance improve-
ment of the spatial pyramid representation was only up to 3.8%. In contrast, the
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relative performance improvement of combining different spatial bin sizes was
7.8% in the case of sparse sampling and 8.7% in the case of dense sampling.
While the storage complexity of the spatial pyramid representation adds up to
5 4000-dimensional histograms, the combination of 3 different spatial bin sizes
yields only 3 histograms per shot.

The combination of different spatial bin sizes, different sampling strategies and
spatial pyramids achieved state-of-the-art performances on the Mediamill as well
as on the VOC Challenge, 43.2% and 54.1% mean AP, respectively. Considering
further frames per shot on the Mediamill Challenge instead of only one keyframe,
we have even obtained a mean AP of 44.6%. This is an improvement of over 100%
compared to the baseline provided by the Mediamill Challenge. To the best of our
knowledge, the best reported result for the same color features on this challenge
is approximately 42% [13].

5 Conclusions

In this paper, we have investigated the impact of the spatial extents of SIFT de-
scriptors for visual concept detection. It turned out that the magnification factor
that determines the spatial bin size depending on the keypoint scale should be
much larger than the normally used default value. Based on the observation
that SIFT descriptors with different spatial extents yield large performance dif-
ferences, we have proposed to combine feature representations based on differ-
ent magnification factors or different spatial bin sizes, respectively, using MKL.
Experimental results on the Mediamill as well as on the VOC Challenge have
demonstrated that these feature representations complement each other: The
concept detection performance could be significantly boosted by combining dif-
ferent spatial sizes of local descriptors using MKL – this was even more effective
than using spatial pyramid representations. An area of future work is to auto-
matically find an optimal combination of these sizes.
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Abstract. PTZ (Pan-Tilt-Zoom) cameras are powerful devices in video
surveillance applications, because they offer both wide area coverage and
highly detailed images in a single device. Tracking with a PTZ camera
is a closed loop procedure that involves computer vision algorithms and
control strategies, both crucial in developing an effective working system.
In this work, we propose a novel experimental framework that allows to
evaluate image tracking algorithms in controlled and repeatable scenar-
ios, combining the PTZ camera with a calibrated projector screen on
which we can play different tracking situations. We applied such setup
to compare two different tracking algorithms, a kernel-based (mean-shift)
tracking and a particle filter, opportunely tuned to fit with a PTZ cam-
era. As shown in the experiments, our system allows to finely investigate
pros and cons of each algorithm.

1 Introduction

This paper proposes a platform to evaluate different single-target tracking al-
gorithms for PTZ cameras. Our aim is toward repeatability, which is complex
in such case because PTZ cameras “see” a different scenario given the choice of
pan, tilt and zoom parameters, and such parameters are differently set by the
diverse tracking algorithms taken into account. This means that there cannot
be a unique video benchmark which allows a genuine global testing. The pro-
posed system provides the same scenario to the PTZ camera as many times as
desired, in order to test different tracking algorithms. The core idea consists in
projecting a video containing the target on a screen in front of the camera. In
this way, we are aware at each instant about the position of the target on the
projector screen. This setup makes possible to compare the localization error
and other metrics of the target during tracking. The setup, shown in figure 1, is
composed by 3 different steps: (1) camera calibration, (2)implementation of the
PTZ tracking algorithm, (3) projection of the video with the target on the wall
and comparison of the different tracking results with the ground-truth (GT).

The paper is organized as follow. In section 2 the state-of-the-art is presented.
In section 3 the whole system will be presented, describing the 3 parts introduced
above. A quantitative evaluation of the effectiveness of our framework so as the
comparison between two particular tracking algorithms are provided in section

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 81–90, 2011.
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Calibration 
data

PTZ tracking algorithm

At each frame t:
(Xp,Yp,Sp): estimated target position 
on the current image plane 
(P,T,Z): pan, tilt and zoom of the 
camera

At each frame t: 
Projection of the real 
target position on the 
current image plane 
and
Comparison of the 
tracking algorithm 
estimation

Ground Truth based EvaluationSynthetic target projected on the wall

At each frame t:
(Xs,Ys,Ss): real target position and 
scale in pixel on the screen

Fig. 1. The whole system

4, whereas in section 5 final considerations about the importance of our contri-
bution and a possible future work are discussed.

2 State of the Art

PTZ cameras can be exploited and studied from different points of view. In our
work, we are interested in the geometrical modeling for the PTZ camera control
and target projection, as related to visual object tracking. Hence, this section
presents the most relevant state of the art regarding four different aspects, PTZ
camera modeling, visual object tracking in general and using a PTZ camera, and
evaluation of tracking algorithms.

PTZ Geometry. The problem of calibrating a PTZ camera has been addressed
in many papers with different methods and levels of approximation. One of
the most important work on self-calibration of rotating and zooming camera is
the paper of Agapito et al. [1]. It considers in particular how the changes of the
zoom and the settings of the focus affect the intrinsic parameters. Other works
are related to estimation of a geometrical model for a rotating camera, linking
the rotation angles to the camera position in the 3D world. In [7], pan and tilt
rotations are modeled as occurring around arbitrary camera axes in space, and
the relative position between the axis is estimated.

Visual Object Tracking. An overview on different techniques can be found in [15].
The Bayesian recipe is one of the most widely used framework for tracking, that
considers both an a priori information on the target (dynamical model), and
the information from the current image acquired from the camera (observation
model). The choice of the dynamical and the observation models characterizes
each different algorithm together with the approximation of the evolution of the
probability density function that describes the target state. Nowadays, particle
filters are the most employed techniques; here we considered the classical filtering
approach of Condensation [10]. A different philosophy sees the tracking as a
mode seeking procedure, here represented by the Mean Shift tracker [6], and in
particular by the CamShift approach [3]. The target model is an histogram and
the area of the image that exhibits the most similar histogram is searched at each
iteration. This algorithm proposes an extremely efficient technique to minimize
the Bhattacharyya distance between histograms. In the last years both these
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algorithms have been extended and improved, like in [4] for particle filter or [5]
for mean-shift.

PTZ Cameras in Video Surveillance Systems. Typically, in video surveillance
settings, a master-slave architecture is adopted using a wide zoom fixed camera
(master) and a PTZ camera (slave) that is moved to highlight the relevant
subjects of interest in the scene, as in [9]. When using multi-camera architectures,
calibration between cameras is a key element and usually requires considerable
effort. For this reason, methods that only require weak calibration or implements
automatic calibration algorithms (e.g. [2]) are the most popular ones. Among
them, two recent works are [13] and [14]. In the former, the scenario consists of
a single PTZ camera that tracks a moving target which lies on the floor, and the
focus of the work is on the control part of the process: the choice of the camera
position at each step is formulated as an optimization problem. In the latter,
the camera tracks the upper-body of a person that walks in a room with a fuzzy
algorithm. It also compares the results obtained with other tracking algorithms,
but such a comparison is performed off-line, using the frames obtained from
their PTZ tracking algorithm. As a result, only the visual tracking algorithms
are evaluated and not the performance of the system that also accounts for the
camera motion.

Evaluation of Tracking Algorithms. The evaluation of tracking algorithms is
often related to a specific application, for example surveillance in [8] or low frame
rate areal imagery [12] or for a specific category of algorithms, e.g. template-
based in [11]. In this work we will adopt similar metrics for the evaluation, but
apply them to different, unexplored PTZ scenario.

3 Methodology

In this section, we present the different components of the whole system: the ca-
libration of the PTZ camera, the implementation of the two tracking algorithms,
and finally the performance evaluation testbed.

3.1 PTZ Camera Calibration

We adapt a standard pinhole camera model to a specific PTZ camera, shown in
Fig. 1, used for our evaluation.

Intrinsic parameters. First, we calibrate the intrinsic or internal parameters,
according to the pinhole model with one coefficient for the radial distortion.
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where (xr, yr, zr) are the coordinates in the optical center reference system,
(xd, yd) are the coordinates after the distortion due to the camera lens and
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(u, v) are the pixel coordinates on the image plane. The intrinsic parameters
(fx, fy, cx, cy, k) are estimated for each zoom level between 1x and 20x, with a
step of 1x.

Rotation Axis Model. The PTZ camera can rotate around two axes that are not
aligned with the camera reference system. The rotation axes do not intersect in
any points and do not pass through the optical center, so the correct misalign-
ments should be computed to avoid approximations. Let (φi

C , θi
C) indicate the

camera pan and tilt angles as measured by the motor encoder and (xi
r , y

i
r, z

i
r) the

coordinates of a point in the optical center reference system in that pose. When
the camera is rotating from the initial pose φ0

C = 0 and θ0
C = 0 to a new pose

(φ1
C , θ1

C), the transformation between the two reference systems can be described
by the composition of two rotations, each of them around a translated axis:⎡
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where s(·) and c(·) stand for sine and cosine trigonometric functions. R0 and
T0 represent the roto-translation from the screen to the camera given the initial
position (φ0

C , θ0
C). Finally we indicate with (x0

r , y
0
r , z0

r ) in the optical center refer-
ence system when in the initial position. These parameters are estimated at the
beginning of each experiment, because they depend on the relative position be-
tween the camera and the screen. This is achieved by projecting a checkerboard
of known size on the screen. On the contrary, the translation vectors [tθx, tθy, tθz]
and [tφx, tφy , tφz ] are fixed and can be estimated by minimizing the projection over
a set of checkerboard images. Please, note that they depend on the zoom values,
actually, the focal length increases as the zoom increases and the position of the
optical center with respect to the rotation axis also varies. For this reason the
calibration of such parameters must be performed for different zoom values, as
for the intrinsic parameters. Note also that (2) could be used to go from the
coordinates (x2

r , y
2
r , z

2
r ) in a given position (φ2

C , θ2
C) to coordinates in the initial

configuration (φ0
C , θ0

C) by simply inverting the matrix T−1
θ Rx(θ)TθT

−1
φ Ry(φ)Tφ.

Finally, using the transformation from (x2
r , y

2
r , z2

r) to (x0
r , y

0
r , z0

r) with the one
from (x0

r , y
0
r , z0

r) to (x1
r , y

1
r , z1

r ) it is possible to express a general transformation
from two camera poses (φ2

C , θ2
C) and (φ1

C , θ1
C).

3.2 Tracking Algorithms for PTZ Camera

Two different tracking algorithms have been implemented for the PTZ camera.
They are based on two well-known algorithms: the Camshift proposed in [3],
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and the Particle Filter of [10]. They represent baselines of two different track-
ing philosophies here embedded in a PTZ scenario; this required to handle the
position displacement and size variation of the target on the image plane due
to the camera movements, as well as the control of the camera movements. In
Algorithm 1, we present a general scheme for tracking using a PTZ camera, and
later we will provide the details about the two different implementations. One of
the crucial point of this scheme is that from frame to frame, the target is tracked
using spheric coordinates, that is azimuth φt

T and elevation θt
T with respect to

the reference coordinate system in the initial camera pose C0 = (φ0
C , θ0

C ,Z0
C).

This is achieved in two steps: first, the estimated bounding box (BB) vertices are
transformed in the initial camera pose reference system according to (2), then
the spheric coordinates are computed knowing the zoom and focal length:

⎧⎨
⎩

xw = fx(Z) tan(φT )

yw = fy(Z)
tan(θT )
cos(φT )

⎧⎪⎪⎨
⎪⎪⎩

φT = tan−1

(
xw

fx(Z)

)

θT = tan−1

(
yw cos(φT )

fy(Z)

) (3)

In our algorithm, unlike similar previous works, at each frame, we assign to the
camera a new speed and not a new position, in this way, we can produce a

Algorithm 1. A generic tracking algorithm for a PTZ camera
1: Initialization t = 0

– Move the camera to the starting point C0 = (φ0
C , θ0

C ,Z0
C)

– Acquire the first frame from the camera
– Manually select the target Bounding Box:(cx, cy , lx, ly)
– Calculate the target model: (depends on the adopted algorithm)
– Transform the target position into the spheric coordinates (cx, cy, lx, ly) →

(φ0
T , θ0

T , 1), the third coordinate representing the target scale, with respect to
the initial zoom value.

2: for t = 1 to T do
3: – Receive the current frame It from the camera and the camera configuration:

Ct = (φt
C , θt

C ,Zt
C) from which it was captured

– Transform the previous target estimation from polar coordinate to the cur-
rent view (φt−1

T , θt−1
T ,Zt−1

T ) → (ĉt
x, ĉt

y, l̂tx, l̂ty);
– Perform the tracking (depends on the adopted algorithm) starting from the

initial guess (ĉt
x, ĉt

y , l̂tx, l̂ty) and obtaining the new estimation (ct
x, ct

y, ltx, lty);
– Transform the new target estimation into polar coordinate considering the

current camera position (ct
x, ct

y , ltx, lty) → (φt
T , θt

T ,Zt
T );

– Set the new camera speed and the zoom values, (depends on the adopted
control strategy), for both :

vt
φ = fφ(φt

C , φ̂t
T ), vt

θ = fθ(θ
t
C , θ̂t

T ), Zt
C = fZ(·)

4: end for
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smoother trajectory for the camera and the resulting video is more easily usable
by a human observer.

CamShift. The target model is a 16-bin hue histogram and the target is repre-
sented as a rectangle whose sides are parallel to the image plane axis. CamShift
(CS) algorithm estimates the position and scale of the rectangle at each frame.
The camera control, basically proportional to the error, is set as follows:

vt
φ = λφ(kφ

φ̂t
T − φt

C

Ts
) + (1 − λφ)vt−1

φ , vt
θ = λθ(kθ

θ̂t
T − θt

C

Ts
) + (1 − λθ)vt−1

θ

Zt
C = λZZt

opt + (1 − λZ)Zt−1
C

(4)

where Zt
opt is computed according to the estimated target size. Given the target

spheric coordinates we can measure its horizontal and vertical angular extension,
Δφ and Δθ, and set the zoom adequately:

Zt
opt = min

(
tan(Δφ0/2)

tan(kZΔφ/2)
,

tan(Δθ0/2)
tan(kZΔθ/2)

)
(5)

where Δφ0 and Δθ0 are the fields of view at zoom 1x and kZ expresses the
desired ratio between the camera field of view and the object angular extension.

Particle Filter. We implemented a Particle Filter (PF) tracker that uses the
same observation model as CS, the histogram on the hue values. The state xj

of each particle j has 4 dimensions, 2 for the position and 2 for the lengths
of the rectangle. At each iteration t, the particle are sampled from a Gaussian
distribution N (xj

t−1, Σ).
To avoid the ambiguity on the target scale in case of a uniform target we also

consider an external frame around the target BB and combine two histogram
distances. Let hT the histogram of the target, hj

int the histogram of the region
inside the candidate, and hj

ext the histogram of the region external to the j
candidate. The best candidate should have a small distance for the internal
histogram d(hj

int, hT ) and a large distance for the external histogram d(hj
ext, hT ),

where d(h1, h2) is the Bhattacharyya distance. The weights wi of the particles
should be proportional to the likelihood p(hj

int, h
j
ext|xj), so we could factorize

and exploit the log-likelihood formulation:

wi ∝ p(hj
int, h

j
ext|xj) ∝ el(hj

int|xj)el(hj
ext|xj) = e−(d(hj

int,hT ))2e−(1−d(hj
ext,hT ))2

At each iteration t, the set of N samples and their weights {xj
t , w

j
t } are used

to set the camera control commands. The speeds are set again with (4), where
(φ̂t

T , θ̂t
T ) are obtained from the particle with the highest weight (MAP criterion).

Differently from (5), the Zt
opt is chosen considering all the particles in order to

keep all of them in the field of view of the camera. As shown in Sect. 4, this
choice is important since it will enhance the tracker robustness.
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3.3 Performance Evaluation

The camera is placed in front of a projector screen. Before starting a video, the
extrinsic parameters R0 and T0 are estimated for the camera in the initial config-
uration C0 = (φ0

C , θ0
C ,Z0

C) as explained above. At each iteration of the tracking
algorithm, the following 3 values are saved for the next comparison with the GT:
(1) the estimated target position on the current image plane (ct

x, ct
y; ltx, lty), (2)

the current pose of the camera Ct = (φt
Cθt

C ,Zt
C), (3) an absolute timestamp T t

r .
After that, in an off-line stage, the four vertices of the bounding box at time t
are projected on the current image plane according to the camera pose, using
(1) and (2), and compared with the tracker estimation at the same time. Ob-
viously, this requires a quite precise synchronization between the ground-truth
data and the actual tracking data, when they are stored during the tests. We
indicate with T the number of frames in the sequence, collected by the tracker,
and with Tc the number of frames before the target is lost (i.e., when it is no
more recovered before of the end of the sequence). Given the target GT and the
tracker estimation we use five criteria to evaluate the performances:

– the mean ratio between the estimated area ‖Aest‖ and the GT area ‖AGT ‖
over the valid frames: rT

A;
– the mean distance between the GT and the estimated centers (normalized

on the target diagonal) over the valid frames: dct;

– the rule
‖AGT ∩ Aest‖
‖AGT ∪ Aest‖ ≥ 1

2
to establish if the target is tracked properly, rc

is the percentage of correctly tracked frames over the valid frames;
– the mean ratio between the target area ‖AGT ‖ and the image area ‖Ai‖: ri

A;
– the mean distance between the GT target and the image center: dci.

The first three parameters evaluate the accuracy of the algorithms in tracking
the target, while the last two evaluate the ability of the system to keep it in the
center of the field of view and at the desired dimension on the screen.

4 Experiments

The system described above has been implemented in C++, using OpenCV func-
tions for most of the vision algorithms. It works in real-time on a laptop, Intel
Core 2 Duo CPU 2.8 GHz, 3.48 GB RAM. The projector is a commercial one,
with resolution 1280×1024. The PTZ camera is an Ulisse Compact by Videotec,
an analog camera, PAL format, whose pan, tilt and zoom are controlled through a
serial port. The intrinsic parameters have been computed as in Sect. 3 and inter-
polated to get the intermediate values. The parameters used in the experiments
are the following: [tφx, tφy , tφz ] = [50, 0, 180− 21Z], [tθx, tθy, tθz] = [0, 60,−40− 21Z],
for the camera model, kφ = 0.3, kθ = 0.3, kZ = 5, λφ = 0.7, λθ = 0.7, λZ = 0.4
for the control part. The CS parameters are set to the default values Vmin = 10,
Smin = 30, Vmax = 256, and the sampling time is set to Ts = 0.1. For the PF we
used 400 particles, with variance Σ = diag(25, 25, 2, 2), a 16 bin hue histogram
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Fig. 2. The synthetic videos used in the comparison. (a): a black rectangle occludes the
target; (b): the targets splits into two identical target, then one disappears;(c): a red-
shape is in the background; (d) some dots similar to the targets appear and disappear
in the background.

Table 1. Comparison between the CS and the PF trackers on a set of videos in which
a synthetic target is projected in different scenarios

video tracker T end Tc rc rT
A dct ri

A dci fps

basic
CS 165 yes 165 100.00 0.815 0.070 0.070 36.361 2.86
PF 158 yes 158 82.91 1.306 0.106 0.017 20.239 3.77

occlusion
CS 998 yes 998 65.31 0.822 0.151 0.080 107.776 11.20
PF 530 yes 530 66.26 0.826 0.183 0.020 40.918 5.90

splitting
CS 171 no 76 20.48 0.841 0.175 0.045 119.826 9.60
PF 313 yes 313 28.74 1.191 0.560 0.012 81.189 3.90

red back
CS 153 no 86 56.29 0.844 0.043 0.051 74.479 10.07
PF 316 no 204 14.57 3.369 1.841 0.004 40.654 3.81

lighting
CS 863 yes 863 81.88 0.897 0.122 0.057 25.546 12.35
PF 348 yes 348 69.50 1.371 0.161 0.017 28.969 4.62

and Ts = 0.2. In Table 1, we report some examples on the effectiveness of the
experimental evaluation setup and the comparison between the two algorithms.
First, we applied the system to the simples case: a red ball moving in a cyan
background. In this case, the CS algorithm works perfectly and this allows us to
verify the precision of the evaluation testbed, the percentage of correctly tracked
frames rc is 100%, the area ratio rT

A is almost 1, and the normalized distance
between the centers dct is very small, as we expect in this successfully tracked
sequence.

Then, we created some more challenging scenarios, shown in Fig. 2. In all
these cases the red target follows a circular trajectory and its dimension varies
periodically, with a global period of 40 secs. The more complex experiments
allow a deep comparison between the two algorithms. The main difference is
that PF can successfully track the splitting sequence, while CS breaks after some
frames. As shown in Fig. 3, this is due to the control strategy for the zoom, that
aims to keep all the particles in the field of view. On the contrary, CS is forced
to choose only one hypothesis, and if it is the wrong one it fails. Nevertheless,
this choice allows CS to provide a higher magnification of the target as listed
in the column rT

A of Table 1. Moreover, CS is typically more precise in term
of percentage of correctly tracked frames, mainly because PF best candidate
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Comparing CamShift (CS) and Particle Filter (PF) on the splitting sequence.
The black BB is the target estimation from the tracking algorithm and the white one
is the projection of the GT on the current image plane. Top row: some frames from
the CS sequence; bottom row: some frames from the PF sequence. The CS algorithm
(top row) works properly with a single target (a), but then when multiple targets are
present (b) and the two candidates move in different direction, it chooses to follow a
single one (c). If the wrong one is chosen, the tracking fails as soon as it disappears (d).
On the other hand (bottom row), PF can recover from the error because both target
candidates are automatically kept in the field of view of the camera by zooming out
(f), (g); then, when the wrong one disappears the correct one is tracked again (h).

does not always fit perfectly the target, or the dynamic model do not succeed to
follow quick changes of the target size. Finally, as the target in the PF tracking
smaller because of a lower zoom, it is closer to the center of the screen as shown
in column dci of the table.

5 Conclusions

In this work, we have proposed and implemented a novel method to test diffe-
rent PTZ algorithms. We adapted two classical tracking algorithms to the PTZ
framework and evaluated them using the same experimental conditions. The ob-
tained results show the effectiveness of the system and highlight the different
behaviors of the two algorithms. Future work will focus on the tuning of the
precision of the evaluation system and the comparison of the algorithms in more
complex scenarios.
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Abstract. In this work we present a novel approach for activity extrac-
tion and knowledge discovery from video employing fuzzy relations. Spa-
tial and temporal properties from detected mobile objects are modeled
with fuzzy relations. These can then be aggregated employing typical
soft-computing algebra. A clustering algorithm based on the transitive
closure calculation of the fuzzy relations allows finding spatio-temporal
patterns of activity. We present results obtained on videos correspond-
ing to different sequences of apron monitoring in the Toulouse airport in
France.
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1 Introduction

Scene understanding corresponds to the real time process of perceiving, analysing
and elaborating an interpretation of a 3D dynamic scene observed through a
network of sensors (including cameras and microphones). This process consists
mainly in matching signal information coming from sensors observing the scene
with a large variety of models which humans are using to understand the scene.
Although activity models can be built by experts of the domain, this might be a
hard and time-consuming task depending on the application and the spectrum of
activities that may be observed. The challenge thus consists of discovering, in an
unsupervised manner, the significant activities observed from a video sequence.
Knowledge discovery systems (KDS) aim at helping the human operator on this
aspect. KDS systems have become a central part on many domains where data
is stored in a database, but little research has been only done in the field of
video data-mining. It must be said the task is particularly challenging because
of the difficulty in identifying the interesting patterns of activity in the video
due to noise, incomplete or uncertain information inherently present in the data.
Soft computing methodologies are particularly suitable for these tasks because
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they provide the capability to process uncertain or vague information, as well
as a more natural framework to cope with linguistic terms and produce nat-
ural language-like interpretable results. Fuzzy sets are the corner stone of soft
computing together with other techniques such as neural networks and genetic
algorithms. The relation between different existing fuzzy sets can be graded with
the use of fuzzy relations [15]. Various fuzzy-based soft computing systems have
been developed for different applied fields of data mining; but only a few systems
employ soft computing techniques to partially characterize video activity pat-
terns [3,6]; In this paper we present a fully unsupervised system exploiting the
use of fuzzy relations for the discovery of activities from video. First we model
spatial and temporal properties from detected mobile objects employing fuzzy
relations. We employ typical soft-computing algebra to aggregate these relations.
A clustering algorithm based on the transitive closure calculation of the fuzzy
relations allows finding spatio-temporal patterns of activity with different gran-
ularities. We have applied the proposed technique to different video sequences
of apron monitoring in the Toulouse airport in France.

The reminder of this paper is as follows. In the next section, we give a short
overview of the related work. We give a general overview of the system archi-
tecture and present our global approach in section 3 . The object detection and
tracking process is given in section 4, then the data preprocessing steps previous
to activity extraction are explained (section 5). We give the activity cluster-
ing methodology in section 6. Section 7 gives the main results and evaluation.
Finally, Section 8 draws the main conclusions and describes our future work.

2 Related Work

Extraction of the activity contained in the video by applying data-mining tech-
niques represents a field that has only started to be addressed. Although the
general problem of unsupervised learning has been broadly studied in the last
couple of decades, there are only a few systems which apply them in the do-
main of behaviour analysis. A few systems employ soft computing techniques to
characterize video activity patterns [3,6] but the methodology to self-discover
new activities is still missing. Because of the complexity to tune parameters or
to acquire knowledge, most systems limit themselves to object recognition . For
behaviour recognition, three main categories of learning techniques have been
investigated.

• The first class of techniques learns the parameters of a video understanding
program. These techniques have been widely used in case of event recognition
methods based on neural networks [5], Bayesian classifiers and HMMs [8,13].
• The second class consists in using unsupervised learning techniques to deduce
abnormalities from the occurring events [14].
• The third class of methods focuses on learning behaviour based on trajectory
analysis. This class is the most popular learning approach due to its effectiveness
in detecting normal/abnormal behaviours; for instance, on abnormal trajectory
detection on roads [9,12] or pedestrian trajectory characterisation [1]. Hidden
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Markov Models (HMM) have also been employed to detect different states of pre-
defined normal behaviour [2,10]. All these techniques are interesting, but little
has been said about the semantic interpretability of the results. Indeed, more
than trajectory characterisation, we are interested in extracting meaningful ac-
tivity, where different trajectory types may be involved. This work comes thus
into the frame of behaviour extraction from trajectory analysis however we have
in addition a higher semantic level that employs spatial and temporal prox-
imity relations between detected mobiles to characterise the ongoing different
activities of the scene. In a similar framework, Dubba et al [4] have researched
into transforming tracking data into a relational form where the relations are
spatio-temporal relations among objects. This is the most comparable work to
us, not only because they also look to identify activities as groups with coher-
ent spatio-temporal information, but because they have worked on the same
dataset. However, Dubba et al. employ a supervised approach (based on Induc-
tive Logic Programming) and thus requires large quantities of annotated data.
Our proposed approach is on the contrary completely unsupervised.

3 General Overview of the System

Our proposed system is mainly composed of two different processing compo-
nents. The first one is for the detection and tracking of objects. The second
subsystem works off-line and achieves the extraction of activity patterns from
the video. This subsystem is composed of two modules: The trajectory speed
analysis module, and the activity analysis module. The first is aimed at seg-
menting the trajectory into tracklets of fairly similar speed. The latter is aimed
at extracting complex patterns of activity, which include spatial information
(coming from the trajectory analysis) and temporal information related to the
interactions of mobiles observed in the scene.

Streams of video are acquired at a speed of 10 frames per second. The on-line
(real time) analysis subsystem takes its input directly from the data acquisition
component; the video is stored in the DB parallel to the real time processing.

4 Real-Time Processing Object Detection and Tracking

The detection and tracking is performed using multiple cameras with an over-
lapping field of view, and consists of three stages: Detection in the image plane,
tracking in the image plane, fusion and tracking in 3D.

4.1 Detection

Detection is performed by combining change detection and motion detection.
The first detector is the Adaptive Gaussian Mixture Model of Zivkovic [16].
This method builds on the standard Gaussian Mixture Model approach but
permits an adaptive number of components per pixel. This generally produces
good object silhouettes and runs very fast.
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To complement the change detector, a motion detector is employed. In this
method, the three most recent frames {I(t), I(t − 1), I(t − 2)} are used to de-
termine the motion in the most recent frame I(t). A set of corner features is
detected in frame I(t + 1) using the method in [11]. These features are then
tracked forwards to frame I(t) and backwards to frame I(t+2) using the sparse
optical flow method in [7]. This results in two direction vectors for each feature,
[d0→1, d1→2]. Features are clustered based on their motion with a constraint on
the maximum distance between any two features. A triangulation of each cluster
of features is performed such that the cluster can be rendered to a binary motion
mask. The two binary motion masks, from the change detector and the motion
detector, are combined through a simple logical AND.

4.2 Image Plane Tracking

Tracking in the image plane is performed using two simple templates and a
KLT feature tracker. When the detector returns a detection, it can either be
associated to an existing tracked target, or to a new target. When a new target
is created, two small images are created. One is a greyscale image of the size
of the detection bounding box, while the other is an RGB image of the same
size. The greyscale image is the detection mask template Dt, and is initialised
from the binary motion mask of the current image Mt, while the RGB image is
the appearance template At and is initialised from the RGB pixel values of the
current image It. Thus, on initialisation, if the top left corner of the detection
bounding box is at image coordinates x, y:

Dt(u, v) =
{

0 if Mt(x + u, y + v) = 0
255 otherwise (1)

At(u, v) = It(x + u, y + v) (2)

When a detection is associated to a new target, the detection and appearance
templates are updated as a running average. Should the detection indicate a
change in the width or height of the bounding box, the template images can be
easily expanded or cropped as required.

Each tracked target maintains a set of KLT features that are tracked between
frames. The overall plane tracking method is generally good enough to reliably
maintain a track on large objects such as vehicles, which often stop for extended
periods in the scene. It is not intended to track objects through occlusions, but
rather to detect the presence of objects, and maintain the presence of static
objects.

4.3 Multi-camera Fusion and 3D Tracking

The final stage of tracking is performed in the 3D coordinate system of the scene
(though tracking remains 2D on the ground plane). Camera calibration is used to
project the bounding boxes of per-camera tracking targets to each other camera
view as four epipolar lines from the four corners of the bounding box. This
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provides a mechanism for rating the extent to which tracking targets are related
between views, by determining the extent to which a bounding box fits between
the extremal epipolar lines of a bounding box from another view. Agglomerative
clustering is used to determine possible solutions for the correct fusion of targets,
and an optimisation process then determines the optimal clustering for a single
frame of video. Optimal solutions are retained over a temporal window, and an
overall optimal association of per-camera targets to fused targets is determined,
and fused tracking targets updated for every new frame.

5 Data Preprocessing

In order to discover meaningful activity clusters, it is of prime importance to
have available detailed information allowing to detect the different possible in-
teractions between mobiles. As our system is based on trajectory analysis, the
first step to prepare the data for the activity clustering methodology is to extract
tracklets of fairly constant speed allowing to characterise the displacements of
the mobile or its stationary state.

If the dataset is made up of N objects, the trajectory trj for object Oj in this
dataset is defined as the set of points [xj(t), yj(t)] corresponding to their position
points; x and y are time series vectors whose length is not equal for all objects
as the time they spend in the scene is variable. The instantaneous speed for that

mobile at point [xj(t), yj(t)] is then v (t) =
(
ẋ (t)2 + ẏ (t)2

) 1
2

. The objective is
then to detect those points of changing speed allowing to segment the trajectory
into tracklets of fairly constant speed so that the trajectory can be summarised
as a series of displacements at constant speed or in stationary state.

The mobile object time series speed vector is analysed in the frame of a mul-
tiresolution analysis of a time series function v (k) with a smoothing function,
ρ2s (k) = ρ (2sk), to be dilated at different scales s. In this frame, the approxi-
mation A of v (k) by ρ is such that A2s−1v is a broader approximation of A2sv.
By analyzing the time series v at coarse resolutions, it is possible to smooth out
small details and select those points associated with important changes.

The speed change points are then employed to segment the original trajectory
trj into a series of i tracklets tk. Each tracklet is defined by two key points, these
are the beginning and the end of the tracklet, [xi

j(1), yi
j(1)] and [xi

j(end), yi
j(end)]

as they define where the object is coming from and where it is going to and also
with approximative constant speed. We build a feature vector from these two
points. By globally reindexing all tracklets, let m be the number of total tracklets
extracted, we obtain the following tracklet feature vector :

tkm = [xm(1), ym(1), xm(end), ym(end)] (3)

6 Activity Clustering Methodology

We understand activity as the interactions occurring between mobile objects
themselves and those between mobiles and the environment. We propose in this
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work to model those interactions employing Soft computing techniques. The
motivation is that they provide uncertain information processing capability; set
a framework to work with symbolic/linguistic terms and thus allows producing
natural language-like interpretable results.

6.1 Preliminary Definitions

A fuzzy set is a set of ordered pairs such as A = {(x, μA (x)) | xεX} and the
belonging of x to A is given by μA. Any relation between two sets X and Y is
known as a binary relation R:

R = {((x, y) , μR (x, y)) | (x, y) εX × Y }

and the strength of the relation is given by μR (x, y). Let’s consider now two
different binary relations, R1 and R2, linking three different fuzzy sets X, Y,
and Z : R1 = x is relevant to y; R2 = y is relevant to z.

