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Abstract. We introduce a propositional logic whose formulas are built
using the language of CTL∗, enriched by two types of probability oper-
ators: one speaking about probabilities on branches, and one speaking
about probabilities of sets of branches with the same initial state. An
infinitary axiomatization for the logic, which is shown to be sound and
strongly complete with respect to the corresponding class of models, is
proposed.

1 Introduction

Interest in temporal reasoning came from theoretical and practical points of view.
Logicians [5,6,30] investigated consequences of different assumptions about the
structure of time, while temporal formalisms can be used in computer science
to reason about properties of programs [11,29]. In both cases discrete linear and
branching time logics have been extensively studied. Linear temporal logics are
suitable for specification and verification of universal properties of all executions
of programs. On the other hand, the branching time approach is appropriate to
analyze nondeterministic computations described in the form of execution trees.
In the later framework a state (a node) may have many successors. Then, it is
natural to attach probabilities to the corresponding transitions and to analyze
the corresponding discrete time Markov chains as the underlying structures. All
this led to probabilistic branching temporal logic [2,3,17,18,21,35]. The men-
tioned papers mainly investigate semantical properties of the logics and do not
offer any axiomatic system. The only exception is [35], where the logic with a
very restricted language is presented. A more detailed overview on the topic
is presented in Section 5, when we will be able to precisely formulate relevant
notions and connections between them using the formalism from Section 2.

In this paper we consider a propositional discrete probabilistic branching tem-
poral logic (denoted pBTL). We use a logical language which allows us to for-
mulate statements that combine temporal and qualitative probabilistic features.
Thus, the statements as “in at least half of paths α holds in at least a third
of states” and “if α holds in the next moment, then the probability of α is
positive” are expressible in our logic. To the best of our knowledge, the former
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sentence is not expressible in any of existing logics. The language for pBTL is
obtained by adding temporal operators © (“next”), A (universal path operator)
and U (“until”), as well as the two types of probability operators, P p

�r and P s
�r

(r ∈ Q ∩ [0, 1]), to the classical propositional language. The temporal operators
are well known from other formalizations of branching time logics, while the in-
tended meaning of P s

�rα (P p
�rα) is “the probability that α is true on a randomly

chosen branch is at least r” (“the probability that α holds on a particular branch
is at least r”). The superscript s in P s

�r (p in P p
�r) indicates that the probability

depends only on a time instant - state (on a chosen branch - path).
We present a class of suitable models for the pBTL-language and an infini-

tary axiomatization, for which we prove strong completeness theorem (“every
consistent set of formulas is satisfiable”, in contrast to weak completeness: “ev-
ery consistent formula is satisfiable”). Up to our knowledge it is the first such
result reported in literature. The corresponding proof uses ideas (the Henkin
construction) presented in [7,8,23,24,25,26,27,31].

The rest of the paper is organized as follows. In Section 2 we define syntax
and semantics for pBTL. Section 3 introduces an infinitary axiomatization for
the logic, which is proved to be strongly complete in Section 4. Comparison with
the related work is discussed in Section 5. Section 6 contains concluding remarks
and directions for further work.

2 Syntax and Semantics

Let P be at most countable set of propositional letters. The set of formulas For
of the logic pBTL is the smallest set which satisfies the following conditions:

– P ⊆ For,
– if α, β ∈ For, then α ∧ β,¬α ∈ For,
– if α, β ∈ For, then ©α, αUβ,Aα ∈ For,
– if α ∈ For and r ∈ Q ∩ [0, 1], then P p

�rα, P
s
�rα ∈ For.

Intuitively, the operators mean:

– ©α: α holds in the next time instant on a particular branch,
– αUβ: α holds in every time instant (on a particular branch) until β becomes

true,
– Aα: α holds on every branch which passes through the current state,
– P p

�rα: the probability that α holds at a randomly chosen time instant on a
particular branch is at least r, and

– P s
�rα: the probability of branches (with a particular initial time instant) on

which α holds is at least r”.