It is then possible to find to which measure x is relevant to z (noted R=R1oR2 )
by employing the extension principle:

μR=R1◦R2 (x, z) = max
y

min [μR1 (x, y) , μR2 (y, z)]

It is interesting to verify whether the resulting relation is symmetric, R (x, y) =
R (y, x) , reflexive R (x, x) = 1, which make of R a compatibility relation and
occurs in most cases when establishing a relationship between binary sets. Be-
cause R was calculated employing the extension principle, R is also a tran-
sitive relation. R (x, y) is a transitive relation if ∃ z ∈ X, z ∈ Y/R (x, y) �
max

z
min [R (x, z) , R (z, y)]. R can be made furthermore closure transitive fol-

lowing the next steps

Step1. R′ = R ∪ (R ◦ R)
Step2. If R′ 
= R, makeR = R′ and go to step1
Step3. R = R′ Stop. R is the transitive closure where

R ◦ R (x, y) = max
z

min (R (x, z) , R (z, y)) (4)

R is now a transitive similarity relation with R indicating the strength of the
similarity. If we define a discrimination level α in the closed interval [0,1], an
α − cut can be defined such that

Rα (x, y) = 1 ⇔ R (x, y) � α; R = ∪
α

αRα (5)

It is thus implicit that α1 > α2 ⇔ Rα1 ⊂ Rα2 ; thus, the Rα form a nested
sequence of equivalence relations, or from the classification point of view, Rα

induces a partition πα of X × Y (or X2 ) such that α1 > α2 implies πα1 is a
partition refinement of πα2 .
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6.2 Clustering of Video Data

We now set out to establish the appropriate relations between detected mobiles
in the video reflecting spatio-temporal similarities in order to obtain activity
patterns. With this aim, we define the following relations:

R1ij : mobile object O(i) meets mobile object O(j). In this case the action
‘meets’ must be understood spatially and thus gives a degree of spatial closeness
between the two mobiles.

R1ij = min (‖tki(1), tkj(1)‖ , ‖tki(1), tkj(2)‖) ,

(‖tki(2), tkj(1)‖ , ‖tki(2), tkj(2)‖) (6)

R2ij : mobile object O(i) starts equal to mobile object O(j). Here we are at-
tempting to relate mobile objects that share temporal closeness.

R2ij = 1 − abs(start time(i) − start time(j)) (7)

R3ij : mobile object O(i) starts after mobile object O(j). Here we are attempting
to relate mobile objects that appear in a sequential manner.

R3ij = 1 − abs(start time(i) − end time(j)) (8)

Obtaining the patterns of activity is achieved by aggregating the above spatio-
temporal relations with a typical T-norm operator.

R = R1 ∪ R2 ∪ R3 aggregates temporal similarity relations between mobiles.
We calculate the transitive closure of this new relation. Analogically to section
6.1 an α − cut can be defined such that Rα (x, y) = 1 ⇔ R (x, y) � α and
Rα induces a new partition πα = {Cα

1 , ..., Cα
i , ..., Cα

nα}; each Cα
i represents a

discovered spatio-temporal activity pattern.

7 Results and Evaluation

The algorithm can be applied to any given period monitoring the servicing of
an aircraft in the airport docking area. In order to evaluate whether the activity
extraction algorithm works properly and to asses the correctness of the results,
we took five video datasets (each lasting about 1 hour) with available Ground-
truth annotation and containing the start and end time for the most relevant
activity events of the sequence.

The procedure to find the activity clusters is applied as given in section 6.2.
In this work, the final relation R, which verifies the transitive closure, is thresh-
olded for different α − cut values going from 0.05 to 0.95 and with a step value
of 0.10. Low α− cut values produce only a few number of clusters of broad reso-
lution as most of the activity is merged spatially and temporally. α− cut values
near to one produce activity clusters of higher resolution with more precisely de-
fined activities. At each resolution it is possible to calculate the temporal overlap
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Fig. 1. Example of an activity cluster obtained. The left panel presents the tracklets
of the mobiles participating in the Frontal Loading activity. Filled circles indicate the
beginning of a tracklet. Empty circles indicate the end of a tracklet. The right panel
presents the start frame of the activity.

between the extracted activity clusters and the ground-truth clusters. The quan-
titative result of this comparison is given in table 1. For each video sequence
and for each ground-truth event only the best overlap across all α − cut values
is reported. Remark that specific activities involving one mobile require precise
definition obtained with activity clusters of higher resolution while loading oper-
ations involving the interaction of several mobiles are defined with mid-resolution
activity clusters (α−cut values of 0.75 or 0.85). For instance, figure 1 presents a
frontal loading activity cluster obtained for an α− cut value of 0.75. In general,
all events are recognized correctly in all video sequences. When the percentage
of overlap decreases or even goes to zero, it is mainly due to low-level object
occlusion problems, which do not allow extracting all mobile trajectories and
disturbs then the analysis of all possible mobile interactions.

Our results can partially be compared to those obtained with a supervised ap-
proach to learn apron activity models with Inductive Logic Programming (Dubba
et al. [4]). As previously indicated, Dubba et al. have worked on the same apron
monitoring video dataset from the Toulouse airport in France. Dubba et al. have
concentrated on supervised learning of four apron activities: Aircraft arrival;

Table 1. Percentage of overlap between discovered activities and the reference events
contained in the ground-truth. The symbol * indicates that for all video sequences, the
ground-truth event matches a discovered activity obtained for an alpha value of 0.95.
NA indicates ’does not apply’ (does not appear in the video sequence).

video sequence
Reference event 1 2 3 4 5

GPU vehicle arrival* 96% 0% 68% 90% 91%
Handler deposits chocks* 57% 81% 65% 60% 67%
Aircraft arrival* 90% 91% 71% 81% 66%
Jet Bridge positionning 56% 42% 70% 58% 70%
Frontal loading operation 1 NA NA NA 25% 32%
Frontal loading operation 2 NA NA NA 94% NA
Frontal loading operation 3 NA NA NA 67% NA
Frontal loading operation 4 NA NA NA 73% NA
Rear loading operation 1 43% 52% 43% 82% 50%
Rear loading operation 2 53% 41% 38% NA 63%
Rear loading operation 3 93% NA NA NA 25%
Push-back positioning* 0% 69% 0% 89% 96%
Aircraft departure* 89% 94% 63% 81% 75%
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Table 2. Results comparison between our results and those presented in Dubba et al.
at ECAI 2010 [4]

Dubba et al. Our Approach
Reference Event TPR TPR Mean temporal

overlap with GT

Rear Loading / Unloading 80 % 100 % 53 %
Aircraft arrival 100 % 100 % 80 %
Aircraft departure 57 % 100 % 80 %
Jet Bridge positionning 57 % 100 % 59 %
Frontal Loading / Unloading -- 100 % 58 %
GPU vehicle arrival -- 80 % 86 %
Handler deposits chocks -- 100 % 66 %
Push-back positioning -- 60 % 85 %

Aircraft departure; Rear Loading/unloading; Jet Bridge Positionning. Dubba
et al. obtained a global True Positive Rate (TPR) of 74%. In our work (from
Table 1), we have 80% global True Positive Rate for the recognition of eight
apron activities: Aircraft arrival; Aircraft departure; Rear Loading/unloading;
Jet Bridge Positionning; Frontal Loading/Unloading; GPU vehicle arrival; Han-
dler deposits chocks; Push-back positioning. Dubba et al. approach works as a
hit or miss recognition system and in their paper there is no information on what
is the temporal overlap between the recognised activities and the ground-truth
activities. In our case such temporal overlap has a global value of 73%. The
event-by-event comparison between the two approaches is detailed in table 2.

8 Conclusions

We have presented in this paper, a novel approach to extract activity patterns
from video. The technique is unsupervised and is based on the use of fuzzy
relations to model Spatial and temporal properties from detected mobile ob-
jects. Fuzzy relations are aggregated employing typical soft-computing algebra.
A clustering algorithm based on the transitive closure calculation of the fuzzy
relations allows finding spatio-temporal patterns of activity. Our current results
are encouraging as the final patterns of activity are given with coherent spa-
tial and temporal information, which is understandable for the end-user. When
comparing our results with explicit ground-truth given by a domain expert, we
were able to identify the events in general with a temporal overlap of at least,
or near, 50%. Events with small temporal overlap in some video sequences is be-
cause of low-level detection problems. The comparison with a supervised method
on the same data indicates that our approach is able to extract the interesting
activities signalled in the ground-truth with a higher True Positive Rate. More
importantly, our approach is completely unsupervised. In our future work we will
try to work on improving our technique to determine the meaningfulness (or ab-
normality) of single activity patterns. We also plan to work on the semantical
description of the activity clusters.
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Unsupervised Discovery, Modeling, and Analysis of
Long Term Activities

Guido Pusiol, Francois Bremond, and Monique Thonnat

Pulsar, Inria - Sophia Antipolis, France

Abstract. This work proposes a complete framework for human activity dis-
covery, modeling, and recognition using videos. The framework uses trajectory
information as input and goes up to video interpretation. The work reduces the
gap between low-level vision information and semantic interpretation, by build-
ing an intermediate layer composed of Primitive Events. The proposed represen-
tation for primitive events aims at capturing meaningful motions (actions) over
the scene with the advantage of being learned in an unsupervised manner. We
propose the use of Primitive Events as descriptors to discover, model, and recog-
nize activities automatically. The activity discovery is performed using only real
tracking data. Semantics are added to the discovered activities (e.g., “Preparing
Meal”, “Eating”) and the recognition of activities is performed with new datasets.

1 Introduction

More than 2 billion people will turn over 65 year old by the year 2050. It is of cru-
cial importance for the research community to help aging adults live independently for
longer periods of time. The transition from their homes to new and unknown environ-
ments (i.e. an assisted living facility) add stressors that deteriorate theirs mind, memory
and body. If we can keep the elders in their own homes over longer periods of time, they
are in an environment that they know and trust so they can have a greater confidence
leading to better quality of live.

The understanding of daily activities is the key to help solve the problem and is a
topic that remains open. In the literature the computational approaches assume usually
prior knowledge of the activities and the environment. This knowledge is used explic-
itly to model the activities in a supervised manner. In video surveillance the systems
produce large quantities of data and it becomes almost impossible to continually mon-
itor these data sources manually. It is of crucial importance to build computer systems
capable of analyzing human behavior with minimal supervision.

Computer-based video applications need several processing levels, from low-level
tasks of image processing to higher levels concerning semantic interpretation of the
scene. Nowadays the reduction of the gap between low-level tasks up to video under-
standing is still a challenge.

This work addresses these problems by presenting a novel framework that links the
basic visual information to the discovery and recognition of long term activities (e.g.
“Eating”) by constructing an intermediate layer of Primitive Events in a completely
unsupervised way.

J.L. Crowley, B. Draper, and M. Thonnat (Eds.): ICVS 2011, LNCS 6962, pp. 101–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The intermediate layer aims at capturing the motion of the individual to perform
basic tasks, using only minimal information (person position and dynamics). The use
of small amounts of information allows the fast analysis of large amount of data. The
advantage of using visual information is that it is captured using non-invasive sensors
and enables to reduce the complexity of systems that use numerous sensors to enrich
the observation data [19].

To automatically model the Primitive Events: (a) the human actions are learned in an
unsupervised way; (b) the scene contextual information is learned capturing meaningful
scene regions; (c) the primitive events are built by merging the actions and the scene
information.

The composition of primitive events is very informative about the description of
many activities. Thus, we search for particular sequences within the primitive event
layer to discover interesting activities. The discovered activities are used to build generic
activity models and the modeled activities are recognized in new unseen video datasets.

This paper is divided as follows: in the third section we explain how actions are
learned, in the fourth section how the scene contextual information is obtained, in the
fifth section how actions are abstracted to primitive events and how to combine the
primitive events to discover and model activities, in the sixth section the activity recog-
nition procedure is explained and in the seventh section we evaluate the approach in
home-care applications.

2 Related Work

The advances made in the field of object tracking allow data-mining techniques to be
applied to large video data. Recently particular attention has been focused on the object
trajectory information over time to understand long term activities. Trajectory-based
methods to analyze activity can be divided in two groups, supervised and unsupervised.

Typical supervised methods such as [7,11,5] can build activity models in a very ac-
curate way. The problem is that they require big training datasets labeled manually.

The unsupervised methods include Neural Networks based approaches such as
[9,8,13,10]. They can represent complex nonlinear relations between trajectory fea-
tures in a low-dimensional structure. These networks can be trained sequentially and
updated with new examples, but the complexity of the parametrization usually makes
the networks grow and become useless after long periods of time.

Clustering approaches such as Hierarchical Methods [1] allow multi-resolution activ-
ity modeling by changing the number of clusters, but the clustering quality depends on
the way to decide when clusters should be merged or not. Adaptive methods [14], where
the number of clusters adapts over time, make on-line modeling possible without the
constraint of maintaining a training dataset. In these methods it is difficult to initialize
a new cluster preventing outlier inclusion. Other methods [17,2] use dynamic program-
ing based approaches to classify activitivities. These methods are effective when time
ordering constraints hold.

Hidden Markov Model (HMM) based approaches such as [15] capture spatio-
temporal relations in trajectory paths, allowing high-level analysis of an activity, which
is suitable for detecting abnormalities. These methods require prior domain knowledge
and their adaptability in time is poor.
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Morris and Trivedi [12] learn scene points of interest (POI) and model the activities
between POIs with HMMs encoding trajectory points. This approach is suitable to de-
tect abnormal activities and performs well when used in structured scenes (i.e. if the
usual trajectory paths are well defined, such as on a highway). But the method requires
activities to have time order constraints. Also [6] merges the scene POIs and sensorial
information. But the method requires a manual specification of the scene.

Most of the methods described above can be applied only in structured scenes (i.e.
highway, traffic junction), and cannot really infer activity semantics. To solve these
problems we propose an approach that is suitable to unstructured scenes and which is
the first to combine local and global descriptors to recognize long term activities.

3 Actions

To understand activities, we propose first to learn the actions that compose them by
cutting a video into meaningful action segments. Each segment aims at capturing a per-
son’s action such as “standing up”. We mark the beginning and ending of a segment by
detecting the person’s change of state (motion/static). From a video datafile we obtain a
sequence of action segments. At each segment we compute the person’s main dynamics
by clustering meaningful trajectories. Finally, we build Action descriptors that capture
the global and local motion of a person in an action segment.

3.1 Global Position and Speed

We compute the person position at each frame by using a person tracker. The position
is given to a linear Kalman-filter (K1). At each new frame the prediction of K1 is av-
eraged with the new position observation (obs) obtaining a smoothed trajectory (pos):

posframei = Avg(obsframei , K1(obsframei−1))

The speed of a person in a new frame, is computed by averaging the prediction of
another Kalman-filter (K2) and the real speed observation (sobs) in the new frame:

speedframei = Avg(sobsframei , K2(speedframei−1)

3.2 Action Segments and Local Dynamics

An Action Segment starts with a person’s change of state and ends with the next change
of state (motion/static). The changes of state are computed sequentially by thresholding
the person’s speed at each frame.

Local Dynamics are a set of short trajectories describing the motions in an action
segment. To compute these trajectories, the algorithm starts by placing 500 KLT points
[18] at the first frame of the action segment and tracks them [3] until the last frame.
The resulting set of KLT trajectories is numerous and in long action segments noisy
trajectories could appear. To filter the noise out we extract KLT trajectories where their
start/end points are not far from the global position trajectory start/end points.

Several KLT trajectories could be describing the same motion; we cluster the KLT
trajectories using Mean-Shift algorithm [4] to obtain the main Local Dynamic trajecto-
ries. Mean-Shift is performed using the entry/exit points of the KLT trajectories to avoid
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Fig. 1. From left to right a sequence of action segments with the computed KLT trajectories (pink)
and Local Dynamics (red) after Mean-Shift clustering

the problem of clustering different trajectory lengths. The advantage of Mean-Shift is
that it detects the number of clusters automatically, and filters out small clusters.

In Figure 1 displays a sequence of action segments with the computed Local Dynam-
ics, it can be noticed how the small movements of the person are captured and that the
resulting number of Local Dynamics is compact and descriptive.

Other descriptors have been tried (SIFT, SURF), they perform similarly to KLT but
with much slower computational speed, while with KLT we process in real time.

3.3 Action Descriptors

An Action is a descriptor that captures global and local information of the trajectories
in an action segment:

Globally: ActionposStart and ActionposEnd are the global person’s position at the
start/end frames of an action segment.

Locally: ActionLength is the average length of the Local Dynamic trajectories and
ActionAngles is an histogram of the directions of the Local Dynamic trajectories nor-
malized to {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}.

4 Scene Context

In this approach, no information about the scene is known. We learn a scene model
composed by scene regions in order to locate actions spatially. The type of regions
we are interested in are those where the individual interacts with the scene objects
(i.e.,“armchair”). The set of learned regions is called a topology and it is learned by
clustering trajectory points.

4.1 Learning a Topology

To build a topology we use the ActionposStart and ActionposEnd spatial points from
a sequence of actions. These points are features describing the locations where the
changes of state occur and describe the locations of interaction with the scene. Let
〈Actioni〉 be a sequence of actions. The set of InterestPoints used is:

InterestPoints = {Actioni.posStart} ∪ {Actioni.posEnd}
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We perform K-Means clustering over InterestPoints. The number of clusters selected
represents the level of abstraction of the topology, where lower numbers imply wider re-
gions. Each cluster defines a Scene Region (SR). Finally, we denote TopologylevelN =
{SR0...SRN}, where each SRi is labeled with a number for later use.

4.2 Scene Model

A scene model is composed by 3 topologies. They aim at describing coarse, intermedi-
ate and specific scene regions. Figure 2 displays 3 topologies composing the model of
a scene that we use for experimentation.

Fig. 2. Computed scene model corresponding to HOME-CARE dataset. From left to right the
topologies of level 5, 10 and 15 are displayed. The labeled white dot represent the Scene Region
center and the surrounding points the cluster members.

5 Activities

In this section we explain how to combine actions and scene contextual information
to discover and model activities. First, we build activity descriptors named Primitive
Events that capture an Action’s information over the scene. Second, we compute Primi-
tive Event sequences of different levels of abstraction. Third, we combine the sequences
to discover activities. And fourth, a discovered activity is modeled to be used by an ac-
tivity recognition procedure.

5.1 Primitive Events

A Primitive Event (PE) is a descriptor that normalizes the global information of an
Action using a scene model. Suppose an Action and a Topology then the PE resulting
from Action is defined by its type as:

PE = (START → END) (PE type).
where START and END is the label of the nearest SR (Scene Region) of Topology
to ActionposStart/posEnd respectively.

START = arg min
i

(dist(ActionposStart, SRi))
The Action local descriptors are copied to the PE for later use.

(START → END)Angles/Length = ActionAngles/Length
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5.2 Primitive Events Sequence

From a sequence of Actions, three Primitive Event sequences are computed. One for
each TopologyLevel of a scene model. The motivation of having 3 levels of abstrac-
tion of PEs is that with the same set of descriptors, activities of different semantical
abstraction levels can be discovered (e.g. “in the kitchen” and “at the kitchen sink”).

5.3 Activity Discovery

Independently for each PE sequence described in the previous section, we extract par-
ticular subsequences that describe activity. We are interested in two types of subse-
quences, denoted SPOTTED and DISPLACED.

SPOTTED describes activity occurring within a single topology region (e.g. “Reading
in the Armchair”). These are composed by PEs of the same type.

DISPLACED describes activity occurring between two topology regions (e.g. “from
Bathroom to Table”). These are composed by a single PE.

Using regular expressions, a SPOTTEDA−A is a maximal subsequence of the PEs
sequence of the type:

(A � A)+ (1)

A DISPLACEDA−B is a single PE of the type:

(A � B), A 
= B (2)

The discovered SPOTTED and DISPLACED subsequences are presented to the user as
displayed in Fig. 3. The user labels the subsequence that represents an interesting ac-
tivity at any of the 3 abstraction levels. Adding a label to a subsequence SPOTTED or
DISPLACED defines an ACTIVITY SPACE that contains the Primitive Events used to
model the activity. An example of how an ACTIVITY SPACE is built is displayed in
Fig. 4, where we use the 3 topologies displayed in Fig. 2 to represent a configuration of
PE sequences. The example shows how the SPOTTED and DISPLACED subsequences
are computed and examples of the ACTIVITY SPACEs defined by labeling as “Prepar-
ing Meal” SPOTTED4−4 and as “In kitchen table” SPOTTED6−6.

5.4 Activity Model

An Activity is modeled by 3 histograms (H5, H10, H15) and a variable ActivityLength.
Where Hl captures the information of the PEs sequence of Levell contained in an
ACTIVITY SPACE. Hl is an histogram of 2 dimensions. The first coordinate (global
feature) is the type of a Primitive Event (S → E). The second coordinate (local
feature) is an angle value θ. The count is the accumulation of θ of the primitive events
of type (S → E) appearing in the PEs sequence of Levell of the ACTIVITY SPACE.

Hl(S → E, θ) =
∑

(S → E)i.Angles(θ) (3)

The ActivityLength is the average length (S → E)Length of the Primitive Events
appearing in the ACTIVITY SPACE.
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Fig. 3. Activity Discovery of 2 datasets: HOSPITAL (a) and HOME-CARE (b). The scene
model used for (b) is displayed in Fig. 2. The colored segments correspond to DISPLACED
and SPOTTED subsequences, where the same color is the same subsequence type. For example,
SPOTTED(1-1) labeled at the abstraction level 5 (a) corresponds to activity of the person in the
chair region. The displayed images are representative actions of the discovered activities.

Fig. 4. Example of Activity Discovery sequences. Each layer represents a PE sequence at a level
of abstraction. The brackets show the computation of SPOTTED and DISPLACE subsequences,
and the ACTIVITY SPACEs are defined by labeling a SPOTTED or DISPLACE subsequence.

6 Activity Recognition

For a new unseen video dataset, we aim at recognizing modeled activities in an unsu-
pervised way. Suppose we have an Activity as well as the learned scene model used
for modeling Activity. We are interested in finding a set of candidate activities that are
similar to the modeled one. We explain the steps we use to find candidate activities in a
new video:
First, the sequence of actions is computed as described in Section 3.

Second, the Primitive Event sequences are computed, as described in Section 5.2.
The difference is that this time we do not compute a new scene model, instead we use
the learned scene model. This way, the PEs of the new video match spatially (PE
type) with the PEs used for learning Activity.
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Third, the activity discovery process is performed as described in Section 5.3. From
the computed set of SPOTTED and DISPLACED subsequences, those that match the
subsequence used for labeling Activity are selected. For example, in Figure 2 we la-
bel SPOTTED4−4 to model “Preparing Meal”. For the new video, all SPOTTED4−4

appearing at Level5 are selected.
Fourth, the algorithm computes an ACTIVITY SPACE for each SPOTTED or DIS-

PLACED selected in the previous step. From each ACTIVITY SPACE a candidate
Activity′ is modeled as described in Section 5.4.

Fifth, because of the previous steps, a modeled Activity and a candidate Activity′

have a global spatial correspondence. But this does not ensures that both activities are
the same (i.e. two different activities may take place at the same spatial location). To
measure the similarity we compute scoreLength and scoreHistogram and we compare
the values to thresholds T 1 and T 2. To obtain a binary recognition, an Activity′ is the
same as Activity if the following statement is true:

scoreLength < T 1 ∧ scoreHistogram < T 2

Activity Similarity: We propose a distance that measures the similarity of all activity
descriptors (local and global) by computing 2 scores between the model Activity and
the candidate Activity′.

The scoreLength measures the similarity length of the local dynamics:

scoreLength = abs(ActivityLength − Activity′
Length)

The scoreHistogram measures the similarity of the spatial position and local dynamic
angles. This score is computed at the different levels of abstraction (capturing the sub-
activities similarity) by comparing the 3 histograms of Activity (H5, H10, H15) with
the 3 histograms of Activity′. We experimented different similarity measures for mul-
tidimensional histograms and finally adopted Earth Movers Distance (EMD):

scoreHistogram =
∑

EMD(Hi, H
′
i)

Thresholds: The recognition thresholds T 1 and T 2 are learned using the information
of the modeled activities. Let Model1... Modeli be of the same activity, we calculate
the mean scoreLength and scoreHistogram of all combinations as well as their standard
deviation σ1 and σ2 . Then T 1 and T 2 are defined as:

T 1 = Average(scoreLength) + 2 ∗ σ1

T 2 = Average(scoreHistogram) + 3 ∗ σ2

7 Experiments

For experimentation we use videos of 2 different scenes: HOME-CARE and HOSPI-
TAL datasets. Each video contains a single person and are recorded using a monocular
video camera (640 x 480 pixels of resolution). HOME-CARE contains 7 elderly people
performing non-guided activities in an apartment (in total 24 hours of video). HOS-
PITAL contains 4 videos of patients performing guided and non guided activities in
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a hospital room (3 hours of video). The last dataset is currently being used to study
Alzheimer’s disease symptoms and the protocol of the guided activities is described by
Romdhane et al. [16].

From the discovered activities (i.e. Fig. 3) we label activities shared by most per-
sons. They are selected using DISPLACED and SPOTTED subsequences, where the
last ones are the most challenging because of possible activity confusions. For exam-
ple, “Balance” and “Up/Down” are exercises for measuring the person’s stability, both
take place same location. The set of labeled activities is displayed in Tables 1, 2.

Fig. 5. Marked with (*) are the recognized segments (TP) of the activities: (1) “Balance” and
“Up/Down”; (2) “Preparing Meal” and “Eating”; (3) “Reading in the Armchair”. The activities
are aligned in time. Not marked segments are other -different- activities occurring at the same
spatial location not matching with the model. At the top, images representing characteristic ac-
tions of the activities. (A) is a False Negative due to lack of motion; (B) is an example of how
local motion occurs at the ”Preparing Meal” location, but there is no global position matching;
(C) is a False positive due to similar motion and global position with the activity model.

Table 1. Recognition results of the selected
activities for HOSPITAL dataset

Activity TP FP FN RT FT
Balance 3 0 0 100% 1%
Up/Down 3 0 0 100% 4%
Reading at the table 10 1 1 95% 3%
Preparing Coffe 7 1 0 88% 5%
At the Computer 6 1 0 91% 4%
Excercice 1 3 0 0 99% 2%
Excercice 2 3 0 0 99% 1%

Table 2. Recognition results of the selected ac-
tivities for HOME-CARE dataset

Activity TP FP FN RT FT
Eating 31 1 0 97% 7%
Reading in the Armchair 24 4 0 92% 11%
Preparing Meal 52 6 3 83% 6%
Standing at Armchair 11 2 0 95% 5%
Sitting at Eating place 8 0 1 99% 2%
Inside the bathroom 14 2 0 82% 7%
Armchair to Table 32 4 0 96% 1%
Armchair to Kitchen 15 1 0 98% 3%
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7.1 Evaluation

The Activity Recognition method depends on the Activity Discovery method, therefore
the evaluation of the first one reflects the quality of the discovery procedure.

We evaluate the activity recognition method using cross validation technique. The
evaluation is performed recognizing activities in a test video by learning the scene and
activity models from the remaining videos. For example, in HOME-CARE, to recognize
activities of person G, we compute the scene and activity models using the videos of
persons A,B,C,D,E,F. In total 6 experiments are performed (one for each test video).

Performance Measurements: For each dataset an activity ground truth (GT) is man-
ually labeled. The GT describes the intervals of time when an activity begins and ends.
The Activity Recognition method returns the intervals of time where an activity is rec-
ognized. Each recognized activity instance is compared with the GT and the following
measurements are extracted:

True Positive (TP): Number of activity instances correctly recognized.
False Positive (FP): Number of recognized instances not appearing in the GT.
False Negative (FN): Number of instances appearing in the GT not recognized..
Recognition Time (RT): Percentage of time the activity is recognized, over the GT

duration of the activity.
False Recognition Time (FT): Percentage of time the activity is recognized while it

is not occurring in the GT, over the time the activity is recognized.

Results: Table 1 and Table 2 display the recognition results. In both datasets the method
has a very good performance. The FP occurs when the motion of the person while
doing different activities is similar and the FN because of the lack of motion. The FT
occurs because a person stops an activity without changing of place (i.e. at the end of
Eating stays still for a while). To illustrate the complexity of the recognized activities
we display some results graphically in Fig. 5.

8 Conclusions

We propose a method to discover and recognize long term activities loosely constrained,
in unstructured scenes. The insight of this paper is that it is the first time a complete
framework links from the pixel level to complex semantics (“Eating”), using global
and local features. Other approaches either use local or global features and the type of
activities recognized can be considered as actions (sitting down in a chair).

The contributions are summarized as: An algorithm to learn a scene context (Activity
Model); a data structure that combines global and local descriptors (Primitive Events); a
method to combine small tasks to discover activities automatically; a method to recog-
nize activities in new datasets. The evaluation results show that it can be used to study
activities in home care applications and to perform fast and reliable statistics that can
help doctors to diagnose diseases such as Alzheimer. Our future work is going to be the
the extension of the approach to perform on-line activity recognition.
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Abstract. In this contribution we present a realtime activity monitoring system, 
called SCENIOR (SCEne Interpretation with Ontology-based Rules) with sev-
eral innovative features. Activity concepts are defined in an ontology using 
OWL, extended by SWRL rules for the temporal structure, and are automatical-
ly transformed into a high-level scene interpretation system based on JESS 
rules. Interpretation goals are transformed into hierarchical hypotheses struc-
tures associated with constraints and embedded in a probabilistic scene model. 
The incremental interpretation process is organised as a Beam Search with mul-
tiple parallel interpretation threads. At each step, a context-dependent probabil-
istic rating is computed for each partial interpretation reflecting the probability 
of that interpretation to reach completion. Low-rated threads are discarded de-
pending on the beam width. Fully instantiated hypotheses may be used as input 
for higher-level hypotheses, thus realising a doubly hierarchical recognition 
process. Missing evidence may be "hallucinated" depending on the context. The 
system has been evaluated with real-life data of aircraft service activities. 

1   Introduction 

This paper is about realtime monitoring of object behaviour in aircraft servicing 
scenes, such as arrival preparation, unloading, tanking and others, based on video 
streams from several cameras1. The focus is on high-level interpretation of object 
tracks extracted from the video data. The term "high-level interpretation" denotes 
meaning assignment above the level of individually recognised objects, typically 
involving temporal and spatial relations between several objects and qualitative beha-
viour descriptions corresponding to concepts used by humans. For aircraft servicing, 
interpretation has the goal to recognise the various servicing activities at the apron 
position of an aircraft, beginning with arrival preparation, passenger disembarking via 
a passenger bridge, unloading and loading operations involving several kinds of ve-
hicles, refuelling, catering and other activities. Our work can be seen as an alternative 
to an earlier approach reported in [1], which does not possess the innovative features 
reported here. 

It is well established that high-level vision is essentially an abductive task with in-
terpretations providing an "explanation" for evidence [2-4]. In general, there may be 

                                                           
1 This work was partially supported by EC Grant 214975, Project Co-Friend. 
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several possible explanations even for perfect evidence, and still more if evidence is 
incomplete or uncertain. Hence any scene interpretation system must deal with mul-
tiple solutions. One goal of this paper is to show how a probabilistic preference meas-
ure can be combined with an abductive framework to single out the most probable 
solution from a large set of logically possible alternatives. Different from Markov 
Logic Networks which have been recently proposed for scene interpretation [5] we 
combine our logical framework with Bayesian Compositional Hierarchies (BCHs) 
specifically developed for hierarchical scene models [6]. 

A second goal is to present an approach where a scene interpretation system is au-
tomatically generated from a conceptual knowledge base represented in the standar-
dised ontology language OWL-DL. This facilitates the interaction with reasoners 
(such as Pellet or RacerPro) and the integration with other knowledge bases. 

A third innovative contribution of this paper is a recognition strategy capable of 
handling highly contaminated evidence and in consequence a large number of alterna-
tive interpretations. This is mainly achieved by maintaining up to 100 alternative 
interpretation threads in a Beam Search [8]. Results show that a preference measure 
can be used effectively to prune the beam at intermediate stages and to select the best-
rating from several final interpretations. 

2   Behaviour Modelling 

In this section we describe the representation of activity models in a formal ontology. 
Our main concern is the specification of aggregate models adequate for the activities 
of the aircraft servicing domain, but also to exemplify generic structures for other 
domains. 

In a nutshell, an aggregate is a conceptual structure consisting of  

 - a specification of aggregate properties, 
 - a specification of parts, and 
 - a specification of constraints between parts. 

To illustrate aggregate specifications, consider the aggregate Unloading-Loading-AFT 
as an example. It consists of three partial activities as shown in Fig. 1, which must 
meet certain constraints to combine to an unloading or loading activity.  

 
 
 
 
 
 

Fig. 1. Part structure of the aggregate Unloading-Loading-AFT 

First, temporal constraints must be met: The loader must be placed at the aircraft 
before any transporter operations can take place, and must leave after completion of 
these operations. Similarly, spatial constraints must be met, in our domain realised by 
fixed zones defined for specific servicing activities (e.g. the AFT-Loading-Zone).  
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Finally, the same physical object occurring in separate parts of an aggregate must be 
referred to by an identity constraint. Please note that the graphical order of aggregate 
parts shown in Figs. 1 and 2 does nor imply a temporal order.   

As mentioned in the introduction, we have chosen the web ontology language 
OWL-DL for defining aggregates and related concepts. OWL-DL is a standardised 
formalism with clear logical foundations and provides the chance for a smooth inte-
gration with large-scale knowledge representation and reasoning. Furthermore, the 
object-centered style of concept definitions in OWL and its support by mature editors 
such as Protégé2 promise transparency and scalability. Simple constraints can be 
represented with SWRL, the Semantic Web Rule Language, albeit not very elegantly. 

In OWL-DL, the aggregate Unloading-Loading-AFT is defined as follows: 

 Unloading-Loading-AFT ⊑ Composite-Event ⊓ 
 has-part1 exactly 1 Loader-Positioning-AFT ⊓ 
 has-part2 exactly 1 Transporter-Operation-AFT ⊓ 
 has-part3 exactly 1 Loader-Leaves-AFT 

The left-hand side implies the right-hand side, corresponding to an abductive  
reasoning framework. In our definition, the aggregate may name only a single tax-
onomical parent because of the intended mapping to single-inheritance Java tem-
plates. Furthermore, the aggregate must have exactly one part for each hasPartRole. 
While the DL syntax would allow number restrictions for optional or multiple parts, 
we found it useful to have different aggregate names for different part configurations 
and a distinct hasPartRole for each part to simplify the definition of conceptual  
constraints. 

Our aircraft servicing domain is described by 41 aggregates forming a composi-
tional hierarchy. The leaves are primitive aggregates with no parts, such as  Loader-
Leaves-AFT. They are expected to be instantiated by evidence from low-level image 
analysis. In addition to the compositional hierarchy, all objects, including aggregates, 
are embedded in a taxonomical hierarchy which is automatically maintained by 
OWL-DL. Thus, all activities can be related to a general activity concept and inherit 
roles such as has-agent, has-start-time, and has-finish-time.  

Fig. 2 gives an overview of the main components of aircraft servicing activity con-
cepts. Besides the logical structure, we provide a hierarchical probabilistic model as a 
preference measure for rating alternative interpretations [6]. In our domain, the model 
is confined to the temporal properties of activities, i.e. durations and temporal rela-
tions between activities, which are represented as Gaussian distributions with the 
range -2σ .. 2σ corresponding to crisp temporal constraints. Using this model, the 
probabilities of partial interpretations can be determined and used to control the Beam 
Search. Unfortunately, OWL-DL and its approved extensions do not offer an efficient 
way for representing probabilities, so the probabilistic model is kept in a separate 
database.  

Our approach to activity representation can be summarised as follows: 

• The main conceptual units are aggregates specifying the decomposition of activities 
into subactivities and constraints between the components. 

                                                           
2 http://protege.stanford.edu/ 
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• The representation language for the logical structure is the standardised language 
OWL-DL which offers integration with high-level knowledge bases and reasoning 
services, e.g. consistency checking. 

• A hierarchical probabilistic model is provided as a preference measure for temporal 
aggregate properties. 
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Fig. 2. Activity concepts for aircraft servicing 

3   Initialising the Scene Interpretation System from the Ontology 

In this section we describe the scene interpretation system SCENIOR, beginning with 
an overview. In Subsection 3.2 we describe the generation of rules for rule-based 
scene interpretation and the generation of hypotheses templates as interpretation 
goals. The interpretation process itself is described in Subsection 3.3. 

3.1   System Overview 

Fig. 3 shows the architecture of the interpretation system SCENIOR. In the initialisa-
tion phase of the system, the conceptual knowledge base, represented in OWL-DL 
and SWRL, is converted into a JESS conceptual knowledge base, with rules for both 
bottom-up and top-down processing. Furthermore, hypotheses graphs are created 
corresponding to submodels of the compositional hierarchy, providing intermediate 
goals for the interpretation process. The temporal constraints defined with SWRL 
rules are translated into temporal constraint nets (TCNs) which maintain constraint 
consistency as the scene evolves. The interpretation process is organised as a Beam 
Search to accommodate alternative interpretations. A probabilistic scene model, rea-
lised as a Bayesian Compositional Hierarchy (BCH), provides a preference measure. 
For the sake of compactness, TCN and BCH are not described in detail in this paper, 
see [9] and [6]. 
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Fig. 3. Main components of the scene interpretation system SCENIOR 

3.2   Rule Generation from the Ontology 

As shown in [7], scene interpretation can be viewed as a search problem in the space 
of possible interpretations defined by taxonomical and compositional relations and 
controlled by constraints. Four kinds of interpretation steps are required to navigate in 
interpretation space and construct interpretations: 

• Aggregate instantiation (moving up a compositional hierarchy) 
• Aggregate expansion (moving down a compositional hierarchy) 
• Instance specialisation (moving down a taxonomical hierarchy) 
• Instance merging (unifying instances obtained separately) 

In our framework we create rules for the first three steps, together with some support-
ing rules. The step "instance merging" is dispensable with the use of hypotheses 
graphs and parallel search.  

Submodels and Hypotheses Graphs. Usually, many models have to be considered in 
a scene interpretation task. To cope with model variants and to avoid redundancies, 
we define submodels which may be part of several alternative models and are treated 
as interpretation subgoals (e.g. Refuelling). After instantiation, they can be used as 
“higher-level evidence” for other aggregates (e.g. various kinds of services). 

Submodels (marked as context-free in the conceptual knowledge base) give rise to 
hypotheses graphs. Formally, they represent the partonomical structure of a submodel 
and the equality constraints described with SWRL rules. Their main function is to 
provide coherent expectations about possible activities. During interpretation hypo-
theses graphs can be used to "hallucinate" missing evidence and thus continue a 
promising interpretation thread. 

Rules. During the initialisation process, the following interpretation rules are created 
fully automatically from the ontology:  
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• Evidence-assignment rules assign evidence provided by lower-level processing to a 
leaf of a hypotheses graph. The premise of the rule addresses a template created for 
each aggregate (referred to as template-x below). 

• Aggregate-instantiation rules instantiate a hypothesised aggregate (status hypothe-
sised) if all its parts are instantiated or hallucinated. This is a bottom-up step in the 
compositional hierarchy and the backbone for the scene interpretation process. 

• Specialisation rules refine an instance to a more specialised instance. This can hap-
pen if more information becomes available as the scene evolves (for example, Ve-
hicle-Inside-Zone may be specialised to Tanker-Inside-Zone). 

• Aggregate-expansion rules instantiate part of an aggregate if the aggregate itself is 
instantiated or hallucinated. A separate rule is created for every part of the aggre-
gate. This is a top-down step in the compositional hierarchy. The rule will be  
invoked if a fact has not been asserted bottom-up but by other means, e.g. by com-
mon-sense reasoning (so far this is only rudimentary realised by the hallucination 
mechanism). 

A simplified generic patterns for the evidence-assignement rule is given below, the 
other rules are defined in a similar way.  

 (defrule aggregate-x-ea-rule 
  ?e-id <- (template-x (name ?e)(status evidence)) 
  ?h-id <- (template-x (name ?h)(status ?status_1)) 
                 (test (or (eq ?status_1 hypothesised) 
                           (eq ?status_1 hallucinated)))  
  ;;check temporal constraints  
 => 
  (modify ?e-id (status assigned)) 
  (modify ?h-id (status instantiated)) 
  ;;update temporal constraint net)  

3.3   Interpretation Process 

In the initialisation phase of the system, a separate thread is created for each submo-
del. Each thread has its own independent JESS engine, initialised with all rules and 
the hypotheses graph corresponding to this submodel. 

Now the system is ready to start the interpretation process. It receives primitive 
events as input and feeds these as working memory elements to every alive rule en-
gine (in the beginning, these are the initialised interpretation threads). Then the rules 
are applied, eventually leading to instantiated aggregates. These may in turn provide 
input for higher-level aggregates. If there is more than one activation for an evidence-
assignment rule within one thread (i.e. if multiple evidence assignments are possible), 
this thread is cloned into several threads, one for each possible assignment. A newly 
created thread is an exact copy of the original thread. This way, a search tree is estab-
lished which examines all interpretation possibilities in parallel. 

So far, we have not yet discussed how to deal with noise, which can either occur in 
terms of activities not modelled in the ontology, or due to errors of low-level 
processing. Various kinds of vehicles not taking part in a service or performing some 
unknown task enter and leave the servicing area throughout a turnaround. Also,  
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low-level processing in our application is difficult and not at all perfect, hence strange 
events not corresponding to any real-world activities are delivered as input to 
SCENIOR. Since there is no way to distinguish correct evidence from noise, as long 
as both satisfy the constraints, SCENIOR follows both interpretations in parallel, 
expanding the search tree at each step. 

SCENIOR can process in real-time up to ca. 100 threads in parallel on an ordinary 
PC. Our experiments with airport activities showed that this maximal number of in-
terpretation threads is normally reached while recognising a complete turnaround (see 
Section 4). At this point, the rating provided by the BCH comes into play and all 
lowest-rated threads in excess of the maximal beam width are discarded. 

Finally, upon termination of the input data stream, all complete turnaround inter-
pretations are ranked using the BCH, and the highest-ranking interpretation is deli-
vered as the result. 

4 Experimental Results and Evaluation 

In this section we show results of SCENIOR obtained for concrete turnaround scenes 
at Blagnac Airport in Toulouse. We first illustrate the effects of context-dependent 
ratings. We then provide a performance evaluation of SCENIOR for 20 turnarounds. 
The results are explained by the noise statistics of the data which show that the correct 
interpretation will not always receive the highest rating.   

4.1   Illustration of Probabilistic Rating 

We now describe the initial phase of a concrete scene interpretation task to demon-
strate the effect of the ranking provided by the BCH in a Beam Search. The input data 
have been obtained from one of the 60 turnarounds by low-level processing of project 
partners in France and England.  

To rate interpretations in this experiment, the probability density of clutter has 
been set to 0.01 which is less than the typical probability of a regular piece of evi-
dence for a turnaround. Note that the probability density is taken to measure the 
"probability" of an event. A small constant factor Δt for a time span, over which a 
density must be integrated, is omitted for clarity. Since the ratings are naturally de-
creasing with each step and may reach very small numbers, the natural logarithm of a 
probability is taken, resulting in negative ratings. The primitive events used here be-
long to an ontology version different from the one presented in Section 2. 

In the scene interpreted in this experiment, an Airplane-Enters-ERA event has been 
generated erroneously by low-level processing for a tanker crossing the ERA (En-
trance Restricted Area) shortly before the arrival of the airplane. Fig. 4 left shows the 
corresponding video frame taken by one of the eight cameras with the crossing tanker 
in the far background. Two threads are generated, Thread A interpreting this evidence 
as part of an Arrival, the Thread B as clutter. Later on, the true aircraft arrives (Fig. 4 
right), generating an Airplane-Enters-ERA event in the Thread B and a clutter event in 
a new third thread. 
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The ratings for the partial interpretations of both alternatives are shown in Table 1. 
Interpretation A is the erroneous and Interpretation B is the correct one. Initially, the 
arrival of the GPU sets a context where a vehicle is expected to enter the ERA, hence 
the crossing tanker is a candidate. But as soon as the true airplane enters, an alterna-
tive arises and is favoured because the probabilistic model expects an Airplane-Enters-
ERA event 8 minutes after GPU-Enters-GPU-Zone, and the airplane's arrival is closer to 
that estimate than the tanker's. Note that clutter events not assigned to either of the 
two interpretations are not shown in the table.  

 

 
 
 
 
 
 
 
 
 
  
 

Fig. 4. Snapshots of the ERA (Entrance Restricted Area) after completing Arrival-Preparation. 
The GPU (Ground Power Unit) is in place. The tanker crossing the ERA in the background 
(left) causes an erroneous interpretation thread (see text). 

Table 1. Initial ratings of the two alternative interpretations 

e1  =  mobile-inside-zone-86 
e2  = mobile-stopped-90 
e3  =  mobile-inside-zone-131 
e4  =  mobile-inside-zone-155 
est = estimated event 

Evidence   Time Interpretation A Ranking A Interpretation B         Ranking B 

e1  17:10:31  GPU-Enters-GPU-Zone   0  GPU-Enters-GPU-Zone    0 
e2  17:10:32  GPU-Stopped-In...   -2,16  GPU-Stopped-In...      -2,16 
e3  17:13:31  Airplane-Enters-ERA -5,32  Clutter        -2,16 
e4  17:20:35  Clutter        -5,32  Airplane-Enters-ERA  -5,09 

est ≥17:13:35 Airplane-Stopped... -6,24 
est ≥17:13:35 Stop-Beacon    -7,71 
est ≥17:20:35      Airplane-Stopped... -6,01 
est ≥17:28:35      Stop-Beacon  -7,48  

The table also includes the estimated times of the expected next events Airplane-
Stopped-Inside-ERA and Stop-Beacon together with the expected ratings for the compet-
ing interpretations. Note that estimated time windows may begin earlier than the actual 
time, allowing for hallucinated events in the past. Considering that Stop-Beacon will 
occur after the true aircraft arrival and not at the time expected in Interpretation A, the 
rating of this interpretation will surely be much lower than the estimated value, further 
increasing the distance between the right and the wrong interpretation.  
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The performance of SCENIOR was evaluated for 20 annotated turnarounds, with 
primitive events provided by low-level image analysis of the project partners. The 
ontology and the probabilistic model were derived from 32 other turnarounds. Be-
cause of the noisy input data, it was necessary to interpret each evidence both as be-
longing to a turnaround (given that the constraints were satisfied) and as clutter. 17 of 
the 20 turnarounds resulted in complete interpretations. This was facilitated by Spe-
cial Vision Tasks with controlled cameras for three crucial events and by "hallucina-
tions" for missing evidence in certain contexts. The three problematic sequences were 
highly irregular and did not match the conceptual model (e.g. GPU arrival after air-
craft arrival). SCENIOR showed a reliable system performance with up to 100 paral-
lel threads (limited by a preset beam width) for partial alternative interpretations, as 
shown in Fig. 5. It can be seen that alltogether more than 1000 partial interpretations 
have been initialised, many caused by the context-free submodels which posed inter-
pretation goals throughout the sequence.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Number of threads for a typical interpretation process as a function of time (in frames). 
The maximum nember of active threads has been set to 100. 

The recognition rate of subactivities is shown in the table below. It was limited to 
75% because of the noisy low-level input data with missing crucial evidence.   

Table 2. Correctly recognised subactivities in 20 test sequences 

 
 
 
 
 
 
 
 
 

SEQUENCE 1 2 3 4 5 6 8 9 18 25 29 58 59 62 63 66

Arrival 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Passenger-Boarding-Preparation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Unloading-Loading-AFT 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0

Unloading-Loading-FWD 1 1 0 0 1 1 1 1

Refuelling 0 0 0 0 0 0 0

Pushback-Arrival 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Passenger-Bridge-Leaves-PBB-Zone 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Departure 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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To prove the domain-independence of SCENIOR, we also applied the system to 
activity data of the smart-home environment CASAS3. After establishing an ontology 
for the new domain, SCENIOR recognised all activities without any problems. 

5 Conclusions 

We have presented the scene interpretation system SCENIOR, designed to work with 
(i) conceptual knowledge bases expressed in the standardised ontology language 
OWL-DL, (ii) extended by SWRL rules for constraints, and (iii) supported by a prob-
abilistic scene model for a preference measure. An interpretation strategy employing 
up to 100 parallel interpretation threads has been realised with JESS rule engines, and 
successful real-time interpretations have been achieved for noisy aircraft turnaround 
scenes. The results show that high-level interpretation of activities in low-structured 
domains and with noisy input data may face formidable ambiguity problems. We 
believe that the system architecture presented in this contribution has all ingredients 
to cope with such problems and may prove its worth in diverse applications. A first 
proof has been obtained in terms of a successful application SCENIOR to the CASAS 
smart-home environment by simply exchanging the ontology. 
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Abstract. This paper describes a complex event recognition approach
with probabilistic reasoning for handling uncertainty. The first advantage
of the proposed approach is the flexibility of the modeling of composite
events with complex temporal constraints. The second advantage is the
use of probability theory providing a consistent framework for dealing
with uncertain knowledge for the recognition of complex events. The
experimental results show that our system can successfully improve the
event recognition rate. We conclude by comparing our algorithm with
the state of the art and showing how the definition of event models and
the probabilistic reasoning can influence the results of the real-time event
recognition.

Keywords: Complex event recognition, uncertainty, event description.

1 Introduction

In the literature, many video event recognition systems have been described.
However, many challenging problems still remain to obtain a robust recognition
because of noise, illumination changes, segmentation issues and occlusions. We
propose a constraint-based approach for real-world video interpretation based
on probabilistic reasoning for composite event recognition. The main goal is
to improve the techniques of video data interpretation taking into account the
imprecision and uncertainty of low level data. To reach this goal, we address
uncertainty in event modeling and event recognition processes by a combination
of logical and probabilistic methods. In summary, the contributions of this pa-
per are: 1. A general framework for video complex event recognition based on a
constraint-based approach for video event recognition and a probabilistic reason-
ing for handling uncertainty. We propose a dynamic linear model for attributes
filtering. 2. New event modeling specification: we improve the event description
language proposed by [1] and introduce a new probabilistic description based
approach to gain in flexibility for event modeling by adding the notion of utility.
Utility expresses the importance of sub-events to the recognition of the whole
event. The paper is organized as follows: In section 2, we review the related work.
In section 3 and 4 we describe the proposed video interpretation framework for
complex event recognition. The experiments realized to evaluate the proposed
method are shown in section 4. Finally, we present the conclusion in section 6.
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2 Related Work

Many approaches for event representation and recognition have been proposed
during the last decade [2,3]. These approaches can be classified into two main
categories: probabilistic approaches and symbolic approaches.

The main probabilistic approaches that have been used to recognize video
events include Bayesian classifiers [4] and Hidden Markov Models [5,6]. Bayesian
classifiers are well adapted to combine observations at one time point, but they
have not a specific mechanism to represent the time and temporal constraints
between visual observations. For instance, Dynamic Bayesian Networks (DBN)
have been used successfully to recognize short temporal actions [7], but the recog-
nition process depends on time segmentation: when the frame-rate or the activity
duration changes, the DBN has to be re-trained. Many probabilistic event recog-
nition approaches can handle uncertainty using a probabilistic framework. For
instance, in [8] the authors introduce the switching Hidden Semi-Markov Model
(S-HSMM) to deal with time duration modeling. This extension attempts to
introduce more semantic in the formalism at the cost of tractability.

Symbolic approaches have been largely used to recognize activities. The main
trend consists in designing symbolic networks whose nodes or predicates corre-
spond to the boolean recognition of simpler events. Stochastic grammars have
been proposed to parse simple actions recognized by vision modules [9]. Logic and
Prolog programming have also been used to recognize activities defined as pred-
icates [10]. Constraint Satisfaction Problem (CSP) has been applied to model
activities as constraint networks [11]. The symbolic approaches have shown their
efficiency in term of complex event recognition. However, these approaches do
not handle the uncertainty of the recognition process leading to recognition er-
rors in complex situations. Thus, in this paper, we propose a new constraint
based approach for complex event recognition with probabilistic reasoning to
improve the recognition performance.

3 Event Description Language

The proposed approach relies on a priori knowledge including the description of
the expected objects in the scene, the observed scene, the sensors (e.g. fixed video
cameras) and the definition of the event models. The expected objects are the
physical objects moving in the scene (e.g. person, vehicle) which are organized
hierarchically (e.g. a car is defined as a sub-type of vehicle). We call domain
ontology the description of the expected objects and the set of event models
which are predefined by human expert. An event model (fig. 1) is composed of
five elements:
-Physical objects: including mobile objects (e.g. person, vehicle), contextual
objects (equipments, zones).
-Components: the sub-events composing the event.
-Constraints: conditions between the physical objects and/or the components
including symbolic, logical, spatial and temporal constraints based on[13].
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Fig. 1. Two Event models: “Up-Go” illustrates a medical exercise for testing the ability
of the patient to perform several activities. The model is composed of five steps: (1) the
patient is standing at the chair of exercise for a predefined period of time,(2) he/she
walks up to a stop zone marked by a red line, (3) returns close to the chair, (4) he/she
sits at the chair and (5) gets up. “Begin-Guided-test” describes the beginning of the
medical exercise: the nurse and the patient entering together in the room and then
going to different places. An utility coefficient was associated to each sub-event.

-Alarm: describes the level of importance of an event.
-Action: describes a specific treatment to be executed when an instance of an
event model is recognized:(e.g. launch a specific vision task such as the monitor-
ing of PTZ cameras (zoom on to get better classification of the mobile object)
or provide feedback to vision components to enhance the tracking task).

We propose a notion of utility in the definition of the event model by associating a
coefficient to each sub-event. Utility which is defined by a human expert expresses
the importance of sub-events for the recognition of the whole event. Its range is
in the interval ]0,1], higher is the utility value higher is the importance of the
sub-event in the recognition of the whole event. The value 1 means that the sub-
event is required for the recognition. At least one of the sub-events must have a
high utility value otherwise the event model will not be considered during the
event recognition process.

4 Event Recognition Process

The proposed event recognition algorithm uses as input the tracked mobile ob-
jects (extracted by vision algorithms, segmentation, detection, tracking), a priori
knowledge of the scene and predefined event models.

The algorithm operates in 2 stages: (i) at each incoming frame, it computes
all possible primitive states related to all mobile objects present in the scene,
and (ii) it computes all possible events (i.e.primitive events, and then composite
states and events).
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An event model ω is composed of the set of physical objects ξ(ω), their as-
sociated attributes A(ξ(ω)) and the set of sub-events Se(w). The recognition of
the event model ω consists of a loop to select a set of physical objects ξ(ω) then
verify the corresponding temporal/spatial/logical constraints ζ(ω) until all com-
binations have been tested. Once a set of physical objects satisfies all constraints
we consider that the event is recognized and we generate an event instance p
attached to the corresponding event model, the physical object and the recogni-
tion time t. The event instance is then stored in the list of recognized events. To
prevent from event fragmentation, we consider that if at the previous instant,
an event instance p’ of the same type (same model, same physical objects) was
recognized on a time interval [t0,t1] with |t1− t| < δ, the two event instances are
merged into an instance that is recognized on the time interval |t0 − t|.

During the event recognition process, the system estimates the confidence of
primitive states and composite events. The confidence measures describe the
quality of the analyzed data based on the temporal coherence of the attribute
values.

4.1 Probabilistic Primitive State Recognition

The confidence of primitive state is estimated based on Bayes formula (Eq 1).

P (w|ζ(ω), Id(ξ(ω))) = P (ζ(ω)|w) × P (Id(ξ(ω))|w)

× P (w)
P (ζ(ω), Id(ξ(ω)))

(1)

We compute then the ratio: P (w|ζ(ω),Id(ξ(ω)))
P (¬w|ζ(¬ω),Id(ξ(¬ω))) . with ¬ω is equal to ω = false.

If the ratio value is upper than 1, the primitive state has a high chance to be
recognized.

P (Id(ξ(ω))|w) is the identifier confidence which indicates how well the mobile
object ξ(ω) has been correctly tracked. This probability is obtained by estimating
the quality of the tracking process depending on several criteria: the displace-
ment, the appearance and the attribute consistency over the tracking period as
described in [18]. The constraint confidence P (ζ(ω)|w) is computed depending
on the constraint type. There are 2 types of constraint for primitive state: spatial
(i.e. a person in a zone) and logical. The confidence of logical constraints (i.e.
associate a symbol to a contextual object) is equal to 1 as we consider that the
user has a negligible chance to associate a wrong symbol.

The confidence of spatial constraints is obtained by multiplying the confidence
of object attributes P (A(ξ(ω))|w) involved in the constraint with the probability
of the constraint to be verified (Eq. 2). For the spatial constraints such as ‘inside-
zone’ or ‘close to equipment’, we compute the distance dist of the person to the
contextual objects (i.e. zone, equipment), more this distance is small more the
probability that this constraint is satisfied is close to 1.

P (ζ(ω))|w) = P (A(ξ(ω))|w).
1

σd

√
2π

exp(−dist2

2σ2
d

) (2)



126 R. Romdhane et al.

The confidence of mobile object attributes P (A(ξ(ω))|w) can be retrieved from
vision algorithms (detection, tracking, posture recognition...). If this confidence
is not directly provided, we compute this confidence using a dynamic linear filter
such as Kalman filter algorithm.

- Dynamic Model for Temporal Attributes Filtering
We propose a dynamic linear model for computing and updating the attributes of
the mobile objects to deal with tracking errors. This process works in two steps.
The first step consists in computing the expected value αexp of an attribute α
at the current instant tc given the estimated value of α and its velocity at the
previous time tp. The second step is to compute the estimated value αest of the
attribute based on the previous one. The final value of the attribute ᾱ is the
mean between the expected and the estimated values of the attribute.

ᾱ(tc) = mean(αexp(tc), αest(tc)) (3)

αexp(tc) = ᾱ(tp) + Vα(tc)(tc − tp); (4)

Vα(tc) =
Vαc .Rv + e−λ(tc−tp).Vα(tp)SVα(tp)

SVα(tc)
; (5)

SVα(tc) = Rv + e−λ(tc−tp).SVα(tp) (6)

Vαc corresponds to the instantaneous velocity of the attribute α at time instants
tc−1 and tc, Rv is the instantaneous realiability of the velocity computed as the
mean between the reliability of α at time instants tc−1 and tc. Vα(tp) is the
estimated velocity at the previous time tp. SVα is the temporal reliability of
velocity. The value e−λ(tc−tp) corresponds to the cooling function of the previ-
ously observed attribute values. It can be interpreted as a forgetting factor for
reinforcing the newer infromation.

αest(tc) =
αc.Rαc + e−λ(tc−tp).αest(tp).Sα(tp)

Sα(tc)
(7)

Sα(tc) = Rαc + e−λ(tc−tp).Sα(tp) (8)

Where αc is the value of the attribute given by vision algorithm and Rαc is
the reliability of this attribute αc at time tc. The reliability estimation of the
attribute changes according to its type. For 2D attributes, the reliability is es-
timated inversely proportional to the distance to the camera accounting that
the segmentation errors increase when the object is farther from the camera.
For 3D attributes such as 3D position, we create a history H for the attribute
values. Based on this temporal history we compute the confidence of the current
attribute value using the Gaussian function. The Gaussian parameters (μ, σ)
are computed dynamically using the temporal history.
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4.2 Hierarchical Uncertainty Propagation

The recognition of a given complex event is triggered only if its last sub-event
(called event terminaison) is recognized which avoids an exponential computa-
tion.

Thus the algorithm runs in real time since only the events which their termi-
naison is recognized are processed.

We compute the confidence of the complex event at time t given its probability
at previous time t-i and the probability of its sub-events Se(w) (Eq 9). The
probability of the event at previous time is weighted by the coefficient γ ∈ [0, 1]
which decrease when the last recognized instance of the event is far in time.

P t(w) = P t(Se(w), wt−i) = P (Se(w)).γP (wt−i). (9)

wt−i is the last recognized instance of the event at the previous instant t − i.
To improve the temporal constraints verification process, we add the notion

of tolerance when processing the temporal intervals comparison. For example to
improve the verification of the temporal constraint ‘A before B’ we need to find
a time t’ such that event A has started and ended at time t’ and an event B has
started after A at time t′′ + β . β is the tolerance coefficient.

After calculating the probability associated to an event, the system can make
a recognition decision by accepting events with a probability above a threshold
and rejecting others. That is, only the events with high confidence probability
are recognized.

5 Experimental Results

We show the effectiveness of using an ontology by applying our algorithm to
three different applications: two health care and one airport activity monitor-
ing applications (Fig. 2). Airport application consist in monitoring aircraft and
vehicle behaviours whereas health care application consist in monitoring elderly
persons observed in an experimental laboratory/hospital room during one hour.
The video sequences are challenging in term of illumination changes and shadow.
An ontology for airport activity monitoring was built. It is composed of 4 physical
object type (person, aircraft, vehicle and zone) and 81 event models: 8 primi-
tive states, 3 primitive events, 24 composite states and 45 composite events.
We enhance this ontology for the health care applications by adding new physi-
cal objects such as equipment and by modifying some existing primitive events
(e.g. adding posture attribute to the person). We have reused simple events de-
fined for the airport activity monitoring application and define new event models
adapted to the health care. We have tested the event recognition accuracy of our
algorithm on health care applications and have compared our results with the
approach proposed in [1].

The vision chain algorithms (segmentation, classification, detection and track-
ing) fails sometimes to provide correct outputs (misclassification, misdetection,...)
due to changes of luminosity and noise from video acquisition.
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Table 1. Comparison of recognition rate (% R), the false positive (FP) and the false
negative (FN) of our algorithm with probabilistic reasoning (probabilistic) and without
probabilistic reasoning (deterministic)

Events �videos �actor % R FP FN

Deterministic algo
Up-Go 27 1 59.25 3 11
Begin-Guided-test 9 2 88.9 1 1
Interacts-with-chair 10 1 100 0 0
Stay-at-kitchen 15 1 86 1 2
prepare-meal 8 1 75 1 2
Probabilistic algo
Up-Go 27 1 92.59 5 2
Begin-Guided-test 9 2 100 1 0
Interacts-with-chair 10 1 100 0 0
Stay-at-kitchen 15 1 93.3 1 1
prepare-meal 8 1 87.5 3 1

Fig. 2. Two health care and one airport activities monitoring applications

Fig. 3. The performance of primitive states detection was measured depending on the
threshold defining the level of likelihood to decide that an event is recognized. With
the threshold equal to 0.8, the performance of our system is 0.96 for precision and 0.93
for recall.

We tested the recognitin performance of the primitive state of the proposed
system by varying the decision threshold value. The precision and recall rates
of the primitive states detection are shown in figure 3. The primitive states are
sometimes wrongly recognized due to video noise and vision errors. However, by
fixing for all experiments the threshold of detection of primitive states to 0.75
we manage to successfully decrease the false detection of primitive states. By
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Fig. 4. HMM model for the event (A) ‘begin balance exercise’: the person enters the
room, go to the zone of balance and get close to the chair to begin balance exercise.
The event (B) ‘change-zone’ with the learned transition and observation matrices.

avoiding miss detections of primitive states and using a flexible event description,
the proposed system recognizes the complex events with a recognition rate about
92.59 % for the ‘Up-Go’ event and 100% for the event Begin-Guided-test (Tab. 1).
The low rate of false alarms in the case of complex events can be explained by
the fact that the event models are very constrained and they are unlikely to be
recognized by error.

The comparison (Table 1) shows that the complex event ‘Up-Go’ in the case
of the probabilistic algorithm (92.59 %) is higher than the recognition rate of the
deterministic algorithm [1] (59.25%). This can be explained by the fact that the
deterministic algorithm fails to recognize the primitive state Person-inside-Stop-
zone because the person was not correctly detected. However, the probabilistic
algorithm manages to recognize this primitive state and as a consequence the
complex event.

Comparison with Probabilistic Method
For comparison with probabilistic method, Bayesian Network models were de-
veloped.In our case, the structure of the network is derived from the knowledge
about the application domain. For example, logical constraints of sub-events that
represent the recognition of a particular event indicate the direct causal link be-
tween them. The conditional probabilities were learned using the expectation
maximization (EM) algorithm.

In addition, the proposed algorithm was compared with HMMs. We use a left-
right HMM for representing the temporal constraints (Fig 4). We model different
event such as change zone and change-posture. In the phase of training, we use
the sequences of health care database manually classified as belonging in an
event. For each event, a HMM is trained. For training, we use the expectation
maximization algorithm to estimate the parameters of the HMM model. We use
the Forwards-Backwards algorithm for the probability computation.

Table 2 shows the confusion matrices for the proposed algorithm (PA), BNs
and HMMs experiments. The proposed algorithm outperform the HMMs and
BNS for the event recognition rate. It can be explained by the lack of training
data. To have a good recognition rate for the probabilistic approaches like HMMs
and BNs we need to have a good parameter estimation. The learning stage need
a large and pertinent amount of data.
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Table 2. Confusion matrix for the proposed algorithm (PA), the BNs and HMMs.C:
Person-sit-at-chair, T: Person-watch-TV, C: Person-interacts-with-Library.

PA BNs HMMs

C T L C T L C T L

1 0 0 .88 0 .12 .78 0 .22

0 .78 .22 0 .78 .22 0 .67 .33

.11 0 .89 .33 0 .67 .33 0 .67

average Pcc=89% average Pcc=77% average Pcc=70%

6 Conclusion

We have proposed a flexible event modeling language and a novel event recogni-
tion algorithm to describe and recognize complex video events with probabilistic
reasoning to handle the uncertainty. We have proposed a dynamic model for
computing and updating the attributes of the mobile objects to deal with track-
ing errors. We have detailed the estimation of primitive state probability as a
Bayesian process and we have computed the confidence of complex event as
Markov process taking into account the probability of the event at previous
time. A future work consists at deeply studying the uncertainty due to occlu-
sions. Studying more techniques to handle the tracking errors and comparison
with those different techniques is also planned. Moreover, a learning stage is still
required to learn the algorithm parameters.
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Abstract. In this paper we address the problem of obtaining mean-
ingful saliency measures that tie in coherently with other methods and
modalities within larger robotic systems. We learn probabilistic mod-
els of various saliency cues from labeled training data and fuse these
into probability maps, which while appearing to be qualitatively similar
to traditional saliency maps, represent actual probabilities of detecting
salient features. We show that these maps are better suited to pick up
task-relevant structures in robotic applications. Moreover, having true
probabilities rather than arbitrarily scaled saliency measures allows for
deeper, semantically meaningful integration with other parts of the over-
all system.

Keywords: 3D saliency cues, cue integration, probabilistic learning.

1 Introduction

Vision in complex real world scenarios, especially unconstrained segmentation
of objects, is a notoriously difficult problem and robotics has realised the impor-
tance of attention for robotic systems [23]. Vision in a robot is part of a larger
system, which has specific tasks to solve. These tasks allow to derive constraints
for the vision system to keep vision problems tractable. These constraints come
in the form of attention operators that highlight those parts of the scene most
promising for the task at hand.