A formula is a state formula if it is a boolean combination of propositional letters,
formulas of the form P s

�rα and formulas of the form Aα. We denote the set of
all state formulas by St. For n ∈ ω, we define ©n+1α as ©(©nα). If T is a set
of formulas, then ©T denotes {©α|α ∈ T }, and AT denotes {Aα|α ∈ T }. The
temporal operators F (sometime), G (always) and E (existential path quantifier)
are defined as follows:
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– Fα is �Uα,
– Gα is ¬F¬α,
– Eα is ¬A¬α.

Also, in order to simplify notation, we introduce the following convention:

– P p
<rα is ¬P p

�rα, P p
�rα is P p

�1−r¬α, P p
>rα is ¬P p

�rα and P p
=rα is P p

�rα∧P p
�rα,

– P s
<rα, P s

�rα, P s
>rα and P s

=rα are defined in a similar way.

An example of a formula is

EGα → P s
� 1

2
P p

� 1
3
α,

which can be read as: “if there exists a path on which the formula α always holds,
then on at least a half of paths α holds in at least a third of time instants”.

Definition 1. A model M is any tuple 〈S, v,R,Σ, Probstate, P robpath〉 such
that:

– S is a non-empty set of states (time instants),
– v : S × P −→ {0, 1} assigns a truth labelling to every state.
– R is a binary relation on S, which is total (for every s ∈ S there is t ∈ S

such that sRt),
– Σ is a set of ω-sequences σ = s0, s1, s2,. . . of states from S, such that
siRsi+1, for all i ∈ ω. A path is an element of Σ. We assume that Σ is
suffix-closed, i.e., if σ = s0, s1, s2, . . . is a path and i ∈ ω, the sequence
si, si+1, si+2, . . . is also a path.

– Probstate associates to every s ∈ S, a probability space Probs = 〈Hs, μs〉
such that:

• Hs is an algebra of subsets of Σs = {σ ∈ Σ | σ0 = s}, i.e., it contains
Σs and it is closed under complements and finite union,

• μs : Hs −→ [0, 1] is a finitely additive probability measure, i.e.,

∗ μs(Hs) = 1, and
∗ μs(X ∪ Y ) = μs(X) + μs(Y ), whenever X and Y are disjoint.

– Probpath associates to every σ ∈ Σ, σ = s0, s1, . . . , si, si+1, si+2, . . ., a prob-
ability space Probσ = 〈Aσ, μσ〉 such that:

• Aσ is an algebra of subsets of Sσ = {π ∈ Σ | π = si, si+1, si+2, . . . , for i ∈
ω},

• μσ : Aσ −→ [0, 1] is a finitely additive probability measure.

Let σ = s0, s1, s2, . . . In the rest of the paper, we will use the following abbre-
viations:

– σ≥i is the path si, si+1, si+2, . . .
– σi is the state si.
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Definition 2. Let M = 〈S, v,R,Σ, Probstate, P robpath〉 be any model. The sat-
isfiability relation |= (we denote the fact that a formula α is satisfied at a path
σ in a model M by M, σ |= α) is defined recursively as follows:

– if p ∈ P, then M, σ |= p iff v(s0, p) = 1,
– M, σ |= ¬α iff M, σ 
|= α,
– M, σ |= α ∧ β iff M, σ |= α and M, σ |= β,
– M, σ |= ©α iff M, σ≥1 |= α,
– M, σ |= Aα iff for every path π, if σ0 = π0 then M, π |= α.
– M, σ |= αUβ iff there is some i ∈ ω such that M, σ≥i |= β and for each
j ∈ ω, if 0 ≤ j < i then M, σ≥j |= α,

– M, σ |= P s
�rα iff μσ0{π ∈ Σσ0 | M, π |= α} � r,

– M, σ |= P p
�rα iff μσ{π ∈ Sσ | M, π |= α} � r.

Note that the satisfiability of any state formula (for example P s
�rα) depends only

on the initial state of the path, while the other formulas are path-dependent.
If M = 〈S, v,R,Σ, Probstate, P robpath〉 is a model and σ ∈ Σ, we will denote:

– [α]path
M,σ = {π ∈ Sσ | M, π |= α}, and

– [α]state
M,s = {π ∈ Σs | M, π |= α}.

The possible problems in Definition 2 are that for an α the sets [α]path
M,σ and

[α]state
M,s might not be in Aσ and in Hs, respectively. To overcome this, in the rest

of the paper we will consider only so-called measurable models.

Definition 3. A model M = 〈S, v,R,Σ, Probstate, P robpath〉 is measurable if
the following conditions are satisfied:

– [α]path
M,σ ∈ Aσ, for every α ∈ For,

– [α]state
M,s ∈ Hs, for every α ∈ For.

We will denote the probabilistic branching-time temporal logic characterized by
the class of all measurable models by pBTLMeas.

The expression M, σ |= T denotes the fact that M, σ |= α, for every α ∈ T .
A formula α is satisfiable if there is a path σ in a model M such that M, σ |= α.
A formula is valid if M, σ |= α for every model M and every path σ of M. We
write T |= α (“α is a semantical consequence of T ”), if for every model M and
every σ in M, if M, σ |= T , then M, σ |= α.

3 Axiomatization

Propositional axioms

A1. all the tautologies of the classical propositional logic
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Temporal axioms

A2. ©(α→ β) → (©α→ ©β)
A3. ¬© α↔ ©¬α
A4. αUβ ↔ β ∨ (α ∧©(αUβ))
A5. p→ Ap, p ∈ P
A6. Ep→ p, p ∈ P
A7. Aα→ α
A8. A(α→ β) → (Aα→ Aβ)
A9. Aα→ AAα
A10. Eα→ AEα

Probabilistic axioms (x ∈ {p, s})
A11. P x

≥0α
A12. P x

≤sα→ P x
<tα, t > s

A13. P x
<sα→ P x

≤sα
A14. (P x

≥sα ∧ P x
≥rβ ∧ P x

≥1(¬α ∨ ¬β)) → P x
≥min(1,s+r)(α ∨ β)

A15. (P x
≤sα ∧ P x

<rβ) → P x
<s+r(α ∨ β), s+ r ≤ 1

Axioms about probability and temporality

A16. Gα→ P p
≥1α

A17. Aα→ P s
≥1α

A18. P s
≥rα→ AP s

≥rα
A19. EP s

≥rα→ P s
≥rα

Inference rules

R1. from {α, α→ β} infer β
R2. from α infer ©α
R3. from α infer Aα
R4. from the set of premises

{γ → ¬((∧i
k=0 ©k α) ∧©i+1β) | i ∈ ω}

infer γ → ¬(αUβ)
R5. from the set of premises

{β → ©mP x
≥r− 1

k
α | k ∈ ω, k ≥ 1

r
}

infer β → ©mP x
≥rα (for any m ∈ ω and x ∈ {p, s})

Let us briefly discuss some of the above axioms and rules. By the axiom A1 and
the inference rule R1 (Modus ponens), pBTL extends the classical propositional
logic. The axioms A2–A4 are standard axioms of discrete linear-time temporal
logic, while the axioms A5–A10 concern the non-linear aspect of the temporal
logic [34]. Probabilistic axioms captures the basic properties of probability: non-
negativity and finite additivity. The last group of axioms concerns mixing of
probabilistic and temporal reasoning.
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The inference rules R2 and R3 are the variants of modal Necessitation. They can
be applied only to theorems. The rules R4 and R5 are infinitary inference rules.
The former one characterizes the until operator, while the later one intuitively
says that if the probability is arbitrarily close to r, then it is at least r.

We say that a formula α is deducible from a set T of formulas, and write
T � α, if there is an at most countable sequence of formulas α0, α1, . . . , α, such
that every αi is an axiom or a formula from T , or it is derived from the preceding
formulas by an inference rule (with the exception that R2 and R3 can be applied
to theorems only). That sequence is called the proof of α from T . The formula
α is a theorem, denoted by � α, if it is deducible from the empty set. A set T
of formulas is consistent if there is at least one formula which is not deducible
from T ; otherwise it is inconsistent. A consistent set T of sentences is said to be
maximally consistent if for every α ∈ For, either α ∈ T or ¬α ∈ T .