The range of robotic tasks we consider for this paper includes manipulation,
grasping and tracking. We therefore assume objects to appear in various locations
and configurations, partly occluded, surrounded by clutter, but typically located
on a supporting surface, such as a table or shelf.

What we essentially want is the system to segment objects that can be picked
up, or if that is not possible due to clutter or occlusion, we want to at least
detect good initial grasp points. These tend to be located somewhere on parts
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Community’s Seventh Framework Programme under grant agreement IST-FP7-IP-
215821 GRASP 2008-2012 and from the Austrian Science Fund (FWF) under
project TRP 139-N23, InSitu.
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sticking out from the scene. Pre-grasp manipulation of such parts might free the
object from the pile.

Scene segmentation is one of the most researched topics in computer vision,
and many different approaches have been proposed [3,4,17], but no generic so-
lution suitable for every task exists. Recent state-of-the-art research in this field
suggests the use of seed points to guide the segmentation process [18,14,22]. This
leads to the problem of identifying good seed points. Inspired by pre-attentive
vision theory recent research has suggested the use of attention points, which
can be extracted from saliency maps, using for example a winner-take-all (WTA)
algorithm [15].

Many well-known and widely acknowledged models for computation of saliency
maps, such as [10,13,12,11,1] use only 2D information about the scene. Itti-
Koch-Niebur (IKN) [13] is a generic cue inspired by physiological models, and
has proven its efficiency in 2D images. Fig. 1,e) shows the saliency map com-
puted by the IKN cue for the image in Fig. 1,a). Several recent extensions to
3D take advantage of the increased availability of 3D sensing equipment, such
as inexpensive laser or time-of-flight sensors and RGB-D cameras [9,16,21,2].

However, classical saliency cues indicate only outliers in the scene, while we
require regions with specific task-relevant properties to stand out. One can see
this problem as the top-down attention task described in [20,8], while our current
goal is to build a bottom-up attention system tuned to identifying particular
properties of the visual search space. Finally, given that there is a number of
intuitively plausible saliency cues (2D and 3D) there is no model for combining
these cues in a principled manner with respect to a given task, without using
top-down specific features of required objects or parts of visual space.

We address the above issues with a learning based approach, which can be ex-
tended to top-down search tasks in the future. Using the Microsoft Kinect depth
sensor we have created an RGB-D image database, consisting of different types
of table scenes which are challenging for segmentation, owing to the presence
of fully and partially occluded objects, multi-colored objects etc. The database
consists of four types of scenes: a) isolated free-standing objects (IFSO), b) oc-
cluded objects (OO), c) objects placed in a box (BO) and d) a box containing
objects and surrounded by other objects (BOSO). For each type of scenes multi-
ple configurations of objects are presented. In total there are 86 RGB-D images
in the database. Task regions were hand-labeled by outlining them with a poly-
gon. In our problem task relevant regions are whole objects. Labeling was done
by one person, whose task was to segment objects in the scenes as precisely as
possible. For BOSO objects we are interested only in objects situated directly
in the box, that is why objects around the box were not labeled at all. Fig. 1,
a)-d) show examples of labeled images.

The main novelty of this paper lies in the area of understanding how and what
preattentive cues should be combined in a specific robotics task of calculating
attention points for segmentation of graspable objects.
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Fig. 1. Four pairs of images and saliency maps (a) and e), b) and f), c) and g), d) and
h)). Images a)-d) show examples of images along with labeling for isolated free-standing
objects, occluded objects, objects placed in a box and a box containing objects and
surrounded by other objects respectively. Images e)-h) show examples of saliency maps
based on IKN cue, RSO cue, OE cue and SH cue respectively.

2 Investigated Cues

Inspired by findings from preattentive human vision [6,5,19] we investigated
several 3D cues, e.g. based on surface height (SH), relative surface orientation
(RSO) and occluded edges (OE) and combined them with cues obtained from
2D information (color, orientation and intensity). As input we have a point cloud
P = {pij} of the table scene, arranged as a rectangular array. I.e. for each image
pixel i, j we have a 3D point pij together with its RGB color value.

2.1 Surface Height Cue

For the task of picking up objects in a cluttered scene, the simplest way to
start grasping is first to pick up all objects that stick out from the clutter.
These objects are good candidates for initial grasping attempts, and they should
therefore be considered more interesting than the rest. These objects can be
pointed out by attention points derived from the surface height preattentive
cue, which is based on a height map of the scene. Fig. 1,h) shows the saliency
map based on the SH cue for the image in Fig. 1,d).

To calculate height we need to determine a reference, i.e. the supporting plane
on which objects rest (e.g. a table). We use RANSAC [7] to determine the plane
coefficients Ax+By+Cz+D = 0. Note that we can assume from the task context
of grasping objects from a table that such a single supporting plance exists. For
every point pij its distance to the supporting plane d(i, j) is calculated. We set
dmax to be the distance between the ground plane and the most remote point
in the point cloud. Values of the SH cue are calculated according to:

SH(i, j) = f(d(i, j)) (1)



Combining Probabilistic Models of 2D and 3D Saliency Cues 135

We furthermore scale height values non-linearly according to f(x) = ax2 to
obtain more pronounced salient regions, where a is chosen such that f(dmax) = 1

2.2 Relative Surface Orientation Cue

The surfaces of objects parallel to the supporting plane often present good can-
didates for first grasping positions, because they usually indicate top-surfaces
of simple objects that can be easily grasped. One of our 3D preattentive cues
aims to identify top-surfaces based on surface orientation. We calculate relative
orientation between local surface normals and supporting plane normal. Fig. 1,f)
shows the saliency map based on the RSO cue for the image in Fig. 1,b).

With n the normal vector of the supporting plane and nij the local surface
normal vector determined from a plane fitted to the neighborhood of pij , values
of the RSO cue are calculated according to:

RSO(i, j) = |nij · n| (2)

2.3 Occluded Edges Cue

The success of the segmentation based on seed points depends a lot on the position
of the seed point. The more central the location of the seed point with respect to
the object, the higher is the probability that the object will be properly segmented.
To this end we designed a cue based on occluded edges. The cue is derived from
the depth map of the scene. Fig. 1,g) shows an example of the saliency map based
on the OE cue for the image in Fig. 1,c). Using the Canny operator an edge map
EM is calculated from the depth map. From every point p(i0, j0) that belongs to
one of the edges we create a potential field P (·) according to:

P (d) = a
1
d
− b (3)

where d is the distance from the current point p(i, j) to the initial edge point
p(i0, j0) whose influence we are calculating, a is set to 0.5 and b is set to 0.01
in our experiments. The influence is expanded only in directions of decreasing
values of the depth map, i.e. the object side of the occluding edge. The value of
the point p(i, j) in the OE map is equal to:

OE(i, j) =
∑

∀(i0,j0):EM(i0,j0)≥0

P (
√

(i − i0)2 + (j − j0)2) (4)

Finally, OE map is linearly normalized to the range [0,1].

2.4 Cue Combination

We investigated two approaches for cue combination to obtain a final saliency
map SM . The first approach is similar to cue combination used in IKN method:
the final saliency map SMS is equal to the sum of individual cues:

SMS(i, j) = w1IKN(i, j) + w2SH(i, j) + w3RSO(i, j) + w4OE(i, j), (5)

where
∑

wi = 1 and we set wi = 0.25.
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The second combination method uses multiplication instead of summation, so
that we obtain SMM as multiplication of individual cues:

SMM (i, j) = IKN(i, j)SH(i, j)RSO(i, j)OE(i, j). (6)

Fig. 6 e)-h) and Fig. 6 m)-p) show examples of SMS and SMM combination
types for different types of the scenes.

3 Probabilistic Learning

Combining cues according to Eq. 5 or 6 does not take into account the relative
importance of cues. One way to address this is to learn weights for individual
cues. Another possibility is to directly learn probabilistic models of cues and
then combine these. We used a labeled database to train a probabilistic model
of relevance for each saliency cue. For each cue ci we learned the probability of
observing that for given cue a pixel was marked as task relevant salient (s = true)
- situated inside labeled polygons, or non-salient (s = false) - situated outside
labeled polygons.

p(ci | s = true)
p(ci | s = false)

(7)

We estimated parameters for normal distributions for every type of cue sepa-
rately and for two types of cue combination: addition and multiplication. Note
that our labels essentially mark whole objects, with parts of them being salient
(different parts for different cues) and other parts not salient, i.e. we use generic
labels, rather than labeling for each cue individually. But this means that esti-
mating the above probabilities directly from the labeled images would essentially
learn that inside a region labeled as salient, all sorts of saliency values can ap-
pear. But we know that inside labeled regions we are only interested in what
makes part of that region salient, not the fact that not all of it is salient. To this
end, during estimation of the normal distribution, we weight pixels with saliency
I according to w(I) = I2. Note that this measure would not be necessary with
marked regions, precisely outlining salient regions for each cue individually. We
chose this method however, because we want one set of generic labels, applicable
to various different cues, picking up saliency somewhere inside those regions.

Fig. 2 shows estimated normal distributions of saliency values (in the range
[0, 1]) for the IKN cue constructed for occluded objects scenes and for the RSO
cue constructed for a box with objects surrounded by other objects (scenes (a)
and b) respectively). We can clearly see that distributions are well separated,
allowing distinction of salient from non-salient regions. Note that the choice of
a normal distribution is strictly speaking not correct, as values are truncated to
the interval [0, 1]. Further work will investigate the use of a truncated normal
distribution or beta distribution on [0, 1].
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Fig. 2. Normal distribution of saliency values inside and outside labeled regions: a) for
IKN cue for occluded objects scenes, b) for RSO cue for a box with objects surrounded
by other objects scenes

Following Bayes rule we can then infer the posterior probability of saliency as

p(s | ci) =
p(ci | s) p(s)

p(ci)

=
p(ci | s) p(s)∑

k∈{t,f} p(ci | s = k)

(8)

with p(s) being the prior probability of saliency. This could be obtained from
top level context information, but is simply assumed 1 here, as we are more
interested in the relative differences between cues.

Fig. 3 a)-d) shows the posterior probabilities of salient values for different
cues and combinations of cues for different types of scenes. The smaller slope of
the IKN as well as OE cues over all types of images indicates that for our type
of scenes they are less distinctive than the others. This means that these cues
cannot precisely distinguish regions belonging to different objects.

Based on evaluated parameters of the normal distributions, posterior proba-
bility images were built for a validation set. The relative sizes of training set and
test set were 0.8:0.2.

Fig. 4 shows examples of posterior probability images for different types of cues
and cue combinations for the image shown in Fig. 1 d). For an ideal probabilistic
image regions of different objects should have the highest saliency values (in our
case 1) and be separated from each other. As we can see from Fig. 4 among
individual cues RH and RSO cues show the best performance, while combination
by multiplication performs better than combination by summation.

As can be seen from the Fig. 4 the IKN cue for such complex scenes assigns
high probability values to areas, which do not belong to any object. This is
because IKN does not take into consideration 3D spatial positions of the objects,
and thus cannot distinguish objects with e.g. similar color. Probability images
give us insight into how cues can be combined in terms of top-down attention
for a specific task of segmentation for grasping.
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Fig. 3. Probability of salient regions being situated inside labeled regions for different
types of scenes: a) isolated free–standing objects b) occluded objects c) objects placed
in a box, and d) a box containing objects and surrounded by other objects for different
individual cues and cue combinations (for all plots probability via salient value).

4 Evaluation and Results

To evaluate individual cues as well as the cue combinations, we calculated the
ratio of first five WTA [15] attention points from the saliency map being situated
inside labeled regions of a hold-out set of training images. Averaged results are
presented in Fig. 5. Results indicate that especially for complicated scenes with
occluded objects 3D saliency cues based on surface height and relative surface
orientation perform better than simple 2D cues. Furthermore the cue based on
occluded edges did not prove to be a useful cue for our tasks.

Evaluation results go along with distributions obtained from probabilistic
learning, while there is still an open question what cue combination is the best
for the given task and more experiments on that should be provided.

Fig. 6 shows examples of images with first five attention points indicated in
blue color and corresponding saliency maps.
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Fig. 4. Posterior probability images for image shown in Fig. 1 d) for a) IKN cue, b)
SH cue, c) RSO cue, d) OE cue, e) SMS cue and f) SMM cue.

Fig. 5. The ratio of the first five attention points being situated inside different labeled
ROIs (IFSO - single standing objects, OO - occluded objects, BO - objects in a box,
BOSO - a box with objects which is situated among other objects.
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Fig. 6. Results of WTA algorithm for different types of images (left to right: IFSO, OO,
BO, BOSO) and corresponding saliency maps: a)-d) present WTA results on SMS and
e)-h) are corresponding saliency maps; i)-l) present WTA results on SMM and m)-p)
are corresponding saliency maps

5 Conclusion and Future Work

In this paper we investigated the use of 3D cues to obtain attention points that
can be used as seed points for segmentation of objects for robotic grasping tasks.
We implemented three 3D cues to compete against the standard IKN model
[13]. Scenes with growing complexity (isolated free-standing objects, occluded
objects, objects in a box, and a box containing objects and surrounded by other
objects) were evaluated against each cue and two types of cue combination –
summation and multiplication. We furthermore estimated probabilistic models
over the whole set of images for every type of cue. We could show that height and
relative surface orientation cues considerably improve performance in calculating
attention points on potential objects for grasping over the standard IKN model
[13]. In the most complex cases the combination of both 3D cues gives clearly the
best results. This indicates that 3D cues deserve more attention when moving
out into the real world with robots.

Our future work will lie in the area of implementing and evaluating more
types of 3D preattentive cues and using the results in actual grasping scenarios.
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9. Frintrop, S., Rome, E., Nüchter, A., Surmann, H.: A bimodal laser-based attention
system. Computer Vision and Image Understanding 100, 124–151 (2005)

10. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Advances in Neural
Information Processing Systems 19, 545–552 (2007)

11. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE
Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

12. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews
Neuroscience 2(3), 194–203 (2001)

13. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid
scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11),
1254–1259 (1998)

14. Ko, B.C., Nam, J.Y.: Object-of-interest image segmentation based on human at-
tention and semantic region clustering. J. Opt. Soc. Am. A 23(10), 2462–2470
(2006)

15. Lee, D.K., Itti, L., Koch, C., Braun, J.: Attention activates winner-take-all com-
petition among visual filters. Nature Neuroscience 2(4), 375–381 (1999)

16. Maki, A., Nordlund, P., Eklundh, J.O.: A computational model of depth-based
attention. In: 13th Int. Conf. on Pattern Recognition, pp. 734–739 (1996)

17. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image
segmentation. Int. Journal of Computer Vision 43(1), 7–27 (2001)

18. Mishra, A., Aloimonos, Y., Fah, C.L.: Active Segmentation with Fixation. In:
Twelfth IEEE Int. Conf. on Computer Vision (2009)

19. Nakayama, K., Silverman, G.H.: Serial and parallel processing of visual feature
conjunctions. Nature 320, 264–265 (1986)



142 E. Potapova, M. Zillich, and M. Vincze

20. Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up at-
tention for optimizing detection speed. In: IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 2049–2056 (2006)

21. Ouerhani, N., Huegli, H.: Computing visual attention from scene depth. In: 15th
Int. Conf. on Pattern Recognition, pp. 375–378 (2000)
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Abstract. This paper deals with the selection of relevant motion within a scene. 
The proposed method is based on 3D features extraction and their rarity 
quantification to compute bottom-up saliency maps. We show that the use of 3D 
motion features namely the motion direction and velocity is able to achieve much 
better results than the same algorithm using only 2D information. This is 
especially true in close scenes with small groups of people or moving objects and 
frontal view. The proposed algorithm uses motion features but it can be easily 
generalized to other dynamic or static features. It is implemented on a platform for 
real-time signal analysis called Max/Msp/Jitter. Social signal processing, video 
games, gesture processing and, in general, higher level scene understanding can 
benefit from this method. 

Keywords: Saliency, Attention, 3D features, Kinect, Depth map, Gestures. 

1   Computational Attention 

Computational attention intends to provide algorithms which predict human attention. 
Attention refers to the process that allows one to focus on some stimuli at the expense 
of others and it is divided into two complementary influences. Bottom-up attention 
uses signal characteristics to find the salient objects. Top-down attention uses a priori 
knowledge to modify the bottom-up saliency. The relative importance of bottom-up 
and top-down attention depends on the situations [1].  

In this paper we focus on bottom-up attention which uses the instantaneous spatial 
context: it compares a given motion behavior to the rest of the motion within the same 
frame. Some of the authors providing static attention approaches generalized their 
models to the time dimension: Dhavale and Itti [2], Tsotsos et al. [3], Parkhurst and 
Niebur [4], Itti and Baldi [5], Le Meur [6] or Bruce [7]. Motion has a predominant 
place and the multi-scale temporal contrast of its features is mainly used to highlight 
important movements. Boiman and Irani [8] provided a model which is able to 
compare the current movements with others from the video history or a database. 
Nevertheless, at our best knowledge, none of the motion-based attention models takes 
into account video depth from a 3D camera while very few use depth for static images 
[9]. In the next section, the importance of the depth motion extraction is shown in 
section 2. In section 3, we describe a near real-time motion-based attention model 
which highlights rare, surprising thus, abnormal motion. In section 4, we show the 
improvement brought to our model by the use of the depth information, especially in 
close scenes with frontal view. Finally we discuss and conclude in section 5. 
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2   Why 3D Features for Attention? 

The 2D motion features extraction from videos can identify the relevant motion 
within the (X, Y) plane. However, they show their limits when movement occurs on 
the Z (depth) axis. We can see an example in Figure 1 where the relevant motion is 
poorly captured with 2D motion features as the main movement is along the Z axis.  
                      

 

Fig. 1. From left to right: a frame with a skier coming towards the camera (depth – Z axis 
velocity); 2D motion features (optical flow for X and Y velocity); Depth map (red: close, green: 
far); RGB corresponding frame   

The left image shows the initial video frame while the second image from the left 
shows the extracted optical flow. The (X,Y) motion is properly captured: the snow 
falling vertically (Y axis) above the skier is detected (yellow vertical lines) and the 
snow moved by the skier on his right on the X axis  (blue horizontal lines). But the 
motion of the skier himself is not well described: the image shows several lines of 
different colors (X,Y directions) on the skier while in reality he is coming towards the 
camera (Z axis). This example shows that detection of the motion on the Z axis would 
assign the skier with his real displacement. Obviously, a better feature extraction will 
also enhance the attention model performance.  

The availability of low-cost 3D sensors with active infra-red illumination (as the 
Microsoft “Kinect” [10]) is an opportunity to easily extract scene depth (Z) 
information along with classical videos providing (X,Y) information. As shown in 
Figure 1 (third and fourth image from the left), these cameras provide us with RGB 
video (forth image) and the corresponding depth map (third image). The color map of 
the third image shows pixels close to the camera in red and pixels far from the camera 
in green. The pixels in violet are pixels where the information is not available (too 
close to the camera, too far from it, infra-red shadows, etc.).   

The third image from Figure 1 shows that the depth map is homogenous and its 
quality is well behind the one of classical stereo cameras. This fact is very interesting 
for the extraction of the movement along the Z axis. The implementation for both 3D 
feature extraction and bottom-up attention computation was carried out on Max MSP 
[11] using the Jitter and FTM [12] libraries. Max is a platform for real-time signal 
processing which allows both fast prototyping by using visual programming with 
libraries supported by a large community and flexibility by the possibility to build 
additional blocks if needed. Jitter is a library added to Max which provides the 
possibility to work with matrices, and thus with images and video. FTM is a shared 
library for Max providing a small and simple real-time object system and a set of 
optimized services to be used within Max externals. Its capability to handle matrices 
makes it complementary to Jitter. 
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3   Attention Model for Motion Selection 

The proposed algorithm has three main steps (Figure 2). First, motion features are 
extracted from the video. Static features could also be extracted, but here only 
motion-related features were used. A second step is a spatio-temporal filtering of the 
features at several scales to provide multi-scale statistics. Finally, a third step uses 
those statistics to quantify at several scales the features’ rarity within the video frame. 
 

 

Fig. 2. Block diagram of algorithm used to detect salient motion events using the depth map 

3.1   Motion Features Extraction 

3.1.1   Part 1: X and Y Extraction 
We first work in the plane (X,Y). On the video from the RGB camera, we apply an 
optical flow algorithm. Optical flow is a measure of the velocity of each pixel 
between two consecutive frames. (Figure 1, second image). We choose the Farneback 
approach [13] as it is quite fast and pick Δx and Δy.  

3.1.2   Part 2: Z Extraction 
We make the difference between two consecutive frames of the depth map to get Δz. 
Some noise is present on the depth map (violet pixels, Figure 1, third image). The 
noise of the depth map is eliminated by saturating the shadows and a separation 
between motion and noise can be achieved by thresholding (Figure 3, first row). 

 

Fig. 3. First row, from left to right: video frame (the hand moves on the Z axis); frame 
differencing of the noisy depth map; frame differencing on the denoised depth map. Second and 
third row, First column: video frames with the hand going towards the camera (up) and in the 
opposite direction (down), middle column: feature map of the direction towards the camera, left 
column: feature map of the direction opposite to the camera. 
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After noise elimination, the Z axis speed is given by the absolute value of Δz 
(Figure 3, first row, left image) while the direction is given by the sign of Δz (Figure 
3, rows 2 and 3 middle and right).   

3.1.3   Part 3: Depth-Based Perspective Correction 
Figure 4 (first and second images) shows the perspective problem. The perspective 
view of a camera will provide wrong apparent sizes of moving objects (people far 
from the camera seem smaller than people close to the camera) and also wrong 
apparent speeds of the moving objects (an object moving close to the camera will 
seem to have a much higher speed than an object moving far from the camera). This 
perspective view will have negative effects on the speed computation and on the 
attention model (on the X and Y axes), especially within close camera scenes. 

 

 

 

Fig. 4. From left to right: View from the camera: the apparent size of people is different 
function of their distance with the camera (vertical blue lines); Reconstructed image from the 
Kinect: people have similar sizes (red vertical lines) but the shadows (apparent sizes) are 
different (blue vertical lines); Schematization of the 3D low-pass filtering 

To remove this effect, we need to compute the distance (“dist”) of each pixel 
relative to the camera. This distance will let us know the real objects speed and sizes 
(Thales theorem). Thanks to the depth map of the Kinect, this depth distance can be 
directly used to compute the speed and to correct the objects sizes. This is also crucial 
in attention computation as pixels’ rarity depends on objects size. The corrected 3D 
speed is obtained with the Eq. (1) where Δx and Δy are computed using the optical 
flow on the RGB video, Δz the frame differencing on the depth map and dist comes 
from the depth map. The features are then discretized into 6 directions (north, south, 
west, east, front, back) and 5 speeds (very slow, slow, mean, fast, very fast). 

 

222
3 zydistxdistSpeed D Δ+Δ×+Δ×=  (1) 

3.2   Spatio-Temporal Filtering of the Features 

We use low-pass spatio-temporal filters to roughly summarize the statistics of the 
feature maps (6 directions and 5 speeds). Several scales (both in space and time) of 
those filters should be applied to the feature maps, but, to keep the algorithm real-
time, only two scales were taken into account. To implement a spatio-temporal low-
pass filter which will be applied to each of the discretized feature channels (6 
directions and 5 speeds), we separated the space and time dimensions. As it can be 
seen on Figure 4, third image, the frames (F) are first spatially low-pass filtered (LPi,j 
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in Eq. 2). Then, a weighted sum is made on the time dimension by using a feedback 
and a multiplication factor β <1. This process will tend to provide lower weight to the 
frames which made the feedback several times (the older ones) because of the β n in 
Eq. 2 which will be smaller and smaller when the feedback iteration n will be higher. 
Our approach only takes into account frames from the past (not from the future).  

The neighborhood of the filtering is obtained by changing m (diameter-1 of the 
spatial kernel  A(h,k) (Eq. 3)) and by modifying the β  parameter for the temporal part 
(Eq. 2). If β  is closer to 0, the weight applied to the temporal mean will decrease very 
fast, so the temporal neighborhood will be reduced, while a β closer to 1 will let the 
temporal dimension be larger. The two filters that we implemented had parameters of 
m =2 and 8 for the spatial filtering and β = 0.4 and 0.3 for the temporal filtering. 
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3.3   From Feature Detection to Feature Selection 

After the filtering of each of the 11 feature maps (6 directions, 5 speeds), the resulting 
images are separated into 3 bins each. The occurrence probability Ps(bi) of each bin 
and for a given scale s is computed as described in Eq. 4: 
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where H(dist × bi) is the value of the histogram H for the bin bi (how many times the 
statistics of a video volume resulting from the 3D low-pass filtering can be found 
within the frame). The pixels belonging to the bin bi are previously multiplied by the 
distance that separates them from the camera: this operation provides a higher weight 
to pixels which are far from the camera and which belong to objects which have an 
apparent size smaller than their real size. In that way, the effect of the perspective is 
cancelled. ||B|| is the cardinality of the frame (size of the frame in pixels) and  
the sum of distances of the all the pixels. Ps(bi) is the occurrence probability of the 
pixels of the bin bi where the perspective has been cancelled.  

Finally, the self-information I(bi) for the pixels of each bin is computed after taking 
into account Ps(bi) at the different scales s at which it was computed. This self-
information represents the bottom-up attention or saliency for all the pixels of bin bi 
(Eq. 5). In order to keep real-time processing, only two scales were used here, so s=2. 
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Once a saliency map is computed for each of the 6 direction feature maps, they are 
merged into a (X,Y,Z) direction saliency map using the maximum operator but with a 
coefficient of 2 for the Z axis and 1 for the X and Y axis (Eq. 6). For the speed 
saliency maps, the speed on the Z axis is incorporated into the 5 saliency maps 
already existent in 2D (very slow, slow, mean, fast, very fast). Those maps are 
merged using the same approach as for the direction maps (Eq. 6). The coefficient of 
2 is empirical and it is due to the fact that the motion on (X,Y) on one hand and the 
motion on Z on the other hand are not extracted using the same approach (optical flow 
for (X,Y) and frame differencing for Z).   

)2( YXZ SSSMaxS ++×=  
(6) 

The final (X,Y,Z) map tells us about the rarity of the statistics of a given video hyper-
volume (X,Y,Z,t) at two different scales for a given feature. Rare motion is salient. 

4   Model Validation 

4.1   When Using 3D Features? 

We represented the speed and direction saliency maps by using a RGB final saliency 
map. A red dominant means that the speed feature is the most interesting. A cyan 
dominant means that direction is the most important. A white blob (which is a mix of 
red and cyan) means that both speed and directions may attract attention. Here we 
used only 2D motion features on complex real scenes (Figure 5). In the first two 
images from the first row there is a close scene with a frontal view. The other scenes 
contain wider and wider views with mostly top views. Surprisingly good results can 
be found on those wide scenes as shown in Figure 5.  

 

 

Fig. 5. First and third column: annotated frames, Second and fourth column: color saliency 
maps. A red dominant means that the speed feature is the most interesting. A cyan dominant 
means that direction is the important feature.  

On the second row, first and second images, we can see that people running 
towards the others are detected (1) and the person who is faster and with a different 
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direction (2) is also highlighted. On the first row, third and fourth images, the two 
people walking against the main central flow (1) are well visible. It is also the case 
with some people having perpendicular directions (3). Finally in the second row, third 
and fourth images one person carried by the crowd (1) and a thrown object (2) are 
also well detected with a higher speed compared with the other moving objects.  

Nevertheless, the results are very poor for the first row, first and second image in 
Figure 5. While the rapidly falling snow (Y axis motion) is well detected (1) and the 
snow pushed by the skier (X axis motion) on his right (2) is also detected, the skier 
himself (3) is not detected at all! The skier is the only moving object on the Z axis, 
thus it is very salient, but as only 2D features are extracted, he is not well detected.  

This scene comparison in 2D shows that the more the scene is wide and the camera 
has a top view, the less important the Z axis motion is. Indeed, a top-view will map 
most of the motion on the (X,Y) plane and very small people doing gestures on Z (like 
jumping for example) are almost not detectable in those configurations. 

An interesting conclusion is that, while in videosurveillance-like situations (wide 
field of view, almost top-view) one does not need a precise knowledge about the Z 
axis, for ambient intelligence and robot-like situations (smaller field of view, frontal 
view), the knowledge of the Z axis is crucial. This is convenient, as the Kinect sensor 
horopter is between 25 cm and 6 meters.   

4.2   Scenarios Used for Validation 

Four people take part to three scenarios. Each one of the scenarios is designed to 
validate the model along a specific axis (X, Y and Z). For a first run, for each axis, the 
purpose is to validate the direction (one of the four people will always be in the 
opposite direction of the three others) and, during a second run, the goal is to validate 
the speed (a person will walk faster than the three others). To quantify the model 
results we define a success rate which is the ratio between the number of frames 
where the maximum of saliency is located onto the person with a different behavior 
(in terms of speed or direction) than the others and the total number of valid frames. 
The valid frames are the frames where the four people are in motion (as only motion 
features are taken into account). Each of the 6 video runs last around 1 or 2 minutes.  

4.3   Validation of the Perspective Correction 

To show the contribution of the perspective correction effect, we processed the 
scenario along the X axis (Table 1, left-side) and the one along the Z axis (Table 1, 
right-side) with or without perspective correction.  

Table 1. Influence of perspective correction on the X axis scenario (left-side) in terms of 
success rate using the (X, Y) saliency maps and on the Z axis scenario using the Z saliency map 

 X-axis Scenario Z-axis Scenario 
Sal. Map XY 
no correct. 

Sal. Map XY  
with correct. 

Sal. Map Z 
no correct. 

Sal. Map Z 
with correct. 

Direction 64.6 % 80 % 80.5 % 93 % 
Speed 67.1 % 81.3 % 69 % 77 % 
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In the Y axis scenario, there is no perspective effect as all the participants are at the 
same distance from the camera. Table 1 shows significant improvement for success 
rate if the perspective correction is applied. Thereafter, we will always use the 
perspective correction in the following experiments. 

4.4   Scenarios Used for Validation 

As stated in section 4.2, in a first run of the three scenarios, the goal was to validate 
the attention-based motion direction selection. In each of the three scenarios, people 
move at very similar speed but one of the four moves in the opposite direction with 
respect to the three others. Some results are shown in Figure 6. The white blobs are 
pointing towards the image areas with a salience higher than 96% of the maximum of 
the saliency map. Figure 6 shows that the model correctly extracts the man who is 
walking differently with respect to the main group. Table 2 (left-side) provides the 
quantitative details of the test on the different sequences:  

Table 2. Success rate percentage for salient direction (left-side) and speed (right-side) detection 
on the three axis using the (X,Y), (X,Y,Z) and Z saliency maps 

 Direction Speed 
Sal. Map 

XY 
Sal. Map 

XYZ 
Sal. Map 

Z 
Sal. Map 

XY 
Sal. Map 

XYZ 
Sal. Map 

Z 
X-axis 80 % 80 % 47 % 81.3 % 77 % 42 % 
Y-axis 94 % 90.5 % 51 % 86.2 % 84.4 % 33.3 % 
Z-axis 54.3 % 83.3 % 93 % 44 % 71 % 77 % 

 

 

Fig. 6. Direction scenarios along 3 axes. The white blobs locate the person which has different 
direction on the X axis (first row), on the Y axis (second row) and on the Z axis (third row). 
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Table 2 (left-side) provides the success rates for the three axes in selecting the 
salient person (the one having different behavior compared to the others). The figures 
are given for the 2D saliency map (X,Y), the 3D saliency map (X,Y,Z) and the saliency 
map of the Z axis alone. A first remark is that the (X,Y) saliency map performs very 
poorly on the Z-axis (54.3%). A second remark is that the Z saliency map performs 
very well on the Z axis (93%) while it performs very poorly on the X (47%) and Y 
(51%) axes. Finally, a third remark is about the fusion system (Eq. 6). While the 
fusion of the Z axis saliency with the (X,Y) axes saliency seems to work well on the X-
axis scenario (both have 80%), for the Y-axis scenario the (X,Y) saliency map has a 
94% success rate while the (X,Y,Z) saliency map has only a 90.5% success rate. This 
shows that the use of the information from the Z axis on a scenario concerning mainly 
the Y axis slightly decreased the system performance. Concerning the Z-axis scenario, 
the conclusion is the same as for the Y axis: the Z saliency map provides very good 
results (93%) while the addition of X and Y information in a (X,Y,Z) saliency map 
decreases the result to 83.3%. This third remark shows an issue in the empirical 
fusion strategy proposed in Eq. 6: the (X,Y) saliency map works better on the X and Y 
scenarios than the (X,Y,Z) saliency map, while the Z saliency map alone works better 
on the Z scenario than the (X,Y,Z) saliency map.      

4.5   Motion Speed Validation 

To validate the speed, we use the same principle as for the direction. In each scenario, 
one person has a higher speed than the main group. Figure 7 shows that the model 
extracts correctly the man who is faster than the others on all the axes. Table 2 (right-
side) provides the success rates for the three axes in selecting the salient person (the 
one having different speed compared to the three others). The figures of this 
 

 

Fig. 7. Speed scenarios along 3 axes. The white blobs locate the person which has different 
speed on the X axis (first row), on the Y axis (second row) and on the Z axis (third row). 
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table, even if the overall performances of the speed are slightly lower the ones of the 
direction, lead to the same remarks than for the previous section: the key role of the Z 
saliency map for the Z axis scenario is confirmed and also the fusion issue which 
slightly decrease the overall system performances.  