It is easy to prove soundness of the proposed axiomatic system (with respect
to the considered class of models), using a straightforward induction on the
length of the inference.

4 Completeness

In this section, some straightforward parts of the proof are omitted because of
limited space.

Theorem 1 (Deduction theorem). If T is a set of formulas, ϕ is a formula,
and T, ϕ � ψ, then T � ϕ→ ψ.

Proof. The proof is on the the transfinite induction on the length of the inference.
We will only consider the case when we apply the inference rule R4.

If T, ϕ � γ → ¬(αUβ) is obtained by the inference rule R4, then T, ϕ �
γ → ¬((∧i

k=0 ©k α) ∧ ©i+1β), for all i ∈ ω. By the induction hypothesis, we
have T � ϕ → (γ → ¬((∧i

k=0 ©k α) ∧ ©i+1β)) (for all i ∈ ω). From A1 we
obtain T � (ϕ ∧ γ) → (¬((∧i

k=0 ©k α) ∧©i+1β))), for all i ∈ ω. Applying the
inference rule R4 we conclude T � (ϕ∧γ) → (¬(αUβ)). Finally, by A1 we obtain
T � ϕ→ (γ → ¬(αUβ)).

The cases when ψ is a theorem and when we apply Modus ponens are stan-
dard, while the cases when we apply the inference rules R2 and R3 are trivial,
since they can be applied to theorems only. In the case when we apply R5, the
proof is similar to the considered case (R4). ��
Lemma 1. Let α, β, γ be formulas.

1. the following inference rule is derivable: from the set of formulas

{γ → ©iβ | i ∈ ω}
infer γ → Gβ,

2. if � α, then � Gα,
3. � G© α↔ ©Gα,
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4. � (©α→ ©β) → ©(α→ β),
5. � ©(α ∧ β) ↔ (©α ∧©β),
6. � ©(α ∨ β) ↔ (©α ∨©β),
7. Gα � ©iα for every i ≥ 0,
8. if T � α, where T is a set of formulae, then ©T � ©α.
9. for j ≥ 0, ©jβ,©0α, . . . ,©j−1α � αUβ,

10. if T is a set of formulas and T � α, then AT � Aα.
11. � Gα↔ α ∧©Gα,
12. � G(α→ β) → (Gα→ Gβ),
13. � G(α→ ©α) → (α→ Gα),
14. � (G(α→ α1) ∧ (αUβ)) → (α1Uβ),
15. � (G(β → β1) ∧ (αUβ)) → (αUβ1),
16. � Fα↔ F¬¬α
17. � αUβ → Fβ.

Proof. (1) is an immediate consequence of R4, obtained by replacing α and β
with � and ¬β, respectively. (2) follows from (1) and R2.

For the proof of (3), (8) and (9) we refer the reader to [26], while the proof of
(10) can be found in [7].
(14) Note that by (9) we have:

– G(α→ α1) � ¬(α1Uβ) → ¬((∧i−1
k=0 ©k α1) ∧©iβ), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ) → ((∧i−1
k=0 ©k α1) → ¬©i β), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ) → ((∧i−1
k=0 ©k α) → ¬©i β), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ) → ¬((∧i−1
k=0 ©k α) ∧©iβ), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ) → ¬((αUβ)), by R4

Thus, the statement holds. The statement (15) can be proved in a similar way,
while (16) follows from the definition of Fα = �Uα and the previous steps. (17)
follows directly from (14), taking α1 = �. The remaining statements are easy
consequences of the temporal part of the above axiomatization. �

Note that Lemma 1 states that some of the formulas and inference rules, pro-
posed as the part of some (weakly) complete axiomatic systems [4,32,34] for
temporal reasoning, hold in our logic. Thus, the temporal part of our axioma-
tization is sufficient to capture the semantical properties of the operators ©, A
and U .

Theorem 2. Every consistent set T of formulas can be extended to a maximal
consistent set T ∗.

Proof. Let us assume that For = {αi | i ∈ ω}. The maximally consistent set T ∗

is defined recursively, as follows:

1. T0 = T .
2. If αi is consistent with Ti, then Ti+1 = Ti ∪ {αi}.
3. If αi is not consistent with Ti, then:
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(a) Otherwise, if αi has the form γ → ¬(αUβ), then

Ti+1 = Ti ∪ {γ → ((∧n0
k=0 ©k α) ∧©n0+1β)},

where n0 is a positive integer such that Ti+1 is consistent.
(b) Otherwise, if αi is of the form γ → ©mP x

≥rβ, for x ∈ {p, s}, then

Ti+1 = Ti ∪ {γ → ¬©m P x
≥r− 1

n1
β}

where n1 is a positive integer such that Ti+1 is consistent.
(c) Otherwise, Ti+1 = Ti.

4. T ∗ =
⋃

n∈ω Tn.

Let us prove the existence of the number n0 in 3(a). If we suppose that γ →
((∧n

k=0 ©k α) ∧ ©n+1β) is not consistent with Ti, for every n ∈ ω, then, by
Theorem 1, Ti � ¬(γ → ((∧n

k=0 ©k α) ∧©n+1β)), for every n ∈ ω. By A1 we
obtain Ti � γ → ¬((∧n

k=0 ©k α) ∧ ©n+1β), for every n ∈ ω. By R4 we have
Ti � γ → ¬(αUβ), which contradicts the assumption. The proof of the existence
of the number n1 in 3(b) is similar.

It is easy to show that Ti is consistent for every i, and that for each α ∈ For,
either α ∈ T ∗ or ¬α ∈ T ∗.

Note that deductive closeness of T ∗ would imply its consistency: T ∗ � ⊥ would
imply ⊥ ∈ T ∗, thus there would exist i such that ⊥ ∈ Ti, which is impossible.
In order to prove that T ∗ is deductively closed, it is sufficient to prove that it
is closed under the inference rules, since all instances of axioms are obviously
in T ∗. We will only prove closeness under the inference rule R4, since the case
when we consider R5 is similar, while the other cases are trivial.

Suppose that γ → ¬(αUβ) 
∈ T ∗, while γ → ¬((∧i
k=0 ©k α) ∧©i+1β) ∈ T ∗

for every i ∈ ω. By maximality of T ∗, ¬(γ → ¬(αUβ)) ∈ T ∗, or, equivalently,
γ ∧ (αUβ) ∈ T ∗. Consequently, γ ∈ T ∗ and αUβ ∈ T ∗, so there are m,n ∈ ω
such that γ ∈ Tm and αUβ ∈ Tn. If γ → ¬(αUβ) = αl, then, by the construction
of T ∗, there is n0 such that γ → ((∧n0

k=0 ©k α)∧©n0+1β) ∈ Tl. By Lemma 1(9),
Tl � αUβ. Consequently, Tmax{l,m,n}, which is in contradiction with consistency
of Tmax{l,m,n}. �

We define the equivalence relation ∼ on the set of maximally consistent sets of
formulas as follows:

T ∗
1 ∼ T ∗

2 iff T ∗
1 ∩ St = T ∗

2 ∩ St.
The equivalence class of T ∗ is [T ∗] = {T ∗

1 | T ∗
1 ∼ T ∗}.

A canonical model M∗ = 〈S, v,R,Σ, Probstate, P robpath〉 is defined in the
following way:

– S = {[T ∗] | T ∗ is maximally consistent set of formulas},
– v([T ∗], p) = 1 iff T ∗ � p, p ∈ P ,
– [T ∗

1 ]R[T ∗
2 ] if there exist T ∗

3 ∼ T ∗
1 , T ∗

4 ∼ T ∗
2 such that T ∗

4 = {α| © α ∈ T ∗
3 },
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– Σ is the set of paths [T ∗
0 ], [T ∗