5   Discussion and Conclusion 

We presented a novel near real-time (20 fps for small-sized videos not optimized) 
bottom-up saliency model. This model uses motion-based 2D or 3D features, but it 
can be easily extended to other motion features or static features. The use of the depth 
information has proven, especially in close scenes with frontal view, its crucial 
importance. The quantitative results on a real scenario show substantial success rate 
increase in selecting the abnormal motion when the depth information is used along to 
the classical 2D features. Moreover, the proposed algorithm can handle small motion 
of the camera without important performance decrease. The fusion issue which leads 
to a slight performance decrease compared to the best results of the separate (X,Y) and 
Z maps can be solved by using a common method for feature extraction for all the 
exes as a 3D optical flow. The use of depth features opens perspectives for small 
groups and gesture analysis in frontal views. 
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Abstract. We propose a framework for detecting, extracting and mod-
eling objects in natural scenes from multi-modal data. Our framework
is iterative, exploiting different hypotheses in a complementary manner.
We employ the framework in realistic scenarios, based on visual appear-
ance and depth information. Using a robotic manipulator that interacts
with the scene, object hypotheses generated using appearance informa-
tion are confirmed through pushing. The framework is iterative, each
generated hypothesis is feeding into the subsequent one, continuously re-
fining the predictions about the scene. We show results that demonstrate
the synergic effect of applying multiple hypotheses for real-world scene
understanding. The method is efficient and performs in real-time.

1 Introduction

Human interaction with the environment is often done in terms of objects. To
that end, one could say that objects define an atomic structure onto which
specific semantics, such as an action, can be defined or applied. However, the
definition of what constitutes an object is non-obvious and depends on contextual
factors of the scene where the task plays a crucial role. Take the example of
interacting with a television remote control. One possible task would be to pass
it to someone, while a different objective would be to mute the volume. In the first
instance it is sufficient to separate the remote from the remainder of the scene,
while for the latter a specific button needs to be isolated in order to successfully
perform the task. This is one simple example of how additional information such
as the task defines the concept of an object. A different example is that of a
dinner table where we are likely, in a situation with no other knowledge than
visual information, to assume the cutlery to be the objects while both the table
and the table cloth to belong to the background. This shows that we have over
time developed strong priors in terms of what constitutes an object. For a robot
that is to operate in manmade environments and cooperate with humans in an
effortless and unintrusive manner, it needs to be able to generate and maintain
the state of the environment, of which objects are a fundamental building block.
This is a challenging task which puts significant demands on both the sensory
and information processing system of the agent.
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There has been a significant amount of work on detection and extraction of
objects in indoor environments. Being one of the richest sources of information,
a significant effort has been aimed at extracting objects from visual data.

In the computer vision community this is referred to as object segmentation
[21]. Being a, per definition, severely ill-constrained problem, assumptions about
instances and categories of objects are commonly defined and learned a-priori.
Without instance models or categorical priors, different assumptions have been
exploited in the literature: that object edges are aligned with intensity edges, that
the object has a different appearance than the background [8], etc. Extending the
notion of objects as spatially confined regions in three dimensions, implies that
on object occupies a certain volume. This has been exploited in systems such as
[22] where a laser scanner is used to extract a depth map of the scene. However,
without putting the scene in some form of context, like assuming specific places
or part of the environment, the concept of an object is still very ambiguous. One
possibility of resolving this is to incorporate human interaction into the system
in order to refine the estimation in an iterative manner [18].

Motivated by the success of approaches exploiting an iterative approach, re-
fining the hypotheses over time, we adopt a similar methodology. We developed
a fully autonomous system, where the robot interacts with the environment to
confirm and improve the generated hypotheses through interaction. Our frame-
work is formalized in terms of maintaining a set of object hypotheses, each
feeding information forward in a sequential manner continuously refining the
individual estimates. We rely on two object properties in our approach: one is
texture by modeling object appearance and the second one is geometry by ex-
ploiting rigidity assumption. We show how these are integrated in a probabilistic
manner, providing a robust estimate of the object hypotheses. The framework
is evaluated in a real-world robotic scenario [4].

The remainder of the paper is structured as follows: in Sec. 2 we detail more
related work, while the iterative framework we propose is described in Sec. 3. The
appearance and the rigid object hypotheses are described in Sec. 3.1 and Sec. 4
respectively. Experiments are presented in Sec. 5 and in Sec. 6 we conclude.

2 Related Work

An object detection and modeling system used on a robot should be capable
of real-time performance and require minimal human intervention. Image seg-
mentation methods, like [9,20], do not consider objects, but rather split the
image into coherent parts based on color and intensity information. Methods
like [18] successfully segment out objects from the background, but require that
the objects is framed to initialize the segmentation. Using a single point as ini-
tialization is more suitable for robots, as this only requires the robot to find a
probable location of an object in the image. There are several methods exploiting
this approach [1,6,17], but [1,17] are computationally expensive. Since we aim
at real-time performance, we build upon our original work in [6,7], which, con-
trary to the other two approaches, has the additional advantage of being easily
extendable to handle multiple objects simultaneously, as demonstrated in [3].
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Fig. 1. The proposed model consists of two separate blocks for hypothesis generation,
Appearance (magenta) and Motion (green). The former is initialized by θ0. Each
block employs different assumptions of what constitutes an object based on separate
sensory domains generating hypotheses about the state of the scene θ. Each hypothesis
is fed into the subsequent block in a sequential manner, iteratively refining the state
estimate. Once a stable estimate has been obtained, the result are the objects extracted
from the background LT and their learned appearance models.

Similarly to our approach, [2,18] take advantage of an iterative approach, but
require a human expert for guidance. We let the robot itself interact with the
scene to gain additional information about its structure. The idea has been used
in [13] where a robot segments a scene by pushing objects. However, object po-
sitions are assumed known, and if there are several objects moving at the same
time, these will be regarded as the same object. [12] assumes rigid object parts
and aims to infer kinematic structures of objects through feature tracking. Con-
trary to our work, they assume only planar motion. Other approaches segment
motion using factorization e.g. [10]. These however require a significant motion
to be induced on objects compared to our method.

3 System Overview

A diagram of the system is shown in Fig. 1. Each block generates an object
hypothesis and by communicating this in a sequential manner, the object hy-
pothesis is iteratively refined. We exploit sensory data from three modalities;
color/intensity, depth and motion. Color and intensity are provided directly by
the video stream and depth is provided either through stereo reconstruction or
sensors such as Kinect [16]. In Sec. 3.1, we detail the approach for building object
hypotheses based on appearance and in Sec. 4, we describe the methodology for
exploiting interaction by monitoring the relative motion patterns of objects.

Our system is iterative; each hypothesis block taking the current state of the
system θt as input and generating a labeling Lt of its input modality in terms
of object association. This labeling generates a hypothesis about the objects
in the scene, updating the state θt+1 of the system. We employ two different
hypotheses blocks, each generating labelings based on different assumptions. We
will now briefly outline the blocks along with the initial conditions, and the way
they interact.
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Initial Hypothesis: The parameter set θ0 is used to initialize the system and
holds prior information of the state of the scene, e.g. number of objects, their
appearances and positions. This can be provided by different sources, e.g. a
human [5] or an attention system [14]. For the experimental evaluation in Sec. 5
the sole assumption is that there is at least one object present in the scene.

Appearance Hypothesis: The first part in the iterative loop consists of the
appearance hypothesis, described in Sec. 3.1. The appearance is extracted from
regular color images and a sparse depth map from a stereo system. In order to
generate a hypothesis, this block requires that at least one pixel in the image is
labeled as belonging to an object. We use the method described in [7] to identify
this point. The output is a dense labeling LA

t of every pixel in the image and
a model of the appearance of each detected object. The labeling LA

t describes
a hypothesis hA

t about the number of objects, their location and extent in the
image. Further, a model of the appearance of each object is built.

Rigid Motion Hypothesis: From the hypothesis hA
t , we assume one of the two

following scenarios: (1) the object hypothesis is correct, or (2) the appearance
is not sufficient for disambiguation and have therefore merged several objects
into one. By interacting with the scene based on our belief and exploiting the
assumption about object rigidity, we generate a sparse labeling LM

t . From this
labeling, a hypothesis hM

t , either supporting or opposing hA
t , is generated. In

Sec. 4 the details of this approach is explained.
In an iterative manner, we use the motion hypothesis to rectify the appearance

model resulting in a dense labeling of objects in the image space, consistent
both with the appearance and the motion assumption. Further, we acquire a
model of the appearance of each object detected. Due to the ordering of the two
hypothesis blocks, we will refer to the motion hypothesis as a means of rectifying
the appearance hypothesis. However, each hypothesis generates a labeling in
terms of objects and would therefore also work on their own. This forms the
central argument of this paper: the complementarity of the different modalities
facilitates the disambiguation process. Our sequential framework results in a
‘divide-and-conquer’ approach where one hypothesis is used as input to validate
the subsequent one.

3.1 Appearance Hypothesis

In [3] we presented a real-time, multi label framework for object segmentation
which uses a single point to initialize each foreground hypothesis. Using pixel
colors represented as histograms in HSV space, foreground objects are modeled
as 3D ellipsoids, while the background is modeled as a combination of planar
surfaces, such as a table-top, and uniform clutter. This is done statistically using
an iterative EM-framework, that maximizes the likelihood of the corresponding
set of model parameters θt, given color and disparity measurements. By means
of belief propagation, the unknown segmentation is marginalized, which is unlike
typical methods using graph-cuts that simultaneously find a MAP solution of
both parameters and segmentation. The resulting segmentation LA

t is the most
likely labeling given θt after EM convergence. Thus, the method can be viewed
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Fig. 2. Examples of scenes where initializing with one point results in both objects
captured by one segment (left), and how this is resolved by initializing with two points
instead (right)

more as modeling objects than a segmentation approach, which makes it suit-
able for our particular purpose, where robust estimation of object centroids and
extents is of essence.

In cases where the modeling is unable to capture the complexity of the scene,
the segmentation system can be expected to fail. In particular, the disparity cue,
while helping capture heterogeneously colored objects, also captures other parts
of the scene in close proximity to the object. This is true for objects placed on
a supporting surface, as the difference in disparity is insignificant in the area
around the points of contact. In [3] this is compensated for with the inclusion of
a surface component in the background model. This does not solve the problem
of two objects standing in close proximity though, which are often captured by
the same segment. However, as shown in [3], initializing with one point on each
object will often solve this problem, see Fig. 2.

From the current segmentation LA
t we get a hypothesis hA

t detailing the com-
position of the scene. Due to the issues discussed above, we cannot be sure of
the correctness of this hypothesis, in particular whether segments correspond to
one or more objects. To verify the correctness of hA

t , the hypothesis has to be
tested. In the next section, we will show how this can be done by pushing a
hypothesis and verifying whether the generated optical flow is consistent with
it. If the hypothesis is incorrect, the next iteration of the loop will be informed
that the segment in question contains two objects.

4 Rigid Motion Hypothesis

The appearance assumption may fail when objects are placed close to each other,
a common situation in manmade environments. One possibility of recovering
from such failure would be to push things around, lift them or look at the scene
from a different angle, something humans commonly do. Our approach in a
robotic setup is to interact with the scene but alter it as little as possible. The
cost of e.g. lifting an object may also be high if an incorrect hypothesis leads to
the object being dropped. We therefore take the approach of inducing motion
by carefully pushing on the object hypothesis. Thus the problem is to infer from
motion in the scene, whether the motion is produced by one or several objects.
For this, we require that objects are rigid and, if more than one object, they
move differently with respect to each other.

Fig. 3 shows an example of the different steps of the method. Given a segment
from LA

t , we want to evaluate if it consists of a single or several objects. To
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Fig. 3. From left to right: Scene with one or two objects, initial segmentation, clustering
based on k-means and one instance of the clustering from motion. Notice that in the
two object case, the k-means clustering is not very accurate. Even so, the method is
able to realize that there are actually two objects.

that end, we generate a weak hypothesis by clustering, into two centers, the
pixels belonging to specific hypothesis in the spatial-color domain. By applying
a push onto one of the centers in a direction orthogonal to the vector between the
clusters we hope to minimize the risk of similar motion in the case of two objects.
For detecting motion, we extract feature points inside the current appearance
hypothesis using [19] and track them using the optical flow based approach in
[15]. On average between 150 and 300 points are tracked. Furthermore, as motion
is analyzed in 3D space, we filter out points for which we have no valid disparity.

4.1 Motion Discrimination

To perform motion analysis, we exploit the fact that distances between each pairs of
points on a rigid object are constant under translation and rotation of the object,
while distances between pairs of points on different objects will change. For the
following discussion we assume the existence of two objects. We observe that the
difference between corresponding point pairs before and after a motion will be
zero for point pairs on the same object, and non-zero for point pairs on different
objects. We denote the distances at time t with matrix Dt,

Dt =

⎡
⎢⎣

dt(1, 1) . . . dt(1, N)
...

. . .
...

dt(N, 1) . . . dt(N, N)

⎤
⎥⎦ , dt(i, j) = ‖pt

i − pt
j‖ (1)

and the changes in distance since last update with Qt = Dt−Dt−1. Here N is the
number of tracked points. Note that the point positions pi are here expressed in 3D
metric coordinates. A column Qt

i in Qt can be interpreted as the change in distance
from point i to every other point from time t − 1 to time t. This difference will
be zero for points on the same objects, and non-zero for the other points. Hence
all vectors Qt

i ∈ R
N belonging to the same object will have zeros for the same

dimensions. Thus a vector Qt
i resides in one of two distinct subspaces, VK and VL,

corresponding to objects OK and OL. We know empirically that the eigenvectors,
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Fig. 4. The black points is the projection of the motion data onto its two dominant
eigen-components, vKvL, while the red and blue points are projected back to the image
space, and indicate the associations based on clustering in the motion space. The
top box shows two examples of scenes containing one object, while the bottom box
exemplifies the occurrence of two objects.

vK and vL, corresponding to the two largest eigenvalues of Qt, reside in VK and
VL respectively. We thus project each Qt

i on these eigenvectors:

qt
i = [vK vL]T Qt

i (2)

If there are in fact two objects and the signal-to-noise ratio is sufficient, the points
in the resulting 2D motion space will form two clusters. However, as Fig. 4 shows,
looking at this space it can be hard to distinguish between the case of one object
and two objects. Therefore, we first cluster points in the motion space, which
is done using a two component Gaussian mixture model, and then look at the
clustered points in the original image space, to verify whether the clustering in
the motion space made sense. In image space, points from two objects will be
partitioned in distinct clusters, while in the case of one object, such a pattern is
not observable (see Fig. 5). The reason for this is that in the ideal case, if one
object is observed, Qt would be a zero matrix. Therefore any non-zero entries in
Qt will be the result of noise.

To distinguish between the one and two object cases, we look at image point
distances; intra- (Eq. 3), and inter cluster distances (Eq. 4).

et
K,K =

1
K2

∑
i∈OK ,j∈OK

‖pt
i − pt

j‖, et
L,L =

1
L2

∑
i∈OL,j∈OL

‖pt
i − pt

j‖ (3)

et
K,L = et

L,K =
1

KL

∑
i∈OK ,j∈OL

‖pt
i − pt

j‖ (4)

Here K, L denote the number of points in respective clusters. We then compute
the ratio rt

e = (et
K,K + et

L,L)/(2et
K,L). In the case of one object, the classes are

more or less randomly distributed over the point set in image space. Therefore
the difference between intra- and inter cluster distances will be smaller than in
the case of two objects, where the classes in the point set are grouped. Hence,
rt
e will be smaller in the case of two objects compared to one object.
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Fig. 5. Examples of the clustering of the tracked points. While there is no real pattern
in the case of one object, in the other case the points are clearly grouped in one left
and one right cluster. Note that the second frame in the upper row and third frame in
second row have all points except one assigned to one GMM component. These cases,
which occur due to outliers, we do not include in the updates of Eq. 5.

The ratio rt
e will in turn decide hM

t . For robustness, we integrate observations
from several consecutive time steps and update the robot’s belief about the
current state to produce the final hypothesis. We model the robot’s belief μ of
the assumption “there are two objects in the scene”, with a beta distribution:

p(μ|a, b, l, m) ∝ μa+l−1(1 − μ)b+m−1 (5)

Here a and b are hyper parameters, while l and m are based on the history of
observations. An observation agreeing with the statement will give an update to
l, and a disagreeing observation to m. We update m and l as follows:

l ← l + fl(rt
e), m ← m + fm(rt

e); fl(x) = [1 + e−u(v+x)]−1, fm(x) = 1 − fl(x)

Here u and v are parameters governing the offset and steepness of the sigmoid
function. Using u = 20 and v = −0.8 gives us satisfactory results. Furthermore,
we set the hyper parameters a = b = 1, which gives a uniform prior on μ.

To summarize: In Sec. 3.1 and 4.1 two methods are presented using (1) ap-
pearance and (2) motion, to create a partitioning of the scene in terms of objects.
While (1) results in a dense labeling, (2) produces a sparse segmentation in terms
of pixels in an image. While they both can be applied as stand-alone methods,
we in this work greatly benefit from integrating both methods in an iterative
scenario, thus exploiting both appearance and motion in the segmentation.

5 Experiments

The experimental setup consists of an Armar III active stereo head with foveal
and wide angle cameras, a KUKA robot arm with 6 DoF and a Schunk Dexterous
Hand with 7 DoF. For the experiments the foveal views are used. We use open
loop control for pushing.

In order to evaluate the added benefit of including the motion hypothesis, we
run experiments on scenes containing one or two objects for which the appear-
ance model predicts a single object. Objects were placed in close proximity at
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Fig. 6. The plots show three typical examples of the progression through 15 frames
for the mean and variance of the beta distribution. The left and right plots show the
behavior for one and two objects respectively.

random locations on a surface with the requirement that in case of two objects,
at least 1/4 of the tracked points belong to each object. The scene was initialized
with one segment as described in [3], and after convergence the motion modeling
was initiated. A weak hypothesis and a pushing motion, as described in Sec. 4,
was generated, feature points extracted, and the pushing motion executed. The
movements of the feature points were tracked for 15 frames and classified offline.

Fig. 6 shows some plots of the mean and variance of the Beta-distribution for
some example scenes. We treat an example as correctly classified, if the mean
of the beta-distribution reaches above 0.7 for two objects, and below 0.3 for one
object. The thresholds where set by experimental validation. 50 experiments
were run, evenly distributed between the two classes and each with different
configurations of objects. For these experiments, the classification rate was of
92 %. The incorrectly classified scenes were due to e.g. interference with the
robot finger and objects moving too similarly to each other. However, these
could potentially be rectified through another iteration through the framework.
In most cases classification according to above could be done long before the 15
frames had been processed. The tracked points in most cases only have to move
on average less than 0.5 cm for a correct classification. This means that for an
online scenario the robot could stop the push motion as soon as it has made a
classification, update θt+1 and feed this back to the appearance method.

6 Conclusions

To interact with an unknown unstructured environment, a robot has to rea-
son about what constitutes an object. While easily solved by humans, given no
prior information this is a challenging task for a robot. Appearance based object
segmentation methods are bound to fail due to the problem being inherently ill-
posed. The problem is often solved by letting a human correct the errors, which
is unfeasible in a robotic scenario. In this paper we proposed a system for object
segmentation driven by one appearance based and one motion based method.
The first produces a hypothesis about the scene. The robot then seeks to val-
idate this hypothesis itself by pushing it, and analyzing whether the resulting
motion is compatible with it, using an assumption of rigid objects. The result is
in turn fed back to the appearance based method for producing a more correct
segmentation. We have shown that the method performs successfully in the vast
majority of the cases in our experiments with very small impact on the scene.
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Abstract. We propose a cognitive vision-based system for the intelli-
gent monitoring of tokamaks during plasma operation, based on multi-
sensor data analysis and symbolic reasoning. The practical purpose is to
detect and characterize in real time abnormal events such as hot spots
measured through infrared images of the in-vessel components in or-
der to take adequate decisions. Our system is made intelligent by the
use of a priori knowledge of both contextual and perceptual information
for ontology-driven event modeling and task-oriented event recognition.
The system is made original by combining both physics-based and per-
ceptual information during the recognition process. Real time reasoning
is achieved thanks to task-level software optimizations. The framework
is generic and can be easily adapted to different fusion device environ-
ments. This paper presents the developed system and its achievements
on real data of the Tore Supra tokamak imaging system.

Keywords: cognitive vision system, infrared monitoring, ontology, multi-
sensor event fusion, thermal event recognition, real-time vision, iter.

1 Introduction

Tokamaks are complex devices operated to produce controlled thermonuclear
fusion power by magnetic confinement of a plasma (fully ionized gas) in a torus.
Even if the temperature drastically decreases from core plasma to edge plasma
(from 108 to 104 ◦C), the equilibrium of the plasma discharge requires a di-
rect contact with Plasma Facing Components (PFCs) exposed to very high heat
fluxes in the range of 10-15 MW.m−2. As a consequence, these PFCs must be
continuously monitored to prevent irreversible damages. Infrared (IR) or visi-
ble imaging diagnostics (i.e. sensor data analysis system) are routinely used as
plasma control systems during operation. The developed systems consist of de-
tecting a high increase of the temperature (i.e. of the IR signal) beyond fixed
levels for a set of predefined Regions of Interest (RoIs) [8]. In the perspective of
iter1, with a network equipped with 36 cameras (one mega pixels at 500Hz each)
1 International Thermonuclear Experimental Reactor, first plasma in 2020.
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for the IR and visible imaging diagnostic, a complementary approach must be
found to alleviate this intensive user-interaction demand. In addition, the future
use of metallic components in iter adds complications in surface temperature
estimation of exposed PFCs because of multiple light reflections, making more
intricate temperature threshold settings.

Therefore, there exists a real need in improving the performance of such imag-
ing diagnostics. One challenge is to design an intelligent vision system for au-
tomatic recognition of thermal/plasma events (also called phenomena) and to
embed it into the fusion device environments (see Figure 1 for typical thermal
events on two infrared views at Tore Supra). First attempts towards phenomenon
recognition for machine protection issues in visible and IR videos are presented
in [9] and [7]. Murari et al. [9] propose a bottom-up approach for the auto-
matic recognition of two specific events (plasma instability patterns and dust
particles) observed with fast visible and infrared imaging systems during plasma
experiments. Martin et al. [7] propose an approach combining prior knowledge of
perceptual and contextual information for the automatic recognition of electrical
arcing events in infrared videos.

In this paper, we more specifically address the problem of integration of tech-
niques developed so far for global scene understanding with an emphasize on
real time system requirements. We propose to use a more advanced image un-
derstanding framework based on knowledge driven reasoning. To ensure a high
degree of self-adaptability to varying acquisition conditions, we also propose to
analyze images without assumptions on absolute temperature measurements.
Our framework is inspired from cognitive vision paradigms recently explored [3]
in the field of video surveillance applications [12]. More precisely, we propose a
system that is reusable for different fusion devices, that can handle unforeseen
situations, that can adapt to its environment (i.e. plasma condition awareness),
and that can reason from memorized or learned relevant information.

2 Proposed Approach

Our cognitive vision system must satisfy three major constraints specific to the
fusion device environment. First, it must ensure the maximum security level: a
detected but unclassified event remains potentially dangerous (e.g. an unforeseen
overheating area), and thus should be handled by the machine protection system.
The second constraint refers to the system versatility. Since all fusion devices
provide their own diagnostics (i.e. different types of cameras) and several sets
of possible phenomena (about 20 per machine), creating all the vision tasks
for each environment becomes an intractable task and thus requires to use a
shared formalism for knowledge description of both contextual and perceptual
information. System performance in term of computational time represents the
third major issue since each vision task must fulfill the real time constraint
of the considered fusion device environment. Our vision system meets these
requirements thanks to the following abilities:
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Fig. 1. Infrared monitoring of PFCs in the ts tokamak during a plasma discharge.
Temperatures range from 120◦C (blue) to 900◦C (dark red). The bounding boxes rep-
resent manual annotations defined with the help of physicists. BCC stands for Badly
Cooled Component.

Multi-sensor Data and Event Fusion. We merge information at different
levels. In a first case, the goal is to find cross-correlation between event
features (e.g. similarity between hot spot temperature evolutions) observed
at several scene locations. In a second case, an event can generally be detected
by several diagnostics (e.g. by IR and visible cameras, by spectroscopy).
Combining video events with other sensor events (e.g. a curve peak) helps
in achieving high robustness of the system as illustrated in [12].

Ontology-Driven Vision Task Composing. The unification of information
and especially visual and contextual data can be achieved with ontologies,
as demonstrated in [5] and [4]. Our ontology is used to link the different se-
mantic representations related to (1) the diagnostics describing the perceived
environment, (2) the scene observed by the camera network, (3) the plasma
discharge scenario parameters and (4) the phenomena to be recognized by
the system.

Real Time Vision. To avoid combinatorial explosion of the recognition pro-
cess based on multi- event hypothesis solving, most of the reasoning is deter-
ministic and performed during the ontology-driven vision task composing by
means of spatio-temporal and logic constraint propagation. This approach
makes possible task-level optimizations as task pooling and task paralleliza-
tion mandatory for real time reasoning. Real time constraints imposed by
the acquisition systems are also handled thanks to hardware acceleration of
low-level algorithms as describe [6].
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2.1 Event Modeling for Vision Task Composing

We have developed a software platform dedicated to vision task composing,
tuning and launching called PInUP (Plasma Imaging data Understanding Plat-
form). We propose a formal method to infer the vision task hierarchy from prior
knowledge described in our ontology. One advantage of this method is to perform
two task-level optimizations so as to decrease the CPU loading and thus to save
computational time. The first level concerns task pooling used to avoid multiple
launching of the same vision algorithm (e.g. detection algorithm). The second
level concerns task parallelization which aims at minimizing the length of linear
task sequences and is a prerequisite for CPU multi-threading based computing.

The phenomenon ontology branch (see figure 2) contains the class hierarchy
of interesting events for machine protection purposes. Each event categorization
process is associated with at least one specialized vision task composed of four
pipelined algorithms. The specialization of each algorithm is deduced from the
attributes of the phenomenon ontology branch. The typical event recognition
process consists of:

– A trigger algorithm based on the Plasma scenario attributes such as plasma
states. These attributes describe the necessary plasma conditions for the
event to occur. This algorithm triggers the launching of the event catego-
rization process.

– A low level detection algorithm deduced from Diagnostic attributes attached
to the event. For instance, detection of transient hot spots is performed by
a motion detection algorithm.

– A spatial filtering of detected pixels based on the Scene attributes specifying
the possible locations of the event. We use an interactive 2D scene model
where the user has the possibility to fill symbolic and numerical attributes
attached to each defined zone.

– A set of specialized feature descriptors based on the Visual concept attributes
(e.g. shape, size, time duration, etc.) selected from prior knowledge of the
phenomenon characterization. The corresponding range values are learned
from representative training samples.

This ontology-driven construction process leads to the work flow of vision tasks
presented in figure 3. Currently, a graphical tool let end-users (e.g. diagnosti-
cians) compose the vision task hierarchy in a user-friendly way by means of
component block manipulation.

3 Application to Thermal Event Recognition at Tore
Supra

The main purpose of thermal event recognition is to handle unforeseen situations
as unexpected hot spots. People in charge of the experiments can then focus
either on filtered events (e.g. for plasma control issues) or on hot spots remaining
unclassified to check their dangerousness.
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Fig. 2. Part of the ontology developed for thermal event recognition. The five main
branches are represented with corresponding class hierarchies and attributes.
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3.1 Hot Spot Detection

Physically, a hot spot is a local area on a PFC where the temperature measured
is above an accepted range of values, and is then considered as overheating. Since
temperature calibration is still an open problem in tokamak environments, we
propose to define the detection of hot spots as a spatial or temporal local image
contrast analysis problem, therefore ensuring a high degree of self-adaptability
to varying acquisition conditions.

Transient Hot Spot Detection. Some events can be characterized thanks
to their temporal signature as electrical arcs which last only few dozen of mil-
liseconds. A fast change detector based on pixel intensity is then the best ap-
propriate solution to discriminate them against the other types of hot spots
(see figure 4(b)). To this end, we adopt a pixel-wise background modeling and
subtraction technique developed by Butler et al. [2].

Persistent Hot Spot Detection. All hot spots lasting more than few dozen of
milliseconds are considered as persistent. Since time is not necessary a discrim-
inant clue for these hot spots, we adopt a local adaptive thresholding technique
for their detection. After extensive tests of state-of-the-art algorithms [10], we
found that the efficient implementation of the Sauvola’s method based on inte-
gral images [11] gives the best results on our data (see figure 4(c)). Using some
improvements for computational purposes, the thresholded image q(x, y) from
an input image I with pixel intensities p(x, y) is such that:

∀(x, y) ∈ I, q(x, y) =

{
0 if p(x, y) < τ(x, y) or p(x, y) ≤ R

255 otherwise
(1)

where

τ(x, y) = μ(x, y) + k
(
μ(x, y) − max

I
(p)

)(
2σ(x, y)

maxI(p) − minI(p)
− 1

)
(2)

with μ(·) and σ(·) are the average and standard deviation values of pixel intensi-
ties in the spatial neighbourhood centered on (x, y), and R = argmax {hist(I)}.

We have also extended the algorithm to adaptive multi-threshold image seg-
mentation through a n-pass procedure in order to better discriminate very hot
spots inside hot regions as seen in figure 4(c).

3.2 Hot Spot Categorization

The next steps after detecting hot spots consist in extracting semantic informa-
tion based on their appearance and behaviour. In the scope of machine protection
issues, this step is of primary importance to assess hot spot dangerousness.
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(a) (b) (c)

Fig. 4. Hot spot detection results on an infrared image of ts heating antenna (a).
Transient hot spots (b) and persistent hot spots (c) are clearly discriminated thanks
to the two dedicated algorithms.

Persistent Hot Spot Categorization. Among all the modeled thermal events,
one have to pay attention to the reflection event. Indeed, reflections patterns cor-
respond to false hot spots which are not per se dangerous. They can be observed
on reflective materials e.g. copper, stainless steel but generally not carbon con-
sidered closed to a black body behaviour. Reflections appear when PFCs in
direct contact with the plasma experience surface temperature in the range of
1000− 2000◦C. At Tore Supra, reflections arise from hot regions mainly located
on the device floor called the limiter. A direct approach to match a reflection
source and a reflection pattern is to measure the similarity between the temporal
evolutions of their temperature. To this end, we compute the normalized cross-
correlations (NCC) on a sliding time window (SWNCC) of width T between
candidates of both sources f (hot spots on the limiter) and reflection patterns
g (hot spots on metal-made PFCs) using the maximal temperature of each hot
spot as input feature:

SWNCC =
1
T

t∑
u=t−T

(f(u) − f)(g(u) − g)
σfσg

(3)

with f and g the maximal temperatures of the detected hot spots and f, g, σf , σg

their respective averages and standard deviations over the time period T .
Figure 5 presents the result of multi-camera event feature fusion performed on

two synchronized infrared cameras. The goal is to characterize reflection patterns
on the monitored heating antenna while applying radio-frequency (RF) plasma
heating. As seen in figure 5, the temperature evolution of three patterns (no.
32, 38 and 45) are well-correlated (SWNCC>0.9) with the hot spot pattern de-
tected on the limiter (no. 1) and then can be classified as reflection patterns. On
the contrary, the pattern no. 27 has clearly an independent thermal behaviour,
and will remain classified as persistent hot spot for further analysis and event
classification refinement.

Transient Hot Spot Categorization. We present in figure 6 the result of arc
recognition with infrared and visible imaging diagnostics during a same plasma
discharge.
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(a) Hot spot detected on the limiter and
used as heat source for the computation of
SWNCC.

(b) Candidates of reflection
patterns used for the compu-
tation of SWNCC.
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(c) Results of SWNCC (T = 10s) between the temperature evolutions of the
hot spot in (a) and hot spots in (b) during a plasma discharge. Hot spots
detected on metallic components of the heating antenna with a SWNCC>0.9
are considered as reflection patterns.

Fig. 5. Example of multi-camera event feature fusion for the recognition of reflection
patterns based on thermal behaviour cross-correlation

Fig. 6. Synchronized IR (left) and visible (right) camera views aiming the same PFC
(heating antenna) from different lines of sight inside the ts tokamak. The arc event is
successfully recognized by the system in the two cases.
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Although both sensors data and observed scenes are completely different, the
system achieves the recognition of the same arc event appearing in front of the
same heating antenna. This ability of correlating events recognized with several
diagnostics is considered as an essential element for plasma control system reli-
ability in case of unexpected failure of one diagnostic during plasma operation.

4 Validation of Experimental Results

Our vision system is currently implemented on the ts tokamak in parallel of
the existing RoI-based monitoring system. The infrared viewing system is com-
posed of 7 infrared video cameras (320×240 pixels at 50Hz) monitoring one part
of the toroidal limiter and the five RF heating antennas as seen on top of fig-
ure 1 (resp. 1 and 2 ). Our system has been tested and validated with plasma
physicists during the last experimental campaign on about 50 plasma discharges
lasting between 15 and 90 seconds. Performance of arc recognition based on the
presented framework has been evaluated in [7] thanks to existing ground truth
data (visual annotations). Results shows a precision of 98% and a sensitivity
of 92%. The validation of the SWNCC method used for the characterization of
reflection patterns is based on a qualitative comparison with simulated infrared
images obtained with a realistic photonic simulation code described in [1]. Re-
sults shows that recognized reflection patterns are in accordance in terms of
location and size with those found in simulated images. Further quantitative
evaluation using this new simulation tool are foreseen to assess the effectiveness
of the SWNCC method for reflection pattern recognition in different contexts
(i.e. various plasma conditions and monitored PFCs).