1 ], [T ∗
2 ] ,. . . such that T ∗

i+1 = {α|©α ∈ T ∗
i }, for

all i ∈ ω. If the sequence {T ∗
i }i∈ω determines a path σ, we will write σ(i)

for T ∗
i ,

– Probpath is defined as follows: for every σ = [T ∗
0 ], [T ∗

1 ], [T ∗
2 ] ,. . . , Probσ =

〈Aσ, μσ〉 is a probability space such that:
• Aσ = {[α]σ | α ∈ For}, where [α]σ = {σ�i | T ∗

i � α, i ∈ ω},
• μσ([α]σ) = sup{r ∈ Q ∩ [0, 1] | T ∗

0 � P p
�rα},

– Probstate is defined as follows: for every σ = [T ∗
0 ], [T ∗

1 ], [T ∗
2 ] ,. . . , the prob-

ability space Probσ = 〈Aσ , μσ〉 is determined by the following conditions:
that:
• Hs = {[α]s | α ∈ For}, where [α]s = {π | π(0) ∼ T ∗

0 , π(0) � α},
• μs([α]s) = sup{r ∈ Q ∩ [0, 1] | T ∗

0 � P s
�rα}.

Theorem 3. M∗ is a pBTL-model.

Proof. Note that definitions of v and μs depend on the chosen element of equiv-
alence class. We will show that the definition of M∗ is correct:

– v is well defined, since P ⊆ St, so T ∗
1 � p iff T ∗

2 � p, whenever T ∗
1 ∼ T ∗

2 ,
p ∈ P .

– The definition of R is correct. Namely, using Temporal axioms, one can
show that the properties of consistency and maximality transfer from T ∗ to
{α| © α ∈ T ∗}. Moreover, R is obviously a total relation.

– Aσ is an algebra of sets. It is easy to show that Sσ = [�]σ, [α]cσ = [¬α]σ and
[α]σ ∪ [β]σ = [α ∨ β]σ. Similarly, Hs is an algebra of sets.

– The function μs is well defined, since any formula of the form P s
�rα is a

state formula, so it belongs to a maximally consistent set T ∗
1 if and only if

it belongs to any other maximally consistent set T ∗
2 ∈ [T ∗

1 ]. Consequently,
sup{r ∈ Q ∩ [0, 1] | T ∗

1 � P s
�rα} = sup{r ∈ Q ∩ [0, 1] | T ∗

2 � P s
�rα}.

By the axiom A11, μs(α) � 0, for every α ∈ For. By R3, � A�, so, by A17,
T ∗ � P s

�1�, for every maximally consistent set T ∗. Since Hs = [�]s, we obtain
μs(Hs) = 1. Similarly, μσ(Aσ) = 1 (by Lemma 1(2) and A16).

For the proof of finite additivity of μs and μσ, we refer the reader to [26],
where a similar result is proved. �

Note that, since each [T ∗] may contain many maximally consistent sets, it is
possible that one state belongs to several paths.

Theorem 4 (Strong completeness theorem). Every consistent set of for-
mulas is satisfiable.

Proof. Let T be a consistent set of formulas, and let M∗ be the model con-
structed above. We will prove that for every α ∈ For, M∗, σ |= α iff α ∈ σ(0).

If α is a propositional letter, this is immediate consequence of the definition
of v. The proof in the cases when α is a negation or a conjunction is standard.
For the proof in the cases when α is of the form ©β or βUγ, we refer the reader
to [26], where the similar proofs are presented.
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Let α = Aβ. If M∗, σ 
|= Aβ, then there exists π ∈ Σσ0 such that M∗, π |= ¬β.
By the induction hypothesis we obtain ¬β ∈ π(0), so β 
∈ π(0). By Axiom
A7, Aβ 
∈ π(0). From π(0) ∼ σ(0) and Aβ ∈ St, we conclude Aβ /∈ σ(0).
For the other direction, suppose that M∗, σ |= Aβ. Then for all π ∈ Σσ0 ,
M∗, σ |= β. Consequently, by the induction hypothesis, for all π ∈ Σσ0 , β ∈ π(0).
If Aβ /∈ σ(0), using Temporal axioms one can show that there exists ρ ∈ Σσ0

such that β /∈ ρ(0), which contradicts the assumption.
Let α = P s

≥rβ (in the case when α = P p
≥rβ the proof is similar). Suppose that

M∗, σ |= P s
≥rβ. If sup{t ∈ Q∩[0, 1] | P s

≥tβ ∈ σ(0)} = r, then P s
≥rβ ∈ σ(0), by the

maximality of σ(0) and the rule R3. If sup{t ∈ Q∩[0, 1] | P s
≥tβ ∈ σ(0)} > r, then