5 Conclusion

In this paper, we demonstrate that a cognitive vision system based on qualitative
imaging analysis can achieve a physical interpretation of observed phenomena
during plasma operation in tokamaks. From a computer vision viewpoint, this
real system is made original by the merging of multiple sources of information
(multi-camera and multi-sensor data fusion) at different levels (pixels and event
features) during the recognition task, its combination of different software op-
timization schemes for real time computations, and the use of ontology-driven
inference mechanisms for system re-usability on different tokamak environments.
The developed software platform is now daily used at Tore Supra during plasma
operation as a computer-aided decision support system and is going to be in-
stalled on jet2, which is currently the world’s biggest tokamak. On-going work
concerns the system performance evaluation to prepare its integration within
the plasma control system of Tore Supra.

Finally, this pioneer work for the domain is also an opportunity for both com-
puter science and plasma science communities to progress together for preparing
both the safety and physics exploitation of iter.
2 Joint European Torus.
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Abstract. Knowledge bases for semantic scene understanding and processing 
form indispensable components of holistic intelligent computer vision and 
robotic systems. Specifically, task based grasping requires the use of perception 
modules that are tied with knowledge representation systems in order to provide 
optimal solutions. However, most state-of-the-art systems for robotic grasping, 
such as the K- CoPMan, which uses semantic information in mapping and 
planning for grasping, depend on explicit 3D model representations, restricting 
scalability. Moreover, these systems lacks conceptual knowledge that can aid 
the perception module in identifying the best objects in the field of view for 
task based manipulation through implicit cognitive processing. This restricts the 
scalability, extensibility, usability and versatility of the system. In this paper, 
we utilize the concept of functional and geometric part affordances to build a 
holistic knowledge representation and inference framework in order to aid task 
based grasping. The performance of the system is evaluated based on complex 
scenes and indirect queries. 

Keywords: Ontologies, Knowledge Representation, Grasp Affordances, 
ConceptNet. 

1   Introduction 

Use of knowledge bases for holistic scene understanding and processing has been a 
growing trend in computer vision and robotics. In these areas, as well as other systems 
requiring the use of ontologies, Semantic Web based knowledge acquisition systems 
have been used extensively. These are typically defined using Web Ontology 
Languages (OWL), that are characterized by formal semantics and RDF/XML-based 
serializations. Extensions to OWL have been used in semantic editors such as Protégé 
and semantic reasoners and ontology bases such as Pellet, RacerPro, FaCT++, HermiT, 
etc. In the area of semantic text parsing and knowledge management, a number of 
frameworks such as Framenet, Lexical Markup Framework (LMF), UNL, WordNet 
and WebKB are available. Alternatively, a number of tools for conceptual knowledge 
management have also been developed recently. These include reasoners and concept 
ontologies such as Mindpixel, Cyc, Learner, Freebase, YAGO, DBpedia, and MIT 
ConceptNet. These semantic reasoners and ontology databases can be directly 
exploited for applications in robotic manipulation.  
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The most significant of semantic knowledge acquisition systems for robotic vision 
systems is KnowRob (Knowledge Processing for Robots) [1], which uses reasoners 
and machine learning tools such as Prolog, Mallet and Weka, operating on ontology 
databases such as researchCyc and OMICS (indoor common-sense knowledge 
database). In the case of KnowRob, the data for the knowledge processing stems from 
three main sources: semantic environment maps, robot self-observation routines and a 
full-body human pose tracking system. Extensions to KnowRob, such as the K-
COPMAN (Knowledge-enabled Cognitive Perception for Manipulation) system [2], 
enable autonomous robots to grasp and manipulate objects.  

All the above frameworks for knowledge acquisition based object grasping and 
manipulation suffer from the fact that they require the use of explicit model databases 
containing object instances of the query to be processed, in order to obtain successful 
object recognition. K-COPMAN, for instance, uses CAD for matching 3D point clouds 
in order to identify the queried object in the given environment. Furthermore, while 
using semantic knowledge of the scene in order to improve object recognition and 
manipulation, these systems are largely devoid of performing implicit goal-directed 
cognitive tasks such as substituting a cup for a mug, bottle, jug, pitcher, pilsner, beaker, 
chalice, goblet or any other unlabeled object, but with a physical part affording the 
ability to hold liquid and a part affording grasping, given the goal of ‘bringing an 
empty cup’ and no cups are available in the work environment. 

In order to alleviate these issues, we utilize the concept of part affordances.  Gibson 
proposed the original idea of affordances grounded in the paradigm of direct 
perception. Physical affordances define the agent’s interaction possibilities in terms of 
its physical form [3]. For example, stable and horizontal surfaces are needed to support 
objects, objects need to have a brim or orifice of an appropriate size, in order to be 
functional as a container to drink from. Additional examples of affordances studied 
with respect to robotic manipulation in [3] include ‘sittability’ affordance of a chair 
that depends on body-scaled ratios, doorways affording going through if the agent fits 
through the opening, and monitors afford viewing depending on lighting conditions, 
surface properties, and the agent’s viewpoint. The spectrum of affordances have been 
extended to include social-institutional affordances, defining affordances based on 
conventions and legally allowed possibilities leading to mental affordances. 
Affordances based on History, Intentional perspective, Physical environment, and 
Event sequences (HIPE) leading to functional knowledge from mental simulations 
have been studied in [4]. Affordances serve as key to building a generic, scalable and 
cognitive architecture for visual perception. ‘Affordance based object recognition’ or 
recognition based on affordance features is an important step in this regard. 

2   Overview 

Most prior work in robotic grasping makes use of 3D model instance representations. 
The primary contribution of this paper is in providing a unified and holistic 
knowledge assimilation and deployment framework that is intended for robotic 
grasping. Since the framework is devoid of 3D model instance representations, it 
lends itself to extensibility to compound shape detection and grasping through the 
Recognition by Components (RBC) theory. 
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2.1   Ontology of Concepts 

The fundamental basis of our framework revolves around the theme of ‘Conceptual 
Equivalence Classes’. These classes are defined as sets of objects that are 
interchangeable from the view-point of usage for the primary functionality of the 
object. Hence, objects such as mugs, cups and beakers form an equivalence class. Bags 
and baskets also form an equivalence class, so do cans and bottles, bikes and 
motorbikes and so forth. Equivalence classes can be uniquely defined and recognized 
in terms of their (a) Part Functional Affordance Schema and (b) Part Grasp Affordance 
Schema. It should be noted here that the definition of conceptual equivalency class 
used here is distinct and unrelated to the equivalency class definitions provided by the 
OWL framework, which uses only textual or named entity equivalency. 

2.2   Knowledge Ontology Based on Textual Semantics 

In our framework, we employ WordNet [5] for generating textual unit definitions for 
concepts or objects queried for. While WebKB provides improvements over 
WordNet, while returning results that are restricted to nouns (of specific interest to 
our framework), the standalone nature of WordNet recommends its usage. WordNet 
provides a lexical database in English with grouped sets of cognitive synonyms 
(synsets), each expressing a distinct concept. It also records the various semantic 
relations between these synonym sets, such as hypernyms (higher level classes), 
hyponyms (sub-classes), coordinate terms (terms with shared hypernyms), holonyms 
(encompassing structure) and meronyms (constituent parts). The system interacts with 
the WordNet interface based on the queried term to obtain a possible match. The 
system also assimilates concept 3D geometric shape information such as Sphere, 
Cylinder, Cube, Cone, Ellipsoid, Prism, etc., 2D geometric shape information such as 
Square, Triangle, Hexagon, Pentagon, Ellipse etc. and abstract structural concepts 
such as Thin, Thick, Flat, Sharp, Convex, Concave etc. by parsing the concept 
definition. Additionally, information on material properties of the concept such as 
Metal, Wood, Stone, Ceramic etc. and part functional affordance properties (based on 
terms such as Cut, Contain, Store, Hold, Support, Wrap, Roll, Move, Ride, Enter, 
Exit, Gap, Hole)  are also obtained and stored by the system. 

2.3   Knowledge Ontology Based on Visual Features 

While visual unit definitions can be used to improve the performance of the system or 
to obtain instance level recognition, our novel framework for conceptual equivalence 
class recognition and grasping system does not require the use of these databases and 
hence is 3D/2D model free. Furthermore, it should be noted that from the viewpoint 
of grasping using range images, monocular image information is largely superfluous. 
Instance level recognition, if necessary in future revisions to the system, can be 
carried out using a bag of features approach working with SIFT/SURF or other state-
of-art feature descriptors on labeled image or 3D shape databases (such as LabelMe, 
LabelMe 3D and ImageNet).  
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2.4   Knowledge Ontology Based on Conceptual Properties 

For the case of conceptual unit definitions, we employ the Open Mind Common Sense 
(OMCS) [6] based ConceptNet framework. ConceptNet has been used in the context  
of robotic task management [7]. The particular choice of this ontology database is due  
to its exhaustiveness, ease of use and suitability of attributes with respect to our 
affordance framework. The ontology provides English language based conceptual 
groupings. The database links each concept with properties such as ‘InstanceOf’  
and ‘SymbolOf’ – possibile semantic replacements, ‘ConceptuallyRelatedTo’ – possible 
functional/ conceptual replacements, ‘PartOf’ – encompassing structures, ‘Receives 
Action’, ‘CapableOf’, ‘UsedFor’ – possible functional affordances as well as ‘MadeOf’, 
‘HasProperty’ etc. that provide further information about the concept. The use of these 
properties enables the part affordance based equivalence class selection.  

2.5   Knowledge Ontology Based on Grasp Affordances 

For the case of part grasp affordance definitions, a number of systems are available. 
These can be used for limiting the large number of possible hand configurations using 
grasp preshapes. Humans typically simplify the task of grasping by selecting one of 
only a few different prehensile postures based on object geometry. One of the earliest 
grasp taxonomy is due to Cutkosky [8]. In our system we employ the ‘Human 
Grasping Database’ [9] from KTH-Otto Bock. This taxonomy lists 33 different grasp 
types hierarchically assimilated in 17 grasp super-types. It is possible to most of these 
grasp types to geometric shapes they are capable of handling. Each query concept is 
defined (as a whole or in parts) to provide grasp affordances of the types listed in the 
taxonomy database. 

2.6   Knowledge Ontology Based on Part Functional Affordances 

The most important component of the presented system is the Part Functional 
Affordance Schema. This component essentially performs the symbol binding – 
mapping concepts: in our case – the Conceptual Equivalence Classes to visual data in 
the form of 3D geometries. While various schemes for affordance definitions have been 
studied in the past, we utilize a set of part functional affordance schema, largely with 
respect to objects found in households and work environments. These affordances are 
based on functional form fit of the Conceptual Equivalence Classes. A representative 
section of the part functional affordance schema is presented in Table 1. Note that the 
functional affordance here is defined with respect to objects of the class being able to 
perform the defined function. 

The scale of each part is also defined with respect to a discrete terminology set 
based on comparative sizes – (finger (f), hand (h), bi-hand (b), arm/knee (a), torso (t), 
sitting posture (i), standing posture (d), non-graspable (n) etc.). The conceptual 
equivalence classes are defined based on joint affordances of parts of the objects, 
along with their topological relationships. 

Based on these attribute definitions, the equivalence classes can be uniquely 
represented. Examples of equivalence classes are provided in Table 2. Note that (ga) 
denotes grasp affordance and (pa) denotes part affordance. 
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Table 1. Representative Part Functional Affordance Schema 

Part Functional 
Affordance 

Geometric Mapping Examples 

Contain - ability High convexity Empty bowl, Cup 
Support - ability Flat - Convex Plate, Table 

Intrinsic contain -
ability 

Cylinder/Cube/Cuboid/Prism Canister, Box 

Incision - ability Sharp edge (flat linear 
surface) 

Knife, Screwdriver 

Engrave - ability Sharp Tip Cone, Pen 
2D Roll - ability Circular/ Cylindrical Tire, Paper Roll 
3D Roll - ability Spherical Ball 
Weed - abilitya Linear textural structures Comb, Brush 
Filter - abilitya Bi-linear textural structures Grid, Filters 

Wrap(p) -ability w.r.t. given shape Shoe, Glove 
Connect - abilitya Solid with support (m) Plug, USB Stick 

 

Table 2. Example Equivalence Class defintions 

Equivalence 
Class  

Definition 

Basket 1v2, b-a, handle (ga), opening (pa: containability) 
Plate h-b, (ga), (pa: supportability) 
Cup 1h2, f-h, handle (ga), opening (pa: containability) 

Chair 1os2, a-i, 2x(pa: supportability) 
Canister h-b, (pa: intrinsic containability) 

Box h-i, (pa: intrinsic containability) 
Plug 1v2n, f-h, support, contact (pa: connectability (m)) 
Knife 1h2, f-h, grip, blade (pa: incisionability) 
Bike b,a,a, 1v2(3hv4), seat (pa: supportability), 2xwheels (pa: 2drollability) 

Laptop b-a, (pa: supportability) 
Pen f-h, grip, tip (pa: engravability) 
Ball h-a, (pa: 3drollability) 

Spoon 1h2, f-h, grip, opening (pa: containability) 
Spatula 1h2, f-h, grip, opening (pa: supportability) 
Faucet 1h2, f-h, pipe, orifice (pa: filterability) 

Suitcase 1v2, b-a, handle, box (pa: intrinsic containability) 
Desk a-d (pa: supportability) 

Cabinet a-d (pa: intrinsic containability) 
Stair nx(pa: supportability) 
Shoe opening (pa: containability), (pa: wrappability/ ellipsoid) 
Key 1v2n, f-h, support, contact (pa: connectability (m)) 

Brush grip, bristles (pa: weedability) 
Shelf nx(pa: supportability) 

Scissors 2xblade (pa: incisionability) 
Cars 4xwheels (pa: 2drollability) (intrinsic containability)  



178 K.M. Varadarajan and M. Vincze 

3   Query Evaluation 

For any given query term, the system checks for availability of concept definition in 
the following list of attributes in a sequential order. The first database to be queried 
for is (a) the Part Affordance Schema. If unavailable, the system checks for the 
availability of a concept in the Part Affordance Schema that is matched using (b) the 
synsets of the queried term, followed by the ‘InstanceOf’ and ‘SymbolOf’ properties 
from ConceptNet, if necessary. If a match is not found, the system tries to use (c) the 
ConceptuallyRelatedTo property returned by ConceptNet (in response to the query 
term) to define possible alternatives for the object to be found. Alternatively, (d) the 
coordinate terms of queried object are searched for in order to obtain a conceptual 
replacement object. If a match is still not found, the system searches in (e) the 
holonym list and (f) the ‘PartOf’ list from ConceptNet. This is followed by matching 
for (g) ‘ReceivesAction’, ‘CapableOf’, ‘UsedFor’, which denote possible functional 
equivalency of the objects.  

The frequency scores on each of these properties are also returned as a measure of 
confidence in the object found. If no matches are found in the Part Affordance 
Schema for the queried object or any of the alternatives to be searched for, as 
suggested by the above list of related objects, the system parses the definitions of the 
queried object returned by both WordNet and ConceptNet to search for structural 
properties associated with the object. These include shape geometry information such 
as cylindrical, spherical or cuboidal or its alternate surface forms as well as abstract 
geometrical property terminologies such as flat, thick, thin, concave or convex.  

Material properties of the object from the parsed definitions such as wood, stone or 
metal, (as well as those returned by the ‘MadeOf’ property from ConceptNet) as well 
as functional affordances from WordNet are stored as properties of the concept being 
queried for. While it is possible that the given range scene can be searched for the 
required object entirely based on the geometry information or the defined geometries 
(from the Part Functional Affordance Schema) based on a matched affordance 
property returned from parsing the concept definitions, the confidence level (based on 
frequency scores and weighted by property confidence measures) returned by such an 
unit recognition scheme is very low. Furthermore, based on a learned appearance 
database of different material types (such as wood, stone or metal), the classification 
can be improved if monocular scene imagery is also available. Such a material 
classification approach can also be used to select salient regions in the scene in order 
to reduce computation requirements of the range image processing. 

3.1   Detection of Part Affordances 

As discussion earlier, the Part Functional Affordance Schema defines unique symbol 
binding from affordance concepts to observables in terms of functional geometry 
mapping. While certain affordances are defined based on geometrical shape structures 
such as cylinders, cubes, cuboids and spheres or continuous space parametric 
variations of these shapes (as defined by superquadrics), other affordances are defined 
in terms of abstract geometrical attributes such as flat, concave, convex, sharp tip, 
sharp edge, linear textural structures, bi-linear textural structures. Joint affordances are 
defined in terms of more than one part. While detection results of the first set 
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(geometrical shape structures) is directly available from the superquadrics, results for 
the second set (abstract geometries) can be inferred from the superquadrics. Since 
superquadrics model objects or parts as convex structures, presence of a concavity 
(such as the open cylindrical portion of a cup) can also be verified using visibility tests 
for cloud points and normals (for e.g. belonging to the inner surface of the cup, in 
comparison with a solid cylinder). Other attributes such as flatness and sharpness, 
linear and bi-linear textures can also be roughly estimated based on measures of size, 
shape and thickness of the quadric. 

3.2   Detection of Grasp Affordances 

Most of the grasp affordances based on the Otto Bock Grasping Database, can be 
uniquely represented in terms of geometrical shapes. For e.g., the small diameter 
affordance can be structurally defined as a superquadric with a high linear dimension 
value along one axis and small diameters along the others. This also holds true of 
prismatic affordance, though the diameter is much smaller. Power disk is suited for 
disk type structures of the size of the palm, parallel extension for cuboidal structures 
and distal for objects with disjoint ring shaped parts. 

3.3   Query Matching 

In the given scene of interest, the queried object for the given task is found using 
attributed graph matching of the concept node built for the query with all geometrical 
objects found in the scene. Among the several attributed graph matching approaches 
[10, 11] available, we use a low complexity approach based on Heterogeneous 
Euclidean Overlap Metric (HEOM) using the Hungarian Algorithm [11] for the 
matching process. Each object in the scene is represented as a graph with its parts 
defining nodes along with vector attributes that may be symbolic (such as 
affordances) or metric (scales). Given the limited number of objects in a given scene, 
the matching process is fast and accurate. In the case that more than one object is 
found in the scene, the nearest object is selected for manipulation. 

4   Results and Evaluation 

The performance of the concept evaluation algorithms for a given scene is 
demonstrated using a set of queries.  

For the first scene (Fig. 1), a search query for ‘jug’ is presented. It should be noted 
that the query ‘jug’ is not available in our equivalence class database, hence causing 
the search to be non-trivial. Using WordNet based parsing, renders the part affordance 
of ‘containability’ with a weight measure of 2 (out of 10), based on frequency scores 
for primary (from definition text) and secondary characteristics (from other 
attributes). ConceptNet also renders the ‘containability’ affordance along with a 
‘HasA’ attribute of ‘handle’ which provides the grasp affordance for the given case. 
The attributed graph for the given query is simple and is composed of nodes for 
‘containability’ part affordance and a ‘handle’ – small diameter grasp affordance with 
an overall weighted confidence score of 1.66/4 (using concept and textual unit 
definitions of 1 and 3 respectively). The range image processing algorithms yield both 
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the mugs in scene as results (prioritized by the closest object), since these objects 
contain concavities (affordance: containability) and handles (grasp affordance) that 
match the query graph attributes exactly (normalized HEOM score of 1). 

For the second scene (Fig. 2), a search query - ‘bag’ is presented. Again, since no 
equivalence class has been defined for the term ‘bag’, the computation of the search is 
non-trivial. For the given case, WordNet and ConceptNet render the ‘containability’ 
affordances along with the ‘handle’ grasp affordance. In addition, ConceptNet renders 
the scale parameter to be ‘large’ and equivalent to that of a ‘box’. The confidence 
score on the resulting affordance description is 3.64/4 (since WordNet returns a high 
frequency score of 8). Since the queried scene contains 2 true ‘bags’, the range 
processing algorithms return both the bags as query results. Again the normalized 
HEOM score is 1, indicating a perfect match for known attributes. It can also be seen 
that the confidence in the result is high for the second scene, as compared to the first, 
since the rate of occurrence of the object in typical scenes (reflected in the frequency 
score from WordNet) is higher.  

     

 

Fig. 1. Left to Right: (a) Input Scene, (b) Detected objects and their corresponding parts in the 
point cloud (c) Fitting of a cylinder corresponding to the ‘jug’ in the scene  

 

Fig. 2. Left to Right: (a) Input Scene, (b) Detected objects and their corresponding parts in the 
point cloud (c) Fitting of a cuboid corresponding to the ‘bag’ in the scene 

5   Conclusion and Future Work 

In this paper, we have presented a scalable knowledge assimilation and deployment 
framework for robotic grasping that is free of 3D model instance representations. We 
have used the paradigm of ‘Conceptual Equivalence Classes’ and uniquely defined 
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them in terms of the minimalistic features of Part Functional Affordances and Part 
Grasp Affordances, leading to implicit cognitive processing for successful goal 
attainment. We have also provided a practical pathway for symbol binding – from 
concepts to observables by defining functional geometry mappings. The system is 
also capable of knowledge of affordance and interaction modes for unknown/ un-
modeled objects based on partial information obtained from the constituent parts. 

Currently, the number of part functional affordances supported by the system is 
quite limited. We plan to extend the number and range of the supported functional 
affordances in the future. This would also necessitate more advanced algorithms for 
the attributed graph matching. Furthermore, the current system is geared towards 
robotic grasping and manipulation while being capable of functional class level object 
recognition. As such, it uses only range information for the processing, without the 
need for 2D/3D databases. Extension of the scheme to perform instance level object 
recognition will necessitate the use of these databases. Moreover, while current 
system has been evaluated on a stand-alone system, actual deployment of the system 
on a robot with an arm and gripper for grasping is ongoing research. Finally, while the 
current system is intended to serve as a core component for goal-directed object 
recognition and manipulation, it can be used in a more holistic system for semantic 
visual perception such as the K-COPMAN. 
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Abstract. Computer vision is a complex field which can be challenging
for those outside the research community to apply in the real world. To
address this we present a novel formulation for the abstraction of com-
puter vision problems above algorithms, as part of our OpenVL frame-
work. We have created a set of fundamental operations which form a
basis from which we can build up descriptions of computer vision meth-
ods. We use these operations to conceptually define the problem, which
we can then map into algorithm space to choose an appropriate method
to solve the problem. We provide details on three of our operations,
Match, Detect and Solve, and subsequently demonstrate the flexibility
of description these three offer us. We describe various vision problems
such as image registration and tracking through the sequencing of our op-
erations and discuss how these may be extended to cover a larger range
of tasks, which in turn may be used analogously to a graphics shader
language.

Keywords: OpenVL, Computer Vision, Abstraction, Language, Vision
Shader.

1 Introduction

One of the main problems preventing widespread adoption of computer vision
is the lack of a formulation that separates the need for knowledge of a concept
from knowledge of algorithms. In this paper we present a first step towards an
abstraction layer over computer vision problems. We introduce a new abstraction
which allows us to describe common vision sub-tasks which we build upon to
represent more sophisticated problems.

We work on the basis that algorithms and their parameters are low-level
details with which a general user should not be concerned. The development of
our abstraction layers is motivated by four reasons: 1) access is subsequently
possible by those who are not experts in the field; 2) advances in the state-of-
the-art can be incorporated into existing systems without re-implementation;
3) multiple back-end implementations become possible, allowing development of
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hardware acceleration or distributed computing; and finally, 4) the abstractions
provide a mechanism for general comparison of algorithms, thereby contributing
to researchers in the field as well as general users.

This idea has been applied successfully in many other fields, notably the OSI
reference model in networking [7] and OpenGL in graphics [20]. We have previ-
ously developed abstractions within sub-categories of computer vision, including
access to and organisation of cameras [16], transport and distribution of vision
tasks [2], and investigating the benefits of separating management and analysis
of image data [1]. We also developed a conceptual framework for the effective
development of computer vision analysis interfaces [17] and began the develop-
ment of a vision shader language [18]; this paper presents advances on both of
these contributions. Our main contribution is a novel abstraction layer for sim-
pler access to sophisticated computer vision methods, presented in a general and
extensible framework developed specifically for computer vision.

OpenCV [3], Matlab and similar frameworks are extremely useful but do not
provide a user experience at the level we are proposing. These are libraries con-
sisting of algorithms with complicated parameters. For example, the excellent
OpenCV face detector [27] requires a large XML file (the result of extensive
training on images of faces) as well as other image-based parameters, and im-
plements a particular solution for a given set of training data (frontal faces only,
etc.). Our abstraction is not intended as a replacement for existing libraries, but
to complement them by providing a larger audience with access to the sophisti-
cated methods.

Our abstraction is formulated through recognition of the common tasks within
computer vision, abstracting these individually as operations (Section 3) and
then providing a mechanism to define sequences which represent a more sophis-
ticated task (Section 4). We provide detail on three of our operations (Detect,
Match, Solve) and demonstrate the flexibility that can be achieved using such
a small set.

2 Previous Work

Many attempts have been made to develop computer vision or image processing
frameworks that support rapid development of vision applications. Image Under-
standing systems attempted to make use of developments in artificial intelligence
to automate much of the vision pipeline [15,13,6]. The Image Understanding En-
vironment project (IUE) [19] in particular attempted to provide high-level access
to image understanding algorithms through a standard object-oriented interface
in order to make them accessible and easier to reuse. More recently the OpenTL
framework [22] has been developed to unify efforts on tracking in real-world
scenarios. All of these approaches essentially categorise algorithms and provide
access to them directly, which is at a lower-level than we are proposing in this
paper.

Visual programming languages that allow the creation of vision applications
by connecting components in a data flow structure were another important at-
tempt to simplify vision development [14,25]. These contained components such
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as colour conversion, feature extraction, spatial filtering, statistics and signal
generation, among others. Declarative programming languages have also been
used to provide vision functionality in small, usable units [26,23], although they
are limited in scope due to the difficulty of combining logic systems with com-
puter vision. While these methods provide a simpler method to access and ap-
ply methods, there is no abstraction above the algorithmic level, and so users
of these frameworks must have a sophisticated knowledge of computer vision to
apply them effectively.

There are many openly available computer vision libraries that provide com-
mon vision functionality [3,5,10,24,28]. These have been helpful in providing
a base of knowledge from which many vision applications have been developed.
These libraries often provide utilities such as camera capture or image conversion
as well as suites of algorithms. All of these methods provide vision components
and algorithms without a context of how and when they should be applied, and
so often require expert vision knowledge.

One previous attempt at overcoming the usability problems associated with
image understanding is discussed in the RADIUS project [8], which employed
user-manipulated geometric models of the scene to help guide the choice of image
processing algorithms. This operates at a higher-level than our proposed method,
however it trades off power, breadth and flexibility to provide its abstraction.
The abstraction we present in this paper is aimed to be extensible enough to
provide accessible vision methods across the entire field.

3 Conceptual Operations

Many computer vision problems can be divided into smaller sub-problems and
solved by providing solutions to each sub-problem. This applies conceptually as
well as algorithmically and so we base our idea of operations on this principle.
We allow the user to conceptually describe vision tasks by dividing the problem
into conceptual sub-tasks, then the description is analysed and a suitable method
selected. For example, image registration is typically solved by matching identical
regions across images, and globally optimising for the alignment. There are many
different methods for each stage of this problem, and some which combine them
into a single step [21]. Under our approach, a user would describe the problem
as a correspondence search, followed by a global optimisation. Our abstraction
framework would then interpret this sequence and select the most appropriate
method. This is the main contribution of our work, since the abstraction may
select individual algorithms for match and solve, or one which does both, and
hides the details from the user. Not only does this lead to simpler access to
vision, but also opens the possibility of multiple implementations, by different
universities and companies, in both software and hardware.

Our operations use various inputs and outputs, task parameters and con-
straints, all of which contribute to the problem description. For example, in a
correspondence search (abstracted by our Match operation) we use constraints to
define the search space, problem parameters to indicate the number of matches
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Table 1. Example variable values and the problem conditions described using Match. N
can easily be substituted for |I| to apply to all images rather than a subset. However,
this will not enable search within the source image: this is only accessible via the
explicitly defined cases in (a) and (i).

Example Search Space ND NI Problem Description

(a) Image 1 0 Single match in source image
(b) Image 1 1 Single match in single other image
(c) Image 1 N Single match in each of N images (excluding source)
(d) Image K 1 K matches in single other image
(e) Image K N K matches in each of N images
(f) Set 1 |I| Single match from the set of images
(g) Set K |I| K matches from the set of images
(h) Set K N K matches from subset of N images
(i) Set K 0 K matches in source image

(in a given number of images) and variances to indicate the differences across
images. The operations are explained in the following section.

3.1 Operations

We have a small suite of operations we currently use to provide solutions for
detection, tracking, correspondence, image registration, optical flow, matting and
background subtraction. We do not attempt in this paper to provide a complete
and finished formulation - this is a piece of on-going work, and our current set is
intended to be a proof-of-concept which we will continue to expand upon. There
is also a substantial quantity of subtle tweaks and defaults which could be made
within an implementation; for this paper we are focussing on the abstraction,
and will extend the work in future to define details of a framework implementing
the abstraction.

Match: Our Match operator is used to extract a set of features F from a set
of images I (containing |I| images) and find correspondences among F . For a
given feature f ∈ F multiple correspondences may be found within I, or even
within a single image I ∈ I. The current problem defines which matches are
important so we have developed a set of constraints and parameters to describe
which features should be selected.

Problems which include correspondence can be described using three param-
eters: the number NM of matches required; the number NI of images to match
across (where NI ≤ |I|); and whether to return NM matches per image (in
which case NMNI matches are returned) or for F (where NM matches are re-
turned). NM can be specified as an exact, minimum or maximum requirement.
The distinction between per-image and entire-set correspondence allows us to
define problems which treat a set of images as a single input (such as image
registration), require matches from some but not all images, and require unique
matches across the set or the images. We also include an option to allow search
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Table 2. Example variable values and the problem conditions described using Detect.
N can easily be substituted for |I| to apply to all images rather than a subset.

Example Search Space ND NI Problem Description

(a) Image 1 1 Single detection in single image
(b) Image 1 N Single detection in each of N images
(c) Image K 1 K detections in single image
(d) Image K N K detections in each of N images
(e) Set 1 |I| Single detection from the set of images
(f) Set K |I| K detections from the set of images
(g) Set K N K detections from subset of N images

within the feature’s source image (by default this is not the case) and an option
for the trade-off between feature strength against density of search.

An important aspect of the correspondence problem is applying the correct
method to account for variances across images. We can allow for spatial variance
and constrain the search for a match in other images using some distribution
over the surrounding area centred at the current feature. Other appearance-
based properties can be defined, such as variance in blur, intensity, scale, colour,
etc. which will aid in the selection of an appropriate method to determine cor-
respondence.

Match provides an abstraction over correspondence, which can be used as
an input to another operation to define a different task: typically it is used in
conjunction with Solve. In Section 4 we explore this relationship, examining the
problems which can be expressed using the two operations together with each
set of conditions.

We use the following notation for Match:

Match (Image|Set, Exact|Min|Max) [NM , NI ] variances, images (1)

The user can choose between Image and Set for correspondence search, and then
Exact, Min or Max for the interpretation of NM . The variances are specified
as a distribution over a range (e.g. uniform, Gaussian) and the input is the set
of images. If NI is zero, the operation will only return matches in the image
from which the feature was generated (regardless of search space used). If NI

is one, the operation will return matches from one other image from the image
where the feature was generated. Table 1 outlines some possible descriptions and
corresponding results for our Match variables.

Detect: This operation is similar to Match except instead of conceptually
matching all features to all others, it finds image regions in the set of images
which match a user-supplied template. The template may be an example image
or a high-level description of a detection problem. It has similar constraints to
Match and provides a set of detected image regions which match the provided
template. As with matching, a distinction must be made whether the number of
detections is in the context of every image or across the set of images.
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We use the following notation for Detect:

Detect (Image|Set, Exact|Min|Max) [ND, NI ] template, images (2)

Table 2 specifies a few of the different forms of detection which may be expressed
using this abstraction. In (b), we specify a per-image search and ask for a single
result from a single image: this describes a search for a particular region through-
out a set of images, and returning the most likely detection. Example (c) goes
one step further and requests a single detection in each image. If this were to
be qualified with Min then the result would be at least one detection, however
likely or unlikely, from each image. (d) presents an interesting case, where mul-
tiple detections are requested in a single image. The user does not choose which
image this is: rather the framework decides which image had the best detections
and chooses these. From the table it can also be seen that the descriptions in
(b) and (f) are equivalent, since we are asking for a single detection from any
image (but only one) from the set in (b), and we are asking for a single detection
across the set of images in (f).

Solve: The Solve operation covers a wide range of functionality representative
of optimisation algorithms. Within the context of the computer vision problems
which we have so far explored the two solutions which may be solved for are
spatial transforms and correspondences. The role of this operation will continue
to expand as we abstract more problems and methods (e.g. we are working on the
problem of matting, where Solve is used to optimise the boundary between two
image regions). In both cases the input is a set of correspondences from Match

or a set of detections from Detect. The operation’s conceptual task description
is slightly different from those previous, because the type of output requested
is used as part of the description: currently we use the types of transforms
and matches. We also provide a variable NS to define how many solutions are
requested (although sometimes this is not required).

There are two distinct models for solutions returned by Solve: Local and
Global, and the meaning is dependent on the current context. If solving for a
transform with correspondences, local will return a transform per match (e.g. op-
tical flow) and global will return a transform per image (e.g. image registration).
If more than one match per feature is available, NS is used to determine how
many solutions should be returned. This allows the solution operation to take
existing matches into account and optimise over these as additional information
and provide the best solution. There is no problem type defined for finding a
solution using detections as input.

Solve may also be used to optimise the number of correspondences by con-
straining them to produce a subset of correspondences which are more accurate
with respect to the task, or to provide the most likely path through a set of
images for a given match/detection (which is a form of tracking for a constraint
down to a unique match per image, although this is not very sophisticated).

We use the following notation for Solve:

Solve (Local|Global) [NS ] (matches|detections) (transforms|matches) (3)
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Table 3. Problem types when sequencing a Solve with a Match operation. Registration
and optical flow become the most apparent choices for these scenarios, however with
additional abstractions this may lead to structure-from-motion, self-calibration and 3D
fusion.

Sequence Table 1 Output Type Constraint Problem

(i) (c) Transform Global Registration [4]
(ii) (e) Transform Global Stochastic Registration [9]
(iii) (b) Transform Local Image differencing
(iv) (c) Transform Local Optical Flow [12]
(v) (e) Transform Local Stochastic Optical Flow [11]
(vi) (e) Matches Local Feature Tracking (local matches as prior)
(vii) (e) Matches Global Feature Tracking (all matches as prior)

The solve operation is used in conjunction with other operators. In Section
4 we explore the relationship of the solve operator in conjunction with other
operations.

4 Sequencing Operations

Interpreting the sequence of our operations (and their associated inputs, outputs
and parameters) to infer the problem and select an appropriate method to solve
that problem is one of our contributions. Combining the operators Match and
Solve allows for the description of an even greater range of vision problems.
As with our investigation of detection, we have explored the intricacies of each
set of options on the vision problem. The flexible nature of our operations also
leads to combinations of options which are not associated with specific or well
known vision problems. We hope this will lead us to novel solutions to problems
which may be solvable with combinations of existing methods, or to provide
descriptions of problems which have yet to be investigated.

Table 3 demonstrates the different problem types when sequencing Match then
Solve operations for various parameters, based on the Match examples defined
in Table 1. The example in Table 3(i) states that given a set of images, find a
single correspondence in each of N images for each f ∈ I0, then globally solve
for a single transform per-image: this is a basic image registration. The same
formulation with a local solve would produce a set of transforms which provide
a measure of optical flow, defined in Table 3(iv). Variations of the parameters
allow us to describe image differencing, shown in Table 3(iii); we can also ask
for more than one match so that we can optimise for the best match later when
more data is available (Table 3(ii) and 3(v) ).

When solving for a set of correspondences the constraints placed on the opti-
misation guide the reduction of or path through correspondences. We may use
the set of matches found for a given set of images as the prior for optimising the
path over the matches, for tracking, or for pruning the number of matches using
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the appearance models of the matches as a prior to solve for the best match. For
example a set of detected objects with multiple detections per image may be con-
strained by the last known position and motion model of a previous detection in
order to improve detection or to track an object. Similarly a set of features may
be constrained to reduce the set of features while maintaining features across the
image as we see in adaptive non-maximal suppression for image registration [4].
The examples in Table 3(vi) and 3(vii) are for the case where Solve is asked to
produce matches, in the case where Match returns multiple matches per feature.
The result is an optimisation of the path through the images for each feature; for
local, each path is evaluated individually, and for global each path is evaluated
with knowledge of the others.

5 Conclusion

We have presented our novel abstraction for various computer vision tasks through
our small and flexible set of operations which may be sequenced to infer a larger
problem. Our research is in the preliminary stages, investigating the effective-
ness of our abstraction for describing various low-level tasks within vision with
a view to expanding in the future to encompass successively more sophisticated
problems. With the detailed representations of Match, Detect and Solve we
have been able to describe correspondence, image registration, optical flow, de-
tection and primitive tracking. After the descriptions have been analysed and
the problem inferred, the abstraction may select an appropriate method to solve
the user’s problem.

This is a small part of a very large problem within computer vision, and
we are working to expand the language model, notation and the abstraction
to cover more issues, and expand the utility of our OpenVL framework. We
are simultaneously creating an implementation of the OpenVL framework which
provides the language model coupled with implementations of the vision tasks it
abstracts. With this framework we hope to provide computer vision to a much
larger audience in an intuitive and accessible manner.

References

1. Afrah, A., Miller, G., Fels, S.: Vision system development through separation of
management and processing. In: Workshop on Multimedia Information Processing
and Retrieval. IEEE, Los Alamitos (2009)

2. Afrah, A., Miller, G., Parks, D., Finke, M., Fels, S.: Hive a distributed system
for vision processing. In: Proc. 2nd International Conference on Distributed Smart
Cameras (September 2008)

3. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV
Library, 1st edn. O’Reilly Media, Inc., Sebastopol (2008)

4. Brown, M., Lowe, D.G.: Recognising panoramas. In: Proceedings of the Ninth IEEE
International Conference on Computer Vision, October 16, vol. 2, pp. 1218–1225
(2003)



Towards a General Abstraction through Sequences of Conceptual Operations 191

5. Camellia, http://camellia.sourceforge.net/
6. Clouard, R., Elmoataz, A., Porquet, C., Revenu, M.: Borg: A knowledge-based sys-

tem for automatic generation of image processing programs. IEEE Trans. Pattern
Anal. Mach. Intell. 21, 128–144 (1999)

7. Day, J.D., Zimmermann, H.: The OSI reference model. Proceedings of the IEEE 71,
1334–1340 (1983)

8. Firschein, O., Strat, T.M.: Radius: Image Understanding For Imagery Intelligence.
Morgan Kaufmann, San Francisco (1997)

9. Fitzgibbon, A.W.: Stochastic rigidity: Image registration for nowhere-static scenes.
In: IEEE International Conference on Computer Vision, vol. 1, p. 662 (2001)

10. Gandalf, http://gandalf-library.sourceforge.net/
11. Gupta, S., Gupta, E.N., Prince, J.L.: Stochastic formulations of optical flow algo-

rithms under variable brightness conditions. In: Proceedings of IEEE International
Conference on Image Processing, vol. III, pp. 484–487 (1995)

12. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3),
185–203 (1981)

13. Kohl, C., Mundy, J.: The development of the image understanding environment. In:
in Proceedings 1994 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 443–447. IEEE Computer Society Press, Los Alamitos
(1994)

14. Konstantinides, K., Rasure, J.R.: The khoros software development environment
for image and signal processing. IEEE Transactions on Image Processing 3, 243–252
(1994)

15. Matsuyama, T., Hwang, V.: Sigma: a framework for image understanding integra-
tion of bottom-up and top-down analyses. In: Proceedings of the 9th International
Joint Conference on Artificial Intelligence, vol. 2, pp. 908–915. Morgan Kaufmann,
San Francisco (1985)

16. Miller, G., Fels, S.: Uniform access to the cameraverse. In: International Conference
on Distributed Smart Cameras. IEEE, Los Alamitos (2010)

17. Miller, G., Fels, S., Oldridge, S.: A conceptual structure for computer vision. In:
Conference on Computer and Robot Vision (May 2011)

18. Miller, G., Oldridge, S., Fels, S.: Towards a computer vision shader language. In:
Proceedings of International Conference on Computer Graphics and Interactive
Techniques, Poster Session, SIGGRAPH 2011. ACM, New York (2011)

19. Mundy, J.: The image understanding environment program. IEEE Expert: Intelli-
gent Systems and Their Applications 10(6), 64–73 (1995)

20. Neider, J., Davis, T.: OpenGL Programming Guide: The Official Guide to Learn-
ing OpenGL, Release 1, 1st edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1993)

21. Oldridge, S., Miller, G., Fels, S.: Mapping the problem space of image registration.
In: Conference on Computer and Robot Vision (May 2011)

22. Panin, G.: Model-based Visual Tracking: the OpenTL Framework, 1st edn. John
Wiley and Sons, Chichester (2011)

23. Peterson, J., Hudak, P., Reid, A., Hager, G.: Fvision: A declarative language for
visual tracking (2001)

24. Pope, A.R., Lowe, D.G.: Vista: A software environment for computer vision re-
search (1994)

http://camellia.sourceforge.net/
http://gandalf-library.sourceforge.net/


192 G. Miller, S. Oldridge, and S. Fels

25. Quartz Composer by Apple, http://developer.apple.com/graphicsimaging/

quartz/quartzcomposer.html

26. ShapeLogic, http://www.shapelogic.org
27. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple

features. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, p. 511 (2001)

28. VXL, http://vxl.sourceforge.net/

http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://www.shapelogic.org
http://vxl.sourceforge.net/


Girgit: A Dynamically Adaptive Vision System for Scene
Understanding

Leonardo M. Rocha, Sagar Sen, Sabine Moisan, and Jean-Paul Rigault

INRIA, Sophia-Antipolis, 2004 Route des Lucioles, BP-93 Sophia-Antipolis, France
Firstname.Lastname@inria.fr

Abstract. Modern vision systems must run in continually changing contexts. For
example, a system to detect vandalism in train stations must function during the
day and at night. The vision components for acquisition and detection used dur-
ing daytime may not be the same as those used at night. The system must adapt
to a context by replacing running components such as image acquisition from
color to infra-red. This adaptation must be dynamic with detection of context,
decision on change in system configuration, followed by the seamless execution
of the new configuration. All this must occur while minimizing the impact of dy-
namic change on validity of detection and loss in performance. We present Girgit,
a context-aware vision system for scene understanding, that dynamically orches-
trates a set of components. A component encapsulates a vision-related algorithm
such as from the OpenCV library. Girgit inherently provides loading/caching of
multiple component instances, system reconfiguration, management of incoming
events to suggest actions such as component re-configuration and replacement of
components in pipelines. Given the surplus architectural layer for dynamic adap-
tation one may ask, does Girgit degrade scene understanding performance? We
perform several empirical evaluations on Girgit using metrics such as frame-rate
and adaptation time to answer this question. For instance, the average adaptation
time between change in configurations is less than 2 µs with caching, while 8 ms
without caching. This in-turn has negligible effect on scene understanding perfor-
mance with respect to static C++ implementations for most practical purposes.

1 Introduction

Every picture tells a story. One of the primary goals in computer vision is to understand
the story in a sequence of pictures. Computer vision practitioners develop algorithms
that analyze an individual pictures or video sequences over time to classify patterns and
objects into well-known concepts such as cars, people, buildings, and trees. This whole
process of analyzing a sequence of images can be subsumed under the topic of scene
understanding.

A general approach to address the problem of scene understanding for any give im-
age or video is an utopian dream for computer vision scientists. In reality, they develop
a multitude of domain-specific algorithms suited to understand specific scenes. These
algorithms can be encapsulated into different software components. One possible classi-
fication of these components in an image processing pipeline is (a) image acquisition (b)
image segmentation (c) blob construction (d) physical object detection (e) tracking and
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(f) action recognition. The configuration of each of these components can vary possibly
infinitely in dimensions such as algorithm type, its hardware/software implementation,
its parameters and their values and quality of service. The task of scene understanding
for a specific context involves placing components (encapsulating algorithm implemen-
tations) with appropriate parameters in an image-processing pipeline giving rise to a
vision system. However, in most situations environmental contexts change. The most
common example being the change from day to night and vice versa. This contextual
change requires change in configuration of the vision system. The new configuration
will possibly use a different set of components and/or parameters to better understand
scenes in the new context. However, the very act of dynamic change in configuration of
a vision system may result in loss of information or image frames during the adaptation
process and raise a question about the continuity and performance of scene understand-
ing. Therefore, we ask: can we dynamically adapt configurations of a vision system at
runtime with minimal impact on continuity and performance of scene understanding?
This is the primary question that intrigues us. In this paper we present a dynamically
adaptive vision system Girgit (signifies Chameleon in Hindi) to address this question.

Girgit is a dynamically adaptive software framework that leverages the dynamic lan-
guage abilities of the Python programming language. In this paper, tailor Girgit to per-
form dynamic scene understanding in a video using behavioral components for vision
algorithms. Girgit dynamically reconfigures its components, their parameters, or an en-
tire processing chain of components. This dynamic architecture of Girgit appears to be
a significant overhead when compared direct static implementations in C++ that lever-
age performance. Or, is it? This is the question we address through empirical studies on
Girgit.

We perform empirical studies to validate Girgit for performance in terms of adapta-
tion time and frame rate. We observe that mean adaptation time between configurations
is 6 ms without component caching and less than 2 µs with caching. This negligible
adaptation time has very little effect on frame rate. However, memory usage increases
in the case of caching. The extra use of memory to cache components is a trade-off for
higher performance.

We may summarize the contributions in the paper as follows:

Contribution 1: Using Girgit we demonstrate that it is possible to build dynamically
adaptive vision systems that change with context
Contribution 2: We also demonstrate through experimental validation that dynamic
adaptation has negligible effect on QoS parameters such as frame rate, and adaptation
time.

The paper is organized as follows. Related work in presented in Section 2. In Section
3, we present some foundational material to understand vision systems and dynamic
adaptation. In Section 4, we present Girgit’s architecture. In Section 5 we present the
empirical evaluation of Girgit. We conclude in Section 6.

2 Related Work

The Girgit framework solicits ideas from three areas: vision systems, dynamically
adaptive systems, and empirical studies to validate it.
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There are a number of vision systems developed in academia and available in the
market. An entire magazine entitled Vision Systems Design [6] deals with state of
the art in vision systems around the world for applications such as surveillance, res-
cue/recovery, 3D imaging, and robotics. A complete review of each of these systems
is out of the scope of this paper. It is however, important to note that most vision sys-
tems developed cater to a specific application domain. The Cell Tracker from Carnegie
Mellon University [1], for instance tracks stem cells in assays to detect events such
as mitosis. The cell tracker uses a fixed set of vision algorithms to achieve this. Dy-
namic adaptation in Vision Systems is usually oriented to adaptation of the algorithms
to variations in context, like in [7]. Our goal, in this paper is go a step further and
develop dynamically adaptive vision systems that are generic and can adapt to differ-
ent contexts and domains by means of changing or adding during runtime components
encapsulating algorithms.

Building dynamically adaptive software is a hot area of work in software engineer-
ing. This interest in dynamic adaptation comes with maturity in component-based/
service-oriented software, dynamic and introspective languages such as Python, and
distributed publish-subscribe systems [4]. Dynamic adaptation between a number of
components with different parameters presents a large space of variability that is best
managed using a high-level model such as in [2] (project DIVA), [11]. Models@runtime
[9] is the current trend to manage/reason about dynamically adaptive software. Exam-
ples of dynamically adaptive software frameworks include MOCAS [3], a UML based
framework for autonomic systems, and RAINBOW [5], that uses graphs to describe the
system and the transitions between configurations. Girgit is a similar framework built
on Python. We maintain a specification of the adaptive system configuration which is
a Model@runtime. Girgit introspectively adapts to the changes made to the model. We
apply Girgit’s framework to the case study of a vision system.

We evaluate Girgit for QoS using empirical studies. Empirical studies in dynamically
adaptive systems validate its functional and non-functional behaviour by exploring the
domain of its variability [8] [10]. For the frame rate can be a critical issue in some
vision systems, in this paper we focus on studying the impact of dynamic adaptation in
continuity quantified as frame rate. In our experiments, we cover all possible component
configurations of the vision system built within Girgit to asses the impact of dynamic
adaptation.

3 Foundations

The foundations to understand and evaluate Girgit has three dimensions (a) architecture
of vision systems in Section 3.1 (b) dynamically adaptive systems in Section 3.2 (c)
QoS metrics to evaluate Girgit in Section 3.3.

3.1 Computer Vision Systems

A computer vision system extracts information from a video sequence and recognizes
pre-defined patterns. It then generates events that notify of an activity, or position of
one or more entities in the video.
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A simple vision system is shown in Figure 1 (a). Vision system often starts by acquir-
ing one image at a time via the component image acquisition. The image segementation
component operates the incoming image to divide the image into multiple related seg-
ments. The blob construction component identifies groups of pixels belonging to the
same category to create blobs. The component for object detection analyzes a blob to
discover semantic objects such as cars, faces, and people. Feature patterns are used
to detect objects. The tracking component maintains a history of a detected object’s
position. Finally, the event generation component uses information from either one or
more of the earlier components to generate events such as intrusion detection, or face
detection.

Fig. 1. (a) Vision System (b)
MAPE-K View of a Dynamically
Adaptive System

There are several vision systems in operation
around the world. Examples of vision systems include
the Scene Understanding Platform (SUP) developed
by our team PULSAR at INRIA Sophia-Antipolis. A
commercial predecessor of SUP called Genius is being
developed by Keeneo primarily for video surveillance
in places such as the Nice Aeroport. Another, vision
system for a totally different application of tracking
stem cells is the Cell Tracker developed by Carneige
Mellon University.

3.2 Dynamically Adaptive Software Systems

Dynamically adaptive software systems are built on
the monitor-analyze-plan-execute over a knowledge
base (MAPE-K) model shown in Figure 1 (b). The MAPE-K loop is a refinement of
the Artificial Intelligence community’s sense-plan-act approach of the early 1980s to
control autonomous mobile robots. The feedback loop is a control management process
description for software management and evolution. The MAPE-K loop presented in
Figure 1 (b) monitors and collects events, analyzes them, plans and decides the actions
needed to achieve the adaptation or new configuration and finally executes reconfigures
the software system.

3.3 QoS Metrics

In this paper, we evaluate Girgit based on non-functional Quality of service metrics. We
define the metrics as follows:

1. Frame Rate - It is the number of frames per second (fps) processed by a chain of
vision components at the output.

2. Adaptation Time - The time it takes to the system to change from the current running
configuration to the following taking in account the loading time of the dynamic
libraries and components needed to be able to run.
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4 The Girgit Dynamic Adaptation Framework

Girgit is a lightweight1 framework that allows dynamic reconfiguration of components
in a processing chain. Girgit consists of three types of components (a) Core components
(b) Behavioral components and (c) Event components. The way in which the compo-
nents are wired together is described by a model specification.

Globally, the core components manage the interaction between the behavioral and
event components in a dynamically adaptive fashion. The overall architecture for Girgit
is presented in Figure 2.

Fig. 2. Girgit’s Architecture

4.1 Architecture

Girgit contains core components as shown in Figure 2 and described below:
Model Specification: The model specification specifies the different behavioral, event
components, a set of configurations and event/action pairs to change a configuration.
A configuration may be defined as a set of behavioral and event components, their pa-
rameters, and the interconnection between these components. A model specification is
provided using a service interface.
Service Interfaces: Provides the interfaces to interact with Girgit.
Dynamic Processor: Executes the current configuration as described by a model spec-
ification and reconfigures either the processing chain or the components.
Execution Manager: Manages the execution. Orchestrates the calls to the Event Man-
ager and the dynamic Processing Chain.
Event Manager: Manages incoming events from event components and suggests ac-
tions such as changing of components or complete processing chains. The rules to map
events to actions are specified in the model.
Module Manager: Loads and caches instances of components.

1 At the submission date 929 lines of Python code according to the sloccount
(http://www.dwheeler.com/sloccount/) tool

http://www.dwheeler.com/sloccount/
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It also contains behavioral components. In this paper, we have behavioral compo-
nents encoding vision algorithms such as acquisition, segmentation, and blob construc-
tion. The event components use information from vision components to return a boolean
value for a given event. For instance, if an intrusion detection is an event as shown in
Figure 2. A complex event may be encoded in an event component that defines function
over boolean values returned by other event components.

4.2 Girgit’s Implementation

(a) Intrusion Detection

(b) Face Detection

Fig. 3. Dynamic Reconfiguration from
Intrusion to Face Detection. Figure 3a
is before and Figure 3b is after

Girgit is implemented in Python due to its
ability to introspect and load modules at run-
time/dynamically. There are the following main
aspects: (a) The Event Manager checks the events
once every loop, if an event matches a rule, then
an action must be taken and is informed to the
Execution Manager. The actions imply a dynamic
reconfiguration act. (b)The dynamic reconfigura-
tion can be applied either to only one component;
In this case only one pre-existing component is af-
fected; In the case of a reconfiguration of the chain
the graph describing the system is changed and
all the components that are needed and do not ex-
ist in the system are dynamically loaded (includ-
ing the needed dynamic libraries). (c) Dynamic
resolution of components, all calls to method are
resolved in runtime, the Dynamic Processor dy-
namically finds out the parameters and method to
call for every component and manages the data
history.

4.3 Example Execution in Girgit

We demonstrate dynamic adaptation in Girgit us-
ing Figure 3. Girgit starts in intrusion detection
mode which is the initial and current configura-
tion. When an intrusion is detected as shown in
Figure 3a, an event is generated by an event component as shown in Figure 2. The event
manager then decides the new component for face detection. The execution manager
instructs the module manager to load the face detection component from harddisk or
from memory cache. Finally, the execution manager requests the dynamic processor to
connect the face detection component to blob construction and image window. The face
detection process ensues as shown in Figure 3b.

5 Empirical Evaluation

We empirically evaluate Girgit to answer the following questions:
Q1. How long does Girgit take to reconfigure or adapt?
Q2. How does adaptation in Girgit affect continuity of operation?
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5.1 Experimental Setup

We evaluate Girgit using a total of six different configurations. Each configuration con-
tains a different set of components and/or their parameter settings. Most components
encapsulate libraries in OpenCV such as Pyramid segmentation and HAAR object de-
tection. The primary goal was to build an intrusion detection system that switches to
face detection in order identify humans in a scene at runtime. We present the number
and name of the different configurations on the left side in Figure 4. The components
used in the configurations are shown on the right of Figure 4. We also provide the or-
der in the processing chain for these components in the configuration. For instance,
OpenCV AVI reader is first in the order in all configurations. The symbol × indicates
absence of the component in the configuration.

Configurations
Number Name
C1 SMOOTH SEGMENTATION
C2 FGD SEGMENTATION
C3 PYRAMID SEGMENTATION
C4 INTRUSION DETECTION
C5 FACE DETECTION
C6 FACE DETECTION FGD

Configurations Details
Component C1 C2 C3 C4 C5 C6
OpenCV AVI Reader 1 1 1 1 1 1
Image Smoothing 2 × × 2 × ×
FGD Background Subtraction × 2 × × × 2
Pyramid Segmentation × × 3 × 2 ×
HAAR Detection × × × 3 3 3
Image Window 3 3 4 4 4 4

Fig. 4. Experimental Configurations

Using the six configurations we perform the following experiments to answer ques-
tions Q1 and Q2.
Experiment E1: For a single configuration which is SMOOTH SEGMENTATION we
execute 15 reconfigurations of the same configuration (a) With caching and (b) Without
caching. The constant factor here is the configuration that remains fixed. The goal of
this experiment is to study stability in adaptation times and frame rate due to dynamic
reconfiguration. How close is dynamic reconfiguration to static implementation?
Experiment E2: In this experiment, we execute all pairs of configuration transitions
possible using the six available configurations (a) With caching and (b) Without caching.
The goal of this experiment, was to introduce variation in configurations and check if
this affected adaptation times and frame rate. How stable is the adaptation time when
configurations change? The configurations were changed every 5 seconds.

For both experiments we measure the frame rate and adaptation times. We execute
the same experiment 100 times to validate the stability of our results. The input video
was a long sequence from an office space where there are multiple people entering
and leaving the scene. The experiments were executed in the following platform: Linux
Fedora 14 x86 64, Intel(R) Core(TM) i7 CPU Q720 @ 1.60GHz, Memory: 8GB.

5.2 Results

The results of experiments E1 and E2 are summarized in this section. In Figure 5,
we present the adaptation time plots for experiment E1. We observe that there is a
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(a) Caching ON (b) Caching OFF

Fig. 5. Boxplot of adaptation time for the SMOOTH SEGMENTATION configuration
with/without caching. X-axis is transition number. Y-axis represent adaptation time in seconds.

(a) Caching ON (b) Caching OFF

Fig. 6. Boxplot of frame rate for the SMOOTH SEGMENTATION configuration with/without
caching. X-axis is the configuration. Y-axis represent frames per second.

considerable difference between the adaptation times with (Figure 5a) and without
(Figure 5b) caching system activated. The caching of components in memory drasti-
cally reduces the adaptation time. The mean adaptation time with caching is about 2µs
and without is 8 ms. This result addresses question Q1 and demonstrate that Girgit
indeed has a low adaptation time.

As a consequence of the low adaptation and reloading time due to caching we ob-
serve no loss in frame rate as shown in Figure 6a. While without caching there is a
small loss (no more than 4%) in frame rate as seen in Figure 6b). These results address
question Q2. The continuity in frame rate is largely preserved in Girgit.

In experiment E2, we vary the configurations to see its affect on adaptation time and
frame rate. As seen in Figure 7a, the caching has high adaptation times for the first few
configurations as components are loaded and cached. However, after the components
are cached the adaptation time drops drastically (0.15 ms at most and less than 2 µs
mean). However, when the caching system is not used (Figure 7b), the adaptation times
are higher peaking at 16 ms and with a mean of 8 ms. This results sheds light on ques-
tion Q1. It demonstrates that when configurations change caching allows reduction in
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(a) Caching ON (b) Caching OFF

Fig. 7. Adaptation times for the 30 possible configuration transitions (transition every 5 seconds)
all pairs of the 6 configurations with/without caching. X-axis represent the transitions, Y-axis
represent adaptation time in seconds

adaptation times later in the runtime life of Girgit. With respect to Q2 there is also more
stability in the adaptation times. The frame rate with caching is also stable (not shown
in the paper) when multiple configurations change.

5.3 Discussion and Threats to Validity

The experiments performed on Girgit is within certain bounds. We execute experiments
for six vision components. Are our results regarding stability and continuity valid for a
large number of different components? This question about scalability can be answered
only by creating and running several hundred components or variations of the same
component. The logic in the components are libraries in OpenCV. Girgit has limited
control over the internals of these libraries. Are these third party components managing
memory correctly? We have verified this for the six components in the experiments.
However, using components with badly managed memory can result in errors in ex-
perimental observations such as memory usage. We demonstrate continuity of Girgit in
terms of frame rate for a given configuration. However, continuity can have different
semantics. For instance, continuity of tracking an object when context changes. There
is yet to analyse the impact of such an adaptive system when a reconfiguration occurs
in terms of reliability in cases where history is used in the algorithms for tasks such as
tracking and online learning. For stateless algorithms there is no impact of a dynamic
reconfiguration event.

The caveats of implementing this kind of systems heavily depend on the algorithms
used and the dependences and incompatibilities that might arise between them. Model
Driven approaches such as [2], [3], [11] and [5] deal with this issues, but none of them
actually study the performance impact as the current work.

Finally, we perform experiments using a long video sequence from a large office
with several people coming in and out of a scene. We need to validate Girgit for various
scenarios and video sequences.
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6 Conclusion

We build a dynamic adaptive vision system using Girgit that clearly separates the dy-
namic adaptation details from the actual vision components. With an empirical study we
demonstrate that there is negligible effect on performance due to dynamic adaptation.
This is especially true with caching is used. The system can adapt during runtime and
add new components that where not previously loaded. A Model Driven approach is
popular for creating configurations where components are compatible. There are open
issues that should be studied. This issues are with runtime errors in components and
studies on how to deal with continuity in the case where algoritms need a certain data
history.

References

1. Cell Tracking, http://www.ri.cmu.edu/research_project_detail.html?project_
id=579\&menu%_id=261

2. Diva project, http://www.ict-diva.eu/diva/
3. Hameurlain, C.B.N., Barbier, F.: Mocas: a model-based approach for building self-adaptive

software components. In: ECMDA (2009)
4. Eugster, P., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-

lish/subscribe. ACM Computing Surveys 35, 114–131 (2003)
5. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-

based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)
6. http://www.vision-systems.com/index.html
7. KaewTrakulPong, P., Bowden, R.: A real time adaptive visual surveillance system for track-

ing low-resolution colour targets in dynamically changing scenes. Image and Vision Comput-
ing 21(10), 913–929 (2003), http://www.sciencedirect.com/science/article/pii/
S0262885603000763

8. Kattepur, A., Sen, S., Baudry, B., Benveniste, A., Jard, C.: Variability modeling and qos
analysis of web services orchestrations. In: Proceedings of the 2010 IEEE International Con-
ference on Web Services, ICWS 2010, pp. 99–106. IEEE Computer Society, Washington,
DC, USA (2010), http://dx.doi.org/10.1109/ICWS.2010.40

9. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@ run.time to support
dynamic adaptation. Computer 42(10), 44–51 (2009)

10. Perrouin, G., Sen, S., Klein, J., Baudry, B., Le Traon, Y.: Automatic and scalable t-wise
test case generation strategies for software product lines. In: International Conference on
Software Testing (ICST). IEEE, Paris (2010), http://www.irisa.fr/triskell/publis/
2010/Perrouin010a.pdf

11. Zhang, C.: Model-based development of dynamically adaptive software. In: ICSE 2006 Pro-
ceedings of the 28th International Conference on Software Engineering. ACM, New York
(2006)

http://www.ri.cmu.edu/research_project_detail.html?project_id=579&menu%_id=261
http://www.ri.cmu.edu/research_project_detail.html?project_id=579&menu%_id=261
http://www.ict-diva.eu/diva/
http://www.vision-systems.com/index.html
http://www.sciencedirect.com/science/article/pii/S0262885603000763
http://www.sciencedirect.com/science/article/pii/S0262885603000763
http://dx.doi.org/10.1109/ICWS.2010.40
http://www.irisa.fr/triskell/publis/2010/Perrouin010a.pdf
http://www.irisa.fr/triskell/publis/2010/Perrouin010a.pdf


Run Time Adaptation of Video-Surveillance Systems:
A Software Modeling Approach

Sabine Moisan2, Jean-Paul Rigault1,2, Mathieu Acher1, Philippe Collet1,
and Philippe Lahire1

1 I3S, CNRS and University of Nice, France,
first.last@i3s.unice.fr

2 INRIA Sophia Antipolis Méditerranée, France,
first.last@inria.fr

Abstract. Video-surveillance processing chains are complex software systems,
exhibiting high degrees of variability along several dimensions. At the specifi-
cation level, the number of possible applications and type of scenarios is large.
On the software architecture side, the number of components, their variations
due to possible choices among different algorithms, the number of tunable pa-
rameters... make the processing chain configuration rather challenging. In this
paper we describe a framework for design, deployment, and run-time adaptation
of video-surveillance systems—with a focus on the run time aspect. Starting from
a high level specification of the application type, execution context, quality of ser-
vice requirements... the framework derives valid possible system configurations
through (semi) automatic model transformations. At run-time, the framework is
also responsible for adapting the running configuration to context changes. The
proposed framework relies on Model-Driven Engineering (MDE) methods, a re-
cent line of research in Software Engineering that promotes the use of software
models and model transformations to establish a seamless path from software
specifications to system implementations. It uses Feature Diagrams which offer
a convenient way of representing the variability of a software system. The paper
illustrates the approach on a simple but realistic use case scenario of run time
adaptation.

1 Introduction

Video-surveillance processing chains are complex software systems, exhibiting high
degrees of variability along several dimensions. On the software architecture side, the
number of components, their variations due to choices among possible algorithms, the
different ways to assemble them, the number of tunable parameters... make the process-
ing chain configuration rather challenging. Moreover, the number of different applica-
tions that video-surveillance covers, the environments and contexts where they run, the
quality of service that they require increase the difficulty. Finally the context of an ap-
plication may (and does) change in real time, requiring dynamic reconfiguration of the
chain. To make things even more complex, these variability factors are not independent:
they are related by a tangled set of strong constraints or weaker preferences.

This huge variability raises problems at design time (finding the configurations
needed by the chain, foreseeing the different possible contexts), at deployment time
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(selecting the initial configuration), and at run time (switching configurations to react
to context changes). Many efforts have been made to build libraries or platforms of
reusable components for video analysis algorithms. However, assembling a chain for a
given application and controlling its configuration at run time remains a tricky issue. Be-
yond reusing components, one needs to also reuse such concerns as design plans, appli-
cation templates, typical configurations, etc. This requires to raise the abstraction level.
Our approach is to formalize in an unified way the previously mentioned concerns, their
relations, as well as the software components implementing video algorithms.

In this paper we describe a framework for design, deployment, and run-time adapta-
tion of video-surveillance systems—with a focus on the run time aspect. Starting from a
high level specification of the application type, execution context, quality of service re-
quirements, the framework derives valid possible system configurations through (semi-
)automatic model transformations. At run-time, the framework is also responsible for
adapting the running configuration to context changes. The proposed framework relies
on Model-Driven Engineering (MDE) methods, a recent line of research in Software
Engineering[10]. This approach promotes the use of software models and model trans-
formations to establish a seamless path from high level software specifications to system
implementation. Moreover the models can be formally analyzed, thus ensuring consis-
tency and validity of the target system.

The paper is organized as follows. In the next section we describe the type of soft-
ware models that we propose to use. Section 3 focuses on the run time adaptation mech-
anisms; it gives some insights on the methodologies, methods, and tools that we use and
sketches an example of a run time adaptation. Section 4 compares our approach with
other works.