there exists q ∈ Q∩ (r, sup{t ∈ Q∩ [0, 1] | P s
≥tβ ∈ σ(0)}] such that P s

≥qβ 
∈ σ(0).
By deductively closeness of σ(0), P s

≥rβ ∈ σ(0). On the other hand, if P s
≥rβ ∈

σ(0), then μs({π | π(0) ∼ σ(0), π(0) � β}) = sup{t ∈ Q∩ [0, 1] | P s
≥tβ ∈ σ(0)} ≥

r. By the induction hypothesis, {π | π(0) ∼ σ(0), π(0) � β} = {π | π(0) ∼
σ(0), M∗, π |= β}, so M∗, σ |= P s

≥rβ.
Let T ∗ be a maximally consistent set such that T ⊆ T ∗. If σ = [T ∗], [{α|©α ∈

T ∗}], [{α| ©2 α ∈ T ∗}] . . . , then M∗, σ |= T . ��

Note that, by the proof of the previous theorem, [α]σ = {σ�i | T ∗
i � α, i ∈

ω} = {π ∈ Sσ | M∗, π |= α} = [α]path
M,σ. Similarly, [α]s = [α]state

M∗,σ, so M∗ is a
measurable model.

Corollary 1. If α is a formula and T is a set of formulas, then T |= α implies
T � α.

Proof. Let T |= α. Then T∪{¬α} is not satisfiable. By Theorem 4, T∪{¬α} � ⊥,
and, by Theorem 1, T � α.

5 Related Work

The branching-time logic PCTL for reasoning about time and probability is
described in [17]. The underlying temporal logic is Computational Tree Logic
CTL (Emerson, Clark, Sistla [10]). The statements of the form: ”after a request
for service there is at least a 98% probability that the service will be carried
out within 2 seconds” are expressible in the language of PCTL. Formulas are
interpreted over discrete time Markov chains and algorithms for checking satis-
fiability of formulas by a given Markov chain are described. No axiomatization
is presented. The logic follows the division of CTL into state formulas and path
formulas. The classical propositional language is enriched in the following way:

– αU≤tβ and αU≤tβ are path formulas, if α and β are state formulas, and
t ∈ ω ∪ {∞}. The intuitive meaning of αU≤tβ is similar to the meaning of
αUβ, with the exception that β has to become true within t time instances
(for t = ∞, U≤t and U coincide). The relation of αU≤tβ to αUβ ≡ αUβ∨Gα
is analogous.
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– αU≤t
>rβ and αU≤t

>rβ are state formulas, if α and β are path formulas, and
t ∈ ω ∪ {∞}. The meaning of those formulas is given by the satisfiability
relation (formulation is adopted according to our terminology):

M, σ |= αU≤t
>rβ iff μσ0({π | σ0 = π0, M, π |= αU≤tβ}) > r,

The formulas of PCTL are expressible in our language. For example:

– αU≤nβ may be written as β ∨ ∨n
i=1((∧i−1

k=0 ©k α) ∧©iβ),
– αU≤n

>r β may be written as P s
>r(β ∨ ∨n

i=1((∧i−1
k=0 ©k α) ∧©iβ)).

On the other hand, our operator P p
�r is not expressible in PCTL. Also, boolean

combinations of state and path formulas are not PCTL-formulas.
A more expressive branching-time logic denoted PCTL∗ is described in [2].

The underlying temporal logic is CTL∗ with path quantifiers replaced by prob-
abilities (P=1, P>0). Thus, the propositional language is extended with:

– state formulas: P≥rα (α is a path formula),
– path formulas: ©α, αUβ (α and β are state formulas).

According to definition of satisfiability, their probability operator P�r corre-
sponds to our operator P s

�r, while our operator P p
�r is not expressible in PCTL∗.

Similarly as in PCTL, the conjunction of a state formula and a path formula is
not a formula. No axiomatization for PCTL∗ is given.