2 Software Models for Video-Surveillance Systems

Among all models proposed by MDE, we have chosen the so-called Feature Diagrams
(FDs) for their ability to represent systems with many possible variation points [18].
Here the “features” correspond to selectable concepts of the systems; they can be at any
abstraction level (a feature may correspond to an specification entity such as “Intrusion
detection” or to a more concrete element such as “High frame rate”). The features are
organized along a tree, with logical selection relations (optional, mandatory features,
exclusive choices...) and some constraints that restrict the valid combinations of features
(i.e., configurations).

Figure 1 gives an example of two feature diagrams, demonstrating their syntax. In
the topmost one (Figure 1(a)) all second level features (Application, Object of Interest,
Context) are mandatory; People and Any cannot be selected at the same time (alternative
group). With the two internal constraints given, the total number of valid configurations
of this VS specification feature diagram is 5. The bottom feature diagram (Figure 1(b))
give other examples of the syntax: feature Shadow Removal is optional (whereas its
siblings are mandatory); the OR-group of Frame to Frame indicate that any subset of the
three features 3D, Texture, and Color is a valid selection.

The tree-like feature diagram is the core of the selection process since it is liable to
formal analysis (using propositional logic and satisfiability techniques, see Section 3)
and thus leads to valid configurations, by construction.
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(a) Excerpt of specification feature diagram
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Scenario Recognition.People-based implies Classification.People
Tracking.*.Texture implies Acquisition.Resolution.High
Tracking.*.Color implies Acquisition.Color.Full

Internal Constraints

(b) Excerpt of component feature diagram

Fig. 1. Excerpts of feature diagrams for the specification and component models

In the case of video-surveillance, we chose to elaborate two different feature dia-
grams (see Figure 1): one, the specification model (FDspec) is depicted in Figure 1(a)
and represents “What To Do”, that is the application specification and its context (obser-
vation conditions, hardware configuration, objects of interest...); the second, the
component model (FDcomp), is depicted in Figure 1(b) and represents the software
components and their assembly, that is “How To Do It”. The first model has been ob-
tained after a thorough Domain Analysis relying on our experience in building real video
systems. This general model corresponds to the abstract description of the wide range
of applications that we wish to address. It is not meant to be modified although we pro-
vide a dedicated editor to adapt it if necessary. The second model results from reverse
engineering of existing libraries and platforms. It is modified only when the target plat-
form evolves. Each model has its own internal constraints. Moreover, the two models
are not independent: they are connected by cross model constraints that formalize the
bridge between application requirements and component assemblies that realize them.

The two models are used as follows. First, end users use a simple graphic interface to
click-select the features in the specification model that correspond to their application
as well as to the possible contexts of evolution. Clearly, this step cannot be automatic,
since it corresponds to the specific requirements of a particular real life situation. The
outcome is a sub-model (a specialization) of the specification model. Based on the cross
model constraints, our framework automatically transforms this sub-model into a sub-
model of the component model. The latter represents all possible component config-
urations of the target video-surveillance system for the given application and contexts
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Fig. 2. Run Time Adaptation Architecture

that satisfy the specification and component models and their constraints. Both sub-
models will be kept throughout the system life: while the system is running, the two
sub-models are used to determine and to apply configuration adjustments in response
to context changes.

To deploy and start the system, an initial configuration has to be extracted from
the component sub-model, either manually or using some heuristics. This step is not
covered in this paper which concentrates on dynamic adaptation.

3 Using Software Models for Run Time Adaptation

3.1 Software Architecture for Run Time Adaptation

To achieve dynamic adaptation, our framework sets up three collaborating modules as
shown in Figure 2:

– the Run Time Component Manager (RTCM) captures low level events manifest-
ing context changes (e.g., lighting changes); it forwards them to the Configuration
Adapter which returns a new component configuration; the RTCM is then respon-
sible for applying this configuration, that is to tune, add, remove, or replace com-
ponents, and possibly to change the workflow itself.

– the Configuration Adapter (CA) receives change events from the RTCM, trans-
lates them into feature formalism, and forwards the result to the Model Manager;
in return, it obtains a sub-model of component configurations compatible with the
change; this sub-FD is a compact representation of a set of valid configurations and
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the CA is responsible to select one and to instruct the RTCM to apply it; this selec-
tion uses some heuristics, possibly based on a cost function such as minimizing the
number of component changes in the processing chain or maximizing the quality
of service (e.g., accuracy, responsiveness).

– the Model Manager (MM) manages the representation of the two specialized FDs
corresponding to the specification and possible component assemblies of the cur-
rent application together with their constraints; its role is to enforce configuration
validity. It is also responsible of the Event Model which is a set of rules relating run
time events and selection or deselection of features. These rules were elaborated
together with the specification and component models. From the CA, the Model
Manager receives information about an incoming event; it uses the Event Model
rules to select or deselect the corresponding features; it then applies constraints,
rules, and model transformations to infer a component sub-model that represents a
subset of valid component configurations and that it returns to the CA.

Role of Models at Design and Deployment Time. Before the execution of a system,
models are used to verify important properties. Among others, we want to guarantee
the reachability property, i.e., that for all valid specifications, there exists at least one
valid software configuration. A brute force strategy which consists in enumerating all
possible specifications and then checking the existence of a software configuration is
clearly inappropriate, especially in our case where we have more than 108 valid spec-
ifications and more than 106 software configurations. A more scalable technique is to
symbolically translate the set of valid configurations of a feature diagram (FD) into a
propositional formula φ (where each Boolean variable corresponds to a feature) and
then to perform reasoning operations on φ. In terms of FDs, the reachability property
can be formally expressed as follows:

∀c ∈ �FDspec�, c ∈ �ΠFFDspec
(FDfull)� (1)

where �.� denotes the set of valid configurations of a FD, FDfull is the aggregation of
FDspec, FDcomp together with cross model constraints, while FFDspec denotes the set
of features of FDspec. Π is the projection operator for a FD. Formally, the projection is
a unary operation on FD written as Πft1,ft2,...,ftn (FMi) where ft1, f t2, ..., f tn is a
set of features. The result of a projection applied to an FD, FDi, is a new FD, FDproj ,
such that: �FDproj� = { x ∈ �FDi� | x∩{ft1, f t2, ..., f tn} }. The mapping of FDs to
propositional formulas [18] and the use of satisfiability techniques allow us to compute
the projection of an FD and to check that property (1) holds.

Role of Models at Run Time. During execution, the behavior of the system should
be adapted according to contextual changes. A crucial issue is to dynamically select
an appropriate software configuration (in terms of features). Again we rely on satisfi-
ability techniques to infer some variability choices by translating FDfull (see above)
into propositional logic. Features of FDfull that are related to events are activated or
deactivated and the possible values (i.e., true/false) of other features are automatically
deduced (by computation of valid domains). In the general case, not all possible val-
ues can be inferred and we obtain a sub-FD which compactly represents a subset of
the original software configurations. It is then the role of the CA to select a unique
configuration from this sub-FD.
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Tools for Model Management. The MM relies on FAMILIAR (FeAture Model scrIpt
Language for manIpulation and Automatic Reasoning) [3], a language dedicated to the
management of FDs. In particular, FAMILIAR is used (1) to model the variability of the
software system and the possible contextual changes ; (2) to analyze, at design time,
the relationship between FDs and thus ensure some properties of the system in terms
of variability ; (3) to infer, at run time, a set of valid configurations. Off-the-shelf SAT
solvers (i.e., SAT4J) or Binary Decision Diagrams (BDD) library (i.e., JavaBDD) can
be internally used to perform FAMILIAR operations. We chose to precompile the set of
configurations using BDDs1 which enables a guaranteed response time and for which
polynomial algorithms are available for many operations, for example, the computation
of valid domains. As a result, the performance overhead introduced by FDs is negligible.
A more costly operation might be the selection of an optimal configuration, depending
on the heuristics used.

Tools for Component Management. To perform the physical replacement, removal,
or tuning of components, the RTCM relies on a state of the art component management
framework, namely OSGi under Eclipse [12]. We are also exploring other “lighter”
solutions such as a Python implementation or an INRIA “corporate” framework, DTk.

3.2 Example of a Run Time Adaptation Scenario

To illustrate the approach we now present a simple but realistic use case scenario of run
time adaptation. The goal is to detect intrusion in a room (or warehouse) under various
illumination conditions. The ideal system thus mainly consists in object detection, with
people recognition (to eliminate artifacts) and tracking. However, illumination changes
imply dynamic adaptations in the system that may lead to a degraded form of the sys-
tem. We now detail such an adaptation scenario.

Following the procedure described in section 2, a designer selects from the specifica-
tion complete model (too big to be displayed in this article) the features corresponding
to the application goals and to its possible contexts (in particular the ligthing condi-
tions). The designer also gets rid of the features that do not correspond to any context
that can be encountered in the application. The corresponding specification sub-model
is (partially) shown on Figure 1(a). The MM automatically verifies its validity. Note
that variants remain in this sub-model (in the form of OR nodes) to cope with all pos-
sible contexts. Then the transformations (cross model) rules are applied to obtain the
component sub-model. For instance, following rule C4 (see table 1(c)), the selection of
feature Object of Interest.People in the specification model implies the selection of Sce-
nario recognition.People-based in the component sub-model. The resulting sub-model
(displayed in Figure 1(b)) is valid by construction and still contains some variability.

Now we need to choose the initial configuration. Let us suppose that, at the be-
ginning, the scene is under full (artificial) light. The designer then selects the features
shown in blue (filled) on figure 1(a) since they correspond to this initial situation. The
transformation rules are applied to this configuration. The result is generally a reduced
sub-model onto which heuristics or even manual operations (to fine tune parameters,

1 BDDs are a compact representation of the assignments satisfying a propositional formula and
can be used to represent a set of valid configurations of an FD.
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Table 1. Examples of specification model rules

(a) Examples of specification model internal rules

1 Object of Interest defaults Any
2 Application.Intrusion.With Recognition excludes Any

3 Context.Lighting.Low implies Application.Intrusion.Without Recognition

(b) Examples of component model internal rules

4 Scenario Recognition.People-based implies Classification.People

5 Classification.People implies Object of Interest.People
6 Tracking.*.Texture implies Acquisition.Resolution.High
7 Tracking.*.Color implies Acquisition.Color.Full

(c) Examples of cross model rules

C1 Context.Lighting.Low implies Acquisition.Color.Near IR
C2 Context.Lighting.Low implies Acquisition.Resolution.Low

C3 Shadow Removal implies Context.Lighting.High
C4 Scenario Recognition.People-based equiv Object of Interest.People
C5 Scenario Recognition.People-based equiv Application.Intrusion.With Recognition

for instance) have to be applied to obtain the initial configuration of the component
model. This configuration is also valid, by construction. The initially selected features
are shown in green (filled) on figure 1(a).

This configuration is then translated by the RTCM into concrete software compo-
nents, leading to the following processing chain: acquisition with color cameras and
high resolution, motion-based segmentation using multi-Gaussian, shadow removal,
object and people detection based on size, appearance..., frame to frame and long-term
tracking based on 3D information, texture and color, and people intrusion scenario
recognition.

Then suppose that at some time the light switches to “emergency mode”. The system
has to adapt to this lighting reduction. The corresponding “light dimming” event can be
detected by various means: external sensor, internal analysis of the image quality (e.g.,
during segmentation) or user action. This event is propagated from the RTCM to the
MM (through the CA). The MM searches the Event Model and finds a rule triggered
by this event : when Light dimming select Context.Lighting.Low. It consequently modifies
the Lighting sub-feature in the specification sub-model, changing it from High to Low.
Then, internal and cross model rules are applied, causing changes in the component
sub-model (tables 1(a), 1(b), 1(c) display a few internal and cross model rules, focusing
only on the ones used in this example of runtime adaptation):

– rule C1 selects Acquisition.Color.Near IR (only near infra-red acquisition is possible
when light is low)
• then the contrapositive of rule 7 in turn unselects Tracking.*.Color (frame to

frame and long-term tracking can no longer rely on color information)
– rule C2 selects Acquisition.Resolution.Low (reduce resolution to increase pixel size

and have more robust local descriptors)
• then the contrapositive of rule 6 in turn unselects Tracking.*.Texture (frame to

frame and long-term tracking can no longer rely on texture either)
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– the contrapositive of rule C3 unselects Shadow Removal (of no use when light is
low)

– rule 3 selects Application.Intrusion.Without Reco (degraded mode, the system will
only detect objects but has not enough light to perform people recognition), which
leads to an other series of modifications:
• unselect Scenario Recognition.People-based (rule C5)

∗ unselect Object of Interest.People (rule C4) and
∗ select Object of Interest.Any (rule 1)

• unselect Scenario Recognition.People-based (contrapositive of rule 5)

Finally, the new component configuration is sent to the RTCM, which deactivates the no
longer used components (shadow removal and people intrusion scenario recognition)
and changes the parameters of the cameras (color and resolution) and of the remaining
components (3D box only for tracking algorithms). We obtain a new processing chain,
still able to detect object intrusions, but no longer able to precisely recognize people,
hence probably leading to more false positive detections; however this is the best that
can be done with poor lighting conditions. In addition, the Event Model contains a
heuristic rule that will warn the system to update the reference image (for motion-
based segmentation) and to skip a few frames just after these changes, because both the
cameras and the algorithms need some time to adjust to these new conditions.

4 Comparison with Other Works

The existing image and vision libraries propose collections of efficient algorithms
[5,1,2]. However, selecting the proper components requires a good knowledge of the
intrinsic characteristics of the algorithms, far from the concerns of the target applica-
tion. Of course, ad hoc decision code can solve this problem efficiently for a particular
case. Moreover, at the end of the 90’s several attempts were made to propose general
techniques and tools to bridge the gap between the application requirements and the
software implementation [9,6,11]. Some others even address the problem of run time
reconfiguration [17,4,13,7,16]. Unfortunately this line of research appears to somewhat
slow down. The MDE approach might well favor the revival of this research. This is all
the more important since the number of video surveillance installations is exploding:
the time between design and deployment must be as short as possible and the run time
control should be as automatic as possible. Some surveillance systems (not video) have
started to take advantage of the MDE approach [15].

The approach defended in the paper combines and extends techniques developed
for models at runtime and software product lines (SPLs). The use of models at run-
time for specifying and executing dynamically adaptive software systems has proved
to help engineers to tame the complexity of such systems while offering a high degree
of automation and validation (e.g., see [14]). This approach is generic and application
independent. It may also be used to generate adaption code. Last but not least, it can
be combined with other complementary paradigms such as learning, inference engines,
automata...

Dynamically adaptive systems, such as video surveillance systems, exhibit degrees
of variability that depend on user needs and runtime fluctuations in their contexts. The



Run Time Adaptation of Video-Surveillance Systems: A Software Modeling Approach 211

goal of dynamic SPLs is to bind variation points at runtime, initially when software is
launched to adapt to the current environment, as well as during operation to adapt to
changes in the environment (e.g., see [8]).

5 Conclusion

The primary contribution of the paper is the integration of model-based variability rea-
soning techniques both for specifying the configurations and controlling the execution
of video surveillance systems.

We have tested our approach on simple applications using well-known libraries
(OpenCV) on different scenarios. At the moment, 77 features and 108 configurations are
present in the specification model while 51 features and 106 configurations are present
in the component model. Once the the video surveillance designer has selected the fea-
tures required by an application, before deployment, the average number of features to
consider at runtime in the component model is less than 104. Our experiments show the
feasibility of such an approach with a limited performance overhead (if any) compared
to traditional run time control where ad hoc adaptation code is hardwired and does not
rely on the run time availability of an abstract representation of the application and its
context evolution.

Yet, many improvements remain to be done. On the component side, we intend to
switch from libraries (such as OpenCV) to more component-oriented architectures such
as our homemade video-surveillance platform. On the model side, the two feature di-
agrams and their attached rules and constraints have to be extended and completed to
cover more scenarios. On the heuristic side, we intend to develop a panel of intelligent
configuration selection heuristics from which a designer could select the most appropri-
ate ones for a given application. These heuristics could be applied both at deployment
and at runtime, thus decreasing the need of manual intervention. However, manual op-
erations are likely to be necessary for initial configuration and deployment of a system:
many parameters have to be fine tuned and some choices are out of the scope of such a
general framework (i.e., stakeholder demands). At run time, if heuristics are not suffi-
cient, manual guidance may be required to select adapted configurations.

Nevertheless, we can already draw the following major advantages of our model-
based approach: first, designers can concentrate on their application needs without
diving into the technical details of the implementation; second, the same models are
seamlessly used from specification to design and to run time adaptation, ensuring sys-
tem consistency; finally, feature diagrams are a nice and compact way of capturing
and reasoning about all the aspects of variability. Indeed, due to its complexity and
its huge variability, video-surveillance appears as an ideal candidate for Model-Driven
Engineering approaches.
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Abstract. Modern vision systems are often a heterogeneous collection
of image processing, machine learning, and pattern recognition tech-
niques. One problem with these systems is finding their optimal parame-
ter settings, since these systems often have many interacting parameters.
This paper proposes the use of a Genetic Algorithm (GA) to automati-
cally search parameter space. The technique is tested on a publicly avail-
able face recognition algorithm and dataset. In the work presented, the
GA takes the role of a person configuring the algorithm by repeatedly ob-
serving performance on a tuning-subset of the final evaluation test data.
In this context, the GA is shown to do a better job of configuring the
algorithm than was achieved by the authors who originally constructed
and released the LRPCA baseline. In addition, the data generated during
the search is used to construct statistical models of the fitness landscape
which provides insight into the significance from, and relations among,
algorithm parameters.

1 Introduction

Recent years have seen significant improvements in computer vision, as demon-
strated by measurable progress of standard data sets in areas such as face
recognition, object recognition, and action recognition. Much of this improve-
ment comes from combining algorithms within single systems. Therefore, many
modern vision systems contain image processing, machine learning, and pattern
recognition techniques that work together to solve a specific problem. Unfortu-
nately, tuning these multi-part algorithms is difficult, particularly when changing
a parameter in one part of a system may have unforeseen effects on another.

Common practice is to use expert judgment and trial-and-error to search for
optimal tunings of parameters. All too often, researchers choose a set of pa-
rameters, train the system, and evaluate it on the test data. They then alter a
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parameter and repeat the process until they “crack” the data set. This process
has several problems. Most significantly, the test data becomes an implicit part
of the training data. In addition, optimal parameters may still be missed be-
cause tests were run on individual components instead of the whole system, or
because interactions among parameters were misunderstood. Intuition can also
be misleading, with the result being that some good parameters are never tested.

This paper presents a technique that replaces parameter tuning by a human
experimenter with a Genetic Algorithm (GA). This has many advantages. The
GA can tirelessly evaluate thousands of algorithm configurations, improving the
likelihood that the best configurations in the search space will be explored. All
parameters are optimized simultaneously, allowing the GA to seek out superior
configurations in the presence of complex parameter interactions. The config-
uration is based on a “fitness function” that evaluates the system as a whole,
rather than the performance of subcomponents. The GA is not subject to errors
of human judgement that may exclude lucrative regions of the search space.

This research uses a GA to find an optimal configuration for the Local Region
Principal Components Analysis (LRPCA) face recognition baseline algorithm, as
applied to the the Good, Bad, and Ugly (GBU) challenge problem [11]. This base-
line improves on Principal Components Analysis (PCA) by adding pre-processing
and post-processing steps as well as multiple subspaces for 14 regions of the face.
The results show that the GA configuration outperforms the best known manual
configuration and highlights the importance of parameter configurations where
performance on the tuning subset varies from 5% to 35%, a factor of 7 change
in accuracy simply by tuning parameters1.

The performance results with the GA parameters must be taken with a grain
of salt. These results represent the GA’s ability to “crack” the data set, since
the test data was evaluated as part of the fitness function. Nonetheless, this is
similar to the process followed by many human researchers. Moreover, it enables
the second contribution of this paper: the use of a Generalized Linear Model
(GLM) to analyze system parameters, revealing which parameters are critical
and which sets of parameters are most strongly inter-related. The GA evaluates
a system’s performance over thousands of parameter value combinations. This
creates a treasure trove of test data, which can be mined to determine how system
performance is affected by each parameter. In this paper we fit a GLM to the
performance data to model how the parameters impact LRPCA performance on
the GBU data sets. For the LRPCA algorithm, the results indirectly indicate
which regions of the face are most important for the algorithm and have the
potential to produce improvements in future versions of the system.

2 Related Work

Parameter tuning for a complex algorithm is a well known problem. Support
vector machines (SVMs) are one example of a complex technique with a large
1 Performance numbers are for the Correct Verification Rate at a 0.001 False Accept

Rate.
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number of domain-specific parameters, and as a result there are several papers
that search for optimal parameters, e.g. [2,10]. Of particular interest is a re-
port by Hsu and Lin [7] in which experts were asked to hand-tune parameters
of an SVM, and the results were compared to parameters learned by an auto-
matic grid search of parameter space. In all three cases, the learned parameters
outperformed those sets turned by the human experts.

In computer vision where algorithms are built that embody models, parameter
estimation is often approached as statistical model fitting. For example, Felzen-
szwalb’s object detector models objects as mixtures of multi-scale deformable
parts [4], and much of the technique involves fitting parameters to data. These
are “strong” techniques that exploit top-down constraints to guide parameter
selection and have proven to be effective when they can be applied.

Unfortunately, the best face recognition algorithms are multi-step systems
with interacting components, and the implications of their parameters are of-
ten poorly understood. A recent paper by Cox and Pinto [3] uniformly samples
parameter space (using many processors) for a face recognition algorithm and
shows that the resulting parameters improve performance over hand-tuned con-
figurations. It should be noted that finding optimal parameters differs from the
methods of Karurgaru [8] who used a GA to find optimal positions and scales
for templates within the face matching process.

Earlier, Givens et al [5] used a generalized linear mixed-effects model (GLMM)
to analyze the effects of parameters on an LDA+PCA algorithm [17] but not to
search for optimal parameter values. In our approach a GLM is used to model
parameter space in a manor similar to Givens et al [5], thereby extracting con-
figuration information about the underlying algorithm. Harzallah et al [6] used
a rank-based Friedman Test for a similar purpose, however the GLM’s model
can be better related to the fitness landscape.

3 Searching for Optimal Configurations

3.1 Training, Tuning, and Test Datasets

The Face Recognition Vendor Test 2006 showed that face recognition technology
could verify a person’s identity with 99% accuracy in high quality images taken
under controlled conditions [13]. However, face recognition in uncontrolled con-
ditions is much more difficult. The GBU challenge problem [11] contains three
partitions of face images of varying difficulty from uncontrolled environments.
The Good partition contains images that are easy to match, while the Ugly
partition is extremely difficult, and the Bad partition is somewhere in between.
The purpose of GBU is to improve performance on the Bad and Ugly partitions
without sacrificing performance on the Good.

The GBU Challenge Problem has a clearly stated protocol for presenting
performance results. It requires training be done on an independent set of images
that contain no images of the people present in the GBU test data. For this
purpose, a set of 673 images from the MBGC Still Image problem [12] that are
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disjoint from the people included in GBU is used as a training set. These images
are used to train the algorithms basis vectors.

A distinction is drawn between training and tuning. Tuning is the process
typically carried out by an algorithm developer where parameters are repeatedly
modified and then performance is tested on the challenge imagery. Here, when
the GA evaluates the fitness of a particular tuning, it considers the verification
rate on a tuning-subset of the actual GBU test data.

If one views the entire GA as a machine learning tool for constructing a
better algorithm, the use of the tuning-subset of the test data is a violation of
the GBU protocol which requires a separate dataset for training. However, this
paper views the role of the GA as a surrogate for what researchers do when
tuning algorithms. A goal of this paper is to better understand how tuning-
parameters effects performance on a benchmark problem, which requires that
the tuning-subset drawn from the test data itself. The tuning-subset used here
is composed of approximately 1/6 of the GBU testing images. In future work,
the GA will be tested as a method to improve generalized performance, where
the GA only has access to training data.

3.2 The LRPCA Baseline Algorithm

The experiments presented use an open source face recognition baseline al-
gorithm called Local Region Principal Components Analysis (LRPCA) [11]2.
LRPCA is based on the well known eigenfaces algorithm [9,14] but includes
improvements to the way faces are preprocessed, analyzed, and compared to
produce higher accuracy than a simple PCA based approach.

The input to the algorithm is an image containing a face and the coordinates of
both eyes. The eye coordinates are used to geometrically normalize the face and
the image is then split into 14 smaller images that represent local regions of the
face focused on the eyebrows, eyes, nose, mouth, etc. Each region is preprocessed
using the Self Quotient Image (SQI) [15] which reduces the effect of lighting,
and the pixel values are then normalized to have a mean of 0.0 and a standard
deviation of 1.0.

PCA is run on each region to produce a set of basis vectors. A configurable
number of eigenvectors can be dropped corresponding to both the largest (PCA
Min) and smallest (PCA Max) eigenvalues to further reduce the effect of illu-
mination and noise. This dimension reduction allows the algorithm to better
generalize. LRPCA optionally whitens the basis vectors such that, when pro-
jected, the training data has a variance of 1.0 in all dimensions.

A weight is also computed for each basis vector which is the between-class
variance divided by the within-class variance (σ2

b /σ2
w). Vectors with the largest

weight are kept where the total number of vectors is a configurable parameter
(Total Dimensions). This weight is also used to emphasize vectors that better
discriminate among people.

During testing, new faces are normalized and projected onto the basis and the
similarity between the faces is measured using correlation. LRPCA was extended
2 http://www.cs.colostate.edu/facerec/algorithms/lrpca2010.php

http://www.cs.colostate.edu/facerec/algorithms/lrpca2010.php
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Fig. 1. The left plot shows the convergence of the GA where each blue dot is one fitness
function evaluation. The right plot compares the GA tuned algorithm to the manual
tuned equivalent (LRPCA+Cohort) and the standard configuration (LRPCA 2010).

with cohort normalization [1] which offers a slight improvement to the verifica-
tion rates shown in Figure 1. This is done by computing the similarity between
each testing image and faces in the training set. The non-match distribution can
then be normalized using the following equation:

s′(i, j) =
s(i, j) − 1

2 (μi + μj)
1
2 (σi + σj)

(1)

where s(i, j) is correlation, and μi and σi are the mean and standard deviation
of non-match scores for test images i and j estimated from the cohort set.

3.3 Genetic Algorithm and Configuration Space

The parameter space was optimized by a rank-based genetic algorithm similar
to GENATOR [16] available as part of the PyVision library3. Genetic algo-
rithms are stochastic optimization techniques inspired by evolution and natural
selection. Algorithm configurations are represented as individuals in a simulated
population, where more fit individuals are selected for survival and breeding.
In this experiment, the population contains 100 randomly generated individuals
and each iteration follows these steps:

1. Two individuals of the population are selected randomly.
2. Those individuals are combined to produce a new individual where configu-

ration parameters are selected randomly from the parents.
3 http://pyvision.sourceforge.net

http://pyvision.sourceforge.net
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Table 1. This table shows the parameters tuned by the GA along with their optimal
values

Parameter Type Range Manual Value GA Value

Region 0: Full Face Float 0.50 - 1.00 1.00 0.927
Region 1: Left Eye Float 0.10 - 0.50 0.33 0.433
Region 2: Right Eye Float 0.10 - 0.50 0.33 0.342
Region 3: Far Left Brow Float 0.10 - 0.36 0.33 0.360
Region 4: Center Left Brow Float 0.10 - 0.36 0.33 0.285
Region 5: Center Right Brow Float 0.10 - 0.36 0.33 0.286
Region 6: Far Right Brow Float 0.10 - 0.36 0.33 0.360
Region 7: Nose Bridge Float 0.10 - 0.66 0.33 0.395
Region 8: Nose Tip Float 0.10 - 0.66 0.33 0.100
Region 9: Left Nose Float 0.10 - 0.70 0.33 0.211
Region 10: Right Nose Float 0.10 - 0.70 0.33 0.259
Region 11: Left Mouth Float 0.10 - 0.20 0.20 0.167
Region 12: Center Mouth Float 0.10 - 0.20 0.20 0.200
Region 13: Right Mouth Float 0.10 - 0.20 0.20 0.154

SQI Blurring Radius Float 0.5 - 20.0 3.0 19.43
PCA Min Dimension Int 0 - 20 2 19
PCA Max Dimension Int 100 - 400 250 169
PCA Whitening Enabled Bool True/False True True
Final Basis Dimensions Int 100 - 4000 3500 880

3. Small perturbations are made to the new individual to simulate mutation.
4. The new individual is evaluated using the fitness function.
5. If the new individual scores higher than the previously lowest rank individual

in the population, that lowest ranked individual is replaced.

The fitness function evaluates each individual by completing the full training
and testing process. The algorithm was trained using the configuration in the
genetic code and then was evaluated on the tuning-subset at a false accept rate
of 0.001. The GA was run on a quad-core Intel i7 with 8 worker processes which
completed forty evaluations per hour resulting in 5004 total evaluations. Table 1
summarizes the 19 parameters that were tuned by the GA and also gives the
manually selected default parameters as well as the best configuration produced
by the GA.

3.4 The Optimal Configuration

Figure 1 shows the GA convergence. Each iteration corresponds to one fitness
function evaluation where the fitness scores are shown as blue dots. The green
line represents the best known configuration at each iteration and the red line
represents the worst configuration in the population. Figure 2 shows how each
of the parameters converge throughout the GA run. There are a few parameters
where there is no clear preference for any particular value. This suggests those
parameters have little effect on performance. Regions 3, 6, and 8 show interesting
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Fig. 2. This figure shows that the configuration parameters converge as optimization
progresses. The top shows local region sizes where plots are arranged relative to their
locations on the face. The bottom shows the convergence of the radius of the Gausian
filter used for the SQI normalization, the minimum and maximum PCA cutoffs, and the
total number of basis vectors included in the final configuration. Only configurations
added to the population are shown and the best configuration is circled in red (Iteration
4209).

behavior where the best values are at the boundary of the configuration space
which suggest the range for those parameters could be expanded.

The best configuration was evaluated on the full GBU challenge problem
in Figure 1. This illustrates the benefit of using the GA to search for optimal
configurations. Good and Bad performance improved significantly, while the per-
formance on the Ugly partition dropped by a small amount. This suggests that
tuning real world systems using GAs may offer important performance increases.
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4 Data Mining the Search Space

A more interesting aspect of this work is what the optimization process tells us
about the shape of the parameter space. Each fitness evaluation relates a point
in that space to a score for the algorithm. During the course of the run the space
is sampled thousands of times, with higher density near the optimal solutions.

To understand the configuration space, a GLM was fit to the search results.
The response variable Ŷ is the score produced by the fitness function and the
Xi correspond to the values and squared values of the algorithm parameters:

Ŷ = α + β1X1 + β2X
2
1 + β3X2 + β4X

2
2 + · · · (2)

The α (intercept) and βi variables are fit to the dataset to minimize the sum of
squared error in the model, which is a second order approximation to the con-
figuration landscape and is used to estimate the importance of each parameter.

Figure 3 illustrates the GLM approximation to the fitness surface. In this case
only points that were added to the population are shown. Additionally, whitening
always resulted in a better score; therefore, the model was fit to configurations
where whitening was turned on. The basic shape of the landscape can be inferred
by the top row but the shape is more obvious when the parameters are controlled
for by the GLM as shown on the bottom.

This analysis reveals interesting shapes in the fitness landscape. Region 3
suggests a linear response and the range searched by the GA could be extended.
Region 7 shows a nice second order response where the best values selected by
the GA correspond nicely to the best values suggested by the GLM. Region 8
shows a response curve suggesting the best values may be larger or smaller than
what was searched by the GA. Also, a hill climbing approach would not properly
optimize this region. The GA, however, maintains multiple configurations in its
population and therefore focuses the search on both ends of the range. Total
Dimensions are also an interesting case where the model does not appear to fit
the data well and suggests a higher order GLM may be necessary.

While the model presented in the previous section is used to understand the
effects of the parameters, it is often important to understand which parameters
are effecting each other. Again a GLM is the analysis tool, but the new model
will add interaction terms. If a and b are parameters, the original model had the
terms for a, a2, b, and b2, while the new model adds an interaction term a ∗ b.

Initially 153 interaction terms were added to the GLM; however, most terms
did not contribute predictive information. A greedy local search reduced the
model parameters to the minimum needed to accurately represent the data, as
measured by Akaike Information Criterion (AIC). This reduced the model to
78 interactions. This number was further reduced by computing the significance
of dropping each remaining term from the model which used an F-test. This
resulted in 20 terms that were highly significant (P < 0.001).

A few parameters were found to repeatedly participate in the most significant
interactions. Region 1 participated four times, Region 2 three times, Region 7
four times, Region 8 three times, PCA Min Dimensions three times, PCA Max
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Fig. 3. These figures illustrate the fitness landscape for some of the configuration pa-
rameters. The top figures show the raw fitness scores relative to the parameter value.
The bottom figures show the adjusted score taking all other parameters into account.
The model is shown as a red line.

Dimensions six times, and Total Dimensions six times. The regions participating
in these interactions correspond to the eyes, nose bridge, and nose tip which are
thought to be the best areas of the face for biometric matching.

5 Conclusions

This paper used a GA to find the optimal parameter settings for the LRPCA
algorithm, producing a better configuration than manual tuning. The GA simul-
taneously optimizes 19 parameters in the context of the complete system, which
takes the fitness landscape and parameter interactions into account.

A GLM-based analysis provides additional knowledge of the algorithm by
modeling the fitness landscape. This shows when parameters have been set cor-
rectly or when additional tuning may be necessary. The analysis identifies which
parameters are most significant and which parameters have the strongest inter-
actions. This insight into the parameter space may lead to better performance
in future versions of the system.
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