The paper [3] presents model-checking algorithms for extensions of PCTL and
PCTL∗ that involve non-determinism.

A probabilistic modal logic PPL is introduced in [35]. It allows applying
probabilities to sequences of formulas (giving so called path expressiveness). A
Gentzen-style axiom system is presented and proved to be sound and complete.
Probabilities are expressed using terms (similarly as in [12]). The language allows
linear combinations of terms of the form P (α1, . . . , αn) which means “the proba-
bility of the sequence of formulas.” Iteration of probabilities in a term is allowed.
The formula P (α1, . . . , αn) ≥ r is expressible in our logic as P s

�r(
∧n

i=1 ©iαi). On
the other hand, formulas of PPL can not express probability within a path (P p

�r).
Also, the temporal operators are not definable in PPL. Although our language
does not allow linear combinations of probabilities, combining the techniques
from [8,9,28], where arithmetical operations are built into the syntax of prob-
abilistic logic, with the ideas presented in this paper, would lead to a logic in
which formulas of PPL are expressible.

In [18] and [21] propositional logics that use the languages of CTL and CTL∗

are presented. The probabilities are not expressible in syntax, but the formu-
las are interpreted over Markov systems which can simulate the execution of
probabilistic programs.

The papers [15,19,22] introduce real-time interval logics that can be used in
design of an embedded real-time systems. The infinite intervals are considered
in [16].

The language of the logic presented in [13] is based on the propositional dy-
namic logic, and the main objects are programs. Probabilistic operators can
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be applied on a limited class of formulas, and the completeness problem is not
solved. A fragment of [13]) is considered in [20]. A dynamic generalization of the
logic of qualitative probabilities from [33] is presented in [14]. Completeness is
proved using an infinitary rule, similarly as in our approach.

6 Conclusion and Future Work

We have introduced the propositional probabilistic branching time logic pBTL
that enables us to formulate (and combine) both purely temporal statements
and the expressions such as: “in at least half of paths α holds in at least a
third of states”. The formulas are interpreted over models that involve a class
of probability measures assigned to states, and a class of probability measures
assigned to paths. We have proved that the infinitary axiomatic system for pBTL
is sound and strongly complete.

One of the main axiomatization issues for temporal logics with the operators
© and G, and for real valued probability logics is the non-compactness phenom-
ena. The set of formulas {P s

>0α}∪{P s
� 1

n

α | n ∈ ω} and {Gα}∪{©n¬α | n ∈ ω}
are finitely satisfiable but they are not satisfiable. It is well known that, in the
absence of compactness, any finitary axiomatization would be incomplete. Thus,
infinitary axiomatic systems are the only way to establish strong completeness.

The temporal fragment of pBTL uses the language of CTL∗. The restricted
class of models (without probabilities) corresponds to the class of models of so-
called ∀LT logic from [34] (compare Lemma 1 and the axiomatic system from
[34]). The paper [32] solved the problem of (weak) completeness of Full Compu-
tation Tree Logic (with the class of models satisfying the desirable properties FC
(Fusion closed) and LC (Limit closed)), extending the axiomatization of ∀LT .
Thus, the question of extending the temporal part of our axiomatization, with
the aim to obtain completeness of probabilistic Full Computation Tree Logic,
naturally arise.

Also, we believe that there are several other promising ways to extend the
results presented here, along the lines of our previous research:

– Combining the techniques from this paper and [7] may lead to the first-order
extension of pBTL. That logic would be not only of theoretical interest,
since the set of all valid formulas is not recursively enumerable [1], and no
complete finitary axiomatization is possible in that undecidable framework.
In this situation, a complete (even if infinitary) axiomatization would be of
great practical significance.

– A branching time logic in which linear combinations of probabilities are
expressible could be developed combining the ideas presented here with the
ideas from [8,9,28]. The formulas of the logic presented in [35] would be
expressible in the resulting language (see Section 5).

– It is well known that CTL and CTL∗ are decidable [11]. We expect that,
similarly as it is done in [26] for probabilistic linear time logic, it is possible
to adapt the corresponding procedures to prove decidability of the logic
presented here.
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